SeeBeyond™ eBusiness Integration Suite

e*Way Intelligent Adapter for
ADABAS Natural
User’s Guide

Release 4.5.2

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBl, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 1999-2002 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.
Version 20021010171050.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents

Contents

Chapter 1
Introduction 9
ADABAS Natural e¥*Way User’s Guide 9
Intended Reader 9
General e*Way Operation 9
Basic Operation 10
Functional Description 10
Natural Program Security 11
Outbound e*Way Functionality - Sending Data to ADABAS 11
Failed Message Delivery Continuation 14
Inbound e*Way Functionality - Receiving from ADABAS 14
Protocols and/or APIs 15
Logging 15
Errors 15
Alerting 15
Natural Program Call ETD Generator 15
Architecture: Component Interrelations 16
Protocols/APIs 16
e*Way Components 16
Supporting Documents 17
Supported Operating Systems 17
System Requirements 17
External System Requirements 18
0S/390 System Requirements (MVS) 18
For Using CICS 19
For Using Batch 19
CICS Transaction Gateway 4.0 Configuration 20
Personnel Requirements 20

Chapter 2
Installation 21
Windows NT 4.0 and Windows 2000 21
Pre-installation 21
Installation Procedure 21

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents

UNIX 22
Pre-installation 22
Installation Procedure 22

Files/Directories Created by the Installation 23

0S/390 24
Copying the Tape Contents to Disk 24
Installing the CICS CEDA Definitions 24
Linking the ADABAS NATURAL e*Way Load Modules 24
Add the ADABAS NATURAL e*Way Load Modules to the CICS DFHRPL Concatenation 25
Create the ADABAS NATURAL e*Way Control VSAM File 25
Installing the NATURAL Programs 25
Installing the MUXNAT 25

Batch NATURAL 25
Configuring NTSYS Setname 26
Optional Values 31
STCNCTL VSAM File Record Descriptions 33
Global Record 34
Session Configuration Record 34
Transaction Type Record 35

CICS Installation Verification Program 36
Virtual Natural e*Way Interactive Simulator 36
Virtual JCL Submit e¥*Way Interactive Simulator 48
Virtual Natural e*Way Monitoring Screens OS/390 CICS 53

Chapter 3

Configuration 61

Configuring e¥*Way Connections 61

Connector 62

Type 62
Class 62
Property.Tag 62
CICS Gateway 63
URL 63
Port 63
Avalid port number between 1 and 864,000. The default is 8888. 63
SSL KeyRing Class 63
SSL KeyRing Password 63
CICS Client 64
CICS Userld 64
CICS Password 64
ECI Call Type 64
CICS Program 65
CICS Transld 65
COMMAREA Length 65
ECI Extend Mode 65
ECI LUW Token 65
Message Qualifier 65

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 4 SeeBeyond Proprietary and Confidential

Contents

Encoding 66
Natural Settings 66
CICS Program to Initialize Natural Session 66

CICS Transaction to Initialize Natural Session 66

CICS Program to Execute Natural Business Rules 67

CICS Transaction to Execute Natural Business Rules 67

CICS Program to Terminate Natural Session 67

CICS Transaction to Terminate Natural Session 67
Tracing 67
Level 68
Filename 68
Truncation Size 68

Dump Offset 69

Timing 69

Chapter 4

Multi-Mode e*Way Configuration 70
Multi-Mode e*Way Properties 70
JVM Settings 71
JNI DLL Absolute Pathname 71
CLASSPATH Prepend 72
CLASSPATH Override 72
CLASSPATH Append From Environment Variable 72

Initial Heap Size 73
Maximum Heap Size 73
Maximum Stack Size for Native Threads 73
Maximum Stack Size for JVM Threads 73
Disable JIT 73
Remote debugging port number 74
Suspend Option for Debugging 74

Chapter 5

Implementation 75
Implementation Overview 75
ADABAS Natural Sample Implementation 77
Schema Overview 77
Schema Operation 78
Creating Event Types and Event Type Definitions 79
Creating Collaboration Rules 80
Sample Input Data 86
Sample Natural Program 87
Running the Schema 87
SAG Wizard Operation 88
Getting Started 88
Creation of .sag Files 88

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 5

SeeBeyond Proprietary and Confidential

Contents

Converting .sag Files: The SAG Wizard 88
Using the SAG Wizard 89
Natural Sub-programs 93
Communication With e*Gate: Overview 93
Communication With e*Gate: Basic Steps 94
Chapter 6
Java Methods 95
e*Way Methods and Classes: Overview 95
Using Java Methods 95
Cicsclient Class 96
Methods of the Cicsclient Class 96
CicsClient() 98
commAreaToPackedDecimal() 98
commAreaZonedToString() 99
execute() 99
getCommaArea() 100
getCommArealength() 101
getCommaAreaString() 101
getEciCallbackable() 102
getEciExtend() 102
getEciLuwToken() 103
getEciSync() 103
getEncodedCommaAreaString() 104
getEncoding() 104
getHexString() 105
getMessageQualifier() 105
getPassword() 105
getPort() 106
getProgram() 106
getServer() 107
getServerList() 107
getSslClass() 107
getSsIPassword() 108
getTraceDumpOffset() 108
getTraceFilename() 109
getTraceLevel() 109
getTraceTiming() 109
getTraceTruncationSize() 110
getTransld() 110
getUrl() 111
ﬁetUserld() 111
andleConfigValues() 111
handleTrace() 112
initialize() 112
initJavaGateway() 113
main() 114
packedDecimalToString() 114
reset() 115
sendRequest() 115
setCommAreal() 116
setCommArealength() 116
setEciCallbackable() 116
setEciExtend() 117
setEciLuwToken() 117
setEciSync() 118

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide

SeeBeyond Proprietary and Confidential

Contents

setEncoding() 118
setMessageQualifier() 119
setPassword() 119
setPort() 120
setProgram() 120
setServer() 121
setSslClass() 121
setSsIPassword() 121
setTraceDumpOffset() 122
setTraceFilename() 122
setTraceLlevel() 123
setTraceTiming() 123
setTraceTruncationSize() 124
setTransld() 124
setUrl() 124
setUserld() 125
terminate() 125
toPackedDecimal() 126
toZoned() 126
zonedToString() 127
NaturalClient Class 128
Methods of the NaturalClient Class 128
NaturalClient() 128
execute() 128
getNatExecProgram() 129
getNatExecTransld() 130
getNatInitProgram() 130
getNatlnitTransld() 131
getNatTermProgram() 131
etNatTermTransld() 131
andleConfigValues() 132
initialize() 132
main() 133
reset() 134
setNatExecProgram() 134
setNatExecTransld() 134
setNatInitProgram 135
setNatlnitTimeout() 135
setNatlnitTransld() 136
setNatTermProgram() 136
setNatTermTransld() 137
Chapter 7
CICS COBOL APIs 138
Function Prototypes 138
CLOSE 138
OPEN 139
RECEIVE 140
SEND 141
Chapter 8
Using MUXNAT APIs 143
MUXNAT APIs: Overview 143
Using MUXNAT APIs 143

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide

SeeBeyond Proprietary and Confidential

Contents

MUXNAT API Function Sets 145
Open 145

Send 147
Receive 148

Close 149

Appendix A

Error Return Codes 151
MUXNAT Error Return Codes 151
TCP/IP for MVS Return Codes 151
Sockets Extended Return Codes 160
MUXNAT API Return Codes 163
Index 165

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide 8 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This chapter includes a brief description of SeeBeyond™ Technology Corporation’s
(SeeBeyond™) e*Way™ Intelligent Adapter for ADABAS Natural, as well as system
requirements for using the e*Way and an introduction to this guide.

11 ADABAS Natural e*Way User’s Guide

This document gives a general overview of the Java programming language-enabled
ADABAS Natural e*Way and explains how to install, configure, and operate it. The
guide also explains the e*Way’s usability features, as well as how to implement it in a
typical e*Gate Integrator environment.

12 Intended Reader

The reader of this guide is presumed:

= To be a developer or system administrator with responsibility for maintaining the
e*Gate system

= To have moderate to advanced-level knowledge of Windows operations and
administration

= To be thoroughly familiar with CICS, Natural and Batch Natural programs

= To be familiar with Windows-style GUI operations.

13 General e*Way Operation

The ADABAS Natural e*Way provides an interface to Software AG’s ADABAS Natural
language which allows for a generic mechanism to call Natural or Natural batch
programs or to allow Natural programs to pass data to e*Gate in a reliable and efficient
manner.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 9 SeeBeyond Proprietary and Confidential

Chapter 1

Section 1.3

Introduction General e*Way Operation

131 Basic Operation

The e*Way client components reside on the Windows (NT & 2000), AIX (4.3.2 and 4.3.3)
and Solaris (7 & 8) platforms. The e*Way server components reside on the host under
CICS. The e*Way supports two messaging modes: inbound to e*Gate, and outbound
from e*Gate following the Publish/Subscribe and Request/Reply scenarios.

The inbound e*Way receives messages from Natural programs via TCP/IP in a near
real-time mode. A COBOL program provides encapsulation of the functionality
required to send data to e*Gate. To enable Natural programs to send data to e*Gate, the
program need only call the provided COBOL program along with the data as a
parameter.

The outbound e*Way calls to the Natural programs running under the control of CICS
via the External Calls Interface and returns the results back to e*Gate. It is also able to
call Natural programs running outside of CICS in the batch or TSO Batch environment.
This is achieved via submission of JCL to the internal reader. Pre-defined XML
(eXtensible markup Language) templates describe the Events which direct the e*Way as
to which programs to call, while providing the values of necessary parameters. This
request/reply interface allows the e*Way to return the result of a call to one of these
programs via e*Gate to the calling application.

The Natural Program Call ETD Generator creates the appropriate ETD with elements
for each of the specific parameters from the source code of any Natural program that
must be called.

132 Functional Description

While the e*Way has two messaging modes, only one messaging mode can be
supported by an e*Way at any given time. To obtain bi-directional functionality,
multiple e*Ways must be created and configured. The inbound e*Way receives message
from Natural programs via TCP/IP in near real-time mode. The outbound e*Way
makes calls to Natural programs via the External Call Interface, and returns the results
back to e*Gate. The outbound e*Way also makes calls to Natural batch programs
through via the execution of a batch job with parameters in the Batch or TSO
environments.

The default configuration of the e*Ways do not require any user intervention or
additional code, other than the specification of the e*Way parameters via the GUI,
provided the customer accepts the default behavior. This functionality is described
further in the sections that follow.

The parameters and configuration information for the inbound COBOL CICS program
are supplied in a text-based configuration file that the user edits.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 10 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction General e*Way Operation

Natural Program Security

The e*Way supports the ability to call multiple programs. The ability to invoke these
programs is controlled via the ADABAS user security facility. The ADABAS user is set-
up for the e*Way(s), with access to the appropriate programs. This user ID and
password is stored in a file located on the mainframe. The file is read during
initialization by the Natural Program Processor and the Batch Natural Program
Processor.

Outbound e*Way Functionality - Sending Data to ADABAS

The outbound functionality starts with the e*Way reading in the associated
configuration file with defined parameters that have been created or modified
according to necessity. The configuration file contains the information that allows the
e*Way to communicate with multiple host environments.

Note: Multiple instances of the e*Way may be created and configured in a subscriber pool
for higher throughput and reliability.

The e*Way transitions into the messaging state, where it checks the queue for a pre-
defined Event Type. This Event is defined in one of the pre-built Event Type Definitions
shipped with the e*Way (Natural Program Call ETD or Natural Batch Program ETD).

Once the e*Way receives a message, it determines the type of request; Natural program
or Batch Natural. The e*Way assembles the various parameters contained in the
standard Natural /Batch Natural Program Call ETD into the appropriate ECI call.

The e*Way proceeds by making the ECI call and processes the result. If the call is
successful, the e*Way checks the reply data flag for the transaction. If the flag is set, the
e*Way returns the result in the format defined by the reply data ETD. After this
operation, or in the situation that the flag is not set, the e*Way commits the Event in the
queue.

Natural Program Processor

When the Event is determined to be designated for a Natural program, the Event is
passed to a CICS transaction, which invokes the Natural Program Processor, and load-
balances these requests across a user-configurable number of Natural sessions. Upon
completion of the Natural program, the processor returns the output of the program (if
any exists) and the return code to the e*Way.

Batch Program Processor

When the Event is determined to be designated for a batch program, the Event is
passed to a CICS transaction, which invokes the Batch Program Processor. This
transaction processes the Event and calls the appropriate TSO or batch program. The
e*Way then waits on a successful response from the submission process.

If the “Send” is unsuccessful due to communication problems, the e*Way attempts a
specified number of times to call the transaction with the supplied parameters. If the
e*Way is unsuccessful after the configured number of times, it will shut down and send
an alert to e*Gate. No other transactions will be successful with a communication
problem in existence.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 11 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction General e*Way Operation

If the error was non-communication related, the e*Way attempts a configurable number
of times to call the transaction with the supplied parameters. If the e*Way remains
unsuccessful, the e¥*Way performs the action defined by the “Failed Message Delivery
Parameter”, causing it to either write the message with the result of the call pre-
appended to the error queue and get the next message, or shut down the e*Way for
manual intervention.

If the reply data flag is set, the e*Way sends the error back to the configured reply
queue, continuing to the next message without shutting down.

If the e*Way receives a shut down message from e*Gate, it sends an alert and follows
the standard shut down procedures.

Natural Program Call ETD

The Natural Program Call ETD embeds and standardizes all of the information
necessary for the outbound ADABAS Natural e*Way to call a Natural. The outbound
e*Way only accepts ETDs of this type, or the Batch equivalent. Any Message can be
converted into the required XML format, before being sent to the e*Way. The ETD
utilizes the XML standard as the associated structure to embed the fields.

Note: It is the responsibility of the rest of the e*Gate architecture to validate the XML
format of incoming messages based on the associated DTDs, or to ensure the
validity, as the e*Way does not validate them.

The general structure should be similar to the following:

<transact _request >

<uni que_event _i d>trans#_123456789</ uni que_event _i d>

<nat ural _application>natural _applicationl</natural application>
<nat ural _prograntnat ural progranil</natural prograne

<conm ar ea_payl oad>dat a</ conm ar ea_payl oad>

</transact _request >

The Natural Program Call ETD generator can be used to generate an ETD that

represents the structure of the Comm Area that needs to be passed to the ECI call
expected by the Natural Program Processor.

Note: It is imperative that the unique_event_id be truly unique if there is a need to match
the reply data with the original request.

Natural Batch Program ETD

The Natural Batch Program ETD embeds all of the information necessary to execute a
batch program with optional parameters.

The general structure should be similar to the following:

<bat ch_r equest >
<uni que_event _i d>trans#_123456789</ uni que_event _i d>
<bat ch_prog>
<bat ch_nane>pr oc1</ bat ch_nanme>
<par ng>
<par anet er ><par m _name>pl</ par m nanme><parm val ue>val 1</
par m val ue></ par amet er >
<par amet er ><par m_name>p2</ par m_nane><par m val ue>val 2</
par m val ue></ par anet er >

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 1

Section 1.3

Introduction General e*Way Operation

<par anet er ><par m_name>p3</ par m_nanme><par m val ue>val 3</
par m val ue></ par anet er >

<par amet er ><par m_nanme>pN</ par m_nane><par m val ue>val N</
par m val ue></ par anet er >
</ par ng>
</ batch_prog>
</ bat ch_r equest >

The Natural Program Call ETD generator will not be used for this ETD as it is not able
to interpret JCL files.

Reply Data ETD

The Reply Data ETD contains the result of the call to the Natural Program Processor
(the return code of the call, and/or the program output/content). The creation and
transmission of the Event is configurable during the configuration of the e*Way. The
structure of the ETD contains the Natural Program Call ETD at the beginning, with the
result of the call encapsulated by another tag set. The resulting ETD can be used for

both successful or unsuccessful result replies.

The populated ETD contains the original request ETD followed by the return code of
the ECI call, along with the contents of the resulting ECI call.

The general structure should be similar to the following:

<bat ch_request reply_data>

<transact _request >

<uni que_event _i d>trans#_123456789</ uni que_event _i d>

<nat ural _application>natural _applicationl</natural application>
<nat ural _prograntnat ural prgranl</natural _progranp

<conm ar ea_payl oad>dat a</ conm ar ea_payl oad>

</transact _request >

<ECI return_code>return_code</ECH return_code>

<return_conm area_payl oad>r et urn_dat a</return_conmm ar ea_payl oad>
</ batch_request _reply_data>

or

<bat ch_request _reply_data>
<bat ch_request >
<uni que_event _i d>trans#_123456789</ uni que_event _i d>
<bat ch_prog>
<bat ch_nane>pr oc1</ bat ch_nanme>
<par ng>
<par ng>
<par anet er ><par m_nane>pl</ par m_nanme><par m val ue>val 1</
par m val ue></ par anet er >
<par anet er ><par m_name>p2</ par m_nanme><par m val ue>val 2</
par m val ue></ par amet er >
<par anet er ><par m_name>p3</ par m_nane><par m val ue>val 3</
par m val ue></ par anet er >

<par anet er ><par m_nanme>pN</ par m_nanme><par m val ue>val N</
par m val ue></ par amet er >
</ par ns>
</ bat ch_pr og>
</ batch_request >
<ECI _return_code>return_code</EC _return_code>
<return_comm area_payl oad>ret urn_dat a</return_comm ar ea_payl oad>
</ batch_request _reply_data>

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction General e*Way Operation

Failed Message Delivery Continuation

The e*Way can be configured to either skip a message that can not be delivered due to a
non-communication related problem, or shut down. The skipping of the message is
performed after the message has been safely stored in an error queue. The message then
has the result of the call pre-appended to it before storage.

The e*Way provides a parameter representing the number of Events that can be
skipped before the e*Way shuts down. This parameter allows for the following values:

= 0 =no limit to the number of skipped messages
= 1 = shut down the e*Way on the first failed message

= >1 = the actual number of skipped messages to be tolerated

Inbound e*Way Functionality - Receiving from ADABAS

While the outbound e*Way consists of one component, the inbound e*Way consists of
two: a Communications Agent called by a Natural program running in CICS, TSO or
Batch, and an e*Way (a connection multiplexing server program) configured to enable
the reliable and efficient exchange of data between the Communications Agent and
e*Way residing on the remote system. Multiple instances of the Communications
Agents can be configured to communicate with a single or multiple e*Ways. The
configuration file contains the TCP/IP route information which enables a single e*Way
to communicate with multiple instances of e*Gate running on different physical
machines. This provides the security information to allow the e*Way to authenticate on
these remote systems if not already defined as trusted.

Multiplexer Server e*Way

The inbound functionality begins with the inbound e*Way “coming up” and
establishing itself. To perform this task, the parameters contained within the e*Way
configuration file are read. The e*Way then creates or modifies the e*Way’s
functionality according to the parameters specified. The e*Way transitions into the
messaging state and is ready to accept connections from the Communications Agent
programs. The e*Way and the Communication Agents exchange of data via standard
e*Gate TCP/IP protocol.

Communications Agent Program

The Natural programs that send information to e*Gate must be instrumented to call the
Communications Agent. The call made to this program is functionally equivalent to the
following;:

“Comruni cati ons_Agent data_nessage”

When invoked, the Communications Agent reads the parameters contained within the
associated configuration file. The Communications Agent uses the CICS COBOL e*Gate
API Kit to send the data to the appropriate e*Way. The program blocks until the
sending operation is complete. The result of the “Send” is then passed back to the
calling program upon exit.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction General e*Way Operation

Protocols and/or APls

TCP/IP is used as the communication protocol between the Communications Agent
program and the e*Way. The outbound e*Way utilizes the transport required by IBM’s
Transaction Gateway 4.0 for the platform on which it is running.

The ETD library utilizes XML standard for the structure of Events.

Logging
In general, the e*Way relays any pertinent information as to the state, protocol position,
and any conditions that are helpful to the user to understand what is taking place

according to the debug level settings, and either logs the information to a file, or to
notifies the Alert Agent.

Standard debug levels are set through the standard GUI.

Errors

Any error condition are written to the log file. The inability to write to the log file or any
fatal /unrecoverable errors result in the e*Way shutting down after it sends an alert tot
the Alert Agent.

Alerting

Any errors that affect the operation of the e*Way preventing the successful delivery of a
message cause an alert to be sent. If the alert can not be sent, the e*Way shuts down.

Natural Program Call ETD Generator

The Natural Program Call ETD Generator creates the appropriate ETD containing the
elements for each of the specific parameters required by the Natural program from the
associated source code. This is achieved by the program reading the appropriate
Natural Local Data (LDA) or Parameter Data Access (PDA) contained in a Natural
SYSTRANS file.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 15 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

Section 1.4

Architecture: Component Interrelations

14 Architecture: Component Interrelations

The cooperative operation of the outbound and inbound e*Ways provide bi-directional
flow of information in and out of ADABAS. Figure 1 illustrates the components
involved and the interrelation those components.

Figure 1 ADABAS Natural e*Way System Architecture

Natural
source

|

e*Gate

ADABAS/Natural e*Way System Architecture

Natural Program

Call ETD Generatop

Batch
Natural
ﬂ‘ = oo
Call ETD

Natural
Program
Call ETD

Sub

Pub

Reply
Data
ETD

ﬂ. "

Outbound
ADABAS/Natural |4
e*Way

Inbound
ADABAS/Natural
e*Way

141 Protocols/APls

mainframe - 0S/390

cics

Batch
Program
Processor

Natural
Program
Processor

Communications'
Agent

JES

Reader \ Batch

Program

Batch/TSO

Natural
Sessions

{al Natural
Program X
e

ADABAS
Batch/
TSO
Natural |1
Program

invoking
e*Gate

Natural
Program
invoking

e*Gate

¥

Batch /
Natural

Program

TCP/IP is used as the communication protocol between the COBOL client program and
the e*Way. The outbound e*Way utilizes the transport required by IBM’s Universal
Client for the platform on which it is running.

The ETD library utilizes the XML standard for the structure of its Events.

142 €*Way Components

The ADABAS Natural e*Way is made up of the following components:

= Multi-Mode e*Way, a core e*Gate component, executable file, stceway.exe (see
Chapter 4 for details)

= Java methods for added functionality (see Chapter 6 for details)

= Configuration files that the e*Gate Enterprise Manager’s e*Way Configuration
Editor uses to define configuration parameters (see Chapter 3 for details)

= Additional files necessary for operation, as shown in Table 1 on page 23 (provides a

complete list of installed files)

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide

16

SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.5
Introduction Supporting Documents

15 Supporting Documents

The following SeeBeyond documents are designed to work in conjunction with the
e*Way Intelligent Adapter for ADABAS Natural User’s Guide and to provide additional
information:

= Creating an End-to-end Scenario With e*Gate Integrator

= e*Gate Integrator Alert and Log File Reference Guide

= e*Gate Integrator Collaboration Services Reference Guide

= e*Gate Integrator Installation Guide

= e*Gate Integrator Intelligent Queue Services Reference Guide

= e*Gate Integrator System Administration and Operations Guide
= e*Gate Integrator User’s Guide

= SeeBeyond JMS Intelligent Queue User’s Guide

= Standard e*Way Intelligent Adapter User’s Guide

= Readme.txt file on the e*Gate installation CD-ROM.

16 Supported Operating Systems

The ADABAS Natural e*Way is supported on the following operating systems:
= Windows NT SP6a
= Windows 2000, Windows 2000 SP1, and Windows 2000 SP2
= Solaris 2.6, 7 and 8 - supports Solaris SunPro C++, version 5.0

= AIX 4.3.3 - supports VisualAge, version 4.0

17 System Requirements

To use the ADABAS Natural e*Way, you need the following system requirements:
= An e*Gate Participating Host, version 4.5.1 or higher.

= 2 MB free disk space, on all platforms for e*Way executable, configuration, library,
and script files

The specified amounts of disk space are required on both the Participating and the
Registry Host. See the Readme.txt file in the root directory of the e*Gate installation
CD-ROM, for specific version information.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.8
Introduction External System Requirements

Note: Additional disk space is required to process and queue the data that this e*Way
processes; the amount necessary varies based on the type and size of the data being
processed, and any external applications performing the processing.

= A TCP/IP network connection.

= CICS Transaction Gateway, version 4.0 or greater

18 External System Requirements

This section explains the ADABAS Natural e*Way’s external system requirements,
including personnel requirements.

181 OS/390 System Requirements (MVS)

0S5/390 (MVS) systems use the EBCDIC character set. As a consequence, ASCII-based
systems cannot directly transport data to an EBCDIC-based system. ASCII to EBCDIC
data conversion is necessary when data is sent from UNIX or Windows to OS/390
(MVS). This data conversion takes place within the e*Gate Collaboration.

Note: The e*Gate OS/390 system requirements and installation procedures are covered in
the e*Gate Integrator Installation Guide.

To transport any EBCDIC data to an ASCII-based system (UNIX or Windows), you
must first convert the data by using the ebcdic->ascii Monk function. Refer to the Monk
Developer’s Reference Guide for details about this function.

When communicating with an OS/390 (MVS) system, you need the following
requirements:

= An e*Gate Participating Host, version 4.5.1 or later.
Server

= IBM OS/390 or equivalent hardware

= Physical access to a CD-ROM

= TCP/IP connectivity

= Appropriate terminal for access to the system

To enable the e*Way to communicate correctly with ADABAS Natural, you need the
following external requirements:

= OS/390 V2R8
= ADABAS version 7.1.2 or later

= Natural Language version 3.1.3 or later

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.8
Introduction External System Requirements

Note: Select book #SC31-8518-01 to access the IP CICS Sockets Guide. This book explains
the setup of TCP/IP Sockets for CICS, which is a requirement for the COBOL
component of the MUXNAT APIs to function properly.

