
Monk Developer’s Reference

Release 4.5.2
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBI, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 1999–2002 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20020228111113.
Monk Developer’s Reference 2 SeeBeyond Proprietary and Confidential

Contents
Contents

Chapter 1

Introduction 16
Document Purpose and Scope 16

Intended Audience 16

Organization of Information 17

Writing Conventions 18

Supporting Documents 19

SeeBeyond Web Site 20

Chapter 2

Monk Basics 21
 Overview 21

Data Types 22

Latent Data Typing 23

Monk Conventions 24
Naming Conventions 24
Identifiers 24
Comments 25
Whitespace 25
Notations 26
Literals 26
Variables 27
Procedure or Function Calls 27

The Use of Characters 27
Entering Interpreted Characters as Literals 28
Characters to be Escaped in Monk Expressions 28
Representing Control Characters in Monk Expressions 28
Representing Octal or Hex Characters as Monk Expressions 29

Regular Expressions 29
The Simplest Regular Expression 29
Building Complex Regular Expressions 29
Regular Expression Operators 30
Regular Expression Examples 32
Monk Developer’s Reference 3 SeeBeyond Proprietary and Confidential

Contents
Format Specification 34

Monk and Event Definitions 37
Contents of an Event Definition 38
Structured Events 38
How Monk Uses Paths to Access Structured Events 40

Delimiter List 42
Node List 44

Behavior of Optional Nodes That Contain No Data 50
Dynamic Parsing of Data 51
Referencing an Instance of a Repeating Node 51

Referencing Data with Byte Count 51
Length Specification, When Assigning Data to Structured Event 52

Use of Variables to Represent Path Elements 53
Path to Any-Ordered Set 53

Sample Programs 54

Chapter 3

Control Flow and Boolean Expressions 57
Overview 57

and 58
begin 59
case 60
case-equal 61
cond 62
do 63
do* 65
if 66
not 67
or 68

Chapter 4

Definition, Binding and Assignment 69
define 70
defined? 71
let 72
let* 73
set 74
set! 75

Chapter 5

Character Functions 76
char? 77
char=? 78
char<? 79
char>? 80
char<=? 81
char>=? 82
char-ci=? 83
char-ci<? 84
Monk Developer’s Reference 4 SeeBeyond Proprietary and Confidential

Contents
char-ci>? 85
char-ci<=? 86
char-ci>=? 87
char-alphabetic? 88
char-and 89
char-downcase 90
char-lower-case? 91
char-not 92
char-numeric? 93
char-or 94
char-shift-left 95
char-shift-right 96
char-type 97
char-type! 98
char-type? 99
char-upcase 100
char-upper-case? 101
char-whitespace? 102
char-xor 103

Chapter 6

String Functions 104
format 106
htonl->string 107
htons->string 108
list->string 109
make-string 110
regex 111
string 112
string? 113
string<? 114
string<=? 115
string=? 116
string>? 117
string>=? 118
string-append 119
string-checksum 120
string-ci=? 121
string-ci<? 122
string-ci>? 123
string-ci<=? 124
string-ci>=? 125
string-copy 126
string-copy! 127
string-crc16 128
string-crc32 129
string-downcase 130
string-fill! 131
string-insert! 132
string-left-trim 133
string-length 134
string-length! 135
string->list 136
string-lrc 137
string->ntohl 138
string->ntohs 139
string-ref 140
string-right-trim 141
string-set! 142
string-substitute 143
string-tokens 144
Monk Developer’s Reference 5 SeeBeyond Proprietary and Confidential

Contents
string-trim 145
string-type 146
string-type! 147
string-type? 148
string-upcase 149
substring 150
substring-index 151

Chapter 7

Numerical Expressions 152
* 153
+ 154
- 155
/ 156
< 157
= 158
<= 159
> 160
>= 161
abs 162
acos 163
asin 164
atan 165
big-endian->integer 166
ceiling 167
cos 168
even? 169
exp 170
expt 171
floor 172
gcd 173
integer? 174
integer->big-endian 175
integer->little-endian 176
lcm 177
little-endian->integer 178
log 179
max 180
min 181
modulo 182
negative? 183
number? 184
number->integer 185
number->real 186
number->uint 187
odd? 188
positive? 189
quotient 190
real? 191
remainder 192
round 193
sin 194
sqrt 195
tan 196
truncate 197
uint? 198
zero? 199
Monk Developer’s Reference 6 SeeBeyond Proprietary and Confidential

Contents
Chapter 8

Pairs and Lists 200
append 201
assoc 202
assq 203
assv 204
car 205
cdr 206
caar...cddddr 207
cons 208
length 209
list 210
list? 211
list-ref 212
list-tail 213
member 214
memq 215
memv 216
null? 217
pair? 218
reverse 219
set-car! 220
set-cdr! 221

Chapter 9

Vector Expressions 222
list->vector 223
make-vector 224
vector 225
vector? 226
vector->list 227
vector-fill! 228
vector-length 229
vector-ref 230
vector-set! 231
vector->string 232

Chapter 10

Equivalence Testing 233
eq? 234
equal? 236
eqv? 237

Chapter 11

Conversion Procedures 239
number->string 240
string->number 241
keyword? 242
string->symbol 243
symbol->string 244
char->integer 245
Monk Developer’s Reference 7 SeeBeyond Proprietary and Confidential

Contents
integer->char 246

Chapter 12

File I/O Expressions 247
clear-port-callback 248
close-port 249
current-debug-port 250
current-error-port 251
current-input-port 252
current-output-port 253
current-warning-port 254
ftell 255
get-port-callback 256
input-port? 257
input-string-port? 258
open-append-file 259
open-input-file 260
open-input-string 261
open-output-file 262
open-output-string 263
open-random-access-file 264
output-port? 265
output-string-port? 266
regex-string-port 267
rewind 268
seek-cur 269
seek-set 270
seek-to-end 271
set-file-encoding-method 272
set-port-callback 273
string-port->string 274
eof-object? 275
read 276
read-char 277
read-line 278
display 279
newline 280
write 281
write-char 282
write-exp 283

Chapter 13

System Interface Functions 284
directory 285
file-delete 286
file-exists? 287
file-rename 288
getenv 289
load 290
load-directory 291
load-extension 292
putenv 293
system 294
Monk Developer’s Reference 8 SeeBeyond Proprietary and Confidential

Contents
Chapter 14

Standard Procedures 296
Booleans 296

boolean? 297

Symbols 297
keyword? 298
symbol? 299
sys-procedures 300
sys-symbols 301

Sequence Operators 301
nth 302
qsort 303

Control Features 303
apply 304
map 305
procedure? 306

Evaluation 306
eval 307

Literal Expressions 307
quote 308
quasiquote 309

Procedure 310
lambda 311
lambdaq 313

Comment 313
comment 314

Chapter 15

Event Definitions 315
$event-clear 316
$event-parse 317
$event->string 318
$make-event-map 319
$resolve-event-definition 321
change-pattern 322
copy 324
copy-strip 325
count-data-children 326
count-map-children 327
count-rep 328
data-map 329
display-event-data 331
display-event-dump 333
display-event-map 337
duplicate 340
duplicate-strip 341
file-check 342
file-lookup 343
get 344
list-lookup 345
node-has-data? 346
Monk Developer’s Reference 9 SeeBeyond Proprietary and Confidential

Contents
not-verify 347
path? 348
path-defined-as-repeating? 349
path-event 350
path-event-symbol 351
path-nodeclear 352
path-nodedepth 353
path-nodename 354
path-nodeparentname 355
path-put 356
path->string 357
path-valid? 358
string->path 359
timestamp 360
uniqueid 362
verify 363

Chapter 16

Date and Time 364
difftime 365
gregorian_date->julian_days 366
julian_days->gregorian_date 367
mktime 368
strftime 370
time 371

Chapter 17

Interface API Functionality 372
interface-handle 373
invoke 374
load-interface 375

Chapter 18

Debug Procedures 376
Interactive Debug Procedures 376

break 377
set-break 378

Internal Debug Control Procedures 378
monk-flag-check? 380
monk-flag-clear 381
monk-flag-get 382
monk-flag-set 383

Chapter 19

Math-Precision Functions 384
mp-absolute-value 385
mp-add 386
mp-ceiling 387
mp-divide 388
Monk Developer’s Reference 10 SeeBeyond Proprietary and Confidential

Contents
mp-even? 389
mp-floor 390
mp-max 391
mp-min 392
mp-modulo 393
mp-multiply 394
mp-negative? 395
mp-num-eq 396
mp-num-ge 397
mp-num-gt 398
mp-num-le 399
mp-num-lt 400
mp-num-ne 401
mp-odd? 402
mp-positive? 403
mp-quotient 404
mp-remainder 405
mp-round 406
mp-set-precision 407
mp-subtract 408
mp-truncate 409

Chapter 20

Monk Library Functions 410
Basic Library Functions 410

allcap? 412
capitalize 413
char-punctuation? 414
char-substitute 415
char-to-char 416
conv 417
count-used-children 418
degc->degf 419
degf->degc 420
diff-two-dates 421
display-error 422
empty-string? 423
fail_id 424
fail_id_if 425
fail_translation 426
fail_translation_if 427
find-get-after 428
find-get-before 429
get-timestamp 430
julian-date? 431
julian->standard 432
leap-year? 433
map-string 434
not-empty-string? 435
standard-date? 436
standard->julian 437
string-begins-with? 438
string-contains? 439
string-ends-with? 440
string-search-from-left 441
string-search-from-right 442
string->ssn 443
strip-punct 444
strip-string 445
substring=? 446
Monk Developer’s Reference 11 SeeBeyond Proprietary and Confidential

Contents
symbol-table-get 447
symbol-table-put 448
trim-string-left 449
trim-string-right 450
valid-decimal? 451
valid-integer? 452
verify-type 453

Advanced Library Functions 454
calc-surface-bsa 455
calc-surface-gg 456
cm->in 457
get-2-ssn 458
get-3-ssn 459
get-4-ssn 460
get-apartment 461
get-city 462
get-first-name 463
get-last-name 464
get-middle-name 465
get-state 466
get-street-address 467
get-zip 468
in->cm 469
lb->oz 470
oz->gm 471
oz->lb 472
valid-phone? 473
valid-ssn? 474

Chapter 21

International Conversion Functions 475
The UTF8 Conversion Utility 476
arabic2utf8 478
big52utf8 479
clear-gaiji-table 480
cyrillic2utf8 481
ebcdic2sjis 482
ebcdic2sjis_g 483
ebcdic2uhc 484
ebcdic2uhc_m 485
euc2sjis 486
euc2sjis_g 487
gb23122utf8 488
greek2utf8 489
hebrew2utf8 490
init-gaiji 491
init-utf8gaiji 492
jef2sjis 493
jef2sjis_g 494
jef2sjis_m 495
jef2sjis_m_g 496
jef2sjis_p 497
jef2sjis_p_g 498
jipse2sjis 499
jipse2sjis_g 500
jis2sjis 501
jis2sjis_g 502
latin12utf8 503
latin22utf8 504
latin32utf8 505
Monk Developer’s Reference 12 SeeBeyond Proprietary and Confidential

Contents
latin42utf8 506
latin52utf8 507
latin62utf8 508
latin72utf8 509
latin82utf8 510
latin92utf8 511
set-gaiji-table 512
set-utf8gaiji-table 513
sjis2ebcdic 514
sjis2ebcdic_g 515
sjis2euc 516
sjis2euc_g 517
sjis2jef 518
sjis2jef_g 519
sjis2jef_m 520
sjis2jef_m_g 521
sjis2jef_p 522
sjis2jef_p_g 523
sjis2jipse 524
sjis2jipse_g 525
sjis2jis 526
sjis2jis_g 527
sjis2sjis 528
sjis2utf8 529
sjis2utf8_g 530
uhc2ebcdic 531
uhc2ebcdic_m 532
uhc2ksc 533
uhc2ksc_m 534
uhc2uhc 535
uhc2utf8 536
utf82arabic 537
utf82big5 538
utf82cyrillic 539
utf82gb2312 540
utf82greek 541
utf82hebrew 542
utf82latin1 543
utf82latin2 544
utf82latin3 545
utf82latin4 546
utf82latin5 547
utf82latin6 548
utf82latin7 549
utf82latin8 550
utf82latin9 551
utf82sjis 552
utf82sjis_g 553
utf82uhc 554
utf82utf8 555

Chapter 22

e*Gate Extensions to Monk 556
Queue Service Access 557

iq-get 558
iq-get-header 559
iq-initial-handle 560
iq-initial-topic 561
iq-input-topics 562
iq-mark-unusable 563
Monk Developer’s Reference 13 SeeBeyond Proprietary and Confidential

Contents
iq-output-topics 564
iq-peek 565
iq-put 566

e*Way Functions 568
event-send-to-egate 569
get-logical-name 570
send-external-down 571
send-external-up 572
shutdown-request 573
start-schedule 574
stop-schedule 575

Monk Extension Functions 576
collab-get-logical-name 577
displayb 578
encrypt-password 579
event-send 580
file-set-creation-mask 583
get-data-dir 585
reg-retrieve-file 586

Monk Utility Functions 587
ascii->ebcdic 588
base64->raw 590
binary->string 591
change-directory 592
close-pipe 593
ebcdic->ascii 594
hexdump->string 596
IBMpacdec->string 597
IBMzoned->string 598
open-pipe 599
pacdec->string 600
raw->base64 601
reg-get-file 602
sleep 603
string->7even 604
string->8none 605
string->binary 606
string-decrypt 607
string-encrypt 608
string->hexdump 609
string->IBMpacdec 610
string->IBMzoned 611
string->pacdec 612
string->zoned 613
zoned->string 614

Chapter 23

Exception Functionality 615
Try-Throw-Catch Basics 615

e*Gate Events and Monk Exceptions 617
abort 618
catch 619
define-exception 621
exception-category 622
exception-string 623
exception-string-all 624
exception-symbol 625
Monk Developer’s Reference 14 SeeBeyond Proprietary and Confidential

Contents
throw 626
try 627

Chapter 24

Exception Codes 628

Index 646
Monk Developer’s Reference 15 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This chapter introduces you to this guide, its general purpose and scope, and its
organization. It also provides sources of related documentation and information.

1.1 Document Purpose and Scope
This guide is a reference for how to use the SeeBeyond Technology Corporation™

(SeeBeyondTM) Monk programming language. This guide was developed to provide a
single source of information about the core e*Gate Integrator Monk functions.

This is not a “how to program in Monk” guide. Instead, each function available in the
general Monk environment is described in its own section as follows:

! Each description tells what the function does, lists the arguments, and tells what the
function returns.

! Each section includes a sample of Monk code showing the function in use.

The core Monk functions are those Monk functions made available with the basic
e*Gate installation, as opposed to those made available with a specific add-on product
such as an e*Way Intelligent Adapter. The Monk functions made available with an
add-on product are described in the documentation for that product.

Important: Any operation explanations given here are generic, for reference purposes only, and
do not necessarily address the specifics of setting up and/or operating individual
e*Gate systems.

1.2 Intended Audience
This document was written for experienced programmers writing Collaboration Rules
Scripts in Monk. It assumes that the reader has extensive training and/or experience in
computer programming skills.
Monk Developer’s Reference 16 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction Organization of Information
1.3 Organization of Information
This document is organized topically as follows:

! Chapter 1 “Introduction” — Gives a general preview of this document, its purpose,
scope, and organization.

! Chapter 2 “Monk Basics” — Explains basic information about the Monk language
and how it is used.

! Chapter 3 “Control Flow and Boolean Expressions” — Explains the Monk
functions related to controlling the order of statement execution.

! Chapter 4 “Definition, Binding and Assignment” — Explains the Monk functions
that create and manage global variables.

! Chapter 5 “Character Functions” — Explains the Monk functions related to
characters; a character is a fundamental data type containing the representation of a
single character within the machine’s character set.

! Chapter 6 “String Functions” — Explains the Monk functions related to character
strings.

! Chapter 7 “Numerical Expressions” — Explains the Monk functions related to
Numerical Expressions, that is, expressions used for numerical calculations and
conversions.

! Chapter 8 “Pairs and Lists” — Explains the Monk functions related to pairs and
lists; a pair is a structured data type having two parts, called the car and the cdr.

! Chapter 9 “Vector Expressions” — Explains the Monk functions related to vector
expressions; a vector is defined as a series of elements that can be indexed by
integers.

! Chapter 10 “Equivalence Testing” — Explains the Monk functions related to
equivalence testing; an equivalence predicate is a computational analogue of a
mathematical equivalence relation.

! Chapter 11 “Conversion Procedures” — Explains the Monk functions related to
conversion procedures.

! Chapter 12 “File I/O Expressions” — Explains the Monk functions related to file
input and output; Monk supports the ability to open files, read data from files, and
write data to files.

! Chapter 13 “System Interface Functions” — Explains the Monk functions related
to System Interface functions. These functions may be used to find out information
about files that exist on the system, to load files into the Monk engine, or to execute
system commands.

! Chapter 14 “Standard Procedures” — Explains the Monk functions related to
standard procedures.

! Chapter 15 “Event Definitions” — Explains the Monk functions related to Event
definitions.
Monk Developer’s Reference 17 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction Writing Conventions
! Chapter 16 “Date and Time” — Explains the Monk functions related to date and
time.

! Chapter 17 “Interface API Functionality” — Explains the Monk functions related
to interface application program interface (API) functionality.

! Chapter 18 “Debug Procedures” — Explains the Monk functions related to debug
procedures

! Chapter 19 “Math-Precision Functions” — Explains the Monk functions that
provide arithmetic operations with a user-definable precision.

! Chapter 20 “Monk Library Functions” — Explains all the available Monk Library
functions.

! Chapter 21 “International Conversion Functions” — Explains the international
character type conversion functions.

! Chapter 22 “e*Gate Extensions to Monk” — Explains the Monk functions that are
specific to e*Gate version 4.1.

! Chapter 23 “Exception Functionality” — Explains the Monk exception functions.

! Chapter 24 “Exception Codes” — Explains the Monk exception codes.

After this introductory chapter, Chapter 2 discusses the basic concepts and applications
of Monk. Chapters 3 through 21 describe Monk functions. Chapters 22 and 23 list the
Monk exception functions, codes, and messages.

Note: The functions are grouped according to their use in Monk.

1.4 Writing Conventions
The writing conventions listed in this section are observed throughout this document.

Hypertext Links

When you are using this guide online, cross-references are also hypertext links and
appear in blue text as shown below. Click the blue text to jump to the section.

For information on these and related topics, see “Parameter, Function, and
Command Names” on page 19.

Command Line

Text to be typed at the command line is displayed in a special font as shown below.

java -jar ValidationBuilder.jar

Variables within a command line are set in the same font and bold italic as shown
below.

stcregutil -rh host-name -rs schema-name -un user-name
-up password -ef output-directory
Monk Developer’s Reference 18 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.5
Introduction Supporting Documents
Code and Samples

Computer code and samples (including printouts) on a separate line or lines are set in
Courier as shown below.

Configuration for BOB_Promotion

However, when these elements (or portions of them) or variables representing several
possible elements appear within ordinary text, they are set in italics as shown below.

path and file-name are the path and file name specified as arguments to -fr in the
stcregutil command line.

Notes and Cautions

Points of particular interest or significance to the reader are introduced with Note,
Caution, or Important, and the text is displayed in italics, for example:

Note: The Actions menu is only available when a Properties window is displayed.

User Input

The names of items in the user interface such as icons or buttons that you click or select
appear in bold as shown below.

Click Apply to save, or OK to save and close.

File Names and Paths

When names of files are given in the text, they appear in bold as shown below.

Use a text editor to open the ValidationBuilder.properties file.

When file paths and drive designations are used, with or without the file name, they
appear in bold as shown below.

In the Open field, type D:\setup\setup.exe where D: is your CD-ROM drive.

Parameter, Function, and Command Names

When names of parameters, functions, and commands are given in the body of the text,
they appear in bold as follows:

The default parameter localhost is normally only used for testing.

The Monk function iq-put places an Event into an IQ.

You can use the stccb utility to start the Control Broker.

1.5 Supporting Documents
The following SeeBeyond documents provide additional information relating to the
Monk programming language explained in this guide:

! Creating an End-to-end Scenario with e*Gate Integrator

! e*Gate Integrator Collaboration Services Reference Guide

! e*Gate Integrator Intelligent Queue Services Reference Guide
Monk Developer’s Reference 19 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.6
Introduction SeeBeyond Web Site
! e*Gate Integrator System Administration and Operations Guide

! SeeBeyond eBusiness Integration Suite Deployment Guide

! Standard e*Way Intelligent Adapter User’s Guide

See the SeeBeyond eBusiness Integration Suite Primer for a complete list of SeeBeyond eBI
Suite-related documentation. You can also refer to the appropriate Microsoft Windows
or UNIX documents, if necessary.

Note: For information on how to use a specific add-on product (for example, an e*Way
Intelligent Adapter), see the user’s guide for that product.

Additional Sources of Information

! For information on the general e*Gate programming environment see the e*Gate
Integrator System Administration and Operations Guide.

! For information on specialized Monk functions, see the documentation for the
product that makes them available.

For example, the db-sql-select Monk function, used to perform a SQL SELECT
statement on an Oracle database from within Monk, is described in the e*Way
Intelligent Adapter for Oracle User’s Guide.

! For brief information about the syntax of a core Monk function similar to what is
provided in this guide, see the online help for the Collaboration Rules Editor.

1.6 SeeBeyond Web Site
The SeeBeyond Web site is your best source for up-to-the-minute product news and
technical support information. The site’s URL is

http://www.SeeBeyond.com
Monk Developer’s Reference 20 SeeBeyond Proprietary and Confidential

http://www.seebeyond.com/

Chapter 2

Monk Basics

This chapter provides a brief, comprehensive introduction to the Monk programming
language.

2.1 Overview
Monk is a specialized algorithmic programming language developed by SeeBeyond.
Monk is used with many SeeBeyond products to extend basic functionality. This
language is an implementation of the Scheme programming language. Monk has
several desirable features that make it extensible and flexible.

About the Monk Programming Language

Monk has latent data types. This means that the data type of a variable is carried with
variable and is not defined in a declaration section as in language like Java or C. This
makes Monk code simple to write and keep consistent.

Monk has a simple syntax. Once the syntax is mastered, all of Monk functions are
interpreted according to the same simple rules regardless of whether the language
capabilities have been extended.

These simplicities permit efficient graphical user interface (GUI) design allowing
“drag-and-drop” capability in the programmer interface. For further information on
Scheme, refer to this Web site:

http://www.swiss.ai.mit.edu/projects/scheme

Chapter Topics

! Data Types on page 22

! Latent Data Typing on page 23

! Monk Conventions on page 24

! The Use of Characters on page 27

! Regular Expressions on page 29

! Format Specification on page 34

! Monk and Event Definitions on page 37

! Sample Programs on page 54
Monk Developer’s Reference 21 SeeBeyond Proprietary and Confidential

Chapter 2 2.2
Monk Basics Data Types
2.2 Data Types
All variables in Monk are associated with a data type. There is no declaration section in
Monk (as there is in languages like C or Java) where a variable is assigned its data type.
Rather, the data type is determined by the most recent assignment into that variable.
This feature is called latent data types.

Monk recognizes the following types of arguments.

string Data type containing zero or more characters. Indicated by a set
double quotation marks.
Example: “this is a string”

character Data type containing a single alphanumeric character. Indicated by
#\.
Examples: #\a, #\b, #\9
Non-printing characters are referred to by name.
Examples: #\space, #\tab

integer Data type containing an integer, that is, a numeric value without a
fractional part.
Examples: 10, 35

uint Data type containing an unsigned integer.
Examples: 10, 35 but not -123

int64 Data type containing a 64-bit integer. Range is platform dependent.
Examples: 5, 5000, 1099511627776

uint64 Data type containing a 64-bit unsigned integer. Range is platform
dependent.
Examples: 5, 5000, 1099511627776

ldouble Data type containing a double precision numerical value with a
fractional part. Number of digits of precision is platform dependent.
Example: 10995116.27776

real number Data type containing numerical value with a fractional part. The
fractional part is separated from the integer part with a decimal
point.
Examples: 10.5, 35., 0.07

boolean Data type containing a value of either true (#t) or false (#f).

vector Structured data type of arbitrary elements permitting direct access
to any specific element. Indicated by the expression: #().
Example: #(“AA” 10 “CCC” #\b) is a four element vector.

pair Structured data type with two fields called the car and the cdr. Pairs
are created by the cons procedure.
Example: (cons ‘a ‘b) --> (a . b)

list Structured data type defined recursively as either an empty list or a
pair whose cdr is a list.
Examples: (a b a c) or (a . (b . (a . (c . ())))).
Monk Developer’s Reference 22 SeeBeyond Proprietary and Confidential

Chapter 2 2.3
Monk Basics Latent Data Typing
2.3 Latent Data Typing
Monk variables are associated with their data types when data is assigned into the
variable. A monk variable may change its data type depending upon the data that was
last assigned into the variable. This feature of Monk is called latent data typing.

For example, you may see code that looks like this:

(define myfileptr 0)
(set! myfileptr (open-input-file "C:\mydatafile.txt"))

When the variable myfileptr is defined, it is associated with an integer data type,
because zero is an integer. However, after the set! is executed, the variable myfileptr is
associated with a port data type because the function open-input-file returns a port.

The benefits of latent data types are:

! simplifies syntax

! enhances maintainability of code

! makes expressions more compact

In languages like Java or C, which are statically typed, changing the data type of a
variable may be difficult. To change a type you must change the declaration of the
variable and you must examine each occurrence of the variable to ensure that it’s usage
is consistent with its new type.

With Monk, there is no declaration section to maintain. Where possible, Monk handles
data type conversions automatically. Because of latent data types you do not need to
worry about numerical conversions between 32-bit representations and 64-bit
representations. For example, the table of data types lists the int and int64 data types.

procedure Definable using the lambda expression.
Example: The lambda expression (lambda (d) (* d 3.1416)) evaluates
to a procedure which takes one argument and returns the value of
that argument multiplied by pi.

path Structured value signifying a location within a parsed message.
Indicated by a list of message elements separated by dots.
Example: ~input%A0X.PID.first-name

partial path Structured value signifying a location which contains sub-nodes
within a parsed message. It may be further specified to make it a
fully qualified path.
Example: ~input%A0X.PID

time Structured data type for use with time functions.

event_struct Structured event returned by the $make-event-map procedure.

interface
object

Structured value returned by the load interface routine. The loaded
.dll adheres to the use of an interface handle and the interface API
functionality.

port Structures value representing the source or destination of data.
Monk Developer’s Reference 23 SeeBeyond Proprietary and Confidential

Chapter 2 2.4
Monk Basics Monk Conventions
When an integer result is returned that is too great to be held in 32 bits, the variable
receiving the numerical result is automatically convert to int64.

2.4 Monk Conventions
Discussions of the Monk conventions are divided into the following subtopics:

Naming Conventions on page 24

Identifiers on page 24

Comments on page 25

Whitespace on page 25

Notations on page 26

Literals on page 26

Variables on page 27

Procedure or Function Calls on page 27

2.4.1 Naming Conventions
The names of procedures that always return a Boolean value usually end with a ?. Such
procedures are called predicates.

The names of procedures that store values into previously allocated locations usually
end with a !. Such procedures are called mutation procedures. By convention, the value
returned by a mutation procedure is the assigned value.

When a procedure takes an object of one type and returns a value of an analogous
object of another type, -> appears in the procedure name. For example, list->vector
takes a list and returns a vector whose elements are the same as those of the list.

2.4.2 Identifiers
Syntax

({initial}{subsequent}*)|{peculiar_identifier}

Description

Identifiers are a sequence of letters, digits, or “extended alphabetic characters” used to
identify the elements of the Monk language.

Parameters

Name Description

initial {letter}|{special_initial}

letter a-z, A-Z
Monk Developer’s Reference 24 SeeBeyond Proprietary and Confidential

Chapter 2 2.4
Monk Basics Monk Conventions
Examples

The following are typical identifiers:

johnny
list->vector
v17
or
and

2.4.3 Comments
Syntax

;comments

Description

Comments are text inserted within a Monk program. A comment begins with a
semicolon ; and runs from the semicolon to the end of the line in which the semicolon
appears. The comment is invisible to Monk.

Example

;SYNOPSIS: Multiplies 10 by 20 and displays
;the result
;;
;STC
(define x 10)
(define y 20)
(display (* x y))
(newline)

Special Note

There is also the comment procedure, which is used by the GUI to insert comments into
monk code. Comments written in this fashion are displayed by the GUI but have no
executable effect.

2.4.4 Whitespace
Whitespace characters are spaces, tabs, and newlines. Whitespace is used for improved
readability and as necessary to separate tokens from one another.

A token is an indivisible lexical unit such as an identifier or number. Whitespace may
occur between any two tokens, but not within a token. Whitespace between tokens is
not significant. Whitespace may occur inside a string where it is significant.

special_initial ! $ % & * / : < = > ? ~ _ ^

subsequent {initial}|{digit}|{special_subsequent}

digit 0-9

special_subsequent . + - | [% |] , @

peculiar_identifier + - “...”
Monk Developer’s Reference 25 SeeBeyond Proprietary and Confidential

Chapter 2 2.4
Monk Basics Monk Conventions
2.4.5 Notations
The following notations are used by Monk:

2.4.6 Literals
A literal can be one of the following:

! number (an integer or a real)

! string

! character

! path

! boolean

! '()

! quote (datum)

. + -

These are used in numbers, and may also occur
anywhere in an identifier except as the first character.
A delimited plus or minus sign by itself is also an
identifier. A delimited dot (not occurring within a
number or identifier) is used in the notation for pairs,
and to indicate a rest-parameter in a formal
parameter list. A delimited sequence of three
successive dots is also an identifier.

() Parentheses are used for grouping and to notate lists.

’
A single quote character is used to indicate literal
data.

‘
The backquote character is used to indicate almost-
constant data.

, ,@
The character comma and the sequence comma at-
sign are used in conjunction with the backquote.

“ The double quote character is used to delimit strings.

\
Backslash is used in the syntax for character
constants and as an escape character within a string
of constants.

#
The sharp sign is used for a variety of purposes
depending on the character that immediately follows
it:

#t #f Boolean constants.

#\ This introduces a character constant,

#(This introduces a vector. Vectors are terminated by).

#b #o #d #x These are used in the notation for numbers.
Monk Developer’s Reference 26 SeeBeyond Proprietary and Confidential

Chapter 2 2.5
Monk Basics The Use of Characters
For example, all of the following are literals

10, 10.5

“This is a string”

#\a

#t

‘(“three” “distinct” “strings”)

(quote “three” “more” “strings”)

2.4.7 Variables
An variable is an identifier that names a storage location. A variable is said to be
unbound or bound to a location. The value stored in the location to which a variable is
bound is called the variable’s value.

2.4.8 Procedure or Function Calls
A procedure call is written by simply enclosing in parentheses expressions for the
procedure to be called and the arguments to be passed to it. The procedure and the
operand expressions are evaluated, in unspecified order, and the resulting procedure is
passed the resulting arguments. Procedure calls may return a value.

The terms function and procedure are interchangeable in Monk.

Examples:

(newline)

The newline procedure takes no arguments.

(string-append "Begin" "the" "Beguine")

The string-append procedure permits any number of string arguments. It is called here
with three arguments.

2.5 The Use of Characters
The following topics discuss characters and how they are used in Monk:

Entering Interpreted Characters as Literals on page 28

Characters to be Escaped in Monk Expressions on page 28

Representing Control Characters in Monk Expressions on page 28

Representing Octal or Hex Characters as Monk Expressions on page 29
Monk Developer’s Reference 27 SeeBeyond Proprietary and Confidential

Chapter 2 2.5
Monk Basics The Use of Characters
2.5.1 Entering Interpreted Characters as Literals
An interpreted character is any character that is parsed as part of the syntax of an
expression. For example, when copying a string with the copy expression

(copy "copy this string" ~output%MSG.SE.0 "")

The double-quote character " is an interpreted character marking the boundaries of the
string to be copied. After the initial double-quote, the next double-quote to be found is
interpreted as the end of the copy-string.

To include a double-quote in the copy-string, the double-quote must be “escaped”. An
interpreted character is escaped by preceding it with the backslash \ character, for
example, \". The escaped character is then interpreted as a literal character. So, to copy
the string:

the word "begin" has 5 letters.

The copy string is:

(copy "the word \"begin\" has 5 letters." ~output%MSG.SE.0 "")

The characters \" are referred to as an escape sequence.

2.5.2 Characters to be Escaped in Monk Expressions
Within strings, only the double-quote " and the backslash \ characters need to be
escaped.

Within regular expressions, the backslash precedes characters to be used as regular
expression operators. So, as with strings, the double-quote " and the backslash \
characters need to be escaped. However, within a regular expression, three backslashes
are required to escape the backslash \\\\.

2.5.3 Representing Control Characters in Monk Expressions
Use the character sequences shown in the following table to represent control
characters in Monk expressions:

To represent a control character:
Use this

sequence

Alert or audible bell (Control-G) \a

Backspace (Control-H) \b

Form-feed (Control-L) \f

Newline or linefeed (Control-J) \n

Carriage return (Control-M) \r

Horizontal tab (Control-I) \t

Vertical tab (Control-K) \v
Monk Developer’s Reference 28 SeeBeyond Proprietary and Confidential

Chapter 2 2.6
Monk Basics Regular Expressions
2.5.4 Representing Octal or Hex Characters as Monk Expressions
Use the character sequences shown in the following table to represent octal or hex
characters in Monk expressions:

2.6 Regular Expressions
A regular expression is a pattern that represents a set of matching strings. The function
regex defines the set of strings that will match.

Regular expressions are constructed with ordinary characters and operators. An
ordinary character matches itself only. Operators are used to build more complex
statements.

The regular expression instruction can be used with the following functions: change-
pattern, not-verify, verify, regex.

2.6.1 The Simplest Regular Expression
The simplest regular expression consists of a single character, for example, “a”, an
ordinary character which matches itself. A slightly more complex regular expression
consists of a string of ordinary characters, for example, “abc”. Each character matches
itself, therefore, the regular expression, “abc”, matches with any string, that contains
“abc”.

2.6.2 Building Complex Regular Expressions
Complex regular expressions are built from simple regular expressions. Link them
together by listing them, one after another; no special punctuation is used.

To represent an octal
or hex character:

Use this sequence for its
character representation:

Hexadecimal value represented
by the hex digits, 0–F

#\xHH
for example, #\x4B

Octal value #\onnn,
for example, #\o113

In a string, use this sequence:
In a regular expression, use this

sequence:

\xHH
for example, \x4B

\xHH
for example, \x4B

\onnn,
for example, \o113

\onnn,
for example, \o113
Monk Developer’s Reference 29 SeeBeyond Proprietary and Confidential

Chapter 2 2.6
Monk Basics Regular Expressions
Note: regex does not seek an exact match unless you start the string with \^ and end with
\$.

2.6.3 Regular Expression Operators
Regular expression operators can be used to construct complex pattern-matching
expressions. Samples are shown below:

To Construct
This Regular
Expression

Concatenate
This Regular
Expression

And This
Regular

Expression

Possible
Matches

“ab” “a” “b” “ab”

“\(a*\)a” “\(a*\)” “a” “aaaaa”, “aa”,
“a”

“\(a*\)\(b*\)” “\(a*\)” “\(b*\)” “ab”, “aaab”,
“abbb”,
“aaaabbbb”,
“aa”

Operator Usage

\. Matches any single character, including a newline (but not null).

reg-ex* Matches zero or more occurrences of reg-exp.
The operator, *, operates on the regular expression immediately
preceding *. If this is an ordinary character, that character is the regular
expression on which * operates.

reg-ex\+ Matches one or more occurrences of reg-exp.
The operator, \+, operates on the regular expression immediately
preceding \+. If this is an ordinary character, that character is the regular
expression on which \+ operates.

reg-ex\? Matches zero or one occurrence of reg-exp.
The operator, \?, operates on the regular expression immediately
preceding \?. If this is an ordinary character, that character is the regular
expression on which \? operates.

reg-ex\{count\} Specify the required number of matches with an integer enclosed in \{
and \}. reg-exp must occur exactly count times.

reg-ex\{min,\} Specify the minimum required number of matches. reg-exp must occur
at least min times.

reg-ex\{min,max\} Specify the minimum and maximum required number of matches.
reg-exp must occur at least min times, but not more than max times.

reg-exp1\|reg-exp2 Matches either reg-exp1 or reg-exp2.
The largest regular expression before or after the operator, \|, is
matched. Use \(and \) to group the regular expressions to remove
ambiguity.
Monk Developer’s Reference 30 SeeBeyond Proprietary and Confidential

Chapter 2 2.6
Monk Basics Regular Expressions
\[list \] Enclose a list or a range of characters to be matched within brackets.
A hyphen may be used to specify a range of matching characters, for
example, \[a-z\] specifies the set of all lowercase letters as a match.
All characters are ordinary within a list, except:
\] Ends the list.

^ The sequence, \[^, begins a non-matching list (discussed below). ^ is
ordinary except when it follows the open-list operator (\[).

- Acts as a range operator within lists. To make - ordinary, enter it either first or
last in the list.

[: Acts as the open-character-class operator.

:]Acts as the close-character-class operator.

\[^list\] Enclose a list or a range of characters to be excluded from a match within
the opening characters, \[^ and a closing bracket, \].
Otherwise, the syntax is like the matching list, above.

\[[:class :]\]

\[^[:class :]\]

Within a list, a character class expression matches a single character from
a given class. A character class expression has the form:

[:class:]

where class can be:

alnum letters and digits

alpha letters

blank a space or tab

cntrl control characters (ASCII code 0177 and codes less than 040)

digit digits

graph same as print, omitting space character

lower lowercase letters

print printable characters (ASCII space, tilde, and codes 040 through
0176)

punct any character that is not a control character, a letter, or a digit

space space, carriage return, newline, vertical tab, and form feed

upper uppercase letters

xdigit hexadecimal digits: 0–9, a–f, A–F

alnumletters and digits

\(reg-exp\) Remove ambiguity by grouping sub-expressions in \(and \).

\^reg-exp Matches reg-exp, if reg-exp appears at the beginning of the string
matched against.

reg-exp \$ Matches reg-exp, if reg-exp appears at the end of the string matched
against.

Operator Usage
Monk Developer’s Reference 31 SeeBeyond Proprietary and Confidential

Chapter 2 2.6
Monk Basics Regular Expressions
2.6.4 Regular Expression Examples
The following table lists common applications of regular expressions.

\ Backslash activates certain characters to make them operators:
. (period), * , +, ?, {, }, |, [,] , (,),^, $
Backslash declares certain operators as ordinary characters, namely:
\
Backslash is also used to introduce octal and hex characters; see
“Representing Octal or Hex Characters as Monk Expressions” on
page 29.

Application Regular Expression

Match alternate strings: “string\|string”

Match specific alternate strings at the end of the string
matched against, while any data at the beginning
matches:

“\.*\(string\)\|\.*\(string\)”

Match any data, except an empty string: “\.\+”

Match a string, at least one character in length, that
contains at least a letter:

“\[a-zA-Z\]\+”

Match a string, at least one character in length, that
contains at least a numbers:

“\[0-9\]\+”

Match a string that contains at least one character that is
not a number:

“\[^0-9\]\+”

Match a single character that may be a space or a digit: “\[0-9 \]”

Match a string that contains at least one character that is
not a number:

“\[^0-9\]”

Match leading zeros: “\^0\+”

Match leading spaces: “\^ \+”

Match trailing spaces: “ \+\$”

Match a Social Security Number of the nnn-nn-nnnn: “\[0-9\]\{3\}-\[0-9\]\{2\}-\[0-9\]\{4\}”

Match a telephone number of the format
(nnn)nnn-nnnn:

“(\[0-9\]\{3\})\[0-9\]\{3\}-\[0-9\]\{4\}”

Match any 3-character string beginning with ‘t’ and
ending with ‘e’:

“t\.e”

Match any 4-character string beginning with ‘(‘ and
ending with ‘)’:

“(\.\.)”

Match itself, that is, the character: “.”

Match a string beginning with ‘f’ followed by zero or
more ‘o’s:

“fo*”

Match any string: “\[0-9\]*”

Match a string of numbers only: “\^\[0-9\]*\$”

Operator Usage
Monk Developer’s Reference 32 SeeBeyond Proprietary and Confidential

Chapter 2 2.6
Monk Basics Regular Expressions
Match any string comprising zero or more strings of the
pattern, ‘abc’:

“\(abc\)*”

Match any string comprising zero or more characters: “\.*”

Match itself, that is, the character: “*”

Match any string comprising one or more digits: “\[0-9\]\+”

Match a string comprising one or more spaces: “\[\]\+”, “\+”, “\[space]\+”

Match any string comprising one or more strings of the
pattern, ‘abc’:

“\(abc\)\+”

Match any string comprising one or more characters: “\.\+”

Match a string comprising one or more ‘o’s between the
characters ‘d’ and ‘g’, for example, ‘dog’, ‘doog’, and
‘dooooog’, but not ‘dg’:

“do\+g”

Match itself, that is, the character: “+”

Match any string comprising zero or one digits: “\[0-9\]\?”

Match any string comprising zero or one string of the
pattern, ‘abc’:

“\(abc\)\?”

Match any string comprising zero or one character: “\.\?”

Match a string comprising zero or one ‘o’s between the
characters ‘d’ and ‘g’, that is, ‘dog’ or ‘dg’:

“do\?g”

Match itself, that is, the character: “?”

Match the string ‘aaa’: “a\{3\}”

Match a telephone number of the format
‘nnn-nnn-nnnn’:

“\[0-9\]\{3\}-\[0-9\]\{3\}-\[0-9\]\{4\}”

Match a Social Security Number of the format ‘nnn-nn-
nnnn’:

“\[0-9\]\{3\}-\[0-9\]\{2\}-\[0-9\]\{4\}”

Match themselves: “{” “}”

Match the string ‘banana’, ‘bananana’, and so on, but not
‘bana’:

“ba\(na\)\{2,\}”

Match the strings ‘banana’ and ‘bananana’ only: “ba\(na\)\{2,3\}”

Match either ‘a’ or ‘b’: “a\|b”, “babe”, “abe”, “be”, “apple”

Match ‘hello’ or ‘bye’ or ‘later’: “hello\|bye\|later”

Match ‘care’ or ‘core’ or ‘cure’: “c\(a\|o\|u\)re”

Match ‘aa’ or ‘ab’ or ‘ba’ or ‘bb’: “\(a\|b\)\(a\|b\)”

Match itself, that is, the character: “|”

Match either the character ‘x’ or the character ‘y’: “\[xy\]”, “xyz”, “xzy”, “xabcy”

Match any single character that is part of the set of all
uppercase letters, A through Z; the digits, 0 through 9; or
the characters, ‘$’ or ‘!’:

“\[A-Z0-9$!\]”

Application Regular Expression
Monk Developer’s Reference 33 SeeBeyond Proprietary and Confidential

Chapter 2 2.7
Monk Basics Format Specification
2.7 Format Specification
Syntax

"%<flag><width>.<precision>[alt format]<C>"

Match any single character that is part of the set of the
digits, 0 through 9, or the characters ‘[’, ‘]’, and ‘-’:
(Note that to match the close square bracket (]) it must
be at the beginning of the list.)

“\[][0-9-\]”

Match themselves: “[” “]”

Match any single character that is not ‘x’ or ‘y’: “\[^xy\]”

Match any single character that is not part of the set of
all uppercase letters, A through Z; the digits, 0 through 9;
or the characters, ‘$’ or ‘!’:

“\[^A-Z0-9$!\]”

Match any single character that is not part of the set of
the digits, 0 through 9, or the characters ‘[’, ‘]’, and ‘-’:

“\[^0-9[]-\]”

Match a lowercase letter: “\[[:lower:]\]”

Match any string of at least one character followed by
zero or more white space characters:

“\.\+\(\[[:blank:]\]\|\[

[:space:]\]\)*”

Enclose a set of alternates: “\(anti\|pro\)\.\+tion”

Enclose a complex regular expression to be operated on
by a ‘*’, ‘\+’, or ‘\?’:

“ba\(na\)*”

Enclose sub expressions within a set of alternates: “\.*\(CA\)\|\.*\(WA\)”

Match themselves: “(” “)”

Match the string, ‘abc’, if it appears at the beginning of
the string matched against:

“\^abc”

Match a string of one or more zeros at the beginning of
the string matched against:

“\^0\+”

Match itself, that is, the character: “^”

Match the string, ‘abc’, if it appears at the end of the
string matched against:

“\(abc\)\$”

Match a string of one or more zeros at the end of the
string matched against:

“0\+\$”

Match itself, that is, the character: “$”

Match the backslash (\) character: “\\\\”

or within a list: “\[\\\]”

Application Regular Expression
Monk Developer’s Reference 34 SeeBeyond Proprietary and Confidential

Chapter 2 2.7
Monk Basics Format Specification
Description

Format specification converts arguments from their internal representation to a
printable form. The format specification can be used with several of the expressions
detailed in this document.

Parameters

Name Description

<flag> Formatting option that modifies the <C> conversion character. Multiple flags
can be specified. Not all flags can be used with each data type. See
“Examples” on page 36 for a list if flags that can be used with each data type.

- Output is left aligned.

+ A sign (+ or -) always precedes output.

space If the first character to be output is not a sign (+ or -), a space
character is prefixed. Only one space is allowed in a format
specification.

0 Numbers are right-aligned and padded with leading zeros.

Output includes a decimal point.

<width> Number equal to 1 or greater. The width of the field is determined by the
length of the formatted data but cannot be less than <width>. If the formatted
data is narrower than <width>, then the result is left padded or right padded
with spaces or zeros depending on other flags.
Note: The width of a field cannot be greater than 9,999,999 places.

<precision> Number equal to zero or greater. Indicates the number of digits to the right of
the decimal.If used, must be preceded by a period to distinguish it from
<width>.

[alt format] Only used with t, T. When specified, uses the time format defined by the mk-
time procedure on “mktime” on page 368.

<C> Conversion character indicating output data type. Data types with capital
letters attempt to print that element as Monk-readable text. Lowercase data
types print in a normal, text-readable format. Not available for E, F, T, or *;
reserved for future use. Select one of the following:

a, A Any Monk object.

b, B Binary output of a number.

d, D Decimal output of a number. Integer (positive or negative).

e, E Exponent output of a number. Floating point number
formatted with scientific notation [-]n.me+/-xx.

f, F Fixed output of a number. Floating point number formatted
with decimal notation [-]n.m where - is output for negative
numbers.

i, I Decimal output of a number.

n, N Number of bytes written so far.

o, O Octal output of a number.

s, S String output.
Monk Developer’s Reference 35 SeeBeyond Proprietary and Confidential

Chapter 2 2.7
Monk Basics Format Specification
A literal string may be included in the format. For example

(format "Cherries are %s" "red.") => "Cherries are red."

The following table relates conversion characters to the format flags permitted to the
conversion character.

Examples

(format "%b" "33") => "100001"
(format "%-8c" "Tiger") => "Tiger "
(format "%07o" "33") => "0000041"

These examples demonstrate binary conversion, left-justify using the minus character,
and padding with zeros.

The following table lists a variety of inputs, formats and the resulting string.

Note: The double quotes are not part of the result data. They are included to delimit
significant spaces.

t, T Time output.

x, X hexadecimal output of a number.

* Use next argument as directive information.

Conversion
Character

Permitted Format Flags

a, A -

b, B 0, +, -, space

d, D +, -, space

e, E +

f, F +, .

i, I +, -

n, N none

o, O 0, -, +, #, space

s, S none

t, T none

x, X 0, -, +, #, space

* none

Input Format Instruction Result

Floating point format examples

Name Description
Monk Developer’s Reference 36 SeeBeyond Proprietary and Confidential

Chapter 2 2.8
Monk Basics Monk and Event Definitions
2.8 Monk and Event Definitions
Creating event definitions to process event data is the fundamental usage of Monk.
When you create an event definition, you define how the event is to be parsed into
logical hierarchies. You also assign names to those logical units so that data can be

12.345
12.345
12.345
12.345
12.345
12.345
12.345
12.345
12.345
12.345
12.345
12.345
-12.345
12.345
-12.345
12.345
-12.345

%9.0f
%9.1f
%9.2f
%9.3f
%9.4f
%8.4f
%7.4f
%6.4f
%09.0f
%09.1f
%09.2f
%+-09.2f
%+-09.2f
%+09.2f
%+09.2f
%-09.2f
%-09.2f

" 12"
" 12.3"
" 12.34"
" 12.345"
" 12.3450"
" 12.3450"
"12.3450"
"12.3450"
"000000012"
"0000012.3"
"000012.34"
"+12.34 "
"-12.34 "
"+00012.34"
"-00012.34"
"12.34 "
"-12.34 "

Integer Format Examples

123
123
123
123
123
123
123

%i
%8i
%7i
%-6i
%-5i
%+4i
%+3i

"123"
" 123"
" 123"
"123 "
"123 "
"+123"
"+123"

Octal Format Examples

33
33
33
33
33
33
33
33
33
33
-33
33
-33
-33

%o
% o
%09o
%08o
%8o
%7o
%6o
%5o
%-9o
%+09o
%+09o
%+9o
%+9o
%#9o

"41"
" 41"
"000000041"
"00000041"
" 41"
" 41"
" 41"
" 41"
"41 "
"+00000041"
"-00000041"
" +41"
" -41"
" -41"

Input Format Instruction Result
Monk Developer’s Reference 37 SeeBeyond Proprietary and Confidential

Chapter 2 2.8
Monk Basics Monk and Event Definitions
accessed more easily. This makes the task of accessing and manipulating the data more
straightforward.

The process of mapping event data to a structured event is an implicit verification of
the data against the structure. If the elements specified in the event definition don’t
match the event data, mapping fails. When the event data does map successfully to the
event definition, the result is a parsed and labeled a structured event.

2.8.1 Contents of an Event Definition
An event definition is the skeleton or blueprint of event data. The event definition
describes how to locate data in an event. It is constructed using:

1 A list of delimiters. The delimiter list assists in describing the event structures’s
physical hierarchy and, thereby, how data is to be parsed into its units, from its
highest to its lowest level.

2 A list of nodes. The node list describes the event’s logical structure. You define the
logical structure by establishing the criteria by which the physical structure is to be
organized. Concurrently, you assign names to your organization, thus enabling
clear access to the data components for manipulation. When defining the logical
structure, you identify and name:

! Ordered groups—structured event elements that comprise an ordered set (that is,
the data elements must exist in the specified order).

! Unordered groups—structured event elements that comprise an unordered set
(that is, the data elements can exist in any order).

! Repetitions—structured event elements that repeat.

! Hierarchy—the event element levels.

! Constants—structured event elements that are required.

! Optionals—structured event elements that are optional.

! Fixed-length fields—structured event elements that have a fixed length.

When the delimiter list and the list of nodes are combined, they form a structured
definition.

2.8.2 Structured Events
A structured event is created when event data has been mapped to an event definition.
You can also think of it as parsed event data. A structured event is the result of the
delimiter list and the $make-event-map expression. You access data in a structured
event using the labels you assign in the node list. The labels represent logical
hierarchies and locations for data access.

Following is an example of a structured event. The structured event is created using
the delimiter information, the event definition, and the mapped data shown below.
Monk Developer’s Reference 38 SeeBeyond Proprietary and Confidential

Chapter 2 2.8
Monk Basics Monk and Event Definitions
In this example, the delimiter list specifies that a period (.) delimits top-level structured
event elements, a comma (,) delimits second-level structured event elements, and a
space () delimits third-level structured event elements.

Also, the node list specifies that the event is to be labeled “Event.” The event will
contain one or more top-level structured event elements, to be labeled “Sentence.”
Sentences will contain zero or more second-level structured event elements, to be
labeled “Phrase.” Phrases will contain zero or more third-level structured event
elements, to be labeled “Word.”

Once the structured event is created, you can use the labels from the node list to access
event data, as shown in the table below.

"This is an event, and a string.
Delimiters are spaces, commas, and
periods."

Use this label: To access this part of the event:

Event This is an event, and a string. Delimiters are spaces,
commas, and periods.

Event.Sentence[0] This is an event, and a string

Event.Sentence[1] Delimiters are spaces, commas, and periods

Event.Sentence[0].Phrase[0] This is an event

Event.Sentence[0].Phrase[1] and a string

Event.Sentence[1].Phrase[0] Delimiters are spaces

Event.Sentence[1].Phrase[1] commas

Event.Sentence[1].Phrase[2] and periods

Event.Sentence[0].Phrase[0].Word[0] This

Event.Sentence[0].Phrase[0].Word[1] is

Event.Sentence[0].Phrase[0].Word[2] an

Event.Sentence[0].Phrase[0].Word[3] event

Event.Sentence[0].Phrase[1].Word[0] and

Event.Sentence[0].Phrase[1].Word[1] a

Event.Sentence[0].Phrase[1].Word[2] string

Event.Sentence[1].Phrase[0].Word[0] Delimiters

Event.Sentence[1].Phrase[0].Word[1] are

Event.Sentence[1].Phrase[0].Word[2] spaces

Event.Sentence[1].Phrase[1].Word[0] commas

Event.Sentence[1].Phrase[2].Word[0] and

Event.Sentence[1].Phrase[2].Word[1] periods
Monk Developer’s Reference 39 SeeBeyond Proprietary and Confidential

Chapter 2 2.8
Monk Basics Monk and Event Definitions
2.8.3 How Monk Uses Paths to Access Structured Events
A path specifies a structured event location to access. You can use a path in any Monk
expression that operates on a structured event. When you access data via a path, you
are working with a copy of the node data (as a string).

There are two ways to specify paths in Monk expressions. You can specify a complete
path or you can specify a partial path.

Complete Path

This path expression represents a complete path to data of a structured event. It begins
with a tilde (~) and includes the name of the structured event followed by a percent
sign (%) and the path elements.

~event-name%path_elements

Partial Path

This path expression represents a partial path to data of a structured event. It begins
with a percent sign (%) and includes the path elements.

%path_elements

Parameters

Data extracted from a structured event is a string. If a path accesses a structured event
element and that element is not present in the structured event, the result is an empty
string.

The copy expression appends data to the end of existing data at a structured event
location. This is useful for building strings within a restricted data field.

Data is not appended to the end of an event location if you specify a byte offset.
Specifying a byte offset turns off the auto-append feature and overwrites any data that
exists in the specified byte locations.

Appended data is truncated if it exceeds the maximum byte length of an event
definition. This feature can be used to build strings within a field, for example.

Name Description

event-name The name of the structured event. Optional. If
event-name is not specified, the expression
represents a partial path.

path_elements A list of event locations separated by dots (.). Each
element can be either:
A variable that contains a partial path, number, or
node name.
A name assigned in the node list to a structured
event element or set of structured event
elements.
An integer that represents the structured event
element’s child position. The first structured
event element at a given level is counted as 0.
Monk Developer’s Reference 40 SeeBeyond Proprietary and Confidential

Chapter 2 2.8
Monk Basics Monk and Event Definitions
If an expression attempts to place data to a node repetition that exceeds the specified
maximum repetition count, a warning is generated and the excessive repetitions are not
written to the structured event.

If the path specified has no corresponding location in the structured event definition, an
exception is generated.
Monk Developer’s Reference 41 SeeBeyond Proprietary and Confidential

Chapter 2 2.8
Monk Basics Monk and Event Definitions
Delimiter List

Syntax

((delimiterspec1)(delimiterspec2)...(delimiterspecN))

where the syntax of delimiterspec is:

delimiter [delim_type]

Description

Elements from the delimiter list are used by the $make-event-map expression to
specify the event separators.

Delimiters describe the event’s physical hierarchy and, thereby, how it is to be parsed
into its units, from its highest to its lowest level. List delimiters in their hierarchical
order, from highest to lowest.

Parameters

Name Description

delimiter A delimiter that can be represented:
As a string, such as “|” (vertical bar). It must have a length of 1 or more.
As an integer, which is the byte location of the delimiter in the event (if
delimiters are declared in the event in a standard location). A length of 1 is
assumed.
In the Monk notation for character constants, for example, \#newline.
In the following syntax to represent the byte location and length of the
delimiter in the event: (byte_location length)
In the following syntax to represent the beginning delimiter and ending
delimiter in the event: (“begin_delim” “end_delim”)

delim_type Type of delimiter. Keywords are:

endofrec Delimiter always ends a event element at this level.
For example, segments always terminate with \r. This
is optional on input mapping, but generated as part
of output.

array Optional delimiter used for array-type nodes. The
array delimiter is the repetition field delimiter used
in the HL7 event format for repeating fields.

anchored If a delimiter is marked as anchored, the Monk
parser looks for that delimiter (begin or end) at the
current byte location of the event data.

beginanchored If a delimiter is marked, the begin delimiter must
occur at the current location of the event data.

endanchored If a delimiter is marked as endanchored, the end
delimiter must occur at the current location of the
event data.

required Used only for end delimiters. The delimiter must
exist in the data.

separator Used for backward compatibility only.
Monk Developer’s Reference 42 SeeBeyond Proprietary and Confidential

Chapter 2 2.8
Monk Basics Monk and Event Definitions
Examples

In the following list the delimiters are expressed as strings.

 ;;; Delimiter List
(define RAS-delm '(
 ("\r" endofrec)
 ("|")
 ("~" array)
 ("^")
 ("&")
))

As background, the delimiters are declared in the MSH segment as shown below. The
byte count appears beneath the MSH segment-id and delimiters:

MSH|^~\&

In the following list the delimiters are expressed as byte locations.

;;; Delimiter List
(define RAS-delm '(
 ("\r" endofrec)
 (3)
 (5 array)
 (4)
 (7)
))
;;; Delimiter List
(define RAS-delm '(
 ("~")
 ("*")
))

In the following list the delimiters are expressed as strings.

In the following list the delimiters are expressed as character constants.

;;; Delimiter List
(define RAS-delm '(
 (#\~)
 (#*)
)).
Monk Developer’s Reference 43 SeeBeyond Proprietary and Confidential

Chapter 2 2.8
Monk Basics Monk and Event Definitions
Node List

Syntax

([modifier-list] name-of-node node-type min-rep max-rep "tag"
"default-data" offset length expression1 expression2... expressionN)

Description

An argument to the $make-event-map expression. Use the node list to define the
logical structure of the event.

Notes

If no attributes are set then it uses the attributes from the default delimiter list.

If anchored or beginanchored is specified and no beginning delimiter is specified, then
the begin delimiter is inherited from the default delimiter list.

If no end delimiter is specified, an end delimiter is inherited from the default delimiter
list.

If an begin delimiter is specified and no end delimiter is given, then an end delimiter is
inherited and the required attribute is set.

No other modifiers are inherited. If you set any modifier attribute, then all other
attributes from the default delimiter list are cleared.

Examples

default delim list:
(("[" "]") endanchored)
(("<rep>" "</rep>") array)
("+")

node level 1:
(Ed)
Begin Delim: none
End Delim : "]"
attributes : none

Rep delims:
Begin Delim: none
End Delim : none
attributes : none

(Bd)
Begin Delim: "["
End Delim : "]"
attributes : required

Rep delims:
Begin Delim: none
End Delim : none
attribs : none

((Ed "foo") Ed)
Begin Delim: none
End Delim : "]"
attributes : none

Rep delims:
Begin Delim: none
End Delim : none
Monk Developer’s Reference 44 SeeBeyond Proprietary and Confidential

Chapter 2 2.8
Monk Basics Monk and Event Definitions
attribs : none

((Ri Ed) Ed endanchored)
Begin Delim: none
End Delim : "]"
attributes : endanchored

Rep delims:
Begin Delim: none
End Delim : "</rep">
attribs : none

((Ri (Ed ")"))
Begin Delim: none
End Delim : "]"
attributes : none

Rep delims:
Begin Delim: none
End Delim : ")"
attribs : none

Attributes

Table 1 Attributes of the Node List

Name Description

modifier-list Optional list of modifiers.

Bd Begin delimiter.

(Bd delim-type)

BdB Begin delimiter bind. Designates that if you
have a begin delimiter, you must have a
matching end delimiter from the same pair.

Co Consumer node. If you have written a Monk
function to map the data, you must return a
length of how much of the data you expect to
consume.

Ed End delimiter.

(Ed delim-type)

Ex Specifies that you cannot expand the data map.
Only the mapped data will be used.

ExF Specifies that you cannot expand the data map.
If the data exceeds the map, it will fail and not
map any of the data.

Get Specifies that you can only get data from this
node.

Gr Group repetitions. Groups disjoint repetitions
of a child.

NofN Minimum number of occurrences of N optional
children nodes.

Nt Not tagged. Results all characters that are not
designated as tagged.
Monk Developer’s Reference 45 SeeBeyond Proprietary and Confidential

Chapter 2 2.8
Monk Basics Monk and Event Definitions
Pp Parent precedence. The parent delimiter will
take precedence over the child-node delimiters.

Put Specifies that you can only put data into this
node.

Ri Array repetition information.

Sc Scavenger. Designated characters in the string
are consumed before attempting to map the
node.

ScN Scavenger node. Specifies that the first
character in the output node will not be output.

name-of-node The name you give to the node. Node name limitations are detailed in
“Rules for Naming Nodes” on page 49.

node-type The type of node.

