
SeeBeyond Proprietary and Confidential

e*Gate Integrator
User’s Guide

Release 4.5.2

e*Gate Integrator User’s Guide 2 SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBI, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 2001–2002 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20020304154258.

Contents

e*Gate Integrator User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents

List of Figures 16

List of Tables 23

Chapter 1

Introduction 26
User’s Guide Purpose and Scope 26

Intended Audience 26

Organization of Information 27

Writing Conventions 28

Supporting Documents 30

Online Documents 31
Searching the Online Documents 31

SeeBeyond Web Site 31

Chapter 2

System Description 32
Overview of e*Gate System 32

Component Organization and Schemas 32
Layered System Architecture 33

View Layer 34
Enterprise Manager 34
e*Gate Editors 34
Monitoring Features 35

Control Layer 35
Registry 36
Control Brokers 36

Business Rules and Data Processing Layer 36
Collaboration Rules 36
Collaborations 37

Intelligent Queuing Layer 37

Contents

e*Gate Integrator User’s Guide 4 SeeBeyond Proprietary and Confidential

Application Connectivity Layer 37
Types of e*Ways 38

Multi-Mode 38
Database Access 39
Applications 39
Generic e*Way Kit 39
Additional Applications 39

Business Object Brokers 39

System Setup 40

Chapter 3

Getting Started 42
Overview of Starting with e*Gate 42

System Requirements, Installations, and Upgrades 42
Add-ons and Client Software 42

Business Analysis and Planning 43
e*Gate System Setup Prerequisites 43
Creating a System Design 44

Information Gathering 44
System Structure 45

Naming System Elements 45
Make a Checklist 45
Naming Conventions 46

System Preparations 48

Enterprise Manager Basic Operation 49
Enterprise Manager Window 50
Components Tree 51
Toolbar Buttons 52
Menu Bar 53

File > New 53
File > Edit File 57
View > Summary 58

Codeveloping in e*Gate: Using the Team Registry 60
Important: User Name Requirements 61
The Sandbox 61

Sandbox Properties 61
Sandbox Operation 62
Team Registry File Operations 63

Testing Schemas: Run-time and Sandbox Considerations 65
Changing Default Check-in/Check-out Actions 65
Sandbox/Run-time Registry Directory Structure 66

Team Registry and Component “Run As” Settings 66
Team Registry and Version-control Systems 66

Adding New Participating Hosts 67

Users, Roles, and Privileges 69

Using the Network View 70

Contents

e*Gate Integrator User’s Guide 5 SeeBeyond Proprietary and Confidential

Introduction: Network View 70
Using Network View 70

Online Help Systems 73
Using Online Help 73

Hypertext Links 74
Accessing Online Help 74

Help Window 75
GUI Features 76
On Entry and Exit 76

Online Help Features 77
Tab Operation 77
Toolbar Buttons 78
Printing Help 78
Closing the Help Window 80

Chapter 4

Setting Up e*Gate 81
Overview of e*Gate Setup 81

e*Gate GUIs 81
Setup Steps 82

System Design Components 83
Component Data Flow Relationships 83
Component Logical Relationships 85
Data Management Relationships 86

Creating a Schema 86
Control Broker Setup 87

Configuring Control Broker Properties 87
Host Activation 95

Creating Event Types and ETDs 95
Selecting the Event Type Definition Editor 96
Creating Event Types 96
Creating Java-enabled Event Type Definitions 97
Creating Monk Event Type Definitions 103
Assigning Definitions to Monk Event Types 105

Creating Collaboration Rules and Scripts 106
Using Collaboration Scripts 107

C-language Scripts 107
Monk Language Scripts 107
Java Language File Types 108
Collaboration Rules Properties 109
Collaboration Services and Types 109

Java Collaborations 110
Creating Java Collaborations 112
Adding Custom Business Rules to the Collaboration 115

Monk Collaborations 116
Creating Monk Collaboration Rules 116
Configuring Monk Collaboration Rules 117

Contents

e*Gate Integrator User’s Guide 6 SeeBeyond Proprietary and Confidential

Adding e*Ways and BOBs 123
e*Way Operation 123
Before Creating an e*Way 125

Explanation of Tree Levels 126
Control Brokers 127
System Files and e*Ways 127

Creating e*Ways 127
Configuring e*Ways 128
Adding Business Object Brokers 130
Adding Multi-Mode e*Ways 131

Before Creating a Multi-Mode e*Way 131
Creating and Configuring a Multi-Mode e*Way 131

Adding e*Way Connections 134

Adding Intelligent Queues 136
IQ Managers 137
Working With IQs 137
Attaching IQs 142

Adding Collaborations 142
Collaboration Setup 143
Creating Collaborations 143
Configuring Collaborations 144
Troubleshooting Collaborations 147

Reviewing and Testing the System 147
Post System Setup Troubleshooting 148
Java Interactive Debugger 148
Monk Test Console 149

Basic Controls 152
Setup Features 154
Input Features 155
Output Features 155

Chapter 5

Event Type Definitions (ETDs) 157
About This Chapter 157

Learning About ETDs 158
What Is an ETD? 158
How Does e*Gate Use ETDs? 159
Java-Enabled ETDs 159
Monk ETDs 159

ETD Editor Overview 159
Feature Overview 159
GUI Overview 160

ETD Editor GUI Areas 161
Main Menu 162
Toolbar 163

Before Using the ETD Editor 163

Contents

e*Gate Integrator User’s Guide 7 SeeBeyond Proprietary and Confidential

Building Java-Enabled ETDs 164
About ETD Types 164
Package Names, Node Names, and .jar File Names 164

Starting the ETD Editor 165
Creating a New Standard ETD 165
Converting a Monk ETD to a Java-enabled Standard ETD 167
Building an Imported ETD 170

Using the SEF Wizard 170

Working With Java-Enabled ETDs 174
About Package Names 174
About Node Names 174

Basic ETD Procedures 175
Opening, Saving, and Renaming ETDs 175
Viewing and Editing Java Properties 176
Working with Elements and Fields 177
Using Templates 180
Compiling an ETD 182

Validating an ETD 183
Promoting to Run Time 185
Global and Local Delimiters 186

About Global Delimiters 186
About Global Delimiter Levels 186
About Local Delimiters and Delimiter Groups 186
About Local Delimiter Groups 186
Using Global Delimiters 187
Using Local Delimiters 188

Standard ETD Properties 191
Event Type Properties 191
Properties of Root and Element Nodes (Parent Nodes) 192
Properties of Field and Reference Nodes (Leaf Nodes) 197
Properties of Delimiters 201

Chapter 6

Monk Event Type Definition Editor 204
Monk ETD Editor Overview 204

Getting Started 204
ETD Creation and Nodes 205

Working with Nodes 205
Naming Nodes 206

Before Using the ETD Editor 207

ETD Editor Window 208
Toolbar 209
Menu Bar 210

Creating and Building ETDs 215
Creating ETD Files 215
Building Delimited ETDs 217

Creating Delimited ETDs 217
Defining Default Delimiters 217

Contents

e*Gate Integrator User’s Guide 8 SeeBeyond Proprietary and Confidential

Creating Root Nodes for Delimited ETDs 222
Adding Delimited-ETD Nodes 228
Specifying HL7 Repeating Fields 231

Building Fixed ETDs 232
Creating Fixed ETDs 232
Creating Root Nodes for Fixed ETDs 232
Adding Fixed-ETD Nodes 235
Specifying Byte Offsets in Fixed ETDs 238

Adding Node Sets 239
Adding Node Subsets 241

Basic ETD Operations 242
Opening ETDs 242
Using the Build Tool 242
Saving ETDs Under New Names 246
Extracting Input Delimiters 247
Testing ETD Files 247
Creating ETD Comments 250
Finding ETD Nodes 250
Editing ETD Files 250

Moving Nodes 251
Using Cut, Copy, and Paste 251
Pruning ETDs 252
Changing Node Details 253
Modifying Internal Templates 253
Deleting ETDs 253

Working With ETD Templates 254
Using External Templates 254

Including External Templates in ETDs 255
Changing ETD Repetition Properties 256
Breaking Template Links 257

Using Internal Templates 257
Creating Internal Templates 257
Converting Existing ETDs 258
Referencing Internal Templates in ETDs 258
Changing ETD Repetition Properties 258

Chapter 7

Java Collaboration Rules 260
About This Chapter 260

Learning About Java Collaboration Rules 261
Files Used by Java Collaboration Rules 261

Where Do Methods Come From? 262
Example: What’s for Dinner? 262

Java Collaboration Rules Editor Overview 264
Feature Overview 264
GUI Overview 265

The Editor GUI Panes 266
Menu Commands 267

Contents

e*Gate Integrator User’s Guide 9 SeeBeyond Proprietary and Confidential

Main Toolbar 269
Business Rules Toolbar 269

Working With Java Collaboration Rules 270
Creating a New Java Collaboration Rule 271
Settings for the Collaboration Rules Properties dialog box 274

General Tab 274
Collaboration Mapping Tab 274

The Mapping Pane 275
Dragging and Dropping Fields 277
Using Find and Map 278

The View Commands 278
Saving, Compiling, and Promoting Collaboration Rules 280
Enabling and Disabling ELS 281
Setting Classpath and Package Options 282
Searching and Replacing Within a Collaboration 287

Creating Custom Java Methods 288

Using the Business Rules 290
block 291
case 292
catch 293
copy 294
datamap 296
default 299
do, while 300
else 301
finally 302
for 303
if, then, else 306
list lookup 307
method 310
Methods Presupplied When You Start the Editor 312
return 313
rule 314
switch, case, default 315
then 316
throw 317
timestamp 318
try, catch, finally 321
uniqueid 322
variable 324
while 325

Common Dialog Boxes for Business Rules 326
Dealing with Repeating Nodes 326
Formatting Output 327

Methods for Elements and Fields of ETDs 328
count_MyNode_() 329
get_MyNode_() 330
has_MyNode_() 331
set_MyNode_() 332

Methods for Standard Java-enabled ETDs 333
available() 334
marshal() 335
next() 336
publications() 337
rawInput() 338
readProperty() 339
receive() 341
reset() 342

Contents

e*Gate Integrator User’s Guide 10 SeeBeyond Proprietary and Confidential

send() 343
subscriptions() 344
topic() 345
unmarshal() 346
writeProperty() 347

Subcollaboration Rules 348
Terminology 348
Purpose, Concepts, and Caveats 348
Working with Subcollaboration Rules 349

Chapter 8

Monk Collaboration Rules Editor 352
Overview: Monk Collaboration Rules 352

Collaboration Rules Scripts and Types 352
Before You Begin 352
Task List 353

Collaboration Rules Editor Window 353
Toolbar Buttons 355

Other Window Controls 356
ETD Panning Windows 356
Rules Pane Controls 357

Menu Bar 357
File Menu 358
Edit Menu 359
Rules Menu 359
View Menu 360
Options Menu 361
Help Menu 361

Creating Monk Collaboration Rules Scripts 361
Getting Started 362
Creating New Monk Collaboration Rules 362
How e*Gate Processes Event Data 364

Appending Data 364
Trailing Spaces 366
Fixed Data Lengths 366

Adding and Arranging Rules 366
Adding Rules and Elements 366
Arranging Rules 367
Selecting Event Elements 368
Defining ETD Paths 369
Defining Instances of Repeating Event Elements 371
Filling in Rule Details 375
Using the Function Library to Define Rules 377

Basic Collaboration Rules Operations 379
Opening a Collaboration Rules Component 380
Saving a Collaboration Rules Component to a New Name 380
Entering Comments About Collaboration Rules 381
Changing Collaboration Rules Scripts 381

Deleting Rules 381

Contents

e*Gate Integrator User’s Guide 11 SeeBeyond Proprietary and Confidential

Changing Rule Parameters 382
Changing Source/Destination ETDs 382

Validating Collaboration Rules 382
Finding Nodes 383
Converting to and from Double-Byte Character Encodings 384

Using Collaboration Rules 386
Collaboration Rules Reference Table 386
Using the If Rule 387

Comparing an Event Element to a Regular Expression 390
Comparing an Event Element to a Number Using < 390
Comparing an Event Element to a Number Using <= 391
Comparing an Event Element to a Number Using > 392
Comparing an Event Element to a Number Using >= 392
Comparing an Event Element to a Number Using = 393
Comparing an Event Element to a Number Using not = 393
Testing for a False Condition 394
Performing Multiple Tests with an If Rule 394
Performing Alternate Tests with an If Rule 395

Using the Loop Rule 396
Loop Rule Overview 396
Creating a Loop Rule 397
Executing a Loop Rule 399
Defining ETD Paths in a Loop Rule 399
Looping on a Computed Range of Event Elements 401
Looping on a Fixed Range of Event Elements 404

Using the Case Rule 406
Creating Case Rules 408

Using the Comment Rule 410
Using the Copy Rule 411
Using the Display Rule 416
Using the Duplicate Rule 417
Using the Data Map Rule 420
Using the List Lookup Rule 424
Using the Change Pattern Rule 429
Using the Timestamp Rule 432
Using the Unique ID Rule 435
Using the Let Rule 437

Naming Variables in the Let Rule 438
Naming a Condition Using the Let Rule 439
Using the Let Rule to Specify a Variable in an Insert Rule 441

Using the Set! Rule 442
Using the Function Rule 443

Selecting a Prewritten Function 444
Defining Your Own Function 445

Using the User Function Rule 446
Using the Set Regex Rule 446

Chapter 9

Working with e*Ways 448
Overview of e*Way Operation 448

Contents

e*Gate Integrator User’s Guide 12 SeeBeyond Proprietary and Confidential

Component Parts 449
e*Ways and the Enterprise Manager 449

Configuring e*Ways with the Enterprise Manager 450
Defining e*Way Components 450
Modifying e*Way Properties 451

Selecting an Executable File 452
Creating or Selecting a Configuration File 453
Changing Command-line Parameters 453
Changing the “Run As” User Name 454
Setting Startup Options or Schedules 454
Activating or Modifying Logging Options 456
Activating or Modifying Monitoring Thresholds 456

e*Ways and Collaborations 457

Configuring e*Ways 457
Concepts 457
Controls 458

Section and Parameter Controls 459
Parameter Configuration Controls 459

Using the e*Way Configuration Editor 460
Navigating Through the Editor 460
Saving Configuration Settings 460
Modifying Configuration Settings 461
Restoring Default Settings 461
Restoring Saved Settings 461
Entering User Notes 461
Creating Business Object Brokers 462
Using the Online Help System 462

Troubleshooting e*Ways 462
In the Enterprise Manager 463
In the e*Way Configuration Editor 463
On the e*Way’s Participating Host 463
In the e*Way’s External Application 463

Multi-Mode e*Way 464
Multi-Mode e*Way Characteristics 464

JVM Settings 466
JNI DLL Absolute Pathname 467
CLASSPATH Prepend 467
CLASSPATH Override 468
Initial Heap Size 469
Maximum Heap Size 470
Maximum Stack Size for Native Threads 470
Maximum Stack Size for JVM Threads 470
Class Garbage Collection 471
Garbage Collection Activity Reporting 471
Asynchronous Garbage Collection 471
Report JVM Info and all Class Loads 471
Disable JIT 471
Remote debugging port number 472
Suspend option for debugging 472

Changing Command-line Parameters 472
Changing the “Run As” User Name 473

Contents

e*Gate Integrator User’s Guide 13 SeeBeyond Proprietary and Confidential

Setting Startup Options or Schedules 474
Advanced Settings for Multi-Mode e*Ways 476

Activating or Modifying Logging Options 476
Activating or Modifying Monitoring Thresholds 476

Configuring Multi-Mode e*Ways with e*Way Connections 477
Controls 477
Section and Parameter Controls 479
Parameter Configuration Controls 479
Using the e*Way Connection Editor 480
Navigating Through the Editor 480
Saving Configuration Settings 480
Modifying Configuration Settings 481
Restoring Default Settings 481
Restoring Saved Settings 481
Entering User Notes 481

JVM Settings 482

e*Insight Business Process Manager Engine 487

Chapter 10

Introduction to e*Gate Monitor 489
e*Gate Monitoring Overview 489

Role of the Control Broker 489
e*Gate Interactive Monitoring 490

e*Gate Monitor Basic Operation 490
e*Gate Monitor Window 491
Toolbar Buttons 492
Menu Bar 493

Controlling e*Gate 495
Starting and Shutting Down Components 496
Displaying Status and Version Information 497
Suspending and Activating Components 498

Non-interactive Monitoring 499
Notification Channels 499
e*Gate Alert Agent 499
e*Gate SNMP Agent 500
Custom User Agents 500

Monitoring Resources and Performance 500
Setting Disk-usage Thresholds 500
Disk-space Quota Limitations 502
Setting Event-processing Thresholds 502

Chapter 11

e*Gate Java Debugger 505
Overview of e*Gate Java Debugger Operation 505

Main Menu 507

Contents

e*Gate Integrator User’s Guide 14 SeeBeyond Proprietary and Confidential

Activating the e*Gate Java Debugger 509
Using the e*Gate Java Debugger 510

Controlling execution of the Collaboration 510
Options Dialog 512

Chapter 12

Event Linking and Sequencing (ELS) 516
Learning About ELS 516

How Does ELS Operate Within e*Gate? 517
ELS Operation 519

About the SeeBeyond-supplied ELS Methods 520

Count-Based Triggers 520

Timer-Based Triggers 522

The ELS Wizard 523
About the ELS Wizard 523
ELS Wizard Operation 523

Sample Implementation 528
Overview 528
Steps 529

Creating the schema and defining the Event Types 529
Building the ETDs 530
Creating the Collaboration Rules 532
Creating the ELS Business Rules for cr_ELS_CombineGrades 533
Creating the Data Transformation Logic Under executeBusinessRules() 535

Chapter 13

XA Transaction Processing 538
Introduction 538

References 538

Architectural Review 539

Operational Summary 540

Working with XA-enabled Collaborations 540
Mixing XA-Compliant and XA-Noncompliant e*Way Connections 541

Appendix A

Java Classes and Methods 542
Index to Methods for Standard Java-enabled ETDs 543

Base64Utils Class (com.stc.eways.util) 549

CollabUtils Class (com.stc.eways.util) 552

Contents

e*Gate Integrator User’s Guide 15 SeeBeyond Proprietary and Confidential

DateUtils Class (com.stc.eways.util) 559

EGate Class (com.stc.common.collabService) 562

FileUtils Class (com.stc.eways.util) 570

JCollabController Class (com.stc.common.collabService) 573
General System Control Methods 574
Character Encoding and Internationalization Methods 580

About the Encoding Methods 580
Character Encodings in the Java Collaboration Rules Editor 581

ELSController Interface Methods 589

JCollaboration Class (com.stc.jcsre) 599
eventSend() 599

JSubCollabMapInfo Class (com.stc.common.collabService) 603

Mainframe Class (com.stc.eways.util) 616

MapUtils Class (com.stc.eways.util) 621
Usage Example 621

QSort Class (com.stc.common.utils) 627

ScEncrypt Class (com.stc.common.utils) 628

STCTypeConverter Class (com.stc.eways.util) 630

StringUtils Class (com.stc.eways.util) 656

Formatting of Output Text 662

Glossary 666

Index 674

List of Figures

e*Gate Integrator User’s Guide 16 SeeBeyond Proprietary and Confidential

List of Figures

Figure 1 e*Gate Layered Architecture 33

Figure 2 Collaboration/e*Way Relationship 38

Figure 3 Sample e*Gate System Diagram 40

Figure 4 Sample e*Gate System Diagram 45

Figure 5 e*Gate Enterprise Manager Login Dialog Box 49

Figure 6 Enterprise Manager Window (Network View) 50

Figure 7 Enterprise Manager Window (Components View) 51

Figure 8 View > Summary 58

Figure 9 Event Type Summary Window 59

Figure 10 Team Registry: Overview 60

Figure 11 The Team Registry in Operation 61

Figure 12 Enterprise Manager Window With Participating Hosts 67

Figure 13 Participating Host Properties Dialog Box 68

Figure 14 Network View with Graphic Representation in Editor Pane 71

Figure 15 Enterprise Manager Help Window 75

Figure 16 Contents Tree 76

Figure 17 Print Topics Dialog Box 79

Figure 18 e*Gate Setup Road Map 82

Figure 19 Basic e*Gate Data Flow Relationships 84

Figure 20 Basic e*Gate Logical Relationships 85

Figure 21 Control Broker Properties Dialog Box: General Tab 88

Figure 22 Control Broker Properties Dialog Box: Notification Setup Tab 89

Figure 23 Control Broker Properties Dialog Box: Timers Tab 90

Figure 24 Timer Event Properties Dialog Box 91

Figure 25 Control Broker Properties Dialog Box: Advanced Tab 92

Figure 26 Control Broker Properties Dialog Box: Security Tab 93

Figure 27 Assign Privileges Dialog Box and Add Role Selection Box 94

Figure 28 Enterprise Manager With Event Types 97

Figure 29 Event Type Definition Editor 99

Figure 30 New Event Type Definition Window 100

Figure 31 Example Wizard: Standard ETD 100

Figure 32 Java Event Type Definition Editor with Sample ETD 101

List of Figures

e*Gate Integrator User’s Guide 17 SeeBeyond Proprietary and Confidential

Figure 33 ETD Editor Window (New) 103

Figure 34 New ETD Dialog Box 104

Figure 35 Event Type Properties Dialog Box 105

Figure 36 Enterprise Manager Window with Services 110

Figure 37 Java Collaboration Rules Editor 111

Figure 38 e*Gate Enterprise Manager: Create New Collaboration Rules 112

Figure 39 Collaboration Rules Properties: Collaboration Mapping Tab 113

Figure 40 Java Collaboration Editor with Sample Collaboration 115

Figure 41 Expanded Java Code 116

Figure 42 Enterprise Manager with Collaboration Rules Icons 117

Figure 43 Collaboration Rules Properties Dialog Box, General Tab 118

Figure 44 SeeBeyond Collaboration Rules Editor Window (Monk) 120

Figure 45 Collaboration Rules Properties Dialog Box, Subscriptions Tab 121

Figure 46 Collaboration Rules Properties Dialog Box, Publications Tab 122

Figure 47 e*Way Operation 124

Figure 48 Contents of Participating Hosts Folder 126

Figure 49 e*Way Properties Dialog Box, General Tab 128

Figure 50 e*Way Editor Window (New) 129

Figure 51 Multi-Mode e*Way Properties Dialog Box 132

Figure 52 Edit Settings Dialog Box – Multi-Mode e*Way 133

Figure 53 *Gate Enterprise Manager: Create New e*Way Connection 134

Figure 54 e*Way Connection Properties Dialog Box 135

Figure 55 STC_Standard IQ Properties Dialog Box, General Tab 138

Figure 56 IQ Properties Dialog Box, Advanced Tab 139

Figure 57 IQ Properties Dialog Box, Database Tab 140

Figure 58 IQ Properties Dialog Box, External Tab 141

Figure 59 Enterprise Manager with Collaboration 144

Figure 60 Collaboration Properties Dialog Box with Selections 146

Figure 61 Monk Test Console, Setup Tab 150

Figure 62 Monk Test Console, Input Tab 151

Figure 63 Monk Test Console, Output Tab 152

Figure 64 ETD Editor GUI Map 160

Figure 65 New Event Type Definition Dialog Box 165

Figure 66 Standard ETD Wizard - Step 1 166

Figure 67 Newly Created Standard ETD 166

Figure 68 ETD Builder Wizards 167

Figure 69 SSC Wizard - Step 1 168

Figure 70 Result of Converting a Monk ETD Using the SSC Wizard 169

List of Figures

e*Gate Integrator User’s Guide 18 SeeBeyond Proprietary and Confidential

Figure 71 ETD Builder Wizards 171

Figure 72 SEF Wizard - Step 1 171

Figure 73 Result of Converting an SEF File Using the SEF Wizard 173

Figure 74 The Java Properties Dialog Box 176

Figure 75 The Comment Property Dialog Box 177

Figure 76 ETD Editor – Test Dialog Showing Parsed Data 183

Figure 77 Sample ETD and Sample Test Data 184

Figure 78 Successful Promotion of an ETD 185

Figure 79 Global Delimiters Dialog Box - Delimiter Level 187

Figure 80 Setting Global Begin and End Delimiters 188

Figure 81 Local Delimiters Dialog Box - Local Delimiters Level 189

Figure 82 Example of a Local Delimiter Group 190

Figure 83 ETD Editor Tree 205

Figure 84 ETD Editor and Tree Structure 208

Figure 85 ETD Dialog Box 216

Figure 86 Set Delimiters Dialog Box 219

Figure 87 Set Delimiters Dialog Box, Other Selected 220

Figure 88 Delimited Root Node Properties Dialog Box, General Tab 223

Figure 89 Delimited Root Node Properties Dialog Box, Content Tab 224

Figure 90 Delimited Root Node Properties Dialog Box, Repetition Tab 225

Figure 91 Delimited Root Node Properties Dialog Box, Delimiters Tab 227

Figure 92 Root Node and Node Icons 228

Figure 93 Delimited Node Properties Dialog Box, General Tab 229

Figure 94 Field Repetition Delimiter Usage 231

Figure 95 Fixed Root Node Properties Dialog Box, General Tab 233

Figure 96 Fixed Root Node Properties Dialog Box, Delimiters Tab 234

Figure 97 Fixed-ETD Node Icons 235

Figure 98 Fixed Node Properties Dialog Box, General Tab 236

Figure 99 Node Set Placeholder 239

Figure 100 Set Properties Dialog Box, Node Set 240

Figure 101 Node Subset Diagram 241

Figure 102 Build an Event Type Definition Dialog Box (Default) 243

Figure 103 Build an Event Type Definition Dialog Box (Library) 244

Figure 104 Build an Event Type Definition Dialog Box (Delimited Data) 245

Figure 105 Select a Test Data File Dialog Box 248

Figure 106 Test Structure Dialog Box 249

Figure 107 Include External Event Type Definition Dialog Box 255

Figure 108 ETD External Template Icons 256

List of Figures

e*Gate Integrator User’s Guide 19 SeeBeyond Proprietary and Confidential

Figure 109 Internal Template Icon 257

Figure 110 Relationship of Collaboration Rules to e*Gate Components 261

Figure 111 Dinner Seen as an Event Type Definition 263

Figure 112 Java Collaboration Rules Editor GUI Map 265

Figure 113 The Collaboration Rule Properties 271

Figure 114 The Collaboration Mapping Tab 272

Figure 115 The New Collaboration Rule 273

Figure 116 Mapping Pane When One Field Is Selected 275

Figure 117 Mapping Pane for Expanded and Collapsed Parent Nodes 276

Figure 118 Mapping Pane When a Business Rule Is Selected 276

Figure 119 Creating Rules by Dragging Fields 277

Figure 120 Find and Map 278

Figure 121 Business Rules Toolbar With Labels Turned Off 279

Figure 122 Business Rules Pane with Code Display Turned On 279

Figure 123 Code Error Exposed by Double-Clicking a Compile Pane Message 279

Figure 124 The View Java Code Window 280

Figure 125 Java Classpaths Dialog Box 282

Figure 126 Java Imports Dialog Box 283

Figure 127 Shortcut Menu in Rule Properties Pane 284

Figure 128 Choose a method Dialog Box 285

Figure 129 Choose a method Dialog Box 286

Figure 130 Results of Inserting a Java Method 286

Figure 131 The Search And Replace Dialog Box 287

Figure 132 The UserFunctions.xml Template for Custom Java Methods 288

Figure 133 Relating UserFunctions.xml, SBYNFunctions.xml, and the GUI 289

Figure 134 The block Rule and Its Properties 291

Figure 135 The Copy Dialog Box 294

Figure 136 Sample Text Files for the dataMap Rule 296

Figure 137 The Data Map Dialog Box 296

Figure 138 The do, while Rule and Its Properties 300

Figure 139 Code Generated When “for” Is Used on a Repeating Node 304

Figure 140 Result of Mapping a Repeating Node in a “for” Loop 305

Figure 141 The if, then, else Rule and Its Properties 306

Figure 142 The List Lookup Dialog Box 307

Figure 143 A method Rule and Its Properties 311

Figure 144 The rule Rule and Its Properties 314

Figure 145 The Insert Timestamp Dialog Box 318

Figure 146 The Insert Unique ID Dialog Box 322

List of Figures

e*Gate Integrator User’s Guide 20 SeeBeyond Proprietary and Confidential

Figure 147 The while Rule and Its Properties 325

Figure 148 The Select Repetition Instance Dialog Box With a Counter 326

Figure 149 The Select Repetition Instance Dialog Box Without a Counter 326

Figure 150 The Output Format Dialog Box 327

Figure 151 Root Collaboration Rule Calling a Subcollaboration Rule 351

Figure 152 Monk Collaboration Rules Editor GUI Map 354

Figure 153 ETD Panning Window 356

Figure 154 New Dialog Box 362

Figure 155 Open Event Type Definition Dialog Box 363

Figure 156 Appending Data with the Copy Rule 364

Figure 157 Appending Data with the Duplicate Rule 365

Figure 158 Offset Data 365

Figure 159 Rules Pane with Added Rules 367

Figure 160 Collapsing and Expanding Rules 367

Figure 161 Specifying Event Elements 368

Figure 162 Select Repetition Instance 372

Figure 163 Rule’s Name Button 375

Figure 164 Specifying a Byte Location 377

Figure 165 Library Dialog Box 378

Figure 166 Current Value Text Box 378

Figure 167 Main Comment Dialog Box 381

Figure 168 Error Message with Symbol 383

Figure 169 Find Node in Destination Event Type Definition Dialog Box 384

Figure 170 Find Node in Source Event Type Definition Dialog Box 384

Figure 171 Accessing the Code Conversion Functions 385

Figure 172 If-rule Setup in the Rules Pane 388

Figure 173 Loop Rule Structure 396

Figure 174 Case Rule Setup 407

Figure 175 Case Rule Strings 408

Figure 176 Case Rule Integers 409

Figure 177 Case Rule Example 410

Figure 178 Comment Rule Example 410

Figure 179 How the Copy Rule Handles Input-to-output Event Delimiters 411

Figure 180 Copy Rule Example 412

Figure 181 Copy Dialog Box 413

Figure 182 Set Output Format Dialog Box 415

Figure 183 Display Rule Setup 416

Figure 184 How the Duplicate Rule Handles Input-to-Output Event Delimiters 417

List of Figures

e*Gate Integrator User’s Guide 21 SeeBeyond Proprietary and Confidential

Figure 185 Duplicate Rule Example 418

Figure 186 Duplicate Dialog Box 419

Figure 187 Sample Text File for Data Map Rule 420

Figure 188 Data Map Rule Syntax 422

Figure 189 List Lookup Dialog Box 426

Figure 190 Timestamp Dialog Box 433

Figure 191 Let Rule Bar Structure 437

Figure 192 Functions Dialog Box 444

Figure 193 User Function Rule 446

Figure 194 Set Regex Dialog Box 447

Figure 195 Enterprise Manager View of e*Way Characteristics 449

Figure 196 Enterprise Manager View of e*Way Contents 450

Figure 197 e*Way Properties Dialog Box, General Tab 452

Figure 198 e*Way Properties Dialog Box, Start Up Tab 455

Figure 199 e*Way Configuration Editor GUI Map 458

Figure 200 Sample Selection List Controls 459

Figure 201 e*Way Properties Dialog Box – General Tab 465

Figure 202 Top Portion of the Multi-Mode e*Way Configuration Editor Window 466

Figure 203 Second Portion of the Multi-Mode e*Way Configuration Editor Window 468

Figure 204 Third Portion of the Multi-Mode e*Way Configuration Editor Window 469

Figure 205 Fourth Portion of the Multi-Mode e*Way Configuration Editor Window 470

Figure 206 Multi-Mode e*Way Properties Dialog Box, Start Up Tab 475

Figure 207 e*Way Connection Editor Window Controls 478

Figure 208 Sample Selection List Controls 479

Figure 209 Top Portion of the e*Way Configuration Editor Window 482

Figure 210 Second Portion of the e*Way Configuration Editor Window 484

Figure 211 Third Portion of the e*Way Configuration Editor Window 485

Figure 212 Fourth Portion of the e*Way Configuration Editor Window 486

Figure 213 e*Insight Engine Properties Dialog Box 488

Figure 214 e*Gate Monitor Window, Alerts Tab 491

Figure 215 Threshold Setup 501

Figure 216 Change Disk Threshold 501

Figure 217 Threshold Properties Dialog Box 503

Figure 218 e*Gate Java Debugger Window 506

Figure 219 Stop in Method Dialog Box 509

Figure 220 Context Pane with this Tab Selected 511

Figure 221 Lower Right Pane with Evaluate Tab Selected 512

Figure 222 Options Dialog Box 513

List of Figures

e*Gate Integrator User’s Guide 22 SeeBeyond Proprietary and Confidential

Figure 223 Stop in Class Dialog Box 513

Figure 224 Stop in Method Dialog Box 514

Figure 225 Break on Exception Dialog Box 515

Figure 226 ELS Processing Model 517

Figure 227 ELS Unmarshalling of Events 518

Figure 228 ELS in Context With IQs and non-ELS Collaborations 519

Figure 229 ELS Schematic 521

Figure 230 ELS Buckets With Timers 522

Figure 231 ELS Wizard Step 1 - Specify Field for Link Identifier 524

Figure 232 ELS Wizard Step 2 - Specify Message Count 525

Figure 233 ELS Wizard Step 3 - Specify Expiration 526

Figure 234 Code Generated by the ELS Wizard 527

Figure 235 ELS Collaboration 528

Figure 236 School Example: etd\School\.xsc 530

Figure 237 School Example: etd\School\Semester.xsc 531

Figure 238 School Example: Schema After Creating Event Types and ETDs 531

Figure 239 School Example: Properties of cr_ELS_CombineGrades 532

Figure 240 School Example: cr_ELS_CombineGrades Before Modification 533

Figure 241 School Example: Setting the ELS Link Identifier 534

Figure 242 School Example: Setting the ELS Message Count 534

Figure 243 School Example: Generated Code Under retrieveLinkIdentifier() 535

Figure 244 School Example: Completed ELS-enabled Collaboration Rule 537

Figure 245 e*Gate in a Distributed Transaction Processing (DTP) Context 539

Figure 246 Monk Collaboration Rules Editor in a Japanese Environment 581

Figure 247 Java Collaboration Rules Editor in a Japanese Environment 582

Figure 248 Setting the Character Encoding in userInitialize() 583

List of Tables

e*Gate Integrator User’s Guide 23 SeeBeyond Proprietary and Confidential

List of Tables

Table 1 Sample Component Naming Convention 47

Table 2 Additional e*Gate System Names 47

Table 3 Enterprise Manager Toolbar 52

Table 4 Enterprise Manager Menus and Commands 54

Table 5 Tools to Promote Files to Run-time 64

Table 6 Tools to Remove Files from the Sandbox 64

Table 7 Network View Palette Controls 71

Table 8 Tabs Pane Operation 77

Table 9 Help Window Buttons 78

Table 10 Monk Collaboration Script Types 107

Table 11 Java Collaboration File Types 108

Table 12 Monk Test Console Control Buttons 152

Table 13 Monk Test Console Toolbar 153

Table 14 Monk Test Console Input/User Data Buttons 153

Table 15 ETD Editor Menus and Commands (Java) 162

Table 16 Toolbar Buttons 163

Table 17 Node Icons for Java ETDs 179

Table 18 Common Errors When Compiling an ETD 182

Table 19 Properties of the Standard Event Type 191

Table 20 Properties of Standard ETD Parent Node Elements (type=CLASS) 192

Table 21 Properties of Standard ETD Field Nodes (type=FIELD) 197

Table 22 Properties of Global and Local Delimiters 201

Table 23 Acceptable Node-name Characters 206

Table 24 Toolbar Buttons and Functions 209

Table 25 ETD Editor File Menu 211

Table 26 ETD Editor Edit Menu 212

Table 27 ETD Editor Templates Menu 213

Table 28 ETD Editor Templates Menu 213

Table 29 ETD Editor Options Menu 214

Table 30 ETD Editor Help Menu 214

Table 31 Options for Delimited and Fixed ETDs 217

Table 32 Delimiter Variable Repetition Options 230

List of Tables

e*Gate Integrator User’s Guide 24 SeeBeyond Proprietary and Confidential

Table 33 Build an Event Type Definition Dialog Box Options 245

Table 34 Java Collaboration File Types 262

Table 35 Java Collaboration Rules Editor Menu Commands 267

Table 36 Main Toolbar Buttons 269

Table 37 Business Rules Toolbar Buttons 269

Table 38 Parameters for Business Rule copy 295

Table 39 Parameters for Business Rule dataMap 297

Table 40 Parameters for Business Rule lookup 308

Table 41 Parameters for Business Rule timeStamp 319

Table 42 Date and Time Format Codes for the timeStamp Rule 319

Table 43 Parameters for Business Rule uniqueId 322

Table 44 Toolbar Buttons 355

Table 45 Window Controls 356

Table 46 Rules Pane Controls 357

Table 47 File Menu Commands 358

Table 48 Edit Menu Commands 359

Table 49 Rules Menu Commands 359

Table 50 View Menu Commands 360

Table 51 Options Menu Commands 361

Table 52 Help Menu Commands 361

Table 53 Sample Events with Path Locations 370

Table 54 Repeating Event Elements 373

Table 55 Select Repetition Instance Dialog Box Entries 374

Table 56 Showing Byte Locations in Rule Dialog Boxes 376

Table 57 Changing Rule Parameters 382

Table 58 Monk Functions for Code Conversion 385

Table 59 Monk Collaboration Rules 386

Table 60 If-rule Test Setups 389

Table 61 Loop Rule Elements 397

Table 62 Node Repetition Symbols 399

Table 63 Repetition Information for Loop Rule 400

Table 64 Case Rule Control Features 407

Table 65 Copy Rule Use Methods 412

Table 66 Using the Copy/Duplicate Dialog Box 414

Table 67 Using the Set Output Format Dialog Box 416

Table 68 Data Map Dialog Box Entries 423

Table 69 Parameter and Section Controls 459

Table 70 Selection List Controls 460

List of Tables

e*Gate Integrator User’s Guide 25 SeeBeyond Proprietary and Confidential

Table 71 Java 2 JNI DLL Names 467

Table 72 Parameter and Section Controls 479

Table 73 Selection List Controls 479

Table 74 Java 2 JNI DLL Names 483

Table 75 e*Gate Monitor Toolbar 492

Table 76 e*Gate Monitor Menu Commands 493

Table 77 Monitor Commands 495

Table 78 Available Control Tab Commands 495

Table 79 Notification Channels and Delivery Systems 499

Table 80 Event-threshold Monitoring-Event Codes 504

Table 81 e*Gate Java Debugger Main Menu 507

Table 82 Java Classes and Methods 542

Table 83 Trace Events (Logging Levels) 566

Table 84 Trace ID Parameters (for tid Parameter) 567

Table 85 Trace Event Parameters (for event Parameter) 569

Table 86 Sample Inputs and Format Codes and Their Results 664

e*Gate Integrator User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This chapter introduces you to this user’s guide, its general purpose and scope, and its
organization. It also provides sources of related documentation and information.

1.1 User’s Guide Purpose and Scope
This user’s guide explains generally how to set up and configure the SeeBeyond
Technology CorporationTM (SeeBeyondTM) e*Gate Integrator system. e*Gate
configuration includes preparation, editing, and initial monitoring procedures.

This guide explains how to use the following graphical user interfaces (GUIs):

! Enterprise Manager and its editor GUIs

" Java Event Type Definition Editor

" Monk Event Type Definition Editor

" Java Collaboration Rules Editor

" Monk Collaboration Rules Editor

" e*Way (Intelligent Adapter) Editor

! e*Gate Monitor

Important: Any operation explanations given here are generic, for reference purposes only, and
do not necessarily address the specifics of setting up individual e*Gate systems.

This document does not contain information on software installation and system
administration procedures (see “Supporting Documents” on page 30).

1.2 Intended Audience
The reader of this guide is presumed to be an experienced PC user with the
responsibility for helping to set up and/or to maintain a fully functioning e*Gate
system. This person must also have expert-level knowledge of Windows NT/
Windows 2000 or UNIX operations and be thoroughly familiar with Windows-style
GUI operations.

Chapter 1 Section 1.3
Introduction Organization of Information

e*Gate Integrator User’s Guide 27 SeeBeyond Proprietary and Confidential

1.3 Organization of Information
This document is organized topically as follows:

! Chapter 1 “Introduction” gives a general preview of this document, its purpose,
scope, and organization; also provides sources of additional information.

! Chapter 2 “System Description” provides a detailed overview of the e*Gate
system, including its structure, operation, and GUIs.

! Chapter 3 “Getting Started” describes how to run the e*Gate Enterprise Manager,
what it is, and its characteristics; also introduces the online Help system.

! Chapter 4 “Setting Up e*Gate” explains in detail the essential setup GUIs and
features of e*Gate as well as how to use these features for configuring basic system
components.

! Chapter 5 “Event Type Definitions (ETDs)” explains how to use the Java ETD
Editor to define, configure, and modify Java Event Type Definitions.

! Chapter 6 “Monk Event Type Definition Editor” explains how to use the Monk
ETD Editor to define, configure, and modify Monk Event Type Definitions.

! Chapter 7 “Java Collaboration Rules” explains how to use the Java Collaboration
Rules Editor to define, configure, and modify Java Collaboration scripts for your
Collaborations.

! Chapter 8 “Monk Collaboration Rules Editor” explains how to use the Monk
Collaboration Rules Editor to define, configure, and modify Collaboration Rules
Monk scripts for your Collaborations.

! Chapter 9 “Working with e*Ways” explains how to use the Enterprise Manager to
create, configure, and modify e*Ways, e*Way Connections, and BOBs.

! Chapter 10 “Introduction to e*Gate Monitor” explains the basic features of the
e*Gate Monitor GUI and how to use them.

! Chapter 11 “e*Gate Java Debugger” explains how to use the Java Collaboration
Debugger for Multi-Mode e*Ways.

! Chapter 12 “Event Linking and Sequencing (ELS)” explains the purpose and
function of Event Linking and Sequencing (ELS) methods available through the
Java Collaboration Rules Editor.

! Chapter 13 “XA Transaction Processing” explains e*Gate’s role in a Distributed
Transaction Processing context and discusses its compliance with the XA standard
in terms of architecture and operations.

! Appendix A “Java Classes and Methods” lists and describes the Java classes and
methods accessible via the Java Collaboration Rule Editor for Standard ETDs, and
provides instructions for creating and including your own custom Java methods.

In addition, there is a Glossary on page 666 to help you with the e*Gate system’s
related terminology.

Chapter 1 Section 1.4
Introduction Writing Conventions

e*Gate Integrator User’s Guide 28 SeeBeyond Proprietary and Confidential

1.4 Writing Conventions
The writing conventions listed in this section are observed throughout this document.

Hypertext Links

When you are using this guide online, cross-references are also hypertext links and
appear in blue text as shown below. Click the blue text to jump to the section.

For information on these and related topics, see “Parameter, Function, and
Command Names” on page 29.

Command Line

Text to be typed at the command line is displayed in a special font as shown below.

java -jar ValidationBuilder.jar

Variables within a command line are set in the same font and bold italic as shown
below.

stcregutil -rh host-name -rs schema-name -un user-name
-up password -ef output-directory

Code and Samples

Computer code and samples (including printouts) on a separate line or lines are set in
Courier as shown below.

Configuration for BOB_Promotion

However, when these elements (or portions of them) or variables representing several
possible elements appear within ordinary text, they are set in italics as shown below.

path and file-name are the path and file name specified as arguments to -fr in the
stcregutil command line.

Notes and Cautions

Points of particular interest or significance to the reader are introduced with Note,
Caution, or Important, and the text is displayed in italics, for example:

Note: The Actions menu is only available when a Properties window is displayed.

User Input

The names of items in the user interface such as icons or buttons that you click or select
appear in bold as shown below.

Click Apply to save, or OK to save and close.

File Names and Paths

When names of files are given in the text, they appear in bold as shown below.

Use a text editor to open the ValidationBuilder.properties file.

When file paths and drive designations are used, with or without the file name, they
appear in bold as shown below.

In the Open field, type D:\setup\setup.exe where D: is your CD-ROM drive.

Chapter 1 Section 1.4
Introduction Writing Conventions

e*Gate Integrator User’s Guide 29 SeeBeyond Proprietary and Confidential

Parameter, Function, and Command Names

When names of parameters, functions, and commands are given in the body of the text,
they appear in bold as follows:

The default parameter localhost is normally only used for testing.

The Monk function iq-put places an Event into an IQ.

You can use the stccb utility to start the Control Broker.

Additional Conventions

Windows Systems — The e*Gate system is fully compliant with both Windows 2000
and Windows NT platforms. When this document refers to Windows, such statements
apply to both Windows platforms.

UNIX and Linux Systems — This guide uses the backslash (“\”) as the separator
within path names. If you are working on a UNIX system, including Linux, please
make the appropriate substitutions.

Note: The e*Gate system is fully compatible with Compaq Tru64 UNIX version 4.0F and
5.0A.

Chapter 1 Section 1.5
Introduction Supporting Documents

e*Gate Integrator User’s Guide 30 SeeBeyond Proprietary and Confidential

1.5 Supporting Documents
The following SeeBeyond documents provide additional information about the e*Gate
Integrator system as explained in this guide:

For a complete list of e*Gate-related documentation, consult the SeeBeyond eBusiness
Integration Suite Primer. You can also refer to the appropriate Microsoft Windows or
UNIX documents, if necessary.

For information on how to use a specific add-on product (for example, an e*Way
Intelligent Adapter), see the user’s guide for that product.

! C Generic e*Way Extension Kit Developer's Guide

! Creating an End-to-end Scenario with e*Gate Integrator

! e*Gate API Kit Developer’s Guide

! e*Gate Integrator Alert Agent User’s Guide

! e*Gate Integrator Alert and Log File Reference Guide

! e*Gate Integrator Collaboration Services Reference Guide

! e*Gate Integrator Installation Guide

! e*Gate Integrator Intelligent Queue Services Reference Guide

! e*Gate Integrator Release Notes

! e*Gate Integrator SNMP Agent User’s Guide

! e*Gate Integrator System Administration and Operations Guide

! e*Gate Integrator Upgrade Guide

! e*Insight Business Process Manager Implementation Guide

! e*Insight Business Process Manager User’s Guide

! e*Xchange Partner Manager Implementation Guide

! e*Xchange Partner Manager User’s Guide

! Java Generic e*Way Extension Kit Developer’s Guide

! Monk Developer’s Reference

! Monk Generic e*Way Extension Kit Developer's Guide

! SeeBeyond eBusiness Integration Suite Primer

! SeeBeyond eBusiness Integration Suite Deployment Guide

! SeeBeyond JMS Intelligent Queue User’s Guide

! Standard e*Way Intelligent Adapter User's Guide

! Working with Collaboration IDs

! XML Toolkit

Chapter 1 Section 1.6
Introduction Online Documents

e*Gate Integrator User’s Guide 31 SeeBeyond Proprietary and Confidential

1.6 Online Documents
The documentation for the SeeBeyond eBusiness Integration Suite is distributed as a
collection of online documents. These documents are viewable with the Acrobat Reader
application from Adobe Systems. Acrobat Reader can be downloaded from:

http://www.adobe.com

Note: When downloading Acrobat Reader, make sure to download the version that
includes the option for searching .pdf files. This option is required in order to view
the searchable master index.

Searching the Online Documents

The collection of online documents includes a searchable master index. This index is
a convenient way to find a topic when you are not sure which document to consult.
The index requires activation of the SeeBeyond master index.

To activate the SeeBeyond master index

1 If you have not already done so, download and install Acrobat Reader; take care to
install the version that includes the option for searching .pdf files.

2 Start Acrobat Reader.

3 On the Edit menu, point to Search, and then click Select Indexes.

4 In the Index Selection dialog box, click Add.

5 Locate and open the <eGate>\client\docs\ folder, where <eGate> is the location
where e*Gate is installed.

6 Double-click SeeBeyond_Index.pdx.

7 Click OK to close the Index Selection dialog box.

To search the master index

1 On the Acrobat Reader Edit menu, point to Search, and then click Query.

2 Type the term or phrase you want to find, and then click Search.

A list of documents matching the search criteria appears.

3 Select a title from the list, and then click View.

4 Press CTRL+] and CTRL+[to view the next and previous highlighted results.

1.7 SeeBeyond Web Site
The SeeBeyond Web site is your best source for up-to-the-minute product news and
technical support information. The site’s URL is:

http://www.SeeBeyond.com

http://www.seebeyond.com
http://www.adobe.com

e*Gate Integrator User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 2

System Description

This chapter gives an overview of the general operation, structure, and architecture of
the e*Gate system. In addition, it describes the system’s basic components.

2.1 Overview of e*Gate System
The basic purpose of e*Gate is to move data from one point to another. The e*Gate
system has the following basic features:

! Distributed Architecture: e*Gate uses a distributed architecture that is open and
flexible, allowing components to reside on different workstations within a global
network.

! Effective Communication: e*Gate uses protocols and adapters you choose, which
allows e*Gate to communicate with and link multiple applications/databases
across different operating systems.

! Versatile Performance: e*Gate can function with a large number of hardware,
message standards, operating systems, databases, and communication protocols.

! Multi-mode Operation: e*Gate operates in both real-time and batch/scheduled
integration modes.

! Convenient Bridges: e*Gate can bridge between older and newer systems,
resulting in a centrally managed and unified enterprise.

The different components of an e*Gate system do not have to reside on the same
machine. Instead, you can distribute them across various machines in a total network.

Note: For definitions of e*Gate components and features, see the Glossary on page 666.

2.1.1 Component Organization and Schemas
You must organize your e*Gate system components into configurations called schemas.
e*Gate lets you set up as many customized schemas as you want, to organize and to
maintain the system efficiently. See “Creating a Schema” on page 86 for details on this
feature.

Chapter 2 Section 2.1
System Description Overview of e*Gate System

e*Gate Integrator User’s Guide 33 SeeBeyond Proprietary and Confidential

2.1.2 Layered System Architecture
The e*Gate system has a layered architecture. The following figure shows a diagram of
these layers.

Figure 1 e*Gate Layered Architecture

View

Control

Business
Rules and
Data
Processing

Intelligent
Queuing

Application
Connectivity

External
Systems

Collaborations

Registry
Service Registry

Control
Brokers

SNMP
Agent

Collaboration
Rules Editor

Monitor &
Alerting System

Event Type
Definition Editor

e*Wayse*Wayse*Wayse*Wayse*Wayse*Ways

Databases EDI NetworksInternet
ORBs

ERP Apps

Sybase MQOracleSTC

Check Customer Credit

Receive Purchase Order

Update Customer Info

Schedule Shipment

Check Inventory

Existing Applications

JMS

Chapter 2 Section 2.2
System Description View Layer

e*Gate Integrator User’s Guide 34 SeeBeyond Proprietary and Confidential

As shown in Figure 1, e*Gate architecture consists of the following functional layers:

! View

! Control

! Business rules and data processing

! Intelligent queuing

! Application connectivity

The rest of this chapter describes each of these layers, their components, and their
general functions in the e*Gate system.

2.2 View Layer
This layer contains those components you interact with, that is, the e*Gate user
interfaces. Most View-layer components implement graphical user interfaces (GUIs) to
simplify their use. The system contains the following types of GUIs and viewing
features:

! e*Gate Enterprise Manager

! e*Gate Editors

! Monitoring features

2.2.1 Enterprise Manager
The Enterprise Manager allows you to create and configure the components of the
e*Gate system. Using the Enterprise Manager window, you can define and maintain
your configuration schemas. See “Enterprise Manager Basic Operation” on page 49
for details on this feature.

2.2.2 e*Gate Editors
All e*Gate systems implement specialized editor GUIs, allowing you to set up, view,
and revise each element in the system. The e*Gate editors include:

! SeeBeyond Java Event Type Definition (ETD) Editor (see Chapter 5)

! SeeBeyond Monk Event Type Definition (ETD) Editor (see Chapter 6)

! SeeBeyond Java Collaboration Rules Editor (see Chapter 7)

! SeeBeyond Monk Collaboration Rules Editor (see Chapter 8)

! SeeBeyond Collaboration-ID Rules Editor (see the Note below)

! e*Way Editor (see Chapter 9)

Chapter 2 Section 2.3
System Description Control Layer

e*Gate Integrator User’s Guide 35 SeeBeyond Proprietary and Confidential

Note: The Collaboration-ID Rules Editor is a feature that enables compatibility with
e*Gate Version 3.6 (DataGate) only. Normally, you do not need to use this GUI or
its features. If necessary, see the Collaboration-ID Rules Editor User’s Guide
for more information on this feature.

The purpose of the e*Gate Editors is to define the system’s data processing structure
and the relationships among system components.

Note: The e*Gate term “Event,” as used in this guide, means a package of data (see the
Glossary on page 666).

2.2.3 Monitoring Features
e*Gate contains the following GUI and other viewing features to help you with system
monitoring, control, and maintenance:

! e*Gate Monitor

! e*Gate Alert Agent configuration tool

! e*Gate SNMP Agent

Note: The Alert Agent and SNMP Agent are add-ons. See the e*Gate Integrator Alert
Agent User’s Guide and the e*Gate Integrator SNMP Agent User’s Guide for
additional information.

! stccmd, a command-line application program interface (API) monitoring tool

For more information on these features and how they interact with the Enterprise
Manager, see Chapter 10. For the details of operation, see the e*Gate Integrator System
Administration and Operations Guide.

2.3 Control Layer
The control layer does the following e*Gate operations:

! It stores and distributes all system configuration information.

! It has the responsibility for starting up and shutting down e*Gate processes.

! It enforces access control mechanisms.

! It forwards Alert, status, and configuration messages to the correct agents.

Control layer components include

! e*Gate Registry, including the Registry Service

! Control Brokers

For more information on these features and how they interact with the Enterprise
Manager, see the e*Gate Integrator System Administration and Operations Guide.

Chapter 2 Section 2.4
System Description Business Rules and Data Processing Layer

e*Gate Integrator User’s Guide 36 SeeBeyond Proprietary and Confidential

2.3.1 Registry
The e*Gate Registry does the following tasks:

! It stores all configuration details, either through references to supplemental
configuration files or direct containment.

! It handles, through the Registry Service, all requests for configuration updates and
changes the content of the Registry when new information is provided.

! It forwards any updates to appropriate clients as necessary.

! It employs a Team Registry concept that divides the Registry into:

" Run-time environment.

" Sandbox area for user-specific file development.

2.3.2 Control Brokers
The Control Broker component in a schema is responsible for:

! Starting and stopping processes.

! Selectively forwarding alert, status, and configuration messages to appropriate
GUIs.

! Routing operational Events to scripts that help perform basic maintenance or
administrative actions.

2.4 Business Rules and Data Processing Layer
This layer uses Collaboration Rules, and Collaborations to implement user-defined
business logic in response to input Events.

2.4.1 Collaboration Rules
Collaboration Rules components have the following characteristics:

! They specify the details of how applications work together, for example, using data
identification and transformation rules.

! You can define these rules, using the Collaboration Rules Editor. See Chapter 8 for
details on this feature.

! They can be written in Java or SeeBeyond’s Monk language, or you can use another
convenient programming language, for example, C.

! The e*Gate Collaboration Services interface with other languages, allowing you to
define business rules using non-e*Gate tools.

See “Creating Collaboration Rules and Scripts” on page 106 for more information. For
more information on Collaboration Services, see the e*Gate Integrator Collaboration
Services Reference Guide.

Chapter 2 Section 2.5
System Description Intelligent Queuing Layer

e*Gate Integrator User’s Guide 37 SeeBeyond Proprietary and Confidential

2.4.2 Collaborations
Collaboration components allow you to:

! Define data mapping from n input Events to m output Events using Collaboration
Rules, and

! Define how systems query databases in response to request Events, for example,
how APIs having one or more applications can request coordinated action.

See “Adding Collaborations” on page 142 for more information.

2.5 Intelligent Queuing Layer
This layer provides for data queuing functions. e*Gate Intelligent Queue (IQ)
components aid in data communication as follows:

! An IQ’s intelligence comes from its continual recording of Event-state information.
This process ensures that the right data goes to the right places, in the correct
sequence, and without duplication, even after hardware failures.

! IQs support the publish-and-subscribe (pub/sub) processing in e*Gate as follows:

" Publisher Components send Events to IQs.

" Subscriber Components receive queued Events.

See “System Design Components” on page 83 for more information on these features.

Specialized IQ features help out in e*Gate queuing as follows:

! IQ Managers reorganize IQs, archive IQ information, and lock IQs for maintenance.

! IQ Services provide the transport of components within IQs, handling low-level
data exchange operations.

In addition to the SeeBeyond Standard IQ, e*Gate supports a number of different IQ
types: for example, Java Messaging Service (JMS), memory loopback, Sybase, and
Oracle. See “Adding Intelligent Queues” on page 136 for more information on IQs.

For more detailed information, including specific IQ types (for example, MQSeries), see
the e*Gate Integrator Intelligent Queue Services Reference Guide and the SeeBeyond JMS
Intelligent Queue User’s Guide.

2.6 Application Connectivity Layer
This layer consists of one or more e*Way and optional Business Object Broker (BOB)
components. e*Ways are the points of contact between e*Gate and business
applications.

e*Ways establish connectivity with external business applications, utilizing the
appropriate communication protocols. You can use e*Ways for the following purposes:

Chapter 2 Section 2.6
System Description Application Connectivity Layer

e*Gate Integrator User’s Guide 38 SeeBeyond Proprietary and Confidential

! Connecting external business applications with the e*Gate system, while
communicating with both external applications and IQs

! Receiving unprocessed data from external components, transforming it into Events
and forwarding it to other components within e*Gate via IQs

! Sending processed data to external systems

! Integrating different applications, using the appropriate e*Way as an adapter on
each end of the route to enable seamless Event flows

See “Adding e*Ways and BOBs” on page 123 for more details on these features. The
following figure shows the relationship between e*Ways and Collaborations.

Figure 2 Collaboration/e*Way Relationship

Note: BOBs are optional and operate in the same way as e*Ways, except internally.

2.6.1 Types of e*Ways
The e*Gate system supports a number of application-specific e*Ways: for example,
Multi-Mode, database access, SAP software, and generic. This section describes some
examples of different types of e*Ways.

Multi-Mode

These e*Ways are maximally flexible and extensible; for example, any place you have a
BOB, you can replace it with a Multi-Mode e*Way, and any time you have a Java-
enabled external system, you can connect to it using a Multi-Mode e*Way and an e*Way
Connection specific to that system.

e*Way or BOB

Collaboration1

Collaboration Rules

Collaboration Rules fileCollaboration Service

Collaboration2

Collaboration Rules

Collaboration Rules fileCollaboration Service

Chapter 2 Section 2.6
System Description Application Connectivity Layer

e*Gate Integrator User’s Guide 39 SeeBeyond Proprietary and Confidential

Database Access

These e*Ways enable administrators to incorporate relational database access into
enterprise-wide application integration strategies. These e*Ways can query any
database in the system and allow instant, system-wide access to any data values. The
system can automatically update any data changes across the system.

e*Ways for Database Access use the same GUIs as the rest of the e*Gate system. The
GUIs can describe Event flows through the entire enterprise. e*Gate supports a
specialized e*Way to access each of the following databases:

! Oracle

! Sybase

! ODBC

! DB2

Applications

The application-specific e*Ways are specifically designed to connect e*Gate to a
particular applications or application suite; for example, the e*Way Intelligent Adapters
for SAP have been specifically designed to connect e*Gate to SAP R/3 enterprise
management software within a network of diverse hardware and software systems.
Using one or more SAP e*Ways for this software, e*Gate acts as a hub between SAP R/
3 and other software systems, or between differently configured SAP R/3 systems.
Other application-specific e*Ways include PeopleSoft, Clarify, and Siebel.

Generic e*Way Kit

The Generic e*Way Intelligent Adapter Extension Kit provides a template, allowing you
to design and build custom e*Ways for specific business requirements. The resulting
e*Ways still incorporate core e*Gate technology but have more flexibility than
specialized e*Ways.

Additional Applications

SeeBeyond continually develops new e*Ways with intelligent adapters for different
uses. For a complete list, see the SeeBeyond Web site at the following URL:

http://www.SeeBeyond.com/

Also, you can contact SeeBeyond directly for the most current information on the
availability of new e*Ways. For more information on how to configure e*Ways, see
Chapter 9. For detailed information on a specific e*Way, see the appropriate SeeBeyond
product’s user’s guide.

2.6.2 Business Object Brokers
A BOB component is similar to an e*Way in that it establishes connectivity and is
capable of data transformation. Starting with e*Gate 4.5, BOBs became unnecessary;

http://www.seebeyond.com/

Chapter 2 Section 2.7
System Description System Setup

e*Gate Integrator User’s Guide 40 SeeBeyond Proprietary and Confidential

everything that can be done by a BOB can now be done by a Multi-Mode e*Way.
BOBs have the following properties:

! BOBs only communicate with IQs within e*Gate. They do not communicate with
external applications as e*Ways do.

! BOBs are optional by design. You can add them to an environment to remove some
load from your e*Ways, either to set up easily maintainable data processing or to
enable multiple internal processes.

Note: For more information on BOBs, see “Adding Business Object Brokers” on
page 130.

2.7 System Setup
You set up your e*Gate system to meet your own business and information systems (IS)
needs. In constructing this system, you must create and configure the components to
operate smoothly together to accomplish the desired tasks. Once set up and started, the
system runs according to the predefined plans you have implemented.

Figure 3 shows a diagram of a fully functioning sample e*Gate system.

Figure 3 Sample e*Gate System Diagram

BOB

e*WayExternal
System

Alert
Agent e*Gate

Monitor

SNMP
Agent

Control
Broker

Control
Broker

e*Way
Connection

e*Way

IQ

IQ

SNMP
Monitor

External
System

External
System

e*Gate Enterprise
Manager GUI

e*Gate
Registry

e*Gate
System

Email

Pager

Fax

Printer

Voice
Mail

Data Monitoring
Information

Participating Host

Participating Host

Registry Host

Chapter 2 Section 2.7
System Description System Setup

e*Gate Integrator User’s Guide 41 SeeBeyond Proprietary and Confidential

As you can see in the previous figure, the different e*Gate layers explained in this
chapter operate together in processing, transforming, and transporting data. The
diagram shows how all the components of the various layers work with one another. A
schema you design can encompass only one host or be spread across two or all the
hosts.

The e*Gate GUIs provide you with the tools to set up all the necessary e*Gate schemas
and components. See Chapter 4 for a complete explanation of how to set up an e*Gate
system.

e*Gate Integrator User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 3

Getting Started

This chapter gives you an introduction to the basics of preparation and how to use the
e*Gate system and Enterprise Manager, including the online Help systems.

3.1 Overview of Starting with e*Gate
Getting started with e*Gate requires the following basic steps:

! Business analysis and preparation

! Enterprise Manager operation

Thorough analysis and knowledge of your business information system (IS)
requirements are the necessary preconditions for setting up an e*Gate system. This step
requires a complete examination of your current business and network operations,
including anticipation of future requirements and expansion. In addition, make sure
that your e*Gate system has all necessary e*Way Intelligent Adapters loaded and that
all external systems/applications are ready for connection to e*Gate.

The Enterprise Manager feature is a graphical user interface (GUI) or window that
allows you complete access to e*Gate. This tool lets you operate all software features
necessary for setting up and editing your e*Gate system.

The rest of this chapter explains these steps. In addition, it also gives you a general
introduction to the e*Gate online Help systems and how to use them.

3.1.1 System Requirements, Installations, and Upgrades
Because e*Gate system requirements and installation instructions can vary from
network to network, see the e*Gate Integrator Installation Guide for details on these
procedures. This guide also explains necessary considerations for specific types of
networks and gives instructions for upgrading e*Gate.

3.1.2 Add-ons and Client Software
Some e*Way setups require add-on software not included in the standard e*Gate
system installation. This condition applies to systems that must use any of the
specialized e*Ways such as Siebel, SAP ALE, and COM/DCOM. Also, make sure any
client software you need in order to connect to an external system is in place, for
example, SQL*Net for Oracle databases or SAP GUI to communicate with SAP.

Chapter 3 Section 3.2
Getting Started Business Analysis and Planning

e*Gate Integrator User’s Guide 43 SeeBeyond Proprietary and Confidential

External systems can also require their own setups, installations, and configurations.
Such configuration and operation of external systems is beyond the scope of this user’s
guide. See the appropriate SeeBeyond or other user’s guide for details.

3.2 Business Analysis and Planning
Your total IS and business architecture determines the setup of your e*Gate system.
e*Gate has a vendor-neutral, technology-neutral architecture that allows for rapid
integration into any business/IS setup. As a result, e*Gate can, for example:

! Automate the connections between ERP systems and the rest of the supply chain;

! Integrate traditional EDI with the new XML-based business-to-business exchanges;

! Manage information exchange between already existing systems and Web servers;

! Use message-oriented middleware (MOM) queuing systems from IBM, Oracle, and
Microsoft simultaneously, as well as a JMS (Java Message Service) implementation;

! Integrate systems based on COM, CORBA, and Java; and

! Serve as a universal gateway between Oracle, SQL Server, Sybase, Informix, DB2,
and older-technology databases as well as graphically moving data between them.

For more definitions or explanations of e*Gate components and functions, see
Chapter 2 or the Glossary on page 666.

3.2.1 e*Gate System Setup Prerequisites
The following prerequisites are required before setting up your e*Gate system:

Deployment Plan

You must first have a complete business/IS analysis of your requirements; then use that
information to create a plan, schedule, and budget for your system deployment.

System Design

Because e*Gate has multifaceted capabilities, you must carefully analyze your existing
IS networks and applications, including their overall architecture. Also, you must do
in-depth research into your business’ current needs as well as anticipated future needs.
Use this information to create a comprehensive design plan for your e*Gate setup.
See “Creating a System Design” on page 44.

Naming Conventions

Be sure to develop and use consistent nomenclature for your e*Gate system
components. Failure to do so could result in confusion later on. See “Naming System
Elements” on page 45.

System Preparations

Make sure you have the correct hardware and software prepared for your e*Gate
installation. Gather all necessary information about the external systems you are using:
for example, logical names, port numbers, and software version numbers. This

Chapter 3 Section 3.2
Getting Started Business Analysis and Planning

e*Gate Integrator User’s Guide 44 SeeBeyond Proprietary and Confidential

information is important when configuring and setting up the e*Ways in your e*Gate
system. See “System Preparations” on page 48.

This section presents a brief overview of the necessary e*Gate business analysis and
preparation tasks necessary before an e*Gate installation and setup, including the
topics in the previous list. For more information, see the SeeBeyond eBusiness Integration
Suite Deployment Guide.

3.2.2 Creating a System Design
When analyzing your business/IS operations preparing for an e*Gate installation,
make sure to ask yourself the following basic questions:

! What are our existing systems, networks, and/or applications?

! What kinds of data and data files do we need to process?

! How do our different types of data exchanges flow?

! What kinds of data interactions are necessary?

Answering these questions correctly and completely diagrams your basic business/IS
architecture. This information in turn maps out the basis of your e*Gate system. For
more information about system design, see the SeeBeyond eBusiness Integration Suite
Deployment Guide.

Information Gathering

You must gather the following basic types of information:

! External Systems: Determine the number and types of e*Ways you require.
You could need different types of e*Ways or e*Way Connections to communicate
with each of your existing IS systems, networks, and/or applications.

! Kinds of Data: Determine the type or types of data you will process. This
information corresponds to e*Gate Event Types and their corresponding Event Type
Definitions (ETDs). ETDs are defined data structures for a particular type of Event
(packet of data).

! Data Flows: Determine where the data comes from and where it has to go. The
e*Gate Collaboration components supply the system logic that routes Events
through the system.

! Data Interactions: Determine the data transformation and verification processes for
your system. Collaboration Rules and scripts in e*Gate define what Collaborations
do with Events.

Make sure you systematically gather and organize all the information listed above. As
you compile and analyze this information, it will suggest the quantity and structure of
the e*Gate schemas your system requires.

For more information about e*Gate system terms and components discussed in this
section, see the Glossary on page 666 or the appropriate chapter of this user’s guide
that explains the component.

Chapter 3 Section 3.2
Getting Started Business Analysis and Planning

e*Gate Integrator User’s Guide 45 SeeBeyond Proprietary and Confidential

System Structure

Figure 4 on page 45 shows the structure of a sample e*Gate system, showing the e*Way,
internal-system, and external-system setup. For more information on system design
and setting up an e*Gate system, see “System Design Components” on page 83.

Figure 4 below shows a simple e*Gate system. The system you create to serve your
business/IS needs can be as simple or complex as you need it to be.

Figure 4 Sample e*Gate System Diagram

3.2.3 Naming System Elements
As you use the Enterprise Manager to set up components and other parts of your
e*Gate system, the GUI prompts you to name them. The components include: e*Ways,
Event Types, Collaborations, and Intelligent Queues (IQs). You name these items as you
create them, and even though you are free to select any names you desire, make sure
you develop consistent, comprehensible naming conventions before starting. Careful
planning at the onset will avoid confusion later on.

In addition to components, you will enter names and/or text strings for various other
system elements. This section explains the rules and conventions for these elements.

Make a Checklist

Write up a list of all the components and subcomponents linked together in the
Enterprise Manager. Enter these names in the appropriate GUI tool, for example, the

BOB

e*Way

SNMP
Agent

Alert
Agent

SNMP
Monitor

e*Gate
System

IQ IQ

e*Way

e*Gate
Monitor

Control
Broker

Email

Pager

Data
Monitoring

Info

External
System A

External
System C

Multi-Mode
e*Way

IQ

External
System B

Chapter 3 Section 3.2
Getting Started Business Analysis and Planning

e*Gate Integrator User’s Guide 46 SeeBeyond Proprietary and Confidential

e*Way Configuration Editor or New IQ Component dialog box. List your component
names roughly in the order you will create them. Chapter 4 explains these setup steps
in detail.

The following list shows some sample components of a simple e*Gate system:

! Three e*Ways that do the following operations:

" Receive inbound data,

" Output valid data, and

" Output invalid data.

! Three Collaborations that do the following operations:

" Validate incoming data,

" Output valid data, and

" Output invalid data.

! Three types of Events with the following characteristics:

" Inbound information,

" Valid information, and

" Invalid information.

! Two IQs that contain the following types of information:

" Valid, and

" Invalid.

For more information on creating e*Gate setup checklists, see the SeeBeyond eBusiness
Integration Suite Primer.

Naming Conventions

This section explains naming conventions and rules in e*Gate.

System Components

Develop a consistent naming convention for all the components you listed in your
checklist. Use easily recognizable names that reflect the function, operation, or content
of the subject component. Names like “eWay_1” or “Collaboration_A” can be easy to
come up with, but do not provide information about the component for later reference.

Make sure your naming convention can help give you a clear idea of what the named
item does, what it contains, or how it functions in your e*Gate system. Table 1 shows

Chapter 3 Section 3.2
Getting Started Business Analysis and Planning

e*Gate Integrator User’s Guide 47 SeeBeyond Proprietary and Confidential

examples of a nomenclature for components in the previous naming list. Note how the
naming convention reflects the concrete functions or content of named components.

Naming Rules

The names of all e*Gate system components must obey the following rules:

! Names can be no more than 56 characters long.

! Names are case-sensitive; that is, the system would see CICS_eWay and
CICS_EWAY as two different components.

! You can only use alphanumeric characters (letters and numbers), dashes, and
underscores. If dashes are used, doublequotes must be used around the component
name when it is used in command-line arguments.

! You cannot use spaces, commas, symbols, periods, or other punctuation.

Note: The system treats a User name as a component.

Data Files

In naming data files in your e*Gate system, use the file-naming conventions and
maximum number of characters appropriate to the current host’s operating system, for
example Windows or UNIX. For details, see the user’s guides for those systems.

Caution: Path names cannot have more than 256 characters, including the slashes. File and
directory names cannot have more than 63 characters, including the extensions.

Other System Entries

Table 2 shows a list of naming conventions for other types of names and/or character
strings you must enter in Enterprise Manager/e*Gate Monitor windows, dialog boxes,
and properties dialog boxes.

Table 1 Sample Component Naming Convention

e*Way Names Collaboration
Names

Event Type Names IQ Names

ew_Inbound Output_Valid et_ValidEvent iq_Valid

ew_Inbound_Valid Output_Invalid et_InvalidEvent
iq_Invalid

ew_Outbound_Valid Validate_Incoming et_InboundEvent

Table 2 Additional e*Gate System Names

System Entry
Maximum Number

of Characters
Character Usage

User name 56 Same as a component; case-sensitive.

Login password and confirm 64 Only alphanumeric characters, dashes, and
underscores; case-sensitive.

Command arguments 255 Any characters allowed; case-sensitive.

Chapter 3 Section 3.2
Getting Started Business Analysis and Planning

e*Gate Integrator User’s Guide 48 SeeBeyond Proprietary and Confidential

Note: For exact naming conventions in the Collaboration Rules and Collaboration-ID
Rules editors, see the appropriate user’s guide. Elements in these GUIs that are
universal across e*Gate (for example, components, file names, and initialization
strings) have the same naming conventions as those discussed in this section.

Caution: If you try to open a file with more than 6500 lines in the Collaboration Rules Editor,
you get an error message, and the file does not open. If you need to open a larger file,
use a text editor or word processor capable of handling large files.

3.2.4 System Preparations
In addition to doing a complete business/IS operations analysis, you must prepare
your current systems for integration with e*Gate. This series of tasks entails ensuring
that:

! The e*Gate host systems are in place and ready for e*Gate installation,

! Any/all external systems are ready for connection to e*Gate,

! The complete setup of any needed external interface hardware/software is present,

! e*Gate is successfully installed and all necessary e*Ways and BOBs are loaded in
your e*Gate system.

Comprehensive instructions on these requirements differ depending on the details of
your installation and are beyond the scope of this user’s guide. See the e*Gate Integrator
Installation Guide for more information. Also, see the individual installation instructions
for any additional components and add-ons (for example, the installation and
implementation chapters in your e*Ways’ user’s guides).

For more information on necessary preparations and planning, see the SeeBeyond
Business Suite Integration Deployment Guide. Once you have completed the prerequisite
tasks, you are ready to begin e*Gate development/setup operations. See Chapter 4 for
an explanation of this process.

Initialization strings 63 Any characters allowed; case-sensitive.

Network-related names 63 Any characters allowed; case-sensitive.

Service functions 255 Any characters allowed; case-sensitive.

ETD Editor (node names) 40 recommended See “Naming Nodes” on page 206.

Table 2 Additional e*Gate System Names (Continued)

System Entry
Maximum Number

of Characters
Character Usage

Chapter 3 Section 3.3
Getting Started Enterprise Manager Basic Operation

e*Gate Integrator User’s Guide 49 SeeBeyond Proprietary and Confidential

3.3 Enterprise Manager Basic Operation
Use the Enterprise Manager GUI to set up and edit all elements of your e*Gate system.
This section explains how to access and exit this window as well as its basic features.

To access the Enterprise Manager

1 Start the e*Gate Enterprise Manager using the icon on your Windows Desktop;
or click the Start button and point to Programs, SeeBeyond eBusiness Integration
Suite, and click eGate Enterprise Manager.

The e*Gate Enterprise Manager login dialog box appears.

2 Enter your Login ID and password. If necessary, select the appropriate Registry
Host name from the Server list. See Figure 5.

Figure 5 e*Gate Enterprise Manager Login Dialog Box

3 Click Log In or press ENTER.

The Open Schema on Registry Host dialog box appears.

4 Select the appropriate schema name, then click Open or press ENTER.

The Enterprise Manager window appears. See Figure 6.

5 Size and place the Enterprise Manager window as desired.

Chapter 3 Section 3.3
Getting Started Enterprise Manager Basic Operation

e*Gate Integrator User’s Guide 50 SeeBeyond Proprietary and Confidential

3.3.1 Enterprise Manager Window
Figure 6 shows an example of this window (with the Network view open).

Figure 6 Enterprise Manager Window (Network View)

The Enterprise Manager window contains the following major panes:

! The navigator pane allows you to choose views of the e*Gate system as follows:

" The Components view lists your basic e*Gate setup components.

" The Network view shows the basic e*Gate setup components in a graphical
arrangement.

! The editor pane allows you to create or to edit system components’ properties.

The Network view only shows the physical e*Gate components and is used for
maintenance and troubleshooting purposes. See “Using the Network View” on
page 70 for details on this feature. The Components view shows elements you define
and/or modify in the e*Gate system.

Figure 7 on page 51 shows an example of the Components view in the window.

Note: The contents of the editor pane change according to the view.

Navigator
pane

Editor
pane

Click tab for
Components
viewClick tab for

Network
view

Chapter 3 Section 3.3
Getting Started Enterprise Manager Basic Operation

e*Gate Integrator User’s Guide 51 SeeBeyond Proprietary and Confidential

Figure 7 Enterprise Manager Window (Components View)

Use the navigator and editor panes to operate the Enterprise Manager. Remember: You
can only view components of one schema at a time, and all operations apply only to the
current schema. The rest of this section explains basic GUI features of the Enterprise
Manager window.

3.3.2 Components Tree
The Components view of the navigator pane contains a tree-like structure called the
components tree. This tree displays the current schema’s basic components, under the
following folders:

! Participating Hosts. Lists all Participating Hosts that have been defined in the
schema; you can expand the node to see the Control Broker, e*Ways, Business
Object Brokers (BOBs), Collaborations, IQ Managers, and IQs associated with each
Participating Host.

! Event Types. Lists all Event Types that have been defined in the schema.

! Collaboration Rules. Lists all Collaboration Rules defined in the schema.

! Services. Lists all the available Collaboration and IQ Services.

! e*Way Connections. Lists all e*Way Connections defined in the schema.

! Security. When visible, contains subfolders that list: the names of all users with
access to the schema; all roles for the schema; and all privileges for the schema.

Note: The Security folder does not display for users with less than Administrator-level
privileges in the system. See the e*Gate Integrator System Administration and
Operations Guide for details on e*Gate security and access features.

System
messages Current logged-on user name

Current
host name

Title bar
showing
schema name

Components
tree

Menu bar

Toolbar

Tabs for
Network and
Components
views

Tool Palette

Editor pane

Navigator
pane

Chapter 3 Section 3.3
Getting Started Enterprise Manager Basic Operation

e*Gate Integrator User’s Guide 52 SeeBeyond Proprietary and Confidential

Set up or edit any components in the components tree by first selecting that item and
then using the appropriate Enterprise Manager features such as an editor or a
Properties dialog box. Chapter 4 explains how to use the components tree under the
section explaining each component.

3.3.3 Toolbar Buttons
Table 3 below lists and describes the Enterprise Manager toolbar buttons. See “Menu
Bar” on page 53 for more information on the buttons’ operation.

Table 3 Enterprise Manager Toolbar

Button Command Function

New Schema Allows you to create a new schema.

Open Schema Allows you to open an existing schema; you can only have one
schema open at a time.

Copy Allows you to copy a selected item to the Windows clipboard.

Paste Allows you to paste a copied item from the Windows clipboard into a
desired/appropriate location.

Go Up to Parent
Folder

Allows you to move up a level in the components tree (not
associated with a menu command).

Delete Allows you to delete a selected item in either pane of the window.
There is no undo.

Properties Displays a properties dialog box, allowing you to set up or edit
properties of a selected item in either window pane.

ETD Editor Starts the ETD Editor, allowing you to create, define, and edit ETDs.

ID Editor Starts the Collaboration-ID Rules Editor (for backward-compatibility
with e*Gate Version 3.6 only). For information on the ID Editor, see
the e*Gate online help.

Collaboration
Editor

Starts the Collaboration Rules Editor, allowing you to create and edit
Collaboration Rules.

External Editor Displays an Open file dialog box, so you can open and edit text files
in the e*Gate system; same as the File > Edit File menu command.

Monk Test
Console

Displays the Monk Test Console window, allowing you to test Monk
scripts for errors.

Help Allows you to access the Enterprise Manager’s online Help system.

Chapter 3 Section 3.3
Getting Started Enterprise Manager Basic Operation

e*Gate Integrator User’s Guide 53 SeeBeyond Proprietary and Confidential

Note: Specialized buttons appear in the Palette area of the window, depending on which
levels of the components tree are open. Chapter 4 explains these buttons under the
sections for their corresponding components in the components tree.

3.3.4 Menu Bar
Table 4 lists the Enterprise Manager window menu commands and their functions.

Note: Menu command that can also be enabled by buttons display smaller versions of the
appropriate buttons to the left of each option name.

File > New

Depending on which folder or component you have selected in the navigator pane,
clicking on the File and pointing to New displays allows you to create the following
new elements within the current schema:

! Participating Host

! User

! Control Broker

! Monitor

" Alert Agent

" SNMP Agent

! Module

" BOB

" e*Way

" IQ Manager

" eInsight Engine

! Collaboration

! IQ

! IQ Service

! Event Type

! Collaboration Rules

! Collaboration Service

For more information on these elements, see the Glossary on page 666 or the
appropriate sections in Chapter 4 (Setting Up e*Gate) as well as chapters that explain
the appropriate e*Gate feature.

Note: A module is an e*Gate component that requires an executable (.exe) file.

Chapter 3 Section 3.3
Getting Started Enterprise Manager Basic Operation

e*Gate Integrator User’s Guide 54 SeeBeyond Proprietary and Confidential

Table 4 Enterprise Manager Menus and Commands

Menu Command Function

File New Displays a submenu that allows you to create new system
components; see “File > New” on page 53 for details. If an
option name is dimmed, you cannot create it within the selected
component.

Login Displays the e*Gate Open Schema Login dialog box, allowing a
different user to log in to the system or the same user to log in to
a different system.

New Schema Allows you to create a new schema.

Open Schema Allows you to open an existing schema; you can only have one
schema open at a time.

Export Schema
Definitions to File

Displays the Select archive file dialog box, allowing you to select
the archive file to hold export schema definitions and files.

Caution: Do not export default repository (registry)
<eGate>\client\ folder.

Export Module
Definitions to File

Displays the Select archive file dialog box, allowing you to select
the archive file to hold exported module definitions and files.

Caution: Do not export default repository (registry)
files to the <eGate>\client\ folder.

Import Definitions
from File

Displays the Import from File dialog box, allowing you to select
the archive file from which you want to import schema
definitions and files.

Edit File Displays an Open file dialog box, letting you open and edit text
files in the e*Gate system; see “File > Edit File” on page 57 for
details.

Commit to Sandbox Displays the Select Local File to Commit dialog box (similar to
Open), allowing you to place files in the e*Gate Sandbox, where
other users can access them. Here they are not available to the
e*Gate system (see Chapter 4 for details).

Promote to Run
Time

Displays the Select File To Promote to Run Time dialog box
(similar to Open), allowing you to remove files from the e*Gate
Sandbox and place them in run time, that is, making them
available to the e*Gate system (see Chapter 4 for details).

Remove from
Sandbox

Displays the Select File to Remove from Sandbox dialog box
(similar to Open), allowing you remove files from the e*Gate
system Sandbox.

Retrieve File from
Registry

Displays the Select file to retrieve dialog box, allowing you to
move through a directory structure until you select the file to
retrieve.

Exit Exits the Enterprise Manager and closes the window (see “To exit
the Enterprise Manager” on page 59).

Chapter 3 Section 3.3
Getting Started Enterprise Manager Basic Operation

e*Gate Integrator User’s Guide 55 SeeBeyond Proprietary and Confidential

Edit Move Displays the Move dialog box, allowing you to move IQs, IQ
Managers, Collaborations, e*Ways, and BOBs from one Control
Broker/Participating Host to another (see Chapter 4 for details).

Copy Allows you to temporarily place a copy of a selected item into the
Windows clipboard (if the option name is dimmed, you cannot
copy the current item); this function only copies the selected
item and not its associated components, depending on whether
the Recursive Copy feature is activated (see also Recursive Copy
under the Options menu).

Paste Pastes components you last placed in the Windows clipboard
into a selected location in your navigator tree, including into
another Participating Host if you want (if the option name is
dimmed, there is nothing in the clipboard to paste). Components
have limitations on where they can be pasted; see the section
discussing a given component, in Chapter 4.

Copy Multiple Operates like Copy except that it copies the selected component
only within the current Participating Host, at the current location
in the Navigator Tree. It also opens a dialog box asking you how
many times you want to copy the component (see also
Recursive Copy under the Options menu).

Note: If you are duplicating a large component or a
large number of components, allow plenty of
time for this operation to finish.

Rename Allows you to rename a selected item in either pane of the
window (if the option name is dimmed, you cannot rename the
current item).

Delete Allows you to delete a selected component in either pane of the
window (if the option name is dimmed, you cannot delete the
current item). This is not a recursive delete, that is, it does not
delete all components within a selected item. You can reassign
associated components of a deleted item.

Properties Displays a properties dialog box, allowing you to set up or edit
properties of a selected item in either pane of the window (if the
option name is dimmed, there is no properties dialog box for the
selected item).

Table 4 Enterprise Manager Menus and Commands (Continued)

Menu Command Function

Chapter 3 Section 3.3
Getting Started Enterprise Manager Basic Operation

e*Gate Integrator User’s Guide 56 SeeBeyond Proprietary and Confidential

View Summary Allows you to view lists of system components and elements (see
“View > Summary” on page 58 for details on this option).

Refresh Reloads the current schema from the e*Gate Registry to display
its current components and setup, if, for example, you have made
changes. It also renews the monitor display.

Reset Layout If you have changed the Network view’s component layout for
the current schema, choose this option to return to the system
default layout (only available for the Network view).

Save Layout If you have changed the Network view’s component layout for
the current schema and want to keep it, choose this option to
save your layout with the schema (only applies to the Network
view).

Tools ETD Editor Displays the ETD Editor window, allowing you to create, define,
and edit ETDs, that is, the definitions of your Event Types (see
Chapter 6 for details).

ID Editor Displays the Collaboration-ID Rules Editor window, allowing you
to create and edit rules for data verification within a
Collaboration, for backward-compatibility with e*Gate
Version 3.6 only (see the Collaboration-ID Rules Editor User’s
Guide for more information, if necessary).

Collab Editor Displays the Collaboration Rules Editor window, allowing you to
create and edit Collaboration Rules scripts.

Monk Test Console Displays the Monk Test Console window, allowing you to test
Monk scripts (see “Monk Test Console” on page 149 for
details).

Options Toolbar Text Acts as a toggle to show or hide text labels for all toolbar and tool
palette buttons.

Roll Over Toolbar Acts as a toggle to show or hide dynamic shadow boxes around
toolbar and tool palette buttons.

Recursive Copy Acts as a toggle to affect the result of the Copy or Copy Multiple
menu command. When activated, allows you to copy/duplicate
and paste a highlighted item and all its associated components;
acts as a toggle. This feature is only available in the Components
view but, after you use it, the results show up in both views. The
operation appends sequential numbers, starting with _0, to the
name of each new component created.

Update Monk
Libraries on Load

Acts as a toggle to affect the behavior when a schema is loaded.
When activated, causes all Monk libraries to be refreshed each
time a new schema is loaded.

Change Password Displays the Change Password dialog box, allowing you to
change your current password.

Default Editor Allows you to select Java or Monk as the default editor to use for
editing Collaborations and ETDs. The system defaults to the
editor open when you ended your previous e*Gate session.

Table 4 Enterprise Manager Menus and Commands (Continued)

Menu Command Function

Chapter 3 Section 3.3
Getting Started Enterprise Manager Basic Operation

e*Gate Integrator User’s Guide 57 SeeBeyond Proprietary and Confidential

For complete information on the e*Insight Business Process Manager engine, see the
e*Insight Business Process Manager Implementation Guide.

For complete information on the SNMP and Alert agents, see the e*Gate Integrator
SNMP Agent User’s Guide and the e*Gate Integrator Alert Agent User’s Guide.

File > Edit File

This menu command allows you to edit text files within the e*Gate system without
having to exit or otherwise leave the Enterprise Manager. You can also use this option
to create a new text file for system use, if desired.

For example, you can edit a text file associated with a particular e*Way. Use this feature
to open the file, for example, in the Windows Notepad. Then edit the file, save it, and
commit it to the e*Gate Sandbox, if desired.

To edit a file, using File > Edit File

1 Choose this option to display a Windows Open file dialog box.

2 Select the desired file, then click Open.

3 Edit the file, using Windows Notepad or another text editor. You can also use
Notepad to create one or more new files or edit additional files.

4 When you save your first file, you receive a prompt with a warning message asking
whether you want to commit the file to the Sandbox. Click Commit or Cancel.

Note: The system only prompts you to commit when you save the first file opened.
If you want to commit more files to the Sandbox, on the File menu, click
Commit to Sandbox.

Sandbox and Run-Time Environments

Whenever you create and edit files within e*Gate, the files are stored in your Sandbox,
an area in the e*Gate Registry specific to your e*Gate user name. The Sandbox is a
user’s local development area. Each user has his or her own Sandbox. Files in a user’s
Sandbox are available for testing the functions in the file themselves, but they are not
available to the run-time schema. The run-time environment is the production
environment for a schema.

Help e*Gate Help Topics Allows you to access the Enterprise Manager’s online Help
system and to open its Help window (see “Online Help
Systems” on page 73 for details).

ESRs Applied Provides information on code patches that have been applied to
your e*Gate system.

About e*Gate Provides e*Gate version information and related copyright
information.

Table 4 Enterprise Manager Menus and Commands (Continued)

Menu Command Function

Chapter 3 Section 3.3
Getting Started Enterprise Manager Basic Operation

e*Gate Integrator User’s Guide 58 SeeBeyond Proprietary and Confidential

Important: If you perform a full Schema Import (for example, using stcregutil -fi), you
import all Sandbox files and settings from the export file, overwriting your own.

The e*Gate system’s Team Registry allows this division into Sandbox and run-time
environments. For more information on working with e*Gate’s Team Registry see
“Codeveloping in e*Gate: Using the Team Registry” on page 60.

View > Summary

This command lists basic e*Gate system elements; see Figure 8. Choosing an option
from this list opens a secondary window, summarizing the components of that element
within the current schema.

Figure 8 View > Summary

Chapter 3 Section 3.3
Getting Started Enterprise Manager Basic Operation

e*Gate Integrator User’s Guide 59 SeeBeyond Proprietary and Confidential

The command opens a different window appropriate to each of its suboptions. For
example, choosing Event Types displays the Event Type Summary window; see Figure
9. This window provides a list of the current schema’s Event Types and ETDs.

Figure 9 Event Type Summary Window

Many of these summaries give additional information about the components of the
selected e*Gate element, for example, subscribing and publishing Collaborations for
ETDs (see “Creating Collaboration Rules and Scripts” on page 106 for details). Other
summaries list only the basic components or elements named in the menu command.

For more information on these elements, see the Glossary on page 666 or the
appropriate sections in Chapter 4 (Setting Up e*Gate) and Chapter 10 (Introduction to
e*Gate Monitor) as well as chapters on the appropriate e*Gate feature.

Note: Choosing All opens the All Components Summary window, displaying all system
components and elements in the previous list.

Shortcut Menus

The Enterprise Manager window contains a number of shortcut menus that do the
same operations as their menu bar or toolbar counterparts, such as accessing properties
dialog boxes: Simply right-click the pane or feature and click a command from the
shortcut menu that pops up.

To exit the Enterprise Manager

1 On the File menu, click Exit.

A message appears asking if you want to exit.

2 Click OK to close the Enterprise Manager window and exit the program.

Chapter 3 Section 3.4
Getting Started Codeveloping in e*Gate: Using the Team Registry

e*Gate Integrator User’s Guide 60 SeeBeyond Proprietary and Confidential

3.4 Codeveloping in e*Gate: Using the Team Registry
e*Gate supports a powerful “Team Registry” system that enables multiple users
(developers or system administrators) to develop components of a single schema
simultaneously.

Like a standard version-control system, the “Team Registry” system enables individual
users to check out files to work on them, and then to promote those files from the test or
“sandbox” (see “The Sandbox” on page 61) environment to the production “run-time”
environment. To protect each individual’s work, the system cautions users whenever
they attempt to edit a checked-out file. This system enables multiple users to develop
and test components of an e*Gate schema while preserving both the individual’s work
and the integrity of the running schema.

When a user edits an e*Gate file, such as a Collaboration Rules file, an Event Type
Definition (ETD) file, or an e*Way properties definition file, that file is copied to that
user’s Sandbox. Each e*Gate user has a unique Sandbox, and the Team Registry will not
allow one user to edit another’s file without warning him first.

Figure 10 Team Registry: Overview

The following is an example of how a typical e*Gate working session might proceed:

1 Using the appropriate e*Gate editor, a developer creates a new file (or opens an
existing file).

2 The developer makes changes, saves them, and tests them.

3 When finished working on the file, the developer either

" moves the file into the running schema

or

" abandons the changes and deletes the file.

Figure 11 is an example of how the process works from the perspective of the Team
Registry features:

Chapter 3 Section 3.4
Getting Started Codeveloping in e*Gate: Using the Team Registry

e*Gate Integrator User’s Guide 61 SeeBeyond Proprietary and Confidential

Figure 11 The Team Registry in Operation

All Team Registry functions are available through the e*Gate editors as well as through
the stcregutil.exe command-line utility (see the e*Gate Integrator System Administration
and Operations Guide for more information on this utility).

3.4.1 Important: User Name Requirements
You must create a unique e*Gate user name for each developer who will be using Team
Registry features. If all users do e*Gate development under a generic user name like
“Administrator,” you will lose all benefit from the Team Registry features.

See the “Security” chapter of the e*Gate Integrator System Administration and Operations
Guide for more information about user names and e*Gate security.

3.4.2 The Sandbox
When you create and edit files within e*Gate, the files are stored in your Sandbox, an
area in the e*Gate Registry specific to your e*Gate user name.

Sandbox Properties

The e*Gate Sandbox has the following properties:

! Files in your Sandbox are not part of the run-time schema, so any changes you make
will not affect how data is processed in the schema. Files within your Sandbox are
not available to the e*Gate components (such as e*Ways or BOBs) that use them.
Once you have fully tested a file and are ready to put it into use, you must promote
(move) it to the run-time schema (see “Promoting Files” on page 63).

! The first time you open an existing file in an e*Gate editor, e*Gate commits (copies)
the file to your Sandbox. Once you open a file in the Sandbox, it will remain there—

Chapter 3 Section 3.4
Getting Started Codeveloping in e*Gate: Using the Team Registry

e*Gate Integrator User’s Guide 62 SeeBeyond Proprietary and Confidential

even if you save it—until you either promote it to the run-time schema or manually
remove it from your Sandbox (see “Removing Files” on page 64).

Important: If you perform a full Schema Import (for example, using stcregutil -fi), you
import all Sandbox files and settings from the export file, overwriting your own.

Sandbox Operation

When you open an existing file in an e*Gate editor GUI, the file you request appears on
screen (assuming no locks—see “Advisory Locks” on page 62—are placed on that file
by another user). Behind the scenes, e*Gate does the following:

! If the file currently exists in your Sandbox, e*Gate opens the file from there,
regardless of whether or not the file also exists in the run-time schema.

! If the file does not exist in your Sandbox, e*Gate looks for it in the run-time schema.
If it exists there, e*Gate copies the file to your Sandbox and opens the copy in the
editor.

! If e*Gate does not find the file in either your Sandbox or the run-time schema, it
looks for the file in the Registry Host’s default schema. If it finds the file there,
e*Gate copies the file to your Sandbox and opens the copy in the editor.

Committing Files

When you take a file from the run-time schema and move it to the Sandbox, you
commit the file to your Sandbox. The system then places an advisory lock on the file.

Advisory Locks

When e*Gate places a file in your Sandbox, it also “checks out” the file by placing an
advisory lock on that file within the schema. An advisory lock indicates that the file is
checked out by a specific user and a copy exists in that user’s Sandbox. This lock will
remain in place until the file is removed from the Sandbox in one of the following ways:

! The user who checked out the file promotes the file.

! The user who checked out the file removes the file from the Sandbox without
promoting it.

! The user exits the e*Gate editor without ever saving the file.

The locks are “advisory,” and do not prevent you from making changes to files checked
out by other users. When e*Gate encounters a lock, it issues a warning message
advising you that the lock exists. You have the choice to either ignore the lock and edit
the file, or to respect the lock and abort the attempted edit.

Important: We strongly recommend that you respect advisory locks whenever possible.

In addition to risking loss of work or duplication of effort that a version-control system
prevents, ignoring the locks can have the following consequences:

! e*Gate does not “re-lock” a file under a new user name, so subsequent users who
come upon the lock will find it assigned to the original user, not the last user who
opened it. As a result, you are unable to track the true “ownership” of the file.

Chapter 3 Section 3.4
Getting Started Codeveloping in e*Gate: Using the Team Registry

e*Gate Integrator User’s Guide 63 SeeBeyond Proprietary and Confidential

! If multiple users have ignored locks and checked out the same file, the last person
to promote a file “wins.” All previously promoted versions are overwritten. As a
result, multiple developers could promote multiple versions of the same file and
cause the running schema to function in an undesirable manner.

Important: If you want to edit a file that is already checked out by another user, we strongly
recommend that you coordinate your efforts with that user, rather than proceeding
and ignoring the advisory lock.

Team Registry File Operations

Creating, Editing, and Unediting Files

Files are always created and edited in your Sandbox. After the file opens in the
appropriate editor GUI, edit it as desired.

Caution: If the editor warns you that an advisory lock exists on the file, we recommend you do
not proceed (see “Advisory Locks” on page 62 for more information).

Note: The “Unedit” option performs in a similar fashion as “Undo.” It allows you to undo
all of your edits to a file and return it to its state prior to editing.

Committing Files

When finished editing (or creating) the file, save it. When you save the file, e*Gate
commits (saves) it to your Sandbox.

Note: You cannot save a file directly to the run-time schema using the Save menu
command.

Promoting Files

Once you have fully tested a file in the Sandbox and are ready to put it into use, you
must promote it to the run-time schema.

Note: Before placing the file in the run-time schema, you must first save it to the Sandbox.

After saving a file to the Sandbox, you are ready to promote it into the run-time schema.
When you promote a file, you update the run-time schema to use the new file. If the file
already exists in the run-time schema, that file is replaced with the file from the
Sandbox. Promoting a file automatically removes it from the user’s Sandbox and, if the
file had an advisory lock, releases that lock. For more information on the importance of
promoting files—particularly if the file is a new file that does not exist in the run-time
schema—see “Testing Schemas: Run-time and Sandbox Considerations” on page 65.

Chapter 3 Section 3.4
Getting Started Codeveloping in e*Gate: Using the Team Registry

e*Gate Integrator User’s Guide 64 SeeBeyond Proprietary and Confidential

You can use any of the tools in Table 5 below to promote files from the Sandbox to the
run-time environment.

Caution: Do not promote files that are locked by other users. If you promote a file whose
advisory lock is not assigned to you, the advisory lock will remain, but assigned to
the original user.

Removing Files

At times you may want to modify different files and test them, but you do not want the
changes to go into the run-time schema. In this case, you must remove the unwanted
file from your Sandbox to release the advisory lock that was placed on the file when
you checked it out.

You can use any of the tools in Table 6 below to remove files from the Sandbox.

Important: You must either promote or remove a file from your Sandbox—using the
appropriate command from the File menu (promote or remove)—to release the
advisory lock. Simply deleting the file from the directory will not release the lock.

Do not remove files that are locked by other users. If you remove a file whose
advisory lock is not assigned to you, the advisory lock will remain, assigned to the
original user.

Table 5 Tools to Promote Files to Run-time

Tool to promote files from the
Sandbox to run-time

Where to find more information

e*Gate editor Each editor’s Help system or the
appropriate chapters in this manual

e*Gate Enterprise Manager Enterprise Manager Help system or
the appropriate sections in this
manual

stcregutil.exe
(command-line utility)

e*Gate Integrator System
Administration and Operations Guide

Table 6 Tools to Remove Files from the Sandbox

Tool to remove files from the Sandbox Where to find more information

e*Gate editor Each editor’s Help system or the
appropriate chapters in this manual

e*Gate Enterprise Manager Enterprise Manager Help system or
the appropriate sections in this
manual

stcregutil.exe
(command-line utility)

e*Gate Integrator System
Administration and Operations Guide

Chapter 3 Section 3.4
Getting Started Codeveloping in e*Gate: Using the Team Registry

e*Gate Integrator User’s Guide 65 SeeBeyond Proprietary and Confidential

3.4.3 Testing Schemas: Run-time and Sandbox Considerations
There is an important difference between testing a file and testing a schema.

! A file can be tested using the test facility within the e*Gate Enterprise Manager or
the command-line utility stctrans.exe; it does not need anything from the run-time
environment. You should test files within the Sandbox before promoting them to
the run-time environment to make sure that all of the program logic within those
files works as expected.

! A schema can only be tested when it is running and all components, including the
files you want to test, are loaded within that schema. All files required by the
schema must be accessible to you, either in the run-time environment or in your
own Sandbox. No e*Gate executable component (such as an e*Way or BOBs) can
access a file in the Sandbox of another user. In other words, if you want to see how
other user files interact with an e*Gate component, you must have the other users
promote their files to the run-time environment.

Remember this distinction when you create a new file by starting the e*Gate editor
directly from a component’s Properties dialog box. For example, you might take the
following steps to create and test an e*Way:

1 Create the e*Way in the e*Gate Enterprise Manager.

2 Assign an executable file to the e*Way and create a configuration file by starting the
Configuration Editor from the e*Way Properties dialog box.

3 In the Configuration Editor, save the file.

At this point, the file exists in your Sandbox, and the name of the file appears as
expected in the e*Way’s properties dialog box. However, until you promote the file,
it does not actually exist within the run-time schema. If another user tries to run the
e*Way before you promote the file, their e*Way will not find the file and an “Unable
to load module configuration” error occurs.

Furthermore, if another user now creates and promotes a different version of the
same file you have in your Sandbox, you will be unaware of it— your Sandbox
version takes priority over the run-time version. When you run the schema, you
may see behavior different from the behavior seen by all other users.

To avoid this problem, take the next step before exiting the e*Way Editor:

4 Promote the file.

Important: We recommend that you always promote new files before you exit the e*Gate
configuration editor in which you create them. This will avoid problems created by
e*Ways or BOBs attempting to load files that exist in a Sandbox rather than within
the run-time schema.

Changing Default Check-in/Check-out Actions

A command file governs the actual mechanics of file check out, check in, and
promotion to the run-time schema. Most e*Gate installations never require any
modifications to this file. If you need more information, see the e*Gate Integrator System
Administration and Operations Guide.

Chapter 3 Section 3.4
Getting Started Codeveloping in e*Gate: Using the Team Registry

e*Gate Integrator User’s Guide 66 SeeBeyond Proprietary and Confidential

Sandbox/Run-time Registry Directory Structure

From a user’s point of view, the Sandbox and the run-time Registry use the same
directory structure, and all files are accessible using the e*Gate Enterprise Manager’s
file-selection dialog boxes.

System administrators who need additional details regarding the location of files
within the Registry’s file repository should consult the e*Gate Integrator System
Administration and Operations Guide.

3.4.4 Team Registry and Component “Run As” Settings
A special feature of the Team Registry enables you to run schemas with Sandbox files,
without requiring you to first “check in” the files to the run-time schema.

By default, all e*Gate components are run under the Administrator user name (see the
e*Gate Integrator System Administration and Operations Guide for more information about
e*Gate’s “run as” feature). However, if you change a component’s “run as” user name
to the name of a user who has created Sandbox files, e*Gate allows those components to
load files from that user’s Sandbox.

For example, if the user “peter” places a Collaboration Rules script in his Sandbox, he
can change the “run as” property for an e*Way to “peter.” That e*Way will then be able
to load the Collaboration Rules script just as though it had been checked into the run-
time Registry.

This feature enables you to test Sandbox files within a running schema without
affecting any files currently in use. For example, you could switch the “run as” property
to test a given user’s Collaboration Rules script within the running schema, then switch
back to the original version by running the component under the original user.

Important: Whether or not you choose to use this feature, we recommend that you create an
e*Gate user name for each developer who creates files for the e*Gate system, and
require developers to use their own user name, rather than the Administrator user,
when checking files in or out of the e*Gate Registry.

3.4.5 Team Registry and Version-control Systems
You can integrate the Team Registry with your local version-control systems by
modifying the command that starts the e*Gate Registry service (stcregd.exe). For
example, you can specify an external version-control system as an argument for the
-extvcdll flag.

For instructions and more information, see the section on stcregd.exe in the e*Gate
Integrator System Administration and Operations Guide.

Chapter 3 Section 3.5
Getting Started Adding New Participating Hosts

e*Gate Integrator User’s Guide 67 SeeBeyond Proprietary and Confidential

3.5 Adding New Participating Hosts
If necessary, add additional Participating Hosts that your e*Gate system requires before
starting. Installation procedures present the option of adding hosts, but you can also
add new ones at any time using the Enterprise Manager window.

When your Participating Host is not a GUI Host

If you have a Participating Host running on a remote machine, you must first activate it
using the stcinstd command:

stcinstd.exe -rh <RegHost> -rs <SchemaName> -un <user> -up <password>

For more information on how to add, configure, and activate Participating Hosts, see
the e*Gate Integrator System Administration and Operations Guide.

To add a new Participating Host

1 In the components tree, click the Participating Hosts folder.

A list of one or more Participating Hosts appears in the Editor pane. See Figure 12.

Figure 12 Enterprise Manager Window With Participating Hosts

2 In the Palette, click .

The New Participating Host Component dialog box appears.

3 Enter the name of the new Participating Host and then take one of the following
actions:

" Click Apply to enter the new Participating Host in the system and leave the
dialog box open to create another.

" Click OK to enter the new host in the system and close the dialog box.

The new Participating Host name appears under the Participating Hosts folder and
in the list in the Editor pane.

Chapter 3 Section 3.5
Getting Started Adding New Participating Hosts

e*Gate Integrator User’s Guide 68 SeeBeyond Proprietary and Confidential

4 When you are finished naming all hosts, select a newly created host and, on the

toolbar or Edit menu, click Properties.

The Participating Host Properties dialog box appears. See Figure 13.

Figure 13 Participating Host Properties Dialog Box

5 In the properties dialog box, enter the following information:

" Network host name or IP address

" Network domain name

For a list of the number and types of characters you can use in network-related
names, see Table 2 on page 47.

Note: The Network host name for an activated Participating Host must match the name of
the machine where its Control Broker will be run.

6 Click the Advanced tab and then click Threshold Setup to set the disk threshold
parameters, if desired. The Disk Threshold Settings dialog box opens.

7 To change the current settings, click Change. The Threshold Properties dialog box
opens. See the e*Gate Integrator System Administration and Operations Guide for
details on how to set or reset these parameters.

8 When finished click OK twice to return to the Participating Host Properties dialog
box.

9 To save the Participating Host properties, click Apply to enter them into the system.

10 When finished, click OK to close the properties dialog box.

Repeat this procedure as needed to create new Participating Hosts.

Enter the
name or
address.

Chapter 3 Section 3.6
Getting Started Users, Roles, and Privileges

e*Gate Integrator User’s Guide 69 SeeBeyond Proprietary and Confidential

Note: Creating a Participating Host notifies the Registry that a Control Broker will be
running on that host, but does not create a Control Broker on the host; this can be
done either manually or as part of the Participating Host installation.

3.6 Users, Roles, and Privileges
Before starting, you or another e*Gate user must add all the new users who will use
your e*Gate system during its setup operations and later (if desired). A user with
Administrator-level privileges can add new users at any time, using the Security folder
in the Enterprise Manager window.

Note: The Security folder only appears in the Navigator pane when users have
Administrator-level privileges in the system.

The default user name is:

Administrator

The default password is:

STC

The Administrator user has all possible user privileges in e*Gate. For a list of the
number and types of characters you can use in user names and passwords, see
“Naming Conventions” on page 46. The system considers the user name as a
component.

Important: For security purposes the system administrator can assign different levels of roles
and privileges in e*Gate. See the e*Gate Integrator System Administration and
Operations Guide for details.

Security and access in e*Gate is role-based. That is, you assign the desired privileges to
roles (for example Administrator, Operator, or Monitor) then assign the desired roles to
users. You can also assign roles and privileges to modules, for example, if you only
want one or more specific users to do limited operations with different modules.

For detailed information on e*Gate’s security features, see the following documents:

! SeeBeyond eBusiness Integration Suite Deployment Guide — For details on reasons for
assigning various types of users, roles, and privileges, along with a sample scenario.

! e*Gate Integrator System Administration and Operations Guide — For an explanation of
how to use the Enterprise Manager to set up and configure users, roles, and
privileges in the e*Gate system.

Chapter 3 Section 3.7
Getting Started Using the Network View

e*Gate Integrator User’s Guide 70 SeeBeyond Proprietary and Confidential

3.7 Using the Network View
This chapter explains how to use the e*Gate Enterprise Manager’s Network View
feature to view a graphic representation of your schema.

3.7.1 Introduction: Network View
The Network View provides a graphical representation of the entire schema. This
feature allows you to check the e*Gate configuration using a graphic system
representation, which can be beneficial when troubleshooting problems that may occur
in your e*Gate system.

3.7.2 Using Network View
The Navigator pane of the Network View contains a Participating Hosts folder and
icons for all of the components in your schema (see Figure 14 on page 71). The Editor
pane graphically displays all of the elements and components in the schema in a top-
down hierarchical relationship. Event Types are represented as arrows between the
component that publishes the Event Type and the component that subscribes to it.

Use the Network View to track how your system components publish and subscribe to
other components within the system. When troubleshooting, this graphical view of
your system’s routing can aid you in locating directional problems within the schema.
If a discrepancy is discovered, you can open the offending component’s properties
dialog box directly from the component (see “To modify component properties in the
Network View” on page 72).

To display the Network View

1 Select the Network tab at the bottom region of the Navigator pane.

Chapter 3 Section 3.7
Getting Started Using the Network View

e*Gate Integrator User’s Guide 71 SeeBeyond Proprietary and Confidential

Figure 14 Network View with Graphic Representation in Editor Pane

Network View Palette Controls

Note: For details about the toolbar buttons and menu commands see Table 3 on page 52
and Table 4 on page 54. Menu commands are grayed out when they are not
available to use.

Table 7 Network View Palette Controls

Button Name Function

Zoom in Zooms into your e*Gate system in
the Editor pane

Zoom out Zooms out of your of e*Gate system
in the Editor pane

Network tab

Editor paneNavigator pane

Chapter 3 Section 3.7
Getting Started Using the Network View

e*Gate Integrator User’s Guide 72 SeeBeyond Proprietary and Confidential

To expand or collapse the view

1 Select the Navigator's Network tab.

2 In the Editor pane, select the component you want to expand or collapse.

" To expand a component (display child components), double-click the
component.

" To collapse a component (display the parent component), double-click the
colored area surrounding the component.

To move components to a different location on the screen

1 Select the Network tab in the Navigator pane.

2 In the Editor pane, select the component(s) that you want to move.

3 Drag the component(s) to their new location.

Note: To select more than one component, hold down the Ctrl key while you click on each
component.

To reset the layout to the default view, pull down the View menu and select Reset
Layout.

To view Event Type names

1 Select the Network tab in the Navigator pane.

2 In the Editor pane, expand the view to see Event Type arrows.

3 Move the mouse pointer over an Event Type arrow. The name will appear in a
Tooltip. If there are multiple Event Types in opposite directions, the names of the
subscribing and publishing components will also appear in the Tooltip.

Note: If necessary, use the scroll bar to view all of the Event Types in a Tooltip.

To modify component properties in the Network View

1 Double-click on the component in the Editor pane.

2 When the component’s properties dialog box opens, edit the properties.

3 When finished editing the properties, click OK to save them and exit the dialog.

Important: You can modify component properties in the Network View, but you cannot add or
delete components.

Chapter 3 Section 3.8
Getting Started Online Help Systems

e*Gate Integrator User’s Guide 73 SeeBeyond Proprietary and Confidential

3.8 Online Help Systems
The e*Gate Help feature has the following characteristics:

! The online Help contains information about all aspects of using the e*Gate system.
It explains topics such as procedures, terminology, and basic concepts of how to use
the e*Gate software, including the Enterprise Manager.

! Once you display the Help window, you can move around easily in the current
online Help system to get more information at the click of a mouse button.

! The online Help also explains how to work with basic e*Gate system components
and other elements. Each Help system includes its own window, table of contents,
index, and full-text searching capability. These features aid users in locating
information quickly and easily.

! The e*Gate software contains several GUIs in addition to the Enterprise Manager,
for example, the Collaboration Rules Editor and the e*Gate Monitor. Each of these
GUIs has its own online Help system. Each operates in the same way.

Note: The e*Gate online Help systems use the Microsoft Internet Explorer for operation.
You must have this application installed and available to e*Gate to run the Help
feature correctly.

This section explains:

! “Using Online Help” on page 73

! “Help Window” on page 75

! “Online Help Features” on page 77

3.8.1 Using Online Help
The e*Gate online Help systems offer the following basic features:

! Instructions for Procedures which helps you find detailed instructions for e*Gate
system procedures in each online Help topic.

! e*Gate Glossary of Terms that you can access at any time when using this Help to
look up definitions of technical or e*Gate-related terms.

! Context-sensitive Help which allows you to press F1 from the active interface to
get instant help if you need help with any window, dialog box, or other GUI feature.
The Help window appears automatically, displaying the appropriate Help topic.

! What's This? Help shows pop-up labels. When you move the mouse pointer over a
GUI feature (for example, a button), a yellow text label appears, giving a brief
description. When you move the mouse pointer away, the label disappears.

Chapter 3 Section 3.8
Getting Started Online Help Systems

e*Gate Integrator User’s Guide 74 SeeBeyond Proprietary and Confidential

Hypertext Links

The online Help systems use HTML formats. You often see a word or several words in
color, for example,

Enterprise Manager

These words represent a hypertext link. Move the mouse pointer over them, and it
turns into a pointing finger. Clicking the words instantly jumps the text to the topic
associated with that link. Use hypertext links to look up additional information, for
example, Glossary terms or cross-references.

Accessing Online Help

To open the Help window

From the current GUI, for example the Enterprise Manager window, use any of the
following actions to display its Help window:

! Open the Help menu and choose the e*Gate Help Topics option.

! Click (if displayed in the GUI).

! Press F1 for instant help with the active (current) GUI.

Chapter 3 Section 3.8
Getting Started Online Help Systems

e*Gate Integrator User’s Guide 75 SeeBeyond Proprietary and Confidential

3.8.2 Help Window
Figure 15 shows the e*Gate Help window that first opens when you access the online
Help system. It displays both examples of the Enterprise Manager’s Help window;
with Tabs pane hidden and with the Tabs pane showing.

Figure 15 Enterprise Manager Help Window

Contents tree

Topics pane

Icon
bar

Tabs pane

Tab row

Chapter 3 Section 3.8
Getting Started Online Help Systems

e*Gate Integrator User’s Guide 76 SeeBeyond Proprietary and Confidential

GUI Features

The Help window contains the following components:

! Tabs allow you to use the online Help’s organization features.

! Books hold the chapters in the current online Help system. These books contain
topics organized into a step-by-step browse sequence.

! Topics display the current Help topic and allow you to browse topics.

! Contents Tree, displayed within the Tabs pane (see Figure 16), shows book and
topic icons in a graphical form similar to Windows Explorer.

Figure 16 Contents Tree

To use the Contents Tree

! To open a book, double-click a book icon. The book’s topics appear as topic icons
under the book icon.

! To display a topic, click a topic icon. The topic appears in the Topics pane.

On Entry and Exit

The online Help system shown in Figure 15 on page 75 defaults to the “Enterprise
Manager” topic. When you first open a Help window for a system, only the Topics pane
displays. Afterward, when you open the same Help window, the panes appear as they
were left just before the last exit.

Note: This section uses the online Help for the Enterprise Manager as an example of how
to use all the e*Gate online Help systems.

Contents tab

Topic icon

Book icon
(closed)

Book icon
(opened)

Chapter 3 Section 3.8
Getting Started Online Help Systems

e*Gate Integrator User’s Guide 77 SeeBeyond Proprietary and Confidential

3.8.3 Online Help Features
To best utilize the e*Gate online Help, learn to use the following features:

! Tab Operation: Tabs in the Tabs pane allow you to use the Help Index to search for
key words, to bookmark topics, and to display (or redisplay) the Contents Tree.

! Toolbar: You can access additional online Help features by selecting one of the
following buttons at the top of the Help window: Show/Hide, Back, Forward,
Home, or Print. See “Toolbar Buttons” on page 78 for details.

! Printing Help: You can print hard copies of any or all the online Help topics. See
“Printing Help” on page 78 for details.

The rest of this section explains these features in detail.

Tab Operation

The Tabs pane displays tabs that access search and contents features. Only the Topics
pane appears when you first use an online Help system.

To show the Tabs pane

! Click the (Show) button.

The Search and Contents tabs are displayed, and the (Show) button changes to the

(Hide) button.

Note: After you hide the Tabs pane, you can maximize the remaining pane. Select the
Maximize icon to do so. You must move the Windows task bar first, to be sure the
pane takes up the entire screen. If so, once the Help window expands, you can move
the task bar back to its original position.

Using Tab Features — Click the appropriate tab to use the desired feature. Table 8
below lists these tabs and their functions.

When the Tabs pane first appears, it displays the Contents tree. Afterward, when you
open the Help window, it appears as it did before the last exit. For more information on
Tabs pane features, see the appropriate Microsoft Windows user’s guide.

Table 8 Tabs Pane Operation

Name Function

Contents Allows you to display the Contents Tree; if you have displayed the Search, Index, or
Favorites dialog boxes, you can redisplay the Contents Tree by clicking this tab. See
“To use the Contents tab” on page 78 for details.

Index Allows you to search for an online Help Index entry. See “To use the Index tab” on
page 78 for details.

Search Allows you to search by key word, that is, search for a desired word in the topic text.
See “To use the Search tab” on page 78 for details.

Chapter 3 Section 3.8
Getting Started Online Help Systems

e*Gate Integrator User’s Guide 78 SeeBeyond Proprietary and Confidential

To use the Contents tab

When the Contents tab is displayed, you can take any of the following actions:

! Open or close a book by double-clicking a book icon.

! Display a topic by clicking a topic icon.

! Open all books by right-clicking in the Contents tree and choosing Open All from
the shortcut menu. This action opens all books and lists all the topics they contain.

! Close all books by right-clicking in the Contents tree and choosing Close All from
the shortcut menu. This action closes all books.

To use the Index tab

1 Type the desired key word to look up in the Index.

2 Click Display. A list of topics related to the index entry appear.

3 In the Topics Found dialog box, double-click the topic you want to display.

To use the Search tab

1 Type the word in which you want to search.

2 Click List Topics. All topics containing the searched-for word are listed.

3 In the Select Topic to display pane, double-click the topic you want to display. The
selected topic displays; if Search Highlight is On, the found words are highlighted.

Toolbar Buttons

Table 9 lists toolbar buttons in the Help window along with their names and functions.

Printing Help

If you want hard-copy versions of any online Help topics, you can print all or any part
of a book as explained in this section.