= RACF or equivalent security
= CICS 3.3 or later or CICS TS 1.x

= MVS TCP/IP socket runtime libraries (must be installed an configured for each
CICS region in which the MUXNAT APIs run)

= COBOL for OS/390 and Language Environment

Note: See Chapter 8 for more information on the MUXNAT APIs and how to use them.

For Using CICS

To enable the e*Way to communicate properly with the server system, you need the
following requirements:

= COBOL for OS/390 compiler available for use in the OS/390 Language
Environment (LE), with the CICS TCP/IP socket elements available

The following link to the IP CICS Sockets manual describes the setup procedures:

http://www-1.ibm.com/servers/s390/0s390/bkserv/r10pdf/secureway.html

Note: Select book #SC31-8518-01 to access the IP CICS Sockets Guide. This book explains
the setup of TCP/IP Sockets for CICS, which is a requirement for the COBOL
component of the MUXNAT APIs to function properly.

+ OS/390 V2R10
+ Security package, install script RACEF, ready
+ CICS 3.3 or later or CICS TS 1.x

+ CICS TCP/IP socket interface (must be installed and configured for each region
in which the MUXNAT APIs are run)

+ COBOL for OS/390

+ Optional: Open Multiple Virtual System (OMVYS) installed, configured, and
operational

For Using Batch

To enable the e*Way to communicate properly with the server system, you need the
following requirements:

= COBOL for OS/390 compiler available for use in the OS/390 Language
Environment (LE), with the MVS TCP/IP socket elements available

For additional information, consult the IBM web site, document number SG24-
5229-01, “OS/390 eNetwork Communications Server TCP/IP Implementation Guide,
Volume 3: MVS Applications.”

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 19 SeeBeyond Proprietary and Confidential

http://www-1.ibm.com/servers/s390/os390/bkserv/r10pdf/commserv.html

Chapter 1 Section 1.8
Introduction External System Requirements

Note: This book explains the setup of TCP/IP Sockets for MV'S, which is a requirement for
the MUXNAT APISs to function properly.
+ OS/390 V2R10
+ Security package, install script RACEF, ready
+ MVS TCP/IP socket interface must be installed, configured, and operational
+ COBOL for OS/390

+ Optional: Open Multiple Virtual System (OMVS) installed, configured, and
operational

182 CICS Transaction Gateway 4.0 Configuration

IBM CICS Transaction Gateway 4.0 is required for Java-enabled ADABAS Natural
e*Ways. The following describes how to configure CICS Transaction Gateway 4.0.
Transaction Gateway properties are set using the CTG Configuration Tool. The
Configuration Tool is located under the CICS Transaction Gateway program menu.

Note: Use of the TCP/IP protocol for CICS for MVS/ESA Version 4.1 and Transaction
Server for OS/390 Version 1.x can only be achieved via the TCP62 protocol. For
more information, refer to the IBM documentation for your specific CICS
implementation.

For system specific settings consult the CICS Transaction Gateway Documentation or
visit the IBM CICS Library Web site at the following URL:

http://www-4.ibm.com/software/ts/cics/library/manuals/ctg40dl.html#configs.

Important: The ADABAS Natural e*Way runs and has been tested using TCP62 connectivity
provided by the CICS Transaction Gateway. The Transaction Gateway supports
SNA communications on Windows and AIX platforms, but this e*Way has not been
tested using SNA.

183 Personnel Requirements

The following personnel should be available to install and configure the system and the
ADABAS Natural e*Way correctly:

= MVS/CICS system administrator and systems programmer
= RACF or equivalent security administrator
= Dedicated integration specialist to learn and operate e*Gate

= Lead developer/system administrator of applications

= Natural/ADABAS DBA

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 20 SeeBeyond Proprietary and Confidential

http://www-4.ibm.com/software/ts/cics/library/manuals/ctg40dl.html#configs

Chapter 2
Installation

This chapter explains procedures for installing the ADABAS Natural e*Way:.
= “Windows NT 4.0 and Windows 2000” on page 21
= “UNIX” on page 22
= “Files/Directories Created by the Installation” on page 23
= “0S/390” on page 24

21 Windows NT 4.0 and Windows 2000

211 Pre-installation

= Exit all Windows programs before running the setup program, including any
anti-virus applications.

= You must have Administrator privileges to install this e*Way.

212 Installation Procedure
To install the ADABAS Natural e*Way on a Windows system

1 Log in as an Administrator to the workstation on which you are installing the
e*Way.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s Autorun feature is enabled, the setup application launches
automatically; skip ahead to step 4. Otherwise, use the Windows Explorer or the
Control Panel’s Add/Remove Applications feature to launch the file setup.exe on
the CD-ROM drive.

4 The InstallShield setup application launches. Follow the installation instructions
until you come to the Please choose the product to install dialog box.

5 Select e*Gate Integrator, then click Next.

6 Follow the on-screen instructions until you come to the second Please choose the
product to install dialog box.

7 Clear the check boxes for all selections except Add-ons, and then click Next.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Installation UNIX

8 Follow the on-screen instructions until you come to the Select Components dialog
box.

9 Highlight (but do not check) e*Ways, and then click the Change button. The
SelectSub-components dialog box appears.

10 Select the CICS e*Way. Click Continue to return to the Select Components dialog
box, then click Next.

11 Follow the rest of the on-screen instructions to install the ADABAS Natural e*Way.

Caution: Unless you are directed to do so by SeeBeyond support personnel, do not change the
suggested installation directory setting.

Be sure to install the e*Way files in the suggested client installation directory. The
installation utility detects and suggests the appropriate installation directory.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, please see the online Help.

For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.

22 UNIX

221 Pre-installation

You do not require root privileges to install this e*Way. Log in under the user name
that you wish to own the e*Way files. Be sure that this user has sufficient privileges to
create files in the e*Gate directory tree.

222 Installation Procedure

To install the ADABAS Natural e*Way on a UNIX system

1 Log in on the workstation containing the CD-ROM drive, and insert the CD-ROM
into the drive.

2 If necessary, mount the CD-ROM drive.
3 At the shell prompt, type
cd /cdrom
4 Start the installation script by typing
setup.sh

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 2
Installation

Note:

Note:

Section 2.3
Files/Directories Created by the Installation

A menu of options will appear. Select the Install e*Way option. Then, follow the
additional on-screen directions.

Be sure to install the e*Way files in the suggested client installation directory. The
installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not
change the suggested “installation directory” setting.

After installation is complete, exit the installation utility and launch the Enterprise
Manager.

Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, please see the online Help
systemt.

For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.

23 Files/Directories Created by the Installation

The ADABAS Natural e*Way installation process installs the files listed in Table 1
within the e*Gate directory tree. Files are installed within the eGate\client tree on the
Participating Host and committed to the “default” schema on the Registry Host.

Table 1 Files Created by Installation

Directories Files
\classes stccics.jar
\classes stcewnatural.ctl
\classes stcnatural.jar
\classes stccics.jar
\ThirdParty\ibmctg\classes ctgclient.jar
\ThirdParty\ibmctg\classes ctgserver.jar
\ThirdParty\gnu-getopt\classes gnu-getopt.jar
\etd\naturalclient naturalclient.xsc
\configs\naturalclient naturalclient.def
\etd natural.ctl

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide

23 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
Installation 0S/390

24 OS/390

The installation tape contains the datasets listed in Table 2.

Table 2 Installation Tape Datasets

Dataset Name Contents

TAPE.STC.RESTORE.]JCL Physical Sequential Datasets containing the JCL for
this tape.

TAPE.STC.NATURAL.JCLLIB Partition Dataset that contains installation jobs and
control cards for the ADABAS NATURAL e*Way.

TAPE.STC.NATURAL.LOAD Load Library that contains the load modules for the
ADABAS NATURAL e*Way.

TAPE.STC.NATURAL.CICLOAD Load Library that contains the CICS load modules
for the ADABAS NATURAL e*Way.

TAPE.STC.NATURAL.OBJECT Object library containing the CICS object modules
for the ADABAS NATURAL e*Way.

TAPE.STC.NATURAL.UNLOAD NATURAL unload dataset containing NATURAL
object for the ADABAS NATURAL e*Way.

241 Copying the Tape Contents to Disk

1 Create and submit the following job to copy the RESTORE JCL to disk:

JOB CARD
| EBGENER EXEC PGMW | EBGENER
SYSSPRI NT DD SYSQUT=*

COPY NATURAL E*WAY NATURAL UNOLAD (I NPL) TO DI SK

*
SYSUT1 DD DSN=TAPE. STC. RESTORE. JCL, DI SP=0LD, UNI T=TAPE,
VOL=(, RETAI N, SER=STC390) , LABEL=(1, SL)
UT2 DD DSN=cust oners. pds(restore), DI SP=SHR

/1
/1
/1
/1
Iy
/1
/1
/1
/1 SYS

[/ SYSIN DD DUMWY
11

2 Customize and submit the RESTORE job to copy the entire contents of the
Installation tape to disk.

242 Installing the CICS CEDA Definitions

Customize and submit job STCNCEDA to create CICS CEDA definitions for the
ADABAS NATURAL e*Way and Installation Verification Programs.

243 Linking the ADABAS NATURAL e*Way Load Modules

Customize and submit job STCNLINK to linkedit all ADABAS NATURAL e*Way
modules and Installation Verification Programs with the LE, TCP/IP, CICS and
NATURAL interface modules.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
Installation 0S/390

244 Add the ADABAS NATURAL e*Way Load Modules to the CICS
DFHRPL Concatenation

Add the following data set to the DFHRPL concatenation under CICS:
/1 DD DSN=&PREFI X. . STC. NATURAL. Cl CSLOAD, DI SP=SHR

245 Create the ADABAS NATURAL e*Way Control VSAM File

Customize and submit job STCNCTL to allocate and initialize the ADABAS NATURAL
e*Way VSAM control file.

Customize the DSNAME parameter in PDS member CEDANCTL to match the VSAM
file that was previously allocated by job STCNCTL.

For session ID records, you need to change the ETID and create a new ETID in the
natural environment, for these natural sessions.

Customize and submit job STCNFCT to create CICS FCT definitions for the ADABAS
NATURAL e*Way VSAM Control file.

246 Installing the NATURAL Programs

Customize and submit job STCNLOAD to load the NATURAL programs into your
NATURAL FUSER file.

Use the NATURAL SYSMAIN utility to copy the following NATURAL modules to the
SYSTEM library on both the FUSER and FNAT files:

STCNBEC

STCNERR

STCNLOG
STCNRCL

247 Installing the MUXNAT

Batch NATURAL

Add the following MUXNAT entry points to the CSTATIC entry of your NATPARM
module

MUXNAT

MUXNATC

MUXNATR
MUXNATS

Sample:
CSTATI C=(MUXNAT, MUXNATC, MUXNATR, MUXNATS)
Link the following MUXNAT modules to the Batch NATURAL Nucleus

MUXNAT

MUXNATC
MUXNATR
MUXNATS

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
Installation 0S/390

Customize the Link JCL for your Batch NATURAL Nucleus as follows:
Add the following DD statement to the Link JCL:
[/ STCLIB DD DSN=&PREFI X..STC. NATURAL. LOADLI B, DI SP=SHR
Add the following INCLUDE statement to the SYSIN DD statement:
| NCLUDE STCLI B(MUXNAT)

248 Configuring NTSYS Setname

There must be at least one NATURAL NTSYS SETNAME ID defined using the
recommended values shown below. If the customer wants to define more than one
configuration of the values shown below, there are a few values that may be tailored for
optimizing performance/throughput and a few different NTSYS SETNAME IDs may
be defined for that purpose. These NTSYS SETNAME IDs are then referred to and used
by the NATURAL e*Ways by specifying them in the Session Configuration record
types in the STCNCTL VSAM file.

Important: The following are the required values that cannot be changed in the NTSYS
SETNAME definition:

ADAMODE=2

All timeout situations (NAT3009) received for nucleus calls are automatically handled
by NATURAL and do not lead to an error message displayed to the user.

ADAMODE - ADABAS Interface Mode
This parameter controls the number of ADABAS user queue elements (UQE):

= Adaplex support with two ADABAS UQEs per NATURAL session (as with
NATURAL Version 2.3), or

= Adaplex support with one ADABAS UQE per NATURAL session, or
= No Adaplex support (as with NATURAL version 2.2).
The possible values are:

ADAMODE=0
Start NATURAL in NATURAL Version 2.2 mode. The UQE is built by the ADALNXx
module. All database calls, either sent by the nucleus, an application program or a
3-GL program, are considered as the same ADABAS user. Running under SYSPLEX
is not possible.

ADAMODE=1
Start NATURAL with one user and ADABAS X48 communication. Only one UQE is
initialized, all nucleus and application database calls are submitted for the same
UQE, however, calls sent by 3-GL programs are excluded. Running under SYSPLEX
is possible.

ADAMODE=2
Start NATURAL in NATURAL Version 2.3 mode (if supported by ADALNXx). Two
UQEs are generated at NATURAL session startup, and nucleus and application

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 2
Installation

Note:

Section 2.4
0S/390

calls are running separate from each other. Database calls sent by 3-GL programs
are excluded from NATURAL transactions. Running under SYSPLEX is possible.

AUTO=OFF

This must be set to OFF to allow the NATURAL e*Way to LOGON under a
different USERID. If this is set to ON, then the NATURAL e*Way will always
LOGON with the ACEE of CICS (which is usually the CICS jobname).

AUTO

Automatic Logon

AUTO=ON

An automatic logon is executed at the start of the NATURAL session. The value
contained in the system variable *INIT-USER is used as the user ID for the logon.

If used with NATURAL Security, AUTO=0ON disables logons with another user
ID (see your NATURAL Security documentation for further information).

AUTO=OFF

No automatic logon is performed.

CDYNAM-=5

The current default for this parameter is 5. Setting this parameter to 0 will cause the
call from STCNBEC to STCNBEP to fail.

CDYNAM - Dynamic Loading of Non-NATURAL Programs

This parameter determines how many non-NATURAL programs can be loaded
dynamically by NATURAL during the execution of a single NATURAL program.

The value specified with the CDYNAM parameter determines the maximum
number of non-NATURAL programs which can be loaded per NATURAL
program.

If CDYNAM=0, no dynamic loading of non-NATURAL programs will be
performed by NATURAL

CM=0ON

This must be set to ON to allow the STACK TOP COMMAND LOGON command
to change NATURAL libraries. Setting this parameter to OFF will cause the
NATURAL session to terminate if the NATURAL e*Way attempts to LOGON to
another NATURAL library.

CM - Command Mode

This parameter can be used to suppress NATURAL command mode (NEXT and
MORE).

CM=ON
NEXT and MORE are available for command input.
CM=OFF

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide

27 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
Installation 0S/390

The NATURAL session will be terminated whenever NEXT is encountered; the
MORE line will be write-protected (no input possible).

DU=OFF
This must be set to OFF to prevent NATURAL from coming down hard. If this
parameter is set to ON, then an application errors such as a SOC7 would force the
NATURAL session to terminate.

DU - Dump Generation
This parameter indicates whether a memory dump is to be generated in the case of
an abnormal termination during the NATURAL session.

DU=ON
A memory dump is produced in the case of an abnormal termination (TP-monitor
dump dataset or SYSUDUMP in OS/390 batch mode or TSO). Then the NATURAL
session terminates with error message NAT9974.

DU=SNAP
This will force an immediate dump in the case of an abnormal termination during a
NATURAL session. The NATURAL session will continue after the dump has been
taken.

DU=FORCE
This will force an immediate dump in the case of an abnormal termination during a
NATURAL session and will terminate the NATURAL session immediately. This is
useful for testing purposes in some environments.

DU=OFF
No memory dump is produced. In batch mode, subsequent action taken by
NATURAL is determined by the setting of the CC profile parameter. In online

mode, NATURAL responds with errors NAT0954, NAT0955 or NAT(0956. For
further information on the abnormal termination, you can use the system command
DUMP (see the NATURAL Reference documentation).

DYNPARM=ON
This parameter should be set to ON to allow various dynamic overrides.

DYNPARM - Control Use of Dynamic Parameters

This parameter can only be specified dynamically and can be used only once. It
controls the use of dynamic profile parameters. It corresponds to the NTDYNP
macro in the parameter module.

DYNPARM=ON

All profile parameters can be specified dynamically.
DYNPARM=OFF

No profile parameters can be specified dynamically.
DYNPARM=(ON,parameter-name,...)

Only those parameters whose parameter-names are specified here can be specified
dynamically. Other parameters cause Error Message NAT7008 to be issued.

DYNPARM=(OFFE parameter-name,...)

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
Installation 0S/390

All profile parameters can be specified dynamically - except those whose
parameter-names are specified here. These parameters cause Error Message
NAT?7008 to be issued.

ETID
This parameter is currently being generated by the NATURAL e*Way and contains
the current session number. Setting the value to a blank in a Special Link under
NATURAL security will avoid the response code 48 problem with ADABAS,
however it becomes very difficult in identifying which NATURAL e*Way may be
chewing up ADABAS resources.

ETID - ADABAS User Identification
The value specified is used as the user ID value in an ADABAS open call. This
parameter is used as an identifier for ADABAS-related information; for example,
for identification of data stored as a result of an END TRANSACTION statement.

If the value specified with the ETID parameter is blanks, NATURAL does not issue
any ADABAS open and close commands; the OPRB parameter (if specified) and
any ETID and OPRB specifications in NATURAL Security are ignored.

In this case, you are recommended to set the NATURAL profile parameter
DBCLOSE to ON to enforce a close command at session end. Otherwise, the user is
not logged off from ADABAS and the ADABAS user queue element is not deleted.
This may cause an overflow situation in the ADABAS user queue.

If the value specified with the ETID parameter does not equal the value of the
NATURAL system variable *INIT-USER, NATURAL issues an ADABAS open with
the specified ETID value (and OPRB value, if specified) at the beginning of the
NATURAL session; this open remains in effect until the end of the NATURAL
session; any ETID and OPRB specifications in NATURAL Security are ignored.

If the value specified with the ETID parameter is the same as the value of *INIT-
USER, or if the ETID parameter is not specified, NATURAL issues an ADABAS
open with the *INIT-USER value as ETID (and the OPRB value, if specified) at the
beginning of the NATURAL session. If any NATURAL Security logon (initial logon
or any subsequent logon) would change the currently valid ETID or OPRB value
(due to the library-/user-specific ETID and OPRB specifications in NATURAL
Security), NATURAL Security issues a new open with the new ETID and OPRB
values. If the values would remain the same after a logon, NATURAL Security does
not issue a new open.

If ETID=OFF, NATURAL does not issue any ADABAS open and close commands
at the beginning of the NATURAL session. If, however, any ETID and/or OPRB
specifications are present in NATURAL Security, these specifications are used in
the subsequent open issued by NATURAL Security.

This parameter value is provided for use in conjunction with NATURAL Security to
prevent NATURAL batch jobs that are sent at the same time from causing duplicate
user ID values in an ADABAS open call during the initialization phase.

ETID and *INIT-USER can be modified by user exit NATUEX1 during session
startup. See User Exit for Authorization Control - NATUEX1 (in the NATURAL
Operations for Mainframes documentation).

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
Installation 0S/390

ID=,
This parameter should be set to the default of a ",". The NATURAL e*Way
currently uses this delimiter character when building the STACK TOP COMMAND
to LOGON to a differently library.

ID - Input Delimiter Character
This parameter defines the character to be used as a delimiter character for INPUT
statements.

If the input delimiter character is to be a comma, it must be specified as ID=',".

The character specified with this parameter must not be the same as the one
specified with the DC parameter (decimal character) or IA parameter (input assign
character); it should not be the same as the one specified with the CF parameter
(control character for terminal commands) or HI parameter (help character).

The period (.) should not be used as input delimiter, because this might lead to
situations in which a program termination period would be misinterpreted as input
delimiter. An asterisk (*) should not be used either.

Within a NATURAL session, the profile parameter ID can be overridden by the
session parameter ID.

MENU=OFF
This parameter must be set to OFF to avoid any startup programs from be invoked
when a NATURAL session starts up.

MENU - Menu Mode
This parameter is used to switch NATURAL menu mode on or off.

MENU=OFF

Disables menu mode. Within a NATURAL session, the MENU parameter can be
overridden by the system command MAINMENU (described in the NATURAL User's
Guide for Mainframes).

OUTDEST=CSSL
This parameter should be set to CSSL in NTSYS. It will be very handy in debugging
any NATURAL runtime errors that may have occurred.

OUTDEST - Output Destination for Asynchronous Processing
This parameter only applies to NATURAL under CICS, Com-plete and UTM. It
specifies the destination to which any NATURAL error message produced by an
asynchronous application is to be sent. After an error message has been sent,
NATURAL terminates the asynchronous session.

Under UTM, this parameter is used to the specify the ID of the terminal where
output from an asynchronous application is to be displayed. When and how error
messages/output from an asynchronous application are output depends on the
respective TP monitor.

SENDER=CSSL
This parameter should also be set to CSSL in NTSYS. It will be very handy for
debugging any NATURAL runtime errors that may have occurred.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
Installation 0S/390

SENDER - Screen Output Destination for Asynchronous Processing
This parameter only applies under CICS, Com-plete, IMS/TM and UTM. It
specifies the destination where output from an asynchronous application is to be
displayed. The destination specified with the SENDER parameter applies to
hardcopy output and primary reports.

Any additional reports are sent to the destinations specified with the DEFINE
PRINTER statement (just as in a synchronous online session). Platform-specific
characteristics of the SENDER parameter are listed below.

CICS: The SENDER parameter specifies the CICS transient data (TD) destination
and the terminal or printer for terminal output from asynchronous sessions. If the
specified destination does not exist, the session output is sent to the specified
terminal or printer. If the specified terminal or printer does not exist either, the
session terminates abnormally.

The default terminal output format for asynchronous sessions is a 3270 data stream.
If the SENDER terminal specification is not a 3270 device, the NATURAL
application must switch to the correct terminal type before the first output
statement (for example, by specifying SET CONTROL 'T=PRNT" for a printer or by
starting with profile parameter TTYPE=PRNT).

If you are routing all output to a (spool) destination, such as CSSL, the NATURAL
application must be switched to line mode, for example by specifying SET
CONTROL 'T=BTCH' or by starting with profile parameter TTYPE=BTCH. In this
case, two other profile parameters are relevant: E] and INTENS.

If you set EJ=ON, all lines are routed with a leading ASA control character.

With EJ=OFF, there is no leading ASA control character. INTENS should be set to
"1", particularly if you have set E]=OFF

Optional Values

Important: These are the optional values that can be changed in the NTSYS SETNAME
definition:

These parameters can be used to customize certain NATURAL Session Configurations
that are tailored specifically for processing different incoming transactions from the
external NATURAL e-Ways, for the purpose of separating long running inquiries
against ADABAS from short lived transactions that normally require few ADABAS
commands. The STCNCTL VSAM file is where incoming transactions are assigned to
specific NATURAL Session Configurations.

LE=OFF
This parameter should be set to OFF. Setting this parameter to ON can cause the
NATURAL session to terminate if any LIMIT conditions have been coded in a
called NATURAL program.

This parameter may need to be coded to ON if persistent long running resource
intensive (READ and FIND statements) cause undue stress on the NATURAL
environment.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
Installation 0S/390

LE - Reaction when Limit for Processing Loop Exceeded
This parameter controls the action to be taken if the limit specified for processing-
loop execution is exceeded.

LE=ON
Loop execution is aborted and an error message is issued at the end of the
NATURAL program.

LE=OFF
Loop execution is aborted and processing continues without an error message.

LT=99999999
This parameter should be set to the default of 99999999 to avoid any NATURAL
time-outs during any long running ADABAS command(s).

LT - Limit for Processing Loops
This parameter limits the number of records which can be read in processing loops
within a NATURAL program.

This parameter limits the number of records which can be read in processing loops
within a NATURAL program. The limit specified with this parameter applies to
loops initiated with a READ, FIND or HISTOGRAM statement only.

All records read in these loops (including rejected records from a WHERE clause)
are counted against this limit. Within a NATURAL session, the profile parameter
LT can be overridden by the session parameter LT.

MADIO=0
This parameter should be set to 0 to avoid any NATURAL timeouts during any
long running ADABAS command(s).

MADIO - Maximum DBMS Calls between Screen 1/0 Operations
This parameter indicates the maximum number of DBMS calls permitted between
two screen I/O operations (also in batch mode). If the specified limit is exceeded,
the NATURAL program is interrupted and the user is notified with NATURAL
Error Message 1009.

MADIO=0
Indicates that no limit is to be in effect.

MAXCL=0
This parameter should be set to 0 to avoid any NATURAL timeouts when calling a
lot of NATURAL programs.

MAXCL - Maximum Number of Program Calls
This parameter determines the maximum number of program calls permitted
between two screen I/O operations. If the specified limit is exceeded, the
NATURAL program is interrupted and the user receives Error Message NAT1029.

MAXCL=0
Indicates that no limit is to be in effect.

MT=0
This parameter applies to Batch and TSO only. It should be set to 0 to avoid any
NATURAL timeouts during any long running NATURAL Batch processes.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
Installation 0S/390

MT - Maximum CPU Time
This parameter only applies to programs executing in batch mode or under TSO.
The limit for programs operating in interactive mode is controlled by the TP
monitor in use. The MT parameter determines the maximum amount of CPU time
which can be used by a NATURAL program. The value is specified in seconds.

MT=0
Indicates that no NATURAL CPU time limit is in effect.

The maximum value that can be used is determined by the operating system
environment. Any value in excess of the maximum is reduced to the maximum
supported by the operating system.

In system environments which do not support CPU time measurement, the limit is
interpreted as elapsed time. The CPU time limit is ignored for systems without
timer support.

Within a NATURAL session, the profile parameter MT can be overridden by the
session parameter MT.

249 STCNCTL VSAM File Record Descriptions

The STCNCTL file is a keyed VSAM file (KSDS). It contains the control information
necessary for properly processing incoming business rules transaction messages from
the external NATURAL e-Ways.

There must be one STCNCTL file defined for each CICS region that is executing the
NATURAL e-Way OS/390 components.