ON Delimited node.

AN Any-ordered delimited node. The nodes below
an any-ordered node can appear in any order.

OF Fixed node.

AF Any-ordered fixed node.

OS Ordered set. A set represents a group of nodes
at the same level. Sets are used to represent a
pattern of repeating elements. The nodes below
an ordered set must occur in the order
specified.

AS Any-ordered set. A set represents a group of
nodes at the same level. Sets are used to
represent a pattern of repeating elements. The
nodes below an any-ordered set may occur in
an order different from the specified order.
(Use this option with care: the event-parsing
process can take much longer when this option
is specified.)

ONA Ordered delimited node-array. A node-array is
similar to a set, but the group it represents
comprises sub-nodes, instead of nodes at the
same delimiter level. Use a node-array to
represent a repeating field (where repetitions
are delimited by the repetition field array
delimiter (for example ~ character).
The nodes below an ordered node-array occur
in the event in the order specified.

Table 1 Attributes of the Node List (Continued)

Name Description
Monk Developer’s Reference 46 SeeBeyond Proprietary and Confidential

Chapter 2 2.8
Monk Basics Monk and Event Definitions
ANA Any-ordered delimited node-array. A node-array
is similar to a set, but the group it represents
comprises sub-nodes, instead of nodes at the
same delimiter level. Use a node-array to
represent a repeating field (where repetitions
are delimited by the repetition field array
delimiter (for example ~ character).
The nodes below an any-ordered node-array
may occur in an order different from the
specified order. (Use this option with care: the
event-parsing process can take much longer
when this option is specified.)

GTN Global (external file) template, delimited node.
The template Is defined in a file other than the
current file.

LTN Local template, delimited node. The template is
defined in the current file.

GTF Global (external file) template, fixed node. The
template is defined in the current file.

LTF Local template, fixed node. The template is
defined in the current file.

GTS Global (external file) template, set. The template
is defined in the current file.

LTS Local template, set.

min-rep The minimum number of repetitions of the node that must occur when
mapping the structured event. Number must be positive. Samples are
shown below.

min/max

1 1 Minimum of one, maximum of one. Non-
repeating, required.

0 1 Maximum of one. Optional.

0 INF No maximum. Optional.

1 INF Minimum of one, no maximum.

1 5 Minimum of one, maximum of five.

5 5 Minimum of five, maximum of five. The event
must contain exactly five instances of the
element or group to match the event definition.

max-rep The maximum number of repetitions of the node; no more than this number
can occur when mapping the structured event. Number must be positive.
Samples are shown in the description of min-rep.

Table 1 Attributes of the Node List (Continued)

Name Description
Monk Developer’s Reference 47 SeeBeyond Proprietary and Confidential

Chapter 2 2.8
Monk Basics Monk and Event Definitions
Node Properties Effect

The following table summarizes how node properties affect placement of data into a
structured event.

tag A string that is compared to the node data. If the comparison fails, the map
of that node data fails. If unspecified, it defaults to und (undefined). When
the node-type is an external template, the tag argument is overloaded with
the template filename.

default-data A string to represent the data of the node if node is required and no data has
been written to it. If unspecified, it defaults to und (undefined). When the
node-type is a template, the default-data argument is overloaded with the
template symbol.

offset Number of bytes to count from the first byte (byte 0) of the parent node. If
unspecified, it defaults to und (undefined). (In this case, the current node
starts at the end of the previous node.) Byte offset is supported for fixed (F)
nodes only.

length Total bytes of data that represent the node. If unspecified, it defaults to und
(undefined), meaning the rest of the data or bound by the size of the parsed
children. Supported for fixed (F) nodes only.
Optionally, you can specify (start end) instead of length. Start is the first byte
to read and end is the last byte to read (counting from byte 0).

expression Remainder of list specifying children.

 Property Node Type Source Data Mapping Placing Data

min-rep,
max-rep

all Data must contain at least the
minimum number of
repetitions specified and at
most the maximum number of
repetitions specified to
successfully map.

If an expression attempts to
place data in a node repetition
that exceeds the specified
maximum, a warning is written
to the current-warning-port
and the process terminates
with no action taken.

tag delimited,
delimited-
array

Node contents must match
the tag or the map fails, that is,
represented by regular
expression, “\^tag\$”

No impact.

fixed Fixes start/location/length of
node in data stream.

No impact.

default data delimited,
delimited-
array, fixed

No impact. If no data is placed in a node
and it is a required node, then
the default data represents the
content of the node.

Table 1 Attributes of the Node List (Continued)

Name Description
Monk Developer’s Reference 48 SeeBeyond Proprietary and Confidential

Chapter 2 2.8
Monk Basics Monk and Event Definitions
Rules for Naming Nodes

Adhere to the following rules when naming nodes.

1 The following characters are accepted:

2 The first character cannot be:

length delimited,
delimited-
array

No impact. No impact.

fixed, byte
length
declared

Data available for this node
must be this length or map
fails (if you have optional,
trailing fixed nodes in
definition, do not declare
length in root). If a negative
number is specified, the
length is determined from the
current position to the
current parent end, less the
bytes specified.

If data written to node exceeds
specified length, the data is
truncated and a warning is
output.

fixed, no
byte length
declared

Defaults to und (undefined)
meaning the rest of the data.

No impact.

A-Z, a-z (letters)

0-9 (numbers)

+ (plus-sign)

- (hyphen)

* (asterisk)

/ (slash)

= (equal sign)

! (exclamation point)

? (question mark)

$ (dollar sign)

_ (underscore)

& (ampersand)

^ (caret)

0-9 (numbers)

+ (plus-sign)

- (hyphen)

 Property Node Type Source Data Mapping Placing Data
Monk Developer’s Reference 49 SeeBeyond Proprietary and Confidential

Chapter 2 2.8
Monk Basics Monk and Event Definitions
3 Node name interpretation is case sensitive.

4 Each event type definition must be uniquely named.

2.8.4 Behavior of Optional Nodes That Contain No Data
This section discusses how optional nodes are assigned attributes to assist in the data
output process. The following table identifies the terms that are necessary for this
discussion.

In the first phase, the event structure is created with the $make-event-map procedure
and the initial assignment of nodes types is based on the attributes of the node being
defined.

During the second phase, attributes are altered based on parent-sibling and sibling-
sibling relationships. The following list identifies the possible parent/sibling
promotions:

! A strongly unique node promotes its preceding sibling from non-unique to
required, non-unique status.

! A strongly unique child node promotes its parent from non-unique to weakly
unique status.

The third phase of promotion occurs at run time when data is passed into the
structured event:

! If a node is non-unique (NU) and has data in any of it’s trailing siblings, NU
sibling’s output data to represent that node is generated.

! If the above condition is not fulfilled, an output node is generated only as the result
of the sibling to sibling and child to parent interactions.

The table below identifies whether or not a node will be generated after all promotions
have taken place.

Node Type Meaning Description

RNU required, non-unique required, untagged

SU strongly unique required, tagged

WU weakly unique optional, tagged

NU non-unique optional, untagged

Node Type Output Node Generated?

SU yes

RNU yes

WU no

NU and data in sibling yes

NU and no data in sibling no
Monk Developer’s Reference 50 SeeBeyond Proprietary and Confidential

Chapter 2 2.8
Monk Basics Monk and Event Definitions
2.8.5 Dynamic Parsing of Data
When adding data to an existing child node, data present in its parent node is marked
invalid.

When data is written to a child node that does not exist, the data is parsed from the
parent node into the children nodes. Data is added to the child node, and data in the
parent node is marked invalid.

When data is added to a parent node, but the parent node does not contain valid data,
the following happens:

1 Data is re-constituted from the children nodes.

2 The child subtree is deleted.

3 Data is added to the parent node.

When data is added to a parent node, and the parent node contains valid data, the
following happens:

1 The child subtree is deleted.

2 Data is appended to the parent node.

2.8.6 Referencing an Instance of a Repeating Node
To specify an instance of a repeating node, the syntax is:

pathelement[index]
index

An integer that represents the repetition desired or can be replaced by a variable name,
as discussed below.

For example:

~input%ROOT.play-it-again-sam[5]

the sixth repetition of the structured event element play-it-again-sam.

If a repetition is not specified for a structured event element, the first repetition is
accessed by default if followed by path elements. For example, the following two
paths are equivalent:

~input%ROOT.NTE[0].FONE
~input%ROOT.NTE.FONE

Referencing Data with Byte Count

Byte positions can be specified as the final path element in the list. Note that specifying
byte positions in the path when placing data to a structured event turns off the auto-
append feature and overwrites any data that may exist in the specified byte locations.

There are two methods for specifying byte positions. The first method specifies relative
addressing while the second specifies absolute addressing. The syntax for these two
methods is shown below.
Monk Developer’s Reference 51 SeeBeyond Proprietary and Confidential

Chapter 2 2.8
Monk Basics Monk and Event Definitions
finalpathelement:byte_offset,length

or

finalpathelement:byte_offset– end_byte

byte_offset
The beginning byte position, counted from the first byte of the structured event data
location (the starting position is inclusive). That is, the first byte is counted as 0.

length
The number of bytes to be accessed. Length is optional. You can leave it out or use the
keyword END to indicate “from byte_offset to the end of the structured event element.”

end_byte
The ending byte position. The ending position is exclusive, the up to end_byte is
absolute, and an end_byte is optional. You can leave it out or use the keyword END to
indicate “from byte_offset to the end of the event element.”

For example, the following path elements access eight bytes, starting at the third
byte (byte 2) and ending at the tenth byte (byte 9) of the N1 event location.

N1:2,8
N1:2-10

The path elements below are also equivalent. They each access from the third byte
(byte 2) to the end of the N1 event location.

N1:2,
N1:2,END
N1:2-
N1:2-END

Length Specification, When Assigning Data to Structured Event

If you use a length specification in the path expression and the data to be assigned is
shorter than the length specified, the string is padded with trailing spaces. For example:

(copy "AAA" ~output%root.node.field:0,5)

copies the string “AAA” to the output location.

In all cases, the assigned data is left-justified in the destination location.

Examples

This path: Locates this event element:

~input%MSG The entire structured event data. (A structure’s
root node represents the complete event.)

~input%MSG.ST The complete string represented by the ST
node, including all repetitions if it is a
repeating node, and all children.

~input%MSG.ST[0] The first repetition of ST if it is a repeating
node, or the first child of ST if it has children.
Monk Developer’s Reference 52 SeeBeyond Proprietary and Confidential

Chapter 2 2.8
Monk Basics Monk and Event Definitions
2.8.7 Use of Variables to Represent Path Elements
A variable that contains a path, a number, or a symbol can be used in a path. Sample
uses include using a variable name for a frequently accessed location, substituting a
variable for an instance index in a do loop expression, or using variables to reference
byte counts.

Variable names within a path are denoted by angle brackets. For example:

<var_name>

When assigning a path value to a variable, you must precede the path with either a
percent sign (%) or a tilde (~). For example:

(define ETC %MSH.EVN.1)

 Examples

2.8.8 Path to Any-Ordered Set
If you place data to a structured event element of an any-ordered set by number
(instead of by name), that number is related to the order of the members of the set as
specified in the event definition, not to the order of the structured event elements as
they occur if mapped with the event data. For example:

~input%MSG.ST.2 The third field first repetition of the ST
segment of the MSG node.

~input%MSG.DTM[2].4 The fifth field of the third repetition of the
DTM segment of the MSG node.

~input%MSG.N1[0].5 The sixth field of the first repetition of the N1
node (of the MSG node).

~input%MSG.MIT[4].N1[5].PER[2].6 The seventh field of the third repetition of the
PER (of the sixth repetition of the N1 node (of
the fifth repetition of the MIT node (of the
MSG node))).

This path: Uses a variable to:

~input%<ETC> Represent a path. ETC is a variable with the value
%MSH.EVN.1 (as defined above).

~input%MSG.DTM[<i>].4 Represent an repetition. This path might be used within a do loop
expression; the value of< i> would be the current value for the
loop’s iteration counter.

~input%MSG.CID.19:<i>,<j> Represent byte offset <i> and length <j>.

This path: Locates this event element:
Monk Developer’s Reference 53 SeeBeyond Proprietary and Confidential

Chapter 2 2.9
Monk Basics Sample Programs

 For this event definition, the path:

~input%anyorder.0

accesses the structured event element A, whether or not A occurs as the first element of
the set “anyorder.”

2.9 Sample Programs
These sample programs give you a basic understanding of how to write Monk
programs. Refer to the comments for an explanation of each program.

Example 1

;run this test case as follows:
;stctrans -ims Sample1.dat,Sample2.dat Sample.txt
;expected results
;Parsed data successfully
;Call procedure successfully
;
;to see full trace of the run issue the following command:
;stctrans -md -ims Sample1.dat,Sample2.dat Sample.txt

;define a simple funcition to get the length of data contained in the
;second input string
(define call-function
 (lambda ()
 (string-length input-string2) ;; 2nd input data file that gets
passed in
 (display "Call function successfully\n")
))

;delimiters used by our simple structure below
(define delimiter
 '(("|")
 ("^")
))

;define simple structure root with 2 children child_0 and child_1
(define structure ($resolve-event-definition (quote
 (root ON 1 1 und und und und
 (child_0 ON 1 1 "one" und und und)
 (child_1 ON 1 1 "two" und und und)
)
)))

;define input and output structures
(define input ($make-event-map delimiter structure))

(define anyorder-struct (event-convert
(quote
(anyorder AS 1 1 und und 0 0
 (A ON 1 1 "abc" "abc" 0 0)
 (B ON 1 1 "def" "def" 0 0)
)
)))
Monk Developer’s Reference 54 SeeBeyond Proprietary and Confidential

Chapter 2 2.9
Monk Basics Sample Programs
(define output ($make-event-map delimiter structure))

;parser input data from string 1 and map to our simple structure
($event-parse input input-string1) ;; Input data file that gets
passed in

;should display parsed successfully if we used Sample1.dat
(display "Parsed data successfully\n")

;call the function defined above
(call-function)

Example 2

;Sample of Delimited Event Definition Structure
(define all_node_types-delm '(
 ("\r" endofrec)
 ("|" separator)
 ("~" array)
 ("^" separator)
 ("&" separator)
))

;Global Template Reference
(load "your.ssc")
(load "HL7/HL7_2.2/hl7_2.2_acc.ssc")
;End Global Template Reference

;Local Template Definition
(define Internal_Template ($resolve-event-definition (quote
 (Internal_Template ON 1 1 und und und -1
 (unnamed_1 ON 1 1 und und und -1)
 (unnamed_2 ON 1 1 und und und -1)
 (unnamed_3 ON 1 1 und und und -1)
)
)))
;End Local Template Definition

Example 3

;MsgStructure Definition
(define all_node_types-struct ($resolve-event-definition (quote
 (all_node_types ON 1 1 und und und -1
 ((endofrec) fixed_examples ON 1 1 und und und -1
 (fixed_offset_length OF 1 1 und und 3 10)
 (fixed_pos OF 1 1 und und 3 (19 3))
 (fixed_any_order OF 1 1 und und 3 10)
)
 (delimited_examples ON 1 1 und und und -1
 ((endofrec) non_repeating_delimited ON 1 1 und und und -1)
 ((endofrec) non_repeating_tagged ON 1 1 "InputTag"
"OutputDefaultData" und -1)
 ((endofrec) optional ON 0 1 und und und -1)
 ((endofrec) optional_repeating ON 0 INF und und und -1)
 ((endofrec) repeating ON 1 INF und und und -1)
 ((endofrec) range ON 5 10 und und und -1)
 (delimited_any_order AN 1 1 und und und -1)
)
 ((endofrec) set_examples ON 1 1 und und und -1
 (ordered_set OS 1 1 und und und -1)
 (unordered_set AS 1 1 und und und -1)
 (ordered_separator_delim ONA 1 1 und und und -1)
 (ordered_repeating OS 1 INF und und und -1)
Monk Developer’s Reference 55 SeeBeyond Proprietary and Confidential

Chapter 2 2.9
Monk Basics Sample Programs
 (((Bd "BeginDelim") (Ed "EndDelim") endofrec required (Ri (Bd
"BeginRep") (Ed "EndRep")
required)) overriden_delims ON 1 1 und und und -1)
)
 ((endofrec) template_example ON 1 1 und und und -1
 (your GTF 1 1 "your.ssc" your-struct und und)
 (Internal_Template LTN 1 1 und Internal_Template und und)
 (ACC GTN 1 1 HL7/HL7_2.2/hl7_2.2_acc.ssc" ACC-struct und und)
)
)
)))
;End MsgStructure Definition

Example 4

;Fixed MsgStructure Definition
(define fixed-struct ($resolve-event-definition (quote
 (fixed OF 1 1 und und und 0
 (fixed_len_offset OF 1 1 und und 3 3)
 (fixed_encoded_length OF 1 1 und und 5 (7 20))
 (unnamed_3 OF 1 1 und und und 0)
)
)))
;End MsgStructure Definition
Monk Developer’s Reference 56 SeeBeyond Proprietary and Confidential

Chapter 3

Control Flow and Boolean Expressions

3.0.1 Overview
Control Flow Expressions control the order of statement execution. They include
conditional, iteration and sequencing expressions.

Conditional expressions are used to test, compare, and selectively evaluate subordinate
expressions. Conditional expressions are:

case on page 60

case-equal on page 61

cond on page 62

if on page 66

Iteration expressions evaluate subordinate expressions repeatedly according to
specified conditions and include:

do on page 63

do* on page 65

The sequencing expression groups subordinate expressions for evaluation in a specified
order. The sequencing expression is:

begin on page 59

Boolean expressions operate on zero or more arguments and return a Boolean value.
They are often used in conjunction with conditional and iteration expressions to cause a
particular branch of code to execute over alternates. The Boolean operators are:

and on page 58

or on page 68

not on page 67
Monk Developer’s Reference 57 SeeBeyond Proprietary and Confidential

Chapter 3
Control Flow and Boolean Expressions
and

Syntax

(and test1 test2 ...)

Description

and is a multi-conditional expression that evaluates left to right.

Parameters

Return Value

The and expression stops processing and returns the result of the first test that returns
false. If all expressions return true, not #f, the expression returns the result of the last
expression evaluated. If no tests are listed, the #t is the result.

Examples

(define three-digit-string? ; begin define
(lambda (s) ; begin lambda on strings
(and ; begin and
(string? s) ; test if s is string
(= (string-length s) 3) ; test if s has length of 3
(char-numeric? (string-ref s 0)) ; test if 1st char is numeric
(char-numeric? (string-ref s 1)) ; test if 2nd char is numeric
(char-numeric? (string-ref s 2)) ; test if 3rd char is numeric

) ; end and
) ; end lambda

) ; end define

Name Type Description

testN expression The expression to evaluate.
Monk Developer’s Reference 58 SeeBeyond Proprietary and Confidential

Chapter 3
Control Flow and Boolean Expressions
begin

Syntax

(begin expression1 expression2 ...)

Description

Sequences evaluation of expressions. The expressions following begin are evaluated
left to right.

Parameters

Return Value

This expression returns the result of the evaluation of the last expression.

Examples

(define x 0) ; create variable x
(begin

(set! x 5) ; change value of x
 (+ x 1) ; modify value of x
)

=> 6 ; result

(begin
(display "4 plus 1 equals ") ; start display

 (display (+ 4 1)) ; continue display
)

=> 4 plus 1 equals 5 ; result of display

Name Type Description

expression expression The expression to evaluate.
Monk Developer’s Reference 59 SeeBeyond Proprietary and Confidential

Chapter 3
Control Flow and Boolean Expressions
case

Syntax

(case key
 ((datum11 datum12 ...) expression11 expression12 ...)

...
 ((datumn1 datumn2 ...) expressionn1 expressionn2 ...)
)

or

(case key
 ((datum11 datum12 ...) expression11 expression12 ...)

...
 (else expressionn1 expressionn2 ...)
)

where

key

can be any expression.

Description

Flow control expression. In operation, key is evaluated, and its result is compared
against each datum in each clause using the eqv? procedure. There must be a minimum
of one expression and one datum. If the result of the evaluation is found to be true (not
#f), the expressions in that clause are evaluated left to right, and the result of the last
expression is returned as the result of the case expression.

However, if the result is found to be different from every datum in the clause, there are
two possible results:

1 If the last clause in the series is an else clause which has the form:

(else expressionn1 expressionn2 ...)

the expressions in the else clause are evaluated and the result of the last expression
is returned as the result of the case expression.

2 If the last clause in the series is not an else clause, the result of the case expression is
unspecified.

Parameters

None.

Return Value

Results of the evaluation of an expression associated with a particular datum.

Examples

(case (* 1 3)
 ((2 3 5 7) "prime")
 ((1 4 6 8 9) "composite")
) ==> "prime"
Monk Developer’s Reference 60 SeeBeyond Proprietary and Confidential

Chapter 3
Control Flow and Boolean Expressions
case-equal

Syntax

(case-equal key
 ((datum11 datum12 ...) expression11 expression12 ...)

...
 ((datumn1 datumn2 ...) expressionn1 expressionn2 ...)
)

or

(case-equal key
 ((datum11 datum12 ...) expression11 expression12 ...)

...
 (else expressionn1 expressionn2 ...)
)

where

key

can be any expression.

Description

Flow control expression. In operation, key is evaluated, and its result is compared
against each datum in each clause using the equal? procedure. There must be a
minimum of one expression and one datum. If the result of the evaluation is found to be
true (not #f), the expressions in that clause are evaluated left to right, and the result of
the last expression is returned as the result of the case-equal expression.

However, if the result is found to be different from every datum in the clause, there are
two possible results:

1 If the last clause in the series is an else clause which has the form:

(else expressionn1 expressionn2 ...)

the expressions in the else clause are evaluated and the result of the last expression
is returned as the result of the case expression.

2 If the last clause in the series is not an else clause, the result of the case expression is
unspecified.

Parameters

None.

Return Value

Results of the evaluation of an expression associated with a particular datum.

Examples

(define var #\3)
(case-equal var

((#\1 #\3 #\5 #\7 #\9) "An ODD digit")
((#\0 #\2 #\4 #\6 #\8) "An EVEN digit")
(else "Not a digit")

) => "An ODD digit"
Monk Developer’s Reference 61 SeeBeyond Proprietary and Confidential

Chapter 3
Control Flow and Boolean Expressions
cond

Syntax

(cond
((test1) (expr11) (expr12) ...)
...

)

or

(cond
((test1) (expr11) (expr12) ...)
...
(else (exprN1) (exprN2) ...)

)

Description

Flow control expression. The test expressions of the successive clauses are evaluated left
to right until one of them evaluates to #t or to an expression equivalent to #t. After a test
is found which evaluates to true, the remaining expressions of the clause are evaluated
in order. The result of the last expression in the clause is returned as the result of the
cond expression. For every test, there has to be at least one expression.

1 If the clause contains only a test but no expressions, the result of the test is returned
as the result of the cond expression.

2 If the last clause in the series is an else clause, and no prior test evaluated to true,
then the expressions in the else clause are evaluated and the result of the last
expression is returned as the result of the cond expression.

3 If the last clause in the series is not an else clause, and no prior test evaluated to
true, the result of the cond expression is unspecified.

Parameters

None.

Return Value

Returns unspecified if no conditions match. Else, returns the result of the valuation of
the final expression in the test expression list.

Examples

(cond
 ((> 3 2) "greater") ; evaluates to #t
 ((< 3 2) "less") ; never evaluated
) ; end cond

(cond
 ((> 3 3) "greater") ; evaluates to #f
 ((< 3 2) "less") ; evaluates to #f
 (else "equal") ; so the else is evaluated.
) ; end cond
Monk Developer’s Reference 62 SeeBeyond Proprietary and Confidential

Chapter 3
Control Flow and Boolean Expressions
do

Syntax

(do ((variable init increment) ...)
 (test result)

body
)

Description

Executes a body of statements iteratively.

The do expression has three parts: the declaration of loop variables, the test expression
and the body.

First, do creates zero or more variables, and binds them to the evaluation of their init
expressions. Then, do executes the test expression.

If the result of the test expression is #f, body expressions are evaluated in order. Then the
increment expressions are evaluated, the increment values are stored in the bound
locations of the loop variables and test is evaluated again.

If the result of the test expression is #t or equivalent to #t, the result expression is
evaluated and the do loop is complete.

Parameters

Return Value

The value of the do expression is the value of the result expression if it exists. Otherwise
the value is unspecified.

Example

(define str "MIXEDcase")
(do

((i 0 (+ i 1)))
((or (= i (string-length str))

(char-lower-case? (string-ref str i))
)

 i)
) => 5

This code calculates the index of the first lower case character in the string str. In this
case, the character “c” is the first lower case character and its index is 5. (Recall that
strings are indexed starting from 0.)

Name Type Description

triplet list of two or
three elements

The variable init increment statement. The increment
portion is optional.

test expression The test to evaluate.

result variable The expressions to be evaluated if the test returns not #f.
Optional.

body expression The expressions to be evaluated if the test returns #f.
Monk Developer’s Reference 63 SeeBeyond Proprietary and Confidential

Chapter 3
Control Flow and Boolean Expressions
The index variable is i which is initialized to zero and incremented by 1 at each step.
The return value is also i. The body of this do loop is empty. All the work in this
example is accomplished in the test and result portions of the do-loop.
Monk Developer’s Reference 64 SeeBeyond Proprietary and Confidential

Chapter 3
Control Flow and Boolean Expressions
do*

Syntax

(do* ((variable1 init1 increment1) ...)
 (test result)

body
)

Description

Executes a body of statements iteratively.

The do* expression has three parts: the declaration of loop variables, the test expression
and the body.

First, do* creates zero or more variables, and binds them to the evaluation of their init
expressions. Then, do* executes the test expression.

If the result of the test expression is #f, body expressions are evaluated in order. Then the
increment expressions are evaluated, the increment values are stored in the bound
locations of the loop variables and test is evaluated again.

If the result of the test expression is #t or equivalent to #t, the result expression is
evaluated and the do loop is complete.

do* operates just like the do expression with the exception that the bindings in do* are
evaluated in order, and are available in subsequent bindings.

Parameters

Return Value

The value of the do* expression is the value of the result expression if it exists.
Otherwise the value is unspecified.

Example

(define ret "MIXEDcase")
(do ((i 0 (+ i 1)))
 ((or (= i (string-length ret))
 (char-lower-case? (string-ref ret i))
) i)
) ==> 5

Name Type Description

triplet list of two or
three elements

The variable init increment statement. The increment
portion is optional.

test expression The test to evaluate.

result variable The expressions to be evaluated if the test returns not #f.
Optional.

body expression The expressions to be evaluated if the test returns #f.
Monk Developer’s Reference 65 SeeBeyond Proprietary and Confidential

Chapter 3
Control Flow and Boolean Expressions
if

Syntax

(if test consequence alternative)

Description

Conditional construct used for flow control.

In the if expression, the test is evaluated. If the test returns anything other than #f, then
the consequence is evaluated. If the test returns #f, then the alternative is evaluated.

Alternative is optional and may be omitted.

Parameters

Return Value

The result of the evaluation of the consequence or of the alternative. If the test returns a
false value and no alternative is specified, then the result of the if expression is
unspecified.

Example

(if ; begin if
 (> 3 2) ; test
 "test evaluates to #t" ; consequence (then)
 "test evaluates to #f" ; alternate
) ==> "test evaluates to #t"

In this example, because 3 is greater than 2, the consequence, not the alternate is
evaluated.

Name Type Description

test expression The expression to be evaluated.

consequence expression The expression to be evaluated if the test returns true (not
#t).

alternative expression The expression to be evaluated if the test returns #f.
Optional.
Monk Developer’s Reference 66 SeeBeyond Proprietary and Confidential

Chapter 3
Control Flow and Boolean Expressions
not

Syntax

(not obj)

Description

Determines if the object is false.

Parameters

Return Value

Boolean
If the object is #f, the return value is #t. Else, the return is #f.

Examples

(not #t) => #f

(not #f) => #t

(not "a") => #f

(not ‘(a b c)) => #f

Name Type Description

obj any The object to test for Boolean #f.
Monk Developer’s Reference 67 SeeBeyond Proprietary and Confidential

Chapter 3
Control Flow and Boolean Expressions
or

Syntax

(or test1 test2)

Description

Multi-conditional expression. or returns the result of the first test that evaluates to #t or
to a value equivalent to #t.

Parameters

Return Value

If all tests evaluate to #f, the expression returns #f. If no tests are done, returns #f.

Examples

(define empty-string ; begin define
 (lambda (s) ; begin lambda on string s
 (and ; begin and
 (or ; begin or
 (string? s) ; test if s is a string, else #f
 (path? s) ; test if s is a path, else

; returns #f
) ; end or
(zero? string-length s)) ; test if length is zero

) ; end and
) ; end lambda

) ; end define

Name Type Description

test expression The expression to test.
Monk Developer’s Reference 68 SeeBeyond Proprietary and Confidential

Chapter 4

Definition, Binding and Assignment

Definition expressions create and manage global variables. They include:

define on page 70

defined? on page 71

Binding forms are expressions used to create local variables with local scopes and bind
new values to the variables. They include:

let on page 72

let* on page 73

Assignment expressions are used to assign new values into existing variables. They
include:

set on page 74

set! on page 75
Monk Developer’s Reference 69 SeeBeyond Proprietary and Confidential

Chapter 4
Definition, Binding and Assignment
define

Syntax

(define variable expression)

Description

Creates a new symbol equivalent to the evaluation of an expression.

The define function may be used to define procedures for later evaluation or to define
symbols that evaluate to a given constant value.

You cannot use define to change the way Monk interprets keywords such as do, case,
if, filename, and so forth.

Parameters

Return Value

The return value is unspecified.

Examples

(define add3
(lambda (x) (+ x 3))

)
(add3 5) => 8

Add3 is created and is defined as the value of a lambda expression. A lambda
expression returns a procedure so add3 is a procedure. Anytime after this define is
executed, add3 can be invoked like any other function. When passed the value 3, the
expression evaluates to 8. The capabilities of Monk are extended through this
mechanism of defining functions.

(define y 7)
(add3 y) => 10

In the second example, y is defined to have a constant value of 7. The symbol y can be
passed to the function previously defined to generate the desired result.

Name Type Description

variable symbol The symbol to be bound.

expression expressions The procedure being defined.

formals symbols The newly allocated list of actual arguments.

formal single symbol The list of all arguments.

body expressions The list of expressions to be evaluated.
Monk Developer’s Reference 70 SeeBeyond Proprietary and Confidential

Chapter 4
Definition, Binding and Assignment
defined?

Syntax

(defined? symbol)

Description

Determines if the symbol is defined globally or in the current environment.

Parameters

Return Value

This expression returns true #t if the symbol is bound; otherwise, it returns false #f.

Examples

(defined? x) => #f

(defined? x 10)
(defined? x) => #t

Name Type Description

symbol symbol The symbol to test for binding.
Monk Developer’s Reference 71 SeeBeyond Proprietary and Confidential

Chapter 4
Definition, Binding and Assignment
let

Syntax

(let bindings body)

where bindings have the form:

((variable1 init1) ...)

and body is a set of expressions.

Description

Creates bound variables of local scope.

The inits are evaluated in the current environment (in unspecified order), the variables
are bound to fresh locations holding the results, and the body is evaluated in the
extended environment. The value of the last expression of the body is returned as the
value of the let expression.

Parameters

Return Value

The result of the evaluation the final expression in the body.

Examples

(let
((x 3) (y 7))
(* x y)

) => 21

(let
((x 2) (y 3)

(let
((x 7) ; variable x is bound to the value of 7
(z (+ x y)) ; but for z, the old value of x (2) is used

 (* z x) ; but here the new value of x (7) is used
)

)
) => 35

Even though x is being bound to a location containing the number 7, this binding is not
yet visible to the expression used for binding of variable z. Thus when z is bound, the
expression is evaluated using the old value of the variable x, namely two.

Name Type Description

bindings expression Each init is an expression. It is an error for a variable to
appear more than once in the list of variables being bound.

body expression Sequence of one or more expressions.
Monk Developer’s Reference 72 SeeBeyond Proprietary and Confidential

Chapter 4
Definition, Binding and Assignment
let*

Syntax

(let* bindings body)

where bindings have the form:

((variable1 init1) ...)

Description

Creates bound variables of local scope.

The inits are evaluated in the current environment sequentially from left to right, the
variables are bound to fresh locations holding the results, and the body is evaluated in
the extended environment. The value of the last expression of the body is returned as the
value of the let* expression.

It operates just like the let expression with the exception that the bindings in let* are
evaluated sequentially from left to right, and are available to subsequent bindings.

Parameters

Return Value

The result of the evaluation the final expression in the body.

Example

(let
((x 2) (y 3))
(let*

((x 7)
(z (+ x y))) ; z sees the new value of x (7)

(* z x)
)

) => 70

Because let* is used, the binding for z sees the new value of x, namely 7. The result is
that z holds the value 10 and the final expression evaluates to 70.

Name Type Description

bindings expression Each init is an expression. It is an error for a variable to
appear more than once in the list of variables being bound.

body expression A sequence of one ore more expressions.
Monk Developer’s Reference 73 SeeBeyond Proprietary and Confidential

Chapter 4
Definition, Binding and Assignment
set

Syntax

(set symbol_var expression)

Description

Evaluates the symbol_var parameter and the expression parameter, and then binds the
resulting expression to the resulting symbol.

Return Value

Returns the result of an evaluated expression.

Example

(define hello "")
(define abc (string->symbol "hello"))
(set abc "goodbye")
(display abc) => hello
(display hello) => goodbye

Name Type Description

symbol_var symbol The variable to set as the result of the evaluation of the
expression.

expression expression One or more expressions to evaluate.
Monk Developer’s Reference 74 SeeBeyond Proprietary and Confidential

Chapter 4
Definition, Binding and Assignment
set!

Syntax

(set! variable expression)

Description

Evaluates the expression parameter and binds the result to the variable.

Parameters

Return Value

Returns the result of an evaluating expression.

Example

(define x 0) ; create variables
(set! x "Hello") ; change value of x

=> "Hello" ; result

Name Type Description

variable symbol The variables to set as the result of
the evaluation of the expression.

expression expression One or more expressions to
evaluate.
Monk Developer’s Reference 75 SeeBeyond Proprietary and Confidential

Chapter 5

Character Functions

A character is a fundamental data type containing the representation of a single
character within the machine’s character set.

A character is identified by preceding it with #\. To indicate any single printable
character, precede it by #\. For example, #\a, #\b, #\c, #\A, #\B, #\C, \#1, \#2,
.... To identify special characters the preferred method is to use the name of the
character, for example #\space, #\tab.

Character functions which performs conversion to or from other data types may be
found in Conversion Procedures on page 239.

Following is a list of functions which operate on a character:

char? on page 77 char-lower-case? on page 91

char=? on page 78 char-not on page 92

char<? on page 79 char-numeric? on page 93

char>? on page 80 char-or on page 94

char<=? on page 81 char-shift-left on page 95

char>=? on page 82 char-shift-right on page 96

char-ci=? on page 83 char-type on page 97

char-ci<? on page 84 char-type! on page 98

char-ci>? on page 85 char-type? on page 99

char-ci<=? on page 86 char-upcase on page 100

char-ci>=? on page 87 char-upper-case? on page 101

char-alphabetic? on page 88 char-whitespace? on page 102

char-and on page 89 char-xor on page 103

char-downcase on page 90
Monk Developer’s Reference 76 SeeBeyond Proprietary and Confidential

Chapter 5
Character Functions
char?

Syntax

(char? parm)

Description

Tests the supplied parameter to determine whether or not it is a character.

Parameters

Return Value

Boolean
Returns a #t if the parameter is a valid character. Otherwise, returns #f.

Examples

(char? #\k) => #t

(char? "z") => #f

“z” is not a character. It is a string because it is contained within double quotes.

(char? 137) => #f

(char? #\1) => #t

(char? #\formfeed) => #t

(char? (string-ref "a b c" 2)) => #t

Name Type Description

parm any The object to check.
Monk Developer’s Reference 77 SeeBeyond Proprietary and Confidential

Chapter 5
Character Functions
char=?

Syntax

(char=? char1 char2)

Description

Compares two characters for equality. This function is case sensitive.

Parameters

Return Value

Boolean
Returns #t if char1 is the same as char2. Otherwise, returns #f.

Examples

(char=? #\3 #\3) => #t

(char=? #\3 #\4) => #f

(char=? #\a #\A) => #f

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

char1 character Initial character for the comparison.

char2 character Second character for comparison.
Monk Developer’s Reference 78 SeeBeyond Proprietary and Confidential

Chapter 5
Character Functions
char<?

Syntax

(char<? char1 char2)

Description

Compares two characters for order. This function is case sensitive.

Parameters

Return Value

Boolean
Returns #t if char1 is less than char2 within the character collation sequence.
Otherwise, returns #f.

Examples

(char<? #\3 #\3) => #f

(char<? #\3 #\4) => #t

(char<? #\a #\A) => #f

(char<? #\a #\b) => #t

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

char1 character Initial character for the comparison.

char2 character Second character for comparison.
Monk Developer’s Reference 79 SeeBeyond Proprietary and Confidential

Chapter 5
Character Functions
char>?

Syntax

(char>? char1 char2)

Description

compares two characters for order within the character collation sequence. This
function is case sensitive.

Parameters

Return Value

Boolean
Returns #t if char1 is greater than char2. Otherwise, returns #f.

Examples

(char>? #\3 #\3) => #f

(char>? #\4 #\3) => #t

(char>? #\a #\A) => #t

(char>? #\a #\a) => #f

(char>? #\a #\b) => #f

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

char1 character Initial character for the comparison.

char2 character Second character for comparison.
Monk Developer’s Reference 80 SeeBeyond Proprietary and Confidential

Chapter 5
Character Functions
char<=?

Syntax

(char<=? char1 char2)

Description

Compares two characters for order within the character collation sequence or for
equality. This function is case sensitive.

Parameters

Return Value

Boolean
Returns #t if char1 is less than or the same as char2. Otherwise, returns #f.

Examples

(char<=? #\3 #\3) => #t

(char<=? #\3 #\4) => #t

(char<=? #\a #\A) => #f

(char<=? #\a #\a) => #t

(char<=? #\a #\b) => #t

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

char1 character Initial character for the comparison.

char2 character Second character for comparison.
Monk Developer’s Reference 81 SeeBeyond Proprietary and Confidential

Chapter 5
Character Functions
char>=?

Syntax

(char>=? char1 char2)

Description

Compares two characters for order within the character collation sequence or for
equality. This function is case sensitive.

Parameters

Return Value

Boolean
Returns #t if char1 is greater than or the same as char2. Otherwise, returns #f.

Examples

(char>=? #\3 #\3) => #t

(char>=? #\3 #\4) => #f

(char>=? #\a #\A) => #t

(char>=? #\a #\a) => #t

(char>=? #\a #\b) => #f

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

char1 character Initial character for the comparison.

char2 character Second character for comparison.
Monk Developer’s Reference 82 SeeBeyond Proprietary and Confidential

Chapter 5
Character Functions
char-ci=?

Syntax

(char-ci=? char1 char2)

Description

Determines if the two specified characters are equal. This function is not case sensitive.

Parameters

Return Value

Boolean
Returns #t if char1 is the same as char2. Otherwise, returns #f.

Examples

(char-ci=? #\3 #\3) => #t

(char-ci=? #\3 #\4) => #f

(char-ci=? #\a #\A) => #t

(char-ci=? #\a #\a) => #t

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

char1 character Initial character for the comparison.

char2 character Second character for comparison.
Monk Developer’s Reference 83 SeeBeyond Proprietary and Confidential

Chapter 5
Character Functions
char-ci<?

Syntax

(char-ci<? char1 char2)

Description

Compares two characters for order. This function is case insensitive.

Parameters

Return Value

Boolean
Returns #t if char1 is the same as char2. Otherwise, returns #f.

Examples

(char-ci<? #\3 #\3) => #f

(char-ci<? #\3 #\4) => #t

(char-ci<? #\a #\A) => #f

(char-ci<? #\a #\a) => #f

(char-ci<? #\a #\b) => #t

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

char1 character Initial character for the comparison.

char2 character Second character for comparison.
Monk Developer’s Reference 84 SeeBeyond Proprietary and Confidential

Chapter 5
Character Functions
char-ci>?

Syntax

(char-ci>? char1 char2)

Description

Compares two characters for order. This function is case insensitive.

Parameters

Return Value

Boolean
Returns #t if char1 is the greater than char2. Otherwise, returns #f.

Examples

(char-ci>? #\3 #\3) => #f

(char-ci>? #\4 #\3) => #t

(char-ci>? #\a #\A) => #f

(char-ci>? #\a #\a) => #f

(char-ci>? #\a #\b) => #f

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

char1 character Initial character for the comparison.

char2 character Second character for comparison.
Monk Developer’s Reference 85 SeeBeyond Proprietary and Confidential

Chapter 5
Character Functions
char-ci<=?

Syntax

(char-ci<=? char1 char2)

Description

Compares two characters for being less or equal. This function is case insensitive.

Parameters

Return Value

Boolean
Returns #t if char1 is less or the same as char2. Otherwise, returns #f.

Examples

(char-ci<=? #\3 #\3) => #t

(char-ci<=? #\4 #\3) => #f

(char-ci<=? #\a #\A) => #t

(char-ci<=? #\a #\a) => #t

(char-ci<=? #\a #\b) => #t

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

char1 character Initial character for the comparison.

char2 character Second character for comparison.
Monk Developer’s Reference 86 SeeBeyond Proprietary and Confidential

Chapter 5
Character Functions
char-ci>=?

Syntax

(char-ci>=? char1 char2)

Description

char-ci>? compares two characters for order. This function is not case sensitive.

Parameters

Return Value

Boolean
Returns #t if char1 is the same as char2. Otherwise, returns #f.

Examples

(char-ci>=? #\3 #\3) => #t

(char-ci>=? #\3 #\4) => #f

(char-ci>=? #\a #\A) => #t

(char-ci>=? #\a #\a) => #t

(char-ci>=? #\a #\b) => #f

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

char1 character Initial character for the comparison.

char2 character Second character for comparison.
Monk Developer’s Reference 87 SeeBeyond Proprietary and Confidential

Chapter 5
Character Functions
char-alphabetic?

Syntax

(char-alphabetic? char)

Description

Determines whether or not the specified character is an alphabetic character.

Parameters

Return Value

Boolean
Returns #t if the specified character is alphabetic. Otherwise, returns #f.

Examples

(char-alphabetic? #\a) => #t

(char-alphabetic? #\;) => #f

(char-alphabetic? #\3) => #f

Name Type Description

char character The character to compare.
Monk Developer’s Reference 88 SeeBeyond Proprietary and Confidential

Chapter 5
Character Functions
char-and

Syntax

(char-and char1 char2)

Description

Returns a new character which is the Boolean and operation on the specified character.

Parameters

Return Value

character
Returns a character representing the result of the Boolean and on the specified
characters.

Example

(char-and #\G #\C) => C

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

char1 character Initial character for the and operation.

char2 character Second character for the and operation.
Monk Developer’s Reference 89 SeeBeyond Proprietary and Confidential

Chapter 5
Character Functions
char-downcase

Syntax

(char-downcase char)

Description

Converts the specified character from upper case to lower case.

Parameters

Return Value

char
Returns a lower case character for any alphabetic character found.

Examples

(char-downcase #\A) => #\a

(char-downcase #\a) => #\a

(char-downcase #\3) => #\3

Name Type Description

char character The character to convert.
Monk Developer’s Reference 90 SeeBeyond Proprietary and Confidential

Chapter 5
Character Functions
char-lower-case?

Syntax

(char-lower-case? char)

Description

Tests the specified character to determine whether or not it is a lowercase alphabetic
character.

Parameters

Return Value

Boolean
Returns #t if the specified character is a lowercase alphabetic character. Otherwise,
returns #f.

Examples

(char-lowercase? #\A) => #f

(char-lowercase? #\a) => #t

(char-lowercase? #\3) => #f

(char-lowercase? #\;) => #f

(char-lowercase? #\)) => #f

Name Type Description

char character The character to test.
Monk Developer’s Reference 91 SeeBeyond Proprietary and Confidential

Chapter 5
Character Functions
char-not

Syntax

(char-not char)

Description

Returns a new character which is the Boolean not operation on the specified character.

Parameters

Return Value

character
Returns a character representing the result of the Boolean not operation on the
specified character.

Example

(char-not #\G) => #\, (comma)

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

char character Character for performing the not operation.
Monk Developer’s Reference 92 SeeBeyond Proprietary and Confidential

Chapter 5
Character Functions
char-numeric?

Syntax

(char-numeric? char)

Description

Determines whether the specified character is numeric.

Parameters

Return Value

Boolean
Returns #t if the specified character is numeric. Otherwise, returns #f.

Examples

(char-numeric? #\A) => #f

(char-numeric? #\a) => #f

(char-numeric? #\3) => #t

(char-numeric? #\;) => #f

(char-numeric? #\)) => #f

Name Type Description

char character The character to test.
Monk Developer’s Reference 93 SeeBeyond Proprietary and Confidential

Chapter 5
Character Functions
char-or

Syntax

(char-or char1 char2)

Description

Returns a new character which is the Boolean or on the two specified characters.

Parameters

Return Value

character
Returns a character representing the result of the Boolean or on the specified
characters.

Examples

(char-or #\G #\C) => #\G

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

char1 character Initial character for the or operation.

char2 character Second character for the or operation.
Monk Developer’s Reference 94 SeeBeyond Proprietary and Confidential

Chapter 5
Character Functions
char-shift-left

Syntax

(char-shift-left char num)

Description

Returns a new character which the left shift of the bits representing the specified
character and performs the shift operation the number of times specified by the second
parameter.

Parameters

Return Value

character
Returns a character representing the result of the shift operation on the specified
character.

Examples

(char-shift-left #\G 3) => #\9

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

char character Initial character for the shift operation.

num integer Number of times to perform the shift left.
Monk Developer’s Reference 95 SeeBeyond Proprietary and Confidential

Chapter 5
Character Functions
char-shift-right

Syntax

(char-shift-right char num)

Description

Returns a new character which is the right shift of the bits representing the specified
character and performs the shift operation the number of times specified by the second
parameter.

Parameters

Return Value

character
Returns a character representing the result of the shift operation on the specified
character.

Examples

(char-shift-right #\G 3) => #\x

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

char character Initial character for the shift operation.

num integer Number of times to perform the shift right.
Monk Developer’s Reference 96 SeeBeyond Proprietary and Confidential

Chapter 5
Character Functions
char-type

Syntax

(char-type char)

Description

Determines the type of the specified character.

Parameters

Return Value

symbol
Returns one of the following encoding types:

Examples

(define mychar (integer->char 100))
(char-type mychar) => :ASCII

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

char character A character.

:1Byte :1bEUC

:1bSJIS :2Byte

:2bEUC :2bSJIS

:3Byte :4Byte

:ASCII :EBCDIC

:UCS2
Monk Developer’s Reference 97 SeeBeyond Proprietary and Confidential

Chapter 5
Character Functions
char-type!

Syntax

(char-type! type char)

Description

Sets the character type for a character.

Parameters

Return Value

character
Returns the character whose type has been set.

Examples

(char-type (char-type! :EBCDIC #\a)) => :EBCDIC

(char-type! :EBCDIC #\a) => a

(char-type! :2Byte #\a) => a

(char-type! :4Byte #\a) => a

(char-type! :DogByte #\a) => {MONK_EXCEPTION}

(char? (char-type! :2Byte #\a)) => #t

Name Type Description

type symbol One of the following character types:

:1Byte
:1bEUC
:1bSJIS
:2Byte
:2bEUC
:2bSJIS
:3Byte
:4Byte
:ASCII
:EBCDIC
:UCS2

char character The character whose type you want to set.
Monk Developer’s Reference 98 SeeBeyond Proprietary and Confidential

Chapter 5
Character Functions
char-type?

Syntax

(char-type? type char)

Description

Determines whether specified character is of the specified type.

Parameters

Return Value

Boolean
Returns #t if the character is of the specified type. Otherwise, it returns #f.

Examples

(define mychar (integer->char 100))

(char-type? :ASCII mychar) => #t

(char-type? :EBCDIC mychar) => #f

Name Type Description

type symbol One of the following:

:1Byte
:1bEUC
:1bSJIS
:2Byte
:2bEUC
:2bSJIS
:3Byte
:4Byte
:ASCII
:EBCDIC
:UCS2

char character A character.
Monk Developer’s Reference 99 SeeBeyond Proprietary and Confidential

Chapter 5
Character Functions
char-upcase

Syntax

(char-upcase char)

Description

Converts a character from lowercase to uppercase.

Parameters

Return Value

char
Returns an uppercase character for any alphabetic character found.

Examples

(char-upcase #\a) => #\A

(char-upcase #\A) => #\A

(char-upcase #\3) => #\3

(char-upcase #\#) => #\#

Name Type Description

char character A character to convert.
Monk Developer’s Reference 100 SeeBeyond Proprietary and Confidential

Chapter 5
Character Functions
char-upper-case?

Syntax

(char-upper-case? char)

Description

Determines whether the specified character is an uppercase alphabetic character.

Parameters

Return Value

Boolean
Returns #t if the character is an uppercase alphabetic character. Otherwise, returns
#f.

Examples

(char-upper-case? #\A) => #t

(char-upper-case? #\a) => #f

(char-upper-case? #\3) => #f

(char-upper-case? #\;) => #f

(char-upper-case? #\) => #f

Name Type Description

char character The character to test.
Monk Developer’s Reference 101 SeeBeyond Proprietary and Confidential

Chapter 5
Character Functions
char-whitespace?

Syntax

(char-whitespace? char)

Description

Determines whether the character is a blank space character.

Parameters

Return Value

Boolean
Returns #t if the specified character is a blank character. Otherwise, returns #f.

Examples

(char-whitespace? #\) => #t

(char-whitespace? #\A) => #f

(char-whitespace? #\b) => #f

(char-whitespace? #\3) => #f

(char-whitespace? #\;) => #f

Name Type Description

char character The character to test.
Monk Developer’s Reference 102 SeeBeyond Proprietary and Confidential

Chapter 5
Character Functions
char-xor

Syntax

(char-xor char1 char2)

Description

Returns a new character which is the Boolean XOR (exclusive OR) on two specified
characters.

Parameters

Return Value

character
Returns a character representing the result of the Boolean XOR on the specified
characters.

Examples

(char-xor #\G #\C) => \#space

(char-xor #\g #\C) => \#$

(char-xor #\G #\c) => \#$

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

char1 character Initial character for the XOR operation.

char2 character Second character for the XOR operation.
Monk Developer’s Reference 103 SeeBeyond Proprietary and Confidential

Chapter 6

String Functions

A String is defined as a sequence of characters. Strings are denoted by characters within
a pair of double quotation marks (" "). For example: “spot is a dog”, “1234” and “a # c”
are all strings.

Strings cannot be modified if constants. Such strings are said to be immutable. For
example, the following will fail because FirstName is immutable:

(define FirstName "Benny")
(string-set! FirstName 0 #\P)

To create a mutable string, use the make-string function. The code above will succeed if
rewritten like this:

(define FirstName (make-string 1 "Benny"))
(string-set! FirstName 0 #\P)

The Monk functions operating on strings are listed on the next two pages in the table
below:

format on page 106 string-crc32 on page 129

htonl->string on page 107 string-downcase on page 130

htons->string on page 108 string-fill! on page 131

list->string on page 109 string-insert! on page 132

make-string on page 110 string-left-trim on page 133

regex on page 111 string-length on page 134

string on page 112 string-length! on page 135

string? on page 113 string->list on page 136

string<? on page 114 string-lrc on page 137

string<=? on page 115 string->ntohl on page 138

string=? on page 116 string->ntohs on page 139

string>? on page 117 string-ref on page 140

string>=? on page 118 string-right-trim on page 141

string-append on page 119 string-set! on page 142

string-checksum on page 120 string-substitute on page 143

string-ci=? on page 121 string-tokens on page 144

string-ci<? on page 122 string-trim on page 145
Monk Developer’s Reference 104 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-ci>? on page 123 string-type on page 146

string-ci<=? on page 124 string-type! on page 147

string-ci>=? on page 125 string-type? on page 148

string-copy on page 126 string-upcase on page 149

string-copy! on page 127 substring on page 150

string-crc16 on page 128 substring-index on page 151
Monk Developer’s Reference 105 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
format

Syntax

(format formatinstruction value)

Description

Converts value according to formatinstruction.

May be used to convert string data representing numbers to a variety of binary, octal,
decimal or hexadecimal representations. Also used to convert Monk time objects and
other Monk objects.

For a comprehensive list of examples, see “Format Specification” on page 34

Parameters

Return Value

The format expression takes a string and formats according to format-spec instruction
and returns the formatted string as its result.

Examples

Input

(define str "string")
(format "%s-->end" str) => "string-->end"
(format "%10s-->end" str) => " string-->end"

(define num "123456")
(format "%d-->end" num) => "123456-->end"
(format "%10d-->end" num) => " 123456-->end"

(define float "123.456")
(format "%f-->end" float) => "123.456000-->end"
(format "%15f-->end" float) => " 123.456000-->end"

Name Type Description

format-spec expression The specification of the output format. The syntax for the format
instruction is documented in Format Specification on page 34.

arg string/path A string (or path).
Monk Developer’s Reference 106 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
htonl->string

Syntax

(htonl->string num)

Description

Converts a long integer from the host byte order to a string in network byte order.

Parameters

Return Value

string
Returns a string in two-byte network byte order.

Examples

(htonl->string 98) => " b"

(htonl->string 43) => " +"

(htonl->string 35) => " #"

Name Type Description

num integer A long integer.
Monk Developer’s Reference 107 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
htons->string

Syntax

(htons->string num)

Description

Converts a short (hex) integer from the host byte order to a string in network byte
order.

Parameters

Return Value

string
Returns a string in two-byte network byte order.

Examples

(htons->string 98) => " b"

(htons->string 43) => " +"

(htons->string 35) => " #"

Name Type Description

num integer A short integer.
Monk Developer’s Reference 108 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
list->string

Syntax

(list->string list)

Description

Concatenates a series of characters into a string.

Parameters

Return Value

string
Returns a string of the characters in the list.

Examples

(list->string ’(#\a #\b #\c)) => "abc"

(list->string ’(#\T #\h #\i #\s)) => "This"

(list->string ’(#\S #\T #\C #\ #\3 #\#)) => "STC 3#"

Note that ‘#\ ‘, which is the escape sequence for a space must be followed by another
space in order to delimit the space character from the following character, #\3. Better
style is to write this as

(list->string ’(#\S #\T #\C #\space #\3 #\#)) => "STC 3#"

Name Type Description

list list A list of characters to concatenate into a string.
Monk Developer’s Reference 109 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
make-string

Syntax

(make-string nreps [fill-char|fill-str])

Description

Creates a new mutable string.

You may specify either a character or a string indicated. In either case, the new string is
created with that character or string repeated nreps times.

If no fillchar is indicated, make-string defaults to creating nreps single-character bytes.

Typical usage for make-string is in conjunction with define resulting in the creation of
a mutable string.

Parameters

Return Value

string
Returns a string of characters.

Examples

(make-string 5 #\a) => "aaaaa"

(make-string 4 #\4) => "4444"

(make-string 2 "Hello! ") => "Hello! Hello! "

(define name (make-string 1 "John"))

The variable name becomes a mutable string as a result of defining to be the result of
make-string. It may be manipulated later with commands that change string length,
pad the string, set characters or otherwise alter the contents of name.

Name Type Description

n-repetitions integer The number of repetitions of the fill character or string.

fill-char character The character that comprises the new string. Optional.

fill-str character The string that comprises the new string. Optional.
Monk Developer’s Reference 110 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
regex

Syntax

(regex reg_exp string)

Description

Matches a string against a regular expression and returns #t if there is a match.
Otherwise, returns #f.

Parameters

Return Value

Boolean
Returns #t if the string does match the regular expression. Otherwise, returns #f.

Example

;compare Event Type Code to regular expression "A01"
(regex "A01" ~input%X12.EVN.ETC)

;compare message location to message location
(regex ~input%X12.PID.Policy_N ~input%X12.IN2.Insured_SSN)

;compare message location to message location where
;both locations are in repeating segments
(do
 ((i 0 (+ i 1)))
 ((>= i (count ~input%X12.ORCGRP)))
 (do
 ((j 0 (+ j 1)))
 ((>= j (count ~input%X12.ORCGRP)))
 (if (regex ~input%X12.ORCGRP[<i>].ORC.11
 ~input%X12.ORCGRP[<j>].RXR.2)
 (copy ~input%X12.ORCGRP[<i>].OBXGRP.OBX.2
 ~output%MSG.DTM.<i>.0 "")
)
)
)

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

reg_exp expression The regular expression to test.

string string The string to test against the regular expression.
Monk Developer’s Reference 111 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string

Syntax

(string char...[char])

Description

Concatenates a series of individual characters into a string.

Parameters

Return Value

string
Returns a string consisting of the concatenated characters.

Examples

(string #\a #\b #\c) => "abc"

(string #\T #\h #\i #\s) => "This"

(string #\S #\T #\C #\space #\3 #\#) => "STC 3#"

Name Type Description

char character A series of characters. Minimum of one character.
Monk Developer’s Reference 112 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string?

Syntax

(string? object)

Description

Determines whether the object is a string.

Parameters

Return Value

Boolean
Returns #t if the object is a string. Otherwise, returns #f.

Examples

(string? "This is a string") => #t

(string? 17) => #f

(string? #\a) => #f

Name Type Description

obj any The object to be tested.
Monk Developer’s Reference 113 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string<?

Syntax

(string<? string1 string2)

Description

Compares string1 and string2 for lexical order.

Lexical order is determined by comparing corresponding characters of both strings
until a non-match occurs. If the non-matching character of string1 is less than the non-
matching character of string2, (in the sense of the char<? function) #t is returned. If
greater, then #f is returned. Otherwise, #f is returned.

string<? is case sensitive.

Parameters

Return Value

Boolean
Returns #f if string1 is less than string2. Otherwise, it evaluates to #t.

Examples

(string<? "SMITH" "SMITH") => #f

(string<? "SMITH" "SMYTHE") => #t

(string<? "SMITH" "SMITHY") => #t

(string<? "2222" "2222") => #f

(string<? "2222" "231") => #t

Note that the comparison against “231” evaluates to #t because this is a lexical ordering.
If this ordering were numeric, the previous example would evaluate to #f.

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

string1 string First string to test.

string2 string Second string to test.
Monk Developer’s Reference 114 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string<=?

Syntax

(string<=? string1 string2)

Description

Compares string1 and string2 for lexical order.

Lexical order is determined by comparing corresponding characters of both strings
until a non-match occurs. If the non-matching character of string1 is greater than the
non-matching character of string2, (in the sense of the char>? function) #f is returned. If
less, then #t is returned. Otherwise, #t is returned.

string<=? is case sensitive.

Parameters

Return Value

Boolean
Returns #t if string1 is less or equal to string2. Otherwise, it evaluates to #f.

Examples

(string<=? "SMITH" "SMITH") => #t

(string<=? "SMITH" "SMYTHE") => #t

(string<=? "SMITH" "SMITHY") => #t

(string<=? "2222" "2222") => #t

(string<=? "2222" "231") => #t

Note that the comparison against “231” evaluates to #t because this is a lexical ordering.
If this ordering were numeric, the previous example would evaluate to #f.

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

string1 string First string to test.

string2 string Second string to test.
Monk Developer’s Reference 115 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string=?

Syntax

(string=? string1 string2)

Description

Compares string1 and string2 for equality. This function is case sensitive.

Parameters

Return Value

Boolean
Returns #f if any character in string1 differs from its corresponding character in
string2. Otherwise, it evaluates to #t.

Examples

(string=? "1234" "1234") => #t

(string=? "1234" "1235") => #f

(string=? "abcd" "abcd") => #t

(string=? "abcd" "abCd") => #f

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

 Name Type Description

string1 string First string to test.

string2 string Second string to test.
Monk Developer’s Reference 116 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string>?

Syntax

(string>? string1 string2)

Description

Compares string1 and string2 for lexical order.

Lexical order is determined by comparing corresponding characters of both strings
until a non-match occurs. If the non-matching character of string1 is less than the non-
matching character of string2, (in the sense of the char<? function) #f is returned. If
greater, then #t is returned. Otherwise, #f is returned.

string>? is case sensitive.

Parameters

Return Value

Boolean
Returns #t if string1 is greater than string2. Otherwise, it evaluates to #f.

Examples

(string>? "1234" "1234") => #f

(string>? "1234" "1233") => #t

(string>? "abcd" "abcd") => #f

(string>? "abcd" "abCd") => #t

(string>? "2222" "2222") => #f

(string>? "2222" "231") => #f

Note that the comparison against “231” evaluates to #f because this is a lexical ordering.
If this ordering were numeric, the previous example would evaluate to #t.

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

string1 string First string to test.

string2 string Second string to test.
Monk Developer’s Reference 117 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string>=?

Syntax

(string>=? string1 string2)

Description

Compares string1 and string2 for lexical order.

Lexical order is determined by comparing corresponding characters of both strings
until a non-match occurs. If the non-matching character of string1 is less than the non-
matching character of string2, (in the sense of the char<? function) #f is returned.
Otherwise, #t is returned.

string>=? is case sensitive.