Table 9 Help Window Buttons

Button Name Function

Show Tabs
Hide Tabs

The Show Tabs and Hide Tabs buttons act as a toggle. To display the Tabs
pane, click the Show Tabs button. To close the Tabs pane, click the Hide Tabs
button.

Back The Back button takes you to the previous topic in the online Help.

Print The Print button allows you to print online Help topics.

Options The Options button provides access to the Show Tabs, Hide Tabs, Back, and
Print functions noted above, as well as Forward, Home, Refresh, and Internet
Options functions. The Search Highlight On/Off switch allows you to
control the behavior of the Search tab—that is, whether the topic will
display the searched-for word or phrase with highlighting.

Chapter 3 Section 3.8
Getting Started Online Help Systems

e*Gate Integrator User’s Guide 79 SeeBeyond Proprietary and Confidential

Note: See the appropriate Windows user guide and/or printer manual for details on how to
configure your printer and how to use the Windows Print dialog box.

To print a single topic

1 With the Contents Tree displayed, place the mouse pointer on the desired Topic
icon.

2 Click the right mouse button to display a shortcut menu.

3 Choose Print.

The following Print Topics dialog box (Figure 17 below) appears:

Figure 17 Print Topics Dialog Box

4 Click Print the selected topic, then click OK (see Figure 17 above).

The Windows Print dialog box appears.

5 Select the desired Windows print options and click OK to print the selected topic.

To print an entire book

1 With the Contents Tree displayed, place the mouse pointer on the desired Book
icon.

2 Click the right mouse button to display a shortcut menu.

3 Click Print.

The Print Topics dialog box appears. See Figure 17.

4 Click Print the selected heading and all subtopics, then click OK.

The Windows Print dialog box appears.

5 Select the desired Windows print options and click OK to print all topics in the
selected book.

Note: The easiest way to print an entire online Help system is by printing every book in
the Contents Tree, one at a time.

Chapter 3 Section 3.8
Getting Started Online Help Systems

e*Gate Integrator User’s Guide 80 SeeBeyond Proprietary and Confidential

Also Print Help Topics

Click in the toolbar or choose Print from the shortcut menu in the Tabs/Contents
pane to print Help topics. Either action prints the selected book or topic as explained in
the previous procedures.

Closing the Help Window

To exit Help

Click the Windows Help button in the upper left corner of the window and then select
Close from the resulting shortcut menu. Performing this action exits the current online
Help system.

e*Gate Integrator User’s Guide 81 SeeBeyond Proprietary and Confidential

Chapter 4

Setting Up e*Gate

This chapter explains how to use the e*Gate Enterprise Manager features to create and
configure the basic components of a working system.

4.1 Overview of e*Gate Setup
Setting up e*Gate requires a step-by-step approach to system design, architecture, and
planning for component interaction. Once you have created a basic requirements
checklist, system design, and deployment plan, you must build on this foundation by
developing your complete e*Gate system. Then use the e*Gate graphical user interfaces
(GUIs) to create and set up all the needed system components.

The entire process of creating and configuring a working e*Gate system is called system
development. Since this guide primarily explains how to use the Enterprise Manager to
set up e*Gate system components, we are calling this process system setup. For details
on e*Gate system design and development, see the SeeBeyond eBusiness Integration Suite
Deployment Guide.

You must separately create every named component in the e*Gate system. Then, you
must configure most of these components before the system can use them correctly.
Configuring e*Gate components use the same GUIs as creation. As you set up each
component, you can refer to this chapter for an explanation of appropriate creation and
configuration procedures. The text also refers you to later chapters and/or additional
documents for more information, where necessary.

4.1.1 e*Gate GUIs
In addition to the Enterprise Manager, e*Gate uses the following GUIs (associated with
the Enterprise Manager) for setting up, configuring, and editing system components:

! Java Event Type Definition (ETD) Editor; see Chapter 5.

! Monk ETD Editor; see Chapter 6.

! Java Collaboration Rules Editor; see Chapter 7.

! Monk Collaboration Rules Editor; see Chapter 8.

! Collaboration-ID Rules Editor (for backwards-compatibility with e*Gate Version 3.6
only; see the e*Gate online Help)

! e*Way Editor; see Chapter 9.

Chapter 4 Section 4.1
Setting Up e*Gate Overview of e*Gate Setup

e*Gate Integrator User’s Guide 82 SeeBeyond Proprietary and Confidential

Use the Enterprise Manager to access these GUIs. Each of them has its own window
and pane features as well as an online Help system. Also, all the GUIs, including the
Enterprise Manager, have properties dialog boxes that aid in the e*Gate component
creation, configuration, and editing operations.

This chapter describes these GUI editors, referring you to later chapters and/or other
documents for a complete explanation of how to use their specific features.

4.1.2 Setup Steps
Figure 18 shows basic e*Gate setup steps in the form of a road map.

Figure 18 e*Gate Setup Road Map

“Business Analysis and Planning” on page 43 describes the business analysis step
shown in Figure 18. In addition, setting up a complete e*Gate system requires all or
most of the following general steps:

! “System Design Components” on page 83

! “Creating a Schema” on page 86

! “Creating Event Types and ETDs” on page 95

! “Creating Collaboration Rules and Scripts” on page 106

! “Adding e*Ways and BOBs” on page 123

! “Adding Intelligent Queues” on page 136

! “Adding Collaborations” on page 142

! “Reviewing and Testing the System” on page 147

System
Design

Creating
Schemas

Creating
Event Types
and Their
Definitions

Creating
Collaboration
Rules and
Scripts

Adding
e*Ways, BOBs,
and e*Way
Connections Adding

Intelligent
Queues

Adding
Collaborations

Reviewing
and Testing
the System

Business
Analysis and
Planning

Chapter 4 Section 4.2
Setting Up e*Gate System Design Components

e*Gate Integrator User’s Guide 83 SeeBeyond Proprietary and Confidential

The rest of this chapter explains the basic setup steps, in the order you would use them
in setting up a typical e*Gate system. The chapter includes a final section that describes
some basic setup review and testing procedures.

4.2 System Design Components
The main work of e*Gate is to route predefined Events (data packets) into and out of
external systems, using specialized e*Way Intelligent Adapters. e*Ways are the primary
communication links in the e*Gate system.

Since e*Gate is modular and expandable, it can bring together a great number of
different external systems, using as many e*Ways as necessary. In setting up e*Gate,
you must use its basic modular components to create your own system. The
components of an e*Gate system design interact as parts of basic relationships whose
details you must configure.

Chapter 2 explained the e*Gate system’s basic architecture. For details on e*Gate
system design, see the SeeBeyond eBusiness Integration Suite Deployment Guide.

This section explains:

! “Component Data Flow Relationships” on page 83

! “Component Logical Relationships” on page 85

! “Data Management Relationships” on page 86

4.2.1 Component Data Flow Relationships
The following e*Gate components control data flow:

! e*Ways bring data from outside to inside e*Gate, pass data from inside to outside
e*Gate, or both. When connected to e*Way Connections, they can also bring
multiple components of data from outside to inside e*Gate at the same time, pass
multiple components of data from inside to outside e*Gate, or both at the same
time.

! Business Object Brokers (BOBs) act as internal e*Ways when connected to IQs.
(BOBs are optional).

! Intelligent Queues (IQs) store data for later use in the e*Gate system.

! e*Way Connections are the encoding of the access information for one particular
gateway to an external system (such as a database) or a SeeBeyond JMS IQ
Manager. Certain e*Way Connections offer the ability to use XA-compliant calls to
external and internal systems that support them (such as Oracle, MQSeries, and
SeeBeyond JMS).

Chapter 4 Section 4.2
Setting Up e*Gate System Design Components

e*Gate Integrator User’s Guide 84 SeeBeyond Proprietary and Confidential

In e*Gate, e*Ways have the main responsibility for data transport. Figure 19 shows a
simplified system setup from the viewpoint of data flow.

Figure 19 Basic e*Gate Data Flow Relationships

In the sample system shown in Figure 19, e*Gate system data flow takes place in the
following basic steps:

! Events flow into e*Gate from an external system (System A) through an inbound
e*Way.

! This inbound e*Way (via a Collaboration) transforms Events from Event Type A to
Event Type B and places them in an IQ for temporary storage.

! This outbound e*Way takes the Events from the IQ and sends them out of e*Gate to
another external system (System B), without changing them.

Note: An e*Way with an e*Way Connection functions the same way as the e*Ways
described above, except that it can transfer multiple components of data in both
directions at the same time, to and from multiple IQs. Also, any Java-enabled
Collaboration can use several e*Way Connection components simultaneously, to
transfer data to and from multiple external systems.

See the next section for more information on Collaborations.

e*Gate System

Inbound e*Way
Intelligent

Queue
Outbound

e*WayEvent
A

System BSystem A Event
B

Chapter 4 Section 4.2
Setting Up e*Gate System Design Components

e*Gate Integrator User’s Guide 85 SeeBeyond Proprietary and Confidential

4.2.2 Component Logical Relationships
Figure 20 shows basic e*Gate components from the viewpoint of logical relationships.

Figure 20 Basic e*Gate Logical Relationships

Figure 20 is the same system setup shown in Figure 19 on page 84. The primary
components shown in this figure are

! Event Type Definitions (ETDs) are defined data structures for a particular type of
Event, all of which have specified characteristics in common. They are written in
Java or in SeeBeyond’s Monk programming language and stored as text files.

! Collaborations and Collaboration Rules supply the publish-and-subscribe logic
that routes Events through the e*Gate system.

! Collaboration Scripts define what Collaborations do with Events, for example,
transformation or verification. If necessary, Collaboration scripts (including
Collaboration Rules scripts) implement the business logic used to process Events as
they move through the e*Gate system.

Logical Routing

Each e*Way contains at least one Collaboration that directs its action. The kind of action
depends on the e*Way’s Collaboration setup. The Collaborations in Figure 20 on
page 85 have the following logical relationships:

! Publishing is when an inbound Collaboration publishes to the IQ.

! Subscribing is when an outbound Collaboration subscribes to the inbound
Collaboration.

The publish and subscribe information in Collaborations establishes the logical routing
of e*Gate Events as follows:

! Collaborations can publish or subscribe to external systems.

! Collaborations can also subscribe to other Collaborations and publish to IQs.

Note: Logically speaking, Collaborations never subscribe to IQs.

Chapter 4 Section 4.3
Setting Up e*Gate Creating a Schema

e*Gate Integrator User’s Guide 86 SeeBeyond Proprietary and Confidential

See “Collaboration Rules Scripts” on page 107 for more information on e*Gate
publish/subscribe (also called pub/sub) logic.

4.2.3 Data Management Relationships
The e*Gate system has the following internal data-management features:

! The Registry is the directory store for all e*Gate configuration details.

! The Registry Service handles all requests for updates to the Registry and forwards
updated files to clients as necessary.

! The Control Broker is an e*Gate-generated component that starts and monitors
e*Ways and BOBs. A Control Broker must be running on each Participating Host
within a schema. There is only one Control Broker per host.

! The IQ Manager is an e*Gate component that reorganizes IQs, archives queue
information upon request to save disk space, and locks the queues during
maintenance.

For an overview of these features, see “Control Layer” on page 35. This chapter
describes each of them under the appropriate section as it explains the overall e*Gate
setup operation.

" For more information on data-management relationships and how they operate
in e*Gate, see the e*Gate Integrator System Administration and Operations Guide.

4.3 Creating a Schema
A schema is a namespace that defines e*Gate system parameters and the relationships
between components within the e*Gate system. Schemas can span multiple hosts.

Because all setup and configuration operations take place within an e*Gate schema, you
must create a new schema or start an existing one before using the system. A schema is
an organization scheme that contains essential system modules and configuration
parameters. Schemas store all their configuration information in the e*Gate Registry.

You start and log into the e*Gate Enterprise Manager and then use it to create a new
schema on the desired Registry Host.

To create a schema

1 Start Enterprise Manager and, on the appropriate Registry Host, log in as
Administrator (or another user with equivalent privileges).

2 When the Open Schema on Registry Host: <host name> dialog box appears, click
New.

Note: You cannot delete or rename a schema once you have created it.

3 Type the desired name in the New Schema text box and click Open.

The system opens your new schema.

Chapter 4 Section 4.3
Setting Up e*Gate Creating a Schema

e*Gate Integrator User’s Guide 87 SeeBeyond Proprietary and Confidential

Activating the Host in a New Schema: When you add a new schema, the host attached
to its Control Broker is inactive at first. Inactive means this host has not been registered
as a Participating Host in the e*Gate Registry.

Note: The Network host name for an activated Participating Host must match the name of
the machine where its Control Broker will be run.

4.3.1 Control Broker Setup
This section explains how to set up and configure the Control Broker for a schema.

Configuring Control Broker Properties

For the most part, the Control Broker is preconfigured when you create a new schema.
To change or activate Control Broker features, open the Control Broker Properties
dialog box.

This section explains the following tabs:

! “General Tab” on page 88

! “Notification Setup Tab” on page 88

! “Timers Tab” on page 90

! “Advanced Tab” on page 92

! “Security Tab” on page 93

For more information on Control Brokers and how to operate them, see the e*Gate
Integrator System Administration and Operations Guide.

Chapter 4 Section 4.3
Setting Up e*Gate Creating a Schema

e*Gate Integrator User’s Guide 88 SeeBeyond Proprietary and Confidential

General Tab

The General tab allows you to reset the times when the Control Broker performs certain
tasks. See Figure 21.

Figure 21 Control Broker Properties Dialog Box: General Tab

Use the following text boxes to reset the times that trigger the Control Broker:

! In the Report component status every box, enter the amount of time after which the
Control Broker will report the status of the modules it supervises. The default is
600 sec (10 min).

! In the Check for component unresponsive every box, enter the amount of time
after which the Control Broker will check for unresponsive modules. The default is
600 sec (10 min).

! In the Reconnect to e*Gate Registry every box, enter the amount of time after
which the Control Broker will reconnect with the registry. The default is 600 sec
(10 min).

Notification Setup Tab

The Control Broker's Notification Setup tab determines how long to keep resolved
notifications, and how frequently to run the cleanup process that deletes expired

Chapter 4 Section 4.3
Setting Up e*Gate Creating a Schema

e*Gate Integrator User’s Guide 89 SeeBeyond Proprietary and Confidential

notifications. This tab allows you to reset the parameters for retaining notifications and
notification routing. See Figure 22.

Figure 22 Control Broker Properties Dialog Box: Notification Setup Tab

To use the Notification Setup Tab features

! In the Keep resolved Notification for box, enter the amount of time to keep
notifications that have been marked as resolved. (Unresolved notifications are kept
indefinitely.) The default is 5 days.

Control Brokers use notifications to track a wide range of Events, ranging from
simple status messages to problems that require operator intervention.
Notifications are marked “resolved” when whatever issue caused the notification
has been addressed.

Some notifications are marked “resolved” automatically (for example, a notification
that arises when a system is unreachable is automatically marked as resolved when
communications are re-established). Other notifications must be manually resolved,
using the e*Gate Monitor.

Unresolved notifications are stored indefinitely, but resolved notifications can be
deleted to save disk space.

! Click Notification Routing to edit or view the way notifications are routed. See the
e*Gate Integrator Alert and Log File Reference Guide and “Notification Channels” on
page 499 for more information about notification routing.

! Click Set Schedule to determine how frequently the queue of resolved notifications
should be cleaned up. The default is daily at 4:00 A.M.

Chapter 4 Section 4.3
Setting Up e*Gate Creating a Schema

e*Gate Integrator User’s Guide 90 SeeBeyond Proprietary and Confidential

Queue cleanup: There are two factors that determine how the Resolved
Notification IQ is cleaned up:

" How long notifications are kept (in other words, when do notifications
“expire”).

" How frequently expired notifications are deleted.

The default is to keep resolved notifications for five days, and to run the cleanup
daily at 4:00 A.M. Under this plan, the Control Broker begins at 4:00 A.M. to check
the Resolved Notification IQ for notifications that were resolved before 4:00 A.M.
five days ago, and deletes entries as appropriate.

Select an expiration period and cleanup frequency appropriate to the number of
resolved notifications you wish to store, and the amount of disk space you need to
maintain. For example, to keep an entire week’s worth of notifications, you can set
the expiration period to seven days.

Note: Be aware that a cleanup schedule of “every Sunday at 4:00 A.M.” will keep more
records online for a longer period than will a schedule of “every day at 4:00 A.M.”

Timers Tab

The Timers tab opens the Timer Events Properties dialog box, where you configure a
Timer Event. Timer Events trigger a signal to the Control Broker to perform certain
tasks at predetermined times. You must manually set this function. See Figure 23.

Figure 23 Control Broker Properties Dialog Box: Timers Tab

This tab enables you to instruct the Control Broker to send “timer” monitoring Events.

Chapter 4 Section 4.3
Setting Up e*Gate Creating a Schema

e*Gate Integrator User’s Guide 91 SeeBeyond Proprietary and Confidential

To add a timer

1 Click Add.

The Timer Event Properties dialog box opens. See Figure 24.

Figure 24 Timer Event Properties Dialog Box

2 Enter the Schedule name, any Notes, which are optional, and select a schedule
from the Schedule information drop-down list.

3 Click OK to close the Timer Event Properties dialog box. The timer schedule you
created appears in the Timer Events Properties dialog box. Click OK to close the
Control Broker Properties dialog box.

To modify a timer

1 Select a timer from the list in Schedule Name column on the Control Broker
Properties dialog box.

2 Click Modify.

3 The Timer Event Properties dialog box opens. Modify the schedule name, notes, or
schedule information.

4 Click OK to close the Timer Event Properties dialog box, then click OK to close the
Control Broker Properties dialog box.

To delete a timer

1 Select a timer from the list in Schedule Name column on the Control Broker
Properties dialog box.

2 Click Delete. The timer schedule is deleted without requesting further
confirmation.

3 Click OK to close the Control Broker Properties dialog box.

Chapter 4 Section 4.3
Setting Up e*Gate Creating a Schema

e*Gate Integrator User’s Guide 92 SeeBeyond Proprietary and Confidential

Advanced Tab

The Advanced tab allows you to set the logging level and debug flags of log files, as
well as editing the port properties. See Figure 25.

Figure 25 Control Broker Properties Dialog Box: Advanced Tab

To use the Advanced Tab features

! Click Log to view or change the logging level for activity or error logs. Log files are
text files that contain a record of all actions taken by an e*Way. Use these files to
troubleshoot problems in your system. For information on log files, see the e*Gate
Integrator Alert and Log File Reference Guide; for detailed information on how to use
this dialog, see “Activating Logging” in the same manual.

Important: Use logging options freely while developing and debugging schemas, but decrease
the level of detail before you migrate the schema to a production environment:
Certain logging options and severity settings cause significant slowing of
component performance and overall system throughput.

! Click Port to view or change the TCP/IP ports used by this Control Broker. This
opens the Port Properties dialog box, which allows you to select the range of TCP/
IP addresses that the Control Broker can use when searching for a port to bind for
its exclusive use.

Change these values only if you have reserved the entire default range of ports
(5000-5500) for another purpose, or if you otherwise require the Control Broker to
use a different port range.

Chapter 4 Section 4.3
Setting Up e*Gate Creating a Schema

e*Gate Integrator User’s Guide 93 SeeBeyond Proprietary and Confidential

Security Tab

The Security tab allows you to assign, change, or delete component privilege levels. See
Figure 26.

Figure 26 Control Broker Properties Dialog Box: Security Tab

To use the Security tab features

! To assign, change, or delete component privileges to this Control Broker, click the
Privilege button. The Assign Privileges dialog box appears (see Figure 27 on
page 94), listing the Roles that have component privileges for this Control Broker
assigned to them. The component privileges applicable to a Control Broker are
View, Edit, Delete, Shutdown, and Status.

Note: You can only assign Security tab privileges if you are an Administrator user. For
more information on this feature, see the e*Gate Integrator System
Administration and Operations Guide.

Chapter 4 Section 4.3
Setting Up e*Gate Creating a Schema

e*Gate Integrator User’s Guide 94 SeeBeyond Proprietary and Confidential

Figure 27 Assign Privileges Dialog Box and Add Role Selection Box

To assign privileges to a role

1 From the Assign Privileges dialog box (see Figure 27), click Add Role.

2 When the Add Role dialog box appears, highlight a role whose privileges you
intend to set, and click OK.

3 Your selection appears under the Role column on the Assign Privileges dialog box.
Place a check in the appropriate check boxes (View, Edit, Delete, Shutdown, and
Status) to specify the privileges associated with that role.

4 Repeat this procedure as necessary to add additional roles to the list.

5 Click OK when finished.

To change privileges for a role

1 From the Assign Privileges dialog box (see Figure 27), place checks in or remove
checks from the appropriate check boxes (View, Edit, Delete, Shutdown, and
Status) to re-specify the privileges associated with that role.

2 Repeat this procedure as necessary to change other roles in the list.

3 Click OK when finished.

To remove all privileges from a role

1 From the Assign Privileges dialog box (see Figure 27), highlight a Role.

2 Click Remove Role.

3 Repeat this procedure as necessary to remove other roles in the list.

4 Click OK when finished.

Chapter 4 Section 4.4
Setting Up e*Gate Creating Event Types and ETDs

e*Gate Integrator User’s Guide 95 SeeBeyond Proprietary and Confidential

4.3.2 Host Activation
Before you can run a schema, you must first be sure the host has been activated.

To activate the host

1 Type the following text at the command line:

stcinstd -rh <host> -rs <schema> -un <username> -up <password> -ss -sa -v

2 Press ENTER.

Note: In the stcinstd command line as shown, the flag -ss is optional and means to run
the host as a service. The flag -sa is also optional and means install service
autostart. The optional -v flag gives you the “verbose” (extra information) display.
Flags not shown (such as -rp for registry port) are assumed to use default values.

For more information on using the e*Gate command line, see “e*Gate Interactive
Monitoring” on page 490. For a complete explanation, including the stcinstd
command, see the e*Gate Integrator System Administration and Operations Guide.

4.4 Creating Event Types and ETDs
This section uses the following terminology:

! An Event (also called a message) is a packet of data processed by e*Gate.

! An Event Type (also called a topic) is a class of Events with common characteristics.

! An Event Type Definition (ETD) is a particular data structure that can be stored in
a Java-enabled native ETD file (.xsc file) or a Monk ETD file (.ssc file).

Note: In e*Gate, only the first item in the previous list contains data.

ETD Overview

The e*Gate system packages data within Events and categorizes them into Event
Types—in other words, classes of Events with a common data structure. What these
Events have in common defines the Event Type and comprises the ETD. For example,
this commonality could be a known number of fields with known characteristics and
delimiters.

Important: You must create ETDs before e*Gate can process any data.

This section explains:

! “Selecting the Event Type Definition Editor” on page 96

! “Creating Event Types” on page 96

! “Creating Java-enabled Event Type Definitions” on page 97

! “Creating Monk Event Type Definitions” on page 103

Chapter 4 Section 4.4
Setting Up e*Gate Creating Event Types and ETDs

e*Gate Integrator User’s Guide 96 SeeBeyond Proprietary and Confidential

! “Assigning Definitions to Monk Event Types” on page 105

4.4.1 Selecting the Event Type Definition Editor
e*Gate offers two ETD editors: The default (Java-enabled) ETD editor allows you to edit
.xsc files; the Monk ETD editor edits Monk ETD files (.ssc files) only.

To set the ETD editor

1 In Enterprise Manager, on the Options menu, click Default Editor.

2 In the Default Collaboration Language dialog box, choose either Java or Monk
and then click OK.

4.4.2 Creating Event Types
Generally, before you can add and configure ETDs, you must first create Event Types.
(But Java Collaborations, for example, do not require ETDs to be tied to Event Types.)

To create Event Types

1 In the navigator pane, in the Components tab, click the Event Types folder.

2 On the palette or the File menu, click New .Event Type.

3 In the New Event Type Component dialog box, enter a name for a new Event Type
and click Apply to enter it into the system. Repeat as necessary.

As you create each new Event Type, the Editor pane displays a new Event Type icon
with its name. See Figure 28 on page 97.

Chapter 4 Section 4.4
Setting Up e*Gate Creating Event Types and ETDs

e*Gate Integrator User’s Guide 97 SeeBeyond Proprietary and Confidential

Figure 28 Enterprise Manager With Event Types

4 Click OK when you have entered the last Event Type.

You are now ready to create Java or Monk Event Type Definitions; see “Creating
Java-enabled Event Type Definitions” on page 97 or “Creating Monk Event Type
Definitions” on page 103.

4.4.3 Creating Java-enabled Event Type Definitions
You create ETDs using the Event Type Definition Editor. For detailed information about
the Event Type Definition Editor, see Chapter 5. e*Gate provides wizards that aid in the
creation of your Java-enabled ETDs. These wizards include the following.

! Wizards for building a read-only Java-enabled ETD:

" BAPI Wizard

" COM/DCOM Wizard

" DB Wizard

" DTD Wizard

" IDoc Wizard

" Infranet Flist Wizard

" Infranet Opcode Wizard

" Jacada Wizard

" JDE Wizard

Create a
New Event
Type button

Event Type
name

Chapter 4 Section 4.4
Setting Up e*Gate Creating Event Types and ETDs

e*Gate Integrator User’s Guide 98 SeeBeyond Proprietary and Confidential

" Oracle Financials Wizard

" SAG Wizard

" SEF Wizard

" SOAP Wizard

" XSD Wizard

Note: Depending on the products installed at your site, you may not see all the ETD
Builder wizards listed above. The two wizards below, however, are always available.

! Wizards for creating a standard read/write Java-enabled ETD:

" Standard ETD Wizard—Allows you to create a standard ETD from scratch.

" SSC Wizard—Converts a Monk ETD to a Java-enabled standard ETD.

The Java Event Type Definition Editor is divided into five panes:

! The Event Types pane lists the name of the ETD that is currently active.

! The Internal Templates pane lists the names of the internal templates known to the
current ETD.

! The External Templates pane lists the names of the external templates known to the
current ETD.

! The Event Type Definition pane displays the tree of the current ETD.

! The Properties pane displays the properties of the highlighted node, field, or
method.

These five panes are illustrated in Figure 29 on page 99.

Chapter 4 Section 4.4
Setting Up e*Gate Creating Event Types and ETDs

e*Gate Integrator User’s Guide 99 SeeBeyond Proprietary and Confidential

Figure 29 Event Type Definition Editor

The Event Type Definition Editor uses wizards to create ETDs. When ETDs are created,
each node is given a name that becomes its own identifier in the ETD tree. See “About
Node Names” on page 174 for a list of acceptable node name characters.

To create a Java-enabled ETD

1 In Enterprise Manager, on the toolbar or Tools menu, click ETD Editor.

The Event Type Definition Editor appears, with all panes empty; see Figure 29 on
page 99.

2 In the ETD Editor, on the toolbar or File menu, click New.

The New Event Type Definition dialog box displays icons for the ETD wizards;
see Figure 30 on page 100.

New Open

Chapter 4 Section 4.4
Setting Up e*Gate Creating Event Types and ETDs

e*Gate Integrator User’s Guide 100 SeeBeyond Proprietary and Confidential

Figure 30 New Event Type Definition Window

3 Select the appropriate wizard (for example: Standard ETD) and click OK. The
selected wizard opens (seeFigure 31); in our example, the Standard ETD Wizard -
Introduction dialog box.

Figure 31 Example Wizard: Standard ETD

Note: For complete details on how to use all the ETD wizards, see Chapter 5.

4 It informs you that you must specify a root node name for the ETD and a package
name where all the Java source files are generated and stored. Click Next.

5 When the Standard ETD Wizard - Step 1 dialog box opens, enter a Root Node
Name and a Package Name in the text box.

" The root node name identifies the ETD within the ETD tree. If necessary, see
“About Node Names” on page 174 for rules governing node names.

Chapter 4 Section 4.4
Setting Up e*Gate Creating Event Types and ETDs

e*Gate Integrator User’s Guide 101 SeeBeyond Proprietary and Confidential

" The package name identifies the location where the ETD Editor will place all the
generated Java classes that are associated with this ETD. This name must be a
legal Java package name, such as com.yourco.package. If necessary, see “About
Package Names” on page 174 for a rules governing package name.

When ready, click Next.

6 The Standard ETD Wizard - Step 2 dialog box opens, requesting that you confirm
that the Package Name you entered is correct. If it is not correct, click Back to
change the name, or, if correct, click Finish to generate the ETD.

The ETD you just created appears in the Event Type Definition pane in the Event
Type Definition Editor dialog box (see Figure 32).

Figure 32 Java Event Type Definition Editor with Sample ETD

To name and save a newly created ETD

1 In the ETD Editor window, on the File menu, click Save.

2 When the Save dialog box opens, select etd as your directory and rename the .xsc
file from EventTypeDefinition1.xsc to an appropriate external filename. The
external filename may, but need not, match the internal root node name.

Note: You can save an .xsc file even if it is invalid; this allows you to return to it later for
further work. You cannot use an ETD until it has been compiled, however.

Chapter 4 Section 4.4
Setting Up e*Gate Creating Event Types and ETDs

e*Gate Integrator User’s Guide 102 SeeBeyond Proprietary and Confidential

To compile an ETD

! In the ETD Editor window, on the File menu, click Compile and Save.

The system saves the ETD Tree and attempts to compile the ETD.

" If the compile is successful, the status bar is blanked out.

" If an error is detected—such as a node whose structure property is set to delim
when no value is defined for its beginDelim or endDelim property—a dialog
box displays a text message explaining why the ETD could not be compiled.

After an ETD has been compiled, it resides in your Sandbox. Although you can assign it
to any Event Type in your Sandbox or in your run-time environment, the ETD is not
available to other users until it has been promoted to run time.

To promote an ETD to run time

! In the ETD Editor window, on the File menu, click Promote to Run Time.

The system prompts you to confirm any unsaved changes and then promotes the
ETD without attempting to validate or compile it; this allows you to save and share a
work in progress. When the promotion is complete, a message displays the names
of the promoted files and the contents of the ETD Editor are removed.

To open an existing ETD

1 In the ETD Editor window, on the toolbar or File menu, click Open.

2 Highlight the etd directory, choose the appropriate file from the list of .xsc files, and
then click OK.

To add elements and fields to an ETD

! In the ETD Editor window, in the Event Type Definition pane, right-click any node
of the ETD. A shortcut menu appears, containing the following selections:

" Add Element

" Add Field

Depending where you are in the tree structure of your ETD, you can add elements
and fields in the following locations in relation to the highlighted node:

Before Selected Node

After Selected Node

As Child Node

When you select a node, the Properties pane allows you to view or edit its
properties.

Note: For complete details on how to edit ETDs in the Java Event Type Definition Editor,
see Chapter 5.

Chapter 4 Section 4.4
Setting Up e*Gate Creating Event Types and ETDs

e*Gate Integrator User’s Guide 103 SeeBeyond Proprietary and Confidential

4.4.4 Creating Monk Event Type Definitions
After you have entered all your Event Types, you then create ETDs using the e*Gate
Enterprise Manager and ETD Editor.

Note: For complete details on how to edit ETDs in the Monk Event Type Definition Editor,
see Chapter 6.

To create a Monk ETD

1 In Enterprise Manager, on the toolbar, click .

The ETD Editor window appears, with all panes empty. See Figure 33.

Figure 33 ETD Editor Window (New)

2 On the toolbar or File menu, click New .

3 When the New ETD dialog box appears, enter the desired file name. See Figure 34
on page 104.

Chapter 4 Section 4.4
Setting Up e*Gate Creating Event Types and ETDs

e*Gate Integrator User’s Guide 104 SeeBeyond Proprietary and Confidential

Figure 34 New ETD Dialog Box

Note: Be sure to store the ETD file in the suggested folder or one of its subfolders. Do not
change the folder name.

4 Choose the file type (normally an ETD .ssc file), then click OK.

5 Using the ETD Editor, finish creating a complete definition for the Event Type as
desired. See “Edit Menu” on page 212 for a complete explanation of how to use the
ETD Editor for this operation.

Note: Many e*Ways, for example database e*Ways and SAP, have specialized converters
that query the external system and create complex ETDs for you. See the
appropriate e*Way user’s guide(s) for details. You can also create your own ETD
templates. See “Working With ETD Templates” on page 254 for details on
using ETD templates.

6 When you are finished creating the current ETD: On the toolbar or File menu,

click Save to save the .ssc file. e*Gate saves Monk ETD files with this extension.

7 On the File menu, click Promote to Run Time. This action takes the file out of your
Sandbox and places it in the system run time.

For an explanation of the Sandbox and run-time states, see “Sandbox and Run-
Time Environments” on page 57.

8 When you are finished: On the File menu, click Close to exit the ETD Editor.

Repeat steps 2 through 7 for each ETD you want to create.

Note: You are now ready to assign ETDs to Event Types (see “Assigning Definitions to
Monk Event Types” on page 105).

Enter the
file name.

Choose the file
type (normally
ETD).

Choose the delimiter
format; if the ETD’s
format is not in the
menu, you must tell
e*Gate what the
format is.

Choose whether
the ETD is
delimited or
fixed.

Chapter 4 Section 4.4
Setting Up e*Gate Creating Event Types and ETDs

e*Gate Integrator User’s Guide 105 SeeBeyond Proprietary and Confidential

4.4.5 Assigning Definitions to Monk Event Types
After you have created Monk ETD files, you can assign them to Event Types you have
already created.

To assign ETDs to Event Types

1 In the Enterprise Manager window, select the Event Types folder in the Navigator/
Components pane. See Figure 28 on page 97.

2 In the Editor pane, select one of the Event Types you created.

3 On the toolbar or Edit menu, click Properties.

The Event Type Properties dialog box appears. See Figure 35.

Figure 35 Event Type Properties Dialog Box

4 Under Event Type Definition, click Find.

The Event Type Definition Selection dialog box appears; it is similar to the
Windows Open dialog box.

Note: Clicking New in the Event Type Properties dialog box opens the ETD Editor
window, allowing you to create a new ETD.

5 Open the etd folder (for Java) or monk_scripts\common folder (for Monk), then
select the desired file name (.xsc for Java, .ssc for Monk).

6 Click Select. The file populates the Event Type Definition field.

Chapter 4 Section 4.5
Setting Up e*Gate Creating Collaboration Rules and Scripts

e*Gate Integrator User’s Guide 106 SeeBeyond Proprietary and Confidential

7 To save any work in the properties dialog box, click Apply to enter it into the
system.

8 When finished assigning ETDs to Event Types, click OK to close the properties
dialog box and apply all the properties.

4.5 Creating Collaboration Rules and Scripts
In the e*Gate system, Events become subject to business logic via the following data
operations

! Processing

! Transformation

! Verification

e*Gate uses the following features to govern these operations:

! Collaboration is the necessary, configurable component of an e*Way that
determines its operation; that is, the logical moving and transformation of Events
(see “Adding Collaborations” on page 142).

! Collaboration Rules are the program logic that instructs a Collaboration how to
execute the business logic required to support e*Gate’s data transformation and
routing.

! Collaboration service is the program that defines the structure and operation of a
Collaboration Rule’s basic Event-handling processes.

! Collaboration Rules Script contains the specific operations (written in Monk) that
are used to govern Event-transformation processes within a Collaboration (see
“Collaboration Rules Scripts” on page 107).

! Business Rules are the Java source code that creates the output Events that are a
result of the Java Collaboration.

Note: Monk is a SeeBeyond programming language designed to handle e*Gate Event
processes. For more information on using the Monk language, see the Monk
Developer’s Reference.

Collaboration .class files (Java) and Collaboration Rules scripts (Monk) are necessary if
you want to have any data transformed and/or verified in some way as it passes
through a Collaboration. “Creating Java Collaborations” on page 112 (Java), “Creating
Monk Collaboration Rules” on page 116 (Monk), and “Configuring Monk
Collaboration Rules” on page 117 (Monk) explain operations with and basic properties
of Collaboration Rules components.

This section explains:

! “Using Collaboration Scripts” on page 107

! “Java Collaborations” on page 110

! “Monk Collaborations” on page 116

Chapter 4 Section 4.5
Setting Up e*Gate Creating Collaboration Rules and Scripts

e*Gate Integrator User’s Guide 107 SeeBeyond Proprietary and Confidential

4.5.1 Using Collaboration Scripts
To define complex Event handling and transformations in a Collaboration and
Collaboration Rules, you can use the Monk, Java, or C programming languages to write
a Collaboration script, or you can use Collaboration Rules (Monk) or Collaboration
(Java) scripts. Once you have written and successfully tested a script, you can then add
it to the system’s run-time operation.

C-language Scripts

You can write Collaboration scripts in the C programming language if desired, using a
text editor. Explaining details of how to write these scripts is beyond the scope of this
user’s guide. For more information, see the *Gate Integrator Collaboration Services
Reference Guide.

Monk Language Scripts

Table 10 explains the basic types of Collaboration scripts that use the Monk language.

Collaboration Rules Scripts

Collaboration Rules scripts are specialized Monk programs that define how
Collaborations and Collaboration Rules transform data from input Event Types to
output Event Types.

Collaboration Rules Editor

The e*Gate Collaboration Rules Editor feature has tools that help you write
Collaboration Rules scripts in the Monk language. The appropriate sections in this
chapter explain how to get started with this operation. See Chapter 8 for a complete
explanation of how to use the Monk Collaboration Rules Editor feature.

Table 10 Monk Collaboration Script Types

Script Name Extension Function

Collaboration Rules
script (CRS)

.tsc Defines Collaboration Rules (specialized Monk programs) that
handle a variety of often-used data operations within a
Collaboration; written using the Collaboration Rules Editor.

Database access .dsc Special Monk scripts used by certain types of e*Ways to
communicate with databases—for example, the e*Ways for
Oracle, Sybase, and ODBC. Backward compatible.

Monk .monk Contains specialized Monk function definitions written in a text
file and used to transform business Events; you can also call
these functions within Collaboration Rules scripts to perform
e*Way-specific operations.

Collaboration-ID
Rules

.isc Helps verify Events within the e*Gate system; written using the
Collaboration-ID Rules Editor (for backward compatibility with
e*Gate Version 3.6 only; normally you do not need to use this
feature or file structure).

Chapter 4 Section 4.5
Setting Up e*Gate Creating Collaboration Rules and Scripts

e*Gate Integrator User’s Guide 108 SeeBeyond Proprietary and Confidential

Java Language File Types

Table 11 explains the basic types of Collaboration file types that use the Java language.

Java Files

The Java .xpr, .xts, and .java files are functionally comparable to the .tsc script in Monk.
They manage Java Collaboration dependencies, store Java Collaboration Rules, and
implement Java Collaborations. After they are compiled by a compiler (which must be
downloaded from Sun—the compiler is not shipped with e*Gate), along with the .xsc
files corresponding to Event Type Definitions, they become .class files that define Event
Types.

Collaboration Editor

The Collaboration Editor allows you to view a graphical representation of the Java
Collaboration files you wrote and compiled (using the compiler you downloaded).

Note: When you use drag-and-drop (or Find and Map) to connect one node with another,
the Editor draws lines between source nodes and destination nodes.

The Collaboration Editor has the capability to accept a DTD or XML schema from a
vendor that is XML compliant, or from a standards body, and build Collaborations
between these Events. You are also able to write Collaborations between XML and
other Event types, as well as Collaborations that transform XML messages (such as I2
TradeMatrix Purchase Orders or RosettaNet Purchase Orders) to/from SAP IDOC
formats (such as POCRD01 IDOC).

See the appropriate sections in this chapter for an explanation on how to get started
using the Editor, and Chapter 7 for a complete explanation of how to use the
Collaboration Editor feature.

Table 11 Java Collaboration File Types

File Name Extension Function

collab.xpr .xpr Collaboration Rules project file that keeps track of GUI settings
and preferences and contains pointers to all files noted below.

collab.xts .xts ASCII file that defines the Collaboration Rules layout in the GUI.

collab.class .class The class that implements Java Collaborations. After the
collab.class files are compiled, they generate .java files.

collab.java .java The human-readable Java source code generated by the Java
Collaboration Rules Editor; which displays a read-only copy on
request.

etd.xsc .xsc Stores abstract syntax. Defines Event Types; written by the Event
Type Definition Editor (see Chapter 6 for a complete
explanation). Equivalent to the .ssc file in Monk.

Chapter 4 Section 4.5
Setting Up e*Gate Creating Collaboration Rules and Scripts

e*Gate Integrator User’s Guide 109 SeeBeyond Proprietary and Confidential

Collaboration Rules Properties

All Collaboration Rules components determine the following basic properties for
Collaborations:

! A Subscription defines Event Types the Collaboration expects as input.

! A Publication defines Event Types the Collaboration produces as output.

For more information on Collaboration components and an explanation of how to
create them, see “Adding Collaborations” on page 142.

Collaboration Services and Types

You must associate a Service with each Collaboration Rules component. The default
e*Gate Collaboration Service types are:

! Pass Through is for Collaboration Rules that allow data to flow through without
change. For Java Collaborations, there is also a PassThrough class in STCLibrary\.

! Monk is for Collaboration Rules with Collaboration Rules scripts written in the
Monk language.

! Monk ID is for e*Gate Version 3.6 only. Substitute the Monk ID Service, which is
backwards compatible to DataGate, for the Monk Service if you are using that
version; otherwise, you do not need to use it.

! Java is for Collaboration Rules with scripts written in the Java language.

! C is for Collaboration Rules with scripts written in the C language.

! Route Table operates in conjunction with the Monk ID Service, for the same
purpose.

Note: See the e*Gate Integrator Collaboration Services Reference Guide for complete
information on these Services.

Your e*Gate installation can have additional Collaboration Services available,
depending on the add-ons you use and the external systems.

Basic Data Handling: No matter how you set up a Collaboration Rules component,
data either flows through it unchanged (using either the Pass Through Service or the
STCJavaPassThrough class) or changed (Java, Monk, or another service). The Service
you use and the way you configure it determine the flow.

To list available Services in your system

Click the Services folder in the Enterprise Manager window’s Navigator/Components
pane. The Services list appears in the Editor pane. Figure 36 on page 110 shows an
example.

Chapter 4 Section 4.5
Setting Up e*Gate Creating Collaboration Rules and Scripts

e*Gate Integrator User’s Guide 110 SeeBeyond Proprietary and Confidential

Figure 36 Enterprise Manager Window with Services

In addition, the Services folder also contains IQ Services. See the following references
for details on e*Gate services and the features shown in Figure 36:

! For Collaboration Services, see the e*Gate Integrator Collaboration Services Reference
Guide.

! For IQ Services, see the e*Gate Integrator Intelligent Queue Service Reference Guide and
the SeeBeyond JMS Intelligent Queue User’s Guide.

See “Adding Intelligent Queues” on page 136 for information on how to add and
configure IQs in your e*Gate system as well as more information on IQ Services.

You can have additional specialized services available, depending on your system
needs. See the e*Gate Integrator Collaboration Services Reference Guide for details.

4.5.2 Java Collaborations
This section explains how to create and configure Java Collaborations. For additional
information on the Java Collaboration Rules Editor, see Chapter 7.

The Java Collaboration Rules Editor is divided into six panes (see Figure 37 on
page 111):

! The Source pane lists the ETDs that correspond to the Events that are subscribed to
by the Collaboration.

Chapter 4 Section 4.5
Setting Up e*Gate Creating Collaboration Rules and Scripts

e*Gate Integrator User’s Guide 111 SeeBeyond Proprietary and Confidential

! The Mapping pane displays the relationship between the Source and Destination
ETDs as a series of lines that connect the associated nodes.

! The Destination pane lists the ETDs that correspond to the Events that are
published by the Collaboration.

! The Business Rules pane displays a graphical depiction of the Java source code that
creates the output Events that are a result of the Collaboration. Much of the code
displayed in this pane is automatically created by the Collaboration Rules Editor.

Note: The executeBusinessRules() method is the primary placeholder for programming
that users can add.

! The Properties pane displays information about the rule that is selected in the
Business Rules pane. This is also the area where you edit the selected rule.

! The Compile pane displays any errors that occurred as a result of a compilation of a
Java Collaboration. Whenever you make any changes to the rules, you must
compile the Java Collaboration. On the View menu, you can check or uncheck
Display Output to display or hide the Compile pane.

Figure 37 Java Collaboration Rules Editor

Compile pane

Business Rules pane

Properties
pane

Source pane Mapping pane Destination pane

Business Rules toolbar

Chapter 4 Section 4.5
Setting Up e*Gate Creating Collaboration Rules and Scripts

e*Gate Integrator User’s Guide 112 SeeBeyond Proprietary and Confidential

Creating Java Collaborations

The Java Collaboration Rules Editor is the e*Gate tool for creating Java Collaborations.
Unlike Monk Collaborations, Java Collaborations allow you to have multiple ETDs on
the Source and Destination sides of a Collaboration. You are able to freely collaborate
between these ETDs.

Note: If you want data to flow unchanged from one component to another, you can use the
STCJavaPassThrough.class in collaboration_rules\STCLibrary\.

To create the Java Collaboration

1 Select the Collaboration Rules folder in the Components pane of the e*Gate
Enterprise Manager.

2 Click the Create New Collaboration Rules icon. See Figure 38.

Figure 38 e*Gate Enterprise Manager: Create New Collaboration Rules

3 Type a name for the new Collaboration Rules component in the Name text box and
then click OK.

4 Open the properties dialog box for your new Collaboration Rules component name.
Make sure the name is highlighted in the Editor pane and then, on the toolbar or

Edit menu, click Properties.

Create New
Collaboration Rules
icon

Chapter 4 Section 4.5
Setting Up e*Gate Creating Collaboration Rules and Scripts

e*Gate Integrator User’s Guide 113 SeeBeyond Proprietary and Confidential

5 Optionally, if you want this Collaboration Rule to be Pass Through rule using
Java—in other words, transporting but not transforming the data—do the
following.

A In the Collaboration Rules area, click Find.

B In the Selection dialog box, navigate to the collaboration_rules\STCLibrary\
folder and click STCJavaPassThrough.class.

C Click Select.

The selection is registered in both the Collaboration Rules area and the Initialization
File area. Nothing further is necessary; skip steps 6 through 15.

6 Select the Collaboration Mapping tab.

7 Click Add Instance to add a row. See Figure 39.

Figure 39 Collaboration Rules Properties: Collaboration Mapping Tab

8 Enter a name for this instance in the Instance Name text box.

If you will be creating ETDs on the fly, this name is used as the default root node
name for the ETD in the Collaboration you are creating.

9 Select the Mode for this Event Type instance.

" In corresponds to source Event Type instance in the Collaboration, and is the
default.

" Out corresponds to destination Event Type instance in the Collaboration.

" In/Out corresponds to using the same Event Type instance as both a source and
destination.

Chapter 4 Section 4.5
Setting Up e*Gate Creating Collaboration Rules and Scripts

e*Gate Integrator User’s Guide 114 SeeBeyond Proprietary and Confidential

10 Choose whether this Event Type instance should trigger the execution of the
Collaboration, as follows:

" If the Trigger check box is activated (the default), receipt of this Event Type by
the Collaboration triggers its execution.

" If the Trigger check box is not activated, the receipt of this Event Type does not
trigger the Collaboration’s execution.

Note: At least one of the ETD instances used by the Collaboration must be checked as the
trigger. All nontriggered Events must be actively instantiated in the Collaboration
by means of calling the receive() method.

11 Choose whether to automatically generate an Event for this Event Type instance
when the Collaboration finishes its execution as follows:

" If the Manual Publish check box is not activated (the default), then an Event is
generated for this ETD when the Collaboration finishes its execution.

" If the Manual Publish check box is marked, then no Event is generated for this
ETD even if the ETD instance mode is Out or In/Out and the ETD has data
placed in it by the Collaboration.

Note: You can still publish an Event based on this Event Type instance even if Manual
Publish is activated—simply use the send() method in your Collaboration Rules.

12 Click Apply, then select the General tab.

13 Under Collaboration Rules, click New.

14 Enter the Collaboration Class Name and whether or not to enable Event Linking
and Sequencing (ELS).

Enabling ELS adds the ELS methods to a skeleton Collaboration to which you add
your custom Java Business Rules. For more information on ELS, see Chapter 12.

15 Click OK.

Chapter 4 Section 4.5
Setting Up e*Gate Creating Collaboration Rules and Scripts

e*Gate Integrator User’s Guide 115 SeeBeyond Proprietary and Confidential

The Editor window opens; see Figure 40. The skeleton Java Collaboration is created
based on the information entered on the Collaboration Mapping tab. This
information is displayed by the Editor for this Collaboration.

Figure 40 Java Collaboration Editor with Sample Collaboration

Note: If you double-click an .xsc file, it opens in the Java Collaboration Rules Editor even
if the default editor is set to Monk.

You are now ready to add the custom Business Rules to the Collaboration.

Adding Custom Business Rules to the Collaboration

Custom business rules must your newly created Collaboration, which is a collection of
Java source code. The rules you add in the Java Collaboration Editor are implemented
under the executeBusinessRules() method.

To add custom rules to the Java Collaboration

1 Optionally, click an appropriate node in the Business Rules pane and then click a
button on the Business Rules toolbar to add a rule fragment. For details, see
“Business Rules Toolbar” on page 269.

2 Optionally, use drag-and-drop or Find and Map to copy the data in a node of
a source Event Type instance to a node in a destination Event Type instance.
For details, see “Dragging and Dropping Fields” on page 277.

3 To make the Java code visible in the Business Rules pane, on the View menu, click
Display Code.

This pane can be expanded to show more of the Java code. See Figure 41.

Chapter 4 Section 4.5
Setting Up e*Gate Creating Collaboration Rules and Scripts

e*Gate Integrator User’s Guide 116 SeeBeyond Proprietary and Confidential

Figure 41 Expanded Java Code

Note: For complete details on how to create the custom business rules in the Java
Collaboration Rules Editor, see Chapter 7.

4.5.3 Monk Collaborations
This section explains how to create and configure Monk Collaboration Rules.

Creating Monk Collaboration Rules

If you want to create Monk Collaboration Rules, you must first create a Collaboration
Rules component, then configure it. To create new Collaboration Rules components,
use the Enterprise Manager GUI.

To create Collaboration Rules

1 In the Navigator/Components pane, select the Collaboration Rules folder.

2 On the Palette, click .

The New Collaboration Rules Component dialog box appears.

3 Enter the desired name for a new Collaboration Rules component and click Apply
to enter it into the system.

The highlighted method is
where you add your custom
business rules.

Chapter 4 Section 4.5
Setting Up e*Gate Creating Collaboration Rules and Scripts

e*Gate Integrator User’s Guide 117 SeeBeyond Proprietary and Confidential

After you have named each Collaboration Rules component, its name and a
Collaboration Rules icon appear in the Editor pane. See Figure 42.

Figure 42 Enterprise Manager with Collaboration Rules Icons

Note: The name of the Collaboration Service does not appear in that column of the Editor
pane until after you have configured the Collaboration Rules component. During
configuration, you must choose the appropriate Service.

4 Name as many additional Collaboration Rules components as desired, clicking
Apply after naming each one.

5 When finished, click OK to close the dialog box.

Configuring Monk Collaboration Rules

After you have created your Monk Collaboration Rules components, you must then
configure them, using the Enterprise Manager GUI. Once you have configured a
Collaboration Rules component, you can either write a new script for it or select an
existing script to associate with the component.

Collaboration Rules components start up on command, under conditions you specify,
using Monk command parameters. You must enter these commands, using the
Collaboration Rules Properties dialog box, under the General tab.

You can initialize Collaboration Rules in one of the following ways:

! For Strings, enter the correct information in the Initialization string text box.

! For Files, find the file in the Initialization file text box. To use this option, you must
first create the initialization file, using a text editor.

Create New
Collaboration
Rules button

Collaboration
Rules name

Type of
service

Collaboration
Rules

Chapter 4 Section 4.5
Setting Up e*Gate Creating Collaboration Rules and Scripts

e*Gate Integrator User’s Guide 118 SeeBeyond Proprietary and Confidential

For more information on how to construct these command features, see the e*Gate
Integrator System Administration and Operations Guide.

To configure Collaboration Rules

1 With the Collaboration Rules folder open in the Navigator/Components pane,
select the desired Collaboration Rules name in the Editor pane.

2 On the toolbar or Edit menu, click Properties.

The Collaboration Rules Properties dialog box appears (see Figure 43 on
page 118), displaying the General tab.

Figure 43 Collaboration Rules Properties Dialog Box, General Tab

Note: For more information on the details of information needed to use this properties
dialog box, including directory locations, see Chapter 8.

3 Select the desired properties for the current Collaboration Rules component as
follows:

" Service allows you to choose one of the Collaboration Rules Services: Java,
Pass Through, Monk, Monk ID, or another. You must choose a Service.

" Initialization string allows you to enter the initialization character string, if
necessary, for a script. For information on using initialization strings, see the
e*Gate Integrator Collaboration Services Reference Guide.

" Collaboration Rules allow you to choose an existing Collaboration Rules script
file or create a new one as follows:

Find displays a Windows File Selection dialog box, allowing you to find an
existing Collaboration Rules script file.

The Subscriptions
and Publications
tabs are available
for Monk
Collaboration
Rules.

Note that the
Collaboration
Mapping tab
becomes
available when
the Java
Collaboration
Editor is active.

Chapter 4 Section 4.5
Setting Up e*Gate Creating Collaboration Rules and Scripts

e*Gate Integrator User’s Guide 119 SeeBeyond Proprietary and Confidential

New displays the Collaboration Rules Editor window, allowing you to
create a new script using the Editor.

Note: After you display a file name for a Collaboration script, the New button becomes
Edit, allowing you to edit the file here if desired.

In addition, you can use the following buttons, if desired:

Clear removes a selected Collaboration Rules script, allowing you to choose
another.

Test opens the Monk Test Console window, allowing you to test the validity
of a Collaboration Rules script. See “Monk Test Console” on page 149 for
details.

" Initialization file allows you to find (or exchange) a file necessary to initialize a
Collaboration script.

You must take one of the following steps:

" If your Collaboration Rules script already exists, click Find to display a File
Selection dialog box and choose the desired file. Go on to step 7.

Note: If you have already used a text editor to write a Collaboration script (in Monk or
another language) for the current Collaboration Rules component, use this dialog
box to select the file containing that script. See Chapter 8 for details on directory
locations.

" If you need to write a new Collaboration Rules script, click New. The
SeeBeyond Collaboration Rules Editor window appears. See Figure 44.

Note: You can also open the Editor using the Enterprise Manager toolbar or Tools menu:

click Collab Editor.

Chapter 4 Section 4.5
Setting Up e*Gate Creating Collaboration Rules and Scripts

e*Gate Integrator User’s Guide 120 SeeBeyond Proprietary and Confidential

Figure 44 SeeBeyond Collaboration Rules Editor Window (Monk)

4 Using the Collaboration Rules Editor, create the Monk script you need for the
current component as desired. See Chapter 8 for a complete explanation of how to
use the Collaboration Rules Editor for this operation.

Caution: If you try to open a file with more than 6500 lines in the Collaboration Rules Editor,
you get an error message, and the file does not open. If you need to open a larger file,
use a text editor or word processor capable of handling large files.

5 When you are finished creating and/or editing a Collaboration Rules script file:

On the toolbar or File menu, click Save, and then click Close to close the
Collaboration Rules Editor window.

6 To save your Collaboration Rules work in this tab of the Collaboration Rules
Properties dialog box and enter your selections into the system, click Apply.

7 From the Collaboration Rules Properties dialog box, click the Subscriptions tab.

Chapter 4 Section 4.5
Setting Up e*Gate Creating Collaboration Rules and Scripts

e*Gate Integrator User’s Guide 121 SeeBeyond Proprietary and Confidential

The properties dialog box changes (see Figure 45), displaying subscription
properties.

Figure 45 Collaboration Rules Properties Dialog Box, Subscriptions Tab

8 Choose an input (subscribed) Event Type for the current Collaboration Rules
component by selecting a desired Event Type in the Available Input Event Types
pane, then clicking on the right-pointing arrow. The Event Type’s name appears in
the right pane. Repeat this step as necessary.

When you move an Event Type into the Selected Input Event Types column (right
pane), a check box appears next to the Event Type’s name, in the Triggering Event
column.

9 A check appears in the Triggering Event check box, marking the Event Type as
“required” when the subscribing Collaboration begins processing this Event Type.
If it is not required to begin processing this Event Type immediately upon the
Collaboration’s receipt, deselect the check box.

Note: You can process nonrequired events using the command line by calling iq-get.
See the Monk Developer’s Reference for more information, and note that this is
not supported by JMS IQs. If more than one Event Type is marked required, the
Collaboration begins execution immediately upon receipt of any of the required
Event Types.

10 To save your Collaboration Rules work in this tab of the Collaboration Rules
Properties dialog box and enter your selections into the system, click Apply.

Chapter 4 Section 4.5
Setting Up e*Gate Creating Collaboration Rules and Scripts

e*Gate Integrator User’s Guide 122 SeeBeyond Proprietary and Confidential

11 Click the Publications tab.

The properties dialog box changes (see Figure 46), displaying publication
properties.

Figure 46 Collaboration Rules Properties Dialog Box, Publications Tab

12 Choose one or more output (published) Event Types for the current Collaboration
Rules component by selecting a desired Event Type in the Available Output Event
Types pane then clicking on the right-pointing arrow. The Event Type appears in
the right pane. Repeat this step as necessary.

When you move an Event Type into the Selected Output Event Types column, an
option button appears next to the Event Type’s name, in the Default column.

13 If more than one Event is defined as publishable, use the Default button to select
the Event Type the current Collaboration Rules component returns. The default
publication does not require an explicit call but occurs automatically by the normal
execution of the Collaboration Rules.

14 To save your Collaboration Rules work in this tab of the Collaboration Rules
Properties dialog box and enter your selections into the system, click Apply.

15 When finished configuring your Collaboration Rules component, click OK to close
the properties dialog box, apply all the properties, and return to the e*Gate
Enterprise Manager window.

Chapter 4 Section 4.6
Setting Up e*Gate Adding e*Ways and BOBs

e*Gate Integrator User’s Guide 123 SeeBeyond Proprietary and Confidential

Repeat the appropriate steps in the previous procedure until you have finished
configuring all your Collaboration Rules.

Note: The Collaboration-ID Rules Editor is a feature that enables compatibility with
e*Gate Version 3.6 only. Normally, you do not need to use this GUI or its features. If
necessary, see the e*Gate online Help for more information on this feature.

4.6 Adding e*Ways and BOBs
In the e*Gate system, e*Ways are the most commonly used components for
transporting and transforming data. They always interface with at least one external
system, and Multi-Mode e*Ways can use e*Way Connections to interface with many
external systems as well as with SeeBeyond JMS IQ Managers. See the specific e*Way
Intelligent Adapter User’s Guide for e*Way Connection information relating to your
e*Way. BOBs are optional; a BOB can function as a type of internal e*Way to balance the
load between IQs.

Since e*Ways and BOBs have similar functions, this section primarily covers e*Ways,
but also mentions BOBs. In e*Gate you define all of these components in essentially the
same way. For detailed information on how to define and edit all of these components,
see Chapter 9.

This section explains the basic procedures in creating and configuring e*Ways in your
e*Gate system.

This section explains:

! “e*Way Operation” on page 123

! “Before Creating an e*Way” on page 125

! “Creating e*Ways” on page 127

! “Configuring e*Ways” on page 128

! “Adding Business Object Brokers” on page 130

! “Adding Multi-Mode e*Ways” on page 131

4.6.1 e*Way Operation
e*Ways have the following characteristics:

! Adapting: e*Ways face in two directions as they must interact with and adapt to
external systems as well as communicate with e*Gate.

! Transporting: Acting as “smart” gateways, e*Ways direct the flow of data in and
out of e*Gate.

! Collaborating: Inbound and outbound e*Gate Collaborations reside in e*Ways and
form the core of their operation. They determine:

" The routing (publishing/subscribing) of the Events they handle

Chapter 4 Section 4.6
Setting Up e*Gate Adding e*Ways and BOBs

e*Gate Integrator User’s Guide 124 SeeBeyond Proprietary and Confidential

" Any transformation of data as it passes through the e*Way

In e*Gate, e*Ways interact with Collaborations as follows:

! Every e*Way requires at least one Collaboration, but it can have more than one.

! Every e*Way Collaboration that publishes internal e*Gate Events requires at least
one IQ.

! Any e*Way Collaboration that only publishes to an external system does not require
an IQ.

See “System Design Components” on page 83 for information on how e*Ways interact
with Collaborations. Figure 47 shows a basic diagram of how an e*Way operates, using
an e*Way with two Collaborations, an inbound and outbound.

Figure 47 e*Way Operation

Starting e*Ways: By default, none of the e*Gate components starts on its own. When
you configure an e*Way, you can set it to start automatically, that is, at the same time as
the Control Broker that controls it.

Note: See “Adding Intelligent Queues” on page 136 for more information on IQs.
See “Adding Collaborations” on page 142 for more information on
Collaborations.

Once started, e*Ways operate as follows:

! They transform Events according to specific commands or simply move them
through the system unchanged.

! They pass along Events as they are configured to do, and Events not immediately
routed remain in IQs until requested.

External
System

Inbound
Collaboration

e*Gate

e*Way

Outbound
Collaboration

Communication
with external

system

e*Way Monk, Java, or
C Environment

Collaboration
Environment

Business logic and
communication
within e*Gate

e*Way
Functions

e*Way
Functions

IQ

Chapter 4 Section 4.6
Setting Up e*Gate Adding e*Ways and BOBs

e*Gate Integrator User’s Guide 125 SeeBeyond Proprietary and Confidential

4.6.2 Before Creating an e*Way
The Enterprise Manager allows you to create and configure e*Ways. Before starting,
open all the levels in the Participating Hosts folder in the Navigator/Components
pane.

To open all Participating Hosts’ levels

1 Double-click the Participating Hosts folder in the Components Tree. The folder
opens, displaying any contained hosts’ icons. There must be at least one.

Note: The contents of the selected Navigator pane component display in the Editor pane,
for each level. Also, the Palette buttons are different for each level.

2 Open the desired Participating Host in the same way. The folder displays the
contained Control Broker’s icon. There can only be one.

3 Open the Control Broker in the same way. The folder displays any contained
IQ Managers (and IQs, if they have been created). There must be at least one
IQ Manager.

Note: For information on IQs and IQ Managers, see “Adding Intelligent Queues” on
page 136.

Figure 48 on page 126 shows the Enterprise Manager window with all the Component
Tree levels under the Participating Hosts folder open.

Chapter 4 Section 4.6
Setting Up e*Gate Adding e*Ways and BOBs

e*Gate Integrator User’s Guide 126 SeeBeyond Proprietary and Confidential

Figure 48 Contents of Participating Hosts Folder

Create and configure e*Ways, using features contained in the Control Broker level of
the navigator tree.

Note: The e*Gate system names Control Brokers, using the convention,
<Control Broker name>_cb

See Figure 48 above for an example of this naming convention. By default, the
system names the Control Broker after its Participating Host.

Explanation of Tree Levels

The Participating Hosts folder in the navigator tree contains different levels, allowing
you to add the following components:

! Participating Hosts (see “Adding New Participating Hosts” on page 67)

! Control Brokers (see Chapter 10)

! e*Ways and BOBs (see “Creating e*Ways” on page 127 and “Adding Business
Object Brokers” on page 130)

! IQs and IQ Managers (see “Adding Intelligent Queues” on page 136)

! Collaborations (see “Adding Collaborations” on page 142)

Participating
Host name
and level

Control Broker’s name
and level. Add e*Ways,
BOBs, IQ Managers and
e*Insight engines here. IQ Managers

Participating
Hosts folder

e*Ways

Business
Object
Brokers
(BOBs)

Chapter 4 Section 4.6
Setting Up e*Gate Adding e*Ways and BOBs

e*Gate Integrator User’s Guide 127 SeeBeyond Proprietary and Confidential

Move From Higher to Lower

The components in the previous list display in this tree-layered setup because of their
hierarchical relationship to one another. Components at higher levels of the Tree
manage those at lower levels. You must add new components in the Tree by starting at
the higher levels and moving downward.

Control Brokers

Control Brokers serve important system management functions in e*Gate as explained
under “Control Layer” on page 35. You configure e*Way and BOB components at the
Control Broker’s level in the Components Tree because Control Brokers directly
manage the operation of these components.

System Files and e*Ways

Each e*Way depends on necessary component system files for its operation as follows:

! Executable File: Determines the mechanisms it uses to communicate with external
systems. For example, the simplest e*Way is called file-based because it only reads
and writes to a file. The name of its executable file is stcewfile.exe, and the system
stores it in the following directory:

\egate\Server\registry\repository\default

Note: The e*Gate system comes supplied with basic executables like stcewfile.exe; see the
Standard e*Way Intelligent Adapters User’s Guide. If you need specialized
executables or files, see the appropriate SeeBeyond user’s guide for details.

! Configuration File: Contains exact parameters and values that vary based on the
the e*Way’s operation requirements. You already have templates of e*Way
configuration files available for you in e*Gate, but you have to take additional
configuration steps using the e*Way Configuration Editor.

In these respects, BOBs operate in the same manner as e*Ways. For a more detailed
explanation of e*Way executable and configuration files as well as how to create,
configure, and edit e*Way (and BOB) requirements, see Chapter 9. Also, make sure to
follow the instructions in the user’s guide for the specific e*Way you are configuring.

4.6.3 Creating e*Ways
Use Enterprise Manager to create e*Ways. You can create them in any order.

To create new e*Ways

1 In the Navigator/Components pane, open the components tree as explained under
“To open all Participating Hosts’ levels” on page 125.

2 Select the Control Broker.

3 On the Palette, click . The New e*Way Component dialog box appears.

Chapter 4 Section 4.6
Setting Up e*Gate Adding e*Ways and BOBs

e*Gate Integrator User’s Guide 128 SeeBeyond Proprietary and Confidential

4 Enter the desired name for the new e*Way and click Apply to enter it into the
system. The new name and an e*Way icon appear in both panes.

5 Name additional e*Ways as needed. Click Apply after you name each one.

6 When you are finished, click OK to close the dialog box.

4.6.4 Configuring e*Ways
To finish adding e*Ways to your e*Gate system, you must configure them using the
Enterprise Manager GUI.

To configure e*Ways

1 In Enterprise Manager, select one of the e*Ways you have already named.

Note: You can select any e*Way since you do not have to configure them in any order.

2 On the toolbar or Edit menu, click Properties.

The e*Way Properties dialog box (see Figure 49) opens to the General tab.

Note: You can only assign Security tab privileges if you are an Administrator user. If you
are not logged in as “Administrator” you will not see the Security tab on this
properties dialog box. For more information on this feature, see “Security Tab” on
page 93 or the e*Gate Integrator System Administration and Operations
Guide.

Figure 49 e*Way Properties Dialog Box, General Tab

The New button
becomes available
after you choose the
executable file.

Chapter 4 Section 4.6
Setting Up e*Gate Adding e*Ways and BOBs

e*Gate Integrator User’s Guide 129 SeeBeyond Proprietary and Confidential

3 Under Executable file, click Find. A File Selection dialog box appears.

4 Select the desired executable file and click Select. The dialog box disappears, and
the chosen file name appears in the properties dialog box under Executable file.

For a complete list of available e*Way executable files and their functions, see
Chapter 9.

Note: Only enter Additional command line arguments if they are required by the
current e*Way. See the appropriate e*Way user’s guide for details.

5 Under Run as user, choose the appropriate user name, if necessary.

6 Under Configuration File, do one of the following actions:

" If you already have a configuration file available, click Find to display a File
Selection dialog box then select the desired file and click Select.

" If you need to create a new configuration file, click New to display the e*Way
Configuration Editor; see Figure 50. Use the Editor to configure the desired file.

Figure 50 e*Way Editor Window (New)

See Chapter 9 for more information on how to use the e*Way Editor feature. See the
appropriate e*Way Intelligent Adapter user’s guide for details on how to use the
e*Way Editor to configure a specific type of e*Way.

Chapter 4 Section 4.6
Setting Up e*Gate Adding e*Ways and BOBs

e*Gate Integrator User’s Guide 130 SeeBeyond Proprietary and Confidential

7 Continuing from the e*Way Properties dialog box, click the Start Up tab. The
e*Way Properties dialog box changes (see Figure 198 on page 455), displaying the
start-up options.

8 If desired, select Start automatically. This action configures the current e*Way to
start whenever e*Gate activates, eliminating the need to start it manually.

Caution: To determine whether you want an e*Way to start automatically, see the
instructions in the user’s guide for that e*Way. The e*Way user’s guide also gives
additional information on specific e*Way configuration options.

9 To save any e*Way configuration, click Apply to enter it into the system.

Note: The e*Way Properties dialog box contains more features under the Start Up tab
(see Chapter 9) and another tab, Advanced (see the e*Gate Integrator Alert and
Log File Reference Guide) for details on these additional settings. You only need to
change the additional features controlled under these tabs if you do not want to
accept their displayed system defaults.

10 When finished configuring the current e*Way, click OK to close the properties
dialog box.

4.6.5 Adding Business Object Brokers
You can add BOBs to your e*Gate system, using the Enterprise Manager GUI and
procedures similar to those used for e*Ways. BOBs are an optional feature in e*Gate.

To create new BOBs

1 In the Navigator/Components pane, open the Components Tree to show the
Control Broker’s level as explained under “To open all Participating Hosts’ levels”
on page 125.

2 On the Palette, click .

The New Business Object Broker Component dialog box appears.

3 Enter the desired name for a new BOB and click Apply to enter it into the system.
The new name and a BOB icon appear in both panes.

4 Name additional BOBs as needed, clicking Apply after you name each one.

5 When finished, click OK to close the dialog box.

To configure BOBs

1 In the Navigator/Components or Editor pane, select one of the BOBs you have
already named. You can select any BOB since you do not have to configure them in
a specific order.

2 On the toolbar or Edit menu, click Properties.

The Business Object Broker Properties dialog box appears, displaying the General
tab. This feature configures the same properties as the e*Way Properties dialog box.
See Figure 49 on page 128.

Chapter 4 Section 4.6
Setting Up e*Gate Adding e*Ways and BOBs

e*Gate Integrator User’s Guide 131 SeeBeyond Proprietary and Confidential

3 Configure BOBs in the same way as you do e*Ways.

4 When finished, click OK to close the properties dialog box.

4.6.6 Adding Multi-Mode e*Ways
Multi-Mode e*Ways were added to the e*Gate system at Release 4.5. A Multi-Mode
e*Way is a multi-threaded component used to route and transform data within e*Gate.
Unlike BOBs or traditional e*Ways, Multi-Mode e*Ways can use multiple simultaneous
e*Way Connections to communicate with several external systems, as well as IQs or
JMS IQ Managers.

For detailed information on how to define and edit a Multi-Mode e*Way, see Chapter 9.
This section lists the basic steps for creating and configuring a Multi-Mode e*Way in
your e*Gate system.

Before Creating a Multi-Mode e*Way

The Enterprise Manager allows you to create and configure Multi-Mode e*Ways. Before
starting, open all the levels in the Participating Hosts folder in the Navigator/
Components pane.

To open all Participating Hosts’ levels

1 Double-click the Participating Hosts folder in the Components Tree. The folder
opens, displaying any contained hosts’ icons. There must be at least one.

Note: The contents of the selected Navigator pane component display in the Editor pane,
for each level. Also, the Palette buttons are different for each level.

2 Open the desired Participating Host in the same way. The folder displays the
contained Control Broker’s icon. There can only be one.

3 Open the Control Broker in the same way. The folder displays any contained
IQ Managers (and IQs, if they have been created). There must be at least one
IQ Manager.

Note: For information on IQs and IQ Managers, see “Adding Intelligent Queues” on
page 136.

Figure 48 on page 126 shows the Enterprise Manager window with all the Component
Tree levels under the Participating Hosts folder open.

Creating and Configuring a Multi-Mode e*Way

You add a Multi-Mode e*Way to your e*Gate system using Enterprise Manager.

Caution: While you are running a Multi-Mode e*Way, do not use the same machine to edit
any ETD involved in the e*Way—if you do, you will be unable to save the ETD
changes and unable to use normal methods to halt either the Editor or the e*Way.

Chapter 4 Section 4.6
Setting Up e*Gate Adding e*Ways and BOBs

e*Gate Integrator User’s Guide 132 SeeBeyond Proprietary and Confidential

Before you begin: On the Options menu, point to Options and click Java to ensure that
the correct editors are used.

To create and configure a new Multi-Mode e*Way

1 Select the Navigator’s Components tab, open the Participating Host on which you
want to create the Multi-Mode e*Way, and then open the Control Broker.

2 On the Palette, click on the icon Create a New e*Way.

3 Enter the name of the new e*Way in the Name text field and click OK.

4 Select the new component (if it is not already selected); then, on the toolbar or Edit

menu, click Properties. See Figure 51.

Note: For an in-depth description of what type of information the various fields require,
see “Multi-Mode e*Way” on page 464.

Figure 51 Multi-Mode e*Way Properties Dialog Box

Note: You can only assign Security tab privileges if you are an Administrator. If you lack
Administrator privileges, you will not see the Security tab on this properties dialog
box. For more information on this feature, see “Security Tab” on page 93 or the
e*Gate Integrator System Administration and Operations Guide.

5 Under the Configuration file text box, click New.

Chapter 4 Section 4.6
Setting Up e*Gate Adding e*Ways and BOBs

e*Gate Integrator User’s Guide 133 SeeBeyond Proprietary and Confidential

The Edit Settings dialog box is displayed. This is where you set the configuration
parameters for the Multi-Mode e*Way configuration file. These parameters control
the basic Java Virtual Machine (JVM) settings. See Figure 52.

Figure 52 Edit Settings Dialog Box – Multi-Mode e*Way

6 Set the configuration parameters for this configuration file. For general information
regarding what data to enter in these fields, see “JVM Settings” on page 482.

7 After entering the parameters: On the File menu, click Close; then, in the Save As
dialog box, click Save.

8 When you return to the e*Way Properties dialog box, click OK to save your
changes and close the dialog box.

Chapter 4 Section 4.6
Setting Up e*Gate Adding e*Ways and BOBs

e*Gate Integrator User’s Guide 134 SeeBeyond Proprietary and Confidential

4.6.7 Adding e*Way Connections
An e*Way Connection is the encoding of the access information for one particular
external connection. In terms of content, it is similar to an e*Way configuration file, in
defining enough information to be able to log in to the particular system.

To create and configure e*Way Connections

1 Select the e*Way Connections folder in the Components pane of the Enterprise
Manager. See Figure 53.

Figure 53 *Gate Enterprise Manager: Create New e*Way Connection

2 On the palette, click the Create a New e*Way Connection icon.

3 Type a name for the new e*Way Connection in the Name text box, then click OK.

4 Open the properties dialog box for your new e*Way Connection. Make sure the new
e*Way Connection name is highlighted in the Editor pane and then, on the toolbar

or Edit menu, click Properties.

The e*Way Connection properties dialog box opens. See Figure 54.

Create a New e*Way
Connection icon

Chapter 4 Section 4.6
Setting Up e*Gate Adding e*Ways and BOBs

e*Gate Integrator User’s Guide 135 SeeBeyond Proprietary and Confidential

Figure 54 e*Way Connection Properties Dialog Box

5 From the e*Way Connection Type list, choose the appropriate selection.

Important: Consult the appropriate user’s guide for explanations on the various sections and
configuration parameters required for the different types of e*Way Connections.

6 Enter how long you want to wait before performing another “get” operation when
the IQ is empty in the Event Type “get” interval text box. Especially for SeeBeyond
JMS IQs, you should consult the user’s guide to be sure you are using values
appropriate for your needs.

7 Under the e*Way Connection Configuration File pane, do one of the following:

A To use an existing configuration file, click Find, navigate to the folder that
contains the file, and then select the configuration file you want.

B To create a new configuration file from scratch, click Clear (if necessary to de-
reference an existing configuration file), and then click New.

8 Make the appropriate selections in the Edit Setting for <directory><filename>.cfg
dialog box.

Important: The information entered in the fields on the e*Way Connection Properties dialog
box is specific to the type of external system you are connecting to. Make sure you

Chapter 4 Section 4.7
Setting Up e*Gate Adding Intelligent Queues

e*Gate Integrator User’s Guide 136 SeeBeyond Proprietary and Confidential

see the appropriate e*Way user’s guide (or the SeeBeyond JMS IQ User’s Guide)
for specifics about what information should be entered in each field.

9 On the File menu, click Save As.

The Save As dialog box lists the directory where the e*Way Connection will be
stored along with the file name for the e*Way Connection. The default is the name
you originally set. When you are satisfied this information is correct, click Save.

10 Close the Edit Settings for <directory><eWay-Connection-name>.cfg dialog box.

11 In the e*Way <name of e*Way Connection> Properties dialog box, click OK.

4.7 Adding Intelligent Queues
IQs are components that provide nonvolatile storage for Events within the e*Gate
system as they pass from one component to another. When setting up IQs:

! Unless you are using SeeBeyond JMS IQ Manager, you must create at least one IQ
per schema for published Events within the e*Gate system. Create more, depending
on the needs of your system.

! All BOBs require at least one IQ.

! e*Ways that publish Events externally do not need IQs.

! IQ Services provide the mechanism for storing Events as they move among IQs and
Collaborations. They also handle the low-level implementation of data exchange,
for example, system calls to initialize or reorganize a database.

! Each schema must have an IQ Manager before you can add any IQs to it. See “IQ
Managers” on page 137.

Intelligent Queuing: IQs are intelligent in that they are more than just a holding tank
for Events. They actively record information about the current state of Events. See
Figure 47 on page 124 for a diagram of how IQs fit into the e*Gate/e*Way setup. IQs
operate with BOBs and Multi-Mode e*Ways in the same way as they do with e*Ways.

For more information on how to add and configure IQs and IQ Managers, see the e*Gate
Integrator System Administration and Operations Guide. See the e*Gate Integrator
Intelligent Queue Services Reference Guide and the SeeBeyond JMS Intelligent Queue
User’s Guide for complete information on working with IQs.

IQ Services

You use an IQ Properties dialog box to configure IQs in your system (see Figure 55 on
page 138). This properties dialog box offers you a list of the IQ Services available in
your system. You can choose one of these Services to configure with an IQ, or you can
choose Undefined. The IQ Services available to you depend on the IQs installed in
your e*Gate system. Three IQ Services are always available:

! STC_JMS_IQ—SeeBeyond JMS IQ Service. Service library: stc_iqms.dll. This is
the only service library possible for IQs managed by a SeeBeyond JMS IQ Manager
(in other words, IQs under an IQ Manager whose executable is stcmsagent.exe).

Chapter 4 Section 4.7
Setting Up e*Gate Adding Intelligent Queues

e*Gate Integrator User’s Guide 137 SeeBeyond Proprietary and Confidential

! STC_Standard—SeeBeyond Standard IQ Service. Service library:
stc_iqstandard.dll.

! STC_Memory_Loopback—SeeBeyond Memory Loopback IQ Service.
Service library: stciqloopback.dll.

You could require another type of Service with a given IQ (or Undefined), depending
on the e*Way with which the IQ operates. See the appropriate e*Way user’s guide for
details. For more information on IQ Services, see the e*Gate Integrator Intelligent Queue
Service Reference Guide and the SeeBeyond JMS Intelligent Queue User’s Guide.

This section explains:

! “IQ Managers” on page 137

! “Working With IQs” on page 137

! “Attaching IQs” on page 142

4.7.1 IQ Managers
In e*Gate, IQ Managers manage interfaces between IQs and e*Ways. They also do
routine operations to oversee IQs: for example, reorganizing them, archiving queue
information, and locking queues for maintenance. IQs in your system require at least
one IQ Manager.

To create IQ Managers

1 In the Navigator/Components pane, open the Components Tree as explained
under “To open all Participating Hosts’ levels” on page 125.

2 Select the Control Broker’s level.

3 On the Palette, click . The New IQ Manager Component dialog box appears.

4 Enter the desired name for a new IQ Manager and click Apply to enter it into the
system. The new name and an IQ Manager icon appear in both panes.

5 Name as many additional IQ Managers as you want, clicking Apply after you name
each one.

6 When you are finished, click OK to close the dialog box.

For more information on IQ and IQ Manager operation, configuration, and
maintenance, see the e*Gate Integrator Intelligent Queue Services Reference Guide and the
SeeBeyond JMS Intelligent Queue User’s Guide. To configure IQ Managers to attach IQs,
see “Attaching IQs” on page 142.

4.7.2 Working With IQs
Add IQs using the Enterprise Manager window. To add them, you must create and
configure them.

To create IQs

1 In the Navigator/Components pane, open the Components Tree as explained
under “To open all Participating Hosts’ levels” on page 125.

Chapter 4 Section 4.7
Setting Up e*Gate Adding Intelligent Queues

e*Gate Integrator User’s Guide 138 SeeBeyond Proprietary and Confidential

2 Select the IQ Manager’s level.

3 On the Palette, click . The New IQ Component dialog box appears.

4 Enter the desired name for a new IQ and click Apply to enter it into the system. The
new name and an IQ icon appear in both panes.

5 Name additional IQs as needed, clicking Apply after you name each one.

6 When you are finished, click OK to close the dialog box.

To configure IQs

1 In either the Navigator/Components or Editor pane, select one of the IQs you have
already named. You can select any IQ since you do not have to configure them in
any order.

2 On the toolbar or Edit menu, click Properties.

The IQ Properties dialog box appears, displaying the General tab. For example,
Figure 55 shows the general properties of the STC_Standard IQ.

Figure 55 STC_Standard IQ Properties Dialog Box, General Tab

3 As necessary, enter the following parameters under the General tab in the
properties dialog box:

" Service: For IQs managed by the SeeBeyond JMS IQ Manager, the service must
be STC_JMS_IQ; for IQs managed by the SeeBeyond Standard IQ Manager,
choose one of the available service. Most systems using the Standard IQ
Manager use its default service, STC_Standard (SeeBeyond Standard IQ
Service); the service defines the IQ (see “IQ Services” on page 136).

Note that the External or
Database tabs are active
only if the External Service
or Database check box
was selected on the IQ
Service Properties dialog
box. For more information
about these tabs, see the
e*Gate Integrator
Intelligent Queue Services
Reference Guide.

Chapter 4 Section 4.7
Setting Up e*Gate Adding Intelligent Queues

e*Gate Integrator User’s Guide 139 SeeBeyond Proprietary and Confidential

" Initialization String: An optional command string available for the
STC_Standard only. An entry here is optional. For information on valid
parameters, see the e*Gate Integrator Intelligent Queue Services Reference Guide.

" Event Type “get” interval: Enter the appropriate interval, the amount of time
(in milliseconds) between get operations when no Events are stored in the IQ.

4 When finished setting the General properties, click Apply to enter your settings
into the system.

5 Click the Advanced tab.

The properties dialog box changes (see Figure 56 on page 139), displaying
advanced properties.

Figure 56 IQ Properties Dialog Box, Advanced Tab

6 As necessary, enter the following parameters under the Advanced tab in the
properties dialog box:

" IQ Cleanup Schedule: Click Set Schedule to enter a cleanup schedule other
than the default. This action opens a dialog box, allowing you to enter a new
time and interval.

" IQ behavior: Choose one of the following options

Simple publish/subscribe

Subscriber pool

" For IQs that do not use the STC_JMS_IQ service only: If appropriate, select the
Do not store archive check box.

Chapter 4 Section 4.7
Setting Up e*Gate Adding Intelligent Queues

e*Gate Integrator User’s Guide 140 SeeBeyond Proprietary and Confidential

Note: Subscriber pooling allows you to change an Event’s status based on the activities of
any one of a number of available subscribers. For more information, see either the
JMS IQ User’s Guide (for the SeeBeyond JMS implementation) or the SeeBeyond
eBusiness Integration Suite Deployment Guide. The e*Gate Integrator
System Administration and Operations Guide has additional information on
some configuration parameters (under the explanation of the stciqutil command).

7 When finished setting the Advanced properties, click Apply to enter your settings
into the system.

Note: You only need to configure database parameters if the current IQ is using a
database. For the Database tab to be active, the Database check box must be
selected on the IQ Service Properties dialog box. For more information about these
tabs, see the e*Gate Integrator Intelligent Queue Services Reference Guide.

8 Click the Database tab.

Use the IQ Properties dialog box, Database tab, to configure database properties if
necessary. See Figure 57.

Figure 57 IQ Properties Dialog Box, Database Tab

9 As necessary, enter the following parameters under the Database tab in the
properties dialog box:

" Database name: Enter the name of the database the IQ is using.

" Schema name: Enter the name of the schema that contains the current IQ.

Chapter 4 Section 4.7
Setting Up e*Gate Adding Intelligent Queues

e*Gate Integrator User’s Guide 141 SeeBeyond Proprietary and Confidential

" Login name: Enter the login name for the Participating Host that contains the
current IQ.

" Password: Enter the password associated with the current login name given
above.

" Confirm password: Enter the same password again; you must type it in the
same way as it was in the Password text box.

" Participating Host: Select the name of the Participating Host that contains the
current IQ.

For more information on IQs and the databases they use in the e*Gate system, see
the e*Gate Integrator Intelligent Queue Service Reference Guide.

Note: You only need to configure database parameters if the current IQ is using a
database. For the External tab to be active, the External Service check box must be
selected on the IQ Service Properties dialog box. For more information about these
tabs, see the e*Gate Integrator Intelligent Queue Services Reference Guide.

10 Click the External tab.

Use the IQ Properties dialog box, External tab, to extend the capabilities of e*Gate
to allow for transactional behavior between external systems and e*Gate IQs, which
in turn allows for guaranteed delivery and nonduplication of Events. See Figure 58.

Figure 58 IQ Properties Dialog Box, External Tab

11 If there are .def files in the configs/<iqservicename> directory, the Find button is
active. Use it to locate the desired .def file. The New button is active when you are

Chapter 4 Section 4.8
Setting Up e*Gate Adding Collaborations

e*Gate Integrator User’s Guide 142 SeeBeyond Proprietary and Confidential

able to create a new configuration file; when a configuration file has already been
defined, this button becomes the Edit button instead.

Note: For more information on the behavior of this configuration file, see Chapter 9, as
this configuration file functions just like an e*Way configuration file.

12 To save any IQ configuration, click Apply to enter it into the system.

13 When finished, click OK to close the properties dialog box.

4.7.3 Attaching IQs
By default, none of the e*Gate components starts on its own. When an IQ Manager
starts, it then attaches its component IQs. When you configure an IQ Manager, you set it
to start automatically, that is, at the same time as the e*Gate system.

To configure the IQ Manager to start automatically

1 In the Navigator, select the IQ Manager.

2 On the toolbar or Edit menu, click Properties.

3 Click the Start Up tab, check the Start automatically box, and click OK.

4.8 Adding Collaborations
After you have added the necessary e*Ways, BOBs, and IQs to your e*Gate system, you
can then add its Collaborations. A Collaboration is the component within an e*Way or
BOB that performs data transformation and routing. If required, these components
transform data by executing Collaboration Rules (see “Creating Collaboration Rules
and Scripts” on page 106).

You must associate a Collaboration Rules component with each Collaboration.
Collaborations receive and process Event Types to forward the output to other e*Gate
components. This is a two-sided process:

! The Subscriber is the half of the Collaboration that continually checks for and
receives Events of known types (Event Types).

! The Publisher is the half of the Collaboration that places processed Events in an IQ
under a specific Event Type name.

This section explains:

! “Collaboration Setup” on page 143

! “Creating Collaborations” on page 143

! “Configuring Collaborations” on page 144

! “Troubleshooting Collaborations” on page 147

Chapter 4 Section 4.8
Setting Up e*Gate Adding Collaborations

e*Gate Integrator User’s Guide 143 SeeBeyond Proprietary and Confidential

4.8.1 Collaboration Setup
When you set up Collaborations, use the following rules:

! You cannot assign the same Collaboration to more than one component (e*Way or
BOB).

! You must associate one and only one Collaboration Rules component with each
Collaboration.

! Configure Collaborations in publication order. In other words: Begin configuring
the inbound Collaborations first, and then configure the Collaborations that the
previous ones publish to, and so on.

! Collaborations can subscribe to: other specified Collaborations; e*Way Connections;
all Collaborations <ANY>; or external systems <EXTERNAL>. But Collaborations
can never to IQs.

! Collaborations can publish to: IQs; e*Way Connections; or external systems.

4.8.2 Creating Collaborations
As with e*Ways, BOBs, and IQs, to add Collaborations you must first create them and
then configure them. You can create Collaborations in any order, using the Enterprise
Manager GUI.

To create Collaborations

1 In the Navigator/Components pane, open the Components Tree as explained
under “To open all Participating Hosts’ levels” on page 125, to display the Control
Broker level.

2 Select the specific e*Way or BOB where you want to assign the current
Collaboration in the Navigator/Components pane.

3 On the Palette, click . The New Collaboration Component dialog box appears.

4 Enter the desired name for a new Collaboration and click Apply to enter it into the
system.

After you have named each Collaboration, its name and a Collaboration icon
appear in the Editor pane. See Figure 59.

Chapter 4 Section 4.8
Setting Up e*Gate Adding Collaborations

e*Gate Integrator User’s Guide 144 SeeBeyond Proprietary and Confidential

Figure 59 Enterprise Manager with Collaboration

Note: The Collaboration Service, Collaboration Rules, and Initialization string
columns contain information about the Collaboration Rules you associate with the
current Collaboration. This information appears here after you configure the
Collaboration.

5 Name as many additional Collaborations as you want, clicking Apply after you
name each one.

6 When finished, click OK to close the dialog box.

4.8.3 Configuring Collaborations
Configure Collaborations in publication order as explained under “Collaboration
Setup” on page 143. To do this operation, use the Enterprise Manager GUI.

Note: Configuring Collaborations in publication order is not mandatory, but it is
recommended for ease of setup.

To configure Collaborations

1 Make sure the Navigator/Components and Editor panes display the Control Broker
level of the Components Tree.

2 In the Navigator/Components pane, select the e*Way or BOB that contains the
desired Collaboration.

Create New
Collaboration
button

Name of
Collaboration

Collaboration
Service associated
with Collaboration
Rules

Name of associated
Collaboration Rules

Name of control
file containing
initialization
parameters

Chapter 4 Section 4.8
Setting Up e*Gate Adding Collaborations

e*Gate Integrator User’s Guide 145 SeeBeyond Proprietary and Confidential

3 In the Editor pane, select the desired Collaboration.

4 On the toolbar or Edit menu, click Properties.

The Collaboration Properties dialog box appears, displaying the General (the
dialog box’s only) tab. See Figure 60 on page 146 for an example of the
Collaboration Properties dialog box with elements selected.

5 Select the desired properties for the current Collaboration as follows:

" For Collaboration Rules, select the desired Collaboration Rules component (see
“Creating Collaboration Rules and Scripts” on page 106) for the current
Collaboration. The New and Edit buttons allow you to create a new
Collaboration Rules component here or edit an existing one, using the
Collaboration Rules Editor.

Note: See Chapter 7 and Chapter 8 for explanations of how to use the Java and Monk
Collaboration Rules Editor GUIs.

" Under Subscriptions, select the subscription properties for the current
Collaboration as follows:

Click Add to make the Event Type and Source columns active pull-down
menus.

Use the menus to choose the Event Type you want the Collaboration to
subscribe to and the source of that Event Type.

" Under Publications, select the publication properties for the current
Collaboration as follows:

Click Add to make the Event Type, Destination, and Priority columns
active pull-down menus.

Use the menus to choose the Event Type you want the Collaboration to
publish, the destination for that Event Type, and a number representing the
priority (the default is 5; for complete information on Event Type priority,
see “About Event Type Priority” on page 146).

Figure 60 shows an example of the Collaboration Properties dialog box with
elements selected.

Chapter 4 Section 4.8
Setting Up e*Gate Adding Collaborations

e*Gate Integrator User’s Guide 146 SeeBeyond Proprietary and Confidential

Figure 60 Collaboration Properties Dialog Box with Selections

Click Advanced to open an additional properties dialog box, allowing you
to configure recovery, audit, and expiration properties for the current
publication setup.

6 To save any Collaboration configuration, click Apply to enter it into the system.

7 When finished configuring the current Collaboration, click OK to close the
properties dialog box.

About Event Type Priority

By default, all Event Types are assigned the same priority, 5; this causes the destination
IQ or external system processes all Events in the order they were received. However:

! If Events of a certain Event Type are urgent and you want them to “go to the head of
the line” for rush processing, set Event Type Priority to a positive integer less then 5.

! If Events of a certain Event Type can be handled with low urgency, waiting until
high-urgency and normal-urgency Events have been processed, set the Event Type
Priority to any integer greater than 5. Priority 999,999,999 is the least urgent.

All Events of the same Event Type have the same priority. The rules for retrieving and
processing prioritized Events are as follows:

1 Events of priority 1 are retrieved before all others.

2 Events of priority n are retrieved only after retrieving all Events of priority m<n.

3 Events of the same priority are retrieved in the order in which they were received.

Elements
already
selected

Pull-down
menu open

Note that you
cannot use
buttons that
are dimmed

Advanced
properties
button

Chapter 4 Section 4.9
Setting Up e*Gate Reviewing and Testing the System

e*Gate Integrator User’s Guide 147 SeeBeyond Proprietary and Confidential

4.8.4 Troubleshooting Collaborations
If you find you are unable to configure e*Gate components quickly and easily, for
example, if you cannot publish to the correct IQ or subscribe to the correct Event, one of
two things can have happened:

! You have not created all the necessary components. For example, if you are
configuring a Collaboration and cannot publish to the desired IQ, check to see
whether you have created that IQ.

! You are not configuring the Collaborations in “downstream” or publication-first
order. A Collaboration cannot subscribe to an Event Type that is not yet being
published, except for <ANY> Event Type. For the best results, always create
publishers before you create subscribers.

You can avoid the need to subscribe in publication-first order by configuring
subscribers to subscribe to <ANY> Event Type. Check your system design before you
use this option. Use this feature (or not) depending on the intent of your overall
configuration.

For more information on troubleshooting your system, see the e*Gate Integrator Alert
and Log File Reference Guide.

4.9 Reviewing and Testing the System
Before you use your new e*Gate system in production, make sure you run it in test
situations to ensure smooth and correct system operation. This section offers some basic
advice for how to begin the review and testing operation. For complete troubleshooting
procedures, see the e*Gate Integrator Alert and Log File Reference Guide.

To review your configuration, go through the entire schema and make sure that every
component is configured correctly, especially Collaborations and IQs, which are not
immediately evident in the Navigator pane.

Most e*Gate system components require configuration after creation and do not
operate until they are configured. Your e*Gate system does not run correctly until all
components are configured.

To start your schema

1 Type the following text at the command line:

stccb -rh host -rs schema -un username -up password
-ln control broker name

2 Press ENTER.

Note: For more information on the command line, see the e*Gate Integrator System
Administration and Operations Guide.

Starting the Control Broker for a schema puts the schema into operation. To confirm
that the schema is running, start the e*Gate Monitor and open the same schema.

Chapter 4 Section 4.9
Setting Up e*Gate Reviewing and Testing the System

e*Gate Integrator User’s Guide 148 SeeBeyond Proprietary and Confidential

If information on schema operation appears in the e*Gate Monitor window, the schema
is up and running.

For information on how to set up and configure the Control Broker for a schema, see
“Control Broker Setup” on page 87. For more information on the e*Gate Monitor
feature, see Chapter 10. For a complete explanation of how to use the e*Gate command
line, see the e*Gate Integrator Alert and Log File Reference Guide.

4.9.1 Post System Setup Troubleshooting
If there appears to be a problem, do the following actions:

! Double-check to make sure you have created and configured all the components as
directed in this chapter.

! Use the e*Gate Monitor to confirm that all the components are running; manually
start any that did not start correctly (see Chapter 10 for more information on the
e*Gate Monitor). For more information on starting components, see the e*Gate
Integrator System Administration and Operations Guide.

! If a component starts successfully but halts immediately, the most likely cause is
faulty configuration. Check the following components:

" Does each e*Way have an executable and a configuration file defined?

" Does each Event Type have an ETD file assigned?

" Does the appropriate Collaboration Rules component have the corresponding
Monk service assigned (if necessary), and the correct Collaboration Rules files
both created and assigned?

" If you are not using Collaboration Rules, do the Monk, Java, and/or C language
scripts you have created test out correctly and have the appropriate
Collaboration Service(s) assigned?

" Are the IQ Managers running, and did you configure all IQs correctly?

! If all the components start and stay running, the most likely problem is that the
Collaboration Rules script used in one or more e*Way Collaborations is not working
correctly. Use the Monk Test Console (see the next section) to check that you have
created these files in the right way.

! Check the appropriate log files. Log files are text files that contain a record of all
actions taken by an e*Way (or other module). For complete information on
troubleshooting using e*Gate system log files, see the e*Gate Integrator Alert and Log
File Reference Guide.

For more information on system testing and troubleshooting after development, setup,
and transition to production, see the Deployment Guide.

4.9.2 Java Interactive Debugger
The e*Gate Monitor provides access to an in-schema debugging tool for Multi-Mode
e*Ways that allows you to control execution, set and clear breakpoints, go to a specific
statement, step through code, stop in a specific class or method, break on a specific

Chapter 4 Section 4.9
Setting Up e*Gate Reviewing and Testing the System

e*Gate Integrator User’s Guide 149 SeeBeyond Proprietary and Confidential

exception, and so forth. It can debug multiple Collaborations running in different
threads. For complete information, see “e*Gate Java Debugger” on page 505.

4.9.3 Monk Test Console
The Monk Test Console enables you to test Monk functions and Collaboration Rules
scripts directly.

Note: Using this feature correctly can require some knowledge of Monk programming. See
the Monk Developer’s Reference for details.

To access the Monk Test Console

In Enterprise Manager, on the Tools menu, click Monk Test Console. The Monk
Test Console window appears.

Monk Test ConsoleTabs

The Monk Test Console window contains the following tabs:

! Setup: Specifies the name of the file that contains the script or function to be tested.

! Input: Specifies the source of any required input data.

! Output: Displays the output of the script/function you are testing.

Chapter 4 Section 4.9
Setting Up e*Gate Reviewing and Testing the System

e*Gate Integrator User’s Guide 150 SeeBeyond Proprietary and Confidential

By default, the Setup tab window displays first. Figure 61 below through Figure 63 on
page 152 show the Monk Test Console window, using one figure for each of the three
window tabs.

Figure 61 Monk Test Console, Setup Tab

Note: Names appear on the control buttons when their functions become available.

Run Stop Submit Next Continue Close Help

Toolbars

Control
buttons

Chapter 4 Section 4.9
Setting Up e*Gate Reviewing and Testing the System

e*Gate Integrator User’s Guide 151 SeeBeyond Proprietary and Confidential

Figure 62 Monk Test Console, Input Tab

Toolbar

Additional
toolbar
buttons are
available
when you
select this
option.

Chapter 4 Section 4.9
Setting Up e*Gate Reviewing and Testing the System

e*Gate Integrator User’s Guide 152 SeeBeyond Proprietary and Confidential

Figure 63 Monk Test Console, Output Tab

Basic Controls

The Monk Test Console window contains the control buttons (bottom row) explained
in Table 12.

Table 12 Monk Test Console Control Buttons

Button Function

Run Runs the named function from the specified script.

Stop Stops the function's execution.

Submit Submits the text in the Output tab's Debug pane to the Monk engine for immediate
execution. Results will appear in the Output pane. This control is available only if a
(break) function is active within the script being tested.

Next After a (break) function is called, executes the next line of instructions in the script.
This control is available only if a (break) function is active within the script being
tested.

Output
pane

Debug
pane

Trace pane

Chapter 4 Section 4.9
Setting Up e*Gate Reviewing and Testing the System

e*Gate Integrator User’s Guide 153 SeeBeyond Proprietary and Confidential

The Setup and Input tabs (when Input Data Files is selected) contain four additional
toolbar buttons explained in Table 13.

The Input tab has two additional buttons that become available when you select the
User Data option. These buttons are explained in Table 14.

Continue After a (break) function is called, resumes execution until the next (break) function
or until the function ends. This control is available only if a (break) function is active
within the script being tested.

Close Closes the Monk Test Console.

Help Opens the Help window and runs the Help system.

Table 13 Monk Test Console Toolbar

Button Function

Adds a file to the list. Click Find (displays a Select a <Type> File dialog box) to select
the file from the Registry or click Edit to edit the file in a text editor. Editing is
available from the Input tab only.

Deletes the selected file from the current list.

Moves the selected file one position up in the current list.

Moves the selected file one position down in the current list.

Table 14 Monk Test Console Input/User Data Buttons

Button Function

Opens a text file and inserts its contents into the editable area.

Saves the file to the local system (not the Registry). If you want to commit the saved
file to the Registry, you must do so manually.

Table 12 Monk Test Console Control Buttons (Continued)

Button Function

Chapter 4 Section 4.9
Setting Up e*Gate Reviewing and Testing the System

e*Gate Integrator User’s Guide 154 SeeBeyond Proprietary and Confidential

Setup Features

Use the Monk Test Console Setup tab features as follows:

! Input Script: Click Find to select the Collaboration Rules file to test, or click Clear
to clear the file name selection. The file being tested must be located in the e*Gate
Registry.

Find the needed files in the following folder:

\monk_scripts\common

Use files with the extensions .ssc and .tsc. Highlight the file and click Select.

! Dependency Files: Use the toolbar buttons to add any files that the file being tested
depends on to function correctly: for example, other Collaboration Rules files, files
containing Monk functions, or text files. All dependent files must be located in the
e*Gate Registry. See Table 13 on page 153 for information on how to add a file to
this list.

! Pre-function file to run: There can be functions that you must run before the file is
tested. In such cases, under this option, do one of the following actions:

" Find: Click to select the file that contains these functions.

" Edit: Click to edit the file in Notepad (the default external editor).

" Clear: Click to clear the file name selection.

Find the needed files in the following folder:

\monk_scripts\common

Use files with the extensions .ssc and .tsc. Highlight the file and click Select.

Function Name: Enter the name of the Monk function to test. e*Gate defaults assume
that the name of the function is the same as the Collaboration Rules file name. If the
function name is different, enter the correct function name.

Function Parameters: If the function requires any additional arguments or parameters,
use this option as follows:

1 Add a new field either by clicking or by pressing ENTER.

2 Double-click the field to edit it. You must enter all parameters inside double
quotation marks (" ").

Note: Use the toolbar buttons (see Table 13 on page 153) to manipulate these elements.

3 Press ENTER or select a different field to return to the selection mode.

After Finishing Setup

After you have entered all information required under the Setup tab, click the Input tab
to define the input for the file or function. Also, you can go to the Output tab to run the
test and to view its results.

Chapter 4 Section 4.9
Setting Up e*Gate Reviewing and Testing the System

e*Gate Integrator User’s Guide 155 SeeBeyond Proprietary and Confidential

Input Features

The Input tab selects the source of input for the function specified under the Setup tab.
To use the Monk Test Console Input tab features, do either of the following actions:

! Select Input Data Files to add data files to the test schema. Then, use the toolbar
buttons (see Table 13 on page 153) to add the files as follows:

" Find selects a file from the Registry.

" Edit modifies the file in the default text editor.

! Select User Data to enter your input manually.

When you are finished with the previous operation, select the Output tab to run the test
and view the results.

Output Features

The Output tab displays the output of the script/function specified under the Setup
tab, using the data specified under the Input tab. The Output tab has the following
panes:

! Output displays the output of the script/function being run (stdout messages).

! Debug enables you to enter information manually during script execution once the
script executes a (break) function. You can enter multiple lines of Monk code within
the Debug pane. To submit the contents of the Debug pane to the Monk engine,
click Submit.

! Trace displays error messages and other warnings (stderr messages).

For detailed information on what constitutes appropriate test outputs, see Chapter 8.

To execute the script/function specified under the Setup tab

Click Run, then use the appropriate toolbar buttons. See Table 13 on page 153 for an
explanation of these buttons.

Note: Run becomes active after you populate the Input Script field with the script you are
going to test.

To log the contents of either the Output or Trace panes

Do one of the following actions:

! Click the Log to File check box directly above the pane whose contents you want to
log then specify the path and name of the file in the nearby text box.

Chapter 4 Section 4.9
Setting Up e*Gate Reviewing and Testing the System

e*Gate Integrator User’s Guide 156 SeeBeyond Proprietary and Confidential

! Click Find to browse for and select a specific file.

If you have already run the test, you must run it again to send the output to the
specified file.

Note: If you use the (display) Monk function in your script, the output of the function
appears in the Output pane. If you use the (display-error) Monk function, the
output of the function appears in the Trace pane.

For more information on the Monk language, see the Monk Developer’s Reference.

e*Gate Integrator User’s Guide 157 SeeBeyond Proprietary and Confidential

Chapter 5

Event Type Definitions (ETDs)

5.1 About This Chapter
The e*Gate system allows you to create Event Type Definitions (ETDs) in either the Java
or Monk programming languages. For details about how e*Gate processes Monk Event
Types and ETDs, see Chapter 6 “Monk Event Type Definition Editor” on page 204.

This chapter consists of the following sections:

! A brief overview of ETDs—what an Event Type Definition is and how it fits into the
e*Gate system.

! A detailed description of the ETD Editor—its features, its graphical user interface
(GUI), and the files it uses and creates.

! Basic procedures that tell you how to:

" Create a new standard ETD.

" Convert a Monk ETD to a Java-enabled standard ETD.

" Build a new ETD by converting a file from a source outside e*Gate.

" Open, save, and rename an ETD.

" Use internal and external templates.

" Compile an ETD.

" Troubleshoot errors and warnings from the compiler.

" Test an ETD.

" Promote the ETD from Sandbox to run time.

" Work with global and local delimiters.

! Explanations of the properties of each parent node and field of the standard ETD.

Note: For an explanation of the methods associated with the standard ETD, see Chapter 7
“Java Collaboration Rules” on page 260.

Chapter 5 Section 5.2
Event Type Definitions (ETDs) Learning About ETDs

e*Gate Integrator User’s Guide 158 SeeBeyond Proprietary and Confidential

5.2 Learning About ETDs
ETDs contain the formats for all Events (packets of data) that are transported and
transformed by the e*Gate system. These Events include incoming and outgoing data
as well as all data transformed and/or transported within e*Gate.

You can create specific ETDs for Event Types that pass through the e*Gate environment,
including standard formats like HL7, X12, UN/EDIFACT, or proprietary formats.
Once you know all the kinds of ETDs you need for your system, you can create them
according to e*Gate’s requirements, or you can use a Java ETD Library add-on.

Note: e*Gate add-on features contain ready-made templates you can use in configuring
your system. For add-ons, see the appropriate user’s guide for information.

5.2.1 What Is an ETD?
An ETD is a structural representation of an Event; that is, the blueprint of an Event.
ETDs have a treelike structure, and are composed of elements called nodes.

Terminology: Parent, Child, Sibling, Root, and Leaf Nodes

Any subnode of a given node is called a child node, and the given node, in turn, is the
child’s parent. Sibling nodes are nodes on the same level under the same parent node.
A descendant is the child of [a child of [...]] a child; an ancestor is the parent of [a parent
of [...]] a parent.

A root node has no parent; a leaf node has no children. Fields and methods are always
leaf nodes.

ETDs can be used to represent the following formats:

! Fixed or Delimited (or any combination of both)

! Objects available via APIs

! Database tables, stored procedures, or prepared statements

In a fixed-length ETD, the length of the data will always be the same. The position of
data is described by byte offset and length.

In a delimited ETD, the length of the data varies, and it is not described by byte offset
and length. Information is separated by a pre-determined delimiter setup within the
properties of the ETD. There can be multiple delimiters in an Event, each representing
an additional level of parsing.

An ETD has the following structure:

! The root node is the highest node in the tree structure. This node represents the
entire Event. It may have one or more child notes, but can never have sibling nodes
or be repeating. The properties of the root node cannot be edited (except its name).

! A subnode is the child of exactly one root node or subnode, and can itself be a
parent node and/or a sibling node. Parsing instructions for each node are defined
in the subnodes. Subnode properties can be edited in the Properties pane of the ETD
Editor.

Chapter 5 Section 5.3
Event Type Definitions (ETDs) ETD Editor Overview

e*Gate Integrator User’s Guide 159 SeeBeyond Proprietary and Confidential

5.2.2 How Does e*Gate Use ETDs?
ETDs serve the following important functions in the e*Gate system:

! e*Gate uses ETDs to parse, validate, and (if necessary) transform Events.

! Event Types and ETDs also contain the instructions e*Gate uses to identify Events.
You base ETDs on individual Event Type specifications, and they become the
foundation of e*Gate data processing.

! A major advantage of ETDs is their reusability. If there are formats that recur in
many of your Events, you can create definitions for those formats and use them as
templates in other ETDs.

5.2.3 Java-Enabled ETDs
Using Java-Enabled ETDs (.xsc files), you create and modify Java Collaboration Rules
using a simple GUI to manipulate the data structures using standard methods in a
widely known language. This in turn unlocks the ability to interface with Java-based or
Java-enabled subsystems such as the SeeBeyond JMS IQ Manager.

5.2.4 Monk ETDs
ETDs that are purely Monk and are thus not Java-enabled—in other words, .ssc files—
are still supported; see Chapter 6 Monk Event Type Definition Editor on page 204.

5.3 ETD Editor Overview
The ETD Editor is the graphical user interface (GUI) for creating and modifying Java-
enabled ETDs.

Caution: While you are running a Multi-Mode e*Way, do not use the same machine to edit
any ETD involved in the e*Way—if you do, you will be unable to save the ETD
changes and unable to use normal methods to halt either the Editor or the e*Way.

5.3.1 Feature Overview
The ETD Editor provides the following features:

! ETD Builder wizards that automate creation of Java-enabled ETD (.xsc files).

! Ability to work with Java-enabled ETDs and to convert Monk ETDs (.ssc files).

! Ability to see all standard ETD methods and their properties.

! Side-branching tree layout that allows you to simultaneously view both the entire
tree structure and the properties of the nodes, fields, and methods in the structure.

! Simple one-click creation of internal and external (read-only) templates.

! Ability to drag-and-drop templates or nodes.

Chapter 5 Section 5.3
Event Type Definitions (ETDs) ETD Editor Overview

e*Gate Integrator User’s Guide 160 SeeBeyond Proprietary and Confidential

5.3.2 GUI Overview
In addition to the main menu and the accompanying toolbar, the ETD Editor has five
panes—the Event Type, Internal Templates, External Templates, Event Type Definition,
and Properties panes. Figure 64 shows the names and locations of the different areas of
the GUI.

Figure 64 ETD Editor GUI Map

Title bar

Menu bar

Toolbar

Event Type
pane

Internal
Templates
pane

External
Templates
pane

Event Type
Definition (ETD)
pane

Properties
pane

Chapter 5 Section 5.3
Event Type Definitions (ETDs) ETD Editor Overview

e*Gate Integrator User’s Guide 161 SeeBeyond Proprietary and Confidential

ETD Editor GUI Areas

Title Bar

Displays the name of the .xsc file associated with the current ETD. When the ETD has
unsaved changes to it, the title bar displays (Sandbox - Modified) after the file name.

Menu Bar

Contains menu commands; see Main Menu on page 162.

Toolbar

Contains shortcuts for certain menu commands; see Toolbar on page 163.

Event Type Pane

Displays the name of the current Event Type. For standard ETDs, this is always the
same as the name of the root node.

Internal Templates Pane

Displays the names of all internal templates currently known to the current Event Type.
You can right-click this pane add, delete, or rename internal templates, and you can
drag internal templates under nodes in the ETD pane.

External Templates Pane

Displays the names of all external templates currently known to the current Event Type.
You can right-click this pane to import or delete external templates, and you can drag
external templates under nodes in the ETD pane.

Event Type Definition (ETD) Pane

Displays the tree structure for the Event Type or currently selected template. You can
right-click a node in this pane to add, delete, or rename elements or fields, and you can
expand or collapse a parent node.

Properties Pane

Displays property names and values for the currently selected element, field, or
method. You can edit values by clicking the rightmost cell and then either entering a
value or selecting from a drop-down list.

Chapter 5 Section 5.3
Event Type Definitions (ETDs) ETD Editor Overview

e*Gate Integrator User’s Guide 162 SeeBeyond Proprietary and Confidential

5.3.3 Main Menu
Table 15 describes the commands available from the main menu of the ETD Editor.

Table 15 ETD Editor Menus and Commands (Java)

Menu Command Description

File
New

Opens the New Event Type Definition dialog box, presenting
you with a choice of ETD Builder wizards you can use to
build a new ETD. See “Building Java-Enabled ETDs” on
page 164.

Open
Opens the Open dialog box, which allows you to locate and
select any .xsc file that has been saved to either your
Sandbox or the run-time environment for your schema. See
“Opening, Saving, and Renaming ETDs” on page 175.

Open From
Default Schema

Opens the Open dialog box, allowing you to navigate to and
select any .xsc file contained in the default schema, which
resides in the Registry repository. See “Opening, Saving,
and Renaming ETDs” on page 175.

Save
Regenerates the .xsc file for the current ETD without
compiling it.

Save As Opens the Save dialog box, allowing you to generate a new
.xsc files for the current ETD and save it under a different
name without compiling it.

Compile And
Save

Runs the Java compiler and, if the compile is successful,
creates an .ssc file for the current ETD. See “Compiling an
ETD” on page 182.

Run Test
Opens the Test Dialog dialog box, allowing you to test how
well the ETD parses data from a file you specify.
See “Validating an ETD” on page 183.

Promote to Run
Time

Moves the current ETD from the sandbox environment to
the run-time environment. See “Promoting to Run Time”
on page 185.

Close Closes the Editor.

Edit
Delimiters

Opens the Global Delimiters dialog box, allowing you to
add, delete, and modify the properties of the delimiters
used in this ETD. See “Global and Local Delimiters” on
page 186.

Java Properties Opens the Java Properties dialog box, allowing you view the
class, code editability, and .jar file name and to view or edit
the package name and comments for this ETD. See
“Viewing and Editing Java Properties” on page 176.

Help
Contents

Opens the Help browser with the Contents tab showing.

About Displays the copyright, version, and build information, a
copy of the license agreement, and a command button
(System Info) that allows you view system parameters.

Chapter 5 Section 5.4
Event Type Definitions (ETDs) Before Using the ETD Editor

e*Gate Integrator User’s Guide 163 SeeBeyond Proprietary and Confidential

5.3.4 Toolbar
The buttons on the toolbar are shortcuts for commands that can be found on the main
menu. Table 16 gives a brief description of what each button does.

Table 16 Toolbar Buttons

5.4 Before Using the ETD Editor
Before you start using the ETD Editor, consider the following Event Type properties:

! Specifications: All your Event Type specifications must be complete and correct
before the Event Types you define can pass through the e*Gate environment.

! Level of Detail: In order to identify and translate Events, the e*Gate system, at a
minimum, requires you to define ETDs at the root-node level. However, you must
define most Events down to the node level assigned to the data field. This practice
allows you to specify any system-required Event identification and/or
transformation instructions needed later on.

! Amount of Detail: When you define an Event at a particular node level, it is
desirable to define that level completely. If you do not define elements of any Event
Type adequately, the system is unable to parse Events represented by that type, and
these Events fail to pass through the e*Gate network correctly.

Important: The Java ETD Editor does not validate your Events completely. It is up to you to
make sure that you build ETD Trees using valid Event element types and in
accordance with your predefined Event Type specifications.

Button Description

Opens the New Event Type Definition dialog box, presenting
you with a choice of ETD Builder wizards you can use to build a
new ETD. Same as the New command on the File menu.

Opens the Open dialog box, allowing you to navigate to and
select an .xsc file associated with the Java Collaboration Rule
you want to edit. Same as the Open command on the File menu.

Regenerates the .xsc file for the current ETD. Same as the Save
command on the File menu.

Opens the Global Delimiters dialog box, allowing you to add,
delete, and modify the properties of the delimiters used in this
ETD. Same as the Delimiters command on the Edit menu.

Opens the Test Dialog dialog box, allowing you to test how well
the ETD parses data from a file you specify. Same as the Run Test
command on the File menu.

Opens the Help browser with the Contents tab showing. Same
as the Contents command on the Help menu.

Chapter 5 Section 5.5
Event Type Definitions (ETDs) Building Java-Enabled ETDs

e*Gate Integrator User’s Guide 164 SeeBeyond Proprietary and Confidential

5.5 Building Java-Enabled ETDs

About ETD Types

All Java-enabled ETDs are of file type .xsc and can be displayed in the ETD Editor.
However, the Editor distinguishes between standard ETDs and imported ETDs:

! Standard ETDs are native to e*Gate. You can create a standard ETD from scratch
using the Standard ETD Wizard, or by converting an existing Monk ETD (.ssc file)
using the SSC Wizard. Standard ETDs are read/write—you can add or delete nodes
or edit their properties, and you can work with internal and external templates.
For any standard ETD, the value of its type property is SSC.

! Imported ETDs are based on formats or standards external to e*Gate, such as .dtd
(Document Type Definition) files or .xsd (XML Schema Definition) files, including
proprietary formats for SAP BAPI and IDoc. This type of ETD can only be built
from the appropriate ETD library or using the appropriate ETD Builder wizard, and
the resulting ETD is read-only—you can view its structure and properties, but
(with some rare exceptions), you cannot modify it in any way. The type property of
an imported ETD must be something other than SSC; examples include EMAIL,
HTTP, FTPFile, X12-4020, c1mxpcconfig, and so forth. As an example, a simple
XSD-based ETD is illustrated in Figure 77 on page 184. For information on a
particular ETD library, refer to the user’s guide for that library.

Note: ETDs can only reference templates of their own type—a standard ETD can only
reference a standard ETD, a DB ETD can only reference a DB ETD, and so forth.

The term Complex ETD, or API-based ETD, is sometimes used to refer to non-native
ETDs that have extensive APIs for communicating with external systems; by contrast,
standard ETDs and simple imported ETDs are called “messageable” or “marshallable”
because they can be “marshalled” or flattened into a flat nonhierarchical structure.

Package Names, Node Names, and .jar File Names

When an ETD Builder wizard requires you to enter a package name, it is prompting
you for the argument to be passed to the package declaration in the Java source code.
Packages help you organize your programs, and they prevent conflicts between names
in other ETDs, Collaborations, or even other vendor or custom Java objects.

When you compile and save your ETD, you create a single .jar file (Java archive file)
whose file name is the same as the .xsc file name. The .jar file contains .java (Java source
code) and .class (executable Java bytestream) files whose names correspond to the root
node names in the ETD; if the ETD contains no internal templates, it will have only one
root node name. Root node names can never contain multibyte characters, even if used
on a multibyte operating systems.

Also see About Package Names on page 174 and Viewing and Editing Java Properties
on page 176.

Chapter 5 Section 5.5
Event Type Definitions (ETDs) Building Java-Enabled ETDs

e*Gate Integrator User’s Guide 165 SeeBeyond Proprietary and Confidential

5.5.1 Starting the ETD Editor
To start the ETD Editor

1 In Enterprise Manager, open the schema whose ETDs you want to add or modify.

2 On the Options menu, click Default Editor and, if necessary, set it to Java.

3 On the main toolbar or Tools menu, click ETD Editor .

The ETD Editor opens but is blank, since no Event Type or ETD has been defined.