The first byte of the file key is Environment. This enables multiple environments (i.e.
Development, Test, Prod, etc.) to run concurrently in a single CICS region. This is an
arbitrary two byte value that must be the same value as the Environment that is set into
the messages that are sent in from the external NATURAL e-Ways that are connected to
this CICS region.

Within each environment, there are three record types: Global, Session Configuration,
and TranType.

The Global record controls the ETIDs, user IDs, and passwords for logging onto Back
End NATURAL Sessions in the CICS region.

The Session Configuration record controls the NTSYS SETNAME, NATURAL Nucleus
name, various time-out values and other data related to executing Back End
NATURAL Sessions in the CICS region, for example, you can configure an NTSYS
SETNAME for long-running inquiry transactions and a different NTSYS SETNAME for
short-lived transactions.

The TranType record controls the processing of incoming business rules transaction
messages coming in from the external NATURAL e-Ways. It contains the Session
Configuration Id number to specify the type of Back End NATURAL Session to which
to route this incoming. It also contains the name of the NATURAL application program
that will process this request, the NATURAL Library that contains the NATURAL
application program, various time-out values, and other data to control the processing
of this business rule transaction message.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
Installation 0S/390

Global Record

Field Name Pos Type Length
key-environment 1 char 2
key-rec-type 3 char 1
(this field must be ‘G’)
key-filler 4 char 4
(this field must be blanks)
nat-logon-timeout-secs 8 numeric 8
use-etid-mask-flag 9 char 1
‘Y’ = use the logon-etid-mask-name to create a
unique ETID
blank = use the logon-etid-full-name
logon-etid-full-name 10 char 8
logon-etid-mask-name 10 char 8
logon-etid-mask-value 10 char 8
logon-etid-mask-nnn 10 char 5
logon-userid-flag 18 char 1
‘G’ = get the nat-logon-userid and password
from the Global Record.

‘S’ = get the nat-logon-userid and password

from the Session Configuration Record.

nat-logon-userid 19 char 8
nat-logon-password 27 char

Filler 35 char 46
Session Configuration Record

Field Name Pos Type Length
key-environment 1 char 2
key-rec-type 3 char 1
(this field must be ‘S’)
key-session-config-id 4 numeric 2
(this field must be 01, 02, 03, etc.)
key-filler 6 char 2
(this field must be blanks)
nat-nucleus-pgm (for CICS only) 8 numeric 8
(get this name from your NATURAL systems
programmer)
natu-logon-userid 16 char
nat-logon-password 24 char

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4

Installation 0S/390
Field Name Pos Type Length
ntsys-setname-id 32 char 8
(get these names from your NATURAL systems
programmer)
max-sessions 40 numeric 2

(the maximum number of NATURAL Sessions
that can be executing concurrently for this
Session Configuration ID)

curr-sessions 42 numeric 2
(set this 00. The system will increment this
value in memory, NOT currently executing for
this Session Configuration Id.)

avail-session-timeout 44 numeric 8
(how long to wait for an available Back End
NATURAL Session to which to attach for
processing an incoming business rules

request)
nat-session-up-timeout 52 numeric 8
Filler 60 char 21

Transaction Type Record

Field Name Pos Type Length
key-environment 1 char 2
key-rec-type 3 char 1

(this field must be ‘T’)

key-tran-type 4 char 4
(this must be the same value that the external
NATURAL e*Way is sending in on the incoming
business rules transaction message)

natural-program 8 char 8
natural-library 8 char
session-config-id 16 numeric 2

(this is the Session Configuration Id that is used
for routing this incoming business rules
request to the appropriate Back End NATURAL
Session in the CICS region)

timeout-secs 18 numeric 8
(how long to wait for the Back End NATURAL
Session to process this business rules request

Filler 26 char 55

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation CICS Installation Verification Program

25 CICS Installation Verification Program

The following Simulators allow you to test the e*Way in a “virtual” manner, thereby
verifying that the installation has been successful and can be continued.

251 Virtual Natural e*Way Interactive Simulator

After the components have been installed on CICS, use the Virtual Natural e*Way in
CICS to verify that all of the components are properly installed and working correctly.
To do this, perform the following:

1 Sign onto the CICS region, from a blank screen, key in the following tranid:

QANE

2 Press the Enter key. The following screen appears:

Welcome to

Virtual Natural e-Way

Interactive SJimulator

To exit..... hit PF3, PFlZ, or the CLEAR key

Hit PFS to process Initialization redquests
Hit PF6 to process Business Rules requests
Hit PF7 to process Termination regquests

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation CICS Installation Verification Program

3 Press the PF5 Key. The following screen appears:

Aphout to oall Initialization....

Hit Enter to confirm......

4 Press the Enter key. The following screen appears:

STCHFEI call done...
Resp=00000000
RespZ=00000000

Hit enter to continue

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation CICS Installation Verification Program

5 DPress the Enter key. The following screen appears:

Initialization
return code:
oooo
reason code:
oooo
reason text:

session id nbr:
001003213533260290

Hit PFS5S to process Initialization requests
Hit PF6 to process Business Bules requests
Hit PF7? to process Termination regquests

6 While the above screen is displayed, use the mouse to highlight the eighteen (18)
digit number directly under the “session id nbr:”. Copy and paste it into a Notepad
(or similar text editor) screen. you will need to keep this screen open for later use in
this test script.

7 Press the PF6 key to display the following screen:

Business Rules=
Enter Session Id Nbr:

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation CICS Installation Verification Program

8 Paste the number from the clipboard onto this screen. It should appear as follows:

Eusiness BRules
Enter Ses=s=ion Id Nhr:
O01003213533260290

9 Press the Enter key. The following screen appears:

Business Rules
Enter Tran Type:

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation CICS Installation Verification Program

10 Enter a valid Tran Type that has been stored into the STCNCTL VSAM file in the
manner shown below:

Eusine=s=s Rules
Enter Tran Type:
Annh

11 Press the Enter key. The following screen appears:

Eusiness Rules
Enter environmwment:

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation CICS Installation Verification Program

12 Enter a valid Environment that has been stored into the STCNCTL VSAM file in the
manner shown below:

Eusine=s=s Rules
Enter enviromnment:
QA

13 Press the Enter key. The following screen appears:

Business Rules
Enter Guid:

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 4 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation CICS Installation Verification Program

14 Enter a valid GUID value (any 1 to 38 character string that you have not used for
this test before) in the manner shown below:

Eusine=s=s Rules
Enter Guid:
123

15 Press the Enter key. The following screen appears:

Eusziness Bules
Enter Payload:

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation CICS Installation Verification Program

16 Enter in the number 1776 in the manner shown below:

BEusines=s Bules
Enter Payload:
1776

17 Press the Enter key. The following screen appears:

dbout to call Business Rules....
3ession Id Nhr:
001003213533260290
Tran Type:

hhanh

Environment :

Qh

Guid:

123

Payload:

1776

Hit Enter to confirm......

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 2
Installation

18 Press the Enter key. The following screen appears:

19 Press the Enter key. The following screen appears:

Section 2.5
CICS Installation Verification Program

SITCNFEER call done...
Fesp=00000000
Fesp2=00000000

Hit enter to continue

Eusiness Rules
return code:
oooo
reason code:
oooo
reason text:

data buffer(1:30) :
Declaration of Independence

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide

44

SeeBeyond Proprietary and Confidential

Chapter 2
Installation

20 Press the PF7 key. The following screen appears:

21

Section 2.5
CICS Installation Verification Program

Termination
Enter Session Id Nbr:

Copy the session id nbr from the clipboard file, opened earlier. Paste it into the
screen in the manner shown below:

Termination
Enter Zeszsion Id MNbr:
O01003213533260290

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide

45

SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation CICS Installation Verification Program

22 Press the Enter key. The following screen appears:

Termination
Enter Envirornment:

23 Enter the same environment that you entered in earlier in this script in the manner
shown below:

Termination
Enter Environment:
QR

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 46 SeeBeyond Proprietary and Confidential

Chapter 2
Installation

24 Press the Enter key. The following screen appears:

25 Press the Enter key. The following screen appears:

Section 2.5
CICS Installation Verification Program

bhout to call Termination. ...
SGession Id HMNbr:
001003213533260290
Environment:

QR

Hit Enter to confirm......

STCHNFET call done...
Resp=00000000
Regpz=00000000

Hit enter to continue

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide

47

SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation CICS Installation Verification Program

26 Press the Enter key. The following screen appears:

Termination
return code:
oooo
reason code:
oooo
reason text:

Hit PFS to process Initialization requests
Hit PF6 to process Business Fules regquests
Hit PF7 to process Termination redquests

27 Press the Clear key to exist the Virtual Natural e*Way, or press PF5, PF6, or PF7 to
continue testing with other test scenarios.

252 Virtual JCL Submit e*Way Interactive Simulator

After the components are installed in CICS, use the Virtual JCL Submit e*Way in CICS
to verify that all components are properly installed and working correctly. To do this,
perform the following:

1 Sign onto the CICS region, from a blank screen, key in the following tranid:

QACl

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 48 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation CICS Installation Verification Program

2 Press the Enter key. The following screen appears:

Welcome Lo

Virtual JCL Submit e-Way

Interactive Simulator

To exit..... hit PF3, PF1lZ2, or the CLEALR kevy

Hit PF5 to process JCL Submit requests

3 Press the PF5 key. The following screen appears:

JCL Submitter
Enter PDS name:

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation CICS Installation Verification Program

4 Enter your own test PDS name in the manner shown below:

JCL Zubmitter
Enter PD3 name:
JEFFE.PDLS.CHNTL

5 Press the Enter key. The following screen appears:

JCL Submitter
Enter Member name:

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 50 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation CICS Installation Verification Program

6 Enter your own test JCL member name in the manner shown below:

JCL Submitter
Enter Member name:
TEST

7 Press the Enter key. The following screen appears:

About to call JCL Submitter.....
PD3:

JEFFE.PDS.CNTL

Memkber :

TEST

Hit Enter to confirm......

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 51 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation CICS Installation Verification Program

8 DPress the Enter key. The following screen appears:

ATCCICL call done...
Resp=00000000
Resp2=00000000

Hit enter to continue

9 Press the Enter key. The following screen appears:

JCL 3ubmitter

return code:

oooo

reazon code:

oooo

Eeason Lext:

Jokb TEST successfully submitted. JCL card count = 0024,

Hit PF5S to process JCL Submit requests

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 52 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation CICS Installation Verification Program

10 Enter PF5 to run another test, or enter PF3, PF12, or CLEAR to exit the Virtual JCL
e*Way.

253 Virtual Natural e*Way Monitoring Screens OS/390 CICS

After the components are installed in CICS, use the Natural e*Way Monitoring screen
in CICS to verify that all the components are properly installed and working correctly.
To do this, perform the following:

1 Sign onto the CICS region, from a blank screen, enter the following tranid.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 53 SeeBeyond Proprietary and Confidential

Chapter 2

Section 2.5
Installation CICS Installation Verification Program

2 Press the Enter key. The following screen appears:

Welcome to
Hatural e—Way

Display 5torage HAreas

Fad:GCB FS:EEAT FE:EEA F17:SEAT F18:3EA F19:Comb F2B:CTLA PR3 PF12, LRz e t

3 Press the PF4 key. The following screen appears:

3 IEMGLEE — Llobal Control Block

NGCE=initial—abst ime BB321 2926695838 18-24-81 15:38:15.838
NGCB=pointers N
HGEB—eeat—pointer l':.|||-'|:|]
MGCB-seat—pointer (dec)
NGEB—ctla—pointer (dec)

MLELE—tupt—pointer (dec)

FA:GCB FS:EEAT FE:EEA F17:SEAT F18:3EA F19:Comb F2B:CTLA PF3;, PF12, CLR exa t

This is the Global Control Block (GCB) screen. It displays the date and time it was
created. It also displays the pointers to the internal control blocks that reside in memory
in CICS that control the execution of the OS/390 components of the Natural e*Way.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 54

SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation CICS Installation Verification Program

4 Press the PF5 key. The following screen appears:

sICMEEAT — E-Yay ELB HArea lable

HEEAT—eea—st atus—F | ag HEEAT—eea—pointer Eway Seszion Id Mbe
A533266

aa1e/33sa

c12499844 3491

12998483748

Mewep

Hewer

HI"'LH"

Mevep
Newer
Mewver used HERHHREER

FA4:GCB FS:=EEAT FE:EEA F17:SEAT F18:5EA F19:Comb F2B:CTLA P PH12; LRz exa £

This is the e*Way ECB Area Table (EEAT) screen. It displays the table of status flags,
pointers to the e*Way ECB Areas (EEAs), and current session ID nbrs assigned to each
e*Way. EEAs are created as each e*Way is initialized and connects to the CICS region.
EEAs are not deleted when an e*Way terminates, therefore this screen only shows the
presence of EEAs that have been created, but not the current state of each e*Way.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 55 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation CICS Installation Verification Program

5 To view the EEA of each e*Way in order to know the status, press PF6. The
following screen appears:

sIGMEER — E—Way ELE Areas

Status date time BEP-ECE P Tat rcB re=1 rec=2 a~t |-t b-t

{ available 18-31-@1 16:48: AoG1 BABA BEGE GEOD GOA 0AD AR
| auvailable 5 . e i ARA1 BAe1 a8 ARBR BRA AAA AEA
C I Zel 3 - : i Wallh Bl B AR BRR BH8 BBa
B B-25-81 11:34:4¢ T P08 DBA GO0 BEE

FA:GCB FS5:EEAT FE:EEA F17:SEAT F18:3EA F19:Comb F28:CTLA P PH12; CLE exa £

This screen displays information about each e*WAy ECB Area (EEA) that has been
created in memory in CICS. Each line displays on EEA. The status indicates whether
the EEA is currently associated with an external Natural e*Way. When the status shows
“available”, the EEA is not currently being used. It is available for use by the Natural
e*Way that is initialized and connects to the CICS region. The other fields on this screen

are:
Date: Date of the last update to this EEA
Time: Time of the last update to this EEA

BEP-ECB: Event Control Block (ECB) used for communicating with the Natural
Session Back End Program (BEP).

P: Previous status of this EEA if the current status is invalid

Tot: Count of business rules message blocks that have been sent in from the
external Natural e-Way

RCO: Number of times the business request was processed in CICS with a return
code 0 (ok) back to the Natural e-Way.

RC-1: Number of times the business request was processed in CICS with a return
code -1 (error) back to the Natural e-Way.

RC-2: Number of times the business request was processed in CICS with a return
code -2 (shutdown) back to the Natural e-Way.

a-t: Number of times a timeout occurred scanning for an Available Natural
Session.

1-t: Number of times a timeout occurred logging onto a new Natural Session.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 56 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation CICS Installation Verification Program

b-t: Number of times a timeout occurred while waiting for the Natural
Session Back End Program (BEP) to process a business rule request.

There are also a set of control blocks for each Back End Natural Session that is
executing.

6 Hit PF17 (shift F5) to display the following screen:

SIEMSEAT — Session ECEB Area lable

HSEAT—sea-status—flag NSEAT—sea—pointer

E
I

FA:GCB FS5:EEAT FE:EEA F17=SEAT F18:5EA F19:Comb F2B:CTLA P, PH1Z, LR exa b

This is the SessionECB Are TAble (SEAT) screen. It displays the table of status flags and
pointers to the Session ECB Areas (SEAs), assigned to each Back End Natural Session.
SEAs are created as each Back End Natural Session is started in the CICS region. SEAs
are not deleted when a Back End Natural Session is terminated. Therefore, this screen
only shows the presence of SEAs that have been created, but not the current state of
each Back End Natural Session.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 57 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation CICS Installation Verification Program

7 To view the SEA of each Back End Natural Session to ascertain the status, press
PF18 (shiftF6). The following screen appears:

3 EMSER — Session EGE Hreas
Status date time FER-ECB Task Own Cur T En SC Cnt

i available 18-25-81 12:26: BB81 5 1 6881 D @1 8881
A available 1B-c5-@81 12:25:47.030 AUPRPAARE GOE1553 862 BB D1 B2 Ba81

Fa4:GCB FS:EEAT FE:EEA F17:SEAT F18:5EA F19:Comb F2B:CTLA P PH1Z; LLR exa

This screen displays information about each Natural Session ECB Area (SEA) that has
been created in memory in CICS. Each line displays one SEA. The status indicates
whether the SEA is currently associated with a BAck End Natural Session. When the
status shows “available”, the SEA is not currently being used. It is available for use the
next time a new Natural Session needs to be started in CICS. The other fields on this
screen are:

Date: Date of the last update to this SEA
Time: Time of the last update to this SEA

FER-ECB: Event Control Block (ECB) used for communicating with the Natural e-Way
Front End Business Rules Program (FER).

Task: The internal CICS task number of this Natural Session. This is useful in
associating a given Natural Session to its task information that is displayed in the
CEMT INQ TASK command screen.

Own: The session id nbr of the external Natural e-Way that started this Back End
Natural Session in CICS.
Cur: The session id nbr of the most recent Natural e-Way that used this Back End

Natural Session to process a business rule request.

T Timeout flag. This is set when the Front End Business Rules (FER) program
timed out waiting for the Natural Session Back End Program (BEP) to process a
business rules request.

En: The Environment for which this Natural Session is executing business rules
requests.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 58 SeeBeyond Proprietary and Confidential

Chapter 2
Installation

SC:

Back End Natural Session.

| available

[available

¢ initialized
initialized

FA4:GCB FS:EEAT FE-EEA F17:SEAT F18:5ERA F19:Comb F2B:CTLA

I"f1 |'i1] e —
A available
A available

sILMEEA — E-Ma

y ELE Hreas
' P Tot
Ak

BB

HIAEE

BaEE

Section 2.5

CICS Installation Verification Program

The Session Configuration Id nbr of this Natural Session. The Session
Configuration is stored in the STCNCTL VSAM file.

Cnt: The number of business rules requests that have been processed by this

8 To see the external Natural e*WAys and the Back End Natural Sessions at the same
time, press PF19 (shift F7). The following screen appears:

rcB re=1 po-2 a-t |-t b—t
HEL HUH BER
ARa A8a
HAH HBEA
ARB A8a

P PH1Z CLRz exa £

This screen displays both external Natural e*Way ECB Areas (EEAs) and Back End
Natural Session ECB Areas (SEAs). Please refer to the previous screen descriptions for
the meaning of each field on the screen.

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide

59

SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation CICS Installation Verification Program

9 To view the internal memory area that contains the STCNCTL VSAM file records,
press PF20 (shift F8). The following screen appears:

sIEMETLA — Gontrol File Hrea
Record Area
HHE1 D1 HUHEBRIBY S | CHAREEGEOTHYIG BO T HEWG
S BEEIEMM41 BBBE DISE1 M3 O0THWJG BOTHWIG SBA A36PRBRNDBRG
I BER9AEET HAAZ DIT10200AM3 | INTFDEU1 81 BABBAAER
Record Inage Area
DiG AEAABA3AYSTCHAPBEGEBOTHY THWJG
I3 2 EBOTHWIG BOTHA
S . SBE0THYWIG BOTHWIG 5
B1IKTFDEU1 @1 BBABAEE
LU1 INTFDEU1 81 BBABBEAEG
D1 TTHFTOANZGLET IHTFDELT B2 BUBBRBREE

FA:GCB FS:EEAT FG:EEA FA7=SEAT F12:5EA F19:Comb F28:CTLA PRI PH12,CLRz e t

This screen displays the internal memory area (STCNCTLA) that contains the records
of the STCNCTL VSAM file. These records are used to control the processing of the
business rules transaction messages coming from the external Natural e*Ways, and also
the starting up (or logging on) of Back End Natural Sessions in CICS. Please refer to the
documentation of the STCNCTL VSAM file for description of these record layouts.

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide 60 SeeBeyond Proprietary and Confidential

Chapter 3

Configuration

This chapter describes how to configure the Java-enabled ADABAS Natural CICS ECI
e*Way Connection in the e*Gate Integrator system.

31 Configuring e¥*Way Connections

e*Way Connections are set using the Enterprise Manager.

To create and configure e*Way Connections:

1

10
11

In the Enterprise Manager’s Component editor, select the e*Way Connections
folder.

On the palette, click the Create a New e*Way Connection button.

The New e*Way Connection Component dialog box opens, enter a name for the
new e*Way Connection. Click OK.

Double-click on the new e*Way Connection. For this example, the connection has
been defined as eWc_NaturalClient.

The e*Way Connection Properties dialog box opens.
From the e*Way Connection Type drop-down box, select CICS.

Enter the Event Type “get” interval in the dialog box provided. The configured
default is 100 milliseconds.

From the e*Way Connection Configuration File, click New to create a new
Configuration File for this e*Way Connection. (To use an existing file, click Find.)

The e*Way Connection Edit Settings window opens. Make any necessary changes
to the CICS e*Way Connection parameters.

Go to File, Save to save settings.

Go to File, Promote to Run Time.

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide

61 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Configuration Connector

The CICS e*Way Connection configuration parameters are organized into the following
sections:

= “Connector” on page 62

= “CICS Gateway” on page 63

= “CICS Client” on page 64

= “Natural Settings” on page 66

= “Tracing” on page 67

32 Connector

This section contains the following set of top-level parameters:
" Type
= Class
= Property.Tag

Type
Description

Specifies the type of connector.
Required Values

A string . The value always defaults to Natural for ADABAS Natural connections.

Class

Description
Specifies the class name of the ADABAS Natural Client connector object.
Required Values

A valid package name. The default is com.stc.eways.natural.NaturalClientConnector.

Property.Tag

Description

Specifies the data source identity. This parameter is required by the current
EBobConnectorFactory.

Required Values

A valid data source package name.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 62 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Configuration CICS Gateway

33 CICS Gateway

This section assists in setting the following CICS Java Gateway parameters:
= URL
= Port
= SSL KeyRing Class
= SSL KeyRing Password

URL

Description
Specifies the URL for the remote/local Gateway to which to connect.
Required Values

A valid location.

Port
Description
Specifies the TCP/IP port to which to connect.

Required Values

A valid port number between 1 and 864,000. The default is 8888.

SSL KeyRing Class

Description
Specifies the full class name of the SSL KeyRing class.
Required Values

A valid class name.

SSL KeyRing Password
Description

Specifies the Password for the encrypted KeyRing class.
Required Values

A valid password for the encrypted KeyRing class.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 63 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Configuration CICS Client

34 CICS Client

The following parameters in this section assist in setting the CICS client information:
= CICS Userld
= CICS Password
= ECI call type
= CICS Program
= CICS Transld
= COMMAREA Length
= ECI Extend Mode
= ECI LUW Token
= Message Qualifier

= Encoding

CICS Userld

Description
Specifies the ID for the CICS user.
Required Values
A valid CICS user ID.
Note: The CICS client user and password must be included in the EWC configuration,
otherwise the user will be prompted for this information, suspending all processing

until valid values are entered. This only affects Windows versions of the client, as
the UNIX versions generate an exception under the same conditions.

CICS Password

Description
Specifies the password associated with the specified CICS user.
Required Values

A valid CICS user password.

ECI Call Type

Description
Specifies the ECI call type.
Required Values

Synchronous or Asynchronous. The default is Synchronous.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 64 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Configuration CICS Client

CICS Program

Description
Specifies CICS program to be run on the server.
Required Values

A valid CICS program name in string format.

CICS Transld

Description
Specifies the CICS Transld to be run on the server.
Required Values

A valid CICS Transld name in string format.

COMMAREA Length

Description

Specifies the length in bytes of the communication area (COMMAREA) passed to the
ECL

Required Values

An integer between 1 and 32659. The default is 1000.

ECI Extend Mode

Description

Specifies whether to extend the extend mode.
Required Values

Yes or No. The default is No.

ECI LUW Token

Description

Specifies whether the security feature-related Logical unit of work ID is only used on
the same JavaGateway that created or assigned them.

Required Values

An integer between 0 and 1000. The default is 0.

Message Qualifier

Description

Specifies whether the security feature-related ID is only used on the same JavaGateway
that created or assigned them.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 65 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
Configuration Natural Settings

Required Values

An integer between 0 and 1000. The default is 0.

Encoding

Description
Specifies the encoding type.
Required Values
cp500 or ASCII. The default is ASCIL

35

Natural Settings

The following parameters in this section assist in setting the CICS information required
to initialize a Natural Session and the Natural information:

= CICS Program to Initialize Natural Session

= CICS Transaction to Initialize Natural Session
= CICS Program to Execute Business Rules

= CICS Transaction to Execute Business Rules

= CICS Program to Terminate Natural Session

= CICS Transaction to Terminate Natural Session

CICS Program to Initialize Natural Session

Description

Specifies the name of the CICS program that initializes the Natural session.
Required Values

STCNFEIL

CICS Transaction to Initialize Natural Session

Description
Specifies the name of the CICS transaction that initializes the Natural session.
Required Values

NFEI.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 66 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.6
Configuration Tracing

CICS Program to Execute Natural Business Rules

Description

Specifies the name of the CICS program executes the business rules in the Natural
session.

Required Values
STCNEFER.

CICS Transaction to Execute Natural Business Rules
Description
Specifies the name of the CICS transaction that executes Natural business rules.

Required Values
NFER.

CICS Program to Terminate Natural Session
Description
Specifies the name of the CICS program that terminates the Natural session.

Required Values
STCNFET.

CICS Transaction to Terminate Natural Session
Description
Specifies the name of the CICS transaction that terminates the Natural Session.

Required Values
NFET.

3.6

Tracing

This section contains the following set of top-level parameters:
= Level
= Filename
= Truncation Size
= Dump Offset

= Timing

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 67 SeeBeyond Proprietary and Confidential

Egﬁﬁf)itgegrition Sec!ri:)and:{n.g
Level
Description
Specifies the level of tracing in place.
Required Values

0,1, 2, or 3. See Table 3.