Parameters

Return Value

Boolean
Returns #t if string1 is greater than or equal string2. Otherwise, it evaluates to #f.

Examples

(string>=? "1234" "1234") => #t

(string>=? "1234" "1233") => #t

(string>=? "abcd" "abcd") => #t

(string>=? "abcd" "abCd") => #t

(string>=? "2222" "2222") => #t

(string>=? "2222" "231") => #f

Note that the comparison against “231” evaluates to #f because this is a lexical ordering.
If this ordering were numeric, the previous example would evaluate to #t.

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

string1 string First string to test.

string2 string Second string to test.
Monk Developer’s Reference 118 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-append

Syntax

(string-append string...stringN)

Description

Appends a list of specified strings to form a new string.

Parameters

Return Value

string
Returns a new string consisting of the concatenated specified strings.

Example

(string-append "345" "012") => "345012"

Name Type Description

string...stringN string A series of strings to concatenate.
Monk Developer’s Reference 119 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-checksum

Syntax

(string-checksum string)

Description

Calculates a successive XOR (exclusive OR) operation on all bytes in the specified
string.

Parameters

Return Value

integer
Returns an integer representing the checksum of the string.

Examples

(string-checksum "ABCDEFGHIJKK") => 11

(string-checksum "123") => 48

Name Type Description

string string The string on which to perform the checksum.
Monk Developer’s Reference 120 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-ci=?

Syntax

(string-ci=? string1 string2)

Description

Compares string1 and string2 for equality without regard for case.

Parameters

Return Value

Boolean
Returns #f if each character in string1 is not the same as the corresponding character
in string2. Otherwise, it evaluates to #t.

Examples

(string-ci=? "1234" "1234") => #t

(string-ci=? "1234" "1235") => #f

(string-ci=? "abcd" "abcd") => #t

(string-ci=? "abcd" "abCd") => #t

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

string1 string First string to test.

string2 string Second string to test.
Monk Developer’s Reference 121 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-ci<?

Syntax

(string-ci<? string1 string2)

Description

Compares string1 and string2 for lexical order without regard for case.

Lexical order is determined by comparing corresponding characters of both strings
until a non-match occurs (in the sense of char-ci=? function). If the non-matching
character of string1 is less than the non-matching character of string2, (in the sense of
the char-ci<? function) #t is returned. Otherwise, #f is returned.

string-ci<? is case insensitive.

Parameters

Return Value

Boolean
Returns #t if string1 is less than string2 without regard for case. Otherwise, it
evaluates to #f.

Examples

(string-ci<? "1234" "1234") => #f

(string-ci<? "1234" "1235") => #t

(string-ci<? "abcd" "ABCD") => #f

(string-ci<? "abcd" "ABCE") => #f

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

string1 string First string to test.

string2 string Second string to test.
Monk Developer’s Reference 122 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-ci>?

Syntax

(string-ci>? string1 string2)

Description

Compares string1 and string2 for lexical order without regard for case.

Lexical order is determined by comparing corresponding characters of both strings
until a non-match occurs (in the sense of char-ci=? function). If the non-matching
character of string1 is less than the non-matching character of string2, (in the sense of
the char-ci<? function) #f is returned. Otherwise, #t is returned.

string-ci>? is case insensitive.

Parameters

Return Value

Boolean
Returns #t if string1 is greater than string2 without regard for case. Otherwise, it
evaluates to #f.

Examples

(string-ci>? "1234" "1234") => #f

(string-ci>? "1234" "1233") => #t

(string-ci>? "abcd" "ABCD") => #f

(string-ci>? "abcd" "ABCC") => #f

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

string1 string First string to test.

string2 string Second string to test.
Monk Developer’s Reference 123 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-ci<=?

Syntax

(string-ci<=? string1 string2)

Description

Compares string1 and string2 for lexical order without regard for case.

Lexical order is determined by comparing corresponding characters of both strings
until a non-match occurs (in the sense of char-ci=? function). If the non-matching
character of string1 is greater than the non-matching character of string2, (in the sense of
the char-ci>? function) #f is returned. Otherwise, #t is returned.

string-ci<=? is case insensitive.

Parameters

Return Value

Boolean
Returns #t if string1 is less than or equal to string2 without regard for case.
Otherwise, it evaluates to #f.

Examples

(string-ci<=? "1234" "1234") => #t

(string-ci<=? "1234" "1233") => #f

(string-ci<=? "abcd" "ABCD") => #t

(string-ci<=? "abcd" "ABCC") => #f

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

string1 string First string to test.

string2 string Second string to test.
Monk Developer’s Reference 124 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-ci>=?

Syntax

(string-ci>=? string1 string2)

Description

Compares string1 and string2 for lexical order without regard for case.

Lexical order is determined by comparing corresponding characters of both strings
until a non-match occurs (in the sense of char-ci=? function). If the non-matching
character of string1 is less than the non-matching character of string2, (in the sense of
the char-ci<? function) #f is returned. Otherwise, #t is returned.

string-ci>=? is case insensitive.

Parameters

Return Value

Boolean
Returns #f if each character in string1 is not greater than or the same as the
corresponding character in string2. Otherwise, it evaluates to #t.

Examples

(string-ci<=? "1234" "1234") => #t

(string-ci<=? "1234" "1233") => #f

(string-ci<=? "abcd" "ABCD") => #t

(string-ci<=? "abcd" "ABCC") => #f

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

string1 string First string to test.

string2 string Second string to test.
Monk Developer’s Reference 125 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-copy

Syntax

(string-copy source)

Description

Copies the source string.

Parameters

Return Value

string
Returns a copy of the specified source.

Examples

(string-copy "This is input") => "This is input"

(define x "abc")
(set! x (string-copy "12345"))
(display x)

prints “12345” to the display

Name Type Description

source string The string to copy.
Monk Developer’s Reference 126 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-copy!

Syntax

(string-copy! dest-str char-pos copy-str)

Description

Modifies the destination string at the character position with the copy string.

The byte-length of the destination string and the copy string must be identical. The
string length is self-expanding only when the byte length of the copy string exceeds
that of the destination string at the end of a string. See the second example.

Parameters

Return Value

string
Returns the modified string.

Examples

(define sentence (make-string "The house is blue"))
(string-copy! sentence 0 "Our") => "Our house is blue"

(define sentence (make-string "The house is blue"))
(string-copy! sentence 13 "violet") => "The house is violet"

Name Type Description

dest-str string The original string to be modified.

char-pos integer The character position where the modification begins.

copy-str string The new string to copy into the original string at the
character position.
Monk Developer’s Reference 127 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-crc16

Syntax

(string-crc16 string)

Description

Calculates a cyclical redundancy check on all bytes in a string using the CRC-16
algorithm.

Parameters

Return Value

integer
Returns the CRC of the specified string.

Examples

(string-crc16 "AAAAA") => 61332

(string-crc16 "12345") => 21612

Name Type Description

string string or path The string to check.
Monk Developer’s Reference 128 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-crc32

Syntax

(string-crc32 string)

Description

Calculates a cyclical redundancy check on all bytes in a string using the CRC-32
algorithm.

Parameters

Return Value

integer
Returns the CRC of the specified string.

Examples

(string-crc32 "AAAAA") => 435704073

(string-crc32 "12345") => -873121252

Name Type Description

string string or path The string to check.
Monk Developer’s Reference 129 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-downcase

Syntax

(string-downcase source)

Description

Returns a copy of the source with all alphabetic characters converted to lower case.

Parameters

Return Value

string
Returns a copy of the source with all alphabetic characters converted to lower case.

Examples

(string-downcase "A String") => "a string"

(string-downcase "AAA") => "aaa"

Name Type Description

source string or path The string to manipulate.
Monk Developer’s Reference 130 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-fill!

Syntax

(string-fill! string char)

Description

Replaces every character in the specified string with the specified character.

string must be mutable.

Parameters

Return Value

Unspecified.

Example

(define mystring (make-string 5))
(string-fill! mystring #\d) => "ddddd"

The function make-string when combined with define will create a mutable string.
Mutable strings can be have their contents changed.

Name Type Description

string string The string to manipulate. Must be a mutable string.

char character Character with which to fill the string.
Monk Developer’s Reference 131 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-insert!

Syntax

(string-insert! dest-str char-pos insert-str)

Description

Inserts a new string into an existing string.

The characters in the existing string are shifted right. dest-str must be mutable. This
function does not alter the data on the original string.

Parameters

Return Value

string
Returns the modified string.

Example

(make-string "The house is blue")
(string-insert! "The house is blue" 3 "ir")

=> Their house is blue

Name Type Description

dest-str string The original string to be modified.

char pos integer The character position where the insertion begins.

insert-str string The new string to copy into the original string at the
character position.
Monk Developer’s Reference 132 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-left-trim

Syntax

(string-left-trim source chars)

Description

Removes the specified characters from the specified source string from the left end of
the source.

The specified source string is left intact. The characters can be specified as a character
type, a list of characters, a vector, or a string.

Parameters

Return Value

string
Returns a new string with all of the specified characters trimmed from left.

Example

(string-left-trim "aa3bcde9fg" "a f g") => "3bcde9fg"

Name Type Description

source string The string to trim.

chars character,
string, list, or
vector

The characters to trim from the source string.
Monk Developer’s Reference 133 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-length

Syntax

(string-length source)

Description

Returns the length of a specified string.

Parameters

Return Value

integer
The length of the specified source.

Examples

(string-length "abcdefg") => 7

(string-length "12345") => 5

Name Type Description

source string The string to measure.
Monk Developer’s Reference 134 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-length!

Syntax

(string-length! dest-str new-len [fill-char])

Description

Alters the length of the string. dest-str must be mutable. If lengthened, you can specify
extra characters to fill the string.

Parameters

Return Value

string
Returns the modified string.

Examples

(define str (make-string 7 #\s)) => "sssssss"
(string-length! str 4) => "ssss"

(define str (make-string 3 "ab")) => "ababab"
(string-length! str 8 #\7) => "ababab77"
(string-length! str 10) => "ababab77 "

Name Type Description

dest-str string The original string to be modified.

new-len integer The new byte length.

fill-char character The characters to fill any new bytes created.
Monk Developer’s Reference 135 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string->list

Syntax

(string->list string)

Description

string->list breaks a specified string into a list of individual characters.

Parameters

Return Value

list
A list composed of the individual characters making up the string.

Examples

(string->list "String") => ’(S t r i n g)

(string->list "17") => ’(1 7)

Name Type Description

string string The specified string to decompose.
Monk Developer’s Reference 136 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-lrc

Syntax

(string-lrc string mod)

Description

Performs a longitudinal redundancy check by successively adding up the byte values
in the specified string and performing modulo on the resulting sum. The modulo value
must be a number between 1 and 255 on all bytes in a string using the lrc algorithm.

Parameters

Return Value

integer
Returns the lrc of the specified string.

Examples

(string-lrc "AAAA" 255) => 5

(string-lrc "AA" 100) => 30

Name Type Description

string string or path The string to check.

mod integer The value to use in performing modulo on the result of
the lrc.
Monk Developer’s Reference 137 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string->ntohl

Syntax

(string->ntohl string)

Description

Converts a binary blob that is a representation of a long integer in the network format
(32-bit).

Parameters

Return Value

integer
Returns an integer.

Examples

(string->ntohl "aaa") => {MONK_EXCEPTION}

(string->ntohl "aaaa") => 1633771873

 Name Type Description

string string A long integer. Must be 4-byte in length.
Monk Developer’s Reference 138 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string->ntohs

Syntax

(string->ntohs-> string)

Description

Converts a binary blob that is a representation of a short integer in the network format
(16-bit).

Parameters

Return Value

string
Returns a string in two-byte network byte order.

Examples

(string->ntohs "a") => {MONK_EXCEPTION}

(string->ntohs "aa") => 24930

Name Type Description

string string A string integer with a length greater than 1.
Monk Developer’s Reference 139 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-ref

Syntax

(string-ref source number)

Description

Returns the character appearing at the index position in the specified string. The index
is a number that indicates the character’s position from the beginning of the string,
starting with 0.

Parameters

Return Value

character
Returns the character appearing at the index position in the specified string source.

Example

(string-ref "abcdefg" 3) => #\d

Name Type Description

source string The string to search.

number integer The index position of the desired character.
Monk Developer’s Reference 140 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-right-trim

Syntax

(string-right-trim source chars)

Description

string-right-trim removes the specified characters from the specified source string from
the right end of the source until it encounters a non-specified character. The specified
source string is left intact. The characters can be specified as a character type, a list of
characters, a vector, or a string.

Parameters

Return Value

string
Returns a new string with all of the specified characters trimmed from right.

Example

(string-right-trim "aa3bcde9fg" "a f g") => "aa3bcde9"

Name Type Description

source string The string to trim.

chars character,
string, list,
vector

The characters to trim from the source string.
Monk Developer’s Reference 141 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-set!

Syntax

(string-set! source index char)

Description

Replaces the character appearing at the index position in the source with the specified
character. The index is a number that indicates the character’s position from the
beginning of the string, starting with 0.

Parameters

Return Value

Unspecified.

Example

(define str (make-string 6 #\a)) => "aaaaaa"
(string-set! str 3 #\x) => "aaaxaa"

Name Type Description

source string The string to search.

index integer The index position of the character.

char character The replacement character.
Monk Developer’s Reference 142 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-substitute

Syntax

(string-substitute old new target)

Description

Searches the target string and replaces all instances of old with new.

Parameters

Return Value

string
Returns a new string with substitutions performed.

Example

(string-substitute "Medical Doctor" "MD"
"John Doe, Medical Doctor")

=> "John Doe, MD"

Name Type Description

old string The original string.

new string The replacement string.

target string The string to perform the substitution on.
Monk Developer’s Reference 143 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-tokens

Syntax

(string-tokens source char-delim)

Description

Creates a list of string tokens from the specified source using the specified char-delim.

Parameters

Return Value

string
Returns a new list of string tokens delimited by char-delim. The original source is left
unchanged.

Examples

(string-tokens "abcdef" #\c) => (ab def)

(string-tokens "abcdef" ’(#\c #\e #\g)) => (ab d f)

Name Type Description

source string The string to search.

char-bag character,
string, list, or
vector

The characters to make into tokens.
Monk Developer’s Reference 144 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-trim

Syntax

(string-trim source chars)

Description

Removes the specified characters from the source string and returns a new string.

The chars parameter can be either characters or characters in a string, list, or vector. This
function trims the specified characters from both the left and right ends of the source
until it encounters a non-specified character. The specified source string is left intact.

Parameters

Return Value

string
Returns a new string with all of the specified characters removed from ends.

Example

(string-trim "aa3bcde9fg" "a 3 9 f g") => "bcde"

Name Type Description

source string The string to trim.

chars character,
string, list, or
vector

The characters to trim from the source string.
Monk Developer’s Reference 145 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-type

Syntax

(string-type string)

Description

Returns the type of the specified string.

Parameters

Return Value

string
Returns one of the following encoding types:

Example

(define mystring "abcd")
(string-type mystring) => :ASCII

Name Type Description

string string A string

:1Byte :2Byte

:3Byte :4Byte

:ASCII :EBCDIC

:EUC :SJIS

:UCS2
Monk Developer’s Reference 146 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-type!

Syntax

(string-type! type string)

Description

Sets the type of the specified string and returns the modified string.

Parameters

Return Value

string
Returns a modified string.

Examples

(define mystring "abcd")
(string-type mystring) => :ASCII

(define yourstring
(string-type! :EBCDIC mystring))

(string-type yourstring) => :EBCDIC

Name Type Description

type symbol One of the following:

:1Byte
:2Byte
:3Byte
:4Byte
:ASCII
:EBCDIC
:EUC
:SJIS
:UCS2

string string A string
Monk Developer’s Reference 147 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-type?

Syntax

(string-type? type string)

Description

Tests whether specified string is of the specified type.

Parameters

Return Value

Boolean
Returns #t if the string is of the specified type. Otherwise, it returns #f.

Examples

(define mystring "abcd")
(string-type? :ASCII mystring) => #t

(string-type? :EBCDIC mystring) => #f

Name Type Description

type symbol One of the following:

:1Byte
:2Byte
:3Byte
:4Byte
:ASCII
:EBCDIC
:EUC
:SJIS
:UCS2

string string A string.
Monk Developer’s Reference 148 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
string-upcase

Syntax

(string-upcase source)

Description

Converts alphabetic characters to upper case.

Parameters

Return Value

string
Returns a copy of the source with all alphabetic characters converted to upper case

Example

(string-upcase "A String") => "A STRING"

Name Type Description

source string The string to manipulate.
Monk Developer’s Reference 149 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
substring

Syntax

(substring string start end)

Description

Creates a new string by copying a substring of an existing string .

The copy starts with the index start (inclusive) and the index end (exclusive). The offset
starts from zero (0). The index start and end parameters must both be exact integers
satisfying:

0 <= start <= end <= (string-length string)

Parameters

Return Value

string
Returns a newly-allocated string from the characters of string beginning with index
start (inclusive) and index end (exclusive).

Examples

(substring? "abcdefg" 0 3) => "abc"

(substring? "abcdefg" 1 4) => "bcd"

Name Type Description

pattern string Substring to test.

start integer Index position of the start of the pattern, inclusive.

end integer Index position of the end of the pattern, exclusive.
Monk Developer’s Reference 150 SeeBeyond Proprietary and Confidential

Chapter 6
String Functions
substring-index

Syntax

(substring-index pattern target)

Description

Searches for the occurrence of a substring pattern within another string.

Parameters

Return Value

integer
This function returns the character offset of the first occurrence of the substring
pattern within the string. The offset starts from zero (0). If the substring pattern
cannot be found, #f is returned.

Example

(substring-index "test" "This is a test string") => 10

Name Type Description

pattern string Pattern to search for.

target string String containing the pattern.
Monk Developer’s Reference 151 SeeBeyond Proprietary and Confidential

Chapter 7

Numerical Expressions

Numerical Expressions are used for numerical calculations and conversions.
Calculation include scientific functions such as sine or tangent functions and format
conversion functions dealing with big-endian and little-endian numerical data formats.

The number functions available are:

* on page 153 lcm on page 177

+ on page 154 little-endian->integer on page 178

- on page 155 log on page 179

/ on page 156 max on page 180

< on page 157 min on page 181

= on page 158 modulo on page 182

<= on page 159 negative? on page 183

> on page 160 number? on page 184

>= on page 161 number->integer on page 185

abs on page 162 number->real on page 186

acos on page 163 number->uint on page 187

asin on page 164 odd? on page 188

atan on page 165 positive? on page 189

big-endian->integer on page 166 quotient on page 190

ceiling on page 167 real? on page 191

cos on page 168 remainder on page 192

even? on page 169 round on page 193

exp on page 170 sin on page 194

expt on page 171 sqrt on page 195

floor on page 172 tan on page 196

gcd on page 173 truncate on page 197

integer? on page 174 uint? on page 198

integer->big-endian on page 175 zero? on page 199

integer->little-endian on page 176
Monk Developer’s Reference 152 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
*

Syntax

(* number number...)

Description

Calculates the product of the input parameters. Accepts zero or more arguments. If
no arguments are specified a value of 1 is returned.

Parameters

Return Value

number
Value of the product of the input argument(s).

Examples

(*) => 1

(* 25) => 25

(* -2 3) => -6

(* -2 3 -4) => 24

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 153 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
+

Syntax

(+ [number number...])

Description

Adds the input arguments. Accepts zero or more arguments. If you specify no input
arguments, the number zero is returned.

Parameters

Return Value

number
Value of the sum of the input argument(s).

Examples

(+) => 0

(+ 50) => 50

(+ 50 -100) => -50

(+ 50 -100 200) => 150

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 154 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
-

Syntax

(- number [number...])

Description

Subtracts the second argument from the first. If you specify only one argument this
function subtracts that argument from zero. If you specify three or more arguments,
this function is applied successively from left to right, with the result of the previous
subtraction becoming the left argument for the next subtraction.

Parameters

Return Value

number
Value representing the difference of the input argument(s).

Examples

(- 123) => -123

(- -123) => 123

(- 123 1) => 122

(- 123 1 2) => 120

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 155 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
/

Syntax

(/ number [number ...])

Description

Divides the first argument by the second argument.

If you specify only one argument, it divides 1 by that argument. If you specify three or
more arguments, the division function is applied from left to right with the result of the
previous division becoming the left argument (numerator) in the next division.

Parameters

Return Value

number
Value represent the quotient of the input argument(s).

Examples

(/ 25) => .04

(/ 100 50) => 2

(/ 24 3 2) => 4

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 156 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
<

Syntax

(< number number...)

Description

Determines whether the first argument is less than the second argument. If you specific
three or more arguments, it returns #t if each input parameter is less than the input
parameter that follows it. Otherwise, it returns #f

Parameters

Return Value

Boolean
Value of the comparison of all arguments.

Examples

(< 3 10) => #t

(< 3 10 25) => #t

(< 3 10 7) => #f

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 157 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
=

Syntax

(= number number ...)

Description

Compares two or more numeric values to see if they are equal.

Parameters

Return Value

Boolean
Returns #t (true) if all the arguments are equal; otherwise returns #f (false).

Examples

(= 1 1 1) => #t

(= 1 1 2) => #f

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 158 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
<=

Syntax

(<= number number ...)

Description

Determines whether the first argument is less than or equal to the second argument. If
you specific three or more arguments, it returns #t if each input parameter is less than
or equal to the input parameter that follows it. Otherwise, it returns #f.

Parameters

Return Value

Boolean
Value of the comparison of the input arguments.

Examples

(<= 3 3) => #t

(<= 3 10) => #t

(<= 3 4 10) => #t

(<= 3 4 1) => #f

(<= 4 1) => #f

(<= -17 3) => #t

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 159 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
>

Syntax

(> number number...)

Description

Determines if the first argument is greater than the second argument. If you specific
three or more arguments, it returns #t if each input argument is greater than the input
argument that follows it. Otherwise, it returns #f

Parameters

Return Value

Boolean
Value of the comparison of all input arguments.

Examples

(> 3 10) => #f

(> 4 -1) => #t

(> 15 4 -17 -100) => #t

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 160 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
>=

Syntax

(>= number number...)

Description

Determines whether the first argument is greater than or equal to the second argument.
If you specific three or more arguments, it returns #t if each input parameter is greater
than or equal to the input parameter that follows it. Otherwise, it returns #f

Parameters

Return Value

Boolean
This function returns #t if each input parameter is greater than or equal to the input
parameter that follows it. Otherwise, it returns #f.

Examples

(>= 3 10) => #f

(>= 100 100) => #t

(>= 4 1) => #t

(>= 15 4 4 -17) => #t

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 161 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
abs

Syntax

(abs number)

Description

Calculates the absolute value of the input argument.

Parameters

Return Value

number
Absolute value of the input argument.

Examples

(abs -34) => 34

(abs +50) => 50

(abs 3) => 3

(abs -4) => 4

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 162 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
acos

Syntax

(acos number)

Description

Calculates the arc cosine of the input argument. The input argument must be between -
1 and 1.

Parameters

Return Value

Number
Arc cosine in radians. A number between 0 and pi.

Examples

(acos -1) => 3.14159265358979

(acos 1) => 0.0

(acos 0.896) => 0.460118237382662

(acos -0.22) => 1.79261079729169

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 163 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
asin

Syntax

(asin number)

Description

Calculates the arc sine of the input argument. The input argument must be between -1
and 1.

Parameters

Return Value

Number
Arc sine in radians. A number between -pi/2 and pi/2.

Examples

(asin -1) => -1.5707963267949

(asin 1) => 1.5707963267949

(asin 0.896) => 1.11067808941223

(asin -0.22) => -0.221814470496794

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 164 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
atan

Syntax

(atan number)

Description

Calculates the arc tangent of the input argument.

Parameters

Return Value

Number
Arc tangent in radians. A number between -pi/2 and pi/2.

Examples

(atan -1) => -0.785398163397448

(atan 1) => 0.785398163397448

(atan 0.896) => 0.730600756424333

(atan -0.22) => -0.216550304976089

(atan 1000000) => 1.5707953267949

Name Type Description

number number Any type of number, integer, or string.
Monk Developer’s Reference 165 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
big-endian->integer

Syntax

(big-endian->integer string size)

Description

Converts a string representing an integer in big endian format to a Monk integer. size
specifies the size of the string in bytes and is permitted to have the values 1, 2, 3 or 4.

Parameters

Return Value

integer
This function returns an integer representation of the big endian number.

Examples

(big-endian->integer "A" 1) => 65

(big-endian->integer "a" 1) => 97

(big-endian->integer "Aa" 2) => 16737

(big-endian->integer "y" 1) => 121

Name Type Description

string binary
string

Binary string to be converted to a number.

size integer An integer the size of the binary string, in bytes (1-4).
Monk Developer’s Reference 166 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
ceiling

Syntax

(ceiling number)

Description

Calculates the smallest integer which is not smaller than the input argument.

Parameters

Return Value

integer
The returned number is the next higher integer value of the input argument.

Examples

(ceiling 34) => 34

(ceiling 34.4) => 35

(ceiling -50) => -50

(ceiling -50.1) => -50

(ceiling -50.6) => -50

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 167 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
cos

Syntax

(cos radians)

Description

Calculates the cosine of the input argument. The input argument must be in radians.

Parameters

Return Value

Number
Value of the cosine of the input argument.

Examples

(cos 0) => 1.0

(cos 1) => 0.54030230586814

(cos -1) => -0.54030230586814

(cos (/ 3.141592 3)) => 0.50000018867511

Name Type Description

radians radians number Any type of number or string that converts to a number.
Monk Developer’s Reference 168 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
even?

Syntax

(even? number)

Description

Determines whether the input argument is an even integer.

Parameters

Return Value

Boolean
This function returns #t if the integer is even. Otherwise, it returns #f.

Examples

(even? 12) => #t

(even? 12.1) => #f

(even? 12.8) => #f

(even? -3) => #f

(even? -4) => #t

(even? 1558) => #t

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 169 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
exp

Syntax

(exp number)

Description

Calculates the natural exponent of the input argument.

Parameters

Return Value

Number
Value of the exponent of the input argument.

Examples

(exp 1) => 2.71828182845905

(exp 2) => 7.38905609893065

(exp 3) => 20.0855369231877

(exp -50.6) => 1.0582035967718e-22

(exp 50.6) => 9.44714941812713e+21

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 170 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
expt

Syntax

(expt number1 number2)

Description

Calculates the value of first argument raised to the power of the second argument.
Accepts real and integer arguments. If number1 is negative, then number2 must be an
integer.

Parameters

Return Value

number
This function returns a number.

exception
If the first argument is negative and the second argument is a real argument, an
exception is returned.

Examples

(expt 1 1) => 1.0

(expt 2 2) => 4.0

(expt 3 3) => 27.0

(expt 3 3.1) => 30.1353256989154

(expt 3 -4.7) => 0.00572176613298728

(expt -5.6 2.0) => {MONKEXCEPT:0001}

(expt -5.6 2) => 31.36

Name Type Description

number1 number Any type of number or string that converts to a number.

number2 number Any type of number or string that converts to a number.
Monk Developer’s Reference 171 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
floor

Syntax

(floor number)

Description

Determines the greatest integer which not greater than the input argument.

Parameters

Return Value

integer
The returned value is the previous lower integer value of the input argument.

Examples

(floor 34) => 34

(floor 34.4) => 34

(floor -50) => -50

(floor -50.1) => -51

(floor -50.6) => -51

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 172 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
gcd

Syntax

(gcd number1 number2)

Description

Calculates the greatest common divisor of the input arguments. Each input argument
must be an integer. Accepts negative values for either input argument.

Parameters

Return Value

integer
Value of the greatest common divisor of the input arguments.

Examples

(gcd 32 -36) => 4

(gcd -32 +36) => 4

(gcd 10 -6) => 2

(gcd 4 5) => 1

Name Type Description

number1 integer Any type of number or string that converts to a number.

number2 integer Any type of number or string that converts to a number.
Monk Developer’s Reference 173 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
integer?

Syntax

(integer? number)

Description

Determines whether the input argument is an integer.

Parameters

Return Value

Boolean
This function returns #t if the input argument is an integer. Otherwise, it returns #f.

Examples

(integer? 32) => #t

(integer? -10) => #t

(integer? +10) => #t

(integer? -10.3) => #f

(integer? "abc") => #f

Name Type Description

number any Any type of number or string that converts to a number.
Monk Developer’s Reference 174 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
integer->big-endian

Syntax

(integer->big-endian number size)

Description

Converts an integer into a number represented as a big-endian. Takes an integer
argument as its input number along with a second numeric argument that specifies the
size of the big endian number to be created (1-4 bytes).

Parameters

Return Value

string
This function returns a string that has been formulated in big endian notation to
represent the input argument to the function.

Examples

(integer->big-endian 65 2) => A

(integer->big-endian 97 2) => a

(integer->big-endian 16737 4) => Aa

(integer-big-endian 121 2) => y

Name Type Description

number integer An integer to convert.

size number The size of the integer to convert, in bytes (1-4).
Monk Developer’s Reference 175 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
integer->little-endian

Syntax

(integer->little-endian number size)

Description

Converts an integer into a number represented as a little-endian. Takes an integer
argument as its input number along with a second numeric argument that specifies the
size of the big endian number to be created (1-4 bytes).

Parameters

Return Value

string
This function returns a string that has been formulated in little endian notation to
represent the input argument to the function.

Examples

(integer->little-endian 65 2) => A

(integer->little endian 97 2) => a

(integer->little endian 24897 4) => aA

(integer->little endian 121 2) => y

Name Type Description

number integer An integer to convert.

size number The size of the integer to convert, in bytes (1-4).
Monk Developer’s Reference 176 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
lcm

Syntax

(lcm number1 number2)

Description

Calculates the least common multiple of the input arguments. Each input argument
must be an integer. Accepts negative values for either input argument.

Parameters

Return Value

integer
This function returns an integer.

Examples

(lcm 12 4) => 12

(lcm 12 20) => 60

(lcm 1 10) => 10

(lcm 32 36) => 288

(lcm 32 -36) => 288

Name Type Description

number1 integer Any type of number or string that converts to a number.

number2 integer Any type of number or string that converts to a number.
Monk Developer’s Reference 177 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
little-endian->integer

Syntax

(little-endian->integer string size)

Description

Convert a little-endian number into a Monk integer.

The little-endian number is represented as a character string, up to four bytes long.
size specifies the size of the string (1-4 bytes)

Parameters

Return Value

integer
This function returns an integer.

Examples

(little-endian->integer "A" 1) => 65

(little-endian->integer "a" 1) => 97

(little-endian->integer "Aa" 2) => 24897

(little-endian->integer "y" 1) => 121

Name Type Description

string string Binary string to be converted to a number.

size number The size of the integer to convert, in bytes (1-4).
Monk Developer’s Reference 178 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
log

Syntax

(log number)

Description

Calculates the natural logarithm of the input argument. Input argument must be
greater than zero.

Parameters

Return Value

logarithm
This function returns the natural logarithm of the input argument.

Examples

(log 45) => 3.80666248977032

(log 1.23) => 0.207014169384326

(log 100000) => 11.5129254649702

(log 0) => {MONKEXCEPT:0007}

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 179 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
max

Syntax

(max number [number...])

Description

Finds the maximum value of all input arguments.

Parameters

Return Value

number
The maximum value of the input parameters.

Examples

(max 10) => 10

(max 10 -2) => 10

(max 10 -2 10.1) => 10.1

(max -1000 -2000) => -1000

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 180 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
min

Syntax

(min number [number ...])

Description

Finds the minimum value of all input arguments.

Parameters

Return Value

number
The minimum value of the input parameters.

Examples

(max 10) => 10

(max 10 -2) => -2

(max 10 -2 10.1) => 10

(max -1000 -2000) => -2000

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 181 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
modulo

Syntax

(modulo number modulus)

Description

Calculates the value of number reduced by modulus. Both arguments must be integer
and the second argument must be non-zero. If modulus is positive, then the result is the
positive or zero remainder when number is divided by modulus. If modulus is negative,
then the result is the negative or zero remainder when number is divided by modulus.

Parameters

Return Value

integer
Value of the modulo of the division of the two input arguments.

Examples

(modulo 17 7) => 3

(modulo 18 7) => 4

(modulo 19 7) => 5

(modulo -19 7) => 2

(modulo 19 -7) => -2

(modulo -19 -7) => -5

Name Type Description

number1 integer Must be an integer.

number2 integer Must be an integer.
Monk Developer’s Reference 182 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
negative?

Syntax

(negative? number)

Description

Determines whether the input argument is a negative number.

Parameters

Return Value

Boolean
This function returns #t if the input argument is a negative number. Otherwise, it
returns #f.

Examples

(negative? 2) => #f

(negative? 2.1) => #f

(negative? -3) => #t

(negative? -3.6) => #t

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 183 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
number?

Syntax

(number? number)

Description

Determines whether the input argument is a number.

Parameters

Return Value

This function returns #t if the input argument is a number. Otherwise, it returns #f.

Examples

(number? 32) => #t

(number? -10) => #t

(number? +10) => #t

(number? ’a) => #f

(number? "abc") => #f

(number? #\a) => #f

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 184 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
number->integer

Syntax

(number->integer number)

Description

Translates a number into the corresponding integer. If the number has a fractional part,
the fractional part is truncated (removed and no rounding performed).

Parameters

Return Value

integer
Returns the integer corresponding to the input number.

Examples

(number->integer 65) => 65

(number->integer -40) => -40

(number->integer 3.99) => 3

(number->integer "Hello") => {MONK_EXCEPTION}

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 185 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
number->real

Syntax

(number->real number)

Description

Translates a number into the corresponding real number data type.

Parameters

Return Value

real number
Returns the real number corresponding to the input number.

Examples

(number->real 65) => 65

(number->real -40) => -40

(number->real 3.99) => 3.99

(number->real "Hello") => {MONK_EXCEPTION}

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 186 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
number->uint

Syntax

(number->uint number)

Description

Converts a number into the corresponding unsigned integer. The bits for the input
number become the bits for the unsigned integer—no interpretation is done.

Parameters

Return Value

uint
Returns the unsigned integer corresponding to the input number.

Examples

(number->uint 65) => 65

(number->uint -40) => 40

(number->uint 3.14) => 3

(number->uint "Hello") => {MONK_EXCEPTION}

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 187 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
odd?

Syntax

(odd? number)

Description

Determines whether the input argument is an odd number.

Parameters

Return Value

Boolean
This function returns #t if the input argument is an odd number. Otherwise, it
returns #f.

Examples

(odd? 23) => #t

(odd? -40) => #f

(odd? 20) => #f

(odd? 12.3) => #f

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 188 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
positive?

Syntax

(positive? number)

Description

Determines whether the input argument is a positive number. Zero is considered a
positive number.

Parameters

Return Value

Boolean
This function returns #t if the input argument is a positive number. Otherwise, it
returns #f.

Examples

(positive? 2) => #t

(positive? -3.3) => #f

(positive? 0) => #t

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 189 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
quotient

Syntax

(quotient number1 number2)

Description

Divides number1 by number2 ignoring the remainder.

Parameters

Return Value

integer
Value of the integer portion of the quotient.

Examples

(quotient 22 3) => 7

(quotient 21 3) => 7

(quotient 20 3) => 6

(quotient 20 -3) => -6

(quotient -20 -3) => 6

(quotient -20 3) => -6

Name Type Description

number1 integer Must be an integer.

number2 integer Must be an integer.
Monk Developer’s Reference 190 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
real?

Syntax

(real? number)

Description

Determines whether the input argument is a real number or converts to a real number.
Integers are considered real.

Parameters

Return Value

Boolean
Value of #t if the input argument is a real number. Otherwise, it returns #f.

Examples

(real? 32) => #t

(real? -10) => #t

(real? -10.3) => #t

(real? 0) => #t

(real? ’a) => #f

(real? "abc") => #f

(real? "123.456") => #t

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 191 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
remainder

Syntax

(remainder number1 number2)

Description

Takes the input arguments and divides number1 by number2 to determine the
remainder.

Parameters

Return Value

integer
This function returns the remainder of the integer division of the two numbers
input to the function.

Examples

(remainder 10 4) => 2

(remainder 100 25) => 0

(remainder 3 5) => 3

(remainder -1000 -2000) => -1000

(remainder "12" "5") => 2

Name Type Description

number1 integer Must be an integer.

number2 integer Must be an integer.
Monk Developer’s Reference 192 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
round

Syntax

(round number)

Description

Rounds the input argument to the nearest integer.

Parameters

Return Value

number
This function returns the rounded value of the number input to the function.

Examples

(round 34) => 34

(round 34.4) => 34

(round 34.5) => 35

(round -50.1) => -50

(round -50.5) => -51

(round 0) => 0

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 193 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
sin

Syntax

(sin radians)

Description

Calculates the sine of the input argument. The input arguments is expressed in radians.

Parameters

Return Value

number
Value of the sine of the input argument.

Examples

(sin 1) => 0.841470984807897

(sin 0.896) => 0.78083420977798

(sin (/ 3.1415926 2)) => 1.0

Name Type Description

radians number Any type of number or string that converts to a number.
Monk Developer’s Reference 194 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
sqrt

Syntax

(sqrt number)

Description

Calculates the square root of the input argument. The input argument must be non-
negative.

Parameters

Return Value

number
This function returns a real number. If a negative number is entered, an exception is
returned.

Examples

(sqrt 0) => 0.0

(sqrt 1) => 1.0

(sqrt 9) => 3

(sqrt 90) => 9.48683298050514

(sqrt -180) => {MONKEXCEPT:0053}

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 195 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
tan

Syntax

(tan radians)

Description

Calculates the tangent of the input argument. The input argument is expressed in
radians.

Parameters

Return Value

number
Value of the tangent of the input argument.

Examples

(tan -1) => -1.5574077246549

(tan 1) => 1.5574077246549

(tan 0.896) => 1.24985808686053

(tan (/ 3.1415926 4)) => 1

(tan 10) => 0.648360827459087

Name Type Description

radians number Any type of number or string that converts to a number.
Monk Developer’s Reference 196 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
truncate

Syntax

(truncate number)

Description

Removes the decimal point and any numbers following the decimal point.

Parameters

Return Value

integer
Value of the integer portion of the input argument.

Examples

(truncate 34) => 34

(truncate 50.1) => 50

(truncate .123) => 0

(truncate -80.9) => -80

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 197 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
uint?

Syntax

(uint? number)

Description

Checks to see if the input number is an unsigned integer. For purposes of this function
an integer and an unsigned integer are not the same.

Parameters

Return Value

Boolean
Returns #t (true) if the number is an unsigned integer; otherwise returns #f (false).

Examples

(uint? (number->uint 65)) => #t

(uint? 65) => #f

(uint? -40) => #f

(uint? 3.99) => #f

(uint? "Hello") => #f

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 198 SeeBeyond Proprietary and Confidential

Chapter 7
Numerical Expressions
zero?

Syntax

(zero? number)

Description

Determines whether the input argument is zero.

Parameters

Return Value

Boolean
This function returns #t if the input argument is zero. Otherwise, it returns #f.

Examples

(zero? 32) => #f

(zero? -10) => #f

(zero? 10.3) => #f

(zero? 0) => #t

(zero? -0) => #t

(zero? "0.0") => #t

Name Type Description

number number Any type of number or string that converts to a number.
Monk Developer’s Reference 199 SeeBeyond Proprietary and Confidential

Chapter 8

Pairs and Lists

A pair is a structured data type having two parts, called the car and the cdr. A pair is
indicated by enclosing the car and the cdr in parentheses and separating them by a
period with whitespace on either side. For example, the expression (a . b) is a pair
where the car is a and the cdr is b. Note that (a.b) is not proper notation for a pair.

A list is defined recursively as either an empty list, indicated by (), or a pair whose cdr
is another list. For example, (a . ()) is a list since the cdr is the empty list.

All non-empty lists are pairs by definition. But not all pairs are lists since the cdr of a
pair could be something other than a list.

Example 1: The expression (a . b) is a pair but not a list since the cdr, b, is neither a list
nor an empty list.

Example 2: The expression (a . (b)) is both a pair and a list, since the cdr, (b) is a list
having a single element. The equivalent expression for (b) is (b . ()) making it clear that
(b) is a list by the recursive definition. An equivalent expression for (a . (b)) is
(a . (b . ())).

Example 3: The expression (a b c) is both a pair and a list, because all non-empty lists
are pairs. The notation (a b c) is shorthand for the equivalent expression (a . (b . (c . ()))).

Lists cannot be modified if constants.

Functions which operate on lists are shown here:

append on page 201 list-ref on page 212

assoc on page 202 list-tail on page 213

assq on page 203 member on page 214

assv on page 204 memq on page 215

car on page 205 memv on page 216

cdr on page 206 null? on page 217

caar...cddddr on page 207 pair? on page 218

cons on page 208 reverse on page 219

length on page 209 set-car! on page 220

list on page 210 set-cdr! on page 221

list? on page 211
Monk Developer’s Reference 200 SeeBeyond Proprietary and Confidential

Chapter 8
Pairs and Lists
append

Syntax

(append arg1 arg2...)

Description

Creates a new list by appending arg2, ... to arg1.

Arg1 must be a list. Arg2 may be any expression. If arg2 is a list, then append returns a
proper list. If arg2 is any other type, then append returns an improper list. If arg1 is an
empty list, then append returns arg2 as the result.

Parameters

Return Value

list
If arg2 is a list, append returns a list.

pair
If arg2 is any other type, append returns an improper list.

type
If arg1 is an empty list, append returns arg2 as the result.

Examples

; appends two lists and returns a list
(append ’(a b) ’(c d) => (a b c d)

; appends empty list and symbol and returns a symbol
(append ’() (a)) => a

; appends a list and a symbol and returns a dotted pair
(append ’(c d) ’a) => (c . (d . a))

Name Type Description

arg1 list The primary object. This argument must be a list.

arg2 any The object to append.
Monk Developer’s Reference 201 SeeBeyond Proprietary and Confidential

Chapter 8
Pairs and Lists
assoc

Syntax

(assoc key alist)

Description

Tests each pair in the association list until it finds a pair whose car is equivalent to the
object. It returns the pair if found. Otherwise, returns #f. The assoc function uses the
procedure equal? to perform the test.

Parameters

Return Value

pair
The pair whose car is equivalent to the key.

Boolean
If the key was not found, #f is returned.

Examples

(define e ’((a 1)(b 2)(c 3)))

(assoc ’a e) => (a 1)

(assoc ’b e) => (b 2)

(assoc ’d e) => #f

(assoc (list ’a)’(((a))((b))((c))) => ((a))

Name Type Description

key any The object to search for.

alist list The association list to search.
Monk Developer’s Reference 202 SeeBeyond Proprietary and Confidential

Chapter 8
Pairs and Lists
assq

Syntax

(assq key alist)

Description

Tests each pair in the association list until it finds a pair whose car is equivalent to the
key. It returns the pair if found. Otherwise, returns #f. This function uses the procedure
eq? to perform the test.

Parameters

Return Value

pair
The pair whose car is equivalent to the key.

Boolean
If the key was not found, #f is returned.

Examples

(define e ’((a 1)(b 2)(c 3)))

(assq ’a e) => (a 1)

(assq ’b e) => (b 2)

(assq ’d e) => #f

(assq (list ’a)’(((a))((b))((c)))) => ((a))

(assq 5 ’((2 3)(5 7)(11 13))) => (5 7)

Name Type Description

key any The object to search for.

alist list The association list to search.
Monk Developer’s Reference 203 SeeBeyond Proprietary and Confidential

Chapter 8
Pairs and Lists
assv

Syntax

(assv key alist)

Description

Tests each pair in the association list until it finds a pair whose car is equivalent to the
key. This function uses the procedure eqv? to perform the test.

Parameters

Return Value

pair
The pair whose car is equivalent to the key.

Boolean
If the key was not found, #f is returned.

Examples

(define e ’((a 1)(b 2)(c 3)))
(assv ’a e) => (a 1)

(assv ’b e) => (b 2)

(assv ’d e) => #f

(assv (list ’a)’(((a))((b))((c)))) => ((a))

(assv 5 ’((2 3)(5 7)(11 13))) => (5 7)

Name Type Description

key any The object to search for.

alist list The association list to search.
Monk Developer’s Reference 204 SeeBeyond Proprietary and Confidential

Chapter 8
Pairs and Lists
car

Syntax

(car pair)

Description

Returns the car of a pair.

Parameters

Return Value

car
The car of the given pair or list.

Examples

(car ’(a b c d)) => a

(car ’(1 . 2)) => 1

(car ’()) => {MONK_EXCEPTION}

Name Type Description

pair pair The pair or list to test.
Monk Developer’s Reference 205 SeeBeyond Proprietary and Confidential

Chapter 8
Pairs and Lists
cdr

Syntax

(cdr pair)

Description

Returns the cdr of a pair.

Parameters

Return Value

cdr
The contents of the cdr field.

Examples

(cdr ’(a b c d)) => b c d

(cdr ’(1 . 2)) => 2

(cdr ’()) => {MONK_EXCEPTION}

Name Type Description

pair pair The pair.
Monk Developer’s Reference 206 SeeBeyond Proprietary and Confidential

Chapter 8
Pairs and Lists
caar...cddddr

Syntax

(caar...cddddr)

Description

Returns the car, the cdr or the successive combinations of car and cdr.

The car and cdr of a list may each be nested up to four levels deep. There are 28
functions in this group: caar, cadr, cdar, cddr, caaar, caadr, cadar, caddr, ..., caaar, ...,
cdddr.

Parameters

Return Value

list
A list representing the expected nesting level.

Examples

(caar (cdddr ’(a b c ((d e) f)))) => (d e)

(cddddr ’(a b c d e f)) => (e f)

(cdddddr ’(a b c d e f)) => {MONK_EXCEPTION}

Name Type Description

list list The list.
Monk Developer’s Reference 207 SeeBeyond Proprietary and Confidential

Chapter 8
Pairs and Lists
cons

Syntax

(cons obj1 obj2)

Description

Creates a new pair having obj1 as its car and obj2 as its cdr.

Parameters

Return Value

pair
The pair whose car is obj1 and whose cdr is obj2.

Examples

(cons ’a ’()) => (a)

(cons ’(a) ’(b c d)) => ((a) b c d)

(cons ’a 3) => (a . 3)

(cons ’(a b) ’ c) => ((a b) . c)

Name Type Description

obj1 any Any object. Becomes the car of the pair

obj2 any Any object. Becomes the cdr of the pair
Monk Developer’s Reference 208 SeeBeyond Proprietary and Confidential

Chapter 8
Pairs and Lists
length

Syntax

(length list)

Description

Determines the length of a proper list.

Parameters

Return Value

integer
The number of elements in the list.

Examples

(length ’(a b c)) => 3

(length ’(a (b) (c d e f))) => 3

(length ’()) => 0

Name Type Description

list list The list to test.
Monk Developer’s Reference 209 SeeBeyond Proprietary and Confidential

Chapter 8
Pairs and Lists
list

Syntax

(list [obj1 obj2...])

Description

Creates a list from the given arguments.

Parameters

Return Value

list
The list created from the given arguments.

Examples

(list ’a ’b ’c) => (a b c)

(list ’a (+ 3 4) ’c) => (a 7 c)

(list) => ()

Name Type Description

obj1 any Argument to concatenate into a list.

obj2 any Argument to concatenate into a list.
Monk Developer’s Reference 210 SeeBeyond Proprietary and Confidential

Chapter 8
Pairs and Lists
list?

Syntax

(list? obj)

Description

Determines if the given object is a proper list.

Parameters

Return Value

Boolean
Returns #t if the object is a list. Otherwise, it returns #f.

Examples

(list? ’(a b c)) => #t

(list? ’()) => #t

(list? ’(a . b)) => #f

Name Type Description

obj any The object to test if it is a list.
Monk Developer’s Reference 211 SeeBeyond Proprietary and Confidential

Chapter 8
Pairs and Lists
list-ref

Syntax

(list-ref list num)

Description

Returns the element of a given list found at the index position indicated by the number.
List indexing is zero-based. If you specify an index value equal to or greater than the
number of elements in the list, an exception is raised.

Return Value

element
Returns the element found at the index position specified by the number.

Examples

(list-ref ’(a b c d) 0) => a

(list-ref ’(a b c d) 2) => c

(list-ref ’(a b c d) 4) => {MONKEXCEPT:0102}

Name Type Description

list list The list to test.

num number The index position of the required element.
Monk Developer’s Reference 212 SeeBeyond Proprietary and Confidential

Chapter 8
Pairs and Lists
list-tail

Syntax

(list-tail list num)

Description

Creates a sublist obtained of those elements of a given list remaining after omitting the
first number of elements. If you specify a number greater than the number of elements
in the list, an exception will be raised.

Parameters

Return Value

list
List values created by deleting the initial elements.

Examples

(list-tail ’(a b c d) 2) => (c d)

(list-tail ’(a b c d) 4) => ()

(list-tail ’(a b c d) 5) => {MONKEXCEPT:0102}

Name Type Description

list list The list to test.

num number The number of elements to ignore when determining the
sublist.
Monk Developer’s Reference 213 SeeBeyond Proprietary and Confidential

Chapter 8
Pairs and Lists
member

Syntax

(member obj list)

Description

Creates a sublist representing the cdr of the given list whose car is the specified object.
If the object does not occur in the list, then member returns #f. member uses the
function equal? to perform the test between the object and the list.

Parameters

Return Value

sublist
Those elements of the list whose car satisfies equal? to the object.

Boolean
If the object was not found, #f is returned.

Examples

(member ’a ’(a b c)) => (a b c)

(member ’b ’(a b c)) => (b c)

(member ’a ’(b c d)) => #f

(member (list ’a) ’(b (a) c)) => ((a) c)

Name Type Description

obj expression/
object

The object to search for.

list list The list to search for the object.
Monk Developer’s Reference 214 SeeBeyond Proprietary and Confidential

Chapter 8
Pairs and Lists
memq

Syntax

(memq obj list)

Description

Creates a sublist representing the cdr of the given list whose car is the specified object.
If the object does not occur in the list, then memq returns #f. memq uses the function
eq? to perform the test between the object and the list.

Parameters

Return Value

sublist
Those elements of the list whose car satisfies equal? to the object.

boolean
If the object was not found, #f is returned.

Examples

(memq ’a ’(a b c)) => (a b c)

(memq ’b ’(a b c)) => (b c)

(memq ’a ’(b c d)) => #f

(memq (list ’a) ’(b (a) c)) => #f

(memq 101 ’(100 101 102)) => (101 102)

Name Type Description

obj expression/
object

The object to search for.

list list The list to search for the object.
Monk Developer’s Reference 215 SeeBeyond Proprietary and Confidential

Chapter 8
Pairs and Lists
memv

Syntax

(memv obj alist)

Description

Creates a sublist representing the cdr of the given list whose car is the specified object.
If the object does not occur in the list, then memv returns #f. memv uses the function
eqv? to perform the test between the object and the list.

Parameters

Return Value

sublist
Those elements of the list whose car satisfies equal? to the object.

Boolean
If the object was not found, #f is returned.

Examples

(memv ’a ’(a b c)) => (a b c)

(memv ’b ’(a b c)) => (b c)

(memv ’a ’(b c d)) => #f

(memv (list ’a) ’(b (a) c)) => #f

(memv 101 ’(100 101 102)) => (101 102)

Name Type Description

obj expression/
object

The object to search for.

list list The list to search for the object.
Monk Developer’s Reference 216 SeeBeyond Proprietary and Confidential

Chapter 8
Pairs and Lists
null?

Syntax

(null? obj)

Description

Determines if the argument is an empty list.

Parameters

Return Value

Boolean
Returns #t if the object is an empty list. Otherwise, it returns #f.

Examples

(null? ’(a b c)) => #f

(null? ’()) => #t

(null? ’(a . b) => #f

Name Type Description

obj any The object to test.
Monk Developer’s Reference 217 SeeBeyond Proprietary and Confidential

Chapter 8
Pairs and Lists
pair?

Syntax

(pair? obj)

Description

Determines if the argument is a pair.

Parameters

Return Value

Boolean
Returns #t if the object is a pair. Otherwise, it returns #f.

Examples

(pair? ’(a b c)) => #f

(pair? ’()) => #f

(pair? ’(a . b)) => #t

Name Type Description

obj expression The object to test.
Monk Developer’s Reference 218 SeeBeyond Proprietary and Confidential

Chapter 8
Pairs and Lists
reverse

Syntax

(reverse list)

Description

Creates a newly allocated list consisting of the elements of the list in reverse order.

Parameters

Return Value

list
Returns a newly allocated list consisting of the elements of the list in reverse order.

Examples

(reverse ’(a b c)) => (c b a)

(reverse ’(a (b c) d (e (f)))) => ((e (f)) d (b c) a)

Name Type Description

list list The list to reverse.
Monk Developer’s Reference 219 SeeBeyond Proprietary and Confidential

Chapter 8
Pairs and Lists
set-car!

Syntax

(set-car! pair obj)

Description

Stores the object into the car field of the given pair.

Parameters

Return Value

obj
Returns an object.

Examples

(define f (list 1 2 3 4 5))
(set-car! f 3)
(display f) => (3 2 3 4 5)

(define g (list "abc" "def"))
(set-car! g 3)
(display g) => (3 "def")

Name Type Description

pair pair The pair to manipulate.

obj expression The object to store in the car field of the pair.
Monk Developer’s Reference 220 SeeBeyond Proprietary and Confidential

Chapter 8
Pairs and Lists
set-cdr!

Syntax

(set-cdr! pair obj)

Description

Stores the object into the cdr field of the given pair.

Parameters

Return Value

obj
Returns an object.

Examples

(define f (list 1 2 3 4 5))
(set-cdr! f 8)
(display f) => (1 . 8)

A list is a pair where the cdr is another list, or the empty list. In this example, the cdr is
the list (2 3 4 5) which gets replaced by (8).

(define g (list "abc" "def"))
(set-cdr! g 3)
(display g) => (abc . 3)

Name Type Description

pair pair The pair to manipulate.

obj expression The object to store in the cdr field of the pair.
Monk Developer’s Reference 221 SeeBeyond Proprietary and Confidential

Chapter 9

Vector Expressions

A vector is defined as a series of elements that can be indexed by integers. A vector is
indicated by enclosing the elements in #(). For example, the representation of a vector of
three elements a, b, and c is #(a b c). Vectors and Lists are not the same and should not
be confused.

Vectors cannot be modified if they are specified as constants. Such vectors are called
immutable. To create a mutable vector use the list->vector or make-vector function.

Vectors are passed by reference and are accessed differently than other Monk variable
types. This chapter describes the functions that are used to work with vectors.

The Monk vector functions available are listed below:

list->vector on page 223

make-vector on page 224

vector on page 225

vector? on page 226

vector->list on page 227

vector-fill! on page 228

vector-length on page 229

vector-ref on page 230

vector-set! on page 231

vector->string on page 232
Monk Developer’s Reference 222 SeeBeyond Proprietary and Confidential

Chapter 9
Vector Expressions
list->vector

Syntax

(list->vector list)

Description

Creates a vector from a given list of elements.

Parameters

Return Value

vector
The vector created from the given list of elements.

Example

(list->vector ’(dididit dah)) => #(dididit dah)

Name Type Description

list list The list of elements from which to create the vector.
Monk Developer’s Reference 223 SeeBeyond Proprietary and Confidential

Chapter 9
Vector Expressions
make-vector

Syntax

(make-vector num [fill])

Description

Creates a vector having the specified number of elements. If the fill argument is given,
each element of the created vector will be initialized to that value.

Parameters

Return Value

vector
A vector is created having the specified number of elements and initialized, if
specified, to the given value.

Examples

(make-vector 2) => #({UNSPECIFIED} {UNSPECIFIED})

(make-vector 4 4.0) => #(4.0 4.0 4.0 4.0)

Name Type Description

num integer The number of elements to be created in the vector.

fill any Optional. If specified, each element of the created vector will
be initialized to this value.
Monk Developer’s Reference 224 SeeBeyond Proprietary and Confidential

Chapter 9
Vector Expressions
vector

Syntax

(vector obj)...)

Description

Creates a vector from one or more given objects.

Parameters

Return Value

vector
A vector is created from the given objects.

Examples

(vector ’a ’b ’c) => #(a b c)

(vector ’a (+ 3 4) ’c) => #(a 7 c)

Name Type Description

obj any One or more objects of any data type used to create a vector.
Monk Developer’s Reference 225 SeeBeyond Proprietary and Confidential

Chapter 9
Vector Expressions
vector?

Syntax

(vector? obj)

Description

Tests if the given object is a vector.

Parameters

Return Value

Boolean
Returns #t if the object is a vector. Otherwise, it returns #f.

Examples

(vector? #(a b c)) => #t

(vector? ’(a b c)) => #f

Name Type Description

obj any The object to test.
Monk Developer’s Reference 226 SeeBeyond Proprietary and Confidential

Chapter 9
Vector Expressions
vector->list

Syntax

(vector->list vector)

Description

Creates a list from a given vector.

Parameters

Return Value

list
A list is created from the given vector.

Example

(vector->list #(dididit dah)) => (dididit dah)

Name Type Description

vector vector The vector of elements from which to create the list.
Monk Developer’s Reference 227 SeeBeyond Proprietary and Confidential

Chapter 9
Vector Expressions
vector-fill!

Syntax

(vector-fill! vector fill)

Description

Stores the fill value in every element of the specified vector. The specified item must be
a vector.

Parameters

Return Value

vector
A vector with each element filled with the specified value.

Example

(vector-fill! #(a b c) 4.0) => #(4.0 4.0 4.0)

Name Type Description

vector vector The vector whose elements need to be filled.

fill any The value with which to fill the elements of the specified
vector.
Monk Developer’s Reference 228 SeeBeyond Proprietary and Confidential

Chapter 9
Vector Expressions
vector-length

Syntax

(vector-length vector)

Description

Returns the length of the specified vector.

Parameters

Return Value

integer
The number of elements in the specified vector.

Example

(vector-length #(a b c d e)) => 5

Name Type Description

vector vector The vector to test.
Monk Developer’s Reference 229 SeeBeyond Proprietary and Confidential

Chapter 9
Vector Expressions
vector-ref

Syntax

(vector-ref vector num)

Description

Returns the element of the specified vector whose index position corresponds to the
specified number. The offset begins with 0.

Parameters

Return Value

element
The vector element found at the specified index position.

Examples

(vector-ref #(1 1 2 3 5 8 13 21) 6) => 13

(vector-ref #(1 1 2 3 5 8 13) 8) => {MONK_EXCEPTION}

Name Type Description

vector vector The vector to manipulate.

num integer The index position of the vector element to return.
Monk Developer’s Reference 230 SeeBeyond Proprietary and Confidential

Chapter 9
Vector Expressions
vector-set!

Syntax

(vector-set vector num obj)

Description

Stores the object at the index position in the specified vector. The offset begins with 0.

Parameters

Return Value

Unspecified.

Examples

(vector-set! #(a b c d) 3 5) => #(a b c 5)

(vector-set! ’(a b c d) 3 5) => {MONK_EXCEPTION}

Name Type Description

vector vector The vector to manipulate.

num integer The index position where to store the object.

obj any The object to store at the index position in the vector.
Monk Developer’s Reference 231 SeeBeyond Proprietary and Confidential

Chapter 9
Vector Expressions
vector->string

Syntax

(vector->string vector)

Description

Converts the specified vector to a string.

Parameters

Return Value

string
Returns a string.

Example

(vector->string ‘#(a b c)) => "abc"

Name Type Description

vector vector The vector to convert.
Monk Developer’s Reference 232 SeeBeyond Proprietary and Confidential

Chapter 10

Equivalence Testing

A predicate is a procedure that always returns a boolean value (#t or #f). An equivalence
predicate is a computational analogue of a mathematical equivalence relation.

In Monk, equivalence relationships exist at different levels.

Two Monk objects may be equivalent because they are the same object or should be
regarded as the same object. The function eqv? on page 237 tests for this kind of
equivalence. Because variables are bound to locations in memory, testing for
equivalence in the eqv? sense may be a simple matter of comparing the address of two
memory locations. No effort to compare the contents of memory locations need be made
if the addresses already match.

Alternatively, two objects may be considered equivalent because their contents are the
same. The function equal? on page 236 tests for this kind of equivalence. It may take
more time to compare for equivalence in the eqv? sense since such comparison must
examine the contents of all memory locations associated with the objects. Objects which
are not equivalent in the eqv? sense, may be equivalent in the equal? sense.

Finally, two objects may be considered equivalent because they print the same. The
function eq? on page 234 tests for this kind of equivalence.
Monk Developer’s Reference 233 SeeBeyond Proprietary and Confidential

Chapter 10
Equivalence Testing
eq?

Syntax

(eq? obj1 obj2)

Description

Determines if obj1 and obj2 should normally be regarded as the same object, except for
its behavior on numbers. (Compare eqv?)

eq? and eqv? are guaranteed to have the same behavior on symbols, booleans, the
empty list, pairs, procedures, non-empty strings, and vectors. eq?’s behavior on
numbers and characters will always return either true or false, and will return true only
when eqv? would also return true. eq? may also behave differently from eqv? on empty
vectors and empty strings.