5.5.2 Creating a New Standard ETD
To create a new Java-enabled ETD from scratch, use the Standard ETD Wizard.

To create a Java-enabled ETD using the Standard ETD Wizard

1 On the toolbar or File menu of the ETD Editor, click New .

The New Event Type Definition dialog box displays the ETD Builder wizards; see
Figure 65.

Figure 65 New Event Type Definition Dialog Box

Note: The contents of this dialog box depend on the products you have installed.

2 Double-click the Standard ETD Wizard, read the Standard ETD Wizard -
Introduction to be sure you meet the requirements, and then click Next to continue
with Standard ETD Wizard - Step 1; see Figure 66.

Chapter 5 Section 5.5
Event Type Definitions (ETDs) Building Java-Enabled ETDs

e*Gate Integrator User’s Guide 166 SeeBeyond Proprietary and Confidential

Figure 66 Standard ETD Wizard - Step 1

3 Enter a root node name and package name for the container in which the wizard
will place the generated Java classes, and then click Next. For information on node
names and package names, see Working With Java-Enabled ETDs on page 174.

4 Review the information for accuracy, and then click Finish.

The Editor creates a new ETD with the specified root and package names. See Figure 67.

Figure 67 Newly Created Standard ETD

You can now modify this ETD as needed. For example, you can set global and local
delimiters, add elements and fields, edit the properties of elements and fields, add and
manipulate internal templates, and add external templates.

Chapter 5 Section 5.5
Event Type Definitions (ETDs) Building Java-Enabled ETDs

e*Gate Integrator User’s Guide 167 SeeBeyond Proprietary and Confidential

5.5.3 Converting a Monk ETD to a Java-enabled Standard ETD

To take advantage of Java features, such as the SeeBeyond JMS messaging subsystem,
you can convert existing Monk ETDs (.ssc files) to Java-enabled ETDs (.xsc files) using
the SSC Wizard.

Important: The following limitations apply to .ssc files being converted to .xsc files:

" Encoded length for fixed nodes of SSC-based ETDs is currently not supported.

" The longest fully qualified path+nodename cannot exceed 255 characters.
A “fully qualified path” means packagename + iterated{path+filename}.
For example, you cannot convert an SSC that has more than six levels if it uses
40-character names at each level. (When an ETD references an internal template,
the template’s internal does count against the 255 total, but its node name does).

" The wizard cannot directly import .ssc files that use external templates until all
such templates have been compiled and exist as .xsc files in the etd\ folder.
For nested templates, compile the lowest (terminal) templates first and iterate
upwards through the hierarchy.

" You cannot use a non–.ssc-based .xsc file as an internal template in an .xsc file
that was converted from an .ssc.

To create a Java-enabled ETD using the SSC Wizard

1 On the toolbar or File menu of the ETD Editor, click New to display the ETD
Builder wizards. See Figure 68.

Figure 68 ETD Builder Wizards

Chapter 5 Section 5.5
Event Type Definitions (ETDs) Building Java-Enabled ETDs

e*Gate Integrator User’s Guide 168 SeeBeyond Proprietary and Confidential

2 Scroll down to the SSC Wizard and double-click it; read the SSC Wizard -
Introduction to be sure you meet the requirements; and then click Next to continue
with SSC Wizard - Step 1. See Figure 69.

Figure 69 SSC Wizard - Step 1

3 Enter a package name for the container in which the wizard will place the generated
Java classes. For information on package names, see About Package Names on
page 174.

4 Enter the file name (or click Browse to locate and select the file name) of the Monk
.ssc file you want to convert to a Java-enabled .xsc file.

5 Click Next, review the information for accuracy, and then click Finish.

The Editor displays the converted ETD; see Figure 70.

Chapter 5 Section 5.5
Event Type Definitions (ETDs) Building Java-Enabled ETDs

e*Gate Integrator User’s Guide 169 SeeBeyond Proprietary and Confidential

Figure 70 Result of Converting a Monk ETD Using the SSC Wizard

You can now modify this ETD as needed. For example, you can set global delimiters,
add elements and fields, edit the properties of elements and fields, add and manipulate
internal templates, and add external templates. Compiling the ETD generates .xsc, .ssc,
and .jar files containing the changes you made using the Editor.

Chapter 5 Section 5.5
Event Type Definitions (ETDs) Building Java-Enabled ETDs

e*Gate Integrator User’s Guide 170 SeeBeyond Proprietary and Confidential

5.5.4 Building an Imported ETD
When you build a new ETD by converting a file from a source outside e*Gate, the ETD
you create is read-only (with rare exceptions). You can use read-only ETDs as source
and/or destination Event Types in Collaboration Rules just as you can a standard ETD,
and you can use read-only ETDs as external templates for a standard ETD, but you
cannot make or save any changes to the structure or elements of a read-only ETD.

You use an ETD Builder wizard to create an ETD (*.xsc file) that captures all data in the
original data source. Depending on the external source, however, the topology of the
mapping may be distorted—for example, when building an ETD from a DTD that has
no clearly defined root, the wizard tries to optimize the use of internal templates, and
may not necessarily retain the root name supplied to it.

For information on using the ETD Builder wizards for any of the following, refer to the
corresponding e*Way User’s Guide, ETD Library User’s Guide, or Toolkit. For example:

! BAPI Wizard—See the e*Way Intelligent Adapter for SAP (BAPI) User’s Guide.

! COM/DCOM Wizard—See the e*Way Intelligent Adapter for COM/DCOM User’s
Guide.

! DB Wizard—See the appropriate e*Way User’s Guide for the applicable database
management system (Oracle, Sybase, DB2 Universal Database, and so on).

! DTD Wizard—See the XML Toolkit.

! IDoc Wizard—See the e*Way Intelligent Adapter for SAP (ALE) User’s Guide and the
e*Way Intelligent Adapter for SAP (EDI) User’s Guide.

! Infranet Flist Wizard—See the e*Way Intelligent Adapter for Portal User's Guide.

! Infranet Opcode Wizard—See the e*Way Intelligent Adapter for Portal User's Guide.

! Jacada Wizard—See the e*Way Intelligent Adapter for Jacada Enterprise/Access User’s
Guide.

! JDE Wizard—See the e*Way Intelligent Adapter for JDE OneWorld GenJava User’s
Guide.

! OracleFin Wizard—See the e*Way Intelligent Adapter for Oracle Financials User's
Guide.

! SAG Wizard—See the e*Way Intelligent Adapter for ADABAS Natural User’s Guide.

! SOAP Wizard—See the SOAP e*Way Intelligent Adapter User’s Guide.

! XSD Wizard—See the XML Toolkit.

Using the SEF Wizard

The Standard Exchange Format (SEF) is an open standard maintained by the Foresight
Corporation and used to exchange EDI implementation guidelines in a machine-
readable form. SEF documentation can be obtained through the following URL:

http://www.foresightcorp.com

Chapter 5 Section 5.5
Event Type Definitions (ETDs) Building Java-Enabled ETDs

e*Gate Integrator User’s Guide 171 SeeBeyond Proprietary and Confidential

To create a read-only Java-enabled ETD using the SEF Wizard

1 On the toolbar or File menu of the ETD Editor, click New .

The New Event Type Definition dialog box displays the ETD Builder wizards.
See Figure 71.

Figure 71 ETD Builder Wizards

2 Scroll down to the SEF Wizard and double-click it, read the SEF Wizard
Introduction dialog box to be sure you meet the requirements, and then click Next
to continue with SEF Wizard - Step 1; see Figure 72.

Figure 72 SEF Wizard - Step 1

3 Enter the file name (or click Browse to navigate to and select the file name) of the
the .sef file you want to convert to an ETD.

Chapter 5 Section 5.5
Event Type Definitions (ETDs) Building Java-Enabled ETDs

e*Gate Integrator User’s Guide 172 SeeBeyond Proprietary and Confidential

4 Optionally, enter the file name (or click Browse to navigate to and select the file
name) of the Set Description file you want to associate with the ETD.

This file would contain a description of the transaction sets, mapping three-digit
codes to meaningful phrases.

5 Optionally, enter the file name (or click Browse to navigate to and select the file
name) of the SEC Description file you want to associate with the ETD.

This file would contain a description of the Segments, Elements, and Composites
that make up a transaction

6 For the files specified in steps 4 or 5, if you want the ETD nodes named using the
descriptive fields, keep the Yes option button setting; otherwise, click No.

If you click No but you specified file names in steps 4 or 5, then the set descriptions
or SEC descriptions are preserved as comment properties of the individual nodes.

7 Click Next, review the information for accuracy, and then click Finish.

The Editor displays the converted ETD. See Figure 73.

Chapter 5 Section 5.5
Event Type Definitions (ETDs) Building Java-Enabled ETDs

e*Gate Integrator User’s Guide 173 SeeBeyond Proprietary and Confidential

Figure 73 Result of Converting an SEF File Using the SEF Wizard

Chapter 5 Section 5.6
Event Type Definitions (ETDs) Working With Java-Enabled ETDs

e*Gate Integrator User’s Guide 174 SeeBeyond Proprietary and Confidential

5.6 Working With Java-Enabled ETDs

About Package Names

Package names are case-sensitive and must consist only of alphanumeric characters
(a-z, A-Z, 0-9) and optional dot delimiters. This restriction applies even on multibyte
operating systems. Each delimited segment must begin with an alphabetic character
(a-z, A-Z), and no delimited segment can be a Java keyword. For example, com.stc.x12
and com.stc.X12 are distinct legal package names; com.0abc, $temp, com.stc.else, and
_abc are all illegal package names.

Upper-ASCII characters x'80' through x'9A' [ÇüéâäàåçêëèïîìÄÅÉæÆôöòûùÿÖÜ] and
x'A0' through x'A7' [áíóúñÑªº] are also permitted in package names. The package name
must be different from any of the node names.

About Node Names

When you create ETDs, you give each node a name that becomes its own identifier in
the ETD Tree. This name becomes the label for the node in the ETD Tree. A node name
is a Java identifier: It cannot be a Java keyword or BooleanLiteral, its first character must
be a Java letter, and each of its zero or more subsequent characters must be a Java letter-
or-digit (any letter or digit drawn from the entire Unicode character set, although ETDs
whose node names contain multibyte characters can only be compiled on a multibyte
operating system). Also, a node name cannot be a DOS device name (such as CON,
PRN, AUX, CLOCK$, NUL, COM1, COM2, ..., COM9, LPT1, ..., LPT9).

A node name cannot be the same as the package name, and cannot match the name of
any of its sibling nodes. (All root nodes within an Event Type—in other words, the root
nodes of the Event Type and each of its internal and external templates—are siblings.)

Node names are case sensitive—in other words, a node named myNode is different
from a node named MyNode. Also, although multibyte characters are permissible in
node names, such .xsc files can only be compiled in a multibyte operating system.

Create each name for your ease of reference. For your convenience, do not use more
than 40 characters in a single node name. It is desirable to make each root node name
unique within a schema. This ensures that you do not confuse one ETD with another.
If you want to access nodes by name, you must give unique names to all the nodes
within a given level.

Note: Use naming conventions that you can easily recognize later on. For example, if you
name an Event Type with et_Sample or an ETD as etd_Sample, both the Event
Type and the ETD are clearly marked as belonging to the Event named Sample.

Chapter 5 Section 5.6
Event Type Definitions (ETDs) Working With Java-Enabled ETDs

e*Gate Integrator User’s Guide 175 SeeBeyond Proprietary and Confidential

5.6.1 Basic ETD Procedures

Caution: Before using a Participating Host to open any ETD, shut down all of that Host’s
components (BOBs or e*Ways) that might be using the ETD. Trying to edit an
ETD on the same machine that is using the ETD in a running e*Gate module can
destabilize both the Editor and the module.

Opening, Saving, and Renaming ETDs

You can open an existing ETD (.xsc file) even if it has not yet been compiled.

! Use the Open menu command or toolbar button to locate and open an ETD that
already exists in your Sandbox or run-time environment. This operation loads the
ETD and associated files into your Sandbox.

! Use the Open from Default Schema menu command to open an ETD that exists in
the default schema (located on the Server in the Registry repository). This allows
you to browse the default version of the ETD in read-only mode. To create a local
copy for editing or promotion to run time, you must first save it to a location in your
own Sandbox.

Note: The Editor opens only one ETD at a time. If you have an ETD open and try to open
another, you are prompted to save or discard unsaved changes in the current ETD.

To open an ETD that resides in your Sandbox or run-time environment

1 On the toolbar or File menu, click Open .

2 In the Open dialog box, locate the .xsc file you want to load, and then click Open.

To open an ETD that resides in the default schema

1 On the File menu, click Open From Default Schema.

2 In the Open dialog box, locate the .xsc file you want to load, and then click Open.

The default schema’s ETD is displayed in read-only mode. You cannot edit,
compile, or promote this ETD unless you first save a local copy of it to your
Sandbox.

To save an ETD under a new name or location in your Sandbox

1 On the File menu, click Save As.

2 In the Save dialog box, navigate to the location where you want to save this .xsc file,
enter the file name you want (do not change the file type), and click Save.

To save your work in progress on an ETD

! On the toolbar or File menu, click Save .

Chapter 5 Section 5.6
Event Type Definitions (ETDs) Working With Java-Enabled ETDs

e*Gate Integrator User’s Guide 176 SeeBeyond Proprietary and Confidential

Viewing and Editing Java Properties

ETDs have the following Java properties:

! .jar file name—When you compile and save your ETD, you create a single .jar file
(Java archive file) whose file name is the same as the .xsc file name. The .jar file
contains .java (Java source code) and .class (executable Java bytestream) files whose
names correspond to the root node names in the ETD.

! package name—When you create an ETD, you must supply a package name; this
becomes the package declaration in the Java source code, and helps prevent
conflicts between names in other ETDs, Collaborations, or even other vendor or
custom Java objects.

! class name—The .class name is the same as the file name under which you saved
the ETD.

! code available flag—Indicates whether the .xsc file is available for use. When an
editable ETD is undergoing modification, its code remains unavailable (code=false)
until the ETD is recompiled or the changes are canceled.

! Java-property comments—You can associate a Java properties comment with the
ETD; note that this is a comment on the Java properties, and is not the same as the
comment associated with the ETD itself or with the ETD’s root node.

To view the Java properties of an ETD or to edit its comment field

1 On the Edit menu, click Java Properties.

The Java Properties dialog box appears. See Figure 74.

Figure 74 The Java Properties Dialog Box

2 To view the entirety of a multi-line comment, or to modify it, click the . . . button.

The Comment Property dialog appears. See Figure 75.

Chapter 5 Section 5.6
Event Type Definitions (ETDs) Working With Java-Enabled ETDs

e*Gate Integrator User’s Guide 177 SeeBeyond Proprietary and Confidential

Figure 75 The Comment Property Dialog Box

Working with Elements and Fields

The Event Type Definition pane provides a tree-like graphical of the elements (parent
nodes) and fields (leaf nodes) in your ETD and allows you to add, delete, move, and
modify the properties of the various nodes.

To expand or collapse an element (parent node)

! To expand a collapsed parent node, click .

All immediate children of the selected parent node are displayed directly beneath it.

! To collapse an expanded parent node, click .

All descendants of the selected parent node are hidden.

To add an element (parent node) or field (leaf node) before or after a sibling node

! Right-click a node and, on the shortcut menu, do one of the following:

" To add a parent node as a sibling, point to Add Element and then click either
Before Selected Node or After Selected Node.

" To add a leaf node as a sibling, point to Add Field and then click either
Before Selected Node or After Selected Node.

Note: You cannot add a sibling to the root node.

To add an element or field inside a parent node

! Right-click a parent node and, on the shortcut menu, do one of the following:

" To add a parent node, point to Add Element and then click As Child Node.

" To add a leaf node, point to Add Field and then click As Child Node.

To move an existing node inside, before, or after another element or field

! Click the node, drag it towards the target node, and do one of the following:

" To move the selected node inside an element, drop the node onto the target
element.

Chapter 5 Section 5.6
Event Type Definitions (ETDs) Working With Java-Enabled ETDs

e*Gate Integrator User’s Guide 178 SeeBeyond Proprietary and Confidential

" To move the selected node immediately before another element or field, hold
down the SHIFT key as you release the mouse button.

" To move the selected node immediately after another element or field, hold
down the CTRL key as you release the mouse button.

The node—with its descendants, if it has any—moves to the indicated destination.
There is no Undo.

Tip: On the keyboard, the SHIFT key is above the CTRL key; SHIFT-drag-and-drop
means “move before” while CTRL-drag-and-drop means “move after.”

To rename an element or field

Do one of the following:

! Triple-click the node and then enter the new name.

! Click the node, pause, click it again, and then enter the new name.

! Right-click the node, click Rename on the shortcut menu, and enter the new name.

Note: To undo the Rename operation, press ESCAPE before taking any other action.

To delete an element or field

! Right-click the node, and, on the shortcut menu, click Delete.

Note: You cannot undo a Delete operation.

To delete all descendants of an element (parent node)

! Right-click the node, and, on the shortcut menu, click Delete All Child Nodes.

Note: You cannot undo a Delete All Child Nodes operation.

To specify that a node need not contain data

1 Select the node.

2 In the Properties pane, change the value of the minOccurs property to 0.

The icon for the node has a question mark added to it—for example, or —to
signal that it might or might not contain data. See Table 17.

When the ETD is compiled, a boolean method named has<MyNode>() is generated; this
method lets you query whether the node contains data in the instance being processed.
If the value of the maxOccurs property is 1, a void method named omit<MyNode>() is
also generated; calling the omit...() method forces the corresponding has...() to false,
allowing you to skip the node even if it contains data in the instance being processed.

To specify that a node is repeating

! Select the node and, in the Properties pane, change the value of maxOccurs to one
of the following:

" -1. This indicates that the node repetition has no upper bound.

Chapter 5 Section 5.6
Event Type Definitions (ETDs) Working With Java-Enabled ETDs

e*Gate Integrator User’s Guide 179 SeeBeyond Proprietary and Confidential

" an integer greater than 1 but not less than the current value of minOccurs.
If necessary, adjust minOccurs to a lower value before you set maxOccurs.

The icon for the node changes to signal the type of repetition it can have. See Table 17.

When the ETD is compiled, an int method named count<MyNode>() is generated; this
method lets you query how many copies occur in the instance being processed.

Table 17 Node Icons for Java ETDs

Icon minOccurs maxOccurs Meaning

min=1 max=1 Default setting: A field (leaf node) that must occur
exactly once, with no repetitions.

min=1 max=1 Default setting: An element (parent node) that
must occur exactly once, with no repetitions.

min=0 max=1 Leaf node that might or might not occur once, but
does not repeat.

min=0 max=1 Parent node that might or might not occur once,
but does not repeat.

min=0 max=-1 Repeating leaf node that might or might not occur
once, with unlimited repetitions.

min=0 max=-1 Repeating parent node that might or might not
occur once, with unlimited repetitions.

min=0 max>1 Repeating leaf node that might or might not occur
once, with limited repetitions.

min=0 max>1 Repeating parent node that might or might not
occur once, with limited repetitions.

0<min<max max>1 Repeating leaf node that must occur at least once,
with limited repetitions.

0<min<max max>1 Repeating parent node that must occur at least
once, with limited repetitions.

min=1 max=-1 Repeating leaf node that must occur at least once,
with unlimited repetitions.

min=1 max=-1 Repeating parent node that must occur at least
once, with unlimited repetitions.

1<min max=-1 Repeating leaf node that must occur at least twice,
with unlimited repetitions.

1<min max=-1 Repeating parent node that must occur at least
twice, with unlimited repetitions.

Chapter 5 Section 5.6
Event Type Definitions (ETDs) Working With Java-Enabled ETDs

e*Gate Integrator User’s Guide 180 SeeBeyond Proprietary and Confidential

Using Templates

About internal templates

If your ETD has different areas with identical subtrees, you can decrease effort and
increase maintainability by using internal templates instead of re-creating the subtree
each new place it is used. After you have created an internal template, you can drag it
under any node of the ETD tree of either the Event Type or another internal template.
The new node is an alias for the template, and can be assigned any valid node name;
the member property of the new node contains the name of the internal template.

The Editor allows you to temporarily create circular dependencies—for example, you
can have a node of Template1 contain an instance of Template2 even while a node of
Template2 contains an instance of Template1—but such an ETD cannot be compiled.

About external templates

You can use the external template feature to have your ETD reference a frozen copy of
another ETD of the same type. For example, a standard ETD can reference one or more
standard ETDs, and an imported ETD can reference another ETD of its own type. For
information on a particular Java ETD library, refer to the user’s guide for that library.
An external template is a pointer to an .xsc file that resides outside the current ETD; the
reference property of the new node contains the path and file name of the external
template.

Note: For the external template itself, all elements and properties are read-only. However,
when the template is used as an instance within an ETD or internal template, the
instance properties can be edited.

To create and name a new internal template

1 Right-click the Internal Templates pane; on the shortcut menu, click New Template.

A new internal template appears, with a generic name like InternalTemplate1.
The value of the template’s type property is CLASS.

2 In the Properties pane, change the (Name) property to a valid node name. See
“About Node Names” on page 174.

To create a new external template

1 Right-click the External Templates pane; on the shortcut menu, click Import
External Reference.

2 In the Open dialog box, navigate to the .xsc file you want to import and click Open.

A new external template appears; you can view all its properties and members, but
cannot make changes. The value of the template’s type property is CLASS.

To work with an internal template

1 In the Internal Templates pane, click the template and edit its root node properties
as needed. Such properties include its name, delimiters, comments, default values,
and so forth; see Properties of Standard ETD Parent Node Elements
(type=CLASS) on page 192.

Chapter 5 Section 5.6
Event Type Definitions (ETDs) Working With Java-Enabled ETDs

e*Gate Integrator User’s Guide 181 SeeBeyond Proprietary and Confidential

2 Within the internal template, create elements and fields (parent and leaf nodes) and
edit their properties as needed. An internal template can contain external templates
or other internal templates.

3 To add the internal template to the ETD or to another internal template, open the
destination and then drag the template to the correct parent node. See “To place
and edit an instance of a template” on page 181.

Note: You can continue to add, delete, and modify elements and fields within an internal
template even after it is instantiated within the ETD or other internal template; the
changes you make are propagated to all instance.

To place and edit an instance of a template

1 In the left-hand pane, click the name of the ETD or internal template that will
contain the new template instance; then, in the Event Type Definition pane, locate
the destination node.

2 Drag the template towards the destination node and then do one of the following:

" To move the template inside an element, drop the template onto the destination
element.

" To move the template node immediately before another element or field, hold
down the SHIFT key as you release the mouse button.

" To move the template immediately after another element or field, hold down
the CTRL key as you release the mouse button.

Tip: On the keyboard, the SHIFT key is above the CTRL key; SHIFT-drag-and-drop
means “move before” while CTRL-drag-and-drop means “move after.”

An instance of the template appears under, before, or after the selected node; the
value of the instance’s type property is REFERENCE, and the value of its member
property is the template name.

3 As needed, edit the leaf-node properties of this new instance; see Properties of
Standard ETD Field Nodes (type=FIELD) on page 197. Compared to field nodes, a
template instance has additional properties (such as member and reference), and
many more of its properties are read-only.

To delete an existing template

Before you begin: If the template is used as a node in the main ETD or in any other
internal template, you must first find and delete all instances where it is used.

After the ETD is free of all references to [templates with references to [...]] the template,
do the following.

1 In the Internal Templates or External Templates pane, right-click the template.

2 On the shortcut menu, click Delete.

To rename an existing internal template

! In the Internal Templates pane, do one of the following:

" Triple-click the template name and then enter a new valid node name.

Chapter 5 Section 5.6
Event Type Definitions (ETDs) Working With Java-Enabled ETDs

e*Gate Integrator User’s Guide 182 SeeBeyond Proprietary and Confidential

" Select the template name and then, in the Properties pane, change its (Name)
property to a valid node name.

Compiling an ETD

After you have created the tree structure of your ETD and modified the properties of its
elements and fields, you must compile it.

! On the File menu, click Compile and Save.

The standard Java compiler is invoked: If no problems are found, no message is
returned. Otherwise, error messages are presented to you in the Error dialog box.

For a partial list of the most frequently encountered compile errors, see Table 18.

Note: Whenever you make a change to an ETD, you must recompile it before the change
will be noticed by any Collaboration whose Event Type instances use the modified
ETD. After a modified ETD has been recompiled, you must reload it into any
Collaboration that references it and then recompile the Collaboration.

Table 18 Common Errors When Compiling an ETD

Error Probable cause Steps to resolve

leaf-node "Element1"
has no Java type (274)

The Event Type and/or an Internal
Template has one or more parent
nodes that lack any children.

Find all childless parent nodes
and either give them children
fields or delete them.

reference to undefined
template "iTemp1" from
node "iTemp11" in [top]
-> int_Temp2

An instance of an internal template
was dragged into a node of one of
the ETD trees, but the template itself
was later renamed or deleted from
the Internal Templates pane.

Delete all remaining ETD
instances of templates that have
been deleted; correctly rename
all ETD instances of templates
that were renamed after being
instantiated.

circular local template
dependency: [top] ->
intl_Temp2 ->
intl_Temp1 -> int_Temp2

Internal Template #1 references
Internal Template #2, which
[references template #3, [...] which]
references Internal Template #1.

Analyze the circular chain and
delete all template instances that
are inappropriate.

Chapter 5 Section 5.6
Event Type Definitions (ETDs) Working With Java-Enabled ETDs

e*Gate Integrator User’s Guide 183 SeeBeyond Proprietary and Confidential

5.6.2 Validating an ETD
After your ETD has compiled without error, you can validate it against representative
data files. Use the ETD Test Dialog to parse the data using the current ETD structure.
If the parsing is unsuccessful, error messages are shown in the Trace Data pane; if it is
successful, the results are shown in the Test Tree pane.

Figure 76 shows the results of parsing a representative data file named juicer6.xml.

Figure 76 ETD Editor – Test Dialog Showing Parsed Data

Figure 77 shows the sample ETD next to the data file it parsed:

! The ETD, juicers.xsc (of type XSD), contains one repeating node, juicer, which is an
instance of internal template juicer.xsc. The nodes in juicer.xsc are XML tags like
<name>, <image>, <description>, <warranty>, <cost>, and <retailer> that classify
data extracted from web pages that advertise juicers for home or commercial use.

! The test data file, juicer6.xml, contains data harvested from six such web pages.

Chapter 5 Section 5.6
Event Type Definitions (ETDs) Working With Java-Enabled ETDs

e*Gate Integrator User’s Guide 184 SeeBeyond Proprietary and Confidential

Figure 77 Sample ETD and Sample Test Data

Benefits of the ETD Tester

Making a practice of validating your ETDs against sample data has several benefits:

! You will gain an understanding of how the data will appear to the e*Gate system,
allowing you to correct mistakes or false starts and to generally to tailor the ETD to
your data needs before putting it into production.

! You can double-check hypothetical and worst-case scenarios in advance, rather
than waiting to diagnose and debug them after the fact.

Chapter 5 Section 5.6
Event Type Definitions (ETDs) Working With Java-Enabled ETDs

e*Gate Integrator User’s Guide 185 SeeBeyond Proprietary and Confidential

! If you validate against historical data files, you can gain a better understanding of
the data, including typical cases, special cases, and unusual conditions. This can
help you to create more efficient tools, such as internal and external templates.

! You can easily create a suite of test data files for cross-comparisons.

To test an ETD against sample data

1 On the toolbar or File menu of the ETD Editor, click Run Test .

Note: The ETD file must be compiled and saved before it can be tested. Java-enabled ETDs
that were built using versions of e*Gate earlier than 4.5.2 are ineligible for testing.

2 In the Open dialog box, locate and select a sample data file to be parsed.

Successful results are displayed in the Test Tree pane. See Figure 76 on page 183.

3 To troubleshoot errors or validate the data with alterations, you can click Edit Data
to open the file in a text editor. See Figure 77 on page 184. After editing the data file,
you can overwrite the original file or else save it under a different name or location.

4 To locate and parse another data file, click Re-Test.

5.6.3 Promoting to Run Time
After your ETD has compiled without error and you have tested it thoroughly in the
sandbox environment, you are ready to promote it.

To promote an ETD from sandbox to run time

! On the File menu, click Promote.

A dialog box tells you which files have been successfully promoted; see Figure 78.
The Editor remains open, but no Event Type is current.

Figure 78 Successful Promotion of an ETD

Chapter 5 Section 5.6
Event Type Definitions (ETDs) Working With Java-Enabled ETDs

e*Gate Integrator User’s Guide 186 SeeBeyond Proprietary and Confidential

5.6.4 Global and Local Delimiters
Delimited data streams have characters or strings that causes each chunk of data to be
separated from the previous and the next. In this sentence, the individual words are
delimited by the blank spaces that separate them. Each sentence in this paragraph is
delimited from the next by a period. In the same way, each paragraph on this page is
delimited by vertical blank space.

ETD nodes are generally either fixed-length or delimited. When parsing an Event based
on a fixed-length ETD node, the system sees each of its data components as having a
predefined length. When parsing an Event based on a delimited ETD node, the system
uses its preassigned special characters to determine the length of its various data
components.

About Global Delimiters

In Java-enabled ETDs, each node and field has a structure property that determines
whether it is delimited, fixed length, or other. Since a child node does not inherit the
fixed-length or delimited character of its parent, global delimiters would seem to be
unnecessary. However, because the ETD structure is strictly hierarchical, each child
node has a strictly fixed rank—child of the root, grandchild of the root, third-level,
fourth-level, and so on—and so a global scheme can be used to impose a default on
all delimited nodes throughout the entire hierarchy. This is the purpose of global
delimiters. See “Using Global Delimiters” on page 187.

About Global Delimiter Levels

When you set global begin and end delimiters for a particular level, and when you set
the properties for that level, you are instructing the system to use those characters and
those properties by default every time it needs to parse a delimited node at that
particular level. Although each node can establish its own local delimiters that override
the default for its level (see below), the children and grandchildren of a custom-
delimited parent node are nonetheless subject to the global delimiters if they are set for
the next lower levels.

About Local Delimiters and Delimiter Groups

You can establish a special set of delimiters and properties scoped to the particular
node —leaf node or parent node (even the root node)—where they are set, overriding
whatever delimiters and delimiter level properties are prescribed by the global
delimiter settings for that level. These delimiters and properties are not inherited by a
parent node’s child nodes or [great[...]]grandchild nodes.

About Local Delimiter Groups

When there are several begin delimiters and several end delimiters, sometimes they can
be pooled: in other words, all begin delimiters can match any end delimiters. In other
circumstances, however, a particular begin delimiter requires a particular end delimiter.
In this case, you want to set up local delimiter groups to specify the matching rules. See
“Using Local Delimiters” on page 188.

Chapter 5 Section 5.6
Event Type Definitions (ETDs) Working With Java-Enabled ETDs

e*Gate Integrator User’s Guide 187 SeeBeyond Proprietary and Confidential

Using Global Delimiters

To add a global delimiter level and modify its properties

1 On the toolbar or Edit menu, click Delimiters .

The Global Delimiters dialog box appears.

2 To add a new global delimiter level, click the Global Delimiters label (if necessary),
and then click Add Level.

The new delimiter level is appended below any existing levels. See Figure 79.

Figure 79 Global Delimiters Dialog Box - Delimiter Level

3 To modify an existing delimiter level, select its entry in the Defined Delimiters
pane and make changes to the right-hand column of the Delimiter Properties pane.
If you have other changes to make, click Apply.

For complete information on the meanings of the various delimiter properties, see
“Properties of Delimiters” on page 201.

Note: If you make a mistake, you can press ESC or click Cancel to close the dialog box
and discard all unapplied changes.

4 When you are satisfied with your changes, you can either add repeat steps 2 and 3
to add and modify more delimiter levels, or you can use the procedure on page 187
below to add delimiters to the current level.

To add or modify begin/end delimiters for a global delimiter level

1 In the Global Delimiters dialog box, select the global delimiter level whose
delimiters you want to add or modify.

2 Do one of the following:

" To add a begin delimiter (which can be a string of many characters), click
Add Single Begin Delimiter, and then add or modify its properties.

Chapter 5 Section 5.6
Event Type Definitions (ETDs) Working With Java-Enabled ETDs

e*Gate Integrator User’s Guide 188 SeeBeyond Proprietary and Confidential

" To add an end delimiter (which can be a string of many characters), click
Add Single End Delimiter, and then add or modify its properties.

" To modify the properties of an existing delimiter, select its entry in the Defined
Delimiters pane, and then make changes to the right-hand column of the
Delimiter Properties pane.

Figure 79 illustrates some common special characters being used as delimiters:
At level 1, the begin delimiter is a \ (backslash character), which is input via the
escape sequence \\. Level 2 is delimited at the start by the blank space character
(Unicode \u0020\—notice the comment) and at end by the newline character,
input via the escape sequence \n.

For complete information, see “Properties of Delimiters” on page 201.

Figure 80 Setting Global Begin and End Delimiters

3 If you make a mistake and want to abandon your current changes, press ESC or
click Cancel to close the dialog box; or, if you are satisfied with your current
changes and have other changes to make, click Apply; or, if you are satisfied with
all your changes, click OK.

Using Local Delimiters

To add, delete, or modify the local delimiters of a delimited node

1 In the Event Type Definition (center) pane, highlight the node whose delimiters you
want to edit.

2 In the Properties pane, in the local delimiters property, click the . . . button.

The Local Delimiters dialog box appears. See Figure 81.

Chapter 5 Section 5.6
Event Type Definitions (ETDs) Working With Java-Enabled ETDs

e*Gate Integrator User’s Guide 189 SeeBeyond Proprietary and Confidential

Figure 81 Local Delimiters Dialog Box - Local Delimiters Level

Notice the similarity to the Global Delimiters dialog box when Delimiter Level is
selected (see Figure 79 on page 187). The difference between the two is that on a
global level, you can set delimiters and properties for many levels, whereas at the
local level, you are only setting delimiters and properties for the current level;
however, at the local level, you can set up delimiter groups.

3 Do one of the following:

" To add a begin delimiter (which can be a string of many characters), click
Add Single Begin Delimiter, and then add or modify its properties.

" To add an end delimiter (which can be a string of many characters), click
Add Single End Delimiter, and then add or modify its properties.

" To modify the properties of an existing delimiter, select its entry in the Defined
Delimiters pane, and then make changes to the right-hand column of the
Delimiter Properties pane.

Chapter 5 Section 5.6
Event Type Definitions (ETDs) Working With Java-Enabled ETDs

e*Gate Integrator User’s Guide 190 SeeBeyond Proprietary and Confidential

" To add a delimiter group, click the Local Delimiters label (if necessary), and
then click Add Group. Repeat as needed.

An example of a local delimiter group is shown in Figure 82.

Figure 82 Example of a Local Delimiter Group

In the example shown above:

" The begin delimiter $ can take any of the following as an end delimiter:)] or }

" The begin delimiter (can take either of the following as an end delimiter:) or]

" The begin delimiter [can only take the following as an end delimiter:]

" The begin delimiter { can only take the following as an end delimiter: }

4 If you make a mistake and want to abandon your current changes, press ESC or
click Cancel to close the dialog box; or, if you are satisfied with your current
changes and have other changes to make, click Apply; or, if you are satisfied with
all your changes, click OK.

Chapter 5 Section 5.7
Event Type Definitions (ETDs) Standard ETD Properties

e*Gate Integrator User’s Guide 191 SeeBeyond Proprietary and Confidential

5.7 Standard ETD Properties
The ETD Editor allows you to see the properties of each node, field, and method.
This section lists and explains the node and field properties for the Standard ETD; for
explanations of the Standard ETD methods, see Chapter 7 “Java Collaboration Rules”
on page 260.

Note: Nodes, field, and method properties for imported ETDs are not covered in this book.
For a list of the corresponding documentation for imported ETDs, see Building an
Imported ETD on page 170.

5.7.1 Event Type Properties
Table 19 lists and explains the properties of the Event Type instance itself, for Events
based on the Standard Event Type Definition.

Table 19 Properties of the Standard Event Type

Property Name Type Explanation
Permitted, Default, and

Special Values

(Name) java.lang.
String

Provides an image of the (Name)
property of the root node. Must
be a Java identifier, different
from the value of packageName,
and must not be a DOS device
name like PRN or COM1.

For permissible values, see
“About Node Names” on
page 174.

comment java.lang.
String

Free text, up to 1024 characters
long. You can use \u as an escape
character to specify Unicode
characters.

Default: (empty).
Preset to: (empty).

dataEncoding java.lang.
String

Allows you to use data whose
character encoding is different
from the encoding of the ETD as
a whole.

Default: (current value of the
sscEncoding property for this
Event Type).
Preset to: ASCII

derived boolean Whether this ETD was created by
deriving it from an imported ETD.
(Derived and imported ETDs are
not covered in this guide.)

Must be: false
By definition, Standard ETDs
are never Derived ETDs.

editable boolean Whether or not the fields of this
Event Type can be saved with
modifications.

Default: true
Preset to: true

sscEncoding java.lang.
String

Character encoding to set as
default for the current ETD.

Default: ASCII
Preset to: ASCII

type java.lang.
String

For the Standard ETD, this is SSC
by definition.

Must be: SSC

xscVersion java.lang.
String

A mandatory identifier used
internally to set parsing rules.

Must be: 0.6
(for this version)

Chapter 5 Section 5.7
Event Type Definitions (ETDs) Standard ETD Properties

e*Gate Integrator User’s Guide 192 SeeBeyond Proprietary and Confidential

5.7.2 Properties of Root and Element Nodes (Parent Nodes)
Table 20 lists and explains the properties of parent nodes (including root nodes of the
Event Type itself and any templates it contains) in a Standard ETD. For methods
associated with these elements, see “Methods for Elements and Fields of ETDs” on
page 328.

Note: Here, a parent node is defined as a node whose type property has the value CLASS.

Table 20 Properties of Standard ETD Parent Node Elements (type=CLASS)

Property Name Type Explanation
Permitted, Default, and

Special Values

(Name) java.lang.
String

A descriptive string you enter to
identify this parent element.

For permissible values, see
“About Node Names” on
page 174.
Preset to: Element<n>
(except for the root node).

childMax int Specifies an upper limit for the
number of children nodes
directly under this element.
Corresponds to the Monk NofN
modifier; see max-rep in the
Monk Developer’s Reference.

Nonnegative integer, or -1.
! -1 means “unbounded”.
Default: (undefined).
Preset to: undefined

childMin int Specifies a lower limit for the
number of children nodes
directly under this element.
Corresponds to the Monk NofN
modifier; see max-rep in the
Monk Developer’s Reference.

Nonnegative integer.
Default: (undefined).
Preset to: undefined

comment java.lang.
String

Holds free text, up to 1,024
characters long. You can use \u as
an escape character to specify
Unicode characters.

Default: (undefined).
Preset to: (empty).

defaultBytes java.lang.
String

If present, overrides the current
setting of the defaultValue
property for this element.

Default: (current value of the
defaultValue property for this
node).
Preset to: (empty).

defaultEncoding java.lang.
String

Specifies the character encoding
to use for the value of
defaultValue (or for the value of
defaultBytes if it is set).

Preset to: ASCII.

defaultValue java.lang.
String

Specifies a value to be given to
this node if it is marshalled but
contains no data. You can use \u
as an escape character to specify
Unicode characters.

Default: (undefined).
Preset to: (empty).
Examples:
! (no middle initial)
! 000-00-0000
! no data

Chapter 5 Section 5.7
Event Type Definitions (ETDs) Standard ETD Properties

e*Gate Integrator User’s Guide 193 SeeBeyond Proprietary and Confidential

encoding java.lang.
String

(not applicable for parent
elements)

Preset to: (empty).

enumType java.lang.
String

(not applicable for Standard
ETDs)

Preset to: (empty).

fixedValue java.lang.
String

(not applicable for Standard
ETDs)

Preset to: (empty).

format java.lang.
String

(not applicable) Preset to: (empty).

inputMatch java.lang.
String

Specifies a Monk regular
expression to be applied against
the data contained within this
parent element.

Preset to: (empty).
See “Creating Delimited
ETDs” on page 217.

javaName java.lang.
String

Contains the original name for
this element, unless explicitly
modified later by the user.

Default: (the original value of
the (Name) property for this
node, after forcing any leading
lowercase alphabetic character
to uppercase).

javaType java.lang.
String

Specifies the Java data type for
this element.

Must be one of the following:
! boolean
! byte
! byte[]
! char
! double
! float
! int
! java.lang.String
! long
! short
Default: java.lang.String
Preset to: java.lang.String

length int Specifies the length of the data
stream in this element. Applies to
delimited elements only.

Nonnegative integer.
Default for delimited nodes: 0
Preset for delimited nodes: 0
Default and preset value for
fixed nodes: undefined

lengthFrom int (not applicable for Standard
ETDs)

Nonnegative integer.
Preset to: undefined

lengthSize int (not applicable for Standard
ETDs)

Positive integer.
Preset to: undefined

local delimiters Opens the Local Delimiter dialog
box. For details, see “Global
and Local Delimiters” on
page 186.

Table 20 Properties of Standard ETD Parent Node Elements (type=CLASS) (Continued)

Property Name Type Explanation
Permitted, Default, and

Special Values

Chapter 5 Section 5.7
Event Type Definitions (ETDs) Standard ETD Properties

e*Gate Integrator User’s Guide 194 SeeBeyond Proprietary and Confidential

maxOccurs int Specifies an upper limit on the
number of times this parent
element can occur. For the
equivalent in Monk, see Table
32 on page 230. Any element
whose maxOccurs value is
unbounded or greater than its
minOccurs value has an
associated count() method; see
“count_MyNode_()” on
page 329.

Nonnegative integer, or -1:
! -1 means unbounded.
Default: 1
Preset to: 1

member java.lang.
String

Applies only to a node that is an
alias for an internal template.
When applicable, contains the
name of the internal template.

Preset to: (empty)

minOccurs int Specifies a lower limit to the
range of the number of times this
parent element can occur.
For the equivalent in Monk, see
Table 32 on page 230. Any
element whose minOccurs value
is 0 has an associated has()
method; see “has_MyNode_()”
on page 331.

Preset to: 1

offset int Specifies the start position of this
parent element relative to its
own parent. (Note that root
nodes do not have this property.)

Preset to: undefined

optional boolean When set to true, specifies that
this parent element can occur
zero times, even if minOccurs is
greater than 0. (Note that root
nodes do not have this property.)

Preset to: false

order java.lang.
String

Specifies whether data in this
node’s children can appear in any
order, or if they must be
presented in sequence.

Must be one of the following:
! any
! sequence
Preset to: sequence

Table 20 Properties of Standard ETD Parent Node Elements (type=CLASS) (Continued)

Property Name Type Explanation
Permitted, Default, and

Special Values

Chapter 5 Section 5.7
Event Type Definitions (ETDs) Standard ETD Properties

e*Gate Integrator User’s Guide 195 SeeBeyond Proprietary and Confidential

precedence java.lang.
String

When an end-delimiter is used at
more than one node level,
specifies whether the delimiter
terminates the current=lowest
node (child) or the highest node
(parent) having the same
delimiter.

Must be one of the following:
! child
! parent
Preset to: child
Example: If your global begin-
delimiters and end-delimiters
are set as follows:
! Level 1: < >
! Level 2: { }
! Level 3: < >
! Level 4: { }
! Level 5: < >
and if a > character is
encountered at level 5, then:
! A setting of child terminates

level 5
! A setting of parent

terminates level 3

public boolean (not applicable for Standard
ETDs)

Preset to: false

readOnly boolean (not applicable for Standard
ETDs)

Preset to: false

reference java.lang.
String

For Standard ETDs, applies only
to a node that is an alias for an
external template. When
applicable, contains the path and
name of the external template.

scavOutput boolean When set to true, specifies that
exactly one instance of the first
character specified in the
scavenger property should be
prepended to the element.

Preset to: false

scavenger java.lang.
String

Specifies the characters to be
stripped out if they appear at the
start of this element.

Preset to: (empty)
Examples:
! \u0020 (blank space)
! \u0009 (tab)
! \u000D (carriage-return)

structure java.lang.
String

Specifies the method for
determining the boundary of the
data in this element.

Must be one of the following:
! array
! delim
! fixed
! set
Default: (none)
Preset to: delim

Table 20 Properties of Standard ETD Parent Node Elements (type=CLASS) (Continued)

Property Name Type Explanation
Permitted, Default, and

Special Values

Chapter 5 Section 5.7
Event Type Definitions (ETDs) Standard ETD Properties

e*Gate Integrator User’s Guide 196 SeeBeyond Proprietary and Confidential

type java.lang.
String

By definition, all parent nodes
(including the root node) in a
Standard ETD are of type CLASS.
! For properties of field nodes in

a Standard ETD, see Table 21
on page 197.

! For properties of other ETDs,
refer to the user’s guide for the
corresponding e*Way, ETD
Builder, or toolkit.

Default: (none)
Must be: CLASS

Table 20 Properties of Standard ETD Parent Node Elements (type=CLASS) (Continued)

Property Name Type Explanation
Permitted, Default, and

Special Values

Chapter 5 Section 5.7
Event Type Definitions (ETDs) Standard ETD Properties

e*Gate Integrator User’s Guide 197 SeeBeyond Proprietary and Confidential

5.7.3 Properties of Field and Reference Nodes (Leaf Nodes)
Table 21 lists and explains the properties of field and reference nodes in a Standard
ETD. For methods associated with these fields, see “Methods for Elements and Fields
of ETDs” on page 328.

Note: A field node is defined as a node whose type property has the value FIELD; a
reference node, such as a template instance, has a type of REFERENCE and a few
additional properties but is otherwise almost identical a field node. In a Standard
ETD, a field node is equivalent to a leaf node: Every field node has exactly one
parent node and zero children.

Table 21 Properties of Standard ETD Field Nodes (type=FIELD)

Property Name Type Explanation Permitted and Default Values

(Name) Allows you to enter or modify a
descriptive name to identify this
field.

For permissible values, see
“About Node Names” on
page 174.
Preset to: Field<n>

childMax int (not applicable for leaf nodes) Preset to: undefined

childMin int (not applicable for leaf nodes) Preset to: undefined

comment java.lang.
String

Contains free text, up to 4,095
characters long. You can use \u as
an escape character to specify
Unicode characters.

Preset to: (empty).

defaultBytes java.lang.
String

If present, overrides the current
setting of the defaultValue
property for this field.

Preset to: (empty).

defaultEncoding java.lang.
String

Specifies the character encoding
to use for the value of
defaultValue (or for the value of
defaultBytes if it is set).

Preset to: ASCII.

defaultValue java.lang.
String

Specifies a value to be given to
this field if it is marshalled but
contains no data. You can use \u
as an escape character to specify
Unicode characters.

Preset to: (empty).

local delimiters Opens the Local Delimiter dialog
box. For details, see “Global
and Local Delimiters” on
page 186.

Chapter 5 Section 5.7
Event Type Definitions (ETDs) Standard ETD Properties

e*Gate Integrator User’s Guide 198 SeeBeyond Proprietary and Confidential

encoding java.lang.
String

If present, overrides the default
encoding for this field. (The
default encoding for a field can
be learned using the
getUnmarshalEncoding() and
getMarshalEncoding() methods).
This allows you to specify a
nondefault character encoding
for this particular field.

Default: (current value of
etd.dataEncoding—in other
words, the dataEncoding
property for the Event Type).
Preset to: (empty).

format java.lang.
String

Specifies a directive for parsing
and rendering data in this field,
using the Java DecimalFormat
class. For example:
! ; separates positive from

negative representations
! 0 indicates a required digit
! # indicates an optional digit
! . indicates a decimal point
! - indicates a minus sign
! , indicates a grouping

separator (such as thousands)
! E separates mantissa from

exponent in scientific notation
! ' quotes a special character
For complete information, see
java.sun.com/j2se/1.3/docs/api/
java/text/DecimalFormat.html

Default: #;-#
Preset to: (empty).
Examples:
! '$'###,##0.00;('$'###,##0.00)

uses accounting convention
for negative numbers

! 0.00E0;-0.00E0
uses scientific notation

! ##0.0E0;-##0.0E0
uses engineering notation

! ## o''clock
uses a special character

inputMatch java.lang.
String

Specifies a Monk regular
expression to be applied against
the data contained within this
field.

Preset to: (empty).
See “Creating Delimited
ETDs” on page 217.

javaName java.lang.
String

Contains the original name for
this field, unless the javaName
property has been explicitly
modified later by the user.

Default: (the original value of
the (Name) property for this
node, after forcing any leading
lowercase alphabetic character
to uppercase).

Table 21 Properties of Standard ETD Field Nodes (type=FIELD) (Continued)

Property Name Type Explanation Permitted and Default Values

Chapter 5 Section 5.7
Event Type Definitions (ETDs) Standard ETD Properties

e*Gate Integrator User’s Guide 199 SeeBeyond Proprietary and Confidential

javaType java.lang.
String

Specifies the Java data type for
this field.

Must be one of the following:
! boolean
! byte
! byte[]
! char
! double
! float
! int
! java.lang.String
! long
! short
Default: java.lang.String
Preset to: java.lang.String

length int For fixed-length fields (only),
Specifies the length of the field.

Nonnegative integer.
Default for delimited fields: 0
Preset for delimited fields: 0
Default and preset value for
fixed-length fields: undefined

maxOccurs int Specifies an upper limit to the
range of the number of times this
field can occur. For the
equivalent in Monk, see Table
32 on page 230. Any field whose
maxOccurs value is unbounded
or greater than its minOccurs
value has an associated count()
method; see
“count_MyNode_()” on
page 329.

Positive integer, or -1:
! -1 means unbounded.
Default: 1
Preset to: 1

member java.lang.
String

Applies only to a node that is an
instance of an internal template.

Not applicable to field nodes.
For instances of internal
templates, contains the name
of the internal template itself.

minOccurs int Specifies a lower limit to the
range of the number of times this
field can occur. For the
equivalent in Monk, see Table
32 on page 230. Any field whose
minOccurs value is 0 has an
associated has() method; see
“has_MyNode_()” on
page 331.

Preset to: 1

offset int Specifies the start position of this
field relative to its parent.

Preset to: undefined

Table 21 Properties of Standard ETD Field Nodes (type=FIELD) (Continued)

Property Name Type Explanation Permitted and Default Values

Chapter 5 Section 5.7
Event Type Definitions (ETDs) Standard ETD Properties

e*Gate Integrator User’s Guide 200 SeeBeyond Proprietary and Confidential

optional boolean When set to true, specifies that
this field can occur zero times
(even if minOccurs is greater
than 0).

Preset to: false

order java.lang.
String

Specifies whether data in this
field can appear in any order, or
if it must be presented in
sequence.

Must be one of the following:
! any
! sequence
Preset to: sequence

precedence java.lang.
String

When an end-delimiter is used at
more than one node level,
specifies whether the delimiter
terminates the current=lowest
node (child) or the highest node
(parent) having the same
delimiter.

Must be one of the following:
! child
! parent
Preset to: child
Example: If your global begin-
delimiters and end-delimiters
are set as follows:
! Level 1: < >
! Level 2: { }
! Level 3: < >
! Level 4: { }
! Level 5: < >
and if a > character is
encountered at level 5, then:
! A setting of child terminates

level 5
! A setting of parent

terminates level 3

readOnly boolean (not applicable for Standard
ETDs)

Preset to: false

reference java.lang.
String

Applies only to a node that is an
instance of an external template.

Not applicable to field nodes.
For instances of external
template, contains the relative
path and file name of the
external template.

scavOutput boolean When set to true, specifies that
one instance of the first
character specified in the
scavenger property should be
prepended to the field.
scavOutput is meaningful only if
the scavenger property is set.

Preset to: false

scavenger java.lang.
String

Specifies the characters to be
stripped out if they appear at the
start of this field.

Preset to: (empty)
Examples:
! \u0020 (blank space)
! \u0009 (tab)
! \u000D (carriage-return)

Table 21 Properties of Standard ETD Field Nodes (type=FIELD) (Continued)

Property Name Type Explanation Permitted and Default Values

Chapter 5 Section 5.7
Event Type Definitions (ETDs) Standard ETD Properties

e*Gate Integrator User’s Guide 201 SeeBeyond Proprietary and Confidential

5.7.4 Properties of Delimiters
Table 22 lists and explains the properties of global and local delimiters and delimiter
levels. These properties apply only to delimited elements or fields—in other words,
elements and fields whose structure property is set to delim. For more information, see
“Global and Local Delimiters” on page 186.

structure java.lang.
String

Specifies the method for
determining the boundary of the
data in this field.

Must be one of the following:
! array
! delim
! fixed
! set
Default: (none)
Preset to: delim

type java.lang.
String

By definition, a field node in a
Standard ETD is of type FIELD.
! For properties of parent

elements in a Standard ETD,
see Table 20 on page 192.

! For properties of other ETDs,
refer to the user’s guide for the
corresponding e*Way, ETD
Builder, or toolkit.

Must be: FIELD
A value of REFERENCE
indicates that this node is an
instance of an internal or
external template.

Table 22 Properties of Global and Local Delimiters

Property Name Type Explanation
Permitted, Default, and

Special Values

anchored boolean Applies to a Delimiter Level only.
When set to true, indicates that
the delimiters must be the
starting and ending characters of
this element.

Preset to: false

array boolean Applies to a Delimiter Level only.
When set to true, indicates that if
an array node appears at this
level, the delimiter at this level
should be used; but if no array
node appears at this leve, this
level should be skipped and the
non-array delimiter at the next
lower level should be used.

Preset to: false

beginAnchored boolean Applies to a Delimiter Level only.
When set to true, indicates that
the begin delimiter must occur at
the current location of the Event
data.

Preset to: false

Table 21 Properties of Standard ETD Field Nodes (type=FIELD) (Continued)

Property Name Type Explanation Permitted and Default Values

Chapter 5 Section 5.7
Event Type Definitions (ETDs) Standard ETD Properties

e*Gate Integrator User’s Guide 202 SeeBeyond Proprietary and Confidential

bytes Applies to a Begin/End Delimiter
only. The byte sequence that
corresponds to the value of this
delimiter.

comment java.lang.
String

Holds free text, up to 1,024
characters long. You can use \u as
an escape character to specify
Unicode characters.

Default: (undefined).
Preset to: (empty).

encoding java.lang.
String

Applies to a Begin/End Delimiter
only. The character encoding
used for this delimiter’s value.

Preset to: ASCII

endAnchored boolean Applies to a Delimiter Level only.
When set to true, indicates that
the end delimiter must occur at
the current location of the Event
data.

Preset to: false

endOfRec boolean Applies to a Delimiter Level only.
When set to true, causes the final
end-delimiter character to+ be
appended to the end of the data.

Preset to: false

length int Applies to a Begin/End Delimiter
only. Specifies the length of this
delimiter.

Nonnegative integer.
Default: undefined
Preset to: undefined

offset int Applies to a Delimiter Level only.
Specifies the start position of this
delimiter.

Preset to: undefined

required boolean Applies to a Delimiter Level only.
When set to true, specifies that
delimiters must be specified
locally (and thus not inherited
from the settings in the Global
Delimiters dialog box).

Preset to: false

separator boolean Applies to a Delimiter Level only.
When set to true, specifies that a
field repetition character is
required. See “Specifying HL7
Repeating Fields” on
page 231.

Preset to: false

value java.lang.
String

Applies to a Begin/End Delimiter
only. Specifies the character or
characters to be used as a
delimiter.

Default: (none set)
To specify a \ (backslash), use \\.
You can specify any character
as \u####\, where #### is the
character’s Unicode
representation.

Table 22 Properties of Global and Local Delimiters (Continued)

Property Name Type Explanation
Permitted, Default, and

Special Values

Chapter 5 Section 5.7
Event Type Definitions (ETDs) Standard ETD Properties

e*Gate Integrator User’s Guide 203 SeeBeyond Proprietary and Confidential

e*Gate Integrator User’s Guide 204 SeeBeyond Proprietary and Confidential

Chapter 6

Monk Event Type Definition Editor

This chapter explains how to use the Monk Event Type Definition (ETD) Editor feature
to create, add, and define Monk ETDs (.ssc files) in the e*Gate system.

6.1 Monk ETD Editor Overview
Monk ETDs created using this SeeBeyond ETD Editor are written in the Monk
programming language.

You can create and modify these ETDs using the Monk ETD Editor graphical user
interface (GUI). This feature helps you to make sure that your ETDs conform to the
specific requirements of the e*Gate system.

The Monk ETD Editor contains a specialized GUI called the ETD Tree that allows you
to create complete definitions for your Event Types, using a branched setup. The
ETD Tree lets you place Event nodes into a hierarchical arrangement that represents
ETD structures in a convenient, vertical and graphical format.

This chapter explains how to use the Monk ETD Editor under the following sections:

! “Getting Started” on page 204

! “ETD Editor Window” on page 208

! “Edit Menu” on page 212

! “Basic ETD Operations” on page 242

! “Working With ETD Templates” on page 254

6.2 Getting Started
You create the definitions of your Event Types by representing them in the ETD Editor
window as a set of interrelated data components (nodes) in the ETD Tree.

Note: As an option, you can set up ETDs using a text editor and Monk, SeeBeyond’s
programming language. If you prefer this option, see the Monk Developer’s
Reference.

Chapter 6 Section 6.2
Monk Event Type Definition Editor Getting Started

e*Gate Integrator User’s Guide 205 SeeBeyond Proprietary and Confidential

6.2.1 ETD Creation and Nodes
When you create an ETD, you build an Event’s generic components, for example, data
segments and fields. The ETD Editor calls these components nodes, and represents
them graphically.

Working with Nodes

Each ETD has a single root node that represents the entire Event. You can add
additional nodes to more fully describe the organization of data within an Event Type.
For each node in an ETD, you must specify the following types of information:

! General: Basic node information, for example, the node’s name and whether it is
delimited or fixed.

! Content: Input data, output data, and scavenger characters the node contains.

! Repetition: Node data order and repetition characteristics.

! Delimiters: Information describing the node’s delimiter properties, if present.

Node-level Structure

Figure 83 on page 205 shows the node-level structure of the ETD Tree as represented in
the ETD Editor window. Keep in mind that the terms “subnode” and “sub-subnode”
are relative to the current working level and can apply to any level. In Figure 83, Level 1
is the current level.

Figure 83 ETD Editor Tree

Parent and Child Nodes

Any subnode of a given node is called a child node, and the given node, in turn, is the
child’s parent. Sibling nodes are nodes on the same level under the same parent node.

Chapter 6 Section 6.2
Monk Event Type Definition Editor Getting Started

e*Gate Integrator User’s Guide 206 SeeBeyond Proprietary and Confidential

See Figure 84 on page 208 for an illustration of this node structure in the ETD Editor
window.

Naming Nodes

When you create ETDs, you give each node a name that becomes its own identifier in
the ETD Tree. Table 23 shows the acceptable characters for node names.

Note: The name of a node is the source of the node’s label in the ETD Tree. Create each
name for your ease of reference. Use naming conventions that you can easily
recognize later on.

Rules for Node Naming

Name nodes according to the following conventions:

! First Character: Can be any character except

" Digits (0 through 9)

" Plus signs (+)

" Dashes (-)

! Case: Node-name interpretation is case sensitive; that is, the system would see
“My_Node” and “my_node” as two separate names.

! Number of Characters: For your convenience, do not use more than 40 characters
in a single node name.

Table 23 Acceptable Node-name Characters

Description Character(s)

All letters A through Z
a through z

All digits 0 through 9

Plus sign +

Dash -

Asterisk *

Slash (forward) /

Equal sign =

Exclamation mark !

Question mark ?

Dollar sign $

Underscore _

Ampersand &

Caret ^

(Japanese only) All kanji characters, using
shift-JIS (S-JIS) encoding

Chapter 6 Section 6.2
Monk Event Type Definition Editor Getting Started

e*Gate Integrator User’s Guide 207 SeeBeyond Proprietary and Confidential

! Uniqueness: It is desirable to make each root node name unique within a schema.
This ensures that you do not confuse one ETD with another. If you want to access
nodes by name, you must give unique names to all the nodes within a given level.

! Total length: For very deep ETDs (with twenty or more levels), restrict the number
of characters per node name even further to ensure that the total fully qualified path
of the node—that is, all ancestor nodes concatenated with the leaf node—does not
exceed 1000 characters.

6.2.2 Before Using the ETD Editor
Before you start using the ETD Editor, consider the following Event Type properties:

! Specifications: All your Event Type specifications must be complete and correct
before the Event Types you define can pass through the e*Gate environment. An
ETD is required for all e*Gate-processed Events.

! External Templates: You must list all of the Event Types that would be appropriate
for use as external templates. If there are certain formats that recur throughout any
Event Type, then make sure to incorporate those formats into templates you can
reuse as you create more ETDs. This operation ensures a consistent format and
saves you time. See “Using External Templates” on page 254 for details.

! Level of Detail: In order to identify and translate Events, the e*Gate system, at a
minimum, requires you to define ETDs at the root-node level. However, you must
define most Events down to the node level assigned to the data field. This practice
allows you to specify any system-required Event identification and/or
transformation instructions needed later on.

! Amount of Detail: When you define an Event at a particular node level, it is
desirable to define that level completely. If you do not define elements of any Event
Type adequately, the system is unable to parse Events represented by that type, and
these Events fail to pass through the e*Gate network correctly.

See the sections under “Edit Menu” on page 212 for complete details on the correct
Event Type properties that you must define for e*Gate.

Caution: The ETD Editor does not validate your Events completely. It is up to you to make
sure that you build ETD Trees using valid Event element types and in accordance
with your predefined Event Type specifications.

Chapter 6 Section 6.3
Monk Event Type Definition Editor ETD Editor Window

e*Gate Integrator User’s Guide 208 SeeBeyond Proprietary and Confidential

6.3 ETD Editor Window
Figure 84 below shows an example of the ETD Editor window with a sample ETD Tree
setup displayed.

Figure 84 ETD Editor and Tree Structure

The window above has the following major sections:

! Menu bar: contains the ETD Editor menus.

! Toolbar: contains buttons that allow you easy access to often-used features.

! Workspace pane: provides your primary working area where you build the ETD
Tree and node picture of your ETDs.

! Panning pane: shows a thumbnail overview diagram of the current ETD Tree’s
structure.

! Template Library pane: displays a button for the current ETD and each template in
the Template Library; see Using External Templates on page 254.

Chapter 6 Section 6.3
Monk Event Type Definition Editor ETD Editor Window

e*Gate Integrator User’s Guide 209 SeeBeyond Proprietary and Confidential

To access the ETD Editor window

From the e*Gate Enterprise Manager window, click the ETD Editor command button
(or, on the Tools menu, choose ETD Editor). The ETD Editor window first appears
empty, with no graphic ETD Tree setups displayed.

The rest of this section explains the basic e*Gate GUI features of the ETD Editor.

6.3.1 Toolbar
Table 17 shows the toolbar buttons and the functionality of each.

Table 24 Toolbar Buttons and Functions

Button Name Function

New To create a new ETD, click the New button. The New ETD dialog box
appears; this is where you define the initial properties of your new
ETD, including its type and file name.

Open Allows you to open an ETD file. The Open ETD dialog box appears.
Select the desired ETD to open. The e*Gate Editor displays the
selected ETD in the Workspace pane.

Build Builds an ETD for you, based on the parameters you provide: that is,
sample input data, delimiters, and the number of levels to include in
the definition. See Table 25 on page 211 for more details.

Save Allows you to save the current ETD. The ETD is saved under the
name assigned to it in the New ETD dialog box.

External Allows you to include an external template in your ETD. See Table
27 on page 213 for more details.

Node Allows you to add a node on the same level of the ETD Tree
hierarchy as the one you have currently selected. See Add Node in
Table 26 on page 212 for more details.

Subnode Allows you to add a node on level below the node you have
currently selected. See Table 26 on page 212 for more details.

Chapter 6 Section 6.3
Monk Event Type Definition Editor ETD Editor Window

e*Gate Integrator User’s Guide 210 SeeBeyond Proprietary and Confidential

6.3.2 Menu Bar
The Monk ETD Editor has the following menus:

! File

! Edit

! Templates

Set Allows you to add a node set (placeholder) that is on the same level
of the ETD Tree hierarchy as the one you have currently selected.
See Table 26 on page 212 for more details.

Subset Allows you to add a node set (placeholder) that is one level below
the node you have currently selected. See Add Subset in Table 26
on page 212 for more details.

Delete Allows you to delete a node and all its subnodes.

Prune Allows you to delete subnodes belonging to a node. See Table 26
on page 212 for more details.

Cut Allows you to delete a node and its associated subnodes and
temporarily place them in an internal buffer. See Table 26 on
page 212 for more details.

Copy Allows you to temporarily place a selected node and its associated
nodes in an internal buffer. See Table 25 on page 211 for more
details.

Paste Allows you to paste the contents of an internal buffer into your ETD
Tree. See Table 26 on page 212 for more details.

Run Test Allows you to test your ETD against sample input data and tells you
whether your ETD works. See Table 25 on page 211 for more
details.

Button Name Function (Continued)

Chapter 6 Section 6.3
Monk Event Type Definition Editor ETD Editor Window

e*Gate Integrator User’s Guide 211 SeeBeyond Proprietary and Confidential

! View

! Options

! Help

The next section explains the commands available under each of these menus.

File Menu

Table 25 below lists and describes the File menu commands.

Table 25 ETD Editor File Menu

Command Function

New Opens the New ETD dialog box, where you define basic details about your
new ETD file, including the file name (extension must be. .ssc). See
“Creating ETD Files” on page 215 for details.

Open Displays the Open ETD dialog box, allowing you to choose an ETD to display.
See “Opening ETDs” on page 242 for details.

Build Builds an ETD for you, based on the parameters you provide, that is, sample
input data, delimiters, and the number of levels to include in the definition.
See “Using the Build Tool” on page 242 for details.

Save and Edit Using
External Editor

Allows you to open, edit, and save an ETD file, using a file editor outside the
e*Gate system.

Reload from Local
Machine

Allows you to reload an ETD file into e*Gate from a local system.

Save Saves the open ETD under its current file name.

Save As Allows you to save your ETD to a new name. Click Save to complete the
operation. See “Saving ETDs Under New Names” on page 246 for
details.

Export to DTD Opens an Export To dialog box that allows you to save the current ETD file as
a DTD (XML-type) file with a .dtd extension. See SeeBeyond’s XML Toolkit for
details.
NOTE: This feature is only available with the XML Converter add-on.

Promote to Run
Time

Allows you to move the current ETD file out of a Sandbox (nonoperating)
state and into a state ready for operation within the system.

Remove Allows you to delete the current version of the ETD file from your personal
Sandbox folder.

Default Delimiters Allows you to specify the default delimiters used to parse Event elements.
See “Defining Default Delimiters” on page 217 for details.

Run Test Tests your ETD against sample input data and tells you whether your ETD
works. See “Testing ETD Files” on page 247 for details.

Main Comment Opens a dialog box where you can enter notes about your ETD. See
“Creating ETD Comments” on page 250 for details.

Close Closes the ETD Editor window and exits the feature.

Chapter 6 Section 6.3
Monk Event Type Definition Editor ETD Editor Window

e*Gate Integrator User’s Guide 212 SeeBeyond Proprietary and Confidential

Edit Menu

Table 26 below lists and describes the Edit menu commands.

Table 26 ETD Editor Edit Menu

Command Function

Add Node Inserts a node in the ETD Tree on the same level as the currently selected
node. See “Adding Delimited-ETD Nodes” on page 228 or “Adding
Fixed-ETD Nodes” on page 235 for details.

Add Subnode Inserts a node in the ETD Tree one level below the currently selected node.
the inserted node is associated with the selected node. See “Adding
Delimited-ETD Nodes” on page 228 or “Adding Fixed-ETD Nodes”
on page 235 for details.

Add Set Inserts a node set placeholder in the ETD Tree on the same level as the
currently selected node. Node sets consist of multiple nodes that are order
independent and/or repeat. See“Adding Node Sets” on page 239 for
details.

Add Subset Inserts a node set placeholder in the ETD Tree one level below the currently
selected node or node set. The inserted set is associated with the selected
node. See “Adding Node Subsets” on page 241 for details.

Delete Allows you, in one step, to delete the selected node and all of its associated
subnodes. You cannot delete a root node. See “Deleting ETDs” on
page 253 for details.

Prune Deletes all subnodes associated with the selected node. You can use this
function to delete all nodes below the root node. See “Pruning ETDs” on
page 252 for details.

Cut Deletes the selected node and all associated subnodes, temporarily placing
them in an internal buffer. See “Using Cut, Copy, and Paste” on page 251
for details.

Copy Temporarily places a selected node and its associated subnodes in an
internal buffer. You cannot cut, copy, or paste between two ETD Editor
windows. See “Using Cut, Copy, and Paste” on page 251 for details.

Paste Pastes anything into a selected location in your ETD Tree that you last placed
in an internal buffer with the Cut or Copy command. See “Using Cut,
Copy, and Paste” on page 251 for details.

Find Allows you to search through your ETD for a particular node. You search by
node name. See “Finding ETD Nodes” on page 250 for details.

Chapter 6 Section 6.3
Monk Event Type Definition Editor ETD Editor Window

e*Gate Integrator User’s Guide 213 SeeBeyond Proprietary and Confidential

Templates Menu

Table 27 below lists and describes the Templates menu commands.

View Menu

Table 28 below lists and describes the ETD Editor View menu commands.

Options menu

Table 29 below lists and describes the Options menu commands.

Table 27 ETD Editor Templates Menu

Command Function

New Internal
Template

Allows you to create, from scratch, an internal template to use in your ETD.
See “Using Internal Templates” on page 257 for details

External Template Allows you to access an external template to use in the current ETD. See
“Using External Templates” on page 254 for details.

Delete Template Allows you to delete an internal or external template from your ETD.
Removes the template’s button from the Template Library pane.

Templify Allows you to convert an ETD or portion of an ETD to an internal template.

Resolve For external templates, breaks the link between the selected instance of an
external template in your ETD and its source file. See “Breaking Template
Links” on page 257 for a description of how to use the Resolve command
with an external template.

For internal templates, breaks the link between the selected instance of an
internal template in your ETD and its source. For internal templates, the
Resolve command is the opposite of Templify. To use this, select the internal
template’s root node and then choose the Resolve command.

Table 28 ETD Editor Templates Menu

Command Function

Float Toolbar Opens a floating version of the toolbar that you can drag to a convenient
location in the ETD Editor window.

Float Event Type
Definition Pan
Window

Opens a floating version of the panning tool. The panning tool lets you
change your view of the ETD if it is too big to fit in the Workspace pane. Grab
the frame in the panning tool and move it around to pan across your ETD.

Node Properties Displays the Node Properties dialog box containing the properties of the
currently selected node. For delimited notes, see “Adding Delimited-
ETD Nodes” on page 228 for details. For fixed nodes, see “Adding Fixed-
ETD Nodes” on page 235 for details.

Collapse Closes all branches in your ETD Tree below the selected node.

Expand Explodes the ETD Tree one level so that you see all branches of subnodes
belonging to a node.

Expand All Explodes the ETD Tree on all levels so that you see all branches of nodes,
subnodes, and sub-subnodes in the ETD.

Chapter 6 Section 6.3
Monk Event Type Definition Editor ETD Editor Window

e*Gate Integrator User’s Guide 214 SeeBeyond Proprietary and Confidential

Help Menu

Table 30 lists and describes the ETD Editor Help menu commands.

Table 29 ETD Editor Options Menu

Command Function

Horizontal Layout Configures your ETD Tree in a left-to-right hierarchical structure.

Vertical Layout Configures your ETD Tree in a top-to-bottom hierarchical structure.

Manhattan Style Configures the line connections ETD Tree components as follows:

Traditional Style Configures the lines connections ETD Tree components as follows:

Insert After Inserts a sibling node or node set below the currently selected node.

Insert Before Inserts a sibling node or node set above the currently selected node.

Table 30 ETD Editor Help Menu

Command Function

e*Gate Help Topics Allows you to access the online Help system for the ETD Editor GUI.

About e*Gate Displays basic information about the current e*Gate software version.

Chapter 6 Section 6.4
Monk Event Type Definition Editor Creating and Building ETDs

e*Gate Integrator User’s Guide 215 SeeBeyond Proprietary and Confidential

6.4 Creating and Building ETDs
You must create an ETD for every Event Type that passes through the e*Gate system.
Use the ETD Editor to create the following basic kinds of ETDs:

! Delimited: Variable-length Events, whose data is separated by delimiters.

! Fixed: Constant-length Events, with no delimiters.

You create an ETD file in the same way for both kinds. However, specifications for
building the two Event Types are different. You can also create node set placeholders in
any ETD Tree.

This section explains:

! “Creating ETD Files” on page 215

! “Building Delimited ETDs” on page 217

! “Building Fixed ETDs” on page 232

! “Adding Node Sets” on page 239

6.4.1 Creating ETD Files
Initial steps for creating ETDs are the same for delimited and fixed ETDs, that is, you
must first create the ETD file.

Naming Files

When naming ETD files, use the same naming conventions as you do for nodes (see
“Naming Nodes” on page 206). The only exception is the maximum number of
allowable characters, which is 256, including the path as shown in the New ETD dialog
box (see Figure 85 on page 216).

SeeBeyond recommends that you give the ETD file a name suitable for its root node.
For example, if you want to call the root node “New_Data_1,” then name the ETD file
New_Data_1.ssc.

To create ETD files

1 From the ETD Editor window, click the New command button (or, on the File
menu, choose New). The New ETD dialog box appears (see Figure 85 on page 216).

Note: If you are already using this window with a different ETD displayed, choosing the
New command allows you to start creating another ETD. The system warns you if
you have not saved your current ETD.

Chapter 6 Section 6.4
Monk Event Type Definition Editor Creating and Building ETDs

e*Gate Integrator User’s Guide 216 SeeBeyond Proprietary and Confidential

Figure 85 ETD Dialog Box

2 In the Name box, enter a file name for the ETD.

The file extension, .ssc, is the default file extension for ETD files. The system
automatically adds it to your file name, so you do not must specify it. Do not change
this extension.

Note: For system file-naming conventions, see “Naming System Elements” on
page 45.

3 For Files of Type, leave the box set to Event Type Definition.

4 Select the file Type appropriate for your ETD, Delimited or Fixed as follows:

" Variable-length Events: Select the Delimited file type then select the delimited
Event Type out of the following delimiter options: HL7, X12, EDIFACT, or
Other.

Note: If you select the Other option, you must define default delimiters for your ETD. See
“Defining Default Delimiters” on page 217 for additional procedures.

" Fixed-length Events: Select Fixed and go on to the next step.

5 Click OK to close the New ETD dialog box.

An icon appears in the Template Library pane. This icon represents your new ETD.

Delimited and Fixed ETDs

Specifications for ETDs are different, depending on whether the corresponding data
files are delimited or fixed. See the following sections for further details:

! “Building Delimited ETDs” on page 217

You cannot have more than
256 characters in the path as
displayed in this text box
(including slashes).

You cannot have more than
62 characters in the file name,
including the extension.

Chapter 6 Section 6.4
Monk Event Type Definition Editor Creating and Building ETDs

e*Gate Integrator User’s Guide 217 SeeBeyond Proprietary and Confidential

! “Building Fixed ETDs” on page 232

Table 23 below lists additional options for building both delimited and fixed ETDs,
along with references to sections in this user’s guide that explain these options.

6.4.2 Building Delimited ETDs
If your ETD represents a variable-length Event requiring delimiters, you must create a
delimited ETD. This section explains how to do this operation.

Creating Delimited ETDs

Create your new ETD file as explained under “Creating ETD Files” on page 215. To do
this operation, use the ETD Editor window and the New ETD dialog box.

Defining Default Delimiters

Default delimiters have the following basic characteristics:

! When you create a new ETD file, the New ETD dialog box asks you to specify the
default delimiters you want to use. For example, if you select the HL7 option, the
system uses standard HL7 default delimiters in your ETD. You must assign a set of
default delimiters to all delimited ETDs.

! If you select the Other option in the New ETD dialog box, you must define your
own default delimiters. For details on how to use the Other option, see “Defining
Default Delimiters” on page 217 and follow the procedures under that section.

! When you define default delimiters, you are specifying the delimiters that apply to
an entire ETD. You define default delimiters in node levels; that is, Level 1
delimiters apply to the first level of nodes below the root node, Level 2 delimiters
apply to the subnodes immediately below the Level 1 nodes, and so on. Delimiters
do not apply to the root node.

! In addition, you can set the default delimiter for each level in the ETD Tree
hierarchy.

Table 31 Options for Delimited and Fixed ETDs

Option Purpose Details Contained In

Creating node sets Define nodes that as a group, are order-
independent or repeat.

“Adding Node Sets” on
page 239

Referencing
external templates
in your ETD

Reference standard ETDs from the current
ETD to help you build and maintain it
more easily.

“Using External Templates”
on page 254

Creating an internal
template

Create a subset of an ETD that can be used
as a repeatable pattern to build other
subsets within the same ETD.

“Using Internal Templates”
on page 257

Referencing
internal templates
in your ETDs

Use an internal template you have created
in the current ETD.

“Referencing Internal
Templates in ETDs” on
page 258

Chapter 6 Section 6.4
Monk Event Type Definition Editor Creating and Building ETDs

e*Gate Integrator User’s Guide 218 SeeBeyond Proprietary and Confidential

Array Attribute: When you select the array attribute within a level, the delimiters
shown in the Set Delimiters dialog box (Figure 86) are actually the repetition delimiters
for the previous level. See step 6 in the procedure on page 220.

Also, see the following references:

! For details on how to extract delimiters from an input Event, see “Extracting Input
Delimiters” on page 247.

! For details on delimiter syntax, see “Delimiter Syntax” on page 222. Define default
delimiters, using the ETD Editor window.

! For details on how to extract delimiters from particular locations in an inbound
Event, see “Extracting Input Delimiters” on page 247.

Note: If you are using the HL7 standard delimiters, the repetition field separator is, by
default, a tilde (~). You can change this character if your HL7 Events use a different
repetition separator. The HL7 repetition separator divides multiple occurrences of a
field. See “Specifying HL7 Repeating Fields” on page 231 for details about
how to use this separator in an ETD.

To save any dialog box entries before you are finished

Click Apply to save your entries into the system and continue working in the dialog
box.

To change a set of dialog box entries

Use one of the following buttons:

" Delete Level: Click to delete the selected level.

" Restore Delimiters: Click to restore the previous set of saved delimiter settings.

See Figure 87 on page 220.

To define default delimiters

1 On the File menu, click Default Delimiters.

Chapter 6 Section 6.4
Monk Event Type Definition Editor Creating and Building ETDs

e*Gate Integrator User’s Guide 219 SeeBeyond Proprietary and Confidential

The Set Delimiters dialog box appears (see Figure 86 below).

Figure 86 Set Delimiters Dialog Box

2 Select one of the following default-delimiter options:

" HL7: Displays the standard set of delimiters for HL7 Events.

" X12: Displays the standard set of delimiters for X12 Events.

" EDIFACT: Displays the standard set of delimiters for EDIFACT Events.

" Other: Use to define your own set of delimiters or add to a set of standard set.
For correct syntax, see “Delimiter Syntax” on page 222.

3 Take one of the following steps:

" For Standard Options: If you select one of the standard options in the previous
list, the set of delimiters for that standard displays in the dialog box. If you do
not want to change these options, you are now finished. Skip to step 14.

" For Other Option: If you chose Other from the previous list, the Set Delimiters
dialog box changes (see Figure 87 on page 220). You must go on to the next step.

NOTE: The text boxes
are not necessarily
numbered according
to their levels in the
ETD Tree. An array
displays here as a
separate level,
displacing the level-
numbering order.

To add a level: Click this
button; the level is added
after the last level

Enter default delimiter
information here, called the first
and second text boxes.

Select the
appropriate
attributes.

Chapter 6 Section 6.4
Monk Event Type Definition Editor Creating and Building ETDs

e*Gate Integrator User’s Guide 220 SeeBeyond Proprietary and Confidential

4 Click Add Level, if you are creating or adding delimiters to add your first level of
delimiters (under the Other option). See Figure 87 below.

Figure 87 Set Delimiters Dialog Box, Other Selected

Note: You can add a maximum of 255 levels of delimiters.

5 Enter the appropriate information for the new level in the text boxes (see Figure 86
on page 219) as follows:

" First Text Box: Enter the beginning delimiter in double quotation marks (for
example, “^”). If there is no beginning delimiter, leave the box blank.

" Second Text Box: Enter the end delimiter in double quotation marks or enter the
byte position to extract the delimiter from. A byte position can be specified
either as [n] or [n,m], where n and m are integers and the first byte is “[0].” If
you specify a byte position, you cannot specify a beginning delimiter (and you
must leave the first box blank).

Note: If you want to use brackets ([]) as delimiters, you must enclose them in double
quotation marks (“[]”).

6 Select one or more of the following Attributes as desired:

" End of Record (endofrec): Marks the end of a record.

Level 1 has been
scrolled to the left
to show the
Attributes options.

Chapter 6 Section 6.4
Monk Event Type Definition Editor Creating and Building ETDs

e*Gate Integrator User’s Guide 221 SeeBeyond Proprietary and Confidential

" Required (required): Indicates that the delimiter must appear in the node.

" Anchored (anchored): The delimiters must be the first and last characters of this
segment of the Event, equivalent to selecting both beginanchored and
endanchored.

" Begin Anchored (beginanchored): The beginning delimiter must be the first
characters of this segment of the Event.

" End Anchored (endanchored): The end delimiter must be the final characters of
this segment of the Event.

Note: The array option does not apply to a nonrepetition delimiter.

7 Take one of the following steps:

" No Repetition Delimiters: If you do not have an associated repetition delimiter,
go back and repeat steps 4 through 7 until you are finished then skip to step 14.

" With Repetition Delimiters: If this delimiter does have an associated repetition
delimiter, go on to the next step.

8 Click Add Level and select the following attribute:

" Array (array): Only use this option in a level where you add repetition
delimiters (delimiters for repeating nodes).

9 Enter the appropriate information for the repetition delimiter in the text boxes (see
step 5).

10 Select any additional attributes as desired (see step 6). Make sure you have selected
the array attribute.

11 Repeat steps 4 through 7 until you are finished. Go on to the next step.

12 For the Escape Character Delimiter, you can enter any character you want in that
text box, between the double quotation marks (if you chose Other). If you skip this
entry, the default escape character is the backslash (\). See “To enter an escape
character with your own default delimiters” on page 221 for details.

13 Click Apply at any time to save your entries.

14 When you are completely finished, click OK to close the dialog box.

To enter an escape character with your own default delimiters

If you want to tell Monk that the next character is not a delimiter, you must escape that
character. Do this action by entering an escape character directly before the desired
character. The default escape character is the backslash (\).

If you define or add your own set of default delimiters (using the Other option), you
can enter your own escape character (in double quotation marks) used in your Event.
You can also change this text box’s label (see Figure 87 on page 220).

This step is optional. If you do enter your own escape character, keep the following facts
in mind:

Chapter 6 Section 6.4
Monk Event Type Definition Editor Creating and Building ETDs

e*Gate Integrator User’s Guide 222 SeeBeyond Proprietary and Confidential

" If you are using the HL7 standard delimiters, the default value consists of two
backslash characters (\\). In the HL7 format, this value is used in Events as part
of an escape sequence that provides special text formatting instructions.

" For any other Event Type besides HL7, fill in the escape character used in your
Events.

Delimiter Syntax

Use the following syntax when entering delimiters in the Set Delimiters dialog box:

! Enclose all delimiters in double quotation marks; to include quotation marks as a
delimiter, use

\“

! When entering a single character, use any character except the backslash (\).

! Use a backslash to escape special characters, for example,

\t

! For hexadecimal values, the syntax is

\x<value1><value2>

The <valueN> variables can be 0 through 9, a through f, or A through F. For
example, the maximum value for a hexadecimal value is \xFF.

! For octal values, the syntax is

\o<value1><value2><value3>

The <value1> variable can only be 0 through 3, <value2> 0 through 7, and <value3>
0 through 7. For example, the maximum value for an octal value is \o377.

! For multi-character delimiters, the syntax is

“<characters>”

Creating Root Nodes for Delimited ETDs

The root node is always the first element you add in an ETD. To create a root node, use
the ETD Editor window.

The root node is at the top of the ETD Tree for a defined Event Type and represents the
entire ETD. All nodes you add under a delimited ETD root node are delimited types.

To create delimited ETD root nodes

1 On the toolbar or Edit menu, click Add Node.

The root node appears in the Workspace pane.

2 Double-click the root node’s label (its third component).

The Node Properties dialog box appears, displaying the General tab. See Figure 88
on page 223).

Chapter 6 Section 6.4
Monk Event Type Definition Editor Creating and Building ETDs

e*Gate Integrator User’s Guide 223 SeeBeyond Proprietary and Confidential

Figure 88 Delimited Root Node Properties Dialog Box, General Tab

3 Under the General tab, enter the following properties:

" Name: The node’s suggested name, automatically inserted in the Name text
box, although you can change it. See “Naming Nodes” on page 206 for node-
naming rules. The ETD’s icon label in the Template Library pane also shows this
name.

Note: Make sure you give the node a meaningful name in relation to the current ETD, for
future reference.

" Path/Address: Read-only, scrollable fields that display the path and address of
the current node in the ETD, starting with the root node.

" Node Type: Fixed or Delimited; by default, Delimited is already selected.

" Variable Repetition: Options are dimmed, since a root node cannot repeat.

4 Click the Content tab. See Figure 89.

Chapter 6 Section 6.4
Monk Event Type Definition Editor Creating and Building ETDs

e*Gate Integrator User’s Guide 224 SeeBeyond Proprietary and Confidential

Figure 89 Delimited Root Node Properties Dialog Box, Content Tab

5 Under the Content tab, enter the following properties:

" Input Tag Data: Enter, in double quotation marks, a Monk regular expression to
be applied against the data contained within this node. If the expression does
not match, the map fails. For more information about Event mapping, see the
“Monk and Event Definitions” section in the Monk Developer's Reference. You can
leave this field unused by entering “”.

" Does NOT match: Use this option to do a logical NOT on the regular expression
specified under Input Tag Data.

" Output Default Data: Enter, in double quotation marks, the data to be inserted
as this node’s contents if the node is otherwise empty. You can leave this field
unused by entering “”.

" Scavenger Characters: Enter, in double quotation marks, a list of characters to
be ignored (in other words, treated as white space). The “scavenger characters”
only strip leading characters. Characters that appear within the Event string
remain unchanged.

" Output first character: Copies the first character in the “scavenger characters”
list to the first character of the input data. The remainder of the input data
remains unchanged.

Chapter 6 Section 6.4
Monk Event Type Definition Editor Creating and Building ETDs

e*Gate Integrator User’s Guide 225 SeeBeyond Proprietary and Confidential

6 Click the Repetition tab (see Figure 90 below). Note that these properties apply to
the nodes on levels under the current root node and not to the root node itself.

Figure 90 Delimited Root Node Properties Dialog Box, Repetition Tab

7 Under the Repetition tab, enter the following properties:

" Child Nodes Can Appear in Any Order: Check this box to let the system know
whether child nodes can appear in any order in the Event.

" Group Repetitions: Check to reorder the data within the child nodes, collating
data elements within an Event based upon the Input Tag Data pattern specified
under the Content tab.

" N of N: Allows you to require that a certain number of child nodes contain data.
Use this feature as follows:

To specify a minimum number of nodes, click No Maximum, then enter the
number of child nodes in at least (text box) children must have data.

To specify a minimum number within a maximum number of nodes (for
example, 3 of 5), clear No Maximum if necessary, then enter the appropriate
numbers.

If you do not want to require that a certain number of child nodes contain
data, under N of N, click Clear.

If you click
No Maximum, the text
boxes below change to
say At least (text box)
children must have data,
since then only one
number is required.

Chapter 6 Section 6.4
Monk Event Type Definition Editor Creating and Building ETDs

e*Gate Integrator User’s Guide 226 SeeBeyond Proprietary and Confidential

" Exact Match - do not extend map: Click to override Monk's default behavior,
that is, to extend the map if Event data or delimiter defaults imply the presence
of subnodes. This option is only available with the root node.

Using N of N with XML

This feature, introduced by SeeBeyond’s XML DTD converter, provides support for
XML. Use it to map the children of a desired parent node and validate their data in
terms of given requirements.

N of N means at least N and not more than N. You must provide a minimum and
maximum number of repetitions when mapping the children of parent nodes.

Examples

If you enter 3 of 5, the current node is only valid if it meets the following requirements:

! Has three or more child nodes containing data

! Has a total of five or fewer child nodes containing data

You can use N of N when the container node in the DTD file is used for matching one
out of two cases. N of N then forces Monk to match exactly one case because the
generated .ssc file uses the following syntax:

(NofN (1 1))

This command instructs Monk to match a minimum of one case and a maximum of one
case when mapping the children. The first case is for matching the element that has
data and an end tag.

For example, if you enter the following XML data:

“<A>
A’s Data
”

The first case matches

“>
A’s Data
”

The following XML input, without data, matches the second case,

”<A />”

For more information, see SeeBeyond’s XML Toolkit.

Chapter 6 Section 6.4
Monk Event Type Definition Editor Creating and Building ETDs

e*Gate Integrator User’s Guide 227 SeeBeyond Proprietary and Confidential

8 Click the Delimiters tab (see Figure 91 below).

Figure 91 Delimited Root Node Properties Dialog Box, Delimiters Tab

9 Use the Delimiters tab to enter the properties that override your preset default
delimiters. See “Defining Default Delimiters” on page 217 for details. The buttons
under this tab have the following functions:

" : Allows you to add a begin/end delimiter pair to the current node; click this
button then enter the desired pair and click OK. Make sure the added delimiter
is enclosed within double quotation marks.

" : Allows you to delete a begin/end delimiter pair from the current node;
select the desired pair then click this button.

" : Allow you to move the selected begin/end delimiter pair one position
up or down in the current node’s parsing order; select the desired pair then click
the appropriate button.

" Revert: Allows you to redisplay the initial values shown in this properties
dialog box’s tab, when you first opened it (for the current session).

Symbol indicates
current values are
inherited from the
node defaults; if
you assign values to
override the
defaults, this
symbol changes to
a check mark.

Chapter 6 Section 6.4
Monk Event Type Definition Editor Creating and Building ETDs

e*Gate Integrator User’s Guide 228 SeeBeyond Proprietary and Confidential

" Default: Allows you to return this properties dialog box’s tab information to the
node’s default delimiter values.

" Override Repetition Delimiter: Opens a dialog box similar to this properties
dialog box’s tab, which allows you to enter a special set of values to change the
repetition delimiter. Use this dialog box in the same way as you do the
Delimiters tab in the delimited Node Properties dialog box.

10 When you want to save any root-node properties, click Apply to enter them into the
system.

11 When you are finished with the properties dialog box, click OK to close it.

12 Finish building the ETD Tree for the current ETD as follows:

" If you must add individual delimited Event elements (such as segments) to your
definition, go to “Adding Delimited-ETD Nodes” on page 228.

" If your ETD consists of a group of Event elements that can occur in any order,
then you must add a node set below your root node. Go to “Adding Node Sets”
on page 239 for details.

To change an existing begin/end delimiter pair

1 Select the Edit button corresponding to the delimiter pair you want to change.

2 Make the changes and click OK. Be sure the delimiter is enclosed within double
quotation marks.

To change attributes for all begin/end delimiter pairs

Use the Attributes section of this tab under the delimited Node Properties dialog box.
See the list under step 6 in the procedure on page 220 for the Set Delimiters dialog box,
for instructions on how to set these attributes.

Adding Delimited-ETD Nodes

Once you create a delimited ETD root node, all nodes you add to the root node are
automatically in a delimited format. This section explains how to create delimited
subnodes and define their properties.

Delimited nodes display accordingly in the ETD Tree. Node icons and all icons at levels
below them display the default delimiters assigned to their particular Tree level. See
Figure 92.

Figure 92 Root Node and Node Icons

If you are creating a delimited ETD, but have not yet added your root node, see
“Creating Root Nodes for Delimited ETDs” on page 222 for details on this operation.

Use these same procedure for each level of nodes, subnodes, and sub-subnodes you
must add to your ETD Tree. Use the ETD Editor window to do these operations.

Selected node

Chapter 6 Section 6.4
Monk Event Type Definition Editor Creating and Building ETDs

e*Gate Integrator User’s Guide 229 SeeBeyond Proprietary and Confidential

To add delimited-ETD nodes

1 In the Workspace pane, select the desired delimited-ETD root node.

2 Click the Add Subnode command (or, on the Edit menu, choose Add Subnode).
A delimited-ETD node icon appears by the selected root node.

3 Double-click the new node’s label (its third component).

The Node Properties dialog box appears, with the General tab elements displayed
(see Figure 93 on page 229).

Figure 93 Delimited Node Properties Dialog Box, General Tab

4 Under the General tab assign the following properties:

" Name: The node’s suggested name is automatically inserted in the Name text
box, although you can change it. See “Naming Nodes” on page 206 for node-
naming rules. The ETD’s icon label in the Template Library pane also shows this
name.

" Path/Address: Read-only, scrollable fields that display the path and address of
the current node in the ETD, starting with the root node.

" Node Type: Fixed or Delimited; by default, Delimited is already selected.

Chapter 6 Section 6.4
Monk Event Type Definition Editor Creating and Building ETDs

e*Gate Integrator User’s Guide 230 SeeBeyond Proprietary and Confidential

" Variable Repetition: Select the option that matches the number of times the
node repeats as shown in Table 32.

Note: A symbol appears in the node’s second component in the ETD Tree. The symbol’s
format represents the selected repetition option.

5 Click the Content tab. Enter properties as instructed under step 5 in the procedure
on page 224.

6 Click the Repetition tab. Enter properties as instructed under step 7 in the
procedure on page 225.

Note: This tab in the Node Properties dialog box does not contain the Exact Match -
do not extend map option since it only applies to root nodes.

7 Click the Delimiters tab. Enter properties as instructed under step 9 in the
procedure on page 227.

8 When you want to save any node properties, click Apply to enter them into the
system.

9 When you are finished with the properties dialog box, click OK to close it.

10 You can do one of the following operations to continue building your ETD Tree:

" To Add Subnodes: Select the node to which you want to add subnodes (nodes
to lower levels). Choose the Edit > Add Subnode menu command (or click the
Subnode button). Repeat this step for each subnode you want to add.

Table 32 Delimiter Variable Repetition Options

Number of Node
Repetitions

Option To Choose Entries
Symbol

Displayed
by Node

Only one occurrence Non-Repeating 1, 1 1

Can occur either once
or never

Optional 0, 1 ?

Can occur zero or
more times

Optional Repeating 0, INF *

Can occur one or
more times

Repeating 1, INF +

Can occur within a
range of repetitions

At Least ... At Most
Fill in the repetition range, using the integers
n to m
For example, if nodes repeat 1 to 5 times, enter
1 and 5.

n, m <n-m>

Chapter 6 Section 6.4
Monk Event Type Definition Editor Creating and Building ETDs

e*Gate Integrator User’s Guide 231 SeeBeyond Proprietary and Confidential

" To Add Sibling Nodes: Select the node to which you want to add sibling nodes
(nodes on the same level). On the toolbar or Edit menu, click Add Node. Repeat
this step for each sibling node you want to add.

11 Repeat steps 3 through 9 in these procedures as necessary, for each subnode and/or
sibling node you began adding under step 10. Also if necessary, add sub-subnodes
and sibling sub-subnodes in the same way.

12 When you are finished building your ETD, save your changes.

Specifying HL7 Repeating Fields

In the HL7 Event Type standard, there is a special delimiter that marks instances of
repeating fields. You specify this special character in the Set Delimiters dialog box,
available in the File menu.

The default field repetition delimiter is a tilde (~). Figure 94 shows a sample HL7 field
that uses this special delimiter.

Figure 94 Field Repetition Delimiter Usage

Caution: Only use field repetition delimiters at two levels below the root node (the field level).

Use Node Subsets: The procedure below uses an example to show how to insert a field
repetition delimiter in an ETD, using node subsets. See “Adding Node Sets” on
page 239 for details on how to set up node sets and subsets.

Use this feature, for example, if you must set up a segment that contains a repeating
field. You must add a set placeholder that represents the repeating field and contains
the repetition delimiter.

To insert field repetition delimiters in ETDs

1 On the File menu, click Set Delimiters. The Set Delimiters dialog box appears (see
Figure 86 on page 219).

2 Choose the HL7 default delimiters.

3 Set up a root node, followed by a node that represents the repeating segment.

Chapter 6 Section 6.4
Monk Event Type Definition Editor Creating and Building ETDs

e*Gate Integrator User’s Guide 232 SeeBeyond Proprietary and Confidential

4 Select the node that represents the repeating segment and, on the toolbar or Edit

menu, click Add Subset.

A set placeholder node appears below the repeating segment node. The new node
represents the repeating field. Give this node the same name as the field.

5 Double-click the new set placeholder’s label (its third component).

The Set properties dialog box appears (see Figure 100 on page 240).

6 The properties you define for this set are the properties of the repeating field. Define
the new set’s properties as follows:

" Name: Enter the name of the repeating field.

" Set Type Options: The Ordered Set option is automatically selected. Do not
change it.

" Special Character Option: Select the Repetition Field Separator button. This
inserts the field repetition delimiter in the ETD hierarchy, so that each instance
of the repeating field is separated by this special delimiter. The HL7 default
special delimiter is a tilde (~).

" Variable Repetition Options: Select the Repeating option.

7 Click OK to apply the properties and close the dialog box.

8 Select the node set placeholder for the repeating node set—in other words, the node
that contains the repeating field, and then click the Subnode command button (or,
on the Edit menu, choose Add Subnode) to add the first component of the
repeating field.

9 Repeat step 8 as many times as necessary to define all the components of the
repeating field. Define the properties of these nodes.

10 When you are finished, save your changes.

6.4.3 Building Fixed ETDs
You must create a fixed ETD if your ETD represents an Event with a fixed length. This
section explains this operation.

Creating Fixed ETDs

Create your new ETD file as explained under “Creating ETD Files” on page 215, using
the ETD Editor window and the New ETD dialog box.

Creating Root Nodes for Fixed ETDs

The root node is always the first element you add in an ETD. The root node is at the top
of the ETD Tree for a defined Event Type and controls the purpose for all Events of that
type. All nodes you add under a fixed ETD root node are fixed types.

To create fixed-ETD root nodes

1 On the toolbar or Edit menu, click Add Node.

Chapter 6 Section 6.4
Monk Event Type Definition Editor Creating and Building ETDs

e*Gate Integrator User’s Guide 233 SeeBeyond Proprietary and Confidential

A root node icon appears in the Workspace pane.

2 Double-click the root node’s label (its third component).

The Node Properties dialog box appears, displaying the General tab. See Figure 95.

Figure 95 Fixed Root Node Properties Dialog Box, General Tab

3 Under the General tab, enter the following properties:

" Name: The node’s suggested name is automatically inserted in the Name text
box, although you can change it. See “Naming Nodes” on page 206 for node-
naming rules. The ETD’s icon label in the Template Library pane also shows this
name.

" Path/Address: Read-only, scrollable fields that display the path and address of
the current node in the ETD, starting with the root node.

" Node Type: Fixed or Delimited; if necessary, click Fixed to change to the
appropriate ETD type.

" Variable Repetition: These options are dimmed, since the root node cannot
repeat.

" Data Length: Select whether the node has a Constant Length (length never
changes) or Encoded Length (length contained within Event data), then enter
the following parameters:

Chapter 6 Section 6.4
Monk Event Type Definition Editor Creating and Building ETDs

e*Gate Integrator User’s Guide 234 SeeBeyond Proprietary and Confidential

Length: You can enter the entire Event’s length in this text box, but it is only
required if you’re not going to represent all Event elements in the structure.
When all elements are represented in the structure, the system calculates the
total Event length by adding up the lengths of Event elements.

Offset: The text box is dimmed, since the root node represents the entire
Event.

Position: Since there is no offset, there is no offset position.

4 Click the Content tab. Enter properties as instructed under step 5 in the procedure
on page 224.

5 Click the Repetition tab. Enter properties as instructed under step 7 in the
procedure on page 225.

6 Click the Delimiters tab (see Figure 96 below). This feature is optional. If the
current ETD has no delimited elements, skip this and the next step.

Figure 96 Fixed Root Node Properties Dialog Box, Delimiters Tab

7 If you must use the Delimiters tab, enter the string representing a delimiter (after
which to search for the node) within the fixed data. The delimiter marks the point
from which the offset and length, as specified within the General tab for the current
node, are measured.

8 When you want to save any root-node properties, click Apply to enter them into the
system.

9 When you are finished with the properties dialog box, click OK to close it.

Chapter 6 Section 6.4
Monk Event Type Definition Editor Creating and Building ETDs

e*Gate Integrator User’s Guide 235 SeeBeyond Proprietary and Confidential

10 Finish building the ETD Tree for the current ETD as follows:

" If you must add individual fixed Event elements (such as segments) to your
definition, go to “Adding Fixed-ETD Nodes” on page 235.

" If your ETD consists of a group of Event elements that can occur in any order,
then you must add a node set below your root node. Go to “Adding Node Sets”
on page 239 for details.

Adding Fixed-ETD Nodes

If you are creating a fixed ETD, but have not yet added its root node, go to “Creating
Root Nodes for Fixed ETDs” on page 232.

Once you create a fixed-ETD root node, the nodes you add to the root node are
automatically in a fixed-length format. This section explains how to add fixed nodes
and define their properties, using the ETD Editor window.

Figure 97 Fixed-ETD Node Icons

To add fixed-ETD nodes

1 In the Workspace pane, select the desired fixed-ETD root node.

2 Click the Subnode command button (or, on the Edit menu, choose Add Subnode).
A fixed-ETD node icon appears by the selected root node.

3 Double-click the new node’s label (its third component).

The Node Properties dialog box appears, with the General tab elements displayed
(see Figure 98 on page 236).

The nodes you add to a fixed ETD root node are also in a
fixed format and display the lengths you assign them.

Chapter 6 Section 6.4
Monk Event Type Definition Editor Creating and Building ETDs

e*Gate Integrator User’s Guide 236 SeeBeyond Proprietary and Confidential

Figure 98 Fixed Node Properties Dialog Box, General Tab

4 Under the General tab, enter the following properties:

" Name: The node’s suggested name is automatically inserted in the Name text
box, although you can change it. See “Naming Nodes” on page 206 for node-
naming rules. The ETD’s icon label in the Template Library pane also shows this
name.

" Path/Address: Read-only, scrollable fields that display the path and address of
the current node in the ETD, starting with the root node.

" Node Type: Already selected, Fixed, indicating that the node is in a fixed
format.

" Variable Repetition: Select the option that matches the number of times the
node repeats as shown in Table 32 on page 230.

" Data Length: Select whether the node has a Constant Length (length never
changes) or Encoded Length (length is contained within Event data), then enter
the following parameters:

Length: Enter the node’s data length, in bytes. Count the length value
from 1; if the node’s data is 10 bytes long, enter 10 in the Length box.

Offset: This text box is optional. If you don’t want to fully specify a fixed
ETD, you can use the Offset text box to account for unspecified bytes that
precede the node you are currently defining. If you don’t know the byte
offset, or starting location, of a node, count it from byte 0, the beginning of
the Event.

Chapter 6 Section 6.4
Monk Event Type Definition Editor Creating and Building ETDs

e*Gate Integrator User’s Guide 237 SeeBeyond Proprietary and Confidential

Position: Enter the position of the offset byte.

Note: See “Specifying Byte Offsets in Fixed ETDs” on page 238 for a detailed
explanation about how to use this feature.

5 Click the Content tab. Enter the properties as instructed under step 5 in the
procedure on page 224.

Note: Use the Input Tag Data text box to specify a string required to identify an Event
element. For example, if a field requires some type of code, you can specify it in the
Input Tag Data text box.

6 Click the Repetition tab. Enter properties as instructed under step 7 in the
procedure on page 225.

Note: This tab in the Node Properties dialog box does not contain the Exact
Match - do not extend map option since it only applies to root nodes.

7 Click the Delimiters tab. This feature is optional. If the current ETD has no
delimited elements, skip this and the next step.

8 If you must use the Delimiters tab, enter the string representing a delimiter (after
which to search for the node) within the fixed data. The delimiter marks the point
from which the offset and length, as specified within the General tab for the current
node, are measured.

9 When you want to save any node properties, click Apply to enter them into the
system.

10 When you are finished with the properties dialog box, click OK to close it.

Notice that the new fixed-ETD node now displays in the ETD Tree with the
following information:

" Length, in bytes, displayed in its second component

" Repetition symbol, if applicable, also displayed in the second component

" Name appearing in the third component

11 Select the node you just added and, on the toolbar or Edit menu, click Add
Node to add the next node in the ETD Tree.

You can build additional fixed nodes as explained under step 10 in the procedure
on page 230 for delimited nodes.

12 Set up the node’s properties as explained in steps 3 through 10 in this procedure.
Repeat these steps for each node you add to the fixed ETD.

13 After you are finish building your ETD: On the toolbar or File menu, click Save.

Chapter 6 Section 6.4
Monk Event Type Definition Editor Creating and Building ETDs

e*Gate Integrator User’s Guide 238 SeeBeyond Proprietary and Confidential

Specifying Byte Offsets in Fixed ETDs

A byte offset is a number that tells how far from the beginning of an Event a particular
element is. In e*Gate, you must count byte offsets from byte 0, the beginning of the
Event. When you define nodes in a fixed ETD, the system automatically assumes that
the nodes immediately follow each other with no gaps in between.

The Offset feature in the Node Properties dialog box allows you to specify gaps
between nodes, while accounting for every byte in a fixed Event. This section presents
two examples to explain this feature.

First Example

This example shows how you can use the Offset feature to specify a fixed ETD. In this
Event, there are the following fixed-length elements: A, B, C, and D. Their lengths are

! Element A = 10 bytes

! Element B = 10 bytes

! Element C = 14 bytes

! Element D = 4 bytes

! Total length = 38 bytes

To account for all 38 bytes in the Event, while only creating nodes in the ETD for
Elements A and D, specify the following byte offset and length values:

! Element A: Byte Offset = 0, Length = 10

! Element D: Byte Offset = 34, Length = 4

Remember that byte offsets are counted from 0, which is the first byte location in an
Event. Element D starts at byte location 34, because byte locations 0 through 33 are
taken up by Elements A (byte locations 0 through 9), B (byte locations 10 through 19),
and C (byte locations 20 through 33).

Second Example

What if you only want to specify Element B in your ETD? You still have to account for
all 38 bytes in the Event. Specify nodes as follows:

1 Create a fixed root node. As you define the root node’s properties, enter 38 in the
Node Properties dialog box’s Length text box. This tells the system that the entire
Event is made up of 38 bytes.

2 Under the root node, add a fixed node representing Element B. As you define its
properties, specify its offset and length as follows:

Element B: Byte Offset = 10, Length = 10

In the first example, where Elements A and D are specified, you do not define the total
Event length in the root node because the last element, Element D, is present in the
ETD. As long as the final element in the Event is a part of the ETD, the system knows
how long the entire Event is.

In the second example, you specify the total Event length in the root node because the
last element, Element D, is not present in the ETD. In this way, you let the system know
how long the entire Event is.

Chapter 6 Section 6.4
Monk Event Type Definition Editor Creating and Building ETDs

e*Gate Integrator User’s Guide 239 SeeBeyond Proprietary and Confidential

6.4.4 Adding Node Sets
To define a group of Event elements that can occur in any order and/or repeat, you
must create a node set. A node set is a placeholder in your ETD Tree whose only
function is to indicate that the nodes under it make up a group of Event elements.

You can define the following types of group Event elements in the ETD Editor window:

! Unordered: Nodes can appear in any order in an Event.

! Repeating: A group of nodes repeats in a predefined order.

Placeholders on the Same Level: When you see a node set placeholder in an ETD Tree,
remember that its associated nodes, although appearing under it, are actually on the
same level of the tree as the node set placeholder to which they are linked.

To add node sets to ETDs

1 Select the node to which you want to add the node set.

For example, select the root node if you want to add a group of unordered segment
nodes.

2 On the toolbar or Edit menu, click Add Subset.

A set placeholder appears by the selected node. Set placeholders are visually
distinguishable from regular nodes on the ETD Tree because they display one of the
following symbols:

" (): Indicates an ordered set (this is the default setting).

" #(): Indicates an unordered set.

For an example, see Figure 99 below.

Figure 99 Node Set Placeholder

Note: If you want to add another set placeholder on the same level in the ETD Tree as the
node you previously selected, leave the desired node selected. Then, on the toolbar or
Edit menu, click Add Set again and proceed with these instructions.

Set indicator
(for ordered)

Set placeholder
Selected node

Chapter 6 Section 6.4
Monk Event Type Definition Editor Creating and Building ETDs

e*Gate Integrator User’s Guide 240 SeeBeyond Proprietary and Confidential

3 Double-click the set placeholder’s third component to display the Set Properties
dialog box. See Figure 100.

Figure 100 Set Properties Dialog Box, Node Set

4 Define the node set by assigning the following properties.

" Name: The set’s suggested name is automatically inserted in the Name text box,
although you can change it. See “Naming Nodes” on page 206, and also use the
node-naming rules for sets.

" Path/Address: Read-only, scrollable fields that display the path and address of
the current node in the ETD, starting with the root node.

" Set Type Options: Use one of the following options:

Ordered Set: Selected by default; this option indicates the nodes below the
current node make up an ordered set. The root node displays in the
ETD Tree with the symbol () .

Unordered Set: This option indicates the nodes below this root node do not
have to be in any particular order. The root node displays in the ETD Tree
with the symbol #(). Select Group Repetitions if this property applies to the
current node set.

" Special Character Option: Select this option for delimited Events only. If creating
an HL7 ETD, you must select the Separator Array Delimiter box. For details on
using this option, see “Specifying HL7 Repeating Fields” on page 231.

Chapter 6 Section 6.4
Monk Event Type Definition Editor Creating and Building ETDs

e*Gate Integrator User’s Guide 241 SeeBeyond Proprietary and Confidential

" Variable Repetition: Select the option that matches the number of times the
node set repeats as shown in Table 32 on page 230.

" N of N: Allows you to require that a certain number of child nodes contain data.
See step 7 in the procedure on page 225 for details on this feature. Also, see
“Using N of N with XML” on page 226 for XML instructions.

5 When you want to save any node-set properties, click Apply to enter them into the
system.

6 When you are finished with the properties dialog box, click OK to close it.

7 Select the set placeholder node you just created and, if necessary, do one or more of
the following actions:

" Add another set placeholder to define a group of Event elements within the set.
To do this operation, repeat the previous set of procedures.

" Add delimited nodes to help complete the set. See “Adding Delimited-ETD
Nodes” on page 228 for details.

" Add fixed nodes to help complete the set. See “Adding Fixed-ETD Nodes” on
page 235 for details.

Adding Node Subsets

Sometimes a group of Event elements contains subgroups of elements. These
subgroups are called node subsets.

For example, Group A can consist of two repeating elements, Element 1 and Element 2.
Element 1 is a single segment. Element 2 is a repeating group made up of two
segments. To represent Element 2 in the ETD, you must add a node subset placeholder
underneath Group A’s set placeholder. Figure 101 provides a diagram of this example.

Figure 101 Node Subset Diagram

To add node subsets to ETDs

! In the toolbar or Edit menu, click Add Subset to add a subset node.

! Configure node subsets in the same way as you do node sets.

Chapter 6 Section 6.5
Monk Event Type Definition Editor Basic ETD Operations

e*Gate Integrator User’s Guide 242 SeeBeyond Proprietary and Confidential

6.5 Basic ETD Operations
This section describes basic operations you can do with ETD files, including finding,
opening, and saving the files.

This section explains:

! “Opening ETDs” on page 242

! “Using the Build Tool” on page 242

! “Saving ETDs Under New Names” on page 246

! “Extracting Input Delimiters” on page 247

! “Testing ETD Files” on page 247

! “Creating ETD Comments” on page 250

! “Finding ETD Nodes” on page 250

! “Editing ETD Files” on page 250

6.5.1 Opening ETDs
Open an existing ETD, using the Open ETD dialog box. After you open an ETD file,
you can view or edit the file as desired.

To open ETD files

1 On the toolbar or File menu, click Open.

If you currently have an ETD open and have not saved that file, the system warns
you and asks whether you want to save your current file, proceed without saving,
or cancel your activity.

Unless you cancel your activity, the Open ETD dialog box appears, showing a list of
saved ETDs.

2 Select the file to open and click OK.

The ETD appears in the ETD Editor window’s Workspace pane.

You can also click Templates to view and select from a list of HL7, X12, EDIFACT, or
Other type ETDs.

ETD File Names: By default, e*Gate looks for ETDs as files with the extension .ssc, The
system’s naming convention for ETD files is the ETD name followed by the
extension .ssc.

6.5.2 Using the Build Tool
The system can build a delimited ETD for you, when you provide it with certain
requirements, including

! Sample data file

! Delimiters to use to parse the Event

Chapter 6 Section 6.5
Monk Event Type Definition Editor Basic ETD Operations

e*Gate Integrator User’s Guide 243 SeeBeyond Proprietary and Confidential

! Number of levels to include in the ETD hierarchy

Using Add-ons: If you have an add-on that provides a library converter, you can use
the Build tool to generate the desired ETD, such as for XML or a database e*Way.
For details on this operation, see the appropriate user’s guide for the add-on feature.

Note: The Build tool only creates delimited ETDs. Fixed ETDs must be created from
scratch. See “Building Fixed ETDs” on page 232 for details about creating fixed
ETDs.

To create an ETD using the Build tool

1 Choose File > Build or click on .

The first Build an Event Type Definition dialog box, shown in Figure 102 below,
appears.

Figure 102 Build an Event Type Definition Dialog Box (Default)

Leave Files of Type set to Event Type Definition (.ssc).

2 Type the desired ETD file name in the File name text box. Do not add a file
extension in the Name box; the default ETD file extension, .ssc, is automatically
appended to your file name once you exit this dialog box.

3 Click Next.

The Build an Event Type Definition dialog box changes to a different display as
shown in Figure 103 on page 244.

Chapter 6 Section 6.5
Monk Event Type Definition Editor Basic ETD Operations

e*Gate Integrator User’s Guide 244 SeeBeyond Proprietary and Confidential

Figure 103 Build an Event Type Definition Dialog Box (Library)

At any time, you can click Back to return to the previous dialog box display.

4 To select a sample input data file for the system to use to build the ETD, click to
the right of the Input file text box.

The File Selection dialog box appears, allowing you to browse folders to find the
desired file.

5 In the dialog box shown in Figure 103, select the input ETD file you want to use and
click Finish to close the dialog box.

The ETD file name appears in the Input file text box in the Build an Event Type
Definition dialog box.

6 Select the appropriate Build From option as follows:

" Library Converter: If there is a special ETD converter (provided with an
add-on) you want to use. The dialog box remains the same as shown in Figure
103.

" Delimited Data Converter: If you want to use the ETD Editor’s default
delimited ETD converter. The default converter creates ETDs, using the
delimiters and number of levels you specify. The dialog box changes to a
different display as shown in Figure 104 on page 245.

Chapter 6 Section 6.5
Monk Event Type Definition Editor Basic ETD Operations

e*Gate Integrator User’s Guide 245 SeeBeyond Proprietary and Confidential

Figure 104 Build an Event Type Definition Dialog Box (Delimited Data)

7 Enter the rest of the necessary information in the Build an Event Type Definition
dialog box as indicated in Table 33 below.

Table 33 Build an Event Type Definition Dialog Box Options

Dialog Box
Display

Option Description Valid Values

Library
Converter
Options
(see Figure
103 on
page 244).

Select a Library
Converter

Select a library converter from
this list.

The list of converters varies,
depending on what is
installed at your site.

Additional
Command Line
Arguments

Use this text box to enter any
special command-line
arguments your selected library
converter can need.

Specify the desired
arguments.

Chapter 6 Section 6.5
Monk Event Type Definition Editor Basic ETD Operations

e*Gate Integrator User’s Guide 246 SeeBeyond Proprietary and Confidential

8 When you are finished, click Finish to close the dialog box.

After a pause, the ETD Editor window displays the autogenerated ETD.

9 When you are finished building your ETD, click the Save command button (or,
from the File menu, choose Save).

Note: If you want to see all levels of your ETD and cannot, choose the View > Expand All
menu option.

6.5.3 Saving ETDs Under New Names
Use this procedure to save an ETD to a file name other than the one you saved it to last.

To save an existing ETD file under a new file name

1 Make sure the desired ETD file you want to save to a different name is already
open. The current file becomes the basis for the new one.

2 On the File menu, click Save As to display the Save As Event Type Definition
dialog box (similar to the standard Windows Save As dialog box).

The new ETD is saved to the current schema. Notice that in the File Name text box,
the name text is automatically selected before the default file extension, .ssc.

3 Type a file name without deselecting the File Name text.

4 If you want to save the new file as a template, click Templates. For more
information, see “Working With ETD Templates” on page 254.

Delimited
Data
Converter
Options
(see Figure
104 on
page 245).

Level Number of levels to include in
the ETD Tree. Add numbered
levels using the Add Level
button.

Any number (automatically
assigned).

Delimiters In the text box, enter each
delimiter to be used in the ETD.
Do not include any spaces
between delimiters unless you
want to use a space as a
delimiter.

Each delimiter must be
specified as a single
character, with the exception
of \r (RETURN).
Enclose delimiters in double
quotation marks (““).

Add Level Click to add a new level of
delimiters below the current
final level.

N/A

Delete Level Click to delete the selected
level.

N/A

Table 33 Build an Event Type Definition Dialog Box Options (Continued)

Dialog Box
Display

Option Description Valid Values

Chapter 6 Section 6.5
Monk Event Type Definition Editor Basic ETD Operations

e*Gate Integrator User’s Guide 247 SeeBeyond Proprietary and Confidential

Caution: Do not change the default .ssc file extension. If you do, you cannot find the file later
because the ETD Editor’s file selection only looks for files with the .ssc extension.

5 When you are finished working with the new ETD, click the Save command button
(or, from the File menu, choose Save).

6.5.4 Extracting Input Delimiters
To extract a delimiter from a particular byte location in an input Event, use the
following syntax in the Delimiters text boxes in the Set Delimiters dialog box:

[n]

This syntax represents the end byte location of the delimiter you want to extract from
the input Event. Remember that in e*Gate, byte locations are counted from 0, the
beginning of the Event. For example, if you want to extract a delimiter from the fifth
byte of an Event, type [4] .

If you want to extract a range of delimiters, type

[m,n]

This expression means, “begin with the mth byte and continue up to and including the
nth byte.” For example, [2,4] would extract the delimiters in bytes 3 through 5.

6.5.5 Testing ETD Files
The Editor provides an option that allows you to test a delimited ETD file against
sample input data. If the sample data maps to the delimited ETD, then your structure is
ready to use to build Event IDs and translations.

It is a good idea to test each delimited ETD before you use it in Event IDs and
translations. This practice avoids additional troubleshooting tasks if there is a problem
with the structure.

Note: You cannot use the Run Test feature with fixed-ETD files.

To use the Run Test feature

1 Open an ETD file in the ETD Editor window.

2 Choose File > Run Test or click .

The Select a Test Data File dialog box appears. By default, the dialog box first
shows the contents of the \eGate\client\ directory (see Figure 105 on page 248).