Table 3 Setting the Level Parameter

Value Description
0 None: No CICS Java client application tracing.
1 Standard: By default, it displays only the first 128 bytes of any data blocks. For

example, the COMMAREA, or Network flows. This trace level is equivalent to the
Gateway trace set by the ctgstart -trace option. Can also set using System property
“gateway.T.trace=on".

2 Full Debug: By default, it traces out the whole of any data blocks. The trace contains
more information about CICS Transaction Gateway than the standard trace level.
This trace level is equivalent to the Gateway debug trace set by the ctgstart -x option.
Can also set using System property “gateway.T=on".

3 Exception Stacks: It traces most Java exceptions, including exceptions which are
expected during normal operation of the CICS Transaction Gateway. No other
tracing is written. This trace level is equivalent to the Gateway stack trace set by the
ctgstart -stack option. Can also set using System property “gateway.T.stack=on".

Filename

Description

Specifies a file location for writing the trace output. This is provided as an alternative to
the default output on stderr.

Required Values

A valid file location. Long filenames must be contained by quotation marks. For
example, “trace output file.log”. This can also be set using System property
“gateway.T.setTFile-xxx” where “xxx” is equal to a filename.

Truncation Size

Description

Specifies the maximum size of any data blocks to be written by the trace.
Required Values

An integer between 0 and 864000. The default is 100.

Specifying 0 causes no data blocks to be written in the trace. Leave blank to refrain from
specifying the truncation size. This can also be set using System property
“gateway.T.setTrancationSize=xxx" where “xxx” is equal to the size setting as an
integer.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 68 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.6
Configuration Tracing

Dump Offset

Description

Specifies the offset from which displays of any data blocks start. If the offset is greater
than the total length of data to be displayed, an offset of 0 is used.

Required Values

An integer between 0 and 864000. The default is 0.

This can also be set using System property “gateway.T.setDumpOffset=xxx", where
“xxx” is equal to a number indicating the offset amount.

Timing
Description

Specifies whether or not to display time-stamps in the trace.
Required Values

On or Off. The default is On.

This can also be set using System property “gateway.T.timing=on".

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 69 SeeBeyond Proprietary and Confidential

Chapter 4

Multi-Mode e*Way Configuration

This chapter describes how to configure the e*Gate Integrator’s Multi-Mode e*Way
Intelligent Adapter.

41 Multi-Mode e*Way Properties

Set the Multi-Mode e*Way properties using the e*Gate Enterprise Manager.

To set properties for a new Multi-Mode e*Way

1

ga s~ W N

10
11
12

Select the Navigator pane’s Components tab in the Main window of the Enterprise
Manager.

Open the host and Control Broker where you want to create the e*Way.

On the Palette, click on the icon to create a new e*Way.

Enter the name of the new e*Way;, then click OK.

Select the new component, then click the Properties icon to edit its properties.
The e*Way Properties dialog box opens

Click Find beneath the Executable File field, and select an executable file
(stceway.exe is located in the bin directory).

Under the Configuration File field, click New.
The e*Way Configuration Editor window opens.

When the Settings page opens, set the configuration parameters for this e*Way’s
configuration file (see “JVM Settings” on page 71 for details).

After selecting the desired parameters, click Save on the File menu to save the
configuration (.cfg) file.

Close the .cfg file and e*Way Configuration Editor.
Set the properties for the e*Way in the e*Way Properties dialog box.
Click OK to close the dialog box and save the properties.

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide

70 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Multi-Mode e*Way Configuration JVM Settings

+2 JVM Settings

To correctly configure the e*Way Intelligent Adapter for ADABAS Natural, you must
configure the Java Virtual Machine (JVM) settings. This section explains the
configuration parameters in the e*Way Configuration Editor window, which control
these settings.

JNI DLL Absolute Pathname

Description

Specifies the absolute path name to where the JNI .dll (Windows) or shared library
(UNIX) file is installed by the Java 2 SDK, on the Participating Host, for example:

C:\eGate\client\bin\Jre or C:\jdk\jre\bin\server
This parameter is mandatory.
Required Values
Required Values
A valid path name.
Additional Information

The JNI .dll or shared library file name varies, depending on the current operating
system (OS). The following table lists the file names by OS:

Java 2 JNI .dll or
Shared Library Name

NT 4.0/ Windows 2000 jvm.dll
Solaris 2.7, 2.8 libjvm.so
AlX4.3.2,433 libjvm.a

Operating System

The value assigned can contain a reference to an environment variable, by enclosing the
variable name within a pair of “%” symbols, for example:

%vY_JNI DLL%

Such variables can be used when multiple Participating Hosts are used on different
OS/platforms.

Caution: To ensure that the NI .dll file loads successfully, the Dynamic Load Library search
path environment variable must be set appropriately to include all the directories
under the Java 2 SDK (or [DK) installation directory, which contain shared library
or .dll files.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 71 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Multi-Mode e*Way Configuration JVM Settings

CLASSPATH Prepend

Description

Specifies the paths to be prepended to the CLASSPATH environment variable for the
JVM.

Required Values

An absolute path or an environmental variable. This parameter is optional.
Additional Information

If left unset, no paths are prepended to the CLASSPATH environment variable.

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of “%” symbols, for example:

$MY PRECLASSPATHS

CLASSPATH Override

Description

Specifies the complete CLASSPATH variable to be used by the JVM. This parameter is

optional. If left unset, an appropriate CLASSPATH environment variable (consisting of
required e*Gate components concatenated with the system version of CLASSPATH) is

set.

Note: All necessary .jar and .zip files needed by both e*Gate and the [VM must be
included. It is advised that the CLASSPATH Prepend parameter should be used.
Required Values
An absolute path or an environment variable. This parameter is optional.
Additional Information

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of “%” symbols, for example:

%VlY_CLASSPATH%

CLASSPATH Append From Environment Variable

Description

Specifies whether the path is appended for the CLASSPATH environmental variable
to .jar and .zip files needed by the JVM.

Required Values
YES or NO. The configured default is YES.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 72 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Multi-Mode e*Way Configuration JVM Settings

Initial Heap Size

Description

Specifies the value for the initial heap size in bytes. If this value is set to 0 (zero), the
preferred value for the initial heap size of the JVM is used.

Required Values

An integer from 0 to 2147483647. This parameter is optional.

Maximum Heap Size

Description

Specifies the value of the maximum heap size in bytes. If this value is set to 0 (zero), the
preferred value for the maximum heap size of the JVM is used.

Required Values

An integer from 0 to 2147483647. This parameter is optional.

Maximum Stack Size for Native Threads

Description

Specifies the value of the maximum stack size in bytes for native threads. If this value is
set to 0 (zero), the default value is used.

Required Values

An integer from 0 to 2147483647. This parameter is optional.

Maximum Stack Size for JVM Threads

Description

Specifies the value of the maximum stack size in bytes for JVM threads. If this value is
set to 0 (zero), the preferred value for the maximum heap size of the JVM is used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Disable JIT

Description

Specifies whether the Just-In-Time (JIT) compiler is disabled.
Required Values

YES or NO.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 73 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Multi-Mode e*Way Configuration JVM Settings

Remote debugging port number
Description

Specifies whether to allow remote debugging of the JVM.
Required Values

YES or NO.

Suspend Option for Debugging
Description
Indicates whether to suspend the Option for Debugging on JVM startup.

Required Values
YES or NO.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 74 SeeBeyond Proprietary and Confidential

Chapter 5

Implementation

This chapter explains a sample schema to help you understand how to implement the
e*Way Intelligent Adapter for ADABAS Natural in a production environment.

5.1 i i
Implementation Overview

This section explains how to implement the ADABAS Natural e*Way using an e*Gate
Integrator schema sample included on your installation CD-ROM. Find this sample on
the CD-ROM at the following path location:

samples/ewnatural/java

This sample allows you to observe an end-to-end data-exchange scenario involving
e*Gate, the e*Way, and sample interfaces. This chapter explains how to implement the
this sample schema that uses the ADABAS Natural e*Way.

You can also use the procedures given in this chapter to create your own schema based
on the sample provided. It is recommended that you use a combination of both
methods, creating your own schema like the sample, then importing the sample into
e*Gate to check your results.

Before Importing or Running a Sample Schema

To import and/or run the sample schema, the ADABAS Natural e*Way must be
installed, and you must also have access to an ADABAS Natural system.

To import a sample schema

1 Copy the desired .zip file, for example, NaturalClient.zip, from the samples/
ewnatural/java directory in the install CD-ROM to your desktop or to a temporary
directory, then unzip the file.

Start the e*Gate Enterprise Manager.
On the Open Schema from Registry Host dialog box, click New.
On the New Schema dialog box, click Create from export, and then click Find.

a s~ W N

On the Import from File dialog box, browse to the directory that contains the
sample schema.

6 Click the .zip file then click Open.

The schema is installed.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 75 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Implementation Overview

To create the sample schema

Use the following implementation sequence:

1 The first step is to create a new schema. The rest of

Create Schema these steps apply only to this schema.
l 2 The second step is to create and define the Event
Types you are transporting and processing within
Define Event Types the schema.

3 Third, you need to associate the Event Types

A 4 created in the previous step with Event Type
Generate Event Type Definitions (ETDs) you want to use in the schema.
Definitions

4 The fourth step is to create and configure the

v required e*Ways.
Create & Configure
e*Ways
5 The fifth step is to configure the e*Way
l Connections.
Create & Configure .
e*Way Connections 6 Now you need to create Intelligent Queues (1Qs)
and 1Q Managers (if necessary) to hold published
l Events.
Create
Intelligent Queues 7 You need to create the desired Collaboration Rules
for your schema, along with their associated
Business Rules.
A 4
Define & Configure
Collaborations 8 Next, you need to define and configure the
Collaborations between Event Types.
9 Finally, you must check and test your Schema. Once
Test & Deploy P . .
you have verified that it is working correctly, you can
deploy it to your production environment.
Chapter Organization

This chapter is set up sequentially, and you can use it as a tutorial to teach how to
implement the ADABAS Natural e*Way. It is recommended that you use the steps
listed previously, in that order, to implement the sample.

The chapter concludes with a section that explains how to use the e*Gate SAG wizard
with the e*Way.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 76 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation ADABAS Natural Sample Implementation

s ADABAS Natural Sample Implementation

The ADABAS Natural e*Way sample schema illustrates the components to be created
on Windows or UNIX. This section explains the basic structure, operation, and creation
of the schema.

521 Schema Overview

The sample schema consists of the following components:
= Two file-based e*Ways (inbound /Feeder and outbound /Eater)
= One Multi-Mode e*Way (NaturalClient)
= One e*Way Connection (eWc_NaturalClient)
= One IQ Manager
= Two IQs

= Four Event Types (GenericInEvent.ssc, GenericOutEvent.ssc, NaturalClient.xsc,
NaturalTransInOut.xsc)

= Two Collaboration Rules (cr_PassThrough, cr_NaturalClient)
You can create and configure all these components using the e*Gate Enterprise

Manager.

Note: For complete information on how to set up an e*Gate schema, see the e*Gate
Integrator User’s Guide and Creating and End-to-end Scenario with e*Gate
Integrator.

Once the sample schema has been successfully imported, the Enterprise Manager
appears as shown in Figure 2 on page 78.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 77 SeeBeyond Proprietary and Confidential

Chapter 5
Implementation

File Edit ‘iew Tools Options Help

Section 5.2

ADABAS Natural Sample Implementation

Figure 2 NaturalClient Sample Schema

@ e*Gate Enterprise Manager - NaturalClient =1

D[54 3D W] 2|

[=-_ 4 Participating Hosts
janetgreendell (inactive)
2-[ill loeshost (inactive)
EI@ locahost_ch
£

-] Evert Types
(] Callskoration Rules
-] Services

-] Security

nnections

EE Metwork | €9 Components

el

Corterts of 'e*Vay Connections'

Mame Type

Configuration File

et _MaturalClient ADABAS Matural

et _MaturalClient.cfy

522 Schema Operation

The NaturalClient sample uses a file e*Way to send a file to the NaturalClient e*Way.
The file contains a key lookup, which is then translated from ASCII to EBCDIC, before
sending to the mainframe.

The mainframe receives the file, running a Natural sub-program to process the query,
and returns the packet to the e*Gate, where it is translated back from EBCDIC to ASCII,

before writing to a file on a local, external system.

Note: For more information on the e*Way and Natural sub-programs, see “Natural
Sub-programs” on page 93.

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide

78

SeeBeyond Proprietary and Confidential

Chapter 5
Implementation

Section 5.2
ADABAS Natural Sample Implementation

523 Creating Event Types and Event Type Definitions

The NaturalClient.xsc file is the ADABAS Natural e*Way’s basic ETD. It provides all
the properties that pertain to the communication between e*Gate and the mainframe,

and the definition of the COMMAREA.

Figure 3 shows this ETD, as it appears in the Enterprise Manager’s ETD Editor Main

window.

Figure 3 ETD Editor Main Window: NaturalClient.xsc

-i0x

File Edit Help
DS M| 2|9 |
r Ev Type — Ewent Tupe Definition
E S
@ = '[i.tuﬂ":hem = (Mame) MaturalClient
Fart camment
dataEncoding | ASCII
— Internal Templates SslClass editable False
SSI,PESSWD[EI sscEncoding | ASCIT
Ecisync bype Matural
Userld wschersion 0.4
Password packageMame | com.stc.eways.natura
Frogram
Tranzld
Commdrea
Commarealength
EciExtend
EciluwToken (I
M ezzageliualifier
— External Templates Encoding

M atl nitProgram
MatlnitT ransld

M atE secProgram
M atE wecTrans d
MatT ermProgranm
MatTermTrans/d
Tracelevel
TraceFilename

TraceDumpOffset

TraceTiming
el T

TraceT runzationSize

=

| Loading Local Templates

[12/29/2000 [417 PM 4

The sample also implements the NaturalTransInOut.xsc. This ETD has the following

basic properties:

= Key

= Name

= City

= ReturnCode

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide

79

SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation ADABAS Natural Sample Implementation

The ETD was created based on the query to be performed by the external Natural
program. You can use the ETD Editor’s Custom ETD wizard to create a user-defined
ETD that can vary based on specific needs (see Figure 4).

Figure 4 EDT Editor Main Window: NaturalTransInOut.xsc

_lolx]
File Edit Help
Dl ? |
= Evnt Type——————— ~Ewvent Tvpe Definition
2 =" MaturalT ransaction =
Key {Mame) MaturalTransaction
& Name comment
. dataEncoding | ASCIT
~ Intemal Templates City editable True
RefunCode sscEncoding | ASCIT
reset type s5C
awailable wschersion 0.4
nest packageMarne | MauralTransData
receive
receive
zend
zend
rawlnput
topic
publications
— External Templates subscriptions
rnarzhal
unmarshal
readFroperty
writeProperty
[[12/29/20Mm [4:15 PM i

Note: For complete information on how to use the ETD Editor and the Custom ETD
wizard, see the e*Gate Integrator User’s Guide.

524 Creating Collaboration Rules

The Collaboration Rule performs the desired business logic. In this case, there are
global variables defined, Initialization, Business, and Termination Rules, all being
executed.

Note: For details on how to use the Collaboration Rules Editor, see the e*Gate Integrator
User’s Guide.

The Collaboration Editor view appears in Figure 5 on page 81.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 80 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation ADABAS Natural Sample Implementation

Figure 5 Collaboration Rules Editor Main Window: cr_NaturalClient

2% Collaboration Rules Editor - cr_NaturalClient (Sandbox - Modified) - |EI|1|
File Edit “iew Tools Help
dh
1% Source Events 1% Destination Events
1= -'T= MaturalClient [MaturalClient] MaturalClient [MaturalClient] "[:--;
[™2 MaturalTransIn [MaturalTransaction] MaturalEwayOrder [MaturalEWayOrder] "[:--
MaturalTransOut [MaturalTransaction] g
Key .
Mame
City

ReturnCode B2
reset
available
next
receive
receive
send =

send
rawInput
bopic
publications
-=marshal subscriptions =%...

!

1k blockl =S method| @ var| [21 Far| if| ¥ rulel B, switchl =+ case| 5 whilel L7 dol #= return| 1 throwl@ tryl ! catchl

Business Rules

J=|BClass Properties
Matural Session ID (3 bytes)

Matural Session Id Time (15 bytes)
Environment {2 bytes)
COMMAREA Input & Output Mame: |cr_NaturaICIient
COMMAREA Input Implements: |JCOIIab0rat0rExt
COMMARES Input Reserved (100 bytes)
COMMAREA Oukput

Description: |cr_NaturaICIient

Extends: |cr_NaturaICIientBase

COMMAREA Output Return Code (4 bytes) Access Modifiers: W public [T abstract [final

COMMAREA Qutput Reason Code (4 bytes)

COMMAREA Oubput Reason Text (50 bytes) Documentation:

COMMAREA Qutput Reserved {100 bytes) ;I

Skring Woark Area
[#--=% cr_MaturalClient

- executeBusinessRules
@ retBoolean

- i@ Business Rules Input Tran Type (4 bytes) LI LI LI

The Java code for the Collaboration Rule shown in Figure 5 follows:

i mport com stc. comon. col | abServi ce. *;
i mport comstc.jcsre.*;

i mport com stc.eways. util.~*;

i mport java.io.?*;

i mport java.sqgl.*;

i mport java.util.*;

i mport com stc. eways. natural . *;

i mport Naural TransDat a. *;

i mport fsgsgf.*;

class cr_Natural dientBase extends JCol | aboration
{
public cr_Natural CientBase()

super();

com stc. eways. natural . Natural Client Natural dient = null;
public comstc. eways. natural.Natural dient getNatural Cient()

return this.Natural Cient;

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 81 SeeBeyond Proprietary and Confidential

Chapter 5

Section 5.2

Implementation ADABAS Natural Sample Implementation

Naur al Tr ansDat a. Naur al Transacti on Natural Transln = null;

publ i c Naural TransDat a. Naur al Transacti on get Nat ural Transl n()

{

return this.Natural Transl n;

fsgsgf. Nat ural EMayOr der Nat ur al EWAyOrder = nul | ;
public fsgsgf. Natural EWAyOrder get Nat ural EWayOr der ()

return this. Natural EWayOr der;
}

Naur al Tr ansDat a. Naur al Tr ansacti on Natural TransQut = null;
publ i c Naural TransDat a. Naur al Transacti on get Nat ur al TransQut ()

return this.Natural TransQut;

}

public void resetData() throws Coll abConnException, Coll abDataE
xception

this.NaturalClient = (comstc.eways. natural .NaturalCient) t
his.reset ((ETD)this.getNaturalient());

this. Natural Transln = (Naural TransDat a. Naur al Transaction) th
is.reset((ETD)this.getNatural Transin());

this. Natural EWayOrder = (fsgsgf. Natural EMayOrder) this.reset
((ETD) t hi s. get Nat ur al EWayOrder ()) ;

this. Natural TransQut = (Naural TransDat a. Naur al Transacti on) t
his.reset ((ETD)thi s. get Natural TransQut ());

public void createlnstances() throws Coll abConnException

this.NaturalCient = (comstc.eways.natural.NaturalCient) t
hi s. new nstance("com stc. eways. natural . Natural Client", "Natural dient
", ETD. 1 N_OUT_MODE) ;

this. Natural Transln = (Naural TransDat a. Naur al Transaction) th
i s. newl nst ance(" Naur al TransDat a. Naur al Transacti on”, "Natural Transln",

ETD. | N_MODE) ;

this. Natural EwayOrder = (fsgsgf. Natural EWayOrder) this.newln
stance("fsgsgf. Natural EWayOrder”, "Natural EMayOrder™, ETD. OQUT_MCDE) ;

this. Natural TransQut = (Naural TransDat a. Naur al Transaction) t
hi s. new nst ance(" Naur al Tr ansDat a. Naur al Transacti on", "Natural TransQut
", ETD. OUT_MODE) ;

}
}

public class cr_Natural Cient extends cr_Natural ClientBase inplene
nts JCol | abor at or Ext

These two variable nmust be defined a public and available to Initiali
ze, Business Rules and Term nation

public String Natural Sessionld =" ";

public String Natural SessionldTine = ;

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide

82 SeeBeyond Proprietary and Confidential

Chapter 5

Section 5.2

Implementation ADABAS Natural Sample Implementation

These vari abl es can be defined locally to Initialize, Business Rules
and Termi nation. | decided to define them here
because the sane area can be used in all three places.

This String is a 100 Byte reserved area in the input section of the C
OVVAREA

public String CAlnReserved ="

This String is a 100 Byte reserved area in the output section of the
COVVAREA

public String CAQut Reserved ="
The Return Code needs to be a 4 byte String
public String CAQut ReturnCode = " "
The Reason Code needs to be a 4 byte String
public String CAQut ReasonCode = " "

The Reason Text needs to be a 80 byte String

public String CAQut ReasonText "

public String CAlnEnvironnment =" ";
public String CAl nput Qutput;

public String CAlnput;

public String CACutput;

public String StringWrk;

public cr_Natural dient()

super();

publ i ¢ bool ean execut eBusi nessRul es() throws Exception

bool ean ret Bool ean = true;

String CAlnTranType =" "

String CAlnGuid =" "
String CAPayl oad;

String Natural TranQut;

This is part of the actually collaborition. In this exanple were set
the transaction to 1020 and converting it fromASC | to EBCDIC

CAl nTranType = "1020";

CAl nTranType = new String (CAlnTranType. getBytes("cp500"), "I SO 8859-
1");

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide

83 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2

Implementation ADABAS Natural Sample Implementation
This is part of the actually collaborition too. In this exanple we'r
e set the environnent to QA and converting it fromASCI|l to EBCDI C
CAl nEnvi ronnent = "QA";
CAl nEnvi ronment = new String (CAl nEnvironnent. getBytes("cp500"), "ISO
-8859-1");
This is part of the actually collaboration also. |In this exanmple we'

re constructing payl oad and converting it fromASCI| to EBCD C

CAPayl oad = get Natural Transl n().getKey() + getNatural Transln().getNam
e() + getNatural Translin().getCty() + getNatural Transln().getReturnCo
de();

CAPayl oad = new String (CAPayl oad. get Bytes("cp500"), "ISO 8859-1");

This established a GU D for the Transaction we're about to send to Na
tural

CAlnGuid = getNatural dient().getGuidString();
The COVMAREA for Business Rul es needs to be constructed as foll ows.

CAl nput = Natural Sessi onld + Natural SessionldTi me + CAlnTranType + CA
| nEnvi ronment + CAInGui d + CAl nReserved;

CACQut put = CAQut Ret ur nCode + CACQut ReasonCode + CAQut ReasonText + CAQu
t Reserved;

CAl nput Qut put = CAlI nput + CAQut put + CAPayl oad,;

This methold setups the length of the COMWAREA that were going to sen
d for a Natural Business Rule

get Natural Cl i ent (). set CormAr eaLengt h(CAl nput Qut put . | ength());

This method sends the COVMAREA that was just constructed to CICSto e
xecute a NATRUAL Busi ness Rul e

get Natural Client (). set CommAr ea(CAl nput Qut put . get Bytes());

This method gets the list of available CICS Servers

get Natural Cient().getServerlList(2);

These two net hods set the CICS program nanme and Transaction for Busin
ess Rules. W really should not have to do this, but | currently hav
e a bug in the Natural e*Way. These values would normally be picked
fromthe configuration file.

get Natural Client().setProgran("STCNFER");

getNatural Client().setTransld("NFER");

This Method executes the CICS Transaction to execute a Natural Busine
ss Rul e

get Natural Client().execute();

otain the returned payl oad back from Natural and convert it from EBC
DIC to ASClI

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 84 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation ADABAS Natural Sample Implementation

Nat ural TranOQut = getNatural dient().get ConmAreaStri ng(350, 50);
Nat ural TranQut = new String (Natural TranQut. getBytes(), "cp500");

return retBool ean;

public void userlnitialize()

{

The COVMAREA for Initialization needs to be constructed as foll ows.
The | engt hs have been established when these String were initially de
fined.

CAl nput = CAl nReserved;
CACQut put = CAQut Ret ur nCode + CACut ReasonCode + CAQut ReasonText + Natu
ral Sessi onld + Natural Sessi onldTi mre + CAQut Reser ved;

CAIl nput Qut put = CAl nput + CAQut put ;

This methold setups the |l ength of the COMWAREA that were going to sen
d at Natural Initialization

get Natural C i ent (). set CormAr eaLengt h(CAl nput Qut put . | ength());

This method sends the COVWMAREA that was just constructed to CICS to |
nitialize a Natural session

get Natural Client (). set CommAr ea(CAl nput Qut put . get Bytes());
This method gets the list of available CICS Servers
get Natural Client().getServerlList(2);
These two net hods set the CICS program nane and Transaction for Initi
alization. W really should not have to do this, but I currently hav
e a bug in the Natural e*Way. These values would normally be picked
fromthe configuration file.
getNatural Cient().setProgran("STCNFEI");
get Natural Client().setTransl d("NFEI");

Systemerr.println ("About to initialize Natural Session und
er CICS");

Thi s Method executes the CICS Transaction to Initialize a Natural ses
si on

getNatural Cient().execute();

This obtains the Natural session ID and session ID tine which will be
used in Business Rules and Term nation (this is required)

Nat ur al Sessionld = get Natural Cient().get CommAreaString(188, 3);
Nat ur al Sessi onl dTine = getNatural Cient().get ConmAreaString(191, 15);

}

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 85 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation ADABAS Natural Sample Implementation

public void userTerm nate()

The COVMAREA for Term nation needs to be constructed as foll ows.