Parameters

Return Value

Boolean
Returns #f if obj2 is not equivalent of obj1. Otherwise, returns #t .

Examples

(eq? ’a ’a) => #t

(eq? ’(a) ’(a)) => #f

(eq? (list ’a) (list ’a)) => #f

(eq? "a" "a") => #f

(eq? "" "") => #f

(eq? ’() ’()) => #t

(eq? 2 2) => #t

(eq? #\A #\A) => #t

(eq? car car) => #t

(let ((n (+ 2 3))) (eq? n n)) => #t

(let ((x ’(a))) (eq? x x)) => #t

(let ((x ’#())) (eq? x x)) => #t

(let ((p (lambda (x) x))) (eq? p p)) => #t

Notes

The implementation of eq? is usually much more efficient than eqv?, for example, as a
simple pointer comparison instead of as some more complicated operation. It may not

Name Type Description

obj1 expression The object to test against.

obj2 expression The object to test for equivalence.
Monk Developer’s Reference 234 SeeBeyond Proprietary and Confidential

Chapter 10
Equivalence Testing
be possible to compute eqv? of two numbers in constant time, whereas eq?
implemented as pointer comparison will always finish in constant time. eq? may be
used like eqv? in applications using procedures to implement objects with state since it
obeys the same constraints as eqv?.
Monk Developer’s Reference 235 SeeBeyond Proprietary and Confidential

Chapter 10
Equivalence Testing
equal?

Syntax

(equal? obj1 obj2)

Description

Determines if the obj1 and obj2 are the same type and have the same contents. equal?
performs the least discriminating checks on the two objects. To be considered equal?,
all the objects must do is print the same.

Parameters

Return Value

Boolean
Returns #f if obj2 is not equal to or same type as obj1. Otherwise, returns #t .

Examples

(equal? ’a ’a) => #t

(equal? ’(a) ’(a)) => #t

(equal? ’(a (b) c) ’(a (b) c)) => #t

(equal? (make-vector 5 ’a) (make-vector 5 ’a)) => #t

(equal? (lambda (x) x) (lambda (y) y)) => #f

(equal? (list ’a) (list ’a)) => #t

(equal? "a" "c") => #f

(equal? "" "") => #t

(equal? ’() ’()) => #t

(equal? 2 2) => #t

(equal? #1A #1A) => #t

(equal? car car) => #f

(let ((n (+ 2 3))) (equal? n n)) => #t

(let ((x ’(a))) (equal? x x)) => #t

(let ((p (lambda (x) x))) (equal? p p)) => #f

Name Type Description

obj1 expression The object to test against.

obj2 expression The object to test for equivalence.
Monk Developer’s Reference 236 SeeBeyond Proprietary and Confidential

Chapter 10
Equivalence Testing
eqv?

Syntax

(eqv? obj1 obj2)

Description

Determines if obj1 and obj2 should normally be regarded as the same object. (Compare
to eq?) eqv? returns #t if:

! obj1 and obj2 are both #t or both #f.

! obj1 and obj2 are both symbols and

(string=? (symbol->string obj1)
(symbol->string obj2) => #t

! obj1 and obj2 are both characters, and are the same character according to the char=?
procedure (see char=? on page 78).

! both obj1 and obj2 are the empty list.

! obj1 and obj2 are pairs, vectors, or strings that denote the same location in the store.

! obj1 and obj2 are procedures whose location tags are equal.

The eqv? expression returns #f if:

! obj1 and obj2 are of different types.

! one of obj1 and obj2 is #t but the other is #f.

! obj1 and obj2 are symbols but:

(string=? (symbol->string obj1)
(symbol->string obj2)) => #f

! obj1 and obj2 are numbers for which the char=? procedure (see char=? on page 78)
returns #f.

! one of obj1 and obj2 is an empty list but the other is not.

! obj1 and obj2 are pairs, vectors, or strings that denote distinct locations.

! obj1 and obj2 are procedures that would behave differently (return different values
or have different side effects) for some arguments.

Parameters

Return Value

Boolean
Returns a #f if obj2 is not equivalent of obj1. Otherwise, returns #t .

Name Type Description

obj1 any The object to test against.

obj2 any The object to test for equivalence.
Monk Developer’s Reference 237 SeeBeyond Proprietary and Confidential

Chapter 10
Equivalence Testing
Examples

(eqv? ’a ’a) => #t

(eqv? ’a ’b) => #f

(eqv? 2 2) => #t

(eqv? ’() ’()) => #t

(eqv? 10000000 10000000) => #t

(eqv? (cons 1 2) (cons 1 2)) => #f

(eqv? (lambda () 1) (lambda () 2)) => #f

(eqv? #f ’nil) => #f

(let ((p (lambda (x) x))) (eqv? p p)) => #t

Notes

The following examples illustrate cases in which the rules specified in the description
do not fully specify the behavior of eqv?. All that can be said about such cases is that
the value returned by eqv? must be a Boolean.

(eqv? "" "") => #f

(eqv? ’#() ’#()) => #f

(eqv? (lambda (x) x) (lambda (x) x)) => #f

(eqv? (lambda (x) x) (lambda (y) y)) => #f

(eqv? ’(a) ’(a)) => #f

(eqv? "a" "a") => #f

(eqv? (b) (cdr ’(a b))) => #f

(let ((x ’(a))) (eqv? (x x))) => #t

(eqv? (list ’a) (list ’a)) => #f

(eqv? #\A #\A) => #t

(eqv? car car) => #t

(let ((n (+ 2 3))) (eqv? n n)) => #t

(let ((x ’(a))) (eqv? x x)) => #t
Monk Developer’s Reference 238 SeeBeyond Proprietary and Confidential

Chapter 11

Conversion Procedures

The numerical input and output functions include:

number->string on page 240

string->number on page 241

keyword? on page 242

string->symbol on page 243

symbol->string on page 244

char->integer on page 245

integer->char on page 246
Monk Developer’s Reference 239 SeeBeyond Proprietary and Confidential

Chapter 11
Conversion Procedures
number->string

Syntax

(number->string number [radix])

Description

Translates a number into the string representation by the radix.

Radix must be one of 2, 8, 10, or 16. If you specify no radix, base 10 is assumed. If number
is real, no translation is done.

Parameters

Return Value

string
This function returns the string representation of the input number in radix.

Examples

(number->string 65) => 65

(number->string -40) => -40

(number->string 3.14) => 3.14

(number->string 10 8) => 12

(number->string 10. 8) => 10

Name Type Description

number number Any type of number or string that converts to a number.

radix number The base value of the number (2, 8, 10, 16).
Monk Developer’s Reference 240 SeeBeyond Proprietary and Confidential

Chapter 11
Conversion Procedures
string->number

Syntax

(string->number string)

Description

Translates a string into a number.

Parameters

Return Value

number or Boolean
This function returns a number. Otherwise, it returns #f.

Examples

(string->number "123") => 123

(string->number "1") => 1

(string->number "13.4") => 13.4

(string->number "abc") => #f

Name Type Description

string string Any string that consists of numeric characters.
Monk Developer’s Reference 241 SeeBeyond Proprietary and Confidential

Chapter 11
Conversion Procedures
keyword?

Syntax

(keyword? string)

Description

Determines whether the specified string is a keyword.

Parameters

Return Value

Boolean
Returns #t if the specified string is a keyword; otherwise, returns #f.

Example

(keyword? "not-a-keyword") => #f

Name Type Description

string string The string to verify.
Monk Developer’s Reference 242 SeeBeyond Proprietary and Confidential

Chapter 11
Conversion Procedures
string->symbol

Syntax

(string->symbol string)

Description

Creates a symbol from the specified string.

Parameters

Return Value

symbol
A symbol created from the specified string.

Examples

(string->symbol "mISSISSIppi") => mISSISSIppi

(symbol?(string->symbol "mISSISSIppi")) => #t

Name Type Description

string string The string to make into a symbol.
Monk Developer’s Reference 243 SeeBeyond Proprietary and Confidential

Chapter 11
Conversion Procedures
symbol->string

Syntax

(symbol->string symbol)

Description

Creates a string from the specified symbol.

Parameters

Return Value

string
A string created from the specified symbol.

Example

(symbol->string ’flying-fish) => "flying-fish"

Name Type Description

symbol any The symbol to make into a string.
Monk Developer’s Reference 244 SeeBeyond Proprietary and Confidential

Chapter 11
Conversion Procedures
char->integer

Syntax

(char->integer char)

Description

Returns the ASCII integer representation of the specified character.

Parameters

Return Value

integer
The integer representation of the specified character.

Examples

(char->integer #\b) => 98

(char->integer #\#) => 35

(char->integer #\\) => 92

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

char character The character for translation.
Monk Developer’s Reference 245 SeeBeyond Proprietary and Confidential

Chapter 11
Conversion Procedures
integer->char

Syntax

(integer->char num)

Description

This function returns the character for the specified number.

Parameters

Return Value

character
The character represented by the specified number.

Examples

(integer->char 100) => \#d

(integer->char 50) => \#2

(integer->char 98) => \#b

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

num integer The number representation of a character.
Monk Developer’s Reference 246 SeeBeyond Proprietary and Confidential

Chapter 12

File I/O Expressions

Monk supports the ability to open files, read data from files and write data to files.

A Monk structured data type called a port is used to track the status of the file it is
associated with. A port is the data type returned by the file open functions. For example
to prepare a file for reading you would execute code like this:

(define myfileptr (open-input-file "c:\data\employee.dat"))

Then the variable myfileptr which is a port would later be used in later function calls to
read from the employee.dat file.

The File I/O Expressions are:

clear-port-callback on page 248 open-output-string on page 263

close-port on page 249 open-random-access-file on page 264

current-debug-port on page 250 output-port? on page 265

current-error-port on page 251 output-string-port? on page 266

current-input-port on page 252 read on page 276

current-output-port on page 253 read-char on page 277

current-warning-port on page 254 read-line on page 278

display on page 279 regex-string-port on page 267

eof-object? on page 275 rewind on page 268

ftell on page 255 seek-cur on page 269

get-port-callback on page 256 seek-set on page 270

input-port? on page 257 seek-to-end on page 271

input-string-port? on page 258 set-file-encoding-method on page 272

newline on page 280 set-port-callback on page 273

open-append-file on page 259 string-port->string on page 274

open-input-file on page 260 write on page 281

open-input-string on page 261 write-char on page 282

open-output-file on page 262 write-exp on page 283
Monk Developer’s Reference 247 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
clear-port-callback

Syntax

(clear-port-callback port)

Description

Clears the current callback procedure from the specified port.

Parameters

Return Value

Unspecified.

Example

(clear-port-callback port1)

Name Type Description

port port Handle to the open file.
Monk Developer’s Reference 248 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
close-port

Syntax

(close-port port)

Description

Closes the specified port, if open.

Parameters

Return Value

Unspecified.

Example

(close-port fp) => {MONK_UNSPECIFIED}

Name Type Description

port port Handle to open port.
Monk Developer’s Reference 249 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
current-debug-port

Syntax

(current-debug-port)

Description

Routes the output resulting from any debug flags set to the specified port defined in
monkext.monk.

Parameters

None.

Return Value

The port where the debug output is sent.

Example

(current-debug-port) => #{Debug-port}
Monk Developer’s Reference 250 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
current-error-port

Syntax

(current-error-port)

Description

Returns the current error port.

Parameters

None.

Return Value

This function returns the current error port.

Example

(current-error-port) => #{output-port}
Monk Developer’s Reference 251 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
current-input-port

Syntax

(current-input-port)

Description

Returns the current standard input port.

Parameters

None.

Return Value

This function returns the standard input port.

Example

(current-input-port) => #{Input-port}
Monk Developer’s Reference 252 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
current-output-port

Syntax

(current-ouput-port)

Description

Returns the current standard output port.

Parameters

None.

Return Value

This function returns the standard output port.

Example

(current-output-port) => #{output-port}
Monk Developer’s Reference 253 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
current-warning-port

Syntax

(current-warning-port)

Description

Returns the current warning port.

Parameters

None.

Return Value

The port.

Example

(current-warning-port) => #{output-port}
Monk Developer’s Reference 254 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
ftell

Syntax

(ftell port)

Description

Obtains the current read/write position of the port.

Parameters

Return Value

integer
The ftell function returns a positive integer (including 0) to indicate the current
position of the read/write position within an open port.

If the file is not open, it will return an error.

Examples

(define fp (open-input-file "/home/user1/temp-text"))
(ftell fp) => 0

(read fp 80)
(ftell fp) => 80

Name Type Description

port port Handle to the open file.
Monk Developer’s Reference 255 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
get-port-callback

Syntax

(get-port-callback port)

Description

Retrieves the current callback procedure from the specified port.

Parameters

Return Value

This procedure returns the callback procedure from the specified port.

Example

(get-port-callback port1)

Name Type Description

port port Handle to the open file.
Monk Developer’s Reference 256 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
input-port?

Syntax

(input-port? port)

Description

Tests whether the specified port is an input port.

Parameters

Return Value

Boolean
Returns #f if the port is not an input file port. Otherwise, it evaluates to #t.

Example

(define fp "")
(input-port? fp) => #f

(define fp (open-input-file "home/user1/test.txt"))
(input-port? fp) => #t

Name Type Description

port port Handle to the open file.
Monk Developer’s Reference 257 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
input-string-port?

Syntax

(input-string-port? port)

Description

Tests whether the specified port is an input string port.

Parameters

Return Value

Boolean

Returns #f if the port is not an input string port. Otherwise, it evaluates to #t.

Examples

(define fp (open-input-file "/home/user1/test.txt"))
(input-string-port? fp) => #f

(define buffer "the quick brown fox jumps over the lazy dog")
(define fp2 (open-input-string buffer))
(input-string-port? fp2) => #f

Name Type Description

port port Handle to the input string.
Monk Developer’s Reference 258 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
open-append-file

Syntax

(open-append-file filename)

Description

Opens a file in append mode.

If the file does not exist, it will be created, if possible.

Parameters

Return Value

This function returns a port to the open file.

Example

(open-append-file "/home/user1/test.txt") => #{Append-port}

Name Type Description

filename string Full path to the file.
Monk Developer’s Reference 259 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
open-input-file

Syntax

(open-input-file filename)

Description

Opens a file in input mode.

Parameters

Return Value

This function returns a port to the input file. If the file does not exist, it will return an
error.

Example

(open-input-file "/home/user1/test.txt") => #{Input-port}

Name Type Description

filename string Full path to the file.
Monk Developer’s Reference 260 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
open-input-string

Syntax

(open-input-string string)

Description

Opens a port on the specified string in input mode.

Parameters

Return Value

This function returns the port.

Example

(define buffer "The quick brown fox jumps over the lazy dog")
(open-input-string buffer) => #{InputString-port}

Name Type Description

string string Full path to the string to input.
Monk Developer’s Reference 261 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
open-output-file

Syntax

(open-output-file filename)

Description

Opens a port in output mode.

Since this function creates an output file, the directory where the file exists must be
accessible and usable.

Parameters

Return Value

This function returns the port to the output file.

Example

(open-output-file "output.dat") => #{Output-port}

Name Type Description

filename string Full path to the file.
Monk Developer’s Reference 262 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
open-output-string

Syntax

(open-output-string)

Description

Opens a port for output.

Parameters

None.

Return Value

This function returns the port of the output string.

Example

(open-output-string) => #{OutputString-port}
Monk Developer’s Reference 263 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
open-random-access-file

Syntax

(open-random-access-file filename)

Description

Opens a port in random access mode.

If the file does not exist, it will be created, if possible.

Parameters

Return Value

Returns a port to the open file.

Example

(open-random-access-file "/home/user1/temp.txt")
=> #{RandomAccess-port}

Name Type Description

filename string Full path to the file.
Monk Developer’s Reference 264 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
output-port?

Syntax

(output-port? port)

Description

Tests whether the specified port is an output port type.

Parameters

Return Value

Boolean
This function returns #f if the port is not an output port type. Otherwise, it
evaluates to #t.

Example

(define fp4 (open-output-file "output.dat"))
(output-port? fp4) => #t

Name Type Description

port port Handle to the port.
Monk Developer’s Reference 265 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
output-string-port?

Syntax

(output-string-port? port)

Description

Tests whether the specified port is an output string port.

Parameters

Return Value

Boolean
This function returns #f if the port is not an output string port; Otherwise, it
evaluates to #t.

Examples

(define fp3 (open-outstring))
(output-string-port? fp3) => #t

(define fp4 (open-output-file "output4.dat))
(output-string-port? fp4) => #f

Name Type Description

port port Handle to the output string.
Monk Developer’s Reference 266 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
regex-string-port

Syntax

(regex-string-port string port from-start)

Description

Determines the location or index of an string on a port.

Parameters

Return Value

Boolean
Returns #f if the string could not be found.

integer
Location of the string in the input file.

Example

(define buffer "The quick brown fox jumps over the lazy dog")
(define fp3 (open-input-string buffer))
(regex-string-port "quick" fp3) => 4

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

string string The string to test.

port port The port for input

from-start any Searches from start of string. If not specified, the search
begins at the current position.
Monk Developer’s Reference 267 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
rewind

Syntax

(rewind port)

Description

Moves an open port position to the beginning of the data.

Parameters

Return Value

Boolean
Returns #f if the rewind was not successful. Otherwise, it evaluates to #t.

Example

(rewind fp) => #t

Name Type Description

port port Handle to the open file.
Monk Developer’s Reference 268 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
seek-cur

Syntax

(seek-cur port offset)

Description

Moves an open port pointer to the specified offset within the file, relative to the
pointer’s current position.

When the offset integer is negative, the pointer moves backward, relative to the current
pointer position.

Parameters

Return Value

Boolean
Returns #f if the seek was not successful. Otherwise, it evaluates to #t.

Examples

(define fp (open-input-file "/home/user1/test.txt"))
(seek-set fp 72)
(display (ftel fp)) => 72

(read fp 18)
(seek-cur fp -45) => #t

(display (ftel fp)) => 45

Name Type Description

port port Handle to the open file.

offset integer Offset within the file.
Monk Developer’s Reference 269 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
seek-set

Syntax

(seek-set port offset)

Description

Moves an open port pointer to the specified offset, relative to the beginning.

Parameters

Return Value

Boolean
Returns #f if the seek was not successful; Otherwise, it evaluates to #t.

Examples

(define fp (open-input-file "/home/user1/test.txt"))
(seek-set fp 18) => #t

(display (ftell fp)) => 18

(seek-set fp 30) => #t

(display (ftel fp)) => 30

Name Type Description

port port Handle to the open file.

offset integer Offset within the file.
Monk Developer’s Reference 270 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
seek-to-end

Syntax

(seek-to-end port)

Description

Moves an open port pointer to the end of the file.

Parameters

Return Value

Boolean
Returns #f if the seek was not successful. Otherwise, it evaluates to #t.

Example

(define fp (open-input-file "/home/user1/test.txt")
(seek-to-end fp) => #t

Name Type Description

port port Handle to the open file.
Monk Developer’s Reference 271 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
set-file-encoding-method

Syntax

(set-file-encoding-method type)

Description

Sets the file encoding method.

Parameters

Return Value

Boolean
Returns #t (true) if a valid file encoding method is set; otherwise returns #f (false).

Examples

(set-file-encoding-method :ASCII) => #t

(set-file-encoding-method :DogByte) => #f

(set-file-encoding-method ASCII) => {MONK_EXCEPTION}

Name Type Description

type symbol One of the following file encoding types:

:1Byte
:2Byte
:3Byte
:4Byte
:ASCII
:EBCDIC
:UCS2
:EUC
:SJIS
Monk Developer’s Reference 272 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
set-port-callback

Syntax

(set-port-callback port procedure)

Description

Sets the callback procedure for the specified port.

Parameters

Return Value

Unspecified.

Example

(set-port-callback port1 procedure_name)

Name Type Description

port port Handle to the open file.

procedure procedure Callback procedure.
Monk Developer’s Reference 273 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
string-port->string

Syntax

(string-port->string port)

Description

Returns the string representing the contents of the specified port.

Parameters

Return Value

string
This function returns the string representing the contents of the specified port.

Example

(define buffer "The quick brown fox jumps over the lazy dog")

(define fp2 (open-input-string buffer))

(string-port->string fp2)
=> "The quick brown fox jumps over the lazy dog"

Name Type Description

port port Handle to the string port.
Monk Developer’s Reference 274 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
eof-object?

Syntax

(eof-object? obj)

Description

Tests the object as an EOF object.

Parameters

Return Value

Boolean
This function returns #t if the object is an EOF object. Otherwise, it returns #f.

Example

(define fp (open-input-file "/home/user1/test.txt")
(define eofchar (read-char fp))
(eof-object? eofchar) => #f

(seek-to-end fp)
(define eofchar (read-char fp))
(eof-object? eofchar) => #t

Name Type Description

obj any An object to be tested.
Monk Developer’s Reference 275 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
read

Syntax

(read port number)

Description

Reads a specified number of characters from an open port. If read is used to read
characters from either standard input, or the port returned by (current-input-port), then
read will not return until the specified number of characters has been read.

Parameters

Return Value

string
This function returns the number of characters read, or less if not available.

eof-object
The end-of-file object.

Example

(define fp (open-input-file "/home/user1/test.txt"))
(read fp 17) => "how now brown cow"

(read (current-input-port) 15) => "This is a test."

Since (current-input-port) may return a port which is not a file, it cannot be known that
and end-of-file type of error has occurred. Therefore, it simply waits until the 15th
character can be provided.

Name Type Description

port port Handle to the open input/random access/string port.

number integer Number of characters to read.
Monk Developer’s Reference 276 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
read-char

Syntax

(read-char [port])

Description

Reads data one character at a time from an input port.

The port is optional, and if not specified, standard input is assumed. If standard input is
specified, then this function will wait until a character has been entered on standard
input; it will not return an end-of-file type error.

Parameters

Return Value

character
This function returns the character read from the input port.

eof-object
The end-of-file object.

Example

(define fp (open-input-file "/home/user1/test.txt"))
(read-char fp) => T

Name Type Description

port port Handle to the open input/random access/string port.
Monk Developer’s Reference 277 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
read-line

Syntax

(read-line port number)

Description

Reads characters from a port up to either the number, or end-of-line, or end of data,
whichever is first.

Parameters

Return Value

string
This function returns the specified number of bytes from an open port. If a newline
is encountered before the specified number of bytes have been read, the function
returns the bytes read up to, but not including the newline character.

eof-object
The end-of-file object.

Example

(define fp (open-input-file "/home/user1/test.txt"))
(read-line fp 80) => "how now brown cow"

Name Type Description

port port Handle to the open file.

number integer Number of bytes to read.
Monk Developer’s Reference 278 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
display

Syntax

(display object [port])

Description

Displays the object to the specified output port.

The port is optional. If not present, the system defaults to the standard output port.

Parameters

Return Value

Unspecified.

Example

(define fp4 (open-output-file "output.dat"))
(display "writing to file" fp4) => {MONK_UNSPECIFIED}

The file output.dat now contains:

writing to file

Name Type Description

object any The object to display at the output port.

port port Handle to the open port (optional).
Monk Developer’s Reference 279 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
newline

Syntax

(newline [port])

Description

Writes a newline to the output port.

The port is optional. If not specified, the standard output port is assumed.

Parameters

Return Value

Unspecified.

Example

(define fp4 (open-output-file "output.dat"))
(newline fp4) => {MONK_UNSPECIFIED}

The file output.dat now contains a newline.

Name Type Description

port port Handle to the open port (optional).
Monk Developer’s Reference 280 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
write

Syntax

(write object size [port])

Description

write is similar to the display function except for the addition of the size parameter.
write sends a specified number of bytes of an object to a port. If no port is specified, the
bytes are sent to standard out—typically the display screen. If the number of bytes (N)
to write is less than the size of the object, then only the first (N) bytes of the object are
written and the rest are truncated.

Parameters

Return Value

Unspecified.

Examples

(define fp4 (open-output-file "output.dat"))
(write "Please have a nice day." 10 fp4) => {MONK_UNSPECIFIED}

The file output.dat now contains:

Please hav

Name Type Description

object any The monk object to be written.

size integer The number of bytes (N) to be written

port port Optional. The port to which the data is written. If no port is
specified, the data is sent to standard out.
Monk Developer’s Reference 281 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
write-char

Syntax

(write-char char port)

Description

Writes one character to the specified port. The port is optional. If not specified,
standard output is assumed.

Parameters

Return Value

Unspecified.

Example

(define fp4 (open-output-file "output.dat"))
(write-char #\A port2) => {MONK_UNSPECIFIED}

The file output.dat now contains:

A

Name Type Description

char character Character to write.

port port Handle to the open port (optional).
Monk Developer’s Reference 282 SeeBeyond Proprietary and Confidential

Chapter 12
File I/O Expressions
write-exp

Syntax

(write-exp obj port)

Description

Writes an expression to a port in a format that can be read back in by the monk engine.
For example, vector objects have the output format #() and strings have double quotes
around them. The port is optional. If not specified, standard output is assumed.

Parameters

Return Value

Unspecified.

Examples

(define fp1 (open-output-file "c:\output.dat"))
(define st0 "This is ")
(define st1 "exactly what we wanted.")
(write-exp (string-append st0 st1) fp1)

The file c:\output.dat now contains:

"This is exactly what we wanted."

Note: The quotes are included in the output because the Monk engine requires quotes
around string data.

(define fp1 (open-output-file "c:\output.dat"))
(define st0 #\A)
(write-exp st0 fp1)

The file c:\output.dat now contains:

#\A

Name Type Description

obj any Any valid object to write.

port port Handle to the open file (optional).
Monk Developer’s Reference 283 SeeBeyond Proprietary and Confidential

Chapter 13

System Interface Functions

System Interface functions may be used to find out information about files that exist on
the system, to load files into the Monk engine, or to execute system commands.

The System Interface functions include:

directory on page 285

file-delete on page 286

file-exists? on page 287

file-rename on page 288

getenv on page 289

load on page 290

load-directory on page 291

load-extension on page 292

putenv on page 293

system on page 294
Monk Developer’s Reference 284 SeeBeyond Proprietary and Confidential

Chapter 13
System Interface Functions
directory

Syntax

(directory pathstring)

Description

Returns the contents of the specified directory as a vector.

Parameters

Return Value

vector
A vector of strings. The strings (vector elements) are the file names of the files and
subdirectories found in the specified directory.

Boolean
Returns #f if the directory does not exist.

Examples

(directory "data") => #(. .. ETDs FileIn.txt)

(directory "c:\test") => #(. .. Doc1.txt Doc2.txt
NoMoreDocs.txt)

(directory "bogus") => #f

Name Type Description

pathstring string The full or partial path of the directory. Will use the load path value
if a partial path is given.
The Monk load path is the path Monk uses to locate files and data
(set internally within Monk). The default load paths are determined
by the SharedExe and SystemData settings in the .egate.store file.
See the e*Gate Integrator System Administration and Operations
Guide for more information about this file.
Monk Developer’s Reference 285 SeeBeyond Proprietary and Confidential

Chapter 13
System Interface Functions
file-delete

Syntax

(file-delete filename)

Description

Deletes a file.

Parameters

Return Value

Boolean
This function returns #f if the file specified does not exist or was not successfully
deleted; evaluates to #t if the file was deleted.

Example

(if (file-exists? "output.dat")
 (file-delete "output.dat")

(display "Cannot delete file: Does not exist)
)

Name Type Description

filename string Full path to the file.
Monk Developer’s Reference 286 SeeBeyond Proprietary and Confidential

Chapter 13
System Interface Functions
file-exists?

Syntax

(file-exists? filename)

Description

Checks for the existence of a file.

Parameters

Return Value

Boolean
Returns #f if the file specified does not exist; Otherwise, it evaluates to #t.

Examples

(file-exists? "output.dat") => #t

(file-exist? "nonfile.dat") => #f

Name Type Description

filename string Full path to the file.
Monk Developer’s Reference 287 SeeBeyond Proprietary and Confidential

Chapter 13
System Interface Functions
file-rename

Syntax

(file-rename filename1 filename2)

Description

Renames the original file to the new file name. You must include the full path.

Parameters

Return Value

Boolean
Returns #f if the file specified does not exist. Otherwise, it evaluates to #t.

Examples

(file-rename
"/home/user1/output.dat"
"/home/user1/mytestdata.dat") => #t

Name Type Description

filename1 string The original name of the file, including the full path.

filename2 string The new name of the file, including the full path.
Monk Developer’s Reference 288 SeeBeyond Proprietary and Confidential

Chapter 13
System Interface Functions
getenv

Syntax

(getenv variable)

Description

Retrieves the value of the specified environment variable.

Parameters

Return Value

string
Returns a string representing the value of the specified environment variable.

Boolean
Returns #f if the variable does not exist.

Example

(getenv "ORACLE_HOME") => /opt/oracle8/app/oracle/product/8.0.5

Name Type Description

variable string Name of the environment variable from which the value is
retrieved.
Monk Developer’s Reference 289 SeeBeyond Proprietary and Confidential

Chapter 13
System Interface Functions
load

Syntax

(load filename)

Description

Reads expressions and definitions from the file specified and evaluates them
sequentially.

Parameters

Return Value

Unspecified.

Note: If the Monk file to be loaded returns an exception, that exception will be returned by
the load function.

Example

(load "my_monk_library/my_file") => {MONK-UNSPECIFIED}

Name Type Description

filename string Path to the file to load. can be full or partial path by
using the load path setting.
The Monk load path is the path Monk uses to locate
files and data (set internally within Monk). The default
load paths are determined by the SharedExe and
SystemData settings in the .egate.store file. See the
e*Gate Integrator System Administration and
Operations Guide for more information about this file.
Monk Developer’s Reference 290 SeeBeyond Proprietary and Confidential

Chapter 13
System Interface Functions
load-directory

Syntax

(load-directory dirname)

Description

Loads all files with the .monk extension from the specified directory into the Monk
environment. Performs a load on each file, ignoring all but catastrophic exceptions.

Parameters

Return Value

Unspecified.

Limitations

load-directory does not operate recursively.

For example, if a file (“loadother.monk”) is found in the directory specified by dirname
which itself contains a load-directory command, the first load-directory command will
not run to completion, but stop after the file (“loadother.monk”) is finished loading.

Example

(load-directory "my_monk_library") => {MONK-UNSPECIFIED}

Name Type Description

dirname string Full path to a directory.
Monk Developer’s Reference 291 SeeBeyond Proprietary and Confidential

Chapter 13
System Interface Functions
load-extension

Syntax

(load-extension filepath)

Description

Loads a shared .dll into the Monk environment.

Important: If the specified .dll does not exist or if the filepath is too long, a severe exception
condition results.

Parameters

Return Value

Unspecified.

Example

(load-extension "d:/egate/client/bin/stc_dbodbc.dll")
=> {MONK_UNSPECIFIED}

(load-extension "stc_monkutils.dll")
=> {MONK_UNSPECIFIED}

Name Type Description

filepath string Load path to the shared dll. Can be a partial load path.

The filepath consists of the path plus the filename. The
path must be 256 or fewer characters in length and the
filename must be 64 or fewer characters in length, for a
maximum total of 320 characters.
Monk Developer’s Reference 292 SeeBeyond Proprietary and Confidential

Chapter 13
System Interface Functions
putenv

Syntax

(putenv variable_value)

Description

Assigns a value to an environment variable.

Parameters

Return Value

Boolean
Returns #f if the operation was not successful. Otherwise, it evaluates to #t.

Example

(putenv "PROGRAM_ENV=/home/program/value") => #t

Name Type Description

variable_value string Name and value of the environment variable.
Monk Developer’s Reference 293 SeeBeyond Proprietary and Confidential

Chapter 13
System Interface Functions
system

Syntax

(system command [#t | :func function})

Description

Runs an operating system command from Monk.

The #t option instructs the system command to provide the OS return code it receives
upon completion of command as its return value.

The :func function option calls the monk function specified with the OS return code as
the argument.

Important: This function must be used with extreme caution. Invoking an executable file that
takes a long time to run or has the potential to hang should be avoided.

Parameters

Return Value

Returns one of the following:

Boolean
If no options are used, system returns #t if it executes successfully; otherwise it
returns #f.

integer
If the #t option is used, system returns the OS return code.

any
If the :func function option is used, system returns the result of the Monk function
specified.

Name Type Description

command string The OS command to be executed.

function symbol A Monk function.
Monk Developer’s Reference 294 SeeBeyond Proprietary and Confidential

Chapter 13
System Interface Functions
Examples

The following examples use the Solaris 2.6 UNIX operating system.

(system "ls") => #t

(system "ls" #t) => 0

(system "list" #t) => 256

The following example uses the Windows NT operating system.

(define
myfunction
(lambda

(returncode)
(display (string-append "\nOperating System Returns: "

(number->string returncode)))))

(system "dir" :func myfunction)

=> Operating System Returns: 0
Monk Developer’s Reference 295 SeeBeyond Proprietary and Confidential

Chapter 14

Standard Procedures

The Standard Procedure functions include:

“Booleans” on page 296

“Symbols” on page 297

“Sequence Operators” on page 301

“Control Features” on page 303

“Evaluation” on page 306

“Literal Expressions” on page 307

“Procedure” on page 310

“Comment” on page 313

14.1 Booleans
Boolean expressions are those that evaluate to either true or false. In Monk, a Boolean
expression returns false #f or the expression is assumed to be true.

boolean? on page 297
Monk Developer’s Reference 296 SeeBeyond Proprietary and Confidential

Chapter 14 14.2
Standard Procedures Symbols
boolean?

Syntax

(boolean? obj)

Description

Determines if the object is a Boolean value.

Parameters

Return Value

Boolean
Value of #t if the argument is Boolean. Otherwise, returns false #f.

Examples

(boolean? 0) => #f

(boolean? #t) => #t

(boolean? #\B) => #f

(boolean? #f) => #t

14.2 Symbols
The available symbol functions are:

keyword? on page 298

symbol? on page 299

sys-procedures on page 300

sys-symbols on page 301

Name Type Description

obj expression The object to test for being a Boolean value.
Monk Developer’s Reference 297 SeeBeyond Proprietary and Confidential

Chapter 14 14.2
Standard Procedures Symbols
keyword?

Syntax

(keyword? string)

Description

Determines whether the specified string is a keyword.

Parameters

Return Value

Boolean
Returns #t if the specified string is a keyword; otherwise, returns #f.

Example

(keyword? "not-a-keyword") => #f

Name Type Description

string string The string to verify.
Monk Developer’s Reference 298 SeeBeyond Proprietary and Confidential

Chapter 14 14.2
Standard Procedures Symbols
symbol?

Syntax

(symbol? obj)

Description

Tests the specified object to determine if it is a symbol.

Parameters

Return Value

Boolean
Returns #t if the object is a symbol. Otherwise, it returns #f.

Examples

(symbol? ’foo) => #t

(symbol? "bar") => #f

Name Type Description

obj any The object to test.
Monk Developer’s Reference 299 SeeBeyond Proprietary and Confidential

Chapter 14 14.2
Standard Procedures Symbols
sys-procedures

Syntax

(sys-procedures)

Description

Creates a list of symbols that represent the procedures defined within the current scope.

Parameters

None.

Return Value

list
Returns a list of procedures.

Example

(sys-procedures)

=>

($event->string $event-clear $event-parse $make-event-map $resolve-
event-definition * + - / < <= = > >= abort abs acos
and append apply asin assoc assq assv atan begin
big-endian->integer boolean? ... more functions follow ...
Monk Developer’s Reference 300 SeeBeyond Proprietary and Confidential

Chapter 14 14.3
Standard Procedures Sequence Operators
sys-symbols

Syntax

(sys-symbols)

Description

Creates a list of all the known symbols in the Monk environment.

Parameters

None.

Return Value

list
Returns a list of symbols.

Example

(sys-symbols)

=>

($event->string $event-clear $event-parse $make-event-map
$resolve-event-definition * + - / :1Byte :1bEUC :1bSJIS :2Byte :2bEUC
:2bSJIS :3Byte ... more symbols follow ...

14.3 Sequence Operators
The Sequence Operator functions include:

nth on page 302

qsort on page 303
Monk Developer’s Reference 301 SeeBeyond Proprietary and Confidential

Chapter 14 14.3
Standard Procedures Sequence Operators
nth

Syntax

(nth index/integer sequence)

Description

Retrieves the nth element from the specified sequence.

Parameters

Return Value

This function returns the contents of the nth element of the sequence.

Examples

(nth 3 (list "a" "b" "c" "d" "e")) => d

(nth 0 ("hello" "goodbye" "red" "blue")) => hello

(nth 7 "abcdefghijklmnop") => h

Name Type Description

index/
integer

positive integer The number of the element in the list to retrieve.

list list, string, or
vector

The elements of the list, enclosed in parentheses and
separated by spaces.
Monk Developer’s Reference 302 SeeBeyond Proprietary and Confidential

Chapter 14 14.4
Standard Procedures Control Features
qsort

Syntax

(qsort list/vector procedure)

Description

Sorts the list or vector using the specified procedure.

Return Value

vector or list
Can have optionally a Boolean or tri-state integer result.

Examples

(qsort ’("b" "e" "a" "d" "c") string<=?) => (a b c d e)

(qsort ’#("zero" "bbbbb" "hello" "end") string>=?)
=> (zero hello end bbbbb)

14.4 Control Features
The following are the available control functions:

apply on page 304

map on page 305

procedure? on page 306

Name Type Description

list/vector list/vector The list or vector to run the procedure against.

procedure procedure The procedure to use for comparison.
Monk Developer’s Reference 303 SeeBeyond Proprietary and Confidential

Chapter 14 14.4
Standard Procedures Control Features
apply

Syntax

(apply proc list)

Description

Calls the given procedure using the elements of the list as the arguments of that
procedure.

Parameters

Return Value

result
The return from apply is the result of evaluating the procedure upon the list.

Examples

(apply + (list 3 4)) => 7

(define compose
(lambda (f g)

(lambda args
(f (apply g args))

)
)

)

((compose sqrt *) 12 75) => 30

Name Type Description

proc procedure The procedure to be applied.

list list The list of elements to use as arguments to the procedure.
Monk Developer’s Reference 304 SeeBeyond Proprietary and Confidential

Chapter 14 14.4
Standard Procedures Control Features
map

Syntax

(map proc list1 list2...)

Description

Calls the given procedure using the corresponding element of each list as an argument
of the procedure.

There must be as many lists as there are arguments to the procedure. If there is more
than one list, all lists must be the same length.

Parameters

Return Value

list
A list of results, in order. The dynamic order in which proc is applied to the elements
of the listN is unspecified.

Examples

(map cadr ’((a b) (d e) (g h)))
 => (b e h)

(map (lambda (n) (expt n n))
 ’(1 2 3 4 5))
 => (1.0 4.0 27.0 256.0 3125.0)

(map + ’(1 2 3) ’(4 5 6)
 => (5 7 9)

(let ((count 0))
(map (lambda () (set! count (+ count 1)) count)

’(a b)
)

)
=> (1 2)

Name Type Description

proc procedure The procedure to apply.

list list The list of elements to use as arguments to the procedure.
Monk Developer’s Reference 305 SeeBeyond Proprietary and Confidential

Chapter 14 14.5
Standard Procedures Evaluation
procedure?

Syntax

(procedure? obj)

Description

Tests if the given object is a procedure.

Parameters

Return Value

Boolean
Returns #t if the object is a procedure. Otherwise, it returns #f.

Examples

(procedure? car) => #t

(procedure? ’car) => #f

(procedure? (lambda (x) (* x x))) => #t

(procedure? ’(lambda (x) (* x x))) => #f

14.5 Evaluation
The Evaluation function evaluates the specified object in the current environment and
returns the result:

eval on page 307

Name Type Description

obj any The object to test if it is a procedure.
Monk Developer’s Reference 306 SeeBeyond Proprietary and Confidential

Chapter 14 14.6
Standard Procedures Literal Expressions
eval

Syntax

(eval obj)

Description

Evaluates the specified object in the current environment and returns the result.

Parameters

Return Value

The result returned depends on the given object. For example, a number returns a
number and a string returns a string.

Example

(eval (list ’cdr (car ’((quote (a . b)) c)))) => b

The argument object (list ’car ’ ((quote (a . b)) c))) is evaluated in the normal way of
evaluating a list to produce the argument (cdr (quote (a . b))); this in turn is evaluated
using the function cdr to produce the result.

14.6 Literal Expressions
The literal function available is:

quote on page 308

quasiquote on page 309

Strings (""), quoted lists ‘(. . .), and vectors #(. . .) are immutable.

Name Type Description

obj any The object to be evaluated based on the current
environment.
Monk Developer’s Reference 307 SeeBeyond Proprietary and Confidential

Chapter 14 14.6
Standard Procedures Literal Expressions
quote

Syntax

(quote datum)

or

’datum

Description

Evaluates to the object in the datum parameter. The datum can be any data type
recognized by Monk. The expressions (quote datum) and ‘datum are equivalent in all
respects. Numerical constants, string constants, character constants, and Boolean
constants always evaluate to themselves, and thus they do not have to be quoted.

Parameters

Return Value

The evaluated object.

Examples

The result is the symbol a:

(quote a) => a

The result is a non-mutable vector:

’#(a b c) => #(a b c)

Name Type Description

datum expression The object to be evaluated.
Monk Developer’s Reference 308 SeeBeyond Proprietary and Confidential

Chapter 14 14.6
Standard Procedures Literal Expressions
quasiquote

Syntax

(quasiquote qqtemplate)

or

‘qqtemplate

Description

Constructs a list or vector structure when most but not all of the desired structure is
known in advance.

If no commas appear within the qqtemplate, the result of the evaluated
(quasiquote qqtemplate) is equivalent to the result of evaluating (quote qqtemplate).

If a comma appears within the qqtemplate, however, the expression following the
comma is evaluated (“unquoted”) and its result is inserted into the structure instead of
the comma and the expression.

If a comma appears immediately before an at-sign (“@”), then the following expression
must evaluate to a list. The opening and closing parentheses of the list are stripped
away, and the elements of the list are inserted in place of the comma and at-sign
expression sequence. A comma at sign should only appear within a list or vector
qqtemplate.

Parameters

Return Value

A list or vector as the result of the evaluation of qqtemplate.

Examples

(quasiquote (list ,(+ 1 2) 4)) => (list 3 4)

‘(list ,(+ 1 2) 4) => (list 3 4)

(let ((name ’a)) ‘(list ,name)) => (list a)

‘(a ,(+ 1 2) ,@(map abs ’(4 -5 6)) b) => (a 3 4 5 6 b)

‘((foo ,(- 10 3)) ,@(cdr ’(c)) . ,(car ’(cons)))
=> ((foo 7) . cons)

‘#(10 5 ,(sqrt 4) ,@(map sqrt ’(16 9)) 8) => #(10 5 2 4 3 8)

Notes

Quasiquote forms can be nested. Substitutions are made only for unquoted
components appearing at the same nesting level as the outermost backquote. The
nesting level increases by one inside each successive quasiquotation, and decreases by
one inside each unquotation.

‘(a ‘(b ,(+ 1 2) ,(foo ,(+ 1 3) d) e) f)
=> ‘(a ‘(b ,(+ 1 2) ,(foo , 4 d) e) f)

Name Type Description

qqtemplate list or vector The structure to evaluate.
Monk Developer’s Reference 309 SeeBeyond Proprietary and Confidential

Chapter 14 14.7
Standard Procedures Procedure
The two notations (quasiquote qqtemplate) and `(qqtemplate) are identical in all respects.
Likewise, (unquote expression) is identical to ,(expression), and
(unquote-splicing expression) is identical to @(expression).

(quasiquote (list ,(+ 1 2) 4)) => (list 3 4)

(quasiquote (a ,(+ 1 2) ,@(map abs ’(4 -5 6)) b)) => (a 3 4 5 6 b)

Unpredictable behavior can result if any of the symbols quasiquote, unquote, or
unquote-splicing appear in positions within a (qqtemplate).

14.7 Procedure
The procedure expressions, lambda and lambdaq, evaluates to a procedure:

lambda on page 311

lambdaq on page 313
Monk Developer’s Reference 310 SeeBeyond Proprietary and Confidential

Chapter 14 14.7
Standard Procedures Procedure
lambda

Syntax

(lambda formals body)

The formals can have one of the following three forms:

(variable1 ...)
variable
(variable1 ... variableN . variableN+1)

Description

Creates a procedure or function. It accepts arguments (formals), accepts a list of
expressions (body), and returns a procedure.

If a lambda expression is used in conjunction with a define, then the procedure which
is may be executed as long as the definition remains valid. In this way, procedures and
functions may be defined globally and executed as often as needed.

(variable1 ...)
fixed number of arguments, when the procedure is called the arguments will be
stored in the binding of the corresponding variables.

variable
the procedure takes an unspecified number of arguments; when the procedure is
called, the sequence of actual arguments are converted into a newly allocated list,
and the list is stored in the binding of the variable.

(variable1 ... variableN . variableN+1)
If a space-delimited period precedes the last variable, then the procedure takes N or
more arguments, where N is the number of formal arguments before the period
(there must be at least one argument). The value stored in the binding of the last
variable (the variable after the period) will be a newly allocated list of any
arguments unresolved after all other actual arguments have been matched up
against the formal arguments.

Parameters

Return Value

This expression returns the procedure to which the lambda expression evaluates.

Examples

(define ; define expression
 ave_3_nums ; symbol of define
 (lambda ; lambda procedure
 (x y z) ; lambda formals
 (/ (+ x y z) 3) ; lambda body
) ; end of lambda
) ; end of define

Name Type Description

formals symbols The arguments associated with the specified procedure.

body expressions The list of expressions that define the behavior of the
procedure.
Monk Developer’s Reference 311 SeeBeyond Proprietary and Confidential

Chapter 14 14.7
Standard Procedures Procedure
Executing this define causes the symbol ave_3_nums to be associated with a lambda
expression, that is, a procedure. Once defined, ave_3_nums may be called like any
other procedure. Given the definition above, the following expressions would evaluate
as shown:

(ave_3_nums 2 5 8) => 5
(ave_3_nums 3 6 (/ 18 2)) => 6
Monk Developer’s Reference 312 SeeBeyond Proprietary and Confidential

Chapter 14 14.8
Standard Procedures Comment
lambdaq

Syntax

(lambdaq formals body)

The formals can have one of the following three forms:

(variable1 ...)
variable
(variable1 ... variableN . variableN+1)

Description

lambdaq is identical to lambda (see lambda on page 311) except that it does not
evaluate its arguments (formals) before executing the procedure.

Parameters

Return Value

This expression returns the procedure to which the lambdaq expression evaluates.

Examples

(define myfn
(lambdaq (x y)

(let
 ((a 10) (b 20) (c 30) (d 40))
 (+ (eval x) (eval y))

)
)

)
(myfn a b) => 30
(myfn a c) => 40
(myfn c d) => 70

14.8 Comment
The comment functions is:

comment on page 314

Name Type Description

formals symbols The arguments associated with the specified procedure.

body expressions The list of expressions that define the behavior of the
procedure.
Monk Developer’s Reference 313 SeeBeyond Proprietary and Confidential

Chapter 14 14.8
Standard Procedures Comment
comment

Syntax

(comment title multi-linecomment)

Description

Documents Monk code. Has no runtime value.

Parameters

Return Value

None.

Example

(comment "Online Monitors" "This section is optimized for the STC
Enterprise Montior. DO NOT CHANGE ANYTHING IN THIS SECTION!")

Name Type Description

title string A one-line description of the comment.

multi-linecomment string Complete description.
Monk Developer’s Reference 314 SeeBeyond Proprietary and Confidential

Chapter 15

Event Definitions

The Monk expressions listed below accept a structured event as a parameter. Each of
these expressions is described in the following subsections.

$event-clear on page 316 get on page 344

$event-parse on page 317 list-lookup on page 345

$event->string on page 318 node-has-data? on page 346

$make-event-map on page 319 not-verify on page 347

$resolve-event-definition on page 321 path? on page 348

change-pattern on page 322 path-defined-as-repeating? on page 349

copy on page 324 path-event on page 350

copy-strip on page 325 path-event-symbol on page 351

count-data-children on page 326 path-nodeclear on page 352

count-map-children on page 327 path-nodedepth on page 353

count-rep on page 328 path-nodename on page 354

data-map on page 329 path-nodeparentname on page 355

display-event-data on page 331 path-put on page 356

display-event-dump on page 333 path->string on page 357

display-event-map on page 337 path-valid? on page 358

duplicate on page 340 string->path on page 359

duplicate-strip on page 341 timestamp on page 360

file-check on page 342 uniqueid on page 362

file-lookup on page 343 verify on page 363
Monk Developer’s Reference 315 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
$event-clear

Syntax

($event-clear event)

Description

Clears the data from the specified structured event.

Parameters

Return Value

Unspecified.

Examples

($event-clear output) =>{MONK_UNSPECIFIED}

($event-clear input) =>{MONK_UNSPECIFIED}

Name Type Description

event structured event Structured event to be cleared.
Monk Developer’s Reference 316 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
$event-parse

Syntax

($event-parse struct-definition string)

or

($event-parse struct-definition input-string-port)

Description

Maps event data into a structured event.

Parameters

Return Value

Unspecified.

Examples

($event-parse input "data") => {MONKUNSPECIFIED}

(define port (open-input-string "test"))
($event-parse input port) => {MONKUNSPECIFIED}

Name Type Description

struct-definition structured definition The event type definition to map data into.

string string The data to map into your event.

input-string-port port Exact match on data only. Stops when no match
occurs. Can be called until there is no data in
input-string-port.
Monk Developer’s Reference 317 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
$event->string

Syntax

($event->string event)

Description

Converts the data contained in a structured event into a string.

This function is usually located at the end of a collaboration function to generate a
result (that is, the output event) to be returned by that collaboration function.

Use $event->string with a structured definition without data mapped to it for testing
the structure.

Parameters

Return Value

string
A string representing the data contained in the structured event or structured
definition.

Examples

In this example, the X_fix2dlm function creates an empty structured event output (using
the $make-event-map expression), writes data to it (using the copy-strip expressions),
then returns output as a string (using the $event->string expression).

;sample input "Simpson|Homer|Springfield|1980|10|31"
(load "fixedMsg.ssc")
(load "delimMsg.ssc")

(define X_fix2dlm
 (lambda (message-string)
 (let ((input
 ($make-event-map fixedMsg-delm fixedMsg-struct
 event-string))
 (output
 ($make-event-map delimMsg-delm
 delimMsg-struct)))
 (begin
 (copy-strip ~input%fixedMsg.LastName
 ~output%delimMsg.CID.Name.LastName "")
 (copy-strip ~input%fixedMsg.FirstName
 ~output%delimMsg.CID.Name.FirstName "")
 (copy-strip ~input%fixedMsg.Address
 ~output%delimMsg.CID.Address "")
 (copy-strip ~input%fixedMsg.BirthYear
 ~output%delimMsg.CID.Birthdate "")
 (copy-strip ~input%fixedMsg.BirthMonth
 ~output%delimMsg.CID.Birthdate "")
 (copy-strip ~input%fixedMsg.BirthDay
 ~output%delimMsg.CID.Birthdate "")
)
 ($event->string output) =>CID|Simpson^Homer|19801031)))

Name Type Description

event structured event/structured definition The variable name of the structured event
or structured definition.
Monk Developer’s Reference 318 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
$make-event-map

Syntax

($make-event-map delim-list node_list [buffer])

Description

Creates an structured definition when the buffer is not specified. If the buffer is specified,
a structured event is created.

Parameters

Return Value

A structured event or a structured definition.

Example for Identification Function

The $make-event-map expression is used in the variable bindings component of the
following let expression. The let expression creates the environment for the lambda
procedure. That environment is only accessible by elements of the lambda. An outline
of a typical function used to identify an event by type is shown below.

(define IDfunction
(let ((input ($make-event-map delim-delm delim-struct)))
 (lambda (message-string)
 ($event-parse input message-string)
 (let ((result
 (and
)))
 ($event-clear input)
 result
))))

When the identification function is called, the event is passed to the function and bound
to the variable message-string.

The variable name “input” is later used in path expressions to reference locations
within the event.

Example for Collaboration Function

An outline of a typical function used to collaborate an event follows.

(define Xlate-function
 (let ((input ($make-event-map delim-delm delim-struct))
 (output ($make-event-map delim-delm delim-struct))
)
 (lambda (message-string)

Name Type Description

delim-list list The list of delimiters that assist in parsing data into the
structured event. See Delimiter List on page 42 for
details.

node_list event definition Event definition description. See Node List on page 44
for details.

buffer string An optional data string that will be parsed into the
structured event.
Monk Developer’s Reference 319 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
 ($event-parse input message-string)
 ($event-clear output)
 (begin
)
 (let ((result ($event->string output)))
 ($event-clear input)
 ($event-clear output)
 result)

The variable name input is later used in path expressions to reference locations within
the event.

The structured output event (bound to the variable output) initially has no content.

(define str "CID|Doe^Jane|123 Anywhere|19990101")
($make-event-map delimMsg-delm

delimMsg-struct str) =>{MONK_ATOM_TYPE_EVENT}
Monk Developer’s Reference 320 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
$resolve-event-definition

Syntax

($resolve-event-definition node_list)

Description

Scans the node_list for templates, then replaces any template usage with the full event
definition.

Parameters

Return Value

event
A resolved event definition.

Examples

;:- Global Template Reference
(load "CID.ssc")
;:- End Global Template Reference

;:- EvtStructure Definition
(define RAS-struct ($resolve-event-definition (quote
 (RAS ON 1 1 und und und und
 (MSH ON 1 1 "MSH" "MSH" und und)
 (NTE ON 0 INF "NTE" "NTE" und und)
 (CIDGRP OS 0 1 und und und und
 (CID GTN 1 1 "CID.ssc" CID-struct und und)
 (NTE ON 0 INF "NTE" "NTE" und und)
 (AL1 ON 0 INF "AL1" "AL1" und und)
 (PV1 ON 0 1 "PV1" "PV1" und und)
)
)
)))
;:- End Event Definition

The global (external file "CID.ssc") template is used to resolve the delimited node CID
(GTN GLobal Template Node) and integrated with the RAS-struct node list.

Name Type Description

node_list list The quoted node list. See Node List on page 44.
Monk Developer’s Reference 321 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
change-pattern

Syntax

(change-pattern source-path destination change-list format)

Description

Copies the source-path path into the dest path while making substitutions according to
change-list.

You can specify a series of input-pattern-to-output-string pairs (change-list), so that
several conversions can take place in sequence. Optionally, you can use a regular
expression to represent a pattern to match in the input.

Parameters

Return Value

Boolean
If any conversion took place, #t. If no conversion occurred, #f is returned.

Examples

;use change-pattern to expand an abbreviation
;sample input is LPC
;sample output is Laboratory Personnel Center
(display (change-pattern ~input%ORG.MSH.6 ~output%ORG.MSH.6'(("LPC"
"Laboratory Personnel Center"))""))

;exchange two characters, % for /
;at-sign (@) is a transitional, place-holding
;character, not found in source data
;sample input is %info%ab
;sample output is /info/ab
(change-pattern ~input%fixed.ADT ~output%fixed.RX '(("%" "@")
("/" "%") ("@" "/"))"")

;remove leading zeros and trailing spaces
;sample inout is "0000123"
;sample ouput is "123"
(change-pattern ~input%strung.out ~output%trim.trunc '(("\^0\+" "")
("\+\$" ""))"%s")

Name Type Description

source-path string or path The string or path to data in a structured
event.

destination_path path The path to the data in the output event.

change-list list A list of the form:
'((“input-pattern1” “output-string1”)
(“input-pattern2” “output-string2”) …
(“input-patternN” “output-stringN”))

format string An instruction to format the data for
output. See format on page 106 for the
syntax. Quotes are required, but can be
empty (“”).
Monk Developer’s Reference 322 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
;remove punctuation—parens, dash, x, X—from a phone
;number leaving only digits
;sample input is "(123)456-7890x1234"
;sample output is "12345678901234"
(change-pattern ~input%delim.0.3 ~output%fixed.1 '(("\[-()xX\]"
""))"")

;reformat name, delimited to fixed
;remove digits; exchange space for ^
;sample input is 5678^Manson^Louie^A
;sample output is Manson Louie A
(change-pattern ~input%ORD.0.3 ~output%DRO.3.1 '(("\[0-9\]" "")
("^" ""))"")

Notes

If the data in the source matches input-patternN, then output-stringN is applied. If there
are additional input-pattern/output-string pairs in the list, the output from the first is
used as the input to the next, until all pairs have been processed in turn. The final result
is written to the destination_path.

Because conversions are executed in the order listed, be sure to check input patterns
carefully. If one input pattern matches part of another input pattern, place the longer
pattern first. Otherwise, the longer pattern will never be matched (since the matching
subpattern will already have been matched and replaced).

If the source-path data and the input-pattern don’t match, no conversion takes place and
an empty field or field element is written to a delimited output event. No data is
written to a fixed event.

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.
Monk Developer’s Reference 323 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
copy

Syntax

(copy source-path dest format)

Description

Copies data from the source-path to a dest path according to format.

Parameters

Return Value

Unspecified.

Examples

;sample input is ’abc ’
;sample output is ’abc ’
(copy ~input%EVT.SE.0 ~output%ORG.CID.3 "") =>{MONK_UNSPECIFIED}
(copy ~input%EVT.NTE[0].3[1] ~output%RAS.OBXgrp[0].NTE[0].3[0] "%s"
)

Notes

The copy expression copies data as a string. It does not exchange delimiters within the
string copied. If your destination delimiters differ the delimiters in the source-path
data, use the duplicate expression.

This expression appends data if you do multiple copies to the same field without byte
offset specified in the destination_path.

Name Type Description

source-path string/path The string or path to data in a structured
event.

destination_path path The path into a structured event.

format string A control instruction to direct the format of
the data for placement. See format on
page 106 for the syntax. Quotes are required
but can be empty (““).
Monk Developer’s Reference 324 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
copy-strip

Syntax

(copy-strip source-path dest format)

Description

Copies data from the source-path to the dest path while removing ASCII-based trailing
white space.

Parameters

Return Value

Unspecified.

Examples

;sample input is ’abc ’
;sample output is ’abc ’
(copy-strip SE.0 ~output%ORG.CID.3 "") =>{MONK_UNSPECIFIED}
(copy-strip ~input%EVT.NTE[0].3[1 ~output%RAS.OBXgrp[0].NTE[0].3[0]
"%s")

Notes

The copy-strip expression copies data as a string. It does not exchange delimiters
within the string copied. If your destination delimiters differ the delimiters in the
source data, use the duplicate expression. This expression appends data if you do
multiple copies to the same field without byte offset specified in the destination_path.

Name Type Description

source-path string/path The string or path to data in a structured
event.

destination_path path The path to the structured event.

format string A control instruction to direct the format of
the data for placement. See format on
page 106 for the syntax. Quotes are required
but can be empty (““).
Monk Developer’s Reference 325 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
count-data-children

Syntax

(count-data-children path)

Description

Counts the number of child nodes that exist in the data tree of the structured event
location specified by path.

Parameters

Return Value

integer
The count-data-children expression returns the total number of instances (0 to n) of
child nodes that are found in the data. If the child nodes are nonexistent, 0 is
returned.

Examples

;Returns the actual number of SEG’s children
(count-data-children ~input%EVT.SEG)

;SEG1 + SEG2 + SEG3 has three optional children nodes
(display ~input%EVT.SEG1) => aaa|bbb|ccc

(display (count-data-children ~input%EVT.SEG1)) => 3

(display ~input%EVT.SEG3) => a1|b2|c3|d4|e5|f6

(display (count-data-children ~input%EVT.SEG3)) => 6

Name Type Description

path path The path to the structured event location to be counted.
Monk Developer’s Reference 326 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
count-map-children

Syntax

(count-map-children path)

Description

Counts counts the number of child nodes defined in the resolved event.

Note: This function was formerly known as count-children.

Parameters

Return Value

integer
The count-map-children expression returns the total number of children (0 to n)
defined in the resolved event.

Examples

;Returns the number of child nodes defined for SEG
(count-map-children ~input%EVT.SEG)

;SEG1, SEG2, SEG3 have three optional children nodes
(display ~input%EVT.SEG1) => aaa|bbb|ccc
(display (count-map-children ~input%EVT.SEG1)) => 3
(display ~input%EVT.SEG2) => 111|333
(display (count-map-children ~input%EVT.SEG2)) => 3
(display ~input%EVT.SEG3) => a1|b2|c3|d4|e5|f6
(display (count-map-children ~input%EVT.SEG3)) => 3

Name Type Description

path path The path to the structured event location to be counted.
Monk Developer’s Reference 327 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
count-rep

Syntax

(count-rep path)

Description

Counts the total number of repetitions of the specified node that are found in the
structured event data tree. Use this expression when writing expressions that loop on
repeating event elements.

Parameters

Return Value

integer
The count-rep expression returns the total number of repetitions (0 to n) of the
specified node that are found in the event data tree.

Examples

;Returns the number of repetitions of the DTM segment
(count-rep ~input%EVT.DTM)

;Returns the number of repetitions of the REF segment
;in the third instance of the N1 group of event EVT
(count-rep ~input%EVT.N1[2].REF)

(display ~input%EVT.DTM) =>DTM/one^MDTM/two^M
(display (count-rep ~input%EVT.DTM)) => 2
(display ~input%EVT.NT1[2]) => N1|AAA|REM^one|REM^two|REM^three|CCC
(display (count-rep ~input%EVT.N1C2].REM)) => 3

The most frequent application of the count-rep expression is in the do expression where
it sets the maximum value for iterations of the loop and is compared to the iteration
count in the do expression test. This is shown in the sample below.