Chapter 6 Section 6.5
Monk Event Type Definition Editor Basic ETD Operations

e*Gate Integrator User’s Guide 248 SeeBeyond Proprietary and Confidential

Figure 105 Select a Test Data File Dialog Box

3 Scroll through the Directories and Files lists to find the location of your input data
ETD file. Click the Filter button to change directories.

4 Select the desired input data file in the Files column and click OK.

The file selection dialog closes, and the system maps the data in the input data file
to the currently open ETD. It also builds a sample ETD based on the input data and
uses this sample to compare to your selected ETD.

After a pause, the Test Structure dialog box appears (see Figure 106 on page 249).

Chapter 6 Section 6.5
Monk Event Type Definition Editor Basic ETD Operations

e*Gate Integrator User’s Guide 249 SeeBeyond Proprietary and Confidential

Figure 106 Test Structure Dialog Box

5 To see how the system mapped your ETD, look for the test result in the Trace Data
pane at the bottom of the dialog box. Then, look at the sample ETD in the Test Build
Tree pane and compare it to your ETD.

The caption above the pane displays either “PASSED TEST” or “FAILED TEST”
depending on the test results.

6 Take one of the following steps:

" If your ETD passed, click Cancel to close the Test Structure dialog box. You are
finished with this procedure.

" If your ETD did not pass, scroll through the Trace Data pane and look for error
Events. Go to the next step.

7 Look at the sample ETD in the Test Build Tree pane, and compare it to your ETD. If
there are discrepancies between the two, try modifying your ETD so that it more
closely resembles the sample ETD.

8 Without closing the Test Structure dialog box, go to the ETD Editor window and
modify your ETD as needed. Save your modified ETD.

9 Return to the Test Structure dialog box, and click Re-Test to check whether your
modified ETD passes the test.

10 If you have made changes to your selected ETD file, you can update the sample
ETD in the Test Structure dialog box by clicking Re-Build.

11 When you have finished, click Cancel to close the dialog box.

The Test Build Tree pane
displays the sample ETD
the system built, based on
the selected ETD.
Compare it to this ETD.

The Trace Data pane
shows the result of the
ETD test. The caption on
the pane tells you
whether the structure
passed or failed.

The scrollable Trace Data
pane provides data-
mapping information for
each node in the selected
ETD.

Chapter 6 Section 6.5
Monk Event Type Definition Editor Basic ETD Operations

e*Gate Integrator User’s Guide 250 SeeBeyond Proprietary and Confidential

6.5.6 Creating ETD Comments
Use this feature to insert an informational comment that applies to the current ETD.

To insert an ETD comment

1 On the File menu, click Main Comment.

The Comment dialog box appears.

2 Click in the Comment dialog box to activate it, and then enter your comments.
There are no syntax restrictions.

3 Click OK to save your work and exit the dialog box.

The comment you entered is saved with the current ETD.

6.5.7 Finding ETD Nodes
Use the Find option to search through your ETD for a particular node.

To search for and find ETD nodes

1 To start at the beginning of the ETD, select the root node.

2 On the Edit menu, click Find.

The Find dialog box appears.

3 In the Name to Find text box, type the name of the node you’re looking for.

You must enter the complete node name. The ETD Editor does not find a node if
you only enter a partial name.

4 Use the Find dialog box as follows:

" Click Next to skip to the next occurrence of a node.

" Click Previous to search backward.

5 When you’re done, click Cancel to close the Find dialog box.

6.5.8 Editing ETD Files
Whether you have finished building an ETD file or want to make some changes to a
node you have just added, you can edit an ETD Tree at any time. You can cut, copy, and
paste portions of an ETD, in addition to changing a node’s details and other ETD
modifying functions.

Note: In an ETD, you cannot edit external templates that are linked to their source files. If
you must make changes to a referenced external template, you must open the source
file and make changes there. If the link between an external template and its source
file has been broken, you can edit that template in your ETD. See “Breaking
Template Links” on page 257 for information on the Resolve option in the
Templates menu.

Chapter 6 Section 6.5
Monk Event Type Definition Editor Basic ETD Operations

e*Gate Integrator User’s Guide 251 SeeBeyond Proprietary and Confidential

This section explains:

! “Moving Nodes” on page 251

! “Using Cut, Copy, and Paste” on page 251

! “Pruning ETDs” on page 252

! “Changing Node Details” on page 253

! “Modifying Internal Templates” on page 253

! “Deleting ETDs” on page 253

Moving Nodes

Using your mouse, you can move nodes to new locations in your ETD. You can move a
node up or down in the same level of the ETD Tree or up or down to another level of
the ETD Tree.

To change the location of a node in an ETD

1 Select the node you want to move.

2 Click and hold the middle mouse button.

Note: If your mouse does not have a middle button, hold down both mouse buttons to have
the same effect as pressing the middle mouse button.

3 Drag the node to its new location.

As you drag the node towards a spine in the ETD Tree, arrows indicate where the
node will be inserted when you release the mouse button. Use these arrows to
guide you as you move a node.

4 Release the middle mouse button when you see the arrow in the ETD Tree pointing
to the correct location.

The node is moved to the new location, along with any subnodes associated with it.

Using Cut, Copy, and Paste

In the ETD Editor, the cut, copy, and paste features operate in a similar way to those of
an ordinary text editor. Use the appropriate menu commands or toolbar buttons to
carry out these functions.

Note: Use the paste function to paste any node in the internal buffer into your ETD Tree.
You cannot cut, copy, or paste between two ETD Editor windows.

Chapter 6 Section 6.5
Monk Event Type Definition Editor Basic ETD Operations

e*Gate Integrator User’s Guide 252 SeeBeyond Proprietary and Confidential

To cut a node

1 Select the node you want to cut. Then click the Cut command button (or, on the Edit
menu, choose Cut).

If there are any subnodes associated with the node you cut, those subnodes are also
cut. The node you cut is temporarily placed in an internal buffer until the next time
you use the Cut or Copy features.

2 Click the Paste command button (or, on the Edit menu, choose Paste) to paste the
node in the selected area of the current ETD Tree.

To copy a node

1 Select the node you want to copy. Then click the Copy command button (or, on the
Edit menu, choose Copy).

If there are any subnodes associated with the node you copied, those subnodes are
also copied. The node you cut is temporarily placed in an internal buffer until the
next time you use the Cut or Copy features.

2 Click the Paste command button (or, on the Edit menu, choose Paste) to paste the
node in the selected area of the current ETD Tree.

To paste into your ETD Tree

1 Select the node below which you want to insert the contents of an internal buffer.

2 Click the Paste command button (or, on the Edit menu, choose Paste).

The buffer’s contents are inserted at the top of the level below the node you selected
in step 1. If the buffer is empty then nothing is pasted.

If you must move what you just inserted, select it and use the middle mouse button
to drag and drop it to a new location. For details on how to drag and drop nodes,
see “Moving Nodes” on page 251.

Pruning ETDs

Use the pruning function when you want to delete subnodes belonging to a node or
nodes belonging to a root node.

To prune ETD subnodes under a node

1 Select the node whose subnodes you want to delete.

2 Click the Prune command button (or, on the Edit menu, choose Prune).

The subnodes are deleted, leaving the node on the ETD Tree.

To prune ETD nodes under a root node

1 Select the root node whose nodes you want to delete.

2 Click the Prune command button (or, on the Edit menu, choose Prune).

The nodes are deleted, leaving the root node on the ETD Tree.

Chapter 6 Section 6.5
Monk Event Type Definition Editor Basic ETD Operations

e*Gate Integrator User’s Guide 253 SeeBeyond Proprietary and Confidential

Changing Node Details

Once you have an ETD built and want to make changes to node details, you can
double-click a node’s label to display either the Node Properties dialog box or Set
Properties dialog box and make changes. These GUIs have the following
characteristics:

! Node Properties Dialog Box: Here you define a node’s name, type (delimited or
fixed), tag data, and repetition information. For details on how to access and use
this properties dialog box for delimited Events, see “Adding Delimited-ETD
Nodes” on page 228. For fixed Events, see “Adding Fixed-ETD Nodes” on
page 235.

! Set Properties Dialog Box: Here you define properties for a group of nodes that are
order-independent and/or repeat. For details on how to access and use this
properties dialog box, see “Adding Node Sets” on page 239.

Caution: Remember to save the current ETD whenever you are done making changes.

Modifying Internal Templates

This section explains how to edit ETD e*Gate system templates. For a complete
explanation of ETD templates, see “Using Internal Templates” on page 257.

To modify internal templates

1 In the Template Library pane, click the icon of the internal template you want to
modify.

The template appears in the Workspace pane.

2 Make the desired changes to it.

3 At the top of the Template Library pane, click the current ETD icon (top icon in the
Template Library pane) to redisplay it in the Workspace pane.

The internal template, if already included in the ETD Tree, reflects any changes.

4 When you have finished making changes to your template: On the toolbar or File

menu, click Save.

To remove internal templates from the ETD Tree

1 Select the root node of the internal template in the ETD Tree.

2 Click the Delete command button (or, on the Edit menu, click Delete).

A confirmation message warns you.

3 Click Yes to proceed with the deletion or No to cancel.

Deleting ETDs

To delete an entire ETD

1 Select the root node of the ETD you want to delete.

Chapter 6 Section 6.6
Monk Event Type Definition Editor Working With ETD Templates

e*Gate Integrator User’s Guide 254 SeeBeyond Proprietary and Confidential

2 Click the Delete command button (or, on the Edit menu, click Delete).

A confirmation message warns you.

3 Click Yes to proceed with the deletion or No to cancel.

Note: A deleted ETD file, although empty, is still in your schema directory. The
ETD Editor does not provide a way to delete the file.

To delete an individual node and associated subnodes

1 Select the node you want to delete.

2 Click the Delete command button (or, on the Edit menu, choose Delete).

A confirmation message warns you.

3 Click Yes to proceed with the deletion or No to cancel.

If you click Yes, the node is removed from the ETD Tree, along with any subnodes
that are associated with it. This action accomplishes the entire operation in one step.

6.6 Working With ETD Templates
The ETD Editor feature in e*Gate allows you to create and modify both internal and
external ETD templates. This section explains in detail how to use this feature.

This section explains:

! “Using External Templates” on page 254

! “Using Internal Templates” on page 257

6.6.1 Using External Templates
An external template is an ETD you can reuse to duplicate a given ETD structure in
other ETDs. If you include an external template in an ETD, the system brings it in as a
referenced file. In such cases, the ETDs made from the template automatically update
whenever anyone changes the source file.

This feature becomes an advantage if you use an external template for many different
ETD files. By updating the template’s source file, you automatically update the ETDs in
which the external template was included; however, the Collaboration that references
the current ETD does not change.

Note: You cannot edit external templates that are linked to their source files. If you must
make changes to a referenced external template, you must open the source file and
make changes there. Also, you can break the external template’s link to its source file
by choosing the Templates > Resolve menu option (see “Breaking Template
Links” on page 257). This feature allows you to edit an external template in the
ETD Tree where it is used.

Chapter 6 Section 6.6
Monk Event Type Definition Editor Working With ETD Templates

e*Gate Integrator User’s Guide 255 SeeBeyond Proprietary and Confidential

Including External Templates in ETDs

Any ETD file outside of your current open ETD file can become an external template,
including

! Another ETD file in the current schema

! A file from the ETD library, which is included with your e*Gate software and
consists of standard HL7, X12, EDIFACT, and other ETDs.

To include external templates in ETDs

1 Choose the Templates > External Template menu option.

The Include External Event Type Definition dialog box appears (see Figure 107 on
page 255).

Figure 107 Include External Event Type Definition Dialog Box

2 Select the ETD you want to include as an external template.

3 You can also click Templates to select HL7, X12, EDIFACT, or Other ETDs.

4 Click Open to choose the desired template.

An icon that represents the external template appears in the Template Library pane
(see Figure 108 on page 256). The new icon is distinguished from other icons by a
yellow document symbol. You can click the icon to display the external template
structure, but you cannot make changes to it.

Chapter 6 Section 6.6
Monk Event Type Definition Editor Working With ETD Templates

e*Gate Integrator User’s Guide 256 SeeBeyond Proprietary and Confidential

Figure 108 ETD External Template Icons

5 In the ETD, click the left mouse button on the node or subnode to which you want
to attach the external template as a child node.

6 Click the middle mouse button on the external template’s icon in the Template
Library pane.

The external template is added to the node you selected in step 5.

7 When you are finished with your template, save your changes.

Caution: Keep in mind that when you include an external template in your ETD as a
referenced file, any changes made to the source file is also made to the copy that is in
your ETD. If you do not want an external template in your ETD automatically
updated, choose the Templates > Resolve menu option (see “Breaking Template
Links” on page 257).

Changing ETD Repetition Properties

Inside the ETD where you included the external template, you can modify the external
template’s root node repetition properties, if you want.

To modify external ETD root-node repetition properties

1 Double-click the external template’s root node label to display the Node Properties
dialog box, and modify the repetition information.

2 Click OK to save the new repetition properties and close the Node Properties
dialog box.

By adjusting the external template’s root node repetition properties, you are telling the
system how many times you want that (external) ETD to repeat in the current ETD. You
can specify different repetition properties for each external template you include in
your ETD.

For details about how to specify repetition information, using the Node Properties
dialog box, see “Adding Delimited-ETD Nodes” on page 228.

Click an icon in the
Template Library pane to
display the ETD it represents
in the Workspace pane. The
top icon is always the
current ETD.

Template Library pane,
showing the External
Template icon with
yellow document
symbol.

Chapter 6 Section 6.6
Monk Event Type Definition Editor Working With ETD Templates

e*Gate Integrator User’s Guide 257 SeeBeyond Proprietary and Confidential

Breaking Template Links

You can break the link between the external template source file and the copy in its
associated ETD.

To break a link between an ETD and its template

1 Select the external ETD template’s root node.

2 Choose the Templates > Resolve menu option.

Complete this step only if you do not want any changes made to the external template
source file to update the copy in your ETD, or if you want to edit the external template
in the ETD Tree where it is used.

6.6.2 Using Internal Templates
Internal templates provide an easy way to create a portion of an ETD, such as a node
and its subnodes, save it, and reuse it as you build an ETD. Use internal templates for
any node combination that occurs in multiple places.

Internal templates are different from external templates because they are only available
within the ETD in which you create them. The main advantage of an internal template
is that if you must update it, you can change the template. All instances of that template
in your ETD are automatically updated when you change the template.

See “Modifying Internal Templates” on page 253 for details on how to update an
internal template.

Creating Internal Templates

Once you have created internal templates, you can then use them as you build an ETD.
See “Referencing Internal Templates in ETDs” on page 258 for more information. You
can create an internal template at any point in the process of creating an ETD.

To create internal templates

1 Choose the Templates > New Internal Template menu option.

The Internal Template icon appears in the Template Library pane (see Figure 109
below).

Figure 109 Internal Template Icon

Template Library pane,
showing the Internal
Template icon (blue)

Chapter 6 Section 6.6
Monk Event Type Definition Editor Working With ETD Templates

e*Gate Integrator User’s Guide 258 SeeBeyond Proprietary and Confidential

2 Click the Internal Template icon in the Template Library pane to select it.

The icon turns black when selected and the Workspace pane goes blank so you can
create the new internal template in it.

3 Build your internal template the same way you build an ETD. For details, see “Edit
Menu” on page 212.

Note: The internal template icon in the Template Library pane is automatically labeled
with the internal template’s root node name.

4 Click the ETD icon at the top of the Template Library pane to redisplay your ETD.

If you already began to build an ETD when you started this procedure, that
structure reappears in the Workspace pane.

Converting Existing ETDs

An alternate method of creating internal templates is to convert a portion of an ETD to
an internal template.

To convert existing ETDs to internal templates

1 In your ETD, select the node you want to convert to an internal template. Note that
any subnodes associated with the selected node are also converted to an internal
template.

2 Choose the Templates > Templify menu option.

The selected node and its associated subnodes redisplay with green spines, which
means they are part of an internal template. An internal template icon appears in
the Template Library pane with the name of the selected node below it.

Referencing Internal Templates in ETDs

Once you have created internal templates, you can use them to build your ETD.

To reference internal templates in ETDs

1 If you have not yet built your ETD, you must do so. Follow the procedures
explained under “Edit Menu” on page 212.

2 Select the node or subnode you would like attached to the internal template.

3 From the Template Library pane, click your middle mouse button on the internal
template you want to include in the ETD.

The internal template appears under the node or subnode you selected in step 2.

4 Repeat steps 2 and 3 for each internal template you want to add to your ETD.

Changing ETD Repetition Properties

Inside the ETD where you included the internal template, you can modify the internal
template’s root node repetition properties.

Chapter 6 Section 6.6
Monk Event Type Definition Editor Working With ETD Templates

e*Gate Integrator User’s Guide 259 SeeBeyond Proprietary and Confidential

By adjusting the internal template’s root node repetition properties, you are telling the
system how many times you want that (internal) ETD to repeat in the current ETD. You
can specify different repetition properties for each internal template you include in
your ETD.

To modify internal ETD root-node repetition properties

1 Double-click the internal template’s root node label to display the Node Properties
dialog box.

2 Modify the root node’s repetition information as desired.

For details about how to specify repetition information in the Node Properties
dialog box, see “Adding Delimited-ETD Nodes” on page 228.

3 Click OK to save the new repetition properties and close the Node Properties
dialog box.

4 When you are finished with your template, save your changes.

e*Gate Integrator User’s Guide 260 SeeBeyond Proprietary and Confidential

Chapter 7

Java Collaboration Rules

To transport and transform data, you need code that specifies where to find the data,
how to understand it, and what to do with it. For Java-enabled components, this code
consists of methods supplied with the ETDs, used in conjunction with Business Rules—
methods and logic you define using the Java Collaboration Rules Editor.

7.1 About This Chapter
This chapter consists of the following sections:

! A brief overview of Java Collaboration Rules—what a Collaboration Rule is and
how it fits into the e*Gate system.

! A brief discussion of the methods associated with each node of an ETD and with the
ETD itself.

! A detailed description of the Java Collaboration Rules Editor—its features, its
graphical user interface (GUI), and the files it uses and creates.

! Basic procedures that tell you how to:

" Create a new Java Collaboration Rule.

" Work with simple mappings between two standard ETDs.

" Use viewing options to give yourself more screen space, display code with the
GUI, or view a separate window containing just the generated Java code.

" Save, compile, and promote a Java Collaboration Rule.

" Troubleshoot errors and warnings from the compiler.

" Enable or disable Event Linking and Sequencing (ELS).

" Browse for methods in classes and packages supplied by third parties.

" Add and modify classpaths and packages.

" Create and use your own custom Java methods.

! In-depth explanations of all Business Rules provided by the Java Collaboration
Rules Editor, with short sample code segments.

For explanations of the classes and methods you can use in Collaborations between
standard ETDs, see “Java Classes and Methods” on page 542. This appendix also
provides instructions on creating and including your own custom methods.

Chapter 7 Section 7.2
Java Collaboration Rules Learning About Java Collaboration Rules

e*Gate Integrator User’s Guide 261 SeeBeyond Proprietary and Confidential

7.2 Learning About Java Collaboration Rules
In the same way that every Event must have an Event Type and the skeleton of an
Event Type is its ETD, every e*Way or BOB participates in one or more Collaborations,
and the heart of a Collaboration is its Collaboration Rule; see Figure 110 below.

Figure 110 Relationship of Collaboration Rules to e*Gate Components

A Collaboration Rule takes its character from its Collaboration Service—a dynamic-
link library (DLL) file that bridges differences between different hosts and operating
systems. A Collaboration is called “Java-enabled” when its Collaboration Rule uses the
Java Collaboration Service (sometimes abbreviated JCS). For complete information on
all e*Gate Collaboration Services, refer to the Collaboration Services Reference Guide.

A Java Collaboration always goes through the following three phases, at a minimum:

! userInitialize(), where the system is set up. Normally, this contains no user code,
but see “Character Encodings in the Java Collaboration Rules Editor” on
page 581.

! executeBusinessRules(), where the system runs the Business Rules you supply.
The executeBusinessRules() block is run each time triggered Events are available.

! userTerminate(), where the system does final housecleaning after the rules are run.

Collaborations that use Event Linking and Sequencing (ELS, discussed in Chapter 12)
have additional standard methods that allow them to link Events together. ELS-enabled
Collaborations can call the Business Rules block—the executeBusinessRules() method
and all user-written code under it—as often as needed, on a per-group basis.

7.2.1 Files Used by Java Collaboration Rules
Before you can even create a Java Collaboration Rule, you must give it the names of the
ETDs (.xsc files) whose data it will transport and transform. The Rule’s classpath
includes the package names of the .xsc files used by inbound and outbound Events; you
can supply additional packages and classpaths using the Editor. Default initialization
settings for the Rule are stored in its .ctl file; you can override some settings at run time.

e*Way / BOB Component

Collaboration

Collaboration Rule

Java
Collaboration

Service

Collaboration
script, class,

or .dll

Chapter 7 Section 7.3
Java Collaboration Rules Where Do Methods Come From?

e*Gate Integrator User’s Guide 262 SeeBeyond Proprietary and Confidential

Editing a Rule requires two other file types: For example, if you create and save a Rule
named cr_MyRule, the Editor creates cr_MyRule.xpr and cr_MyRule.xts. An .xpr file
is a project file to keep track of GUI settings and preferences as well as pointers to other
files; an .xts file keeps track of the data transformations presented in the GUI. You can
save the GUI settings without compiling; this allows you to resume unfinished work.

An actual Rule consists of compiled code: It is a Java object, and thus a .class file.
When you compile the Rule named cr_MyRule, you create files cr_MyRule.class and
cr_MyRuleBase.class as well as the Java source code, cr_MyRule.java, and a control
file, cr_MyRule.ctl.

Caution: Do not edit any of these files outside of e*Gate; the Java Collaboration Editor
requires that they be kept in synch.

7.3 Where Do Methods Come From?
The previous chapters’ discussion of Event Type Definitions (ETDs) focused entirely on
the structural characteristics of their data—hierarchical relationships between nodes,
boundaries set by delimiters or fixed record-lengths, and the various properties of each
element and node. But ETDs also have a dynamic quality, in that every ETD and every
node within the ETD has methods that define what you can do with the data.

Example: What’s for Dinner?

The following XML is a DTD for an object called dinner.

<?xml version=”1.0” encoding="UTF-8"?>
<!ELEMENT Dinner (Appetizer?, Entree, Side+, Dessert*)>

Table 34 Java Collaboration File Types

File Type Description

.class Executable bytestream. When the Collaboration
Rules file is successfully compiled, the result is
two .class files: <CollabRuleName>.class and
<CollabRuleName>Base.class.

.ctl Control file. Contains initialization information
for the Collaboration Rule. Used by the e*Gate
registry to track dependencies.

.java Java source code. The Editor generates this file so
you can view the Java code it creates and the
debugger can display individual lines of source
code; however, you cannot modify this file—the
Editor discards any changes made outside of it.

.xpr Project file. Keeps track of Editor settings and
options.

.xts Transformation script. Contains details of the
business rules as they are displayed by the Editor.

Chapter 7 Section 7.3
Java Collaboration Rules Where Do Methods Come From?

e*Gate Integrator User’s Guide 263 SeeBeyond Proprietary and Confidential

<!ELEMENT Appetizer (#PCDATA)>
<!ELEMENT Entree (#PCDATA)>
<!ELEMENT Side (Starch | Vegetable)>
<!ELEMENT Starch (#PCDATA)>
<!ELEMENT Vegetable (#PCDATA)>
<!ELEMENT Dessert (#PCDATA)>

In other words, a dinner comprises: zero or one appetizer, exactly one entree, at least
one side dish (which must be either a starch or a vegetable), and zero or more desserts.

When you use this .dtd file as input to the DTD Wizard and create an ETD, the output
looks like Figure 111.

Figure 111 Dinner Seen as an Event Type Definition

Saving the ETD creates a 7550-byte .xsc file that contains all the property names and
values. It also creates a 22886-byte .jar file. How did processing of a 287-byte .dtd file
result in all this?

The extra size comes from the methods and other code generated by the ETD:

! Every Standard ETD is automatically given methods like reset(), available(), next(),
and so on, to allow the Collaboration to work with the ETD in its entirety—for
example, to marshal the data in the next Event of this Event Type. For complete
information on these methods, see “Methods for Standard Java-enabled ETDs” on
page 333. For information on methods that are specific to certain imported ETDs,
consult the user’s guide for the appropriate e*Way, ETD Builder, or toolkit.

! Since each parent node and leaf node is capable of having its data read and written,
the ETD generates a getNode() method and a setNode() method for every node
except the Event Type root, such as:

Chapter 7 Section 7.4
Java Collaboration Rules Java Collaboration Rules Editor Overview

e*Gate Integrator User’s Guide 264 SeeBeyond Proprietary and Confidential

" java.lang.String getAppetizer()—retrieves current data in the appetizer node.
The data type of the return value comes from the javaType property.

" void setEntree(java.lang.String val) — puts val into the entree node. The data
type of the input argument val comes from the javaType property for entree.

" void setDessert(int i, java.lang.String val)— for repeating nodes, the getNode()
and setNode() methods are constructed so as to require a counter argument.

! For any node whose minOccurs property has a value of 0 (and thus might not be
present), the ETD generates a boolean hasNode() method, such as:

" boolean hasAppetizer()

! For any node whose maxOccurs value is unbounded or greater than its minOccurs
value, the ETD generates a boolean countNode() method for all such nodes, such as:

" int countDessert()

! For repeating nodes that contain subnodes, the ETD generates different signatures
for the different types of getNode() and setNode() methods that might be needed:

" Side getSide(int i)

" Side[] getSide()

" void setSide(int i, Side val)

" void setSide(int i, java.lang.String val)

" void setSide(Side [] val)

" int countSide()

7.4 Java Collaboration Rules Editor Overview
The Java Collaboration Rules Editor is the GUI for creating and modifying Java
Collaboration Rules.

7.4.1 Feature Overview
The Java Collaboration Rules Editor provides the following features:

! Multiple source and destination Events. The Java Collaboration environment allows
you to have multiple Event Type instances on the Source and Destination panes of
the Collaboration and to freely collaborate between them.

! Mouseover tooltips for each field, node, and method of each ETD.

! Right-click (shortcut menu) access to the properties of each field, node, and method.

! Right-click (shortcut menu) access to classes, packages, and methods in .jar files
and classpaths you have imported.

! Graphical depiction of the relationships between source and destination nodes.

! Self-documenting code using the area provided in the Properties pane.

Chapter 7 Section 7.4
Java Collaboration Rules Java Collaboration Rules Editor Overview

e*Gate Integrator User’s Guide 265 SeeBeyond Proprietary and Confidential

! Ability to view the raw Java source code from within the Editor.

! Cut, copy, and paste of text as well as multiple nodes in the Business Rules pane.

! Access to Event Linking and Sequencing (ELS) via a simple three-step wizard.

7.4.2 GUI Overview
In addition to the menu bar and the accompanying toolbar, the Java Collaboration
Rules Editor GUI has six panes—the Source Events, Mapping, Destination Events,
Business Rules, Properties, and Compile panes—and a Business Rules toolbar running
horizontally through the center of the GUI, containing buttons used to insert common
programming constructs into the Collaboration Rule. Figure 112 shows the names and
locations of the different areas of the GUI.

Figure 112 Java Collaboration Rules Editor GUI Map

Business
Rules pane

Compile pane

Properties
pane

Destination
Events pane

Business
Rules
toolbar

Source
Events
pane

Mapping pane

Main
toolbar

Menu bar

Chapter 7 Section 7.4
Java Collaboration Rules Java Collaboration Rules Editor Overview

e*Gate Integrator User’s Guide 266 SeeBeyond Proprietary and Confidential

The Editor GUI Panes

Source Events Pane

Contains the ETDs that correspond to the Event Types that are subscribed to by the
e*Gate Collaboration Rule. For any field, node, or method, a mouseover (point and
wait) displays an informational tooltip, and a right-click displays a shortcut menu that
allows you to view the properties of the field, node, or method.

Mapping Pane

Shows the relationship between the Source and Destination ETDs as a series of lines
connecting the associated nodes.

Destination Events Pane

Contains the ETDs that correspond to the Event Types that are published by the e*Gate
Collaboration Rule. As with the Source Events pane, a mouseover on any field, node, or
method displays an informational tooltip, and a right-click displays a shortcut menu
that allows you to view the element’s properties.

Business Rules Pane

A graphical depiction of the Java source code that creates the output Events that are the
result of the Collaboration. Much of the code displayed here is generated automatically
by the Editor. The executeBusinessRules() method is a placeholder for additional code
you provide.

Properties Pane

Displays information about the rule selected in the Business Rules pane. This is also
the area where you edit the selected rule. A mouseover on any property label displays
an informational tooltip for that property, and a right-click displays a shortcut menu
that allows you to cut, copy, or paste, to Undo the most recent action, or to insert a Java
method from any defined class.

Compile Pane

Displays informational and error messages that are output as a result of compiling the
Java Collaboration.

Chapter 7 Section 7.4
Java Collaboration Rules Java Collaboration Rules Editor Overview

e*Gate Integrator User’s Guide 267 SeeBeyond Proprietary and Confidential

7.4.3 Menu Commands
Table 35 below details the commands available from the Java Collaboration Rules
Editor menu bar.

Table 35 Java Collaboration Rules Editor Menu Commands

Menu Command Description

File Open Opens the Open dialog box, allowing you to navigate to
and select an .xpr file associated with the Java
Collaboration Rule you want to edit.

Save Regenerates the .xpr and .xts files for the current Rule,
saving your current GUI settings and work-in-progress
without compiling.

Save As Opens the Save dialog box, allowing you to generate
new .xpr and .xts files for the current Rule and save it
under a different name without compiling it.

Compile Runs the Java compiler and displays informational and
error messages in the Compile pane.

Promote Moves the current Collaboration Rule from the
sandbox environment to the run-time environment.

Enable ELS Provides access to the Event Linking and Sequencing
(ELS) methods that act as a preprocessor to the standard
business rules. For details, see Chapter 12.

Enable Marshalling
Error Trapping

Provides access to the Marshalling Error Trapping
methods: onMarshalException() and
onUnmarshalException().

Enable Transaction
Synchronization

Provides access to the Transaction Synchronization
methods: OnPrepare(), OnCommit(), and
OnRollback().

Exit Closes the Editor.

Edit Cut Removes the selection and copies the contents to the
Clipboard.

Copy Copies the contents of the selection to the Clipboard.

Paste Pastes the contents of the clipboard to the cursor
location.

Delete Deletes the selection.

Search and Replace Opens the Search And Replace dialog box, allowing you
to locate text in various property fields and optionally
substitute other text. See “Searching and Replacing
Within a Collaboration” on page 287.

Find and Map Opens the Find and Map dialog box, allowing you to
locate nodes and fields in source and destination Event
instances and, optionally, create mapping between a
source field and a destination field. See “Using Find
and Map” on page 278.

Chapter 7 Section 7.4
Java Collaboration Rules Java Collaboration Rules Editor Overview

e*Gate Integrator User’s Guide 268 SeeBeyond Proprietary and Confidential

View Display Tool Labels Displays or hides text labels for the buttons in the
Business Rules toolbar.

Display Code Displays or hides the code in the Business Rules pane.

Display Tool Bar Displays or hides the main toolbar.

Display Output Displays or hides the Compile pane.
When you compile a Collaboration Rule, Display
Output is automatically turned on.

View Java Code Opens a View Java Code window that allows you to
examine, select, and copy the contents of the Java
source text file created by the Editor.

Tools Options Opens the Java Classpaths dialog box, allowing you to
select (from <eGate>\client\) the Java classpaths that
are used to import Java packages into the Java
Collaboration Rule. See “To make external (third-
party or custom) .jar or .class files available to your
Collaboration” on page 282.

Java Imports Opens the Java Imports dialog box.
See “To view and use methods from an imported
class” on page 284.

ELS Wizard Starts the Event Linking and Sequencing Wizard. This
command is available only when the Enable ELS
command is checked under the File menu.
See Chapter 12.

Help Contents Opens the Help browser with the Contents tab
showing.

Index Opens the Help browser with Index tab showing.

Search Opens the Help browser with Search tab showing. Not
currently implemented

About
Collaboration Editor

Displays the copyright, version, and build information,
a copy of the license agreement, and a command
button (System Info) that allows you view system
parameters.

Table 35 Java Collaboration Rules Editor Menu Commands (Continued)

Menu Command Description

Chapter 7 Section 7.4
Java Collaboration Rules Java Collaboration Rules Editor Overview

e*Gate Integrator User’s Guide 269 SeeBeyond Proprietary and Confidential

7.4.4 Main Toolbar
The buttons on the main toolbar are shortcuts for commands that can be found on the
menu bar. Table 36 gives a brief description of what each button does.

Table 36 Main Toolbar Buttons

7.4.5 Business Rules Toolbar
The buttons on the Business Rules toolbar are used to insert common Java
programming constructs into the Collaboration. Table 37 below gives a brief
description of what each button inserts into the code.

Button Description

Opens the Find and Map dialog box, allowing
you to locate nodes and fields in source and
destination Event instances and, optionally,
create mapping between a source field and a
destination field. Same as the Find and Map
command under the Edit menu. See “Using
Find and Map” on page 278.

Table 37 Business Rules Toolbar Buttons

Button Description

Adds a rule that groups several Java statements together.

Adds a rule that is a member function of a Java class.

Allows you to define a variable.

Adds a counter delimited loop to your code. The code
within the for loop is executed until the counter value is
reached.

Adds a conditional expression statement to code.

Adds an unspecified expression statement to your code.
This allows you to use the methods associated with the ETD
of the Event instance.

Adds a switch statement that begins a set of conditional
branches.

Adds a conditional branch to a switch statement. You must
be in a switch rule fragment for this button to be active.

Adds an expression delimited loop to your code. The code
within the while loop is executed as long as the expression is
true.

Chapter 7 Section 7.5
Java Collaboration Rules Working With Java Collaboration Rules

e*Gate Integrator User’s Guide 270 SeeBeyond Proprietary and Confidential

7.5 Working With Java Collaboration Rules
This section provides basic information you need to know for working with Java
Collaboration Rules:

“Creating a New Java Collaboration Rule” on page 271

“The Mapping Pane” on page 275

“The View Commands” on page 278

“Saving, Compiling, and Promoting Collaboration Rules” on page 280

“Enabling and Disabling ELS” on page 281

“Setting Classpath and Package Options” on page 282

“Searching and Replacing Within a Collaboration” on page 287

Adds an expression delimited loop to your code. The code
within the do loop is executed at least once and as long as
the accompanying while expression is true.

Returns processing to the caller.

Adds a rule that initiates an exception to your code.

Adds an exception handling block to your code. An internal
try...catch already exists in executeBusinessRules(), so that
exceptions do not generate compilation errors; however, in
userInitialize() and userTerminate(), you must add your own
try...catch blocks.

Adds a catch block to your code. The catch block contains
the code to handle exceptions thrown within the try block.
This button is inactive when the rule selected is outside of a
try block.

Opens the Copy dialog box, allowing you to add a copy rule
to your code. See copy on page 294.

Opens the Data Map dialog box, allowing you to add a
datamap rule to your code. See datamap on page 296.

Opens the List Lookup dialog box, allowing you to add a
listlookup rule to your code. See list lookup on page 307.

Opens the Insert Timestamp dialog box, allowing you to add
a timestamp rule to your code. See timestamp on page 318.

Opens the Insert Unique ID dialog box, allowing you to add
a uniqueid rule to your code. See uniqueid on page 322.

Table 37 Business Rules Toolbar Buttons (Continued)

Button Description

Chapter 7 Section 7.5
Java Collaboration Rules Working With Java Collaboration Rules

e*Gate Integrator User’s Guide 271 SeeBeyond Proprietary and Confidential

7.5.1 Creating a New Java Collaboration Rule
You create a Java Collaboration Rule by designating one or more source Events and one
or more destination Events and then setting up rules governing the relationship
between fields in the Event instances.

Note: ETDs for source and destination must exist before creating the Collaboration Rule.
For more information on creating the ETDs, see Chapter 5 Event Type
Definitions (ETDs) on page 157.

To create a new Java Collaboration Rule

1 In the Navigator (leftmost) pane of Enterprise Manager, select the Components tab
if necessary and click the Collaboration Rules folder.

2 On the File menu, point to New and click Collaboration Rules .

3 Enter a name for the Collaboration Rule and click OK.

4 Double-click the new Collaboration Rule to display its properties.

5 In the Service list, click Java.

The Collaboration Mapping tab is activated.

Figure 113 The Collaboration Rule Properties

6 Click the Collaboration Mapping tab.

7 Click Add Instance to add a new instance.

8 Enter an Instance Name for the instance. The Instance Name will be used by the
Collaboration Rules Editor to identify the source and destination Events.

Chapter 7 Section 7.5
Java Collaboration Rules Working With Java Collaboration Rules

e*Gate Integrator User’s Guide 272 SeeBeyond Proprietary and Confidential

9 Click Find to display a list of ETD files (.xsc files).

10 Select the source ETD and click Select.

The name of the ETD is displayed in the ETD field.

11 In the Mode list, click In or In/Out. For a discussion of In, Out, and In/Out modes,
see “In, Out, and In/Out Event Instances” on page 274.

12 Optionally, repeat steps 7 through 11 to create additional source Event instances.

13 Select the Trigger check box for one or more inbound Events; see “Trigger Check
Box” on page 274.

14 Repeat steps 7 through 10 for each destination instance.

15 In the Mode list, click Out or In/Out for each destination instance.

16 Optionally, you can select the Manual Publish check box for one or more outbound
Events; see “Manual Publish Check Box” on page 274.

17 Click Apply to save the changes.

Figure 114 The Collaboration Mapping Tab

18 Click the General tab. Optionally, you can enter an initialization string to override
certain run-time settings. For details, see the Collaboration Services Reference Guide
chapter on the Java Collaboration Service.

19 Click New to create a new Java Collaboration Rule.

The Java Collaboration Rules Editor displays the newly created Rule. The source
and destination Events are populated with the ETDs defined in the Collaboration
Mapping tab of the Collaboration Rules properties. See Figure 115.

Chapter 7 Section 7.5
Java Collaboration Rules Working With Java Collaboration Rules

e*Gate Integrator User’s Guide 273 SeeBeyond Proprietary and Confidential

Figure 115 The New Collaboration Rule

When you drag a child node into the Rule area of the Rule Properties pane (or into the
Result area of the Return Properties pane, or similar), or if you use drag-and-drop or
Find and Map to map one node to another node, the Editor automatically traces the
path of the selected node or nodes upwards to the root and supplies an appropriate
get() or set() method:

! For a node in the Source Events pane, the Editor supplies a get() method to fetch
data from it: getSourceRoot().getSourceChild().getSourceGrandChild().[...]getNode().

! For a node in the Destination Events pane, the Editor supplies a set() method to put
data into it: getDestRoot().getDestChild().getDestGrandChild().[...]setNode().

If you drag a repeating node or the child of a repeating node, you are prompted by the
Select Repetition Instance dialog box to specify which iteration to use.

! For simple one-to-one operations, such as copying the fifth instance of a nine-
repetition node to the third instance of a five-repetition node, you can simply enter
the appropriate numbers.

! For more complex operations, it can be helpful to set up a counter in a for loop; see
“for” on page 303.

Chapter 7 Section 7.5
Java Collaboration Rules Working With Java Collaboration Rules

e*Gate Integrator User’s Guide 274 SeeBeyond Proprietary and Confidential

7.5.2 Settings for the Collaboration Rules Properties dialog box

The Collaboration Rules Properties dialog box has only two tabs that are accessible:
General and Collaboration Mapping. (The other, inaccessible, tabs are provided for
consistency with Collaboration Rules based on Collaboration Services other than Java.)

General Tab

In this tab, you specify the Collaboration Service (must be Java for Java Collaborations).
You can optionally also specify one or more flags and values in the Initialization String
box, as described the Collaboration Services Reference Guide.

In the Collaboration Rules area, you can click Clear to remove the current setting, click
Find to select a different existing Collaboration Rule (.class) file, or click New or Edit to
start the Collaboration Rules Editor.

Collaboration Mapping Tab

In this tab, you click Add Instance and supply an instance names and ETD (.xsc file) for
each Event Types in your Collaborations, as well as a mode (In, Out, or In/Out).

In, Out, and In/Out Event Instances

Event instances are displayed in the Source Events pane and Destination Events pane
according to the mode—In, Out, or In/Out—selected for them in the Collaboration
Mapping tab: Event instances set to In appear in the Source Events pane only; Event
instances set to Out appear in the Destination Events pane only; and Event instances set
to In/Out appear in both Source Events and Destination Events panes.

Note: You cannot use an In/Out Event with a JMS e*Way Connection. Also, you cannot
connect the same In/Out Event to two or more different external sources—for
example, if an In/Out Event instance is connected to a certain e*Way Connection,
all instances of that Event must be connected to the same e*Way Connection.

Trigger Check Box

Optionally, you can select the Trigger check box for all inbound Events where you want
the executeBusinessRules() method to run whenever data is available. Clear the
Trigger check box for any Events where you want the Event to be instantiated only
when you explicitly invoke the receive0 method. At least one inbound Event must be
set to Trigger—otherwise, executeBusinessRules() never runs.

Manual Publish Check Box

Optionally, you can select the Manual Publish check box for outbound Events where
you want the send() method to run only when explicitly called within the business
rules. Clear the Manual Publish check box for Events where you want the
Collaboration to invoke the send() method automatically.

Note: The Trigger check box is unavailable for outbound-only Events, as they are
ineligible for the receive() method. The Manual Publish check box is unavailable
for inbound-only Events, as they are ineligible for the send() method.

Chapter 7 Section 7.5
Java Collaboration Rules Working With Java Collaboration Rules

e*Gate Integrator User’s Guide 275 SeeBeyond Proprietary and Confidential

7.5.3 The Mapping Pane
The Mapping pane provides a visual indication of the relationship between source and
destination fields. When you use drag-and-drop or Find and Map, the Editor creates a
new business rule that invokes the getSourceField() method on the selected Source Event
field and the setDestField() method on the Destination Event field, and draws a line
connecting the two fields.

To minimize clutter, this line is displayed in the following circumstances: When either
the source or the destination fields is selected, when a parent or grandparent (and so
on) node of either field is selected, or when the corresponding business rule is selected.
This is illustrated in the figures below. Each of the fields in the Source Events pane—
Name, Address1, and so on—is copied to its corresponding field in the Destination
Events pane. When just one field is selected, such as the Name field shown in Figure
116, the Mapping pane displays only the lines for that field.

Figure 116 Mapping Pane When One Field Is Selected

When a parent node is selected, as shown in Figure 117, the Mapping pane shows many
connecting lines corresponding to the business rules for all the node’s child fields; the
mapping lines converge in a point if one of the parent nodes is collapsed.

Single field selected;
the Mapping pane
displays line(s)
corresponding to
the selected field
only.

Chapter 7 Section 7.5
Java Collaboration Rules Working With Java Collaboration Rules

e*Gate Integrator User’s Guide 276 SeeBeyond Proprietary and Confidential

Figure 117 Mapping Pane for Expanded and Collapsed Parent Nodes

When a business rule is selected, such as the copyAddress2 rule in Figure 118, the
Mapping pane shows connecting lines corresponding to the code in the fragment.

Figure 118 Mapping Pane When a Business Rule Is Selected

Collapsed
parent node
selected; the
Mapping pane
displays all
lines for node.

When a Business
rule is selected,
the Mapping pane
displays the
corresponding
mapping line.

Chapter 7 Section 7.5
Java Collaboration Rules Working With Java Collaboration Rules

e*Gate Integrator User’s Guide 277 SeeBeyond Proprietary and Confidential

Dragging and Dropping Fields

In the Collaboration Rules illustrated in the three figures above, the code for getting
and setting field data was generated by dragging the source field and dropping it onto
the corresponding destination field, within the context of a specific business rule—in
the three Figures above, the context is the then block of the first if rule component in
the executeBusinessRules() method, whereas in Figure 119 below, the context is the
executeBusinessRules() method itself.

Figure 119 Creating Rules by Dragging Fields

You can map a parent node to a parent node, provided that both nodes’ tree structures
are identical in every way. For example, a node with six children and no grandchildren
can map to another node with exactly six children provided that the data types of the
children fields are compatible and all names identical—thus not to a node with two children
or nine, or one with grandchildren, or one whose children are named differently.

Data Type Conversion

If you use drag-and-drop (or the Find and Map command—see below) to map
between fields of different data types, the Editor issues a warning if appropriate
(for example, if you try to map a String to a long, but not if you map a long to a String)
and invokes one of the e*Gate STCTypeConverter.toDataType() methods.

Dragging a field from here…

…to here…

…creates a new Java rule.

Chapter 7 Section 7.5
Java Collaboration Rules Working With Java Collaboration Rules

e*Gate Integrator User’s Guide 278 SeeBeyond Proprietary and Confidential

Using Find and Map

For large ETDs, or for complicated mappings, you can use Find and Map to locate
fields and nodes in the source and destination Events. To locate and highlight an
element in the source Event, enter a text string in Input Events box and click Find;
if necessary, continue to click Find Next until the correct element has been located.
To locate and highlight an element in the destination Event, enter a text string in
Output Events box and click Find or Find Next.

After you have found the correct elements in both the source and the destination ETDs,
you can scroll through the Business Rules pane, select or add the rule component that
sets the context of the get/set operation, and click Map. The Editor acts as if you had
dragged the source to the destination, and creates the corresponding code fragment in a
new rule rule component.

As you can see in Figure 120 below, the text string you enter can be a substring of the
field or node name you want to match, and the search is case-insensitive.

Figure 120 Find and Map

7.5.4 The View Commands
The View menu has four commands that allow you to change the display of the GUI:

! Keep Display Tool Labels turned on while you are learning the interface; when you
are familiar with the toolbar icons, you can save some screen space by turning off
the labels. All examples in this book have the tool labels turned on. Figure 121
below shows the toolbar with the Display Tool Labels turned off.

Chapter 7 Section 7.5
Java Collaboration Rules Working With Java Collaboration Rules

e*Gate Integrator User’s Guide 279 SeeBeyond Proprietary and Confidential

Figure 121 Business Rules Toolbar With Labels Turned Off

! Turn on Display Code when you want to quickly browse through all the code in the
Business Rules pane. To provide more space as you browse, temporarily slide the
pane divider to the right edge of the screen, and then restore it to the middle when
you are done. All examples in this book have the code display turned off. Figure 122
shows the Business Rules pane with Display Code turned on.

Figure 122 Business Rules Pane with Code Display Turned On

! Turning on Display Output allows you to view the Compile pane. This helps you to
work with a Collaboration Rule that doesn’t compile cleanly—just double-click the
compiler message to place focus on the rule that apparently caused the problem.
For an example involving unmatched parentheses, see Figure 123 below.

Figure 123 Code Error Exposed by Double-Clicking a Compile Pane Message

! Turning on View Code displays the View Java Code window, which allows you to
see the Java source code generated by the Editor. Although you cannot search the
code stream or use keyboard commands like Delete or CTRL+C, you can highlight
a selection and right-click to use the shortcut menu commands Cut, Copy, Paste,
Delete, and Select All. However, it is not useful to make any changes within this
window, since all changes are erased when the View Java Code window is closed.
For an example, see Figure 124 below.

Chapter 7 Section 7.5
Java Collaboration Rules Working With Java Collaboration Rules

e*Gate Integrator User’s Guide 280 SeeBeyond Proprietary and Confidential

Figure 124 The View Java Code Window

7.5.5 Saving, Compiling, and Promoting Collaboration Rules
While working on a Collaboration Rule, you may want to save your work from time to
time before the Rule is ready to be compiled. For example, if an ETD changes while you
are working on a Collaboration Rule using that ETD, you should save your work, close
the Editor, and then re-start the Editor so you can incorporate any changes.

When you have completed work on a Collaboration Rule, you must compile it before
you can use it in a Collaboration. When a compilation is unsuccessful, the Compile
pane displays messages that can be helpful in locating and correcting errors. Any time
there is a change to any ETD referenced by a Collaboration, the Collaboration must be
recompiled.

After the Collaboration Rule is tested and approved, you can promote it to run-time.

Procedures for saving, compiling, and promoting Collaborations are given below.

To save the Collaboration Rule without compiling

Do one of the following:

! On the File menu, click Save.

This regenerates the current .xpr and .xts files that save the current project settings
(GUI layout) and details of the Collaboration Rule.

! On the File menu, click Save As and then, in the Save dialog box, enter a new file
name for the Collaboration Rule.

This generates new .xpr and .xts files.

Chapter 7 Section 7.5
Java Collaboration Rules Working With Java Collaboration Rules

e*Gate Integrator User’s Guide 281 SeeBeyond Proprietary and Confidential

To compile the Collaboration Rule

1 On the File menu, click Compile.

2 Check the Compile pane for errors and warnings. If the compilation succeeds
without problem, the Compile pane will contain only one message:

Compile Completed.

Successful compilation causes the collabRule.ctl, collabRule.class, and
collabRuleBasic.class to be committed to the sandbox environment.

Resolving compiler errors

With most common errors, you can get a good clue to the location of the problem by
double-clicking the error text in the Compile pane. For example, see Figure 123 on
page 279.

To promote the Collaboration Rule from sandbox to run time

! On the File menu, click Promote.

A dialog box displays the message Successfully Promoted all Files to Runtime.

Note: If the compile is unsuccessful, it fails to commit .ctl or .class files to the Sandbox
environment. Therefore, if you attempt to promote a new Collaboration Rule that
has never been successfully compiled, an error dialog box displays error messages
prompting you to save your session before promoting to the run-time environment.
However, after a Collaboration Rule has been successfully compiled at least once, the
.ctl and .class files from the most recent successful compilation are committed to the
Sandbox.

7.5.6 Enabling and Disabling ELS
Event Linking and Sequencing (ELS) consists of a set of independent methods that can
be invoked prior to the executeBusinessRules() method. These methods allow you to
link a group of Events that share a defined unique key (called a Link Identifier) and then
work with the group as a whole using their Link Identifier, Event Type (also known as
Topic), and age. Processing of these groups can be sequenced relative to one another
because their timers can be set, stopped, reset, or restarted according to need. For a
complete discussion of ELS, see Chapter 12.

When ELS is enabled, you can use the ELS Wizard command under the Tools menu.

To enable ELS

! On the File menu, click Enable ELS if it is not already checked.

Three new methods are displayed in the Business Rules pane: retrieveLinkIdentifier(),
isLinkingComplete(), and onExpire().

To disable ELS

1 On the File menu, clear the Enable ELS check mark (if it is already checked).

2 In the Disable ELS dialog box, click Yes.

All ELS methods are deleted from the Collaboration Rule, and the Enable ELS menu
check mark is cleared.

Chapter 7 Section 7.5
Java Collaboration Rules Working With Java Collaboration Rules

e*Gate Integrator User’s Guide 282 SeeBeyond Proprietary and Confidential

7.5.7 Setting Classpath and Package Options
To add classpaths or packages to your Collaboration Rule, use the Tools menu:

! The Options command opens the Java Classpaths dialog box, whose Classpath tab
displays the default classpath and allows you to add directories and files.

! The Java Imports command opens the Java Imports dialog box, which allows you
to add or remove packages and classes. To add a package or class, you can either
enter its name and click Add, or you can navigate to it in the Classes in Classpath
list, click the package name, and then click >>. You can move a package higher or
lower in the Selected list sequence by selecting it and then clicking Up or Down.

To make external (third-party or custom) .jar or .class files available to your Collaboration

1 Use the operating system to copy the .jar files into <eGate-client>\classes\ and
<eGate-registry>\repository>\<YourSchemaName>\runtime\. Although the
Editor allows you to find and use a runtime\.jar file even if it is not in
client\classes\, the compile will fail, because it cannot generate the .ctl file.

2 In the Collaboration Rules Editor, on the Tools menu, click Options. See Figure 125.

Figure 125 Java Classpaths Dialog Box

3 In the Java Classpaths dialog box, click Add Directory and Add File as needed to
navigate to and add classpaths and .jar files. When you have added all you need,
click OK.

Chapter 7 Section 7.5
Java Collaboration Rules Working With Java Collaboration Rules

e*Gate Integrator User’s Guide 283 SeeBeyond Proprietary and Confidential

4 As needed, specify how the system should regard the environmental classpath:

" Click Prepend to use the classpath before files and directories specified above.

" Click Append to use the classpath after files and directories specified above.

" Click Do not Use to cause the environmental classpath to be ignored.

5 On the Tools menu, click Java Imports. See Figure 126.

Figure 126 Java Imports Dialog Box

Note: Many important classes and interfaces are supplied in the SeeBeyond packages
com.stc.jcsre.* and com.stc.common.collabService.*, such as the
com.stc.jcsre.JCollaboration and com.stc.jcsre.Base64 classes and the
com.stc.common.collabService.JCollabController class.

6 If you know the name of the class, you can enter the classname in the text box, click
Add, and repeat as needed.

7 If you know the container of the class, navigate to it in the Classes in Classpath list
and then click >> to move its name to the Selected Packages and Classes list.
Repeat as needed.

8 When you have added all packages and classes you need, click OK.

Chapter 7 Section 7.5
Java Collaboration Rules Working With Java Collaboration Rules

e*Gate Integrator User’s Guide 284 SeeBeyond Proprietary and Confidential

To view and use methods from an imported class

Note: Exercise care when using Insert Java Function—for example, if you accidentally
paste imported code in the middle of another line of code, the result can be extremely
time-consuming to sort out. You can use Undo (accessed via CTRL+Z or the right-
click shortcut menu) to cancel the most recent action.

1 Right-click in the Rule area of the Rule Properties pane (or the Condition area of the
If Properties pane, or the Initial Value area of the Variable Properties pane, and so
on—any area except Description or Documentation). Then, on the shortcut menu,
click Insert Java Function. See Figure 127.

Figure 127 Shortcut Menu in Rule Properties Pane

2 In the Choose a method dialog box, you can browse the categories of available
classes and browse the methods signatures within each class. See Figure 128.

Chapter 7 Section 7.5
Java Collaboration Rules Working With Java Collaboration Rules

e*Gate Integrator User’s Guide 285 SeeBeyond Proprietary and Confidential

Figure 128 Choose a method Dialog Box

" If the method you need appears in the Method list, click the method name and
then click OK to paste it into the Java Collaboration Rules Editor at the current
insertion point of your cursor. Skip ahead to Figure 130 on page 286.

" Or, to browse for methods in other Java classes, click Other Java Classes and
continue with step 3.

3 In the Choose a method dialog box, enter or scroll to the class name you want. Its
Packages box displays a package name for each class as you scroll. See Figure 122.

Chapter 7 Section 7.5
Java Collaboration Rules Working With Java Collaboration Rules

e*Gate Integrator User’s Guide 286 SeeBeyond Proprietary and Confidential

Figure 129 Choose a method Dialog Box

4 Scroll to the method you want and click OK to paste it into the Java Collaboration
Rules Editor at the current insertion point of your cursor. See Figure 130.

Figure 130 Results of Inserting a Java Method

5 If you make a mistake inserting a Java method, use Undo—accessed via CTRL+Z
or the right-click shortcut menu—to cancel the most recent action. Otherwise,
replace any dummy parameters—such as <parm1> and <parm2>—with
appropriate real ones as needed, and continue building your Collaboration.

Chapter 7 Section 7.5
Java Collaboration Rules Working With Java Collaboration Rules

e*Gate Integrator User’s Guide 287 SeeBeyond Proprietary and Confidential

7.5.8 Searching and Replacing Within a Collaboration
The Editor allows you to search for a particular text string through much of the editable
portions of the code in your Collaboration, and also provides you with limited abilities
to search-and-replace strings.

To find a text string

1 On the Edit menu, click Search and Replace.

The Search And Replace dialog box appears. See Figure 131.

Figure 131 The Search And Replace Dialog Box

2 In the Find What text box, enter the text string you want to find.

The string can include any ASCII character you can enter from the keyboard and
any ASCII text string you can copy from the Clipboard.

Note: The search is case-insensitive.

3 Click Find Next.

The system searches all editable text in Description, Name, Throws, and Rule fields.
(It does not look through text in Value, Parameter Name, or Documentation fields.)
The search stops at the next point the text is found; if it is not found below the
current point, the search continues at the top of the Collaboration until the original
search point has been reached again.

To replace a text string

1 Follow steps 1 through 3; if the text string is found, continue with step 2 below.

2 In the Replace With text box, enter the text string you want to substitute.

3 Click Replace.

4 Continue to find and replace the text string as needed.

Caution: Watch for case-sensitive substitutions: For example, replacing all instances of erin
with Erin would make the userInitialize method unintelligible, as usErinitiliaze.

Chapter 7 Section 7.6
Java Collaboration Rules Creating Custom Java Methods

e*Gate Integrator User’s Guide 288 SeeBeyond Proprietary and Confidential

7.6 Creating Custom Java Methods
You can create your own custom Java methods for use in Collaborations.

To create a custom Java Method

1 In Enterprise Manager, on the File menu, click Edit File.

2 In the Open file dialog box, open the collaboration_rules folder, click
UserFunctions.xml, and click Open.

Figure 132 The UserFunctions.xml Template for Custom Java Methods

3 In the text editor window, after all comments (<!-- [...] --> tags) but before the final
tag (</METHOD_BROWSER_DATA_FILE [...]>), add XML tags for your methods.
Use the example in the template and follow the directions provided in the file.
You may also want to consult SBYNFunctions.xml for examples.

Chapter 7 Section 7.6
Java Collaboration Rules Creating Custom Java Methods

e*Gate Integrator User’s Guide 289 SeeBeyond Proprietary and Confidential

Figure 133 shows the relationship between SBYNFunctions.xml (which contains
methods supplied by SeeBeyond) and the Java Collaboration Rules Editor.
UserFunctions.xml (which contains your user-defined methods) operates in exactly
the same way as SBYNFunctions.xml.

Figure 133 Relating UserFunctions.xml, SBYNFunctions.xml, and the GUI

4 When you have finished making your changes, close the text editor, and then click
Commit to commit the updated version of UserFunctions.xml to your Sandbox.
Save UserFunctions.xml in the collaboration_rules folder.

5 From this point onward, if you defined your methods correctly, their class name[s]
and package name will appear under the Group you created for them (in the above
example, the Group name is “File”); selecting the class in that Group will display all
methods in the class.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 290 SeeBeyond Proprietary and Confidential

7.7 Using the Business Rules
Each of the tools on the Business Rules toolbar creates a block of code, a single
statement, or a code fragment to be added by the Collaboration Rule.

The tools on the Business Rules toolbar are:

! block on page 291

! method on page 310—includes information on the four business rules methods
that are presupplied when you start the Editor, such as executeBusinessRules()

! variable on page 324

! for on page 303

! if, then, else on page 306

! rule on page 314

! switch, case, default on page 315

! case on page 292

! while on page 325

! do, while on page 300

! return on page 313

! throw on page 317

! try, catch, finally on page 321

! copy on page 294

! datamap on page 296

! list lookup on page 307

! timestamp on page 318

! uniqueid on page 322

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 291 SeeBeyond Proprietary and Confidential

block

Description

Clicking the block tool adds a placeholder for a block (a group of Java statements)
immediately below the selected rule component. For example, when you click the if
tool, the Editor automatically adds two blocks—one to hold a group of statements
under the then rule component, and the other to hold a group statements under the
else rule component.

The block tool is unavailable when the selected rule component is method or return.
A block may contain or immediately follow another block.

Syntax

{
statement1;
statement2;

}

Example

{
getInput1();
getInput2();
getInput3()

}

Properties

Figure 134 The block Rule and Its Properties

Item Description

statement<n> Any valid Java statement.

Property Description

Description A descriptive short name you can give to
this group of statement. Note that this is
not the same as a Java label—the
contents of the field are not written to the
Java code.

Documentation Any documentation or comments you
want to give to this group of statements.
Note that this is not the same as a Java
comment—the contents of the field are
not written to the Java code.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 292 SeeBeyond Proprietary and Confidential

case

Description

Clicking the case tool adds a case rule fragment under the selected switch or case rule
fragment. For more information, see “switch, case, default” on page 315.

Syntax

switch (Expression)
case ConstantExpression1 : Statement1;
break;
case ConstantExpression2 : Statement2;
break;
default : StatementLast

Properties

Property Description

Description Provides an opportunity for you to give a
descriptive name to this case statement.

Value The value this case requires to receive
control.

Documentation Any documentation or comments for this
rule fragment.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 293 SeeBeyond Proprietary and Confidential

catch

Description

Clicking the catch tool adds a catch rule fragment under the selected try or catch rule
fragment. For more information, see “try, catch, finally” on page 321. When multiple
catch rule fragments are able to handle the same exception, the exception is handled by
the first applicable catch.

Syntax

try {
firstblock;

} catch (ExceptionClass1 parm1) {
block1;

} catch (ExceptionClass2 parm2) {
block2;

} finally {
lastblock;

}

Properties

Item Description

ExceptionClass An Exception object you anticipate might
be thrown by the firstblock code.

parm An exception parameter; must be of type
Throwable or a subclass of Throwable.

Property Description

Description Provides an opportunity for you to give a
descriptive name to this catch statement.

Exception Specifies the exception class name and
parameter name:
catch (Exception e1)

Documentation Any documentation or comments for this
rule fragment.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 294 SeeBeyond Proprietary and Confidential

copy

Description

Clicking the copy tool adds code for a copy rule that copies byte data from a location in
a node of the source Event Type instance to a location in a node of the destination Event
Type instance. The copy button becomes available when nodes are selected in both the
Source Events and Destination Events panes, but only if both nodes are of type String.
If you click copy when one or both nodes are repeating, you will need to specify how to
handle the repetitions; see “Common Dialog Boxes for Business Rules” on page 326.

You can only edit the copy rule by using the Copy dialog box. See Figure 135.

Figure 135 The Copy Dialog Box

Enter information in this dialog box as follows.

1 In the Source column, select either All (to copy all of the data in the node), or
From Position (to copy only a portion of the data in the node).

If you select From Position, then also do the following.

" In the Byte Offset box, enter the beginning byte location of the data you are
copying to the destination node. Bytes are numbered starting at zero.

" To specify a byte length, clear the (to end) check box, and then enter a byte
length in the Length box. The minimum byte length is 1.

2 In the Destination pane, select either Append to End (to append the copied data to
the end of the destination node), or To Position to copy the data to a specific
position within the node. Copied data replaces any original data at that position.

If you select To Position, then also do the following.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 295 SeeBeyond Proprietary and Confidential

" In the Byte Offset box, enter the beginning byte location for the copied data.
Bytes are numbered starting at zero.

" To specify a byte length, clear the (to end) check box, and then enter a byte
length in the Length box. The minimum byte length is 1. For fixed-length nodes,
count the number of bytes from 1. For delimited nodes, where field length is
variable, leave the (to end) check box selected to set the length to the end of the
field.

3 To retain blank spaces at the end of the copied bytes, clear the Strip Trailing Spaces
check box; otherwise, keep the box checked (the default) to delete blank spaces.

4 To customize the copied data's output format, click Set Output Format and make
the appropriate settings. See “The Output Format Dialog Box” on page 327.

Syntax

getet_Dest().setdestNodeName(CollabUtils.copy(
(getet_Srce().getsrceNodeName(),
int srceByteOffset, int srceByteLength,
int destByteOffset, int destByteLength,
java.lang.String formatPattern, java.lang.String emptyString,
boolean stripTrailingSpaces)

);

Table 38 Parameters for Business Rule copy

Item Type Description

et_Dest The name of the destination Event Type instance.

destNodeName The name of the node to copy the data into.

et_Srce The name of the source Event Type instance.

srceNodeName The name of the node to copy the data from.

srceByteOffset int The number of leading bytes to skip in the
source: must be a nonnegative integer.

srceByteLength int The total number of bytes to output;
a nonnegative integer, or else -1 to signify “keep
copying through to the end.”

destByteOffset int The number of leading bytes to skip in the
destination: must be a nonnegative integer.

destByteLength int The total number of bytes to output;
a nonnegative integer, or -1 to signify “keep
copying through to the end.”

formatPattern java.lang.String A code for formatting string output; see “The
Output Format Dialog Box” on page 327.

emptyString java.lang.String The zero-length string (““).

stripTrailingSpaces boolean When true, specifies that blank characters are
removed from the end of the string.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 296 SeeBeyond Proprietary and Confidential

datamap

Description

Clicking the datamap tool adds code for a dataMap rule that attempts to match the
string in the source node to a string in a specified ASCII text file and, if a match is
found, output the matchstring to the destination node. Figure 136 shows some uses.

Figure 136 Sample Text Files for the dataMap Rule

The datamap button becomes available when nodes are selected in both the Source
Events and Destination Events panes, but only if both nodes are of type String. If you
click datamap when one or both nodes are repeating, you will need to specify how to
handle the repetitions; see “Common Dialog Boxes for Business Rules” on page 326.

You can only edit this rule using the Data Map dialog box. See Figure 137.

Figure 137 The Data Map Dialog Box

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 297 SeeBeyond Proprietary and Confidential

Enter information in this dialog box as follows.

1 The Source Location and Destination Location boxes tell you the hierarchy and
names of the two nodes you selected. There is normally no reason to edit these.

2 Use the Byte Range pane to specify whether all or part of the source node’s data
will be mapped to all or part of the destination node:

" In the Byte Offset box, you can specify the beginning byte location of the data
you are mapping from or to (or both). Bytes are numbered starting at zero.

" To specify a byte length for source or destination, clear the (to end) check box,
and then enter a byte length in the Length box. The minimum byte length is 1.
For fixed-length nodes, count the number of bytes from 1. For delimited nodes,
where field length is variable, leave the (to end) check box selected to set the
length to the end of the field.

3 To strip one or more specified characters from the beginning and end of the source
string before checking it for a match, enter the characters in the Trim Characters
box. For example, when checking for a match on an abbreviation, you might want
to trim the “.” character.

4 To customize the copied data's output format, click Set Output Format and make
the appropriate settings. See “The Output Format Dialog Box” on page 327.

5 In the File to use for Data Map text box, specify a map file; you can either type the
path and file name or by click Browse and locate and select the map file you want to
use.

Syntax

getet_Dest().setdestNodeName(CollabUtils.dataMap(
int srceByteOffset, int srceByteLength,
int destByteOffset, int destByteLength,
this.jCollabController.getEgateBaseDirectory(),
java.lang.String fileName,
getet_Srce().getsrceNodeName(),
java.lang.String formatPattern, java.lang.String trimChars)

);

Table 39 Parameters for Business Rule dataMap

Item Type Description

et_Dest The name of the destination Event Type instance.

destNodeName The name of the node to copy the data into.

srceByteOffset int The number of leading bytes to skip in the
source: must be a nonnegative integer.

srceByteLength int The total number of bytes to output; must be
a nonnegative integer, or else -1 to signify “keep
copying through to the end.”

destByteOffset int The number of leading bytes to skip in the
destination: must be a nonnegative integer.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 298 SeeBeyond Proprietary and Confidential

destByteLength int The total number of bytes to output; must be
a nonnegative integer, or -1 to signify “keep
copying through to the end.”

fileName java.lang.String The path and filename of the mapping file to be
used for matching the string.

et_Srce The name of the source Event Type instance.

srceNodeName The name of the node to copy the data from.

formatPattern java.lang.String A code for formatting string output; see “The
Output Format Dialog Box” on page 327.

trimChars java.lang.String Zero or more characters to be removed from the
input string before searching for a match.

Property Description

Description Provides an opportunity for you to give a
descriptive name to this datamap rule.

Generated Code Allows you to see the Java code that was
automatically created for this rule. To
modify the code, click the . . . button

Documentation Allows you to enter full documentation or
comments for this rule.

Table 39 Parameters for Business Rule dataMap (Continued)

Item Type Description

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 299 SeeBeyond Proprietary and Confidential

default

Description

A placeholder for a default block is added automatically when you add a switch rule;
for more information, see switch, case, default on page 315.

Properties

Property Description

Description Provides an opportunity for you to give a
descriptive name to the default block of
statements.

Documentation Any documentation or comments for this
statement or block.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 300 SeeBeyond Proprietary and Confidential

do, while

Description

Clicking the do tool adds a do, while loop. The do statement declares a loop that causes
a statement or block of statements to be continuously executed one or more times until
a specified Boolean condition (the while expression) becomes false.

The only difference between do, while and while is that statements under a do
statement are guaranteed to be executed at least once.

Syntax

do {
block

} while (condition);

Example

do {
block

} while (i<10);

Properties of do, while

Figure 138 The do, while Rule and Its Properties

Item Description

block A statement or block of statements
executed until condition is evaluated and
found to be false.

condition A Boolean expression controlling the do
loop. The condition expression is not
evaluated until after block has been
executed once.

Property Description

Description Provides an opportunity for you to give a
descriptive name to the do, while block.

Condition The Boolean expression that, when true,
triggers the execution of the block.

Documentation Any documentation or comments for this
statement.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 301 SeeBeyond Proprietary and Confidential

else

Description

A placeholder for an else block is added automatically when you add an if rule; for
more information, see if, then, else on page 306.

Properties

Property Description

Description Provides an opportunity for you to give a
descriptive name to the else block of
statements.

Documentation Any documentation or comments for this
statement or block.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 302 SeeBeyond Proprietary and Confidential

finally

Description

A placeholder for a finally rule component is added automatically when you add a try
rule; for more information, see try, catch, finally on page 321.

Properties

Property Description

Description Provides an opportunity for you to give a
descriptive name to the finally statement.

Documentation Any documentation or comments for this
statement or block.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 303 SeeBeyond Proprietary and Confidential

for

Description

Clicking the for tool adds a for loop that causes a block of statements to be iteratively
executed zero or more times until a specified condition becomes false.

If you select a repeating node before clicking the for tool, the Editor asks you whether
you want the for loop generated for the Source node or Destination node and then
automatically creates a counter variable named <FieldName>Counter, and generates the
code for initialization, condition, and update; see Figure 139 on page 304.

Syntax

for (initialization; condition; update) {
block

}

Example 1: Inbound node is repeating, outbound node is nonrepeating

for (int QtyCounter=0; QtyCounter<10; QtyCounter++)
{

getShipTo().setQty(getShipFm().getQty(QtyCounter))
}

Example 2: Inbound node and outbound node are both repeating

for (int QtyCounter=0; QtyCounter<10; QtyCounter++)
{

getShipTo().setQty(QtyCounter, getShipFm().getQty(QtyCounter))
}

Also see Figure 139 on page 304.

Properties

Item Description

initialization An assignment statement that specifies the
counter’s initial value.

condition Boolean test, usually against the counter’s
current value; while true, the loop continues;
when false, the loop ends.

Important: In repeating nodes, always use a
“less than” (<) test. Never use a
“less-than-or-equals” (<=) test.

update An assignment that causes the counter’s value to
change.

block A statement or block of statements executed
every time the condition is evaluated and found
to be true.

Property Description

Description Provides an opportunity for you to give a
descriptive name to the for statement.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 304 SeeBeyond Proprietary and Confidential

Figure 139 Code Generated When “for” Is Used on a Repeating Node

If a drag-and-drop within a for loop involves a repeating node, e*Gate allows you to
use the counter in the mapping by means of the Select Repetition Instance dialog box;
see Figure 148 on page 326. The results are shown in Figure 140 on page 305.

Counter Initialization Specifies an expression setting the value
of the counter at the start of the loop.

Condition Specifies an expression used to test
whether the loop should continue.

Counter Update Specifies an expression to change the
value of the counter.

Documentation Any documentation or comments for this
loop.

Property Description (Continued)

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 305 SeeBeyond Proprietary and Confidential

Figure 140 Result of Mapping a Repeating Node in a “for” Loop

This type of automatic loop control is particularly helpful when you have nested for
loops and therefore must track nested sets of counters.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 306 SeeBeyond Proprietary and Confidential

if, then, else

Description

Clicking the if tool adds an if, then, else block. This causes conditional execution of a
statement or block of statements (the then block) only when a specified condition is
evaluated to be true; you can optionally specify another statement or block (the else
block) to be executed only when the specified condition is false. When you add an if
rule fragment, the Editor automatically creates empty then and else blocks beneath it.

Syntax

if (condition) then {
block1;

}else {
block2;

}

Example

if (i<10) then {
block1;

} else {
block2;

Properties

Figure 141 The if, then, else Rule and Its Properties

Item Description

condition A boolean test; when true, block1 (the
then block of statements) is executed;
when false, block2 (the else block of
statements) is executed.

Property Description

Description Provides an opportunity for you to give a
descriptive name to this if statement.

Condition The Boolean expression that, when true,
triggers the execution of the then block.

Documentation Any documentation or comments for this
block.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 307 SeeBeyond Proprietary and Confidential

list lookup

Description

Clicking the list lookup tool adds code for a lookup rule that allows you to replace a
string in a source node with a different but corresponding string in the destination
node; for example, you could substitute a department code with a full department
name, or you could use it to hold a few lines of commonly accessed information.

The list lookup button becomes available when nodes are selected in both the Source
Events and Destination Events panes, but only if both nodes are of type String. If you
click list lookup when one or both nodes are repeating, you will need to specify how to
handle the repetitions; see “Common Dialog Boxes for Business Rules” on page 326.

You can only edit the lookup rule using the List Lookup dialog box. See Figure 137.

Figure 142 The List Lookup Dialog Box

The lookup rule searches its list for the string contained in the input Event Type
instance. If it finds a match, then it inserts the corresponding string in the output node.
In the sample list shown above, if the input node contains the string “cell”, then the
string “818-555-0889” is placed in the output node.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 308 SeeBeyond Proprietary and Confidential

The default value—in this case, “(no phone)”—is written when the lookup rule finds
no match for the input string. If no default value is specified, then the output node will
receive an empty string if it is delimited; if it is fixed-length, it will receive no data.

Use the lookup rule when you only need to match an input Event string to a few
mappings (no more than six is recommended); otherwise, use the dataMap rule. See
“datamap” on page 296.

Syntax

getet_Dest().setdestNodeName(CollabUtils.lookup(
int srceByteOffset, int srceByteLength,
int destByteOffset, int destByteLength,
java.lang.String concatStringPairs,
java.lang.String defaultOutString,
getet_Srce().getsrceNodeName(),
java.lang.String formatPattern, java.lang.String trimChars)

);

Table 40 Parameters for Business Rule lookup

Item Type Description

et_Dest The name of the destination Event Type instance.

destNodeName The name of the node to copy the data into.

srceByteOffset int The number of leading bytes to skip in the
source: must be a nonnegative integer.

srceByteLength int The total number of bytes to output; must be
a nonnegative integer, or else -1 to signify “keep
copying through to the end.”

destByteOffset int The number of leading bytes to skip in the
destination: must be a nonnegative integer.

destByteLength int The total number of bytes to output; must be
a nonnegative integer, or -1 to signify “keep
copying through to the end.”

concatStringPairs java.lang.String A single string containing the values in the
lookup table, using the following format:
“inString1,outString1|inString2,outString2|
inString3,outString3|[...]|inStringN,outStringN|”

defaultOutString java.lang.String The string to be output if there is no match. If
not specified, then the empty string (““) is
written to a delimited output node, and no
data is written to a fixed-length node.

et_Srce The name of the source Event Type instance.

srceNodeName The name of the node to copy the data from.

formatPattern java.lang.String A code for formatting string output; see “The
Output Format Dialog Box” on page 327.

trimChars java.lang.String Zero or more characters to be removed from the
input string before searching for a match.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 309 SeeBeyond Proprietary and Confidential

Property Description

Description Provides an opportunity for you to give a
descriptive name to this lookup rule.

Generated Code Allows you to see the Java code that was
automatically created for this rule. To
modify the code, click the . . . button

Documentation Allows you to enter full documentation or
comments for this rule.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 310 SeeBeyond Proprietary and Confidential

method

Description

Clicking the method tool allows you to add a user-defined method to the four methods
supplied by the Editor at the outset (see “Methods Presupplied When You Start the
Editor” on page 312).

Syntax

access return methodName(parm1 parm2[]) throws Exceptions

Example

public byte[] translate(byte[] inputEvent)
throws CollabConnException, CollabDataException

Properties

Property Description

access Specifies the visibility of the method,
such as public, protected, or private.

return Specifies the return type for the method,
such as void, boolean (or other primitive
datatype), String (or other system-defined
object type), or a user-defined object
type. “[]” indicates that the value
returned is an array.

methodName Specifies the name of the method.

parm1 parm2 Parameters the method expects to
receive. “[]“ indicates that the parameter
is an array.

Exceptions Exceptions thrown by the method.

Property Description

Description Provides an opportunity for you to give a
descriptive local name to this method.

Name Specifies the name of the method:
public byte[] name(byte[]
inputEvent) throws
CollabConnException,
CollabDataException

Return Type Specifies the return type of the method:
public byte[] name(byte[]
inputEvent) throws
CollabConnException,
CollabDataException

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 311 SeeBeyond Proprietary and Confidential

Figure 143 A method Rule and Its Properties

Array When checked, indicates the return type
is an array:
public byte[] name(byte[]
inputEvent) throws
CollabConnException,
CollabDataException

Throws Specifies the list of exceptions thrown:
public byte[] name(byte[]
inputEvent) throws
CollabConnException,
CollabDataException

Access Modifiers Specifies the visibility of the method:
public byte[] name(byte[]
inputEvent) throws
CollabConnException,
CollabDataException

Parameter Name Parameters for the method:
public byte[] name(byte[]
inputEvent) throws
CollabConnException,
CollabDataException

Parameter Type Type of parameter used by the method:
public byte[] name(byte[]
inputEvent) throws
CollabConnException,
CollabDataException

Documentation Any documentation or comments for this
method.

Property Description (Continued)

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 312 SeeBeyond Proprietary and Confidential

Methods Presupplied When You Start the Editor

When you start the Editor, the following four methods are already supplied:

! a method of the same name as the Collaboration Rule itself

! executeBusinessRules()—A placeholder for all user-written code that will be
executed after initialization. If your Collaboration uses Event Linking and
Sequencing (ELS), this method is invoked for each group of Events passed to it by
ELS.

! userInitialize()—A placeholder for code to be executed when the component
starts.

! userTerminate()—A placeholder for code to be executed when the component
shuts down.

Although these four methods have the same syntax and properties as a user-defined
method, the following restrictions apply:

! Do not change the Name property of any of these four methods.

! For the method of the same name as the Collaboration Rule:

" Do not delete the rule that invokes the super() method.

! For the executeBusinessRules() method:

" Keep the Return Type property set to boolean.

" Do not alter the retBoolean variable or the return.

" An internal try...catch already exists in executeBusinessRules(), so that
exceptions do not generate compilation errors; however, in userInitialize() and
userTerminate(), you must add your own try...catch blocks.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 313 SeeBeyond Proprietary and Confidential

return

Description

Clicking the return tool adds a return statement to the code; when this is executed,
control is passed back to the invoker of the method or constructor.

Syntax

return Expression

Note: For methods whose return was declared as void, the return statement takes no
Expression.

Properties

Item Description

Expression The value to be returned to the invoker.

Property Description

Description Provides an opportunity for you to give a
descriptive name to this return statement.

Result The value returned.

Documentation Any documentation or comments for this
statement or block.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 314 SeeBeyond Proprietary and Confidential

rule

Description

Clicking the rule tool adds an unspecified expression statement to your code. This
allows you to use the methods associated with the ETD of the Event instance by
dragging the method from the Source Events pane into the Rule Properties pane.

Syntax

Open. The text you enter in the Rules area of the Rule Properties pane is simply Java
code that you add on your own, without any validation from the GUI. For example, if
you want to add code comments or Javadoc comments, you must use the rule tool.

Properties

Figure 144 The rule Rule and Its Properties

Property Description

Description Provides an opportunity for you to give a
descriptive local name to this rule.

Rule Any combination of the following:
! The code generated automatically by

the Editor when you use drag-and-drop
(or Find and Map) to map one field or
node to another.

! The method or methods you drag from
the Source Events pane.

! Code or comments that you type or
paste.

Documentation Any documentation or comments for this
code that you want saved with the GUI
instead of being written into the code.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 315 SeeBeyond Proprietary and Confidential

switch, case, default

Description

Clicking the switch tool adds a switch, case, default block. This sets up a conditional
transfer of control to exactly one statement depending on the value of an expression.
When you add a switch statement, the Editor automatically creates empty case and
default blocks beneath it.

Syntax

switch (Expression)
case ConstantExpression1 : Statement1;
break;
case ConstantExpression2 : Statement2;
break;
default : StatementLast

Example

switch (k) {
case 1: System.out.println("this prints when k=1");
break;
case 2: System.out.println("this prints when k=2");
break; // each break statement is added by the Editor
case 3: System.out.println("this prints when k=3");
break;
default: System.out.println("this prints otherwise");}

Properties

Item Description

Expression A variable or expression of type char,
byte, short, or int.

ConstantExpression<n> A variable or expression of the same type
as Expression.

Statement<n> The statement to which control will pass
if the ConstantExpression of this case
statement matches the Expression value.

StatementLast The statement to which control will pass
if no ConstantExpression of any case
statement matches the Expression value.

Property Description

Description Provides an opportunity for you to give a
descriptive name to the switch statement.

Expression to be evaluated The variable or expression that might
match one of the case statements.

Documentation Any documentation or comments for this
statement or block.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 316 SeeBeyond Proprietary and Confidential

then

Description

A then block and an else block are both added automatically when you add an if rule;
for more information, see if, then, else on page 306.

Properties

Property Description

Description Provides an opportunity for you to give a
descriptive name to the then block of
statements.

Documentation Any documentation or comments for this
statement or block.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 317 SeeBeyond Proprietary and Confidential

throw

Description

Clicking the throw tool adds a throw statement to the code. When a throw statement is
executed, an exception is generated and transfer passes to a try statement (if possible).
The type of exception thrown depends on the evaluation of its expression.

Syntax

throw Expression;

Properties

Item Description

Expression A variable or value; must be of type
Throwable or a subclass of Throwable.

Property Description

Description Provides an opportunity for you to give a
descriptive name to this throw statement.

Exception The expression thrown by the statement.

Documentation Any documentation or comments for this
statement.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 318 SeeBeyond Proprietary and Confidential

timestamp

Description

Clicking the timestamp tool adds code for a timeStamp rule that places the current
date and time (of the Participating Host) into a location in a node of the destination
Event Type instance. The timestamp button is available only when a node of type
String is selected in the Destination Event panes. If you click timestamp when the node
is a repeating node, you will need to specify how to handle the repetitions; see
“Common Dialog Boxes for Business Rules” on page 326.

You can only edit the timeStamp rule by using the Insert Timestamp dialog box. See
Figure 145.

Figure 145 The Insert Timestamp Dialog Box

Enter information in this dialog box as follows.

1 In the Byte Offset box, enter the beginning byte location of the data you are
copying to the destination node. Bytes are numbered starting at zero.

2 To specify a byte length, clear the (to end) check box, and then enter a byte length in
the Length box. The minimum byte length is 1.

3 Click one of the presupplied date formats and look at the Example line see how it
looks; or, if none of the formats is right, click Custom and create your own format.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 319 SeeBeyond Proprietary and Confidential

Syntax

getet_Dest().setdestNodeName(CollabUtils.timeStamp(
int destByteOffset, int destByteLength,
java.lang.String timestampPattern)

);

For complete details on syntax, see “timeStamp()” on page 560.

Table 41 Parameters for Business Rule timeStamp

Item Type Description

et_Dest The name of the destination Event Type instance.

destNodeName The name of the node to receive the timestamp
data.

destByteOffset int The number of leading bytes to skip in the
destination: must be a nonnegative integer.

destByteLength int The total number of bytes to output;
a nonnegative integer, or -1 to signify “keep
copying through to the end.”

timestampPattern java.lang.String A code for formatting date/time output; see
Table 42.

Table 42 Date and Time Format Codes for the timeStamp Rule

Time
Division

Code Description Value, Range, or Example

Years %Y year, including century; four digits Examples:

%y year in current century; two digits Range: 00 through 99

Months %m month number; two digits Range: 01 through 12

%b month, using site-defined
abbreviations

Example: Jan, Feb, Mar, Apr, May, Jun,
Jul, Aug, Sep, Oct, Nov, Dec

%B month, using site-defined spellings Example: Januar Februar, März, April,
Mai, Juni, Juli, usw

Weeks %U week of year, considering Sunday
the first day of the week; two digits

Range: 01 through 52

%W week of year, considering Sunday
the first day of the week; two digits

Range: 01 through 52

Days %w day of week. Sunday is day 0. Range: 0 through 6

%a day of week, using site-defined
abbreviations

Example:
dom, lun, mar, mie, jue, vie, sab

%A day of week, using site-defined
spellings

Example:
Sunday, Monday, Tuesday, etc.

%d day of month; two digits Range: 01 through 31

%e day of month; single digit is left-
padded with a space

Range: 1 through 31

%j day of year (Julian day); three digits Range: 001 through 366

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 320 SeeBeyond Proprietary and Confidential

Hours %H hour in 24-hour clock; two digits Range: 00 through 23

%I hour in 12-hour clock; two digits Range: 01 through 12

Minutes %M minutes; two digits Range: 00 through 59

Seconds %S seconds; two digits Range: 00 through 59

meridian %p morning / afternoon; two characters Value: Either AM or PM

time zone %Z abbreviation for current time zone Examples: EST, PDT

composites %D date, as %m/%d/%y Examples: 12/31/99; 03/01/02

%R time, as %H:%M Example: 14:15; 09:05

%T time, as %H:%M:%S Example: 14:15:03; 09:04:55

%r time, as %I:%M:%S%p Example: 02:15:03 PM; 09:04:55 AM

%x site-defined standard date format Examples: 03/01/02; 0131Thu1659

Property Description

Description Provides an opportunity for you to give a
descriptive name to this timeStamp rule.

Generated Code Allows you to see the Java code that was
automatically created for this rule. To
modify the code, click the . . . button

Documentation Allows you to enter full documentation or
comments for this rule.

Table 42 Date and Time Format Codes for the timeStamp Rule (Continued)

Time
Division

Code Description Value, Range, or Example

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 321 SeeBeyond Proprietary and Confidential

try, catch, finally

Description

Clicking the try tool adds a try, finally block. This allows you to protect code by
anticipating and handling possible exceptions it might throw. Between the try rule
fragment and the finally statement, you can add one or more catch rule fragments to
deal gracefully with the exceptions you anticipate.

Syntax

try {
firstblock;

} catch (ExceptionClass1 parm1) {
block1;

} catch (ExceptionClass2 parm2) {
block2;

} finally {
lastblock;

}

Example

try {
//code that might throw exceptions;

} catch (FileNotFoundException e1) {
//code for handling missing-file exceptions;

} catch (Interruption e2) {
//code for handling Interruption exceptions;

} finally {
next();

}

Properties

Item Description

firstblock The statement or block that you want to
protect against throwing exceptions.

ExceptionClass<n> An Exception object you anticipate might
be thrown by the firstblock code.

parm<n> An exception parameter; must be of type
Throwable or a subclass of Throwable.

block<n> Statements or blocks that are executed
only if a particular exception is thrown

lastblock A statement or block of statements that is
guaranteed to execute, whether or not an
exception is thrown.

Property Description

Description Provides an opportunity for you to give a
descriptive name to this try statement.

Documentation Any documentation or comments for this
block.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 322 SeeBeyond Proprietary and Confidential

uniqueid

Description

Clicking the uniqueid tool adds code for a uniqueId rule that places a unique set of
digits into a location in a node of the destination Event Type instance. The uniqueid
button is available only when a node of type String is selected in the Destination Event
panes. If you click uniqueid when the node is a repeating node, you will need to
specify how to handle the repetitions; see “Common Dialog Boxes for Business Rules”
on page 326.

You can only edit the uniqueid rule by using the Insert Unique ID dialog box.
See Figure 146.

Figure 146 The Insert Unique ID Dialog Box

Enter information in this dialog box as follows.

1 In the Byte Offset box, enter the beginning byte location of the data you are
copying to the destination node. Bytes are numbered starting at zero.

2 To specify a byte length, clear the (to end) check box, and then enter a byte length in
the Length box. The minimum byte length is 1.

Syntax

getet_Dest().setdestNodeName(CollabUtils.uniqueId(
int destByteOffset, int destByteLength)

);

Table 43 Parameters for Business Rule uniqueId

Item Type Description

et_Dest The name of the destination Event Type instance.

destNodeName The name of the node to receive the unique ID
data.

destByteOffset int The number of leading bytes to skip in the
destination: must be a nonnegative integer.

destByteLength int The total number of bytes to output;
a nonnegative integer, or -1 to signify “keep
copying through to the end.”

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 323 SeeBeyond Proprietary and Confidential

Property Description

Description Provides an opportunity for you to give a
descriptive name to this uniqueId rule.

Generated Code Allows you to see the Java code that was
automatically created for this rule. To
modify the code, click the . . . button

Documentation Allows you to enter full documentation or
comments for this rule.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 324 SeeBeyond Proprietary and Confidential

variable

Description

Adds a user-defined variable.

Syntax

access-modifier type variablename = initvalue

Example

public String[] wkDayEng = { "Mon", "Tue", "Wed", "Thu", "Fri" }

Properties

Item Description

access-modifier The scope of the variable: public, private,
protected, or none.

type The datatype of the variable.

type[] The datatype of an array variable.

variablename A name you enter for the variable.

initvalue The initial value for the variable.

Property Description

Description Provides an opportunity for you to give a
descriptive label for this variable.
Default: variable

Name Allows you to rename the variable.
Default: variable

Type Allows you to change the datatype of the
variable.
Default: String

Array If checked, declares the variable as an
array.
Default: (not checked)

Initial Value Allows you to set the value of the variable
before its first use.
Default: (not set)

Access modifiers Allows you to declare the variable as
public, private, protected, or (none).
Default: (not set)

Documentation Any documentation or comments for this
variable.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 325 SeeBeyond Proprietary and Confidential

while

Description

A while statement checks the Boolean value of a specified condition and, whenever the
condition is found to be true, executes a statement or block of statements. The only
difference between while loop and do, while loop (see do, while on page 300) is that
statements under a while loop might never be executed, but statements under a do
loop are guaranteed to be executed at least once.

Syntax

while (condition) {
block;

}

Properties

Figure 147 The while Rule and Its Properties

Item Description

condition A Boolean expression controlling the
while loop. The condition expression is
evaluated before block is executed; thus
nothing is executed if condition is false.

block A statement or block of statements
executed each time condition is
evaluated and found to be true.

Property Description

Description Provides an opportunity for you to give a
descriptive name to this while statement.

Condition The Boolean expression that, when true,
triggers the execution of the block.

Documentation Any documentation or comments for this
statement.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 326 SeeBeyond Proprietary and Confidential

7.7.1 Common Dialog Boxes for Business Rules
Several of the business rules require or permit special processing in certain cases.
For example:

! When a repeating node is involved in a drag-and-drop or Find and Map operation,
or in any child rule in a do, for, or while loop, or in a copy, datamap, list lookup,
timestamp, or uniqueid rule, the system requires you to supply the necessary
information before continuing with the operation.

See “Dealing with Repeating Nodes” on page 326.

! e*Gate offers a wide variety of text formatting options when you are outputting a
free-form data to a node using the copy, datamap, or list lookup rules. You can
specify whether the data should be output as string text, as numeric digits, or in
floating-point form; signed or unsigned; right-aligned or left-aligned; and so forth.

See “Formatting Output” on page 327.

Dealing with Repeating Nodes

The Select Repetition Instance dialog box prompts you to specify how the system
should deal with a repeating node.

Typically, when you are copying data from one repeating node to another, the operation
is performed under the control of a do, for, or while loop, and you will have already
defined a variable you are using as a counter. In this case, you can simply drag the
variable into the appropriate text box. Figure 148 shows a simple example; more
complicated cases can occur when you have loops nested within loops.

Figure 148 The Select Repetition Instance Dialog Box With a Counter

When you want to copy from or to a particular instance of a repeating node, simply
type the appropriate index value or values in the text box. See Figure 149.

Figure 149 The Select Repetition Instance Dialog Box Without a Counter

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 327 SeeBeyond Proprietary and Confidential

Formatting Output

You can use the Output Format dialog box to control many aspects of the output from
such rules as copy, datamap, or list lookup. The option buttons and check boxes allow
you to specify and customize output options, such as: string, integer, or floating-point
representation; alignment; sign; padding; width (total number of output characters);
and precision. The codes corresponding to the output options are echoed in the Current
Selected Format box. For a complete explanation of these codes and their effects,
see “Formatting of Output Text” on page 662.

Figure 150 The Output Format Dialog Box

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 328 SeeBeyond Proprietary and Confidential

7.7.2 Methods for Elements and Fields of ETDs
For an element or field named MyNode, the following methods are supplied:

! “get_MyNode_()” on page 330—this method is supplied for all elements and
fields.

! “set_MyNode_()” on page 332—this method is supplied for all elements and fields.

! “has_MyNode_()” on page 331—this method is supplied for any element or field
whose minOccurs property has the value 0.

! “count_MyNode_()” on page 329—this method is supplied for any element or field
whose maxOccurs property is unbounded or has a value greater than its
minOccurs value.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 329 SeeBeyond Proprietary and Confidential

count_MyNode_()

Syntax

int countMyNode()

Description

Counts the number of repetitions of the MyNode repeating node.

Parameters

None.

Return Type

int

Comments

This method is defined only for elements or fields whose maxOccurs property is
unbounded, or has a value greater than its minOccurs value.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 330 SeeBeyond Proprietary and Confidential

get_MyNode_()

Syntax

MyNode.javaType getMyNode()
MyNode getMyNode(int i)
MyNode[] getMyNode()

Description

Retrieves current data in the MyNode node.

Parameters

For nonrepeating nodes: None.

For repeating nodes: Either none, or a counter variable.

Return Type

For nonrepeating nodes: Same as the javaType value of MyNode—often
java.lang.String.

For repeating nodes: A single MyNode object, or an array of MyNode objects.

Comments

This method is defined for all elements and fields. For repeating nodes, the method can
be overloaded with several different signatures.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 331 SeeBeyond Proprietary and Confidential

has_MyNode_()

Syntax

boolean hasMyNode()

Description

Inquires whether MyNode exists.

Parameters

None.

Return Type

boolean

Comments

This method is defined only for elements and fields whose minOccurs property has the
value 0.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 332 SeeBeyond Proprietary and Confidential

set_MyNode_()

Syntax

void setMyNode(MyNode.javaType data)
void setMyNode(MyNode[] data)
void setMyNode(int i, MyNode.javaType data)

Description

Writes data to the MyNode node.

Parameters

For nonrepeating nodes: A single value, of the same type as the javaType property of
MyNode—often java.lang.String.

For repeating nodes, two signatures are supplied:

! An array of values of the same type as the javaType property of MyNode.

! A pair of arguments, consisting of a counter variable and a single value of the same
type as the javaType property of MyNode.

Return Type

void

Comments

This method is defined for all elements and fields. For repeating nodes, the method can
be overloaded with several different signatures, as noted above.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 333 SeeBeyond Proprietary and Confidential

7.7.3 Methods for Standard Java-enabled ETDs
Standard ETD methods supplied with the Java Collaboration Rules Editor

The methods supplied with all standard Java-enabled ETDs are as follows:

! available() on page 334

! marshal() on page 335

! next() on page 336

! publications() on page 337

! rawInput() on page 338

! readProperty() on page 339

! receive() on page 341

! reset() on page 342

! send() on page 343

! subscriptions() on page 344

! topic() on page 345

! unmarshal() on page 346

! writeProperty() on page 347

For the methods executeBusinessRules(), userInitialize(), and userTerminate(), see
“Methods Presupplied When You Start the Editor” on page 312.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 334 SeeBeyond Proprietary and Confidential

available()

Syntax

boolean available()

Description

Checks to see whether this Event Type instance contains any data. Use this method
when there are multiple triggering subscriptions and the Collaboration needs to know
which Event Type triggered it.

Parameters

None.

Return Type

boolean

Other Properties

Example

Property Description

comment Code comments associated with this
method.

signature available()Z

Drag the available() method
into the Conditions area of
the If Properties pane...

... to generate the
get...()available()
method in the if
statement.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 335 SeeBeyond Proprietary and Confidential

marshal()

Syntax

byte[] marshal()

Description

Organizes the data of this Event Type instance into a serialized byte stream (a BLOB).
Since this flattens the instance—that is, converts it from a hierarchical structure to a
linear one—marshal() allows a node with subnodes to be copied to a single destination
node.

Parameters

None.

Return Type

byte[]—in other words, an array of bytes.

Throws

com.stc.jcsre.MarshalException—thrown when unable to marshal the ETD for this
Event Type instance.

Other Properties

Property Description

comment Code comments associated with this
method.

signature marshal()B

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 336 SeeBeyond Proprietary and Confidential

next()

Syntax

boolean next()

Description

Checks to see whether there is more data waiting to be processed. If so, the data is
unmarshalled (parsed) into this Event Type instance. For more information on the
unmarshal() method, see “unmarshal()” on page 346.

Use next() in conjunction with Event Linking and Sequencing (ELS). After ELS has
handed off a enumeration of Events to the executeBusinessRules() placeholder, you
can invoke next() to advance over the enumeration.

Parameters

None.

Return Type

boolean

Throws

com.stc.common.collabService.CollabDataException

Other Properties

Property Description

comment Code comments associated with this
method.

signature next()Z

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 337 SeeBeyond Proprietary and Confidential

publications()

Syntax

java.lang.Vector publications()

Description

Retrieves the names of all Event Types published by this Event Type instance.

Parameters

None.

Return Type

java.util.Vector—in other words, a Vector of Event Type object names.

Throws

CollabDataException

Other Properties

Property Description

comment Code comments associated with this
method.

signature publications()Ljava/util/Vector

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 338 SeeBeyond Proprietary and Confidential

rawInput()

Syntax

byte[] rawInput()

Description

This represents the original data contents of this Event Type instance before it was
unmarshalled (parsed).

Parameters

None.

Return Type

byte[]—in other words, an array of bytes.

Throws

com.stc.common.collabService.CollabDataException

Other Properties

Property Description

comment Code comments associated with this
method.

signature rawInput()B

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 339 SeeBeyond Proprietary and Confidential

readProperty()

Syntax

java.lang.String readProperty(propName)

Description

Retrieves the value for a particular property that was assigned to this Event Type
instance. Used in conjunction with writeProperty() on page 347. Together, these two
methods allow you to store data about an Event instance, outside of the Event itself. For
example, writeProperty() and readProperty() can be used to store the name of the file
containing the Event instance, the date and time it was published, the name of the
publishing application, or even a checksum or signature. They can also be used to
calculate and store key fields used by Event Linking and Sequencing (ELS).

For information on this.jCollabController methods to list and copy ETD properties,
see “getPropertyNames()” on page 577 and “copyProperties()” on page 575,
respectively.

Note: Properties that are set by writeProperty() are valid for the rest of the instances of
the current Collaboration. Such properties retain their values between
Collaborations only if published across a JMS e*Way Connection.

Example 1: To retrieve the UID of the publisher of an Event Type named YourEvent

String pubUID = getYourEvent().readProperty(“PUBLISHER_UUID”)

Example 2: To retrieve the logical name of the publisher of an Event Type named MyEvent

String pubName = getMyEvent().readProperty(“PUBLISHER_NAME”)

Parameters

Return Type

java.lang.String

Other Properties

Name Type Description

propName java.lang.String Name of the property to read, or
null if no such property exists.

 A property with a specified name exists only in two cases:
! A property of that name was previously written to the message header by a prior call

to writeProperty(); or
! A property of that name is predefined by the Collaboration Rule itself. Two such

predefined properties—namely, “PUBLISHER_UUID” and “PUBLISHER_NAME”—are
shown in the examples above.

Property Description

comment Code comments associated with this method.

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 340 SeeBeyond Proprietary and Confidential

signature readProperty(Ljava/lang/String;)Ljava/lang/String;

Property Description

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 341 SeeBeyond Proprietary and Confidential

receive()

Syntax

boolean receive()

boolean receive(topicName)

Description

Applies to inbound Event Type instances only. Pulls any data waiting in the IQ for the
current Event Type instance and unmarshals (parses) it into this Event Type instance.
For more information on the unmarshal() method, see “unmarshal()” on page 346.

If a topicName is specified, receive pulls only data for a particular Event Type.

Parameters for receive(topicName)

Return Type

boolean—for receive(), returns true only if a pertinent JMsgObject is available;
for receive(topicName), returns true only if a pertinent JMsgObject is available for the
specified Event Type.

Throws

com.stc.common.collabService.CollabDataException—thrown when JMsgObject data
cannot be unmarshalled.

Other Properties

Name Type Description

topicName java.lang.String The name of the topic (Event Type)
residing in the IQ.

Property Description

comment Code comments associated with this
method.

signature receive()Z
receive(Ljava/lang/String;)Z

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 342 SeeBeyond Proprietary and Confidential

reset()

Syntax

boolean reset()

Description

Clears the contents of this Event Type instance. This method sets the values of all fields
to null.

Parameters

None.

Return Type

boolean

Other Properties

Property Description

comment Code comments associated with this
method.

signature reset()Z

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 343 SeeBeyond Proprietary and Confidential

send()

Syntax

void send

void send(topicName)

Description

Applies to outbound Event Type instances only. Sends the entire data content of this
Event Type instance as output in its marshalled (serialized BLOB) form.

If topicName is specified, send only sends data for the specified Event Type; otherwise, it
sends to all topics associated with the instance.

Parameters for send(topicName)

Return Type

void

Other Properties

Name Type Description

topicName java.lang.String The name of the topic (Event Type)
residing in the IQ.

Property Description

comment Code comments associated with this
method.

signature send()V
send(Ljava/lang/String;)V

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 344 SeeBeyond Proprietary and Confidential

subscriptions()

Syntax

subscriptions()

Description

Retrieves the names of all Event Types this Event Type instance subscribes to.

Parameters

None.

Return Type

java.util.Vector—in other words, a Vector of Event Type object names.

Throws

CollabDataException

Other Properties

Property Description

comment Code comments associated with this
method.

signature subscriptions()Ljava/lang/Vector;

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 345 SeeBeyond Proprietary and Confidential

topic()

Syntax

java.lang.String topic()

Description

Retrieves the name of the Event Type for this Event Type instance.

Note: If topic() is called when the Event Type instance has no Events available, it returns
null. Therefore, it is good practice—especially for Event Type instances that are
defined as In/Out—to call available() first and then call topic() only after
learning that there is data waiting to be processed.

Parameters

None.

Return Type

java.lang.String

Throws

com.stc.common.collabService.CollabDataException

Other Properties

Property Description

comment Code comments associated with this
method.

signature topic()Ljava/lang/String;

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 346 SeeBeyond Proprietary and Confidential

unmarshal()

Syntax

void unmarshal(blob)

Description

De-serializes a particular byte stream and parses it into an appropriate hierarchical
form for this Event Type instance.

Parameters

Return Type

None.

Throws

com.stc.jcsre.UnmarshalException—thrown when unable to unmarshal the BLOB into
the ETD for this Event Type instance.

Other Properties

Name Type Description

blob paramtype = byte[]
javatype = blob

Byte arrays of the values to be
unmarshalled.

Property Description

comment Code comments associated with this
method.

signature unmarshal((B)V

Chapter 7 Section 7.7
Java Collaboration Rules Using the Business Rules

e*Gate Integrator User’s Guide 347 SeeBeyond Proprietary and Confidential

writeProperty()

Syntax

void writeProperty(java.lang.String propName,
java.lang.String propValue)

Description

Creates a user-defined property for Events in this Event Type instance. Used in
conjunction with “readProperty()” on page 339.

Together, these two methods allow you to store data about an Event Type instance,
outside of the Event itself. For example, writeProperty() and readProperty() can be
used to store the name of the file containing the Event instance, the date and time it was
published, the name of the publishing application, or even a checksum or signature.
They can also be used to calculate and store key fields used by Event Linking and
Sequencing (ELS).

For information on this.jCollabController methods to list and copy ETD properties,
see “getPropertyNames()” on page 577 and “copyProperties()” on page 575,
respectively.

Note: Properties that are set by writeProperty() are valid for the rest of the instances of
the current Collaboration. Such properties retain their values between
Collaborations only if published across a JMS e*Way Connection.

Parameters

Return Type

void

Other Properties

Name Type Description

propName java.lang.String User-defined name of a property to
store in the message header.
Applies only to Events being sent to
a JMS e*Way Connection.

propValue java.lang.String The value to store for this property.
Applies only to Events being sent to
a JMS e*Way Connection.

Property Description

comment Code comments associated with this
method.

signature readProperty(Ljava/lang/String;Ljava/lang/
String;)V

Chapter 7 Section 7.8
Java Collaboration Rules Subcollaboration Rules

e*Gate Integrator User’s Guide 348 SeeBeyond Proprietary and Confidential

7.8 Subcollaboration Rules

7.8.1 Terminology
Depending on how it is used, every Collaboration Rule is either:

! Used as a Root Collaboration Rule—in other words, a Collaboration Rule invoked
by e*Gate itself; or

! Used as a Subcollaboration Rule, invoked by a parent Collaboration Rule.

Prior to release 4.5.2, Collaboration Rules could only be used as Root Collaboration
Rules.

7.8.2 Purpose, Concepts, and Caveats
A Collaboration Rule, when used as a Root Collaboration Rule, is like a main program;
when used as a Subcollaboration Rule, it is like a subroutine. For example:

! A Subcollaboration Rule allows you to reuse a valuable piece of work in another
context without having to reinvent it or reconstruct it from scratch.

! Typically, a Subcollaboration Rule takes care of details or special-purpose parsings
and transformations, allowing the parent Collaboration Rule to be simpler and
more general.

! Sub[sub[...]]collaboration Rules can nest to indefinite depth, limited only by system
resources (memory, stack, and so forth).

! A Subcollaboration Rule is invoked programmatically, whereas a Root
Collaboration Rule, like a main program, is called by the e*Way itself.

Every Collaboration Rule runs in a mapping environment defined by its container:

! A Root Collaboration Rule's mapping environment is defined via the e*Gate GUI—
namely, the Collaboration Properties dialog box.

! A Subcollaboration Rule's mapping environment is defined programmatically, via
its parent's call to setInstanceMap().

The following caveats apply to Collaboration Rules invoked as Subcollaboration Rules:

! Transactionality — in other words, Prepare/Commit/Rollback — can only be
handled at the Root Collaboration Rule level, never by a Subcollaboration Rule.

! A Collaboration Rule that uses ELS can be invoked as a Subcollaboration Rule, but
its executeBusinessRules() code runs immediately, bypassing its ELS-specific code.

! Collaboration Rules that use an API ETD—other than database ETDs—are
ineligible for being used as Subcollaboration Rules.

! When an outbound Event Type instance is set to Manual Publish, its data is
handled by its ETD’s send() method (or not at all), and cannot be intercepted by its
container. In other words, for a manually published Event Type instance, its data
goes wherever send() sends it—typically an IQ or a JMS e*Way Connection.

Chapter 7 Section 7.8
Java Collaboration Rules Subcollaboration Rules

e*Gate Integrator User’s Guide 349 SeeBeyond Proprietary and Confidential

7.8.3 Working with Subcollaboration Rules
Before you begin: You must have one or more Collaboration Rules that are eligible for use
as Subcollaboration Rules. For example, they must not use ELS and must not use any
API ETDs other than database ETDs.

For each Subcollaboration Rule you call from your Collaboration Rule, do the
following.

To call a Subcollaboration Rule

1 Start the Java Collaboration Rules Editor and open the parent Collaboration Rule.

2 Immediately under the name of the Collaboration Rule, add a variable of type
JSubCollabMapInfo.

For example:

mapForSub1

This variable keeps track of the Subcollaboration Rule's mapping information.

3 Within the userInitialize() method, add a rule to create the mapping information
for the Subcollaboration Rule and assign it to the variable you added in step 2.

Generically:

<variable> = ...createSubCollabMapInfo("name", this)

where name is the Collaboration Rule named defined in Enterprise Manager.
For example:

mapForSub1 =
this.jCollabController.createSubCollabMapInfo("crCollabTMtoLX", this)

4 In the body of the Collaboration Rule, add a method. Within this method, do the
following.

A Add one variable of type boolean, to check on the Subcollaboration Rule's
success.

For example:

isSub1_OK

B Add a variable of type byte[] for each output you want to harvest from the
Subcollaboration Rule.

For example:

outSub1OutET02

C For each of the Subcollaboration Rule's inbound Event Type instances, add a
rule that calls setInstanceMap() to populate the instance.

Generically:

<variable>.setInstanceMap("name", getParentNode(), data[], topic)

or, if no queue operation is being done:

<variable>.setInstanceMap("name", null, data[], topic)

For example:

mapForSub1.setInstanceMap("TMIn", getgenOut(),
getFromFTP().getPayload(), null)

Chapter 7 Section 7.8
Java Collaboration Rules Subcollaboration Rules

e*Gate Integrator User’s Guide 350 SeeBeyond Proprietary and Confidential

D For each of the Subcollaboration Rule's harvestable outbound Event Type
instances, add a rule that calls setInstanceMap() again to harvest the instance.

Generically:

<variable>.setInstanceMap("name", get...(), null, null)

For example:

mapForSub1.setInstanceMap("LXOut", getgenOut(), null, null)

E Assign a value to the variable you defined in step 3A. For example:

isSub1_OK = this.jCollabController.invoke(mapForSub1)

F Add any additional logic and processing that you want to occur. The following
Subcollaboration Rule–specific methods are helpful:

getCallingCollaboration()

getInputData()

getOutputData()

getRuleName()

isManualPublish()

isPublisher()

isTrigger()

To call any of these methods, prepend the name of the variable you set in step 2.
For example:

 outData1_LX = mapForSub1.getOutputData("LXOut")

For complete details on these methods and others, see “JSubCollabMapInfo
Class (com.stc.common.collabService)” on page 603.

Note: If your Root Collaboration Rule is transactional and the Subcollaboration Rule fails,
you can simply pass the boolean false upwards to executeBusinessRules() so that
the entire transaction will roll back.

5 Within the executeBusinessRules() method, add a rule to call the method you
defined in step 4.

For example:

this.mySubCollabMethod();

Also add any additional logic and processing that might be needed before and after
the method is called.

An example of a Root Collaboration Rule calling a Subcollaboration Rule is shown in
Figure 151 on page 351.

Chapter 7 Section 7.8
Java Collaboration Rules Subcollaboration Rules

e*Gate Integrator User’s Guide 351 SeeBeyond Proprietary and Confidential

Figure 151 Root Collaboration Rule Calling a Subcollaboration Rule

e*Gate Integrator User’s Guide 352 SeeBeyond Proprietary and Confidential

Chapter 8

Monk Collaboration Rules Editor

This chapter explains how to use the Monk Collaboration Rules Editor to create, add,
and define Monk Collaboration Rules scripts in the e*Gate system.

8.1 Overview: Monk Collaboration Rules
The Monk Collaboration Rules Editor is the Monk language–based Collaboration
Editor for e*Gate. These Collaboration Rules are Monk scripts that allow you to define
how the e*Gate system validates, converts, and transforms Events (data packages)
within a Collaboration.

The Monk Collaboration Rules Editor allows you to define these scripts that instruct the
e*Gate system how to build specified output Events Types (classes of Events) from
input Event Types.

Note: For more information on Event Types and Event Type Definitions (ETDs), see
Chapter 6 and Chapter 5.

You can create Collaboration Rules, using the Collaboration Rules Editor window
graphical user interface (GUI). This chapter explains the features of each element
contained within or accessed from this feature.

8.1.1 Collaboration Rules Scripts and Types
There are several types of Monk scripts available for use as Collaboration Rules. For
details on these scripts and types, see Table 10 on page 107. Also, see “Creating
Collaboration Rules and Scripts” on page 106 for an explanation of Collaboration
Rules/scripts and how they fit into the e*Gate setup operation.

8.1.2 Before You Begin
Before you define your Monk Collaboration Rules, ensure you have completed the
following:

! Added all Event Types.

! Created and built your Monk ETDs: at least one source (inbound) ETD and at least
one destination (outbound) ETD.

Chapter 8 Section 8.2
Monk Collaboration Rules Editor Collaboration Rules Editor Window

e*Gate Integrator User’s Guide 353 SeeBeyond Proprietary and Confidential

! Added the Collaboration Rules component. To do this, choose any Monk
Collaboration Service—do not Pass Through—and set your subscription/
publication relationships for the appropriate inbound/outbound Event Types.

Important: This chapter discusses many operations related to using the Monk programming
language. Advanced knowledge of Monk is not necessary to use the Monk
Collaboration Rules Editor, but some knowledge can be helpful. For more
information, see the Monk Developer’s Reference.

8.1.3 Task List
The primary tasks for defining Monk Collaboration Rules are:

! Choose the source and destination ETDs you want to use to define the
Collaboration Rules. The source ETD represents the input Event format, while the
destination ETD represents the output Event format.

! Define the Collaboration Rules you want the e*Gate system to follow in creating an
output Event from an input Event. Add as many rules as needed to transform an
input Event, according to your specifications.

8.2 Collaboration Rules Editor Window
This section describes the features contained within or accessed from the SeeBeyond
Collaboration Rules Editor window.

To access the Monk Collaboration Rules Editor window

From Enterprise Manager, do one of the following:

! On the toolbar, click .

! On the Tools menu, click Collaboration Editor.

! In the Collaboration Rules Properties dialog box, click New.

The Monk Collaboration Rules Editor window opens with no Collaboration Rules files
displayed (see Figure 152 on page 354).

Chapter 8 Section 8.2
Monk Collaboration Rules Editor Collaboration Rules Editor Window

e*Gate Integrator User’s Guide 354 SeeBeyond Proprietary and Confidential

Figure 152 Monk Collaboration Rules Editor GUI Map

The Collaboration Rules Editor window (see Figure 152 above) has the following main
sections:

! Menu bar — Contains the Collaboration Rules Editor menus.

! Toolbar — Contains buttons that allow you easy access to often-used features.

! Source pane — Shows the ETD Tree node diagram of the current input ETD file.

! Destination pane — Shows the ETD Tree node diagram of the current output ETD
file.

! Rules pane — Displays the current Monk-scripted Collaboration Rules you are
using.

ToolbarMenu bar

Source pane Rules pane Destination pane

Chapter 8 Section 8.2
Monk Collaboration Rules Editor Collaboration Rules Editor Window

e*Gate Integrator User’s Guide 355 SeeBeyond Proprietary and Confidential

8.2.1 Toolbar Buttons
Table 44 shows the Monk Collaboration Rules Editor buttons in the toolbar, including
their functions. Operational details for each tool can be found in “Basic Collaboration
Rules Operations” on page 379.

Table 44 Toolbar Buttons

Button Function

Creates a new Collaboration Rules file. If you currently have a Collaboration Rules
displayed, clicking this button also clears the Collaboration Rules Editor window.

Opens an existing Collaboration Rules file. The Open SeeBeyond Collaboration Rules
dialog box opens. Select the desired Collaboration Rules file to open.

Saves the current Collaboration Rules file.

Verifies that all rules have been completely filled out and contain correct values.

Displays the Function Library so that you can insert a function in your Collaboration
Rules.

Deletes the selected rule from the Rules list.

Inserts a Comment rule in the Rules list.

Inserts an If rule in the Rules list.

Inserts a Case rule in the Rules list.

Inserts a Loop rule in the Rules list.

Inserts a Copy rule in the Rules list.

Inserts a Duplicate rule in the Rules list.

Inserts a Data Map rule in the Rules list.

Inserts a List Lookup rule in the Rules list.

Chapter 8 Section 8.2
Monk Collaboration Rules Editor Collaboration Rules Editor Window

e*Gate Integrator User’s Guide 356 SeeBeyond Proprietary and Confidential

Other Window Controls

The controls listed in Table 45 are found next to the Source and Destination text boxes.

ETD Panning Windows

Use the Source ETD Panning window and Destination ETD Panning window to view
different parts of the input and output ETDs, respectively.

Using these windows has the same effect as using the scroll bars, that is, they enable
you to see different portions of a larger structure; see Figure 153. Also, the windows
also give you a condensed view of the ETDs as a whole.

Figure 153 ETD Panning Window

Inserts a Pattern rule in the Rules list.

Inserts a Timestamp rule in the Rules list.

Inserts a Unique ID rule in the Rules list.

Table 45 Window Controls

Control Description

Click to select a source or destination ETD.

Opens the Source and Destination ETD Panning Windows.

Table 44 Toolbar Buttons (Continued)

Button Function

Chapter 8 Section 8.2
Monk Collaboration Rules Editor Collaboration Rules Editor Window

e*Gate Integrator User’s Guide 357 SeeBeyond Proprietary and Confidential

Note: You do not need to close the Panning Window to resume work in the Collaboration
Rules Editor window. You can leave the windows open as long as you like.

Rules Pane Controls

The controls listed in Table 46 manage the Rules List display.

8.2.2 Menu Bar
The Monk Collaboration Rules Editor provides the following menus:

! “File Menu” on page 358

! “Edit Menu” on page 359

! “Rules Menu” on page 359

! “View Menu” on page 360

! “Options Menu” on page 361

! “Help Menu” on page 361

This section explains the options available under each of these menus. See “Basic
Collaboration Rules Operations” on page 379 for an explanation of general
Collaboration Rules operations.

Some menu selections open dialog boxes. For an explanation of how to use a specific
dialog box, see the section later on in this chapter that explains the associated rule or
operation.

Table 46 Rules Pane Controls

Control Description

Displays additional details for the selected rule.

Hides additional details for the selected rule.

Use the rectangular control to resize the pane in which the Rules list is displayed
(located at the right edge of the application window). Drag the button to resize the
pane.

Chapter 8 Section 8.2
Monk Collaboration Rules Editor Collaboration Rules Editor Window

e*Gate Integrator User’s Guide 358 SeeBeyond Proprietary and Confidential

File Menu

The Collaboration Rules Editor File menu commands are explained in Table 47.

Table 47 File Menu Commands

Command Function

New Displays the New SeeBeyond Collaboration Rules dialog box, where you
specify basic parameters for the new Collaboration Rules, including the file
name and input/output ETDs.

Open Displays the Open SeeBeyond Collaboration Rules dialog box, allowing you
to choose a Collaboration Rules file to display. The Collaboration Rules Editor
window displays the selected Collaboration Rules file. You can only have one
Collaboration Rules file open at a time.

Save and Edit Using
External Editor

Saves the current Collaboration Rules file and opens it using the designated
external Editor.
Note: This command is only available when the external Editor is designated
in the Enterprise Manager.

Reload From Local
Machine

Opens a local copy of the currently displayed Collaboration Rules file rather
than the copy in the e*Gate registry. Use this option only when directed to
do so by SeeBeyond support staff.

Use As Allows you to select the type of Collaboration Rules file for the current
Collaboration Rules.

Open a Source
Event Type
Definition

Displays the Open Source ETD dialog box, where you choose the input ETD
for the current Collaboration Rules. The ETD displays in the Source pane.

Open a Destination
Structure

Displays the Open Destination ETD dialog box, where you choose the output
ETD for the current Collaboration Rules. The ETD displays in the Destination
pane.

Save Saves the current Collaboration Rules file. Click OK to complete the save
operation.