CAl nput = Natural Sessi onld + Natural Sessi onl dTi ne + CAl nEnvi ronnment +
CAl nReser ved;

CACQut put = CAQut Ret ur nCode + CACut ReasonCode + CAQut ReasonText + CAQu
t Reserved;

CAIl nput Qut put = CAl nput + CAQut put ;

This methold setups the length of the COMWAREA that were going to sen
d at Natural Term nmation

get Natural C i ent (). set CormAr eaLengt h(CAl nput Qut put . | ength());

This method sends the COVWMAREA that was just constructed to CICS to |
nitialize a Natural session

get Natural Cl i ent (). set CommAr ea(CAl nput Qut put . get Bytes());

This method gets the list of available CICS Servers

get Natural Client().getServerlList(2);

These two net hods set the CICS program nanme and Transaction for Term

nation. W really should not have to do this, but | currently have a
bug in the Natural e*Way. These values would normally be picked fro

m the configuration file.

getNatural Cient().setProgran("STCNFET");

get Natural Client().setTransld("NFET");

This Method executes the CICS Transaction to Terminate a Natural sess
i on

get Natural Client().execute();
}

Sample Input Data
For the sample schema, the following was passed in as a 50 byte file vertical bars have
been added to show the contained byte area.

| 50005500] | |

The first 8 bytes are the key, the next 20 are for the name, the next 20 are for the city,
and the final 2 are for the return code.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 86 SeeBeyond Proprietary and Confidential

Chapter 5

Implementation

Sam

Section 5.2
ADABAS Natural Sample Implementation

ple Natural Program

The sample is designed to function with a sample Natural program, such as the
following program:

DEFI NE DATA

PARAMETER

* PAYLOAD area frome*Gate
1 #STCP- PARM DATA (A50)
END- DEFI NE

*

RESET #STCL- PARM DATA (A50)
MOVE #STCP- PARM DATA TO #STCL- PARM DATA

REDEFI NE #STCL- PARM DATA (#STCL-KEY (AS8)
#STCL- NAME (A20)
#STCL-CI TY (A20)
#STCL-RET (A2))

| F #STCL- KEY = "50005500"

MOVE "BLOND' TO #STCL- NAME

MOVE " ST- ETI ENNE" TO #STCL-CI TY

MOVE " OK" TO #STCL- RET

MOVE #STCL- PARM DATA TO #STCP- PARM DATA

525 Running the Schema

To run the NaturalClient schema

1

Note:

Go to the command line prompt, and enter the following:

stccbh -rh hostnanme -rs Natural dient -un usernane -up user
password -1 n hostname_cb

Substitute hostname, username and user password as appropriate.
Exit from the command line prompt, and start the e*Gate Monitor GUL

When prompted, specify the hostname which contains the Control Broker you
started in Step 1 above.

Select the NaturalClient schema.

After you verify that the Control Broker is connected (the message in the Control
tab of the console will indicate command succeeded and status as up), highlight the
IQ Manager, hostname_igmgr, then click on the right button of the mouse, and
select Start.

Select each of the e*Ways, right-click the mouse, and select Start.
To view the output, copy the output file (specified in the Outbound e*Way

configuration file). Save to a convenient location, open.

While the schema is running, opening the destination file, can cause errors.

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide

87 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Implementation SAG Wizard Operation

53 SAG Wizard Operation

This section explains how to convert .sag files into ETDs usable by the ADABAS
Natural e*Way. You can use the e*Gate Enterprise Manager’s SAG wizard to do this
operation.

531 Getting Started

Before you can use the SAG wizard to convert .sag files into ETDs, you must first
unload the source code for the Natural Local Data Areas (LDAs) and /or Parameter
Data Areas (PDAs) that their respective Natural applications are using.

Creation of .sag Files

Natural source-code objects of the type LDA and PDA are the input used to create .sag
files. The .sag files are created by the Natural Unload utility on an OS/390 mainframe.
Using this utility, you must unload each LDA or PDA Natural source-code object to an
MVS Physical Sequential (PS) file with the extension .sag.

The Natural Unload utility creates the PS files and gives them the appropriate
extension. You must ensure a one-to-one correspondence between each LDA or PDA
object and its corresponding .sag file.

Note: The Natural Unload utility is a Software AG Natural product. This utility is also
referred to as the SYSTRANS utility.

Converting .sag Files: The SAG Wizard

You can use the e*Gate SAG wizard to convert .sag files to e*Gate ETDs. To do so, you
must first use the Natural Unload utility to unload one source-code object per each PS
file, as described earlier. When this operation is done, you must then FTP each of the PS
files, in the binary mode, to a Windows 2000 or NT workstation running the e*Gate
Enterprise Manager.

Note: Unload the Natural LDAs and PDAs via the Natural Unload utility with the
EBCDIC-to-ASCII option set Y (Yes).

Once these PS files reside on a machine available to the Enterprise Manager, you are
ready to use the SAG wizard to convert them to ETDs. This wizard is a part of the
Enterprise Manager’s ETD Editor feature.

The SAG wizard generates an e*Gate-compatible ETD from each PS file containing an
LDA or PDA object. The wizard does not add or delete anything from the source
objects. Instead, it simply converts them to a file format that e*Gate and the ADABAS
Natural e*Way can use.

You must use the SAG wizard convert .sag files in this way whenever you need to
exchange data between a Natural sub-program and the ADABAS Natural e*Way. The
ETDs generated by the SAG wizard are used by the e*Way only to exchange data
between e*Gate and the Natural sub-program that is being called

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 88 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Implementation SAG Wizard Operation

532 Using the SAG Wizard

Once you have unloaded the source objects and converted them to .sag files as
explained earlier, you are ready to use the SAG wizard.

To use the SAG wizard to convert an .sag file to an ETD

1 From the e*Gate Enterprise Manager, display the ETD Editor. Be sure you have
selected the Java editors as your default.

2 To access the SAG wizard, click New on the ETD Editor’s File menu.
The New Event Type Definitions dialog box appears, displaying all installed ETD
wizards (see the example in Figure 6).

Figure 6 New Event Type Definition Dialog Box

j'E:iNew Event Type Definition

SSCwWizard Custom ETD
el Yizard

Ok I Cancel Help

3 Double-click the SAG Wizard icon.

4 Review the SAG Wizard - Introduction dialog box, then click Next. This dialog box
gives you brief instructions on how to use the wizard.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 89 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Implementation SAG Wizard Operation

The SAG Wizard - Step 1 dialog box appears (see Figure 7).
Figure 7 SAG Wizard - Step 1 Dialog Box

v~ SAG Wizard - Step 1

Enter a padiage name where the 548G builder can place all of
the generated Java classes associaked with the created Event
Tupe Definkion,

Package Mame: [MaturallDadl

Select an ADAEBAS SAG File bo be used by the SAG builder to
generate an Event Type Definition File,

4G File Mame: |[SA\SYSTRANS \natnidal.sag

SEeBEYONMD-

= Back I Mexk = I Cancel |

5 In the SAG Wizard - Step 1 do the following actions:

+ Enter the desired package name for the container in which the wizard places the
generated Java classes.

+ Enter the desired .sag file name for the ETD. Be sure to include the full path
location.

Note: Be sure to observe the required naming rules in these entries. See the e*Gate
Integrator User’s Guide for details.

6 Click Next to continue.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 90 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Implementation SAG Wizard Operation

The SAG Wizard - Step 2 dialog box appears (see Figure 8).
Figure 8 SAG Wizard- Step 2 Dialog Box

¥ SAG Wizard - Step 2

The 5AG Wizard has finished callecting information to generate
the XSC file,

Resiew the wizard's summaty, IF the colected information is
correct, click Finish ko generate an Event Type Cefinition.
Citherwise, cick Back to change your selections.

Summnary !

Package Mame: |NaturaILDM

SAGFIS Name: |7 5ySTRANS|natnidal sag

SEeBEYONMD-

= Back

7 Use the SAG Wizard - Step 2 to review all the information you have entered and be
sure it is correct. You can click Back to change previously entered information, if
you want.

8 Click Finish when you are done with the wizard.

The structure of the ETD you have created appears in the ETD Editor’s Main
window as shown in Figure 9 on page 92.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 91 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Implementation SAG Wizard Operation

Figure 9 ETD Editor Main Window: Sample .sag File

‘E2 ETD Editor: Event TypeDefinitionl.xsc {(Sandbox)
File Edit Help
D[] e |
e T_l,lpe —Eve.nt Type Definition Propeities -HFARM-AREA
R ABE A =" ® HPARM-AREA
----- HFaFik-CHAR (hiame) it
HF&RM-IMTEGER Codshersion thdefined
camment
— Irternal Templates :ii::;gﬂé? darafrcodng #5SH
; derived False:
- HF&RM-DATE editable True
..... % HPARK-TIME sscEncoding | ASCII
..... Ei' HPARM-LOGICAL bype S5C
_____ B HPaRM-ARBAY wschersion (06
..... B HPARM-SRR&Y2D
..... &' HPARM-ARR&Y3D
----- 3 rezel
=% avallable
----- 23 next
..... =B recaive
— Esternal Templates
----- =B rawlnput
----- =% topic
=% publications
----- =% zubscriptions
..... = marshal
[]-=% unmashal
[+--=% readProperty
[#--=% writeProperty
i [Br25/2002 1253 PM i

9 Click Compile and Save on the File menu to compile and save the ETD. In the
resulting Save dialog box, you can enter your desired name. This is your new ETD
(.xsc) file based on the input .sag file.

10 Close the ETD Editor and exit back to the Enterprise Manager. Be sure you promote
the new file to run time.

Example
The following text shows the source code for the Natural LDA NATNLDA2:

DEFI NE DATA LOCAL

#PARM AREA(A250)

This is a coment |ine
REDEFI NE #PARM AREA
#PARM CHAR(A36)

REDEFI NE #PARM CHAR
#PARM CHAR2- ARRAY(A2/ 1: 18)
#PARM | NTEGER(| 4)
#PARM PACKED(P7)

#PARM ZONED(N7)

#PARM DATE(D)

#PARM TI ME(T)

#PARM LOG CAL(L)

NNNNNNWNNE X

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 92 SeeBeyond Proprietary and Confidential

Chapter 5
Implementation

2 #PARM ARRAY(A3/ 1: 2)
2 #PARM ARRAY2D(A5/1:2,1:2
2 #PARM ARRAY3D(A7/1:2,1:2,1:2)

Section 5.4
Natural Sub-programs

END- DEFI NE
The following text shows an example of a .sag file based on the Natural LDA
NATNLDAZ2:
*H** ANAT310320011010852126 MVS/ ESA OAE B
Cr | NTFDEV1NATNLDA2
L *DO1NAT3103L | NTFDEV1INATNLDA2
MSCWIE MECWI TERMD235 *D02
2001092109313692001092109313690000000683
* DO3MWS/ ESA TSO NATTSO
* D04
* Sxxxx D 0000A 250 1#PARM AREA
*Sk**XC 0000* THI S| S A COVWENT LI NE
* SF*** DRR 0000 R1#PARM AREA
* Sxxx* DER 0000A 36 2#PARM CHAR
* Sx*** DRR 0000 R2#PARM CHAR
*SE***DERI 1 0000A 2 3#PARM CHAR2- ARRAY (18)
* S xxx DER 00001 4 2#PARM | NTEGER
* Sx*** DER 0000P 7 2#PARM PACKED
* SF**x DER 0000N 7 2#PARM ZONED
* Sxxxx DER 0000D 2#PARM DATE
* SF*** DER 0000T 2#PARM TI ME
* SF**x DER 0000L 2#PARM LOGE CAL
*Sxxxx DER| 1 0000A 3 2#PARM ARRAY (2)
* Sk*** DER| 2 0000A 5 2#PARM ARRAY2D (2,2)
*SE***DERI 3 0000A 7 2#PARM ARRAY3D (2,2,2)

*E

s4 Natural Sub-programs

This section explains how e*Gate communicates with Natural sub-programs.

541 Communication With e*Gate: Overview

Going from e*Gate to CICs, the ADABAS Natural e*Way in e*Gate communicates with
Natural sub-programs via the 3GL call interface, via several components and programs.
Upon completion of the Natural sub-programs, data is returned to e*Gate and the
ADABAS Natural e*Way through the same sequence of events, except in reverse.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 93

SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
Implementation Natural Sub-programs

542 Communication With e*Gate: Basic Steps

The steps in the communication from e*Gate to CICS-OS\390 happen as follows:
Within e*Gate

= The ADABAS Natural e*Way communicates with a SeeBeyond front-end
component running inside CICS.

Within CICS on OS/390
= The SeeBeyond CICS front-end component runs a CICS Natural session.
= This session runs a back-end COBOL program within CICS.
= This program calls Natural sub-programs via the 3GL call interface.

= Upon the completion of the sub-programs, control is returned to the SeeBeyond
back-end program (running under the Natural session).

= Data is also returned to the SeeBeyond program, along with control.

Note: The Natural sub-programs can optionally call a Natural main program, as long as
control is returned back to the Natural sub-programs (that is, FETCH RETURN).

Return Data

The steps in the return of data from CICS-OS\390 back to e*Gate happen in the reverse
order as shown in the previous lists.

Upon completion of the Natural sub-programs, the control, along with any return data,
is returned to the SeeBeyond back-end program running under the Natural session.
This session then sends the return data to the SeeBeyond front end-component, which
then returns the data to e*Gate and the ADABAS Natural e*Way.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 94 SeeBeyond Proprietary and Confidential

Chapter 6
Java Methods

This chapter provides an overview of the Java classes and methods contained in the
e*Way Intelligent Adapter for ADABAS Natural, which are used to extend the
functionality of the e*Way.

1 e€*Way Methods and Classes: Overview

For any e*Way, communication takes place both on the e*Gate Integrator system and
the external system side. Communication between the e*Way and the e*Gate
environment is common to all e¥*Ways, while the communication between the e*Way
and the external system is different for each e*Way.

For the ADABAS Natural e*Way, the stceway.exe file (creates a Multi-Mode e*Way; see
Chapter 4) is used to communicate between the e*Way and e*Gate. A Java
Collaboration is utilized to keep the communication open between the e*Way and the
external system or network.

62 Using Java Methods

Java methods have been added to make it easier to set information in the ADABAS
Natural e*Way Event Type Definitions (ETDs), as well as get information from them.
The nature of this data transfer depends on the configuration parameters (see
Chapter 3) you set for the e*Way in the e*Gate Enterprise Manager’s e*Way
Configuration Editor window.

The Enterprise Manager’s Collaboration Rules Editor window allows you to call Java

methods by dragging and dropping an ETD node into the Rules scroll box of the Rules
Properties window.

Note: The node name can be different from the Java method name.
After you drag and drop, the actual conversion takes place in the .xsc file. To view

the .xsc file, use the Enterprise Manager’s ETD Editor or Collaboration Rules Editor
windows.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 95 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Methods Cicsclient Class

For example, if the node name is CommArea, the associated javaName is CommArea.
If you want to get the node value, use the Java method called getCommArea(). If you
want to set the node value, use the Java method called setCommArea().

These methods are contained in the following Java classes:
= Cicsclient Class on page 96
= NaturalClient Class on page 128

63 Cicsclient Class

The Cicsclient class is used by the

63.1 Methods of the Cicsclient Class

These methods are described in detail on the following pages:
commAreaToPackedDecimal() on page 98
commAreaZonedToString() on page 99
execute() on page 99

getCommaArea() on page 100
getCommAreaLength() on page 101
getCommAreaString() on page 101
getEciCallbackable() on page 102
getEciExtend() on page 102
getEciLuwToken() on page 103
getEciSync() on page 103
getEncodedCommAreaString() on page 104
getEncoding() on page 104
getHexString() on page 105
getMessageQualifier() on page 105
getPassword() on page 105

getPort() on page 106

getProgram() on page 106

getServer() on page 107

getServerList() on page 107

getSslClass() on page 107
getSslPassword() on page 108

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 96 SeeBeyond Proprietary and Confidential

Chapter 6

Java Methods

getTraceDumpOffset() on page 108
getTraceFilename() on page 109
getTraceLevel() on page 109
getTraceTiming() on page 109
getTraceTruncationSize() on page 110
getTransId() on page 110

getUrl() on page 111

getUserld() on page 111
handleConfigValues() on page 111
handleTrace() on page 112
initialize() on page 112
initJavaGateway() on page 113
main() on page 114
packedDecimalToString() on page 114
reset() on page 115

sendRequest() on page 115
setCommArea() on page 116
setCommAreaLength() on page 116
setEciCallbackable() on page 116
setEciExtend() on page 117
setEciLuwToken() on page 117
setEciSync() on page 118
setEncoding() on page 118
setMessageQualifier() on page 119
setPassword() on page 119
setPort() on page 120

setProgram() on page 120
setServer() on page 121
setSslClass() on page 121
setSslPassword() on page 121
setTraceDumpOffset() on page 122
setTraceFilename() on page 122
setTraceLevel() on page 123
setTraceTiming() on page 123

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 97

Section 6.3
Cicsclient Class

SeeBeyond Proprietary and Confidential

Jova Mitods
setTraceTruncationSize() on page 124
setTransId() on page 124
setUrl() on page 124
setUserld() on page 125
terminate() on page 125
toPackedDecimal() on page 126
toZoned() on page 126
zonedToString() on page 127

Section 6.3
Cicsclient Class

These methods are described in detail in this section.

CicsClient()

Description
Constructor.
Syntax

public G csCient()
Parameters

None.
Return Values
None.

Throws

None.

commAreaToPackedDecimal()

Description

Builds a packed decimal from an existing CommArea object.

Syntax

public com stc. eways. ci cs. PackedDeci

mal comAr eaToPackedDeci mal (i nt

of fset, int intSize, int decSize)
Parameters
Name Type Description

offset integer The offset value

intSize integer The size of the CommArea

decSize integer The decimal value.
e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 98 SeeBeyond Proprietary and Confidential

Chapter 6
Java Methods

Return Values

com.stc.eways.cics.PackedDecimal
Returns the new packed decimal.

Throws

None

Section 6.3
Cicsclient Class

commAreaZonedToString()

Description

Build a string from an existing CommArea zoned object.

Syntax

public java.lang. String conmAr eaZonedToString(int offset, int len)

public java.lang. String commAr eaZonedToString(int offset, int len,
java.lang. String enc)

Parameters
Name Type Description
offset integer The offset value.
len integer The length of the CommArea
enc java.lang.String The character encoding type.

Return Values

java.lang.String

Returns the new string.

Throws

None.

execute()

Description

Executes the CICS program.

Syntax

public void execute()

public void execute(bool ean eci SynCall, java.lang. String

ci csSer ver Nane,

java.lang. String cicsUserld, java.lang. String

ci csPassword, java.lang.String cicsProgram java.lang.String

cicsTransld, byte[] ba, int Ien,

eci LUIWToken, int nsgQualifier,
eci Cal | backabl eObj)

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide

99

bool ean eci Ext endvbde, int
com st c. eways. ci ¢s. Cal | backabl e

SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3

Java Methods Cicsclient Class
Parameters
Name Type Description
eciSynCall boolean A Boolean value indicating
whether to use ECI Synchronous
Call.
cicsServerName java.lang.String The CICS server name.
cicsUserld java.lang.String The user id.
cicsPassword java.lang.String The password associated with the
specified user id.
cicsProgram java.lang.String The CICS Program name to be
executed.
cicsTransld java.lang.String The CICS transaction id.
ba byte [] A byte array for the COMMAREA
length.
len integer The COMMAREA length
eciExtendMode boolean A Boolean value indicating
whether to implement ECI extend
mode.
eciLUWToken integer An ECI LUW token (Logical Unit of
Work token)
msgQualifier integer Application provided identifier
eciCallbackableObj com.stc.eways.cics.Ca | ECI callbackable object. This may
[Ibackable be null if no callback is required.

Return Values
None.
Throws

com.stc.common.collabService.CollabConnException
Indicating a connection error.

com.stc.common.collabService.CollabDataException
Indicating a data error.

getCommArea()
Description
Constructs a CommArea.
Syntax
public byte[] get CommArea()

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 100 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Methods Cicsclient Class
Parameters
None.
Return Values

byte array
Returns the CommArea byte array.

Throws

None.

getCommArealength()
Description
Constructs the CommArea length.
Syntax
public int get CormArealLength()

Parameters
None
Return Values

integer
Returns the CommArea length.

Throws

None.

getCommAreaString()

Description

Constructs a CommArea String by converting the CommArea array of bytes using the
platform's default character encoding, or:

Constructs a CommArea String by converting the CommArea array of bytes with offset
and len using the platform's default character encoding, or;

Construct a CommArea String by converting the CommArea array of bytes with offset
and len using the character encoding specified as an argument, or;

Constructs a CommArea String by converting the CommArea array of bytes using the
character encoding specified as an argument.

Syntax
public java.lang. String get CommAreaString()
public java.lang. String get EncodedConmmAreaString(int offset, int |en)

public java.lang. String get ConmAreaString(int offset, int Ien,
java.lang. String enc)

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 101 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Methods Cicsclient Class

public java.lang. String get ConmAreaString(java.lang. String enc)

Parameters
Name Type Description
offset integer The offset value.
len integer The length of the CommArea.
enc java.lang.String The character encoding type.

Return Values

java.lang.String
Returns the CommArea string.

Throws

None.

getEciCallbackable()

Description
Gets the ECI callbackable object.
Syntax

public com stc. eways. ci cs. Cal | backabl e get Eci Cal | backabl e()
Parameters

None.
Return Values

com.stc.eways.cics.Callbackable
Returns the ECI callbackable value.

Throws

None.

getEciExtend()

Description
Determines whether the ECI LUW has been set to extended.
Syntax
publ i c bool ean get Eci Ext end()

Parameters

None

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 102 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Methods Cicsclient Class
Return Values

boolean
Returns true to indicate that the extended request is implemented; otherwise,
returns false.

Throws

None.

getEciLuwToken()

Description
Gets the ECI LUW token value.
Syntax

public int getEci LuwToken()
Parameters

None.
Return Values

integer
Returns the ECI LUW token value.

Throws

None.

getEciSync()
Description

Queries whether the state is set to synchronous.
Syntax

publ i c bool ean get Eci Sync()
Parameters

None.
Return Values

boolean
Returns true to indicate that the ECI state is set to synchronous.

Throws

None.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 103 SeeBeyond Proprietary and Confidential

Chapter 6
Java Methods

Section 6.3
Cicsclient Class

getEncodedCommAreaString()

Description

Constructs a CommArea String by converting the CommArea array of bytes using the
character encoding specified earlier for the ETD, or:

Constructs a CommArea String by converting the CommArea array of bytes with offset
and len using the character encoding specified earlier for the ETD.

Syntax

public java.lang. String get EncodedCommAreaString()

public java.lang. String get EncodedCommAreaString(int offset, int |en)

Parameters
Name Type Description
offset integer The offset value.
len integer The length of the CommArea

Return Values

java.lang.String

Returns the encoded CommArea string value.

Throws

java.io.UnsupportedEncodingException

Indicating unsupported encoding.

getEncoding()

Description

Gets the encoding key.

Syntax

public java.lang. String get Encodi ng()

Parameters
None.
Return Values

java.lang.String

Returns the encoding type.

Throws

None.

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide

104

SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Methods Cicsclient Class

getHexString()

Description

Gets the hexadecimal string.

Syntax
public static java.lang. String getHexString(byte[] ba)
Parameters
Name Type Description
ba byte [] The hexidecimal string to obtain.

Return Values

java.lang.String
Returns the hexidecimal string.

Throws

None

getMessageQualifier()

Description
Gets the Message Qualifier information.
Syntax
public int get MessageQualifier()
Parameters
None
Return Values

integer
Returns the Message Qualifier information.

Throws

None.

getPassword()
Description

Gets the password and decrypts it.
Syntax

public java.lang. String getPassword()

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 105 SeeBeyond Proprietary and Confidential

Chapter 6
Java Methods
Parameters
None.
Return Values

java.lang.String
Returns the password.

Throws

None.

Section 6.3
Cicsclient Class

getPort()

Description
Gets the port information.
Syntax
public int getPort()

Parameters
None.
Return Values

integer
Returns the port information.

Throws

None.

getProgram()
Description
Gets the name of the CICS program.
Syntax
public java.lang. String getProgran()

Parameters
None.
Return Values

java.lang.String
Returns the CICS program name.

Throws

None.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 106

SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Methods Cicsclient Class

getServer()
Description

Gets the CICS server information.
Syntax

public java.lang. String get Server ()

Parameters
None
Return Values

java.lang.String
Returns the name of the CICS server.

Throws

None.

getServerList()

Description

Gets a list of CICS servers defined.

Syntax
public java.lang. String[] getServerlList(int maxNunByst ens)
Parameters
Name Type Description
maxNumSystems integer The maximum number of systems.

Return Values

java.lang.String|]
Returns a list of the defined CICS servers.

Throws

com.stc.common.collabService.CollabConnException
Indicating a connection error.

com.stc.common.collabService.CollabDataException
Indicating a data error.

getSslClass()

Description

Gets the name of the SSL class.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 107 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Methods Cicsclient Class
Syntax
public java.lang. String getSsl d ass()

Parameters
None
Return Values

java.lang.String
Returns the name of the SSL class.

Throws

None.

getSsIPassword()

Description
Gets the SSL password.
Syntax

public java.lang. String get Ssl Password()

Parameters
None
Return Values

java.lang.String
Returns the SSL password.

Throws

None.

getTraceDumpOffset()

Description
Gets the trace dump offset value.
Syntax

public int getTraceDunmpOFfset ()
Parameters

None.
Return Values

integer
Returns the trace dump offset value.

Throws

None.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 108 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Methods Cicsclient Class

getTraceFilename()

Description
Gets the trace filename.
Syntax

public java.lang. String getTraceFi| enane()

Parameters
None.
Return Values

java.lang.String
Returns the trace filename.

Throws

None.

getTracelevel()

Description
Gets the defined trace level value.
Syntax

public int getTracelLevel ()

Parameters
None.
Return Values

integer
Returns the trace level.

Throws

None.

getTraceTiming()

Description
Gets the defined trace timing information.
Syntax

public bool ean get TraceTi m ng()
Parameters

None

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 109 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Methods Cicsclient Class
Return Values

boolean
Returns true to indicate the timing trace mask is implemented.