(do ((i 0 (+ i 1))) ((>= i (count-rep ~input%Msg-In.PL)))
(copy-strip ~input%Msg-In.NAM

 ~output%Msg-Out.Detail-Set[<i>].NAM "")
(copy-strip ~input%Msg-In.PL[<i>]

 ~output%Msg-Out.Detail-Set[<i>].PL "")
)

Name Type Description

path path The path to the structured event element to be counted.
Monk Developer’s Reference 328 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
data-map

Syntax

(data-map source-path destination_path filename format trim-chars)

Description

Matches a string to a string stored in an ASCII text file. The data associated with the
matching string is inserted into the structured event.

Parameters

Data File Specifications

Entries in the data-map data file have the format:

matchstring , mapped-data

For example:

Dr. John Edwards,(818)555-1564
Dr. Jane Docen,(302)555-1823

If no match to the source data is found in the data file, a default value entry is written to
the output event. The syntax for the default value entry is shown below. Both lines are
equivalent.

%default%,mapped-data
,mapped-data

where mapped-data is the data to be output. For example:

%default%,NO-MATCH

Because a comma is used as the delimiter in the data file, a comma must be preceded by
a backslash (\,) if it appears in either the matchstring or mapped-data.

To represent a backslash in the data, enter two backslashes (\\).

Name Type Description

source-path string/path The string or path to the data in a structured event.

destination_path path The path to the data in the structured event.

filename string The name of the file containing the matching data,
including its absolute directory location. For example:
/home/user1/data/data-map.
The data file is an ASCII text file containing one
matchstring and mapped-data pair per line, as
discussed below.

format string An instruction to format the data before placement. See
format on page 106 for the syntax. Quotes are
required, but can be empty (“”).

trim-chars string Any leading or trailing characters to be trimmed from
the source data before matching against a matchstring.
All trim-chars are interpreted as literals. Quotes are
required, but can be empty (“”).
Monk Developer’s Reference 329 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
A backslash before a NewLine character at the end of a data file line is interpreted as a
literal and the NewLine character is written to the output event.

Return Value

Unspecified.

Examples

;;;the format quotes are empty
;;;the trim-chars quotes contain a space char
(datamap ~input%EVT.SE.0 ~output%ORG.CID.3

"/home/user1/data/datamap.dat" "" "")
=> {MONK_UNSPECIFIED}

Notes

The data in the source-path is matched against each matchstring in the filename data file. If
a match is found, then the associated mapped-data is written to the destination_path.

If no match is found and there is a default value entry in the data file, the mapped-data
for the default entry is written to the destination_path.

If no match is found and there is no default value entry in the data file, an exception is
returned and the data-map function fails.

If the string in the event may be padded with leading or trailing spaces, use the
trim-chars parameter to ensure that the matchstring matches the source-path data.
Monk Developer’s Reference 330 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
display-event-data

Syntax

(display-event-data event [port])

Description

Displays the data in the specified Event. For each node in the Event, the node’s data
and information about that data is displayed on a single line using the following
format:

(Depth:Length:Children:FLAGS) :Data

The indentation shows the level at which the data resides in the Event structure—more
indented means further down in the structure.

Parameters

Return Value

Unspecified.

Table 2 Key to Data Line Values

Name Description

Depth The level in the Event structure where the data resides.

Length The number of bytes of data.

Children The number of child nodes associated with this node.

FLAGS Any of the following:
R—Repetition node
D—Data
A—Arrayified (the data is internally compressed)
C—Constant
B—ChildData (the child nodes have data)
S—SibData (the sibling nodes have data)

Data The actual data.

Name Type Description

event event_struct The Event to be displayed.

port port Optional. The port to which the Event data is displayed. If no
port is specified, the Event data is sent to standard out.

Note: the use of display formatting characters, such as the
carriage return character “\r”, in the data will affect how the
data is displayed when it is sent to the screen.
Monk Developer’s Reference 331 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
Example

(define MonkExample-delm '(
("*" endofrec)
("|")
("~" array)
("^")
("&")))

(define MonkExample-struct ($resolve-event-definition (quote
(MonkExample ON 1 1 und und und -1

(Name ON 1 1 und und und -1) ;:= {0.0:N}
(Address ON 1 1 und und und -1) ;:= {0.1:N}

) ;:= {0:N}
)))

(define MonkExample-data "Ese Bodyne*404 Huntington Dr.*")

(define MonkExOut (open-output-file "MonkExampleOutput.dat"))

(define MonkExample-event ($make-event-map MonkExample-delm
MonkExample-struct))

($event-parse MonkExample-event MonkExample-data)

(display-event-data MonkExample-event MonkExOut)

=>Unspecified

The file MonkExampleOutput.txt now contains:

(Depth:Length:Children:FLAGS(Rep,Data,Arrayified,Constant,ChildData,
SibData))
(0:30:1:DACB) :Ese Bodyne*404 Huntington Dr.*
(1:30:2:RDACB) :Ese Bodyne*404 Huntington Dr.*
(2:10:1:DACB) :Ese Bodyne
(3:10:0:RDAC) :Ese Bodyne
(2:18:1:DACB) :404 Huntington Dr.
(3:18:0:RDAC) :404 Huntington Dr.
Monk Developer’s Reference 332 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
display-event-dump

Syntax

(display-event-dump event [port])

Description

This function combines the two functions display-event-data and display-event-map.
It displays the data in the specified Event along with the Event structure. For each node
in the Event, information about the node’s structure is displayed first on a single line,
then the data in the node and information about that data is displayed on the next line
using the following format:

((Modifiers):Name:Type:MinRep:MaxRep:Tag:Def:Offset:(Length|Encoding)
:Delim:BitFlags)

(Depth:Length:Children:FLAGS) :Data

The indentation shows the level at which the data resides in the Event structure—more
indented means further down in the structure.

Important: The following table briefly identifies the type of structure information displayed. For
a complete discussion of the various values returned see “Node List” on page 44.

Table 3 Key to Structure Line Values

Name Description

Modifiers Any of the following:
Bd—Begin delimiter
Ed—End delimiter
Ri—Array repetition information
Ex—Exact map (not extended)
Gr—Group child repetitions
Co—Consumer
Get—Get function
NofN—Min/Max children
Put—Put function
Sc—Scavenger string
ScN—Scavenger string with no first character
Nt—Not tagged (data doesn’t match tag character)

Name The name of the node.
Monk Developer’s Reference 333 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
Type The type of node. Any of the following:
ON—Delimited
AN—Any-ordered delimited node
OF—Fixed node
AF—Any-ordered fixed node
OS—Ordered set
AS—Any-ordered set
ONA—Ordered delimited node-array
ANA—Any-ordered delimited node-array
GTN—Global template, delimited node
LTN—Local template, delimited node
GTF—Global template, fixed node
LTF—Local template, fixed node
GTS—Global template, set
LTS—Local template, set

MinRep The minimum number of repetitions of the node.

MaxRep The maximum number of repetitions of the node.

Tag Tag character.

Def Default data.

Offset Byte offset.

Length|Encoding Length or encoding.

Delim Delimiter.

BitFlags Any of the following:
Su—Strongly unique
Wu—Weakly unique
Nu—Not unique
RNu—Required, not unique
Dc—Defined children
Pd—Parent delimited
Lr—Length rest
Loc—Local delimiters
Dd—Default path
Le—Length encoded
Bdm—Beyond defined map
Ao—Any ordered

Table 3 Key to Structure Line Values

Name Description
Monk Developer’s Reference 334 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
Parameters

Return Value

Unspecified.

Table 4 Key to Data Line Values

Name Description

Depth The level in the Event structure where the data resides.

Length The number of bytes of data.

Children The number of child nodes associated with this node.

FLAGS Any of the following:
R—Repetition node
D—Data
A—Arrayified (the data is internally compressed)
C—Constant
B—ChildData (the child nodes have data)
S—SibData (the sibling nodes have data)

Data The actual data.

Name Type Description

event event_struct The Event to be displayed.

port port Optional. The port to which the Event data is displayed. If no
port is specified, the Event data is sent to standard out.

Note: the use of display formatting characters, such as the
carriage return character “\r”, in the data will affect how the
data is displayed when it is sent to the screen.
Monk Developer’s Reference 335 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
Example

(define MonkExample-delm '(
("*" endofrec)
("|")
("~" array)
("^")
("&")))

(define MonkExample-struct ($resolve-event-definition (quote
(MonkExample ON 1 1 und und und -1

(Name ON 1 1 und und und -1) ;:= {0.0:N}
(Address ON 1 1 und und und -1) ;:= {0.1:N}

) ;:= {0:N}
)))

(define MonkExample-data "Ese Bodyne*404 Huntington Dr.*")

(define MonkExOut (open-output-file "MonkExampleOutput.dat"))

(define MonkExample-event ($make-event-map MonkExample-delm
MonkExample-struct))

($event-parse MonkExample-event MonkExample-data)

(display-event-dump MonkExample-event MonkExOut)

=>Unspecified

The file MonkExampleOutput.txt now contains:

((Modifiers):Name:Type:MinRep:MaxRep:Tag:Def:Offset:(Length|Encoding)
:Delim:BitFlags)
 (():MonkExample:ON:1:1:::-1:(-1)::Su,Dc)
(Depth:Length:Children:FLAGS(Rep,Data,Arrayified,Constant,ChildData,
SibData))
(0:30:1:DACB) :Ese Bodyne*404 Huntington Dr.*

(():MonkExample:ON:1:1:::-1:(-1)::Su,Dc)
(1:30:2:RDACB) :Ese Bodyne*404 Huntington Dr.*

(():Name:ON:1:1:::-1:(-1):"*":RNu)
(2:10:1:DACB) :Ese Bodyne

(():Name:ON:1:1:::-1:(-1):"*":RNu)
(3:10:0:RDAC) :Ese Bodyne

(():Address:ON:1:1:::-1:(-1):"*":RNu)
(2:18:1:DACB) :404 Huntington Dr.

(():Address:ON:1:1:::-1:(-1):"*":RNu)
(3:18:0:RDAC) :404 Huntington Dr.
Monk Developer’s Reference 336 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
display-event-map

Syntax

(display-event-map event [port])

Description

This function displays the structure for the specified Event. For each node in the Event,
information about the node’s structure is displayed on a single line using the following
format:

((Modifiers):Name:Type:MinRep:MaxRep:Tag:Def:Offset:(Length|Encoding)
:Delim:BitFlags)

The indentation shows the level at which the node resides in the Event structure—more
indented means further down in the structure.

Important: The following table briefly identifies the type of structure information displayed. For
a complete discussion of the various values returned see “Node List” on page 44.

Table 5 Key to Structure Line Values

Name Description

Modifiers Any of the following:
Bd—Begin delimiter
Ed—End delimiter
Ri—Array repetition information
Ex—Exact map (not extended)
Gr—Group child repetitions
Co—Consumer
Get—Get function
NofN—Min/Max children
Put—Put function
Sc—Scavenger string
ScN—Scavenger string with no first character
Nt—Not tagged (data doesn’t match tag character)

Name The name of the node.

Type The type of node. Any of the following:
ON—Delimited
AN—Any-ordered delimited node
OF—Fixed node
AF—Any-ordered fixed node
OS—Ordered set
AS—Any-ordered set
ONA—Ordered delimited node-array
ANA—Any-ordered delimited node-array
GTN—Global template, delimited node
LTN—Local template, delimited node
GTF—Global template, fixed node
LTF—Local template, fixed node
GTS—Global template, set
LTS—Local template, set
Monk Developer’s Reference 337 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
Parameters

Return Value

Unspecified.

MinRep The minimum number of repetitions of the node.

MaxRep The maximum number of repetitions of the node.

Tag Tag character.

Def Default data.

Offset Byte offset.

Length|Encoding Length or encoding.

Delim Delimiter

BitFlags Any of the following:
Su—Strongly unique
Wu—Weakly unique
Nu—Not unique
RNu—Required, not unique
Dc—Defined children
Pd—Parent delimited
Lr—Length rest
Loc—Local delimiters
Dd—Default path
Le—Length encoded
Bdm—Beyond defined map
Ao—Any ordered

Name Type Description

event event_struct The Event to be displayed.

port port Optional. The port to which the Event data is displayed. If no
port is specified, the Event data is sent to standard out.

Note: the use of display formatting characters, such as the
carriage return character “\r”, in the data will affect how the
data is displayed when it is sent to the screen.

Table 5 Key to Structure Line Values

Name Description
Monk Developer’s Reference 338 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
Example

(define MonkExample-delm '(
("*" endofrec)
("|")
("~" array)
("^")
("&")))

(define MonkExample-struct ($resolve-event-definition (quote
(MonkExample ON 1 1 und und und -1

(Name ON 1 1 und und und -1) ;:= {0.0:N}
(Address ON 1 1 und und und -1) ;:= {0.1:N}

) ;:= {0:N}
)))

(define MonkExample-data "Ese Bodyne*404 Huntington Dr.*")

(define MonkExOut (open-output-file "MonkExampleOutput.dat"))

(define MonkExample-event ($make-event-map MonkExample-delm
MonkExample-struct))

($event-parse MonkExample-event MonkExample-data)

(display-event-map MonkExample-event MonkExOut)

=>Unspecified

The file MonkExampleOutput.txt now contains:

((Modifiers):Name:Type:MinRep:MaxRep:Tag:Def:Offset:(Length|Encoding)
:Delim:BitFlags)

(():MonkExample:ON:1:1:::-1:(-1)::Su,Dc
(():Name:ON:1:1:::-1:(-1):"*":RNu
(():undefined:ON:1:1:::0:(0):"|":Bdm,Nu
(():undefined:ON:1:1:::0:(0):"^":Bdm,Nu
(():undefined:ON:1:1:::0:(0):"&":Bdm,Nu))))

(():Address:ON:1:1:::-1:(-1):"*":RNu
(():undefined:ON:1:1:::0:(0):"|":Bdm,Nu
(():undefined:ON:1:1:::0:(0):"^":Bdm,Nu
(():undefined:ON:1:1:::0:(0):"&":Bdm,Nu))))

)

Monk Developer’s Reference 339 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
duplicate

Syntax

(duplicate source-path destination_path format)

Description

Copies leaf data from the source-path to the corresponding leaf positions of the
destination structured event. Leaf data is contained in nodes without children. This
function overwrites any existing data in the location.

Parameters

Return Value

Unspecified.

Examples

;sample input is ’abc ’
;sample output is ’abc ’
(duplicate ~input%EVT.SE.0 ~output%ORG.CID.3 "")
(duplicate ~input%EVT.NTE[0].3[1] ~output%RAS.OBXgrp[0].NTE[0].3[0]
"%s")

=> {MONK_UNSPECIFIED}

Name Type Description

source-path path The path to the data in a structured event.

destination_path path The path to the data in the structured event.

format string An instruction to format the data for output. See format on
page 106 for the syntax. Quotes are required, but can be
empty (“”).
Monk Developer’s Reference 340 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
duplicate-strip

Syntax

(duplicate-strip source-path destination_path format)

Description

Copies leaf data from the source-path to the corresponding leaf positions of the
destination structured event, after removing trailing spaces for data at the leaf to be
duplicated. Leaf data is contained in nodes without children. This function overwrites
any existing data in the leaf locations.

Parameters

Return Value

Unspecified.

Examples

;sample input is ’abc ’
;sample output is ’abc ’
(duplicate-strip ~input%EVT.SE.0 ~output%ORG.CID.3 "")
(duplicate-strip ~input%EVT.NTE[0].3[1]
~output%RAS.OBXgrp[0].NTE[0].3[0] "%s")

=> {MONK_UNSPECIFIED}

Name Type Description

source-path path The path to the data in a structured event.

destination_path path The path to the data in the structured event.

format string An instruction to format the data for output. See format
on page 106 for the syntax. Quotes are required, but can
be empty ("”).
Monk Developer’s Reference 341 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
file-check

Syntax

(file-check source filename)

Description

Compares the file contents against the source data.

Parameters

Return Value

Boolean
This expression returns #t if the files are equal. Otherwise, it returns #f.

Examples

;Compares the contents of the SEG node with the
;contents of the specified file
(file-check ~input%EVT.SEG "/home/user1/filename")

;contents of filename: hello
(file-check "hello" "/home/user1/filename") => #t
(file-check "bye" "/home/user1/filename") => #f

Name Type Description

source string/path The data to be compared.

filename string The name of the file to compare, including its absolute
directory location, for example,
/home/user1/filename
Monk Developer’s Reference 342 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
file-lookup

Syntax

(file-lookup source filename)

Description

Matches source data against data contained in a filename. The data in the source
location is compared to the strings in filename.

Parameters

Return Value

If a match is found, the expression returns #t. If no match is found, the expression
generates an exception and the function fails.

Examples

(file-lookup ~input%EVT.EVN.1 "/home/user1/data/events") => #t

Name Type Description

source path/string The data to compare.

filename string The name of the file containing the matching data, including its
absolute directory location. For example:
/home/user1/data/dept_phone.
The data file is an ASCII text file containing one string per line.
For example:
10099
10100
10104
10211
11307
The maximum string length is 8,096 bytes.
Monk Developer’s Reference 343 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
get

Syntax

(get path)

Description

Extracts data from a structured event.

Parameters

Return Value

string
The get expression returns a string representing the data in the path location.

Examples

;get Event Type Code and compare to string "A01"
(regex "A01" (get ~input%ORG.EVN.ETC))
;get Current Balance, convert to a number, and
;check that it’s greater than 0
(>(string->number(get ~input%ORG.PV1.46)) 0)

;sample input is hello
(get ~input%ORG.EVN.ETC) => hello

Name Type Description

path path The path to the data in the structured event.
Monk Developer’s Reference 344 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
list-lookup

Syntax

(list-lookup source-path destination_path lookup-list format
trim-chars)

Description

Matches data in the source-path against the key elements of a list and copies the
associated value into the structured event.

Parameters

Return Value

Unspecified.

Examples

;;;the trim-chars quotes contain a space char
;sample input is ADD
;sample output is A01
(list-lookup ~input%EVT.SE.0 ~output%ORG.CID.3 '(("ADD" "A01")
("MOVE" "A02")("DELETE" "A03")(else "DONTKNOW")) "%s" "")

=> {MONK_UNSPECIFIED}

Notes

The data in the source-path is matched against each matchstring. If a match is found, then
the associated output-string is written to the destination_path. If no match is found, then
the default-output-string is written to the destination_path. If no match is found and there
is no default-output-string, it will error out.

Name Type Description

source-path path The data to match.

destination_path path The path to the structured event destination.

lookup-list list A list of the form:
’((“matchstring1” “output-string1”)
(“matchstring2” “output-string2”) …
(“matchstringN” “output-stringN”)
(else “default-output-string”)
Can also be a variable name that has a value of a list
of this form. See Notes below.

format string An instruction to format the data for output. See
format on page 106 for the syntax. Quotes are
required, but can be empty (“”).

trim-chars string Any leading or trailing characters to be trimmed
from the source data before matching against the
lookup-list. All trim-chars are interpreted as literals.
Quotes are required, but can be empty (“”).
Monk Developer’s Reference 345 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
node-has-data?

Syntax

(node-has-data? path)

Description

Verifies whether or not the specified path location of a structured event contains data.

Parameters

Return Value

Boolean
This expression returns #t if the specified path location contains data. Otherwise, it
returns #f.

Examples

;Verifies whether the SEG node contains data
;sample input is "aaa|bbb"
(node-has-data? ~input%EVT.SEG) => #t

(node-has-data? ~input%EVT.SEG.three) => #f

;sample input is "111||333"
;optional node with tag
(node-has-data? ~input%EVT.SEG.two) => #f

;sample input is "111||333"
;optional set
(node-has-data? ~input%EVT.SEG.two) => #f

;sample input is "111||333"
;optional node without tag
(node-has-data? ~input%EVT.SEG.two) => #t

Notes

If an optional node has no tag and the input data for that node ends with a delimiter,
this function will return #t since the empty string is valid.

Name Type Description

path path The path to the event element to be verified.
Monk Developer’s Reference 346 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
not-verify

Syntax

(not-verify path reg_exp)

Description

Matches data against a regular expression. The not-verify expression is the
complement of verify.

Parameters

Return Value

Boolean
If no exact match is found, #t is returned. If an exact match is found, an exception is
generated.

Examples

;check a location for an empty field
;("\.\+" matches any string of at least one character)
;sample input is "Hello"
(not-verify ~input%EVT.SE.0 "\.\+") => error

;check a location for a specific string
(not-verify ~input%RAS.CID.8 "F") => #t

;match location’s contents against a regular expression
;this expression checks for a Social Security Number
;sample input is "(111) 222-3333"
(not-verify ~input%RAS.CID.19

"\[0-9\]\{3\}-\[0-9\]\{2\}-\[0-9\]\{4\}")
=> #t

;match location’s contents against a regular expression
;this expression checks for one of a set of strings
;sample input is "CA"
(not-verify~input%RAS.CID.11[0].3 "CA\|OR\|WA"

=> error

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

path path The path to the data to be verified.

reg_exp string A regular expression. See “Regular Expressions” on page 29 for
the regular expression syntax.
Monk Developer’s Reference 347 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
path?

Syntax

(path? object)

Description

Tests the object to determine whether or not it represents a path.

Parameters

Return Value

Boolean
This expression returns #t if object represents a path. Otherwise, it returns #f.

Examples

;The following example returns #f
(path? "EVT.SEG") => #f
;
;The following example returns #t
(path? ~input%EVT.SEG) => #t

Name Type Description

object any The object to test.
Monk Developer’s Reference 348 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
path-defined-as-repeating?

Syntax

(path-defined-as-repeating? path)

Description

Verifies whether the specified node is defined as repeating in the event definition.

Parameters

Return Value

Boolean
This expression returns #t if the specified node is defined as repeating. Otherwise,
it returns #f.

Examples

;The following will return #f because it is verifying a
;root node which cannot be defined as repeating.
;
(path-defined-as-repeating? ~input%EVT) => #f

Name Type Description

path path The structured event element to be tested.
Monk Developer’s Reference 349 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
path-event

Syntax

(path-event path)

Description

Gets the Event associated with the specified path.

Parameters

Return Value

event_struct
Returns the Event associated with the specified path.

Example

(define MonkExample-delm '(
("*" endofrec)
("|")
("~" array)
("^")
("&")))

(define MonkExample-struct ($resolve-event-definition (quote
(MonkExample ON 1 1 und und und -1

(Name ON 1 1 und und und -1) ;:= {0.0:N}
(Address ON 1 1 und und und -1) ;:= {0.1:N}

) ;:= {0:N}
)))

(define MonkExample-data "Ese Bodyne*404 Huntington Dr.*")

(define MonkExample-event ($make-event-map MonkExample-delm
MonkExample-struct))

($event-parse MonkExample-event MonkExample-data)

(display (path-event ~MonkExample-event%MonkExample.Name))

=>{MONK_ATOM_TYPE_EVENT}

Name Type Description

path path A complete path.
Monk Developer’s Reference 350 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
path-event-symbol

Syntax

(path-event-symbol path)

Description

Gets the symbol that represents the Event structure for the specified path.

Parameters

Return Value

symbol
The symbol representing the Event associated with the specified path.

Example

(define MonkExample-delm '(
("*" endofrec)
("|")
("~" array)
("^")
("&")))

(define MonkExample-struct ($resolve-event-definition (quote
(MonkExample ON 1 1 und und und -1

(Name ON 1 1 und und und -1) ;:= {0.0:N}
(Address ON 1 1 und und und -1) ;:= {0.1:N}

) ;:= {0:N}
)))

(define MonkExample-data "Ese Bodyne*404 Huntington Dr.*")

(define MonkExample-event ($make-event-map MonkExample-delm
MonkExample-struct))

($event-parse MonkExample-event MonkExample-data)

(display (path-event-symbol ~MonkExample-event%MonkExample.Name))

=>MonkExample-event

Name Type Description

path path A complete path.
Monk Developer’s Reference 351 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
path-nodeclear

Syntax

(path-nodeclear path)

Description

Deletes all the data from the specified node and marks the node as containing no data.

Parameters

Return Value

Unspecified.

Examples

(path-nodeclear ~input%root.an.friend)

Name Type Description

path path The path of the node to clear.
Monk Developer’s Reference 352 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
path-nodedepth

Syntax

(path-nodedepth path)

Description

Determines the depth of the node indicated by the path parameter. The depth is
calculated from the root node.

Parameters

Return Value

integer
This expression returns an integer of 0 or more.

Examples

;The following example would return a result of 3.

(path-nodedepth ~input%EVT.SEG.A) => 3

(path-nodedepth ~input%EVT) =>1

(path-nodedepth ~input) =>0

Name Type Description

path path The structured event element to be tested.
Monk Developer’s Reference 353 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
path-nodename

Syntax

(path-nodename path [depth])

Description

Provides the name of the node in the event definition indicated by the path parameter.

Parameters

Return Value

symbol
This expression returns the node name for the indicated path. If the depth is not
specified, this expression returns the last element.

Examples

;The following example returns "EVT"
(path-nodename ~input%EVT)
;
;The following example returns "SEG"
(path-nodename ~output%EVT.SEG.field 2)

Name Type Description

path path The structured event element to be tested.

depth integer Optional parameter giving the depth for the name.
Monk Developer’s Reference 354 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
path-nodeparentname

Syntax

(path-nodeparentname path grandparent)

Description

Provides the parent node name from the specified path and depth.

Parameters

Return Value

symbol
This expression returns the parent node name from the specified path. If no integer
is specified, this expression returns the parent of the child. If an integer is specified,
this expression returns the parent node name at the number of nodes above the
child. If the integer specified is greater than the depth of the path, #f is returned.

Examples

(path-nodeparentname ~input%EVT.SEG1) => EVT

(path-nodeparentname ~output%EVT.SEG1.SEG2.SEG3 6) => #f

Name Type Description

path path The structured event element to access.

grandparent integer Optional parameter specifying the
number of levels above the last node in
the path.
Monk Developer’s Reference 355 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
path-put

Syntax

(path-put source destination [format])

Description

Similar to copy, in that it places the source data into the Event at the location specified
in the destination. The important difference is that copy only works with strings, but
path-put works with other Monk data types.

Important: If the source is not a “string” then the node specified in the destination path must
have the put modifier set in order for this function to complete successfully. The put
node modifier converts the source argument to a string before placing the data into
the Event. See “Node List” on page 44 for more information on node modifiers.

Parameters

Return Value

Unspecified.

Name Type Description

source any The data you want to place in the destination node.

Note: If the source is not a “string” then the node specified in the
destination path must have the “put” modifier set. See “Node
List” on page 44 for more information on node modifiers.

destination path A complete path.

format string Optional. A valid format specification. See “Format
Specification” on page 34 for information on formatting output.
Monk Developer’s Reference 356 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
path->string

Syntax

(path->string path)

Description

Converts the specified path to a string.

Parameters

Return Value

string
The string conversion of the path.

Examples

(path->string ~input%MSG) => "~input%MSG"

(string? (path->string ~input%MSG)) => #t

Name Type Description

path path The path to convert to a string.
Monk Developer’s Reference 357 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
path-valid?

Syntax

(path-valid? path)

Description

Verifies that the path specified is valid for the structured event.

Parameters

Return Value

Boolean
This expression returns #t if the specified path is valid in the event type definition.
Otherwise, it returns #f.

Example

(path-valid? ~input%EVT) => #t

This function call will evaluate as shown if the path EVT exists in the input structure.

Name Type Description

path path The path to be verified.
Monk Developer’s Reference 358 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
string->path

Syntax

(string->path string)

Description

Converts the contents of the specified string to a path or partial path.

The path is unresolved. To resolve the path in the desired environment, you may need
to perform an eval.

Parameters

Return Value

path
Newly-created unresolved path.

Examples

(string->path "~input%MSG") => ~input%MSG

(path? (string->path "~input%MSG") => #t

Name Type Description

string string The characters to convert to a path.
Monk Developer’s Reference 359 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
timestamp

Syntax

(timestamp destination_path timeformat)

Description

Inserts the current date and time (of the server’s host system) into the structured event.
You can specify a custom format or use the default format.

If you give timestamp an empty string, it will output nothing.

Parameters

The timeformat can include one or more of the following format choices. Text can be
included, for example, “time test-%r” generates the output, “time test-02:15:03 PM”.

Name Type Description

destination_path path The path to the structured event element for placement.

timeformat string An instruction to format the data. Syntax is detailed below.
Quotes are required, but can be empty (“”).

Time Division
Format
Option

Description Value Range or Sample Output

Days %w day of week (Sunday is day 0) 0–6

%a day of week, using site-
defined abbreviations

for example, Sun, Mon, Tue, and
so forth.

%A day of week, using site-
defined spellings

for example, Sunday, Monday, and
so forth.

%d day of month 01–31

%e day of month (single digits
are preceded by a space)

1–31

%j day of year 001–366

Weeks %U week of year (Sunday is the
first day of the week)

01–52

%W week of year (Monday is the
first day of the week)

01–52

Months %m month number 01–12

%b month, using site-defined
abbreviations

for example, Jan, Feb, Mar, Apr,
and so forth.

%B month, using site-defined
spellings

for example, January, February,
and so forth.

Years %y year within century 00–99

%Y year, including century for example, 1988
Monk Developer’s Reference 360 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
Example

;Current date/time is March 5, 1995, 4:15 p.m.
;sample output is ""
(timestamp ~output%ORG.CID.3 "") => {MONK_UNSPECIFIED}

;Current date and time is March 5, 1995, 4:15:03 p.m.
;sample output is current time:03/05/95, 04.15.03PM
(timestamp ~output%ORG.CID.3
 "current time:%D, %H.%M.%S%p")

=> current time:03/05/95, 04.15.03PM

Hours %H hour 00–23

%I hour 00–12

%k hour (single digits are
preceded by a space)

0–23

%l hour (single digits are
preceded by a space)

1–12

Minutes %M minute 00–59

Seconds %S seconds 00–59

Morning
or
Afternoon

%p AM or PM AM or PM

Time Zone %Z time zone abbreviation for example, PDT

Composites %D date as %m/%d/%y for example, 02/05/04

%R time as %H:%M for example, 14:15

%T time as %H:%M:%S for example, 14:15:03

%r time as %I:%M:%S %p for example, 02:15:03 PM

%x site-defined standard date
format

for example, 09/12/93

Time Division
Format
Option

Description Value Range or Sample Output
Monk Developer’s Reference 361 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
uniqueid

Syntax

(uniqueid path)

Description

Creates a unique identifier string. The identifier string is based upon the current system
time, day, month, and year to a string.

Parameters

Return Value

Unspecified.

Examples

;The uniqueid data is written to the SEG node
(uniqueid ~output%EVT.SEG) => {MONK_UNSPECIFIED}

(display ~output%EVT.SEG) => 200001271415290854

Note: Although the uniqueid function provides a properly unique identifier, it should not
be used as a time-stamp. For time-stamp functionality, see timestamp on page 360.

Name Type Description

path path Where to write the string in the output event.
Monk Developer’s Reference 362 SeeBeyond Proprietary and Confidential

Chapter 15
Event Definitions
verify

Syntax

(verify path reg_exp)

Description

Matches data against a regular expression.

A regular expression can be used to:

! check if a field is empty

! match a specified string

! match from a set of strings.

Parameters

Return Value

If an exact match is found, #t is returned. If an exact match is not found, an exception is
generated.

Examples

;check a location for a non-empty field
;(".\+" matches any string of at least one character)
;sample input is Hello
(verify ~input%EVT.SE.0 ".\+") => #t

;check a location for a specific string
(verify ~input%RAS.CID.8 "F") => #f

;match a location’s contents against a regular expression
;this expression checks for a SSN
;sample input is 111-22-3333
(verify ~input%RAS.CID.19 "\[0-9\]\{3\}-\[0-9\]\{2\}-\[0-9\]\{4\}"
) => #t

;match a location’s contents against a regular expression
;this expression checks for one of a set of strings
;sample input is "CA"
(verify ~input%RAS.CID.11[0].3 "CA\|OR\|WA"
) => #t

Note: The return values may vary on different platforms due to the differences between
ASCII and EBCDIC values.

Name Type Description

path path The path to data to be verified.

reg_exp expression A regular expression. See “Regular Expressions” on
page 29 for the regular expression syntax.
Monk Developer’s Reference 363 SeeBeyond Proprietary and Confidential

Chapter 16

Date and Time

The Date and Time functions include:

difftime on page 365

gregorian_date->julian_days on page 366

julian_days->gregorian_date on page 367

mktime on page 368

strftime on page 370

time on page 371
Monk Developer’s Reference 364 SeeBeyond Proprietary and Confidential

Chapter 16
Date and Time
difftime

Syntax

(difftime time1 time2)

Description

Calculates the difference between two time arguments.

Parameters

Return Value

integer
Number of seconds difference between time1 and time2.

Examples

(difftime (mktime 99 01 01 12 30 43 1)
 (mktime 99 01 01 12 30 33 1)) => 10
(difftime (time)
 (mktime 99 01 01 12 30 33)) => 6225903
(difftime (mktime 99 01 01 12 30 33)
 (time)) => 6225903
(difftime (mktime 99 01 01 12 30 33)
 (mktime 100 01 01 12 30 33)) => -31536000

Name Type Description

time1
time2

integer Use the parameters specified in mktime on page 368 or time on
page 371 function to set the time parameters. See the description
of these functions in this section for further details.
Monk Developer’s Reference 365 SeeBeyond Proprietary and Confidential

Chapter 16
Date and Time
gregorian_date->julian_days

Syntax

(gregorian_date->julian_days date)

Description

Converts a gregorian date to a julian days.

Parameters

Return Value

integer
This function returns the julian days calculated. If no conversion occurs, #f is
returned.

Examples

(gregorian_date->julian_days "-47131124") => 0

(gregorian_date->julian_days "20000101") => 2451545

(gregorian_date->julian_days "99350") => #f

Name Type Description

date string Integers in the format YYYYMMDD, where:
YYYY is the year.
MM is the month
DD is the day
Monk Developer’s Reference 366 SeeBeyond Proprietary and Confidential

Chapter 16
Date and Time
julian_days->gregorian_date

Syntax

(julian_days->gregorian_date days)

Description

Converts julian days to a gregorian date (YYYYMMDD).

Parameters

Return Value

number
This function returns the gregorian date calculated, or #f if no conversion possible.

Examples

(julian_days->gregorian_date "0") => -47131124

(julian_days->gregorian_date 2451545) => 20000101

Name Type Description

days integer, string, or number A valid julian date.
Monk Developer’s Reference 367 SeeBeyond Proprietary and Confidential

Chapter 16
Date and Time
mktime

Syntax

(mktime year month day hour minute seconds [DST])

Description

Creates a Monk-time object from the specified parameters.

Parameters

Return Value

Monk Time object.

Limitations

On a Windows machine the time must between 1969 Dec 31 4:00:00 PM and
2038 Jan 18 19:14:07. The limitations may be different under other operating systems.

Name Type Description

year integer The year minus 1900.
69-138 years. Must be between 69 (representing the year
1969) and 138 (representing the year 2038).

month integer The numeric month minus one. (0=Jan, 1=Feb, ... 11=Dec).

day integer The day of the month.
0-31 days. 0 = the last day of the previous month.

hour integer The hour of the day in 24 hour time.
0-23 hours.

minute integer The minute of the hour.
0-59 minutes.

seconds integer The second of the minute.
0-59 seconds.

DST integer Optional. Compensates for daylight savings time (DST).

If you specify a time that falls in DST, specifying 0 (zero) for
this parameter causes mktime to add one hour to the time.
If you specify a time that fall in standard time, specifying any
valid monk integer except 0 (zero) causes mktime to subtract
one hour from the time returned.
Monk Developer’s Reference 368 SeeBeyond Proprietary and Confidential

Chapter 16
Date and Time
Examples

These examples were created and tested under Windows 2000.

(mktime 69 11 31 16 0 0) => Wed Dec 31 16:00:00 1969

(mktime 70 0 0 16 0 0) => Wed Dec 31 16:00:00 1969

(mktime 69 0 0 15 59 59) => {MONK_EXCEPTION}

(mktime 138 0 18 19 14 7) => Mon Jan 18 19:14:07 2038

(mktime 138 0 18 19 14 8) => {MONK_EXCEPTION}

(mktime 99 0 1 12 30 33 0) => Fri Jan 1 12:30:33 1999

(mktime 100 6 1 12 30 33 0) => Tue Jul 1 13:30:33 2000

(mktime 100 6 1 12 30 33 77777) => Tue Jul 1 12:30:33 2000

(mktime 100 1 1 12 30 33 88888) => Tue Feb 1 11:30:33 2000

(mktime 100 1 1 12 30 33 0) => Tue Feb 1 12:30:33 2000
Monk Developer’s Reference 369 SeeBeyond Proprietary and Confidential

Chapter 16
Date and Time
strftime

Syntax

(strftime format-spec time)

Description

Formats a date/time to user specifications.

Parameters

Return Value

Formats the input date according to the format specification and returns the formatted
date as a string.

Examples

(strftime "%d%b%y" (mktime 70 0 0 16 0 0)) => "31Dec69"

(strftime "%Y%m%d%H%M" (time)) => "200011141330"

The time function returns the current system time as a Monk time object.

Name Type Description

format-spec string A string specifying the format of the date/time. The syntax
is the same as accepted by the C library function strftime.

time time object A time object. You can use the time or mktime functions to
return a time object.
Monk Developer’s Reference 370 SeeBeyond Proprietary and Confidential

Chapter 16
Date and Time
time

Syntax

(time)

Description

Retrieves the current system time, defined as the number of seconds since midnight, 1
January 1970, Coordinated Universal Time.

Parameters

None.

Return Value

The current system time as a Monk time object.

Example

(time) => Thu Apr 15 09:07:33 1999
Monk Developer’s Reference 371 SeeBeyond Proprietary and Confidential

Chapter 17

Interface API Functionality

The Interface API functionality includes:

interface-handle on page 373

invoke on page 374

load-interface on page 375
Monk Developer’s Reference 372 SeeBeyond Proprietary and Confidential

Chapter 17
Interface API Functionality
interface-handle

Syntax

(interface-handle)

Description

Creates a Monk interface handle. This handle allows you to invoke Monk routines from
other programs.

Parameters

None.

Return Value

interface
Returns an interface handle to Monk.

Examples

(interface-handle) => {MONK_ATOM_TYPE_INTERFACE}
Monk Developer’s Reference 373 SeeBeyond Proprietary and Confidential

Chapter 17
Interface API Functionality
invoke

Syntax

(invoke obj string [params...])

Description

Calls the function contained in the interface handle, passing the function name and
parameter values as input.

The invoke function is a generic interface to a set of functions within a dll. The interface
dll must use the architecture and protocols defined in the stcextif.h file, and first be
loaded via the load-interface function. The resulting handle becomes the first argument
of the invoke function. The second argument is the name of the function contained in
the interface handle. Parameters three and beyond are passed to invoke as input
arguments to the requested function.

An object that can be called by the invoke function can optionally be called using the
object’s name alone. For example, the following are equivalent:

(invoke my_object my_function)
(my_object my_function)

Parameters

Return Value

Name Type Description

object handle Interface handle returned by the load-interface function.

string string Function that is being invoked.

params... argument Optional. The parameter(s) specified is dependent upon
the argument list in the function being invoked.

Return Code Description

0 Exit status is OK.

1 Invoke of function/procedure call failed.

2 Failed to allocate memory successfully.

3 Unused.

4 Bad parameter to free function.

5 Bad argument to function/procedure call.
Monk Developer’s Reference 374 SeeBeyond Proprietary and Confidential

Chapter 17
Interface API Functionality
load-interface

Syntax

(load-interface dll_file [init_fn])

Description

Loads a dll. The dll must adhere to the architecture and protocols defined in the
stcextif.h file.

Parameters

Return Value

Returns an interface handle.

Example

(define obj (load-interface "sample_ext.dll"))

Name Type Description

dll_file string Path to the dll to be loaded.

init_fn string Name of the init function to be called. Optional.
Monk Developer’s Reference 375 SeeBeyond Proprietary and Confidential

Chapter 18

Debug Procedures

The debug procedures are grouped in two categories:

“Interactive Debug Procedures” on page 376

“Internal Debug Control Procedures” on page 378

18.1 Interactive Debug Procedures
The Interactive Debug functions include:

break on page 377

set-break on page 378
Monk Developer’s Reference 376 SeeBeyond Proprietary and Confidential

Chapter 18 18.1
Debug Procedures Interactive Debug Procedures
break

Syntax

(break)

Description

Suspends execution, and permits interaction with the Monk engine within an
interactive environment.

Parameters

None.

Return Value

Unspecified.

Examples

(define x 5)
(define y 10)
(define z (+ x y))
(break) ; break to interact and check

; that variables were set correctly
(display (/ z 2))

Additional Information

Within a (break) loop, the following keywords are meaningful:

Keyword Function

:? Prints a help message

:cont Clears all active breaks and resumes processing

:next Evaluates the next expression, then returns to
the “break” state

:pop Exits the current “break” level and resumes
processing. Use this keyword within nested
break statements.
Monk Developer’s Reference 377 SeeBeyond Proprietary and Confidential

Chapter 18 18.2
Debug Procedures Internal Debug Control Procedures
set-break

Syntax

(set-break keyword function keyword1 function1 ...)

Description

Sets a breakpoint upon entry or exit of the specified function.

You may set breakpoints for more than one function by specifying additional keyword/
function arguments. See break on page 377 for more information about breakpoints.

Parameters

Return Value

Unspecified.

Examples

(set-break :on-exit my-function)
(my-function)
...function executes...
=> Break :on-exit -- my-function --
=> 1>

18.2 Internal Debug Control Procedures
Internal Debug Control functions include:

monk-flag-check? on page 380

monk-flag-clear on page 381

monk-flag-get on page 382

monk-flag-set on page 383

These functions operate on the following debug flags:

Name Type Description

keyword symbol One of the following:
:on-entry
:on-exit
:all (both :on-entry and :on-exit)

function function The name of a function

all operators-debug

debug-all other-debug

file-load-debug print-all-features

full-stack-debug rule-trace-debut

make-event-debug single-stack-debug
Monk Developer’s Reference 378 SeeBeyond Proprietary and Confidential

Chapter 18 18.2
Debug Procedures Internal Debug Control Procedures
map-event-debug store-last-map-failure
Monk Developer’s Reference 379 SeeBeyond Proprietary and Confidential

Chapter 18 18.2
Debug Procedures Internal Debug Control Procedures
monk-flag-check?

Syntax

(monk-flag-check? flag)

Description

Evaluates the flag and checks whether the symbol that represents the flag is active or
not.

Parameters

Return Value

Boolean
Returns #t if the flag is active or #f if the flag is not active.

Examples

(monk-flag-clear ‘all)
(monk-flag-check? ‘map-event-debug) => #f

(monk-flag-set ‘all)
(monk-flag-check? ‘map-event-debug) => #t

Name Type Description

flag symbol A well-known Monk flag.
Monk Developer’s Reference 380 SeeBeyond Proprietary and Confidential

Chapter 18 18.2
Debug Procedures Internal Debug Control Procedures
monk-flag-clear

Syntax

(monk-flag-clear flagn)

Description

Clears valid Monk flags.

Flagn may be a symbol for a specific monk flag or a 32-bit mask, expressed as an integer.

Parameters

Return Value

Boolean
The result of the function is the success or failure of clearing the last flag in the
parameter list, which will be #t or #f.

Example

(monk-flag-clear ’debug-all) => #t

Name Type Description

flagn symbol Valid Monk flag(s).
Monk Developer’s Reference 381 SeeBeyond Proprietary and Confidential

Chapter 18 18.2
Debug Procedures Internal Debug Control Procedures
monk-flag-get

Syntax

(monk-flag-get)

Description

Tells you what Monk flags are currently set. You can also use this to return the integer
that corresponds to a particular group of set Monk flags, and then use the integer in
monk-set-flag to set these flags without having to set them individually.

Parameters

None.

Return Value

A integer value whose bits correspond to the Monk flags currently set.

Example

(monk-flag-clear ‘all) =>#t
(monk-flag-set ‘store-last-map-failure) =>#t
(monk-flag-get) =>2048

(monk-flag-clear ‘all) =>#t
(monk-flag-set ‘all) =>#t
(monk-flag-get) =>793727
Monk Developer’s Reference 382 SeeBeyond Proprietary and Confidential

Chapter 18 18.2
Debug Procedures Internal Debug Control Procedures
monk-flag-set

Syntax

(monk-flag-set flag [additional flags])

Description

Sets the valid Monk flag by using either the symbol name or an integer that
corresponds to a particular flag set(s). See “monk-flag-get” on page 382 for more
information.

Parameters

Return Value

Boolean
The result of the function is the success or failure of setting the last flag in the
parameter list, which will be #t or #f.

Example

(monk-flag-set 'make-event-debug) =>#t

(monk-flag-set 'make-event-debug 'file-load-debug) =>#t

(monk-flag-set 2048) =>#t

(monk-flag-set 'make-event-debug 2048) =>#t

(monk-flag-set 'all) =>#t

Name Type Description

flag symbol or
interger

Valid Monk flag(s). The flags can be referenced individually
by symbol name or by the integer that corresponds that flag.
You can also reference a set of flags by using the single
integer that corresponds to that group of flags.
Monk Developer’s Reference 383 SeeBeyond Proprietary and Confidential

Chapter 19

Math-Precision Functions

These functions provide arithmetic operations with a user-definable precision.
Arithmetic with large numbers can be done without any loss in the accuracy of the
results. To use these functions, load stc_monkmath.dll into your environment using the
function, “load-extension” on page 292.

Important: The stc_monkmath.dll is not supported on Compaq Tru64 or Linux machines.
Therefore the math-precision functions are not supported on this platform.

The math-precision functions include the following:

mp-absolute-value on page 385 mp-num-gt on page 398

mp-add on page 386 mp-num-le on page 399

mp-ceiling on page 387 mp-num-lt on page 400

mp-divide on page 388 mp-num-ne on page 401

mp-even? on page 389 mp-odd? on page 402

mp-floor on page 390 mp-positive? on page 403

mp-max on page 391 mp-quotient on page 404

mp-min on page 392 mp-remainder on page 405

mp-modulo on page 393 mp-round on page 406

mp-multiply on page 394 mp-set-precision on page 407

mp-negative? on page 395 mp-subtract on page 408

mp-num-eq on page 396 mp-truncate on page 409

mp-num-ge on page 397
Monk Developer’s Reference 384 SeeBeyond Proprietary and Confidential

Chapter 19
Math-Precision Functions
mp-absolute-value

Syntax

(mp-absolute-value string)

Description

Calculates the absolute value of its input argument (quoted number).

Parameters

Return Value

string
The returned string (quoted number) is the absolute value of the input argument.

Example

(mp-absolute-value "-123456.789") => 123456.789

Name Type Description

string string Operand.
Monk Developer’s Reference 385 SeeBeyond Proprietary and Confidential

Chapter 19
Math-Precision Functions
mp-add

Syntax

(mp-add string1 string2)

Description

Adds two multiple precision numbers.

Parameter

Return Value

string
The returned string (quoted number) is the sum of the two numbers input to the
function.

Example

(mp-add "123.45678" "1.11111") => 124.56789

Name Type Description

string1 string Operand 1.

string2 string Operand 2.
Monk Developer’s Reference 386 SeeBeyond Proprietary and Confidential

Chapter 19
Math-Precision Functions
mp-ceiling

Syntax

(mp-ceiling string)

Description

Calculates the next higher integer value of the input argument (quoted number).

Parameters

Return Value

string
The returned string (quoted integer) is the next higher integer value of the input
argument.

Examples

(mp-ceiling "5.4") => 6

(mp-ceiling "-5.4") => -5

Name Type Description

string string Operand.
Monk Developer’s Reference 387 SeeBeyond Proprietary and Confidential

Chapter 19
Math-Precision Functions
mp-divide

Syntax

(mp-divide string1 string2)

Description

Divides two multiple precision numbers.

Return Value

string
The returned string (quoted number) is the quotient of the two numbers input to
the function.

Example

(mp-divide "123.45678" "2.56") => 48.2253046875

Name Type Description

string1 string Operand 1.

string2 string Operand 2.
Monk Developer’s Reference 388 SeeBeyond Proprietary and Confidential

Chapter 19
Math-Precision Functions
mp-even?

Syntax

 (mp-even? string)

Description

Determines whether the input argument (quoted integer) is an even number.

Parameters

Return Value

Boolean
This function returns #t if the integer is even. Otherwise, it returns #f.

Examples

(mp-even? "123456") => #t

(mp-even? "123455") => #f

Name Type Description

string string Operand.
Monk Developer’s Reference 389 SeeBeyond Proprietary and Confidential

Chapter 19
Math-Precision Functions
mp-floor

Syntax

(mp-floor string)

Description

Determines the previous higher integer value of the input argument (quoted number).

Parameters

Return Value

string
The returned string (quoted integer) is the previous higher integer value of the
input argument.

Examples

(mp-floor "5.4") => "5"

(mp-floor "-5.4") => "-6"

Name Type Description

string string Operand.
Monk Developer’s Reference 390 SeeBeyond Proprietary and Confidential

Chapter 19
Math-Precision Functions
mp-max

Syntax

(mp-max string1 string2)

Description

Calculates the maximum value of two multiple precision numbers.

Parameters

Return Value

string
The returned string (quoted number) is the greater of the two numbers input to the
function.

Examples

(mp-max "123456" "123459") => "123459"

(mp-max "123.456" "123.459") => "123.459"

Name Type Description

string1 string Operand 1.

string2 string Operand 2.
Monk Developer’s Reference 391 SeeBeyond Proprietary and Confidential

Chapter 19
Math-Precision Functions
mp-min

Syntax

(mp-min string1 string2)

Description

Calculate the minimum value of two multiple precision numbers.

Parameters

Return Value

string
The returned string (quoted number) is the lesser of the two numbers input to the
function.

Examples

(mp-min "123456" "123459") => "123456"

(mp-min "123.456" "123.459") => "123.456"

Name Type Description

string1 string Operand 1.

string2 string Operand 2.
Monk Developer’s Reference 392 SeeBeyond Proprietary and Confidential

Chapter 19
Math-Precision Functions
mp-modulo

Syntax

(mp-modulo string1 string2)

Description

Calculates the modulo function on two multiple precision integers.

It performs the same calculation as the mp-remainder function.

Parameters

Return Value

string
The returned string (quoted integer) is the remainder of the integer division of the
two numbers input to the function.

Examples

(mp-modulo "26" "5") => "1"

(mp-modulo "45" "3") => "0"

(mp-modulo "3" "26") => "3"

Name Type Description

string1 string Operand 1.

string2 string Operand 1.
Monk Developer’s Reference 393 SeeBeyond Proprietary and Confidential

Chapter 19
Math-Precision Functions
mp-multiply

Syntax

(mp-multiply string1 string2)

Description

Multiplies two multiple precision numbers.

Parameters

Return Value

string
The returned string (quoted number) is the product of the two numbers input to the
function.

Examples

(mp-multiply "123.45678" "1.11111") => "137.1740628258"

(mp-multiply "45" "3") => "135"

(mp-multiply "3" "123.45678") => "370.37034"

Name Type Description

string1 string Operand 1.

string2 string Operand 2.
Monk Developer’s Reference 394 SeeBeyond Proprietary and Confidential

Chapter 19
Math-Precision Functions
mp-negative?

Syntax

(mp-negative? string)

Description

Determines whether the input argument (quoted number) is a negative number.

Parameters

Return Value

Boolean
This function returns #t if the integer is negative. Otherwise, it returns #f.

Examples

(mp-negative? "-123456") => #t

(mp-negative? "123455") => #f

(mp-negative? "3.8") => #f

Name Type Description

string string Operand.
Monk Developer’s Reference 395 SeeBeyond Proprietary and Confidential

Chapter 19
Math-Precision Functions
mp-num-eq

Syntax

(mp-num-eq string1 string2)

Description

Compares two multiple precision numbers for equality.

Parameters

Return Value

Boolean
This function returns #t if the numbers are equal. Otherwise, it returns #f.

Examples

(mp-num-eq "123.456" "123.456") => #t

(mp-num-eq "123.455" "123.556") => #f

Name Type Description

string1 string Operand 1.

string2 string Operand 2.
Monk Developer’s Reference 396 SeeBeyond Proprietary and Confidential

Chapter 19
Math-Precision Functions
mp-num-ge

Syntax

(mp-num-ge string1 string2)

Description

Compares two multiple precision numbers to determine if one is greater than or equal
to the other.

Parameters

Return Value

Boolean
This function returns #t if string1 is greater than or equal to string2. Otherwise, it
returns #f.

Examples

(mp-num-ge "123.556" "123.556") => #t

(mp-num-ge "123.656" "123.556") => #t

(mp-num-ge "123.456" "123.556") => #f

Name Type Description

string1 string Operand 1.

string2 string Operand 2.
Monk Developer’s Reference 397 SeeBeyond Proprietary and Confidential

Chapter 19
Math-Precision Functions
mp-num-gt

Syntax

(mp-num-gt string1 string2)

Description

Compares two multiple precision numbers to see if one is greater than another.

Parameters

Return Value

Boolean
This function returns #t if string1 is greater than string2. Otherwise, it returns #f.

Examples

(mp-num-gt "123.656" "123.556") => #t

(mp-num-gt "123.456" "123.556") => #f

Name Type Description

string1 string Operand 1.

string2 string Operand 2.
Monk Developer’s Reference 398 SeeBeyond Proprietary and Confidential

Chapter 19
Math-Precision Functions
mp-num-le

Syntax

(mp-num-le string1 string2)

Description

Compares two multiple precision numbers to see if one is less than or equal to the other.

Parameters

Return Value

Boolean
This function returns #t if string1 is less than or equal to string2. Otherwise, it
returns #f.

Examples

(mp-num-le "123.556" "123.556") => #t

(mp-num-le "123.456" "123.556") => #t

(mp-num-le "123.656" "123.556") => #f

Name Type Description

string1 string Operand 1.

string2 string Operand 2.
Monk Developer’s Reference 399 SeeBeyond Proprietary and Confidential

Chapter 19
Math-Precision Functions
mp-num-lt

Syntax

(mp-num-lt string1 string2)

Description

Compares two multiple precision numbers to determine if one is less than another.

Parameters

Return Value

Boolean
This function returns #t if string1 is less than string2. Otherwise, it returns #f.

Examples

(mp-num-lt "123.556" "123.556") => #t

(mp-num-lt "123.656" "123.556") => #f

Name Type Description

string1 string Operand 1.

string2 string Operand 2.
Monk Developer’s Reference 400 SeeBeyond Proprietary and Confidential

Chapter 19
Math-Precision Functions
mp-num-ne

Syntax

(mp-num-ne string1 string2)

Description

Compares two multiple precision numbers to determine if they are not equal to each
other.

Parameters

Return Value

Boolean
This function returns #t if the numbers are not equal. Otherwise, it returns #f.

Examples

(mp-num-ne "123.456" "123.556") => #t

(mp-num-ne "123.456" "123.456") => #f

Name Type Description

string1 string Operand 1.

string2 string Operand 2.
Monk Developer’s Reference 401 SeeBeyond Proprietary and Confidential

Chapter 19
Math-Precision Functions
mp-odd?

Syntax

(mp-odd? string)

Description

Determines whether the input argument (quoted integer) is an odd number.

Parameters

Return Value

Boolean
This function returns #t if the integer is odd. Otherwise, it returns #f.

Examples

(mp-odd? "123455") => #t

(mp-odd? "123456") => #f

Name Type Description

string string Operand.
Monk Developer’s Reference 402 SeeBeyond Proprietary and Confidential

Chapter 19
Math-Precision Functions
mp-positive?

Syntax

(mp-positive? string)

Description

Determines whether the input argument (quoted number) is a positive number.

Parameters

Return Value

Boolean
This function returns #t if the number is positive. Otherwise, it returns #f.

Examples

(mp-positive? "123455") => #t

(mp-positive? "-123465") => #f

Name Type Description

string string Operand.
Monk Developer’s Reference 403 SeeBeyond Proprietary and Confidential

Chapter 19
Math-Precision Functions
mp-quotient

Syntax

(mp-quotient string1 string2)

Description

Divides two multiple precision integers.

Parameters

Return Value

string
The returned string (quoted integer) is the integer portion of the quotient.

Example

(mp-quotient "20" "7") => "2"

Name Type Description

string1 string Operand 1.

string2 string Operand 2.
Monk Developer’s Reference 404 SeeBeyond Proprietary and Confidential

Chapter 19
Math-Precision Functions
mp-remainder

Syntax

(mp-remainder string1 string2)

Description

Calculates the remainder after division of two multiple precision integers.

Parameters

Return Value

string
The returned string (quoted integer) is the remainder of the integer division of the
two numbers input to the function.

Example

(mp-remainder "26" "5") => "1"

Name Type Description

string1 string Operand 1.

string2 string Operand 1.
Monk Developer’s Reference 405 SeeBeyond Proprietary and Confidential

Chapter 19
Math-Precision Functions
mp-round

Syntax

(mp-round string) or

(mp-round string integer)

Description

Rounds off a string argument (quoted number). It also takes a second, optional
parameter indicating the rounding depth to the right of the decimal point.

Parameters

Return Value

string
The returned string is the rounded value of the number input to the function.

Examples

(mp-round "123.456") => "123"

(mp-round "123.567") => "124"

(mp-round "123.95" 1) => "124.0"

(mp-round "123.45678" 0) => "123"

(mp-round "123.45678" 1) => "123.5"

(mp-round "123.45678" 2) => "123.46"

(mp-round "123.45678" 3) => "123.457"

Name Type Description

string string Operand 1.

integer integer Operand 2.
Monk Developer’s Reference 406 SeeBeyond Proprietary and Confidential

Chapter 19
Math-Precision Functions
mp-set-precision

Syntax

(mp-set-precision integer)

Description

Sets the level of precision for the underlying math engine.

You can enter an integer from 32 to 1024. The default precision for the library is set to
128 bits.

Parameters

Return Value

Unspecified.

Examples

(mp-set-precision 256)

(mp-set-precision 12)

Name Type Description

number integer Number of bits.
Monk Developer’s Reference 407 SeeBeyond Proprietary and Confidential

Chapter 19
Math-Precision Functions
mp-subtract

Syntax

(mp-subtract string1 string2)

Description

Subtracts two multiple precision numbers.

Parameters

Return Value

string
The returned string (quoted number) is the difference of the two numbers input to
the function.

Example

(mp-subtract "123.45678" "1.11111") => "122.34567"

Name Type Description

string1 string Operand 1.

string2 string Operand 2.
Monk Developer’s Reference 408 SeeBeyond Proprietary and Confidential

Chapter 19
Math-Precision Functions
mp-truncate

Syntax

(mp-truncate string)

Description

Truncates a multiple precision number, by removing the decimal point and any
numbers following the decimal point.

Parameters

Return Value

string
The returned string (quoted integer) is the integer portion of the number input to
the function.

Example

(mp-truncate "1234.567") => "1234"

Name Type Description

string string Operand 1.
Monk Developer’s Reference 409 SeeBeyond Proprietary and Confidential

Chapter 20

Monk Library Functions

Monk Library functions are those functions created by SeeBeyond specifically for the
user. These functions include:

Basic Library Functions on page 410

Advanced Library Functions on page 454

To use these functions you must load the following directory:

! /eGate/client/monk_library

20.1 Basic Library Functions

allcap? on page 412 leap-year? on page 433

capitalize on page 413 map-string on page 434

char-punctuation? on page 414 not-empty-string? on page 435

char-substitute on page 415 standard-date? on page 436

char-to-char on page 416 standard->julian on page 437

conv on page 417 string-begins-with? on page 438

count-used-children on page 418 string-contains? on page 439

degc->degf on page 419 string-ends-with? on page 440

degf->degc on page 420 string-search-from-left on page 441

diff-two-dates on page 421 string-search-from-right on page 442

display-error on page 422 string->ssn on page 443

empty-string? on page 423 strip-punct on page 444

fail_id on page 424 strip-string on page 445

fail_id_if on page 425 substring=? on page 446

fail_translation on page 426 symbol-table-get on page 447

fail_translation_if on page 427 symbol-table-put on page 448

find-get-after on page 428 trim-string-left on page 449

find-get-before on page 429 trim-string-right on page 450

get-timestamp on page 430 valid-decimal? on page 451
Monk Developer’s Reference 410 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
julian-date? on page 431 valid-integer? on page 452

julian->standard on page 432 verify-type on page 453
Monk Developer’s Reference 411 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
allcap?

Syntax

(allcap? source)

Description

Determines whether or not all ASCII characters are upper case.

Parameters

Return Value

Boolean
Returns #t (true) if all characters in the specified string are upper case. Otherwise, it
returns #f (false).

Examples

(allcap? "ALL CAPS") => #t

(allcap? "Not All Caps") => #f

Name Type Description

source string The expression to be checked.
Monk Developer’s Reference 412 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
capitalize

Syntax

(capitalize string)

Description

Converts any lower-case letter found in the initial position in the specified string to
upper case.