Save As Opens the Save SeeBeyond Collaboration Rules As dialog box. If you are
saving a new Collaboration Rules file, for which a file name has not been
assigned, the system opens the Save As file selection dialog box. Use the
dialog box to select a directory and assign a new file name to the current file.

Validate Checks your current Collaboration Rules file for syntax errors.

Promote to Run
Time

Promotes the current Collaboration Rules file out of your Sandbox folder and
into the run-time (production) system.

Remove Deletes the current Collaboration Rules file from the Sandbox folder.

Monk Function
Header

Allows you to enter parameters for the Monk function.
Note: This command is only available when you are working with a Monk
function.

Main Comment Provides access to a dialog box where you can enter comments that apply to
the entire Collaboration Rules. There are no syntax restrictions.

Try/Catch Statement Allows you to enter code for Monk exception handling.

Close Closes the Collaboration Rules Editor window.

Chapter 8 Section 8.2
Monk Collaboration Rules Editor Collaboration Rules Editor Window

e*Gate Integrator User’s Guide 359 SeeBeyond Proprietary and Confidential

Edit Menu

The Collaboration Rules Editor Edit menu commands are explained in Table 48.

Rules Menu

The Collaboration Rules Editor Rules menu commands are explained in Table 49.

Table 48 Edit Menu Commands

Command Function

Cut Deletes the selected rule from the Rules list, temporarily placing it to the
Windows Clipboard. You can then use the Paste option to place the rule back
in the Rules list.

Copy Temporarily copies a selected rule to the Clipboard. You can then use the
Paste option to place the rule back in the Rules list.

Paste Pastes the rule in the Rules list that you last placed on the Clipboard with the
Cut or Copy option.

Delete Rule Deletes the selected rule from the Rules list.

Find First Rule Associated with Source ETD — Select a node in the Source ETD pane then
choose this option to find the first rule associated with the selected node, in
the Rules list.
Associated with Destination ETD — Select a node in the Destination ETD pane
then choose this option to find the first rule associated with the selected
node, in the Rules list.

Find Next Rule Associated with Source ETD — Finds the next occurrence of a rule, in the
Rules list, associated with the selected Source ETD node.
Associated with Destination ETD — Finds the next occurrence of a rule, in the
Rules list, associated with the selected Destination ETD node.
NOTE: Once you reach the end of the Rules list, you are asked if you want to
continue the search at the beginning of the list.

Find Nodes
Associated with
Rule

Highlights the nodes in the Source and Destination panes, which are
referenced in the currently selected rule in the Rules list.

Find Node In Source ETD — Allows you to search through your Source ETD for a node.
You search by node name.
In Destination ETD — Allows you to search through your Destination ETD for
a node.

Table 49 Rules Menu Commands

Command Function

Add If Adds an If rule.

Add Loop Adds a Loop rule.

Add Case Adds a Case rule.

Add Comment Adds a Comment rule.

Add Copy Adds a Copy rule.

Chapter 8 Section 8.2
Monk Collaboration Rules Editor Collaboration Rules Editor Window

e*Gate Integrator User’s Guide 360 SeeBeyond Proprietary and Confidential

View Menu

The Collaboration Rules Editor View menu commands are explained in Table 50.

Add Display Adds a Display rule.

Add Duplicate Adds a Duplicate rule.

Add Data Map Adds a Data Map rule.

Add List Lookup Adds a List Lookup rule.

Add Change
Pattern

Adds a Change Pattern rule.

Add Timestamp Adds a Timestamp rule.

Add Unique ID Adds a Unique ID rule.

Add Let Adds a Let rule.

Add Set! Adds a Set! rule.

Add Function Adds a Function rule.

Add User Function Adds a User Function rule.

Add Set Regex Adds a Set Regex rule.

Table 50 View Menu Commands

Command Function

Function Library Displays a library of functions you can use in your Collaboration Rules, to
perform special operations.

Float Toolbar Opens a floating version of the toolbar that you can drag to a convenient
location in the Collaboration Rules Editor window.

Float Source ETD
Panning Window

Places the Source ETD Panning Window on a floating palette you can place
anywhere in the Collaboration Rules Editor window. Use the pane to scroll
across and down the open source ETD.

Float Destination
ETD Panning
Window

Places the Destination ETD Panning Window on a floating palette you can
place anywhere in the Collaboration Rules Editor window. Use the pane to
scroll across and down the open destination ETD.

Expand Source ETD — Fully expands your view of the source ETD Tree.
Destination ETD — Fully expands your view of the destination ETD Tree.
Both ETDs — Fully expands your view of both the source and destination
ETD Trees.

Table 49 Rules Menu Commands (Continued)

Command Function

Chapter 8 Section 8.3
Monk Collaboration Rules Editor Creating Monk Collaboration Rules Scripts

e*Gate Integrator User’s Guide 361 SeeBeyond Proprietary and Confidential

Options Menu

The Collaboration Rules Editor Options menu commands are explained in Table 51.

Help Menu

The Collaboration Rules Editor Help menu commands are explained in Table 52.

8.3 Creating Monk Collaboration Rules Scripts
This section explains the basic procedures of how to create new Collaboration Rules
scripts, under the following topics:

! Creating New Monk Collaboration Rules on page 362

! Adding and Arranging Rules on page 366

If you want to write your Collaboration Rules in the Monk programming language
mode using a text editor, see the Monk Developer’s Reference for details. This chapter
explains enough of basic Monk operations to allow you to effectively use the
Collaboration Rules Editor feature.

Table 51 Options Menu Commands

Command Function

Select Drag Drop
Rule

Selects a custom Monk function to insert when a node is dragged from the
Source ETD to the Destination ETD (only applicable to functions that you
write, not predefined Monk functions). If no function is specified, a Copy
rule is inserted.

Use Selected Nodes
in new Rule

Automatically inserts the currently selected source and destination ETD
nodes in a newly added rule to the Rules list.

Add Rule AFTER
Selected Rule

Causes new rules to be inserted in the Rules list after the currently selected
rule. This option is the default selection.

Add Rule BEFORE
Selected Rule

Causes new rules to be inserted in the Rules pane before the currently
selected rule.

Table 52 Help Menu Commands

Command Function

e*Gate Help
Topics

Activates the online Help system for the Collaboration Rules Editor GUI.

Monk Developer’s
Reference

Opens the Monk Developer’s Reference.

About e*Gate Displays basic information about the current e*Gate software version.

Chapter 8 Section 8.3
Monk Collaboration Rules Editor Creating Monk Collaboration Rules Scripts

e*Gate Integrator User’s Guide 362 SeeBeyond Proprietary and Confidential

8.3.1 Getting Started
Make sure you have completed the following Event-related tasks before creating
Collaboration Rules:

! Added all Event Types.

! Created and built source and destination Event Type Definitions (ETDs).

! Added Collaboration Rules components.

For details on these operations, see Chapter 4.

8.3.2 Creating New Monk Collaboration Rules
Creating new Monk Collaboration Rules requires that you know your source and
destination ETDs.

To create new Monk Collaboration Rules scripts

1 From the Collaboration Rules Editor, on the File menu, click New to open the New
dialog box. See Figure 154.

Figure 154 New Dialog Box

2 In the New dialog box, enter the following information:

" In the File name box, enter the name of the file you want to create. Use the
directory selection window above to select the directory in which to store the
file. The file extension, .tsc, is the default file extension for Collaboration Rules.
It is automatically appended to your file name, so you do not need to specify a
file extension.

Chapter 8 Section 8.3
Monk Collaboration Rules Editor Creating Monk Collaboration Rules Scripts

e*Gate Integrator User’s Guide 363 SeeBeyond Proprietary and Confidential

" From the Files of type list, select the type of file you want to create.

" Continue with the rest of the steps in this procedure, based on the type of file
you want to create.

3 Click , to the right of the Source Event Type Definition text box to open the
Open Event Type Definition dialog box. See Figure 155.

Figure 155 Open Event Type Definition Dialog Box

4 In the Open Event Type Definition dialog box, select the ETD file representing the
input data.

Click Templates to display and choose from a list of standard ETDs delivered with
the Collaboration Rules Editor: HL7, X12, and EDIFACT. By default, standard
structures are stored in the following directories:

$EGATE_ENV/library/etds/HL7
$EGATE_ENV/library/etds/X12
$EGATE/library/etds/EDIFACT

5 Click OK to close the Open Event Type Definition dialog box.

6 Click , to the right of the Destination Event Type Definition text box. The Open
Event Type Definition dialog box opens again.

7 Select the ETD file representing the output Event resulting from the current
Collaboration. Click Templates to display and choose from the list of standard
ETDs: HL7, X12, and EDIFACT.

8 Click OK to close the Open Event Type Definition dialog box.

9 Click OK to close the New dialog box.

You have now completed creating a new Collaboration Rules component. Before you
begin adding the rules that describe the how the Collaboration processes an incoming
Event, see “How e*Gate Processes Event Data” on page 364.

Chapter 8 Section 8.3
Monk Collaboration Rules Editor Creating Monk Collaboration Rules Scripts

e*Gate Integrator User’s Guide 364 SeeBeyond Proprietary and Confidential

For new Collaboration Rules files, database poll scripts, or Screen Scripter functions

! If you are creating a database poll script, skip this step. Otherwise, in the Source
Event Type Definition box, enter the name of the Event Type Definition file that

represents the input Event. Click for assistance in selecting a file.

! In the Destination Event Type Definition box, enter the name of the Event Type

Definition file that represents the output Event. Click for assistance in selecting
a file.

Note: To use a predefined ETD for either the source or destination ETD, click , then
click Templates for a list of available template files.

For new Monk functions

! In the Usage text box, enter text that illustrates the syntax of the new function. Click
Add Source Path or Add Destination Path to insert reminder text for
<source-path> or <destination-path> within the Usage text box.

! To enable this function to be used as a drag-and-drop rule, check Can be used as a
default Drag Drop rule.

8.3.3 How e*Gate Processes Event Data
This section explains the guidelines e*Gate follows when creating output Events from
input Events. Understanding these concepts can help you in creating Collaboration
Rules scripts that bring about these processes.

Appending Data

You can define multiple rules that write data to the same output Event field, without
any data’s being overwritten. e*Gate appends each set of data to the end of the previous
set of data within the Event field.

For example, if you set up two Copy rules for the same output field, both sets of copied
data are placed in the output field, one after the other. Data is appended in the order in
which the Collaboration Rules appear in the Collaboration Rules file. See Figure 156.

Figure 156 Appending Data with the Copy Rule

Copy Rule 1 data
Copy Rule
 2 data

Output Field

Copy Rule 1 data
Copy Rule
 2 data

Chapter 8 Section 8.3
Monk Collaboration Rules Editor Creating Monk Collaboration Rules Scripts

e*Gate Integrator User’s Guide 365 SeeBeyond Proprietary and Confidential

Duplicate Rule

Data written to the output Event field using the Duplicate rule is replaced if you write
additional data to that output Event field with another Duplicate rule. See Figure 157.

Figure 157 Appending Data with the Duplicate Rule

If you write additional data using the Copy rule, however, the data is appended as
shown in Figure 157 above.

Assigning Offset Values

A set of data is not appended to the end of a previous set of data when you specify an
offset that places data in the middle of other data. Figure 158 shows an example.

Figure 158 Offset Data

If data is written to a delimited output Event destination, and that data is offset, then
leading spaces are inserted up to the beginning of the offset data.

Duplicate Rule 1 data
Duplicate
Rule 2 data

Output Field

50-Byte Field

25-Byte Data 10-Byte Data

Bytes 1-10 Bytes 11-25

Copy Rule 1 data

Copy Rule
 2 data

Field length = 50 bytes

Bytes 25-40

Copy Rule 1 places 50 bytes
of data in a 50-byte long field.

Copy Rule 2 copies data to
bytes 25-49 of the field. Copy
Rule 1 data remains in bytes
1-24, and 41-50.

Chapter 8 Section 8.3
Monk Collaboration Rules Editor Creating Monk Collaboration Rules Scripts

e*Gate Integrator User’s Guide 366 SeeBeyond Proprietary and Confidential

Trailing Spaces

When you write data from an input Event to an output Event, any trailing spaces in the
input Event data are also written to the output Event. To strip trailing spaces from input
Event data, use the Function rule.

Fixed Data Lengths

When fixed-length data from an input Event is written to a smaller fixed-length
destination in an output Event, the input Event data is truncated.

If fixed-length data from an input Event is smaller than its fixed-length output Event
destination, the extra bytes in the output Event are filled with leading and trailing
spaces.

8.3.4 Adding and Arranging Rules
After you create a new Collaboration Rule script, you define it by adding rules using
the Collaboration Rules Editor window. The added rules appear in the Rules pane. You
can further arrange (or rearrange) those rules once they have been added.

Adding Rules and Elements

Depending on how you want to create your list of rules, choose either Add Rule After
Selected Rule or Add Rule Before Selected Rule in the Options menu.

To add a rule

Use one of the following methods:

! Select the desired rule from the Rules menu.

! To insert a rule using the toolbar, click the button representing the desired rule.

Note: The most frequently used rules are available on the toolbar.

To add to a list of rules

1 Place the mouse pointer over the desired icon (for example, a node).

2 Click and hold the middle mouse button.

3 Drag the icon to the desired position in the Rules pane.

4 Release the mouse button. The rule is inserted for you.

Note: If your mouse does not have a middle button, hold down both mouse buttons to have
the same effect as pressing the middle mouse button.

When you add a rule, it is automatically selected (highlighted) and becomes the current
rule. This feature allows you to add several rules in a row, if you have the Add Rule

Chapter 8 Section 8.3
Monk Collaboration Rules Editor Creating Monk Collaboration Rules Scripts

e*Gate Integrator User’s Guide 367 SeeBeyond Proprietary and Confidential

After Selected Rule option selected. The rules are added one after another in the Rules
pane. See Figure 159.

Figure 159 Rules Pane with Added Rules

Arranging Rules

To drag a rule to a new position in the Rules pane, position your mouse over the rule,
click and hold the middle mouse button, and drag the rule to the desired position.
Release the mouse button. The rule is moved to the new position.

Additional Information

When a rule is selected, it is highlighted a bright yellow. Very long rules, such as the Let
and Loop rules, can be collapsed to take up less space and give you a better view of
other rules. See Figure 160.

Figure 160 Collapsing and Expanding Rules

Allows you to use selected node in rule
without dragging and dropping

Closed Comment Rule

Open Comment Rule Current (selected) rule has yellow highlighting

Rule bar

Click this arrow to
expand or collapse the
rule. When the arrow
points down, the rule
is expanded.

Chapter 8 Section 8.3
Monk Collaboration Rules Editor Creating Monk Collaboration Rules Scripts

e*Gate Integrator User’s Guide 368 SeeBeyond Proprietary and Confidential

Selecting Event Elements

Defining Collaborations requires you to specify the Event elements in both the source
and destination ETDs on which Collaboration operations are performed. Select Event
elements when defining Collaboration Rules, using any of the following ways:

! Point to and click on Event elements with the left mouse button before inserting the
corresponding rule in the Collaboration Rules Editor window.

! Insert a rule in the Collaboration Rules Editor window; then, drag and drop Event
elements with the middle mouse button onto the rule.

! Fill in Event element addresses directly in the Rule bar.

The point-and-click method is more useful when you are first defining your
Collaboration Rules. The drag-and-drop method is more useful when you are
modifying Collaboration instructions, and need to quickly change the Event elements
on which a particular operation are performed. See Figure 161.

Figure 161 Specifying Event Elements

To fill Event element locations directly in a Rule bar, you must use Monk syntax;
however, you only need to do this when defining an If, Loop, Let, Set!, or Function
rule. See “Defining ETD Paths in a Loop Rule” on page 399 for details.

To use the point-and-click method

1 In the Options menu, make sure Use Selected Nodes in New Rules option is
selected.

2 Position the mouse arrow on an Event element in the source or destination ETD.

3 Press and release the left mouse button.

If you select either an Event element that repeats, or belongs to a higher-level node
that repeats, the Select Repetition Instance dialog box appears. Specify the instance
of the repeating element you want to perform the Collaboration Rules on. For
details on how to use this dialog box, see “Defining Instances of Repeating Event
Elements” on page 371.

Click on a node in your source or
destination ETD to select it to include in a
Collaboration Rules component. Or, use
the drag-and-drop method.

Chapter 8 Section 8.3
Monk Collaboration Rules Editor Creating Monk Collaboration Rules Scripts

e*Gate Integrator User’s Guide 369 SeeBeyond Proprietary and Confidential

Once you have selected Event elements this way, you can insert a rule and the
selected elements are automatically included in the rule definition.

To use the drag-and-drop method

1 Add a Collaboration Rules component.

2 Position the mouse arrow on an Event element in the source or destination ETD.

3 Press and hold down the middle mouse button as you move the mouse to the
desired position in the rule. Then release the button.

If you select either an Event element that repeats, or belongs to a higher-level node
that repeats, the Select Repetition Instance dialog box appears. Specify the instance
of the repeating element you want to perform the Collaboration Rules on. For
details on how to use this dialog box, see “Defining Instances of Repeating Event
Elements” on page 371.

The Event element is inserted into the rule.

Note: Before dragging and dropping nodes on a Rule bar, it’s a good idea to delete the
sample text that appears in the Rule bar. Just click and hold your mouse button over
the beginning of the text, drag the cursor to the end of the text, release the mouse
button, and press the Delete key.

Defining ETD Paths

When you define a rule in a Collaboration Rules component, you need to specify both
input and output Event locations.

These Event locations are called path expressions. Path expressions point to a specific
location in a ETD, such as a segment or field. Path expressions tell the rule where to
perform its operation.

You specify path expressions by dragging elements from the ETDs and dropping them
onto the Rule bar. Sometimes your ETD cannot contain all the levels you need to
include in a Collaboration Rules component. In this case, you can add information to
the path expression to access lower-level Event elements missing from your ETD.

Using Path Expressions

When you reference an Event element in a rule, you can see that the element has the
following syntax in the Rule bar:

~Event-name%pathelement1.pathelement2.pathelementN

The variables in this expression are:

Event-name
The name of the Event buffer, either input or output, preceded by a tilde (~).

pathelement
A list of Event locations separated by periods (.); each element of the list can be:

! A name assigned to the selected ETD node

Chapter 8 Section 8.3
Monk Collaboration Rules Editor Creating Monk Collaboration Rules Scripts

e*Gate Integrator User’s Guide 370 SeeBeyond Proprietary and Confidential

! An integer that represents the Event element’s location. The first Event element at a
given level (that is, the first segment, the first field, and so on) is counted as 0.

For example:

~input%MSG.ST

This path expression represents the ST segment of the MSG group in an input ETD.

Referencing an Event Element Missing from Your ETD

To reference an Event element missing from your ETD, use integers that represent the
Event element’s location. The first Event element at a given level (that is, the first
segment, the first field, and so on) is counted as 0.

Table 53 shows some examples.

Referencing Byte Location

Use the following syntax in a Rule bar to reference the byte location of an Event
element:

final_pathelement:byte_offset,length

where:

byte_offset
The beginning byte position, counted from the first byte of the Event location.

Note: The first byte is counted as 0.

length
The length of the bytes referenced, counted from one.

For example:

N1:2,10

This path expression references the N1 segment, starting from byte 3, and extending for
a length of 10 bytes.

Referencing Instances of a Group

If you are referencing an instance of a repeating Event element that is not included in
your ETD, use the following syntax:

Pathelement[Index]

where Index is an integer that represents the instance of the repeating Event element
desired. Count Event element instances from 0, the beginning of the Event. For
example, the third instance of an element has an index of 2.

Table 53 Sample Events with Path Locations

This Path Locates This Event Element

~input%MSHGRP.MSH.4 Field 4 (the fifth field) of the MSH
segment

~input%MSHGRP.MSH.4.3 Sub-field 3 (fourth sub-field) of field 4
(fifth field) in the MSH segment

Chapter 8 Section 8.3
Monk Collaboration Rules Editor Creating Monk Collaboration Rules Scripts

e*Gate Integrator User’s Guide 371 SeeBeyond Proprietary and Confidential

Here is a sample path expression that references an instance of a group:

~input%MSG.DTM[2].4

This path expression references field 4 (the fifth field) of the third instance of the DTM
segment of the MSG group.

Note: You only need to specify instances in a path expression when you are referencing an
Event element that is missing from your ETD. When selecting repeating elements
from a ETD to specify paths, the Collaboration Rules Editor presents you with a
dialog box where you can define instances of repeating elements. See “Defining
Instances of Repeating Event Elements” on page 371 for details.

Defining Instances of Repeating Event Elements

The Select Repetition Instance dialog box automatically appears when you select one
of the following types of Event elements to include in a Collaboration Rules
component:

! An element that repeats, such as a telephone number field that repeats twice, where
the first instance contains a home number, and the second contains a work number.

! A nonrepeating element that belongs to higher-level repeating elements (which you
can think of as the element’s parents), such as a Comment field that belongs to a
segment, NTE, that repeats.

! A repeating element that also has repeating parents.

Note: The terms parent, child, and sibling elements are used here in the context of node
elements. See “ETD Creation and Nodes” on page 205 for a complete
explanation of nodes in Events.

When you select a repeating Event element, or an element that has repeating parents,
the Select Repetition Instance allows you to specify the repetition, or instance, of the
repeating node you want to include in the Collaboration Rules component.

To include the element you selected for a Collaboration Rules component, you have to
tell the system which instance of the element, its repeating parents, or both, to which
you want to apply the Collaboration Rules. By asking you to specify an instance, the
system is asking, “Out of this group of elements that repeats, which one do you want
me to work on?”

Select Repetition Instance Dialog Box

This feature allows you to specify the desired repeating node in the rule. This
dialog box only displays when performing a Change Pattern, Copy, Duplicate, or
List Lookup rule on a repeating node (see Figure 162 on page 372).

Chapter 8 Section 8.3
Monk Collaboration Rules Editor Creating Monk Collaboration Rules Scripts

e*Gate Integrator User’s Guide 372 SeeBeyond Proprietary and Confidential

Figure 162 Select Repetition Instance

To use the Select Repetition Instance dialog box

! For each repeating node in the path to the selected node, type the desired instance
to which you want to apply the selected rule. The full path is displayed at the
bottom of the dialog box.

! If the selected node is a repeating node and you want to apply the rule to all
instances of that node, select All instances of the last node (this option is only
available if the selected node is a repeating node).

Selecting Repetition Instances

When you select a repeating Event element or an element that has repeating parents,
the system wants to know whether:

! You want it to perform Collaboration Rules on a particular member of a repeating
group of elements.

! You want it to perform Collaboration Rules on all members.

! You want it to perform Collaboration Rules on a range of members.

Each node in the selected
Event element’s path, all the
way from the root node, is
shown here. You must specify
an instance for any node in the
path that repeats.

Select this option when you
want to perform a Loop rule
on all instances of the selected
repeating Event element. This
option is only available when
the node you selected (the last
node in the path) repeats.

The new path for the
selected node, which will
reflect the instance
specification, is shown here.

In the Instance box, select the
instance of the repeating node
to include in the Collaboration
Rules component. Valid values
are listed to the right for each
node in the path.

Node instances are counted
from 0, the beginning of the
Event. The first instance is 0,
the second instance is 1,
and so on.

Chapter 8 Section 8.3
Monk Collaboration Rules Editor Creating Monk Collaboration Rules Scripts

e*Gate Integrator User’s Guide 373 SeeBeyond Proprietary and Confidential

If you do not provide this information, the system does not know where to start. Here
are the conditions under which you define instances:

! When you want to perform Collaboration Rules on a particular instance of a
repeating group, that is, “Do this Collaboration Rules only on this member of the
repeating group of elements.”

! When you want to perform Collaboration Rules on all instances of a repeating
group, that is, “Do this Collaboration Rules on the entire group of repeating
elements.”

Important: You can only select all instances when setting up a Loop rule.

! When you want to link a repeating group to a variable; this is only applicable to
Collaboration Rules included in a Loop rule (see “Defining ETD Paths in a Loop
Rule” on page 399 for details about loop variables). Use this method to perform
Collaboration Rules on a range of members in a repeating group.

Identifying Repeating Event Elements

A repeating Event element can be identified in a ETD when one of the symbols listed in
Table 54 appears inside it.

To select an Event element’s node in either an input or output ETD

! Press and hold down the middle mouse button on the node, and begin dragging the
mouse cursor to the desired position in the rule.

! Or, if you are defining a Copy rule, you can drag a node from the input ETD to a
node in the output ETD.

Selecting multiple levels of instances

Sometimes when you choose an element to include in a Collaboration Rule component,
the Select Repetition Instance dialog box asks you to define several levels of instances.
This happens when the element you picked repeats on multiple levels in the ETD
hierarchy.

For example, if you choose an Event element that is a repeating field, and the segment it
belongs to also repeats, the system wants you to tell it which instance of both the
segment and the field to work on.

Each blank Instance field must be filled in before you are able to include the Event
element in a Collaboration Rules component.

Table 54 Repeating Event Elements

Node with Repetition Type Symbol Contained

Range of repetitions <n-m>
(where n and m are
integers)

Occurs zero or more times (optional-
repeating)

*

Occurs one or more times +

Chapter 8 Section 8.3
Monk Collaboration Rules Editor Creating Monk Collaboration Rules Scripts

e*Gate Integrator User’s Guide 374 SeeBeyond Proprietary and Confidential

Specifying a Variable as an Instance

The only time you specify a variable as an instance is when you’re setting up
Collaboration Rules inside a Loop rule. Since a Loop rule works on multiple instances
of an Event element, it uses a variable to keep track of how many times it has
performed a Collaboration Rules on an Event element. Once the variable reaches a
specified value, the Loop rule knows it has reached its goal, and stops.

For more details about the Loop rule and Loop rule variables, see “Using the Loop
Rule” on page 396.

Note: If you are defining a Loop rule that loops on multiple levels of repeating nodes (this
is known as a nested loop), you also specify variables for the instances of a repeating
node’s repeating parents. See the Monk Developer’s Reference for a nested loop
example.

Using the Select Repetition Instance Dialog Box

Table 55 provides guidelines on using out the Select Repetition Instance dialog box.

Table 55 Select Repetition Instance Dialog Box Entries

Desired Action
Does Node Have Repeating

Parents?
Procedure

Select a particular instance
of a node’s repeating group.

Yes 1 Type an integer or variable in each
Instance field preceding the node’s
Instance field.

2 Type an integer in the selected
node’s Instance field.

3 Click OK.

No 1 Type an integer in the node’s
Instance field.

2 Click OK.

Select a node’s entire
repeating group to include
in a Loop rule

Yes 1 Type an integer or variable in each
Instance field preceding the node’s
Instance field.

2 Click the All instances button next to
the node’s Instance field.

3 Click OK.

No 1 Click the All instances button next to
the selected node’s Instance field.

2 Click OK.

Chapter 8 Section 8.3
Monk Collaboration Rules Editor Creating Monk Collaboration Rules Scripts

e*Gate Integrator User’s Guide 375 SeeBeyond Proprietary and Confidential

See the Monk Developer’s Reference for a nested loop example.

Note: Remember that valid integer values are displayed in the Instance column, where
0 represents the first instance of a repeating element, 1 the second instance, and so
on.

Filling in Rule Details

When you create Collaboration Rules, there are details that must be specified in order
for the rule to be executed according to your needs as follows:

! You can use dialog boxes available for some rules which provide forms for filling
out parameters. To access these dialog boxes, click the rule’s name button in its Rule
bar. See Figure 163.

Figure 163 Rule’s Name Button

! You can fill in rule details directly in the text boxes in a Rule bar. The only
Collaboration Rules in which you need to do this are the If, Loop, Let, Set!, and
Function rules. See “Using Collaboration Rules” on page 386 for a summary of all
the Collaboration Rules, including the If, Loop, Let, Set!, and Function rules.

Where applicable, the procedures in this chapter are targeted for those who want to use
dialog boxes to specify Collaboration Rules details.

Specifying byte locations

If you want to target a specific byte location within a selected Event element, there are
two ways to do it:

! By specifying a byte offset and/or length in a rule’s dialog box

Link a node to a variable Yes 1 Type an integer or variable in each
Instance field preceding the node’s
Instance field.

2 Type a variable in the node’s
Instance field.

3 Click OK.

No 1 Type a variable in the node’s
Instance field.

2 Click OK.

Table 55 Select Repetition Instance Dialog Box Entries (Continued)

Desired Action
Does Node Have Repeating

Parents?
Procedure

For most rules, you
can click the rule’s
name button to
display a dialog box.

Chapter 8 Section 8.3
Monk Collaboration Rules Editor Creating Monk Collaboration Rules Scripts

e*Gate Integrator User’s Guide 376 SeeBeyond Proprietary and Confidential

! By specifying a byte location directly in the Event element’s path expression; this is
only applicable to rules that have no dialog boxes, including the If, Loop, Let, Set!,
and Function rules. See “Defining ETD Paths in a Loop Rule” on page 399 for
details about how to specify a byte location in an Event element’s path expression.

Specifying a byte location is optional; by default, a rule is applied to the entire contents
of any Event element you select from a ETD. However, if you need to target a subset of
the data contained in an Event element, then you need to specify a byte location. For
details, see Table 56.

Rules for specifying byte locations in Event elements

These rules are:

! Count the byte offset (the beginning byte position, counted from the first byte of the
Event element) starting from 0; therefore, the second byte in an Event element has a
byte offset of 1.

! If you want to limit the byte location to a certain number of bytes, fill in a byte
length. Count bytes starting from 1. To calculate the targeted length, subtract the
beginning byte from the ending byte. For example, to target bytes 2 through 10,
subtract 2 from 10 to get a length of 8.

Table 56 Showing Byte Locations in Rule Dialog Boxes

Text Box Definition

Byte Offset Defaults to entire Event element selected.

Source—For the source Event, fill in the byte location from which to
start the operation.

Destination—For the destination Event, fill in the beginning data
placement position.

To count bytes—For both fixed and delimited Events, count the offset
from byte 0, the beginning of the selected Event element.

Length Defaults to entire Event element selected.

Source—For the source Event, fill in the length, in bytes, of the input
Event data on which to operate.

Destination—For the destination Event, fill in the length, in bytes, of the
output data.

To count bytes—For fixed Events, count the number of bytes from 1.
For delimited Events, where field length is variable, leave the (to end)
button selected to set the length to the end of the Event element.

Chapter 8 Section 8.3
Monk Collaboration Rules Editor Creating Monk Collaboration Rules Scripts

e*Gate Integrator User’s Guide 377 SeeBeyond Proprietary and Confidential

Figure 164 shows how you would target bytes 2 through 10 of an Event element in any
of the rule dialog boxes.

Figure 164 Specifying a Byte Location

Using the Function Library to Define Rules

The Collaboration Rules Editor provides a library of functions you can use in your
Collaboration Rules to perform special operations. Each function is a prewritten
formula that takes a user-specified value or values, performs an operation, and returns
a value or values.

To use the function library in a Collaboration Rules component

1 From the Collaboration Rules Editor, on Options menu, clear the Use Selected
Nodes in New Rule option.

This action prevents nodes in either your Source or Destination structure from
being referenced in the Collaboration Rules you add next. You can select node(s) to
include in the rule later in this procedure.

2 Add the Collaboration Rules in which you want to use a function to the Rules pane.
Click on the location in the Rules List where you want to insert the function.

3 On the toolbar or View menu, click Function Library.

The Library dialog box appears. This feature allows you to select a function to insert
into the current rule at the cursor position. See Figure 165 on page 378.

Chapter 8 Section 8.3
Monk Collaboration Rules Editor Creating Monk Collaboration Rules Scripts

e*Gate Integrator User’s Guide 378 SeeBeyond Proprietary and Confidential

Figure 165 Library Dialog Box

Note: You can drag and drop ETD nodes into arguments in a Function rule.

4 In the Function List, select the function you want to use.

The function and its arguments are shown in the list of functions in the Current
Value text box; see Figure 166. You must define your value(s) for the function here.

Figure 166 Current Value Text Box

5 Select the argument sample text.

6 Type or drag and drop your argument(s). When specifying a ETD node as an
argument, click and hold the middle mouse button on the node, drag the mouse
cursor to the selected argument text, and release the button.

The argument text is replaced with a reference to the selected node. Be sure the
argument sample text is completely replaced by a real argument. If there is more
than one argument, you must separate each argument with a space.

7 Click Apply to add the function to the Rules List location you selected in step 2.

8 Click Cancel to close the Functions dialog box.

Select the argument sample
text, then replace it with a real
argument.

Function name

Argument sample text

Chapter 8 Section 8.4
Monk Collaboration Rules Editor Basic Collaboration Rules Operations

e*Gate Integrator User’s Guide 379 SeeBeyond Proprietary and Confidential

Note: To include selected nodes in other rules: On Options menu, turn on Use Selected
Nodes in New Rule.

Example

You need to copy a field from the input Event to your output Event, and in the process
you want to convert the input data to uppercase letters. Here is how you would do it,
using the Function library:

1 Add the Copy rule, making sure that the Use Selected Nodes in New Rule option
is turned off.

2 In the Copy rulebar, click inside the box containing the text <Source Location>.

3 On the toolbar, click .

4 In the Function dialog box, select the function called to-upper.

5 In the Current Value text box, select the argument text, str.

6 Click and hold the middle mouse button on the field node in the Source ETD; drag
the mouse cursor to the selected str text in the Current Value text box. Release the
mouse button over the str text.

The str text is replaced with a reference to the input Event field node.

7 Click OK to place the function inside the <Source Location> text box and dismiss
the Function dialog box.

8 Drag and drop the destination node to the Copy rule’s second text box, which
currently contains the text, <Destination Location>.

For more information on Monk functions, see the Monk Developer’s Reference.

8.4 Basic Collaboration Rules Operations
This section explains basic operations, for example opening, saving, and validating,
that you do with Collaboration Rules files.

This section explains:

! “Opening a Collaboration Rules Component” on page 380

! “Saving a Collaboration Rules Component to a New Name” on page 380

! “Entering Comments About Collaboration Rules” on page 381

! “Changing Collaboration Rules Scripts” on page 381

! “Validating Collaboration Rules” on page 382

! “Finding Nodes” on page 383

! “Finding Nodes” on page 383

Chapter 8 Section 8.4
Monk Collaboration Rules Editor Basic Collaboration Rules Operations

e*Gate Integrator User’s Guide 380 SeeBeyond Proprietary and Confidential

8.4.1 Opening a Collaboration Rules Component
Remember that you can only have one Collaboration Rules component open at a time.

Caution: If you try to open a file with more than 6500 lines in the Collaboration Rules Editor,
you get an error message, and the file does not open. If you need to open a larger file,
use a text editor or word processor capable of handling large files.

To open an existing Collaboration Rules file

1 On the toolbar or File menu, click Open.

If you currently have a Collaboration open and have not saved that file, the system
warns you, and asks whether you want to save your current file, proceed without
saving, or cancel. Unless you cancel, the Open Collaboration Rules dialog box
appears.

By default, the Filter is set to look for files in your current schema’s Collaboration
Rules subdirectory:

<schema-name>\monk_scripts\common\ *.tsc

The Filter lists all files with the file extension .tsc because the default naming
convention for Collaboration Rules is a file name followed by the extension .tsc.

2 Select a file to open and click OK.

The Collaboration Rules file appears in the Collaboration Rules Editor window.

8.4.2 Saving a Collaboration Rules Component to a New Name
Use this procedure to save your Collaboration Rules to a different file name that the file
name last saved to.

To save a Collaboration Rules component to a new name

1 Before you begin: On the File menu, click Validate to make sure that there are no
errors in your Collaboration Rules. For details, see “Validating Collaboration
Rules” on page 382.

2 On the File menu, click Save As to open the Save Collaboration As dialog box.

The Filter is set to <schema-name>\monk_scripts\common\ *.tsc, by default.
This setting means that your file is saved to your current schema. Do not change
the Filter unless you need to save a Collaboration outside your schema.

3 Notice that in the Selection text box, your cursor is placed before the default file
extension, .tsc. Type a file name without changing the position of the cursor.

Caution: Although you can type over the default .tsc file extension, you are not able to
include the Collaboration in an Event route if you use a different extension.

4 Click OK to save the file.

If you changed the default file extension and clicked OK, the system warns you that
the Collaboration cannot be included in an Event route. At this point:

Chapter 8 Section 8.4
Monk Collaboration Rules Editor Basic Collaboration Rules Operations

e*Gate Integrator User’s Guide 381 SeeBeyond Proprietary and Confidential

" You can append your file extension to the default file extension, .tsc. This allows
the Collaboration to be included in an Event route.

" Or, you can keep your file extension. This means that you are not able to include
the Collaboration in an Event route.

8.4.3 Entering Comments About Collaboration Rules
This feature allows you to enter comments in your Collaboration Rules. See Figure 167.

Figure 167 Main Comment Dialog Box

To use the Main Comment dialog box

! Enter a general comment describing the contents of this file. The comment is only
for your reference, and you can use any characters you like.

! Click OK.

8.4.4 Changing Collaboration Rules Scripts
You can use the following methods to make changes to Collaboration Rules scripts:

! Deleting rules

! Changing rule parameters

! Changing source and destination ETDs

Deleting Rules

1 In the Rules pane, select the rule you want to delete.

2 On the toolbar or Edit menu, click Delete Rule.

The current rule is removed from the Collaboration Rules component.

Chapter 8 Section 8.4
Monk Collaboration Rules Editor Basic Collaboration Rules Operations

e*Gate Integrator User’s Guide 382 SeeBeyond Proprietary and Confidential

Changing Rule Parameters

The ways to change rule parameters are shown in Table 57.

When you are finished, on the toolbar or File menu, click Save.

Note: If a rule has parameter dialog boxes, click on the rule name button to display them.
You can also fill in rule parameters in the Rule bar text boxes, using Monk syntax.

Changing Source/Destination ETDs

After you have created and defined a Collaboration, you can change the source and
destination ETDs at any time.

To change the Source or Destination ETD in a Collaboration Rules component

1 To the right of either the Source or Destination ETD boxes, click .

A file selection dialog box appears, listing all available input or output ETDs.

2 Select an ETD from the list and click OK.

The new ETD appears in the Collaboration Rules Editor window.

Note: When you change the ETD used in your Collaboration Rules component, you see a
warning asking you to confirm your action before the new structure appears in the
window. Keep in mind that if you change the ETD in a Collaboration, you must also
make changes to rule parameters so that they are applied to the correct Event
elements.

8.4.5 Validating Collaboration Rules
When you are done with a Collaboration Rules component, on the toolbar or File

menu, click Validate to verify that all Collaboration Rules have been completely
and correctly entered.

If you have any Collaboration Rules rule that are not completely filled out or contain
incorrect values, the system displays an error message to warn you. Check the Rules

Table 57 Changing Rule Parameters

This method... ... applies to these rules:

Clicking the rule’s name button in the
Rule bar to access its parameter dialog
box and filling in changes.

Insert, Copy, Data Map, Map, Change Pattern,
Timestamp, and Unique ID

Filling in changes in the Rule bar’s text
boxes using Monk syntax.

All rules; for more information about using Monk
syntax, see the Monk Developer’s Reference

Dragging and dropping new Source or
Destination ETD elements on a rule.

All rules

Chapter 8 Section 8.4
Monk Collaboration Rules Editor Basic Collaboration Rules Operations

e*Gate Integrator User’s Guide 383 SeeBeyond Proprietary and Confidential

pane and look for the rules that contain an error symbol in their Rule bars. Click the
error symbol to display a list of the errors in that rule. For an example, see Figure 168.

Figure 168 Error Message with Symbol

Once you have corrected all errors, on the toolbar or File menu, click Save.

Note: Be sure to validate every Collaboration Rules file before adding it to the system’s
run-time schema, to prevent processing errors.

8.4.6 Finding Nodes
Use the Find Node feature to search through either your source or destination ETD and
find a particular node.

To find the desired node

1 To start at the beginning of the ETD, select the root node.

2 On the Edit menu, click Find Node and then take one of the following steps:

" To search for a node in your Source ETD, choose In Source ETD.

" To search for a node in your Destination ETD, choose In Destination ETD.

The appropriate Find Node dialog box appears.

3 Enter the node name in the appropriate dialog box. You must enter the complete
node name; the Collaboration Rules Editor cannot find a node if you only enter a
partial name.

Error symbol

Rule bar in Rules
pane

Chapter 8 Section 8.4
Monk Collaboration Rules Editor Basic Collaboration Rules Operations

e*Gate Integrator User’s Guide 384 SeeBeyond Proprietary and Confidential

Find Node in Destination Event Type Definition Dialog Box

This feature allows you to find the named node in the destination ETD. See Figure 169.

Figure 169 Find Node in Destination Event Type Definition Dialog Box

To use the Find Node in Destination Event Type Definition dialog box

! In the Name to Find box, enter the name of a node in the destination ETD.

! Click Next to search for the next occurrence of the node later in the ETD, or
Previous to search for the next node earlier in the ETD.

To use the Find Node in Source Event Type Definition dialog box

This feature allows you to find the named node in the source ETD. See Figure 170.

Figure 170 Find Node in Source Event Type Definition Dialog Box

To use the Find Node in Source Event Type Definition dialog box

! In the Name to Find box, enter the name of a node in the source ETD.

! Click Next to search for the next occurrence of the node later in the ETD, or
Previous to search for the next node earlier in the ETD.

8.4.7 Converting to and from Double-Byte Character Encodings
Special considerations apply when Monk Collaborations run in Japanese or Korean
operating systems, whose native character encoding is not single-byte. For e*Gate to
parse Events and apply string functions correctly, the encoding method for inbound
and outbound Events must match the native code. To support encoding methods other
than the native code, use a code converter to convert the inbound or outbound Event to
the appropriate native code. See Table 58 and Figure 171 on page 385.

Chapter 8 Section 8.4
Monk Collaboration Rules Editor Basic Collaboration Rules Operations

e*Gate Integrator User’s Guide 385 SeeBeyond Proprietary and Confidential

Figure 171 Accessing the Code Conversion Functions

Table 58 Monk Functions for Code Conversion

To do this operation, use these functions: For more information, see:

Query, set, or match a character
encoding method

char-type
char-type!
char-type?

Monk Developer’s
Reference, Chapter 5
(“Character Expressions”)

Query, set, or match a string
encoding method

string-type
string-type!
string-type?

Monk Developer’s
Reference, Chapter 6
(“String Expressions”)

Set the encoding method for an
entire file

set-file-encoding-method Monk Developer’s
Reference, Chapter 12
(“File I/O Expressions”)

Convert EUC, JIS, or shift-JIS to
or from another encoding
method

ebcdic2sjis, ebcdic2sjis_g,
jef2sjis*, jipse2sjis*, jis2*, sjis2*,
utf82sjis* Monk Developer’s

Reference, Chapter 21
(“International Conversion
Functions”)

Convert to or from gaiji init-gaiji, init-utf8gaiji,
set-gaiji-table, set-utf8gaiji-table,

Convert UHC to or from another
encoding method

ebcdic2uhc, ebcdic2uhc_g,
uhc2*, utf82uhc

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 386 SeeBeyond Proprietary and Confidential

8.5 Using Collaboration Rules
When you create Collaboration Rules, the e*Gate system uses the rules you specify to
create output Events. All the rules are accessible from the Rules menu (see “Rules
Menu” on page 359). You can also quickly access the most frequently used rules with
your mouse using the toolbar (see “Toolbar Buttons” on page 355).

In addition to a quick-reference table, this section provides detailed explanations of all
the Monk Collaboration Rules and how to use them as the building blocks for your
Collaboration Rules scripts.

8.5.1 Collaboration Rules Reference Table
Table 59 provides a quick reference for brief explanations of all the Collaboration Rules.
The column on the left tells you where in this section you can go to find a detailed
explanation of the given rule.

Table 59 Monk Collaboration Rules

Rule name Description
For more information,

see:

If If a defined condition is true, performs a block of rules on
a particular Event element. If the defined condition is
false, can perform an alternate block of rules.

“Using the If Rule” on
page 387

Loop Initiates a set of rules for a particular Event element, which
are performed repeatedly, either a fixed number of times
or until some condition is true or false.

“Using the Loop Rule”
on page 396

Case Allows you to select a list of rules for execution based on
the value of a test expression.

“Using the Case Rule”
on page 406

Comment Inserts a comment into the Collaboration Rules
component; used for the Collaboration developer’s
reference only.

“Using the Comment
Rule” on page 410

Copy Copies all or part of the input Event to the output Event. “Using the Copy
Rule” on page 411

Display Allows you to print whatever information you include in
the rule to a destination of your choice.

“Using the Display
Rule” on page 416

Duplicate Copies all or part of the input Event to the output Event;
replaces input Event delimiters with output Event
delimiters.

“Using the Duplicate
Rule” on page 417

Data Map Matches a string in the input Event with a string stored in
an ASCII text file. The mapping data associated with the
matching string is inserted in the output Event.

“Using the Data Map
Rule” on page 420

List Lookup Inserts an output Event associated with a matching input
Event string.

“Using the List
Lookup Rule” on
page 424

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 387 SeeBeyond Proprietary and Confidential

The rest of this section explains in detail each of these Collaboration Rules listed in the
previous table.

Note: For more information on any rule construction, see the Monk Developer’s
Reference.

8.5.2 Using the If Rule
The If rule allows you to define a set of operations that can be executed only if a
defined condition is tested and proved true.

Like the Loop, Let, Set!, and Function rules, the If rule requires you to set up its special
syntax directly in the Rule bar text boxes. See Figure 172 on page 388 for an example.

Note: Before typing, make sure you delete the sample text already provided in the pane.

Change
Pattern

Specifies an output string to replace an input string or
regular expression.

“Using the Change
Pattern Rule” on
page 429

Timestamp Inserts the current date and time (of the system’s host)
into the output Event.

“Using the Timestamp
Rule” on page 432

Unique ID Inserts the current date and time (of the system’s host)
into the output Event. Differs from Timestamp in that it
outputs milliseconds; timestamp does not. Unique ID is
output in only one format.

“Using the Unique ID
Rule” on page 435

Let Allows you to define a variable and associated condition
that can be used to control Collaboration Rules.

“Using the Let Rule”
on page 437

Set! Allows you to change the value of a variable that has been
defined in a Let rule.

“Using the Set! Rule”
on page 442

Function Allows you to choose a preformatted Monk function to
use in a Collaboration, or to develop your own function.

“Using the Function
Rule” on page 443

User
Function

Allows you to define your own Monk functions. In effect,
you create a named subroutine composed of one or more
calls to existing functions.

“Using the User
Function Rule” on
page 446

Set Regex Allows you to define a variable whose value is a regular
expression.

“Using the Set Regex
Rule” on page 446

Table 59 Monk Collaboration Rules (Continued)

Rule name Description
For more information,

see:

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 388 SeeBeyond Proprietary and Confidential

Figure 172 If-rule Setup in the Rules Pane

To define an If rule

1 On the toolbar or Rules menu, click Add If.

The If rule appears in the Rules pane.

2 Click inside the Test text box, and then select and delete the <test> text.

3 Define the test condition in the Test text box, using the following Monk syntax:

(test)

where test is any legal Monk expression.

See Table 60 on page 389 for a list of ways you can set up the If-rule tests. This table
directs you to detailed instructions later in this section on how to set up the desired
If-rule test.

4 Click If in the Rules pane to activate the If Rule bar.

5 In the If Rule bar, add rules to be executed if the test condition is true. For an
explanation of how to add rules, see “Adding and Arranging Rules” on page 366.

6 Click Else to activate the Else Rule bar.

When activated, this Rule bar turns dark blue. If the previous test condition is false,
the current If rule executes any Else rules added here.

7 Add the rule(s) to be executed in the Else Rule bar (see “Adding and Arranging
Rules” on page 366).

8 When you are finished, on the toolbar or File menu, click Save.

If-rule Test Setup Table

Table 60 on page 389 explains basic setup procedures for If-rule tests.

If Rule bar — Drag and drop
here the set of rules you
want executed when the
tested condition is true.

Else Rule bar — Add any rules here
you want executed when the
condition is not true. Leave this box
blank if it does not apply.

Test text box — Enter the If-rule
condition, using Monk syntax.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 389 SeeBeyond Proprietary and Confidential

Path Location Syntax

When you drag and drop a desired Event element into the Test text box, the
Collaboration Rules Editor automatically fills in the correct path location for the input
Event element you placed in the text box. In syntax expressions, the term source_path
represents this variable.

Caution: Make sure there is always an equal number of open and closed parentheses in your
If-rule test expression; otherwise, the expression creates an error.

Table 60 If-rule Test Setups

Test Application Condition of If-rule Operation Reference for More Information

Comparing an Event
element to a regular
expression

The contents of an input Event
element match a specified regular
expression.

See “Comparing an Event
Element to a Regular Expression”
on page 390.

Testing for a false
condition

An input Event element tests false
for a conditional expression.

See “Testing for a False
Condition” on page 394.

Performing multiple
tests with an If rule

Multiple tests on an input Event
element are all proven true.

See “Performing Multiple Tests
with an If Rule” on page 394.

Performing alternate
tests with an If rule

Alternate tests on an input Event
element are performed and at least
one proven true.

See “Performing Alternate Tests
with an If Rule” on page 395.

Naming If
conditions

A defined condition is proven true. See “Naming a Condition Using
the Let Rule” on page 439.

Comparing an Event element to a number using an operator:

< The contents of an input Event
element are less than a user-
specified number.

See “Comparing an Event
Element to a Number Using <”
on page 390.

<= The contents of an input Event
element are less than or equal to a
user-specified number.

See “Comparing an Event
Element to a Number Using <=”
on page 391.

> The contents of an input Event
element are greater than a user-
specified number.

See “Comparing an Event
Element to a Number Using >”
on page 392.

>= The contents of an input Event
element are greater than or equal to
a user-specified number.

See “Comparing an Event
Element to a Number Using >=”
on page 392.

= The contents of an input Event
element are equal to a user-
specified number.

See “Comparing an Event
Element to a Number Using =”
on page 393.

not = The contents of an input Event
element are not equal to a user-
specified number.

See “Comparing an Event
Element to a Number Using not
=” on page 393.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 390 SeeBeyond Proprietary and Confidential

Repeating Events — If you select a repeating Event element for source_path, the Select
Repetition Instance dialog box appears. See “Defining Instances of Repeating Event
Elements” on page 371 for details about how to use this dialog box.

Accessing Lower-level Event Elements — If you want to add information to any path
expression, which allows the current Collaboration Rules to access lower-level Event
elements missing from the current ETD, see “Defining ETD Paths” on page 369.

The rest of this section explains how to construct the If-rule tests listed in Table 60 on
page 389.

Comparing an Event Element to a Regular Expression

You can define an If rule so that if the input Event matches a specified regular
expression, the If-rule operations are executed.

Syntax

Use the following syntax in the Test text box:

(regex reg_exp source_path)

The variables in this expression you need to define are:

reg_exp
The regular expression you want matched to the selected input Event element. See the
Monk Developer’s Reference for details on how to write a regular expression. Be sure to
enclose the regular expression in double-quotation marks.

source_path
The path location of the Event element you want tested.

To construct this If-rule test

1 In the Rules pane, type (regex at the beginning of the Test text box.

2 Next to your first entry, type the appropriate regular expression enclosed by
double-quotation marks.

3 Next to the regular expression, drag and drop the input Event element that matches
that expression.

4 Type a parenthesis ()) at the end of the rule (after the Event/path name).

See Figure 172 on page 388 for an example.

Comparing an Event Element to a Number Using <

You can define an If rule so that when the contents of a selected Event element are less
than a number you specify, the If-rule operations are executed.

Syntax

Use the following syntax in the Test text box:

(< (string->number source_path) n)

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 391 SeeBeyond Proprietary and Confidential

The variables in this expression you need to define are:

source_path
The path location of the Event element you want tested.

n
The number you want compared to the selected input Event element. When the
contents of a selected Event element are less than this number, the If-rule test is true.

To construct this If-rule test

1 In the Rules pane, type (< (string->number at the beginning of the Test text box.

2 Next to your first entry, drag and drop the input Event element that is compared to
the specified number n.

3 Type) n) at the end of the rule (after the Event/path name), where n is your
specified number.

See Figure 172 on page 388 for an example.

Comparing an Event Element to a Number Using <=

You can define an If rule so that when the contents of a selected Event element are less
than or equal to a number you specify, the If-rule operations are executed.

Syntax

Use the following syntax in the Test text box:

(<= (string->number source_path) n)

The variables in this expression that you need to define are:

source_path
The path location of the Event element you want tested.

n
The number you want compared to the selected input Event element. When the
selected Event element contents are less than or equal to this number, the If-rule test is
true.

To construct this If-rule test

1 In the Rules pane, type (<= (string->number at the beginning of the Test text box.

2 Next to your first entry, drag and drop the input Event element that is compared to
the specified number n.

3 Type) n) at the end of the rule (after the Event/path name), where n is your
specified number.

See Figure 172 on page 388 for an example.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 392 SeeBeyond Proprietary and Confidential

Comparing an Event Element to a Number Using >

You can define an If rule so that when the contents of a selected Event element are
greater than a number you specify, the If-rule operations are executed.

Syntax

Use the following syntax in the Test text box:

(> (string->number source_path) n)

The variables in this expression that you need to define are:

source_path
The path location of the Event element you want tested.

n
The number you want compared to the selected input Event element. When the
selected Event element content is greater than this number, the If-rule test is true.

To construct this If-rule test

1 In the Rules pane, type (> (string->number at the beginning of the Test text box.

2 Next to your first entry, drag and drop the input Event element that is compared to
the specified number n.

3 Type) n) at the end of the rule (after the Event/path name), where n is your
specified number.

See Figure 172 on page 388 for a diagram.

Comparing an Event Element to a Number Using >=

You can define an If rule so that when the contents of a selected Event element are
greater than or equal to a number you specify, the If-rule operations are executed.

Syntax

Use the following syntax in the Test text box:

(>= (string->number source_path) n)

The variables in this expression that you need to define are:

source_path
The path location of the Event element you want tested.

n
The number you want compared to the selected input Event element. When the
contents of the selected Event element are greater than or equal to this number, the
If-rule test is true.

To construct this If-rule test

1 In the Rules pane, type (>= (string->number at the beginning of the Test text box.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 393 SeeBeyond Proprietary and Confidential

2 Next to your first entry, drag and drop the input Event element that is compared to
the specified number n.

3 Type) n) at the end of the rule (after the Event/path name), where n is your
specified number.

See Figure 172 on page 388 for a diagram.

Comparing an Event Element to a Number Using =

You can define an If rule so that when the contents of a selected Event element are
equal to a number you specify, the If-rule operations are executed.

Syntax

Use the following syntax in the Test text box:

(= (string->number source_path) n)

The variables in this expression that you need to define are:

source_path
The path location of the Event element you want tested.

n
Fill in the number you want compared to the selected input Event element. When the
contents of the selected Event element are equal to this number, the If rule test is true.

To construct this If-rule test

1 In the Rules pane, type (= (string->number at the beginning of the Test text box.

2 Next to your first entry, drag and drop the input Event element that is compared to
the specified number n.

3 Type) n) at the end of the rule (after the Event/path name), where n is your
specified number.

See Figure 172 on page 388 for a diagram.

Comparing an Event Element to a Number Using not =

You can define an If rule so that when the contents of a selected Event element are not
equal to a number you specify, the If-rule operations are executed.

Syntax

Use the following syntax in the Test text box:

(not (= (string->number source_path) n))

The variables in this expression that you need to define are:

source_path
The path location of the Event element you want tested.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 394 SeeBeyond Proprietary and Confidential

n
Fill in the number you want compared to the selected input Event element. When the
contents of a selected Event element are not equal to this number, the If rule test is true.

To construct this If-rule test

1 In the Rules pane, type (not (= (string->number at the beginning of the Test text
box.

2 Next to your first entry, drag and drop the input Event element that is compared to
the specified number n.

3 Type) n)) at the end of the rule (after the Event/path name), where n is your
specified number.

See Figure 172 on page 388 for an example.

Testing for a False Condition

You can define an If rule so that when the contents of a selected input Event element
test false for a conditional expression, the If-rule operations are executed.

Syntax

Use the following syntax in the Test text box:

(not test)

The variable in this expression that you need to define is:

test
Any legal Monk expression that you want to test the input Event element against. For
example, you might want to test for a particular string or regular expression. See the
Monk Developer’s Reference for details on how to write a regular expression. Be sure to
enclose the expression in double-quotation marks.

To construct this If-rule test

1 In the Rules pane, type (not at the beginning of the Test text box.

2 Next to your first entry, type the Monk expression that defines the condition you
want to test. Be sure to enclose the expression in double-quotation marks.

3 Type a parenthesis ()) at the end of the rule (after the expression).

See Figure 172 on page 388 for an example.

Performing Multiple Tests with an If Rule

You can define an If rule so that multiple tests are performed on the selected input
Event element and proved true before the If-rule operations are executed.

Syntax

Use the following syntax in the Test text box:

(and test1 test2 testN)

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 395 SeeBeyond Proprietary and Confidential

The variables in this expression that you need to define are:

test1 test2
Fill in multiple legal Monk expressions that you want to test the input Event element
for. For example, you might want to test for particular strings or regular expressions.
See Monk Developer’s Reference for details on how to write a regular expression. Be sure
to enclose each expression in double-quotation marks.

To construct this If-rule test

1 In the Rules pane, type (and at the beginning of the Test text box.

2 Next to your first entry, type one or more Monk expressions that define the
condition you want to test. Be sure to enclose each expression in double-quotation
marks.

3 Type a parenthesis ()) at the end of the rule (after the last expression).

See Figure 172 on page 388 for an example.

Performing Alternate Tests with an If Rule

You can define an If rule so that alternate tests are performed on the selected input
Event element and all proved true before the If-rule operations are executed.

Syntax

Use the following syntax in the Test text box:

(or test1 test2 testN)

The variables in this expression that you need to define are:

test1 test2
Fill in multiple legal Monk expressions that you want to test the input Event element
for. For example, you might want to test for particular strings or regular expressions.
See Monk Developer’s Reference for details on how to write a regular expression. Be sure
to enclose each expression in double-quotation marks.

To construct this If-rule test

1 In the Rules pane, type (or at the beginning of the Test text box.

2 Next to your first entry, type one or more Monk expressions that define the
condition you want to test. Be sure to enclose each expression in double-quotation
marks.

3 Type a parenthesis ()) at the end of the rule (after the last expression).

See Figure 172 on page 388 for an example.

Type everything else as shown in the expression above. See the following graphic for an
example of how to construct this expression.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 396 SeeBeyond Proprietary and Confidential

8.5.3 Using the Loop Rule
The Loop rule allows you to perform Collaboration Rules repeatedly on selected Event
elements, such as a set of repeating segments or fields. Figure 173 shows the Loop rule’s
elements.

Figure 173 Loop Rule Structure

This section explains:

! “Loop Rule Overview” on page 396

! “Creating a Loop Rule” on page 397

! “Executing a Loop Rule” on page 399

! “Defining ETD Paths in a Loop Rule” on page 399

! “Looping on a Computed Range of Event Elements” on page 401

! “Looping on a Fixed Range of Event Elements” on page 404

Loop Rule Overview

When you define a loop, you are saying to the Collaboration Rules Editor, “Do this rule
to this Event element. Now, loop back and do it again to the next Event element.” Using
the Loop rule, you can perform Collaboration operations on all instances of a repeating
element.

Loop’s
variable

Initial value that
determines the loop’s
starting point

Condition that terminates the loop
when the counter reaches a
specified value

Rules that are executed until the
loop condition is satisfied

Step size of the counter

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 397 SeeBeyond Proprietary and Confidential

Table 61 shows the main elements that make up a Loop rule.

The Loop rule requires a special syntax to set it up. Like the If, Let, Set!, and Function
rules, the Loop rule requires you to set up its special syntax directly in the Rule bar text
boxes.

Creating a Loop Rule

Follow this procedure to create a Loop rule that loops on all instances of a repeating
Event element.

To add and define a Loop rule

1 In the Source ETD, select the node representing the repeating Event element you
want to loop on.

Table 61 Loop Rule Elements

Loop Rule Parameter Description Default Value

<variable declaration> Alphanumeric symbol to represent the
current count of iterations performed on
the specified set of Event elements. The
system compares the current value of this
variable to the test condition to determine
when to stop looping.

i

<initial value> Initial value of the variable. This is your
starting count for the Loop rule iterations.
The default, 0, tells the system to start
looping on the first instance of the
repeating Event element.

0

<test> Termination condition for the Loop rule,
which, when true, causes the Loop rule to
stop.

When the system processes the default
test, it keeps track of how many repeating
Event elements it has found, and compares
that count at the beginning of each loop
iteration to the value of i. When i is greater
than or equal to the Event element count,
the loop terminates.

(>= i (count path))
where path is the path
expression for the node
you selected in step 1.
See “Defining ETD
Paths in a Loop Rule” on
page 399 for more
information about path
expressions.

<step> The value by which the Loop rule variable is
updated on each iteration. The default step
value, (+ i 1), ensures that each instance of
the repeating Event element is looped on. If
you specify (+ i 2), for example, every other
instance is looped on.

(+ i 1)
where i is the variable
name, and 1 is the step
value

Collaboration Rules Collaboration operations that the loop
performs on each instance of a repeating
Event element, until the loop’s termination
condition is met.

N/A

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 398 SeeBeyond Proprietary and Confidential

Note: To loop on a group of elements that repeats (rather than a single element that
repeats), select the group’s set node before adding the Loop rule. A set node appears
one level above grouped Event elements in the ETD.

2 On the toolbar or Rules menu, click Add Loop.

A Loop rule is added to the Rules pane (see Figure 173 on page 396). Text boxes for
the Loop rule parameters are already set up for you as follows:

" <variable declaration>

" <initial value>

" <test>

" <step>

3 Enter the appropriate information for each parameter. For details see Table 61 on
page 397.

4 Click Loop inside the Rule bar to activate the Loop rule.

When activated, the box at the bottom of the Loop rule turns dark blue. This is
where you add the rules to be executed repeatedly.

5 Add rules to the Loop rule. Set up one or more rules in the blue bar, in the way as
you would set up the rules in any other context.

Collaboration Rules that you add to the Loop rule appear inside and at the bottom
of the Loop rule.

6 When the Select Repetition Instance dialog box appears, type the Loop rule
variable i in the selected nodes’ Instance fields (see “Defining Instances of
Repeating Event Elements” on page 371 for details on this dialog box).

7 Be sure that the path expression in each rule within the Loop includes the loop
variable, for example [< i >], as shown in the following example:

~input% MSG.DTM [< i >]

To complete the Loop rule, you must include the loop variable name in the path
expressions of the Event elements on which the Collaboration Rules are executed.

8 When you are finished, on the toolbar or File menu, click Save.

For additional applications of the Loop rule, see the following sections:

! “Using the Loop Rule” on page 396

! “Defining ETD Paths in a Loop Rule” on page 399

! “Looping on a Computed Range of Event Elements” on page 401

! “Looping on a Fixed Range of Event Elements” on page 404

For more information about additional applications of the Loop rule, see the Monk
Developer’s Reference.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 399 SeeBeyond Proprietary and Confidential

Executing a Loop Rule

The system executes a Loop rule as follows:

1 The loop variable is assigned its initial value.

2 The loop iterations begin:

A The loop test is evaluated; as long as the test condition is false, the loop
continues.

B The Collaboration Rules within the loop are executed, in sequential order.

C The loop variable is incremented by the amount of the step size (the loop now
goes back to step A).

Defining ETD Paths in a Loop Rule

When you define a Loop rule in a Collaboration Rule, you need to specify both input
and output Event locations, that is, their path expressions. Path expressions tell the
Loop rule where to perform its operations. For the Loop rule, you must define path
expressions for repeating elements, such as an individual field that repeats.

Note: To see the basic syntax of a path expression and a description of its components, see
“Defining ETD Paths” on page 369.

You specify path expressions by dragging elements from the ETDs and dropping them
onto the Loop Rule bar. When defining ETD paths in a Loop rule, you need to know
how to:

! Select a repeating Event element (see “Selecting a Repeating Event Element” on
page 399).

! Specify the instance(s) of the repeating Event element included in the loop (see
“Specifying the Instance(s) of a Repeating Event Element” on page 400).

! Reference a particular byte location (optional; see “Referencing Byte Location” on
page 370).

This section explains how to do each of these tasks.

Selecting a Repeating Event Element

You can use a Loop rule to perform a sequence of Collaboration Rules on a repeating
Event element. To identify a repeating Event element in a ETD, look in its for one of the
symbols shown in Table 62

Table 62 Node Repetition Symbols

Node Repetition Type Node Symbol

Range of repetitions <n-m>
(where n and m are integers)

Occurs zero or more times (optional-repeating) *

Occurs one or more times +

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 400 SeeBeyond Proprietary and Confidential

To select a repeating Event element in either an input or output ETD, press and hold
down the middle mouse button on the node, and begin dragging the mouse cursor to
the desired position in the rule.

The Select Repetition Instance dialog box appears. This is where you specify the
instance of the repeating node you want to loop on. Go to “Specifying the Instance(s)
of a Repeating Event Element” on page 400 for information on what to do next.

Specifying the Instance(s) of a Repeating Event Element

Whenever you select a repeating Event element to include in a rule, the Select
Repetition Instance dialog box appears. In a Loop rule, you need to specify an instance
of a repeating Event element:

! When defining the loop condition, otherwise known as the loop’s goal. For the
applications of the Loop rule discussed in this chapter, you will select an entire
repeating group.

! When defining the loop operations. These are the Collaboration Rules that the loop
performs over and over on selected Event elements until it reaches its goal. In this
case, you will specify the instance as a variable. For details about how the variable
works, see “Including Variables in a Loop’s Operations” on page 400.

To specify the instance of a repeating Event element in a Loop rule, fill in the
information in the Select Repetition dialog box as provided in Table 63.

Note: If you selected a repeating Event element that belongs to one or more levels of
repeating elements, you need to specify the instance(s) of the higher-level node(s) on
which to perform the Loop rule. For example, if you are defining a loop on a
repeating field that belongs to a repeating segment, you must specify the instance of
the repeating segment before following the guidelines listed in the previous table for
the repeating field.

For more details about the Select Repetition Instance dialog box, see “Defining
Instances of Repeating Event Elements” on page 371.

Including Variables in a Loop’s Operations

As noted in the previous section, when you set up a loop’s Collaboration Rules, you
need to include the loop variable in each Collaboration Rules’ path expression. This
establishes the relationship between the current value of the variable (which is the
loop’s counter) and the instance of the Event element that is being looped on.

Table 63 Repetition Information for Loop Rule

Repeating Node To Include In Select Repetition Instance Dialog Box Entries

The Loop condition Click the All instances of the last node button below the node’s
Instance field. Click OK to add the node’s path to the Loop rule.

Loop rule operations Enter the Loop rule variable in the selected node’s Instance field
(just type the variable; the Collaboration Rules Editor
automatically fills in the additional syntax required). Click OK to
add the node’s path to the Loop rule.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 401 SeeBeyond Proprietary and Confidential

To include a variable in a path expression, type the Loop rule variable in the Select
Repetition Instance dialog box, which appears when you add a repeating Event
element inside the Loop rule.

Example

In the Select Repetition Instance dialog box, MSG is ADM’s nonrepeating parent node.
You need to include a Loop rule variable in a repeating Event element’s path
expression. Type the variable in the element’s Instance field, that is, give ADM an
instance of i. Then give MSG an instance of 0.

Note that the element’s entire path, back to its root node, is shown in this dialog box.
The variable then appears in the path expression in the Loop Rule bar:

~input%MSG.ADM [< i >]

Referencing Byte Count

For most of the Collaboration Rules, you can specify byte count inside the dialog boxes
available from their Rule bars. However, the Loop rule requires you to specify a
particular byte location directly in a path expression. You must specify a byte location
after the final element in the expression. Use the following syntax in the Loop Rule bar:

finalpathelement:byte_offset, length

This syntax contains the following variables:

byte_offset
The beginning byte position, counted from the first byte of the Event location

Note: The first byte is counted as 0.

length
The number of bytes referenced, counted from one.

For example:

N1:2,10

This path expression references the N1 segment, starting from byte 3, and extending for
a length of 10 bytes.

Looping on a Computed Range of Event Elements

You can define a Loop rule that performs a sequence of Collaboration Rules on a
computed range of Event elements.

In this type of loop, the system computes for you the total number of elements in a set,
which is the range’s maximum value. You then tell the loop where to start in the Event
element set (minimum).

To define this loop, you need to complete the following steps:

1 Define a Let rule.

2 Define a Loop rule.

3 Add the Collaboration Rules to be executed as part of the loop.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 402 SeeBeyond Proprietary and Confidential

For more information on how to define the Let rule, see “Using the Let Rule” on
page 437.

Syntax

Let Rule — Use the following syntax in Let rule text boxes:

max
This is a variable that represents the total number of Event elements in the selected set.
The Let rule first determines the value of this variable; the Loop rule then uses this
value to determine when it has looped on the last Event element in the set.

value
Fill in the Monk count function here which will add up the number of Event elements
in the set to be looped on.

Loop Rule — Use the following syntax in Loop rule text boxes:

variable name
Fill in the alphanumeric symbol that represents the current count of iterations the loop
expression has performed on the specified set of Event elements. The system compares
this variable to the test condition to determine when to stop the Loop rule.

min
Fill in an integer for the initial value of the variable. This is your starting count for the
Loop rule iterations. For example, if you fill in 2, then the loop starts with the third
Event element in the set.

test
Fill in the termination condition for the Loop rule, which, when true, causes the Loop
rule to stop. In this case, you will set up a test that allows the loop to process while min
is less than or equal to max (the number of Event elements in the set).

step
Fill in the value by which the Loop rule variable is updated on each iteration. Use the
following syntax: (+i n), where i is the variable name and n is the step value.

To construct the Let rule

1 On the Rules menu, click Add Let.

The Let Rule bars appear in the Rules pane. To the right of the Let name button, the
bar contains the words Add Declaration and Remove Declaration (see Figure 191
on page 437).

Below this first Let Rule bar is another Rule bar with two text boxes.

2 In the first text box type the variable:

max

3 In the second text box in the same Rule bar, type:

(count

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 403 SeeBeyond Proprietary and Confidential

4 Drag and drop into the same text box, the node representing the set of repeating
segments or fields.

5 In the Select Repetition Instance dialog box, click All Instances for the node.

6 After the path expression, type:

)

Now you need to nest the Loop rule in the Let rule. This action links the variable you
set up with Let to the Loop rule operations.

Note: If you are setting up a Loop rule for a group of elements that repeats (rather than a
single element that repeats), then you must drag and drop the group’s set node into
the Let rule’s Initial Value text box.

To construct the Loop rule

1 Click Let inside the Let Rule bar.

2 On the Rules menu, click Add Loop to add a Loop rule inside the Let rule.

The Let Rule bar appears in the Rules pane. This bar has four text boxes to the right
of the Let name button (see Figure 173 on page 396).

3 In the first text box <variable declaration>, type the following variable:

i

4 In the second text box <initial value>, type the initial value for the variable, that is,
the appropriate integer.

5 In the third text box <test>, type:

(<= max i)

6 In the fourth text box <step>, type:

(+i 1)

Example

You want the following operation:

The variable, i, must be initialized to 2 and incremented by 1 for each iteration. The test
condition must compare the count of max against the current value of i. While i is less
than or equal to max, the Collaboration Rules in the Loop rule must be executed. The
value for max was defined in the Let rule.

The Loop Rule bar text box entries for this example must be:

! <variable declaration> — i

! <initial value> — 2

! <test> — (<= max i)

! <step> — (+i 1)

To define the Collaboration Rules

1 Select the Loop rule and add the Collaboration Rules to be executed.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 404 SeeBeyond Proprietary and Confidential

To complete the Loop rule, you need to include the loop variable name in the path
expressions of the Event elements on which the Collaboration Rules are executed.

2 Drag and drop the nodes, representing the input and output Event elements, into
the appropriate text boxes in the Rule bar.

3 When the Select Repetition Instance dialog box appears, type the Loop rule
variable i in the selected nodes’ Instance text boxes.

4 When you are finished, on the toolbar or File menu, click Save.

For details about the Select Repetition Instance dialog box, see “Defining Instances of
Repeating Event Elements” on page 371.

See “Defining ETD Paths in a Loop Rule” on page 399 for more information about
defining instances of repeating Event elements, including using variables in path
expressions.

Looping on a Fixed Range of Event Elements

You can define a Loop rule that performs a sequence of Collaboration Rules on a fixed
range of Event elements in a set.

In this type of Loop rule, the loop starts at a user-specified point in the Event element
set (minimum value), and ends at a user-specified point in the Event element set
(maximum value).

To define this loop, you need to complete the following steps:

1 Define a Let rule.

2 Define a Loop rule.

3 Add the Collaboration Rules to be executed as part of the loop.

For more information on how to define the Let rule, see “Using the Let Rule” on
page 437.

Syntax

Let Rule — Use the following syntax in the Let rule text boxes:

min and max
These variables represent the loop’s starting and ending points in the Event element set.
The Loop rule uses min and max to determine on which Event element to start the loop,
and on which element to stop the loop.

value
Fill in the value of min and max, as integers.

Note: You must set up two declarations (variables) in the Let rule.

Loop Rule — Use the following syntax in the Loop rule text boxes:

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 405 SeeBeyond Proprietary and Confidential

variable name
Fill in the alphanumeric symbol that represents the current count of iterations the loop
expression has performed on the specified set of Event elements. The system compares
this variable to the test condition to determine when to stop the Loop rule.

min
Fill in the variable representing the loop’s starting point in the Event element set, as
defined in the Let rule: min.

test
Fill in the termination condition for the Loop rule, which, when true, causes the Loop
rule to stop. In this case, you set up a test that allows the loop to process while min is
less than or equal to max.

step
Fill in the value by which the Loop rule variable is updated on each iteration. Use the
following syntax: (+i n), where i is the variable name, and n is the step value.

To construct the Let rule

1 On the Rules menu, click Add Let.

The Let Rule bars appear in the Rules pane. To the right of the Let name button, the
bar contains the words Add Declaration and Remove Declaration (see Figure 191
on page 437).

Below this first Let Rule bar is another Rule bar with two text boxes.

2 In the first text box in the first Rule bar, type the variable:

min

3 In the second text box, type the value for min as an integer.

4 Click Add Declaration to add another declaration (variable).

An additional Rule bar with two text boxes appears.

5 In the first text box in the second Rule bar, type the variable:

max

6 In the second text box, type the value for max as an integer.

Once you construct the Let rule, you can place the Loop rule inside the Let rule. This
action links the variables you set up in Let to the Loop rule operations.

To construct the Loop rule

1 Click Let inside the Let Rule bar.

2 On the Rules menu, click Add Loop to add a Loop rule inside the Let rule.

The Let Rule bar appears in the Rules pane. This bar has four text boxes to the right
of the Let name button. See Figure 173 on page 396.

3 In the first text box <variable declaration>, type the following variable:

i

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 406 SeeBeyond Proprietary and Confidential

4 In the second text box <initial value>, type the following variable:

min

5 In the third text box <test>, type:

(<= max i)

6 In the fourth text box <step>, type:

(+i 1)

Example

You want the following operation:

The variable, i, must be initialized to the value of min and incremented by 1 for each
iteration. The test condition must compare the count of max against the current value of
i. While i is less than or equal to max, the Collaboration Rules in the Loop rule must be
executed. The values for min and max were defined in the Let rule.

The Loop Rule bar text box entries for this example must be:

! <variable declaration> — i

! <initial value> — min

! <test> — (<= max i)

! <step> — (+i 1)

To define the Collaboration Rules

1 Select the Loop rule and add the Collaboration Rules to be executed.

To complete the Loop rule, you need to include the loop variable name in the path
expressions of the Event elements on which the Collaboration Rules are executed.

2 Drag and drop the nodes, representing the input and output Event elements, into
the appropriate text boxes in the Rule bar.

3 When the Select Repetition Instance dialog box appears, type the Loop rule
variable i in the selected nodes’ Instance text boxes.

4 When you are finished, on the toolbar or File menu, click Save.

For details about the Select Repetition Instance dialog box, see “Defining Instances of
Repeating Event Elements” on page 371.

See “Defining ETD Paths in a Loop Rule” on page 399 for more information about
defining instances of repeating Event elements, including using variables in path
expressions.

8.5.4 Using the Case Rule
The Case rule allows you to select a list of rules for execution based on the value of a
test expression. The Case rule is most often used in place of a sequence of If rules.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 407 SeeBeyond Proprietary and Confidential

The example in Figure 174 shows the Case rule setup in the Rules pane.

Figure 174 Case Rule Setup

Syntax

The Case rule uses the following syntax:

<value>
A variable or Monk expression to be evaluated and can be a number, character, or
symbol.

(<item1> ... <item3>)
Value(s) that, when matched, trigger the execution of a given list of rules. A value can
be a number, character, or symbol. See the special instructions in “Case Rules and
Strings” on page 408 and “Case Rules and Integers” on page 409 for comparing
strings and integers.

<Rules or expressions>
The rules/functions to be executed. The DEFAULT case is executed if none of the other
Case statements are selected.

Controls

Table 64 explains the Case rule’s GUI control features in the Rules pane.

Table 64 Case Rule Control Features

Add Case Adds another CASE entry under the same SWITCH.

CASE Selects the field to enter rules or functions to be executed.

DEFAULT Selects the field to enter rules to be executed if none of the preceding CASE entries
are selected.

Moves the selected field up or down in the sequence.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 408 SeeBeyond Proprietary and Confidential

Creating Case Rules

When creating Case rules, you must observe important guidelines when entering
strings and integers as explained in this section.

Case Rules and Strings

When using strings in Case rules, you must use the Monk string->symbol function and
enter the strings as symbols within parentheses, as shown in Figure 175.

Figure 175 Case Rule Strings

In Figure 175 above, <node_ID> is the ETD node against which the strings within the
Case rule are compared.

When entering strings in Case rules, observe the following guidelines:

! Be sure there are no spaces in the string->symbol function name.

! The strings to be compared must be enclosed in parentheses. Do not use double
quotation marks.

! Lists of strings to be compared are delimited by spaces. In the example above, if the
input node contains any of the strings string1, string2, or string3, the first function/
rule block executes.

Deletes the selected entry.

Table 64 Case Rule Control Features (Continued)

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 409 SeeBeyond Proprietary and Confidential

Case Rules and Integers

When using integers in Case rules, you must use the Monk string->number function
and enter the integers as symbols within parentheses, as shown in Figure 176.

Figure 176 Case Rule Integers

In Figure 175 above, <node_ID> is the ETD node against which the integers within the
Case rule are compared.

When entering integers in Case rules, observe the following guidelines:

! Be sure there are no spaces in the string->number function name.

! The integers to be compared must be enclosed in parentheses.

! Lists of integers to be compared are delimited by spaces. In the example in Figure
175, if the input node contains any of the integers int1, int2, or int3, the first
function/rule block executes.

To create a Case rule

1 In the Rules pane, select the rule below which you wish to insert the new rule.
If there are no rules in the list, continue with step 2.

2 On the toolbar, click .

3 In the <value> text box, enter the test expression. If the test involves ETD nodes,
you can drag and drop the desired nodes into the expression.

4 In the <item> list, enter the result(s) of the test expression which trigger the
execution of the first set of rules. Items in the result list must be separated by spaces
and enclosed by parentheses.

5 Click CASE.

6 Enter the rule(s) or function(s) to be executed. Be sure to follow the rules for
comparing strings and integers.

7 To add additional cases, click Add Case, then repeat steps 4 through 6.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 410 SeeBeyond Proprietary and Confidential

8 To add a case to be executed if all other cases evaluate false, click DEFAULT and
repeat steps 4 through 6.

9 To change the order of cases, click or on the desired Case statement to move
the statement in the desired direction.

Example

The example in Figure 177 uses the Case rule to test whether a variable (casevar) has a
value of 2 or 3.

Figure 177 Case Rule Example

8.5.5 Using the Comment Rule
The Comment rule allows you to insert a comment into the Collaboration Rules
component. It is for your reference only, and is not used by the e*Gate system for
Collaboration purposes. Figure 178 on page 410 shows an example of the Rules pane
with a Comment rule entered.

Figure 178 Comment Rule Example

Type the title of your
comment. No syntax
restrictions.

Type your detailed
comment here. No
syntax restrictions.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 411 SeeBeyond Proprietary and Confidential

To enter a comment

1 From the Rules menu, choose Add Comment.

2 Select the sample text provided in the rule, and delete it (<title> and
<multi_line_comment>).

3 Fill in the title and detailed comment in the Comment Rule bar text boxes. The
multi-line comment text box can hold an extensive amount of text; however, if you
run out of room, add another comment rule.

Note: If you only have a short comment to fill in, you can just type it in the <title> text
box, and leave the <multi_line_comment> text box empty.

8.5.6 Using the Copy Rule
The Copy rule copies data from a location in a source Event to a location in a
destination Event.

It is important to keep in mind how the Copy rule works when the input Event’s
delimiters are different from the output Event’s delimiters. When input and output
Event delimiters are different, a copied Event element uses the output Event’s
delimiters.

However, if the copied element contains lower-level elements, then the lower-level
elements retain the delimiters assigned to them in the input Event. Figure 179 on
page 411 shows a diagram of how the Copy rule handles delimiters in output Events.

Figure 179 How the Copy Rule Handles Input-to-output Event Delimiters

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 412 SeeBeyond Proprietary and Confidential

Note: If you want to completely replace an Event element’s input Event delimiters with
the output Event’s delimiters, then use the Duplicate rule. For details on the
Duplicate rule, see “Using the Duplicate Rule” on page 417.

Figure 178 shows an example of the Rules pane with a Copy rule entered.

Figure 180 Copy Rule Example

To enter a Copy rule

1 Select the element to be copied using one of the ways shown in Table 65.

2 On the toolbar or Rules menu, click Add Copy.

If you selected an element that repeats or belongs to higher-level nodes that repeat,
the Select Repetition Instance dialog box appears. See “Defining Instances of
Repeating Event Elements” on page 371 for details on how to use this dialog box.

A Copy rule is added to the Rule bar in the Rules pane.

Note: For information on how to access lower-level Event elements missing from your
ETD, see “Defining ETD Paths” on page 369.

Table 65 Copy Rule Use Methods

Point and Click Drag and Drop

Make sure that Use Selected Nodes in New
Rules option is selected.
In the source ETD, select the element that you
want to copy to the output Event.
In the destination ETD, select the location
where the element will be copied.
Go to step 2.

In the source ETD, click and hold the middle
mouse button on the element of the Event to be
copied.
Drag the pointer to the location in the destination
ETD where the element will be copied, and then
release the middle mouse button.
If you selected an element that repeats, or belongs
to higher-level nodes that repeat, the Select
Repetition Instance dialog box appears. See
“Defining Instances of Repeating Event
Elements” on page 371 for details on how to use
this dialog box.
Go to step 3.

Displays the source ETD
element to be copied to the
output Event.

Displays the destination ETD
element where the input data is
copied.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 413 SeeBeyond Proprietary and Confidential

3 To specify additional Copy rule properties, click COPY in the Rule bar (this step is
optional).

The Copy dialog box appears. This dialog box allows you to copy data “as is” from
one node to another. The original delimiters of child nodes are retained (see Figure
181 on page 413).

Figure 181 Copy Dialog Box

Enter information in this dialog box as follows:

" In the Source column, select All to copy all of the data in the node, or From
Position to copy only a portion of the data in the node.

" If you select From Position:

In the Byte Offset box, enter the beginning byte location of the data you are
copying to the output Event. Bytes are numbered starting at zero.

To specify a byte length, clear the (to end) check box, then enter a byte
length in the Length box. The minimum byte length is 1.

" In the Destination column, select Append to end to append the copied data to
the end of the output Event. Select To Position to copy the data to a specific
position within the node. Copied data replaces any original data at that
position.

" If you select To Position:

In the Byte Offset box, enter the beginning byte location for the copied data.
Bytes are numbered starting at zero.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 414 SeeBeyond Proprietary and Confidential

To specify a byte length, clear the (to end) check box, then enter a byte
length in the Length box. The minimum byte length is 1.

" Check Strip Trailing Spaces to delete trailing spaces from the input Event data.
By default this box is checked.

" To customize the copied data's output format, click Set Output Format.

Table 66 gives you additional information on how to use the Copy dialog box.

Note: For details on the Duplicate rule, see “Using the Duplicate Rule” on page 417.
For more details about specifying byte offset and length, see “Specifying byte
locations” on page 375.

4 By default, the Strip Trailing Spaces button is automatically selected. Deselect this
button if you do not want trailing spaces deleted from the input Event data.

If the input Event data being copied is followed by any empty spaces, the Strip
Trailing Spaces option ensures that those empty spaces are deleted. This means
that your output Event has no empty spaces.

5 If you want to customize the copied data’s output format, click Set Output Format.

The Set Output Format dialog box appears. This dialog box allows you to format
the display of the output data. See Figure 182 on page 415.

Table 66 Using the Copy/Duplicate Dialog Box

Text Box Definition

Byte Offset Defaults to the entire Event element selected (optional).

Source — For the source Event element, fill in the beginning byte location of
the data you are copying to the output Event.

Destination— For the destination Event element, specify a beginning byte
location for the copied data.

To Count Bytes— For both fixed and delimited Events, count the offset from
byte 0, the beginning of the selected Event element.

Length Defaults to the entire length of the selected Event element (optional).

Source— For the source Event element, fill in the length, in bytes, of the input
Event data you are copying.

Destination— For the destination Event element, specify the length, in bytes, of
the output data.

To Count Bytes— For fixed Events, count the number of bytes from 1. For
delimited Events, where field length is variable, leave the (to end) button
selected to set the length to the end of the Event element.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 415 SeeBeyond Proprietary and Confidential

Figure 182 Set Output Format Dialog Box

Enter information in this dialog box as follows:

" Under Conversion character, select the data format to which output data is
converted. The default is to perform no conversion (No Format).

" For integer or float formats only: Under Flag, select an alignment for the output
string. The default for all formats is Right Align.

" Under Width, specify the minimum width in bytes of the output data field. If
the input data width is less than the output field width, the data is right-aligned
in the output field. If no minimum value is specified or the input data width is
greater than this value, the output field width is expanded to contain the results
of the conversion. The default, None, imposes no width limit.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 416 SeeBeyond Proprietary and Confidential

" Under Precision, enter the maximum number of characters (in bytes) to be
printed in the output field. For integers only, this field determines the minimum
number of digits to be printed. The default, None, imposes no limit.

" To reset all values to their defaults, click Defaults.

Note: The Currently Selected Format text box shows the Monk codes used to impose the
format you have selected. The contents of this text box are determined by the
selections you make in the dialog box controls; you cannot edit this text box’s
contents directly.

Table 67 gives you additional information on how to use this dialog box.

As you select formatting options, the Currently Selected Format text box displays
your choices. See the “Example” on page 431 for output format examples.

6 Click OK .

7 Click OK to exit the Copy dialog box.

8 When you are finished, on the toolbar or File menu, click Save.

8.5.7 Using the Display Rule
Use the Display rule to print whatever information you include in the rule to a
destination of your choice. Figure 183 shows an example of the Rules pane setup for
this rule.

Figure 183 Display Rule Setup

To enter a Display rule

1 On the Rules menu, click Add Display.

A Rule bar for the Display rule appears in the Rules pane.

Table 67 Using the Set Output Format Dialog Box

Option Description

Conversion
Character

Specifies the method of displaying numbers and letters in the inserted string.
Select a method from the list.

Flag Specifies the alignment of contents of the inserted string. Select the preferred
alignment from the list.

Width The minimum width, in bytes, of the output data field. If the input data width is
less than the output field width, the data is right-aligned in the output field. If
no minimum value is specified or the input data width is greater than this value,
the output field width is expanded to contain the results of the conversion.

Precision The maximum number, in bytes, of characters to be printed in the output field.
For integers, it is the minimum number of digits to be printed.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 417 SeeBeyond Proprietary and Confidential

2 Enter information for this rule as follows:

" <Value> — Enter the information you wish to include.

" [<display port>] — Enter the destination for your information, for example, a
text file. The default is to the log file associated with the current component.

" newline — Includes the information on its own separate line in the destination,
for example, a text file.

3 When you are finished, on the toolbar or File menu, click Save.

8.5.8 Using the Duplicate Rule
Like the Copy rule, the Duplicate rule copies data from a location in a source Event to a
location in a destination Event. However, the Copy and Duplicate rules differ in how
they handle delimiters.

Where the Copy rule in some cases allows the input Event delimiters to be retained in
the output Event, the Duplicate rule always replaces the input Event’s delimiters with
the output Event’s delimiters. Figure 184 illustrates how the Duplicate rule handles
delimiters in output Events.

Figure 184 How the Duplicate Rule Handles Input-to-Output Event Delimiters

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 418 SeeBeyond Proprietary and Confidential

Figure 185 shows an example of the Rules pane with a Duplicate rule entered.

Figure 185 Duplicate Rule Example

To enter a Duplicate rule

1 Make sure that the Use Selected Nodes in New Rule option is selected.

2 In the source ETD, select the element that you want to duplicate to the output
Event.

3 In the destination ETD, select the location where the element will be duplicated.

4 On the toolbar or Rules menu, click Add Duplicate.

Note: An easy way to duplicate an entire Event is to select the root nodes of both source
and destination ETDs, then add the Duplicate rule.

If you selected an element that repeats, or belongs to higher-level nodes that repeat,
the Select Repetition Instance dialog box appears. See “Defining Instances of
Repeating Event Elements” on page 371 for details on how to use this dialog box.

A Duplicate rule is added to the Rule bar in the Rules pane.

Note: For information on how to access lower-level Event elements missing from your
ETD, see “Defining ETD Paths” on page 369.

5 To specify additional Duplicate rule properties, click DUPLICATE in the Rule bar
(this step is optional).

The Duplicate dialog box appears. This dialog box allows you to duplicate data
from one node to another. The original delimiters of child nodes are replaced (see
Figure 186 on page 419).

Displays the source ETD
element to be duplicated to
the output Event.

Displays the destination ETD
element where the input data is
duplicated.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 419 SeeBeyond Proprietary and Confidential

Figure 186 Duplicate Dialog Box

Enter information in this dialog box as follows:

" In the Source column, select All to duplicate all of the data in the node, or From
Position to duplicate only a portion of the data in the node.

" If you select From Position:

In the Byte Offset box, enter the beginning byte location of the data you are
duplicating to the output Event. Bytes are numbered starting at zero.

To specify a byte length, clear the (to end) check box, then enter a byte
length in the Length box. The minimum byte length is 1.

" In the Destination column, select Append to end to append the duplicated data
to the end of the output Event. Select To Position to duplicate the data in a
specific position within the node. Duplicated data replaces any original data at
that position.

" If you select To Position:

In the Byte Offset box, enter the beginning byte location for the duplicated
data. Bytes are numbered starting at zero.

To specify a byte length, clear the (to end) check box, then enter a byte
length in the Length box. The minimum byte length is 1.

" Check Strip Trailing Spaces to delete trailing spaces from the input Event data.
By default this box is checked.

" To customize the copied data's output format, click Set Output Format.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 420 SeeBeyond Proprietary and Confidential

For additional information on how to use the Duplicate dialog box, see Table 66 on
page 414.

Note: For more details about specifying byte offset and length, see “Specifying byte
locations” on page 375.

6 By default, the Strip Trailing Spaces button is automatically selected. Deselect this
button if you do not want trailing spaces deleted from the input Event data.

If the input Event data being duplicated is followed by any empty spaces, the Strip
Trailing Spaces option ensures that those empty spaces are deleted. This means
that your output Event has no empty spaces.

7 If you want to customize the copied data’s output format, click the Set Output
Format button. See the procedure on page 415 for more information on how to use
this dialog box.

8 Click the OK button.

9 Click the OK button to exit the Duplicate dialog box.

10 When you are finished, on the toolbar or File menu, click Save.

8.5.9 Using the Data Map Rule
The Data Map rule allows you to match a string in the inbound Event with a string
stored in an ASCII text file. The mapping data associated with the matching string is
inserted into the output Event. For example, if you want to substitute a code in the
input Event with its corresponding value in the output Event, you could use a data map
text file with contents like the following figure:

Figure 187 Sample Text File for Data Map Rule

The Data Map rule will look at the code in the input Event element, match it to its value
in the text file, and insert the code’s value in the output Event. “010” in the input Event
would be translated to “SBS” in the output Event.

Note: If the Data Map rule finds no match, an empty Event element is written to a
delimited output Event, and no data will be written to a fixed output Event.
An exception is returned and the data-map function fails; for details, see the Monk
Developer’s Reference. However, you can enter a default value in the data file
which the system will use when no match is found. Read on for details.

010, SBS
029, LLK
031, VBH

This data file contains code
numbers followed by their
corresponding values.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 421 SeeBeyond Proprietary and Confidential

ASCII File Formatting

When you develop an ASCII text file to use with the Data Map rule, format the entries
to be matched as follows:

string to be matched, mapping data

where the string to be matched is what’s found in the input Event, and the mapping data is
what’s written to the output Event.

Default Value in Data File

You can specify a default value in the data file that is written to the output Event when
no matching value is found for the input Event element string. Use the following syntax
for the default value:

%default%, mapping data

where mapping data is the default value written to the output Event.

You can also enter the default value with the following syntax:

,mapping data

where you precede the mapping data with a comma.

Special Character Handling in the Data File

Because a comma is used as the delimiter in the data file, a comma must be preceded by
a backslash (\) if it appears in either the string to be matched, or the mapping data.

To represent a backslash in the data, enter two backslashes (\\).

A backslash before a NewLine character at the end of a data file line is interpreted as a
literal and the NewLine character is written to the output Event.

The e*Gate system supports the ANSI-C interpretation of escape sequences for Data
Map data files. See Monk Developer’s Reference for details.

Note: If changes are made to the Data Map data file after system startup, you need to
reload the data file.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 422 SeeBeyond Proprietary and Confidential

Syntax

The following figure shows the Data Map rule syntax.

Figure 188 Data Map Rule Syntax

Procedure

1 Make sure that Use Selected Nodes in New Rules in the Options menu is selected.

2 In the Source ETD, select the element containing a string that will be matched to a
string in an ASCII text file.

3 In the Destination ETD, select the location where the matched string will be
inserted.

Note: For information on how to access lower-level Event elements missing from your
ETD, see “Defining ETD Paths” on page 369.

4 From the Rules menu, select Add Data Map.

The Data Map rule appears in the Collaboration.

If you selected a ETD element that repeats, or belongs to higher-level nodes that
repeat, the Select Repetition Instance dialog box appears. See “Defining Instances
of Repeating Event Elements” on page 371 for details on how to use this dialog
box.

5 In the Collaboration, click the Data Map button.

The Data Map dialog box appears.

6 Enter the following information in the Data Map dialog box (see the following
table).

Displays the Event element
which will be matched to a
string in the ASCII file

Displays the ASCII file name in
which a string from the input
Event will be matched.

Click the Data Map button
to define the rule
properties, including the
ASCII file the rule maps to.

Displays the destination Event
element for the string inserted
from the ASCII file.

Displays any leading or
trailing characters to be
trimmed from the input
Event value.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 423 SeeBeyond Proprietary and Confidential

For more details about specifying byte offset and length, see “Specifying byte
locations” on page 375.

For more details about how e*Gate places data in output Events, see “How e*Gate
Processes Event Data” on page 364.

7 Click OK to save your work and exit the Data Map dialog box.

Table 68 Data Map Dialog Box Entries

Text Box Description

Byte Offset (Optional) Defaults to entire Event element selected.

Source: For the source Event, fill in the beginning byte location of the data
you are matching to an ASCII file.

Destination: For the destination Event, fill in a beginning byte location
where the matched string will be inserted.

To count bytes: For both fixed and delimited Events, count the offset from
byte 0, the beginning of the selected Event element

Length (Optional) Defaults to entire length of selected Event element.

Source: For the source Event, fill in the length, in bytes, of the input Event
data you are matching to an ASCII file.

Destination: For the destination Event, specify the length, in bytes, of the
output data.

To count bytes: For fixed Events, count the number of bytes from 1. For
delimited Events, where field length is variable, leave the (to end) button
selected to set the length to the end of the Event element.

Trim Characters This text box is, by default, active when you open the dialog box. If
necessary, you can re-activate it by clicking inside it.

Type any leading or trailing characters to be trimmed from the input Event
values before matching against the specified set of match strings. Be sure to
type the string between the two double-quotation marks (" ") provided for
you. All characters in the set are interpreted as literals. Do not separate
characters, even with spaces; spaces are also interpreted literally.

You can specify a variable in this box; just delete the double-quotation
marks before typing in your variable.

For details about how to define a variable, see “Using the Let Rule” on
page 437.

Directories/Files Select the directory and file name of the ASCII text file you want to match
the input string to.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 424 SeeBeyond Proprietary and Confidential

8.5.10 Using the List Lookup Rule
The List Lookup rule allows you to substitute a value in an input Event with a different,
although corresponding, value in the output Event. For example, you could substitute a
department code from the input Event with the full department name in the output
Event.

The List Lookup rule will search the input Event for a department code in its list; if it
finds a match, then it inserts the corresponding full department name in the output
Event. In the sample list shown above, if the input Event contains code “1”, then
“Accounting” is placed in the output Event.

Note: If the List Lookup rule finds no match in the input Event, an empty Event element is
written to a delimited output Event, and no data is written to a fixed output Event.
However, you can enter a default value in the rule’s dialog box which the system will
use when no match is found. Read on for details.

Use the List Lookup rule when you only need to match an input Event string to a few
mappings (no more than six is recommended); otherwise, use the Data Map rule
(“Using the Data Map Rule” on page 420).

1, Accounting
2, Human Resources
3, Sales

The List Lookup rule can
contain a list like this one,
where each code number
corresponds with a
department name.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 425 SeeBeyond Proprietary and Confidential

Syntax

Procedure

1 Make sure that Use Selected Nodes in New Rules in the Options menu is selected.

2 In the Source ETD, select the input Event element containing a string that will be
matched to the rule’s list.

3 In the Destination ETD, select the location where you want the mapping data to be
inserted.

Note: For information on how to access lower-level Event elements missing from your
ETD, see “Defining ETD Paths” on page 369.

4 From the Rules menu, select Add List Lookup.

The List Lookup rule appears in the Collaboration.

If you selected a ETD element that repeats, or belongs to higher-level nodes that
repeat, the Select Repetition Instance dialog box appears. See “Defining Instances
of Repeating Event Elements” on page 371 for details on how to use this dialog
box.

5 In the Collaboration, click the List Lookup button.

The List Lookup dialog box appears.

This feature allows you to replace the input string with the output string (see Figure
189 on page 426).

Click the List Lookup button to
define the rule properties,

including the mapping data
inserted in the output Event.

Displays the input Event
element which will be
matched to the mapping data.

Displays the output Event
element into which the
mapping data will be
inserted.

String inserted in the
output Event if no matches
are found in the mapping
data list.

Displays the string to be
inserted in the output
Event if no matches are
found in the value list.

Displays the list of mapping
data to which the input Event
element is compared and
matched.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 426 SeeBeyond Proprietary and Confidential

Figure 189 List Lookup Dialog Box

! Under Byte Range, in the Source column, Byte Offset box, enter the beginning byte
location of the data you are copying to the output Event. In the Destination
column, enter the beginning byte location for the copied data. Bytes are numbered
starting at zero.

! To specify a byte length for either source or destination Events, clear the
appropriate (to end) check box, then enter a Source or Destination byte length in
the appropriate Length box. The minimum byte length is 1.

! To specify a Value In and Value Out pair of values, click Add, then enter the values.

! To delete a Value In and Value Out pair, select either element of the pair and click
Delete. To delete all pairs in the list, click Delete All.

! In the Trim Characters box, enter a quoted string or (unquoted) variable name that
contains the character(s) to be trimmed from the input Event before matching them
against the values. All characters are taken as literals, including spaces.

The Trim
Characters text box
is, by default,
automatically
activated when
you open the List
Lookup dialog box.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 427 SeeBeyond Proprietary and Confidential

! In the Default Value box, enter the quoted string or (unquoted) variable name that
contains the default value to be inserted in the output Event if no values in the
Value In list are matched.

! To customize the copied data's output format, click Set Output Format.

6 Fill in the following:

Text Box Description

Byte Offset (Optional) Defaults to entire Event element selected.

Source: For the source Event, fill in the beginning byte
location of the data string you want to match to the rule’s list.

Destination: For the destination Event, fill in a beginning byte
location where the mapping data will be inserted.

To count bytes: For both fixed and delimited Events, count the
offset from byte 0, the beginning of the selected Event
element.

Length (Optional) Defaults to entire Event element selected.

Source: For the source Event, fill in the length, in bytes, of the
input Event data on which to operate.

Destination: For the destination Event, specify the length, in
bytes, of the output data.

To count bytes: For fixed Events, count the number of bytes
from 1. For delimited Events, where field length is variable,
leave the (to end) button selected to set the length to the end
of the Event element.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 428 SeeBeyond Proprietary and Confidential

For more details about specifying byte offset and length, see “Specifying byte
locations” on page 375.

Value List Click the Add button for each Value In/Value Out pair you
want to add to the list. Select a pair and click Delete to remove
it from the list. Click Delete All to remove the entire list.

Value In: Enter the list of values to be matched against the
input Event value.

Value Out: Enter the list of values to be substituted for the
input Event value. Each entry corresponds with an entry in the
Value In list.

For both the Value In and Value Out lists: If you are specifying
a string literal, be sure to type the value between the double-
quotation marks (" ") provided. If you are specifying a
variable, delete both double-quotation marks before typing
the value.

For details about how to define a variable, see “Using the Let
Rule” on page 437.

To include a double-quote or backslash in an output Event
string, you must escape the interpreted character in the Value
List by preceding it with the backslash (\) character.

Optional
Parameters

Trim Characters: This text box is, by default, active when you
open the dialog box. If necessary, you can re-activate it by
clicking inside it. Specify any leading or trailing characters to
be trimmed from the input Event values before matching
against the specified set of match strings. Be sure to type the
trim characters between the two double-quotation marks (" ")
provided for you if you want them to be interpreted as literals.
Do not separate characters, even with spaces; spaces are also
interpreted literally.

You can specify a variable in this box; just delete the double-
quotation marks before typing in your variable.

Default Value: Specify the string to be inserted in the output
Event if no matches are found in the Value In list. Be sure to
type the default value between the two double-quotation
marks (" ") provided for you if you want it to be interpreted as
a literal string. If you want to specify a variable in this box,
delete the double-quotation marks before typing in your
variable.

For details about how to define a variable, see “Using the Let
Rule” on page 437.

Text Box Description

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 429 SeeBeyond Proprietary and Confidential

For more details about how e*Gate places data in output Events, see “How e*Gate
Processes Event Data” on page 364.

Note: Each Value In string is matched exactly against the input Event. If the string found
in the input Event element is shorter or longer than the Value In string, then the
comparison fails and no match is found. Usually, this is a concern only when
reading fixed Events. If the string in the input Event can be padded with leading or
trailing spaces, use the Trim Characters option to ensure that a match is found. An
alternate method is to include the spaces as part of the Value In value.

7 Click the Set Output Format button.

The Set Output Format dialog box appears.

8 Fill in your Event output requirements. For more details on how to use this dialog
box, see the procedure on page 415 where the output format options are detailed.

9 Click OK to exit the Set Output Format dialog box. Click OK to exit the List
Lookup dialog box.

8.5.11 Using the Change Pattern Rule
The Change Pattern rule allows you to specify an output string to replace an input
string or regular expression; its primary feature is that it converts an input Event string
to the desired format in the output Event.

As you set up the Change Pattern rule, notice that you need to define a list of input
values that correspond with a converted output value. When you develop the Change
Pattern list, you are telling the system, “If you find this value in the input Event,
convert it to this format in the output Event.”

Syntax

Procedure

1 Make sure that Use Selected Nodes in New Rules in the Options menu is selected.

2 In the Source ETD, select the element containing a string that will be converted to a
new format.

Click the Change
Pattern button to

define the rule
properties,

including the

Displays the input
and output values
which make up the
change pattern list.

Displays the output
Event element where
the converted input
data is inserted.

Displays the input
Event element
containing data
which is converted to
a new format.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 430 SeeBeyond Proprietary and Confidential

3 In the Destination ETD, select the location where the converted string will be
inserted.

Note: For information on how to access lower-level Event elements missing from your
ETD, see “Defining ETD Paths” on page 369.

4 From the Rules menu, select Change Pattern.

The Change Pattern rule appears in the Collaboration.

If you selected a ETD element that repeats, or belongs to higher-level nodes that
repeat, the Select Repetition Instance dialog box appears. See “Defining Instances
of Repeating Event Elements” on page 371 for details on how to use this dialog
box.

5 In the Collaboration, click the Change Pattern button.

The Change Pattern dialog box appears.

6 Fill in the following:

Text Box Description

Byte Offset (Optional) Defaults to entire Event element selected.

Source: For the source Event, fill in the beginning byte location of the
input Event data to be converted.

Destination: For the destination Event, fill in a beginning byte location
where the converted string will be placed.

To count bytes: For both fixed and delimited Events, count the offset
from byte 0, the beginning of the selected Event element.

Length (Optional) Defaults to entire Event element selected.

Source: For the source Event, fill in the length, in bytes, of the input
Event data to be converted.

Destination: For the destination Event, specify the length, in bytes, of
the output data.

To count bytes: For fixed Events, count the number of bytes from 1. For
delimited Events, where field length is variable, leave the (to end)
button selected to set the length to the end of the Event element.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 431 SeeBeyond Proprietary and Confidential

For more details about specifying byte offset and length, see “Specifying byte
locations” on page 375.

For more details about how e*Gate places data in output Events, see “How e*Gate
Processes Event Data” on page 364.

Caution: If the data in the input Event element and the In Pattern don’t match, no
Collaboration takes place and an empty field or field element is written to a delimited
output Event. No data is written to a fixed Event. To avoid losing data, use the If
rule to write a conditional expression that tests for the correct string or pattern.

7 Click the Set Output Format button.

The Set Output Format dialog box appears.

8 Fill in your Event output requirements. For more details on how to use this dialog
box, see procedure on page 415 where the output format options are detailed.

9 Click OK to exit the Set Output Format dialog box. Click OK again to exit the
Change Pattern dialog box.

Example

Delimited input and output Events. Replace the input Event string, “LPC”, with
another string in the output Event: “Laboratory Patient Center.”

Event examples:

MSH|^&|ADT|AMC|LAB|LPC|||
MSH|*&|TMS|AMC|LAB|LPC|||
MSH|%#|Patinfo|AMC|Path|PPC|||
MSH|^&|TMS|AMC|LAB|LPC|||

Select the input Event element representing field 5 of the MSH segment for the Change
Pattern rule. Then, select the output Event element representing field 5 of the MSH
segment.

In the Change Pattern text box, fill in the following values.

Change Pattern List Click Add for each In Pattern/Out Pattern pair you want to add to the list.
Click Delete to remove a selected pair from the list. Click Delete All to
remove the entire list.

In Pattern: Fill in a string or other regular expression to be matched to
the input Event element. For details on how to write a regular
expression, see the Monk Developer’s Reference.

Out Pattern: Fill in a string to be output, replacing the corresponding In
Pattern string. Each Out Pattern must have a corresponding In Pattern.

For both the In Pattern and Out Pattern: If you are specifying a string
literal, type the value between the double-quotation marks (" ")
provided. If you are specifying a variable, delete both double-quotation
marks before typing the value. For details about how to define a
variable, see “Using the Let Rule” on page 437.

Text Box Description (Continued)

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 432 SeeBeyond Proprietary and Confidential

Example output:

MSH|^&|ADT|AMC|LAB|Laboratory Patient Center|||
MSH|*&|TMS|AMC|LAB|Laboratory Patient Center|||
MSH|%#|Patinfo|AMC|Path||||
MSH|^&|TMS|AMC|LAB|Laboratory Patient Center|||

8.5.12 Using the Timestamp Rule
The Timestamp rule allows you to insert the current date and time (of the system’s host)
into the output Event. You can select the format from a list of options.

Syntax

Procedure

1 Make sure that Use Selected Nodes in New Rules in the Options menu is selected.

2 In the Destination ETD, select the location where the timestamp will be inserted.

Note: For information on how to access lower-level Event elements missing from your
ETD, see “Defining ETD Paths” on page 369.

3 From the Rules menu, select Add Timestamp.

The Timestamp rule appears in the Collaboration, with the Destination ETD
location displayed in it.

4 In the Collaboration, click the Timestamp button.

If you selected a ETD element that repeats, or belongs to higher-level nodes that
repeat, the Select Repetition Instance dialog box appears. See “Defining Instances

For this rule
parameter

Use this value Result

Change Pattern
List:
In Pattern

LPC System looks for this value in
the selected input Event
element.

Change Pattern
List:
Out Pattern

Laboratory
Patient Center

If the selected input Event
element contains the value,
“LPC”, it is replaced by the
value, “Laboratory Patient
Center”, in the output Event
element.

Displays the output Event
element where the timestamp
is inserted.

Displays the timestamp format
that is inserted in the output
Event element.

Click the Timestamp button to
define the rule properties,
including the output format
requirements.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 433 SeeBeyond Proprietary and Confidential

of Repeating Event Elements” on page 371 for details on how to use this dialog
box.

The Timestamp dialog box appears (see Figure 190 on page 433).

Figure 190 Timestamp Dialog Box

To use the Timestamp dialog box

1 In the Byte Offset box, enter the beginning byte location for the copied data. Bytes
are numbered starting at zero.

2 To specify a byte length, clear the (to end) check box, then enter a byte length. The
minimum byte length is 1.

3 Under Date Format, select the timestamp format to be inserted into the output
Event. To create a custom format, select Custom and type the new format in the
Specification box, below.

4 Sample output formatted using the selection appears in the Example box.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 434 SeeBeyond Proprietary and Confidential

Note: The contents of the Specification and Example boxes are determined by the Date
Format selection; for predetermined formats you cannot edit them directly.

5 Fill in:

For more details about specifying byte offset and length, see “Specifying byte
locations” on page 375.

For more details about how e*Gate places data in output Events, see “How e*Gate
Processes Event Data” on page 364.

6 (Optional) If you selected Custom in the list of timestamp formats, fill in the
Specification text box according to the following table.

Text Box Description

Byte Offset (Optional) Defaults to entire Event element selected.

Destination: For the destination Event, fill in a
beginning byte location where the timestamp will be
inserted.

To count bytes: For both fixed and delimited Events,
count the offset from byte 0, the beginning of the
selected Event element.

Length (Optional) Defaults to entire Event element selected.

Destination: For the destination Event, specify the
length, in bytes, of the output data.

To count bytes: For fixed Events, count the number of
bytes from 1. For delimited Events, where field length is
variable, leave the (to end) button selected to set the
length to the end of the Event element.

Date Format Lists the available timestamp formats. If you select the
last option, Custom, you need to fill out the
Specification text box (go to step 6).

Time Division
Format
Option

Description
Value Range or
Sample Output

Days %w day of week (Sunday is day 0) 0-6

%a day of week, using site-defined
abbreviations

for ex., Sun, Mon, Tue,
etc.

%A day of week, using site-defined
spellings

for ex., Sunday, Monday,
etc.

%d day of month 01-31

%e day of month (single digits are
preceded by a space)

1-31

%j day of year 001-366

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 435 SeeBeyond Proprietary and Confidential

Once you have filled in a format, press the Tab key to see an example of that format
automatically filled in for you in the Example text box.

7 Click OK to save your work and exit the Timestamp dialog box.

8.5.13 Using the Unique ID Rule
The Unique ID rule allows you to insert the current date and time (of the system’s host)
into the output Event. Use this rule to create a unique Event identifier. This rule differs
from the Timestamp rule in that the Unique ID rule outputs milliseconds; Timestamp
does not. Also, there is only one format for the Unique ID rule.

Weeks %U week of year (Sunday is the first
day of the week)

01-52

%W week of year (Monday is the first
day of the week)

01-52

Months %m month number 01-12

%b month, using site-defined
abbreviations

for ex., Jan, Feb, Mar, Apr,
etc.

Months %B month, using site-defined
spellings

for ex., January, February,
etc.

Years %y year within century 00-99

%Y year, including century ex: 1988

Hours %H hour 00-23

%I hour 01-12

Minutes %M minute 00-59

Seconds %S seconds 00-59

Morning or
Afternoon

%P AM or PM AM or PM

Time Zone
Composites

%Z time zone abbreviation ex: PDT

%D date as %m/%d/%y ex: 02/05/04

%R time as %H:%M ex:14:15

%T time as %H:%M:%S ex:14:15:03

%r time as %I:%M:%S%p ex: 02:15:03 PM

%x site-defined standard date
format

ex: 09/12/93

Time Division
Format
Option

Description (Continued)
Value Range or
Sample Output

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 436 SeeBeyond Proprietary and Confidential

Syntax

Procedure

1 Make sure that Use Selected Nodes in New Rules in the Options menu is selected.

2 In the Destination ETD, select the element where the current date and time will be
inserted.

Note: For information on how to access lower-level Event elements missing from your
ETD, see “Defining ETD Paths” on page 369.

3 On the toolbar or Rules menu, click Add Unique ID.

The Unique ID rule appears in the Collaboration.

If you selected a ETD element that repeats, or belongs to higher-level nodes that
repeat, the Select Repetition Instance dialog box appears. See “Defining Instances
of Repeating Event Elements” on page 371 for details on how to use this dialog
box.

4 (Optional) To specify a specific byte location for the unique ID in the output Event,
click the Unique ID button in the Collaboration.

The Insert Unique ID dialog box appears.

5 In the Insert Unique ID dialog box, fill in the following:

Text Box Description

Byte Offset Defaults to entire output Event element selected.

Specifies the beginning data placement position within the
output Event element you selected in step 2.

For both fixed and delimited Events, is the offset from byte 0,
the beginning of the selected Event element.

Click the Unique ID button to
specify a specific byte location
where the unique ID is
inserted in the output Event.

Displays the output Event element
where the unique ID is inserted.
You can also enter this information
here using Monk syntax.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 437 SeeBeyond Proprietary and Confidential

For more details about specifying byte offset and length, see “Specifying byte
locations” on page 375.

For more details about how e*Gate places data in output Events, see “How e*Gate
Processes Event Data” on page 364.

6 Click OK to exit from the Insert Unique ID dialog box.

8.5.14 Using the Let Rule
The Let rule allows you to define variables that are used in other rules, such as the If,
Loop, and Insert rules.

If you want to set up a variable in a rule using Let, first add the Let rule and define the
variable(s). Then inside the Let rule, add the rule where you want to use the variable(s).
This establishes the link between the variable definition in Let, and the rule where you
use the variable(s).

When you define a variable in Let and apply that variable to other rules, the value of
the variable is computed before it is bound to the variable and used in the rules.

Note that a Let rule variable only has meaning within the Let rule where it is defined.
Let’s say that in Let Rule A, you set up a variable where i = 2. Now when you set up Let
Rule B, you can use the variable i again, and assign it a value of 5, without impacting
or being impacted by the variable in Let Rule A. The system considers the variables in
Let Rules A and B to be completely separate.

Figure 191 shows an example of the Let Rule bar.

Figure 191 Let Rule Bar Structure

For details on how to use the Let rule in combination with the Loop rule, see:

! “Looping on a Computed Range of Event Elements” on page 401

! “Looping on a Fixed Range of Event Elements” on page 404

To see an example of how to name a condition using the Let rule, see “Naming a
Condition Using the Let Rule” on page 439.

Length Defaults to length of entire output Event element selected.

Fill in the length, in bytes, of the output Event element where
the current date and time will be inserted. For fixed Events,
count the number of bytes from 1. For delimited Events,
where field length is variable, leave the (to end) button
selected to set the length to the end of the Event element.

Text Box Description (Continued)

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 438 SeeBeyond Proprietary and Confidential

For details on how to use the Let rule to insert a variable in an Insert rule, see “Using
the Let Rule to Specify a Variable in an Insert Rule” on page 441.

For the rules on naming variables, see “Naming Variables in the Let Rule” on
page 438.

Constructing the Let Rule

Use this graphic to help you construct a Let rule. Before filling out the Let rule text
boxes, be sure to delete the sample text provided by the Collaboration Rules Editor.

Naming Variables in the Let Rule

When naming variables in the Let rule, keep the following list of rules in mind:

1 These characters are accepted in variable names:

Description Character(s)

all letters A-Z, a-z

all digits 0-9

LET

i (count ~input%MSG.ADM)=

First type the variable. The first
character must alphabetic, but
subsequent characters can be
alphanumeric.

Add Declaration Remove Declaration

Click the Add Declaration
button to add another variable;
select a variable and click the
Remove Declaration button to
delete it.

3.

Add the rules here that you want
to apply the Let rule variable(s)
to.

4.

1.

Then, fill in the initial value for
the variable. You can fill in an
integer, or some other type of
expression.

2.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 439 SeeBeyond Proprietary and Confidential

2 The first character of a variable cannot be:

! a digit (0-9)

! a tilde (~)

! a plus (+)

! a dash (-)

! a period (.)

3 Variable name interpretation is case sensitive.

Naming a Condition Using the Let Rule

You can use the Let rule in combination with the If rule to define a condition and then
test that condition before executing a Collaboration Rules component.

Syntax

The following syntax is used in the Let rule text boxes:

plus-sign +

dash -

period .

asterisk *

slash /

left angle bracket <

equal-sign =

right angle bracket >

exclamation mark !

question mark ?

colon :

dollar sign $

percent sign %

underscore _

ampersand &

tilde ~

caret ^

Description Character(s)

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 440 SeeBeyond Proprietary and Confidential

where:

variable declaration
Variable that represents the condition to be tested before Collaboration Rules are
executed. See “Naming Variables in the Let Rule” on page 438 for a list of rules to
keep in mind when naming variables in the Let rule.

initial value
Condition to be tested. This can be any Monk expression.

See “Constructing the Let Rule” on page 440 for an example of how to construct the
Let rule to name a condition.

Constructing the Let Rule

Use this graphic to help you define a condition using the Let rule. In this example, the
condition is a valid Social Security number, which will be set up as a regular expression
in the Initial Value field. Before filling out the Let rule text boxes, be sure to delete the
sample text provided by the Collaboration Rules Editor.

Once you define the condition with the Let rule, you can set up the If rule to test for that
condition. Continue to “Constructing the If Rule” on page 441.

<variable declaration> <initial value>

Box 1 Box 2

LET

validID “\[0-9\]\{3\}-\[0-9\]\{2\}-\[0-9\}\{4\}”=

First type the variable.
This can be any
alphanumeric value.

Add Declaration Remove Declaration

Then, fill in the
condition, which here
is a regular expression
for a valid Social
Security number
format.

2.1.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 441 SeeBeyond Proprietary and Confidential

Constructing the If Rule

Use this graphic to help you construct an If rule to test for a condition defined in a Let
rule. Before filling out the If-rule text box, be sure to delete the sample text provided by
the Collaboration Rules Editor.

Add rules to the Else portion of the If rule that will be executed when the condition is
not met.

For more details about how to construct an If rule, see “Using the If Rule” on page 387.

Using the Let Rule to Specify a Variable in an Insert Rule

You can define a variable in a Let rule that represents a special Monk function, and then
use that variable in an Insert rule to:

! Perform the function on input Event data

! Insert the result in the output Event.