Throws

None.

getTraceTruncationSize()

Description
Gets the trace truncation size of the hex dumps.
Syntax

public int getTraceTruncationSi ze()
Parameters

None.
Return Values

integer
Returns the size of the trace truncation setting.

Throws

None.

getTransld()

Description
Gets the transaction ID of the current transaction.
Syntax

public java.lang. String getTransld()
Parameters

None.
Return Values

java.lang.String
Returns the transaction ID for the current transaction.

Throws

None.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 110 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Methods Cicsclient Class

getUrl()
Description
Gets the URL of the CICS Transaction Gateway.
Syntax
public java.lang. String getUrl ()

Parameters
None.
Return Values

java.lang.String
Returns the URL of the CICS Transaction Gateway.

Throws

None.

getUserld()

Description
Gets the user ID associated with the terminal.
Syntax
public java.lang. String getUserld()

Parameters
None.
Return Values

java.lang.String
Returns the user ID associated with the terminal or null if the user id is set to null or
it is a basic terminal.

Throws

None.

handleConfigValues()

Description
Implements the values assigned in the configuration file for the e*Way Connection.
Syntax

protected voi d handl eConfigVal ues(java. util.Properties props)

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 111 SeeBeyond Proprietary and Confidential

Chapter 6
Java Methods

Parameters

Section 6.3
Cicsclient Class

Name Type

Description

props java.util.Properties

The configuration property
values.

Return Values
None.

Throws

com.stc.common.collabService.CollabConnException

Indicating a communication error.

com.stc.common.collabService.CollabDataException

Indicating a data error.

handleTrace()

Description

Implements the trace flags based on parsed configuration values.

Syntax

public void handl eTrace()

Parameters
None.
Return Values
None.

Throws

None.

initialize()
Description
Initializes the Event Type Definition.

Syntax

public voidinitialize(comstc.comon. collabService.JCol | abController

cntrCol | ab, java.lang. String sKey,

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide

i nt i Mode)

SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3

Java Methods Cicsclient Class
Parameters
Name Type Description
cntrCollab com.stc.common.coll | The Java CollabConroller object.
abService.JCollabCon
troller
sKey java.lang.String The key to a JMsgObiject
iMode integer Mode for the ETD . The possible
values are:
IN_MODE
OUT_MODE
IN_OUT_MODE

Return Values
None.
Throws

com.stc.common.collabService.CollabConnException
Indicating a connection error.

com.stc.common.collabService.CollabDataException
Indicating a data error.

Additional Information

Overrides initialize in class com.stc.jesre.SimpleETDImpl.

initJavaGateway()

Description
Initializes the Java Gateway object to allow the flow of data.
Syntax

public void initJavaGat eway()
Parameters

None.
Return Values
None.

Throws

com.stc.common.collabService.CollabConnException
Indicating a connection error.

com.stc.common.collabService.CollabDataException
Indicating a data error.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 113 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3

Java Methods Cicsclient Class

main()

Description

Syntax

public static void nain(java.lang. String[] args)
Parameters
Name Type Description
args java.lang.String|[]

Return Values
None.
Throws

java.lang.Exception
Indicating a Java language error.

packedDecimalToString()

Description
Converts a packed decimal to a string.
Syntax

public static java.lang. String
packedDeci mal ToStri ng(com st c. eways. ci cs. PackedDeci mal pd)

Parameters
Name Type Description
pd com.stc.eway.cics.Pac | The packed decimal to be
kedDecimal converted.

Return Values

java.lang.String

Throws

None.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 114 SeeBeyond Proprietary and Confidential

Chapter 6
Java Methods

Section 6.3
Cicsclient Class

reset()

Description

Resets the data content of an ETD.

Syntax

publ i ¢ bool ean reset ()

Parameters
None.
Return Values

boolean

Returns true if the reset clears the data content of the ETD; otherwise, returns false
if the ETD does not have a meaningful implementation of reset(), in which case it is
necessary to create a new ETD.

Throws

None.

Additional Information

Overrides reset in class com.stc.jcsre.SimpleETDImpl

sendRequest()

Description

Sends a flow of data contained in the ECI Request object to the Gateway, and
determines whether the send has been successful by checking the return code.

Syntax
public void sendRequest (com stc. eways. ci cs. ECl Request request)
Parameters
Name Type Description
request com.stc.eway.cics.ECI | The ECI Request object to be sent.
Request

Return Values

None. Throws

com.stc.common.collabService.CollabConnException
Indicating a connection error.

com.stc.common.collabService.CollabDataException
Indicating a data error.

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide

SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Methods Cicsclient Class

setCommAreal()

Description

Sets the CommArea to be made available to CICS.

Syntax
public void set ConmArea(byte[] ba)
Parameters
Name Type Description
ba bytel] A byte array containing the
information required to set the
CommaArea.

Return Values
None.
Throws

None.

setCommArealength()

Description

Sets the Commarea length.

Syntax
public void set CoormArealLength(int i)
Parameters
Name Type Description
i integer The Commarea length to be set.

Return Values
None.
Throws

None.

setEciCallbackable()

Description
Sets the ECI callbackable value.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 116 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3

Java Methods Cicsclient Class
Syntax
public void setEci Cal | backabl e(com stc. eways. ci cs. Cal | backabl e c)
Parameters
Name Type Description
C com.stc.eway.cics.Call | ECI callbackable value.
backable
Return Values
None.
Throws
None.
setEciExtend()
Description
Sets the ECI Extend Mode.
Syntax
public void setEci Ext end(bool ean b)
Parameters
Name Type Description
b boolean true sets the mode to extended.

Return Values
None.
Throws

None.

setEciLuwToken()
Description

Sets the ECI LUW token value.
Syntax

public void setEci LuwToken(int i)

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 117 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Methods Cicsclient Class

Parameters

Name Type Description

i integer The application identifier.

Return Values
None.
Throws

None.

setEciSync()

Description

Sets the ECI to to synchronous.

Syntax
public void setEci Sync(bool ean b)
Parameters
Name Type Description
b boolean true sets the mode to
synchronous.

Return Values
None.
Throws

None.

setEncoding()

Description

Sets the encryption type for encoding purposes.

Syntax
public void setEncodi ng(java.lang. String s)
Parameters
Name Type Description
] java.lang.String The encryption type.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 118 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Methods Cicsclient Class

Return Values
None.
Throws

None.

setMessageQualifier()

Description

Sets the Message Qualifier associated with this request.

Syntax
public void set MessageQualifier(int i)
Parameters
Name Type Description

i integer The application identifier.

Return Values
None.
Throws

None.

setPassword()

Description

Sets the password associated with the terminal.

Syntax
public void setPassword(java.lang. String s)
Parameters
Name Type Description
] java.lang.String The password to be set.

Return Values
None.
Throws

None.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 119 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Methods Cicsclient Class

Additional Information

Invoking this method automatically flags the terminal as an extended type of terminal.
The password will not be picked up until another send is completed or the terminal is
connected.

setPort()

Description

Sets the port number necessary to communicate with the Gateway.

Syntax
public void setPort(int i)
Parameters
Name Type Description

i integer The Gateway port number.

Return Values
None.
Throws

None.

setProgram()

Description

Sets the CICS program identity.

Syntax
public void setProgran{java.lang.String s)
Parameters
Name Type Description
s java.lang.String The name of the CICS program.

Return Values
None.
Throws

None.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 120 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Methods Cicsclient Class

setServer()

Description

Sets the server identity on which the CICS program is running.

Syntax
public void setServer(java.lang. String s)
Parameters
Name Type Description
] java.lang.String The name of the server on which
CICS resides.

Return Values
None.
Throws

None.

setSslClass()

Description

Sets the identity of the SSL class.

Syntax
public void setSsld ass(java.lang.String s)
Parameters
Name Type Description
s java.lang.String The SSL class name.

Return Values
None.
Throws

None.

setSsIPassword()

Description

Sets the password required to access SSL information.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 121 SeeBeyond Proprietary and Confidential

Chapter 6
Java Methods

Section 6.3
Cicsclient Class

Syntax
public void setSsl Password(java.lang. String s)
Parameters
Name Type Description
s java.lang.String The SSL password.
Return Values
None.
Throws
None.
setTraceDumpOffset()
Description
Sets the offset value for trace dumping.
Syntax
public void setTraceDunpOifset(int i)
Parameters
Name Type Description
i integer The offset amount.

Return Values
None.
Throws

None.

setTraceFilename()

Description

Sets the name of the trace file to be used.

Syntax
public void setTraceFil enane(java.lang. String s)
Parameters
Name Type Description
s java.lang.String The name of the trace file.

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide

122

SeeBeyond Proprietary and Confidential

Chapter 6
Java Methods
Return Values
None.
Throws

None.

Section 6.3
Cicsclient Class

setTracelevel()

Description
Sets the debugging trace level.
Syntax

public void setTraceLevel (int i)
Parameters

Name Type

Description

i integer The trace level to be set.

Return Values
None.
Throws

None.

setTraceTiming()

Description
Sets the debugging trace timing.
Syntax

public void setTraceTi m ng(bool ean b)
Parameters

Name Type

Description

b boolean true sets trace timing to On.

Return Values
None.
Throws

None.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 123

SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Methods Cicsclient Class

setTraceTruncationSize()

Description

Sets the trace truncation size.

Syntax
public void setTraceTruncationSi ze(int i)
Parameters
Name Type Description

i integer The truncation size to be set.

Return Values
None.
Throws

None.

setTransld()

Description

Sets the CICS transaction id.

Syntax
public void setTransld(java.lang.String s)
Parameters
Name Type Description
s java.lang.String The CICS transaction id.

Return Values
None.
Throws

None.

setUrl()
Description
Sets the URL to the Transaction Gateway.

Syntax
public void setUrl (java.lang. String s)

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 124 SeeBeyond Proprietary and Confidential

Chapter 6
Java Methods

Parameters

Section 6.3
Cicsclient Class

Name Type

Description

s java.lang.String

The URL for the Transaction
Gateway.

Return Values
None.
Throws

None.

setUserld()

Description

Sets the used ID associated with the terminal.

Syntax
public void setUserld(java.lang.String s)
Parameters
Name Type Description
s java.lang.String The terminal user ID.

Return Values
None.
Throws

None.

terminate()

Description
Terminates the ETD.
Syntax

public void term nate()
Parameters

None
Return Values

None.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 125

SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Methods Cicsclient Class
Throws

com.stc.common.collabService.CollabConnException
Indicating a connection error.

Additional Information

Overrides terminate in class com.stc.jcsre.SimpleETDImpl

toPackedDecimal()

Description
Builds a packed decimal from a string number.
Syntax

public static com stc.eways. cics. PackedDeci nal
t oPackedDeci mal (j ava.l ang. String nunber, int intSize, int decSize)

Parameters
Name Type Description
number java.lang.String Decimal String representation to
be converted
intSize integer The size of the package.
decSize integer The size of the package.

Return Values

com.stc.eways.cics.PacedDecimal

Throws

java.lang.NumberFormatException

Additional Information

Convert the in String +-99999.99 in an packed decimal IBM data Flow -> Each digit is a
0..9 Numerical value last digit is the sign digit: A|C|E|F =>+; B|D => - ; the decimal
point is virtual its position is defined in the second byte of dec_len.

toZoned()

Description
Converts a number to zoned data.
Syntax
public static byte[] toZoned(java.lang. String nunber)

public static byte[] toZoned(java.lang. String nunber,
java.lang. String enc)

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 126 SeeBeyond Proprietary and Confidential

Chapter 6
Java Methods

Section 6.3
Cicsclient Class

Parameters
Name Type Description
number java.lang.String The number to be converted
enc java.lang.String The encryption type.

Return Values

byte []

Returns a byte array containing the new zoned data.

Throws

java.lang.NumberFormatException
Indicating an error occurred as a result of a numeric format exception.

zonedToString()

Description

Converts zoned data to a string.

Syntax

public static java.lang. String zonedToString(byte[] zoned)

public static java.lang. String zonedToStri ng(byte[] zoned,
java.lang. String enc)

Parameters
Name Type Description
zoned bytel] Description
enc java.lang.String

Return Values

java.lang.String

Returns the new converted string.

Throws

java.lang.NumberFormatException

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide

127

SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Java Methods NaturalClient Class

64 NaturalClient Class

j ava. |l ang. Obj ect
com stc.jcsre. Si npl eETDI npl
com stc. eways. cics. G csC ient
com stc. eways. natural . Natural dient

The public class NaturalClient extends com.stc.eways.cics.CicsClient.

641 Methods of the NaturalClient Class

NaturalClient() on page 128 initialize() on page 132
execute() on page 128 main() on page 133
getNatExecProgram() on page 129 reset() on page 134
getNatExecTransId() on page 130 setNatExecProgram() on page 134
getNatInitProgram() on page 130 setNatExecTransId() on page 134
getNatInitTransId() on page 131 getNatInitProgram() on page 130
getNatTermProgram() on page 131 setNatInitTransId() on page 136
getNatTermTransId() on page 131 setNatTermProgram() on page 136
handleConfigValues() on page 132 setNatTermTransId() on page 137
NaturalClient()
Description
Constructor.
Syntax
public Natural Cient()
Parameters
None.

Return Values
None.
Throws

None.

execute()

Description

Executes the Natural program.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 128 SeeBeyond Proprietary and Confidential

Chapter 6

Java Methods

Section 6.4
NaturalClient Class

Syntax

public void execute()

public voi d execute(bool ean eci SynCall, java.lang.String

ci csServerNane, java.lang.String cicsUserld, java.lang. String

ci csPassword, java.lang.String cicsProgram java.lang.String
cicsTransld, byte[] ba, int |en, bool ean eci ExtendMode, int

eci LUWoken, int nsgQualifier, comstc.eways. natural.Callbackabl e
eci Cal | backabl eOhj)

Parameters
Name Type Description
eciSynCall boolean true sets the ECI mode to
synchronous.
cicsServerName java.lang.String The CICS server name.
cicsUserld java.lang.String The CICS User ID.
cicsPassword java.lang.String The associated CICS password.
cicsProgram java.lang.String The CICS program name.
cicsTransld java.lang.String The CICS transaction ID.
ba bytel[]
len int The length
eciExtendMode boolean true sets the EClI mode to
extended.
eciLUWToken int The ECI LUW token value.
msgQualifier int Application provided identifier.
eciCallbackableObj com.stc.eways.natural | ECI callbackable object
.Callbackable
Return Values
None.
Throws
None.
getNatExecProgram()
Description

Gets the name of the Natural execute program.

Syntax

public java.lang. String get Nat ExecProgran()

Parameters

None.

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide

129 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Java Methods NaturalClient Class
Return Values

java.lang.String
Returns the name of the Natural execute program.

Throws

None.

getNatExecTransld()

Description
Gets the name of the Natural execute transaction ID.
Syntax

public java.lang. String get Nat ExecTransl d()
Parameters

None.
Return Values

java.lang.String
Returns the Natural execute transaction ID.

Throws

None.

getNatInitProgram()

Description
Gets the Natural initialize program.
Syntax

public java.lang. String getNatlnitProgram)
Parameters

None.
Return Values

java.lang.String
Returns the name of the Natural initialize program.

Throws

None.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 130 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Java Methods NaturalClient Class

getNatlnitTransld()

Description
Gets the Natural Initialize transaction ID.
Syntax
public java.lang. String getNatlnitTransld()

Parameters
None.
Return Values

java.lang.String
Returns the Natural Initialize transaction ID.

Throws

None.

getNatTermProgram()

Description
Gets the Natural Terminate program information.
Syntax
public java.lang. String get Nat Ter nProgran()

Parameters
None.
Return Values

java.lang.String
Returns the Natural Terminate program information.

Throws

None.

getNatTermTransld()

Description
Gets the Natural Terminate transaction ID.
Syntax

public java.lang. String getNat TermTransl d()
Parameters

None.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 131 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Java Methods NaturalClient Class
Return Values

java.lang.String
Returns the Natural Terminate transactionID.

Throws

None.

handleConfigValues()

Description

Implements the values assigned in the configuration file for the e*Way Connection.

Syntax
protected voi d handl eConfigVal ues(java. util.Properties props)
Parameters
Name Type Description
props java.util.Properties The configuration property
values.

Return Values
None.
Throws

com.stc.common.collabService.CollabConnException
Indicating a connection error.

com.stc.common.collabService.CollabDataException
Indicating a data error.

initialize()
Description

Initializes the Event Type Definition.
Syntax

public voidinitialize(comstc.comon. coll abService.JCol | abController
cntrCol | ab, java.lang. String sKey, int iMde)

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 132 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4

Java Methods NaturalClient Class
Parameters
Name Type Description
cntrCollab com.stc.common.coll | The JCollabController object.
abService.JCollabCon
troller
sKey java.lang.String The key to a JMSObject.
iMode int Mode for the ETD . The possible
values are:
IN_MODE
OUT_MODE
IN_OUT_MODE

Return Values
None.
Throws

com.stc.common.collabService.CollabConnException
Indicating a communication error.

com.stc.common.collabService.CollabDataException
Indicating a data error.

Additional Information

Overrides initialize in com.stc.eways.cics.CicsClient

main()
Description
Syntax
public static void main(java.lang. String[] args)
Parameters
Name Type Description
args java.lang.String

Return Values
None.
Throws

java.lang.Exception

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 133 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Java Methods NaturalClient Class

reset()

Description
Resets the data content of the ETD.
Syntax

publ i ¢ bool ean reset ()

Parameters
None.
Return Values

boolean
Returns true indicating the reset clears the data content of the ETD; otherwise,
returns false if the ETD does not have a meaningful implementation of reset(). In
such a case a new creation of the ETD is required.

Throws

None.

setNatExecProgram()

Description

Sets the value for the Natural Execute program.

Syntax
public voi d set Nat ExecProgran(java.lang. String s)
Parameters
Name Type Description
] java.lang.String The name of the program.

Return Values
None.
Throws

None.

setNatExecTransld()

Description
Sets the value for the Natural Execute transaction ID.
Syntax
public void setNat ExecTransl D(java.l ang. String s)

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 134 SeeBeyond Proprietary and Confidential

Chapter 6
Java Methods

Parameters

Section 6.4
NaturalClient Class

Name Type Description

] java.lang.String The transaction ID.

Return Values
None.
Throws

None.

setNatlInitProgram

Description

Sets the value for the Natural Initialize program

Syntax
public void setNatulnitProgram(java.lang.String s)
Parameters
Name Type Description
] java.lang.String The transaction ID.

Return Values
None.
Throws

None.

setNatlnitTimeout()

Description

Sets the Natural Initialize timeout value.

Syntax
public void setNatlnitTimeout(int i)
Parameters
Name Type Description

i int The timeout value.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 135 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Java Methods NaturalClient Class

Return Values
None.
Throws

None.

setNatlnitTransld()

Description

Sets the value for the Natural Initialize transaction ID.

Syntax
public void setNatlnitTransld(java.lang.String s)
Parameters
Name Type Description
s java.lang.String The transaction ID.

Return Values
None.
Throws

None.

setNatTermProgram()

Description

Sets the value for the Natural Terminate program.

Syntax
public void setNat TernProgran(java.lang. String s)
Parameters
Name Type Description
] java.lang.String The name of the program.

Return Values
None.
Throws

None.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 136 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Java Methods NaturalClient Class

setNatTermTransld()

Description

Sets the value of the Natural Terminate transaction ID.

Syntax
public void setNat Ternilransl d(j ava.l ang. String s)
Parameters
Name Type Description
] java.lang.String The transaction ID.

Return Values
None.
Throws.

None.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 137 SeeBeyond Proprietary and Confidential

CICS COBOL APIs

Chapter 7

This chapter explains the CICS COBOL function prototypes that the e*Way Intelligent
Adapter for ADABAS Natural supports, along with an explanation of how it supports

each one.

71 Function Prototypes

The ADABAS Natural e*Way supports the following CICS COBOL function

prototypes:

CLOSE on page 138
OPEN on page 139
RECEIVE on page 140
SEND on page 141

CLOSE

Description

CLOSE shuts down the socket connection with the MUX server e*Way and frees any

resources associated with it.
Syntax

cal | “MJUXNATS" using
MUXNAT- handl e
MUXNAT- err no
MUXNAT- r et code.

Sample Working Storage Definitions
01 MUIXNAT- handl e pic s9(

01 MJIXNAT-errno pi c

01 MUXNAT-r et code pic s9(

Parameters Set by the Application
MUXNAT-handle

8)
8)
8)

bi nary.
bi nary val ue 0.
bi nary val ue +0.

A 4-byte binary number containing the socket number returned by the OPEN.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide

138

SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.1
CICS COBOL APIs Function Prototypes

Return Value
Unchanged.

MUXNAT-errno
A 4-byte binary number, initialized to zero.

Return Value
If MUXNAT-retcode is negative, this contains an error number. See Appendix.

MUXNAT-retcode
A 4-byte signed binary number, initialized to zero.

Return Value
Negative value signifies an error.

OPEN

Description

OPEN creates a socket connection to the MUX server e*Way running on the specified
remote host and TCP/IP port. This socket connection is defined by a unique identifier,
or “handle”, that is returned by the OPEN.

Note: This allows multiple connections to be opened and maintained by a single CICS
application to a single or multiple MUX server e*Ways.

Syntax

call “MJXNAT” using
MUXNAT- handl e
MUXNAT- r enpt e- host
MUXNAT- r enot e- port
MUXNAT- err no
MUXNAT- r et code.

Sample working storage definitions

01 MJIXNAT- handl e pic s9(8) binary value +0.

01 MUXNAT-renpte-host pic x(24) value ‘renote. host. nane’.
01 MUXNAT-renpte-port pic 9(8) binary val ue 26051.
8)
8)

01 MJIXNAT-errno pic 9(bi nary val ue 0.
01 MUXNAT-r et code pic s9(bi nary val ue +0.
Parameters set by the application
MUXNAT-handle

A 4-byte binary number, initialized to zero.

Return Value
TCP/IP socket number for the established connection.

MUXNAT-remote-host
A 24-byte character field, containing the DNS name of the remote host on which the
MUX server e*Way is running.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 139 SeeBeyond Proprietary and Confidential

Chapter 7

CICS COBOL APIs

MUXNAT-remote-port
A 4-byte binary number, containing the TCP/IP port number to which the MUX Server
e*Way is listening. The default is 26051.

Return Value
Unchanged.

MUXNAT-errno
A 4-byte binary number, initialized to zero.

Return Value
See Appendix.

MUXNAT-retcode
A 4-byte signed binary number, initialized to zero.

Return Value
Negative value signifies error.

Section 7.1
Function Prototypes

RECEIVE

Description

RECEIVE receives a message or block of data from the MUX server e*Way. The
function will wait the specified time (expressed in hundredths of seconds) for a
message to arrive on the socket connection identified by the passed handle.

Syntax

cal l

“MUXNATR’ usi ng
MUXNAT- handl e
MUXNAT- r et ur nnsg- | en
MUXNAT- r et ur nnsg
MUXNAT- hsecs-t o-wai t
MUXNAT- err no
MUXNAT- r et code.

Sample Working Storage Definitions

01
01
01
01
01
01

MUXNAT- handl e
MUXNAT-r et ur nnsg- | en
MUXNAT-r et ur nnsg
MUXNAT- hsecs-t o- wai t
MUXNAT- err no
MUXNAT- r et code

Parameters Set by the Application

MUXNAT-handle
A 4-byte binary number containing the socket number returned by the OPEN.

Return Value
Unchanged.

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide

pic s9(8)
pic 9(8)
pic x(32727)
pic 9(8)
pic 9(8)
pic s9(8)

140

bi nary.

bi nary.

val ue spaces.

bi nary val ue 100.
bi nary val ue 0.
bi nary val ue +0.

SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.1
CICS COBOL APIs Function Prototypes

MUXNAT-returnmsg-len
A 4-byte binary number, initialized to zero.

Return Value
The length, in bytes, of the data received from the MUX server e*Way.

MUXNAT-returnmsg
A 32727-byte character field.

Return Value
The data received from the MUX server e*Way.

MUXNAT-hsecs-to-wait
A 4-byte binary number, representing the hundredths of seconds to wait for a response
from e*Gate.

Return Value
Unchanged.

MUXNAT-errno
A 4-byte binary number, initialized to zero.

Return Value
If MUXNAT-retcode is negative, this contains an error number. See Appendix.

MUXNAT-retcode
A 4-byte signed binary number, initialized to zero.

Return Value
Negative value signifies an error.

SEND

Description
SEND sends a message or block of data to the MUX server e*Way.
Syntax

call “MJUXNATS” using
MUXNAT- handl e
MUXNAT- nessage- | en
MUXNAT- nessage
MUXNAT- secs-t 0-expire
MUXNAT- err no
MUXNAT- r et code.

Sample Working Storage Definitions
01 MJIXNAT- handl e pic s9 bi nary.
01 MUXNAT- nessage-| eng pi c 9(8) bi nary.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 141 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.1
CICS COBOL APIs Function Prototypes

01 MUXNAT- nessage pi c x(32703) val ue spaces.

01 MUXNAT-secs-to-expire pic 9(8) bi nary.

01 MJIXNAT-errno pi c 9(8) bi nary val ue 0.
01 MUXNAT-r et code pi c s9(8) bi nary val ue +0.

Parameters Set by the Application

MUXNAT-handle
A 4-byte binary number containing the socket number returned by the OPEN.

Return Value
Unchanged.

MUXNAT-message-len
A 4-byte binary number containing the length, in bytes, of the message to be sent to the
MUX server e*Way. The maximum size is 32K - 40 bytes, or 32727 bytes.

Return Value
Unchanged.

MUXNAT-message
A 32727-byte character field containing the actual data to be sent to the MUX server
e*Way. The contents of this field will be transmitted without conversion of any kind.

Return Value
Unchanged.

MUXNAT-secs-to-expire
A 4-byte binary number, initialized to zero. For future use.