Parameters

Return Value

string
Containing a copy of the string with any character found in the initial position in
the string converted to upper case. If the specified string contains any non-alpha-
numeric character, a lowercase character following the character will be capitalized.

Examples

(capitalize "ABCD") => "ABCD"

(capitalize "abcd") => "Abcd"

(capitalize "AB.abcd") => "AB.Abcd"

Name Type Description

string string The string to test.
Monk Developer’s Reference 413 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
char-punctuation?

Syntax

(char-punctuation? char)

Description

Tests the specified character to determine whether or not it is a punctuation character.

Parameters

Return Value

Boolean
Returns #t (true) if and only if the specified character is a punctuation character.
Otherwise, it returns #f (false).

Examples

(char-punctuation? #\A) => #f

(char-punctuation? #\b) => #f

(char-punctuation? #\3) => #f

(char-punctuation? #\) => #f

(char-punctuation? #\;) => #t

Name Type Description

char character The character to be tested.
Monk Developer’s Reference 414 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
char-substitute

Syntax

(char-substitute source origchar newchar)

Description

Replaces each origchar found with a specified newchar. A copy of the original source with
each occurrence of the origchar replaced with the newchar is returned.

Parameters

Return Value

string
Containing a copy of the original source with each occurrence of the original
character replaced with the new character.

Example

(char-substitute "string a" #\a #\b) => "string b"

Name Type Description

source string The specified source string.

origchar character The character to search for as well as replace.

newchar character The replacement character.
Monk Developer’s Reference 415 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
char-to-char

Syntax

(char-to-char source origchar newchar)

Description

Replaces each found origchar with a specified newchar. Returns a copy of the original
source with each occurrence of the origchar replaced with the newchar.

Parameters

Return Value

string
Containing a copy of the original source with each occurrence of the original
character replaced with the new character. If the origchar is not found, the source
string is returned.

Example

(char-to-char "string a" #\a #\b) => "string b"

Name Type Description

source string The specified source string.

origchar character The character to search for as well as replace.

newchar character The replacement character.
Monk Developer’s Reference 416 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
conv

Syntax

(conv string)

Description

Replaces the question mark with a space. This function is a specific example of the
more general function, char-substitute.

Parameters

Return Value

string
All question marks are replaced by spaces. If no substitution takes place, the
original source string is returned.

Example

(conv "ab?cd?ef") > "ab cd ef"

Name Type Description

string string A specified string to test and convert.
Monk Developer’s Reference 417 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
count-used-children

Syntax

(count-used-children input-path)

Description

Retrieves the count of subnodes found on the input-path of a node which contains data.

This function can be used to determine the number of subnodes within a event
structure if you are performing some type of iterative operation on the structure.

Parameters

Return Value

number
A count of the subnodes found on the input-path of a node which contain data.

Example

(count-used-children ~input%Incoming) => ; (count of subnodes
containing data)

Name Type Description

input-path path The path to be checked for subnodes.
Monk Developer’s Reference 418 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
degc->degf

Syntax

(degc->degf temp)

Description

Converts a temperature from Celsius to Fahrenheit.

Parameters

Return Value

number
Returns a number representing the temperature, in Fahrenheit, resulting from the
conversion.

Examples

(degc->degf 100) => 212.0

(degc->degf 0.0) => 32.0

Name Type Description

temp real number Temperature in degrees Celsius.
Monk Developer’s Reference 419 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
degf->degc

Syntax

(degf->degc temp)

Description

Converts a temperature from Fahrenheit to Celsius.

Parameters

Return Value

number
Returns a number representing the temperature, in degrees Celsius, resulting from
the conversion.

Examples

(degf->degc 212.0) => 100.0

(degf->degc 32.0) => 0.0

Name Type Description

temp real number Temperature in degrees Fahrenheit.
Monk Developer’s Reference 420 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
diff-two-dates

Syntax

(diff-two-dates date1 date2)

Description

diff-two-dates determines the number of days between two standard dates. The
function converts the standard dates into a Julian form and subtracts the second date
from the first. If the second date is later than the first, the result will be negative.

Parameters

Return Value

integer
Represents the number of days between the two user-specified standard dates. The
result may be positive or negative.

Examples

(diff-two-dates "19960602" "19960225") => 98

(diff-two-dates "19960101" "19970101") => -364

Name Type Description

date1 string First date in format YYYYMMDD.

date2 string Second date in format YYYYMMDD.
Monk Developer’s Reference 421 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
display-error

Syntax

(display-error data)

Description

Writes data from the display statement to the error port.

Parameters

Return Value

Unspecified.

Example

(display-error (string-append "i=" i "\n"))

Name Type Description

data string/path The data to display on the error port;
Monk Developer’s Reference 422 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
empty-string?

Syntax

(empty-string? param)

Description

Tests the supplied parameter to determine whether or not it is empty.

Parameters

Return Value

Boolean
Returns #t (true) if the supplied parameter is empty; otherwise, it returns #f (false).

Examples

(empty-string? "string") => #f

(empty-string? "") => #t

Name Type Description

parm string The string to be tested.
Monk Developer’s Reference 423 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
fail_id

Syntax

(fail_id)

Description

Aborts the operation.

Parameters

None.

Return Value

None.

Example

(fail_id)
Monk Developer’s Reference 424 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
fail_id_if

Syntax

(fail_id_if arg)

Description

Aborts the operation if the argument is true.

Parameters

Return Value

None.

Example

(fail_id_if (odd? 3))

Name Type Description

arg Boolean The argument to test.
Monk Developer’s Reference 425 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
fail_translation

Syntax

(fail_translation)

Description

Aborts the operation.

Parameters

None.

Return Value

None.

Example

(fail_translation)
Monk Developer’s Reference 426 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
fail_translation_if

Syntax

(fail_translation_if arg)

Description

Aborts the operation if the argument is true.

Parameters

Return Value

None.

Example

(fail_translation_if (odd? 3))

Name Type Description

arg Boolean The argument to test.
Monk Developer’s Reference 427 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
find-get-after

Syntax

(find-get-after source substring)

Description

Searches the specified source, looking for the first occurrence of the specified substring.

Parameters

Return Value

string
If the substring is found, this function returns all characters of the source from the
beginning of the first occurrence of the substring to the end of the source.

Boolean
If the substring is not found in source, the function returns #f.

Examples

(find-get-after "abcdefghidef" "def") => "defghidef"

(find-get-after "abcdefghi "jkl") => #f

Name Type Description

source string The string to test.

substring string The substring to parse.
Monk Developer’s Reference 428 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
find-get-before

Syntax

(find-get-before source substring)

Description

Searches the specified source character by character, looking for the specified substring.

Parameters

Return Value

string
If the substring is found, this function returns all characters of the source from the
beginning of source up to but not including the beginning of the first occurrence of
the substring.

Boolean
If the substring is not found in the source, the function returns #f.

Examples

(find-get-before "abcdefghidef" "def") => "abc"

(find-get-before "abcdefghi" "jkl") => #f

Name Type Description

source string The string to test.

substring string The substring to parse.
Monk Developer’s Reference 429 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
get-timestamp

Syntax

(get-timestamp format)

Description

Generates a user-specified timestamp and returns it as a string.

Parameters

Return Value

string

Name Description

format The specification of the output format. The syntax for the format
instruction is documented in Format Specification on page 34.
Monk Developer’s Reference 430 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
julian-date?

Syntax

(julian-date? date)

Description

Determines if the seven-digit date provided in the call is a valid Julian date.

Parameters

Return Value

Boolean
Returns #t (true) if the string is a valid Julian date; otherwise, returns a #f (false).

Examples

(julian-date? "2444239") => #t

(julian-date? "244239") => #f

Name Type Description

date string Seven-digit Julian date.
Monk Developer’s Reference 431 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
julian->standard

Syntax

(julian->standard date)

Description

Converts a Julian date to a standard date in the form YYYYMMDD.

Parameters

Return Value

string
A standard date in the form YYYYMMDD.

Examples

(julian->standard "245449") => "19990927"

(julian->standard "2436078") => "19570827"

Name Type Description

date string Julian date.
Monk Developer’s Reference 432 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
leap-year?

Syntax

(leap-year? year)

Description

Determines if the year represents a leap year. The year may be specified as either an
integer or as a string value.

Parameters

Return Value

Boolean
Returns #t (true) if the integer does represent a leap year; otherwise, returns
#f (false).

Examples

(leap-year? 1990) => #f

(leap-year? 1996) => #t

Name Type Description

year integer/
string

A four-digit integer representing a year.
Monk Developer’s Reference 433 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
map-string

Syntax

(map-string function source)

Description

Returns a string that is itself the return from a specified Monk function operating on the
characters in source. You must specify a Monk character function which also returns a
Boolean value as one of its Return Value.

Parameters

Return Value

string
The return value of the Monk function operating on the characters in string.

Example

(map-string char-upcase "a string") => "A STRING"

Name Type Description

function function The Monk function to operate on the source string.

source string The path or string on which to perform the Monk
function.
Monk Developer’s Reference 434 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
not-empty-string?

Syntax

(not-empty-string? param)

Description

Tests the supplied parameter to determine whether or not it contains data.

Parameters

Return Value

Boolean
Returns #t (true) if the supplied parameter is not empty; otherwise, returns
#f (false).

Examples

(not-empty-string? "string") => #t

(not-empty-string? "") => #f

Name Type Description

parm string The string to be tested.
Monk Developer’s Reference 435 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
standard-date?

Syntax

(standard-date? date)

Description

Determines if the date represents a standard date in the form YYYYMMDD.

Parameters

Return Value

Boolean
Returns #t (true) if the supplied string represents a valid standard date of the form
YYYYMMDD; otherwise, returns #f (false).

Examples

(standard-date? "19480115") => #t

(standard-date? "48015") => #f

Name Type Description

date string A standard date in the form YYYYMMDD.
Monk Developer’s Reference 436 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
standard->julian

Syntax

(standard->julian date)

Description

Converts a standard date, in the format YYYYMMDD, specified by the date parameter,
to a Julian date.

Parameters

Return Value

string
Returns the Julian date.

Examples

(standard->julian "19480115") => "2432556"

(standard->julian "18980215") => "2414716"

Name Type Description

date string A standard date in the form YYYYMMDD.
Monk Developer’s Reference 437 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
string-begins-with?

Syntax

(string-begins-with? source substring)

Description

Determines if the source begins with the substring.

Parameters

Return Value

Boolean
Returns #t (true) if the supplied source begins with the supplied substring;
otherwise, returns #f (false).

Examples

(string-begins-with? "This is input" "This") => #t

(string-begins-with? "This is input" "input") => #f

Name Type Description

source string String to test.

substring string Substring to test.
Monk Developer’s Reference 438 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
string-contains?

Syntax

(string-contains? sourcestring substring)

Description

Determines if the substring is a member of the sourcestring.

Parameters

Return Value

Boolean
Returns #t (true) if the substring appears in the source string; otherwise, returns
#f (false).

Example

(string-contains? "lslkjg:jk" "ls") => #t

Name Type Description

sourcestring string String to test.

substring string Substring used to test.
Monk Developer’s Reference 439 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
string-ends-with?

Syntax

(string-ends-with? source substring)

Description

Determines whether or not the source ends with the supplied substring.

Parameters

Return Value

Boolean
Returns #t (true) if the source ends with the supplied substring; otherwise, returns
#f (true).

Examples

(string-ends-with? "This is input" "input") => #t

(string-ends-with? "This is input" "abc") => #f

Name Type Description

source string String to test.

substring string Substring used to test.
Monk Developer’s Reference 440 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
string-search-from-left

Syntax

(string-search-from-left function source)

Description

Searches a string using a specified Monk function to find the first character which
matches. It returns the index of the first character in source that causes function to return
true, or the length of source if no such character exists. You must specify a Monk
character function which returns a Boolean value as its return value.

Parameters

Return Value

integer
Returns the index position of the first character in source that causes function to
return #t (true); otherwise, returns the length of source if no such character exists.

Examples

(string-search-from-left char-numeric? "345 Elm Ave., #7") => 0

(string-search-from-left char-upper-case? "345 Elm Ave., #7") => 4

Name Type Description

function function The Monk character function to perform. This function
must return a Boolean value.

source string The string on which the function performs its character
search.
Monk Developer’s Reference 441 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
string-search-from-right

Syntax

(string-search-from-right function source)

Description

Searches a string using a specified Monk function to find the last character which
matches. It returns the index of the first character in source that causes function to return
true, or -1 if no such character exists. You must specify a Monk character function which
returns a Boolean value as its return value.

Parameters

Return Value

integer
Returns the index position of the first character in source that causes function to
return #t (true); otherwise, returns -1 if no such character exists.

Examples

(string-search-from-right char-numeric? "345 Elm Ave., #7") => 15

(string-search-from-right char-upper-case? "345 Elm Ave., #7") => 8

Name Type Description

function function The Monk character function to perform. This function
must return a Boolean value.

source string The string on which the function performs its character
search.
Monk Developer’s Reference 442 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
string->ssn

Syntax

(string->ssn source)

Description

Converts a string of 9 digits to a Social Security number.

Parameters

Return Value

Returns one of the following:

string
Returns a string containing the valid social security number in the form nnn-nn-
nnnn, where n is a digit between 0 - 9.

Boolean
Returns #f (false) if the source is not exactly nine digits in length.

Examples

(string-ssn "123456789") => "123-45-6789"

(string-ssn "91066") => #f

Name Type Description

source string A number to convert.
Monk Developer’s Reference 443 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
strip-punct

Syntax

(strip-punct source)

Description

Removes punctuation from the specified source.

Parameters

Return Value

string
Returns a string containing a copy of the source with all punctuation removed. If
nothing was stripped, the original string is returned.

Example

(strip-punct "12 Main St., Apt. 22") => "12 Main St Apt22"

Name Type Description

source string The string to manipulate.
Monk Developer’s Reference 444 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
strip-string

Syntax

(strip-string function source)

Description

Removes all characters from the source string which cause the specified Monk function
to evaluate to #t.

Parameters

Return Value

string
Returns a string containing a copy of the source from which all characters that
would cause function char to return true have been removed.

Examples

(strip-string char-numeric? "345 Elm Ave., #7") => " Elm Ave., #"

(strip-string char-whitespace? "A p p l e") => "Apple"

Name Type Description

function char function The Monk function to perform on the character.

source string The string on which the function performs its character
search.
Monk Developer’s Reference 445 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
substring=?

Syntax

(substring=? string1 string2 index)

Description

Checks if the substring of string2 starting at the index offset is equal to string1.

Parameters

Return Value

Boolean
Returns #t (true) if the substring is equal to string1; otherwise, returns #f (false).

Examples

(substring=? "abc" "xyzabc" 3) #t

(substring=? "abc" "xyzabc" 0) #f

Name Type Description

string1 string The string that may be equal to the substring.

string2 string The string that contains the substring indicated by the index
offset.

index integer Index offset of the substring.
Monk Developer’s Reference 446 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
symbol-table-get

Syntax

(symbol-table-get key:string)

Description

Queries the symbol table for the specified key string.

Parameters

Return Value

Returns one of the following:

symbol
The symbol for the specified key string.

Boolean
Returns #f (false) if the string is not found.

Example

(symbol-table-put ’one "1")
(symbol-table-put ’two "2")
(symbol-table-put ’three "3")
(display (symbol-table-get ’three))

results in the string “3” being displayed.

Name Type Description

key:string symbol The name of the string.
Monk Developer’s Reference 447 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
symbol-table-put

Syntax

(symbol-table-put key:string value)

Description

Assigns a string value to a symbol.

Parameters

Return Value

Returns one of the following:

symbol
The symbol for the specified key string.

Boolean
Returns #f (false) if the string is not found.

Examples

(symbol-table-put ’one "1")
(symbol-table-put ’two "2")
(symbol-table-put ’three "3")

Name Type Description

key:string The name of the string.

value The value assigned to the symbol.
Monk Developer’s Reference 448 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
trim-string-left

Syntax

(trim-string-left source substring)

Description

Removes the specified substring from the source.

Parameters

Return Value

string
Returns a copy of the source with all leading occurrences of the substring removed.

Example

(trim-string-left "abcdef" "abc") => "def"

Name Type Description

source string String to test.

substring string Substring to remove.
Monk Developer’s Reference 449 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
trim-string-right

Syntax

(trim-string-right source substring)

Description

Removes the specified substring from the source.

Parameters

Return Value

string
Returns a copy of the source with all trailing occurrences of the substring removed.

Example

(trim-string-right "abcdef" "def") > "abc"

Name Type Description

source string The string to test.

substring string The substring to remove.
Monk Developer’s Reference 450 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
valid-decimal?

Syntax

(valid-decimal? number)

Description

Tests the number to determine if it is a valid decimal number.

Parameters

Return Value

Boolean
Returns #t if the supplied number is a valid decimal number. Otherwise, it returns
#f.

Examples

(valid-decimal? "44.") => #t

(valid-decimal? "44.0") => #t

(valid-decimal? "44") => #f

(valid-decimal? "91066") => #f

Name Type Description

number string The number to test.
Monk Developer’s Reference 451 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
valid-integer?

Syntax

(valid-integer? number)

Description

Tests number to determine if it is a valid integer number.

Parameters

Return Value

Boolean
Returns #t if the supplied number is an integer number. Otherwise, it returns #f.

Examples

(valid-integer? "44") => #t

(valid-integer? "818") => #t

(valid-integer? "123.5") => #f

Name Type Description

number string The number to test.
Monk Developer’s Reference 452 SeeBeyond Proprietary and Confidential

Chapter 20 20.1
Monk Library Functions Basic Library Functions
verify-type

Syntax

(verify-type checkfunc param)

Description

Checks that the argument answers #t to the specified Monk function.

If the argument answers #t, processing continues. Otherwise an exception condition
code is returned which terminates processing. This function is generally used for
internal run-time checking. The check function specified must be a Monk function
which returns a Boolean value.

Parameters

Return Value

None.

Examples

(verify-type number? 3) => ; (continue)

(verify-type number? a) => ; (exception)

Name Type Description

checkfunc function The Monk function to test.

param integer The argument to test.
Monk Developer’s Reference 453 SeeBeyond Proprietary and Confidential

Chapter 20 20.2
Monk Library Functions Advanced Library Functions
20.2 Advanced Library Functions
Before using any of the advanced library functions, you must load them. This is
accomplished by either adding monk_library/advanced into the monk path or
including the line

(load-directory "monk_library/advanced")

in the Collaboration Rule (.tsc) file where the advanced library function is being used.

The Advanced Library Functions are listed below:

calc-surface-bsa on page 455

calc-surface-gg on page 456

cm->in on page 457

get-2-ssn on page 458

get-3-ssn on page 459

get-4-ssn on page 460

get-apartment on page 461

get-city on page 462

get-first-name on page 463

get-last-name on page 464

get-middle-name on page 465

get-state on page 466

get-street-address on page 467

get-zip on page 468in->cm on page 469

lb->oz on page 470

oz->gm on page 471

oz->lb on page 472

valid-phone? on page 473

valid-ssn? on page 474
Monk Developer’s Reference 454 SeeBeyond Proprietary and Confidential

Chapter 20 20.2
Monk Library Functions Advanced Library Functions
calc-surface-bsa

Syntax

(calc-surface-bsa height weight)

Description

Calculates the surface area of a human body in square meters, based on an individual’s
height, in centimeters, and weight, in kilograms.

The formula for determining the body surface area is: bsa = 0.024265 (weight)0.5378
(height)0.3964. These calculations are generally performed on newborn babies for
determining proper medication doses.

Parameters

Return Value

number
Returns the calculated body surface area in square meters.

Examples

(calc-surface-bsa 144.0 100) => 2.0708812096829

(calc-surface-bsa "19960101" "19970101") => -364

Name Type Description

height number or numeric string Height of the individual in centimeters.

weight number or numeric string Weight of the individual in kilograms.
Monk Developer’s Reference 455 SeeBeyond Proprietary and Confidential

Chapter 20 20.2
Monk Library Functions Advanced Library Functions
calc-surface-gg

Syntax

(calc-surface-gg height weight)

Description

Calculates the surface area of a human body using the Gehan-George formula.

The function takes the height of an individual in centimeters and the weight in
kilograms and uses the formula ln (bsa) = 3.75080 + 0.42246 ln (height) + 0.51456 ln
(weight), where ln is the loge (natural log), to calculate the body surface area in square
meters. These calculations are generally performed on newborn babies for determining
proper medication doses.

Parameters

Return Value

number
Returns the calculated body surface area in square meters.

Example

(calc-surface-gg 12 12) => 0.24113634200082

 Name Type Description

height number or numeric string Height of the individual in centimeters.

weight number or numeric string Weight of the individual in kilograms.
Monk Developer’s Reference 456 SeeBeyond Proprietary and Confidential

Chapter 20 20.2
Monk Library Functions Advanced Library Functions
cm->in

Syntax

(cm->in number)

Description

Converts a number from centimeters to inches.

Parameters

Return Value

number
Returns the number of inches resulting from the conversion.

Examples

(cm->in 2.54) => 1.0

(cm->in 5.08) => 2.0

Name Type Description

number real number Number of centimeters.
Monk Developer’s Reference 457 SeeBeyond Proprietary and Confidential

Chapter 20 20.2
Monk Library Functions Advanced Library Functions
get-2-ssn

Syntax

(get-2-ssn ssn)

Description

Parses the specified social security number and returns the second group of digits.

Parameters

Return Value

number
Returns the second group of digits in a social security number.

Example

(get-2-ssn "123-45-6789") > "45"

Name Type Description

ssn string Social security number. A valid ssn string consists of nine digits with
a hyphen following the third and fifth digits.
Monk Developer’s Reference 458 SeeBeyond Proprietary and Confidential

Chapter 20 20.2
Monk Library Functions Advanced Library Functions
get-3-ssn

Syntax

(get-3-ssn ssn)

Description

Parses the specified social security number and returns the first group of digits.

Parameters

Return Value

number
Returns the first group of digits in a social security number.

Example

(get-3-ssn "123-45-6789") => "123"

Name Type Description

ssn string Social security number. A valid ssn string consists of nine digits with
a hyphen following the third and fifth digits.
Monk Developer’s Reference 459 SeeBeyond Proprietary and Confidential

Chapter 20 20.2
Monk Library Functions Advanced Library Functions
get-4-ssn

Syntax

(get-4-ssn ssn)

Description

Parses the specified social security number and returns the third group of digits.

Parameters

Return Value

Returns the third group of digits in a social security number.

Example

(get-4-ssn "123-45-6789") => "6789"

Name Type Description

ssn string Social security number. A valid ssn string consists of nine
digits with a hyphen following the third and fifth digits.
Monk Developer’s Reference 460 SeeBeyond Proprietary and Confidential

Chapter 20 20.2
Monk Library Functions Advanced Library Functions
get-apartment

Syntax

(get-apartment address)

Description

Returns the apartment information from a string formatted as ADDRESS,
APARTMENT, that is, everything after the comma.

Monk does not check the validity of the string, only that a comma exists within it.

Parameters

Return Value

string
Returns a string containing the apartment information from a string formatted as
ADDRESS, APARTMENT, that is, everything after the comma.

Examples

(get-apartment "12 Main St., Apt. 22") => "Apt. 22"

(get-apartment "345 Main St., #7") => "#7"

Name Type Description

address string Street address.
Monk Developer’s Reference 461 SeeBeyond Proprietary and Confidential

Chapter 20 20.2
Monk Library Functions Advanced Library Functions
get-city

Syntax

(get-city address)

Description

Returns the city field from the string formatted as CITY, STATE ZIP.

Monk does not check the validity of the string, only that a comma exists within it.

Parameters

Return Value

string
Returns a string containing the city field from the string formatted as CITY, STATE
ZIP.

Example

(get-city "Arcadia, CA 91066") => "Arcadia"

Name Type Description

address string Address formatted as CITY, STATE ZIP.
Monk Developer’s Reference 462 SeeBeyond Proprietary and Confidential

Chapter 20 20.2
Monk Library Functions Advanced Library Functions
get-first-name

Syntax

(get-first-name name)

Description

Returns the first name in a string formatted as LAST, FIRST MIDDLE; that is everything
after the first comma and before the next space.

Monk does not check the validity of the string, only that a comma exists within it.

Parameters

Return Value

string
Returns a string containing the first name in a string formatted as LAST, FIRST
MIDDLE; that is, everything after the first comma and before the next space.

Example

(get-first-name "Astor, John Jacob") => "John"

Name Type Description

name string Personal name.
Monk Developer’s Reference 463 SeeBeyond Proprietary and Confidential

Chapter 20 20.2
Monk Library Functions Advanced Library Functions
get-last-name

Syntax

(get-last-name name)

Description

Returns the last name in a string formatted as “LAST, FIRST MIDDLE”; that is
everything before the comma.

Monk does not check the validity of the string, only that a comma exists within it.

Parameters

Return Value

string
Returns a string containing the last name in a string formatted as “LAST, FIRST
MIDDLE”; that is, everything before the comma.

Example

(get-last-name "Astor, John Jacob") => "Astor"

Name Type Description

name string Personal name.
Monk Developer’s Reference 464 SeeBeyond Proprietary and Confidential

Chapter 20 20.2
Monk Library Functions Advanced Library Functions
get-middle-name

Syntax

(get-middle-name name)

Description

Returns the middle name in a string formatted as “LAST, FIRST MIDDLE”; that is
everything following the space after the first name.

Monk does not check the validity of the string, only that a comma exists within it. If the
data specifies a dual first name, for example Mary Jo Elizabeth Smith, this function will
interpret “Jo” as the middle name.

Parameters

Return Value

string
Returns a string containing the middle name in a string formatted as “LAST, FIRST
MIDDLE”; that is, everything after the space.

Example

(get-middle-name "Astor, John Jacob") => "Jacob"

Name Type Description

name string Personal name.
Monk Developer’s Reference 465 SeeBeyond Proprietary and Confidential

Chapter 20 20.2
Monk Library Functions Advanced Library Functions
get-state

Syntax

(get-state address)

Description

Returns the state field from the string formatted as “CITY, STATE ZIP.”

Monk does not check the validity of the string, only that a comma exists within it.

Parameters

Return Value

string
Returns a string with the state field from the string formatted as CITY,STATE ZIP.

Example

(get-state "Arcadia, CA 91066") => "CA"

Name Type Description

address string Address in the form CITY, STATE, ZIP.
Monk Developer’s Reference 466 SeeBeyond Proprietary and Confidential

Chapter 20 20.2
Monk Library Functions Advanced Library Functions
get-street-address

Syntax

(get-street-address address)

Description

Returns the address from a string formatted as ADDRESS, APARTMENT, that is
everything before the comma. If no comma is specified, it returns the entire string.

Monk does not check the validity of the string, only that a comma exists within it.

Parameters

Return Value

string
Returns a string with the street address from the supplied string, that is, everything
before the first comma. If the string does not contain a comma, the function returns
the entire string.

Examples

(get-street-address "12 Main St., Apt. 22") => "12 Main St."

(get-street-address "345 Elm Ave., #7") => "345 Elm Ave."

(get-street-address "345 Elm Ave. #7") => "345 Elm Ave. #7"

Name Type Description

address string Street address.
Monk Developer’s Reference 467 SeeBeyond Proprietary and Confidential

Chapter 20 20.2
Monk Library Functions Advanced Library Functions
get-zip

Syntax

(get-zip address)

Description

Returns the zip code field from the string formatted as CITY, STATE ZIP.

Monk does not check the validity of the string, only that a comma exists within it.

Parameters

Return Value

string
Returns a string with the zip code field from the supplied string formatted as CITY,
STATE ZIP.

Example

(get-zip "Arcadia, CA 91066") => "91066"

Name Type Description

address string Address in the form CITY, STATE, ZIP.
Monk Developer’s Reference 468 SeeBeyond Proprietary and Confidential

Chapter 20 20.2
Monk Library Functions Advanced Library Functions
in->cm

Syntax

(in->cm number)

Description

Converts a number from inches to centimeters.

Parameters

Return Value

number
Returns a number representing the number of centimeters resulting from the
conversion.

Examples

(in->cm 10.0) => 25.4

(in->cm 39.4) => 100.076

Name Type Description

number real number Number of inches.
Monk Developer’s Reference 469 SeeBeyond Proprietary and Confidential

Chapter 20 20.2
Monk Library Functions Advanced Library Functions
lb->oz

Syntax

(lb->oz number)

Description

Converts a number expressed as weight in pounds number and converts this number
from pounds to ounces.

Parameters

Return Value

number
Returns a number representing the weight in ounces resulting from the conversion.

Examples

(lb->oz 2.0) => 32.0

(lb->oz 6.25) => 100.0

Name Type Description

number real number Weight in pounds.
Monk Developer’s Reference 470 SeeBeyond Proprietary and Confidential

Chapter 20 20.2
Monk Library Functions Advanced Library Functions
oz->gm

Syntax

(oz->gm number)

Description

Converts a number which represents weight in ounces to grams.

Parameters

Return Value

number
Returns a number representing weight in grams resulting from the conversion.

Examples

(oz->gm 0.035) => .99225

(oz->gm 1.0) => 28.35

Name Type Description

number real number Weight in ounces.
Monk Developer’s Reference 471 SeeBeyond Proprietary and Confidential

Chapter 20 20.2
Monk Library Functions Advanced Library Functions
oz->lb

Syntax

(oz->lb number)

Description

Converts a weight in ounces to pounds.

Parameters

Return Value

number
Returns a number representing the weight in pounds resulting from the conversion.

Examples

(oz->lb 32) => 2.0

(oz->lb 100) => 6.25

Name Type Description

number real number Weight in ounces.
Monk Developer’s Reference 472 SeeBeyond Proprietary and Confidential

Chapter 20 20.2
Monk Library Functions Advanced Library Functions
valid-phone?

Syntax

(valid-phone? number)

Description

Tests the supplied number to determine if it is a valid phone number

A valid phone number is a string of the form NN (NNN) NNN-NNNN, where the first
two groups of characters (country code and area code) are both optional, and there can
be any number of spaces between the three character groups. Parenthesis are required
when entering an area code.

Parameters

Return Value

Boolean
Returns #t if the supplied number is a phone number. Otherwise, it returns #f.

Examples

(valid-phone? "44(326)323-5909") => #t

(valid-phone? "(818)445-7000") => #t

(valid-phone? "123-45-6789") => #f

(valid-phone? "91066") => #f

Name Type Description

number string Number to test.
Monk Developer’s Reference 473 SeeBeyond Proprietary and Confidential

Chapter 20 20.2
Monk Library Functions Advanced Library Functions
valid-ssn?

Syntax

(valid-ssn? number)

Description

Tests the supplied number to determine if it is a valid social security number.

A valid social security number is a string formatted as DDD-DD-DDDD, where all the
D’s are digits. Dashes are required between the three groups making up the social
security number.

Parameters

Return Value

Boolean
Returns #t if the supplied number is a social security number. Otherwise, it returns
#f.

Examples

(valid-ssn? "123-45-6789") => #t

(valid-ssn? "91066") => #f

Name Type Description

number string The number to test.
Monk Developer’s Reference 474 SeeBeyond Proprietary and Confidential

Chapter 21

International Conversion Functions

In the US we have, for the most part, ASCII and to a lesser extent EBCDIC for character
encoding. Other countries, on-the-other-hand, have several widely used schemes for
encoding characters. For example, in Japan to encode Japanese characters:

! UNIX uses EUC

! WINDOWS uses SJIS

! MAINFRAMES use EBCDICJ and

! EMAIL uses JIS

The Monk engine uses SJIS for encoding Japanese characters in its internal processing.
Therefore, it is necessary at times to convert data that uses a different character
encoding scheme to SJIS before it can be further processed by the Monk engine. It is also
necessary to be able to convert the product of a Monk program back to these other
character encoding schemes.

arabic2utf8 on page 478 sjis2euc_g on page 517

big52utf8 on page 479 sjis2jef on page 518

clear-gaiji-table on page 480 sjis2jef_g on page 519

cyrillic2utf8 on page 481 sjis2jef_m on page 520

ebcdic2sjis on page 482 sjis2jef_m_g on page 521

ebcdic2sjis_g on page 483 sjis2jef_p on page 522

ebcdic2uhc on page 484 sjis2jef_p_g on page 523

ebcdic2uhc_m on page 485 sjis2jipse on page 524

euc2sjis on page 486 sjis2jipse_g on page 525

euc2sjis_g on page 487 sjis2jis on page 526

gb23122utf8 on page 488 sjis2jis_g on page 527

greek2utf8 on page 489 sjis2sjis on page 528

hebrew2utf8 on page 490 sjis2utf8 on page 529

init-gaiji on page 491 sjis2utf8_g on page 530

init-utf8gaiji on page 492 uhc2ebcdic on page 531

jef2sjis on page 493 uhc2ebcdic_m on page 532

jef2sjis_g on page 494 uhc2ksc on page 533
Monk Developer’s Reference 475 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
To use these functions you must load the following directories:

! /eGate/client/monk_library/conversions/japanese

! /eGate/client/monk_library/conversions/korean

! /eGate/client/monk_library/conversions/UTF8

The UTF8 Conversion Utility

Additional support for UTF8 conversion is provided through the UTF8 Conversion
utility—utf8convert.exe. The UTF8 conversion utility is used to convert Collaboration
Rules Scripts (.tsc), Event Type Definitions (.ssc), and XML files into UTF8 format.

The UTF8 Conversion utility is located in:

! /eGate/client/bin/

jef2sjis_m on page 495 uhc2ksc_m on page 534

jef2sjis_m_g on page 496 uhc2uhc on page 535

jef2sjis_p on page 497 uhc2utf8 on page 536

jef2sjis_p_g on page 498 utf82arabic on page 537

jipse2sjis on page 499 utf82big5 on page 538

jipse2sjis_g on page 500 utf82cyrillic on page 539

jis2sjis on page 501 utf82gb2312 on page 540

jis2sjis_g on page 502 utf82greek on page 541

latin12utf8 on page 503 utf82hebrew on page 542

latin22utf8 on page 504 utf82latin1 on page 543

latin32utf8 on page 505 utf82latin2 on page 544

latin42utf8 on page 506 utf82latin3 on page 545

latin52utf8 on page 507 utf82latin4 on page 546

latin62utf8 on page 508 utf82latin5 on page 547

latin72utf8 on page 509 utf82latin6 on page 548

latin82utf8 on page 510 utf82latin7 on page 549

latin92utf8 on page 511 utf82latin8 on page 550

set-gaiji-table on page 512 utf82latin9 on page 551

set-utf8gaiji-table on page 513 utf82sjis on page 552

sjis2ebcdic on page 514 utf82sjis_g on page 553

sjis2ebcdic_g on page 515 utf82uhc on page 554

sjis2euc on page 516 utf82utf8 on page 555
Monk Developer’s Reference 476 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
UTF8 Conversion utility usage

utf8convert -sgbuacghl[123456789] -XM [-i input] [- o output]

Table 6 Command Arguments for utf8convert

Parameter Description

-s ShiftJIS table

-g GB2312 file

-b Big-5 file

-u UHC file

-a Arabic file

-c Cyrillic file

-k Greek file

-h Hebrew file

-l[1 2 3 4 5 6 7 8] Latin file

[-X:] XML file (option)

[-M:] MONK (.tsc or .ssc) file (option)

[-i input] Multi-byte file name (option)

[-o output] UTF-8 file name (option)
Monk Developer’s Reference 477 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
arabic2utf8

Syntax

(arabic2utf8 string)

Description

Converts data encoded using the Arabic character encoding scheme to UFT8. The
character type of the converted string is set to :UTF8.

Parameters

Return Value

string
The converted string in UFT8.

Example

(arabic2utf8 "ABC")
=> ABC

Name Type Description

string string The Arabic string to be converted.
Monk Developer’s Reference 478 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
big52utf8

Syntax

(big52utf8 string)

Description

Converts data encoded using the Big-5 character encoding scheme to UTF8. The
character type of the converted string is set to :UTF8.

Parameters

Return Value

string
The converted string in UTF8.

Example

(big52utf8 "ABC")
=> ABC

Name Type Description

string string The Big-5 encoded string to be converted.
Monk Developer’s Reference 479 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
clear-gaiji-table

Syntax

(clear-gaiji-table function-name)

Description

Removes all Gaiji conversion tables associated with the function-name.

Parameters

Return Value

None.

Example

(clear-gaiji-table "sjis2euc")

Additional Information

A table that contained a complete Gaiji conversion would be too large for efficient
processing. Consequently, a complete Gaiji conversion is typically broken up into
multiple tables. The custom Gaiji conversion functions can use only one table at a time,
with the table in use called the active table. The active table and is set by the function
set-gaiji-table. In order to use a different Gaiji table from the active table, you must first
call clear-gaiji-table before setting a new active table.

Name Type Description

function-name string Function name whose conversion tables are to be
removed.
Monk Developer’s Reference 480 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
cyrillic2utf8

Syntax

(cyrillic2utf8 string)

Description

Converts data encoded using the cyrillic character encoding scheme to UTF8. The
character type of the converted string is set to :UTF8.

Parameters

Return Value

string
The converted string in UTF8.

Example

(cyrillic2utf8 "ABC")
=> ABC

Name Type Description

string string The cyrillic encoded string to be converted.
Monk Developer’s Reference 481 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
ebcdic2sjis

Syntax

(ebcdic2sjis string)

Description

Converts data encoded using the EBCDIC-J character encoding scheme to SJIS. The
character type of the converted string is set to :SJIS.

Parameters

Return Value

string
The converted string in SJIS.

Example

(ebcdic2sjis "ABC")
=> íóú

Name Type Description

string string The EBCDIC encoded string to be converted.
Monk Developer’s Reference 482 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
ebcdic2sjis_g

Syntax

(ebcdic2sjis_g string)

Description

Converts data encoded using the EBCDIC character encoding scheme to SJIS using a
user-defined custom Gaiji conversion table associated with this function. The character
type of the converted string is set to :SJIS.

Parameters

Return Value

string
The converted string in SJIS.

Example

(init-gaiji)
(set-gaiji-table "sjis2euc" "convert1")
(ebcdic2sjis_g "ABC")

=> íóú

Name Type Description

string string The EBCDIC encoded string to be converted.
Monk Developer’s Reference 483 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
ebcdic2uhc

Syntax

(ebcdic2uhc string)

Description

Converts data encoded using the EBCDIC-J character encoding scheme to UHC. The
character type of the converted string is set to :UHC.

Parameters

Return Value

string
The converted string in UHC.

Example

(ebcdic2uhc "ABC")
=> ¼d

Name Type Description

string string The EBCDIC encoded string to be converted.
Monk Developer’s Reference 484 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
ebcdic2uhc_m

Syntax

(ebcdic2uhc_m string)

Description

Converts single and/or double byte data encoded using the EBCDIC-J character
encoding scheme to UHC. The character type of the converted string is set to :UHC.

Parameters

Return Value

string
The converted string in UHC.

Example

(ebcdic2uhc_m "ABC")
=> ABC

Name Type Description

string string The EBCDIC encoded string to be converted.
Monk Developer’s Reference 485 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
euc2sjis

Syntax

(euc2sjis string)

Description

Converts data encoded using the EUC character encoding scheme to SJIS. The character
type of the converted string is set to :SJIS.

Parameters

Return Value

string
The converted string in SJIS.

Example

(euc2sjis "ABC")
=> ABC

Name Type Description

string string The EUC encoded string to be converted.
Monk Developer’s Reference 486 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
euc2sjis_g

Syntax

(euc2sjis_g string)

Description

Converts data encoded using the EUC character encoding scheme to SJIS using a user-
defined custom Gaiji conversion table associated with this function. The character type
of the converted string is set to :SJIS.

Parameters

Return Value

string
The converted string in SJIS.

Example

(init-gaiji)
(set-gaiji-table "sjis2euc" "convert1")
(euc2sjis_g "ABC")

=> ABC

Name Type Description

string string The EUC encoded string to be converted.
Monk Developer’s Reference 487 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
gb23122utf8

Syntax

(gb23122utf8 string)

Description

Converts data encoded using the GB2312 character encoding scheme to UTF8. The
character type of the converted string is set to :UTF8.

Parameters

Return Value

string
The converted string in UTF8.

Example

(gb23122utf8 "ABC")
=> ABC

Name Type Description

string string The GB2312 string to be converted.
Monk Developer’s Reference 488 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
greek2utf8

Syntax

(greek2utf8 string)

Description

Converts data encoded using the Greek character encoding scheme to UTF8. The
character type of the converted string is set to :UTF8.

Parameters

Return Value

string
The converted string in UTF8.

Example

(greek2utf8 "ABC")
=> ABC

Name Type Description

string string The Greek encoded string to be converted.
Monk Developer’s Reference 489 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
hebrew2utf8

Syntax

(hebrew2utf8 string)

Description

Converts data encoded using the Hebrew character encoding scheme to UTF8. The
character type of the converted string is set to :UTF8.

Parameters

Return Value

string
The converted string in UTF8.

Example

(hebrew2utf8 "ABC")
=> ABC

Name Type Description

string string The Hebrew encoded string to be converted.
Monk Developer’s Reference 490 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
init-gaiji

Syntax

(init-gaiji)

Description

Initializes the Gaiji Descriptor in the Monk engine.

Important: You must call this function before using any of the Japanese Character conversion
functions that use custom Gaiji tables.

Parameters

None.

Return Value

None.

Example

(init-gaiji)
(set-gaiji-table "sjis2euc" "convert1")
Monk Developer’s Reference 491 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
init-utf8gaiji

Syntax

(init-utf8gaiji)

Description

Initializes the UTF8-Gaiji Descriptor in the Monk engine.

Important: You must call this function before using any of the UTF8 Japanese Character
conversion functions that use custom Gaiji tables.

Parameters

None.

Return Value

None.

Example

(init-utf8gaiji)
(set-utf8gaiji-table "utf8big5")
Monk Developer’s Reference 492 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
jef2sjis

Syntax

(jef2sjis string)

Description

Converts data encoded using the JEF character encoding scheme to SJIS. The character
type of the converted string is set to :SJIS.

Parameters

Return Value

string
The converted string in SJIS.

Example

(jef2sjis "ABC")
=> ABC

Name Type Description

string string The JEF encoded string to be converted.
Monk Developer’s Reference 493 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
jef2sjis_g

Syntax

(jef2sjis_g string)

Description

Converts data encoded using the JEF character encoding scheme to SJIS using a user-
defined custom Gaiji conversion table associated with this function. The character type
of the converted string is set to :SJIS.

Parameters

Return Value

string
The converted string in SJIS.

Example

(init-gaiji)
(set-gaiji-table "sjis2euc" "convert1")
(jef2sjis_g "ABC")

=> ABC

Name Type Description

string string The JEF encoded string to be converted.
Monk Developer’s Reference 494 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
jef2sjis_m

Syntax

(jef2sjis_m string)

Description

Converts single and/or double byte data encoded using the JEF character encoding
scheme to SJIS. The character type of the converted string is set to :SJIS.

Parameters

Return Value

string
The converted string in SJIS.

Example

(jef2sjis_m "ABC")
=> ABC

Name Type Description

string string The JEF encoded string to be converted.
Monk Developer’s Reference 495 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
jef2sjis_m_g

Syntax

(jef2sjis_m_g string)

Description

Converts single and/or double byte JEF string using a user-defined custom Gaiji
conversion table associated with this function. The character type of the converted
string is set to :SJIS.

Parameters

Return Value

string
The converted string in SJIS.

Example

(init-gaiji)
(set-gaiji-table "sjis2euc" "convert1")
(jef2sjis_m_g "ABC")

=> ABC

Name Type Description

string string The JEF encoded string to be converted.
Monk Developer’s Reference 496 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
jef2sjis_p

Syntax

(jef2sjis_p string conversion_mode)

Description

Converts data encoded using the JEF character encoding scheme to SJIS using a
hexadecimal KI (Kanji In) code. The character type of the converted string is set to :SJIS.

Parameters

Return Value

string
The converted string in SJIS.

Example

(jef2sjis_p "ABC" 2)
=> ABC

Name Type Description

string string The JEF encoded string to be converted.

conversion_mode int Indicates the number of bytes in the string to be
converted.
! 0 = Mixed single and/or double byte.
! 1 = Single byte character.
! 2 = Double byte character.
Monk Developer’s Reference 497 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
jef2sjis_p_g

Syntax

(jef2sjis_p_g string conversion_mode)

Description

Converts data encoded using the JEF character encoding scheme to SJIS using a
hexadecimal KI (Kanji In) code and a user-defined custom Gaiji conversion table. The
character type of the converted string is set to :SJIS.

Parameters

Return Value

string
The converted string in SJIS.

Example

(init-gaiji)
(set-gaiji-table "sjis2euc" "convert1")
(jef2sjis_p_g "ABC" 2)

=> ABC

Name Type Description

string string The JEF encoded string to be converted.

conversion_mode int Indicates the number of bytes in the string to be
converted.
! 0 = Mixed single and/or double byte.
! 1 = Single byte character.
! 2 = Double byte character.
Monk Developer’s Reference 498 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
jipse2sjis

Syntax

(jipse2sjis string type)

Description

Converts data encoded using the JIPSE character encoding scheme to SJIS. The
character type of the converted string is set to :SJIS.

Parameters

Return Value

string
The converted string in SJIS.

Example

(euc2sjis "ABC" 0)
=> íóú

Name Type Description

string string The EUC encoded string to be converted.

type integer Describes the type of characters in the string being
converted. One of the following:
! 0 = Mixed single and/or double byte.
! 1 = Single byte character.
! 2 = Double byte character.
Monk Developer’s Reference 499 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
jipse2sjis_g

Syntax

(jipse2sjis_g string type)

Description

Converts data encoded using the JIPSE character encoding scheme to SJIS using a user-
defined custom Gaiji conversion table associated with this function. The character type
of the converted string is set to :SJIS.

Parameters

Return Value

string
The converted string.

Example

(init-gaiji)
(set-gaiji-table "sjis2euc" "convert1")
(jipse2sjis_g "ABC" 0)

=> íóú

Name Type Description

string string The EUC encoded string to be converted.

type integer Describes the type of characters in the string being
converted. One of the following:
! 0 = Mixed single and/or double byte.
! 1 = Single byte character.
! 2 = Double byte character.
Monk Developer’s Reference 500 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
jis2sjis

Syntax

(jis2sjis string)

Description

Converts data encoded using the JIS character encoding scheme to SJIS. The character
type of the converted string is set to :SJIS.

Parameters

Return Value

string
The converted string in SJIS.

Example

(jis2sjis "ABC")
=> ABC

Name Type Description

string string The JIS encoded string to be converted.
Monk Developer’s Reference 501 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
jis2sjis_g

Syntax

(jis2sjis_g string)

Description

Converts data encoded using the JIS character encoding scheme to SJIS using a
user-defined custom Gaiji conversion table associated with this function. The character
type of the converted string is set to :SJIS.

Parameters

Return Value

string
The converted string in SJIS.

Example

(init-gaiji)
(set-gaiji-table "sjis2euc" "convert1")
(jis2sjis_g "ABC")

=> ABC

Name Type Description

string string The JIS encoded string to be converted.
Monk Developer’s Reference 502 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
latin12utf8

Syntax

(latin12uft8 string)

Description

Converts data encoded using the Latin 1 character encoding scheme to UFT8. The
character type of the converted string is set to :UTF8.

Parameters

Return Value

string
The converted string in UFT8.

Example

(latin12uft8 "ABC")
=> ABC

Name Type Description

string string The Latin 1 string to be converted.
Monk Developer’s Reference 503 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
latin22utf8

Syntax

(latin22uft8 string)

Description

Converts data encoded using the Latin 2 character encoding scheme to UFT8. The
character type of the converted string is set to :UTF8.

Parameters

Return Value

string
The converted string in UFT8.

Example

(latin22uft8 "ABC")
=> ABC

Name Type Description

string string The Latin 2 string to be converted.
Monk Developer’s Reference 504 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
latin32utf8

Syntax

(latin32uft8 string)

Description

Converts data encoded using the Latin 3 character encoding scheme to UFT8. The
character type of the converted string is set to :UTF8.

Parameters

Return Value

string
The converted string in UFT8.

Example

(latin32uft8 "ABC")
=> ABC

Name Type Description

string string The Latin 3 string to be converted.
Monk Developer’s Reference 505 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
latin42utf8

Syntax

(latin42uft8 string)

Description

Converts data encoded using the Latin 4 character encoding scheme to UFT8. The
character type of the converted string is set to :UTF8.

Parameters

Return Value

string
The converted string in UFT8.

Example

(latin42uft8 "ABC")
=> ABC

Name Type Description

string string The Latin 4 string to be converted.
Monk Developer’s Reference 506 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
latin52utf8

Syntax

(latin52uft8 string)

Description

Converts data encoded using the Latin 5 character encoding scheme to UFT8. The
character type of the converted string is set to :UTF8.

Parameters

Return Value

string
The converted string in UFT8.

Example

(latin52uft8 "ABC")
=> ABC

Name Type Description

string string The Latin 5 string to be converted.
Monk Developer’s Reference 507 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
latin62utf8

Syntax

(latin62uft8 string)

Description

Converts data encoded using the Latin 6 character encoding scheme to UFT8. The
character type of the converted string is set to :UTF8.

Parameters

Return Value

string
The converted string in UFT8.

Example

(latin62uft8 "ABC")
=> ABC

Name Type Description

string string The Latin 6 string to be converted.
Monk Developer’s Reference 508 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
latin72utf8

Syntax

(latin72uft8 string)

Description

Converts data encoded using the Latin 7 character encoding scheme to UFT8. The
character type of the converted string is set to :UTF8.

Parameters

Return Value

string
The converted string in UFT8.

Example

(latin72uft8 "ABC")
=> ABC

Name Type Description

string string The Latin 7 string to be converted.
Monk Developer’s Reference 509 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
latin82utf8

Syntax

(latin82uft8 string)

Description

Converts data encoded using the Latin 8 character encoding scheme to UFT8. The
character type of the converted string is set to :UTF8.

Parameters

Return Value

string
The converted string in UFT8.

Example

(latin82uft8 "ABC")
=> ABC

Name Type Description

string string The Latin 8 string to be converted.
Monk Developer’s Reference 510 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
latin92utf8

Syntax

(latin92uft8 string)

Description

Converts data encoded using the Latin 9 character encoding scheme to UFT8. The
character type of the converted string is set to :UTF8.

Parameters

Return Value

string
The converted string in UFT8.

Example

(latin92uft8 "ABC")
=> ABC

Name Type Description

string string The Latin 9 string to be converted.
Monk Developer’s Reference 511 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
set-gaiji-table

Syntax

(set-gaiji-table function-name table-file-name)

Description

Sets the table-file-name as a Gaiji table for the conversion function function-name.

Parameters

Return Value

None.

Example

(init-gaiji)
(set-gaiji-table "sjis2euc" "convert1")

Additional Information

Gaiji Table Format:

is comment
Source Code Destination Code
0x1234 0x3456
0x1235 0x3457

Name Type Description

function-name string Name of the function.

table-file-name string Name of the file containing the Gaiji conversion
table.
Monk Developer’s Reference 512 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
set-utf8gaiji-table

Syntax

(set-utf8gaiji-table function-name table-file-name)

Description

Sets the table-file-name as a UTF8 Gaiji table for the conversion function function-
name.

Parameters

Return Value

None.

Example

(init-utf8gaiji)
(set-utf8gaiji-table "sjis2euc" "convert1")

Additional Information

UTF8 Gaiji Table Format:

is comment
Source Code Destination Code
0x1234 0x3456
0x1235 0x3457

Name Type Description

function-name string Name of the function.

table-file-name string Name of the file containing the UTF8 Gaiji conversion
table.
Monk Developer’s Reference 513 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
sjis2ebcdic

Syntax

(sjis2ebcdic string)

Description

Converts an SJIS string into EBCDIC-J, then sets its type as :1Byte.

Parameters

Return Value

string
The converted string in EBCDIC-J.

Example

(sjis2ebcdic "íóú")
=> ABC

Name Type Description

string string The SJIS string to be converted.
Monk Developer’s Reference 514 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
sjis2ebcdic_g

Syntax

(sjis2ebcdic_g string)

Description

Converts an SJIS string into EBCDIC-J using a user-defined custom Gaiji table
associated with this function. The character type of the converted string is set to :1Byte.

Parameters

Return Value

string
The converted string in EBCDIC-J.

Example

(init-gaiji)
(set-gaiji-table "sjis2euc" "convert1")
(sjis2ebcidic_g "íóú")

=> ABC

Name Type Description

string string The SJIS string to be converted.
Monk Developer’s Reference 515 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
sjis2euc

Syntax

(sjis2euc string)

Description

Converts an SJIS string into EUC, then sets its type as :EUC.

Parameters

Return Value

string
The converted string in EUC.

Example

(sjis2euc "ABC")
=> ABC

Name Type Description

string string The SJIS string to be converted.
Monk Developer’s Reference 516 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
sjis2euc_g

Syntax

(sjis2euc_g string)

Description

Converts an SJIS string into EUC using a user-defined custom Gaiji table associated
with this function. The character type of the converted string is set to :EUC.

Parameters

Return Value

string
The converted string in EUC.

Example

(init-gaiji)
(set-gaiji-table "sjis2euc" "convert1")
(sjis2ebcidic_g "ABC")

=> ABC

Name Type Description

string string The SJIS string to be converted.
Monk Developer’s Reference 517 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
sjis2jef

Syntax

(sjis2jef string)

Description

Converts data encoded using the SJIS character encoding scheme to JEF. The character
type of the converted string is set to :1Byte.

Parameters

Return Value

string
The converted string in JEF

Example

(sjis2jef "ABC")
=> ABC

Name Type Description

string string The SJIS encoded string to be converted
Monk Developer’s Reference 518 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
sjis2jef_g

Syntax

(sjis2jef_g string)

Description

Converts data encoded using the SJIS character encoding scheme to JEF using a user-
defined custom Gaiji conversion table associated with this function. The character type
of the converted string is set to :1Byte.

Parameters

Return Value

string
The converted string in JEF.

Example

(init-gaiji)
(set-gaiji-table "sjis2euc" "convert1")
(sjis2jef_g "ABC")

=> ABC

Name Type Description

string string The SJIS encoded string to be converted.
Monk Developer’s Reference 519 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
sjis2jef_m

Syntax

(sjis2jef_m string)

Description

Converts single and/or double byte data encoded using the SJIS character encoding
scheme to JEF. The character type of the converted string is set to :1Byte.

Parameters

Return Value

string
The converted string in JEF.

Example

(sjis2jef_m "ABC")
=> ABC

Name Type Description

string string The SJIS encoded string to be converted.
Monk Developer’s Reference 520 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
sjis2jef_m_g

Syntax

(sjis2jef_m_g string)

Description

Converts single and/or double byte SJIS string using a user-defined custom Gaiji
conversion table associated with this function. The character type of the converted
string is set to :1Byte.

Parameters

Return Value

string
The converted string in SJIS.

Example

(init-gaiji)
(set-gaiji-table "sjis2euc" "convert1")
(sjis2jef_m_g "ABC")

=> ABC

Name Type Description

string string The SJIS encoded string to be converted.
Monk Developer’s Reference 521 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
sjis2jef_p

Syntax

(sjis2jef_p string conversion_mode)

Description

Converts data encoded using the SJIS character encoding scheme to JEF using a
hexadecimal KI (Kanji In) code. The character type of the converted string is set to
:1Byte.

Parameters

Return Value

string
The converted string in JEF.

Example

(sjis2jef_p "ABC" 2)
=> ABC

Name Type Description

string string The SJIS encoded string to be converted.

conversion_mode int Indicates the number of bytes in the string to be
converted.
! 0 = Mixed single and/or double byte.
! 1 = Single byte character.
! 2 = Double byte character.
Monk Developer’s Reference 522 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
sjis2jef_p_g

Syntax

(sjis2jef_p_g string conversion_mode)

Description

Converts data encoded using the SJIS character encoding scheme to JEF using a
hexadecimal KI (Kanji In) code and a user-defined custom Gaiji conversion table. The
character type of the converted string is set to :1Byte.

Parameters

Return Value

string
The converted string in JEF.

Example

(init-gaiji)
(set-gaiji-table "sjis2euc" "convert1")
(sjis2jef_p_g "ABC" 1)

=> ABC

Name Type Description

string string The SJIS encoded string to be converted.

conversion_mode int Indicates the number of bytes in the string to be
converted.
! 0 = Mixed single and/or double byte.
! 1 = Single byte character.
! 2 = Double byte character.
Monk Developer’s Reference 523 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
sjis2jipse

Syntax

(sjis2jipse string type)

Description

Converts an SJIS string into JIPSE, then sets its type as :1Byte.

Parameters

Return Value

string
The converted string in JIPSE.

Example

(sjis2jipse "íóú" 0)
=> ABC

Name Type Description

string string The SJIS string to be converted.

type integer Indicates the number of bytes in the string to be
converted.
! 0 = Mixed single and/or double byte.
! 1 = Single byte character.
! 2 = Double byte character.
Monk Developer’s Reference 524 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
sjis2jipse_g

Syntax

(sjis2jipse_g string type)

Description

Converts an SJIS string into JIPSE using a user-defined custom Gaiji table associated
with this function. The character type of the converted string is set to :1Byte.

Parameters

Return Value

string
The converted string in JIPSE.

Example

(init-gaiji)
(set-gaiji-table "sjis2euc" "convert1")
(sjis2jipse_g "íóú" 0)

=> ABC

Name Type Description

string string The SJIS string to be converted.

type int Indicates the number of bytes in the string to be
converted.
! 0 = Mixed single and/or double byte.
! 1 = Single byte character.
! 2 = Double byte character.
Monk Developer’s Reference 525 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
sjis2jis

Syntax

(sjis2jis string)

Description

Converts an SJIS string into JIS, then sets its type as :1Byte.

Parameters

Return Value

string
The converted string in JIS.

Example

(sjis2jipse "ABC")
=> ABC

Name Type Description

string string The SJIS string to be converted.
Monk Developer’s Reference 526 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
sjis2jis_g

Syntax

(sjis2jis_g string type)

Description

Converts an SJIS string into JIS using a user-defined custom Gaiji table associated with
this function. The character type of the converted string is set to :1Byte.

Parameters

Return Value

string
The converted string in JIS.

Example

(init-gaiji)
(set-gaiji-table "sjis2euc" "convert1")
(sjis2jis_g "ABC" 0)

=> ABC

Name Type Description

string string The SJIS string to be converted.

type int Indicates the number of bytes in the string to be
converted.
! 0 = Mixed single and/or double byte.
! 1 = Single byte character.
! 2 = Double byte character.
Monk Developer’s Reference 527 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
sjis2sjis

Syntax

(sjis2sjis string)

Description

Sets the type of string to :SJIS.

Parameters

Return Value

string
The converted string in SJIS.

Example

(sjis2sjis "ABC")
=> ABC

Name Type Description

string string String that will be set as :SJIS.
Monk Developer’s Reference 528 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
sjis2utf8

Syntax

(sjis2utf8 string)

Description

Converts data encoded using the SJIS character encoding scheme to UTF8. The
character type of the converted string is set to :UTF8.

Parameters

Return Value

string
The converted string in UTF8.

Example

(sjis2utf8 "ABC")
=> ABC

Name Type Description

string string The SJIS encoded string to be converted.
Monk Developer’s Reference 529 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
sjis2utf8_g

Syntax

(sjis2utf8_g string)

Description

Converts data encoded using the SJIS character encoding scheme to UTF8 using a user-
defined custom Gaiji table associated with this function. The character type of the
converted string is set to :UTF8.

Parameters

Return Value

string
The converted string in UTF8.

Example

(init-gaiji)
(set-gaiji-table "sjis2euc" "convert1")
(sjis2utf8_g "ABC")

=> ABC

Name Type Description

string string The SJIS encoded string to be converted.
Monk Developer’s Reference 530 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
uhc2ebcdic

Syntax

(uhc2ebcdic string)

Description

Converts data encoded using the UHC character encoding scheme to EBCDIC. The
character type of the converted string is set to :1Byte.

Parameters

Return Value

string
The converted string in EBCDIC.

Example

(uhc2ebcdic "ABC")
=> B-B-B+

Name Type Description

string string The UHC encoded string to be converted.
Monk Developer’s Reference 531 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
uhc2ebcdic_m
(uhc2ebcdic_m string)

Description

Converts single and/or double byte data encoded using the UHC character encoding
scheme to EBCDIC. The character type of the converted string is set to :1Byte.

Parameters

Return Value

string
The converted string in EBCDIC.

Example

(uhc2ebcdic_m "ABC")
=> ABC

Name Type Description

string string The UHC encoded string to be converted.
Monk Developer’s Reference 532 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
uhc2ksc

Syntax

(uhc2ksc string)

Description

Converts data encoded using the UHC character encoding scheme to KSC. The
character type of the converted string is set to :1Byte.

Parameters

Return Value

string
The converted string in KSC.

Example

(uhc2ksc "ABC")
=> ABC

Name Type Description

string string The UHC encoded string to be converted.
Monk Developer’s Reference 533 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
uhc2ksc_m

Syntax

(uhc2ksc_m string)

Description

Converts single and/or double byte data encoded using the UHC character encoding
scheme to KSC. The character type of the converted string is set to :1Byte.