One such Monk function converts input Event data to all uppercase characters in the
output Event. This function is called to-uppercase, and is used in this section as an
example.

LET

validID “\[0-9\]\{3\}-\[0-9\]\{2\}-\[0-9\}\{4\}”=

Add Declaration Remove Declaration

IF (regex validID ~input%PID.PatientID)

Add the rules to the If rule that
you want executed if the
condition is true for the specified
Event element.

First add the If rule to
the Let rule. Then, type the expression

that tests for the condition.
In this example, this
expression tests for the valid
Social Security number
format in field 1 of the PID
segment.

2.

3.

1.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 442 SeeBeyond Proprietary and Confidential

Procedure

You first set up a Let rule, which contains the variable definition and input Event
element to be converted. Then you set up an Insert rule, which contains the output
Event location for the conversion result.

1 From the Rules menu, choose Add Let.

The Let rule appears in the Collaboration.

2 Select the Let rule by clicking on its Rule bar.

3 Now add the Verify rule inside the Let rule by choosing Add Verify from the Rules
menu.

4 Set up the Let and Verify rules as shown in the graphic that follows.

8.5.15 Using the Set! Rule
The Set! rule allows you to change the value of a variable that has already been
associated with a value. The variable whose value the Set! rule is changing can either
have been set locally in the Let rule, or globally.

LET

ALL-CAPPED (to-uppercase ~input.%MSG.PID.Name)=

Add Declaration Remove Declaration

INSERT ALL-CAPPED

Drag and drop the output Event
element where the conversion
result will be inserted.

Add the Insert rule to
the Let rule.

4.

~output%MSG.PID.Name

Type the function name
in the variable’s
definition.

Drag and drop here the input
Event element to be
converted.

2. 3.

6.

In the Let rule, define the variable
representing the function to be
performed on the output Event string.

1.

Type the variable name in the
<Literal> text box that
represents the conversion to
be performed on the input
Event element.

5.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 443 SeeBeyond Proprietary and Confidential

The Set! rule requires a special syntax to set it up. Like the If, Let, Loop, and Function
rules, the Set! rule requires you to set up its special syntax directly in the Rule bar text
boxes.

Adding a Set rule

1 From the Rules menu, select Add Set!.

2 Fill in the parameters in the Set! rule text boxes:

Variable Name
Name of the variable whose value you are changing

Value
Any Monk expression that results in a new value that is assigned to the variable. This
expression changes the value of the variable that has been previously assigned.

If you are using the Set! rule to redefine a variable that was set up in a Let rule, you
must place the Set! rule inside the Let rule.

If you are using the Set! rule to redefine a global variable, you can place the Set! rule by
itself in the Collaboration in the Collaboration Rules Editor.

Caution: Keep in mind that once you use the Set! rule to change the value of a variable, the
previous value of the variable is lost.

8.5.16 Using the Function Rule
The Function rule allows you to include in your Event ID any Monk function. Some
prewritten functions are provided for you. In addition, you can use the Function rule to
write your own functions.

This section shows you how to:

! Select a prewritten Monk function (“Selecting a Prewritten Function” on page 444)

! Create your own function (“Defining Your Own Function” on page 445).

For detailed information about Monk functions, see the Monk Developer’s Reference.

Type any variable that is already
associated with a value.

Type any Monk expression here
that results in a value that is
assigned to the variable.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 444 SeeBeyond Proprietary and Confidential

Selecting a Prewritten Function

To add a Function rule and select a prewritten Monk function:

1 From the Rules menu, choose Add Function.

The Function rule is added to the Collaboration.

2 Click the Function button inside the Rule bar.

The Functions dialog box appears. This feature allows you to select a function to
add to the Rules List. See Figure 192.

Figure 192 Functions Dialog Box

To use a predefined function

! Select the desired function from the Function List.

Or, define your own Monk
function by entering it in this text
box.

Click the Function button to
choose from a list of pre-defined
Monk functions.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 445 SeeBeyond Proprietary and Confidential

! In the Current Value text box, enter any arguments the function requires.

! Click OK.

To use a custom function

! From the Function List, select Custom.

! In the Current Value text box, enter the name of the function plus any arguments
the function requires.

! Click OK.

3 In the Function List box, select a function.

The function and its arguments are shown below the list of functions in the Current
Value text box. This is where you need to define your value(s) for the function.

4 Select the argument sample text. Type or drag and drop your argument(s). When
specifying a ETD node as an argument, click and hold the middle mouse button on
the node, drag the mouse cursor to the selected argument text, and release the
button. The argument text is replaced with a reference to the selected node.

Make sure the argument sample text is completely replaced by a real argument. If
there is more than one argument, you must separate each argument with a space.

5 Click the OK button to insert the function in the Function Rule bar and dismiss the
dialog box.

Defining Your Own Function

To add a Function rule and define your own Monk function

1 From the Rules menu, select Add Function.

The Function rule is added to the Collaboration.

2 Select the <Functions> text in the Rule bar and delete it. Type the name of the Monk
function in the text box.

Current

(to-upper str)
function name

argument
sample text

Value

Select argument sample
text, and then replace it
with a real argument.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 446 SeeBeyond Proprietary and Confidential

For detailed information about Monk functions and syntax, see the Monk Developer’s
Reference.

8.5.17 Using the User Function Rule
The User Function rule allows you to define your own Monk functions. In effect, you
create a named subroutine composed of one or more calls to existing functions.

To create a user function rule

1 On the Rules menu, click Add User Function.

Figure 193 User Function Rule

2 Supply the name and argument list for the function you are creating.

3 Add function calls, logic, and comments as needed.

For more information on using Monk functions, see the Monk Developer’s Reference.

8.5.18 Using the Set Regex Rule
The Set Regex rule allows you to define a variable whose value is a regular expression.
For example, you might create a variable named USAPhoneNumber composed of 0-2
access digits, followed by a three-digit area code, followed by a three-digit exchange,
followed by a four-digit number, followed by 0-5 digits constituting an extension. If
you used this example without deviation, you could use a predefined expression
named “Phone Number” (giving it any variable name that suits your purpose). A few
of the other predefined variable names include: Name; Social Security Number;
ZIP code; Time HH:MM:SS.

To create a Set Regex Rule

1 On the Rules menu, click Add Set Regex Rule.

2 Click the Set Regex button and use the Set Regex dialog box to define a name,
location, byte range, and pattern for your variable. See Figure 194.

Chapter 8 Section 8.5
Monk Collaboration Rules Editor Using Collaboration Rules

e*Gate Integrator User’s Guide 447 SeeBeyond Proprietary and Confidential

Figure 194 Set Regex Dialog Box

" In the Variable to set box, enter the name of the variable to be set based on the
evaluation of this regular expression. The variable must defined in the box
with a back quote (`). (When the variable is used in other rules, the back quote
should be omitted.)

" In the Location box, enter the Event node against which to test the expression.

" In the Byte Offset box, enter the beginning byte location of the data you are
copying to the output Event. Bytes are numbered starting at zero.

" To specify a byte length for the source Event, clear the (to end) check box, then
enter a byte length in the Length box. The minimum byte length is 1.

" Under Pattern, do one of the following:

Choose Matches Predefined Expression to use a pre-programmed

expression, and then click to select from the list of available expressions.

Choose Matches Regular Expression, then enter a regular expression.

3 When you have finished defining the regular expression, click OK.

e*Gate Integrator User’s Guide 448 SeeBeyond Proprietary and Confidential

Chapter 9

Working with e*Ways

This chapter explains e*Way Intelligent Adapter general operation, how to use the
e*Way Configuration Editor feature, and the basics of how to configure e*Ways in the
e*Gate system. It also explains information to be entered when setting up a Business
Object Broker (BOB) component.

9.1 Overview of e*Way Operation
e*Ways provide points of contact between the e*Gate system and external applications.
e*Ways handle the communication details necessary to send and receive information,
including:

! Responding to or generating positive and negative acknowledgments.

! Rules that govern resend and/or reconnect criteria.

! Time-out logic.

! Data envelope parsing and reformatting.

! Buffer size.

! Retrieval/transmission schedules.

In addition to handling communications, e*Ways are also able to apply business logic
within Collaboration Rules to perform any of e*Gate’s range of data identification/
manipulation/transformation operations.

e*Ways are tailored to meet the communication requirements of a specific application
or protocol. SeeBeyond also makes available a “generic” e*Way, which you can extend
using the Monk programming language to handle custom communications
requirements. For more information, see “e*Way Operation” on page 123.

The intention of this chapter is to help you understand how to implement and
configure e*Ways within the e*Gate Enterprise Manager.

Topics discussed include:

! The components that comprise an e*Way.

! How to create and configure e*Ways using the e*Gate Enterprise Manager.

! How to set e*Way parameters using the e*Way Configuration Editor.

! Troubleshooting tips.

Chapter 9 Section 9.1
Working with e*Ways Overview of e*Way Operation

e*Gate Integrator User’s Guide 449 SeeBeyond Proprietary and Confidential

9.1.1 Component Parts
Functionally, each individual e*Way contains the following component parts:

! Executable Component: An .exe file, this component is the engine of the e*Way; it
does the work necessary to send, receive, and process data.

! Configuration Files: These .cfg files store the parameters that govern the e*Way’s
functions. For example, the configuration for a TCP/IP e*Way specifies the port
numbers to send and receive data; the configuration for a file-based e*Way specifies
the name of the directory to poll for input data.

! Library Files: These files (such as .dll files under Windows) support the operations
that the executable component and functions require.

! Function Definitions: Depending on the e*Way, these functions can be written in C,
Java, or Monk.

Library files are loaded automatically by the script or executable file that calls them.
All the other components listed above are associated with the e*Way using either the
Enterprise Manager or the e*Way Configuration Editor.

Note: In e*Gate, BOBs operate like e*Ways, except that their function is entirely internal.
Configure BOBs in the same way as e*Ways. For more information on working with
BOBs, see “Adding Business Object Brokers” on page 130.

9.1.2 e*Ways and the Enterprise Manager
The previous section showed that e*Ways are combinations of many elements
operating in concert. However, from the perspective of the Enterprise Manager, each
e*Way is a single component, supervised by a Control Broker. An e*Way derives its
character from the e*Way executable file (stcew*.exe) it uses and the particular
configuration file created and tailored for this particular e*Way. See Figure 196.

Figure 195 Enterprise Manager View of e*Way Characteristics

Chapter 9 Section 9.2
Working with e*Ways Configuring e*Ways with the Enterprise Manager

e*Gate Integrator User’s Guide 450 SeeBeyond Proprietary and Confidential

All parts of the e*Way, including the executable file, its configuration file, its Monk
scripts and library files (if any), are either properties of the e*Way component or called
by elements of those properties. The logic that the e*Way executes to process
information is carried out by Collaborations assigned to each e*Way.

Figure 196 Enterprise Manager View of e*Way Contents

The procedures required to create and configure the e*Way component within the
Enterprise Manager are discussed in “Configuring e*Ways with the Enterprise
Manager” on page 450. For an explanation of the e*Way Configuration Editor, which is
used to configure the operating parameters of the e*Way itself, see “Configuring
e*Ways” on page 457.

9.2 Configuring e*Ways with the Enterprise Manager
This section explains how to define and configure e*Way components within the
Enterprise Manager.

9.2.1 Defining e*Way Components
The first step in implementing an e*Way in the Enterprise Manager is to define the
e*Way component.

To create an e*Way

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the e*Way.

e*Ways
Collaborations
contained in the
selected e*Way

Chapter 9 Section 9.2
Working with e*Ways Configuring e*Ways with the Enterprise Manager

e*Gate Integrator User’s Guide 451 SeeBeyond Proprietary and Confidential

3 Select the Control Broker you want to manage the new e*Way.

4 On the Palette, click . The New e*Way Component dialog box opens.

5 Enter the name of the new e*Way, then click OK.

9.2.2 Modifying e*Way Properties
Once an e*Way has been defined, you can modify its properties to do any of the
following operations:

! Select an executable file.

! Select or create a configuration file.

! Change command-line parameters.

! Change the e*Gate user name under which the e*Way runs.

! Determine whether the Control Broker starts the e*Way immediately or on a
startup/shutdown schedule.

! Activate or modify logging options.

! Activate or modify monitoring thresholds.

Note: Each of these operations is described in a separate section later in this chapter.

To modify an e*Way’s properties

1 Select the Navigator's Components tab.

2 Open the Participating Host on which the desired e*Way runs.

3 Open the Control Broker that manages the e*Way.

4 Select the desired e*Way.

5 On the toolbar or Edit menu, click Properties to edit the e*Way’s properties.

The Properties dialog box for the e*Way opens to the General tab. See Figure 197.

Chapter 9 Section 9.2
Working with e*Ways Configuring e*Ways with the Enterprise Manager

e*Gate Integrator User’s Guide 452 SeeBeyond Proprietary and Confidential

Figure 197 e*Way Properties Dialog Box, General Tab

6 Make the desired modifications, then click OK.

Note: When you shut down an e*Way and open its Properties dialog box in the Enterprise
Manager, once you click OK or Apply, the e*Way immediately restarts. This action
only happens if the e*Way is in autostart mode. After you click OK or Apply, the
Registry is automatically updated with any changes, if you made them using the
e*Way Configuration Editor (see “Configuring e*Ways” on page 457).

Important: Selecting the executable file is the first configuration procedure you do once you
have created the e*Way.

Selecting an Executable File

Selecting the executable file is the first and most important step in configuring the
e*Way. This step determines the type of e*Way and what type of external system or
communications protocol it supports.

Important: You must know which executable file to select before you perform this procedure.

To select an executable file for an e*Way

1 Display the e*Way’s Properties dialog box (see the procedure on page 451).

2 Under the General tab, under Executable file, click Find.

3 Use the File Selection dialog box to select the executable files. All e*Way executable
files have an .exe extension.

Chapter 9 Section 9.2
Working with e*Ways Configuring e*Ways with the Enterprise Manager

e*Gate Integrator User’s Guide 453 SeeBeyond Proprietary and Confidential

Important: You must use the Find button to select the executable file. You cannot type its name
directly into the Executable file text box. The file name depends on the type of
e*Way installed. See the user’s guide for the desired e*Way for details.

Creating or Selecting a Configuration File

After you have selected an executable file (see the previous procedure), you must select
or create a configuration file that contains the operating parameters for the e*Way.

To create a configuration file

1 Display the e*Way’s Properties dialog box (see the procedure on page 451).

2 Under the General tab, under Configuration file, click New.

The e*Way Configuration Editor window opens (discussed in detail in
“Configuring e*Ways” on page 457).

3 Use the e*Way Configuration Editor window to change configuration parameters as
required.

4 Save the configuration file and exit the e*Way Configuration Editor.

The name of the configuration file you just created appears automatically in the
Configuration file text box. If for some reason it does not, use the procedure that
follows to select it.

To select an existing e*Way configuration file

1 Display the e*Way’s Properties dialog box (see the procedure on page 451).

2 Under the General tab, under Configuration file, click Find.

3 Use the File Selection dialog box to select the configuration file. All e*Way
configuration files have a .cfg extension.

Note: You must use the Find button to select the configuration file. You cannot type its
name directly into the Configuration file text box.

Changing Command-line Parameters

Most e*Ways provided by SeeBeyond require only the default command-line
parameters shipped with the Enterprise Manager. Use the procedure in this section
only if the e*Way you are configuring requires special command-line options, or if you
are directed to do so by SeeBeyond support personnel.

To change an e*Way’s command-line options

1 Display the e*Way’s Properties dialog box (see the procedure on page 451).

2 Under the General tab, edit the Additional command line arguments text box to
include the required arguments. Unless you have a specific need to do so, do not
change any of the existing parameters.

To add new parameters to the command-line options

You can also add new parameters to the end of the command line. This feature allows
you to automate the process of configuring your e*Ways.

Chapter 9 Section 9.2
Working with e*Ways Configuring e*Ways with the Enterprise Manager

e*Gate Integrator User’s Guide 454 SeeBeyond Proprietary and Confidential

For example, if you have five instances of e*Gate running on the same box, you could
add “-rp %_REGPORT%” to the command line, which in turn instructs stccb to grab
the values listed in the text box with all required parameters when the “-rp” command
is encountered. To do this:

1 Display the e*Way’s Properties dialog box (see the procedure on page 451).

2 Under the General tab, type -rp %_REGPORT% in the Additional command line
arguments text box at the end of the string.

Note: Use this procedure to add new parameters to BOB, Multi-Mode e*Way, and
IQ Manager command-line options.

Follow the above procedure to add other arguments to the Additional command line
arguments text box, such as “-rp %_PORT”

To use “-rp %_REGPORT%” for all components in any schema

To use “-rp %_REGPORT%” for all components created in any schema, do the
following to change the setting:

1 Edit the default.txt file in the egate/server/registry/repository/import directory to
include “-rp %_REGPORT%” for each desired module under the table
!REG_TBL_MODULE_ID.

2 Import the default.txt file, overlaying the changes on the existing default settings.

All new e*Ways, BOBs, Multi-Mode e*Ways, or IQ Managers created after the
default.txt file was changed will have “-rp %_REGPORT%” in the Additional
command line arguments text box.

Changing the “Run As” User Name

Like all e*Gate executable components, e*Ways run under an e*Gate user name. By
default, all e*Ways run under the “Administrator” user name. You can change this if
your site’s security procedures so require.

To change the “run as” user name

1 Display the e*Way’s Properties dialog box (see the procedure on page 451).

2 Under the General tab, open the Run as user list and select the e*Gate user under
whose name you want this component to run.

Note: See the e*Gate Integrator System Administration and Operations Guide for more
information on the e*Gate security system.

Setting Startup Options or Schedules

e*Ways can be started or stopped by any of the following methods:

! The Control Broker can start the e*Way automatically whenever the Control Broker
starts.

! The Control Broker can start the e*Way automatically whenever it detects that the
e*Way terminated execution abnormally.

Chapter 9 Section 9.2
Working with e*Ways Configuring e*Ways with the Enterprise Manager

e*Gate Integrator User’s Guide 455 SeeBeyond Proprietary and Confidential

! The Control Broker can start or stop the e*Way on a schedule that you specify.

! Users can start or stop the e*Way manually using an interactive monitor.

Use the options on the Start Up tab on the e*Way’s Properties dialog box to determine
how the Control Broker starts or shuts down an e*Way. See the e*Gate Integrator Alert
and Log File Reference Guide for more information about how interactive monitors can
start or shut down components.

Caution: Do not try edit an ETD on a machine while it is running an e*Way or BOB that
uses that ETD. Trying to edit an ETD on the same machine that is using the ETD in
a running e*Gate module can destabilize both the Editor and the module.

To set the e*Way to start automatically when the Control Broker starts

1 Display the e*Way’s Properties dialog box (see the procedure on page 451).

2 Select the Start Up tab (shown in Figure 198 below).

Figure 198 e*Way Properties Dialog Box, Start Up Tab

3 Check Start automatically to activate this feature.

Note: Clear the Start automatically check box to deactivate this feature.

4 Click OK.

To set the e*Way to restart automatically

1 Display the e*Way’s Properties dialog box (see the procedure on page 451).

2 Select the Start Up tab (shown in Figure 198).

After checking the
Start automatically
check box, the text
under “Start schedule”
changes to: “This
component will start
when the Control
Broker is started.”

Chapter 9 Section 9.2
Working with e*Ways Configuring e*Ways with the Enterprise Manager

e*Gate Integrator User’s Guide 456 SeeBeyond Proprietary and Confidential

3 Check Restart after abnormal termination to activate this feature.

Note: Clear the Restart after abnormal termination check box to deactivate this
feature.

4 If you checked the Restart after abnormal termination box, enter the appropriate
information in the Number of retries and the Retry interval every text fields.

5 Click OK.

Note: The “auto restart” feature does not automatically restart the e*Way if the e*Way is
shut down manually by an interactive monitor.

If the e*Way is shut down and you make any configuration changes using the
Enterprise Manager, the Control Broker automatically restarts the e*Way when the
configuration changes are recorded in the e*Gate Registry. If you do not want the
e*Way to restart when configuration changes are made, disable this feature before
configuring the e*Way. See the individual e*Way’s user’s guide for details.

Activating or Modifying Logging Options

Logging options enable you to troubleshoot problems with the e*Way, its assigned
Collaborations, the Collaboration Rules it executes, the IQs to which the e*Way
publishes Events, or its communication with the external application or system. Use
these procedures to activate or modify logging options.

Important: Use logging options freely while developing and debugging schemas, but decrease
the level of detail before you migrate the schema to a production environment:
Certain logging options and severity settings cause significant slowing of
component performance and overall system throughput.

To activate or modify logging options

1 Display the Properties dialog box for the e*Way (see the procedure on page 451).

2 Select the Advanced tab.

3 Click Log.

4 Select the desired logging options and click OK.

See the e*Gate Integrator Alert and Log File Reference Guide for more information
concerning log files, logging options, logging levels, and debug flags.

Activating or Modifying Monitoring Thresholds

Monitoring thresholds enable you to monitor the throughput of the e*Way. When the
monitoring thresholds are exceeded, the e*Way sends a monitoring Event to the Control
Broker. The system routes the monitoring Event to the e*Gate Monitor or any of a
number of destinations, depending on the nature of the event.

For more information on the e*Gate Monitor, see Chapter 10.

Chapter 9 Section 9.3
Working with e*Ways Configuring e*Ways

e*Gate Integrator User’s Guide 457 SeeBeyond Proprietary and Confidential

To activate or modify monitoring thresholds

1 Display the e*Way’s properties dialog box (see the procedure on page 451).

2 Select the Advanced tab.

3 Click Thresholds.

4 Select the desired threshold options and click OK.

See the e*Gate Integrator Alert and Log File Reference Guide and “Monitoring Resources
and Performance” on page 500 for more information concerning threshold monitoring
or routing specific notifications to specific recipients, or for general information about
e*Gate’s monitoring and notification system.

9.2.3 e*Ways and Collaborations
After you have defined and configured the e*Way, you must define a Collaboration that
executes the business logic which enables the e*Way to do its intended work. The
Collaboration in turn executes a Collaboration script, containing the actual instructions
to execute the business logic.

Your e*Way requires at least one Collaboration (more may be required, depending on
the tasks you want the e*Way to perform). In turn, each Collaboration requires one or
more IQs to which its processed Events are published.

For more information on IQs, see “Intelligent Queuing Layer” on page 37 and
“Adding Intelligent Queues” on page 136. For more information on Collaborations,
see “Collaborations” on page 37 and “Adding Collaborations” on page 142.

9.3 Configuring e*Ways
The e*Way Configuration Editor enables you to modify all the parameters of an e*Way
that control how the e*Way communicates with an external application. This section
explains how the Editor stores its configuration information and how to use the
Editor’s controls to modify that information.

9.3.1 Concepts
The e*Way’s configuration parameters are stored in a .def ASCII text file. The e*Way
Configuration Editor provides an easy way to view and change those parameters
through a simple graphical interface, creating and maintaining the configuration file
(.cfg) that you select when you configure the e*Way component in the Enterprise
Manager (as discussed in “Configuring e*Ways with the Enterprise Manager” on
page 450).

Because every e*Way functions differently to interface with a specific external
application or communications protocol, every e*Way’s configuration parameters are
different. See the appropriate e*Way user’s guide for instructions to complete the
configuration of an individual e*Way.

Chapter 9 Section 9.3
Working with e*Ways Configuring e*Ways

e*Gate Integrator User’s Guide 458 SeeBeyond Proprietary and Confidential

The e*Way Configuration Editor uses a common set of controls to adjust the various
configuration parameters specific to each e*Way. Once you learn how the e*Way
Configuration Editor’s controls work, you can easily edit any e*Way’s configuration.

9.3.2 Controls
Figure 199 below shows a picture of the e*Way Configuration Editor window with its
most important features indicated.

Figure 199 e*Way Configuration Editor GUI Map

The e*Way Configuration Editor controls are divided into the following categories:

! Menu bar: This feature provides access to basic operations: saving the
configuration file, viewing a summary of all parameter settings, starting the Help
system, and so on.

! Section selector: The e*Way’s configuration parameters are grouped into sections.
The section selector (labeled Goto Section) enables you to select the section whose
parameters you want to edit.

! Section controls: The section controls enable you to restore the default settings,
restore the last saved settings, display tips, or enter comments for the currently
selected section.

! Parameter selector: Each section contains a list of parameters. Use the scroll bar to
scroll through the entire list of parameters, or use the Parameter selector to jump to
a specific parameter.

! Parameter controls: The parameter controls enable you to restore the default
settings, restore the last saved settings, display tips, or enter comments for the
currently selected parameter.

Note: Notice the similarity between the parameter controls and the section controls. The
available operations are the same, but the scope differs.

Menu bar

Section
controls

Parameter
selector

Parameter
controls

Section
selector

Parameter
configuration
controls

Chapter 9 Section 9.3
Working with e*Ways Configuring e*Ways

e*Gate Integrator User’s Guide 459 SeeBeyond Proprietary and Confidential

! Parameter Configuration Controls: The Parameter configuration controls enable
you to set the e*Way’s various operating parameters.

Section and Parameter Controls

The section and parameter controls are shown in Table 69 below.

The Section controls for the Goto Section selector affect all parameters in the selected
section; the controls within the parameter-editing section of the editor affect only the
selected parameter.

Parameter Configuration Controls

Parameter configuration controls fall into one of two categories:

! Simple option buttons as shown in Figure 199 on page 458 (setting the
AllowIncoming and AllowOutgoing parameters).

! Selection lists as shown in Figure 200 below.

Figure 200 Sample Selection List Controls

Table 69 Parameter and Section Controls

Button Function

Restores default values. There is no undo;
however, the system issues a warning before
issuing the command.

Restores saved values. There is no undo;
however, the system issues a warning before
issuing the command.

Enter user notes.

Displays tips.

Chapter 9 Section 9.3
Working with e*Ways Configuring e*Ways

e*Gate Integrator User’s Guide 460 SeeBeyond Proprietary and Confidential

Selection lists have two controls, described in Table 70 below.

9.3.3 Using the e*Way Configuration Editor
This section describes basic procedures you can use when working with the e*Way
Configuration Editor.

To open the e*Way Configuration Editor

! Under the General tab on the e*Way properties dialog box, click Edit.

The e*Way Configuration Editor window opens.

Navigating Through the Editor

To display a list of all e*Way parameters and their settings

1 On the View menu, click Summary.

2 Use the controls on the Summary list to go to a selected parameter or print a list of
parameter settings. When you have finished using the Summary list, click Cancel.

To view or edit a section of the e*Way configuration

! In the Goto Section list, select a section.

To view or edit a selected parameter

1 In the Goto Section list, select the section that contains the parameter you want to
edit.

2 In the Goto Parameter list, select a parameter. If all the parameters are not visible,
use the scroll bars to scroll to the desired parameter.

To navigate using the summary list

1 On the View menu, click Summary.

2 Select a parameter and click Go To.

Saving Configuration Settings

To save the current configuration settings

! On the File menu, click Save.

Table 70 Selection List Controls

Button Function

Adds the value in the text box to the list of
available values.

Displays a Delete Items dialog box, used to
delete items from the list.

Chapter 9 Section 9.3
Working with e*Ways Configuring e*Ways

e*Gate Integrator User’s Guide 461 SeeBeyond Proprietary and Confidential

To promote the current configuration file to run time

! On the File menu, click Promote to Run Time.

Modifying Configuration Settings

To modify a configuration setting

1 Navigate to the parameter whose options you want to change.

2 Select the parameter from those that are provided. To add new options to a list of
parameters (see Figure 200 on page 459), enter the option in the parameter's data-

entry box and click .

3 To remove options from the list, click . A new dialog box displays, in which you
do the actual deletions.

Restoring Default Settings

To reload the default current configuration settings for a parameter

1 Navigate to the parameter whose defaults you want to restore.

2 On the parameter-editing toolbar, click .

To reload the default current configuration settings for a section

1 Navigate to the section whose defaults you want to restore.

2 On the Section toolbar, click .

Restoring Saved Settings

To reload the saved current configuration settings for a parameter

1 Navigate to the parameter whose defaults you want to restore.

2 On the Parameter-editing toolbar, click .

To reload the saved current configuration settings for a section

1 Navigate to the section whose defaults you want to restore.

2 On the Section toolbar, click .

Entering User Notes

User Notes provide you with a means to “comment” your e*Way configuration.

To enter user notes regarding the e*Way's general configuration or operations

! On the File menu, click User Notes.

To enter user notes regarding a section of the e*Way configuration

! On the Section toolbar, click .

Chapter 9 Section 9.4
Working with e*Ways Troubleshooting e*Ways

e*Gate Integrator User’s Guide 462 SeeBeyond Proprietary and Confidential

To enter user notes regarding a parameter within the e*Way configuration

On the Parameter-editing toolbar, click .

Creating Business Object Brokers

You can add BOBs to your e*Gate system, using the Enterprise Manager window and
procedures similar to those used for e*Ways. BOBs are an optional feature in e*Gate.

For more information on working with BOBs, see “Adding Business Object Brokers”
on page 130.

Using the Online Help System

Use these features when you need help with the e*Way Configuration Editor.

Note: The online Help provides information on all features discussed in this section.

To start the e*Way Configuration Editor’s online Help system

! On the Help menu, click Help topics.

To display tips regarding the general operation of the e*Way

! On the File menu, click Tips.

To display tips regarding a section of the e*Way configuration

! On the Section toolbar, click .

To display tips regarding a parameter within the e*Way configuration

! On the Parameter-editing toolbar, click .

Note: Tips are displayed and managed separately from the online Help system associated
with the Help menu. You cannot search for Tips within the online Help system, can
you cannot view online Help topics by requesting Tips.

For a complete explanation of how to use the e*Gate online Help systems, see “Online
Help Systems” on page 73.

9.4 Troubleshooting e*Ways
This section provides guidelines for troubleshooting e*Way’s operation or performance.
However, the range of e*Ways that SeeBeyond provides, and the range of e*Ways you
can develop, makes it impossible for an introductory guide to present an exhaustive list
of troubleshooting tips.

In the initial stages of developing your e*Gate system, most problems with e*Ways can
be traced to configuration. For information on system-wide troubleshooting, see the
e*Gate Integrator Alert and Log File Reference Guide.

Chapter 9 Section 9.4
Working with e*Ways Troubleshooting e*Ways

e*Gate Integrator User’s Guide 463 SeeBeyond Proprietary and Confidential

9.4.1 In the Enterprise Manager
! Does the e*Way have the correct Collaborations assigned?

! Do those Collaborations use the correct Collaboration Services?

! Is the logic correct within any Collaboration Rules script employed by this e*Way’s
Collaborations?

! Do those Collaborations subscribe to and publish Events appropriately?

! Are all the components that “feed” this e*Way properly configured, and are they
sending the appropriate Events correctly?

! Are all the components that this e*Way “feeds” properly configured, and are they
subscribing to the appropriate Events correctly?

9.4.2 In the e*Way Configuration Editor
! Check that all configuration options are set appropriately.

! Check that all settings you changed are set correctly.

! Check all required changes to ensure they have not been overlooked.

! Check the defaults to ensure they are acceptable for your installation.

9.4.3 On the e*Way’s Participating Host
! Check that the Participating Host is operating properly, and that it has sufficient

disk space to hold the IQ data that this e*Way’s Collaborations publish.

9.4.4 In the e*Way’s External Application
! Check that the application is configured correctly, is operating properly, and is

sending or receiving the correct data appropriately.

! Check that the connection between the external application and the e*Way is
functioning appropriately.

! Once the e*Way is up and running properly, operational problems can be due to:

" External influences (network or other connectivity problems).

" Problems in the operating environment (low disk space or system errors)

" Problems or changes in the data the e*Way is processing.

" Corrections required to Collaboration Rules scripts that become evident in the
course of normal operations.

One of the most important tools in the troubleshooter’s arsenal is the e*Way log file. For
more information on log files, see the e*Gate Integrator Alert and Log File Reference Guide.

In addition, see the e*Gate Integrator Alert and Log File Reference Guide for an extensive
explanation of log files, debugging options, and how to use the e*Gate monitoring
system to monitor both operations and performance.

Chapter 9 Section 9.5
Working with e*Ways Multi-Mode e*Way

e*Gate Integrator User’s Guide 464 SeeBeyond Proprietary and Confidential

9.5 Multi-Mode e*Way
A Multi-Mode e*Way is a multi-threaded component that extends the e*Way concept of
routing and transforming data within e*Gate. It uses e*Way Connections to send and
receive topics directly to and from multiple external systems and/or SeeBeyond JMS IQ
Managers.

The e*Way Connections are gateways to external systems, allowing a single e*Way to
adopt several configuration profiles simultaneously to communicate with external
systems as well as IQs. e*Way Connection instances have a graphical representation
that can be manipulated with the Collaboration Editor to configure a particular kind of
interaction with the external system.

Multi-Mode e*Way Characteristics

Multi-Mode e*Ways have the following characteristics:

! Adapting: Multi-Mode e*Ways face in two or more directions, as they must interact
with and adapt to multiple external systems. They normally communicate with
e*Gate as well, but it is possible to configure a Multi-Mode e*Way so that it merely
bridges between two or more external systems without bringing data into e*Gate.

! Transporting: Acting as “smart” gateways, Multi-Mode e*Ways direct the flow of
multiple components of data in and out of e*Gate.

! Collaborating: Inbound and outbound e*Gate Collaborations reside in Multi-Mode
e*Ways and form the core of their operation. They determine:

" The routing (publishing/subscribing) of the Events they handle.

" Any transformation of data as it passes through the Multi-Mode e*Way.

In e*Gate, e*Ways interact with Collaborations as follows:

! Every Multi-Mode e*Way requires at least one Collaboration, but it can have more
than one.

! Every Multi-Mode e*Way Collaboration that publishes internal e*Gate Events
requires at least one IQ.

Caution: While you are running a Multi-Mode e*Way, do not use the same machine to edit
any ETD involved in the e*Way—if you do, you will be unable to save the ETD
changes and unable to use normal methods to halt either the Editor or the e*Way.

Multi-Mode e*Way properties are set using the Enterprise Manager.

To create and configure a New Multi-Mode e*Way

1 Select the Navigator’s Components tab.

2 Open the host on which you want to create the e*Way.

3 On the Palette, click the icon to create a new e*Way.

4 Enter the name of the new e*Way and click OK.

5 Select the e*Way and edit its properties.

Chapter 9 Section 9.5
Working with e*Ways Multi-Mode e*Way

e*Gate Integrator User’s Guide 465 SeeBeyond Proprietary and Confidential

The e*Way Properties dialog box opens to the General tab. See Figure 201.

Figure 201 e*Way Properties Dialog Box – General Tab

6 Under Executable file, click Find. Then, in the File Selection dialog box, navigate
to bin (if necessary) and select stceway.exe.

Important: Multi-Mode e*Ways must use the stceway.exe executable.

7 Click Select to register the selection and return to the e*Way Properties dialog box.

8 You do not normally need to add or change command-line arguments to be passed
to the executable when it is started; see “Changing Command-line Parameters” on
page 472.

9 You may want to change the type of User who runs this e*Way; see “Changing the
“Run As” User Name” on page 473.

10 You may want to change the Start Up, Security, and Advanced settings for this
Multi-Mode e*Way; see “Setting Startup Options or Schedules” on page 474 and
“Advanced Settings for Multi-Mode e*Ways” on page 476.

11 After selecting the desired parameters, save the configuration file. Close the .cfg file
and select OK to close the e*Way Properties dialog box.

After you have made the e*Way into a Multi-Mode e*Way by selecting executable file
stceway.exe (see the previous procedure), you must select or create a configuration file
to set the JVM Settings for the Multi-Mode e*Way.

Chapter 9 Section 9.5
Working with e*Ways Multi-Mode e*Way

e*Gate Integrator User’s Guide 466 SeeBeyond Proprietary and Confidential

9.5.1 JVM Settings
JVM settings control the basic Java Virtual Machine (JVM) settings on Multi-Mode
e*Ways. These settings are the configuration parameters for this configuration file, and
are organized under the JVM Settings (in the Goto Section at the top of the e*Way
Configuration Editor window). See Figure 209 on page 482 and Figure 202 below.

Figure 202 Top Portion of the Multi-Mode e*Way Configuration Editor Window

Important: The information entered in the fields on the e*Way Configuration Editor is e*Way-
specific. Make sure you see the appropriate e*Way user’s guide for specifics about
what information should be entered in each field.

The JVM Settings control basic Java Virtual Machine settings.

Note: Although you can make changes to these configuration options while an e*Way is
running, such changes only take effect when the e*Way is next restarted.

Chapter 9 Section 9.5
Working with e*Ways Multi-Mode e*Way

e*Gate Integrator User’s Guide 467 SeeBeyond Proprietary and Confidential

JNI DLL Absolute Pathname

Description

Specifies the absolute path name to where the JNI DLL (installed by the Java 2 SDK) is
located on the Participating Host. This parameter is mandatory.

Required Values

A valid pathname.

Additional Information

The JNI DLL name varies on different platforms; see Table 74 below.

The value assigned can contain a reference to an environment variable, by enclosing the
variable name within a pair of % symbols. For example:

%MY_JNIDLL%

Such variables can be used when multiple Participating Hosts are used on different
platforms.

Note: To ensure that the JNI DLL loads successfully, the Dynamic Load Library (DLL)
search path environment variable must be set appropriately to include all the
directories under the Java 2 SDK (or JDK) installation directory that contain shared
libraries (on UNIX) or DLLs (on Windows).

CLASSPATH Prepend

Description

Specifies the paths to be prepended to the CLASSPATH environment variable for the
Java Virtual Machine settings.

Required Values

An absolute path or an environment variable. This parameter is optional.

Additional Information

If left unset, no paths will be prepended to the CLASSPATH environment variable.

Existing environment variables can be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

Table 71 Java 2 JNI DLL Names

Operating System Java 2 JNI DLL Name

Windows NT 4.0, Windows 2000 jvm.dll

Solaris 2.6, 7, or 8 libjvm.so

Linux 6.2 libjvm.so

HP-UX 11.0 or 11i libjvm.sl

AIX 4.3.3 libjvm.a

Chapter 9 Section 9.5
Working with e*Ways Multi-Mode e*Way

e*Gate Integrator User’s Guide 468 SeeBeyond Proprietary and Confidential

%MY_PRECLASSPATH%

Figure 203 Second Portion of the Multi-Mode e*Way Configuration Editor Window

CLASSPATH Override

Description

Specifies the complete CLASSPATH variable to be used by the Java Virtual Machine
settings, which is either an absolute path or an environment variable. This parameter is
optional. If left unset, an appropriate CLASSPATH environment variable (consisting of
required e*Gate components concatenated with the system version of CLASSPATH)
will be set (see Figure 210 on page 484).

Note: All necessary .jar and .zip files needed by both e*Gate and the Java VM must be
included. It is advised that the CLASSPATH Prepend parameter should be used.

Required Values

An absolute path or an environment variable. This parameter is optional.

Chapter 9 Section 9.5
Working with e*Ways Multi-Mode e*Way

e*Gate Integrator User’s Guide 469 SeeBeyond Proprietary and Confidential

Additional Information

Existing environment variables can be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_CLASSPATH%

Initial Heap Size

Description

Specifies the value for the initial heap size in bytes. If set to 0 (zero), the preferred value
for the initial heap size of the Java VM will be used.

Required Values

An integer between 0 and 2147483647. This parameter is optional. (See Figure 210 on
page 484).

Figure 204 Third Portion of the Multi-Mode e*Way Configuration Editor Window

Chapter 9 Section 9.5
Working with e*Ways Multi-Mode e*Way

e*Gate Integrator User’s Guide 470 SeeBeyond Proprietary and Confidential

Maximum Heap Size

Description

Specifies the value of the maximum heap size in bytes. If set to 0 (zero), the preferred
value for the maximum heap size of the Java VM will be used.

Required Values

An integer between 0 and 2147483647. This parameter is optional (see Figure 211 on
page 485).

Maximum Stack Size for Native Threads

Description

Specifies the value of the maximum stack size in bytes for native threads. If set
to 0 (zero), the default value will be used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Figure 205 Fourth Portion of the Multi-Mode e*Way Configuration Editor Window

Maximum Stack Size for JVM Threads

Description

Specifies the value of the maximum stack size in bytes for JVM threads. If set to 0 (zero),
the preferred value for the maximum stack size of the Java Virtual Machine will be
used.

Chapter 9 Section 9.5
Working with e*Ways Multi-Mode e*Way

e*Gate Integrator User’s Guide 471 SeeBeyond Proprietary and Confidential

Required Values

An integer from 0 through 2147483647. This parameter is optional (see Figure 211 on
page 485).

Note: The rest of the values are either “Yes” or “No.”

Class Garbage Collection

Description

Specifies whether the Class Garbage Collection will be done automatically by the Java
VM. The selection affects performance issues.

Required Values

YES or NO.

Garbage Collection Activity Reporting

Description

Specifies whether garbage collection activity will be reported for debugging purposes.

Required Values

YES or NO.

Asynchronous Garbage Collection

Description

Specifies whether asynchronous garbage collection activity will be reported for
debugging purposes.

Required Values

YES or NO.

Report JVM Info and all Class Loads

Description

Specifies whether the JVM information and all class loads will be reported for
debugging purposes.

Required Values

YES or NO.

Disable JIT

Description

Specifies whether the Just-In-Time (JIT) compiler will be disabled.

Chapter 9 Section 9.5
Working with e*Ways Multi-Mode e*Way

e*Gate Integrator User’s Guide 472 SeeBeyond Proprietary and Confidential

Required Values

YES or NO.

Note: This parameter is not supported for Java Release 1.

Remote debugging port number

Description

Specifies the port number by which the e*Gate Java Debugger can connect with the
JVM to allow remote debugging. See “Overview of e*Gate Java Debugger Operation”
on page 505.

Required Values

If specified, must be an unused port number in the range 2000 through 65535. If not
specified, the e*Gate Java Debugger will be unable to connect to this e*Way.

Suspend option for debugging

Description

Allows you to specify that the e*Way should do no processing until an e*Gate Java
Debugger has successfully connected to it. See “Overview of e*Gate Java Debugger
Operation” on page 505.

Required Values

YES (causes the e*Way to suspend operation until a Debugger connects to it), or
NO (the default—the e*Way begins processing immediately upon startup).

Note: Although you can make changes to these configuration options while an e*Way is
running, such changes only take effect when the e*Way is next restarted.

9.5.2 Changing Command-line Parameters
Most Multi-Mode e*Ways require only the default command-line parameters shipped
with the Enterprise Manager. Use the procedure in this section only if the Multi-Mode
e*Way you are configuring requires special command-line options, or if you are
directed to do so by SeeBeyond support personnel.

To change a Multi-Mode e*Way’s command-line options

1 Display the e*Way’s Properties dialog box (see the procedure on page 464).

2 Under the General tab, edit the Additional command line arguments text box to
include the required arguments. Unless you have a specific need to do so, do not
change any of the existing parameters.

To add new parameters to the command-line options

You can also add new parameters to the end of the command line. This feature allows
you to automate the process of configuring your Multi-Mode e*Way.

Chapter 9 Section 9.5
Working with e*Ways Multi-Mode e*Way

e*Gate Integrator User’s Guide 473 SeeBeyond Proprietary and Confidential

For example, if you have five instances of e*Gate running on the same box, you could
add “-rp %_REGPORT%” to the command line, which in turn instructs stccb to grab
the values listed in the text box with all required parameters when the “-rp” command
is encountered. To do this:

1 Display the Multi-Mode e*Way Properties dialog box (see the procedure on
page 464).

2 Under the General tab, append -rp %_REGPORT% in the Additional command
line arguments text box at the end of the string.

Note: You can use this procedure to add new parameters to BOB, e*Way, Multi-Mode
e*Way, and IQ Manager command-line options.

Follow the above procedure to add other arguments to the Additional command line
arguments text box, such as “-rp %_PORT”

To use “-rp %_REGPORT%” for all components in any schema

To use “-rp %_REGPORT%” for all components created in any schema, do the
following to change the setting:

1 Edit the default.txt file in the <eGate>\Server\registry\repository\import
directory to include “-rp %_REGPORT%” for each desired module under the table
!REG_TBL_MODULE_ID.

2 Import the default.txt file, overlaying the changes on the existing default settings.

All new e*Ways, BOBs, or IQ Managers created after the default.txt file was changed
will have “-rp %_REGPORT%” in the Additional command line arguments text box.

9.5.3 Changing the “Run As” User Name
Like all e*Gate executable components, Multi-Mode e*Way run under an e*Gate user
name. By default, all Multi-Mode e*Way run under the Administrator user name.
You can change this if your site’s security procedures so require.

To change the “run as” user name

1 Display the Multi-Mode e*Way Properties dialog box (see the procedure on
page 464).

2 Under the General tab, open the Run as user list and select the e*Gate user under
whose name you want this component to run.

Note: See the e*Gate Integrator System Administration and Operations Guide for more
information on the e*Gate security system.

Chapter 9 Section 9.5
Working with e*Ways Multi-Mode e*Way

e*Gate Integrator User’s Guide 474 SeeBeyond Proprietary and Confidential

9.5.4 Setting Startup Options or Schedules
Multi-Mode e*Ways can be started or stopped by any of the following methods:

! The Control Broker can start the Multi-Mode e*Way automatically whenever the
Control Broker starts.

! The Control Broker can start the Multi-Mode e*Way automatically whenever it
detects that the Multi-Mode e*Way terminated execution abnormally.

! The Control Broker can start or stop the Multi-Mode e*Way on a schedule that you
specify.

! Users can start or stop the Multi-Mode e*Way manually using an interactive
monitor.

Use the options on the Start Up tab on the Multi-Mode e*Way’s Properties dialog box to
determine how the Control Broker starts or shuts down a Multi-Mode e*Way. See the
e*Gate Integrator Alert and Log File Reference Guide for more information about how
interactive monitors can start or shut down components.

Caution: Do not try edit an ETD on a machine while it is running a Multi-Mode e*Way that
uses that ETD. Trying to edit an ETD on the same machine that is using the ETD in
a running e*Gate module can destabilize both the Editor and the module.

To set the Multi-Mode e*Way to start automatically when the Control Broker starts

1 Display the Multi-Mode e*Way’s Properties dialog box (see the procedure on
page 464).

Chapter 9 Section 9.5
Working with e*Ways Multi-Mode e*Way

e*Gate Integrator User’s Guide 475 SeeBeyond Proprietary and Confidential

2 Select the Start Up tab (see the following figure).

Figure 206 Multi-Mode e*Way Properties Dialog Box, Start Up Tab

3 Select the Start automatically check box to activate this feature.

Note: To deactivate this feature, clear the Start automatically check box.

4 Click OK.

To set the Multi-Mode e*Way to restart automatically

1 Display the Multi-Mode e*Way’s Properties dialog box (see the procedure on
page 464).

2 Select the Start Up tab (shown in Figure 206 on page 475).

3 Select the Restart after abnormal termination check box to activate this feature.

Note: To deactivate this feature, clear the Restart after abnormal termination check
box.

4 If you checked the Restart after abnormal termination box, enter the appropriate
information in the Number of retries and the Retry interval every text fields.

5 Click OK.

After checking the
Start automatically
check box, the text
under “Start schedule”
changes to: “This
component will start
when the Control
Broker is started.”

Chapter 9 Section 9.5
Working with e*Ways Multi-Mode e*Way

e*Gate Integrator User’s Guide 476 SeeBeyond Proprietary and Confidential

Note: The “auto restart” feature does not automatically restart the Multi-Mode e*Way if it
is shut down manually by an interactive monitor.

If the Multi-Mode e*Way is shut down and you make any configuration changes
using the Enterprise Manager, the Control Broker automatically restarts the Multi-
Mode e*Way when the configuration changes are recorded in the e*Gate Registry. If
you do not want the Multi-Mode e*Way to restart when configuration changes are
made, disable this feature before configuring the Multi-Mode e*Way. See the
individual e*Way’s user’s guide for details.

9.5.5 Advanced Settings for Multi-Mode e*Ways
This section explains additional settings available for the Multi-Mode e*Way
component.

Activating or Modifying Logging Options

Logging options enable you to troubleshoot problems with the Multi-Mode e*Way, its
assigned Collaborations, the Business Rules it executes, the IQs to which the Multi-
Mode e*Way publishes Events, or the Multi-Mode e*Way’s communication with the
external application or system. Use these procedures to activate or modify logging
options.

Important: Use logging options freely while developing and debugging schemas, but decrease
the level of detail before you migrate the schema to a production environment.

To activate or modify logging options

1 Display the Multi-Mode e*Way’s Properties dialog box (see the procedure on
page 464).

2 Select the Advanced tab.

3 Click Log.

4 Select the desired logging options and click OK.

See the e*Gate Integrator Alert and Log File Reference Guide for more information on log
files, logging options, logging levels, and debug flags.

Activating or Modifying Monitoring Thresholds

Monitoring thresholds enable you to monitor the throughput of the Multi-Mode e*Way.
When the monitoring thresholds are exceeded, the Multi-Mode e*Way sends a
monitoring Event to the Control Broker. The system routes the monitoring Event to the
e*Gate Monitor or any of a number of destinations, depending on the nature of the
Event.

For more information on the e*Gate Monitor, see Chapter 10.

Chapter 9 Section 9.5
Working with e*Ways Multi-Mode e*Way

e*Gate Integrator User’s Guide 477 SeeBeyond Proprietary and Confidential

To activate or modify monitoring thresholds:

1 Display the Multi-Mode e*Way’s Properties dialog box (see the procedure on
page 451).

2 Select the Advanced tab.

3 Click Thresholds.

4 Select the desired threshold options and click OK.

See the e*Gate Integrator Alert and Log File Reference Guide and “Monitoring Resources
and Performance” on page 500 for more information concerning threshold monitoring
or routing specific notifications to specific recipients, or for general information about
e*Gate’s monitoring and notification system.

9.5.6 Configuring Multi-Mode e*Ways with e*Way Connections
The e*Way Connection GUI enables you to modify all the parameters of a Multi-Mode
e*Way that control how the Multi-Mode e*Way communicates with an external
application. This section explains how the Editor stores its configuration information
and how to use the Editor’s controls to modify that information.

Because every Multi-Mode e*Way functions differently to interface with a specific
external application or communications protocol, every e*Way Connection’s
configuration parameters are different. See the appropriate e*Way user’s guide for
instructions to complete the configuration of an individual e*Way Connection.

The e*Way Connection Editor uses a common set of controls to adjust the various
configuration parameters specific to each e*Way Connection. Once you learn how the
Editor’s controls work, you can easily edit any e*Way Connection’s configuration.

Controls

Figure 207 below shows a picture of the e*Way Connection Editor window with its
most important features indicated.

Chapter 9 Section 9.5
Working with e*Ways Multi-Mode e*Way

e*Gate Integrator User’s Guide 478 SeeBeyond Proprietary and Confidential

Figure 207 e*Way Connection Editor Window Controls

The controls for the e*Way Connection Editor fall into the following categories:

! Menu Bar: This feature provides access to basic operations: saving the
configuration file, view a summary of all parameter settings, starting the Help
system, and so on.

! Section Selector: The e*Way Connection’s configuration parameters are grouped
into sections. The Section selector (labeled Goto Section) enables you to select the
section whose parameters you want to edit.

! Section Controls: The Section controls enable you to restore the default settings,
restore the last saved settings, display tips, or enter comments for the currently
selected section.

! Parameter Selector: Each section contains a list of parameters. Use the scroll bar to
scroll through the entire list of parameters, or use the Parameter selector to jump to
a specific parameter.

! Parameter Controls: The Parameter controls enable you to restore the default
settings, restore the last saved settings, display tips, or enter comments for the
currently selected parameter.

Note: Notice the similarity between the parameter controls and the section controls. The
available operations are the same, but the scope differs.

! Parameter Configuration Controls: The Parameter configuration controls enable
you to set the e*Way Connection’s various operating parameters.

Section
controls

Parameter
controls

Menu bar

Section
selector

Parameter
selector

Parameter
configuration
control

Chapter 9 Section 9.5
Working with e*Ways Multi-Mode e*Way

e*Gate Integrator User’s Guide 479 SeeBeyond Proprietary and Confidential

Section and Parameter Controls

The section and parameter controls are shown in Table 72 below.

The Section controls for the Goto Section selector affect all parameters in the selected
section; the controls within the parameter-editing section of the editor affect only the
selected parameter.

Parameter Configuration Controls

Parameter configuration controls fall into one of two categories:

! Simple option buttons as shown in Figure 199 on page 458.

! Selection lists as shown in Figure 208 below.

Figure 208 Sample Selection List Controls

Selection lists have two controls, described in Table 73 below.

Table 72 Parameter and Section Controls

Button Function

Restores default values. There is no undo;
however, the system issues a warning before
issuing the command.

Restores saved values. There is no Undo;
however, the system issues a warning before
issuing the command.

Allows you to enter user notes.

Displays tips.

Table 73 Selection List Controls

Button Function

Adds the value in the text box to the list of
available values.

Chapter 9 Section 9.5
Working with e*Ways Multi-Mode e*Way

e*Gate Integrator User’s Guide 480 SeeBeyond Proprietary and Confidential

Using the e*Way Connection Editor

This section describes basic procedures you can use when working with the e*Way
Connection Editor GUI.

To open the e*Way Connection Editor

1 In the Enterprise Manager GUI, select the Navigator’s Components tab.

2 Open the e*Way Connections folder and, in the Editor pane (on the right), double-
click the e*Way Connection you want to edit.

3 In the e*Way Connection’s Properties dialog box, General tab, in the e*Way
Connection Configuration File area, click Edit.

The Configuration Editor opens.

Navigating Through the Editor

To display a list of all e*Way Connection parameters and their settings

On the View menu, click Summary.

Use the controls on the Summary list to go to a selected parameter or print a list of
parameter settings. When you have finished using the Summary list, click Cancel.

To view or edit a section of the e*Way Connection configuration

In the Goto Section list, select a section.

To view or edit a selected parameter

1 In the Goto Section list, select the section that contains the parameter you want to
edit.

2 In the Goto Parameter list, select a parameter. If all the parameters are not visible,
use the scroll bars to scroll to the desired parameter.

To navigate using the summary list

1 On the View menu, click Summary.

2 Select a parameter and click Go To.

Saving Configuration Settings

To save the current configuration settings

On the File menu, click Save.

Displays a Delete Items dialog box, used to
delete items from the list.

Table 73 Selection List Controls (Continued)

Button Function

Chapter 9 Section 9.5
Working with e*Ways Multi-Mode e*Way

e*Gate Integrator User’s Guide 481 SeeBeyond Proprietary and Confidential

To promote the current configuration file to run time

On the File menu, click Promote to Run Time.

Modifying Configuration Settings

To modify a configuration setting

1 Navigate to the parameter whose options you want to change.

2 Select the parameter from those that are provided. To add new options to a list of
parameters (see Figure 208 on page 479), enter the option in the parameter's data-

entry box and click .

3 To remove options from the list, click . A new dialog box displays, in which you
do the actual deletions.

Restoring Default Settings

To reload the default current configuration settings for a parameter

1 Navigate to the parameter whose defaults you want to restore.

2 On the parameter-editing toolbar, click . To reload the default current
configuration settings for a section:

1 Navigate to the section whose defaults you want to restore.

2 On the Section toolbar, click .

Restoring Saved Settings

To reload the saved current configuration settings for a parameter

1 Navigate to the parameter whose defaults you want to restore.

2 On the Parameter-editing toolbar, click .

To reload the saved current configuration settings for a section

1 Navigate to the section whose defaults you want to restore.

2 On the Section toolbar, click .

Entering User Notes

User Notes provide you with a means to “comment” your e*Way configuration.

To enter user notes regarding the e*Way's general configuration or operations

On the File menu, click User Notes.

To enter user notes regarding a section of the e*Way configuration

On the Section toolbar, click .

Chapter 9 Section 9.5
Working with e*Ways Multi-Mode e*Way

e*Gate Integrator User’s Guide 482 SeeBeyond Proprietary and Confidential

To enter user notes regarding a parameter within the e*Way configuration

On the Parameter-editing toolbar, click .

9.5.7 JVM Settings
JVM settings control the basic Java Virtual Machine (JVM) settings on Multi-Mode
e*Ways. These settings are the configuration parameters for this configuration file, and
are organized under the JVM Settings (in the Goto Section at the top of the e*Way
Configuration Editor window). See the following figure.

Figure 209 Top Portion of the e*Way Configuration Editor Window

Important: The information entered in the fields on the e*Way Configuration Editor is e*Way-
specific. Make sure you see the appropriate e*Way user’s guide for specifics about
what information should be entered in each field.

You set these settings on the e*Way Configuration Editor (see “Adding Multi-Mode
e*Ways” on page 131 for instructions on how to fill out the Editor fields).

Chapter 9 Section 9.5
Working with e*Ways Multi-Mode e*Way

e*Gate Integrator User’s Guide 483 SeeBeyond Proprietary and Confidential

The JVM settings that may be entered (depending on the e*Way) on this dialog box
include:

! JNI DLL absolute pathname: Specifies the absolute pathname to where the JNI
DLL installed by the Java 2 SDK 1.2.2 is located on the Participating Host. This
parameter is mandatory. This JNI DLL name varies by operating system platform.
See Table 74 below).

The value assigned can contain a reference to an environment variable, by enclosing
the variable name within a pair of % symbols. For example:

%MY_JNIDLL%

Such variables can be used when multiple Participating Hosts are used on different
platforms.

To ensure that the JNI DLL loads successfully, the Dynamic Load Library search
path environment variable must be set appropriately to include all the directories
under the Java 2 SDK (or JDK) installation directory that contain shared libraries
(UNIX) or DLLs (NT).

! CLASSPATH Prepend: Specifies the paths to be prepended to the CLASSPATH
environment variable for the Java Virtual Machine settings. This is either an
absolute path or an environment variable.

Note: This parameter is optional.

If left unset, no paths will be prepended to the CLASSPATH environment variable.

Existing environment variables can be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_PRECLASSPATH%

Table 74 Java 2 JNI DLL Names

Operating System Java 2 JNI DLL Name

Windows 2000 jvm.dll

Windows NT 4.0 jvm.dll

Solaris 2.6, 7, or 8 libjvm.so

Red Hat Linux 6.2 libjvm.so

Compaq Tru64 UNIX libjvm.so

HP-UX 11.0 or 11i libjvm.sl

AIX 4.3.3 libjvm.a

Chapter 9 Section 9.5
Working with e*Ways Multi-Mode e*Way

e*Gate Integrator User’s Guide 484 SeeBeyond Proprietary and Confidential

Figure 210 Second Portion of the e*Way Configuration Editor Window

! CLASSPATH Override: Specifies the complete CLASSPATH variable to be used by
the Java Virtual Machine settings, which is either an absolute path or an
environment variable. This parameter is optional. If left unset, an appropriate
CLASSPATH environment variable will be set, consisting of required e*Gate
components concatenated with the system version of CLASSPATH. See Figure 210.

Note: All necessary .jar and .zip files needed by both e*Gate and the Java VM must be
included. It is advised that the CLASSPATH Prepend parameter should be used.

Existing environment variables can be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_CLASSPATH%

! Initial Heap Size: Specifies the value for the initial heap size in bytes. If set to 0
(zero), the preferred value for the initial heap size of the Java Virtual Machine
settings will be used. Valid values include an integer between 0 and 2147483647.
This parameter is optional. See Figure 210.

Chapter 9 Section 9.5
Working with e*Ways Multi-Mode e*Way

e*Gate Integrator User’s Guide 485 SeeBeyond Proprietary and Confidential

Figure 211 Third Portion of the e*Way Configuration Editor Window

! Maximum Heap Size: Specifies the value of the maximum heap size in bytes. If
set to 0 (zero), the preferred value for the maximum heap size of the Java Virtual
Machine settings will be used. Valid values include an integer between 0 and
2147483647. This parameter is optional (see Figure 211 above).

! Maximum Stack size for native threads: Specifies the value of the maximum stack
size in bytes for native threads. If set to 0 (zero), the default value will be used.
Valid values include an integer between 0 and 2147483647. This parameter is
optional (see Figure 211).

Chapter 9 Section 9.5
Working with e*Ways Multi-Mode e*Way

e*Gate Integrator User’s Guide 486 SeeBeyond Proprietary and Confidential

Figure 212 Fourth Portion of the e*Way Configuration Editor Window

! Maximum Stack size for JVM threads: Specifies the value of the maximum stack
size in bytes for JVM threads. If set to 0 (zero), the preferred value for the maximum
heap size of the Java Virtual Machine settings will be used. Valid values include an
integer between 0 and 2147483647. This parameter is optional (see Figure 212).

Note: The rest of the values are either “Yes” or “No.”

! Class Garbage Collection: Specifies whether the Class Garbage Collection will be
done automatically by the Java VM. The selection affects performance issues.

The required value is either YES or NO.

! Garbage Collection activity reporting: Specifies whether garbage collection
activity will be reported for debugging purposes.

The required value is either YES or NO.

! Asynchronous Garbage Collection: Specifies whether asynchronous garbage
collection activity will be reported for debugging purposes.

The required value is either YES or NO.

! Report JVM Info and all class loads: Specifies whether the Java Virtual Machine
information and all class loads will be reported for debugging purposes.

The required value is either YES or NO.

! Disable JIT: Specifies whether the Just-In-Time (JIT) compiler will be disabled.

The required value is either YES or NO.

Note: This parameter is not supported for Java Release 1.

Chapter 9 Section 9.6
Working with e*Ways e*Insight Business Process Manager Engine

e*Gate Integrator User’s Guide 487 SeeBeyond Proprietary and Confidential

! Allow remote debugging of JVM: Specifies whether to allow remote debugging of
the Java Virtual Machine.

The required value is either YES or NO.

9.6 e*Insight Business Process Manager Engine
The following button in the Enterprise Manager palette allows you to create one or
more instances of the e*Insight Business Process Manager Engine:

This feature also allows you to create and configure the executable and configuration
files necessary to run business processes created in e*Insight. Through this
functionality, the files you previously needed to configure for the e*Insight e*Way are
now pre-selected for you, simplifying the configuration process.

Note: This feature is only available with the e*Insight application. If you do not have
e*Insight installed, the e*Insight Engine module is not available for use.

To create and configure a new e*Insight Engine

1 Log into the e*Gate Enterprise Manager.

2 Open a schema.

3 Select the Navigator pane’s Components tab.

4 Open the host on which you want to create the e*Insight Engine.

5 Select the Control Broker you want to manage the new e*Insight Engine.

6 On the Palette, click .

The New e*Insight Engine Component dialog box appears.

7 Enter the name of the new e*Insight Engine and click OK.

8 In the Navigator, select the e*Insight Engine component you just created.

9 On the toolbar or Edit menu, click Properties.

The e*Insight Engine Properties dialog box appears. See Figure 213.

Chapter 9 Section 9.6
Working with e*Ways e*Insight Business Process Manager Engine

e*Gate Integrator User’s Guide 488 SeeBeyond Proprietary and Confidential

Figure 213 e*Insight Engine Properties Dialog Box

10 Under Configuration file, click Edit.

The e*Way Configuration Editor opens.

11 Make any desired changes, then save the configuration file.

You are returned to the e*Insight Engine Properties dialog box.

12 Click OK to close the dialog box.

Note: For more information on how to use the e*Insight engine feature, see the e*Insight
Business Process Manager Implementation Guide.

e*Gate Integrator User’s Guide 489 SeeBeyond Proprietary and Confidential

Chapter 10

Introduction to e*Gate Monitor

This chapter explains the general operation of the e*Gate Monitor feature and
introduces you to its basic operation.

10.1 e*Gate Monitoring Overview
The e*Gate monitoring system provides the following methods to check the status of
your e*Gate system:

! Interactive Monitors: Display real-time e*Gate status information, allowing you to
start and stop e*Gate components.

! Non-interactive Monitors: Forward alert and status information through delivery
channels, including pager and e-mail, but do not provide means to control e*Gate
components. This system also provides an escalation system for unresolved
problems and failures, to make sure that all notifications are properly delivered.

10.1.1 Role of the Control Broker
In the e*Gate real-time monitoring feature, system components send messages called
Monitoring Events to the Control Broker. These Monitoring Events include an Event
code and a description (for example, “10113020: IQ Manager Down Controlled”) plus
other information such as time of occurrence and names of possibly affected
components.

The e*Gate monitoring feature depends heavily upon the Control Broker, both as a
source of information and as intermediary for commands issued to the various e*Gate
components. You must have a running Control Broker before you can use any e*Gate
monitoring feature. The Control Broker binds a port (this is configurable via a range in
the Control Broker properties dialog box) and the monitor connects to this port.

Caution: Because of its importance within the e*Gate monitoring system, you must address
any system failures involving the Control Broker as quickly as possible. Both the
host and the Control Broker must be active before the e*Gate Monitor can connect to
them.

Chapter 10 Section 10.2
Introduction to e*Gate Monitor e*Gate Monitor Basic Operation

e*Gate Integrator User’s Guide 490 SeeBeyond Proprietary and Confidential

10.1.2 e*Gate Interactive Monitoring
e*Gate includes two interactive monitors: the e*Gate Monitor and a command-line
monitor, stccmd. Using stccmd entails entering application program interface (API)
instructions (in correct syntax) in a DOS-type screen to issue commands and display
information.

Note: For more information on stccmd, advanced uses of the e*Gate Monitor, and other
system control and monitoring operations, see the e*Gate Integrator Alert and
Log File Reference Guide.

The e*Gate Monitor feature provides a graphical user interface (GUI) that allows you to
carry out e*Gate’s necessary system-monitoring functions. The rest of this chapter
explains the e*Gate Monitor window’s basic features and how to use them.

10.2 e*Gate Monitor Basic Operation
Use the e*Gate Monitor window to monitor and control all elements of your operating
e*Gate system. This section explains how to access and exit this window as well as its
basic features.

To access the e*Gate Monitor

1 Click the e*Gate Monitor icon on your Windows Desktop, or choose e*Gate
Monitor from the Start menu.

The e*Gate Monitor Login dialog box appears.

2 Enter your user name and password. If necessary, select the appropriate Registry
Host name.

3 Click Open or press ENTER.

The Open Schema on Registry Host dialog box appears.

4 Select the appropriate schema name then click Open or press ENTER.

After you briefly see the e*Gate logo with a progress bar, the e*Gate Monitor
window appears.

5 Size and place the e*Gate Monitor window as desired.

Chapter 10 Section 10.2
Introduction to e*Gate Monitor e*Gate Monitor Basic Operation

e*Gate Integrator User’s Guide 491 SeeBeyond Proprietary and Confidential

10.2.1 e*Gate Monitor Window
Figure 214 below shows an example of this window (Alerts tab).

Figure 214 e*Gate Monitor Window, Alerts Tab

Like the Enterprise Manager, the e*Gate Monitor has two panes. On the left, the
navigator pane operates exactly like the same pane within the Enterprise Manager
window (see “Enterprise Manager Window” on page 50).

In the navigator pane, the colors of the component icons show their status at a glance.
These color indicators are

! Normal icons, matching the colors of those that appear in the Enterprise Manager,
indicate that a component is functioning normally.

! Red icons indicate that a component is either not functioning or not communicating
with the Control Broker.

! Gray icons indicate that the e*Gate Monitor is not connected to an element’s Control
Broker.

The Message List pane (right) provides the following tabs:

! Alerts — Displays Alert messages (also called “Alerts”) that describe Monitoring
Events needing attention and resolution, for example, warnings regarding
components that have stopped functioning or system parameters exceeding preset
limits.

! Status — Displays status messages that describe conditions other than problems to
be solved, for example, news that components are operating normally.

! Control — Presents a console you can use to send commands (such as start up or
shut down) to the e*Gate component selected in the Navigator pane.

Navigator
pane

Message List
pane

Current logged-on
user name

Current host
name

Title bar

Navigator
Tree

Menu bar Toolbar Warning bar

Chapter 10 Section 10.2
Introduction to e*Gate Monitor e*Gate Monitor Basic Operation

e*Gate Integrator User’s Guide 492 SeeBeyond Proprietary and Confidential

10.2.2 Toolbar Buttons
Table 75 lists and explains the e*Gate Monitor toolbar buttons. See “Menu Bar” on
page 493 for more information on the buttons’ operation.

Table 75 e*Gate Monitor Toolbar

Button Name Function

Open Schema Allows you to open another schema.

Properties Allows you to configure the Message List pane displays.

Notification
Details

Displays the details of the selected message (same as the Details
menu option).

Notification Tips Displays tips related to the selected message.

View or Add
Comments

Allows you to view or to enter comments for the selected message
(same as the Comments menu option).

Filter Changes the date filter for messages.

Observe All
Alerts

Marks all alert messages as “observed.”

Resolve All Alerts Marks all alert messages as “resolved.”

Next Unresolved
Alert

Selects the next unresolved alert message.

Latest Alert
Notification

Selects the most recent alert message (same as the Latest Alert menu
option).

Latest Status
Notification

Selects the most recent status message (same as the Latest Status
menu option).

Launch IQ
Administrator

Starts the IQ Administrator tool, allowing you to view a graphical
representation of IQs and the messages (Events) they contain, and to
edit the properties of an Event or range of Events.

JMS
Administrator

Starts the JMS Administrator tool, allowing you to view the status of
JMS IQ Managers, their Queues and Topics, and messages (Events)
within each Queue or Topic. For complete details, see the
SeeBeyond JMS Intelligent Queue User's Guide.

Help Allows you to access the e*Gate Monitor’s online Help system.

Chapter 10 Section 10.2
Introduction to e*Gate Monitor e*Gate Monitor Basic Operation

e*Gate Integrator User’s Guide 493 SeeBeyond Proprietary and Confidential

10.2.3 Menu Bar
Table 76, starting below, lists the e*Gate Monitor window menus, including the options
contained in each and their functions. For more detailed information about each menu
option, see Chapter 2 of the e*Gate Integrator System Administration and Operations Guide.

Table 76 e*Gate Monitor Menu Commands

Menu Option Function

File Login Displays the e*Gate Open Schema Login dialog box, allowing a
different user to log in to the system; also allows the current
user to log in to a different system.

Open Schema Allows you to open another existing schema; you can only
have one schema open at a time.

Exit Exits the e*Gate Monitor and closes the window (see “To exit
the e*Gate Monitor” on page 494).

Edit Filter Opens the Resolved Alerts Filter dialog box for Alerts or the
Status Filter dialog box for status messages, allowing you to
display only those resolved Alerts or status messages that
originated after a date and time you specify; select the Alerts or
Status tab in the Message List pane to display the desired
dialog box.

Properties Displays the Table Properties Configuration properties dialog
box, allowing you to configure and/or change the Message List
pane display format; also configures the number of messages
to be displayed.

View Details Opens the Issue & Recipient Information dialog box,
displaying detailed information on the selected alert or status
message. Use the Event tab to access information about the
Event that triggered the Alert, and the Recipients tab to view
contact information for users who are notified when the Alert
occurred.

Notification Tips Opens the Help window, providing possible cause and
problem-resolution information on the selected alert message.

Comments Opens the Comments dialog box, allowing you to view
previous comments entered about the selected message and/
or enter and save new comments of your own.

Latest Status Selects the most recent status message issued by the system, in
the Message List pane, under the Status tab.

Latest Alert Selects the most recent alert message issued by the system, in
the Message List pane, under the Alerts tab.

Next Unresolved Alert Selects the next unresolved alert message issued by the
system, in the list under the Alerts tab.

Observe All Alerts Allows you to mark all alert messages as “observed.”

Resolve All Alerts Allows you to mark all alert messages as “resolved.”

Chapter 10 Section 10.2
Introduction to e*Gate Monitor e*Gate Monitor Basic Operation

e*Gate Integrator User’s Guide 494 SeeBeyond Proprietary and Confidential

Note: Menu options also enabled by buttons display, to the left of each option name,
smaller versions of the appropriate buttons.

To exit the e*Gate Monitor

1 On the File menu, click Exit.

2 When you exit, a message appears asking if you want to exit. Click OK to close the
e*Gate Monitor window and exit the program.

Options Flashing Alert
Warning

Enables the word “Alert” to flash in the Warning bar near the
top of the e*Gate Monitor window when there are any
unobserved alerts; acts as a toggle.

Resolved Notification
Message

Enables you to display a pop-up window giving information on
alert resolutions; acts as a toggle.

Connect All Available
Control Brokers

Causes the system to automatically attempt to connect to all
relevant Control Brokers within the system upon opening a
schema; acts as a toggle.

Enable Schema Access
Checking

Acts as a toggle. When selected (in other words, when there is
a check mark in front of this option), access to the schema can
be granted on a role-by-role basis. Once such access has been
granted to one or more roles, all users who do not have a role
that has been granted access are denied access to this schema.

Toolbar Text Applies text labels to all Toolbar buttons; acts as a toggle
between labeled and unlabeled states.

Roll Over Toolbar Removes the shadow boxes around Toolbar buttons; acts as a
toggle between boxed and unboxed states.

Help e*Gate Help Topics Allows you to access the e*Gate Monitor’s online Help system
and to open its Help window; see “Online Help Systems”
on page 73 for details.

About e*Gate Provides e*Gate version information. If you have installed
patches, additional information on the patches is available
here.

Table 76 e*Gate Monitor Menu Commands (Continued)

Menu Option Function

Chapter 10 Section 10.3
Introduction to e*Gate Monitor Controlling e*Gate

e*Gate Integrator User’s Guide 495 SeeBeyond Proprietary and Confidential

10.3 Controlling e*Gate
The e*Gate interactive monitors enable you to control the e*Gate system. The tables
below list the commands that monitors can issue to e*Gate components (see Table 77
and Table 78 below).

Note: The suspend command effectively takes a component “off line” but does not end the
executing process; when the command is received, the component finishes processing
any in-process Events, then goes into a “wait” state (e*Ways will also close any
open connections to external systems).

The activate command brings the component back on-line. Events cannot be
published to suspended components, but will remain in their source location
(another IQ or an external system) until the subscribing component is reactivated or
another subscriber obtains them.

The reload command only affects one or two types of e*Ways for which you must
explicitly reload configuration changes. Most types of e*Way automatically reload
their configuration whenever the configuration is changed, and for them, this
command has no effect.

The basic commands described above can be sent to e*Gate components using either
the stccmd command or the e*Gate Monitor. See “Viewing Alerts Using Command-line
Monitoring” in the e*Gate Integrator Alert and Log File Reference Guide for more
information on sending commands using the text-based monitor stccmd.

Table 77 Monitor Commands

Component Command

All executable components Start, Shutdown, Status, Version

The following components support these commands in addition to the four commands above:

Control Brokers Connect, Disconnect (from current monitor)

Business Object Brokers (BOBs) and e*Ways Reload, Suspend, Activate (resume from suspended
state)

The following components support only these commands:

IQs Detach “unplugs” the IQ from any Collaboration
that is publishing to that IQ. A detached IQ cannot
receive any more Events. Attach reconnects the IQ
to its Collaborations, so that the IQ can resume
receiving Events.

Table 78 Available Control Tab Commands

Command Function

Activate Restart a suspended element.

Debug Activate Debug logging.

Chapter 10 Section 10.3
Introduction to e*Gate Monitor Controlling e*Gate

e*Gate Integrator User’s Guide 496 SeeBeyond Proprietary and Confidential

To issue a command to an e*Gate component using the e*Gate Monitor

1 Use the Navigator to select the component you want to control.

2 Select the Control tab.

3 From the Command list underneath the Console window, select the command you
want to issue.

4 Click Run.

Note: You cannot use an e*Gate monitor to start a Control Broker. The Control Broker
must be running before any commands can be sent to any components. You can,
however, shut down a Control Broker from an e*Gate monitor.

10.3.1 Starting and Shutting Down Components
To start a component

1 In the Navigator, select the component you want to start.

Detach Detach an IQ from the IQ Manager.

Disconnect Disconnect the selected Control Broker.

Reload Reload configuration information (e*Ways
only).

Sequence Query or set the sequence number if the
external application protocol requires it
(e*Ways only).

Shutdown Shut down the selected element.

Shutdown All
Modules

Shut down all elements associated with the
selected Participating Host or Control
Broker.

Shutdown CB Shut down the selected Control Broker.

Start Start the selected element.

Start All Modules Start all elements associated with the
selected Participating Host or Control
Broker.

Status Query the selected element for its status.

Suspend Suspend the selected element’s execution
(but leave the process running).

Update All Status Query the selected Participating Host or
Control Broker and all elements associated
with it for their status.

User Generic command for future use.

Version Display version information for the selected
element.

Table 78 Available Control Tab Commands (Continued)

Command Function

Chapter 10 Section 10.3
Introduction to e*Gate Monitor Controlling e*Gate

e*Gate Integrator User’s Guide 497 SeeBeyond Proprietary and Confidential

2 Select the Control tab.

3 From the Command list underneath the Console window, select Start.

4 Click Run.

To shut down a component

1 In the Navigator, select the component you want to shut down.

2 Select the Control tab.

3 From the Command list underneath the Console window, select Shutdown.

4 Click Run.

When you change a component’s state (for example, starting a down component), the
change should be reflected in the Navigator, and an alert or status message should
appear within a few moments on the appropriate tab.

Note: Components that are configured as “Start automatically” in their properties dialog
boxes (under the Startup tab) will not automatically restart after you shut them
down manually. However, they will restart on schedule if a schedule has been
defined, and there is a call for a scheduled startup.

If you shut down a component that has been configured to start automatically, it
will restart automatically if you use the Enterprise Manager to apply any
configuration changes to the component.

5 Click Run.

To shut down all components

1 In the Navigator, select the Control Broker managing the components you want to
shut down.

2 Select the Control tab.

3 From the Command list underneath the Console window, select Shutdown All
Modules.

4 Click Run.

When you change a component’s state (for example, starting a down component), the
change should be reflected in the Navigator, and an alert or status message should
appear within a few moments on the appropriate tab.

10.3.2 Displaying Status and Version Information
To display a component’s status

1 In the Navigator, select a component.

2 Select the Control tab.

The selected component’s status automatically displays in the Console window.

3 To update the status, select Status from the Command list.

Chapter 10 Section 10.3
Introduction to e*Gate Monitor Controlling e*Gate

e*Gate Integrator User’s Guide 498 SeeBeyond Proprietary and Confidential

4 Click Run.

To display status for all components

1 In the Navigator, select a Control Broker.

2 Select the Control tab.

3 From the Command list, select Update All Status.

4 Click Run.

To display a component’s version information

1 In the Navigator, select a component.

2 Select the Control tab.

3 From the Command list, select Version.

4 Click Run.

Note: You can also display version information for any e*Gate executable file or .dll file
using command-line utilities. Using the --ver flag (important: use two dashes) will
cause any e*Gate executable file to display its version information (for example,
stccb --ver or stcregd --ver). To display version information for a .dll, you must
use the stcutil -vi utility. See “System Testing and Support: stcutil” in the e*Gate
Integrator System Administration and Operations Guide for more
information.

On Windows systems, you can also display .dll version information through
the .dll file’s properties dialog box. See the Windows Help system for more
information about displaying file properties.

10.3.3 Suspending and Activating Components

Caution: Do not try edit an ETD on a machine while it is running an e*Way or BOB that
uses that ETD. Trying to edit an ETD on the same machine that is using the ETD in
a running e*Gate module can destabilize both the Editor and the module.

To activate a component

1 In the Navigator, select the component you want to start.

2 Select the Control tab.

3 From the Command list, select Activate to restart the suspended component.

4 Click Run.

To suspend a component

1 In the Navigator, select the component you want to stop.

2 Select the Control tab.

3 From the Command list, select Suspend to suspend the component.

4 Click Run.

Chapter 10 Section 10.4
Introduction to e*Gate Monitor Non-interactive Monitoring

e*Gate Integrator User’s Guide 499 SeeBeyond Proprietary and Confidential

10.4 Non-interactive Monitoring
In addition to the interactive monitors, e*Gate includes a system that enables you to
notify support staff of system conditions via pager, e-Mail, fax, or printout. You can also
interface with other monitoring agents such as the e*Gate Integrator SNMP Agent or
your own custom-written agents (referred to in this guide as user agents).

10.4.1 Notification Channels
 e*Gate supports notification through the channels shown in Table 79. For a complete
list of notification channels, including the supported operating systems for each
channel, see the e*Gate Integrator Alert Agent User’s Guide.

Using Scripts

Unlike all other notification channels, scripts are executed directly by the Control
Broker; no additional components are required. The script must be supported by the
operating system on the host running the Control Broker that executes the script.

For example, if the Notification is configured to execute a Perl script, Perl must be
installed on the Participating Host that is executing the notification routing. e*Gate
imposes no restrictions of its own on the type of script to be executed.

10.4.2 e*Gate Alert Agent
The e*Gate Alert Agent routes notifications through e-Mail, pager, fax, and printer
channels, and is installed separately from the basic configuration of e*Gate. For more
information about the e*Gate Alert Agent, see the e*Gate Integrator Alert Agent User’s
Guide.

Table 79 Notification Channels and Delivery Systems

Channel Notification Delivered By

Monitor Interactive monitors

e-Mail Alert Agent

Pager Alert Agent

Fax Alert Agent

Printer Alert Agent

SNMP SNMP Agent

Script Note: See “Using Scripts” below this table.

User Agent User agent

Chapter 10 Section 10.5
Introduction to e*Gate Monitor Monitoring Resources and Performance

e*Gate Integrator User’s Guide 500 SeeBeyond Proprietary and Confidential

10.4.3 e*Gate SNMP Agent
The e*Gate system has an additional add-on feature available, the e*Gate SNMP Agent.
This feature routes monitoring information to your existing SNMP-based management
system. For more information about the e*Gate SNMP Agent, see the e*Gate Integrator
SNMP Agent User’s Guide.

10.4.4 Custom User Agents
In future releases of e*Gate, you will be able to create your own custom alert agent to
interface with the e*Gate monitoring system. Contact SeeBeyond for more information.

10.5 Monitoring Resources and Performance
In addition to monitoring component status, e*Gate can monitor system resources and
component performances. Using the Enterprise Manager, you can set a threshold level
for disk usage on the Participating Host, and high and low thresholds for Event
processing for BOBs and e*Ways. When these thresholds are exceeded, the Control
Broker will send an appropriate Monitoring Event to notify you of the condition and
enable you to take appropriate action.

10.5.1 Setting Disk-usage Thresholds
Disk-usage thresholds cause e*Gate to send a Notification when disk usage on a
selected drive or partition exceeds a certain level. You can set different thresholds for
each disk or partition installed on the Participating Host.

To set a disk-usage threshold

1 Start the Enterprise Manager and select the Components tab.

2 In the Navigator, select the host for which you want to set disk-usage thresholds.

3 On the toolbar or Edit menu, click Properties.

The Participating Host Properties dialog box appears.

Chapter 10 Section 10.5
Introduction to e*Gate Monitor Monitoring Resources and Performance

e*Gate Integrator User’s Guide 501 SeeBeyond Proprietary and Confidential

4 Select the Advanced tab, then click Threshold Setup.

The Threshold Setup dialog box appears. See Figure 215.

Figure 215 Threshold Setup

5 Select a disk or partition to monitor and click Change (if no disks appear on the list,
see the Note on page 502).

The Change Disk Threshold dialog box appears (see Figure 216 below).

Figure 216 Change Disk Threshold

Use any
control to
select the disk-
usage
threshold.

Chapter 10 Section 10.5
Introduction to e*Gate Monitor Monitoring Resources and Performance

e*Gate Integrator User’s Guide 502 SeeBeyond Proprietary and Confidential

6 Use the controls to select the disk-usage level at which you want to be notified. The
default, zero usage, instructs the Control Broker not to send any disk-threshold
notifications.

7 Click OK on each dialog box until you return to the Enterprise Manager main
screen.

Note: If no disks appear in the “threshold” list, you must update the schema’s internal
resource table. Log in to the Participating Host, then issue this command at the shell
prompt:

stcregutil -rh RHost -rs Schema -un User -up Pass -ur

where:
RHost is the Registry Host name,
Schema is the schema name, and
User and Pass are the valid e*Gate user name and password.
The -ur flag sets the disk-usage threshold.

For more information about stcregutil and its command arguments, see “Registry Utility:
stcregutil” in the e*Gate Integrator System Administration and Operations Guide.

When disk usage exceeds the threshold you set, the Control Broker issues Monitoring-
Event code 106K1480. See the e*Gate Integrator Alerts and Log File Reference Guide for
more information on Alert notifications.

10.5.2 Disk-space Quota Limitations
In UNIX, the “egate” user, or any user that you use to install the e*Gate system, must
have no disk-quota limitations imposed. e*Gate calculates “available disk space” in
terms of total disk space available on the system, and does no quota checking. If you
impose a disk-quota restriction on the “egate” user, you risk losing data when
IQ-storage demands exceed the user’s quota.

Controlling Disk Space Usage

In e*Gate, you control how much space the system uses on the hard drive in the
following ways:

! Log-file Size and Number — Make sure you set the log files to record only as much
information as you need. Recording excess information only takes up more space
on the disk. Also, be sure to delete or back up log files on a regularly scheduled
basis to make sure they do not accumulate on the disk.

! IQ Data — Be sure to schedule the journaling and expiration (removal) of Events
from IQs on a fast enough basis that unneeded data does not build up in the IQs.

10.5.3 Setting Event-processing Thresholds
Event-processing thresholds enable you to monitor the number of data Events being
processed by components within the e*Gate system. You can use these notifications to
determine whether a component is processing too many or too few Events.

Chapter 10 Section 10.5
Introduction to e*Gate Monitor Monitoring Resources and Performance

e*Gate Integrator User’s Guide 503 SeeBeyond Proprietary and Confidential

Note: The CNTS debug flag must be turned on before the 'status' display in the monitor
will show how many Events a given e*Way/BOB has processed. If the debug level is
also set to TRACE, a count will be written to the log file for every 100 Events
processed.

Each Event-processing component (BOB or e*Way) has independently configurable
thresholds. You must configure each component separately; there is no way to set the
thresholds for more than one component at a time.

To set Event-processing thresholds for an e*Way or a BOB

1 Start the Enterprise Manager and select the Components tab.

2 Using the Navigator, select the component you want to configure.

3 On the toolbar or Edit menu, click Properties.

The selected component’s properties dialog box appears.

4 Select the Advanced tab and then click Thresholds.

The Threshold Properties dialog box appears. The values shown in Figure 217 are
the defaults for both e*Ways and BOBs.

Figure 217 Threshold Properties Dialog Box

5 Under Sampling interval, select the interval at which to sample the number of
Events being processed. For example, to select an interval of ten minutes, enter 10,
then select Minutes from the interval list. The default interval (0) disables Event-
threshold monitoring for this component.

6 Under Inbound Events, enter the upper and lower threshold of Events that this
component receives as input during the selected interval. The values you enter are
the lowest and highest acceptable values; numbers that exceed those values will
generate notifications. For example, if you enter a lower limit of 5, a notification will
be generated if fewer than five Events are processed within the sampling interval.

Chapter 10 Section 10.5
Introduction to e*Gate Monitor Monitoring Resources and Performance

e*Gate Integrator User’s Guide 504 SeeBeyond Proprietary and Confidential

7 Under Outbound Events, enter the upper and lower threshold of Events that this
component publishes as output during the selected interval. The values you enter
are the lowest and highest acceptable values; numbers that exceed those values will
generate notifications. For example, if you enter an upper limit of 500, a notification
will be generated if more than 500 Events are published within the sampling
interval.

8 Click OK until you return to the Enterprise Manager’s main screen.

Note: If you change the Sampling interval to a value greater than zero (thus activating
threshold monitoring for this component), be sure that you do not leave any other
threshold values set to zero unless you wish to use zero as a threshold value. If you
forget to change any of the remaining default “zero” values, you may receive
erroneous notifications.

Once Event-threshold monitoring has been configured, the Control Broker will send the
Events shown in Table 80 below, when thresholds are exceeded.

Note: See the e*Gate Integrator Alert and File Log Reference Guide for more
information on Alert notifications and the e*Gate Integrator System
Administration and Operations Guide for more information on the e*Gate
Monitor feature.

Table 80 Event-threshold Monitoring-Event Codes

Code Meaning

105Ba060 e*Way input below threshold

105Ba070 e*Way input above threshold

105Ca060 e*Way output below threshold

105Ca070 e*Way output above threshold

105Bb060 BOB input below threshold

105Bb070 BOB input above threshold

105Cb060 BOB output below threshold

105Cb070 BOB output above threshold

e*Gate Integrator User’s Guide 505 SeeBeyond Proprietary and Confidential

Chapter 11

e*Gate Java Debugger

The e*Gate Java Debugger is a GUI that allows remote debugging of Java
Collaborations that are run in e*Gate.

11.1 Overview of e*Gate Java Debugger Operation
The e*Gate Integrator includes a source-level debugger for debugging Java
Collaborations running within Multi-Mode e*Ways. The e*Gate Java Debugger can
debug multiple Collaborations running in different threads. It attaches to the Java
Virtual Machine (JVM) using the Remote debugging port number value specified in
the JVM Settings of the configuration file for the Multi-Mode e*Way. You can even
debug an e*Way that fails immediately upon startup, by setting its Suspend option for
debugging setting to Yes. For more information, see “Configuring Multi-Mode e*Ways
with e*Way Connections” on page 477.

The e*Gate Java Debugger provides facilities to:

! Control execution.

! Set and clear breakpoints.

! Go to a specific statement.

! Step into, over, or out of specific blocks of code.

! Stop in a specific class or method.

! Break on a specified exception.

! Save, open, resume, or create new Debugger sessions.

! Run a specified Java class with specified options.

! Attach to a Java Virtual Machine (JVM).

! Add and modify source path and class path parameters.

! Set context options.

! View or modify current values of instance and local variables.

The purpose of this chapter is to help you understand how to run the Debugger and
troubleshoot your Java Collaborations.

To access the Debugger: In e*Gate Monitor, right-click the e*Way and, on the shortcut
menu, click Debugger.

Chapter 11 Section 11.1
e*Gate Java Debugger Overview of e*Gate Java Debugger Operation

e*Gate Integrator User’s Guide 506 SeeBeyond Proprietary and Confidential

Figure 218 e*Gate Java Debugger Window

Breakpoint.
Main window
with a Java
Collaboration
loaded.

Context pane with
this tab active.

Lower-right pane
with Evaluate tab
active.

Chapter 11 Section 11.1
e*Gate Java Debugger Overview of e*Gate Java Debugger Operation

e*Gate Integrator User’s Guide 507 SeeBeyond Proprietary and Confidential

11.1.1 Main Menu
Table 81 lists and describes the commands available from the main menu of the e*Gate
Java Debugger.

Table 81 e*Gate Java Debugger Main Menu

Menu Command Function

File New Debugger Creates a new independent debugger.

Open Opens a Java source file (.java) in the e*Gate Java Debugger.

Resume Session Opens a previously saved debugging session (.ejdb).

Save Session Saves your currently open Java Collaboration with an .ejdb file
extension. You can resume running this debugging session at a later
time.

Run Not used when remote debugging e*Gate Java Collaborations. Runs
a Java program from the e*Gate Java Debugger as a stand-alone
program. When the Run dialog box opens:
1 Enter the Main Class, which is the main class name and program

arguments.
2 JVM Options are populated with -classic. You may add additional

JVM options.
3 Java Home This path should point to the root of your JDK

installation.
4 Click Run.

Detach Detaches your current debugging session from the remote Java
Virtual Machine.

Attach to JVM Attaches to a remotely executing Java virtual machine. Specify the
host and port of the remote Java Virtual Machine. When the
debugger is started from the e*Gate Monitor it automatically
attaches to the host and port of the Multi-Mode e*Way you selected.
The port is set in the configuration file of the e*Way.

Close Detaches from the remote JVM and closes the current debugger

Exit Closes all debugger windows and exits the e*Gate Java Debugger.

Edit Cut Cuts the currently highlighted selection.

Copy Copies the highlighted code to the Clipboard.

Paste Pastes the code that has been copied to the Clipboard at the current
location of the cursor.

Find Opens the Find dialog box. Enter the text string to search on and
click Find Next. You may perform a case-sensitive search by selecting
the Match Case.

Options Opens the Options dialog box, which allows you to change
parameters and options by selecting the Source Path, Class Path, or
Context tabs.

Chapter 11 Section 11.1
e*Gate Java Debugger Overview of e*Gate Java Debugger Operation

e*Gate Integrator User’s Guide 508 SeeBeyond Proprietary and Confidential

Note: Note that the toolbar buttons function as described under the Debug menu
commands of the same names.

Debug Break* Stops all running Collaborations and gives control to the Debugger.

The following also allow you to perform this function:
! On the toolbar, click Break.
! Press the Pause/Break key on the keyboard.

Go* Continues execution of a Collaboration. Execution resumes until a
breakpoint is hit or the Collaboration completes.

The following also allow you to perform this function:
! On the toolbar, click Go
! Press the F5 key on the keyboard.

Step Into* Controls the execution of the Collaboration you are debugging
with single-step entry into any method call. Execution resumes. If
the current line in the Collaboration contains a method call, control
returns to the Debugger upon entry into the method. Otherwise,
control returns to the Debugger at the next line in the current
method.

The following also allow you to perform this function:
! On the toolbar, click Step Into.
! Press the F11 key on the keyboard.

Step Over* Controls the execution of the Collaboration you are debugging
with a single step to the next line in the current method. Execution
resumes, with control returning to the Debugger at the next line in
the current method.

The following also allow you to perform this function:
! On the toolbar, click Step Over.
! Press the F7 key on the keyboard.

Step Out* Continues execution until the current method returns. Execution
resumes until the current method returns or a breakpoint is
encountered.

The following also allow you to perform this function:
! On the toolbar, click Step Out.
! Press the F9 key on the keyboard.

Stop in Class Adds a class to stop at during the debugging.

Stop in Method Adds a method to stop at during the debugging.

Break on
Exception

Adds an exception to break on during the debugging.

Window Cascade Cascades the open windows on your monitor.

Tile Tiles the open windows on your monitor.

Console Returns you to the Console window of the e*Gate Java Debugger.

Table 81 e*Gate Java Debugger Main Menu (Continued)

Menu Command Function

Chapter 11 Section 11.1
e*Gate Java Debugger Overview of e*Gate Java Debugger Operation

e*Gate Integrator User’s Guide 509 SeeBeyond Proprietary and Confidential

11.1.2 Activating the e*Gate Java Debugger
The e*Gate Java debugger is activated from the e*Gate Monitor.

Note: Currently, the only component that has the capability of opening the e*Gate Java
debugger are Multi-Mode e*Ways.

To activate the e*Gate Java debugger

1 With the e*Gate Monitor open, select a Multi-Mode e*Way.

Note: Make sure that the Remote debugging port number is set in the Multi-Mode
e*Way’s configuration file.

2 Right-click the Multi-Mode e*Way, and select Debugger from the shortcut menu.
The e*Gate Java Debugger window opens.

Figure 219 Stop in Method Dialog Box

When the debugger appears, the Stop in Method dialog box as shown in Figure 219 is
displayed. Breakpoints are automatically set on the executeBusinessRules() method of
each Java Collaboration defined in the Multi-Mode e*Way you are debugging. If you
want to debug all Collaborations, simply click OK. Alternatively, you can remove or
disable the breakpoints on selected Collaborations, and then click OK to connect to the
remote Java Virtual Machine (JVM).

Chapter 11 Section 11.1
e*Gate Java Debugger Overview of e*Gate Java Debugger Operation

e*Gate Integrator User’s Guide 510 SeeBeyond Proprietary and Confidential

11.1.3 Using the e*Gate Java Debugger
After loading a Java Collaboration in the e*Gate Java Debugger you are ready to debug
the Collaboration using the Debugger’s features to control the execution of the
Collaborations you are debugging. Use the menu commands and toolbar buttons to
maneuver through the Collaboration.

Controlling execution of the Collaboration

The Debugger provides the following facilities for you to control the execution of
Collaborations you are debugging

Moving Up and Down the Stack

The lower-left (dockable) pane in the e*Gate Java Debugger’s main window contains a
combo-box labeled Context, which displays the current stack of the executing
Collaboration thread.

To move up or down the stack, select an entry in the Context box. When you select a
stack frame, the variables windows are updated to reflect the names and values of the
fields and local variables visible at that scope.

Setting, Clearing, and Disabling Breakpoints

The e*Gate Java Debugger contains file windows which display the source code of each
Collaboration you are debugging. Set a breakpoint in a Collaboration by doing one of
the following:

! Place the cursor on the line on which you want to set a breakpoint and right-click.
Then, on the shortcut menu, click Set Breakpoint.

! Single-click the line number of the line at which you want to set a breakpoint.

If the selected line contains executable code a red dot will appear next to the line
number and a breakpoint is set at that location.

Clear breakpoints in a Collaboration by doing one of the following:

! Place the cursor on the line on which you want to clear a breakpoint and right-click.
Then, on the shortcut menu, click Clear Breakpoint.

! Single-click on the red dot or the line number of the line at which you want to clear
a breakpoint.

The red dot disappears and the breakpoint at that location is cleared.

Disable or enable breakpoints in a Collaboration by doing one of the following:

! Place the cursor on the line on which you want to clear a breakpoint and right-click.
Then, on the shortcut menu, click Disable Breakpoint or Enable Breakpoint as
appropriate.

! Click the red dot to disable a breakpoint (or the white dot to enable it).

The dot turns white if the breakpoint is disabled or red if enabled.

Chapter 11 Section 11.1
e*Gate Java Debugger Overview of e*Gate Java Debugger Operation

e*Gate Integrator User’s Guide 511 SeeBeyond Proprietary and Confidential

Viewing Variables

The Context pane in the Debugger main window is dockable. It contains a tab-pane
with three tabs, labeled this, Locals, and Methods. The first two panes contain tree-
tables that displays the properties of the current object and currently visible local
variables, respectively.

Figure 220 Context Pane with this Tab Selected

! this tab: The properties of the current object are displayed in the this table. If a
property is itself a Java object, the property can be expanded to show its sub-
properties. The this table is updated each time control returns to the Debugger or
when you change the stack location in the Context pane.

! Locals tab: The local variables of the current method are displayed in the Locals
table. If a variable is itself a Java object, the variable can be expanded to show its
sub-properties. The Locals table is updated each time control returns to the
Debugger or when you change the stack location in the Context pane.

! Methods tab: The methods of the current object are displayed in the Methods table.
Double-clicking on a method takes you to the definition of the method in the source
window (if its source code is available). The Methods table is updated each time
control returns to the Debugger or when you change the stack location in the
Context pane.

Chapter 11 Section 11.1
e*Gate Java Debugger Overview of e*Gate Java Debugger Operation

e*Gate Integrator User’s Guide 512 SeeBeyond Proprietary and Confidential

Figure 221 Lower Right Pane with Evaluate Tab Selected

! Evaluate tab: The Evaluate tab is located in the dockable lower-right pane in the
Debugger main window. It contains an editable command line where you can enter
arbitrary Java expressions. The code is evaluated in the context of the current stack
frame. The pane maintains a history of the commands you enter. Use the Up and
Down arrow keys on the keyboard to move backward or forward through the
command buffer.

! Locals tab: There is also a Locals tab located in the dockable lower-right pane in the
Debugger main window. You may also use this tab to view or edit the local
variables that are displayed in the Locals table in the Context pane.

! this tab: There is also a this tab located in the dockable lower-right pane in the
Debugger main window. You may also use this tab to edit the properties of the
current object that are displayed in the this table in the Context pane.

11.1.4 Options Dialog
To set options for the debugger

! On the Edit menu, click Options.

The Options dialog box opens. See Figure 222.

Chapter 11 Section 11.1
e*Gate Java Debugger Overview of e*Gate Java Debugger Operation

e*Gate Integrator User’s Guide 513 SeeBeyond Proprietary and Confidential

Figure 222 Options Dialog Box

Source Path tab. When you start the debugger, the directories and .jar files that contain
the source code of your Java Collaborations and Event Type Definitions are
automatically added to the source path used by the debugger to locate source code. You
can add, edit, or remove source code locations or change the search order using the
Source Path tab of the Options dialog box.

The Class Path tab is not used when remote debugging e*Gate Java Collaborations.

Context tab. By default, the debugger displays Java “Bean” properties of the current
object and of the local variables of the current method. These are Java class methods
that start with get or set. You may also display all of the fields of the current object and
local variables by selecting the Show Fields check box in the Context tab of the Options
dialog box. By default the debugger only breaks if source code for the current method is
available; to force the debugger to stop even if source code is unavailable, select the
Break even if source unavailable check box.

To set or modify breakpoints on all of the methods of a Java class

1 On the Debug menu, click Stop in Class. The Stop in Class dialog box is displayed.
See Figure 223.

Figure 223 Stop in Class Dialog Box

Chapter 11 Section 11.1
e*Gate Java Debugger Overview of e*Gate Java Debugger Operation

e*Gate Integrator User’s Guide 514 SeeBeyond Proprietary and Confidential

2 You can do one or more of the following:

! To add a class to the breakpoint list, click Add and then enter the fully qualified
name of a Java class, such as java.lang.String or java.util.Vector.

Whenever a method of the class is called, control will return to the debugger.

! To modify an existing entry, click Edit.

! To delete an entry, click Remove.

! To enable or disable a breakpoint, click Enable or Disable (or select or clear the
corresponding checkbox).

To set or modify a breakpoint on a specific method of a Java class

1 On the Debug menu, click Stop in Method. The Stop in Class dialog box is
displayed. See Figure 224.

Figure 224 Stop in Method Dialog Box

2 You can do one or more of the following:

! To add methods to the list, click Add and then enter the name of a method with its
fully qualified Java class name, such as java.lang.String.toUpperCase or
java.util.Vector.add.

Whenever the method is called, control will return to the debugger.

! To modify an existing entry, click Edit.

! To delete an entry, click Remove.

! To enable or disable a method breakpoint, click Enable or Disable (or select or clear
the corresponding checkbox).

Chapter 11 Section 11.1
e*Gate Java Debugger Overview of e*Gate Java Debugger Operation

e*Gate Integrator User’s Guide 515 SeeBeyond Proprietary and Confidential

To trap Java exceptions

1 On the Debug menu, click Break on Exception. The Break on Exception dialog box
is displayed. See Figure 225.

Figure 225 Break on Exception Dialog Box

2 You can do one or more of the following:

! To add methods to the list, click Add and then enter the fully qualified name of a
Java exception, such as java.lang.Exception or java.lang.NullPointerException.

Whenever the exception (or an exception derived from it) is thrown, control will
return to the debugger.

! To modify an existing entry, click Edit.

! To delete an entry, click Remove.

! To enable or disable an exception breakpoint, click Enable or Disable (or select or
clear the corresponding checkbox).

e*Gate Integrator User’s Guide 516 SeeBeyond Proprietary and Confidential

Chapter 12

Event Linking and Sequencing (ELS)

In some situations, you want to impose conditions on a set of Events, or process a group
of Events together, or make a decision contingent on the receipt or nonreceipt of all
Events of a certain sort. For Java Collaboration Rules, you can handle such situations
using Event Linking and Sequencing (ELS).

This chapter:

! Explains ELS terminology and concepts.

! Shows you how ELS fits within the rest of the e*Gate system.

! Introduces you to two of the basic triggering criteria and the ELS Wizard.

! Lists and explains the ELS methods of the ELSController interface.

! Leads you through a sample implementation where ELS solves a business problem.

12.1 Learning About ELS
ELS is an optional preprocessor for Java Collaboration Rules. When you first start the
Collaboration Rules Editor, it is turned off; to turn it on, use File command Enable ELS.
You use ELS when you want to sort Events into separate labeled “buckets” and execute
your business rules on a bucket-by-bucket basis rather than an Event-by-Event basis.
The bucket label is called a Link Identifier, or Link ID; Events in the same bucket are
linked.

When you enable ELS in the Collaboration Rules Editor, three placeholders appear:

! retrieveLinkIdentifier() holds the user-written code for setting up buckets.

! isLinkingComplete() passes the contents of a full bucket to be processed by the
executeBusinessRules() section of your Collaboration Rule.

! onExpire() holds user-written code for handling buckets on a timer—for example,
what to do if a bucket still isn’t full after a certain time has elapsed.

ELS uses virtual memory to keep track of the buckets as they are filled and as their
contents age. Because of this, you may need to change the values of certain virtual
memory parameters (such as maximum heap size) according to the data you expect,
so as to avoid running out of virtual memory. When control is passed to
executeBusinessRules() for a certain bucket, the bucket is emptied and the system
frees all virtual memory occupied by the contents of the bucket.

Chapter 12 Section 12.1
Event Linking and Sequencing (ELS) Learning About ELS

e*Gate Integrator User’s Guide 517 SeeBeyond Proprietary and Confidential

12.1.1 How Does ELS Operate Within e*Gate?
ELS reads messages from input IQs—including STC_Standard, SeeBeyond_JMS, and
database IQs—and organizes them in virtual memory according to a user-defined key:
the Link Identifier, also called the Link ID.

Note: To ensure proper processing, take care to use a Link ID key that uniquely identifies
the Event—for example, a Social Security Number, not a firstname-lastname.

Figure 226 illustrates the interaction of the methods of an ELS collaboration.

Figure 226 ELS Processing Model

Overview of a simple ELS-enabled Collaboration

Your Collaboration, col_MyELS, links three Event Types named et_X, et_Y, and et_Z.
After it has been running for a while, a particular bucket (whose LinkID is 101) holds a
total of four Events: three of them (Events X001, X002, and X003) are of Event Type et_X;
none of them are Event Type et_Y; and one of them (Event Z001) is of Event Type et_Z.

Retrieve Event
from queue

Execute
retrieveLinkIdentifier()

Execute
isLinkingComplete()

Linking
Satisfied?

ELS "bucket"
storage

No
Add to bucket by

LinkID
Yes

Execute
executeBusinessRules()

on whole bucket

Chapter 12 Section 12.1
Event Linking and Sequencing (ELS) Learning About ELS

e*Gate Integrator User’s Guide 518 SeeBeyond Proprietary and Confidential

A new Event arrives. Because your user-written code under retrieveLinkIdentifier()
was designed to handle the arrival of any of the three Event Types, the first thing it does
is call the available() method for each inbound Collaboration instance to see if there is a
match on the newly arrived Event. As it happens, the new Event, Z002, matches et_Z.
Next, isLinkingComplete() is called. When this occurs, the Collaboration invokes a
standard method, this.prepareInputData(), which unmarshals the first available Event
for each of the inbound Event Type instances in the Collaboration. See Figure 227.

Figure 227 ELS Unmarshalling of Events

This has the following results:

! For et_X, Event X001 is unmarshalled, and calling available() will now return true.
Subsequent Events of Event Type et_X—in this case, X002—can be accessed by
calling the instance’s next() method.

! For et_Y, there is no data, and calling available() will return false.

! For et_Z, Event Z001 is unmarshalled, and calling available() will now return true.
If next() were called, it would unmarshal Z002.

Bucket Link
Identifier: 101

These two instances,
X001 and Z001, are

automatically
unmarshalled whenever
IsLinkingComplete() is
invoked on this bucket;

likewise for
executeBusinessRules()

These three instances, X002,
X003, and Z002, will remain

marshalled throughout
IsLinkingComplete() and
executeBusinessRules(),

until the get<...>next()
method is invoked on the

appropriate instance (et_X or
et_Z), unmarshalling the next

available Event. Thus, to
access X003, the

Collaboration must invoke
the getet_X.next() method

twice.

ELS
Memory
Space

et_X

et_Z

et_Y

X001 X002

Z001 Z002

X003

Chapter 12 Section 12.1
Event Linking and Sequencing (ELS) Learning About ELS

e*Gate Integrator User’s Guide 519 SeeBeyond Proprietary and Confidential

ELS Operation

Upon the firing of a trigger, ELS instantiates all Events in the bucket and starts the main
processing defined in the Collaboration Rule. Figure 228 shows the ELS process as an
adjunct to a Collaboration hosted by a Multi-Mode e*Way.

Figure 228 ELS in Context With IQs and non-ELS Collaborations

1 e*Ways 1, 2, and 3 publish Event Types et_X, et_Y, and et_Z to iq_1, iq_2, and iq_3
respectively. All three Events have the same key included in their message headers.

2 The Multi-Mode e*Way retrieves et_X, et_Y, and et_Z and checks the Event
headers for matching key values.

3 The ELS memory space holds the Event data until all the Events required to satisfy
the trigger criteria have arrived. The ELS_Java_Collab then passes control to the
business rules, which construct Events of the et_Out Event Type.

4 The Multi-Mode e*Way publishes et_Out Events to the iq_Out IQ.

Multi-Mode e*Way

ELS_Java_Collab

2

4
e*Way 1

Collab_1

iq_Out
et_X

et_Y
e*Way 2

Collab_2

iq_2

1

et_Y

et_X

et_Out

3

ELS
Memory Space

e*Way 3

Collab_3 et_Z

iq_3

iq_1

et_Z

Z001

X001X002

Chapter 12 Section 12.2
Event Linking and Sequencing (ELS) Count-Based Triggers

e*Gate Integrator User’s Guide 520 SeeBeyond Proprietary and Confidential

12.1.2 About the SeeBeyond-supplied ELS Methods
The following methods are supplied through the ELSController interface.

Methods for buckets and their names

! Iterator getLinkIdentifiers() lists all the buckets that have been given names.

! String getCurrentLinkIdentifier() tells you the name of the current bucket.

! boolean isLinkIdentifierExists(aLinkIdentifier) tells you if a certain bucket exists.

Methods for buckets and their contents

! boolean hasHappened(aLinkIdentifier) tells you if the bucket contains anything.

! int getNumberOfMessages(aLinkIdentifier) tells you how full the bucket is.

! int getNumberOfMessages(aLinkIdentifier, aTopicName) tells you how many
Events of a certain Event Type are in this bucket.

! int getNoOfMessagesForInstance(aLinkIdentifier, aInstanceName) tells you how
many Events in the bucket were supplied by a particular instance.

Methods for buckets and their timers

! void setELSExpiration(aLinkIdentifier, aExpirationTime) sets a timer on a bucket.

! long getELSExpiration(aLinkIdentifier) tells you the time setting on a bucket.

! boolean isCurrentELSExpired() tells you if the current bucket is past due.

! boolean isELSExpired(aLinkIdentifier) tells you if a specified bucket is past due.

These methods are described in detail in “ELSController Interface Methods” on
page 589.

12.2 Count-Based Triggers
The getNoOfMessagesForInstance() method and the two getNumberOfMessages()
methods answer the question, “How many Events of a certain key (and possibly other
qualifiers) have been received?” In addition, the hasHappened() method answers the
question, “Has any Event of this key been received?” These four methods are used to
set up triggers based on count.

In the schematic shown in Figure 229, the ELS Collaboration has two source Event
Types, et1 and et2. Instead of just reading two Events from two IQs and executing
business rules on each Event as it arrives, ELS retrieves an Event from each IQ and
determines whether they have the same key. Using ELS, these Events can be processed
together by the same Collaboration, but only when their keys match (as is the case for
the two grey Events with key A).

Chapter 12 Section 12.2
Event Linking and Sequencing (ELS) Count-Based Triggers

e*Gate Integrator User’s Guide 521 SeeBeyond Proprietary and Confidential

Figure 229 ELS Schematic

In this example, each unmatched Event is held in memory until its mate is retrieved.
When the second A Event is received, the Collaboration empties bucket A—in other
words, it sends both of the A Events to the executeBusinessRules() section of the
Collaboration.

The next Event of type et1 is retrieved, and a call to getCurrentLinkIdentifier() reveals
that its key value is E. This value is passed to getNumberOfMessages(E), which
informs the Collaboration that the E bucket contains only one E Event; the Event is
therefore stored in memory until a second E Event is retrieved.

The Events in this example are set up so that the ELSController will detect and pass the
two A Events first, bypass the E event, and then pass the two H Events. If the code has
never called setELSExpiration(), or if it has no code triggered by onExpire() becoming
true, the three unmatched Events (keys E, C, and B) will wait in memory indefinitely.

Static and Dynamic Count

Count-based triggers can be static or dynamic. The example in Figure 229 uses a static
count: When the count reaches a certain predefined value (in this case 2), the contents
of the bucket are emptied into business rules portion of the Collaboration. A more
complex Collaboration could use dynamic count—for example, a value passed in by
an end user for the number of “hits” to display on a Web page, or a value learned by
querying the current content of a cell in a spreadsheet.

et1, key A

et1, key B

et1, key H

et1, key E

et2, key A

et2, key C

et2, key H

Collaboration
using ELS

Chapter 12 Section 12.3
Event Linking and Sequencing (ELS) Timer-Based Triggers

e*Gate Integrator User’s Guide 522 SeeBeyond Proprietary and Confidential

12.3 Timer-Based Triggers
The isCurrentELSExpired() method answers the question, “Has the current key
reached its expiration time?” The isELSExpired() method answers the question,
“Has the specified key reached its expiration time?” These are used to set up triggers
based on timers.

If a timer has been set and the bucket still isn’t full when reaches its expiration time,
control is passed to the user-written code under the onExpire() placeholder. If this block
of code returns Boolean true, the bucket is emptied into the executeBusinessRules
section in the main portion of the Collaboration. However, if there is no code in the
onExpire() section, or if the code always returns Boolean false, the ELSController loops
infinitely. Therefore, any time you use a timer-based trigger, be sure to add some code
under onExpire() that will eventually return true.

Figure 230 shows an example of three buckets with timers.

Figure 230 ELS Buckets With Timers

In Figure 230 above, ELS has pulled seven x1 Events from the IQs and has created three
buckets. This would be the case if the seven messages were scattered with three key
values in ELS subtree. When ELS receives the triggering Event, it looks in the ELS
subtree for the trigger to receive the key for the trigger. If the ELS Collaboration never
receives a key that allows the count-based trigger to fire, eventually one of the timers
will expire. If the expired bucket is detected by a call to isCurrentELSExpired() or
isELSExpired(aLinkIdentifier), the timer can be reset, or any other user-defined action
can occur—for example, the expiration of Bucket1 can be used to start the timer on
Bucket2. If it not caught, then control passes to the block of code under onExpire().

Multi-Mode e*Way

ELS_Java_Collab

ELS Memory Space

Bucket3, Expiration3

Bucket2, Expiration2

Bucket1, Expiration1

x1

x1 x1

x1 x1 x1x1

Chapter 12 Section 12.4
Event Linking and Sequencing (ELS) The ELS Wizard

e*Gate Integrator User’s Guide 523 SeeBeyond Proprietary and Confidential

12.4 The ELS Wizard

12.4.1 About the ELS Wizard
The ELS Wizard is available only when ELS has been enabled. In three steps, it prompts
you to specify a type and value for the Link Identifier, a value for message count, and
an expiration time in milliseconds—in other words, a bucket name, capacity, and
lifetime— and then it generates the corresponding code under the corresponding
placeholders. You can then add to this code or modify it using the ELS methods
supplied by SeeBeyond.

12.4.2 ELS Wizard Operation
The ELS Wizard leads you through the process of creating a Link Identifier (see Figure
231 on page 524), specifying a message count (see Figure 232 on page 525), and then
specifying an expiration time in milliseconds (see Figure 233 on page 526). The code it
generates under the retrieveLinkIdentifier() placeholder uses the field you specified as
a Link Identifier to set a variable named temp. The code it generates under the
isLinkingComplete() placeholder adds calls to getNoOfMessagesForInstance() and
getELSExpiration().

Figure 231 shows the results of dragging the Order field from the Source Events pane
into the Linking Identifier Type box of ELS Wizard Step 1.

Chapter 12 Section 12.4
Event Linking and Sequencing (ELS) The ELS Wizard

e*Gate Integrator User’s Guide 524 SeeBeyond Proprietary and Confidential

Figure 231 ELS Wizard Step 1 - Specify Field for Link Identifier

Figure 232 shows step 2 of the wizard, where you supply a message count for the
instance name. The number you supply will become a parameter in a call to the
getNoOfMessagesForInstance() method for the Link Identifier you specified in step 1,
using the current instance name.

Chapter 12 Section 12.4
Event Linking and Sequencing (ELS) The ELS Wizard

e*Gate Integrator User’s Guide 525 SeeBeyond Proprietary and Confidential

Figure 232 ELS Wizard Step 2 - Specify Message Count

Figure 233 shows step 3 of the wizard, where you supply an expiration time in
milliseconds. The number you supply will become a parameter in a call to the
setELSExpiration method() for the Link Identifier you specified in step 1.

Chapter 12 Section 12.4
Event Linking and Sequencing (ELS) The ELS Wizard

e*Gate Integrator User’s Guide 526 SeeBeyond Proprietary and Confidential

Figure 233 ELS Wizard Step 3 - Specify Expiration

Figure 234 shows the result—notice the new code that the wizard has generated under
the executeBusinessRules(), isLinkingComplete(), and onExpire() placeholders

All these methods are discussed in detail in “ELSController Interface Methods” on
page 589.

Chapter 12 Section 12.4
Event Linking and Sequencing (ELS) The ELS Wizard

e*Gate Integrator User’s Guide 527 SeeBeyond Proprietary and Confidential

Figure 234 Code Generated by the ELS Wizard

Chapter 12 Section 12.5
Event Linking and Sequencing (ELS) Sample Implementation

e*Gate Integrator User’s Guide 528 SeeBeyond Proprietary and Confidential

12.5 Sample Implementation
The following implementation moves you quickly through the key steps of setting up
an ELS-enabled Collaboration.

12.5.1 Overview
The sample implementation supposes that a school requires students to pass two
courses in each of three subjects—Math, English, and Computer Science—before they
are qualified to enroll in advanced studies. The semester grade is withheld until results
are received from all six courses. This sample implementation shows you how to create
a Collaboration that:

! Receives Events of three different types, each using the same simple ETD
(Course.xsc), originating from three file-based e*Ways and published to three
separate IQs.

! Uses ELS to sort incoming Events according to a specified key: StudentNum.

! For each matched set of six incoming Events—two of type et_Math_Grade, two of
type et_English_Grade, and two of type et_CompSci_Grade, and all with the same
key—transforms the data into one outbound Event: et_Semester_Grade.

Where Figure 228 on page 519 showed the ELS Collaboration in the context of other
e*Gate components, Figure 235 focuses on the details of the ELS_Java_Collaboration
itself.

Figure 235 ELS Collaboration

The inbound Event Type instances come from three file-based e*Ways. The three Event
Type instances each use an ETD of the following form:

{ key | value }

M ulti-Mode e*W ay

col_ELS_Combine

ew_Math

Collab_1

iq_Out
et_Math

et_Eng

ew_English

Collab_2 et_Eng

et_M ath

et_Sem

ELS
M emory Space

ew_CompSci

Collab_3 et_CS

iq_CompSci

iq_M ath

X001X002X003X004X005X006X007

Y001Y002Y003Y004Y005Y006Y007

Z001Z002Z003Z004Z005Z006Z007

iq_English

et_C S

file-based
e*W ays

Chapter 12 Section 12.5
Event Linking and Sequencing (ELS) Sample Implementation

e*Gate Integrator User’s Guide 529 SeeBeyond Proprietary and Confidential

When two Events of each Event Type have accumulated, the executeBusinessRules()
method is triggered. This combines the six Events into a single outbound Event whose
ETD has the following form:

{ key | [val_X1 | val_X2 | val_Y1 | val_Y2 | val_Z1 | val_Z2] }

12.5.2 Steps
For this sample implementation, you will perform the following steps:

! Create the schema and define the Event Types

! Build the ETDs.