Return Value
Unchanged.

MUXNAT-errno
A 4-byte binary number, initialized to zero.

Return Value
If MUXNAT-retcode is negative, this contains an error number. See Appendix.

MUXNAT-retcode
A 4-byte signed binary number, initialized to zero.

Return Value
Negative value signifies an error.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 142 SeeBeyond Proprietary and Confidential

Chapter 8
Using MUXNAT APIs

This chapter explains how to use the MUXNAT Application Programming Interfaces
(APIs) with the e*Way Intelligent Adapter for ADABAS Natural.

81 MUXNAT APIs: Overview

MUXNAT APIs are used by Natural programs running on OS/390 (MVS) systems to
perform calls to the MUXAPI modules, which communicate with the e*Gate MUX
e*Way. The MUXNAT API works for Natural programs running in both CICS and
batch environments.

The rest of this chapter provides a brief explanation of these APIs and how to use them.

s2 Using MUXNAT APIs

The following code demonstrates a sample set of actions:

= Call MUXNAT with the appropriate parameters to establish a connection to the
multiplexer e*Way.

= Call MUXNATS to SEND data to e*Gate, passing the data and its length as
specified in the parameter list.

= Call MUXNATR to RECEIVE data from e*Gate; the length of the data received is
returned by the API. Use the MUXNAT-hsecs-to-wait parameter to cause the
execution to pause long enough for e*Gate to process and return the data.

= Repeat the SEND and RECEIVE as desired to continue passing and receiving data.
= Call MUXNATC to close the connection.

Note: Once the connection has been opened successfully, if any of the subsequent
functions fails, the connection must be closed before continuing.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 143 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.2
Using MUXNAT APIs Using MUXNAT APIs

The following Natural “client” program illustrates a simple Open-Send-Receive-Close
scenario, in which a seventeen character text message (hard-coded in working storage
in this example), is sent to the e*Gate “server,” and waits one second to receive a

response:
* o= ———————————————===—=— —===—=—==—=—==—=—=—=—=—=—=—=—=%
* VARI ABLES USED FOR THE MUXNAT FUNCTI ON CALLS *
* —————————————————— e *

RESET MUXNAT- HANDLE (B4)
* MOVE I N YOUR DNS NAMVE HERE

MOVE ' YOUR. DNS. NAVE' TO MUXNAT- REMOTE- HOST (A24)
* DEFAULT PORT: YOU MAY NEED TO CHANGE THI S PER YOUR | NSTALLATI ON

MOVE 26051 TO MUXNAT- REMOTE- PORT (B4)

RESET MUXNAT- MESSAGE- LEN (B4)

RESET MUXNAT- HSECS- FOR- ACK (B4)

RESET MUXNAT- RETURNMVSG LEN (B4)

MOVE 100 TO MUXNAT- HSECS- TO- WAI T (B4)

MOVE 100 TO MUXNAT- HSECS- FOR- ACK

RESET MUXNAT- ERRNO (B4)

REDEFI NE MUXNAT- ERRNO (MUXNAT- ERRNO- | (1 4))

RESET MUXNAT- RETCODE (B4)

REDEFI NE MUXNAT- RETCODE (MUXNAT- RETCODE- 1 (14))

* oo ———-——o—————————= - ———————————%
* MSC *
¥ m—m—— e e e e e *

MOVE ' HELLO FROM MUXCLI' TO TEST- MESSAGE (Al7)
RESET MUXNAT- MESSAGE (Al/ 32727)
REDEFI NE MUXNAT- MESSAGE (1) (MUXNAT- MESSAGE- AL7 (A17))
RESET MUXNAT- RETURNMBG (Al/ 32727)
REDEFI NE MUXNAT- RETURNMSG (1) (MUXNAT- RETURNMBG A25 (A25))
*

PERFORM MUXNAT- OPEN- CONNECT! ON
I F MUXNAT- RETCODE < 0O
ESCAPE ROUTI NE
MOVE TEST- MESSAGE TO MUXNAT- MESSAGE- A17
MOVE 17 TO MUXNAT- MESSACE- LEN
PERFORM MUXNAT- SEND- MESSACE
I F MUXNAT- RETCODE >= 0
PERFORM MUXNAT- RECEI VE- RESPONSE
PERFORM MUXNAT- CLOSE- CONNECTI ON
*

DEFI NE SUBROUTI NE MUXNAT- OPEN- CONNECTI ON
CALL "MUXNAT" USI NG
MUXNAT- HANDL E
MUXNAT- REMOTE- HOST
MUXNAT- REMOTE- PORT
MUXNAT- ERRNO
MUXNAT- RETCODE
DI SPLAY NOHDR ' RETURN FROM MUXNAT
DI SPLAY NCHDR ' MUXNAT- ERRNO
DI SPLAY NOHDR MUXNAT- ERRNO MUXNAT- ERRNO- |
DI SPLAY NOHDR ' MUXNAT- RETCCDE'
DI SPLAY NOHDR MUXNAT- RETCODE MUXNAT- RETCCDE- |
END- SUBROUTI NE
*

DEFI NE SUBROUTI NE MUXNAT- SEND- MESSAGE
CALL "MUXNATS" USI NG
MUXNAT- HANDLE
MUXNAT- MESSAGE- LEN
MUXNAT- MESSAGE(1)
MUXNAT- HSECS- FOR- ACK
MUXNAT- ERRNO
MUXNAT- RETCODE
DI SPLAY NOHDR ' RETURN FROM MUXNATS'

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 144 SeeBeyond Proprietary and Confidential

Chapter 8

Section 8.3

Using MUXNAT APIs MUXNAT API Function Sets

DI SPLAY NCHDR ' MUXNAT- ERRNO

DI SPLAY NOHDR MUXNAT- ERRNO MUXNAT- ERRNO- |

DI SPLAY NOHDR ' MJXNAT- RETCODE'

DI SPLAY NOHDR MUXNAT- RETCODE MUXNAT- RETCCDE- |

END- SUBROUTI NE
*

DEFI NE SUBROUTI NE MUXNAT- RECEI VE- RESPONSE

CALL "MUXNATR' USI NG
MUXNAT- HANDLE
MUXNAT- RETURNVSG- LEN
MUXNAT- RETURNVSG(1)
MUXNAT- HSECS- TO- WAl T
MUXNAT- ERRNO
MUXNAT- RETCODE
DI SPLAY NOHDR ' RETURN FROM MUXNATR
DI SPLAY NOHDR ' MUXNAT- ERRNO
DI SPLAY NOHDR MUXNAT- ERRNO MUXNAT- ERRNO- |
DI SPLAY NOHDR ' MUXNAT- RETCODE'
DI SPLAY NOHDR MUXNAT- RETCODE MUXNAT- RETCODE- |
DI SPLAY MUXNAT- RETURNMEG A25

END- SUBROUTI NE
*

DEFI NE SUBROUTI NE MUXNAT- CLOSE- CONNECTI ON

CALL "MJUXNATC' USI NG
MUXNAT- HANDL E
MUXNAT- ERRNO
MUXNAT- RETCCDE
DI SPLAY NOHDR ' RETURN FROM MUXNATC
DI SPLAY NOHDR ' MJUXNAT- ERRNO
DI SPLAY NCHDR MUXNAT- ERRNO MUXNAT- ERRNG- |
DI SPLAY NCHDR ' MUXNAT- RETCODE'
DI SPLAY NOHDR MUXNAT- RETCODE MUXNAT- RETCODE- |

END- SUBROUTI NE

83 MUXNAT API Function Sets

The MUXNAT APIs are contained in the following function sets:

Open on page 145
Send on page 147
Receive on page 148
Close on page 149

Open

Syntax

c

al I "MJUXNAT" using
MUXNAT- handl e
MUXNAT- r enpt e- host
MUXNAT- r enot e- port
MUXNAT- er r no
MUXNAT- r et code.

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide

145 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Using MUXNAT APIs MUXNAT API Function Sets

Description

This function creates a socket connection to the MUX server e*Way running on the
specified remote host and TCP/IP port. This socket connection is defined by a unique
identifier, or “handle,” that is returned by the OPEN. Note this allows multiple
connections to be opened and maintained by a single Natural application to a single or
multiple MUX server e*Ways.

Sample

Sample working storage definitions:

01 MIUXNAT- handl e pi c s9(8) bi nary val ue +0.

01 MJIXNAT-r enot e- host pic x(24) val ue ’'renote. host. nane’ .
01 MJIXNAT-r enot e- port pic 9(8) bi nary val ue 26051.

01 MUXNAT-errno pic 9(8) bi nary val ue 0.

01 MUXNAT-r et code pi c s9(8) bi nary val ue +0.

Parameters and returns set by the application

MUXNAT-handle
A 4-byte binary number, initialized to zero.

Returns
TCP/IP socket number for the established connection.

MUXNAT-remote-host
A 24-byte character field, containing the DNS name of the remote host on which the
MUX server e*Way is listening.

Returns
Unchanged.

MUXNAT-remote-port
A 4-byte binary number, containing the TCP/IP port number to which the MUX
server e*Way is listening.

Returns
Unchanged

MUXNAT-errno
A 4-byte binary number, initialized to zero.

Returns
If MUXNAT-retcode is negative (see below), MUXNAT-errno contains an error
number.

MUXNAT-retcode
A 4-byte signed binary number, initialized to zero.

Returns
A value of zero or greater indicates a successful call. A negative value signifies an
error; the error number is contained in MUXNAT-errno.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 146 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Using MUXNAT APIs MUXNAT API Function Sets

Send

Syntax

call "MJUXNATS" using
MUXNAT- handl e
MUXNAT- nessage- | en
MUXNAT- nessage
MUXNAT- hsecs-f or - ack
MUXNAT- err no
MUXNAT- r et code.

Description

This function sends a message or block of data to the MUX server e*Way. The function
will then wait a specified time (expressed in hundredths of seconds) for an
acknowledgment to arrive on the socket connection identified by the passed handle.

Sample

Sample working storage definitions:

01 MUXNAT- handl e pi c s9(8) bi nary.

01 MUXNAT- nessage- | en pic 9(8) bi nary.

01 MUXNAT- nessage pic x(32703) val ue spaces.

01 MUXNAT- hsecs- f or - ack pic 9(8) bi nary.

01 MUXNAT- er r no pic 9(8) bi nary val ue 0.
01 MUXNAT- r et code pi c s9(8) bi nary val ue +0.

Parameters and returns set by the application

MUXNAT-handle
A 4-byte binary number containing the socket number returned by the OPEN.

Returns
Unchanged.

MUXNAT-message-len
A 4-byte binary number containing the length, in bytes, of the message to be sent to
the MUX server e*Way. The maximum size is 32K to 40 bytes, or 32727 bytes.

Returns
Unchanged.

MUXNAT-message
A 32727-byte character field containing the actual data to be sent to the MUX server
e*Way. The contents of this field will be transmitted without conversion of any
kind.

Returns
Unchanged.

MUXNAT-hsecs-for-ack
A 4-byte binary number, initialized to zero. Hundredths of seconds to wait for an
acknowledgment (ACK) from e*Gate after a SEND.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 147 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Using MUXNAT APIs MUXNAT API Function Sets

Returns
Unchanged.

MUXNAT-errno
A 4-byte binary number, initialized to zero.

Returns
If MUXNAT-retcode is negative (see below), MUXNAT-errno contains an error
number.

MUXNAT-retcode
A 4-byte signed binary number, initialized to zero.

Returns
A value of zero or greater indicates a successful call. A negative value signifies an
error; the error number is contained in MUXNAT-errno.

Receive

Syntax

cal I "MJUXNATR' using
MUXNAT- handl e
MUXNAT- r et ur nnsg- | en
MUXNAT-r et ur nnsg
MUXNAT- hsecs-t o- wai t
MUXNAT- err no
MUXNAT- r et code.

Description

This function receives a message or block of data from the MUX server e*Way. The
function will wait a specified time (expressed in hundredths of seconds) for a message
to arrive on the socket connection identified by the passed handle.

Sample

Sample working storage definitions:

01 MUXNAT- handl e pi c s9(8) bi nary.

01 MUXNAT- r et ur nnsg- | en pic 9(8) bi nary.

01 MUXNAT- r et ur nnsg pic x(32727) val ue spaces.

01 MUXNAT- hsecs-t o- wai t pic 9(8) bi nary val ue 100.
01 MUXNAT- er r no pic 9(8) bi nary val ue 0.
01 MUXNAT- r et code pi c s9(8) bi nary val ue +0.

Parameters and returns set by the application

MUXNAT-handle
A 4-byte binary number, containing the socket number returned by the OPEN.

Returns
Unchanged.

MUXNAT-returnmsg-len
A 4-byte binary number, initialized to zero.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 148 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3

Using MUXNAT APIs MUXNAT API Function Sets
Returns
The length, in bytes, of the data received from the MUX server e*Way.
MUXNAT-returnmsg

A 32727-byte character field.

Returns
The data received from the MUX server e*Way.

MUXNAT-hsecs-to-wait
A 4-byte binary number, representing the hundredths of seconds to wait for a
response from e*Gate.

Returns
Unchanged.

MUXNAT-errno
A 4-byte binary number, initialized to zero.

Returns
If MUXNAT-retcode is negative (see below), MUXNAT-errno contains an error
number.

MUXNAT-retcode
A 4-byte signed binary number, initialized to zero.

Returns
A value of zero or greater indicates a successful call. A negative value signifies an
error; the error number is contained in MUXNAT-errno.

Close

Syntax

cal | "MJXNATC" usi ng
MUXNAT- handl e
MUXNAT- err no
MUXNAT-r et code.

Description

The Close function shuts down the socket connection with the MUX server e*Way and
frees any resources associated with it.

Sample
Sample working storage definitions:

01 MUXNAT- handl e pi c s9(8) bi nary.
01 MUXNAT- er r no pic 9(8) bi nary val ue 0.
01 MUXNAT-r et code pic s9(8) bi nary val ue +0.

Parameters and returns set by the application

MUXNAT-handle
A 4-byte binary number, containing the socket number returned by the OPEN.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 149 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Using MUXNAT APIs MUXNAT API Function Sets

Returns
Unchanged.

MUXNAT-errno
A 4-byte binary number, initialized to zero.

Returns
If MUXNAT-retcode is negative (see below), MUXNAT-errno contains an error
number.

MUXNAT-retcode
A 4-byte signed binary number, initialized to zero.

Returns
A value of zero or greater indicates a successful call. A negative value signifies an
error; the error number is contained in MUXNAT-errno.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 150 SeeBeyond Proprietary and Confidential

Error Return Codes

This appendix explains the error return codes for MUXNAT.

Appendix A

s MUXNAT Error Return Codes

The following return codes can be found in the IP CICS Sockets Guide Version 2 Release 8
and 9, OS/390 SecureWay Communications Server. As of the date of the creation of this
document, it can be downloaded from the following URL:

841 TCP/IP for MVS Return Codes

http://www-1.ibm.com/servers/s390/0s390/bkserv/r10pdf/commserv.html

The rest of this appendix explains these codes.

Error i Programmer’s
Message Name Socket Type Error Description 8
Number Response
1 EPERM All Permission is denied. No Check that TCP/IP is still
owner exists. active; Check the
protocol value of the
socket call.

1 EDOM All Argument is too large. Check parameter values
of the function call.

2 ENOENT All The data set or directory was | Check files used by the

not found. function call.

2 ERANGE All The result is too large. Check parameter values
of the function call.

3 ESRCH All The process was notfound. A | Check parameter values

table entry was not located. and structures pointed
to by the function
parameters.

4 EINTR All A system call was Check that the socket

interrupted. connection and TCP/IP
are still active.

5 EIO All An I/O error occurred. Check status and
contents of source
database if this occurred
during afile access.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 151 SeeBeyond Proprietary and Confidential

http://www-1.ibm.com/servers/s390/os390/bkserv/r10pdf/commserv.html

Appendix A

Error Return Codes

Section 8.4
MUXNAT Error Return Codes

Error . L. Programmer”:
° Message Name Socket Type Error Description ogra s

Number Response

6 ENXIO All The device or driver was not Check status of the
found. device attempting to

access.

7 E2BIG All The argument list is too long. | Check the number of

function parameters.

8 ENOEXEC All An EXEC format error Check that the target
occurred. module on an exec call is

a valid executable
module.

9 EBADF All An incorrect socket Check socket descriptor
descriptor was specified. value. It might be

currently not in use or
incorrect.

9 EBADF Givesocket The socket has already been Check the validity of
given. The socket domain is function parameters.
not AF_INET.

9 EBADF Select One of the specified Check the validity of
descriptor setsis anincorrect | function parameters.
socket descriptor.

9 EBADF Takesocket The socket has already been Check the validity of
taken. function parameters.

10 ECHILD All There are no children. Check if created

subtasks still exist.

gl EAGAIN All There are no more processes. | Retrythe operation. Data

or condition might not
be available at this time.

12 ENOMEM All There is not enough storage. Check validity of

function parameters.

13 EACCES All Permission denied, caller not | Check access authority
authorized. of file.

13 EACCES Takesocket The other application Check access authority
(listener) did not give the of file.
socket to your application.

Permission denied, caller not
authorized.

14 EFAULT All An incorrect storage address Check validity of
or length was specified. function parameters.

15 ENOTBLK All A block device is required. Check device status and

characteristics.

16 EBUSY All Listen has already been Check if the device or
called for this socket. Device file is in use.
or file to be accessed is busy.

17 EEXIST All The data set exists. Remove or rename

existing file.

18 EXDEV All This is a cross-device link. A Check file permissions.
link to a file on another file
system was attempted.

19 ENODEV All The specified device does Check file name and if it
not exist. exists.

20 ENOTDIR All The specified device does Use a valid file thatis a
not exist. directory.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 152 SeeBeyond Proprietary and Confidential

Appendix A Section 8.4

Error Return Codes MUXNAT Error Return Codes
Error . L. Programmer”:
° Message Name Socket Type Error Description ogra s
Number Response
21 EISDIR All The specified directory is a Use a valid file that is not
directory. a directory.
22 EINVAL All types An incorrect argument was Check validity of
specified. function parameters.
23 ENFILE All Data set table overflow Reduce the number of
occurred. open files.
24 EMFILE All The socket descriptor tableis | Check the maximum
full. sockets specified in
MAXDESCY().
25 ENOTTY All An incorrect device call was Check specified IOCTL()
specified. values.
26 ETXTBSY All A text data set is busy. Check the currrent use
of the file.
27 EFBIG All The specified data set is too Check size of accessed
large. dataset.
28 ENOSPC All There is no space left on the Increase the size of
device. accessed file.
29 ESPIPE All An incorrect seek was Check the offset
attempted. parameter for seek
operation.
30 EROFS All The data set system is Read Access data set for read
only. only operation.
31 EMLINK All There are too many links. Reduce the number of

links to the accessed file.

32 EPIPE All The connection is broken. Reconnect with the peer.
For socket write/send, peer
has shutdown one or both

directions.
33 EDOM All The specified argumentistoo | Check and correct

large. function parameters.
34 ERANGE All The result is too large. Check parameter values.
35 EWOULDBLOCK Accept The socket is in nonblocking Reissue Accept().

mode and connections are
not queued. This is not an
error condition.

35 EWOULDBLOCK Read The socket is in nonblocking Issue a select on the
Recvfrom mode and read data is not socket to determine
available. This is not an error when data is available to
condition. be read or reissue the
Read()/Recvfrom().
35 EWOULDBLOCK Send The socket is in nonblocking Issue a select on the
Sendto mode and buffers are not socket to determine
Write available. when data is available to

be written or reissue the
Send(), Sendto(), or

Write().
36 EINPROGRESS Connect The socket is marked See the Connect()
nonblocking and the description for possible
connection cannot be responses.

completed immediately. This
is not an error condition.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 153 SeeBeyond Proprietary and Confidential

Appendix A

Error Return Codes

Section 8.4
MUXNAT Error Return Codes

Error . L. Programmer”:
° Message Name Socket Type Error Description ogra s

Number Response

37 EALREADY Connect The socket is marked Reissue Connect().
nonblocking and the
previous connection has not
been completed.

37 EALREADY Maxdesc A socket has already been Issue Getablesize() to
created calling Maxdesc() or | queryit.
multiple calls to Maxdesc().

37 EALREADY Setibmopt A connection already exists Only call Setibmopt()
to a TCP/IP image. A call to once.

SETIBMOPT
(IBMTCP_IMAGE), has
already been made.

38 ENOTSOCK All A socket operation was Correct the socket
requested on a nonsocket descriptor value and
connection. The value for reissue the function call.
socket descriptor was not
valid.

39 EDESTADDRREQ All A destination address is Fill in the destination
required. field in the correct

parameter and reissue
the function call.

40 EMSGSIZE Sendto The message is too long. It Either correct the length

Sendmsg exceeds the IP limit of 64K or | parameter, or send the
Send the limit set by the message in smaller
Write setsockopt() call. pieces.

41 EPROTOTYPE All The specified protocol typeis | Correct the protocol
incorrect for this socket. type parameter.

42 ENOPROTOOPT Getsockopt The socket option specified Correct the level or

Setsockopt is incorrect or the level is not | optname.
SOL_SOCKET. Either the level
or the specified optname is
not supported.
42 ENOPROTOOPT Getibmsocket Either the level or the Correct the level or
opt specified optname is not optname.
Setibmsocket supported.
opt

43 EPROTONOSUPPORT Socket The specified protocol is not Correct the protocol
supported. parameter.

44 ESOCKTNOSUPPORT All The specified socket type is Correct the socket type
not supported. parameter.

45 EOPNOTSUPP Accept The selected socket is not a Use a valid socket.

Givesocket stream socket.
45 EOPNOTSUPP Listen The socket does not support | Change the type on the

the Listen call.

Socket() call when the
socket was created.
Listen() only supports a
socket type of
SOCK_STREAM.

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide

154

SeeBeyond Proprietary and Confidential

Appendix A Section 8.4

Error Return Codes MUXNAT Error Return Codes
Error o Programmer’
° Message Name Socket Type Error Description ogra s
Number Response
45 EOPNOTSUPP Getibmopt The socket does not support Correct the command
Setibmopt this function call. This parameter. See

command is not supported Getibmopt() for valid
for this function. commands. Correct by

ensuing a Listen() was
not issued before the

Connect().
46 EPFNOSUPPORT All The specified protocol family | Correct the protocol
is not supported or the family.
specified domain for the
client identifier is not
AF_INET=2.
47 EAFNOSUPPORT Bind Connect The specified address family For Socket(), set the
Socket is not supported by this domain parameter to
protocol family. AF_INET. For Bind(), and
Connect(), set
Sin_Family in the socket
address structure to
AF_INET.
47 EAFNOSUPPORT Getclient The socket specified by the The Socket() call used to
Givesocket socket descriptor parameter create the socket should
was not created in the be changed to use
AF_INET domain. AF_INET for the domain
parameter.
48 EADDRINUSE Bind The address is in a timed wait | If you want to reuse the
because a LINGER delay from | same address, use
a previous close or another Setsocketopt() with

process is using the address. SO_REUSEADDR. See
Setsockopt().
Otherwise, use a
different address or port
in the socket address

structure.
49 EADDRNOTAVAIL Bind The specified address is Correct the function
incorrect for this host. address parameter.
49 EADDRNOTAVAIL Connect The calling host cannot reach | Correct the function
the specified destinations. address parameter.
50 ENETDOWN All The network is down. Retry when the
connection path is up.
51 ENETUNREACH Connect The network cannot be Ensure that the target
reached. application is active.
52 ENETRESET All The network dropped a Reestablish the
connection on a reset. connection between the

applications.

53 ECONNABORTED All The software caused a Reestablish the
connection abend. connection between the
applications.

54 ECONNRESET All The connection to the
destination host is not
available.

54 ECONNRESET Send Write The connection to the The socket is closing.
destination host is not Issue Send() or Write()
available. before closing the

socket.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 155 SeeBeyond Proprietary and Confidential

Appendix A

Error Return Codes

Section 8.4
MUXNAT Error Return Codes

Error o Programmer’
° Message Name Socket Type Error Description ogra s
Number Response
55 ENOBUFS All No buffer space is available. Check the application
for massive storage
allocation call.
55 ENOBUFS Accept Not enough buffer space is Call your system
available to create the new administrator.
socket.
55 ENOBUFS Send Sendto Not enough buffer space is Call your system
Write available to send the new administrator.
message.
56 EISCONN Connect The socket is already Correct the socket
connected. descriptor on Connect()
or do notissue a
Connect() twice for the
socket.
57 ENOTCONN All The socket is not connected. Connect the socket
before communicating.
58 ESHUTDOWN All A Send cannot be processed Issue read/receive
after socket shutdown. before shutting down
the read side of the
socket.
59 ETOOMANYREFS All There are too many Call your system
references. A splice cannot administrator.
be completed.
60 ETIMEDOUT Connect The connection timed out Ensure the server
before it was completed. application is available.
61 ECONNREFUSED Connect The requested connection Ensure serverapplication
was refused. is available and at
specified port.
62 ELOOP All There are too many symbolic | Reduce symbolic links to
loop levels. specified file.
63 ENAMETOOLONG All The file name is too long. Reduce size of specified
file name.
64 EHOSTDOWN All The host is down. Restart specified host.
65 EHOSTUNREACH All There is no route to the host. | Set up network path to
specified host and verify
that host name is valid.
66 ENOTEMPTY All The directory is not empty. Clear out specified
directory and reissue
call.
67 EPROCLIM All There are too many Decrease the number of
processes in the system. processes or increase
the process limit.
68 EUSERS All There are to many users on Decrease the number of
the system. users or increase the
user limit.
69 EDQUOT All The disk quota has been Call your system
exceeded. administrator.
70 ESTALE All An old NFS** data set handle | Call your system
was found. administrator.
71 EREMOTE All There are too many levels of Call your system
remote in the path. administrator.
e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 156 SeeBeyond Proprietary and Confidential

Appendix A Section 8.4

Error Return Codes MUXNAT Error Return Codes
Error _r Programmer’
° Message Name Socket Type Error Description ogra s

Number Response

72 ENOSTR All The device is not a stream Call your system
device. administrator.

73 ETIME All The timer has expired. Increase timer values or

reissue function.