Parameters

Return Value

string
The converted string in KSC.

Example

(uhc2ksc_m "ABC")
=> ABC

Name Type Description

string string The UHC encoded string to be converted.
Monk Developer’s Reference 534 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
uhc2uhc

Syntax

(uhc2uhc string)

Description

Sets the type of the string to :UHC.

Parameters

Return Value

string
The converted string in UHC.

Example

(uhc2uhc "ABC")
=> ABC

Name Type Description

string string String that will be set as :UHC.
Monk Developer’s Reference 535 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
uhc2utf8

Syntax

(uhc2utf8 string)

Description

Converts data encoded using the UHC character encoding scheme to UTF8. The
character type of the converted string is set to :UTF8

Parameters

Return Value

string
The converted string in UHC.

Example

=> ABC

Name Type Description

string string The UHC encoded string to be converted.
Monk Developer’s Reference 536 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
utf82arabic

Syntax

(utf82arabic string)

Description

Converts data encoded using the UTF8 character encoding scheme to Arabic. The
character type of the converted string is set to :1Byte

Parameters

Return Value

string
The converted string.

Example

(utf82arabic "ABC")
=> ABC

Name Type Description

string string The UTF8 encoded string to be converted.
Monk Developer’s Reference 537 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
utf82big5

Syntax

(utf82big5 string)

Description

Converts data encoded using the UTF8 character encoding scheme to BIG5. The
character type of the converted string is set to :1Byte.

Parameters

Return Value

string
The converted string in Big-5.

Example

(utf82big5 "ABC")
=> ABC

Name Type Description

string string The UTF8 encoded string to be converted.
Monk Developer’s Reference 538 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
utf82cyrillic

Syntax

(utf82cyrillic string)

Description

Converts data encoded using the UTF8 character encoding scheme to Cyrillic. The
character type of the converted string is set to :1Byte.

Parameters

Return Value

string
The converted string in Cyrillic.

Example

(utf82cyrillic "ABC")
=> ABC

Name Type Description

string string The UTF8 encoded string to be converted.
Monk Developer’s Reference 539 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
utf82gb2312

Syntax

(utf82gb2312 string)

Description

Converts data encoded using the UTF8 character encoding scheme to GB2312. The
character type of the converted string is set to :1Byte.

Parameters

Return Value

string
The converted string in GB2312.

Example

(utf82gb2312 "ABC")
=> ABC

Name Type Description

string string The UTF8 encoded string to be converted.
Monk Developer’s Reference 540 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
utf82greek

Syntax

(utf82greek string)

Description

Converts data encoded using the UTF8 character encoding scheme to Greek. The
character type of the converted string is set to :1Byte.

Parameters

Return Value

string
The converted string.

Example

(utf82greek "ABC")
=> ABC

Name Type Description

string string The UTF8 encoded string to be converted.
Monk Developer’s Reference 541 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
utf82hebrew

Syntax

(utf82hebrew string)

Description

Converts data encoded using the UTF8 character encoding scheme to Hebrew. The
character type of the converted string is set to :1Byte.

Parameters

Return Value

string
The converted string in Hebrew.

Example

(utf82hebrew "ABC")
=> ABC

Name Type Description

string string The UTF8 encoded string to be converted.
Monk Developer’s Reference 542 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
utf82latin1

Syntax

(utf82latin1 string)

Description

Converts data encoded using the UTF8 character encoding scheme to Latin1. The
character type of the converted string is set to :1Byte.

Parameters

Return Value

string
The converted string in Latin1.

Example

(utf82latin1 "ABC")
=> ABC

Name Type Description

string string The UTF8 encoded string to be converted.
Monk Developer’s Reference 543 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
utf82latin2

Syntax

(utf82latin2 string)

Description

Converts data encoded using the UTF8 character encoding scheme to Latin2 The
character type of the converted string is set to :1Byte.

Parameters

Return Value

string
The converted string in Latin2.

Example

(utf82latin2 "ABC")
=> ABC

Name Type Description

string string The UTF8 encoded string to be converted.
Monk Developer’s Reference 544 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
utf82latin3

Syntax

(utf82latin2 string)

Description

Converts data encoded using the UTF8 character encoding scheme to Latin2. The
character type of the converted string is set to :1Byte.

Parameters

Return Value

string
The converted string in Latin2.

Example

(utf82latin2 "ABC")
=> ABC

Name Type Description

string string The UTF8 encoded string to be converted.
Monk Developer’s Reference 545 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
utf82latin4

Syntax

(utf82latin4 string)

Description

Converts data encoded using the UTF8 character encoding scheme to Latin4. The
character type of the converted string is set to :1Byte.

Parameters

Return Value

string
The converted string in Latin4.

Example

(utf82latin4 "ABC")
=> ABC

Name Type Description

string string The UTF8 encoded string to be converted.
Monk Developer’s Reference 546 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
utf82latin5

Syntax

(utf82latin5 string)

Description

Converts data encoded using the UTF8 character encoding scheme to Latin5. The
character type of the converted string is set to :1Byte.

Parameters

Return Value

string
The converted string in Latin5.

Example

(utf82latin5 "ABC")
=> ABC

Name Type Description

string string The UTF8 encoded string to be converted.
Monk Developer’s Reference 547 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
utf82latin6

Syntax

(utf82latin6 string)

Description

Converts data encoded using the UTF8 character encoding scheme to Latin6. The
character type of the converted string is set to :1Byte.

Parameters

Return Value

string
The converted string in Latin6.

Example

(utf82latin6 "ABC")
=> ABC

Name Type Description

string string The UTF8 encoded string to be converted.
Monk Developer’s Reference 548 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
utf82latin7

Syntax

(utf82latin7 string)

Description

Converts data encoded using the UTF8 character encoding scheme to Latin7. The
character type of the converted string is set to :1Byte.

Parameters

Return Value

string
The converted string in Latin7.

Example

(utf82latin7 "ABC")
=> ABC

Name Type Description

string string The UTF8 encoded string to be converted.
Monk Developer’s Reference 549 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
utf82latin8

Syntax

(utf82latin8 string)

Description

Converts data encoded using the UTF8 character encoding scheme to Latin8. The
character type of the converted string is set to :1Byte.

Parameters

Return Value

string
The converted string in Latin8.

Example

(utf82latin8 "ABC")
=> ABC

Name Type Description

string string The UTF8 encoded string to be converted.
Monk Developer’s Reference 550 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
utf82latin9

Syntax

(utf82latin9 string)

Description

Converts data encoded using the UTF8 character encoding scheme to Latin9. The
character type of the converted string is set to :1Byte.

Parameters

Return Value

string
The converted string in Latin9.

Example

(utf82latin9 "ABC")
=> ABC

Name Type Description

string string The UTF8 encoded string to be converted.
Monk Developer’s Reference 551 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
utf82sjis

Syntax

(utf82sjis string)

Description

Converts data encoded using the UTF8 character encoding scheme to SJIS. The
character type of the converted string is set to :SJIS.

Parameters

Return Value

string
The converted string in SJIS.

Example

(utf82sjis "ABC")
=> ABC

Name Type Description

string string The UTF8 encoded string to be converted.
Monk Developer’s Reference 552 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
utf82sjis_g

Syntax

(utf82sjis_g string)

Description

Converts data encoded using the UTF8 character encoding scheme to SJIS using a user-
defined custom Gaiji conversion table associated with this function. The character type
of the converted string is set to :SJIS.

Parameters

Return Value

string
The converted string in SJIS.

Example

(init-gaiji)
(set-gaiji-table "sjis2euc" "convert1")
(utf82sjis_g "ABC")

=> ABC

Name Type Description

string string The UTF8 encoded string to be converted
Monk Developer’s Reference 553 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
utf82uhc

Syntax

(utf82uhc string)

Description

Converts data encoded using the UTF8 character encoding scheme to UHC. The
character type of the converted string is set to :UHC.

Parameters

Return Value

string
The converted string in UHC.

Example

(utf82uhc "ABC")
=> ABC

Name Type Description

string string The UTF8 encoded string to be converted.
Monk Developer’s Reference 554 SeeBeyond Proprietary and Confidential

Chapter 21
International Conversion Functions
utf82utf8

Syntax

(utf82utf8 string)

Description

Sets the type of the string to :UTF8.

Parameters

Return Value

string
The converted string in UTF8.

Example

(utf82utf8 "ABC")
=> ABC

Name Type Description

string string String that will be set as :UTF8.
Monk Developer’s Reference 555 SeeBeyond Proprietary and Confidential

Chapter 22

e*Gate Extensions to Monk

This chapter explains the Monk functions that extend the Monk environment.
Instructions in each section discuss how to load the extensions into the Monk
environment. These functions include:

“Queue Service Access” on page 557

“e*Way Functions” on page 568

“Monk Extension Functions” on page 576

“Monk Utility Functions” on page 587
Monk Developer’s Reference 556 SeeBeyond Proprietary and Confidential

Chapter 22 22.1
e*Gate Extensions to Monk Queue Service Access
22.1 Queue Service Access
The queue service access functions allow interaction between the Monk environment
and the e*Gate system. Specifically, they provide increased control over the event flow.
These functions are automatically loaded when you use either the Monk or the Monk
ID Collaboration Service. The queue service access functions are:

iq-get on page 558

iq-get-header on page 559

iq-initial-handle on page 560

iq-initial-topic on page 561

iq-input-topics on page 562

iq-output-topics on page 564

iq-peek on page 565

iq-put on page 566
Monk Developer’s Reference 557 SeeBeyond Proprietary and Confidential

Chapter 22 22.1
e*Gate Extensions to Monk Queue Service Access
iq-get

Syntax

(iq-get input-topic event-handle)

Description

Gets an Event of the type specified from an IQ, if an Event of that type is available.

If an Event is returned, the queuing service marks the Event as accessed for the
subscriber under which iq-get was called. If the caller provides an input-topic (Event
Type) and 0 for the event-handle, iq-get returns the next Event available for that Event
Type. If the caller provides an input-topic and a valid event-handle, the Event
associated with the specified event-handle is returned.

iq-get can retrieve an Event from any IQ included on the list of topics returned by
iq-input-topics.

For this function to operate properly it must be run within an environment that
provides the correct Event handle—such as within a translation used by a
Collaboration in an e*Gate schema.

Note: When using this function with stctrans, you cannot use 0 for the handle—you must
use a valid handle instead.

Parameters

Return Value

Returns one of the following:

vector
If an Event is available, iq-get returns a vector containing the Event and the Event
handle.

Boolean
If no Event is available, iq-get returns #f (false).

Example

(iq-get "input" 0)

Additional Information

To run using stctrans, a valid handle must be passed.

Name Type Description

input-topic string Name of the Event Type to get.

handle Event handle One of the following:
0—The next Event in the IQ.
Event handle—The Event associated with the Event
handle.
Used to access headers for Events if multiple gets are
called on the same Event Type.
Monk Developer’s Reference 558 SeeBeyond Proprietary and Confidential

Chapter 22 22.1
e*Gate Extensions to Monk Queue Service Access
iq-get-header

Syntax

(iq-get-header handle)

Description

Returns the event header for the input event. The handle (string) is used to access
headers for events if multiple gets are called on the same event type.

Parameters

Return Value

If there is no header for this event handle the function returns a Boolean #f. Call failure
will throw an exception. The return is a vector containing the following information for
the input event referred to:

Example

; get the initial message header
 (define vMessageHeader (iq-get-header szMessageHandle))

Important: This Monk function is not supported by JMS IQs.

Name Type Description

handle string Used to access headers for events if multiple gets are called on
the same event type.

Subscriber (vector)

Publisher (string)

Priority (number)

MajorSeqNumber (number)

MinorSeqNumber (number
Monk Developer’s Reference 559 SeeBeyond Proprietary and Confidential

Chapter 22 22.1
e*Gate Extensions to Monk Queue Service Access
iq-initial-handle

Syntax

(iq-initial-handle)

Description

Returns the queue handle of the event which invoked the current event collaboration or
identification process.

Parameters

None.

Return Value

A valid event handle.

Example

;get the initial message handle
 (define szMessageHandle (iq-initial-handle))
Monk Developer’s Reference 560 SeeBeyond Proprietary and Confidential

Chapter 22 22.1
e*Gate Extensions to Monk Queue Service Access
iq-initial-topic

Syntax

(iq-initial-topic)

Description

Returns a string containing the event topic which invoked the current event
collaboration or identification process.

Parameters

None.

Return Value

string
event topic

Example

;get the initial message type
 (define szMessageType (iq-initial-topic))
 (display (string-append "Message type of initiating message: "
szMessageType "\n"))
Monk Developer’s Reference 561 SeeBeyond Proprietary and Confidential

Chapter 22 22.1
e*Gate Extensions to Monk Queue Service Access
iq-input-topics

Syntax

(iq-input-topics)

Description

Returns a vector of strings, containing the names of the event types the component is
configured to subscribe to.

Parameters

None.

Return Value

Call failure will throw an exception. Otherwise, a vector containing all input event
types.

Example

; get the input Event Types
(define vEventTypes (iq-input-topics))
(display "Input Event Types: ")
(display vEventTypes)
(newline)
Monk Developer’s Reference 562 SeeBeyond Proprietary and Confidential

Chapter 22 22.1
e*Gate Extensions to Monk Queue Service Access
iq-mark-unusable

Syntax

(iq-mark-unusable message-handle)

Description

Marks the message as unusable. The message-handle can be obtained from iq-initial-
handle or iq-peek functions.

Parameters

Return Value

Boolean
#t or #f

Example

; mark the Event unusable
 (define szEventType (iq-mark-unusable szEventHandle))

Important: This Monk function is not supported by JMS IQs.

Name Type Description

handle string Used to access headers for events if multiple gets are called on
the same event type.
Monk Developer’s Reference 563 SeeBeyond Proprietary and Confidential

Chapter 22 22.1
e*Gate Extensions to Monk Queue Service Access
iq-output-topics

Syntax

(iq-output-topics)

Description

Returns a vector of strings, containing the names of the output event types the
component is configured to publish.

Parameters

None.

Return Value

Call failure will throw an exception. Otherwise, a vector of event types.

Example

; get the output Event Types
(define vEventTypes (iq-output-topics))
(display "Output Event Types: ")
(display vEventTypes)
(newline)
Monk Developer’s Reference 564 SeeBeyond Proprietary and Confidential

Chapter 22 22.1
e*Gate Extensions to Monk Queue Service Access
iq-peek

Syntax

(iq-peek input-topic handle)

Description

Accesses additional events from the input queues without changing the event state in
the queuing service. The transformation function can get from any input queue
included on the list of topics in the (iq-input-topics) vector.

Parameters

Return Value

The call returns a vector containing the next event and the event handle if a event is
available, a Boolean if no data is available, and it throws an exception if the call failed
for any other reason. If the caller provides an input topic name and a handle containing
the number 0, the call will return the next event available for that input topic. If the
caller provides a valid event handle and input topic, next event available relative to the
supplied event handle is returned.

Example

(display "Performing peek operations on input queues:\n")
(do

((i 0 (+ i 1)))
((= i n_in))
(define vMessageAndHandle

(iq-peek (vector-ref vInputMessageTypes i) 0)
)

Important: This Monk function is not supported by JMS IQs.

Name Type Description

input-topic string Name of the event type to get.

handle valid handle or 0 Used to access headers for events if multiple gets are
called on the same event type.
Monk Developer’s Reference 565 SeeBeyond Proprietary and Confidential

Chapter 22 22.1
e*Gate Extensions to Monk Queue Service Access
iq-put

Syntax

(iq-put output-event-type event input-event-type
priority major-seq-num minor-seq-num)

Description

Places an Event on the output queue but does not commit it to the queue until the
Monk transformation or identification function returns successfully.

If the Monk function is operating under the Monk Collaboration service and the
transformation is only generating a single Event, it does not have to make an explicit
call to iq-put to forward the Event to the queuing system.

You should include this call if a Monk Collaboration generates more than one output
Event.

The Monk Collaboration service enqueues the returned string to the default Event Type
vector. The output Event Type and input Event Type must be from the list of configured
Event Types that the component is able to receive and produce. The input Event Type is
included to help maintain the history of the Event as it passes through the system.

All Events of lower priority level are dequeued before any Events of a higher priority
level. Priority zero Events are dequeued first. In typical usage, all calls to this function
will be made with the same priority level.

Parameters

Return Value

Boolean
Returns #t if the Event was successfully placed on the queue.

Throws

Exception-Generic

Examples

(try
 (iq-put
 "OutEmpEvent"
 szMessage
 (list "EmpData")

Name Type Description

output-event-type string Name of the Event Type to which to publish.

event string The Event to publish.

input-event-type list List of input Event Types which were used to create
this Event.

priority number Priority to assign to the output Event. Default is 0.

major-seq-num number Major sequence number to assign.

minor-seq-num number Minor sequence number to assign. An entry of 0
defaults major and minor sequence numbers.
Monk Developer’s Reference 566 SeeBeyond Proprietary and Confidential

Chapter 22 22.1
e*Gate Extensions to Monk Queue Service Access
 2 0 0
)
 (catch
 ((Exception-Generic)
 (display "Exception Raised: exception category: ")
 (display (number->string (exception-category))) (newline)
 (display "exception symbol: ")
 (display (symbol->string (exception-symbol))) (newline)
 (display "exception string: ")
 (display (exception-string)) (newline)
)
)
)

This example queues an Event of type “OutEmpEvent” to the queue. This Event must
be one of the Events that the Collaboration publishes to.

The queued Event depends upon an input Event type called “EmpData”. The input
Event must be one of the Events that the Collaboration subscribes to. Check the
Collaboration details in the e*Gate GUI.

Enclosing the iq-put function in a try...catch clause is the normal way to handle possible
queue errors. This example simply displays information to the log file, but you may
want to include more robust error recovery in the catch clause.

Additional Information

The iq-put function is not supported by the Monk Test Console. For testing purposes,
the following solution is suggested:

(define iq-put
(lambda (p1 p2 p3 p4 p5 p6)

(display (string-append "iq-put: EventTYPE|" p1
"|EventCONTENT|"p2))

(newline)
""

)
)

The sample script shown above can be used as a dependency file when testing a
collaboration that uses iq-put.
Monk Developer’s Reference 567 SeeBeyond Proprietary and Confidential

Chapter 22 22.2
e*Gate Extensions to Monk e*Way Functions
22.2 e*Way Functions
The following functions are available to all e*Ways based on the Extension Kit (the
Generic Monk based e*Ways) in the external Monk environment, that is, the Monk
environment that supports the e*Way’s configuration file.

Important: These functions are not available to the internal Monk environment, that is, the
Monk environment that supports the e*Way’s Collaborations. See a Generic Monk
based e*Way User’s Guide for more information on the differences between the two
Monk environments.

event-send-to-egate on page 569

get-logical-name on page 570

send-external-down on page 571

send-external-up on page 572

shutdown-request on page 573

start-schedule on page 574

stop-schedule on page 575
Monk Developer’s Reference 568 SeeBeyond Proprietary and Confidential

Chapter 22 22.2
e*Gate Extensions to Monk e*Way Functions
event-send-to-egate

Syntax

(event-send-to-egate string)

Description

Sends data that the e*Way has already received from the external system into the e*Gate
system as an Event.

Parameters

Return Value

Boolean
Returns #t if the data is sent successfully. Otherwise, returns #f.

Notes

This function can be called by any e*Way function when it is necessary to send data to
the e*Gate system in a blocking fashion.

Name Type Description

string string The data to be sent to the e*Gate system
Monk Developer’s Reference 569 SeeBeyond Proprietary and Confidential

Chapter 22 22.2
e*Gate Extensions to Monk e*Way Functions
get-logical-name

Syntax

(get-logical-name)

Description

Retrieves the logical name of the e*Way.

Parameters

None.

Return Value

string
Returns the name of the e*Way (as defined by the Enterprise Manager).

Throws

None.

Additional Information

The get-logical-name function cannot be loaded externally from a .dll, because it is
already loaded into the external thread by the e*Way and/or BOB executable.

There is an equivalent function for use with Collaborations in the internal Monk
environment. It is named collab-get-logical-name and is available when you load the
stc_monkext.dll.
Monk Developer’s Reference 570 SeeBeyond Proprietary and Confidential

Chapter 22 22.2
e*Gate Extensions to Monk e*Way Functions
send-external-down

Syntax

(send-external-down)

Description

Instructs the e*Way that the connection to the external system is down.

Parameters

None.

Return Value

None.
Monk Developer’s Reference 571 SeeBeyond Proprietary and Confidential

Chapter 22 22.2
e*Gate Extensions to Monk e*Way Functions
send-external-up

Syntax

(send-external-up)

Description

Instructs the e*Way that the connection to the external system is up.

Parameters

None.

Return Value

None.
Monk Developer’s Reference 572 SeeBeyond Proprietary and Confidential

Chapter 22 22.2
e*Gate Extensions to Monk e*Way Functions
shutdown-request

Syntax

(shutdown-request)

Description

Completes the e*Gate shutdown procedure that was initiated by the Control Broker but
was interrupted by returning a non-null value within the Generic e*Way Shutdown
Command Notification Function.

Once this function is called, shutdown proceeds immediately.

Once interrupted, the e*Way’s shutdown cannot proceed until this Monk function is
called. If you do interrupt an e*Way shutdown, we recommend that you complete the
process in a timely fashion.

Parameters

None.

Return Value

None.
Monk Developer’s Reference 573 SeeBeyond Proprietary and Confidential

Chapter 22 22.2
e*Gate Extensions to Monk e*Way Functions
start-schedule

Syntax

(start-schedule)

Description

Requests that the e*Way execute the “Exchange Data with External” function specified
within the e*Way’s configuration file. Does not affect any defined schedules.

Parameters

None.

Return Value

None.
Monk Developer’s Reference 574 SeeBeyond Proprietary and Confidential

Chapter 22 22.2
e*Gate Extensions to Monk e*Way Functions
stop-schedule

Syntax

(stop-schedule)

Description

Requests that the e*Way halt execution of the “Exchange Data with External” function
specified within the e*Way’s configuration file.

Execution will be stopped when the e*Way concludes any open transaction. Does not
affect any defined schedules, and does not halt the e*Way process itself.

Parameters

None.

Return Value

None.
Monk Developer’s Reference 575 SeeBeyond Proprietary and Confidential

Chapter 22 22.3
e*Gate Extensions to Monk Monk Extension Functions
22.3 Monk Extension Functions
The Monk Extension Functions are accessed by loading stc_monkext.dll. The Monk
Extension functions include:

collab-get-logical-name on page 577

displayb on page 578

encrypt-password on page 579

event-send on page 580

file-set-creation-mask on page 583

get-data-dir on page 585

reg-retrieve-file on page 586
Monk Developer’s Reference 576 SeeBeyond Proprietary and Confidential

Chapter 22 22.3
e*Gate Extensions to Monk Monk Extension Functions
collab-get-logical-name

Syntax

(collab-get-logical-name)

Description

Retrieves the logical name of the e*Way.

Parameters

None.

Return Value

string
Returns the name of the e*Way (as defined by the Enterprise Manager).

Throws

None.

Additional Information

There is an equivalent function, get-logical-name, for use in the external Monk
environment with Generic Monk e*Ways.
Monk Developer’s Reference 577 SeeBeyond Proprietary and Confidential

Chapter 22 22.3
e*Gate Extensions to Monk Monk Extension Functions
displayb

Syntax

(displayb string)

Description

Displays the specified string in both literal and hexadecimal formats.

Parameters

Return Value

Unspecified.

Example
(displayb "Hello, world\n")
=> 48 65 6C 6C 6F 2C 20 77 6F 72 6C 64 0A | Hello, world

Name Type Description

string string The string to be converted
Monk Developer’s Reference 578 SeeBeyond Proprietary and Confidential

Chapter 22 22.3
e*Gate Extensions to Monk Monk Extension Functions
encrypt-password

Syntax

(encrypt-password username password)

Description

Creates an encrypted password, using the specified username as a key.

Parameters

Return Value

String
Returns the encrypted password.

Example

(encrypt-password "Administrator" "mypwd") =>523AA853EFF

Name Type Description

username string The user name

password string The password (in clear)
Monk Developer’s Reference 579 SeeBeyond Proprietary and Confidential

Chapter 22 22.3
e*Gate Extensions to Monk Monk Extension Functions
event-send

Syntax

(event-send alert-category alert-sub-category
info-code custom-code reason-name
event-info-string reason-code
event-detail)

Description

Issues a Monitoring Event from any Monk script.

Events can use the standard SeeBeyond event codes, or a “user event” code you can use
to communicate status conditions of user-created applications.

Note that reason-code is unquoted, since it is an integer rather than a string.

Strings supplied for event-send parameters should not contain characters that are used
as delimiters in the EventMsg.ssc or NotificationMessage.ssc structures. Using these
characters may cause the events to be incorrectly parsed.

Parameters

Parameter Type Possible values Meaning

alert-category String ALERTCAT_STATE_ELEM Element state

ALERTCAT_MESSAGE_CONTENT Message content

ALERTCAT_STATE_EXTERNAL External state

ALERTCAT_OPERATIONAL Operational

ALERTCAT_PERFORMANCE Performance

ALERTCAT_RESOURCE Resource

ALERTCAT_USERDEFINED User defined

alert-
subcategory

String ALERTSUBCAT_CUSTOM Custom category

ALERTSUBCAT_DOWN Down

ALERTSUBCAT_UP Up

ALERTSUBCAT_UNRESP Unresponsive

ALERTSUBCAT_RESP Responded

ALERTSUBCAT_CANTCONN Unable to connect

ALERTSUBCAT_CONN Connected

ALERTSUBCAT_LOSTCONN Lost Connection

ALERTSUBCAT_UNUSABLE Unusable/can’t ID

ALERTSUBCAT_INTEREST Content of interest

ALERTSUBCAT_EXPIRED Expired

ALERTSUBCAT_INTHRESH Input threshold

ALERTSUBCAT_OUTTHRESH Output threshold

ALERTSUBCAT_USERAUTH User authentication
Monk Developer’s Reference 580 SeeBeyond Proprietary and Confidential

Chapter 22 22.3
e*Gate Extensions to Monk Monk Extension Functions
Return Value

integer
Returns 0 if successful. Otherwise, it returns -1.

Examples

(event-send "ALERTCAT_MESSAGE_CONTENT" "ALERTSUBCAT_UNUSABLE"

ALERTSUBCAT_DELIVERY Alert delivery

ALERTSUBCAT_UNQUEUEABLE Unqueueable

ALERTSUBCAT_DISKTHRESH Disk threshold

ALERTSUBCAT_IQLIMIT IQ Limit

ALERTSUBCAT_STATUS Status

ALERTSUBCAT_TIMER Timer

info-code String ALERTINFO_NONE None

ALERTINFO_FATAL Fatal

ALERTINFO_CONTROLLED Controlled

ALERTINFO_USER User

ALERTINFO_LOW Low

ALERTINFO_HIGH High

ALERTINFO_IOFAILED IO Failure

ALERTINFO_BELOW Below

ALERTINFO_ABOVE Above

custom-code String any one-byte (printable) character Any meaning
required for user
application

reason-name String descriptive string Reason that the
event (described by
reason-code)
occurred

event-info-string String Reserved for user agents or other
applications using SeeBeyond’s
API to create Monitoring Events
that use this field

Example gives,
"This is a bad
message”

reason-code integer Status or error code Status/error code
sent by the
operating system or
by the application
generating the
event

event-detail list of lists Reserved for future use. In this
field, always enter just the (list)
command, which will generate an
empty list

Parameter Type Possible values Meaning
Monk Developer’s Reference 581 SeeBeyond Proprietary and Confidential

Chapter 22 22.3
e*Gate Extensions to Monk Monk Extension Functions
"ALERTINFO_NONE" "0" "Bad Sequence" "This is a bad message" 0 (list))
=> -1

Note: This function is not compatible with stctrans.exe or with the Monk Test Console.
Monk Developer’s Reference 582 SeeBeyond Proprietary and Confidential

Chapter 22 22.3
e*Gate Extensions to Monk Monk Extension Functions
file-set-creation-mask

Syntax

(file-set-creation-mask protectionValue)

Description

file-set-creation-mask sets the default permission for new files (similar to UNIX
unmask).

Parameters

Return Value

string
Returns an empty string.

Examples

(file-set-creation-mask 00700) sets default protection to
00700

Sets the protection to owner: read, write, execute, all others no access

(file-set-creation-mask 000755) sets default protection to
0075

Sets the protection to owner: read, write, execute, all others read, execute, no write.

Additional Notes

The protection system uses the following values:

Name Type Description

protectionValue integer A five-digit integer representing the file creation mask. The
first two digits from the left must be zero. The remaining
digits represent the protections assigned to owner, group,
and world in that order.

Protection
value

Meaning

00700 read, write, execute: owner
(No access by group or other)

00400 read permission: owner
(No access by group or other)

00200 write permission: owner
(No access by group or other)

00100 execute permission: owner
(No access by group or other)

00070 read, write, execute: group

00040 read permission: group
(No write or execute permissions)

00020 write permission: group
Monk Developer’s Reference 583 SeeBeyond Proprietary and Confidential

Chapter 22 22.3
e*Gate Extensions to Monk Monk Extension Functions
00010 executed permission: group

00007 read, write, execute permission: other

00004 read permission: other

00002 write permission: other

0001 execute permission: other

00755 read, write, execute permission: owner
write, execute permission: group
write, execute permission: other

Protection
value

Meaning
Monk Developer’s Reference 584 SeeBeyond Proprietary and Confidential

Chapter 22 22.3
e*Gate Extensions to Monk Monk Extension Functions
get-data-dir

Syntax

(get-data-dir)

Description

Returns the value of the SystemData parameter in the .egate.store file.

Parameters

None.

Return Value

string
Returns the value of the SystemData parameter in the .egate.store file.

Example

(get-data-dir)
=> d:\eGate\client

Note: This function is not compatible with stctrans.exe or with the Monk Test Console.
Monk Developer’s Reference 585 SeeBeyond Proprietary and Confidential

Chapter 22 22.3
e*Gate Extensions to Monk Monk Extension Functions
reg-retrieve-file

Syntax

(reg-retrieve-file file registry_path)

Description

Retrieves a file from the e*Gate Registry.

If a file of the same name already exists in the local file system, reg-retrieve-file will
only overwrite the file if the local file has changed. The function makes this
determination by comparing a hash of the local file to a cached hash of the file in the
Registry. See the entry for stcregutil.exe in the e*Gate Integrator System Administration
and Operations Guide for more information.

Parameters

Return Value

string
Returns the pathname to the downloaded file on the local file system if the file
exists. Otherwise, returns the name of the non-existent requested file.

Example

(reg-retrieve-file "Notification.tsc" "/monk_scripts/common")
=>d:\eGate\client\monk_scripts\common\Notification.tsc

Note: This function is not compatible with stctrans.exe or with the Monk Test Console.

Name Type Description

file string The name of the file to be retrieved

registry_path The path to the file within the e*Gate Registry
Monk Developer’s Reference 586 SeeBeyond Proprietary and Confidential

Chapter 22 22.4
e*Gate Extensions to Monk Monk Utility Functions
22.4 Monk Utility Functions
The Monk Utility functions are contained in the stc_monkutils.dll file. To use these
functions, you must use the load-extension function to load the Monk extension file
/eGate/client/bin/stc_monkutils.dll.

The Monk Utility Functions include:

ascii->ebcdic on page 588 sleep on page 603

base64->raw on page 590 string->7even on page 604

binary->string on page 591 string->8none on page 605

change-directory on page 592 string->binary on page 606

close-pipe on page 593 string-decrypt on page 607

ebcdic->ascii on page 594 string-encrypt on page 608

hexdump->string on page 596 string->hexdump on page 609

IBMpacdec->string on page 597 string->IBMpacdec on page 610

IBMzoned->string on page 598 string->IBMzoned on page 611

open-pipe on page 599 string->pacdec on page 612

pacdec->string on page 600 string->zoned on page 613

raw->base64 on page 601 zoned->string on page 614

reg-get-file on page 602
Monk Developer’s Reference 587 SeeBeyond Proprietary and Confidential

Chapter 22 22.4
e*Gate Extensions to Monk Monk Utility Functions
ascii->ebcdic

Syntax

(ascii->ebcdic input [fill-length fill-char] [:Full])

Description

Converts an ASCII character or string to an EBCDIC character or string, using a one-
for-one lookup table. For example, a “B” character on an ASCII machine (hex 42) is
converted to a “B” character on an EBCDIC machine (hex c2).

Optionally, fills the end of the output string with a fill-char. The fill-char chosen will also
be converted to the corresponding EBCDIC character. The parameters, fill-length and
fill-char are used as an optional pair. (Although optional, one is not used without the
other.)

The keyword, :Full, enables full conversion of both printable and not-printable
characters, while the default converts non-printable characters to NULL. The keyword
:Full parameter must appear as the last parameter. This option uses IBM-1047 for
EBCDIC, and ISO-850 for ASCII.

Parameters

Return Value

character
If a character is input, returns an EBCDIC character corresponding to the ASCII
version of the original character.

string
If a string is input, returns a string of EBCDIC characters corresponding to the
ASCII version of the original string.

Note: EBCDIC characters displayed on an ASCII machine display differently from the
same characters displayed on an EBCDIC machine. The character displayed is the
ASCII version of the underlying hex representation of the EBCDIC character. For
example, and EBCDIC “â” (hex 42) displays as “B” on an ASCII machine.

Examples

These examples were created on an ASCII machine.

(ascii->ebcdic #\&) => P

(ascii->ebcdic #\+) => N

Name Type Description

input string ASCII string to convert.

fill-length integer Number of characters to fill.

fill-char char Pad character.

:Full keyword The use of the keyword enables full
conversion of non-printable and
printable characters.
Monk Developer’s Reference 588 SeeBeyond Proprietary and Confidential

Chapter 22 22.4
e*Gate Extensions to Monk Monk Utility Functions
(ascii->ebcdic "cat") => âüú

(ascii->ebcdic "cat" 15 #\x67) => âüúçççççççççççç

This example creates a file containing a list of all the conversions:

(define a2e_out (open-output-file "a2e-output.txt"))
(load-extension "stc_monkutils.dll")
(do ((i 0 (+ i 1)))

((= i 256))
(begin

(display (string-append (number->string i) " = ") a2e_out)
(write-exp (ascii->ebcdic (integer->char i)) a2e_out)
(newline a2e_out)

)
)

Notes

By default, Monk converts all alphanumeric characters plus the following subset of the
ASCII character set.

The ASCII codes that are not translated are:

The ASCII codes that do not have an EBCDIC equivalent and are translated into an
arbitrary EBCDIC code are:

The ASCII code that does not have an EBCDIC equivalent but is translated into a non-
equivalent character is:

! alert ! vertical tab

! bell ! backspace

! space ! octal 3-digits

! newline ! hexadecimal 2-digits

! formfeed ! a-z, A-Z

! carriage return ! 0 - 9

! horizontal tab

! 0x00–0x03 ! 0x18–0x19

! 0x0b–0x13 ! 0x1c–0x1f

! ASCII 0x5b '[' = EBCDIC 0x4a 'cent character'

! ASCII 0x5d ']' = EBCDIC 0x5a '!'

! ASCII 0x5e '^' = EBCDIC 0x5f 'top-right character'

! ASCII 0x21 '!' = EBCDIC 0x4f '|'
Monk Developer’s Reference 589 SeeBeyond Proprietary and Confidential

Chapter 22 22.4
e*Gate Extensions to Monk Monk Utility Functions
base64->raw

Syntax

(base64->raw string)

Description

Converts a base-64 string to a character string.

Parameters

Return Value

string
Returns a string.

Example

(base64->raw "SGVsbG8gd29ybGQ=") => Hello world

Name Type Description

string string The string to be converted
Monk Developer’s Reference 590 SeeBeyond Proprietary and Confidential

Chapter 22 22.4
e*Gate Extensions to Monk Monk Utility Functions
binary->string

Syntax

(binary->string string)

Description

Converts a binary string into a string representation of a number.

The binary string used as input must be in the “big-endian” format.

Parameters

Return Value

string
Returns a string.

Example

(binary->string (string->binary "12345" 3)) =>12345

Name Type Description

string string The string to be converted
Monk Developer’s Reference 591 SeeBeyond Proprietary and Confidential

Chapter 22 22.4
e*Gate Extensions to Monk Monk Utility Functions
change-directory

Syntax

(change-directory string)

Description

Changes the working directory of the current process to the specified directory.

Parameters

Return Value

Boolean
Returns #t if the function executes successfully; otherwise returns #f.

Example

(change-directory "monk_scripts/common/myscripts") =>#t

Name Type Description

string string A directory name.
Monk Developer’s Reference 592 SeeBeyond Proprietary and Confidential

Chapter 22 22.4
e*Gate Extensions to Monk Monk Utility Functions
close-pipe

Syntax

(close-pipe handle)

Description

Closes the file handle created by the open-pipe function. For more information, see
open-pipe on page 599.

Note: This command is only available under the UNIX operating system.

Parameters

Return Value

boolean
Returns a #t if the handle is valid. Otherwise, returns #f.

Example

(define fp (open-pipe "/bin/ls -la"))
(define data "")
(do ((done 0 (+ done 0))) ((= done 1))
 (set! data (read-line fp 1024))
 (if (eof-object? data)
 (begin
 (set! done 1)
)
 (begin
 (display data)(newline) => output of ls -la command
)
)
)
(close-pipe fp)

Name Type Description

handle string The name of the file handle to be closed.
Monk Developer’s Reference 593 SeeBeyond Proprietary and Confidential

Chapter 22 22.4
e*Gate Extensions to Monk Monk Utility Functions
ebcdic->ascii

Syntax

(ebcdic->ascii input [fill-length fill-char] [:Full])

Description

Converts an EBCDIC character or string into an ASCII character or string, using a
one-for-one lookup table. For example, a “B” character on an EBCDIC machine (hex c2)
is converted to a “B” character on an ASCII machine (hex 42).

Optionally, fills the end of the output string with a fill-char. The fill-char chosen will also
be converted to the corresponding EBCDIC character. The parameters, fill-length and
fill-char are used as an optional pair. (Although optional, one is not used without the
other.)

The keyword, :Full, enables full conversion of both printable and not-printable
characters, while the default converts non-printable characters to NULL. The keyword
:Full parameter must appear as the last parameter. This option uses IBM-1047 for
EBCDIC, and ISO-850 for ASCII.

Parameters

Return Value

 character
If the input is a character, returns the ASCII version of the EBCDIC character.

string
If the input is a string, returns an ASCII string.

Note: ASCII characters displayed on an EBCDIC machine display differently from the
same characters displayed on an ASCII machine. The character displayed is the
EBCDIC version of the underlying hex representation of the ASCII character. For
example, an ASCII “â” (hex e2) displays as “S” on an EBCDIC machine.

Examples

These examples were created on an ASCII machine.

(ebcdic->ascii "âüú") => cat

(ebcdic->ascii #\x50) => &

(ebcdic->ascii #\x6d) => _

Name Type Description

input string EBCDIC string to convert.

fill-length integer Number of characters to fill.

fill-char char Pad character.

:Full keyword The use of the keyword enables full
conversion of non-printable and
printable characters.
Monk Developer’s Reference 594 SeeBeyond Proprietary and Confidential

Chapter 22 22.4
e*Gate Extensions to Monk Monk Utility Functions
This example creates a file containing a list of all the conversions:

(define a2e_out (open-output-file "a2e-output.txt"))
(load-extension "stc_monkutils.dll")
(do ((i 0 (+ i 1)))

((= i 256))
(begin

(display (string-append (number->string i) " = ") a2e_out)
(write-exp (ebcdic->ascii (integer->char i)) a2e_out)
(newline a2e_out)

)
)

Notes

By default, Monk converts all alphanumeric characters plus the following subset of the
EBCDIC character set.

The following EBCDIC code points are translated according to the IBM 3274
specification:

A carriage return may have to be inserted for certain ASCII devices when converting
the following:

! alert ! vertical tab

! bell ! backspace

! space ! octal 3-digits

! newline ! hexadecimal 2-digits

! formfeed ! a-z, A-Z

! carriage return ! 0 - 9

! horizontal tab

! EBCDIC 0x4a 'cent' = ASCII 0x5b '['

! EBCDIC 0x4f 'solid |' = ASCII 0x21 '!'

! EBCDIC 0x5a '!' = ASCII 0x5d ']'

! EBCDIC 0x6a '|' = ASCII 0x7c '|'

! EBCDIC 0x5f 'top-right' = ASCII 0x5e '^'

! EBCDIC 0x15 'nl' = ASCII 0x0a 'lf'
Monk Developer’s Reference 595 SeeBeyond Proprietary and Confidential

Chapter 22 22.4
e*Gate Extensions to Monk Monk Utility Functions
hexdump->string

Syntax

(hexdump->string string)

Description

Converts a hexdump string (which has been created using string->hexdump) to a
character string.

Parameters

Return Value

string
Returns a string.

Example

(hexdump->string "636174") =>cat

See string->hexdump on page 609 for more information.

Name Type Description

string string The string to be converted
Monk Developer’s Reference 596 SeeBeyond Proprietary and Confidential

Chapter 22 22.4
e*Gate Extensions to Monk Monk Utility Functions
IBMpacdec->string

Syntax

(IBMpacdec->string string)

Description

Converts an IBM packed decimal to a string.

Parameters

Return Value

string
The string corresponding to the IBM packed decimal.

Examples

The following examples work on an EBCDIC machine:

(IBMpacdec->string (string->IBMpacdec "0x12345C")) =>12345

(IBMpacdec->string (string->IBMpacdec "0x12345D")) =>-12345

The following example works on an ASCII machine. The inclusion of the identifier
#EBCDIC indicates to the Monk engine that the string to be converted is in EBCDIC
format. Without this identifier, the data would be incorrectly interpreted as ASCII data.

(display
(ebcdic->ascii

(IBMpacdec->string #EBCDIC"\x01\x23\x4c")
:Full)

)

=> +01234

Name Type Description

string string The string to be converted
Monk Developer’s Reference 597 SeeBeyond Proprietary and Confidential

Chapter 22 22.4
e*Gate Extensions to Monk Monk Utility Functions
IBMzoned->string

Syntax

(IBMzoned->string string)

Description

Converts a IBM zone-decimal string to a string representation of a number.

Parameters

Return Value

string
The string corresponding to the zone-decimal.

Examples

The following examples work on an EBCDIC machine:

(IBMzoned->string (string->IBMzoned "1234E")) =>12345

(IBMzoned->string (string->IBMzoned "1234D")) =>-12345

The following example works on an ASCII machine. The inclusion of the identifier
#EBCDIC indicates to the Monk engine that the string to be converted is in EBCDIC
format. Without this identifier, the data would be incorrectly interpreted as ASCII data.

(display
(ebcdic->ascii

(IBMzoned->string #EBCDIC"\xf1\xf1\xf1\xc1")
:Full)

)

=> +1111

Name Type Description

string string The string to be converted
Monk Developer’s Reference 598 SeeBeyond Proprietary and Confidential

Chapter 22 22.4
e*Gate Extensions to Monk Monk Utility Functions
open-pipe

Syntax

(open-pipe string)

Description

Spawns the specified application and returns a file handle from which you can read the
application’s output.

Note: This command is only available under the UNIX operating system.

Parameters

Return Value

handle
Returns a file handle.

Example

(define fp (open-pipe "/bin/ls -la"))
(define data "")
(do ((done 0 (+ done 0))) ((= done 1))
 (set! data (read-line fp 1024))
 (if (eof-object? data)
 (begin
 (set! done 1)
)
 (begin
 (display data)(newline) => output of ls -la command
)
)
)
(close-pipe fp)

Name Type Description

string string An executable file or script to be executed.
Monk Developer’s Reference 599 SeeBeyond Proprietary and Confidential

Chapter 22 22.4
e*Gate Extensions to Monk Monk Utility Functions
pacdec->string

Syntax

(pacdec->string string digit_after)

Description

Converts a packed decimal string to a string representation of a number.

Parameters

Return Value

string
Returns a quoted number (a string).

Example

(define mypacdec (string->pacdec "123.12345" 3 5))
(pacdec->string mypacdec 5) => 123.12345

Name Type Description

string string The string to be converted

digit_after integer The number of digits after the decimal point
Monk Developer’s Reference 600 SeeBeyond Proprietary and Confidential

Chapter 22 22.4
e*Gate Extensions to Monk Monk Utility Functions
raw->base64

Syntax

(raw->base64 string)

Description

Converts a raw string into a base-64 string.

Parameters

Return Value

string
Returns a string.

Example

(raw->base64 "Hello, world\n")

Name Type Description

string string The string to be converted
Monk Developer’s Reference 601 SeeBeyond Proprietary and Confidential

Chapter 22 22.4
e*Gate Extensions to Monk Monk Utility Functions
reg-get-file

Syntax

(reg-get-file string)

Description

Gets a file from the e*Gate Registry and writes a copy to the default directory.

The file created by this function can be open and read with any of the file access
functions.

Parameters

Example

(reg-get-file "MyDataMap.dat") => {MONK_UNSPECIFIED}

Note: This function is not compatible with stctrans.exe or with the Monk Test Console.

Name Type Description

string string The string to be converted
Monk Developer’s Reference 602 SeeBeyond Proprietary and Confidential

Chapter 22 22.4
e*Gate Extensions to Monk Monk Utility Functions
sleep

Syntax

(sleep time)

Description

Waits the specified number of milliseconds, then exits.

Parameters

Return Value

Undefined

Example

(sleep 5000) ; sleep 5 seconds

Name Type Description

time integer The number of milliseconds to sleep
Monk Developer’s Reference 603 SeeBeyond Proprietary and Confidential

Chapter 22 22.4
e*Gate Extensions to Monk Monk Utility Functions
string->7even

Syntax

(string->7even string length)

Description

Converts a raw string to a string such that for each character, the parity is even and the
high bit is set if the count of the remaining seven bits is even.

Parameters

Return Value

string
Returns a string.

Example

(string->7even "ABCDEFG" 7)

Name Type Description

string string The string to be converted

length integer The length of the string
Monk Developer’s Reference 604 SeeBeyond Proprietary and Confidential

Chapter 22 22.4
e*Gate Extensions to Monk Monk Utility Functions
string->8none

Syntax

(string->8none string length)

Description

Resets the high-order bit of each character within a string.

This function is the complement of string->7even.

Parameters

Return Value

string
Returns a string.

Example

(define mystring (string->7even "ABCDEFG" 7))
(string->8none mystring) =>ABCDEFG

Name Type Description

string string The string to be converted

length integer The length of the string
Monk Developer’s Reference 605 SeeBeyond Proprietary and Confidential

Chapter 22 22.4
e*Gate Extensions to Monk Monk Utility Functions
string->binary

Syntax

(string->binary string bytes)

Description

Converts a string representation of an integer to a blob representation of a big-endian
number.

Parameters

Return Value

string
Returns a string.

Example

(binary->string (string->binary "12345" 3)) =>12345

Name Type Description

string string The string to be converted

bytes integer The number of bytes in the resulting string. Valid values are 1, 2,
3 or 4.
Monk Developer’s Reference 606 SeeBeyond Proprietary and Confidential

Chapter 22 22.4
e*Gate Extensions to Monk Monk Utility Functions
string-decrypt

Syntax

(string-decrypt key string)

Description

Decrypts the specified string using the specified key.

Parameters

Return Value

string
Returns a string.

Example

(string-decrypt "key" "06C22BA54DC811") => mypass

Name Type Description

key string The encryption key

string string The string to be decrypted
Monk Developer’s Reference 607 SeeBeyond Proprietary and Confidential

Chapter 22 22.4
e*Gate Extensions to Monk Monk Utility Functions
string-encrypt

Syntax

(string-encrypt key string)

Description

Encrypts the specified string using the specified key.

Parameters

Return Value

string
Returns a string.

Example

(string-encrypt "key" "mypass") => 06C22BA54DC811

See also encrypt-password on page 579.

Name Type Description

key string The encryption key

string string The string to be encrypted
Monk Developer’s Reference 608 SeeBeyond Proprietary and Confidential

Chapter 22 22.4
e*Gate Extensions to Monk Monk Utility Functions
string->hexdump

Syntax

(string->hexdump string)

Description

Converts a character string to a hexdump string.

Parameters

Return Value

string
Returns a string.

Example

(string->hexdump "cat") =>636174

See hexdump->string on page 596 for more information.

Name Type Description

string string The string to be converted
Monk Developer’s Reference 609 SeeBeyond Proprietary and Confidential

Chapter 22 22.4
e*Gate Extensions to Monk Monk Utility Functions
string->IBMpacdec

Syntax

(string->IBMpacdec string)

Description

Converts a string to an IBM packed decimal number.

Parameters

Return Value

string

Example

(string->IBMpacdec (IBMpacdec->string "12345")) =>0x12345C

(string->IBMpacdec (IBMpacdec->string "-12345")) =>0x12345D

In the above examples, the output is equal to 3-bytes, and the alpha character
represents the sign.

Name Type Description

string string The string to be converted
Monk Developer’s Reference 610 SeeBeyond Proprietary and Confidential

Chapter 22 22.4
e*Gate Extensions to Monk Monk Utility Functions
string->IBMzoned

Syntax

(string->IBMzoned string)

Description

Converts a string to an IBM zone-decimal.

Parameters

Return Value

string

Examples

The following examples work on an EBCDIC machine. E is equivalent to xC5, or a
positive sign. The N is equivalent to xD5, or a negative sign.:

(string->IBMzoned (IBMzoned->string "12345")) =>1234E

(string->IBMzoned (IBMzoned->string "-12345")) =>1234N

In the above examples, the E is equivalent to xC5, or a positive sign. The N is equivalent
to xD5, or a negative sign.

The following example works on an ASCII machine. The inclusion of the identifier
#EBCDIC indicates to the Monk engine that the string to be converted is in EBCDIC
format. Without this identifier, the data would be incorrectly interpreted as ASCII data.

(display
(string->IBMzoned

(ebcdic->ascii
(IBMzoned->string #EBCDIC"\xf1\xf1\xf1\xc1") :Full)))

=> 111A

Name Type Description

string string The string to be converted
Monk Developer’s Reference 611 SeeBeyond Proprietary and Confidential

Chapter 22 22.4
e*Gate Extensions to Monk Monk Utility Functions
string->pacdec

Syntax

(string->pacdec string digits_before digits_after)

Description

Converts a string representation of a number to a packed decimal string.

Parameters

Return Value

string
Returns a string.

Example

(define mypacdec (string->pacdec "123.12345" 3 5))
(pacdec->string mypacdec 5) => 123.12345

Name Type Description

string string The string to be converted

digit_before integer The number of digits before the decimal point

digit_after integer The number of digits after the decimal point
Monk Developer’s Reference 612 SeeBeyond Proprietary and Confidential

Chapter 22 22.4
e*Gate Extensions to Monk Monk Utility Functions
string->zoned

Syntax

(string-zoned string)

Description

Converts a string representation of a number into a zone decimal string.

Parameters

Return Value

string
Returns a string.

Example

(zoned->string (string->zoned "12345")) =>12345

Name Type Description

string string The string to be converted
Monk Developer’s Reference 613 SeeBeyond Proprietary and Confidential

Chapter 22 22.4
e*Gate Extensions to Monk Monk Utility Functions
zoned->string

Syntax

(zoned->string string)

Description

Converts a zone-decimal string to a string representation of a number.

Parameters

Return Value

string
Returns a string.

Example

(zoned->string (string->zoned "12345")) =>12345

Name Type Description

string string The string to be converted
Monk Developer’s Reference 614 SeeBeyond Proprietary and Confidential

Chapter 23

Exception Functionality

The exception functions include:

abort on page 618

catch on page 619

define-exception on page 621

exception-category on page 622

exception-string on page 623

exception-string-all on page 624

exception-symbol on page 625

throw on page 626

try on page 627

23.1 Try-Throw-Catch Basics
The try-throw-catch exception and handling mechanism enables the Monk
environment to automatically generate exceptions for detected error conditions. You
can trap and execute exception handlers for most of these errors. This book includes a
list of internally-generated exceptions which can be trapped, along with the standard
Monk Exception Codes. You can also define your own exceptions, and cause them to be
thrown as required.

The code fragment below shows a simple implementation of the exception handling
interface.

(display "Starting the test.") (newline)

(define-exception e555 3)
(define (display-exception-info)
 (newline)
 (display (string-append "Exception category: "

 (number->string (exception-category)) "."))
 (newline)
 (display (string-append "Exception symbol: "

 (symbol->string (exception-symbol)) "."))
 (newline)
 (display (string-append "Exception string: " (exception-string)
"."))
 (newline))
Monk Developer’s Reference 615 SeeBeyond Proprietary and Confidential

Chapter 23 23.1
Exception Functionality Try-Throw-Catch Basics
(try
 (display "In Level 1 of try structure.") (newline)
 (throw e555 "My exception")
 (catch
 ((e555) (display "In Level 1 exception code.")
 (display-exception-info))
 (otherwise (display "In Level 1 otherwise stanza.")

 (display-exception-info))
)

)

The above example defines an exception handler using the define-exception Monk
routine. The routine accepts two parameters: one is the name (actually a symbol)
representing the exception, and the other is the exception category. The symbol should
be set to a unique value. The category can be used to group exceptions for later
processing purposes. This definition must occur outside of the code block wherein the
exception is to be trapped.

You encapsulate the code to trap exceptions within a try block, which has the form:

(try
 ... main body of code ...
 (catch
 ((exception-symbol to catch)
 ... exception handling code ...
)
 (otherwise
 ... exception handling code ...
)
 (always
 ... exception handling code ...
)
)
)

Within the main code body, you can throw exceptions, or the system may detect an
error and throw an exception. When an exception occurs, processing control is
immediately passed onto the catch stanza within the try block, which then attempts to
handle the exception. There are three possible entries within the catch block:

! specific symbols for exceptions,

! the keyword “otherwise”, which is executed if the symbol of the exception is not
explicitly included in the catch list, and

! the keyword “always”, which is always executed if the stanza exists.

All of these entries are optional.

Three additional monk functions are available to support processing of exceptions.
These are:

! exception-category - returns the category of the current exception,

! exception-symbol - which returns the symbol of the current exception, and

! exception-string - which returns an error string, including the string which was
included when the exception was defined to the system.

If a specific case is present for the thrown exception, the associated code is processed
and the system marks the exception as handled. If an “always” stanza exists, it is then
Monk Developer’s Reference 616 SeeBeyond Proprietary and Confidential

Chapter 23 23.1
Exception Functionality Try-Throw-Catch Basics
processed and processing continues with the next valid code after the end of the try
block.

If the specific case is not present for the thrown exception, but the “otherwise” stanza
exists, the catch block executes the code associated with the “otherwise” stanza. If an
“always” stanza exists, it is then processed and processing continues with the next
valid code after the end of the try block.

If the specific case is not present for the thrown exception, and the “otherwise” stanza
does not exist, the catch executes the “always” clause, if it exists. The exception is not
marked as handled, but is passed out of the try block. If the block is at the top level, the
exception causes the system to return an error. If the try block is encapsulated within
another try, the exception is immediately passed to the catch block within the
encapsulating try block, and exception processing continues as described above.

Note: When using user-defined exceptions and the define-exception function, you must
first check to see if the exception has been defined previously. Your collaboration rule
will fail if you attempt to define, for a second time, the user-defined exception. This
most likely will result when an e*Way is always running and a new data file
becomes available for processing. In this case, the .tsc is executed a second time and
the define-exception statement also is executed, unless it is part of an IF statement
checking to see if already defined.

23.1.1 e*Gate Events and Monk Exceptions
If a Monk exception occurs while a BOB or an e*Way is processing an Event, no data is
lost. e*Gate protects the data by doing one of the following:

! If the exception occurs while processing an Event within the e*Gate system
(specifically, an Event that had been published to an IQ and to which another
e*Gate component was subscribing), the Event will be rolled back, and will remain
in the IQ.

! If the exception occurs while processing an Event that had been received from the
external system, the e*Way will NAK the external system.
Monk Developer’s Reference 617 SeeBeyond Proprietary and Confidential

Chapter 23 23.1
Exception Functionality Try-Throw-Catch Basics
abort

Syntax

(abort message)

Description

Generates an exception in which the message will become part of the exception
explanation.

Parameters

Return Value

Creates an exception condition similar to throw.

Examples

(abort "Aborting function")
 => abort:Aborting function
(abort) => abort:

Name Type Description

message string The message to display. Optional.
Monk Developer’s Reference 618 SeeBeyond Proprietary and Confidential

Chapter 23 23.1
Exception Functionality Try-Throw-Catch Basics
catch

Syntax

(catch
 [((exception ...) expression ...)]

[[((exception ...) expression ...)]]
....

 [(otherwise expression ...)]
 [(always expression ...)]
)

Description

Indicates which exceptions are to be processed and provides the code for processing.

You may have more than one list of exceptions with their associate expressions.

The catch must be used within the context of the try block. If not within the try block, it
is ignored.

The following exception types are not catchable:

! Exception-None

! Exception-Catastrophic

The following exception types are catchable:

! Exception-Generic

! Exception-Verify

! Exception-NotVerify

! Exception-FileLookup

! Exception-Mapping

! Exception-CallArgUsage

! Exception-PathInvalid

! Exception-Interface

! Exception-InvalidArg

! Exception-Domain

! Exception-Range

! Exception-Monk-Usage

! Exception-Abort

! Exception-Regex-Failure

! Exception-File

! Exception-System

The following exception type is catchable outside ‘(load ..)’ but ignored in ‘(load-
directory . . .)’:

! Exception-Parser
Monk Developer’s Reference 619 SeeBeyond Proprietary and Confidential

Chapter 23 23.1
Exception Functionality Try-Throw-Catch Basics
The following exception type is not registered with the system:

! Exception-Unknown

Refer to Exception Codes on page 628 for a complete listing of all exception codes.

Parameters

None.

Return Value

The catch is not entered unless there is an active exception. If the current active
exception matches one of the listed exceptions to be caught or the otherwise clause,
then the return value is the result of evaluating the last expression. If the always clause
exists, the expressions that follow are evaluated and the exception remains active,
unless a new one is generated. If the exception is caught, the result is the result of the
clause that catches the expression. If the exception is not caught (this includes always),
there is no result and the exception is not terminated.

Example

Refer to the try example.
Monk Developer’s Reference 620 SeeBeyond Proprietary and Confidential

Chapter 23 23.1
Exception Functionality Try-Throw-Catch Basics
define-exception

Syntax

(define-exception exception category)

Description

Defines an exception category in addition to exception categories pre-defined by the
system.

Exception categories predefined by the have one or many individual error messages
associated with it. User defined exception categories are not associated with individual
error messages. They are used to all user programs to participate in the (try .. (catch...))
functionality.

Parameters

Return Value

Unspecified.

Example

(define-exception e555 3)

Name Type Description

exception symbol The symbol that represents the exception.

category integer Must be greater than zero.
Monk Developer’s Reference 621 SeeBeyond Proprietary and Confidential

Chapter 23 23.1
Exception Functionality Try-Throw-Catch Basics
exception-category

Syntax

(exception-category)

Description

Retrieves the category of the current active exception.

Parameters

None.

Return Value

Returns an integer as follows:

! zero - if there is no exception category

! negative - if it is a system exception category

! positive - if it is a user-defined exception category

Example

(exception-cateory) => 3
Monk Developer’s Reference 622 SeeBeyond Proprietary and Confidential

Chapter 23 23.1
Exception Functionality Try-Throw-Catch Basics
exception-string

Syntax

(exception-string)

Description

Retrieves the message portion of the current active exception.

Parameters

None.

Return Value

Returns the message included when the exception was generated.

Example

Aborting process.
Monk Developer’s Reference 623 SeeBeyond Proprietary and Confidential

Chapter 23 23.1
Exception Functionality Try-Throw-Catch Basics
exception-string-all

Syntax

(exception-string-all)

Description

Retrieves the complete string which represents the exception information.

Parameters

None.

Return Value

Returns the entire string representing the exception information.

Example

MONKEXCEPT:0194: abort: Aborting process.
Monk Developer’s Reference 624 SeeBeyond Proprietary and Confidential

Chapter 23 23.1
Exception Functionality Try-Throw-Catch Basics
exception-symbol

Syntax

(exception-symbol)

Description

Retrieves the symbol of the current active exception.

Parameters

None.

Return Value

Returns a symbol.

Example

(exception-symbol) => 555
Monk Developer’s Reference 625 SeeBeyond Proprietary and Confidential

Chapter 23 23.1
Exception Functionality Try-Throw-Catch Basics
throw

Syntax

(throw exception [message])

Description

Creates the specified exception condition.

Parameters

Return Value

Creates an exception condition.

Example

(throw e555 "My exception")

Also, refer to the try example.

Name Type Description

exception symbol System or user-defined.

message string User-defined message.
Monk Developer’s Reference 626 SeeBeyond Proprietary and Confidential

Chapter 23 23.1
Exception Functionality Try-Throw-Catch Basics
try

Syntax

(try expression ... [(catch ...)])

Description

Creates a block of code wherein expressions are evaluated sequentially and where
errors may be handled when detected.

If an exception (that is, an error) is generated by an included expression, the catch is
entered. You may write the catch clause to execute any of several different expressions
depending upon the exception that is raised.