! Create the Collaboration Rules.

! Create the business rules for the ELS-enabled Collaboration Rule.

In this book, the steps are abbreviated and incomplete. As a training exercise it would
be worthwhile to finish the implementation by creating IQs and e*Ways, building
Collaborations, testing, and promoting the schema.

For complete step-by-step instructions taking you from business problem through
validation and troubleshooting, see the chapter “e*Gate ELS End-to-End Scenario” in
the Creating an End-to-End Scenario with e*Gate Integrator guide.

Creating the schema and defining the Event Types

1 If necessary, log in to Enterprise Manager with Administrator privileges.

2 Create a new schema named School.

3 Click the Event Types folder and create the following four Event Types:

! et_Math_Grade

! et_English_Grade

! et_CompSci_Grade

! et_Semester_Grade

Chapter 12 Section 12.5
Event Linking and Sequencing (ELS) Sample Implementation

e*Gate Integrator User’s Guide 530 SeeBeyond Proprietary and Confidential

Building the ETDs

You will use the Standard ETD wizard twice, to build the following two ETDs:

! Course.xsc for the three Event Types et_Math_Grade, et_English_Grade and
et_CompSci_Grade

! Semester.xsc for the Event Type et_Semester_Grade

1 Edit the properties of et_Math_Grade and define etd_Course as follows:

" Root node name = Course

" Package name = edu.school.credits

" Two nodes, StudentNum and CourseGrade, with the following properties:

Both nodes are end-delimited with the | (pipe) character.

Both nodes keep the defaults minOccurs=1 and maxOccurs=1

2 Compile the ETD and save it in etd\School\Course.xsc. See Figure 236.

Figure 236 School Example: etd\School\.xsc

3 Assign Course.xsc as the ETD for et_English_Grade and et_CompSci_Grade.

4 Edit the properties of et_Semester and define etd_Semester as follows:

" Root node name = Semester

" Package name = edu.school.credits

" The first node, named SSN, has the following properties:

End-delimited with the | (pipe) character.

Keeps the defaults minOccurs=1 and maxOccurs=1

Chapter 12 Section 12.5
Event Linking and Sequencing (ELS) Sample Implementation

e*Gate Integrator User’s Guide 531 SeeBeyond Proprietary and Confidential

" The second node, named SemesterGrades, has the following properties:

End-delimited with the ~ (tilde) character.

minOccurs=0 (in other words, data might not be present)

" maxOccurs=-1 (in other words, there is no upper bound on node repetitions)

5 Compile the ETD and save it in etd\School\Semester.xsc. See Figure 237.

Figure 237 School Example: etd\School\Semester.xsc

After step 5, your schema should look like Figure 238.

Figure 238 School Example: Schema After Creating Event Types and ETDs

Chapter 12 Section 12.5
Event Linking and Sequencing (ELS) Sample Implementation

e*Gate Integrator User’s Guide 532 SeeBeyond Proprietary and Confidential

Creating the Collaboration Rules

You will create five Collaboration Rules.

! cr_Math_In, cr_English_In, and cr_CompSci_In are simple Pass Through rules to
pull the data in.

! cr_Semester_Out is a simple Pass Through rule to push the data out.

! cr_ELS_CombineGrades uses the Java Collaboration Service and is ELS-enabled to
combine and transform the three inbound data streams into the outbound data
stream when all criteria have been met.

1 In Enterprise Manager, click Collaboration Rules and create the following:

! cr_Math_In—Change the Service from Java to Pass Through, with subscription
and publication to et_Math_Grade.

! cr_English_In—Change the Service from Java to Pass Through, with subscription
and publication to et_English_Grade.

! cr_CompSci_In—Change the Service from Java to Pass Through, with
subscription and publication to et_CompSci_Grade.

! cr_Semester_Out—Change the Service from Java to Pass Through, with
subscription and publication to et_Semester_Grade.

2 Create cr_ELS_CombineGrades keeping the Java Collaboration Service.

3 Edit its properties, click the Collaboration Mapping tab, add four instances, and
modify them so that it looks like Figure 239.

Figure 239 School Example: Properties of cr_ELS_CombineGrades

Chapter 12 Section 12.5
Event Linking and Sequencing (ELS) Sample Implementation

e*Gate Integrator User’s Guide 533 SeeBeyond Proprietary and Confidential

4 Click Apply, click the General tab, and in the Collaboration Rules area, click New.

The Java Collaboration Rules Editor opens.

Creating the ELS Business Rules for cr_ELS_CombineGrades

1 On the File menu, click Enable ELS. On the View menu, click Display Code.

2 On the Tools menu, click ELS Wizard. Click Next > to reach Step 1 of the Wizard.
See Figure 240.

Figure 240 School Example: cr_ELS_CombineGrades Before Modification

3 Expand the Root_Math_In instance and drag its StudentNum node into the Field
Name cell for Root_Math_In.

4 Collapse Root_Math_In, expand the Root_English_In instance, and then do the
equivalent operation for both it and the Root_CompSci_In instance. See Figure 241.

Chapter 12 Section 12.5
Event Linking and Sequencing (ELS) Sample Implementation

e*Gate Integrator User’s Guide 534 SeeBeyond Proprietary and Confidential

Figure 241 School Example: Setting the ELS Link Identifier

5 Click Next and then, in Step 2 of the wizard, key in a Message Count of 2 for each of
the three Event Type instances. See Figure 242.

Figure 242 School Example: Setting the ELS Message Count

6 Click Next. In Step 3, leave the Expiration Time blank and click Finish.

Chapter 12 Section 12.5
Event Linking and Sequencing (ELS) Sample Implementation

e*Gate Integrator User’s Guide 535 SeeBeyond Proprietary and Confidential

The Wizard closes after it generates Java code according to the values you specified.

7 In the Business Rules pane, expand the retrieveLinkIdentifier() and
isLinkingComplete() placeholders and see the Wizard-generated Java code under
the this.prepare.InputData() rules. As can be seen in Figure 242, the Wizard used
the values you specified in Step 1 to set up the common Link Identifier.

Figure 243 School Example: Generated Code Under retrieveLinkIdentifier()

At this point, the backbone of the Link Identifier–based ELS code has been created
by the Wizard. If appropriate for a more complex Collaboration, you might add to
this code or modify it. Notice the usefulness of the get<instance-name>.available()
method for testing which instance has received data; however, in most cases using
ELS, you will want to avoid using the get<instance-name>.next() method, since it
consumes the Event before it is processed.

Other methods that are particularly useful within the retrieveLinkIdentifier() and
isLinkingComplete() blocks include the count...() methods for repeating nodes, the
has...() methods for nodes that might be empty. In a more complex Collaboration,
you might also set up additional criteria under the onExpire() section.

In addition to setting up the ELS criteria that must be satisfied before the regular
business rules can be run, you need to add logic under the executeBusinessRules()
block to specify the data transformation that should occur when isLinkingComplete()
returns true.

Creating the Data Transformation Logic Under executeBusinessRules()

Within the executeBusinessRules() block, knowing that this block of code will only be
run when there are two Events stacked up for each of the three inbound Event Type
instances, you will create three while loops—one for each of the instances—to combine
the contents into a single outbound Event Type instance with one key and six values. In
this case, the key represents an identifier for the student and the six values represent the
grades in the six required courses.

1 In the Business Rules pane, expand the executeBusinessRules() block. Also, if
necessary, expand the Root_Math_In and Root_Semester_Out instances.

Chapter 12 Section 12.5
Event Linking and Sequencing (ELS) Sample Implementation

e*Gate Integrator User’s Guide 536 SeeBeyond Proprietary and Confidential

2 Click the retBoolean variable. Then, on the Business Rules toolbar, click var to add a
new variable.

3 Modify the variable as follows:

4 In the Business Rules pane, click the newly created variable to see the code added
after it. Then, on the Business Rules toolbar, click while to add a new while loop.
Edit its Description field to read: While there is Math data.

5 Drag the CourseGrade node to the SemesterGrades node, creating a new rule.
In response to the Select Repetition Instance dialog box, edit the cell for
SemesterGrades to count_Math. In response to the Sibling or Child dialog box,
click Child to indicate that this rule occurs inside the while loop. Edit the
Description field of the new rule to read: Copy Math grade into SemesterGrades.

6 On the Business Rules toolbar, click rule to add a new rule. Edit the Description
field of the new rule to read: Increment counter for Math. In the Rule text box,
enter the following code:

count_Math++

7 Click the while rule (the one you named While there is Math data). Then, on the
Business Rules toolbar, click var to add a new variable. Make the new variable a
sibling of the while loop.

8 Repeat steps 3 through 7, but substitute English for Math.

9 Repeat steps 3 through 6, but substitute CompSci for Math.

See Figure 244 for the completed ELS-enabled Collaboration Rule.

Description Count Math grades

Name count_Math

Type int

Initial Value 0

Chapter 12 Section 12.5
Event Linking and Sequencing (ELS) Sample Implementation

e*Gate Integrator User’s Guide 537 SeeBeyond Proprietary and Confidential

Figure 244 School Example: Completed ELS-enabled Collaboration Rule

10 Compile the completed Collaboration Rule, saving it into a new folder named
collaboration_rules\School\, and then close the Java Collaboration Rules Editor.

11 In the Properties dialog box for cr_ELS_CombineGrades, click OK.

12 Resolve any problems found by the compiler as needed.

If you want to take this sample implementation to completion by creating e*Ways,
building Collaborations, and testing your schema using real data, you may want to
refer to the Creating an End-to-End Scenario with e*Gate Integrator guide for tips on
troubleshooting and validation.

e*Gate Integrator User’s Guide 538 SeeBeyond Proprietary and Confidential

Chapter 13

XA Transaction Processing

This chapter explains the mechanism that is used in e*Gate 4.5 and later to offer XA-
compliant transaction processing with external systems. It summarizes the architecture
and mechanism in place to accomplish the goal of Guaranteed Exactly Once Delivery
(GEOD) with XA, and it provides scenarios in applying the mechanism.

13.1 Introduction
XA compliance is achieved when cooperating software systems contain sufficient logic
to ensure that the transfer of a single unit of data between those systems is neither lost
nor duplicated because of a failure condition in one or more of the cooperating systems.
e*Gate 4.5 and later satisfies this requirement via utilization of the XA Protocol, from
the X/Open Consortium. This vendor-neutral protocol was devised to solve the
following problem:

! How to manage transactions between multiple client application programs and
multiple database systems.

References

Distributed Transaction Processing: The XA Specification. December, 1991. X/Open
Company Limited, Reading, Berkshire, United Kingdom.

Transaction Processing: Concepts and Techniques. 1993. Gray and Reuter, Morgan
Kaufmann Publishers, San Francisco, California.

! http://www.unik.no/~mdbase/OS_doc_cc/user1/10_xa.htm
(URL contents © 1997 Object Design, Inc.)

! http://www.subrahmanyam.com/articles/transactions/NutsAndBoltsOfTP.html
(URL contents © 1999 Subrahmanyam Allamaraju. Cited with author’s consent.)

Chapter 13 Section 13.2
XA Transaction Processing Architectural Review

e*Gate Integrator User’s Guide 539 SeeBeyond Proprietary and Confidential

13.2 Architectural Review
e*Gate manages the publication and subscription of Events (messages) to and from IQs
(internal sources) and external systems. The customized interaction between sources—
the Collaboration—is built by the e*Gate configuration engineer. Collaborations are
executed by BOBs and e*Ways (core modules) using logic in the Collaboration container
within the module. The Collaboration container calls the user-created Collaboration.

According to the X/Open specification of XA, Distributed Transaction Processing
(DTP) systems are composed of three parties:

! Application Programs (AP) - User applications

! Resource Managers (RM) - Managers of the storage of data

! Transaction Managers (TM) - Coordinates activity across Resource Managers in
order to guarantee the integrity of the data across multiple data storage systems

Figure 245 shows the equivalent parties in e*Gate.

Figure 245 e*Gate in a Distributed Transaction Processing (DTP) Context

Oracle, DB2

SeeBeyond
JMS

MQSeries

Oracle, DB2

SeeBeyond
JMS

MQSeries

Data
Stores

(Resource
Managers)

Data
Stores

(Resource
Managers)

Collaboration Container
(Transaction Manager)

Collaboration
(Application Program)

Chapter 13 Section 13.3
XA Transaction Processing Operational Summary

e*Gate Integrator User’s Guide 540 SeeBeyond Proprietary and Confidential

13.3 Operational Summary
The Collaboration container searches the Collaboration for instances of e*Way
Connections and Message Service publications. Each one it finds is treated as a
Resource Manager (RM). The Collaboration establishes a connection with each RM.
After connections are established, the Collaboration executes its recovery logic to
guarantee that no partially complete transactions exist, and then executes its
transaction processing model for each event that triggers a Collaboration.

13.4 Working with XA-enabled Collaborations
For a Collaboration to be XA-enabled, all of its sources and destinations must be e*Way
Connections that support XA, and XA must be activated in all of its e*Way Connections.
If only a subset of the e*Way Connections are XA-compliant, then only those e*Way
Connections will be guaranteed to participate in the two-phase commit process.

At this release, the following e*Way Connections support XA:

! Oracle e*Way Connection

! MQSeries e*Way Connection

! DB2 Universal Database e*Way Connection

! SeeBeyond JMS e*Way Connection

For information on configuring a particular e*Way that supports XA, see the user’s
guide for that e*Way.

To activate XA on a JMS e*Way Connection

1 In the Enterprise Manager GUI, with the Components tab active, open the e*Way
Connections folder and, in the Editor pane (on the right), double-click the e*Way
Connection you want to edit.

A Properties dialog box for the e*Way Connection opens to the General tab.

2 In the e*Way Connection Configuration File area, click Edit.

The Configuration Editor opens. Initially, the General Settings section is active.

3 In the Transaction Type area, click the XA-compliant option button.

4 After you finish setting parameters for the e*Way Connection, close the editor.

5 In the Properties dialog box for the e*Way Connection, click OK.

When all sources and destinations for a Collaboration are XA-compliant e*Way
Connections, the Collaboration container and the external Resource Managers take care
of all other details, such as logging, exchanging prepare, commit and rollback calls,
and managing recovery.

Chapter 13 Section 13.4
XA Transaction Processing Working with XA-enabled Collaborations

e*Gate Integrator User’s Guide 541 SeeBeyond Proprietary and Confidential

Mixing XA-Compliant and XA-Noncompliant e*Way Connections

As noted above, a Collaboration can be XA-enabled if and only if all its sources and
destinations are XA-compliant e*Way Connections. However, XA-related advantages
can accrue to a Collaboration that uses XA-compliant e*Way Connections and also uses
exactly one e*Way Connection that is transactional but not XA-compliant—in other
words, a mostly XA-enabled Collaboration that also connects to an external system that
supports commit/rollback (and is thus transactional) but does not support two-phase
commit (and is thus not XA-compliant).

Sequence of operations when exactly one e*Way Connection is XA-noncompliant

When a After the Controller has already started the XA Transaction Manager (TM), the
sequence should look like the following.

1 A message is received; control passes to the Collaboration.

2 The Collaboration runs the code in its executeBusinessRules() block and returns.

3 XA: The controller causes the XA-enabled Resource Managers (RMs) to Prepare.

4 XA: The XA RMs confirm the Prepare. (This is phase one of the two-phase commit.)

5 non-XA: The controller causes the non-XA RM to Commit.

6 XA: One of the following occurs. (This is phase two of the two-phase commit.)

" Upon learning of a successful Commit from the non-XA RM, the controller
causes the XA RMs to Commit.

" Otherwise, the controller causes the RMs to Rollback.

In this sequence, the only window of potential failure is immediately after a successful
Commit by the non-XA RM at step 5, as follows:

! If the XA-noncompliant system fails, then the controller is unaware of the successful
Commit that occurred at step 5, and so it needlessly causes the XA-compliant
systems to Rollback. But since it can no longer cause the XA-noncompliant system
to Rollback, the controller will attempt to redeliver the message to the XA-
noncompliant system.

! If an XA-compliant system fails, then the controller correctly causes all XA-
compliant systems to Rollback. But since it can no longer cause the XA-
noncompliant system to Rollback, the controller will attempt to redeliver the
message to the XA-noncompliant system.

Note: Collaborations whose sources or destinations include two or more XA-noncompliant
external systems gain no advantage from enabling XA on those e*Way Connections
that support XA.

e*Gate Integrator User’s Guide 542 SeeBeyond Proprietary and Confidential

Appendix A

Java Classes and Methods

Java classes and methods available to all standard ETDs are as follows.
.

Table 82 Java Classes and Methods

For information on
methods of this type...

... refer to:

Alert JCollaboration Class (com.stc.jcsre) on page 599.

Base64 Base64Utils Class (com.stc.eways.util) on page 549.

Collaboration CollabUtils Class (com.stc.eways.util) on page 552;
JCollabController Class (com.stc.common.collabService) on page 573.

Date manipulation SimpleDateFormat class (java.text)—http://java.sun.com/products/jdk/
1.2/docs/api/java/text/SimpleDateFormat.html;
DateUtils Class (com.stc.eways.util) on page 559.

ELS ELSController Interface Methods on page 589.

Encryption ScEncrypt Class (com.stc.common.utils) on page 628.

File FileUtils Class (com.stc.eways.util) on page 570.

Internationalization Character Encoding and Internationalization Methods on page 580.

Logging EGate Class (com.stc.common.collabService) on page 562.

Mainframe Mainframe Class (com.stc.eways.util) on page 616.

Mapping MapUtils Class (com.stc.eways.util) on page 621.

Numeric manipulation BigDecimal class (java.math)—http://java.sun.com/products/jdk/1.2/
docs/api/java/math/BigDecimal.html.

Registry JCollabController Class (com.stc.common.collabService) on page 573.

Sorting Arrays class (java.util)—http://java.sun.com/products/jdk/1.2/docs/api/
java/util/Arrays.html;
QSort Class (com.stc.common.utils) on page 627.

String manipulation String class (java.lang)—http://java.sun.com/products/jdk/1.2/docs/api/
java/lang/String.html;
StringUtils Class (com.stc.eways.util) on page 656.

Subcollaboration Rules JCollabController Class (com.stc.common.collabService) on page 573;
JSubCollabMapInfo Class (com.stc.common.collabService) on
page 603.

Type conversion STCTypeConverter Class (com.stc.eways.util) on page 630

Appendix A Section A.1
Java Classes and Methods Index to Methods for Standard Java-enabled ETDs

e*Gate Integrator User’s Guide 543 SeeBeyond Proprietary and Confidential

A.1 Index to Methods for Standard Java-enabled ETDs
! a2e() on page 616 (in package com.stc.eways.util, class Mainframe)

! asHex() on page 552 (in package com.stc.eways.util, class CollabUtils)

! available() on page 334 (in Java Collaboration Rules Editor GUI)

! base64Decode() on page 549 (in package com.stc.jcsre.Base64, class Base64Utils)

! base64DecodeToByte() on page 550 (in package com.stc.jcsre.Base64, class
Base64Utils)

! byteToBase64String() on page 550 (in package com.stc.jcsre.Base64, class
Base64Utils)

! collabDebug() on page 562 (in package com.stc.common.collabService, class
EGate)

! collabError() on page 563 (in package com.stc.common.collabService, class EGate)

! collabFatal() on page 563 (in package com.stc.common.collabService, class EGate)

! collabInfo() on page 564 (in package com.stc.common.collabService, class EGate)

! collabTrace() on page 565 (in package com.stc.common.collabService, class EGate)

! collabWarning() on page 565 (in package com.stc.common.collabService, class
EGate)

! copyProperties() on page 575 (in package com.stc.common.collabService,
class JCollabController)

! count_MyNode_() on page 329 (in Java Collaboration Rules Editor GUI)

! createSubCollabMapInfo() on page 575 (in package
com.stc.common.collabService, class JCollabController)

! decrypt() on page 628 (in package com.stc.common.utils, interface ScEncrypt)

! doMap() on page 622 (in package com.stc.eways.util, class MapUtils)

! doOffsetTrunc() on page 553 (in package com.stc.eways.util, class CollabUtils)

! e2a() on page 617 (in package com.stc.eways.util, class Mainframe)

! e2S() on page 617 (in package com.stc.eways.util, class Mainframe)

! empty() on page 656 (in package com.stc.eways.util, class StringUtils)

! encrypt() on page 628 (in package com.stc.common.utils, interface ScEncrypt)

! eventSend() on page 599 (in package com.stc.jcsre, class Alerter)

! executeBusinessRules()—see “Methods Presupplied When You Start the Editor”
on page 312.

! flushAllLinkIdentifiers() on page 590 (in package com.stc.common.collabService,
class JCollabController)

! format() on page 559 (in package com.stc.eways.util, class DateUtils)

! get_MyNode_() on page 330 (in Java Collaboration Rules Editor GUI)

Appendix A Section A.1
Java Classes and Methods Index to Methods for Standard Java-enabled ETDs

e*Gate Integrator User’s Guide 544 SeeBeyond Proprietary and Confidential

! getCallingCollaboration() on page 603 (in package com.stc.common.collabService,
class JSubCollabMapInfo)

! getClassFullPath() on page 604 (in package com.stc.common.collabService,
class JSubCollabMapInfo)

! getClassName() on page 605 (in package com.stc.common.collabService,
class JSubCollabMapInfo)

! getCollaborationName() on page 576 (in package com.stc.common.collabService,
class JCollabController)

! getCtlFileFullPath() on page 605 (in package com.stc.common.collabService,
class JSubCollabMapInfo)

! getCtlFileName() on page 606 (in package com.stc.common.collabService,
class JSubCollabMapInfo)

! getCurrentLinkIdentifier() on page 590 (in package
com.stc.common.collabService, class JCollabController)

! getEgateBaseDirectory() on page 576 (in package com.stc.common.collabService,
class JCollabController)

! getELSExpiration() on page 591 (in package com.stc.common.collabService,
class ELSController)

! getEventTypeDefinition() on page 607 (in package com.stc.common.collabService,
class JSubCollabMapInfo)

! getEventTypeDefinitionPath() on page 607 (in package
com.stc.common.collabService, class JSubCollabMapInfo)

! getIncomingEncoding() on page 584 (in package com.stc.common.collabService,
class JCollabController)

! getInputData() on page 608 (in package com.stc.common.collabService,
class JSubCollabMapInfo)

! getInputTopicName() on page 609 (in package com.stc.common.collabService,
class JSubCollabMapInfo)

! getLinkIdentifiers() on page 592 (in package com.stc.common.collabService,
class JCollabController)

! getMarshalEncoding() on page 584 (in package com.stc.common.collabService,
class JCollabController)

! getNoOfMessagesForInstance() on page 593 (in package
com.stc.common.collabService, class JCollabController)

! getNumberOfMessages() on page 593 (in package com.stc.common.collabService,
class JCollabController)

! getOutgoingEncoding() on page 585 (in package com.stc.common.collabService,
class JCollabController)

! getOutputData() on page 609 (in package com.stc.common.collabService,
class JSubCollabMapInfo)

Appendix A Section A.1
Java Classes and Methods Index to Methods for Standard Java-enabled ETDs

e*Gate Integrator User’s Guide 545 SeeBeyond Proprietary and Confidential

! getParentReferenceETD() on page 610 (in package com.stc.common.collabService,
class JSubCollabMapInfo)

! getParentReferenceInstanceName() on page 611 (in package
com.stc.common.collabService, class JSubCollabMapInfo)

! getPropertyNames() on page 577 (in package com.stc.common.collabService,
class JCollabController)

! getRuleName() on page 611 (in package com.stc.common.collabService,
class JSubCollabMapInfo)

! getUnmarshalEncoding() on page 585 (in package com.stc.common.collabService,
class JCollabController)

! has_MyNode_() on page 331 (in Java Collaboration Rules Editor GUI)

! hasHappened() on page 594 (in package com.stc.common.collabService,
class JCollabController)

! invoke() on page 578 (in package com.stc.common.collabService,
class JCollabController)

! isCurrentELSExpired() on page 595 (in package com.stc.common.collabService,
class JCollabController)

! isELSExpired() on page 595 (in package com.stc.common.collabService,
class JCollabController)

! isFlushMode() on page 596 (in package com.stc.common.collabService,
class JCollabController)

! isLinkIdentifierExists() on page 596 (in package com.stc.common.collabService,
class JCollabController)

! isLinkingComplete() on page 597 (in package com.stc.common.collabService,
class JCollabController)

! isManualPublish() on page 612 (in package com.stc.common.collabService,
class JSubCollabMapInfo)

! isMonkDatePattern() on page 554 (in package com.stc.eways.util, class CollabUtils)

! isPublisher() on page 613 (in package com.stc.common.collabService,
class JSubCollabMapInfo)

! isSubCollaboration() on page 579 (in package com.stc.common.collabService,
class JCollabController)

! isTrigger() on page 613 (in package com.stc.common.collabService,
class JSubCollabMapInfo)

! marshal() on page 335 (in Java Collaboration Rules Editor GUI)

! next() on page 336 (in Java Collaboration Rules Editor GUI)

! onExpire() on page 597 (in package com.stc.common.collabService,
class JCollabController)

! padCenter() on page 657 (in package com.stc.eways.util, class StringUtils)

Appendix A Section A.1
Java Classes and Methods Index to Methods for Standard Java-enabled ETDs

e*Gate Integrator User’s Guide 546 SeeBeyond Proprietary and Confidential

! padLeft() on page 658 (in package com.stc.eways.util, class StringUtils)

! padRight() on page 659 (in package com.stc.eways.util, class StringUtils)

! parseMap() on page 623 (in package com.stc.eways.util, class MapUtils)

! publications() on page 337 (in Java Collaboration Rules Editor GUI)

! qsort() on page 627 (in package com.stc.common.utils, interface QSort)

! rawInput() on page 338 (in Java Collaboration Rules Editor GUI)

! readBytes() on page 570 (in package com.stc.eways.util, class FileUtils)

! readMap() on page 624 (in package com.stc.eways.util, class MapUtils)

! readProperty() on page 339 (in Java Collaboration Rules Editor GUI)

! readString() on page 570 (in package com.stc.eways.util, class FileUtils)

! receive() on page 341 (in Java Collaboration Rules Editor GUI)

! renderMap() on page 625 (in package com.stc.eways.util, class MapUtils)

! reset() on page 342 (in Java Collaboration Rules Editor GUI)

! retrieveLinkIdentifier() on page 598 (in package com.stc.common.collabService,
class JCollabController)

! retrieveRegistryFile() on page 580 (in package com.stc.common.collabService,
class JCollabController)

! send() on page 343 (in Java Collaboration Rules Editor GUI)

! set_MyNode_() on page 332 (in Java Collaboration Rules Editor GUI)

! setELSExpiration() on page 598 (in package com.stc.common.collabService,
class JCollabController)

! setIncomingEncoding() on page 586 (in package com.stc.common.collabService,
class JCollabController)

! setInstanceMap() on page 614 (in package com.stc.common.collabService,
class JSubCollabMapInfo)

! setMarshalEncoding() on page 587 (in package com.stc.common.collabService,
class JCollabController)

! setOutgoingEncoding() on page 587 (in package com.stc.common.collabService,
class JCollabController)

! setUnmarshalEncoding() on page 588 (in package com.stc.common.collabService,
class JCollabController)

! sprintf() on page 555 (in package com.stc.eways.util, class CollabUtils)

! string2Base64() on page 551 (in package com.stc.jcsre.Base64, class Base64Utils)

! subscriptions() on page 344 (in Java Collaboration Rules Editor GUI)

! swapInt() on page 618 (in package com.stc.eways.util, class Mainframe)

! swapLong() on page 619 (in package com.stc.eways.util, class Mainframe)

! swapShort() on page 619 (in package com.stc.eways.util, class Mainframe)

Appendix A Section A.1
Java Classes and Methods Index to Methods for Standard Java-enabled ETDs

e*Gate Integrator User’s Guide 547 SeeBeyond Proprietary and Confidential

! timeStamp() on page 560 (in package com.stc.eways.util, class DateUtils)

! toBoolean() on page 632 (in package com.stc.eways.util, class STCTypeConverter)

! toBooleanPrimitive() on page 631 (in package com.stc.eways.util,
class STCTypeConverter)

! toByte() on page 635 (in package com.stc.eways.util, class STCTypeConverter)

! toByteArray() on page 636 (in package com.stc.eways.util,
class STCTypeConverter)

! toBytePrimitive() on page 634 (in package com.stc.eways.util,
class STCTypeConverter)

! toCharacter() on page 639 (in package com.stc.eways.util,
class STCTypeConverter)

! toCharPrimitive() on page 638 (in package com.stc.eways.util,
class STCTypeConverter)

! toDouble() on page 642 (in package com.stc.eways.util, class STCTypeConverter)

! toDoublePrimitive() on page 640 (in package com.stc.eways.util,
class STCTypeConverter)

! toFloat() on page 644 (in package com.stc.eways.util, class STCTypeConverter)

! toFloatPrimitive() on page 643 (in package com.stc.eways.util,
class STCTypeConverter)

! toHex() on page 556 (in package com.stc.eways.util, class CollabUtils)

! toInteger() on page 647 (in package com.stc.eways.util, class STCTypeConverter)

! toIntegerPrimitive() on page 646 (in package com.stc.eways.util,
class STCTypeConverter)

! toJavaDatePattern() on page 556 (in package com.stc.eways.util, class CollabUtils)

! toLong() on page 650 (in package com.stc.eways.util, class STCTypeConverter)

! toLongPrimitive() on page 648 (in package com.stc.eways.util,
class STCTypeConverter)

! toShort() on page 652 (in package com.stc.eways.util, class STCTypeConverter)

! toShortPrimitive() on page 651 (in package com.stc.eways.util,
class STCTypeConverter)

! toString() on page 653 (in package com.stc.eways.util, class STCTypeConverter)

! topic() on page 345 (in Java Collaboration Rules Editor GUI)

! traceln() on page 566 (in package com.stc.common.collabService, class EGate)

! transformDate() on page 560 (in package com.stc.eways.util, class DateUtils)

! trimBoth() on page 660 (in package com.stc.eways.util, class StringUtils)

! trimLeft() on page 660 (in package com.stc.eways.util, class StringUtils)

! trimRight() on page 661 (in package com.stc.eways.util, class StringUtils)

Appendix A Section A.1
Java Classes and Methods Index to Methods for Standard Java-enabled ETDs

e*Gate Integrator User’s Guide 548 SeeBeyond Proprietary and Confidential

! uniqueId() on page 557 (in package com.stc.eways.util, class CollabUtils)

! unmarshal() on page 346 (in Java Collaboration Rules Editor GUI)

! userInitialize()—see “Methods Presupplied When You Start the Editor” on
page 312.

! userTerminate()—see “Methods Presupplied When You Start the Editor” on
page 312.

! write() on page 571 (in package com.stc.eways.util, class FileUtils)

! writeMap() on page 626 (in package com.stc.eways.util, class MapUtils)

! writeProperty() on page 347 (in Java Collaboration Rules Editor GUI)

For the Business Rules methods, see Methods Presupplied When You Start the Editor
on page 312.

Note: Additional methods are available to ETDs created by specialized ETD builders.
For example, an ETD created by the IDocWizard contains methods specific to SAP
implementations. For a list of the methods for a specific e*Way or ETD builder, see
the user’s guide for the corresponding e*Way, ETD builder library, or toolkit.

Appendix A Section A.2
Java Classes and Methods Base64Utils Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 549 SeeBeyond Proprietary and Confidential

A.2 Base64Utils Class (com.stc.eways.util)
The SeeBeyond class com.stc.eways.util.Base64Utils extends SeeBeyond class
com.stc.jcsre.Base64 to provide the following public methods for working with
Multipurpose Internet Mail Extension (MIME) Base64 encodings:

! base64Decode() on page 549

! base64DecodeToByte() on page 550

! byteToBase64String() on page 550

! string2Base64() on page 551

References

! http://www.w3.org/Protocols/rfc1341/5_Content-Transfer-Encoding.html

base64Decode()

The two base64Decode() methods are provided in the Base64Utils class, supplied in
SeeBeyond class com.stc.jcsre.Base64 (via com.stc.eways.util.Base64Utils):

package com.stc.eways.util;

public class Base64Utils

extends com.stc.jcsre.Base64

Syntax

public static java.lang.String Base64Utils.base64Decode(
byte[] _bytes)

public static java.lang.String Base64Utils.base64Decode(
java.lang.String _str)

Description

Decodes a byte array or string supplied in MIME Base64-encoded format and returns
the decoded data as a string. (Compare base64DecodeToByte() on page 550.)

Parameters

Return Type

java.lang.String

Throws

java.lang.Exception—thrown if the input byte array or text string cannot be decoded.

Name Type Description

_bytes byte[] The array of bytes to be decoded.

_str java.lang.String The data to be decoded.

Appendix A Section A.2
Java Classes and Methods Base64Utils Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 550 SeeBeyond Proprietary and Confidential

base64DecodeToByte()

The base64DecodeToByte() method is provided in the Base64Utils class, supplied in
SeeBeyond class com.stc.jcsre.Base64 (via com.stc.eways.util.Base64Utils):

package com.stc.jcsre;

public class Base64Utils

extends com.stc.jcsre.Base64

Syntax

public static byte[] base64DecodeToByte(java.lang.String data)

Description

Decodes a string supplied in MIME Base64-encoded format and returns the decoded
data as a byte array. (Compare base64Decode() on page 549.)

Parameters

Return Type

byte[]—in other words, an array of bytes.

Throws

java.io.IOException—thrown if there are input/output errors.

byteToBase64String()

The byteToBase64() method is provided in the Base64Utils class, supplied in
SeeBeyond class com.stc.jcsre.Base64 (via com.stc.eways.util.Base64Utils):

package com.stc.jcsre;

public class Base64Utils

extends com.stc.jcsre.Base64

Syntax

public static java.lang.String byteToBase64String(byte[] data)

Description

Encodes a byte array into MIME Base64 encoding and returns the encoded data as a
text string. (Compare string2Base64() on page 551.)

Name Type Description

data java.lang.String The data to be decoded.

Appendix A Section A.2
Java Classes and Methods Base64Utils Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 551 SeeBeyond Proprietary and Confidential

Parameters

Return Type

java.lang.String

Throws

java.io.IOException—thrown if there are input/output errors.

string2Base64()

The two string2Base64() methods are provided in the Base64Utils class, supplied in
SeeBeyond class com.stc.jcsre.Base64 (via com.stc.eways.util.Base64Utils):

package com.stc.eways.util;

public class Base64Utils

extends com.stc.jcsre.Base64

Syntax

public static byte[] string2Base64(byte[] _bytes)

public static java.lang.String string2Base64(java.lang.String _str)

Description

Encodes a byte array or text string into MIME Base64 encoding and returns the encoded
data in the same data type. (Compare byteToBase64String() on page 550.)

Parameters

Return Types

bytes[]—returned when the input argument is a byte array.

java.lang.String—returned when the input argument is a text string.

Throws

java.lang.Exception—thrown if the input text string cannot be encoded.

Name Type Description

data byte[] The array of bytes to be encoded.

Name Type Description

_bytes byte[] The array of bytes to be encoded.

_str java.lang.String The text string to be encoded.

Appendix A Section A.3
Java Classes and Methods CollabUtils Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 552 SeeBeyond Proprietary and Confidential

A.3 CollabUtils Class (com.stc.eways.util)
The SeeBeyond class com.stc.eways.util.CollabUtils provides the following public
methods:

! asHex() on page 552

! doOffsetTrunc() on page 553

! isMonkDatePattern() on page 554

! sprintf() on page 555

! toHex() on page 556

! toJavaDatePattern() on page 556

! uniqueId() on page 557

asHex()

Access to the five asHex() methods are provided via the CollabUtils class, supplied in
the SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class CollabUtils

Syntax

public java.lang.String CollabUtils.asHex(byte _b)

public java.lang.String CollabUtils.asHex(short _s)

public java.lang.String CollabUtils.asHex(int _i)

public java.lang.String CollabUtils.asHex(long _l)

public java.lang.String CollabUtils.asHex(bytes _bytes,
int _perline)

Description

The first four methods converts the input (byte, short, int, or long) into a text string of
(two, four, eight, or sixteen) hexadecimal digits. The fifth method converts a byte array
into a list of hexadecimal numbers.

Appendix A Section A.3
Java Classes and Methods CollabUtils Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 553 SeeBeyond Proprietary and Confidential

Parameter

Return Type

java.lang.String

Throws

None.

doOffsetTrunc()

Access to the doOffsetTrunc() method is provided via the CollabUtils class, supplied
in the SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class CollabUtils

Syntax

public java.lang.String CollabUtils.doOffsetTrunc(int _offset,
int _trunc, java.lang.String _str)

Description

Creates a substring from the input string by skipping its first _offset characters and then
truncating the result to _trunc characters altogether.

Name Type Description

_b byte Single byte to be converted to a 2-
byte hex string.

_s short Short integer to be converted to a 4-
byte hex string.

_i int Full integer to be converted to an 8-
byte hex string.

_l long Long integer to be converted to a
16-byte hex string.

_bytes byte[] Array of bytes to be converted to
hexadecimal representation

_perLine int A count of the number of bytes to
emit before writing out a newline.

Appendix A Section A.3
Java Classes and Methods CollabUtils Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 554 SeeBeyond Proprietary and Confidential

Parameters

Return Type

java.lang.String

Throws

None.

isMonkDatePattern()

Access to the isMonkDatePattern() method is provided via the CollabUtils class,
supplied in the SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class CollabUtils

Syntax

public boolean CollabUtils.isMonkDatePattern(
java.lang.String _pattern)

Description

Inquires whether the input string is a valid C (or, equivalently, Monk) date format.

Parameter

Return Type

boolean

Returns true if the specified string is a valid date pattern; otherwise returns false.

Name Type Description

_offset int Number of initial characters to skip.
Can be any value, including zero.
If _offset exceeds the length of _str,
then the null string is output.

_trunc int Number of characters to output.
If _trunc exceeds the length of the
beheaded string, then only the
beheaded string is returned—in
other words, no padding is done.

_str java.lang.String Text string to be beheaded and/or
curtailed.

Name Type Description

_pattern java.lang.String The string to be evaluated.

Appendix A Section A.3
Java Classes and Methods CollabUtils Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 555 SeeBeyond Proprietary and Confidential

Throws

None.

sprintf()

Access to the two sprintf() methods is provided via the CollabUtils class, supplied in
the SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class CollabUtils

Syntax

public static java.lang.String CollabUtils.sprintf(
java.lang.String _pattern,
java.lang.Object _arg)

public static java.lang.String CollabUtils.sprintf(
java.lang.String _pattern,

java.lang.Object[] _args)

Description

Outputs a text string formatted according to the specified pattern, using the specified
argument or arguments.

Parameters

Return Type

java.lang.String

Throws

None.

Name Type Description

_pattern java.lang.String The format specification code; see
“Formatting of Output Text” on
page 662.

_arg java.lang.Object The Java language object to be
formatted into a text string.

_args java.lang.Object[] An array of Java language objects to
be formatted into a text string.

Appendix A Section A.3
Java Classes and Methods CollabUtils Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 556 SeeBeyond Proprietary and Confidential

toHex()

Access to the two toHex() methods is provided via the CollabUtils class, supplied in
the SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class CollabUtils

Syntax

public java.lang.String CollabUtils.toHex(byte[] _bytes)

public java.lang.String CollabUtils.toHex(java.lang.String _str)

Description

Transforms the input byte array or string into a formatted string showing both the
hexadecimal and character representation.

Parameter

Return Type

java.lang.String

Throws

None.

toJavaDatePattern()

Access to the toJavaDatePattern() method is provided via the CollabUtils class,
supplied in the SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class CollabUtils

Syntax

static java.lang.String CollabUtils.toJavaDatePattern(
java.lang.String _pattern)

Name Type Description

_bytes byte[] Array of bytes to be re-represented
in hex and character format.

_str java.lang.String Text string to be re-represented in
hex and character format.

Appendix A Section A.3
Java Classes and Methods CollabUtils Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 557 SeeBeyond Proprietary and Confidential

Description

Converts a C-language date pattern into a Java date pattern—in other words, a date
pattern suitable for use by the java.text.SimpleDateFormat class.

Parameter

Return Type

java.lang.String

Throws

java.text.ParseException—thrown if the conversion cannot be done.

uniqueId()

Note: For convenience, the uniqueID() method is also provided as an alternate spelling.
uniqueID() and uniqueId() are identical.

Access to the uniqueId() method is provided via the CollabUtils class, supplied in the
SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class CollabUtils

Syntax

public static long CollabUtils.uniqueId()

public static java.lang.String CollabUtils.uniqueId(int _offset,
int _trunc)

Description

Generates a unique identifier, based on system time (including milliseconds). The
java.lang.String version uses the same truncation and shifting as the Monk Unique ID
rule.

Name Type Description

_pattern java.lang.String Date pattern, in Monk format.

Appendix A Section A.3
Java Classes and Methods CollabUtils Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 558 SeeBeyond Proprietary and Confidential

Parameters

Return Types

long—in other words, an integer like 20021231235959999.

java.lang.String—in other words, the current system time, using the format
yyyyMMddHHmmssuuu, using four digits for the year, two digits each for month,
day, hour, minute, and second, and three digits for the milliseconds.

Throws

None.

Name Type Description

_offset int The number of characters to skip from the start of the string.

_trunc int The total number of characters to use from the string.
-1 means keep going to the end, and should be used with
delimited nodes whose length is unknown.

Appendix A Section A.4
Java Classes and Methods DateUtils Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 559 SeeBeyond Proprietary and Confidential

A.4 DateUtils Class (com.stc.eways.util)
The SeeBeyond class com.stc.eways.util.DateUtils provides the following public
methods:

! format() on page 559

! timeStamp() on page 560

! transformDate() on page 560

format()

Access to the format() method is provided via the DateUtils class, supplied in the
SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class DateUtils

Syntax

public java.lang.String DateUtils.format(java.util.Date _date,
java.lang.String _pattern)

Description

Reformats the supplied Date object using the specified pattern.

Parameters

Return Type

java.lang.String

Throws

None.

Name Type Description

_date java.util.Date The Date object to be reformatted.

_pattern java.lang.String A code specifying how to reformat
the Date object; see Table 42, “Date
and Time Format Codes for the
timeStamp Rule” on page 319.

Appendix A Section A.4
Java Classes and Methods DateUtils Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 560 SeeBeyond Proprietary and Confidential

timeStamp()

Access to the timeStamp() method is provided via the DateUtils class, supplied in the
SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class DateUtils

Syntax

public java.lang.String DateUtils.timeStamp(java.lang.String pattern)

Description

Provides a snapshot of the current date and/or time according to the system clock of
the Participating Host, and formatted for output using the specified pattern.

Parameters

Return Type

java.lang.String

Throws

None.

transformDate()

Access to the transformDate() method is provided via the DateUtils class, supplied in
the SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class DateUtils

Syntax

public java.lang.String DateUtils.transformDate(
java.lang.String _date,
java.lang.String _from,
java.lang.String _to)

Description

Reformats the supplied date/timestamp from one representation to another.

Name Type Description

_pattern java.lang.String A code specifying how to format the
date/timestamp; see Table 42, “Date
and Time Format Codes for the
timeStamp Rule” on page 319.

Appendix A Section A.4
Java Classes and Methods DateUtils Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 561 SeeBeyond Proprietary and Confidential

Parameters

Return Type

java.lang.String

Throws

None.

Example

transformDate(“10/31/02”, “%D”, ”%d-%b-%Y”) informs the system that “10/31/02”
is currently in mm/dd/yy format (American style) and is to be transformed into a
format consisting of a two-digit day, a hyphen, an abbreviated month, another hyphen,
and a four-digit year—in other words, “31-Oct-2002”.

For a complete list of date/timestamp format codes, see Table 42, “Date and Time
Format Codes for the timeStamp Rule” on page 319.

Name Type Description

_date java.lang.String The date/timestamp to be reformatted.

_from java.lang.String The current date/timestamp code.

_to java.lang.String The date/timestamp code of the desired
output.

Appendix A Section A.5
Java Classes and Methods EGate Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 562 SeeBeyond Proprietary and Confidential

A.5 EGate Class (com.stc.common.collabService)
The SeeBeyond class com.stc.common.collabService.EGate provides the following
public methods:

! collabDebug() on page 562

! collabError() on page 563

! collabFatal() on page 563

! collabInfo() on page 564

! collabTrace() on page 565

! collabWarning() on page 565

! traceln() on page 566

collabDebug()

Access to the collabDebug() method is provided via the EGate class, supplied in the
SeeBeyond package com.stc.common.collabService:

package com.stc.common.collabService;

public class EGate

Syntax

public static void collabDebug(java.lang.String message)

Description

Adds a trace entry into the log file; an end-of-line is automatically appended after the
entry. The trace entry is shown only if the Logging Level is set to DEBUG and the
Debugging flag is set to TRACE_COLLABSERVICE (COL) in the component’s LOG
properties. See Table 83 on page 566 and Table 84 on page 567.

Parameters

Return Type

None.

Throws

None.

Name Type Description

message java.lang.String Information to write to the log file.

Appendix A Section A.5
Java Classes and Methods EGate Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 563 SeeBeyond Proprietary and Confidential

collabError()

Access to the collabError() method is provided via the EGate class, supplied in the
SeeBeyond package com.stc.common.collabService:

package com.stc.common.collabService;

public class EGate

Syntax

public static void collabError(java.lang.String message)

Description

Adds a trace entry into the log file; an end-of-line is automatically appended after the
entry. The trace entry is shown only if the Logging Level is set to ERROR and the
Debugging flag is set to TRACE_COLLABSERVICE (COL) in the component’s LOG
properties. See Table 83 on page 566 and Table 84 on page 567.

Parameters

Return Type

None.

Throws

None.

collabFatal()

Access to the collabFatal() method is provided via the EGate class, supplied in the
SeeBeyond package com.stc.common.collabService:

package com.stc.common.collabService;

public class EGate

Syntax

public static void collabFatal(java.lang.String message)

Description

Adds a trace entry into the log file; an end-of-line is automatically appended after the
entry. The trace entry is shown only if the Logging Level is set to FATAL and
Debugging flag is set to TRACE_COLLABSERVICE (COL) in the component’s LOG
properties. See Table 83 on page 566 and Table 84 on page 567.

Name Type Description

message java.lang.String Information to write to the log file.

Appendix A Section A.5
Java Classes and Methods EGate Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 564 SeeBeyond Proprietary and Confidential

Parameters

Return Type

None.

Throws

None.

collabInfo()

Access to the collabInfo() method is provided via the EGate class, supplied in the
SeeBeyond package com.stc.common.collabService:

package com.stc.common.collabService;

public class EGate

Syntax

public static void collabInfo(java.lang.String message)

Description

Adds a trace entry into the log file; an end-of-line is automatically appended after the
entry. The trace entry is shown only if the Logging Level is set to INFO and the
Debugging flag is set to TRACE_COLLABSERVICE (COL) in the component’s LOG
properties. See Table 83 on page 566 and Table 84 on page 567.

Parameters

Return Type

None.

Throws

None.

Name Type Description

message java.lang.String Information to write to the log file.

Name Type Description

message java.lang.String Information to write to the log file.

Appendix A Section A.5
Java Classes and Methods EGate Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 565 SeeBeyond Proprietary and Confidential

collabTrace()

Access to the collabTrace() method is provided via the EGate class, supplied in the
SeeBeyond package com.stc.common.collabService:

package com.stc.common.collabService;

public class EGate

Syntax

public static void collabTrace(java.lang.String message)

Description

Adds a trace entry into the log file; an end-of-line is automatically appended after the
entry. The trace entry is shown only if the Logging Level is set to TRACE and the
Debugging flag is set to TRACE_COLLABSERVICE (COL) in the component’s LOG
properties. See Table 83 on page 566 and Table 84 on page 567.

Parameters

Return Type

None.

Throws

None.

collabWarning()

Access to the collabWarning() method is provided via the EGate class, supplied in the
SeeBeyond package com.stc.common.collabService:

package com.stc.common.collabService;

public class EGate

Syntax

public static void collabWarning(java.lang.String message)

Description

Adds a trace entry into the log file; an end-of-line is automatically appended after the
entry. The trace entry is shown only if the Logging Level is set to WARNING and the
Debugging flag is set to TRACE_COLLABSERVICE (COL) in the component’s LOG
properties. See Table 83 on page 566 and Table 84 on page 567.

Name Type Description

message java.lang.String Information to write to the log file.

Appendix A Section A.5
Java Classes and Methods EGate Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 566 SeeBeyond Proprietary and Confidential

Parameters

Return Type

None.

Throws

None.

traceln()

Access to the two traceln() methods is provided via the EGate class, supplied in the
SeeBeyond package com.stc.common.collabService:

package com.stc.common.collabService;

public class EGate

Syntax

public static void traceln(long tid, long event,
java.lang.String message)

public static void traceln(long tid, long event,
byte[] blob, java.lang.String tracestr)

Description

Adds a trace entry into the log file; an end-of-line is automatically appended after the
entry. The trace entry is shown only if the Trace ID (debugging flag) is active and the
Trace Event (Logging Level) is in effect at run time. See Table 83.

Name Type Description

message java.lang.String Information to write to the log file.

Table 83 Trace Events (Logging Levels)

Logging
Level

TRACE_EVENT_...

...TRACE ...DEBUG ...INFORMATION ...WARNING ...LOGERROR ...FATAL

TRACE shown shown shown shown shown shown

DEBUG not shown shown shown shown shown shown

INFO not shown not shown shown shown shown shown

WARNING not shown not shown shown shown shown shown

ERROR not shown not shown shown shown shown shown

FATAL not shown not shown shown shown shown shown

NONE not shown not shown shown shown shown shown

Appendix A Section A.5
Java Classes and Methods EGate Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 567 SeeBeyond Proprietary and Confidential

Parameters

Name Type Description

tid long Debugging flag (trace ID), such as TRACE_EWAY.
For a complete list of trace IDs, see Table 84 below.

event long Trace Event, such as TRACE_EVENT_INFORMATION.
For a complete list of Trace Events, see Table 85 on
page 569.

message java.lang.String Information to write to the log file.

blob byte[] Status or error code generated by the operating system or
the application generating the Event.

tracestr java.lang.String Text string to write to the log file.

Table 84 Trace ID Parameters (for tid Parameter)

Note: All tid parameters are declared in the following way:
public static final long <traceparmname>

For example:
public static final long TRACE_STCAPIS_VERBOSE

Trace ID Parameter
Logged

as
Explanation

TRACE_VERY_VERBOSE All Verbose type debugging flags.

TRACE_COUNTS (CNTS) Debugging flag / Trace ID: Display from message
counts.

TRACE_GDCOMMON_VERBOSE (COMV) Debugging flag / Trace ID: Verbose display from
SeeBeyond Common utilities.

TRACE_STCAPIS_VERBOSE (APIV) Debugging flag / Trace ID: Verbose display from
e*Gate Core APIs.

TRACE_REGISTRY_VERBOSE (REGV) Debugging flag / Trace ID: Verbose display from
Registry activities.

TRACE_IQ_VERBOSE (IQV) Debugging flag / Trace ID: Verbose display from
Internal Queue activities.

TRACE_DB_VERBOSE (DBV) Debugging flag / Trace ID: Verbose display from
Database activities.

TRACE_IP_VERBOSE (IPV) Debugging flag / Trace ID: Verbose display from
TCPIP activities.

TRACE_MONK_VERBOSE (MNKV) Debugging flag / Trace ID: Verbose display from
Monk utilities.

TRACE_CB_VERBOSE (CBV) Debugging flag / Trace ID: Verbose display from
Control Broker activities.

TRACE_EWAY_VERBOSE (EWYV) Debugging flag / Trace ID: Verbose display from
e*Way activities.

Appendix A Section A.5
Java Classes and Methods EGate Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 568 SeeBeyond Proprietary and Confidential

TRACE_MESSAGE_VERBOSE (MSGV) Debugging flag / Trace ID: Verbose display from
Message activities.

TRACE_COLLABSERVICE_VERBOSE (COLV) Debugging flag / Trace ID: Verbose display from
Collaboration Service activities.

TRACE_APPS_ALL All applications type Debugging flag / Trace ID.

TRACE_CB (CB) Debugging flag / Trace ID: Display from Control
Broker activities.

TRACE_EWAY (EWY) Debugging flag / Trace ID: Display from e*Way
activities.

TRACE_MSGPARSE (MSGP) Debugging flag / Trace ID: Display from Message
Parsing activities.

TRACE_CONFIGURATION (CFG) Debugging flag / Trace ID: Display from
Configuration utilities.

TRACE_STATECHANGE (ST) Debugging flag / Trace ID: Display from State
Transition activities.

TRACE_COLLABSERVICE (COL) Debugging flag / Trace ID: Display from
Collaboration Service activities.

TRACE_LIBS_ALL All libraries type Debugging flag / Trace ID.

TRACE_GDCOMMON (COM) Debugging flag / Trace ID: Display from
SeeBeyond Common utilities.

TRACE_DB (DB) Debugging flag / Trace ID: Display from Database
activities.

TRACE_REGISTRY (REG) Debugging flag / Trace ID: Display from Registry
activities.

TRACE_IQ (IQ) Debugging flag / Trace ID: Display from Internal
Queue activities.

TRACE_STCAPIS (API) Debugging flag / Trace ID: Display from e*Gate
Core APIs.

TRACE_MESSAGE (MSG) Debugging flag / Trace ID: Display from Message
activities.

TRACE_IP (IP) Debugging flag / Trace ID: Display from TCPIP
activities.

TRACE_MONK (MNK) Debugging flag / Trace ID: Display from Monk
utilities.

Table 84 Trace ID Parameters (for tid Parameter) (Continued)

Note: All tid parameters are declared in the following way:
public static final long <traceparmname>

For example:
public static final long TRACE_STCAPIS_VERBOSE

Trace ID Parameter
Logged

as
Explanation

Appendix A Section A.5
Java Classes and Methods EGate Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 569 SeeBeyond Proprietary and Confidential

Return Type

None.

Throws

None.

Table 85 Trace Event Parameters (for event Parameter)

Note: All event parameters are declared in the following way:
public static final long <traceeventparmname>

For example:
public static final long TRACE_EVENT_DEBUG

Trace Event Parameter
Logged

as
Explanation

TRACE_EVENT_ALL Logging level / Trace Event: Select All levels.

TRACE_EVENT_DEBUG (D) Logging level / Trace Event: Active when DEBUG is
selected.

TRACE_EVENT_TRACE (T) Logging level / Trace Event: Active when TRACE is
selected.

TRACE_EVENT_INFORMATION (I) Logging level / Trace Event: INFO is always active.

TRACE_EVENT_WARNING (W) Logging level / Trace Event: WARNING is always
active.

TRACE_EVENT_APIERROR (A) Logging level / Trace Event: Active when ERROR is
selected.

TRACE_EVENT_LOGERROR (E) Logging level / Trace Event: Active when ERROR is
selected. Entry is also placed in System log.

TRACE_EVENT_FATAL (F) Logging level / Trace Event: FATAL is always active.

TRACE_EVENT_ERROR (E) Logging level / Trace Event: Active when ERROR is
selected.

TRACE_APP (EWY) Debugging flag / Trace ID: Display from e*Way
activities.

TRACE_APP_VERBOSE (EWYV) Debugging flag / Trace ID: Verbose display from
e*Way activities.

TRACE_EVENT_PUTINLOGMASK Logging levels / Trace Events which are always
placed into the module log file.

TRACE_EVENT_PUTINSYSLOG Logging levels / Trace Events which makes entries
into the System log file.

Appendix A Section A.6
Java Classes and Methods FileUtils Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 570 SeeBeyond Proprietary and Confidential

A.6 FileUtils Class (com.stc.eways.util)
The SeeBeyond class com.stc.eways.util.FileUtils provides the following public
methods:

! readBytes() on page 570

! readString() on page 570

! write() on page 571

readBytes()

The readBytes() method is provided in the FileUtils class, supplied in SeeBeyond
package com.stc.eways.util (in stcutil.jar):

Syntax

static byte[] readBytes(java.lang.String _fileName)

Description

Reads the contents of the specified file into an array of bytes.

Parameter

Return Type

byte[]—in other words, an array of bytes.

Throws

java.io.IOException—If bytes cannot be read from the specified file.

readString()

The two readString() methods are provided in the FileUtils class, supplied in
SeeBeyond package com.stc.eways.util (in stcutil.jar):

Syntax

static java.lang.String readString(java.lang.String _fileName)

static java.lang.String readString(java.lang.String _fileName,
java.lang.String _encoding)

Name Type Description

_fileName java.lang.String Name of the file to be read.

Appendix A Section A.6
Java Classes and Methods FileUtils Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 571 SeeBeyond Proprietary and Confidential

Description

Reads the contents of the specified file into a Java string (Unicode). The first method
(with only a single parameter) assumes the default character encoding; the second
method (with two parameters) allows you to specify the encoding.

Parameters

Return Type

java.lang.String

Throws

java.io.IOException—If the specified file cannot be read.

write()

The three write() methods are provided in the FileUtils class, supplied in SeeBeyond
package com.stc.eways.util (in stcutil.jar):

Syntax

static void write(java.lang.String _fileName, byte[] _bytes)

static void write(java.lang.String _fileName,
java.lang.String _string)

static void write(java.lang.String _fileName,
java.lang.String _string,

java.lang.String _encoding)

Description

Writes to the specified file. The first method writes a specified byte array to a file; the
second method writes a specified string to a file and assumes the default character
encoding; the third method (with three parameters) allows you to specify the encoding.

Name Type Description

_fileName java.lang.String Name of the file to be read.

_encoding java.lang.String The character encoding used in the
file being read.

Basic encoding sets are contained in rt.jar; extended encoding
sets are contained in i18n.jar. For a complete list, see http://
java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html

Appendix A Section A.6
Java Classes and Methods FileUtils Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 572 SeeBeyond Proprietary and Confidential

Parameters

Return Type

None.

Throws

java.io.IOException—If the system cannot write the bytes or string to the specified file.

Name Type Description

_fileName java.lang.String Name of the file to be written.

_bytes byte[] Array of bytes to be written.

_string java.lang.String String to be written

_encoding java.lang.String The character encoding used in the
file being written.

Basic encoding sets are contained in rt.jar; extended encoding
sets are contained in i18n.jar. For a complete list, see http://
java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html

Appendix A Section A.7
Java Classes and Methods JCollabController Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 573 SeeBeyond Proprietary and Confidential

A.7 JCollabController Class
(com.stc.common.collabService)

The SeeBeyond class com.stc.common.collabService.JCollabController provides a
wide variety of methods, in three categories.

General system methods:

" copyProperties() on page 575

" createSubCollabMapInfo() on page 575

" getCollaborationName() on page 576

" getEgateBaseDirectory() on page 576

" getModuleName() on page 577

" getPropertyNames() on page 577

" invoke() on page 578

" isSubCollaboration() on page 579

" retrieveRegistryFile() on page 580

Character encoding/Internationalization methods:

" getIncomingEncoding() on page 584

" getMarshalEncoding() on page 584

" getOutgoingEncoding() on page 585

" getUnmarshalEncoding() on page 585

" setIncomingEncoding() on page 586

" setMarshalEncoding() on page 587

" setOutgoingEncoding() on page 587

" setUnmarshalEncoding() on page 588

" getIncomingEncoding() on page 584

ELS methods (accessed via the ELSController interface; see “ELSController Interface
Methods” on page 589)

! ELS methods for querying Link Identifiers:

" getCurrentLinkIdentifier() on page 590

" getLinkIdentifiers() on page 592

" isLinkIdentifierExists() on page 596

" isLinkingComplete() on page 597

" retrieveLinkIdentifier() on page 598

Appendix A Section A.7
Java Classes and Methods JCollabController Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 574 SeeBeyond Proprietary and Confidential

! ELS methods for querying message count:

" hasHappened() on page 594

" getNumberOfMessages() on page 593

" getNoOfMessagesForInstance() on page 593

! ELS methods for setting and getting timers:

" setELSExpiration() on page 598

" getELSExpiration() on page 591

" isCurrentELSExpired() on page 595

" isELSExpired() on page 595

" onExpire() on page 597

A.7.1 General System Control Methods
The SeeBeyond class com.stc.common.collabService.JCollabController provides the
following public methods for querying the system, querying and controlling the
Subcollaboration Rule environment, and retrieving files from the registry:

! copyProperties() on page 575

! createSubCollabMapInfo() on page 575

! getCollaborationName() on page 576

! getEgateBaseDirectory() on page 576

! getModuleName() on page 577

! getPropertyNames() on page 577

! invoke() on page 578

! isSubCollaboration() on page 579

! retrieveRegistryFile() on page 580

The general system control methods are available to a particular instance of the
JCollabController class, and are thus accessed inside a Collaboration with the
following types of method invocation:

this.jCollabController.get<...>()

or

this.jCollabController.methodName(parm1[, ..., parm2])

Appendix A Section A.7
Java Classes and Methods JCollabController Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 575 SeeBeyond Proprietary and Confidential

copyProperties()

Access to the copyProperties() method is provided via the SeeBeyond package
com.stc.common.collabService, class JCollabController:

public class JCollabController;

Syntax

public void this.jCollabController.copyProperties(
com.stc.jcsre.ETD aFromETD,
com.stc.jcsre.ETD aToETD)

Description

For marshallable ETDs only: Copies the ETD properties from the specified FromETD to
the specified ToETD.

Parameters

Return Type

None.

Comments

Also see “getPropertyNames()” on page 577, “readProperty()” on page 339, and
“writeProperty()” on page 347.

createSubCollabMapInfo()

Access to the createSubCollabMapInfo() method is provided via the SeeBeyond
package com.stc.common.collabService, class JCollabController:

public class JCollabController;

Syntax

JSubCollabMapInfo this.jCollabController.createSubCollabMapInfo(
java.lang.String aCollabRuleName)

Description

Creates mapping information (a JSubCollapMapInfo object) for the named
Subcollaboration Rule. After it is created, the JSubCollabMapInfo object can be queried

Name Type Description

aFromETD com.stc.jcsre.ETD The ETD object whose properties
are to be copied. Must be a
marshallable ETD.

aToETD com.stc.jcsre.ETD The ETD object to which the
properties are to be copied. Must
be a marshallable ETD.

Appendix A Section A.7
Java Classes and Methods JCollabController Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 576 SeeBeyond Proprietary and Confidential

and manipulated by methods dealing with Subcollaboration Rules—see
“JSubCollabMapInfo Class (com.stc.common.collabService)” on page 603—and
eventually passed as a parameter when calling the invoke() method.

For information on working with Subcollaboration Rules, see “Subcollaboration
Rules” on page 348.

Parameter

Return Type

JSubCollabMapInfo object—mapping information for the Subcollaboration Rule.

Throws

None.

getCollaborationName()

Access to the getCollaborationName() method is provided via the SeeBeyond package
com.stc.common.collabService, class JCollabController:

Syntax

public java.lang.String this.jCollabController.getCollaborationName()

Description

Retrieves the name of the current Collaboration, as defined in the Enterprise Manager.

Parameters

None.

Return Type

java.lang.String

Throws

None.

getEgateBaseDirectory()

Access to the getEgateBaseDirectory() method is provided via the SeeBeyond package
com.stc.common.collabService, class JCollabController:

Name Type Description

aCollabRuleName java.lang.String The name of the Subcollaboration
Rule to be mapped.

Appendix A Section A.7
Java Classes and Methods JCollabController Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 577 SeeBeyond Proprietary and Confidential

public class JCollabController;

Syntax

public java.lang.String
this.jCollabController.getEgateBaseDirectory()

Description

Retrieves the absolute path and folder name of the e*Gate base directory as defined in
the .egate.store file.

Parameters

None.

Return Type

java.lang.String—for example:

C:\eGate\client

getModuleName()

Access to the getModuleName() method is provided via the SeeBeyond package
com.stc.common.collabService, class JCollabController:

public class JCollabController;

Syntax

public java.lang.String this.jCollabController.getModuleName()

Description

Retrieves the name of the module in which the current Collaboration is running, as
defined in the Enterprise Manager.

Parameters

None.

Return Type

java.lang.String

getPropertyNames()

Access to the getPropertyNames() method is provided via the SeeBeyond package
com.stc.common.collabService, class JCollabController:

public class JCollabController;

Appendix A Section A.7
Java Classes and Methods JCollabController Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 578 SeeBeyond Proprietary and Confidential

Syntax

public java.lang.String[] this.jCollabController.getPropertyNames(
com.stc.jcsre.ETD anETD)

Typical Usage

String[] propertyNames = this.jCollabController.getPropertyNames(getXXXX())

(where XXXX represents the name of the ETD instance, dragged in from the GUI)

Description

For marshallable ETDs only: Lists the names of all properties defined for the specified
ETD instance.

Parameters

Return Type

java.lang.String[]—in other words, an array of strings. If the specified ETD is not
marshallable, or if it has no properties, the return value is null.

Comments

Also see “copyProperties()” on page 575, “readProperty()” on page 339, and
“writeProperty()” on page 347.

invoke()

Access to the invoke() method is provided via the SeeBeyond package
com.stc.common.collabService, class JCollabController:

public class JCollabController;

Syntax

this.jCollabController.invoke(
java.lang.String aCollaborationRuleName,

com.stc.jcsre.JCollaboration aCallingCollaboration)

Description

Creates a JSubCollabMapInfo object. For other methods dealing with Subcollaboration
Rules, see “JSubCollabMapInfo Class (com.stc.common.collabService)” on page 603.
For information on working with Subcollaboration Rules, see “Subcollaboration
Rules” on page 348.

Name Type Description

anETD com.stc.jcsre.ETD The ETD instance whose property
names are to be listed. Must be a
marshallable ETD.

Appendix A Section A.7
Java Classes and Methods JCollabController Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 579 SeeBeyond Proprietary and Confidential

Parameters

Return Type

com.stc.common.collabService.JSubCollabMapInfo object.

Throws

None.

isSubCollaboration()

Access to the isSubCollaboration() method is provided via the SeeBeyond package
com.stc.common.collabService, class JCollabController:

public class JCollabController;

Syntax

public boolean this.jCollabController.isSubCollaboration()

Description

Determines whether the current Collaboration Rule is being used as a Subcollaboration
Rule. For other Subcollaboration Rule methods, see “JSubCollabMapInfo Class
(com.stc.common.collabService)” on page 603. For information on working with
Subcollaboration Rules, see “Subcollaboration Rules” on page 348.

Parameters

None.

Return Type

boolean

Returns true if and only if the current environment is a Subcollaboration Rule—in
other words, a Collaboration Rule that is being called from within a Collaboration Rule.

Throws

None.

Name Type Description

aCollaborationRuleName java.lang.String Name of the Subcollaboration Rule.

aCallingCollaboration com.stc.jcsre.JCollaboration this (see below)

When used as the second parameter in the invocation of the this.jCollabController.invoke()
method, this denotes a value that is a reference to the JSubCollabMap Info object.
For more information on the this keyword in general, see http://java.sun.com/docs/books/jls/
second_edition/html/expressions.doc.html section 15.8.3.

Appendix A Section A.7
Java Classes and Methods JCollabController Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 580 SeeBeyond Proprietary and Confidential

retrieveRegistryFile()

Access to the retrieveRegistryFile() method is provided via the SeeBeyond package
com.stc.common.collabService, class JCollabController:

public class JCollabController;

Syntax

public java.lang.String this.jCollabController.retrieveRegistryFile(
java.lang.String aFileName,
java.lang.String aRegistryFilePath)

Description

Retrieves the specified file from the e*Gate registry repository.

Parameters

Return Type

java.lang.String

A.7.2 Character Encoding and Internationalization Methods
Character encoding methods are specific to each instance of the JCollabController class,
and are thus accessed inside a Collaboration with the following method invocation:

this.jCollabController.<methodname>(java.lang.String aInstanceName)

About the Encoding Methods

For character encoding, e*Gate provides eight methods and four levels of defaulting.
The system can impose or retrieve a character encoding at any of the following phases:

! Before the inbound data is unmarshalled (parsed), the Collaboration can learn its
native character encoding via getIncoming Encoding(), or it can impose a new
character encoding via setIncomingEncoding().

! As the inbound data is being unmarshalled, the Collaboration can retrieve character
encoding via getUnmarshalEncoding(), or specify it via setUnmarshalEncoding().

! As the outbound data is being marshalled, Collaboration can retrieve character
encoding via getMarshalEncoding(), or specify it via setMarshalEncoding().

Name Type Description

aFileName java.lang.String Name of the file to be retrieved.

aRegistryFilePath java.lang.String Location of the folder containing
the file.

Appendix A Section A.7
Java Classes and Methods JCollabController Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 581 SeeBeyond Proprietary and Confidential

! After the outbound data is marshalled, the Collaboration can retrieve its character
encoding via getOutgoingEncoding(), or impose a new outbound character
encoding via setOutgoingEncoding().

For the two [g|s]etUnmarshalEncoding() and the two [g|s]etUnmarshalEncoding()
methods, several levels of defaults apply:

! At each node, the encoding property of that node can be used to specify a character
encoding for the data of just that node. If the nodeName.encoding property is not
specified, then:

! For each ETD, the dataEncoding property of the ETD can be used to specify a
character encoding for all ETD nodes lacking an encoding property. If the
etdName.dataEncoding property is not specified, then:

! The sscEncoding property of the ETD specifies the character encoding for all ETD
nodes not specified at a finer level. If neither the etdName.dataEncoding nor the
etdName.dataEncoding property is specified, the character encoding defaults to:

! ASCII.

Character Encodings in the Java Collaboration Rules Editor

Localization in a multi-byte environment

Special considerations apply when Collaborations run in Japanese or Korean operating
systems, whose native character encoding is not single-byte. For e*Gate to parse Events
and apply string functions correctly, the encoding method for inbound and outbound
Event Types must match the native code. To support encoding methods other than the
native code, use a code converter to convert the inbound or outbound Event Type
instance to the appropriate native code. For Monk Collaborations, see Figure 246.

Figure 246 Monk Collaboration Rules Editor in a Japanese Environment

Appendix A Section A.7
Java Classes and Methods JCollabController Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 582 SeeBeyond Proprietary and Confidential

Similarly, for Java Collaborations that transport and transform data between two multi-
byte nodes in a local environment, you can use simple drag-and-drop or Find and Map
operations. See Figure 247 for three simple examples.

Figure 247 Java Collaboration Rules Editor in a Japanese Environment

Supported languages

Starting with release 4.5.2, e*Gate adds localized support for the following languages:

! Traditional Chinese. The native code for Java for Traditional Chinese is BIG5.
This release does not support Monk Editors or Collaborations in Chinese, and
supports BIG5 only. At this time, the e*Gate GUI is not translated into Chinese.

! Japanese. For both Java and Monk, the internal code for Japanese is SJIS.
e*Gate supports EUC-JP, EBCDIC-JP, JIS, JIPS, JEF, and Gaiji.

! Korean. For Java, the native code for Korean is KSC-5601. e*Gate supports EUC-KR,
EBCDIC-KR, and Johab. For Monk, the native code for Korean is UHC. e*Gate
supports EUC-KR, KSC-5601, and EBCDIC-KR.

Appendix A Section A.7
Java Classes and Methods JCollabController Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 583 SeeBeyond Proprietary and Confidential

Translating data between single-byte and multi-byte environments

For Java-enabled Collaborations that translate and transform data between single-byte
and multi-byte environments, you must create a rule under the userInitialize()
placeholder method. Use this rule to set:

! The appropriate unmarshal/incoming encoding for inbound Event Type instances.
See “setUnmarshalEncoding()” on page 588 and “setIncomingEncoding()” on
page 586.

! The appropriate marshal/outgoing encoding for outbound Event Type instances.
See “setMarshalEncoding()” on page 587 and “setOutgoingEncoding()” on
page 587.

Figure 248 shows a Collaboration whose encoding for the inbound Event Type instance
(named “in”) is EUC-JP for IncomingEncoding and SJIS for UnmarshalEncoding, and
whose encoding for the outbound Event Type instance (named “out”) is set to Cp930
(sometimes called EBCDIK) for OutgoingEncoding and to SJIS for MarshalEncoding.

Figure 248 Setting the Character Encoding in userInitialize()

The eight [get/]set...Encoding() methods are described in more detail in the following
pages.

Appendix A Section A.7
Java Classes and Methods JCollabController Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 584 SeeBeyond Proprietary and Confidential

getIncomingEncoding()

Syntax

public java.lang.String this.jCollabController.getIncomingEncoding(
java.lang.String aInstanceName)

Description

Retrieves the inbound character encoding of the specified Event Type instance.

Parameters

Return Type

java.lang.String

Throws

None.

getMarshalEncoding()

Syntax

java.lang.String this.jCollabController.getMarshalEncoding(
java.lang.String aInstanceName)

Description

Retrieves the encoding method of the specified Event Type instance as it is being
marshalled (serialized into a one-dimensional BLOB).

Parameters

Return Type

java.lang.String

Throws

None.

Comments

For a complete explanation of how this encoding method fits with the other seven, see
“About the Encoding Methods” on page 580.

Name Type Description

aInstanceName java.lang.String Name of the Event Type instance in the
current Collaboration.

Name Type Description

aInstanceName java.lang.String Name of the Event Type instance in the
current Collaboration.

Appendix A Section A.7
Java Classes and Methods JCollabController Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 585 SeeBeyond Proprietary and Confidential

getOutgoingEncoding()

Syntax

java.lang.String this.jCollabController.getOutgoingEncoding(
java.lang.String aInstanceName)

Description

Retrieves the outbound character encoding of the specified Event Type Instance.

Parameters

Return Type

java.lang.String

Throws

None.

Comments

For a complete explanation of how this encoding method fits with the other seven, see
“About the Encoding Methods” on page 580.

getUnmarshalEncoding()

Syntax

java.lang.String this.jCollabController.getUnmarshalEncoding(
java.lang.String aInstanceName)

Description

Retrieves the character encoding of the specified Event Type instance as it is being
unmarshalled (parsed).

Parameters

Return Type

java.lang.String

Name Type Description

aInstanceName java.lang.String Name of the Event Type instance in the
current Collaboration.

Name Type Description

aInstanceName java.lang.String Name of the Event Type instance in the
current Collaboration.

Appendix A Section A.7
Java Classes and Methods JCollabController Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 586 SeeBeyond Proprietary and Confidential

Throws

None.

Comments

For a complete explanation of how this encoding method fits with the other seven, see
“About the Encoding Methods” on page 580.

setIncomingEncoding()

Syntax

void this.jCollabController.setIncomingEncoding(
java.lang.String aInstanceName,
java.lang.String aEncodeType)

Description

Specifies a certain character encoding for the specified Event Type instance before its
data is unmarshalled (parsed).

Parameters

Return Type

None.

Throws

None.

Comments

For a complete explanation of how this encoding method fits with the other seven, see
“About the Encoding Methods” on page 580.

Name Type Description

aInstanceName java.lang.String Name of the Event Type instance in the
current Collaboration.

aEncodeType java.lang.String The character encoding to be set.
! For Japanese, use one of the following:
SJIS
EUC-JP
ISO-2022-JP
CP930

! For Korean, use:
ksc_5601

Appendix A Section A.7
Java Classes and Methods JCollabController Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 587 SeeBeyond Proprietary and Confidential

setMarshalEncoding()

Syntax

void this.jCollabController.setMarshalEncoding(
java.lang.String aInstanceName,
java.lang.String aEncodeType)

Description

Specifies a particular character encoding for the specified Event Type instance as its
data is being marshalled (serialized into flat BLOB form).

Parameters

Return Type

None.

Throws

None.

Comments

For a complete explanation of how this encoding method fits with the other seven, see
“About the Encoding Methods” on page 580.

setOutgoingEncoding()

Syntax

void this.jCollabController.setOutgoingEncoding(java.lang.String
aInstanceName,

java.lang.String
aEncodeType)

Description

Specifies a particular outbound character encoding for marshalled data (serialized one-
dimensional BLOB) of the specified Event Type instance.

Name Type Description

aInstanceName java.lang.String Name of the Event Type instance in the
current Collaboration.

aEncodeType java.lang.String The character encoding to be set:
! For Japanese, use SJIS
! For Korean, use ksc_5601
This specifies the native code for the Java
Collaboration.

Appendix A Section A.7
Java Classes and Methods JCollabController Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 588 SeeBeyond Proprietary and Confidential

Parameters

Return Type

None.

Throws

None.

Comments

For a complete explanation of how this encoding method fits with the other seven, see
“About the Encoding Methods” on page 580.

setUnmarshalEncoding()

Syntax

void this.jCollabController.setUnmarshalEncoding(
java.lang.String aInstanceName,
java.lang.String aEncodeType)

Description

Specifies a particular character encoding for the specified Event Type instance as its
data is being unmarshalled (parsed).

Parameters

Name Type Description

aInstanceName java.lang.String Name of the Event Type instance in the
current Collaboration.

aEncodeType java.lang.String The character encoding to be set.
! For Japanese, use one of the following
SJIS
EUC-JP
ISO-2022-JP
CP930

! For Korean, use ksc_5601

Name Type Description

aInstanceName java.lang.String Name of the Event Type instance in the
current Collaboration.

aEncodeType java.lang.String The character encoding to be set:
! For Japanese, use SJIS
! For Korean, use ksc_5601
This specifies the native code for the Java
Collaboration.

Appendix A Section A.7
Java Classes and Methods JCollabController Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 589 SeeBeyond Proprietary and Confidential

Return Type

None.

Throws

None.

Comments

For a complete explanation of how this encoding method fits with the other seven, see
“About the Encoding Methods” on page 580.

A.7.3 ELSController Interface Methods
ELS methods, such as methods to query, get, and set values, are available via the
ELSController interface of a particular instance of the JCollabController class, and are
therefore accessed inside a Collaboration with the following method invocation:

this.jCollabController.getELSController()

! Methods for Link Identifiers:

" this.jCollabController.getELSController().flushAllLinkIdentifiers() on
page 590

" this.jCollabController.getELSController().getLinkIdentifiers() on page 592

" this.jCollabController.getELSController().getCurrentLinkIdentifier() on
page 590

" this.jCollabController.getELSController().isFlushMode() on page 596

" this.jCollabController.getELSController().isLinkIdentifierExists() on page 596

! Methods for message count:

" this.jCollabController.getELSController().hasHappened() on page 594

" this.jCollabController.getELSController().getNumberOfMessages() on
page 593

" this.jCollabController.getELSController().getNoOfMessagesForInstance() on
page 593

! Methods for setting and getting timers:

" this.jCollabController.getELSController().setELSExpiration() on page 598

" this.jCollabController.getELSController().getELSExpiration() on page 591

" this.jCollabController.getELSController().isCurrentELSExpired() on page 595

" this.jCollabController.getELSController().isELSExpired() on page 595

Appendix A Section A.7
Java Classes and Methods JCollabController Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 590 SeeBeyond Proprietary and Confidential

flushAllLinkIdentifiers()

Syntax

int
this.jCollabController.getELSController().flushAllLinkIdentifiers()

Description

Sets the flush-mode flag to true (thus temporarily suspending the processing of all
inbound messages) and runs the code in executeBusinessRules() for all Events,
regardless of Link Identifier. This operation is called flushing the Link Identifiers.

After all Link Identifiers have been flushed, the flush-mode flag is reset to false.

Note: While the flush-mode flag is true, no further incoming messages are accepted.

Parameters

None.

Return Type

int

The number of Link Identifiers left to be flushed.

Throws

None.

Notes

Typically, you would have your Collaboration invoke flushAllLinkIdentifiers() when
a condition occurs that renders further ELS processing irrelevant or unnecessary.
For example, you might want to reinitialize the system at a particular time every week,
or if a particular kind of Event is received, or if a particular kind of exception is thrown.

Also see isFlushMode() on page 596.

getCurrentLinkIdentifier()

Syntax

String
this.jCollabController.getELSController().getCurrentLinkIdentifier()

Description

Retrieves the name of the current Link Identifier.

Parameters

None.

Appendix A Section A.7
Java Classes and Methods JCollabController Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 591 SeeBeyond Proprietary and Confidential

Return Type

String

Throws

None.

Comments

The text string returned by this method is the key to passing an aLinkIdentifier argument
to any of the following methods:

getELSExpiration(String aLinkIdentifier);

setELSExpiration(String aLinkIdentifier, long aExpirationTime);

isELSExpired(String aLinkIdentifier);

isLinkIdentifierExists(String aLinkIdentifier);

hasHappened(String aLinkIdentifier);

getNumberOfMessages(String aLinkIdentifier);

getNumberOfMessages(String aLinkIdentifier, String aTopicName);

getNoOfMessagesForInstance(String aLinkIdentifier, String aInstanceName)

getELSExpiration()

Syntax

long this.jCollabController.getELSController().getELSExpiration(
aLinkIdentifier)

Description

Retrieves the expiration time (in milliseconds) of the specified Link Identifier.

The default expiration time is 0—in other words, no expiration.

Parameters

Return Type

long

The expiration time set for the specified Link Identifier, in milliseconds.

Name Type Description

aLinkIdentifier java.lang.String Name of the Link Identifier.

Appendix A Section A.7
Java Classes and Methods JCollabController Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 592 SeeBeyond Proprietary and Confidential

Throws

None.

Notes

getELSExpiration() always returns 0 if there has been no call to setELSExpiration() for
the specified Link Identifier.

getLinkIdentifiers()

Syntax

Iterator
this.jCollabController.getELSController().getLinkIdentifiers()

Description

Retrieves a list of all Link Identifiers that have been defined.

Parameters

None.

Return Type

java.util.Iterator

Throws

None.

Notes

The Iterator returned by this method contains aLinkIdentifier text strings that are key for
invoking any of the following methods:

! getELSExpiration(String aLinkIdentifier);

! setELSExpiration(String aLinkIdentifier, long aExpirationTime);

! isELSExpired(String aLinkIdentifier);

! isLinkIdentifierExists(String aLinkIdentifier);

! hasHappened(String aLinkIdentifier)

! getNumberOfMessages(String aLinkIdentifier);

! getNumberOfMessages(String aLinkIdentifier, String aTopicName);

! getNoOfMessagesForInstance(String aLinkIdentifier, String aInstanceName);

Appendix A Section A.7
Java Classes and Methods JCollabController Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 593 SeeBeyond Proprietary and Confidential

getNumberOfMessages()

Syntax

int this.jCollabController.getELSController().getNumberOfMessages(
aLinkIdentifier)

int this.jCollabController.getELSController().getNumberOfMessages(
aLinkIdentifier,

aTopicName)

Description

These two methods retrieve the number of Events currently available for the specified
Link Identifier. If the aTopicName argument is also specified, this method retrieves only
the number of Events for the specified topic (same as Event Type) and Link Identifier.

Parameters

Return Type

int

The number of Events currently available. If there are no Events, or if no such Link
Identifier exists, returns 0.

Throws

None.

getNoOfMessagesForInstance()

Syntax

int
this.jCollabController.getELSController().getNoOfMessagesForInstance(

aLinkIdentifier,
aInstanceName)

Description

Retrieves the number of Events currently available for the specified Link Identifier for
the specified Event instance.

Name Type Description

aLinkIdentifier java.lang.String Name of the Link Identifier.

aTopicName java.lang.String Name of the Event Type.

Appendix A Section A.7
Java Classes and Methods JCollabController Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 594 SeeBeyond Proprietary and Confidential

Parameters

Return Type

int

The number of Events meeting the criteria. If there are no Events, or no such Link
Identifier exists, returns 0.

Throws

None.

hasHappened()

Syntax

boolean this.jCollabController.getELSController().hasHappened(
aLinkIdentifier)

Description

Inquires whether the specified Link Identifier has already been processed by this run of
the Collaboration.

Parameters

Return Type

boolean

Returns true if and only if the specified Link Identifier has already been processed by
this run of the Collaboration—in other words, if executeBusinessRules() was called
previously after successful execution of either isLinkingComplete() or onExpire().

Throws

None.

Name Type Description

aLinkIdentifier java.lang.String Name of the Link Identifier.

aInstanceName java.lang.String Name of the Event instance in the
current Collaboration.

Name Type Description

aLinkIdentifier java.lang.String Name of the Link Identifier.

Appendix A Section A.7
Java Classes and Methods JCollabController Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 595 SeeBeyond Proprietary and Confidential

isCurrentELSExpired()

Syntax

boolean
this.jCollabController.getELSController().isCurrentELSExpired(

aLinkIdentifier)

Description

Inquires whether the specified Link Identifier is expired.

Parameters

Return Type

boolean

Returns true if the specified Link Identifier is expired; otherwise returns false.

Throws

None.

isELSExpired()

Syntax

boolean this.jCollabController.getELSController().isELSExpired(
aLinkIdentifier)

Description

Inquires whether the specified Link Identifier is expired.

When this method returns true, if the Message Count for the specified Link Identifier
has not been reached, control passes to the block of user-written code under the
onExpire() placeholder.

Parameters

Return Type

boolean

Returns true if the specified Link Identifier is expired; otherwise returns false.

Name Type Description

aLinkIdentifier java.lang.String Name of the Link Identifier.

Name Type Description

aLinkIdentifier java.lang.String Name of the Link Identifier.

Appendix A Section A.7
Java Classes and Methods JCollabController Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 596 SeeBeyond Proprietary and Confidential

Throws

None.

isFlushMode()

Syntax

boolean this.jCollabController.getELSController().isFlushMode()

Description

Inquires whether the system is in flush mode (and thus not accepting any incoming
messages).

Parameters

None.

Return Type

boolean

Returns true if the system is in flush mode; otherwise returns false.

Throws

None.

Notes

Also see flushAllLinkIdentifiers() on page 590.

isLinkIdentifierExists()

Syntax

boolean
this.jCollabController.getELSController().isLinkIdentifierExists(

aLinkIdentifier)

Description

Inquires whether the specified Link Identifier already exists.

Parameters

Return Type

boolean

Returns true if the specified Link Identifier already exists; otherwise returns false.

Name Type Description

aLinkIdentifier java.lang.String Name of the Link Identifier.

Appendix A Section A.7
Java Classes and Methods JCollabController Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 597 SeeBeyond Proprietary and Confidential

Throws

None.

isLinkingComplete()

Syntax

boolean isLinkingComplete(aLinkIdentifier)

Description

Placeholder method for the main block of ELS code.

If this method’s retBoolean variable returns true, the ELS portion of the code ends, and
control passes to the main portion of the Java Collaboration Rule—that is, to the block
of code under executeBusinessRules().

Parameters

Return Type

boolean

Throws

CollabDataException, CollabConnException

onExpire()

Syntax

boolean onExpire(aLinkIdentifier)

Description

Placeholder method for the block of code that you want to execute when a Link
Identifier has expired before its Message Count has been reached.

If this method’s retBoolean variable returns true, the ELS portion of the code ends, and
control passes to the main portion of the Java Collaboration Rule—that is, the block of
code under executeBusinessRules().

ELS loops until the block of code under this placeholder becomes true.

Name Type Description

aLinkIdentifier java.lang.String Name of the Link Identifier; see
“getCurrentLinkIdentifier()” on
page 590.

Appendix A Section A.7
Java Classes and Methods JCollabController Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 598 SeeBeyond Proprietary and Confidential

Parameters

Return Type

boolean

retrieveLinkIdentifier()

Syntax

String retrieveLinkIdentifier()

Description

Placeholder method for the block of code that you want to execute to fetch and process
a Link Identifier (for example, to read and manipulate a certain field).

Parameters

None.

Return Type

String

setELSExpiration()

Syntax

void this.jCollabController.getELSController().setELSExpiration(
aLinkIdentifier,

aExpirationTime)

Description

Sets the expiration time (in milliseconds) of the specified Link Identifier.

Parameters

Return Type

None.

Throws

None.

Name Type Description

aLinkIdentifier java.lang.String Name of the Link Identifier.

Name Type Description

aLinkIdentifier java.lang.String Name of the Link Identifier.

aExpirationTime long Expiration time, in milliseconds.

Appendix A Section A.8
Java Classes and Methods JCollaboration Class (com.stc.jcsre)

e*Gate Integrator User’s Guide 599 SeeBeyond Proprietary and Confidential

A.8 JCollaboration Class (com.stc.jcsre)

eventSend()

Access to the eventSend() methods is provided indirectly via the JCollaboration class,
supplied in the SeeBeyond package com.stc.jcsre.JCollaboration, from which all Java
Collaboration are subclassed (extended):

public abstract class JCollaboration
extends java.lang.Object

However, eventSend() is a member method of the Alerter class, supplied in the
SeeBeyond package com.stc.common.collabService, class JCollabController:

public class JCollabController;
public class Alerter
extends java.lang.Object

Syntax

public boolean eventSend(alertCategory, alertSubcategory,
alertInfoCode, reasonCode, reasonName,
eventInfo, additionalInfo)

public boolean eventSend(severityLevel, alertCategory,
alertSubcategory, elemType, reasonCode,
reasonName, eventInfo, additionalInfo)

eventSend(com.stc.common.collabService.JCollabController jController,
alertCategory, alertSubcategory, alertInfoCode, reasonCode,
reasonName, eventInfo, additionalInfo)

Description

Sends Alert Events to the Control Broker. These can be viewed in the e*Gate Monitor or
the Alert Agent, if so configured.

Parameters

Name Type Description

alertCategory java.lang.String Alert-Category Constant (see “alertCategory Constants”).

alertSubcategory java.lang.String Alert-Subcategory Constant (see “alertSubcategory
Constants”).

alertInfoCode java.lang.String Info-Code Constant (see “alertInfoCode Constants”).

reasonCode int Status or error code generated by the operating system
or the application generating the Event.

reasonName java.lang.String Reason why the Event occurred.

eventInfo java.lang.String Reserved for user agents or other applications using the
SeeBeyond API to create monitoring Events that use this
field. It can be an empty string ("").

additionalInfo java.lang.String Reserved for future use. It can be an empty string ("").

Appendix A Section A.8
Java Classes and Methods JCollaboration Class (com.stc.jcsre)

e*Gate Integrator User’s Guide 600 SeeBeyond Proprietary and Confidential

alertCategory Constants

alertSubcategory Constants

severityLevel java.lang.String Severity-level Constant (see “severityLevel Constants”).

elemType java.lang.String Element-type Constant (see “elemType Constants”).

Name Description

Alerter.ALERTCAT_STATE_ELEM Element state

Alerter.ALERTCAT_MESSAGE_CONTENT Message content

Alerter.ALERTCAT_STATE_EXTERNAL External state

Alerter.ALERTCAT_OPERATIONAL Operational

Alerter.ALERTCAT_PERFORMANCE Performance

Alerter.ALERTCAT_RESOURCE Resource

Alerter.ALERTCAT_USERDEFINED User-defined

Name Description

Alerter.ALERTSUBCAT_CUSTOM Custom category

Alerter.ALERTSUBCAT_DOWN Down

Alerter.ALERTSUBCAT_UP Up

Alerter.ALERTSUBCAT_UNRESP Unresponsive

Alerter.ALERTSUBCAT_RESP Respond

Alerter.ALERTSUBCAT_CANTCONN Unable to connect

Alerter.ALERTSUBCAT_CONN Connected

Alerter.ALERTSUBCAT_LOSTCONN Lost connection

Alerter.ALERTSUBCAT_UNUSABLE Unusable/cannot ID

Alerter.ALERTSUBCAT_INTEREST Interest

Alerter.ALERTSUBCAT_EXPIRED Expired

Alerter.ALERTSUBCAT_INTHRESH Input threshold

Alerter.ALERTSUBCAT_OUTTHRESH Output threshold

Alerter.ALERTSUBCAT_USERAUTH User authentication

Alerter.ALERTSUBCAT_DELIVERY Alert delivery

Alerter.ALERTSUBCAT_UNQUEUEABLE Unqueueable

Alerter.ALERTSUBCAT_DISKTHRESH Disk threshold

Alerter.ALERTSUBCAT_IQLIMIT IQ limit

Alerter.ALERTSUBCAT_STATUS Status

Alerter.ALERTSUBCAT_TIMER Timer

Name Type Description

Appendix A Section A.8
Java Classes and Methods JCollaboration Class (com.stc.jcsre)

e*Gate Integrator User’s Guide 601 SeeBeyond Proprietary and Confidential

alertInfoCode Constants

severityLevel Constants

elemType Constants

Name Description

Alerter.ALERTINFO_NONE None

Alerter.ALERTINFO_FATAL Fatal

Alerter.ALERTINFO_CONTROLLED Controlled

Alerter.ALERTINFO_USER User

Alerter.ALERTINFO_LOW Low

Alerter.ALERTINFO_HIGH High

Alerter.ALERTINFO_IOFAILED I/O failure

Alerter.ALERTINFO_BELOW Below

Alerter.ALERTINFO_ABOVE Above

Name Description

Alerter.SEVERITY_LEVEL_UNDEFINED Undefined

Alerter.SEVERITY_LEVEL_TRACE Trace

Alerter.SEVERITY_LEVEL_DEBUG Debugging

Alerter.SEVERITY_LEVEL_INFO Information

Alerter.SEVERITY_LEVEL_WARNING Warning

Alerter.SEVERITY_LEVEL_ERROR Error

Alerter.SEVERITY_LEVEL_FATAL Fatal

Name Description

Alerter.ALERTCAT_STATE_ELEM Element state

Alerter.ALERTCAT_MESSAGE_CONTENT Message content

Alerter.ALERTCAT_STATE_EXTERNAL External state

Alerter.ALERTCAT_OPERATIONAL Operational

Alerter.ALERTCAT_PERFORMANCE Performance

Alerter.ALERTCAT_RESOURCE Resource

Alerter.ALERTCAT_USERDEFINED User-defined

Appendix A Section A.8
Java Classes and Methods JCollaboration Class (com.stc.jcsre)

e*Gate Integrator User’s Guide 602 SeeBeyond Proprietary and Confidential

Return Type

boolean—Returns true when an Alert Event is sent successfully.

Throws

None.

Example

eventSend(Alerter.ALERTCAT_MESSAGE_CONTENT,
Alerter.ALERTSUBCAT_USERAUTH,
Alerter.ALERTINFO_IOFAILED,
35827, "Disk Full", "", "");

Appendix A Section A.9
Java Classes and Methods JSubCollabMapInfo Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 603 SeeBeyond Proprietary and Confidential

A.9 JSubCollabMapInfo Class
(com.stc.common.collabService)

The SeeBeyond class com.stc.common.collabService.JSubCollabMapInfo provides the
following public methods:

! getCallingCollaboration() on page 603

! getClassFullPath() on page 604

! getClassName() on page 605

! getCtlFileFullPath() on page 605

! getCtlFileName() on page 606

! getEventTypeDefinition() on page 607

! getEventTypeDefinitionPath() on page 607

! getInputData() on page 608

! getInputTopicName() on page 609

! getOutputData() on page 609

! getParentReferenceETD() on page 610

! getParentReferenceInstanceName() on page 611

! getRuleName() on page 611

! isManualPublish() on page 612

! isPublisher() on page 613

! isTrigger() on page 613

! setInstanceMap() on page 614

getCallingCollaboration()

Access to the getCallingCollaboration() method is provided via the
JSubCollabMapInfo class, supplied in the SeeBeyond package
com.stc.common.collabService:

package com.stc.common.collabService;

public class JSubCollabMapInfo

Syntax

public JSubCollabMapInfo.getCallingCollaboration()

Description

Retrieves the JCollaboration—in other words, the Collaboration object—of the
Collaboration Rule that is invoking the current Subcollaboration Rule.

Appendix A Section A.9
Java Classes and Methods JSubCollabMapInfo Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 604 SeeBeyond Proprietary and Confidential

Parameters

None.

Return Type

com.stc.jcsre.JCollaboration — the parent object of this Subcollaboration Rule.

Throws

None.

getClassFullPath()

Access to the getClassFullPath() method is provided via the JSubCollabMapInfo
class, supplied in the SeeBeyond package com.stc.common.collabService:

package com.stc.common.collabService;

public class JSubCollabMapInfo

Syntax

public java.lang.String JSubCollabMapInfo.getClassFullPath()

Description

Retrieves the location of the class corresponding to the current Subcollaboration Rule.

Parameters

None.

Return Type

java.lang.String

Throws

None.

Appendix A Section A.9
Java Classes and Methods JSubCollabMapInfo Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 605 SeeBeyond Proprietary and Confidential

getClassName()

Access to the getClassName() method is provided via the JSubCollabMapInfo class,
supplied in the SeeBeyond package com.stc.common.collabService:

package com.stc.common.collabService;

public class JSubCollabMapInfo

Syntax

public java.lang.String JSubCollabMapInfo.getClassName()

Description

Retrieves the name of the class corresponding to the current Subcollaboration Rule.

Parameters

None.

Return Type

java.lang.String

Throws

None.

getCtlFileFullPath()

Access to the getCtlFileFullPath() method is provided via the JSubCollabMapInfo
class, supplied in the SeeBeyond package com.stc.common.collabService:

package com.stc.common.collabService;

public class JSubCollabMapInfo

Syntax

public java.lang.String JSubCollabMapInfo.getCtlFileFullPath()

Description

Retrieves the location of the control file (.ctl) for the current Subcollaboration Rule.

Parameters

None.

Appendix A Section A.9
Java Classes and Methods JSubCollabMapInfo Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 606 SeeBeyond Proprietary and Confidential

Return Type

java.lang.String

Throws

None.

getCtlFileName()

Access to the getCtlFileName() method is provided via the JSubCollabMapInfo class,
supplied in the SeeBeyond package com.stc.common.collabService:

package com.stc.common.collabService;

public class JSubCollabMapInfo

Syntax

public java.lang.String JSubCollabMapInfo.getCtlFileName()

Description

Retrieves the name of the control file (.ctl) for the current Subcollaboration Rule.

Parameters

None.

Return Type

java.lang.String

Throws

None.

Appendix A Section A.9
Java Classes and Methods JSubCollabMapInfo Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 607 SeeBeyond Proprietary and Confidential

getEventTypeDefinition()

Access to the getEventTypeDefinition() method is provided via the
JSubCollabMapInfo class, supplied in the SeeBeyond package
com.stc.common.collabService:

package com.stc.common.collabService;

public class JSubCollabMapInfo

Syntax

public java.lang.String JSubCollabMapInfo.getEventTypeDefinition(
java.lang.String aInstanceName)

Description

Retrieves the name of the ETD file (.xsc) for the specified Event Type instance.

Parameter

Return Type

java.lang.String

Throws

None.

getEventTypeDefinitionPath()

Access to the getEventTypeDefinitionPath() method is provided via the
JSubCollabMapInfo class, supplied in the SeeBeyond package
com.stc.common.collabService:

package com.stc.common.collabService;

public class JSubCollabMapInfo

Syntax

public java.lang.String JSubCollabMapInfo.getEventTypeDefinitionPath(
java.lang.String aInstanceName)

Description

Retrieves the location of the ETD file (.xsc) for the specified Event Type instance.

Name Type Description

aInstanceName java.lang.String Name of the Event Type instance in
the current Subcollaboration Rule.

Appendix A Section A.9
Java Classes and Methods JSubCollabMapInfo Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 608 SeeBeyond Proprietary and Confidential

Parameter

Return Type

java.lang.String

Throws

None.

getInputData()

Access to the getInputData() method is provided via the JSubCollabMapInfo class,
supplied in the SeeBeyond package com.stc.common.collabService:

package com.stc.common.collabService;

public class JSubCollabMapInfo

Syntax

public byte[] JSubCollabMapInfo.getInputData(
java.lang.String aInstanceName)

Description

Retrieves the marshalled (unparsed) input data for the specified Event Type instance.

Parameter

Return Type

byte[]—in other words, an array of bytes.

Throws

None.

Name Type Description

aInstanceName java.lang.String Name of the Event Type instance in
the current Subcollaboration Rule.

Name Type Description

aInstanceName java.lang.String Name of the Event Type instance in
the current Subcollaboration Rule.

Appendix A Section A.9
Java Classes and Methods JSubCollabMapInfo Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 609 SeeBeyond Proprietary and Confidential

getInputTopicName()

Access to the getInputTopicName() method is provided via the JSubCollabMapInfo
class, supplied in the SeeBeyond package com.stc.common.collabService:

package com.stc.common.collabService;

public class JSubCollabMapInfo

Syntax

public java.lang.String JSubCollabMapInfo.getInputTopicName(
java.lang.String aInstanceName)

Description

Retrieves the Event Type (topic) name for the specified Event Type instance.

Parameter

Return Type

java.lang.String

Throws

None.

getOutputData()

Access to the getOutputData() method is provided via the JSubCollabMapInfo class,
supplied in the SeeBeyond package com.stc.common.collabService:

package com.stc.common.collabService;

public class JSubCollabMapInfo

Syntax

public byte[] JSubCollabMapInfo.getOutputData(
java.lang.String aInstanceName)

Description

Retrieves the marshalled (unparsed) output data for the specified Event Type instance.

Name Type Description

aInstanceName java.lang.String Name of the Event Type instance in
the current Subcollaboration Rule.

Appendix A Section A.9
Java Classes and Methods JSubCollabMapInfo Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 610 SeeBeyond Proprietary and Confidential

Parameter

Return Type

byte[]—in other words, an array of bytes.

Throws

None.

getParentReferenceETD()

Access to the getParentReferenceETD() method is provided via the
JSubCollabMapInfo class, supplied in the SeeBeyond package
com.stc.common.collabService:

package com.stc.common.collabService;

public class JSubCollabMapInfo

Syntax

public JSubCollabMapInfo.getParentReferenceETD(
java.lang.String aInstanceName)

Description

Retrieves the ETD object that is the parent of the specified Event Type instance.

Parameter

Return Type

com.stc.jcsre.ETD—in other words, an ETD object.

Throws

None.

Name Type Description

aInstanceName java.lang.String Name of the Event Type instance in
the current Subcollaboration Rule.

Name Type Description

aInstanceName java.lang.String Name of the Event Type instance in
the current Subcollaboration Rule.

Appendix A Section A.9
Java Classes and Methods JSubCollabMapInfo Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 611 SeeBeyond Proprietary and Confidential

getParentReferenceInstanceName()

Access to the getParentReferenceInstanceName() method is provided via the
JSubCollabMapInfo class, supplied in the SeeBeyond package
com.stc.common.collabService:

package com.stc.common.collabService;

public class JSubCollabMapInfo

Syntax

public java.lang.String
JSubCollabMapInfo.getParentReferenceInstanceName(

java.lang.String aInstanceName)

Description

Retrieves the node name of the parent of the specified Event Type instance.

Parameter

Return Type

java.lang.String

Throws

None.

getRuleName()

Access to the getRuleName() method is provided via the JSubCollabMapInfo class,
supplied in the SeeBeyond package com.stc.common.collabService:

package com.stc.common.collabService;

public class JSubCollabMapInfo

Syntax

public java.lang.String JSubCollabMapInfo.getRuleName()

Description

Retrieves the name of the current Subcollaboration Rule.

Parameters

None.

Name Type Description

aInstanceName java.lang.String Name of the Event Type instance in
the current Subcollaboration Rule.

Appendix A Section A.9
Java Classes and Methods JSubCollabMapInfo Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 612 SeeBeyond Proprietary and Confidential

Return Type

java.lang.String

Throws

None.

isManualPublish()

Access to the isManualPublish() method is provided via the JSubCollabMapInfo
class, supplied in the SeeBeyond package com.stc.common.collabService:

package com.stc.common.collabService;

public class JSubCollabMapInfo

Syntax

public boolean JSubCollabMapInfo.isManualPublish(
java.lang.String aInstanceName)

Description

Inquires whether the specified Event Type instance is set to Manual Publish.

Parameter

Return Type

boolean

Returns true if the specified Event Type instance is set to Manual Publish; otherwise
returns false.

Throws

None.

Name Type Description

aInstanceName java.lang.String Name of the Event Type instance in
the current Subcollaboration Rule.

Appendix A Section A.9
Java Classes and Methods JSubCollabMapInfo Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 613 SeeBeyond Proprietary and Confidential

isPublisher()

Access to the isPublisher() method is provided via the JSubCollabMapInfo class,
supplied in the SeeBeyond package com.stc.common.collabService:

package com.stc.common.collabService;

public class JSubCollabMapInfo

Syntax

public boolean JSubCollabMapInfo.isPublisher(
java.lang.String aInstanceName)

Description

Inquires whether the specified Event Type instance is a publisher—in other words, if its
mode is set to either OUT or IN/OUT.

Parameter

Return Type

boolean

Returns true if the specified Event Type instance is set to OUT or IN/OUT; returns false
if it is set to IN.

Throws

None.

isTrigger()

Access to the isTrigger() method is provided via the JSubCollabMapInfo class,
supplied in the SeeBeyond package com.stc.common.collabService:

package com.stc.common.collabService;

public class JSubCollabMapInfo

Syntax

public boolean JSubCollabMapInfo.isTrigger(
java.lang.String aInstanceName)

Description

Inquires whether the specified Event Type instance is set to Trigger.

Name Type Description

aInstanceName java.lang.String Name of the Event Type instance in
the current Subcollaboration Rule.

Appendix A Section A.9
Java Classes and Methods JSubCollabMapInfo Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 614 SeeBeyond Proprietary and Confidential

Parameter

Return Type

boolean

Returns true if the specified Event Type instance is set to Trigger; otherwise, false.

Throws

None.

setInstanceMap()

Access to the setInstanceMap() method is provided via the JSubCollabMapInfo class,
supplied in the SeeBeyond package com.stc.common.collabService:

package com.stc.common.collabService;

public class JSubCollabMapInfo

Syntax

public void JSubCollabMapInfo.setInstanceMap(
java.lang.String aInstanceName,
java.lang.String aParentReferenceETD,
java.lang.String aInputData,
java.lang.String aInputTopicName)

Description

For an inbound Event Type instance: Populates the instance with data, either from an
ETD node (requires a queuing operation) or from the byte array.

For an outbound Event Type instance: Harvests data into the specified parent ETD node.

Name Type Description

aInstanceName java.lang.String Name of the Event Type instance in
the current Subcollaboration Rule.

Appendix A Section A.9
Java Classes and Methods JSubCollabMapInfo Class (com.stc.common.collabService)

e*Gate Integrator User’s Guide 615 SeeBeyond Proprietary and Confidential

Parameters

Return Type

None.

Throws

None.

Name Type Description

aInstanceName java.lang.String Name of the Event Type instance in
the current Subcollaboration Rule.

aParentReferenceETD com.stc.jcsre.ETD—in
other words, an ETD
object.

The parent ETD node; typically, this
is a node that is dragged in from the
GUI.

For inbound Event Type instances,
this can be null if no queuing
operations are needed.

aInputData byte[] For inbound instances: The byte
array with which to populate the
instance.

For outbound instances: null

aInputTopicName java.lang.String For inbound instances: The Event
Type to be populated.

For outbound instances: null

Appendix A Section A.10
Java Classes and Methods Mainframe Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 616 SeeBeyond Proprietary and Confidential

A.10 Mainframe Class (com.stc.eways.util)
The SeeBeyond class com.stc.eways.util.Mainframe provides methods for converting
to and from ASCII, EBCDIC, and PACDEC formats and converting to and from big-
endian and little-endian formats.

! a2e() on page 616

! e2a() on page 617

! e2S() on page 617

! swapInt() on page 618

! swapLong() on page 619

! swapShort() on page 619

a2e()

The two a2e() methods are provided in the Mainframe class, supplied in SeeBeyond
package com.stc.eways.util (in stcutil.jar):

public class Mainframe

Syntax

static byte a2e(byte _asciichar)

static byte[] a2e(byte[] _asciitext)

Description

These two methods convert an ASCII character or text string into its EBCDIC
equivalent.

Parameters

Return Types

byte—in other words, a single byte.

byte[]—in other words, an array of bytes.

Throws

None.

Name Type Description

_asciichar byte The ASCII character to be
converted.

_asciitext byte[] An array of ASCII characters to be
converted.

Appendix A Section A.10
Java Classes and Methods Mainframe Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 617 SeeBeyond Proprietary and Confidential

e2a()

The two e2a() methods are provided in the Mainframe class, supplied in SeeBeyond
package com.stc.eways.util (in stcutil.jar):

public class Mainframe

Syntax

static byte e2a(byte _ebcdicchar)

static byte[] e2a(byte[] _ebcdictext)

Description

These two methods convert an EBCDIC character or text string into its ASCII
equivalent.

Parameters

Return Types

byte—in other words, a single byte.

byte[]—in other words, an array of bytes.

Throws

None.

e2S()

The e2S() method is provided in the Mainframe class, supplied in SeeBeyond package
com.stc.eways.util (in stcutil.jar):

public class Mainframe

Syntax

static java.lang.String e2S(byte[] _ebcdictext)

Description

This method converts EBCDIC text into its Java (Unicode) equivalent.

Name Type Description

_ebcdicchar byte The EBCDIC character to be
converted.

_ebcdictext byte[] An array of EBCDIC characters to be
converted.

Appendix A Section A.10
Java Classes and Methods Mainframe Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 618 SeeBeyond Proprietary and Confidential

Parameters

Return Type

java.lang.String

Throws

None.

swapInt()

The swapInt() method is provided in the Mainframe class, supplied in SeeBeyond
package com.stc.eways.util (in stcutil.jar):

public class Mainframe

Syntax

static int swapInt(int _number)

Description

Changes the endian-ness of the specified integer:

! Big-endian treats the leftmost byte as the most significant byte.

! Little-endian treats the rightmost byte as the most significant byte.

Parameter

Return Type

int

Throws

None.

Name Type Description

_ebcdictext byte[] An array of EBCDIC characters to be
converted.

Name Type Description

_number int The number to be converted

Appendix A Section A.10
Java Classes and Methods Mainframe Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 619 SeeBeyond Proprietary and Confidential

swapLong()

The swapLong() method is provided in the Mainframe class, supplied in SeeBeyond
package com.stc.eways.util (in stcutil.jar):

public class Mainframe

Syntax

static long swapLong(long _number)

Description

Changes the endian-ness of the specified long integer:

! Big-endian treats the leftmost byte as the most significant byte.

! Little-endian treats the rightmost byte as the most significant byte.

Parameter

Return Type

long

Throws

None.

swapShort()

The swapShort() method is provided in the Mainframe class, supplied in SeeBeyond
package com.stc.eways.util (in stcutil.jar):

public class Mainframe

Syntax

static short swapShort(short _number)

Description

Changes the endian-ness of the specified short integer:

! Big-endian treats the leftmost byte as the most significant byte.

! Little-endian treats the rightmost byte as the most significant byte.

Name Type Description

_number long The number to be converted

Appendix A Section A.10
Java Classes and Methods Mainframe Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 620 SeeBeyond Proprietary and Confidential

Parameter

Return Type

int (if the endian-ness of an int is being swapped)

long (if the endian-ness of a long is being swapped)

short (if the endian-ness of a short is being swapped)

Throws

None.

Name Type Description

_number short The number to be converted

Appendix A Section A.11
Java Classes and Methods MapUtils Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 621 SeeBeyond Proprietary and Confidential

A.11 MapUtils Class (com.stc.eways.util)
The SeeBeyond class com.stc.eways.util.MapUtils provides methods for creating,
querying, an manipulating Map objects and their contents.

! doMap() on page 622

! parseMap() on page 623

! readMap() on page 624

! renderMap() on page 625

! writeMap() on page 626

Usage Example

Here is an example of how the parseMap(), doMap(), and renderMap() methods
combine and interact:

String mapAsString = "do,Sun|lu,Mon|ma,Tue|mi,Wed|ju,Thu|vi,Fri|sa,Sat";
String fieldSeparator = ",";
String recordSeparator = "|";

java.util.Map daySp2En3Map = MapUtils.parseMap(mapAsString,
fieldSeparator, recordSeparator);

String luEn3Day = MapUtils.doMap(daySp2En3Map, "lu");
String saEn3Day = MapUtils.doMap(daySp2En3Map, "sa");

String copyOfMapAsString = MapUtils.renderMap(daySp2En3Map,
fieldSeparator, recordSeparator);

In this example, a Map object named daySp2En3Map holds a mapping between
Spanish two-character day-of-week abbreviations and English three-character day-of-
week abbreviations:

! To set things up, data for the map is stored in a variable named mapAsString.

! Next, parseMap() is called variable was parsed this data into the Map object.

! Next, doMap() is called twice to look up the English equivalents of “lu” (lunes,
Monday) and “sa” (sabado, Saturday).

! Finally, renderMap() is called to create a new string from the Map object. The new
string created by renderMap() has exactly the same data as the string that was used
to set things up in the first place.

Appendix A Section A.11
Java Classes and Methods MapUtils Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 622 SeeBeyond Proprietary and Confidential

doMap()

Access to the two doMap() methods is provided via the MapUtils class, supplied in the
SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class MapUtils

Syntax

public java.lang.String MapUtils.doMap(java.util.Map _map,
java.lang.String _key)

public java.lang.String MapUtils.doMap(java.lang.String _fileName,
java.lang.String _key)

Description

Looks in the specified Map object or file and finds the String corresponding to the
specified key.

Parameters

Return Type

java.lang.String

Throws

java.io.IOException—If the map cannot be read from the file specified by _fileName.

Comments

See the Usage Example on page 621 for a short sample of how the MapUtils methods
are used.

Name Type Description

_map java.util.Map The Map object to be consulted.

_fileName java.lang.String The name of the file containing the
mapping to be consulted.

_key java.lang.String The item to be looked up.

Appendix A Section A.11
Java Classes and Methods MapUtils Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 623 SeeBeyond Proprietary and Confidential

parseMap()

Access to the parseMap() method is provided via the MapUtils class, supplied in the
SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class MapUtils

Syntax

public java.util.Map MapUtils.parseMap(java.lang.String _str,
java.lang.String _fieldSep,
java.lang.String _recSep)

Description

Creates a Map object, using the specified field-separators and record-separators to
parse the specified text string.

Parameters

Return Type

java.util.map

Throws

None.

Comments

See the Usage Example on page 621 for a short sample of how the MapUtils methods
are used.

Name Type Description

_str java.lang.String The text string to be parsed into a
Map object.

_fieldSep java.lang.String The text string used to delimit each
field from the next. This is usually a
single character; the default is
, (comma).

_recSep java.lang.String The text string used to delimit each
record from the next. This is usually
a single character; the default is
| (vertical bar, or “pipe” character).

Appendix A Section A.11
Java Classes and Methods MapUtils Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 624 SeeBeyond Proprietary and Confidential

readMap()

Access to the two readMap() methods is provided via the MapUtils class, supplied in
the SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class MapUtils

Syntax

public java.util.Map MapUtils.readMap(java.lang.String _fileName)

public java.util.Map MapUtils.readMap(java.lang.String _fileName,
java.lang.String _fieldSep,
java.lang.String _recSep)

Description

Creates a Map object, using the specified file and default or user-specified field-
separators and record-separators.

Parameters

Return Type

java.util.map

Throws

java.io.IOException—If the map cannot be read from the specified file.

Name Type Description

_fileName java.lang.String Name of the file to be mapped.

_fieldSep java.lang.String The text string used to delimit each
field from the next. This is usually a
single character; the default is
, (comma).

_recSep java.lang.String The text string used to delimit each
record from the next. This is usually
a single character; the default is
| (vertical bar, or “pipe” character).

Appendix A Section A.11
Java Classes and Methods MapUtils Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 625 SeeBeyond Proprietary and Confidential

renderMap()

Access to the renderMap() method is provided via the MapUtils class, supplied in the
SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class MapUtils

Syntax

public java.lang.String MapUtils.renderMap(java.util.Map _map,
java.lang.String _fieldSep,
java.lang.String _recSep)

Description

Creates a well-ordered output string whose fields and records are delimited by the
specified strings (usually characters), allowing the text string to be parsed back into a
Map object later if needed; see parseMap() on page 623.

Parameters

Return Type

java.lang.String

Throws

None.

Comments

See the Usage Example on page 621 for a short sample of how the MapUtils methods
are used.

Name Type Description

_map java.util.Map The Map object to be rendered into
a delimited text string.

_fieldSep java.lang.String The text string used to delimit each
field from the next. This is usually a
single character; the default is
, (comma).

_recSep java.lang.String The text string used to delimit each
record from the next. This is usually
a single character; the default is
| (vertical bar, or “pipe” character).

Appendix A Section A.11
Java Classes and Methods MapUtils Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 626 SeeBeyond Proprietary and Confidential

writeMap()

Access to the two writeMap() methods is provided via the MapUtils class, supplied in
the SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class MapUtils

Syntax

public void MapUtils.writeMap(java.lang.String _fileName,
java.util.Map _map)

public void MapUtils.writeMap(java.lang.String _fileName,
java.util.Map _map,

java.lang.String _fieldSep,
java.lang.String _recSep)

Description

Writes the specified Map object to the specified file, using default or user-specified
field-separators and record-separators.

Parameters

Return Type

None.

Throws

java.io.IOException—If the system cannot write the map to the specified file.

Name Type Description

_fileName java.lang.String The name of the file to be written.

_map java.util.Map The Map object to be written out to
a file.

_fieldSep java.lang.String The text string used to delimit each
field from the next. This is usually a
single character; the default is
, (comma).

_recSep java.lang.String The text string used to delimit each
record from the next. This is usually
a single character; the default is
| (vertical bar, or “pipe” character).

Appendix A Section A.12
Java Classes and Methods QSort Class (com.stc.common.utils)

e*Gate Integrator User’s Guide 627 SeeBeyond Proprietary and Confidential

A.12 QSort Class (com.stc.common.utils)

qsort()

Access to the four qsort() methods is provided via the SeeBeyond package
com.stc.common.utils, class Qsort:

public interface Qsort;

Syntax

public static void qsort(data[], compare)

public static void qsort(data, compare)

public static void qsort(data[], compare, case_sensitive)

public static void qsort(data, compare, case_sensitive)

Description

Puts the contents of an array or Vector into a well-ordered ranking—for example,
alphabetizing characters or strings, or sorting integers or reals by size.

Parameters

Return Type

None.

Throws

None.

Name Type Description

data[] Object Array of Objects to be sorted.

data java.util.Vector Vector of Objects to be sorted.

compare CompareFunction Function to be used for comparing
the Objects in data or data[], such
stringCompare(Obj1 Obj2), which
returns <0 if Obj1 < Obj2; 0 if
obj1==obj2; and >0 if obj1 > obj2.

case_sensitive boolean When true, specifies that the sort
distinguishes uppercase from
lowercase—in other words,
{ A, B, ..., Z, a, b, ..., z } rather than
{ A, a, B, b, ..., Z, z

Appendix A Section A.13
Java Classes and Methods ScEncrypt Class (com.stc.common.utils)

e*Gate Integrator User’s Guide 628 SeeBeyond Proprietary and Confidential

A.13 ScEncrypt Class (com.stc.common.utils)
The SeeBeyond class com.stc.common.utils.ScEncrypt provides methods for
encrypting and decrypting strings using a decryption key.

! decrypt() on page 628

! encrypt() on page 628

decrypt()

Access to the decrypt() method is provided via the SeeBeyond package
com.stc.common.utils, class ScEncrypt:

package com.stc.common.utils;
public class ScEncrypt

Syntax

public static java.lang.String decrypt(java.lang.String key,
java.lang.String data)

Description

Decrypts the input data using the decryption key: The data is transformed from a
scrambled text string into plaintext form. If the string was encrypted multiple times
using different keys, it can only be decrypted by applying the keys in reverse order.

Parameters

Return Type

java.lang.String

encrypt()

Access to the encrypt() method is provided via the SeeBeyond package
com.stc.common.utils, class ScEncrypt:

package com.stc.common.utils;
public class ScEncrypt

Name Type Description

key java.lang.String Decryption key

data java.lang.String Text string to be decrypted.

Appendix A Section A.13
Java Classes and Methods ScEncrypt Class (com.stc.common.utils)

e*Gate Integrator User’s Guide 629 SeeBeyond Proprietary and Confidential

Syntax

public static java.lang.String encrypt(java.lang.String key,
java.lang.String data)

Description

Encrypts the input data using the encryption key. The data is transformed into a
scrambled text string that can only be deciphered using the decrypt() method and the
correct key.

Parameters

Return Type

java.lang.String

Name Type Description

key java.lang.String Encryption key

data java.lang.String Text string to be encrypted.

Appendix A Section A.14
Java Classes and Methods STCTypeConverter Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 630 SeeBeyond Proprietary and Confidential

A.14 STCTypeConverter Class (com.stc.eways.util)
The SeeBeyond class com.stc.common.utils.STCTypeConverter provides data type
conversion methods for primitives and objects of the most common data types:

! toBooleanPrimitive() on page 631

! toBoolean() on page 632

! toBytePrimitive() on page 634

! toByte() on page 635

! toByteArray() on page 636

! toCharPrimitive() on page 638

! toCharacter() on page 639

! toDoublePrimitive() on page 640

! toDouble() on page 642

! toFloatPrimitive() on page 643

! toFloat() on page 644

! toIntegerPrimitive() on page 646

! toInteger() on page 647

! toLongPrimitive() on page 648

! toLong() on page 650

! toShortPrimitive() on page 651

! toShort() on page 652

! toString() on page 653

General Notes

! To convert to a primitive type, use the appropriate to<Type>Primitive() method.
For example:

public boolean STCTypeConverter.toBooleanPrimitive(_value)

! To convert to an object type, use a to<Object>() method. For example:

public java.lang.String STCTypeConverter.toString(_value)

! java.lang.IllegalArgumentException is thrown whenever the _value to be
converted is a null object.

! java.lang.IllegalArgumentException is also thrown in other circumstances when
the specified _value badly mismatches the data type of the method. For example:

" Using toByte() on a String or double _value if it is too large to fit in one byte.

" Using toShort() on a _value that cannot fit into the range of a short integer.

Appendix A Section A.14
Java Classes and Methods STCTypeConverter Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 631 SeeBeyond Proprietary and Confidential

toBooleanPrimitive()

Access to the sixteen toBooleanPrimitive() methods is provided via the
STCTypeConverter class, supplied in the SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class STCTypeConverter

Syntax

public boolean STCTypeConverter.toBooleanPrimitive(_value)

This method has sixteen possible signatures, corresponding to the following possible
data types for _value:

! Boolean object

! byte primitive

! Byte object

! char primitive

! Character object

! double primitive

! Double object

! float primitive

! Float object

! int primitive

! Integer object

! long primitive

! Long object

! short primitive

! Short object

! String object

Description

Converts the specified primitive or object to a boolean primitive.

Appendix A Section A.14
Java Classes and Methods STCTypeConverter Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 632 SeeBeyond Proprietary and Confidential

Parameter

Return Type

boolean

! For the following primitives and objects—byte, short, int, long, float, double—
returns false if and only if _value == 0; otherwise, returns true.

! For char primitives and Character objects:

" Returns true if and only if _value == TRUE_CHAR

" Returns false if and only if _value == FALSE_CHAR

! For String objects:

" Returns true if and only if _value == TRUE_STRING

" Returns false if and only if _value == FALSE_STRING

Throws

java.lang.IllegalArgumentException thrown if specified object _value is null, or if it is:

! (for Character objects) neither TRUE_CHAR nor FALSE_CHAR

! (for String objects) neither TRUE_STRING nor FALSE_STRING

toBoolean()

Access to the sixteen toBoolean() methods is provided via the STCTypeConverter
class, supplied in the SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class STCTypeConverter

Syntax

public Boolean STCTypeConverter.toBoolean(_value)

This method has sixteen possible signatures, corresponding to the following possible
data types for _value:

! boolean primitive

! byte primitive

! Byte object

! char primitive

! Character object

Name Type Description

_value (any of sixteen primitive or
object types; see above)

Primitive or object to be converted
to boolean.

Appendix A Section A.14
Java Classes and Methods STCTypeConverter Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 633 SeeBeyond Proprietary and Confidential

! double primitive

! Double object

! float primitive

! Float object

! int primitive

! Integer object

! long primitive

! Long object

! short primitive

! Short object

! String object

Description

Converts the specified primitive or object to a Boolean object.

Parameter

Return Type

Boolean (object)

! For the following primitives and objects—byte, short, int, long, float, double—
returns false if and only if _value == 0; otherwise, returns true.

! For char primitives and Character objects:

" Returns true if and only if _value == TRUE_CHAR

" Returns false if and only if _value == FALSE_CHAR

! For String objects:

" Returns true if and only if _value == TRUE_STRING

" Returns false if and only if _value == FALSE_STRING

Throws

java.lang.IllegalArgumentException thrown if specified object _value is null, or if it is:

! (for Character objects) neither TRUE_CHAR nor FALSE_CHAR

! (for String objects) neither TRUE_STRING nor FALSE_STRING

Name Type Description

_value (any of sixteen primitive or
object types; see above)

Primitive or object to be converted
to a Boolean object.

Appendix A Section A.14
Java Classes and Methods STCTypeConverter Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 634 SeeBeyond Proprietary and Confidential

toBytePrimitive()

Access to the seventeen toBytePrimitive() methods is provided via the
STCTypeConverter class, supplied in the SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class STCTypeConverter

Syntax

public byte STCTypeConverter.toBytePrimitive(_value)

This method has seventeen possible signatures, corresponding to the following possible
data types for _value:

! boolean primitive

! Boolean object

! byte primitive

! one-element byte array

! Byte object

! char primitive

! Character object

! double primitive

! Double object

! float primitive

! Float object

! int primitive

! Integer object

! long primitive

! Long object

! short primitive

! Short object

! String object

Description

Converts the specified primitive or object to a byte primitive.

Appendix A Section A.14
Java Classes and Methods STCTypeConverter Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 635 SeeBeyond Proprietary and Confidential

Parameter

Return Type

byte (primitive)

! For boolean primitives and Boolean objects: Returns 1 if and only if _value == true;
returns 0 if and only if _value == false.

! For char primitives and Character objects: Returns the ASCII code of the character.

Throws

java.lang.IllegalArgumentException thrown if specified object _value is null, or if it is:

! too large to fit in a byte

! (for byte[] arrays) not a one-element byte array

toByte()

Access to the seventeen toByte() methods is provided via the STCTypeConverter class,
supplied in the SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class STCTypeConverter

Syntax

public Byte STCTypeConverter.toByte(_value)

This method has seventeen possible signatures, corresponding to the following possible
data types for _value:

! boolean primitive

! Boolean object

! byte primitive

! one-element byte array

! char primitive

! Character object

! double primitive (must be small enough to fit in one byte)

! Double object (must be small enough to fit in one byte)

! float primitive (must be small enough to fit in one byte)

! Float object (must be small enough to fit in one byte)

Name Type Description

_value (any of seventeen primitive or
object types; see above)

Primitive or object to be converted
to a byte primitive.

Appendix A Section A.14
Java Classes and Methods STCTypeConverter Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 636 SeeBeyond Proprietary and Confidential

! int primitive (must be small enough to fit in one byte)

! Integer object (must be small enough to fit in one byte)

! long primitive (must be small enough to fit in one byte)

! Long object (must be small enough to fit in one byte)

! short primitive (must be small enough to fit in one byte)

! Short object (must be small enough to fit in one byte)

! String object

Description

Converts the specified primitive or object to a Byte object.

Parameter

Return Type

Byte (object)

! For boolean primitives and Boolean objects: Returns 1 if and only if _value == true;
returns 0 if and only if _value == false.

! For char primitives and Character objects: Returns the ASCII code of the character.

Throws

java.lang.IllegalArgumentException thrown if specified object _value is null, or if it is:

! too large to fit in a byte

! (for byte[] arrays) not a one-element byte array

toByteArray()

Access to the sixteen toByteArray() methods is provided via the STCTypeConverter
class, supplied in the SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class STCTypeConverter

Syntax

public byte[] STCTypeConverter.toByte(_value)

public byte[] STCTypeConverter.toByte(java.lang.String _value
java.lang.String _encoding)

Name Type Description

_value (any of seventeen primitive or
object types; see above)

Primitive or object to be converted
to a Byte object.

Appendix A Section A.14
Java Classes and Methods STCTypeConverter Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 637 SeeBeyond Proprietary and Confidential

This method has sixteen possible signatures, corresponding to the following possible
data types for _value:

! byte primitive

! Byte object

! char primitive

! Character object

! double primitive

! Double object

! float primitive

! Float object

! int primitive

! Integer object

! long primitive

! Long object

! short primitive

! Short object

! String object, default character encoding

! String object, specified character encoding

Description

Converts the specified primitive or object to a byte array.

Parameter

Return Type

byte[]—in other words, an array of bytes.

! For char and short primitives and Character and Short objects: Returns a two-
element byte array containing the Unicode bytes for the character.

! For int and float primitives and Integer and Float objects: Returns a four-element
byte array with the most significant bits in element 0.

Name Type Description

_value (any of fifteen primitive or
object types; see above)

Primitive or object to be converted
to a byte array.

_encoding java.lang.String The character encoding to use when
converting a String object.

Basic encoding sets are contained in rt.jar; extended encoding sets are
contained in i18n.jar. For a complete list, see http://java.sun.com/j2se/
1.3/docs/guide/intl/encoding.doc.html

Appendix A Section A.14
Java Classes and Methods STCTypeConverter Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 638 SeeBeyond Proprietary and Confidential

! For double and long primitives and Double and Long objects: Returns an eight-
element byte array with the most significant bits in element 0.

! For String objects: If _encoding is not specified, uses the default character encoding.

Throws

java.lang.IllegalArgumentException thrown if the specified object _value is null.

java.lang.UnsupportedEncodingException thrown if the specified character encoding
_encoding is not supported.

toCharPrimitive()

Access to the seventeen toCharPrimitive() methods is provided via the
STCTypeConverter class, supplied in the SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class STCTypeConverter

Syntax

public char STCTypeConverter.toCharPrimitive(_value)

This method has seventeen possible signatures, corresponding to the following possible
data types for _value:

! boolean primitive

! Boolean object

! byte primitive

! one-element or two-element byte array

! Byte object

! Character object

! double primitive

! Double object

! float primitive

! Float object

! int primitive

! Integer object

! long primitive

! Long object

! short primitive

! Short object

Appendix A Section A.14
Java Classes and Methods STCTypeConverter Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 639 SeeBeyond Proprietary and Confidential

! String object (must be a one-character string)

Description

Converts the specified primitive or object to a char primitive.

Parameter

Return Type

char (primitive)

! For boolean primitives and Boolean objects: Returns FALSE_CHAR if and only if
_value is false; returns TRUE_CHAR if and only if _value is true.

Throws

java.lang.IllegalArgumentException thrown if specified object _value is null, or if it is:

! a byte array that has zero elements or more than two elements

! a String object that is empty or is longer than one character in length

toCharacter()

Access to the seventeen toCharacter() methods is provided via the STCTypeConverter
class, supplied in the SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class STCTypeConverter

Syntax

public Character STCTypeConverter.toCharacter(_value)

This method has seventeen possible signatures, corresponding to the following possible
data types for _value:

! boolean primitive

! Boolean object

! byte primitive

! one-element or two-element byte array

! Byte object

! char primitive

! double primitive

! Double object

Name Type Description

_value (any of seventeen primitive or
object types; see above)

Primitive or object to be converted
to a char primitive.

Appendix A Section A.14
Java Classes and Methods STCTypeConverter Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 640 SeeBeyond Proprietary and Confidential

! float primitive

! Float object

! int primitive

! Integer object

! long primitive

! Long object

! short primitive

! Short object

! String object (must be a one-character string)

Description

Converts the specified primitive or object to a Character object.

Parameter

Return Type

Character (object)

! For boolean primitives and Boolean objects: Returns FALSE_CHAR if and only if
_value is false; returns TRUE_CHAR if and only if _value is true.

Throws

java.lang.IllegalArgumentException thrown if specified object _value is null, or if it is:

! a byte array that has zero elements or more than two elements

! a String object that is empty or longer than one character in length

toDoublePrimitive()

Access to the seventeen toDoublePrimitive() methods is provided via the
STCTypeConverter class, supplied in the SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class STCTypeConverter

Syntax

public double STCTypeConverter.toDoublePrimitive(_value)

This method has seventeen possible signatures, corresponding to the following possible
data types for _value:

Name Type Description

_value (any of seventeen primitive or
object types; see above)

Primitive or object to be converted
to a Character object.

Appendix A Section A.14
Java Classes and Methods STCTypeConverter Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 641 SeeBeyond Proprietary and Confidential

! boolean primitive

! Boolean object

! byte primitive

! eight-element byte array

! Byte object

! char primitive

! Character object

! double primitive

! Double object

! float primitive

! Float object

! int primitive

! Integer object

! long primitive

! Long object

! short primitive

! Short object

! String object

Description

Converts the specified primitive or object to a double primitive.

Parameter

Return Type

double (primitive)

! For boolean primitives and Boolean objects: Returns 1 if and only if _value == true;
returns 0 if and only if _value == false.

Throws

java.lang.IllegalArgumentException thrown if specified object _value is null, or if it is:

! (for byte[] arrays) not an eight-element byte array

Notes

When an eight-element byte array is converted, the most significant bits are taken from
element 0.

Name Type Description

_value (any of seventeen primitive or
object types; see above)

Primitive or object to be converted
to a double primitive.

Appendix A Section A.14
Java Classes and Methods STCTypeConverter Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 642 SeeBeyond Proprietary and Confidential

toDouble()

Access to the seventeen toDouble() methods is provided via the STCTypeConverter
class, supplied in the SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class STCTypeConverter

Syntax

public Double STCTypeConverter.toDouble(_value)

This method has seventeen possible signatures, corresponding to the following possible
data types for _value:

! boolean primitive

! Boolean object

! byte primitive

! eight-element byte array

! Byte object

! char primitive

! Character object

! double primitive

! float primitive

! Float object

! int primitive

! Integer object

! long primitive

! Long object

! short primitive

! Short object

! String object

Description

Converts the specified primitive or object to a Double object.

Appendix A Section A.14
Java Classes and Methods STCTypeConverter Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 643 SeeBeyond Proprietary and Confidential

Parameter

Return Type

Double (object)

! For boolean primitives and Boolean objects: Returns 1 if and only if _value == true;
returns 0 if and only if _value == false.

! For char primitives and Character objects: Returns the ASCII code of the character.

Throws

java.lang.IllegalArgumentException thrown if specified object _value is null, or if it is:

! (for byte[] arrays) not an eight-element byte array

Notes

When an eight-element byte array is converted, the most significant bits are taken from
element 0.

toFloatPrimitive()

Access to the seventeen toFloatPrimitive() methods is provided via the
STCTypeConverter class, supplied in the SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class STCTypeConverter

Syntax

public float STCTypeConverter.toFloatPrimitive(_value)

This method has seventeen possible signatures, corresponding to the following possible
data types for _value:

! boolean primitive

! Boolean object

! byte primitive

! four-element byte array

! Byte object

! char primitive

! Character object

! double primitive (must be in range)

Name Type Description

_value (any of seventeen primitive or
object types; see above)

Primitive or object to be converted
to a Double object.

Appendix A Section A.14
Java Classes and Methods STCTypeConverter Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 644 SeeBeyond Proprietary and Confidential

! Double object (must be in range)

! float primitive

! Float object

! int primitive

! Integer object

! long primitive

! Long object

! short primitive

! Short object

! String object

Description

Converts the specified primitive or object to a float primitive.

Parameter

Return Type

float (primitive)

Throws

java.lang.IllegalArgumentException thrown if specified object _value is null, or if:

! (for byte[] arrays) _value is not a four-element byte array

! (for double primitives or Double objects) the result would be out of range

toFloat()

Access to the seventeen toFloat() methods is provided via the STCTypeConverter class,
supplied in the SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class STCTypeConverter

Syntax

public Float STCTypeConverter.toFloat(_value)

This method has seventeen possible signatures, corresponding to the following possible
data types for _value:

Name Type Description

_value (any of seventeen primitive or
object types; see above)

Primitive or object to be converted
to a float primitive.

Appendix A Section A.14
Java Classes and Methods STCTypeConverter Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 645 SeeBeyond Proprietary and Confidential

! boolean primitive

! Boolean object

! byte primitive

! four-element byte array

! Byte object

! char primitive

! Character object

! double primitive

! Double object

! float primitive

! Float object

! int primitive

! Integer object

! long primitive

! Long object

! short primitive

! Short object

! String object

Description

Converts the specified primitive or object to a Float object.

Parameter

Return Type

Float (object)

Throws

java.lang.IllegalArgumentException thrown if specified object _value is null, or if:

! (for byte[] arrays) _value is not a four-element byte array

! (for double primitives or Double objects) the result would be out of range

Name Type Description

_value (any of seventeen primitive or
object types; see above)

Primitive or object to be converted
to a Float object.

Appendix A Section A.14
Java Classes and Methods STCTypeConverter Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 646 SeeBeyond Proprietary and Confidential

toIntegerPrimitive()

Access to the seventeen toIntegerPrimitive() methods is provided via the
STCTypeConverter class, supplied in the SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class STCTypeConverter

Syntax

public int STCTypeConverter.toIntegerPrimitive(_value)

This method has seventeen possible signatures, corresponding to the following possible
data types for _value:

! boolean primitive

! Boolean object

! byte primitive

! four-element byte array

! Byte object

! char primitive

! Character object

! double primitive

! Double object

! float primitive

! Float object

! Integer object

! long primitive

! Long object

! short primitive

! Short object

! String object

Description

Converts the specified primitive or object to an int primitive.

Appendix A Section A.14
Java Classes and Methods STCTypeConverter Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 647 SeeBeyond Proprietary and Confidential

Parameter

Return Type

int (primitive)

Throws

java.lang.IllegalArgumentException thrown if specified object _value is null, or if:

! (for byte[] arrays) _value is not a four-element byte array

! (for long, float, or double primitives or objects) the result would be out of range

toInteger()

Access to the seventeen toInteger() methods is provided via the STCTypeConverter
class, supplied in the SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class STCTypeConverter

Syntax

public Integer STCTypeConverter.toInteger(_value)

This method has seventeen possible signatures, corresponding to the following possible
data types for _value:

! boolean primitive

! Boolean object

! byte primitive

! four-element byte array

! Byte object

! char primitive

! Character object

! double primitive (must be in range)

! Double object (must be in range)

! float primitive (must be in range)

! Float object (must be in range)

! int primitive

Name Type Description

_value (any of seventeen primitive or
object types; see above)

Primitive or object to be converted
to an int primitive.

Appendix A Section A.14
Java Classes and Methods STCTypeConverter Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 648 SeeBeyond Proprietary and Confidential

! Integer object

! long primitive (must be in range)

! Long object (must be in range)

! short primitive

! Short object

! String object

Description

Converts the specified primitive or object to an Integer object.

Parameter

Return Type

Integer (object)

Throws

java.lang.IllegalArgumentException thrown if specified object _value is null, or if:

! (for byte[] arrays) _value is not a four-element byte array

! (for long, float, or double primitives or objects) the result would be out of range

toLongPrimitive()

Access to the seventeen toLongPrimitive() methods is provided via the
STCTypeConverter class, supplied in the SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class STCTypeConverter

Syntax

public long STCTypeConverter.toLongPrimitive(_value)

This method has seventeen possible signatures, corresponding to the following possible
data types for _value:

! boolean primitive

! Boolean object

! byte primitive

! eight-element byte array

Name Type Description

_value (any of seventeen primitive or
object types; see above)

Primitive or object to be converted
to an Integer object.

Appendix A Section A.14
Java Classes and Methods STCTypeConverter Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 649 SeeBeyond Proprietary and Confidential

! Byte object

! char primitive

! Character object

! double primitive (must be in range)

! Double object (must be in range)

! float primitive (must be in range)

! Float object (must be in range)

! int primitive

! Integer object

! long primitive

! Long object

! short primitive

! Short object

! String object

Description

Converts the specified primitive or object to a long primitive.

Parameter

Return Type

long (primitive)

Throws

java.lang.IllegalArgumentException thrown if specified object _value is null, or if:

! (for byte[] arrays) _value is not an eight-element byte array

! (for float or double primitives or objects) the result would be out of range

Name Type Description

_value (any of seventeen primitive or
object types; see above)

Primitive or object to be converted
to a long primitive.

Appendix A Section A.14
Java Classes and Methods STCTypeConverter Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 650 SeeBeyond Proprietary and Confidential

toLong()

Access to the seventeen toLong() methods is provided via the STCTypeConverter
class, supplied in the SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class STCTypeConverter

Syntax

public Long STCTypeConverter.toLong(_value)

This method has seventeen possible signatures, corresponding to the following possible
data types for _value:

! boolean primitive

! Boolean object

! byte primitive

! eight-element byte array

! Byte object

! char primitive

! Character object

! double primitive (must be in range)

! Double object (must be in range)

! float primitive (must be in range)

! Float object (must be in range)

! int primitive

! Integer object

! long primitive

! short primitive

! Short object

! String object

Description

Converts the specified primitive or object to a Long object.

Appendix A Section A.14
Java Classes and Methods STCTypeConverter Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 651 SeeBeyond Proprietary and Confidential

Parameter

Return Type

Long (object)

Throws

java.lang.IllegalArgumentException thrown if specified object _value is null, or if:

! (for byte[] arrays) _value is not an eight-element byte array

! (for float, or double primitives or objects) the result would be out of range

toShortPrimitive()

Access to the seventeen toShortPrimitive() methods is provided via the
STCTypeConverter class, supplied in the SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class STCTypeConverter

Syntax

public short STCTypeConverter.toShortPrimitive(_value)

This method has seventeen possible signatures, corresponding to the following possible
data types for _value:

! boolean primitive

! Boolean object

! byte primitive

! two-element byte array

! Byte object

! char primitive

! Character object

! double primitive (must be in range)

! Double object (must be in range)

! float primitive (must be in range)

! Float object (must be in range)

! int primitive (must be in range)

Name Type Description

_value (any of seventeen primitive or
object types; see above)

Primitive or object to be converted
to a Long object.

Appendix A Section A.14
Java Classes and Methods STCTypeConverter Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 652 SeeBeyond Proprietary and Confidential

! Integer object (must be in range)

! long primitive (must be in range)

! Long object (must be in range)

! Short object

! String object

Description

Converts the specified primitive or object to a short primitive.

Parameter

Return Type

short (primitive)

Throws

java.lang.IllegalArgumentException thrown if specified object _value is null, or if:

! (for byte[] arrays) _value is not a two-element byte array

! (for int, long, float, or double primitives or objects) the result would be out of range

toShort()

Access to the seventeen toShort() methods is provided via the STCTypeConverter
class, supplied in the SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class STCTypeConverter

Syntax

public Short STCTypeConverter.toShort(_value)

This method has seventeen possible signatures, corresponding to the following possible
data types for _value:

! boolean primitive

! Boolean object

! byte primitive

! two-element byte array

! Byte object

Name Type Description

_value (any of seventeen primitive or
object types; see above)

Primitive or object to be converted
to a short primitive.

Appendix A Section A.14
Java Classes and Methods STCTypeConverter Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 653 SeeBeyond Proprietary and Confidential

! char primitive

! Character object

! double primitive (must be in range)

! Double object (must be in range)

! float primitive (must be in range)

! Float object (must be in range)

! int primitive (must be in range)

! Integer object (must be in range)

! long primitive (must be in range)

! Long object (must be in range)

! short primitive

! String object

Description

Converts the specified primitive or object to a Short object.

Parameter

Return Type

Short (object)

Throws

java.lang.IllegalArgumentException thrown if specified object _value is null, or if:

! (for byte[] arrays) _value is not a two-element byte array

! (for int, long, float, or double primitives or objects) the result would be out of range

toString()

Access to the eighteen toString() methods is provided via the STCTypeConverter class,
supplied in the SeeBeyond package com.stc.eways.util:

package com.stc.eways.util;

public class STCTypeConverter

Syntax

public java.lang.String STCTypeConverter.toString(_value)

Name Type Description

_value (any of seventeen primitive or
object types; see above)

Primitive or object to be converted
to a Short object.

Appendix A Section A.14
Java Classes and Methods STCTypeConverter Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 654 SeeBeyond Proprietary and Confidential

This method has eighteen possible signatures, corresponding to the following possible
data types for _value:

! boolean primitive

! Boolean object

! byte primitive

! byte array, using default character encoding

! byte array, using specified character encoding

! Byte object

! char primitive

! Character object

! double primitive

! Double object

! float primitive

! Float object

! int primitive

! Integer object

! long primitive

! Long object

! short primitive

! Short object

! String object

Description

Converts the specified primitive or object to a String object.

Appendix A Section A.14
Java Classes and Methods STCTypeConverter Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 655 SeeBeyond Proprietary and Confidential

Parameter

Return Type

String (object)

Throws

java.lang.IllegalArgumentException thrown if the object specified for _value is null or
if _encoding is null.

java.lang.UnsupportedEncodingException—If the specified character encoding is not
supported.

Name Type Description

_value (any of seventeen primitive or
object types; see above)

Primitive or object to be converted
to a byte array.

_encoding java.lang.String The character encoding to use when
converting a byte[] array.

Basic encoding sets are contained in rt.jar; extended encoding sets are
contained in i18n.jar. For a complete list, see http://java.sun.com/j2se/
1.3/docs/guide/intl/encoding.doc.html

Appendix A Section A.15
Java Classes and Methods StringUtils Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 656 SeeBeyond Proprietary and Confidential

A.15 StringUtils Class (com.stc.eways.util)
The SeeBeyond class com.stc.eways.util.StringUtils provides the following public
methods for querying, padding, and trimming text strings:

! empty() on page 656

! padCenter() on page 657

! padLeft() on page 658

! padRight() on page 659

! trimBoth() on page 660

! trimLeft() on page 660

! trimRight() on page 661

empty()

The empty() method is provided in the StringUtils class, supplied in SeeBeyond
package com.stc.eways.util (in stcutil.jar):

public class StringUtils

Syntax

static boolean empty(java.lang.String _string)

Description

Inquires whether the specified string is either null or empty.

Parameters

Return Type

boolean

Returns true if the specified String is either null or empty; returns false if the String
contains one or more non-null characters.

Throws

None.

Name Type Description

_string java.lang.String The string to be queried.

Appendix A Section A.15
Java Classes and Methods StringUtils Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 657 SeeBeyond Proprietary and Confidential

padCenter()

The two padCenter() methods are provided in the StringUtils class, supplied in
SeeBeyond package com.stc.eways.util (in stcutil.jar):

public class StringUtils

Syntax

static java.lang.String padCenter(java.lang.String _string,
int _length)

static java.lang.String padCenter(java.lang.String _string,
int _length, char _padchar)

Description

These two methods prepend and append sufficient characters so that the returned
string is centered in the specified length. The first method (with only two parameters)
pads the string using blank spaces (\u0020); the second method (with three
parameters) allows you to specify the padding character.

The length of the right padding equals that of the left or exceeds it by 1. For example,
if the eleven-character string This String were centered to 40 characters with
^ (circumflex) characters, fourteen ^s would be prepended and fifteen ^s appended:

12345----1----+----2----+----3----+----4
^^^^^^^^^^^^^^This String^^^^^^^^^^^^^^^

Important: None of the padding methods truncate data: If the specified string length is
insufficient to hold the entire string, the value of _length is ignored.

Parameters

Return Type

java.lang.String

Throws

None.

Name Type Description

_string java.lang.String The string to be centered.

_length int The length of the centered string to
be returned.

_padchar char If specified, the string can be
padded on the left and right with
nonblank characters.

Appendix A Section A.15
Java Classes and Methods StringUtils Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 658 SeeBeyond Proprietary and Confidential

padLeft()

The padLeft() methods are provided in the StringUtils class, supplied in SeeBeyond
package com.stc.eways.util (in stcutil.jar):

public class StringUtils

Syntax

static java.lang.String padLeft(java.lang.String _string,
int _length)

static java.lang.String padLeft(java.lang.String _string,
int _length, char _padchar)

Description

These two methods prepend sufficient characters so that the returned string is right-
justified in the specified length. The first method (with only two parameters) pads the
string using blank spaces (\u0020); the second method (with three parameters) allows
you to specify the padding character.

For example, the eleven-character string This String could be left-padded to
30 characters by prepending nineteen . (period) characters, as follows:

12345----1----+----2----+----3
...................This String

Important: None of the padding methods truncate data: If the specified string length is
insufficient to hold the entire string, the value of _length is ignored.

Parameters

Return Type

java.lang.String

Throws

None.

Name Type Description

_string java.lang.String The string to be left-padded.

_length int The length of the padded string to
be returned.

_padchar char If specified, the string can be left-
padded with nonblank characters.

Appendix A Section A.15
Java Classes and Methods StringUtils Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 659 SeeBeyond Proprietary and Confidential

padRight()

The two padRight() methods are provided in the StringUtils class, supplied in
SeeBeyond package com.stc.eways.util (in stcutil.jar):

public class StringUtils

Syntax

static java.lang.String padRight(java.lang.String _string,
int _length)

static java.lang.String padRight(java.lang.String _string,
int _length, char _padchar)

Description

These two methods append sufficient characters so that the returned string is left-
justified in the specified length. The first method (with only two parameters) pads the
string using blank spaces (\u0020); the second method (with three parameters) allows
you to specify the padding character.

For example, the eleven-character string This String would be right-padded to twenty
characters by appending nine - (hyphen) characters, as follows:

12345----1----+----2
This String---------

Important: None of the padding methods truncate data: If the specified string length is
insufficient to hold the entire string, the value of _length is ignored.

Parameters

Return Type

java.lang.String

Throws

None.

Name Type Description

_string java.lang.String The string to be right-padded.

_length int The length of the padded string to
be returned.

_padchar char If specified, the string can be right-
padded with nonblank characters.

Appendix A Section A.15
Java Classes and Methods StringUtils Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 660 SeeBeyond Proprietary and Confidential

trimBoth()

The trimBoth() method is provided in the StringUtils class, supplied in SeeBeyond
package com.stc.eways.util (in stcutil.jar):

public class StringUtils

Syntax

public java.lang.String trimBoth(java.lang.String _string,
java.lang.String _chars)

Description

Trims the specified character or characters from both the beginning and the end of the
specified String.

Parameters

Return Type

java.lang.String

Throws

None.

Example

trimBoth(“aababcbcddabcdcbcbabaa”,”ab”) trims the first five characters and the last
five characters, since they consist only of as and bs, yielding “cbcddabcdcbc”.

trimLeft()

The trimLeft() method is provided in the StringUtils class, supplied in SeeBeyond
package com.stc.eways.util (in stcutil.jar):

public class StringUtils

Syntax

public java.lang.String trimLeft(java.lang.String _string,
java.lang.String _chars)

Description

Trims the specified character or characters from the beginning of the specified String.

Name Type Description

_string java.lang.String The string to be trimmed.

_chars java.lang.String The character or characters to be
removed from the string.

Appendix A Section A.15
Java Classes and Methods StringUtils Class (com.stc.eways.util)

e*Gate Integrator User’s Guide 661 SeeBeyond Proprietary and Confidential

Parameters

Return Type

java.lang.String

Throws

None.

Example

trimLeft(“aababcbcddabcdcbcbabaa”,”ab”) trims the first five characters, since they
consist only of as and bs, yielding “cbcddabcdcbcbabaa”.

trimRight()

The trimRight() method is provided in the StringUtils class, supplied in SeeBeyond
package com.stc.eways.util (in stcutil.jar):

public class StringUtils

Syntax

public java.lang.String trimRight(java.lang.String _string,
java.lang.String _chars)

Description

Trims the specified character or characters from the end of the specified String.

Parameters

Return Type

java.lang.String

Throws

None.

Name Type Description

_string java.lang.String The string to be trimmed.

_chars java.lang.String The character or characters to be
removed from the string.

Name Type Description

_string java.lang.String The string to be trimmed.

_chars java.lang.String The character or characters to be
removed from the string.

Appendix A Section A.16
Java Classes and Methods Formatting of Output Text

e*Gate Integrator User’s Guide 662 SeeBeyond Proprietary and Confidential

Example

trimRight(“aababcbcddabcdcbcbabaa”,”ab”) trims the last five characters, since they
consist only of as and bs, yielding “aababcbcddabcdcbc”.

A.16 Formatting of Output Text
Several methods, such as copy(), dataMap(), lookup(), and sprintf(), use a special set of
flags to specify a pattern for text formatting. Here are some examples of these patterns:

! %-#5.4D

! %+012.4o

! %-+4i

! %B

Syntax

%[flag[flag]][width][.precision]<C>

%[flag[flag]]#<width>.<precision><C>

In the syntax pattern given above:

! The % is always required.

! Angle brackets denote a required argument—<reqArg>

! Square brackets denote an optional argument— [optArg]

Description

This format specification converts arguments from their internal representation to a
printable form.

Appendix A Section A.16
Java Classes and Methods Formatting of Output Text

e*Gate Integrator User’s Guide 663 SeeBeyond Proprietary and Confidential

Parameters

A literal string can be included in the format. For example

sprintf("Cherries are %s" "red.") => "Cherries are red."

Name Description

[flag] Formatting option that modifies the <C> conversion character. Up to three
flags can be specified. Not all flags can be used with each data type. See
“Examples” on page 664 for a list of flags that can be used with each data
type.

- Output is left aligned.

+ A sign (+ or -) always precedes output.

space If the first character to be output is not a sign (+ or -), a space
character is prefixed. Only one space is allowed in a format
specification.

0 Numbers are right-aligned and padded with leading zeros.

Output includes a decimal point.

<width> Minimum width of output data. A positive integer no greater than 9,999,999.
The total is determined by the length of the formatted data but cannot be less
than <width>. If the formatted data is narrower than <width>, then the result is
left-padded or right-padded with spaces or zeros depending on other flags.

<.precision> Number of digits to the right of the decimal place. A nonnegative integer.
If used, must be preceded by a . (period) to distinguish it from <width>.

<C> Conversion character indicating output data type. Data types with capital
letters attempt to print that element as Monk-readable text. Lowercase data
types print in a normal, text-readable format. Not available for E, F, or *;
reserved for future use. Select one of the following:

a, A Any Monk object.

b, B Binary output of a number.

d, D Decimal output of a number. Integer (positive or negative).

e, E Exponent output of a number. Floating point number
formatted with scientific notation [-]n.me+/-xx.

f, F Fixed output of a number. Floating point number formatted
with decimal notation [-]n.m where - is output for negative
numbers.

i, I Decimal output of a number.

n, N Number of bytes written so far.

o, O Octal output of a number.

s, S String output.

x, X hexadecimal output of a number.

* Use next argument as directive information.

Appendix A Section A.16
Java Classes and Methods Formatting of Output Text

e*Gate Integrator User’s Guide 664 SeeBeyond Proprietary and Confidential

The following table relates conversion characters <C> to format flags.

Examples

sprintf("%b" "33") => "100001"
sprintf("%-8c" "Tiger") => "Tiger "
sprintf("%07o" "33") => "0000041"

These three examples demonstrate, respectively: binary conversion; left-justify using
the minus character; and padding with zeros.

Table 86 lists a variety of inputs, formats and the resulting string.

Note: The doublequotes are not part of the data; instead, they show where spaces occur.

<C> Permitted Format Flags for <C>

a, A -

b, B 0, +, -, space

d, D +, -, space

e, E +

f, F +, .

i, I +, -

n, N none

o, O 0, -, +, #, space

s, S none

x, X 0, -, +, #, space

* none

Table 86 Sample Inputs and Format Codes and Their Results

Input Forrmat Code Result

Floating point format examples

12.345
12.345
12.345
12.345
12.345
12.345
12.345
12.345
12.345
12.345
12.345
12.345
-12.345
12.345
-12.345
12.345
-12.345

%9.0f
%9.1f
%9.2f
%9.3f
%9.4f
%8.4f
%7.4f
%6.4f
%09.0f
%09.1f
%09.2f
%+-09.2f
%+-09.2f
%+09.2f
%+09.2f
%-09.2f
%-09.2f

" 12"
" 12.3"
" 12.34"
" 12.345"
" 12.3450"
" 12.3450"
"12.3450"
"12.3450"
"000000012"
"0000012.3"
"000012.34"
"+12.34 "
"-12.34 "
"+00012.34"
"-00012.34"
"12.34 "
"-12.34 "

Appendix A Section A.16
Java Classes and Methods Formatting of Output Text

e*Gate Integrator User’s Guide 665 SeeBeyond Proprietary and Confidential

Integer Format Examples

123
123
123
123
123
123
123

%i
%8i
%7i
%-6i
%-5i
%+4i
%+3i

"123"
" 123"
" 123"
"123 "
"123 "
"+123"
"+123"

Octal Format Examples

33
33
33
33
33
33
33
33
33
33
-33
33
-33
-33

%o
% o
%09o
%08o
%8o
%7o
%6o
%5o
%-9o
%+09o
%+09o
%+9o
%+9o
%#9o

"41"
" 41"
"000000041"
"00000041"
" 41"
" 41"
" 41"
" 41"
"41 "
"+00000041"
"-00000041"
" +41"
" -41"
" -41"

Table 86 Sample Inputs and Format Codes and Their Results (Continued)

Input Forrmat Code Result

Glossary

e*Gate Integrator User’s Guide 666 SeeBeyond Proprietary and Confidential

Glossary

Access Control List (ACL)
The security feature in e*Gate; a role-based list of information that specifies which users
have permission to access e*Gate and its components and what specific access rights
the users have.

advisory lock
The lock placed on a file when a user checks it out from the run-time schema. An
advisory lock is simply a flag that warns other users that someone is already editing the
file; it does not prevent other users from also checking out the file.

agent (Alert, SNMP)
A stand-alone application that monitors processes and resources and sends
Notifications to e*Gate system users, informing them of system status (for example,
when a preset disk space level is exceeded).

Application Programing Interface (API)
An API is the set of classes, functions, and methods of a particular programming
language that developers use to code software. API documentation is the documenting
of the syntax and use of the API methods.

business Event
A unit of data sent by an external system to e*Gate representing a change in that
system’s information.

Business Object Broker (BOB)
The executable component stcbob.exe. BOBs use Collaborations to route and transform
data within the e*Gate system.

Business Rules pane
Use the Business Rules pane in the Java Collaboration Rules Editor to navigate and
edit the Java code of a Collaboration.

Business Rules toolbar
Use the buttons on the Business Rules toolbar in the Java Collaboration Rules Editor to
add corresponding Java statements to a Collaboration.

byte length
Length in bytes of the string or regular expression to be matched within an Event Type
Definition. e*Gate measures fixed-length data from byte 1.

Glossary

e*Gate Integrator User’s Guide 667 SeeBeyond Proprietary and Confidential

byte offset
The beginning byte location of the string or regular expression to be verified within an
Event Type Definition, beginning at byte 0.

child nodes
Nodes that are below a given node within the same branch of the Event Type Definition
tree. Child nodes can inherit certain properties, such as delimiters, from their parent
nodes.

Collaboration
The component within an e*Way or BOB that performs data transformation and/or
routing. It is the business logic that is applied to an Event in the course of delivery from
a publisher to a subscriber. Collaboration components do the following functions:
Subscriber components receive Events of a known type while publisher components
distribute the transformed Events to a specified recipient. See also Collaboration
Rules.

Collaboration Rules Editors
The graphical user interface (GUI) features used to work with Collaboration Rules
scripts in the Java and Monk programming languages. See also Collaboration Rules
script.

Collaboration-ID Rules Editor
The graphical user interface (GUI) feature used to create Collaboration Rules scripts in
the Monk programming language for e*Gate release 3.6 only. See also Collaboration
Rules script.

Collaboration Rules
The program logic that instructs a Collaboration how to execute the business logic
required to support e*Gate’s data transformation and routing. See also Collaboration
and Collaboration script.

Collaboration Rules script
A Collaboration script (data program) written using the Collaboration Rules Editor
feature.

Collaboration script
The data flow and transformation logic contained in and configured by an e*Gate
Collaboration and written as a program in any of the following programming
languages: Monk, Java, or C.

Collaboration Services
Libraries that provide the low-level facilities by which Collaborations execute
Collaboration Rules, for example, issuing system-specific terminate calls.

command line
A tool for monitoring and controlling e*Gate by entering application program interface
(API) commands at a DOS or DOS-type prompt.

Glossary

e*Gate Integrator User’s Guide 668 SeeBeyond Proprietary and Confidential

committing files
Takes them out of the run-time schema and places them in the Sandbox. See also,
Sandbox and run time.

Control Broker
An automatically generated e*Gate component that starts and monitors e*Ways and
BOBs. At least one Control Broker must be running on each host within a schema.

delimiter
A special character assigned to mark the boundary of an Event node.

delimiter declaration field
In the HL7 standard, the location within an Event where a character is to be used as a
delimiter. Also refers to the Event Type Definition node boundary it marks.

destination
Pertaining to the primary output Event Type Definition within a Collaboration Rules
component or Collaboration Rules script.

e*Gate Monitor
A standard e*Gate component that provides graphical access to e*Gate systems and
e*Gate status information, state control, and troubleshooting log files and journals.

e*Way Connection
An e*Way Connection is the encoding of the access information for one particular
external connection or SeeBeyond JMS IQ Manager. In terms of content, it is similar to
an e*Way configuration file, in defining enough information to be able to “login” or
connect to the particular system. However, unlike e*Way configuration files, there is no
schedule information. The idea is that the e*Way Connection will be information shared
across multiple interfaces.

e*Way Configuration Editor
The graphical user interface (GUI) feature used to configure e*Ways.

e*Way Intelligent Adapter
A component that provides a noninvasive point of contact between an e*Gate system
and an external business application (often abbreviated as e*Way). e*Ways establish
connectivity with applications, using whatever communication protocol is appropriate.
e*Ways perform the following main functions: (1) receiving unprocessed data from
external components, transforming it into Events, and forwarding it to other
components within e*Gate via Intelligent Queues (IQs); and (2) sending processed data
to external components (can also include data transformation).

Enterprise Manager
The e*Gate graphical user interface (GUI) that allows you to create, configure, and
modify all components of an e*Gate system.

Event
A unit package of data processed by the e*Gate system. This data has a defined
structure, for example, a known number of fields with known characteristics and

Glossary

e*Gate Integrator User’s Guide 669 SeeBeyond Proprietary and Confidential

delimiters. Events are classified by type (Event Type) and exchanged within e*Gate as
Event Type Definitions (ETDs).

Event, delimited
A variable-length Event made up of nodes whose boundaries are marked by delimiters.

Event, fixed
An Event of prescribed length. Each node within a fixed Event Type Definition is
identified by its length and location within that Event Type Definition.

Event Linking and Sequencing (ELS)
Event Linking and Sequencing is a feature that allows for Events that arrive from
independent input streams to be delivered to subscribers as related units. Complex
Linking and Sequencing can be configured using the e*Gate 4.5.2 Java Collaboration
Rules Editor, so that n different input streams can be linked and sequenced according to
rules based on any combination of content or time-out rules.

Event, monitoring
An Event sent from one e*Gate component to another that describes an internal e*Gate
condition, such as “component up” or “component down.”

Event Type
A class of Events with common data structure (for example, a known number of fields,
with known characteristics and delimiters). An Event Type is also a logical name entry
in e*Gate that points to a single Event Type Definition (ETD).

Event Type Definition (ETD)
A programmatic representation of an Event Type that Collaboration Rules can use
when parsing, transforming, or routing data.

Event Type Definition Editors
The graphical user interface (GUI) features used to configure Event Type Definitions
(ETDs) in the Java and Monk programming languages; abbreviated as ETD Editor. See
also Event Type Definition.

Event Type Definition node
A segment of an Event Type Definition (ETD) that is represented graphically as a node
in an Event Type Definition tree in the Event Type Definition Editor window, and
represents a portion of an Event.

Event Type Definition tree
The graphical or logical representation of the Event Type Definition and its hierarchy.

Extensible Markup Language (XML)
w3.org defines Extensible Markup Language (XML) as the universal format for
structured documents and data on the Web.

external system
A system that sends or receives data and is outside of the e*Gate system.

Glossary

e*Gate Integrator User’s Guide 670 SeeBeyond Proprietary and Confidential

Guaranteed Exactly Once Delivery (GEOD)
Using XA, GEOD guarantees once and only once delivery. Guaranteed Exactly Once
Delivery refers to the usage of XA-compliant e*Gate and external components to ensure
the delivery occurs once regardless of failures.

ignore
When a file from the run-time schema, which already carries an advisory lock, is
checked out. The advisory lock stays with the original user who checked out the file,
and does not transfer to the new user.

instance
A specific node within a series of repeating nodes.

Intelligent Queue (IQ)
A standard e*Gate component that manages the exchange of information between
components within the e*Gate system, providing nonvolatile storage for data as it
passes from one component to another.

IQ Manager
A standard e*Gate component that reorganizes Intelligent Queues (IQs), archives queue
information upon request to save disk space, and locks the queues when maintenance
is performed.

IQ Service
A utility that provides the transport of components within Intelligent Queues (IQs),
handling the low-level implementation of data exchange, such as system calls to
initialize or reorganize a database.

Java Message Service (JMS)
See SeeBeyond JMS for the e*Gate implementation of JMS.

log file
A text file that contains a record of all actions taken by an e*Way. Use log files to
troubleshoot any problems in the system and discover how to solve them.

Monitor
An executable e*Gate component that enables users to view messages that describe the
state of e*Gate internal components. Interactive monitors also enable users to send
commands to e*Gate components; non-interactive monitors only enable users to view
notifications.

monitoring Event
An Event, sent by one e*Gate component to another (usually to the Control Broker) that
describes occurrences within the e*Gate system. Monitoring Events include error
messages, such as "component down" or "component lost"; status messages such as
"component up" or "contact re-established"; system performance messages, such as
"event processing below preset threshold" or "disk space low"; and miscellaneous
messages such as scheduled timers, configuration changes, or "event content of
interest."

Glossary

e*Gate Integrator User’s Guide 671 SeeBeyond Proprietary and Confidential

Monk
SeeBeyond’s event-processing language.

Monk Test Console
A graphical user interface (GUI) test feature for testing Monk functions and
Collaboration scripts before introducing them into the run-time environment.

Navigator Tree
The tree-like graphical display in the Navigator/Components pane of the Enterprise
Manager window. This display shows the components of the e*Gate system and how
they relate to each other in pictorial form using an icon to represent each component.

node
See Event Type Definition node.

node set
A group of associated nodes that are order-independent, or that repeat.

notification
A notification sent to the user by the e*Gate system.

notification routing
The Collaboration Rules script that specifies how monitoring Events are translated into
notifications.

parent nodes
Nodes that are above a given node within the same branch of the Event Type Definition
tree.

Participating Host
A client computer that supports an e*Gate system, as opposed to the Registry Host,
which acts as a server to the Participating Host.

promoting files
Update the run-time schema to use the new file or files. If the file already exists in the
run-time schema, that file is replaced with the file from the Sandbox. Promoting a file
automatically removes it from the user’s Sandbox and, if the user has locked the file,
releases the lock. When you delete a file from the Sandbox without promoting it to the
run-time schema, you remove the file. If the file was locked, the lock is released.

publish
See publish/subscribe.

publish/subscribe
Abbreviated as pub/sub; subscriber components retrieve Events. Publisher
components make Events available to other e*Gate components. See also
Collaboration.

Glossary

e*Gate Integrator User’s Guide 672 SeeBeyond Proprietary and Confidential

Registry
The storage place (in a directory) for all e*Gate configuration details, including file
containment.

Registry Service
The service that handles all requests for updates to the e*Gate registry and forwards
updated files to clients as necessary.

regular expression
A pattern representing a set of strings to be matched.

removing files
Delete a file from the Sandbox without promoting it to the run-time schema. If the user
carried the advisory lock for the file, the lock is released.

root node
The highest-level node in the Event Type Definition tree.

run time
The environment in the Registry shared by all users of that Registry. The run time
contains parameters that run for each instance of e*Gate unless the controlling user has
a parameter in his or her own Sandbox, in which case the Sandbox is overridden. The
run time is the production environment of a schema. See also, Team Registry.

Sandbox
A user’s local development area. Each user has his own Sandbox. Files in a user’s
Sandbox are available for testing the functions in the file themselves, but they are not
available to the run-time schema. In other words, files within a person’s Sandbox are
not available to the e*Gate components (such as e*Ways or BOBs) that use them. See
also, Team Registry.

schema
Includes files and associated stores created by e*Gate, which contain the parameters of
all the components that control, route, and transform data as it moves through e*Gate
in a predefined system configuration.

SeeBeyond JMS
e*Gate implementation of the Java Message Service (JMS) using IQ Managers, IQs, and
a special e*Way Connection.

sibling nodes
Nodes that are children of the same parent node.

source
Pertaining to the primary input Event or Event Type Definition within a Collaboration
or Collaboration script.

subnode
A node that is connected through parent-child relationships to another node that is
higher in the Event Type Definition tree.

Glossary

e*Gate Integrator User’s Guide 673 SeeBeyond Proprietary and Confidential

subnode set
A set of order-independent or repeating Event Type Definition nodes one level below
the currently selected node in the Event Type Definition tree.

subscribe
See publish/subscribe.

Team Registry
Allows multiple users to develop components of a single schema simultaneously by
compartmentalizing the e*Gate Registry into work-in-progress and run-time
environment areas, implemented by the Sandbox and run-time environments.

Index

e*Gate Integrator User’s Guide 674 SeeBeyond Proprietary and Confidential

Index

Symbols
.class files (executable Java bytestream) 262
.ctl files 262
.dsc files (database script, Monk database e*Ways)
107
.ejdb files (e*Gate Java debugging session) 507
.isc files (Monk Collaboration-ID Editor) 107
.jar files (Java archives) 164, 176
.java files (Java source code) 262
.monk files (used by Monk Collaborations) 107
.ssc files (Monk ETDs) 204, 216
.tsc files (transformation script for Monk
Collaborations) 107
.xpr files (project file, Java Collaboration Editor) 262
.xts files (Java Collaboration Rules Editor) 262

A
a2e()

Java method of Standard ETD 616
access control 35
Access Control List (ACL)

(defined) 666
activating components 498
adding Business Object Brokers (BOBs) 130
adding Collaborations

basic setup 143
overview 142
troubleshooting 147

adding e*Ways
basic operation 123
Multi-Mode e*Ways 131
overview 123

adding Intelligent Queues (IQs)
IQ Managers 137
IQ Services 136

Additional command line arguments text box 454,
473
Advanced tab

Control Broker properties 92
advisory locks 62
Alert Agents 499

creating 53
Alerter (Java class)

in package com.stc.common.collabService 599
Alerter (Java class), methods in

eventSend() method 599
Alerts 491
Allow remote debugging of JVM 487
application connectivity 37
Application Connectivity layer 37
application program interface (API) 35, 37

stccmd 490
Application Programs (AP)

in Distributed Transaction Processing (DTP)
systems 539

application-specific e*Ways 39
architecture 32–33, 34
archive files 54
ASCII, converting to and from 616, 617
asHex()

Java method of Standard ETD 552
Asynchronous Garbage Collection 486
Attach to JVM (debugger commands) 507
auto-starting e*Ways 124
available()

Java method of Standard ETD 334
avoidance of data duplication 37

B
Base64 (Java class) 549–551
Base64 (Java class), methods in

base64Decode() 549
Base64 encoding 549
base64Decode()

Java method of Standard ETD 549
base64DecodeToByte()

Java method of Standard ETD 550
Base64Utils (Java class) 549–551
Base64Utils (Java class), methods in

base64DecodeToByte() 550
byteToBase64String() 550

Base64Utils class
byteToBase64String() method 551

big-endian 618, 619
block (Business Rule) 291
BOBs. See Business Object Brokers
Break (debugger command) 508
Break on Exception (debugger command) 508, 515
breakpoints

clearing 510
enabling/disabling 510
setting or modifying 510, 513, 514

business analysis and preparations 43
business logic 36
Business Object Brokers (BOBs)

(defined) 666

Index

e*Gate Integrator User’s Guide 675 SeeBeyond Proprietary and Confidential

as components under a CB 126
as data flow controllers 83
command-line options 454, 473
configuring 130
creating and configuring 53, 130, 462
deprecation of 40
interaction with Sandbox 61
moving from one component to another 55
overview 39, 123
relationship with IQs 136
system files for 127
where to find (in components tree) 51

Business Rules 476
block 291
case 315
catch (with try) 321
default 315
else (with if) 306
finally (with try) 321
for 304, 305
if, then, else 306
method 310
return 313
switch 315
then 316
then (with if) 306
throw 317
try, catch, finally 321
variable 324
while 325

Business Rules and Data Processing layer 36
Business Rules pane

described 266
illustrated 265

Business Rules toolbar
(illustrated) 265
Java Collaboration Rules Editor 269

byte offsets 238
byteToBase64String()

Java method of Standard ETD 550, 551

C
case (Business Rule) 315
catch (Business Rule, with try) 321
CBs.See Control Brokers
channels

available Notification 499
character encoding

discussed 580
example 583
methods for 385, 584, 585, 586, 587, 588

character encodings, methods for
MIME Base64 549

child nodes 158
Choose a method (dialog box)

accessing 284
illustrated 286

circular dependencies, in ETD templates 180
.class files (executable Java bytestream) 262
Class Garbage Collection 486
classes, Java

Alerter 599
Base64 549–551
Base64Utils 549–551
CollabUtils 552–558
com.stc.common.collabService.JSubCollabMapI

nfo 603, 604, 605, 606, 607, 608, 609, 610, 611,
612, 613, 614

com.stc.common.utils.Qsort 627
DateUtils 559–561
EGate 562–569
FileUtils 570–572
JCollabController 573–598

character encoding 580
JCollaboration 599–602
JSubCollabMapInfo 603–615
Mainframe 616–620
MapUtils 621–626
ScEncrypt 628–629
STCTypeConverter 630–655
StringUtils 656–662

CLASSPATH Override 468, 484
CLASSPATH Prepend 467, 483
codes

for text formatting 663–665
collabDebug()

Java method of Standard ETD 562
collabError()

Java method of Standard ETD 563
collabFatal()

Java method of Standard ETD 563
collabInfo()

Java method of Standard ETD 564
Collaboration 36, 37, 38, 44, 45, 47, 56, 59, 84, 85, 106,
107, 109, 123, 124, 136, 143, 145, 146, 148, 254, 450,
456, 464, 476

(defined) 667
as necessary component of an e*Way 85

Collaboration .class files (Java) 106
Collaboration Editor 108
Collaboration Rule 27, 36, 37, 106, 107, 109, 116, 117,
118, 121, 122, 144, 148, 448, 456
Collaboration Rules

(defined) 667
(folder in Components view) 51
as necessary components of Collaborations 142
assigning to Collaborations 145

Index

e*Gate Integrator User’s Guide 676 SeeBeyond Proprietary and Confidential

characteristics of 36
correspondence with Collaborations 143
creating 53

Collaboration Rules Editor 36, 52, 56, 73, 107, 119,
120, 352–447
Collaboration Rules script 56, 85, 106, 107, 109, 118,
120, 148, 149
Collaboration Rules scripts (Monk) 106
Collaboration Rules, Monk

creating 116
Collaboration script 85, 106, 107, 119, 457
Collaboration Service 36, 51, 109, 110, 117, 144
Collaboration Service types

C 109
Java 109
Monk 109
Monk ID 109
Pass Through 109
Route Table 109

Collaboration Services
creating 53

Collaboration-ID Rules Editor 52, 56, 107, 123
Collaborations

adding 142, 143
configuring 144
configuring in publication order 143
correspondence with Collaboration Rules 143
creating 53
Java file types 108
moving from one component to another 55
subscription properties of 145
where to find (in components tree) 51

collabTrace()
Java method of Standard ETD 565

CollabUtils (Java class) 552–558
in package com.stc.common.collabService 562
in package com.stc.eways.util 552

CollabUtils class
asHex() method 552
doOffsetTrunc() method 553
isMonkDatePattern() method 554
sprintf() method 555
toHex() method 556
toJavaDatePattern() method 556
uniqueID() method 557
uniqueId() method 557

collabWarning()
Java method of Standard ETD 565

com.stc.common.collabService package
EGate class 562
JCollabController class 573
JSubCollabMapInfo class 603, 604, 605, 606, 607,

608, 609, 610, 611, 612, 613, 614
com.stc.common.utils

ScEncrypt class 628
STCTypeConverter class 630

com.stc.common.utils package
Qsort class 627

com.stc.eways.util package 552
Base64Utils class 549
DateUtils class 559
FileUtils class 570
JSubCollabMapInfo class 603
Mainframe class 616
MapUtils class 621
StringUtils class 656

com.stc.jcsre package
Base64 class 549
JCollaboration class 599

com.stc.jcsre.JCollaboration 283
command line 95, 121, 129, 147, 245

adding new parameters 453, 472
command-line arguments

-rp %_PORT% 454, 473
-rp %_REGPORT% 473

command-line options
adding in BOB 454, 473
adding in IQ Manager 454, 473
changing in BOB 454, 473
changing in IQ Managers 454, 473

command-line utilities
stccmd 490

committing files 61, 63
in Team Registry 62

Compile pane, Java Collaboration Rules Editor
(illustrated) 265
described 266

compiling
ETDs 182

compiling Java-enabled ETDs 102
components

activating 498
displaying status 497, 498
shutting down 497
starting 496
suspending 498
version, displaying 498

components tree 52
illustrated 51
maneuvering upward through 52
of Enterprise Manager 51

configuration files, e*Way 449, 453
configuration files, Multi-Mode e*Ways 465
configuring Multi-Mode e*Ways with e*Way
Connections 477
Context pane

in e*Gate Java Debugger 510
Control 491

Index

e*Gate Integrator User’s Guide 677 SeeBeyond Proprietary and Confidential

Control Broker 36, 125, 126, 455, 474, 476, 494
(defined) 668
interaction with e*Gate Monitor 489
relationship with e*Gate Monitor 491

Control Broker properties
(listed) 87
Advanced 92
General 88
Notification Setup 88
Security 93
Timers 90

Control Brokers (CBs)
and system management 127
as a data-management feature 86
as control layer components 35
configuring 87
creating 53
function of 36
moving components into or from 55
options for starting/stopping e*Ways 454
where to find (in components tree) 51

Control layer 35
conventions, writing in document 28
conversion, methods for

Also see STCTypeConverter
converting endian-ness, methods for 618, 619
converting strings, methods for 617
copy (Business Rule),Business Rules

copy 294
copyProperties()

Java method of Standard ETD 575
CP930 character encoding method 586, 587
createSubCollabMapInfo()

Java method of Standard ETD 575, 578
creating a schema 86
creating a system design

information gathering 44
overview 44
system structure 45

creating Collaboration Rules and scripts
Collaboration Rule properties 109
Collaboration Rules Editor 107
Collaboration Rules scripts 107
Collaboration Services and types 109
configuring Collaboration Rules 117
initializing Collaboration Rules 117
Java and C language scripts 107
listing services 109
Monk language scripts 107
overview 106
using Collaboration scripts 107

creating Event Types and ETDs
assigning definitions to Event Types 105
creating Event Type Definitions (ETDs) 103

creating Event Types 96
overview 95

creating external templates 180
creating internal templates 180
creating Java-enabled ETDs 99
.ctl files 262
CTRL key

to drag a node before another node 178, 181
custom e*Ways 39

D
data duplication, avoidance of 37
data flows

gathering information on 44
data interactions

gathering information on 44
data type conversion, methods for

See STCTypeConverter
database access e*Ways 39
databases 37, 39
datamap (Business Rule),Business Rules

datamap 296
DateUtils (Java class) 559–561

in package com.stc.eways.util 559
DateUtils class

format() method 559
timeStamp() method 560
transformDate() method 560

decoding and encoding strings 549, 550, 551
decrypt()

Java method of Standard ETD 628
default (Business Rule) 315
default (Business Rule),Business Rules

default 299
default repository (registry) files

exporting 54
default.txt file

editing 454, 473
deleting templates 181
delimited ETDs

adding nodes 228
creating root nodes 222
defining default delimiters 217
definition 215

delimiter syntax 222
Destination Events pane

Java Collaboration Rules Editor 265, 266
Detach (debugger commands) 507
Disable JIT 471, 486
disk space warnings 500
displaying component version information 498
displaying system status 497, 498
Distributed Transaction Processing (DTP) 539

Index

e*Gate Integrator User’s Guide 678 SeeBeyond Proprietary and Confidential

document
conventions 29

doMap()
Java method of Standard ETD 622

doOffsetTrunc()
Java method of Standard ETD 553

DOS device name
ineligibility as node name 174

double-byte characters 581
in ETD node names 174

.dsc files (database script, Monk database e*Ways)
107

E
e*Gate Alert Agent 499
e*Gate editors, overview 34
e*Gate Java Debugger

activating 509
clearing breakpoints 510
Context pane 510
main menu commands 507
opening a Java Collaboration 512
overview 505
setting breakpoints 510
setting or modifying breakpoints 513, 514
trapping exceptions 515
using 510
viewing variables 511

e*Gate Java Debugger, commands
Attach to JVM 507
Break 508
Break on Exception 508
Detach 507
Go 508
Resume Session 507
Save Session 507
Step Into 508
Step Out 508
Step Over 508
Stop in Class 508
Stop in Method 508

e*Gate layers 33
Application Connectivity 37
Business Rules and Data Processing 36
Control 35
Intelligent Queuing 37
View 34

e*Gate Monitor 35, 494
(illustrated) 491
overview 489
relationship with stccmd 490
reliance on Control Broker 489, 491

e*Gate Monitor operation

accessing 490
exiting 494
menu bar 493
toolbar buttons 492
window parts 491

e*Gate SNMP Agent 500
e*Gate system setup, general overview 40
e*Gate system, overview 32
e*Insight Business Process Manager Module 487
e*Insight engines

as components under a CB 126
e*Way

(defined) 668
e*Way configuration

activating or modifying logging options 456
activating or modifying monitoring thresholds

456
changing "run as" user name 454
changing command-line parameters 453
creating or selecting configuration file 453
defining components 450
modifying properties 451
selecting executable file 452
setting startup options or schedules 454

e*Way Configuration Editor
(illustrated) 458
controls for 458
controls, described 458
creating and configuring BOBs 462
entering user notes 461
modifying configuration settings 461
navigating through 460
online Help for 462
online Help system for 462
overview 457
parameter configuration controls 459, 479
promoting configuration file to run time 461
restoring default settings 461
restoring saved settings 461
saving configuration settings 460
section and parameter controls 459

e*Way Connection 83, 84, 123, 131, 134, 135
(defined) 668

e*Way Connection Editor operation
entering user notes 481
modifying configuration settings 481
navigating through 480
promoting configuration file to run time 481
restoring default settings 481
restoring saved settings 481
saving configuration settings 480
section and parameter controls 479

e*Way Connections
(folder in Components view) 51

Index

e*Gate Integrator User’s Guide 679 SeeBeyond Proprietary and Confidential

for JMS 274
used with Multi-Mode e*Ways 464
XA-compliant 540

e*Way Editor 452, 458
e*Way operation

Enterprise Manager 449
functional components 449
overview 448

e*Way properties, modifying 451
e*Ways

and Collaborations 457
and connectivity 37
as components under a CB 126
as named components of a schema 45
configuring 128
creating and configuring 53, 125, 127
gathering information on external systems 44
interaction with Sandbox 61
moving from one component to another 55
purpose of 37
starting 124
system files for 127
where to find (in components tree) 51

e*Ways, types of
application-specific 39
custom 39
Generic e*Way Extension Kit 39
SAP 39

e2a()
Java method of Standard ETD 617

e2S()
Java method of Standard ETD 617

EBCDIC, converting to and from 616, 617
editing files 54, 57

in Sandbox 63
in Team Registry 63

EGate (Java class) 562–569
EGate (Java class), methods in

collabDebug() 562
collabError() 563
collabFatal() 563
collabInfo() 564
collabTrace() 565
collabWarning() 565
traceln() 566

EGate class
collabDebug() method 562
collabError() method 563
collabFatal() method 563
collabInfo() method 564
collabTrace() method 565
collabWarning() method 565
traceln() method 566

eInsight Engines

creating 53
.ejdb files (e*Gate Java debugging session) 507
ELS methods

and jCollabController prefix 589
flushAllLinkIdentifiers() 590
getCurrentLinkIdentifier() 590
getELSExpiration() 591
getLinkIdentifiers() 592
getNoOfMessagesForInstance() 593
getNumberOfMessages() 593
IsCurrentELSExpired() 595
isFlushMode() 596

ELS placeholder methods
isLinkingComplete() 597
onExpire() 597
retrieveLinkIdentifier() 598

ELSController interface
flushAllLinkIdentifiers() method 590
getCurrentLinkIdentifier() method 590
getELSExpiration() method 591
getLinkIdentifiers() method 592
getNoOfMessagesForInstance() method 593
getNumberOfMessages() method 593
hasHappened() method 594
IsCurrentELSExpired() method 595
isFlushMode() method 596
isLinkIdentifierExists() method 596
setELSExpiration() method 598

else (Business Rule, with if) 306
empty()

Java method of Standard ETD 656
encoding and decoding strings 549, 550, 551
encoding methods

discussed 580
example 583
getIncomingEncoding() 584
getMarshalEncoding() 584
getOutgoingEncoding() 585
getUnmarshalEncoding() 585
in Monk 385
setIncomingEncoding() 586
setMarshalEncoding() 587
setOutgoingEncoding() 587
setUnmarshalEncoding() 588

encodings, methods for
MIME Base64 549

encrypt()
Java method of Standard ETD 628

endian-ness, swapping 618, 619
Enterprise Manager basic operation

accessing 49
Components Tree 51
editor pane 50
exiting 59

Index

e*Gate Integrator User’s Guide 680 SeeBeyond Proprietary and Confidential

File > Edit File option 57
File > New menu 53
Menu bar 53
navigator pane 50
navigator pane, Components view 50
navigator pane, Network view 50
Sandbox and run time 57
toolbar buttons 52
View > Summary menu 58
window areas 50

Enterprise Manager feature
overview 34
using 49

escape character, for delimited ETDs 221
ETD

(defined) 95
(discussed) 95
properties 191–203
specifying node information 205

ETD Editor feature
function in setup 103
overview 204

ETD Editor window
accessing 209

ETD nodes
creation 205
naming 174, 206
parents and children 205
structure 205
using 205

ETD operations
changing node details 253
creating comments 250
deleting ETDs 253
editing files 250
extracting input delimiters 247
finding nodes 250
modifying internal templates 253
moving nodes 251
opening 242
pruning 252
saving ETDs under new names 246
testing files 247
using cut, copy, paste 251
using the Build tool 242

ETD templates
external, breaking links 257
external, changing repetition properties 256
external, including 255
external, overview 254
internal, changing repetition properties 258
internal, converting to 258
internal, creating 257
internal, overview 257

internal, referencing 258
ETD Tester (Java) 183
ETD Tree 204
ETDs

compiling 102, 182
creating 99
defining specific Event Types 158
explained 158
Java properties of 176
opening 102
promoting 102
testing 183

ETDs, Monk
editing 204

EUC character encoding methods
in Monk 385

EUC-JP character encoding method 586, 587
Event

(defined) 668
Event Type 44, 47, 56, 59, 84, 95, 96, 103, 104, 105,
106, 107, 109, 121, 122, 139, 147, 148, 158, 159, 163,
204, 205, 207, 215, 216, 222, 232

(defined) 669
Event Type Definition (ETD)

(defined) 669
(discussed) 95
defined 95
See ETD

Event Type Definition (ETD) Editor 52, 56, 99, 103,
104, 105, 204–259

Java 27, 159–196
Monk 27

Event Type Definition (ETD) information 44, 85,
174, 205, 206, 207
Event Type Definition (ETD) node. See node.
Event Type Definition (ETD) pane 102
Event Type properties 163, 207
Event Types

(folder in Components view) 51
as entities received and processed by

Collaborations 142
as named components of a schema 45
creating 53
defined 95
priority 146

Events
defined 95
mapping 37

eventSend()
Java method of Standard ETD 599

event-threshold warnings 502
exceptions, trapping 515
executable files, e*Way 449, 452
exporting files 54

Index

e*Gate Integrator User’s Guide 681 SeeBeyond Proprietary and Confidential

external system 38, 42, 43, 48, 83, 84, 104, 109, 123,
127, 143, 452

publishing or subscribing to 85
external systems

and Multi-Mode e*Ways 464
gathering information on 44

external templates
converting .ssc files containing 167
creating 180
deleting 181
renaming 180

External Templates pane
shortcut menu for 180

F
F11 key

(in debugger) Step Into 508
F5 key

(in debugger) Go 508
F7 key

(in debugger) Step Over 508
F9 key

(in debugger) Step Out 508
file types

.class (executable Java bytestream) 262

.ctl 262

.dsc (database script, Monk database e*Ways)
107

.ejdb (e*Gate Java debugging session) 507

.isc (Monk Collaboration-ID Editor) 107

.java (Java source code) 262

.monk (text file used by Monk Collaborations)
107

.ssc (Monk ETDs) 204, 216

.tsc (transformation script for Monk
Collaborations) 107

.xpr (project file, Java Collaboration Editor) 262

.xts (Java Collaboration Rules Editor) 262
files

committing in Team Registry 62
editing in Team Registry 63
promoting in Team Registry 63
removing from Sandbox 62
removing in Team Registry 64
saving in Team Registry 63

files, e*Way 449
files, methods for reading and writing 570, 571
FileUtils (Java class) 570–572

in package com.stc.common.collabService 570
FileUtils (Java class), methods in

readBytes() 570
readString() 570
write() 571

finally (Business Rule, with try) 321
fixed ETDs

adding nodes 235
creating root nodes 232
definition 215

flags for stcinstd 95
flushAllLinkIdentifiers()

ELS method 590
for (Business Rule)

illustrated 304, 305
Format Specification 662
format()

Java method of Standard ETD 559
formatting, codes for 663–665
function definitions, e*Way 449

G
gaiji conversion

in Monk 385
Garbage Collection activity reporting 486
Generic e*Way Extension Kit 39
getCallingCollaboration()

Java method of Standard ETD 603
getClassFullPath()

Java method of Standard ETD 604
getClassName()

Java method of Standard ETD 605
getCollaborationName()

Java method of Standard ETD 576
getCtlFileFullPath()

Java method of Standard ETD 605
getCtlFileName()

Java method of Standard ETD 606
getCurrentLinkIdentifier()

ELS method 590
getEgateBaseDirectory()

Java method of Standard ETD 576
getELSExpiration()

ELS method 591
getEventTypeDefinition()

Java method of Standard ETD 607
getEventTypeDefinitionPath()

Java method of Standard ETD 607
getIncomingEncoding()

Java method of Standard ETD 584
getInputData()

Java method of Standard ETD 608
getInputTopicName()

Java method of Standard ETD 609
getLinkIdentifiers()

ELS method 592
getMarshalEncoding()

Java method of Standard ETD 584

Index

e*Gate Integrator User’s Guide 682 SeeBeyond Proprietary and Confidential

getModuleName()
Java method of Standard ETD 577

getNoOfMessagesForInstance()
ELS method 593

getNumberOfMessages()
ELS method 593

getOutgoingEncoding()
Java method of Standard ETD 585

getOutputData()
Java method of Standard ETD 609

getParentReferenceETD()
Java method of Standard ETD 610

getParentReferenceInstanceName()
Java method of Standard ETD 611

getPropertyNames()
Java method of Standard ETD 577

getRuleName()
Java method of Standard ETD 611

getting started
add-ons and client software 42
overview 42

getUnmarshalEncoding()
Java method of Standard ETD 585

Go (debugger command) 508

H
hasHappened()

ELS method,ELS methods
hasHappened() 594

HL7 repeating fields 231

I
if, then, else (Business Rule) 306
importing files 54
In/Out Event instances

and JMS e*Way Connections 274
Initial Heap Size 469, 484
Insert Java Function (shortcut menu command) 284

cautionary note 284
Intelligent Queue

Managers. See IQ Managers
Services. See IQ Services

Intelligent Queue (IQ) 37, 47, 83, 84, 110, 124, 125,
137, 138, 139, 140, 141, 142, 143, 147, 148, 456, 457,
464, 476

defined by IQ Service 138
published to by an inbound Collaboration 85

Intelligent Queues (IQs)
purpose and function 37
and BOBs 40
as named components of a schema 45
configuring 138

creating 53, 137
moving from one component to another 55
relationship to IQ Manager 86
starting 142
where to find (in components tree) 51

Intelligent Queuing layer 37
intended audience, user’s guide 26
interactive monitoring 489
interactive monitoring of e*Gate 490
interactive monitors 34, 35
internal templates 180, 181

deleting 181
properties

as a root node 180
as instance 181

Internal Templates pane
shortcut menu for 180, 181

IQ
(defined) 670

IQ Administrator
toolbar button for 492

IQ Manager 37, 125, 136, 137, 138, 142, 148
(defined) 670
adding command-line options 454, 473
changing command-line options 454, 473

IQ Managers
as a data-management feature 86
as components under a CB 126
creating 53
moving from one component to another 55
where to find (in components tree) 51

IQ Services 136
creating 53
defined 37
documentation for 110
listed in Enterprise Manager 110
purpose 136
specifying 138
where to find (in components tree) 51

IQs
adding 136
creating 53
moving from one component to another 55
overview 136
starting 142
tips for setting up 136

.isc files (Monk Collaboration-ID Editor) 107
IsCurrentELSExpired()

ELS method 595
isFlushMode()

ELS method 596
isLinkIdentifierExists()

ELS method,ELS methods
isLinkIdentifierExists() 596

Index

e*Gate Integrator User’s Guide 683 SeeBeyond Proprietary and Confidential

isLinkingComplete()
ELS placeholder method 597

isManualPublish()
Java method of Standard ETD 612

isMonkDatePattern()
Java method of Standard ETD 554

ISO-2022-JP character encoding method 586, 587
isPublisher()

Java method of Standard ETD 613
isSubCollaboration()

Java method of Standard ETD 579
isTrigger()

Java method of Standard ETD 613

J
Japanese character encoding 581
Java 108

Collaboration file types 108
Event Type Definition (ETD) Editor 27

Java classes
CollabUtils 552
com.stc.common.collabService.JSubCollabMapI

nfo 603, 604, 605, 606, 607, 608, 609, 610, 611,
612, 613, 614

com.stc.common.utils.Qsort 627
DateUtils 559
EGate 562
FileUtils 570
JCollabController

character encoding 580
JCollaboration 599
JSubCollabMapInfo 603

Java Collaboration Rules Editor
(illustrated) 265
adding custom rules 115

Java ETD Editor 159–203
Java Event Type Definition (ETD)

builder wizards 98
Java Event Type Definition (ETD) Editor 98, 99
Java Event Type Definition wizard

using 100
.java files (Java source code) 262
Java letter-or-digit

in node names 174
Java letters

in node names 174
Java Message Service. See SeeBeyond JMS
Java packages

com.stc.common.collabService 603, 604, 605,
606, 607, 608, 609, 610, 611, 612, 613, 614

com.stc.common.utils 627
com.stc.jcsre.JCollaboration 283

Java properties, of ETDs 176

Java Virtual Machine (JVM) settings 466, 482
Java-enabled ETD

properties 191–203
Java-enabled ETDs

compiling 102, 182
creating 99
explained 158
opening 102
promoting 102

jCollabController
prefix for all ELS methods 589

JCollabController (Java class) 573–598
in com.stc.common.collabService package 573
setUnmarshalEncoding() 588

JCollabController (Java class), methods in
(for character encoding) 580
(for ELS) 589
copyProperties() 575
createSubCollabMapInfo() 575
flushAllLinkIdentifiers() 590
getCollaborationName() 576
getCurrentLinkIdentifier() 590
getEgateBaseDirectory() 576
getELSExpiration() 591
getIncomingEncoding() method 584
getLinkIdentifiers() 592
getMarshalEncoding() method 584
getModuleName() 577
getNoOfMessages() 593
getNoOfMessagesForInstance() 593
getOutgoingEncoding() 585
getPropertyNames() 577
getUnmarshalEncoding() 585
hasHappened() 594
invoke() 578
isCurrentELSExpired() 595
isELSExpired() 595
isFlushMode() 596
isLinkIdentifierExists() 596
isLinkingComplete() 597
isSubCollaboration() 579
onExpire() 597
retrieveLinkIdentifier() 598
retrieveRegistryFile() 580
setELSExpiration() 598
setIncomingEncoding() 586
setMarshalEncoding() 587
setOutgoingEncoding() 587
setUnmarshalEncoding() 588

JCollaboration (Java class) 599–602
in package com.stc.jcsre 599

JCollaboration (Java class), methods in
eventSend() method 599

JIS character encoding methods

Index

e*Gate Integrator User’s Guide 684 SeeBeyond Proprietary and Confidential

in Monk 385
JMS Administrator

toolbar button for 492
JMS e*Way Connections 339, 347

and In/Out Event instances 274
JMS IQs 37, 83, 123, 136
JNI DLL absolute pathname 483
JNI DLL names

for various operating systems 467, 483
JSubCollabMapInfo (Java class) 603–615

in package com.stc.common.collabService 603
JSubCollabMapInfo class

getCallingCollaboration() method 603
getClassFullPath() method 604
getClassName() method 605
getCtlFileFullPath() method 605
getCtlFileName() method 606
getEventTypeDefinition() method 607
getEventTypeDefinitionPath() method 607
getInputData() method 608
getInputTopicName() method 609
getOutputData() method 609
getParentReferenceETD() method 610
getParentReferenceInstanceName() method 611
getRuleName() method 611
isManualPublish() method 612
isPublisher() method 613
isTrigger() method 613
setInstanceMap() method 614

JVM settings 466, 482

K
ksc-5601 character encoding method 586, 587, 588

L
labels on buttons 56
leaf nodes 158
library files, e*Way 449
Link Identifiers, ELS 592
list lookup (Business Rule),Business Rules

list lookup 307
little-endian 618, 619

M
Mainframe (Java class) 616–620

in package com.stc.eways.util 616
Mainframe (Java class), methods in

a2e() 616
e2a() 617
e2S() 617

swapInt() 618
swapLong() 619
swapShort() 619

mapping Events 37
Mapping pane, Java Collaboration Rules Editor

(illustrated) 265
described 266

MapUtils (Java class) 621–626
in package com.stc.eways.util 621
readMap() 624
renderMap() 625
writeMap() 626

MapUtils (Java class), methods in
doMap() 622
parseMap() method 623

MapUtils class
parseMap() method 623

marshal()
Java method of Standard ETD 335

Maximum Heap Size 470, 485
Maximum Stack size for JVM threads 486
Maximum Stack size for native threads 485
menu bar, Java Collaboration Rules Editor

(illustrated) 265
method (Business Rule) 310
Method Browser

accessing 284
methods of Standard ETD

a2e() 616
asHex() 552
available() 334
base64Decode() 549
base64DecodeToByte() 550
byteToBase64String() 550, 551
collabDebug() 562
collabError() 563
collabFatal() 563
collabInfo() 564
collabTrace() 565
collabWarning() 565
copyProperties() 575
createSubCollabMapInfo() 575, 578
decrypt() 628
doMap() 622
doOffsetTrunc() 553
e2a() 617
e2S() 617
empty() 656
encrypt() 628
eventSend() 599
format() 559
getCallingCollaboration() 603
getClassFullPath() 604
getClassName() 605

Index

e*Gate Integrator User’s Guide 685 SeeBeyond Proprietary and Confidential

getCollaborationName() 576
getCtlFileFullPath() 605
getCtlFileName() 606
getEgateBaseDirectory() 576
getEventTypeDefinition() 607
getEventTypeDefinitionPath() 607
getIncomingEncoding() 584
getInputData() 608
getInputTopicName() 609
getMarshalEncoding() 584
getModuleName() 577
getOutgoingEncoding() 585
getOutputData() 609
getParentReferenceETD() 610
getParentReferenceInstanceName() 611
getPropertyNames() 577
getRuleName() 611
getUnmarshalEncoding() 585
isManualPublish() 612
isMonkDatePattern() 554
isPublisher() 613
isSubCollaboration() 579
isTrigger() 613
marshal() 335
next() 336
padCenter() 657
padLeft() 658
padRight() 659
parseMap() 623
publications() 337
qsort() 627
rawInput() 338
readBytes() 570
readMap() 624
readProperty() 339
readString() 570
receive() 341
renderMap() 625
reset() 342
retrieveRegistryFile() 580
send() 343
setIncomingEncoding() 586
setInstanceMap() 614
setMarshalEncoding() 587
setOutgoingEncoding() 587
setUnmarshalEncoding() 588
sprintf() 555
subscriptions() 344
swapInt() 618
swapLong() 619
swapShort() 619
timeStamp() 560
toBoolean() 632
toBooleanPrimitive() 631

toByte() 635
toByteArray() 636
toBytePrimitive() 634
toCharacter() 639
toCharPrimitive() 638
toDouble() 642
toDoublePrimitive() 640
toFloat() 644
toFloatPrimitive() 643
toHex() 556
toInteger() 647
toIntegerPrimitive() 646
toJavaDatePattern() 556
toLong() 650
toLongPrimitive() 648
topic() 345
toShort() 652
toShortPrimitive() 651
toString() 653
traceln() 566
transformDate() 560
trimBoth() 660
trimLeft() 660
trimRight() 661
uniqueID() 557
uniqueId() 557
unmarshal() 346
write() 571
writeMap() 626
writeProperty() 347

methods, browsing 284
MIME

Base64 character encoding 549
modifying breakpoints 513, 514
Monitor 27
monitor messages 491
monitoring features, overview 35
monitors

non-interactive 499
setting disk-usage thresholds 500
setting event-processing thresholds 502

Monk 107, 109, 117, 118, 119, 120, 148, 149, 152, 154,
155, 156, 204, 221, 224, 226, 448, 449, 450

Event Type Definition (ETD) Editor 27
Monk Collaboration Rules

creating 116
Monk Collaboration Rules Editor 119
.monk files (used by Monk Collaborations) 107
Monk Test Console 52, 56, 119, 148, 149–156
multibyte characters

in ETD node names 174
multibyte operating systems 174
Multi-Mode e*Way configuration

activating or modifying logging options 476

Index

e*Gate Integrator User’s Guide 686 SeeBeyond Proprietary and Confidential

activating or modifying monitoring thresholds
476

changing "run as" user name 473
changing command-line parameters 472

Multi-Mode e*Ways 132
before creating 131
characteristics 464
configuring 465
creating and configuring 131
defined and described 464
overview 131
properties (illustrated) 132

Multipurpose Internet Mail Extension.
See MIME

N
names

for nodes in ETDs 164
of Java packages 164

naming conventions
for nodes 174
for package names 174

naming system elements
conventions, data files 47
conventions, other system entries 47
conventions, system components 46
making checklists 45
overview 45

navigator tree (left-hand pane)
illustrated 51
levels, explained 126
maneuvering upward through 52
of e*Gate Monitor window 491

new ETD files, creating 215
next()

Java method of Standard ETD 336
node 163, 174, 205, 206, 207, 215, 217, 221, 222, 223,
224, 225, 226, 227, 228, 229, 230, 231, 232, 235, 236,
237, 239, 252, 253, 256
node names

guidelines for 174
node sets

adding 239
adding node subsets 241
overview 239

nodes
(terminology) 158
naming 164

nodes in Java ETDs
(terminology) 158
adding 177
as aliases for templates 180
deleting 178

expanding/collapsing 177
moving 177
names for 164
naming 174
renaming 178
repeating 178, 179, 183

nodes in Monk ETDs 257
acceptable characters for names 206
attaching external templates to 256
converting to internal template 258
cutting, copying, pasting 252
cutting, pasting, copying 252
finding 250
fixed or variable 236
modifying properties 259
moving 251
naming 233
node sets 239
properties of 240
root 234
subset 241
variable repetition options for 230

non-interactive monitoring 489
Notification channels 499
Notification Setup tab

Control Broker properties 88

O
onExpire() ELS placeholder method 597
online Help systems

accessing 74
books and topics 78
Contents Tree 76
entry and exit operation 76
exiting 80
GUI features 76
hypertext links 74
Index operation 78
overview 73
overview of features 77
printing 78
search operation 78
tab features 77
tab operation 77
toolbar buttons 78
using 73
window parts 75

opening ETDs 102
operating systems

various JNI DLL names 467, 483
organization of information, document 27

Index

e*Gate Integrator User’s Guide 687 SeeBeyond Proprietary and Confidential

P
packages

com.stc.common.utils 630
com.stc.eways.util 549, 552
com.stc.jcsre 549
naming conventions for 174

packages, Java
com.stc.common.collabService 603, 604, 605,

606, 607, 608, 609, 610, 611, 612, 613, 614
com.stc.common.utils 627
com.stc.jcsre.JCollaboration 283

padCenter()
Java method of Standard ETD 657

padding strings, methods for 657, 658, 659
padLeft()

Java method of Standard ETD 658
padRight()

Java method of Standard ETD 659
Palette

text labels on 56
panes

in Java ETD Editor 98, 99
parameters

adding to command line 453, 472
parent nodes 158
parseMap()

Java method of Standard ETD 623
Participating Host 67, 87, 125, 126, 131, 141

(defined) 671
moving components into or from 55
relationship to schema and Control Broker (CB)

86
Participating Hosts

(folder in Components view) 51
adding new 67
creating 53
editing properties 68
naming 67

PassThrough
class (Java) 109, 113
Service 109

priority
of Event Types 146

privileges
assigning 94
changing 94
removing 94

product architecture 32–33, 34
promote 62, 63
promoting files 61

in Team Registry 63
promoting Java-enabled ETDs 102
properties of standard ETD

Event Type instance 191
Field (leaf) nodes 197
parent (Element) nodes 192, 201

Properties pane, Java Collaboration Rules Editor
(illustrated) 265
described 266

pub/sub 37, 86, 142, 145
publications()

Java method of Standard ETD 337
publish 37, 59, 85, 122, 123, 124, 139, 147, 456, 457,
464, 476
publishers

priority (of Event Types) 146
publishing and subscribing 85, 86, 142, 145

Q
Qsort interface

qsort() method 627
qsort()

Java method of Standard ETD 627

R
rawInput()

Java method of Standard ETD 338
readBytes()

Java method of Standard ETD 570
readMap()

Java method of Standard ETD 624
readProperty()

Java method of Standard ETD 339
readString()

Java method of Standard ETD 570
receive()

Java method of Standard ETD 341
Registry 56, 57, 86, 87, 153, 154, 155, 452, 476

(defined) 672
as a control layer component 35
as a data-management feature 86
function of 36

registry
retrieving files from 54

registry files
exporting 54

Registry Service 36
(defined) 672
as a control layer component 35
as a data-management feature 86

Remote debugging port number 509
remove 62
removing files

in Team Registry 64
renaming external templates 180

Index

e*Gate Integrator User’s Guide 688 SeeBeyond Proprietary and Confidential

renaming internal templates 181
renderMap()

Java method of Standard ETD 625
repeating fields, HL7 231
repeating nodes 178, 179, 230

(example) 183
Report JVM Info and all class loads 486
reset()

Java method of Standard ETD 342
Resource Managers (RM)

in Distributed Transaction Processing (DTP)
systems 539

Resume Session (debugger commands) 507
retrieveLinkIdentifier()

ELS placeholder method 598
retrieveRegistryFile()

Java method of Standard ETD 580
return (Business Rule) 313
reviewing and testing system

Monk Test Console 149
overview 147
troubleshooting 148

right-click
to access shortcut menu 59

right-clicking
an ETD 102

Root Collaboration Rules 348
root nodes 158
-rp %_PORT%

optional argument at end of command line 454,
473

-rp %_REGPORT% 454
optional argument at end of command line 473

rule (Business Rule),Business Rules
rule 314

run time 57
promoting files to 54

running (activating) the host 95
running a schema/Control Broker 147
run-time environment

(defined) 672

S
-sa (flag for stcinstd) 95
Sandbox 36, 57, 62

(defined) 672
interaction with e*Ways and BOBs 61
placing files into 54
removing files from 54

SAP e*Ways 39
SAP R/3 systems 39
Save Session (debugger commands) 507
saving files

in Team Registry 63
ScEncrypt (Java class) 628–629

in package com.stc.common.utils 630
ScEncrypt (Java class), methods in

decrypt() 628
encrypt() 628

ScEncrypt class
decrypt() method 628
encrypt() method 628

schema 32, 34, 36, 41, 44, 49, 51, 52, 53, 56, 57, 58, 59,
86, 140, 147, 155, 174, 207, 246, 254, 255, 492, 493,
494
schema, views of

components tree 51
schemas

creating 54
defined 86
opening 54

Security
(folder in Components view) 51

security features 69
Security tab

Control Broker properties 93
SeeBeyond JMS

(defined) 672
SeeBeyond JMS IQ Manager

e*Way Connections for 83
SeeBeyond JMS IQ Managers 37, 123, 136

e*Way Connection for 668
e*Way Connections for 339, 347, 540

SeeBeyond JMS IQ Service 136
SeeBeyond Web site 31, 39
Select Repetition Instance (dialog box) 326
send()

Java method of Standard ETD 343
Services

(folder in Components view) 51
setELSExpiration()

ELS method,ELS methods
setELSExpiration() 598

setIncomingEncoding()
Java method of Standard ETD 586

setInstanceMap()
Java method of Standard ETD 614

setMarshalEncoding()
Java method of Standard ETD 587

setOutgoingEncoding()
Java method of Standard ETD 587

setting or modifying breakpoints 513, 514
setUnmarshalEncoding()

Java method of Standard ETD 588
SHIFT key

to drag a node before another node 178, 181
shortcut menu

Index

e*Gate Integrator User’s Guide 689 SeeBeyond Proprietary and Confidential

for creating external templates 180
for Insert Java Function 284
for Undo 286
from right-clicking an ETD 102
from right-clicking in External Templates pane

180
from right-clicking in Internal Templates pane

181
shortcut menus

accessed by right-clicking 59, 181
accessed via right-clicking 284, 286
in ETD Editor

for adding internal templates 180
for adding nodes 177
for deleting nodes 178
for deleting templates 181
for renaming nodes 178

shutting down e*Gate components 497
SJIS character encoding 583
SJIS character encoding method 586, 587, 588
SJIS character encoding methods

in Monk 385
SNMP Agent 500
SNMP Agents

creating 53
Source Events pane, Java Collaboration Rules Editor

(illustrated) 265
described 266

Specifies 588
sprintf()

Java method of Standard ETD 555
-ss (flag for stcinstd) 95
.ssc files (Monk ETDs) 204, 216
standard ETD

properties 191–203
standard ETD Editor 159–203
starting e*Gate components 496
starting e*Ways 124
Status 491
stccb 454, 473
stccb command 147
stccmd

command-line monitoring utility 490
stcinstd

flags for 95
stcinstd command 95
STCJavaPassThrough class 109
STCJavaPassThrough.class 113
STCTypeConverter (Java class) 630–655

toBoolean() method 632
toByte() method 635
toByteArray() method 636
toBytePrimitive() method 634
toCharacter() method 639

toCharPrimitive() method 638
toDouble() method 642
toDoublePrimitive() method 640
toFloat() method 644
toFloatPrimitive() method 643
toInteger() method 647
toIntegerPrimitive() method 646
toLong() method 650
toLongPrimitive() method 648
toShort() method 652
toShortPrimitive() method 651
toString() method 653

STCTypeConverter (Java class), methods in
toBooleanPrimitive() 631

STCTypeConverter class
toBooleanPrimitive() method 631

Step Into (debugger command) 508
Step Out (debugger command) 508
Step Over (debugger command) 508
Stop in Class (debugger command) 508, 513
Stop in Method (debugger command) 508, 514
strings, methods for padding 657, 658, 659
StringUtils (Java class) 656–662
StringUtils (Java class), methods in

empty() 656
padCenter() 657
padLeft() 658
padRight() 659
trimBoth() 660
trimLeft() 660
trimRight() 661

Subcollaboration Rules 348–351
characteristics of 348
illustrated 351
steps for calling 349

subnodes 158
subscribe 37, 85, 121, 123, 139, 147, 464
subscribing and publishing 85, 86, 142, 145

and Collaborations 143
subscriptions()

Java method of Standard ETD 344
supporting documents 30
suspending components 498
swapInt()

Java method of Standard ETD 618
swapLong()

Java method of Standard ETD 619
swapShort()

Java method of Standard ETD 619
switch (Business Rule) 315
system configuration 35
system design components

data flow relationships 83
data management relationships 86

Index

e*Gate Integrator User’s Guide 690 SeeBeyond Proprietary and Confidential

logical relationships 85
overview 83

system preparations 48
system setup overview

e*Gate GUIs 81
introduction 81
setup steps 82

system status, displaying 497, 498

T
tab in e*Gate Monitor 491
Team Registry 36, 58

(defined) 673
committing files 62
editing files 63
file operations 63
promoting files 63
removing files 64
saving files 63
unedit 63

Team Registry environments
run time 36
Sandbox 36

testing ETDs
Java-enabled 183

text files
editing 54, 57

text formatting, codes for 663–665
text labels on buttons 56
the 590
then (Business Rule) 316
then (Business Rule, with if) 306
thresholds

disk 500
event 502

throw (Business Rule) 317
Timers tab

Control Broker properties 90
timestamp (Business Rule),Business Rules

timestamp 318
timeStamp()

Java method of Standard ETD 560
toBoolean()

Java method of Standard ETD 632
toBooleanPrimitive()

Java method of Standard ETD 631
toByte()

Java method of Standard ETD 635
toByteArray()

Java method of Standard ETD 636
toBytePrimitive()

Java method of Standard ETD 634
toCharacter()

Java method of Standard ETD 639
toCharPrimitive()

Java method of Standard ETD 638
toDouble()

Java method of Standard ETD 642
toDoublePrimitive()

Java method of Standard ETD 640
toFloat()

Java method of Standard ETD 644
toFloatPrimitive()

Java method of Standard ETD 643
toHex()

Java method of Standard ETD 556
toInteger()

Java method of Standard ETD 647
toIntegerPrimitive()

Java method of Standard ETD 646
toJavaDatePattern()

Java method of Standard ETD 556
toLong()

Java method of Standard ETD 650
toLongPrimitive()

Java method of Standard ETD 648
toolbar

Business Rules 269
e*Gate Monitor 492
Enterprise Manager 52
ETD Editor 160
in online Help 77, 78
Java Collaboration Rules Editor 265, 269
relationship with menu bar and shortcut menus

59
text labels on 56

topic()
Java method of Standard ETD 345

toShort()
Java method of Standard ETD 652

toShortPrimitive()
Java method of Standard ETD 651

toString()
Java method of Standard ETD 653

traceln()
Java method of Standard ETD 566

Transaction Managers (TM)
in Distributed Transaction Processing (DTP)

systems 539
transaction processing

XA (architecture) 539
XA (overview) 538

transformDate()
Java method of Standard ETD 560

trapping exceptions 515
trimBoth()

Java method of Standard ETD 660

Index

e*Gate Integrator User’s Guide 691 SeeBeyond Proprietary and Confidential

trimLeft()
Java method of Standard ETD 660

trimRight()
Java method of Standard ETD 661

troubleshooting e*Ways 463
overview 462
via e*Way log file 463

try (Business Rule) 321
.tsc files (transformation script for Monk
Collaborations) 107
type conversion, methods for

See STCTypeConverter

U
UHC character encoding methods

in Monk 385
Undo 286
unedit

Team Registry 63
Unicode, converting to and from 617
uniqueid (Business Rule),Business Rules

uniqueid 322
uniqueID()

Java method of Standard ETD 557
uniqueId()

Java method of Standard ETD 557
unmarshal()

Java method of Standard ETD 346
user’s guide purpose and scope 26
userInitialize()

used with character encoding methods 583
Users

creating 53
UTF-8 character encoding methods

in Monk 385

V
-v (flag for stcinstd) 95
validating ETDs

Java-enabled 183
variable (Business Rule) 324
version information, displaying 498
View layer 34
viewing variables using the debugger 511

W
while (Business Rule) 325
wizards

for building Java-enabled ETDs 98, 99
for building Standard ETDs 100

write()
Java method of Standard ETD 571

writeMap()
Java method of Standard ETD 626

writeProperty()
Java method of Standard ETD 347

X
X/Open Consortium 538
XA-compliant e*Way Connections 540
XA-compliant transaction processing

activating 540
architecture 539
how achieved 538
overview 538

XML DTD converter 226
.xpr files (project file, Java Collaboration Editor) 262
.xts files (Java Collaboration Rules Editor) 262

	e*Gate Integrator User’s Guide
	Contents
	List of Figures
	List of Tables
	Introduction
	1.1 User’s Guide Purpose and Scope
	1.2 Intended Audience
	1.3 Organization of Information
	1.4 Writing Conventions
	1.5 Supporting Documents
	1.6 Online Documents
	Searching the Online Documents

	1.7 SeeBeyond Web Site

	System Description
	2.1 Overview of e*Gate System
	2.1.1 Component Organization and Schemas
	2.1.2 Layered System Architecture

	2.2 View Layer
	2.2.1 Enterprise Manager
	2.2.2 e*Gate Editors
	2.2.3 Monitoring Features

	2.3 Control Layer
	2.3.1 Registry
	2.3.2 Control Brokers

	2.4 Business Rules and Data Processing Layer
	2.4.1 Collaboration Rules
	2.4.2 Collaborations

	2.5 Intelligent Queuing Layer
	2.6 Application Connectivity Layer
	2.6.1 Types of e*Ways
	Multi-Mode
	Database Access
	Applications
	Generic e*Way Kit
	Additional Applications

	2.6.2 Business Object Brokers

	2.7 System Setup

	Getting Started
	3.1 Overview of Starting with e*Gate
	3.1.1 System Requirements, Installations, and Upgrades
	3.1.2 Add�ons and Client Software

	3.2 Business Analysis and Planning
	3.2.1 e*Gate System Setup Prerequisites
	3.2.2 Creating a System Design
	Information Gathering
	System Structure

	3.2.3 Naming System Elements
	Make a Checklist
	Naming Conventions

	3.2.4 System Preparations

	3.3 Enterprise Manager Basic Operation
	3.3.1 Enterprise Manager Window
	3.3.2 Components Tree
	3.3.3 Toolbar Buttons
	3.3.4 Menu Bar
	File > New
	File > Edit File
	View > Summary

	3.4 Codeveloping in e*Gate: Using the Team Registry
	3.4.1 Important: User Name Requirements
	3.4.2 The Sandbox
	Sandbox Properties
	Sandbox Operation
	Team Registry File Operations

	3.4.3 Testing Schemas: Run-time and Sandbox Considerations
	Changing Default Check-in/Check-out Actions
	Sandbox/Run-time Registry Directory Structure

	3.4.4 Team Registry and Component “Run As” Settings
	3.4.5 Team Registry and Version-control Systems

	3.5 Adding New Participating Hosts
	3.6 Users, Roles, and Privileges
	3.7 Using the Network View
	3.7.1 Introduction: Network View
	3.7.2 Using Network View

	3.8 Online Help Systems
	3.8.1 Using Online Help
	Hypertext Links
	Accessing Online Help

	3.8.2 Help Window
	GUI Features
	On Entry and Exit

	3.8.3 Online Help Features
	Tab Operation
	Toolbar Buttons
	Printing Help
	Closing the Help Window

	Setting Up e*Gate
	4.1 Overview of e*Gate Setup
	4.1.1 e*Gate GUIs
	4.1.2 Setup Steps

	4.2 System Design Components
	4.2.1 Component Data Flow Relationships
	4.2.2 Component Logical Relationships
	4.2.3 Data Management Relationships

	4.3 Creating a Schema
	4.3.1 Control Broker Setup
	Configuring Control Broker Properties

	4.3.2 Host Activation

	4.4 Creating Event Types and ETDs
	4.4.1 Selecting the Event Type Definition Editor
	4.4.2 Creating Event Types
	4.4.3 Creating Java-enabled Event Type Definitions
	4.4.4 Creating Monk Event Type Definitions
	4.4.5 Assigning Definitions to Monk Event Types

	4.5 Creating Collaboration Rules and Scripts
	4.5.1 Using Collaboration Scripts
	C-language Scripts
	Monk Language Scripts
	Java Language File Types
	Collaboration Rules Properties
	Collaboration Services and Types

	4.5.2 Java Collaborations
	Creating Java Collaborations
	Adding Custom Business Rules to the Collaboration

	4.5.3 Monk Collaborations
	Creating Monk Collaboration Rules
	Configuring Monk Collaboration Rules

	4.6 Adding e*Ways and BOBs
	4.6.1 e*Way Operation
	4.6.2 Before Creating an e*Way
	Explanation of Tree Levels
	Control Brokers
	System Files and e*Ways

	4.6.3 Creating e*Ways
	4.6.4 Configuring e*Ways
	4.6.5 Adding Business Object Brokers
	4.6.6 Adding Multi-Mode e*Ways
	Before Creating a Multi-Mode e*Way
	Creating and Configuring a Multi-Mode e*Way

	4.6.7 Adding e*Way Connections

	4.7 Adding Intelligent Queues
	4.7.1 IQ Managers
	4.7.2 Working With IQs
	4.7.3 Attaching IQs

	4.8 Adding Collaborations
	4.8.1 Collaboration Setup
	4.8.2 Creating Collaborations
	4.8.3 Configuring Collaborations
	4.8.4 Troubleshooting Collaborations

	4.9 Reviewing and Testing the System
	4.9.1 Post System Setup Troubleshooting
	4.9.2 Java Interactive Debugger
	4.9.3 Monk Test Console
	Basic Controls
	Setup Features
	Input Features
	Output Features

	Event Type Definitions (ETDs)
	5.1 About This Chapter
	5.2 Learning About ETDs
	5.2.1 What Is an ETD?
	5.2.2 How Does e*Gate Use ETDs?
	5.2.3 Java-Enabled ETDs
	5.2.4 Monk ETDs

	5.3 ETD Editor Overview
	5.3.1 Feature Overview
	5.3.2 GUI Overview
	ETD Editor GUI Areas

	5.3.3 Main Menu
	5.3.4 Toolbar

	5.4 Before Using the ETD Editor
	5.5 Building Java-Enabled ETDs
	About ETD Types
	Package Names, Node Names, and .jar File Names
	5.5.1 Starting the ETD Editor
	5.5.2 Creating a New Standard ETD
	5.5.3 Converting a Monk ETD to a Java-enabled Standard ETD
	5.5.4 Building an Imported ETD
	Using the SEF Wizard

	5.6 Working With Java-Enabled ETDs
	About Package Names
	About Node Names
	5.6.1 Basic ETD Procedures
	Opening, Saving, and Renaming ETDs
	Viewing and Editing Java Properties
	Working with Elements and Fields
	Using Templates
	Compiling an ETD

	5.6.2 Validating an ETD
	5.6.3 Promoting to Run Time
	5.6.4 Global and Local Delimiters
	About Global Delimiters
	About Global Delimiter Levels
	About Local Delimiters and Delimiter Groups
	About Local Delimiter Groups
	Using Global Delimiters
	Using Local Delimiters

	5.7 Standard ETD Properties
	5.7.1 Event Type Properties
	5.7.2 Properties of Root and Element Nodes (Parent Nodes)
	5.7.3 Properties of Field and Reference Nodes (Leaf Nodes)
	5.7.4 Properties of Delimiters

	Monk Event Type Definition Editor
	6.1 Monk ETD Editor Overview
	6.2 Getting Started
	6.2.1 ETD Creation and Nodes
	Working with Nodes
	Naming Nodes

	6.2.2 Before Using the ETD Editor

	6.3 ETD Editor Window
	6.3.1 Toolbar
	6.3.2 Menu Bar

	6.4 Creating and Building ETDs
	6.4.1 Creating ETD Files
	6.4.2 Building Delimited ETDs
	Creating Delimited ETDs
	Defining Default Delimiters
	Creating Root Nodes for Delimited ETDs
	Adding Delimited-ETD Nodes
	Specifying HL7 Repeating Fields

	6.4.3 Building Fixed ETDs
	Creating Fixed ETDs
	Creating Root Nodes for Fixed ETDs
	Adding Fixed-ETD Nodes
	Specifying Byte Offsets in Fixed ETDs

	6.4.4 Adding Node Sets
	Adding Node Subsets

	6.5 Basic ETD Operations
	6.5.1 Opening ETDs
	6.5.2 Using the Build Tool
	6.5.3 Saving ETDs Under New Names
	6.5.4 Extracting Input Delimiters
	6.5.5 Testing ETD Files
	6.5.6 Creating ETD Comments
	6.5.7 Finding ETD Nodes
	6.5.8 Editing ETD Files
	Moving Nodes
	Using Cut, Copy, and Paste
	Pruning ETDs
	Changing Node Details
	Modifying Internal Templates
	Deleting ETDs

	6.6 Working With ETD Templates
	6.6.1 Using External Templates
	Including External Templates in ETDs
	Changing ETD Repetition Properties
	Breaking Template Links

	6.6.2 Using Internal Templates
	Creating Internal Templates
	Converting Existing ETDs
	Referencing Internal Templates in ETDs
	Changing ETD Repetition Properties

	Java Collaboration Rules
	7.1 About This Chapter
	7.2 Learning About Java Collaboration Rules
	7.2.1 Files Used by Java Collaboration Rules

	7.3 Where Do Methods Come From?
	Example: What’s for Dinner?

	7.4 Java Collaboration Rules Editor Overview
	7.4.1 Feature Overview
	7.4.2 GUI Overview
	The Editor GUI Panes

	7.4.3 Menu Commands
	7.4.4 Main Toolbar
	7.4.5 Business Rules Toolbar

	7.5 Working With Java Collaboration Rules
	7.5.1 Creating a New Java Collaboration Rule
	7.5.2 Settings for the Collaboration Rules Properties dialog box
	General Tab
	Collaboration Mapping Tab

	7.5.3 The Mapping Pane
	Dragging and Dropping Fields
	Using Find and Map

	7.5.4 The View Commands
	7.5.5 Saving, Compiling, and Promoting Collaboration Rules
	7.5.6 Enabling and Disabling ELS
	7.5.7 Setting Classpath and Package Options
	7.5.8 Searching and Replacing Within a Collaboration

	7.6 Creating Custom Java Methods
	7.7 Using the Business Rules
	block
	case
	catch
	copy
	datamap
	default
	do, while
	else
	finally
	for
	if, then, else
	list lookup
	method
	Methods Presupplied When You Start the Editor
	return
	rule
	switch, case, default
	then
	throw
	timestamp
	try, catch, finally
	uniqueid
	variable
	while
	7.7.1 Common Dialog Boxes for Business Rules
	Dealing with Repeating Nodes
	Formatting Output

	7.7.2 Methods for Elements and Fields of ETDs
	count_MyNode_()
	get_MyNode_()
	has_MyNode_()
	set_MyNode_()

	7.7.3 Methods for Standard Java-enabled ETDs
	available()
	marshal()
	next()
	publications()
	rawInput()
	readProperty()
	receive()
	reset()
	send()
	subscriptions()
	topic()
	unmarshal()
	writeProperty()

	7.8 Subcollaboration Rules
	7.8.1 Terminology
	7.8.2 Purpose, Concepts, and Caveats
	7.8.3 Working with Subcollaboration Rules

	Monk Collaboration Rules Editor
	8.1 Overview: Monk Collaboration Rules
	8.1.1 Collaboration Rules Scripts and Types
	8.1.2 Before You Begin
	8.1.3 Task List

	8.2 Collaboration Rules Editor Window
	8.2.1 Toolbar Buttons
	Other Window Controls
	ETD Panning Windows
	Rules Pane Controls

	8.2.2 Menu Bar
	File Menu
	Edit Menu
	Rules Menu
	View Menu
	Options Menu
	Help Menu

	8.3 Creating Monk Collaboration Rules Scripts
	8.3.1 Getting Started
	8.3.2 Creating New Monk Collaboration Rules
	8.3.3 How e*Gate Processes Event Data
	Appending Data
	Trailing Spaces
	Fixed Data Lengths

	8.3.4 Adding and Arranging Rules
	Adding Rules and Elements
	Arranging Rules
	Selecting Event Elements
	Defining ETD Paths
	Defining Instances of Repeating Event Elements
	Filling in Rule Details
	Using the Function Library to Define Rules

	8.4 Basic Collaboration Rules Operations
	8.4.1 Opening a Collaboration Rules Component
	8.4.2 Saving a Collaboration Rules Component to a New Name
	8.4.3 Entering Comments About Collaboration Rules
	8.4.4 Changing Collaboration Rules Scripts
	Deleting Rules
	Changing Rule Parameters
	Changing Source/Destination ETDs

	8.4.5 Validating Collaboration Rules
	8.4.6 Finding Nodes
	8.4.7 Converting to and from Double-Byte Character Encodings

	8.5 Using Collaboration Rules
	8.5.1 Collaboration Rules Reference Table
	8.5.2 Using the If Rule
	Comparing an Event Element to a Regular Expression
	Comparing an Event Element to a Number Using <
	Comparing an Event Element to a Number Using <=
	Comparing an Event Element to a Number Using >�
	Comparing an Event Element to a Number Using >=
	Comparing an Event Element to a Number Using =
	Comparing an Event Element to a Number Using not =
	Testing for a False Condition
	Performing Multiple Tests with an If Rule
	Performing Alternate Tests with an If Rule

	8.5.3 Using the Loop Rule
	Loop Rule Overview
	Creating a Loop Rule
	Executing a Loop Rule
	Defining ETD Paths in a Loop Rule
	Looping on a Computed Range of Event Elements
	Looping on a Fixed Range of Event Elements

	8.5.4 Using the Case Rule
	Creating Case Rules

	8.5.5 Using the Comment Rule
	8.5.6 Using the Copy Rule
	8.5.7 Using the Display Rule
	8.5.8 Using the Duplicate Rule
	8.5.9 Using the Data Map Rule
	8.5.10 Using the List Lookup Rule
	8.5.11 Using the Change Pattern Rule
	8.5.12 Using the Timestamp Rule
	8.5.13 Using the Unique ID Rule
	8.5.14 Using the Let Rule
	Naming Variables in the Let Rule
	Naming a Condition Using the Let Rule
	Using the Let Rule to Specify a Variable in an Insert Rule

	8.5.15 Using the Set! Rule
	8.5.16 Using the Function Rule
	Selecting a Prewritten Function
	Defining Your Own Function

	8.5.17 Using the User Function Rule
	8.5.18 Using the Set Regex Rule

	Working with e*Ways
	9.1 Overview of e*Way Operation
	9.1.1 Component Parts
	9.1.2 e*Ways and the Enterprise Manager

	9.2 Configuring e*Ways with the Enterprise Manager
	9.2.1 Defining e*Way Components
	9.2.2 Modifying e*Way Properties
	Selecting an Executable File
	Creating or Selecting a Configuration File
	Changing Command-line Parameters
	Changing the “Run As” User Name
	Setting Startup Options or Schedules
	Activating or Modifying Logging Options
	Activating or Modifying Monitoring Thresholds

	9.2.3 e*Ways and Collaborations

	9.3 Configuring e*Ways
	9.3.1 Concepts
	9.3.2 Controls
	Section and Parameter Controls
	Parameter Configuration Controls

	9.3.3 Using the e*Way Configuration Editor
	Navigating Through the Editor
	Saving Configuration Settings
	Modifying Configuration Settings
	Restoring Default Settings
	Restoring Saved Settings
	Entering User Notes
	Creating Business Object Brokers
	Using the Online Help System

	9.4 Troubleshooting e*Ways
	9.4.1 In the Enterprise Manager
	9.4.2 In the e*Way Configuration Editor
	9.4.3 On the e*Way’s Participating Host
	9.4.4 In the e*Way’s External Application

	9.5 Multi-Mode e*Way
	Multi-Mode e*Way Characteristics
	9.5.1 JVM Settings
	JNI DLL Absolute Pathname
	CLASSPATH Prepend
	CLASSPATH Override
	Initial Heap Size
	Maximum Heap Size
	Maximum Stack Size for Native Threads
	Maximum Stack Size for JVM Threads
	Class Garbage Collection
	Garbage Collection Activity Reporting
	Asynchronous Garbage Collection
	Report JVM Info and all Class Loads
	Disable JIT
	Remote debugging port number
	Suspend option for debugging

	9.5.2 Changing Command-line Parameters
	9.5.3 Changing the “Run As” User Name
	9.5.4 Setting Startup Options or Schedules
	9.5.5 Advanced Settings for Multi-Mode e*Ways
	Activating or Modifying Logging Options
	Activating or Modifying Monitoring Thresholds

	9.5.6 Configuring Multi-Mode e*Ways with e*Way Connections
	Controls
	Section and Parameter Controls
	Parameter Configuration Controls
	Using the e*Way Connection Editor
	Navigating Through the Editor
	Saving Configuration Settings
	Modifying Configuration Settings
	Restoring Default Settings
	Restoring Saved Settings
	Entering User Notes

	9.5.7 JVM Settings

	9.6 e*Insight Business Process Manager Engine

	Introduction to e*Gate Monitor
	10.1 e*Gate Monitoring Overview
	10.1.1 Role of the Control Broker
	10.1.2 e*Gate Interactive Monitoring

	10.2 e*Gate Monitor Basic Operation
	10.2.1 e*Gate Monitor Window
	10.2.2 Toolbar Buttons
	10.2.3 Menu Bar

	10.3 Controlling e*Gate
	10.3.1 Starting and Shutting Down Components
	10.3.2 Displaying Status and Version Information
	10.3.3 Suspending and Activating Components

	10.4 Non-interactive Monitoring
	10.4.1 Notification Channels
	10.4.2 e*Gate Alert Agent
	10.4.3 e*Gate SNMP Agent
	10.4.4 Custom User Agents

	10.5 Monitoring Resources and Performance
	10.5.1 Setting Disk-usage Thresholds
	10.5.2 Disk-space Quota Limitations
	10.5.3 Setting Event-processing Thresholds

	e*Gate Java Debugger
	11.1 Overview of e*Gate Java Debugger Operation
	11.1.1 Main Menu
	11.1.2 Activating the e*Gate Java Debugger
	11.1.3 Using the e*Gate Java Debugger
	Controlling execution of the Collaboration

	11.1.4 Options Dialog

	Event Linking and Sequencing (ELS)
	12.1 Learning About ELS
	12.1.1 How Does ELS Operate Within e*Gate?
	ELS Operation

	12.1.2 About the SeeBeyond-supplied ELS Methods

	12.2 Count-Based Triggers
	12.3 Timer-Based Triggers
	12.4 The ELS Wizard
	12.4.1 About the ELS Wizard
	12.4.2 ELS Wizard Operation

	12.5 Sample Implementation
	12.5.1 Overview
	12.5.2 Steps
	Creating the schema and defining the Event Types
	Building the ETDs
	Creating the Collaboration Rules
	Creating the ELS Business Rules for cr_ELS_CombineGrades
	Creating the Data Transformation Logic Under executeBusinessRules()

	XA Transaction Processing
	13.1 Introduction
	References

	13.2 Architectural Review
	13.3 Operational Summary
	13.4 Working with XA-enabled Collaborations
	Mixing XA-Compliant and XA-Noncompliant e*Way Connections

	Java Classes and Methods
	A.1 Index to Methods for Standard Java-enabled ETDs
	A.2 Base64Utils Class (com.stc.eways.util)
	base64Decode()
	base64DecodeToByte()
	byteToBase64String()
	string2Base64()

	A.3 CollabUtils Class (com.stc.eways.util)
	asHex()
	doOffsetTrunc()
	isMonkDatePattern()
	sprintf()
	toHex()
	toJavaDatePattern()
	uniqueId()

	A.4 DateUtils Class (com.stc.eways.util)
	format()
	timeStamp()
	transformDate()

	A.5 EGate Class (com.stc.common.collabService)
	collabDebug()
	collabError()
	collabFatal()
	collabInfo()
	collabTrace()
	collabWarning()
	traceln()

	A.6 FileUtils Class (com.stc.eways.util)
	readBytes()
	readString()
	write()

	A.7 JCollabController Class (com.stc.common.collabService)
	A.7.1 General System Control Methods
	copyProperties()
	createSubCollabMapInfo()
	getCollaborationName()
	getEgateBaseDirectory()
	getModuleName()
	getPropertyNames()
	invoke()
	isSubCollaboration()
	retrieveRegistryFile()

	A.7.2 Character Encoding and Internationalization Methods
	About the Encoding Methods
	Character Encodings in the Java Collaboration Rules Editor
	getIncomingEncoding()
	getMarshalEncoding()
	getOutgoingEncoding()
	getUnmarshalEncoding()
	setIncomingEncoding()
	setMarshalEncoding()
	setOutgoingEncoding()
	setUnmarshalEncoding()

	A.7.3 ELSController Interface Methods
	flushAllLinkIdentifiers()
	getCurrentLinkIdentifier()
	getELSExpiration()
	getLinkIdentifiers()
	getNumberOfMessages()
	getNoOfMessagesForInstance()
	hasHappened()
	isCurrentELSExpired()
	isELSExpired()
	isFlushMode()
	isLinkIdentifierExists()
	isLinkingComplete()
	onExpire()
	retrieveLinkIdentifier()
	setELSExpiration()

	A.8 JCollaboration Class (com.stc.jcsre)
	eventSend()

	A.9 JSubCollabMapInfo Class (com.stc.common.collabService)
	getCallingCollaboration()
	getClassFullPath()
	getClassName()
	getCtlFileFullPath()
	getCtlFileName()
	getEventTypeDefinition()
	getEventTypeDefinitionPath()
	getInputData()
	getInputTopicName()
	getOutputData()
	getParentReferenceETD()
	getParentReferenceInstanceName()
	getRuleName()
	isManualPublish()
	isPublisher()
	isTrigger()
	setInstanceMap()

	A.10 Mainframe Class (com.stc.eways.util)
	a2e()
	e2a()
	e2S()
	swapInt()
	swapLong()
	swapShort()

	A.11 MapUtils Class (com.stc.eways.util)
	Usage Example
	doMap()
	parseMap()
	readMap()
	renderMap()
	writeMap()

	A.12 QSort Class (com.stc.common.utils)
	qsort()

	A.13 ScEncrypt Class (com.stc.common.utils)
	decrypt()
	encrypt()

	A.14 STCTypeConverter Class (com.stc.eways.util)
	toBooleanPrimitive()
	toBoolean()
	toBytePrimitive()
	toByte()
	toByteArray()
	toCharPrimitive()
	toCharacter()
	toDoublePrimitive()
	toDouble()
	toFloatPrimitive()
	toFloat()
	toIntegerPrimitive()
	toInteger()
	toLongPrimitive()
	toLong()
	toShortPrimitive()
	toShort()
	toString()

	A.15 StringUtils Class (com.stc.eways.util)
	empty()
	padCenter()
	padLeft()
	padRight()
	trimBoth()
	trimLeft()
	trimRight()

	A.16 Formatting of Output Text

	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