There are a number of predefined exceptions for known error conditions. You may also
define additional exceptions using the function define-exception on page 621.

Parameters

Return Value

The result of evaluating the last expression.

Example

(display "Starting the test.") (newline)

(define-exception e555 3)
(define (display-exception-info)
 (newline)
 (display (string-append "Exception category: "

 (number->string (exception-category)) "."))
 (newline)
 (display (string-append "Exception symbol: "

 (symbol->string (exception-symbol)) "."))
 (newline)
 (display (string-append "Exception string: " (exception-string)
"."))
 (newline))

(try
 (display "In Level 1 of try structure.") (newline)
 (throw e555 "My exception")
 (catch
 ((e555) (display "In Level 1 exception code.")
 (display-exception-info))
 (otherwise (display "In Level 1 otherwise stanza.")

 (display-exception-info))
)

)

Name Type Description

expression any May be any expression.
Monk Developer’s Reference 627 SeeBeyond Proprietary and Confidential

Chapter 24

Exception Codes

When an error condition is detected, the system raises an exception to indicate its
existence. When an exception is raised, it may be detected and handled.

Exceptions fall into categories. When you write a (try ... (catch ...)) block, you will catch
one or more exception categories. The System exception categories are listed in Table 7.
The programmer can define additional exception categories using the define-exception
monk function.

Note: Exception-None and Exception-Catastrophic may not be caught.

Table 7 System Exception Categories

Type Category

Exception-None 0

Exception-Catastrophic -1

Exception-Generic -2

Exception-Verify -3

Exception-NotVerify -4

Exception-FileLookup -5

Exception-Mapping -6

Exception-CallArgUsage -7

Exception-PathInvalid -8

Exception-Interface -9

Exception-InvalidArg -10

Exception-Domain -11

Exception-Range -12

Exception-Monk-Usage -13

Exception-Abort -14

Exception-Regex-Failure -15

Exception-File -16

Exception-Parser -17

Exception-System -18
Monk Developer’s Reference 628 SeeBeyond Proprietary and Confidential

Chapter 24
Exception Codes
When an error is detected, an exception code and an exception message are written to
the log file of the component in which the error occurred. Table 9 (below) lists all the
exception codes that can be generated. In the table, the percent symbol (%) represents a
variable that the Monk code inserts into the exception. The “%s:” in front of the
exception string is the name of the function generating the exception. The letters
following the (%) sign have the meanings shown in Table 8.

Table 8 Error Argument Format Codes

%s string

%d decimal number

%ld long decimal number

%Le long double (used more for scientific
notation)

%Lg long double

%lu long unsigned integer

%ul unsigned integer long

%e floating point number

%c character

%u unsigned

M_PRIi64 platform dependent 64 bit numbers

M_PRIu64 unsigned 64 bit numbers

Table 9 Exception Code Table

Exception Code Exception String Category and Description

0000 %s: argument %u must be a
sequence.

Exception-InvalidArg
In function %s, argument %d
returned a result that is not a
sequence.

0001 %s: arguments (x and y) must
NOT satisfy (x == 0 and y<= 0) or (x
< 0 and \"y not an integer\").

Exception-Domain
In function %s, arguments (x and y)
must not satisfy (x == 0 and y<= 0) or
(x< 0 and \”y not an integer\”.

0002 %s: must have numeric
arguments.

Exception-InvalidArg
A non numeric parameter has been
specified in the function %s.

0003 %s: %Lg %d will OVERFLOW. Exception-Domain
The mathematical operation of the
parameters %e and %e in the
function %s will cause an
OVERFLOW condition.
Monk Developer’s Reference 629 SeeBeyond Proprietary and Confidential

Chapter 24
Exception Codes
0004 %s: %Lg %d will UNDERFLOW. Exception-Domain
The mathematical operation of the
parameters %e and %e in the
function %s will cause an
UNDERFLOW condition.

0005 %s: %Lg " M_PRIi64 " will
OVERFLOW.

Exception-Domain
The operation of the parameters %ld
and %ld in the function %s will cause
an OVERFLOW condition.

0006 %s: %Lg " M_PRIi64 " will
UNDERFLOW.

Exception-Domain
The operation of the parameters %ld
and %ld in the function %s will cause
an UNDERFLOW condition.

0007 %s: argument %u must satisfy [x >
0].

Exception-Domain
Argument %d must be within the
domain of numbers.

0008 %s: takes numerical arguments. Exception-InvalidArg
A non-numeric argument has been
specified in the function %s.

0009 %s: argument %u must be a valid
path.

Exception-InvalidArg
In function %s, a parameter, %d, has
been specified that is not a valid path
name.

0010 %s: argument %u must be a list of
strings.

Exception-InvalidArg
In function %s, a parameter, %d, has
been specified that is not a list of
string values

0011 %s: takes a number as an
argument.

Exception-InvalidArg
An argument has been specified that
is not a number in function %s.

0012 %s: requires %u argument(s). Exception-InvalidArg
In function %s, the required number
of arguments %d have not been
specified.

0013 %s: malloc (%u) failed [strerror
(%d)=(%s)].

Exception-Catastrophic
In function %s, the attempt to
allocate memory has failed. The
function outputs error event (%s)
exception number (%d).

0014 %s: realloc (??, %u) failed [strerror
(%d)=(%s)].

Exception-Catastrophic
In function %s, the attempt to
reallocate memory has failed. The
function outputs exception event
(%s) exception number (%d).

Table 9 Exception Code Table (Continued)

Exception Code Exception String Category and Description
Monk Developer’s Reference 630 SeeBeyond Proprietary and Confidential

Chapter 24
Exception Codes
0015 %s: input arg count (%u) doesn’t
match formal arg count (%u).

Exception-InvalidArg
Procedure call, the number of
arguments do not match.

0016 %s: fwrite(??) failed [strerror %d)
= (%s)].

Exception-System
The system fwrite(??) call failed.

0017 %s: call of %s () has failed with
code %d.

Exception-Monk-Usage
The init function in load interface has
failed.

0018 %s: path message variable \"%s\"
is not `type’ event.

Exception-PathInvalid
In function %s, the path variable, %s,
entered is not a valid event type.

0019 %s: fprintf(??) failed
[strerror(%d)=(%s)].

Exception-System
In function %s, the fprintf()
instruction failed. The function
outputs exception event (%s)
exception number (%d).

0020 %s: invalid result received from
port callback.

Exception-Monk-Usage
Result of the callback must be the
result of making the call (of the
original functionality on the port).

0021 %s: invalid result received from
C_API call.

Exception-Monk-Usage
Invalid result received from an API
call.

0022 %s: expect last expression to be
`catch’.

Exception-Monk-Usage
An exception was thrown
somewhere in try.

0023 %s: strftime(??, %u, %s, ??) failed
[strerror(%d)=(%s)].

Exception-System
In function %s, the strftime()
instruction failed. The function
outputs exception event (%s)
exception number (%d).

0024 %s: argument %u must be an
string port.

Exception-InvalidArg
This in an incorrect argument.

0025 %s: argument %u exceeds valid
string length.

Exception-InvalidArg
This is an internal or system
limitation.

0026 %s: %s is not an event structure. Exception-InvalidArg
In function %s, the input string is not
a valid event structure.

0027 %s: monk stack overflow. Limit is %u. Exception-Monk-Usage
Inputting function %s onto the Monk
stack caused the stack to overflow.
The limit of the stack is %d.

Table 9 Exception Code Table (Continued)

Exception Code Exception String Category and Description
Monk Developer’s Reference 631 SeeBeyond Proprietary and Confidential

Chapter 24
Exception Codes
0028 %s: argument %u must be an
event.

Exception-InvalidArg
In function %s, the %d argument is
expected to be an event type.

0029 %s: argument %u must be an
integer.

Exception-InvalidArg
In function %s, the %d argument is
expected to be an integer.

0030 %s: argument %u must be a char. Exception-InvalidArg
In function %s, the %d argument is
expected to be a char.

0031 %s: arguments must be strings. Exception-InvalidArg
The arguments to function %s must
be strings. A non-string argument has
been specified.

0032 %s: argument %u is not mutable. Exception-Monk-Usage
The function %s attempted to store a
value into the location represented
by argument %d which is already in
use and thus immutable.

0033 %s: %s. Exception-Generic
The generic exception event
indicator in function %s.

0034 %s:failed. Exception-NotVerify
Operation being performed in
function %s failed.

0035 %s: string argument %u must be
of length > %u.

Exception-Domain
The length of the string must be %d
length.

0036 %s: variable <%s> has not been
defined.

Exception-Monk-Usage
The variable (%s) in function %s has
not been defined.

0037 %s: argument %u must be a non-
negative number.

Exception-InvalidArg
In function %s, argument %d has
been expressed as a negative
number, it must be non-negative.

0038 %s: arguments must be chars. Exception-InvalidArg
In function %s, all arguments must
be of type character.

0039 %s: argument %u must be a
string.

Exception-InvalidArg
In function %s, argument %u must
be of type string.

Table 9 Exception Code Table (Continued)

Exception Code Exception String Category and Description
Monk Developer’s Reference 632 SeeBeyond Proprietary and Confidential

Chapter 24
Exception Codes
0040 %s: error opening \"%s\"
[strerror(%d)=(%s)].

Exception-System
In function %s, an exception
occurred while trying to open the
function. The function outputs
exception event (%s) exception
number (%d).

0041 %s: invalid syntax. Exception-Monk-Usage
The syntax is not correct.

0042 %s: requires %u or more
arguments.

Exception-InvalidArg
Not enough arguments have been
entered in function %s. Function
requires a minimum of %u
arguments.

0043 %s: %s(y=%d,m=%d,d=%d,
h=%d,m=%d,s=%d,i=%d)
[strerror(%d)=(%s)].

Exception-System
The date/time format is in exception.
The system will output an event
(strerror(%d)= (%s)) indicating what
element or elements are in error.

0044 %s: argument %u must be a
number.

Exception-InvalidArg
In function %s, argument %u must
be of type number.

0045 %s: argument %u is not mutable. Exception-Monk-Usage
The function %s attempted to store a
value into the location represented
by argument %u which is already in
use and thus immutable.

0046 %s: argument %u must be an
integer and in [0 <= %u , %u].

Exception-Range
In function %s, the string must be an
integer and is in the specified range
[%u - %u].

0047 %s: expected arg(s) are %s. Exception-Generic
An explanation of the expected
arguments.

0048 %s: argument %u <%s> must be a
pair.

Exception-InvalidArg
In function %s, the two arguments
%u and %s must be a pair.

0049 %s: bad constant number \”%s\”. Exception-Parser
The constant number is not valid.

0050 %s: for \"%s\"; required children
for serialization not in NofN[%u
<= %u <= %u].

Exception-Range
The minimum number of children
are not present for serialization.

0051 %s: argument %u(%u) must be 2,
8, 10, or 16.

Exception-InvalidArg
In function %s, the argument %u is
not one of the required values. The
argument must be a 2, 8, 10, or 16.

Table 9 Exception Code Table (Continued)

Exception Code Exception String Category and Description
Monk Developer’s Reference 633 SeeBeyond Proprietary and Confidential

Chapter 24
Exception Codes
0052 %s: argument %u must be in
domain [-1, 1].

Exception-Domain
The argument %u being passed in
must be within these limits.

0053 %s: delimiter not in data[%u <=
%u <= %u].

Exception-Mapping
An offset has been specified that is
not in the data string.

0054 %s: argument %u must be a vector. Exception-InvalidArg
In function %s, argument %u must
be of type vector.

0055 %s: argument %u must be a
positive integer.

Exception-InvalidArg
In function %s, argument %d must
be a positive integer.

0056 %s: unrecognized char constant
#\\%s.

Exception-Parser
The character constant in this file is
invalid.

0057 %s: begin delim requires an end
delim for node \"%s\".

Exception-Mapping
A begin delimiter must be parsed
with an end delimiter.

0058 %s: argument %u must be a list. Exception-InvalidArg
In function %s, argument %u must
be a list.

0059 %s: argument %u must be a time. Exception-InvalidArg
In function %s, argument %u must
be a time.

0060 %s: error closing port
[strerror(%d)=(%s)].

Exception-System
In function %s, an exception
occurred while trying to close the
port. The function outputs exception
event (%s) exception number (%d).

0061 %s: argument %u must be an
input port.

Exception-InvalidArg
In function %s, argument %u is not
the required input port number.

0062 %s: argument %u must be an
output port.

Exception-InvalidArg
In function %s, argument %u is not
the required output port number.

0063 %s: string \%.*s\ not found in file
(%s).

Exception-FileLookup
In function %s, the expected string
\%.*s\ was not found in the file %s.

0064 %s: couldn’t find string %s in
map.

Exception-Monk-Usage
The string %s cannot be found in the
map.

0065 %s: multiple binding elements for
\"%s\".

Exception-Monk-Usage
Multiple binding forms cannot use
the same variable name.

Table 9 Exception Code Table (Continued)

Exception Code Exception String Category and Description
Monk Developer’s Reference 634 SeeBeyond Proprietary and Confidential

Chapter 24
Exception Codes
0066 %s: element %u must be symbol. Exception-Mapping
In function %s, element %u must be
a symbol.

0067 %s: return value mismatch for arg
%u. Expected \”%s\”.

Exception-Monk-Usage
In function %s, return value does not
match the expected value of \"%s\".

0068 %s: variable must be a symbol, not
\"%s\".

Exception-Monk-Usage
In function %s, the variable must be a
symbol, not \"%s\".

0069 %s: %s. Exception-Generic
This exception should never be seen.

0070 %s: invalid <Bindings>. Expect
((<variable1> <init1> <step1>) ...).

Exception-Monk-Usage
The bindings are incorrect.

0071 %s: expected `(test)’ expression. Exception-Monk-Usage
do, do* and condition require that a
some test expression be there.

0072 %s: variable <%s> must be an
integer >= 0 or path.

Exception-PathInvalid
In function %s, a variable <%s> has
been specified that is not a string,
number, or path.

0073 %s: <%s> evaluates to \"%s\". Not
a procedure or interface.

Exception-Monk-Usage
The function %s was expecting a
procedure name. The name specified
<%s> evaluates to the name \"%s\"
which is not a recognized procedure
name.

0074 %s: argument %u must be a
proper list.

Exception-InvalidArg
In function %s, argument %u is not a
proper list.

0075 %s: $s. Exception-Monk-Usage
In function %s, argument is invalid.

0076 %s: $s. Exception-Mapping
In function %s, argument is invalid.

0077 %s: result of `Put’ procedure<%s>
must be string.

Exception-Monk-Usage
The result of the `Put’ function
specified in the map must be a string.

0078 %s: argument %u is not a valid
string type.

Exception-InvalidArg
The function was expecting an
argument that resolves to a string.

0079 %s: argument %u is not a valid
char type.

Exception-InvalidArg
The function was expecting an
argument that resolves to a
character.

Table 9 Exception Code Table (Continued)

Exception Code Exception String Category and Description
Monk Developer’s Reference 635 SeeBeyond Proprietary and Confidential

Chapter 24
Exception Codes
0080 %s: argument %u must be a
keyword.

Exception-InvalidArg
The function was expecting an
argument that resolves to a keyword.

0081 %s: expected argument %u to be
`%s’.

Exception-Monk-Usage
The function was expecting a
keyword.

0082 %s: for path \"%s\", could not
convert \"%s\" to a number.

Exception-PathInvalid
The contents at the specified path
could not be converted to a number.

0083 %s: accepts %u or %u arguments. Exception-InvalidArg
The number of arguments is incorrect.

0084 %s: unrecognized char token
`%s’.

Exception-Parser
The parser found a token with an
invalid character.

0085 %s: file \"%s\"\n\t\tMUST have
\".dll\" extension.

Exception-File
The function %s found a file without
the required .dll extension.

0086 %s: argument %u must evaluate
to a symbol.

Exception-InvalidArg
In function %s, argument %u must
evaluate to a symbol.

0087 %s: argument %u must be a
symbol.

Exception-InvalidArg
In function %s, argument %u must
be a symbol.

0088 %s: first argument of <clause>
must be `(<datum1> ...)’ or
\"else\".

Exception-Monk-Usage
In function %s, the first argument of
the clause is not the expected datum
or \"else\".

0089 %s: <clause> must contain at least
one <expression> to be
evaluated.

Exception-Monk-Usage
In function %s, a clause is found
without at least one expression to be
evaluated.

0090 %s: requires at least a <key> and
one <clause>.

Exception-Monk-Usage
Function %s does not contain the
required key and at least one clause.

0091 %s: file \"%s\" not readable. Exception-File
Function %s can not read the file
\"%s\".

0092 %s: argument %u must be a string
or symbol.

Exception-InvalidArg
In function %s, argument %u must
be a symbol or string.

0093 %s: path doesn’t exist in the event
map.

Exception-PathInvalid
In function %s, the specified path
does not exist in the event map.

Table 9 Exception Code Table (Continued)

Exception Code Exception String Category and Description
Monk Developer’s Reference 636 SeeBeyond Proprietary and Confidential

Chapter 24
Exception Codes
0094 %s: invalid byte count in `string’
for `char’ conversion.

Exception-Generic
Cannot convert string because
wrong number of bytes.

0095 %s: number not in [%d <= %g <
%u].

Exception-Range
Number is out of range.

0096 %s: attempt to insert zero length
path <%s> is invalid.

Exception-PathInvalid
In function %s, the specified path
\"%s\" is bad.

0097 %s: %Le %u will OVERFLOW. Exception-Domain
Number is out of range.

0098 %s: %Le %u will UNDERFLOW. Exception-Domain
Number is out of range.

0099 %s: invalid result type for
consumer \"%s\".

Exception-Monk-Usage
The function returns the wrong
result type for how the result is used.

0100 %s: gettimeofday(??, 0) failed
[strerror(%d)=(%s)].

Exception-System
In function %s, an exception
occurred while trying to get the time
of day. The function outputs
exception event (%s) exception
number (%d).

0101 %s: time(??) failed
[strerror(%d)=(%s)].

Exception-System
In function %s, an exception
occurred while trying to get the time.
The function outputs exception
event (%s) exception number (%d).

0102 %s: list does not contain %u
elements.

Exception-Monk-Usage
The list does not contain the
specified %ld elements.

0103 %s: trying to divide by zero is a
bad idea.

Exception-Domain
Function %s is trying to divide by
zero. This operation causes the
system to crash.

0104 %s: empty string not found in file
(%s).

Exception-FileLookup
Function %s can not find the
expected empty string in file (%s).

0105 %s: invalid result for consumer
\"%s\"; not in range [0 <= %u <
%u].

Exception-Range
Function returns a result to be
assigned into a variable that cannot
accept it because it is out of range.

0106 %s: argument %u must be a
procedure.

Exception-InvalidArg
In function %s, argument number
%u must be a procedure.

Table 9 Exception Code Table (Continued)

Exception Code Exception String Category and Description
Monk Developer’s Reference 637 SeeBeyond Proprietary and Confidential

Chapter 24
Exception Codes
0107 %s: argument %u must evaluate
to a list.

Exception-InvalidArg
In function %s, argument %u must
evaluate to a list.

0108 %s: invalid use of Keyword \"%s\". Exception-Monk-Usage
A Monk keyword is being used
outside of a valid context.

0109 %s: expected `symbol’ for
<variable> in =>\n\t (define
<variable> <expression>) |
\n\t(define (<variable> <formals>)
<body> | \n\t(define (<variable> .
<formal>) <body>).

Exception-Monk-Usage
Failed to identify the lambda form.

0110 %s: number not in [" M_PRIi64 "
<= %Lg < " M_PRIu64 "].

Exception-Range
In function %s, an exception
occurred while performing a floating
point operation.

0111 %s: invalid use of System
Keyword "%s".

Exception-Monk-Usage
The use of the keyword \"%s\" by
function %s is invalid.

0112 %s: calloc(1, %u) failed [strerror
(%d)=(%s)].

Exception-Catastrophic
In function %s, an exception
occurred while trying to get the time
of day. The function outputs
exception message (%s) exception
number (%d).

0113 %s: path length for <\?\?\?\?> too
long.

Exception-File
The potential path that is specified
exceeds the internal limits.

0114 %s: %s. Exception-Parser
Generically prints our errors from
the parser.

0115 %s: call to strdup() failed.
Probable System Memory
Allocation Problem.

Exception-Catastrophic
In function %s, the attempt to call
strdup() function failed. Caused by a
probable problem with System
Memory allocation.

0116 %s: invalid path \"%s\".\n\tMust
have \"~event-
name%%pathelement(s)\" or
\"%%pathelement(s) \".

Exception-PathInvalid
An invalid path \"%s\" has been
specified in function %s.

0117 %s: must have `string’ to place in
data tree.

Exception-Monk-Usage
Data placed into a data tree must be a
string.

Table 9 Exception Code Table (Continued)

Exception Code Exception String Category and Description
Monk Developer’s Reference 638 SeeBeyond Proprietary and Confidential

Chapter 24
Exception Codes
0118 %s: argument %u must be an
integer and in [%u <= %u < %u].

Exception-InvalidArg
Integer argument is out of range for
the function is using it.

0119 %s: invalid <Bindings>. Expect
((<variable1><init1>) ...).

Exception-Generic
In function %s, the specified
bindings are invalid. Function was
expecting ((<variable1><init1>) ...).

0120 %s: argument %u must be a list of
pairs.

Exception-InvalidArg
In function %s, the specified
argument %u is not an element in a
pair.

0121 %s: argument %u must be a list of
length %d.

Exception-InvalidArg
In function %s, the specified
argument %d is not part of the list.

0122 %s: path \"%s\" is not valid for this
event map.

Exception-PathInvalid
In function %s, the specified path
"%s" does not exist in the Event Type
Definition that was applied to this.

0123 %s: element \"%s\" is defined to
have a maximum of %u
repetitions. An instruction to add
repetition %u is an error.

Exception-PathInvalid
The element "%s" was defined in the
Event Type Definition has having a
maximum number of repetition.
Attempting to exceed this causes this
error.

0124 %s: map has more levels(node ->
\"%s\") than delimiters.

Exception-Mapping
The Event Type Definition applied to
this Event does not have enough
levels for this Event. There must be
one delimiter for each level.

0125 %s: %Le " M_PRIu64 " will
OVERFLOW.

Exception-Domain
The parameter will cause an
OVERFLOW condition.

0126 %s: %Le " M_PRIu64 " will
UNDERFLOW.

Exception-Domain
The parameter will cause an
UNDERFLOW condition.

0127 %s: element \"%s\" is %ld in
length and the start byte is %ld.

Exception-PathInvalid
In function %s, the specified element
is invalid. The element has a length of
%ld and its starting byte is %ld.

0128 %s: element \"%s\" is %ld in
length and the end byte is %ld.

Exception-PathInvalid
In function %s, the specified element
is invalid. The element has a length of
%ld and its ending byte is %ld.

Table 9 Exception Code Table (Continued)

Exception Code Exception String Category and Description
Monk Developer’s Reference 639 SeeBeyond Proprietary and Confidential

Chapter 24
Exception Codes
0129 %s: path \"%s\" has start (%ld)
greater than end (%ld).

Exception-PathInvalid
In function %s, the start (%ld) of the
specified path \"%s\" is greater than
its end (%ld).

0130 %s: path \"%s\" is trying to access
repetition %u and the map has
only defined %u.

Exception-PathInvalid
The Event Type Definition applied to
this Event only defines a certain limit
on repetitions for this element, but
the function is trying to access a
repetition outside that limit.

0131 %s: argument %u must be a path
or string.

Exception-InvalidArg
In function %s: the specified
argument %d must be either a path
or string.

0132 %s: argument %d must be a
string, number, or path.

Exception-InvalidArg
%s: the specified argument %d must
be either a string, a number, or a
path.

0133 %s: for argument %u, expected
`:keyword <val>’ pairing.

Exception-InvalidArg
Must be a keyword-value pairing.

0134 %s: argument %d must be a `%s\’. Exception-InvalidArg
In function %s, the specified
argument in position (%d) is not a
required string \"%s\".

0135 %s: may not close standard input,
output or error port.

Exception-Monk-Usage
User may not perform an illegal
operation.

0136 %s: argument %d must be an
input/output port.

Exception-InvalidArg
In function %s, the specified
argument in position (%d) is not a
required input/output pot.

0137 %s: could not convert \"%s\" to
number.

Exception-Monk-Usage
In function %s, could not convert the
string \"%s\" to a number.

0138 %s: port is not available. Exception-Monk-Usage
In function%s, the specified port is
not available.

0139 %s: error closing \"%s\"
[strerror(%d)=(%s)].

Exception-System
In function %s, an exception
occurred while trying to close string
\"%s\". The function outputs
exception event (%s) exception
number (%d).

Table 9 Exception Code Table (Continued)

Exception Code Exception String Category and Description
Monk Developer’s Reference 640 SeeBeyond Proprietary and Confidential

Chapter 24
Exception Codes
0140 %s: argument %d(%ld) must be 1,
2, 3 or 4.

Exception-InvalidArg
In function %s, the argument in
position %d must be either 1, 2, 3, or
4.

0141 %s: argument %d must have a
length of %d.

Exception-InvalidArg
In function %s, the argument in
position %d must have a length of
%d.

0142 %s: path depth position(%d)
greater than length(%d).

Exception-PathInvalid
In function %s, the path depth
position (%d) may not be greater
than the length(%d).

0143 %s: `array’ delimiter required for
\"%s\" repetitions.

Exception-Mapping
Function %s has encountered an
invalid array delimiter for the
specified Node Array (%s)
repetitions.

0144 %s: %s. Notify STC. Exception-Catastrophic
Function %s has encountered an
exception %s. Notify SeeBeyond.

0145 %s: %Lg %g will OVERFLOW. Exception-Domain
The parameters will cause an
OVERFLOW condition.

0146 %s: %Lg %g will UNDERFLOW. Exception-Domain
The parameters will cause an
UNDERFLOW condition.

0147 %s: argument %u must be
boolean.

Exception-Generic
The argument must be boolean.

0148 %s: argument %u must be a list or
vector.

Exception-InvalidArg
In function %s, the argument %d
must be a list or vector.

0149 %s: function result must be
boolean.

Exception-Monk-Usage
Function %s returned a value that did
not have either a true or false
condition.

0150 UNUSED Not implemented.

0151 %s: resolved template \"%s\" to
short.

Exception-Mapping
In function %s, the resolved template
"%s" is too short, it must be eight
characters or more.

Table 9 Exception Code Table (Continued)

Exception Code Exception String Category and Description
Monk Developer’s Reference 641 SeeBeyond Proprietary and Confidential

Chapter 24
Exception Codes
0152 %s: expected (define-c-api <in-
params> <result-type>)
\n\t<result-type> =>
(any|blob|bool|char|double|int|int
64|interface|1double|list|symbol|uI
nt|uInt64|vector|void) \n\t<in-
params> => (<result-type>*).

Exception-Monk-Usage
The (define-c-api) function was not
called according to its prototype.

0153 %s: C_API call param(%u) has
`type’ mismatch from definition.

Exception-CallArgUsage
A parameter in the (define-c-api)
function call does not match the
definition expected.

0154 %s: C_API call param(#%u - `%s’)
not supported at this time.

Exception-CallArgUsage
A parameter in the (define-c-api)
function call does not match the
definition expected.

0155 %s: must provide repetition
number to be counted.

Exception-PathInvalid
A repetition number to be counted
must be provided.

0156 %s: terminal `>’ missing in path
\"%s\".

Exception-PathInvalid
In function %s, the terminal `>’ is
missing in path \"%s\".

0157 %s: ill-formed delimiter
specification \"%s\".

Exception-Mapping
The delimiter is not correct.

0158 %s: encountered unresolved
delimiter.

Exception-Mapping
The encountered delimiter is
unresolved.

0159 %s: encoded length not wholly
contained in data.

Exception-Mapping
In function %s, the encoded length is
not wholly contained in the data.

0160 %s: argument %u must be an
integer and [0 <= %d < %u].

Exception-InvalidArg
Argument %d must be an integer
within range [0 <= %d < %u].

0161 %s: for path \"%s\", ByteOffset
must be >= 0.

Exception-PathInvalid
Must have a positive ByteOffset in
the path.

0162 %s: for path \"%s\", EndByte/
Length must be >= 0.

Exception-PathInvalid
Must have a positive EndByte/Length
in the path.

0163 %s: element %d not %s for:
\n\t%s.

Exception-Mapping
A way to create generic events while
creating the map and is the only time
it’s ever used.

0164 %s: min rep \"%u\" is larger than
max rep \"%u\" for:\n\t%s.

Exception-Mapping
This is only used while creating the
event map.

Table 9 Exception Code Table (Continued)

Exception Code Exception String Category and Description
Monk Developer’s Reference 642 SeeBeyond Proprietary and Confidential

Chapter 24
Exception Codes
0165 %s: %Le %Le will OVERFLOW. Exception-Domain
The mathematical operation of the
parameters %Le and %Le in the
function %s will cause an
OVERFLOW condition.

0166 %s: %Le %Le will UNDERFLOW. Exception-Domain
The mathematical operation of the
parameters %Le and %Le in the
function %s will cause an
UNDERFLOW condition.

0167 %s: C_API has not been
associated with executable.

Exception-Monk-Usage
The (define-c-api) function must be
associated with an executable but
has not been.

0168 %s: invalid use of previously
defined Exception \"%s\".

Exception-Monk-Usage
Cannot redefine a previously defined
exception.

0169 %s: exception value must satisfy [0
< %d].

Exception-Monk-Usage
User-defined exception must be
greater than zero.

0170 %s: failed. Exception-Verify
Failed.

0171 %s: argument %u must be an
exception.

Exception-InvalidArg
In function %s, argument %d must
be an exception.

0172 %s: element `%s’ of clause not a
defined exception.

Exception-Monk-Usage
Element `%s’ of the clause is not a
valid exception.

0173 %s: first element of <clause> must
be `(<exception1> ...)’ or
\"otherwise\" or \"always\".

Exception-Monk-Usage
The first element is not in a valid
form or is not the correct keyword.

0174 %s: expected <%s> to evaluate to
a <procedure> following `=>’.

Exception-Monk-Usage
Evaluation of the parameter is
supposed to be a procedure specific
to Case statements.

0175 %s: failed to find `symbol_size’
arg(%u).

Exception-CallArgUsage
The function was called without
proper symbol_size specified.

0176 %s: failed to find `blob_size’
arg(%u).

Exception-CallArgUsage
The function was called without
proper blob-size specified.

0177 %s: invalid element `type’
encountered.

Exception-CallArgUsage
The function was called without an
invalid element type.

Table 9 Exception Code Table (Continued)

Exception Code Exception String Category and Description
Monk Developer’s Reference 643 SeeBeyond Proprietary and Confidential

Chapter 24
Exception Codes
0178 %s: invalid index(0 <= %u < %u)
for vector.

Exception-CallArgUsage
The function tried to reference a
vector element beyond the range of
the vector.

0179 %s: invalid `Argument’ vector Exception-CallArgUsage
The function expected but was not
passed a vector argument .

0180 UNUSED Not implemented.

0181 %s: desired element(%u) `type’
does not match arg.

Exception-CallArgUsage
The function argument did not match
expected argument type.

0182 %s: NULL <parameter> passed. Exception-CallArgUsage
The function received a NULL
argument where a non-NULL
argument was expected.

0183 %s: argument %u must be an
interface.

Exception-InvalidArg
In function %s, argument %d is not
an interface.

0184 %s: invalid argument(%s) for
interface.

Exception-Interface
Argument(%s) is not valid for the
interface.

0185 %s: interface call \"%s\" failed
with code(%d).

Exception-Interface
The function called failed with this
code.

0186 %s: interface \"%s\" has no
pointer to executable.

Exception-Interface
Interface \"%s\" has no pointer to the
executable.

0187 %s: variable <%s> must resolve to
number.

Exception-PathInvalid
The symbol must resolve to a
number.

0188 %s: variable <%s> must resolve to
an integer >= 0.

Exception-PathInvalid
The symbol must resolve to a positive
number.

0189 %s: expected <formals>
<body>:\n\t
<formals> => <var1> ...) | <var> |
<var1> ... <varN> . <varN+1>).

Exception-Monk-Usage
Description must be a valid lambda
expression.

0190 %s: in invalid context. Exception-Monk-Usage
Must be a comma before the at sign
@, not a quasi- quote.

0191 UNUSED Not implemented.

0192 %s: failed to map event definition
to data.

Exception-Mapping
In function %s, event definition does
not agree with data.

Table 9 Exception Code Table (Continued)

Exception Code Exception String Category and Description
Monk Developer’s Reference 644 SeeBeyond Proprietary and Confidential

Chapter 24
Exception Codes
0193 UNUSED Not implemented.

0194 %s: %s. Exception-Abort
This type of exception is a port abort.

0195 %s: %s. Exception-Regex-Failure
This type of exception is a reg-ex
failure.

0196 %s: node \"%s\" with `type’ ONA/
ANA may not be at leaf.

Exception-Mapping
Specific nodes may not be leaf, must
have at least one child associated
with it.

0197 %s: unknown `type’ for node
\"%s\".

Exception-Mapping
An unknown type for the node is
specified.

0198 %s: invalid byte offset for `type’
OF/AF node \"%s\".

Exception-Mapping
Function %s returned an invalid byte
location during mapping.

0199 %s: error %s. Exception-File
This is a system failure, function %s
can’t find open file.

0200 %s: symbol to be created exceeds
internal limits.

Exception-Monk-Usage
The potential symbol contains more
than 1,000 characters.

Table 9 Exception Code Table (Continued)

Exception Code Exception String Category and Description
Monk Developer’s Reference 645 SeeBeyond Proprietary and Confidential

Index
Index

Symbols
- 155
$event->string 318
$event-clear 316
$event-parse 317
$make-event-map 319
$resolve-event-definition 321
%default% 329
* 153
+ 154
/ 156
< 157
<= 159
= 158
> 160
>= 161

A
abort 618
abs 162
absolute value 162, 385
acos 163
add 386
additional information 20
Advanced Library Function 454
allcap? 412
and 58
API functionality

interface 372
append 201
appending data 40
apply 304
arabic2utf8 478
arc cosine 163
arc sine 164
arc tangent 165
argument types 22
ascii->ebcdic 588
asin 164
assoc 202
association list 202
assq 203
assv 204

atan 165

B
base64->raw function 590
Basic Library Functions 410
begin 59
behavior of optional nodes without data 42
big52utf8 479
big-endian->integer 166
binary->string function 591
boolean 296

definition of 22
Boolean expressions 57
boolean? 297
break 377
byte count

referencing 51
bytes

referencing delimiters in event 43
referencing in path 51–52

C
caar...cddddr 207
calc-surface-bsa 455
calc-surface-gg 456
capitalize 413
car 205
case 60
case-equal 61
catch 619
cdr 206
ceiling 167, 387
change-directory function 592
change-pattern 322
char 79, 81
char<=? 81
char<? 79
char=? 78
char>=? 82
char>? 80
char->integer 245
char? 77
character conversion functions 475
Character functions 76
characters

control 28
definition of 22
delimiters expressed as 43
escaped 28, 32
hex 29
interpreted 28
octal 29
Monk Developer’s Reference 646 SeeBeyond Proprietary and Confidential

Index
use of 27
char-alphabetic? 88
char-and 89
char-ci 84, 86
char-ci<=? 86
char-ci<? 84
char-ci=? 83
char-ci>=? 87
char-ci>? 85
char-downcase 90
char-lower-case? 91
char-not 92
char-numeric? 93
char-or 94
char-punctuation? 414
char-shift-left 95
char-shift-right 96
char-substitute 415
char-to-char 416
char-type 97
char-type! 98
char-type? 99
char-upcase 100
char-upper-case? 101
char-whitespace? 102
char-xor 103
clear-gaiji-table 480
clear-port-callback 248
close-pipe 593
close-pipe function 593
close-port 249
collab-get-logical-name 577
comment 314
comment function 314
comments 25
Compaq Tru64, incompatibility with 384
compare operations 57
cond 62
cons 208
contents of an event type definition 38
control characters 28
Control flow expressions 57
conv 417
conventions 24
conventions, writing in document 18
conversion functions

international 475
Japanese 475
Korean 475
UTF8 475

copy 324
copy-strip 325
cos 168
cosine 168

count-children 327
count-data-children 326
count-map-children 327
count-rep 328
count-used-children 418
current-debug-port 250
current-error-port 251
current-input-port 252
current-output-port 253
current-warning-port 254
cyrillic2utf8 481

D
data types

event 40
data-map 329

format of data file 329
mapping no-match values 329

date and time 364
debug control procedures 376
default data

node property 48
define 70
defined? 71
define-exception 621
degc->degf 419
degf->degc 420
delimiter list 42
delimiters list 38

character constants 43
extracting from event 43
X12 default 43

difftime 365
directory 285
display 279
displayb 578
display-error 422
display-event-data 331
display-event-dump 333
display-event-map 337
divisor 173
do 63
do expression

set maximum counter 328
do* 65
document purpose and scope 16
duplicate 340, 341
duplicate-strip 341

E
e*Gate extension functions

collab-get-logical-name 577
Monk Developer’s Reference 647 SeeBeyond Proprietary and Confidential

Index
displayb 578
encrypt-password 579
get-data-dir 585
reg-retrieve-file 586

e*Gate extensions to Monk 556
e*Way Functions 568
ebcdic->ascii 594
ebcdic2sjis 482
ebcdic2sjis_g 483
ebcdic2uhc 484, 485
empty-string? 423
encrypt-password 579
eof-object? 275
eq? 234
equal 396
equal? 236
eqv? 237
euc2sjis 486
euc2sjis_g 487
eval 307
evaluate operations 57
evaluate whether true or false 296
evaluation function 306
even? 169
Event 315
event type definition

contents 38
definition 38
delimiters list 38
nodes list 38
test of event type 38
using with monk 37

event type definitions 29, 315
format expression 106

event types
format instruction 106

event_struct 23
event-send 580
event-send-to-egate 569
exception code table 629
exception codes 628
exception functionality 615
exception-category 622
exception-string 623
exception-string-all 624
exception-symbol 625
exp 170
exponent 170, 171
expt 171

F
fail_id 424
fail_id_if 425

fail_translation 426
fail_translation_if 427
file-check 342
file-delete

function 286
file-exists? 287
file-lookup 343
file-lookup expression 343
file-rename 288
file-set-creation-mask 583
find-get-after 428
find-get-before 429
floor 172, 390
format 106
format expression 29
Format Specification 34
formatting strings 29
ftell 255
functions

ascii->ebcdic 588
base64->raw 590
binary->string 591
change-directory 592
close-pipe 593
ebcdic->ascii 594
get-logical-name 570
hexdump->string 596
iq-get-header 559
iq-initial-handle 560
iq-initial-topic 561
iq-input-topics 562
iq-mark-unusable 563
iq-output-topics 564
iq-peek 565
iq-put 566
open-pipe 599
pacdec->string 600
raw->base64 601
reg-get-file 602
send-external-down 571
send-external-up 572
shutdown-request 573
sleep 603
start-schedule 574
stop-schedule 575
string->7even 604
string->8none 605
string->binary 606
string->hexdump 609
string->pacdec 612
string->zoned 613
string-decrypt 607
string-encrypt 608
zoned->string 614
Monk Developer’s Reference 648 SeeBeyond Proprietary and Confidential

Index
G
gb23122utf8 488
gcd 173
get 344
get-2-ssn 458
get-3-ssn 459
get-4-ssn 460
get-apartment 461
get-city 462
get-data-dir 585
getenv 289
get-first-name 463
get-last-name 464
get-logical-name function 570
get-middle-name 465
get-port-callback 256
get-state 466
get-street-address 467
get-timestamp 430
get-zip 468
greater than 398
greater than or equal to 397
greatest common divisor 173
greek2utf8 489
gregorian_date->julian_days 366

H
hebrew2utf8 490
hex characters 29
hexdump->string function 596
htonl->string 107
htons->string 108

I
IBMpacdec->string 597
IBMzoned->string 598
icate 341
identifiers 24
if 66
in->cm 469
init-gaiji 491
init-utf8gaiji 492
input-port? 257
input-string-port? 258
instance

repeating node or set 51
integer->big-endian 175
integer->char 246
integer->little-endian 176
integer? 174
integers

definition of 22
intended audience, document 16
Interactive Debug Procedures 376
interface api functionality 372
interface object 23
interface-handle 373
Internal Debug Control Procedures 378
invoke 374
iq-get 558
iq-get-header function 559
iq-initial-handle function 560
iq-initial-topic function 561
iq-input-topics function 562
iq-mark-unusable function 563
iq-output-topics function 564
iq-peek function 565
iq-put function 566

J
jef2sjis 493
jef2sjis_g 494
jef2sjis_m 495
jef2sjis_m_g 496
jef2sjis_p 497
jef2sjis_p_g 498
jipse2sjis 499
jipse2sjis_g 500
jis2sjis 501
jis2sjis_g 502
julian->standard 432
julian_days->gregorian_date 367
julian-date? 431

K
keyword? 242, 298

L
lambda 311
lambdaq 313
latin12uft8 503
latin22uft8 504
latin32uft8 505
latin42uft8 506
latin52uft8 507
latin62uft8 508
latin72uft8 509
latin82uft8 510
latin92uft8 511
lb->oz 470
lcm 177
Monk Developer’s Reference 649 SeeBeyond Proprietary and Confidential

Index
leap-year 433
least common multiple 177
length 209
length specification

assigning to an structured event 52
less than 400
less than or equal to 399
let 72
let* 73
library functions 364, 376, 410, 615
Linux, incompatibility with 384
list 210

definition of 22
list->string 109
list->vector 223
list? 211
list-lookup 345
list-ref 212
lists

definition of 200
list-tail 213
literal expressions 307
literals 28
little-endian->integer 178
load 290
load-directory 291
load-extension 292
load-interface 375
log 179
logarithm 179
loop, compare location to location 111

M
make-message-structure 38
make-string 110
make-vector 224
map 305
map-string 434
matching event data to file 343
max 180
maximum 180, 391
member 214
memq 215
memv 216
message-parse 317
min 181
minimum 181, 392
mktime 368
modulo 182, 393, 405
Monk

conventions 24
definition of 21
language elements 24

library functions 364, 376, 410, 615
monk

event type definitions 37
extension library 384
using event type definitions 37

monk conventions 24
Monk Extension Functions 576
Monk functions

argument types 22
variable types 22

Monk Test Console, incompatibility with 582, 585,
586, 602
Monk Utility Functions 587
monk-flag-check? 380
monk-flag-clear 381
monk-flag-get 382
monk-flag-set 383
mp-abs 385
mp-absolute-value 385
mp-add 386
mp-ceiling 387
mp-divide

divide 388
mp-floor 390
mp-max 391
mp-min 392
mp-modulo 393, 405
mp-multiply 394
mp-negative? 395
mp-num-eq 396
mp-num-ge 397
mp-num-gt 398
mp-num-le 399
mp-num-lt 400
mp-num-ne 401
mp-odd? 402
mp-positive? 403
mp-quotient 404
mp-remainder 393, 405
mp-round 406
mp-set-precision 407
mp-subtract 408
mp-truncate 409
multiply 394
mutation procedures 24

N
Naming Conventions 24
naming nodes 49
natural exponent 170
natural logarithm 179
negative 395
negative? 183
Monk Developer’s Reference 650 SeeBeyond Proprietary and Confidential

Index
newline 280
node

legal names 49
node properties effect 48
node properties summary 48
node-has-data? 346
nodes list 38, 44

default data 48
node-naming rules 49
tag 48

not 67
not equal 401
Notations 26
not-verify 347
nth 302
null? 217
number->integer 185
number->real 186
number->string 240
number->uint 187
number? 184

O
octal characters 29
odd 402
odd? 188
open-append-file 259
open-input-file 260
open-input-string 260, 261
open-output-file 262
open-output-string 263
open-pipe 599
open-pipe function 599
open-random-access-file 264
optional nodes

behavior 50
or 68
organization of information, document 17
output-port? 265
output-string-port? 266
overwriting data 51
oz->gm 471
oz->lb 472

P
pacdec->string function 600
pair 22
pair? 218
pairs

definition of 17, 200
path

accessing optional elements 40

appending data 40
evaluation error 41
examples 52
exceed maximum 41
overwriting data 51
reference an instance 51
reference bytes 51–52
to any-ordered set 53
variables in 40, 53

path->string 357
path? 348
path-defined-as-repeating? 349
path-event 350
path-event-symbol 351
path-nodeclear 352
path-nodedepth 353
path-nodename 354
path-nodeparentname 355
path-put 356
paths

definition of 23
path-valid? 358
port 23
positive 403
positive? 189
predicates 24
procedure calls 27
procedure expression 310
procedure? 306
procedures

definition of 23
putenv 293

Q
qsort 302
quasiquote 309
quote 308
quotient 190, 404

R
raw->base64 function 601
read 276
read-char 277
read-line 278
real numbers

definition of 22
real? 190, 191
referencing byte count 51
regex 111
regex-string-port 267
reg-get-file function 602
reg-retrieve-file 586
Monk Developer’s Reference 651 SeeBeyond Proprietary and Confidential

Index
regular expressions 29
character class 31
concatenating 29
escaped characters 32
grouping 31
lists of matching characters 31
lists of non-matching characters 31
match begin 31
match end 31
with not-verify 347
with verify 363

remainder 192, 393, 405
repeating nodes 51
repeating set 51
repetition

exceed maximum 41
reference an instance 51

reverse 219
rewind 268
round 193, 406

S
SeeBeyond Web site 20
seek-cur 269
seek-set 270
seek-to-end 271
send-external-down function 571
send-external-up function 572
sequence operators 301
set 74

any-order 53
set precision 407
set! 75
set-break 378
set-car! 220
set-cdr! 221
set-file-encoding-method 272
set-gaiji-table 512
set-port-callback 273
set-utf8gaiji-table 513
shutdown-request function 573
sin 194
sine 194
sjis2ebcdic 514
sjis2ebcdic_g 515
sjis2euc 516
sjis2euc_g 517
sjis2jef 518
sjis2jef_g 519
sjis2jef_m 520
sjis2jef_m_g 521
sjis2jef_p 522
sjis2jef_p_g 523

sjis2jipse 524
sjis2jipse_g 525
sjis2jis 526
sjis2jis_g 527
sjis2sjis 528
sjis2utf8 529
sjis2utf8_g 530
sleep function 603
sqrt 195
square root 195
standard 296
standard procedures 104
standard->julian 437
standard-date? 436
start-schedule function 574
stc_monkmath.dll 384
stctrans.exe, incompatibility with 582, 585, 586, 602
stop-schedule function 575
strftime 370
string 112, 114, 115
string data type 40
string function 112
string<=? 115
string<? 114
string=? 116
string>=? 118
string>? 117
string->7even function 604
string->8none function 605
string->binary function 606
string->hexdump function 609
string->IBMpacdec 610
string->IBMzoned 611
string->list 136
string->ntohl 138
string->ntohs 139
string->ntohs-> 139
string->number 241
string->pacdec function 612
string->path 359
string->ssn 443
string->symbol 243
string? 113
string-append 119
string-begins-with? 438
string-checksum 120
string-ci 122, 124
string-ci<=? 124
string-ci<? 122
string-ci=? 121
string-ci>=? 125
string-ci>? 123
string-contains? 439
string-copy 126
Monk Developer’s Reference 652 SeeBeyond Proprietary and Confidential

Index
string-copy! 127
string-crc16 128
string-crc32 129
string-decrypt function 607
string-downcase 130
string-encrypt function 608
string-ends-with? 440
string-fill! 131
string-insert! 132
string-left-trim 133
string-length 134
string-length! 135
string-lrc 137
string-port->string 274
string-ref 140
string-right-trim 141
strings 104

definition of 22
string-search-from-left 441
string-search-from-right 442
string-set! 142
string-substitute 143
string-tokens 144
string-trim 145
string-type 146
string-type! 147
string-type? 148
string-upcase 149
string-zoned function 613
strip-punct 444
strip-string 445
structured events 38
structured message

definition 38–39
substring 150
substring=? 446
substring-index 151
subtract 408
supporting documents 19
symbol->string 244
symbol? 299
symbols 297
symbol-table-get 447
symbol-table-put 448
sys-procedures 300
sys-symbols 301
system 294
System Interface Functions 284

T
table

exception code 629
regular expression examples 32

tag
node property 48

tan 196
tangent 196
technical support 20
throw 626
time 23, 371
timestamp 360
token 25
trim-string-left 449
trim-string-right 450
truncate 197, 409
try 627
try-throw-catch Basics 615

U
uhc2ebcdic 531
uhc2ebcdic_m 532
uhc2ksc 533
uhc2ksc_m 534
uhc2uhc 535
uhc2utf8 536
uint? 198
uniqueid 362
using paths in event type definitions 51
UTF8 conversion utility

utf8convert.exe 476
utf82arabic 537
utf82big5 538
utf82cyrillic 539
utf82gb2312 540
utf82greek 541
utf82hebrew 542
utf82latin1 543
utf82latin2 544, 545
utf82latin4 546
utf82latin5 547
utf82latin6 548
utf82latin7 549
utf82latin8 550
utf82latin9 551
utf82sjis 552
utf82sjis_g 553
utf82uhc 554
utf82utf8 555

V
valid-decimal? 451
valid-integer? 452
valid-phone? 473
valid-ssn? 474
variable names 27
Monk Developer’s Reference 653 SeeBeyond Proprietary and Confidential

Index
variables
in path 40, 53
using to represent path elements 53

vector 225
vector->list 227
vector->string 232
vector? 226
vector-fill! 228
vector-length 229
vector-ref 230
vectors

definition of 22
vector-set 231
vector-set! 231
verify 363
verify-type 453

W
Whitespace 25
write 281
write-char 282
write-exp 283

Z
zero? 199
zoned->string function 614
Monk Developer’s Reference 654 SeeBeyond Proprietary and Confidential

	Monk Developer’s Reference
	Contents
	Introduction
	1.1 Document Purpose and Scope
	1.2 Intended Audience
	1.3 Organization of Information
	1.4 Writing Conventions
	1.5 Supporting Documents
	1.6 SeeBeyond Web Site

	Monk Basics
	2.1 Overview
	2.2 Data Types
	2.3 Latent Data Typing
	2.4 Monk Conventions
	2.4.1 Naming Conventions
	2.4.2 Identifiers
	2.4.3 Comments
	2.4.4 Whitespace
	2.4.5 Notations
	2.4.6 Literals
	2.4.7 Variables
	2.4.8 Procedure or Function Calls

	2.5 The Use of Characters
	2.5.1 Entering Interpreted Characters as Literals
	2.5.2 Characters to be Escaped in Monk Expressions
	2.5.3 Representing Control Characters in Monk Expressions
	2.5.4 Representing Octal or Hex Characters as Monk Expressions

	2.6 Regular Expressions
	2.6.1 The Simplest Regular Expression
	2.6.2 Building Complex Regular Expressions
	2.6.3 Regular Expression Operators
	2.6.4 Regular Expression Examples

	2.7 Format Specification
	2.8 Monk and Event Definitions
	2.8.1 Contents of an Event Definition
	2.8.2 Structured Events
	2.8.3 How Monk Uses Paths to Access Structured Events
	Delimiter List
	Node List

	2.8.4 Behavior of Optional Nodes That Contain No Data
	2.8.5 Dynamic Parsing of Data
	2.8.6 Referencing an Instance of a Repeating Node
	Referencing Data with Byte Count
	Length Specification, When Assigning Data to Structured Event

	2.8.7 Use of Variables to Represent Path Elements
	2.8.8 Path to Any-Ordered Set

	2.9 Sample Programs

	Control Flow and Boolean Expressions
	3.0.1 Overview
	and
	begin
	case
	case-equal
	cond
	do
	do*
	if
	not
	or

	Definition, Binding and Assignment
	define
	defined?
	let
	let*
	set
	set!

	Character Functions
	char?
	char=?
	char<?
	char>?
	char<=?
	char>=?
	char-ci=?
	char-ci<?
	char-ci>?
	char-ci<=?
	char-ci>=?
	char-alphabetic?
	char-and
	char-downcase
	char-lower-case?
	char-not
	char-numeric?
	char-or
	char-shift-left
	char-shift-right
	char-type
	char-type!
	char-type?
	char-upcase
	char-upper-case?
	char-whitespace?
	char-xor

	String Functions
	format
	htonl->string
	htons->string
	list->string
	make-string
	regex
	string
	string?
	string<?
	string<=?
	string=?
	string>?
	string>=?
	string-append
	string-checksum
	string-ci=?
	string-ci<?
	string-ci>?
	string-ci<=?
	string-ci>=?
	string-copy
	string-copy!
	string-crc16
	string-crc32
	string-downcase
	string-fill!
	string-insert!
	string-left-trim
	string-length
	string-length!
	string->list
	string-lrc
	string->ntohl
	string->ntohs
	string-ref
	string-right-trim
	string-set!
	string-substitute
	string-tokens
	string-trim
	string-type
	string-type!
	string-type?
	string-upcase
	substring
	substring-index

	Numerical Expressions
	*
	+
	-
	/
	<
	=
	<=
	>
	>=
	abs
	acos
	asin
	atan
	big-endian->integer
	ceiling
	cos
	even?
	exp
	expt
	floor
	gcd
	integer?
	integer->big-endian
	integer->little-endian
	lcm
	little-endian->integer
	log
	max
	min
	modulo
	negative?
	number?
	number->integer
	number->real
	number->uint
	odd?
	positive?
	quotient
	real?
	remainder
	round
	sin
	sqrt
	tan
	truncate
	uint?
	zero?

	Pairs and Lists
	append
	assoc
	assq
	assv
	car
	cdr
	caar...cddddr
	cons
	length
	list
	list?
	list-ref
	list-tail
	member
	memq
	memv
	null?
	pair?
	reverse
	set-car!
	set-cdr!

	Vector Expressions
	list->vector
	make-vector
	vector
	vector?
	vector->list
	vector-fill!
	vector-length
	vector-ref
	vector-set!
	vector->string

	Equivalence Testing
	eq?
	equal?
	eqv?

	Conversion Procedures
	number->string
	string->number
	keyword?
	string->symbol
	symbol->string
	char->integer
	integer->char

	File I/O Expressions
	clear-port-callback
	close-port
	current-debug-port
	current-error-port
	current-input-port
	current-output-port
	current-warning-port
	ftell
	get-port-callback
	input-port?
	input-string-port?
	open-append-file
	open-input-file
	open-input-string
	open-output-file
	open-output-string
	open-random-access-file
	output-port?
	output-string-port?
	regex-string-port
	rewind
	seek-cur
	seek-set
	seek-to-end
	set-file-encoding-method
	set-port-callback
	string-port->string
	eof-object?
	read
	read-char
	read-line
	display
	newline
	write
	write-char
	write-exp

	System Interface Functions
	directory
	file-delete
	file-exists?
	file-rename
	getenv
	load
	load-directory
	load-extension
	putenv
	system

	Standard Procedures
	14.1 Booleans
	boolean?

	14.2 Symbols
	keyword?
	symbol?
	sys-procedures
	sys-symbols

	14.3 Sequence Operators
	nth
	qsort

	14.4 Control Features
	apply
	map
	procedure?

	14.5 Evaluation
	eval

	14.6 Literal Expressions
	quote
	quasiquote

	14.7 Procedure
	lambda
	lambdaq

	14.8 Comment
	comment

	Event Definitions
	$event-clear
	$event-parse
	$event->string
	$make-event-map
	$resolve-event-definition
	change-pattern
	copy
	copy-strip
	count-data-children
	count-map-children
	count-rep
	data-map
	display-event-data
	display-event-dump
	display-event-map
	duplicate
	duplicate-strip
	file-check
	file-lookup
	get
	list-lookup
	node-has-data?
	not-verify
	path?
	path-defined-as-repeating?
	path-event
	path-event-symbol
	path-nodeclear
	path-nodedepth
	path-nodename
	path-nodeparentname
	path-put
	path->string
	path-valid?
	string->path
	timestamp
	uniqueid
	verify

	Date and Time
	difftime
	gregorian_date->julian_days
	julian_days->gregorian_date
	mktime
	strftime
	time

	Interface API Functionality
	interface-handle
	invoke
	load-interface

	Debug Procedures
	18.1 Interactive Debug Procedures
	break
	set-break

	18.2 Internal Debug Control Procedures
	monk-flag-check?
	monk-flag-clear
	monk-flag-get
	monk-flag-set

	Math-Precision Functions
	mp-absolute-value
	mp-add
	mp-ceiling
	mp-divide
	mp-even?
	mp-floor
	mp-max
	mp-min
	mp-modulo
	mp-multiply
	mp-negative?
	mp-num-eq
	mp-num-ge
	mp-num-gt
	mp-num-le
	mp-num-lt
	mp-num-ne
	mp-odd?
	mp-positive?
	mp-quotient
	mp-remainder
	mp-round
	mp-set-precision
	mp-subtract
	mp-truncate

	Monk Library Functions
	20.1 Basic Library Functions
	allcap?
	capitalize
	char-punctuation?
	char-substitute
	char-to-char
	conv
	count-used-children
	degc->degf
	degf->degc
	diff-two-dates
	display-error
	empty-string?
	fail_id
	fail_id_if
	fail_translation
	fail_translation_if
	find-get-after
	find-get-before
	get-timestamp
	julian-date?
	julian->standard
	leap-year?
	map-string
	not-empty-string?
	standard-date?
	standard->julian
	string-begins-with?
	string-contains?
	string-ends-with?
	string-search-from-left
	string-search-from-right
	string->ssn
	strip-punct
	strip-string
	substring=?
	symbol-table-get
	symbol-table-put
	trim-string-left
	trim-string-right
	valid-decimal?
	valid-integer?
	verify-type

	20.2 Advanced Library Functions
	calc-surface-bsa
	calc-surface-gg
	cm->in
	get-2-ssn
	get-3-ssn
	get-4-ssn
	get-apartment
	get-city
	get-first-name
	get-last-name
	get-middle-name
	get-state
	get-street-address
	get-zip
	in->cm
	lb->oz
	oz->gm
	oz->lb
	valid-phone?
	valid-ssn?

	International Conversion Functions
	The UTF8 Conversion Utility
	arabic2utf8
	big52utf8
	clear-gaiji-table
	cyrillic2utf8
	ebcdic2sjis
	ebcdic2sjis_g
	ebcdic2uhc
	ebcdic2uhc_m
	euc2sjis
	euc2sjis_g
	gb23122utf8
	greek2utf8
	hebrew2utf8
	init-gaiji
	init-utf8gaiji
	jef2sjis
	jef2sjis_g
	jef2sjis_m
	jef2sjis_m_g
	jef2sjis_p
	jef2sjis_p_g
	jipse2sjis
	jipse2sjis_g
	jis2sjis
	jis2sjis_g
	latin12utf8
	latin22utf8
	latin32utf8
	latin42utf8
	latin52utf8
	latin62utf8
	latin72utf8
	latin82utf8
	latin92utf8
	set-gaiji-table
	set-utf8gaiji-table
	sjis2ebcdic
	sjis2ebcdic_g
	sjis2euc
	sjis2euc_g
	sjis2jef
	sjis2jef_g
	sjis2jef_m
	sjis2jef_m_g
	sjis2jef_p
	sjis2jef_p_g
	sjis2jipse
	sjis2jipse_g
	sjis2jis
	sjis2jis_g
	sjis2sjis
	sjis2utf8
	sjis2utf8_g
	uhc2ebcdic
	uhc2ebcdic_m
	uhc2ksc
	uhc2ksc_m
	uhc2uhc
	uhc2utf8
	utf82arabic
	utf82big5
	utf82cyrillic
	utf82gb2312
	utf82greek
	utf82hebrew
	utf82latin1
	utf82latin2
	utf82latin3
	utf82latin4
	utf82latin5
	utf82latin6
	utf82latin7
	utf82latin8
	utf82latin9
	utf82sjis
	utf82sjis_g
	utf82uhc
	utf82utf8

	e*Gate Extensions to Monk
	22.1 Queue Service Access
	iq-get
	iq-get-header
	iq-initial-handle
	iq-initial-topic
	iq-input-topics
	iq-mark-unusable
	iq-output-topics
	iq-peek
	iq-put

	22.2 e*Way Functions
	event-send-to-egate
	get-logical-name
	send-external-down
	send-external-up
	shutdown-request
	start-schedule
	stop-schedule

	22.3 Monk Extension Functions
	collab-get-logical-name
	displayb
	encrypt-password
	event-send
	file-set-creation-mask
	get-data-dir
	reg-retrieve-file

	22.4 Monk Utility Functions
	ascii->ebcdic
	base64->raw
	binary->string
	change-directory
	close-pipe
	ebcdic->ascii
	hexdump->string
	IBMpacdec->string
	IBMzoned->string
	open-pipe
	pacdec->string
	raw->base64
	reg-get-file
	sleep
	string->7even
	string->8none
	string->binary
	string-decrypt
	string-encrypt
	string->hexdump
	string->IBMpacdec
	string->IBMzoned
	string->pacdec
	string->zoned
	zoned->string

	Exception Functionality
	23.1 Try-Throw-Catch Basics
	23.1.1 e*Gate Events and Monk Exceptions
	abort
	catch
	define-exception
	exception-category
	exception-string
	exception-string-all
	exception-symbol
	throw
	try

	Exception Codes
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