74 ENOSR All There are no more stream Call your system
resources. administrator.

75 ENOMSG All There is no message of the Call your system
desired type. administrator.

76 EBADMSG All The system cannot read the Verify that CS for OS/390
file message. installation was

successful and that
message files were
properly loaded.

77 EIDRM All The identifier has been Call your system
removed. administrator.
78 EDEADLK All A deadlock condition has Call your system
occurred. administrator.
78 EDEADLK Select None of the sockets in the Correct the socket
Selectex socket descriptor sets is descriptor sets so thatan
either AF_NET or AF_IUCV AF_NET or AF_IUCV

sockets, and there is no time- | socket is specified. A
out or no ECB specified. The time-out of ECB value

select/selectex would never can also be added to
complete. avoid the select/selectex
from waiting indefinitely.
79 ENOLCK All No record locks are available. | Call your system
administrator.
80 ENONET All The requested machineisnot | Call your system
on the network. administrator.
81 ERREMOTE All The object is remote. Call your system
administrator.
82 ENOLINK all The link has been severed. Release the sockets and

reinitialize the client-
server connection.

83 EADV All An ADVERTISE error has Call your system
occurred. administrator.
84 ESRMNT All AnSRMOUNT error has Call your system
occurred. administrator.
85 ECOMM All A communication error has Call your system
occurred on a Send call. administrator.
86 EPROTO All A protocol error has Call your system
occurred. administrator.
87 EMULTIHOP All A multihop address link was Call your system
attempted. administrator.
88 EDOTDOT All A cross-mount point was Call your system
detected. This is not an error. | administrator.
89 EREMCHG all The remote address has Call your system
changed. administrator.
90 ECONNCLOSED All The connection was closed Check that the peer is
by a peer. running.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 157 SeeBeyond Proprietary and Confidential

Appendix A

Error Return Codes

Section 8.4

MUXNAT Error Return Codes

Error o Programmer’
° Message Name Socket Type Error Description ogra s

Number Response

113 EBADF All Socket descriptor is not in Reissue function with
correct range. The maximum | corrected socket
number of socket descriptors | descriptor.
is set by MAXDESC(). The
default range is 0 to 49.

113 EBADF Bind socket The socket descriptor is Correct the socket
already being used. descriptor.

113 EBADF Givesocket The socket has already been Correct the socket
given. The socket domain is descriptor.
not AF_INET.

113 EBADF Select One of the specified Correct the socket
descriptor sets is an incorrect | descriptor. Set on
socket descriptor. Select() or Selectex().

113 EBADF Takesocket The socket has already been Correct the socket
taken. descriptor.

113 EBADF Accept A Listen() has not been Issue Listen() before
issued before the Accept() Accept().

121 EINVAL All An incorrect argument was Check and correct all
specified. function parameters.

145 E2BIG All The argument list is too long. | Eliminate excessive

number of arguments.

156 EMVSINITIAL All Process initialization error. Attempt to initialize

again.

1002 EIBMSOCKOUTOFRANGE Socket A socket number assigned by | check the socket
the client interface code is descriptor parameter.
out of range.

1003 EIBMSOCKINUSE Socket A socket number assigned by | Use a different socket
the client interface code is descriptor.
already in use.

1004 EIBMIUCVERR All The request failed because of | Ensure IUCV/VMCF is
an IUCV error. This error is functional.
generated by the client stub
code.

1008 EIBMCONFLICT All This request conflicts with a Cancel the existing call
request already queued on or wait for its completion
the same socket. before reissuing this call.

1009 EIMBCANCELLED All The request was cancelled by | Informational, no action
the CANCEL call. needed.

1011 EIBMBADTCPNAME All A TCP/IP name that is not Correct the name
valid was detected. specified in the

IBM_TCPIMAGE
structure.

1011 EIBMBADTCPNAME Setibmopt A TCP/IP name that is not Correct the name
valid was detected. specified in the

IBM_TCPIMAGE.

1011 EIBMBADTCPNAME INITAPI A TCP/IP name that is not Correct the name
valid was detected. specified on the IDENT

option TCPNAME field.

1012 EIBMBADREQUESTCODE All A request code that is not Contact your system
valid was detected. administrator.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 158 SeeBeyond Proprietary and Confidential

Appendix A

Error Return Codes

Section 8.4
MUXNAT Error Return Codes

Error e Programmer”.
° Message Name Socket Type Error Description ogra s

Number Response

1013 EIBMBADCONNECTIONSTATE All A connection token that is Verify TCP/IP is active.
not valid was detected; bad
state.

1014 EIBMUNAUTHORIZED CALLER All An unauthorized caller Ensure user ID has
specified an authorized authority for the
keyword. specified operation.

1015 EIBMBADCONNECTIONMATCH All A connection token that is Verify TCP/IP is active.
not valid was detected. There
is no such connection.

1016 EIBMTCPABEND All An abend occurred when Verify that TCP/IP has
TCP/IP was processing this restarted.
request.

1026 EIBMINVDELETE All Delete requestor did not Delete the request from
create the connection. the process that created

it.

1027 EIBMINVSOCKET All A connection token that is Call your system
not valid was detected. No programmer.
such socket exists.

1028 EIBMINVTCPCONNECTION All Connection terminated by Reestablish the
TCP/IP. The token was connection to TCP/IP.
invalidated by TCP/IP.

1032 EIBMCALLINPROGRESS All Another call was already in Reissue after previous
progress. call has completed.

1036 EIBMNOACTIVETCP Getibmopt No TCP/IP image was found. Ensure TCP/IP is active.

1037 EIBMINVTSRBUSERDATA All The request control block check your function
contained data that is not parameters and call your
valid. system programmer.

1038 EIBMINVUSERDATA All The request control block Check your function
contained user data that is parameters and call your
not valid. system programmer.

1040 EIBMSELECTEXPOST SELECTEX SELECTEX passed an ECB that | Check whether the
was already posted. user’s ECB was already

posted.

2001 EINVALIDRXSOCKETCALL REXX A syntax error occurred in Correct the parameter
the RXSOCKET parameter list passed to the REXX
list. socket call.

2002 ECONSOLEINTERRUPT REXX A console interrupt occurred. | Retry the task.

2003 ESUBTASKINVALID REXX The subtask ID is incorrect. Correct the subtask ID

on the INITIALIZE call.

2004 ESUBTASKALREADYACTIVE REXX The subtask is already active. Only issue the
INITIALIZE call once in
your program.

2005 ESUBTASKALNOTACTIVE REXX The subtask is not active. Issue the INITALIZE call
before any other socket
call.

2006 ESOCKETNOTALLOCATED REXX The specified socket could Increase the user storage

not be allocated. allocation for this job.

2007 EMAXSOCKETSREACHED REXX The maximum number of Increase the number of
sockets has been reached. allocate sockets, or

decrease the number of
sockets used by your
program.

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide 159 SeeBeyond Proprietary and Confidential

Appendix A
Error Return Codes

Section 8.4
MUXNAT Error Return Codes

Error _r Programmer’
° Message Name Socket Type Error Description ogra s
Number Response
2009 ESOCKETNOTDEFINED REXX The socket is not defined. Issue the SOCKET call
before the call that fails.
2011 EDOMAINSERVERFAILURE REXX A Domain Name Server Call your MVS system
failure occurred. programmer.
2012 EINVALIDNAME REXX An incorrect name was Call your MVS system
received from the TCP/IP programmer.
server.
2013 EINVALIDCLIENTID REXX An incorrect client ID was Call your MVS server.
received from the TCP/IP
server.
2014 EINVALIDFILENAME REXX An error occurred during Specify the correct
NUCEXT processing. translation table file
name, or verify that the
translation table is valid.
2016 EHOSTNOTFOUND REXX The host is not found. Call your MVS system
programmer.
2017 EIPADDRNOTFOUND REXX Address not found. Call your MVS system
programmer.

842 Sockets Extended Return Codes

Error Code Problem Description System Action Programmer’s Response
10100 An ESTATE macro did not End the call. Call your MVS system
complete normally. programmer.
10101 A STORAGE OBTAIN failed. End the call. Increase MVS storage in the
application’s address space.
10108 The first call from TCP/IPwas | End the call. Change the first TCP/IP call
not INITAPI or TAKESOCKET. to INITAPI or TAKESOCKET.
10110 LOAD of EZBSOHO3 (alias End the call. Call the IBM Software
EZASOHO03) failed. Support Center.
10154 Errors were found in the Disable the subtask for Correct the IOCTL call. You
parameter list for an IOCTL interrupts. Return an error might have incorrect
call. code to the caller. sequencing of socket calls.
10155 The length parameter for an Disable the subtask for Correct the IOCTL call. You
IOCTL call is 3200 (32 x 100). interrupts. Return an error might have incorrect
code to the caller. sequencing of socket calls.
10159 A zero or negative data Disable the subtask for Correct the length in the
length was specified for a interrupts. Return an error READ call.
READ or READV call. code to the caller.
10161 The REQARG parameter in End the call. Correct the program.
the IOCTL parameter list is
zero.
10163 A 0 or negative data length Disable the subtask for Correct the data length.

was found for a RECV,
RECVFROM, or RECVMSG
call.

interrupts. Sever the DLC
path. Return an error code to
the caller.

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide

160

SeeBeyond Proprietary and Confidential

Appendix A
Error Return Codes

Section 8.4
MUXNAT Error Return Codes

Error Code Problem Description System Action Programmer’s Response

10167 The descriptor set size for Disable the subtask for Correct the SELECT or
SELECT or SELECTEX call is interrupts. Return an error SELECTEX call. You might
less than or equal to zero. code to the caller. have incorrect sequencing

of socket calls.

10168 The descriptor set size in Disable the subtask for Correct the descriptor set
bytes for a SELECT or interrupts. Return an error size.

SELECTEX call is greater than | code to the caller.
252. A number greater than

the maximum number of

allowed sockets (2000 is

maximum) has been

specified.

10170 A zero or negative data Disable the subtask for Correct the data length in
length was found fora SEND | interrupts. Return an error the SEND call.
or SENDMSG call. code to the caller.

10174 A zero or negative data Disable the subtask for correct the data length in the
length was found for a interrupts. Return an error SENDTO call.

SENDTO call. code to the caller.

10178 The SETSOCKOPT option Disable the subtask for Correct the OPTLEN
length is less than the interrupts. Return an error parameter.
minimum length. code to the caller.

10179 The SETSOCKOPT option Disable the subtask for Correct the OPTLEN
length is greater than the interrupts. Return an error parameter.
maximum length. code to the caller.

10184 A data length of zero was Disable the subtask for Correct the data length in
specified for a WRITE call. interrupts. Return an error the WRITE call.

code to the caller.

10186 A negative data length was Disable the subtask for Correct the data length in
specified for a WRITE or interrupts. Return an error the WRITE call.
WRITEV call. code to the caller.

10190 The GETHOSTNAME option Disable the subtask for Correct the length
length is less than 24 or interrupts. Return an error parameter.
greater than the maximum code to the caller.
length.

10193 The GETSOCKOPT option End the call. Correct the length
length is less than the parameter.
minimum or greater than the
maximum length.

10197 The application issued an Bypass the call. Correct the logic that
INITAPI call after the produces the INITAPI call
connection was already that is not valid.
established.

10198 The maximum number of Return to the user. Correct the INITAPI call.
sockets specified for an
INITAPI exceeds 2000.

10200 The first call issued was nota | End the call. For a list of valid first calls,
valid first call. refer to the section on

special considerations in the
chapter on general
programming.

10202 The RETARG parameter in End the call. Correct the parameter list.
the IOCTL call is zero. You might have incorrect

sequencing of socket calls.

10203 The requested socket End the call. Correct the requested

number is a negative value.

socket number.

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide

161

SeeBeyond Proprietary and Confidential

Appendix A
Error Return Codes

Section 8.4
MUXNAT Error Return Codes

Error Code Problem Description System Action Programmer’s Response

10205 The requested socket End the call. Correct the requested
number is a negative value. socket number.

10208 the NAMELEN parameter for | End the call. Correct the NAMELEN
a GETHOSTYNAME call was parameter. You might have
not specified. incorrect sequencing of

socket calls.

10209 The NAME parameter on a End the call. Correct the NAME
GETHOSTBYNAME call was parameter. You might have
not specified. incorrect sequencing of

socket calls.

10210 The HOSTENT parameter on | End the call. Correct the HOSTENT
a GETHOSTBYNAME call was parameter. You might have
not specified. incorrect sequencing of

socket calls.

10211 The HOSTADDR parameter End the call. Correct the HOSTENT
on a GETHOSTBYNAME or parameter. You might have
GETHOSTBYADDR call is incorrect sequencing of
incorrect. socket calls.

10212 The resolver program failed End the call. Check the JOBLIB, STEPLIB,
to load correctly for and LINKLIB data sets and
GETHOSTBYNAME or rerun the program.
GETHOSTBYADDR call.

10213 Not enough storage is End the call. Increase the use storage
available to allocate the allocation for this job.
HOSTENT structure.

10214 The HOSTENT structure was | End the call. Ensure that the domain
not returned by the resolver name server is available. This
program. can be a nonerror condition

indicating that the name or
address specified in a
GETHOSTBYADDR or
GETHOSTBYNAME call
could not be matched.

10215 The APITYPE parameter on End the call. Correct the APITYPE
an INITAPI call instruction parameter.
was not 2 or 3.

10218 The application End the call. Ensure that an API that
programming interface (API) supports the performance
cannot locate the specified improvements related to
TCP/IP. CPU conservation is

installed on the system and
verify that a valid TCP/IP
name was specified on the
INITAPI call. This error call
might also mean that
EZASOKIN could not be
loaded.

10219 The NS parameter is greater End the call. Correct the NS parameter on
than the maximum socket the ACCEPT, SOCKET or
for this connection. TAKESOCKET call.

10221 The AF parameter of a End the call. Set the AF parameter equal
SOCKET call is not AF_INET. of AF_INET.

10222 the SOCTYPE parameter ofa | End the call. Correct the SOCTYPE
SOCKET call must be stream, parameter.

datagram, or raw (1, 2, or 3).

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide

162

SeeBeyond Proprietary and Confidential

Appendix A
Error Return Codes

Section 8.4
MUXNAT Error Return Codes

Error Code

Problem Description

System Action

Programmer’s Response

10223 No ASYNC parameter End the call. Add the ASYNC parameter
specified for INITAPI with to the INITAPI call.
APITYPE=3 call.

10224 The IOVCNT parameter is End the call. correct the IOVCNT
less than or equal to zero, parameter.
for a READV, RECVMSG,

SENDMSG, or WRITEV call.

10225 The IOVCNT parameter is End the call. Correct the IOVCNT
greater than 120, for a parameter.
READYV, RECVMSG,

SENDMSG, or WRITEV call.

10226 Invalid COMMAND End the call. Correct the IOVCNT
parameter specified for a parameter.
GETIBMOPT call.

10229 A call was issued on an End the call. Add an ECB or REQAREA
APITYPE=3 connection parameter to the call.
without an ECB or REQAREA
parameter.

10300 Termination is in progress End the call. None.
for either the CICS
transaction or the sockets
interface.

10331 A call that is not valid was End the call. Get out of SRB mode and
issued while in SRB mode. reissue the call.

10332 A SELECT call is invoked with End the call. Correct the MAXSOC
a MAXSOC value greater parameter and reissue the
than that which was call.
returned in the INITAPI
function (MAXSNO field).

10999 An abend has occurred in Write message EZY1282E to If the call is correct, call your
the subtask. the system console. End the system programmer.

subtask and post the TRUE
ECB.

20000 An unknown function code End the call. Correct the SOC-
was found in the call. FUNCTION parameter.

20001 The call passed an incorrect End the call. Correct the parameter list.
number of parameters.

20002 The CICS Sockets Interface End the call. Start the CICS Sockets

is not in operation.

Interface before executing
this call.

843 MUXNAT API Return Codes
The following error codes are specific to the MUXNAT APIL.

other than an ACK after a send.

Error Code Description Programmer Response
3001 Get Host Name Error. Verify that the host name and
port number are correct.
3002 Error on Return from ezacic08. | Internal error. Call support.
3003 e*Gate returned something Verify that the MUX e*Way is

properly configured.

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide

163

SeeBeyond Proprietary and Confidential

Appendix A

Error Return Codes

Section 8.4
MUXNAT Error Return Codes

RECEIVE.

Error Code Description Programmer Response
3004 Timed out waiting for an ACK. | Increase hsces-for-ack value. If
the problem persists, call
support.
3005 Timed out waiting for a Increase hsecs-to-wait. If the

problem persists, call support.

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide

164

SeeBeyond Proprietary and Confidential

Index

Index

B

batch requirements 19

C

CICS e*Way
external system requirements 18
system requirements 17
additional disk space 18
CICS requirements 19
CICS Transaction Gateway 20
CicsClient() 98

CLASSPATH Append From Environment Variable

72
Classpath Override 72
Classpath Prepend 72
Close 138

COBOL API for MUX 149
COBOL

Close 138

OPEN 139

RECEIVE 140

SEND 141
COBOL APIs for MUX

Close 149

Open 145

Receive 148

Send 147
commAreaToPackedDecimal() 98
commAreaZonedToString() 99
components of e*Way 16
Constructor

CicsClient 98

D

directories
created by installation 23
Disable JIT 73

E

execute() 99, 128
external system requirements 18

CICS e*Way 18

F

files
created by installation 23

G

getCommaArea() 100
getCommAreaLength() 101
getCommAreaString() 101
getEciCallbackable() 102
getEciExtend() 102
getEciLuwToken() 103
getEciSync() 103
getEncodedCommAreaString() 104
getEncoding() 104
getHexString() 105
getMessageQualifier() 105
getNatExecProgram() 129
getNatExecTranslId() 130
getNatInitProgram() 130
getNatInitTransld() 131
getNatTermProgram() 131
getNatTermTransId() 131
getPassword() 105
getPort() 106

getProgram() 106
getServer() 107
getServerList() 107
getSslClass() 107
getSslPassword() 108
getTraceDumpOffset() 108
getTraceFilename() 109
getTraceLevel() 109
getTraceTiming() 109
getTraceTruncationSize() 110
getTransld() 110

getUrl() 111

getUserld() 111

H

handleConfigValues() 111, 132
handleTrace() 112

implementation 75

overview 77
implementation overview 75
Initial Heap Size 73

e*Way Intelligent Adapter for ADABAS Natural

User’s Guide 165 SeeBeyond Proprietary and Confidential

Index

initialize() 112, 132
initfJavaGateway() 113
installation
directories created by 23
files created by 23

J

Java Methods 95-137
Java methods and classes, overview 95
Java methods, using 95

M

main() 114, 133
Maximum Heap Size 73
MUXNAT APIs
code sample 144
function sets 145
overview 143
using 143
MVS 18

N
NaturalClient() 128

O

OPEN 139
Open
COBOL API for MUX 145
0S5/390 18
0S/390 system requirements 18

P

packedDecimalToString() 114
parameters
CICS Client 64
CICS Password 64
CICS Program 65
CICS Transld 65
CICS Userld 64
COMMAREA Length 65
ECI Call Type 64
ECI Extend Mode 65
ECI LUW Token 65
Encoding 66
Message Qualifier 65
CICS Gateway 63
Port 63
SSL KeyRing Class 63

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide

166

SSL KeyRing Password 63

URL 63
Connector 62

Class 62

Type 62
Natural Settings 66

CICS Program to Execute Natural Business

Rules 67

CICS Program to Initialize Natural Session

66

CICS Program to Terminate Natural Session

67

CICS Transaction to Execute Natural Busi-

ness Rules 67

CICS Transaction to Initialize Natural Ses-

sion 66

CICS Transaction to Terminate Natural Ses-

sion 67
Property.Tag 62
Tracing 67
Dump Offset 69
Filename 68
Level 68
Timing 69
Truncation Size 68
personnel requirements 20
pre-installation
UNIX 22
Windows NT 21

R

Readme.txt file

specific version information 17

RECEIVE 140
Receive

COBOL API for MUX 148
reset() 115, 134

S

sample schema

executing the schema 87

sample input data 86
sample schema, importing 75
schema creation, steps 76
SEND 141
Send

COBOL API for MUX 147
sendRequest() 115
setCommArea() 116
setCommAreaLength() 116
setEciCallbackable() 116
setEciExtend() 117

SeeBeyond Proprietary and Confidential

Index

setEciLuwToken() 117
setEciSync() 118
setEncoding() 118
setMessageQualifier() 119
setNatExecProgram() 134
setNatExecTransId() 134
setNatInitProgram 135
setNatInitTimeout() 135
setNatInitTransId() 136
setNatTermProgram() 136
setNatTermTransId() 137
setPassword() 119
setPort() 120
setProgram() 120
setServer() 121
setSslClass() 121
setSslPassword() 121
setTraceDumpOffset() 122
setTraceFilename() 122
setTraceLevel() 123
setTraceTiming() 123
setTraceTruncationSize() 124
setTransld() 124
setUrl() 124
setUserld() 125
sub-programs, Natural 93
supported operating systems 17
Supporting Documents 17
Suspend Option for Debugging 74
system requirements

CICS e*Way 17

additional disk space 18

T

terminate() 125
toPackedDecimal() 126
toZoned() 126

U

UNIX
pre-installation 22

\%Y%

Windows NT 4.0
pre-installation 21

VA
zonedToString() 127

e*Way Intelligent Adapter for ADABAS Natural
User’s Guide 167

SeeBeyond Proprietary and Confidential

	e*Way Intelligent Adapter for ADABAS Natural User’s Guide
	Contents
	Introduction
	1.1 ADABAS Natural e*Way User’s Guide
	1.2 Intended Reader
	1.3 General e*Way Operation
	1.3.1 Basic Operation
	1.3.2 Functional Description
	Natural Program Security
	Outbound e*Way Functionality - Sending Data to ADABAS
	Failed Message Delivery Continuation
	Inbound e*Way Functionality - Receiving from ADABAS
	Protocols and/or APIs
	Logging
	Errors
	Alerting
	Natural Program Call ETD Generator

	1.4 Architecture: Component Interrelations
	1.4.1 Protocols/APIs
	1.4.2 e*Way Components

	1.5 Supporting Documents
	1.6 Supported Operating Systems
	1.7 System Requirements
	1.8 External System Requirements
	1.8.1 OS/390 System Requirements (MVS)
	For Using CICS
	For Using Batch

	1.8.2 CICS Transaction Gateway 4.0 Configuration
	1.8.3 Personnel Requirements

	Installation
	2.1 Windows�NT 4.0 and Windows 2000
	2.1.1 Pre-installation
	2.1.2 Installation Procedure

	2.2 UNIX
	2.2.1 Pre-installation
	2.2.2 Installation Procedure

	2.3 Files/Directories Created by the Installation
	2.4 OS/390
	2.4.1 Copying the Tape Contents to Disk
	2.4.2 Installing the CICS CEDA Definitions
	2.4.3 Linking the ADABAS NATURAL e*Way Load Modules
	2.4.4 Add the ADABAS NATURAL e*Way Load Modules to the CICS DFHRPL Concatenation
	2.4.5 Create the ADABAS NATURAL e*Way Control VSAM File
	2.4.6 Installing the NATURAL Programs
	2.4.7 Installing the MUXNAT
	Batch NATURAL

	2.4.8 Configuring NTSYS Setname
	Optional Values

	2.4.9 STCNCTL VSAM File Record Descriptions
	Global Record
	Session Configuration Record
	Transaction Type Record

	2.5 CICS Installation Verification Program
	2.5.1 Virtual Natural e*Way Interactive Simulator
	2.5.2 Virtual JCL Submit e*Way Interactive Simulator
	2.5.3 Virtual Natural e*Way Monitoring Screens OS/390 CICS

	Configuration
	3.1 Configuring e*Way Connections
	3.2 Connector
	Type
	Class
	Property.Tag

	3.3 CICS Gateway
	URL
	Port
	A valid port number between 1 and 864,000. The default is 8888.
	SSL KeyRing Class
	SSL KeyRing Password

	3.4 CICS Client
	CICS UserId
	CICS Password
	ECI Call Type
	CICS Program
	CICS TransId
	COMMAREA Length
	ECI Extend Mode
	ECI LUW Token
	Message Qualifier
	Encoding

	3.5 Natural Settings
	CICS Program to Initialize Natural Session
	CICS Transaction to Initialize Natural Session
	CICS Program to Execute Natural Business Rules
	CICS Transaction to Execute Natural Business Rules
	CICS Program to Terminate Natural Session
	CICS Transaction to Terminate Natural Session

	3.6 Tracing
	Level
	Filename
	Truncation Size
	Dump Offset
	Timing

	Multi-Mode e*Way Configuration
	4.1 Multi-Mode e*Way Properties
	4.2 JVM Settings
	JNI DLL Absolute Pathname
	CLASSPATH Prepend
	CLASSPATH Override
	CLASSPATH Append From Environment Variable
	Initial Heap Size
	Maximum Heap Size
	Maximum Stack Size for Native Threads
	Maximum Stack Size for JVM Threads
	Disable JIT
	Remote debugging port number
	Suspend Option for Debugging

	Implementation
	5.1 Implementation Overview
	5.2 ADABAS Natural Sample Implementation
	5.2.1 Schema Overview
	5.2.2 Schema Operation
	5.2.3 Creating Event Types and Event Type Definitions
	5.2.4 Creating Collaboration Rules
	Sample Input Data
	Sample Natural Program

	5.2.5 Running the Schema

	5.3 SAG Wizard Operation
	5.3.1 Getting Started
	Creation of�.sag Files
	Converting�.sag Files: The SAG Wizard

	5.3.2 Using the SAG Wizard

	5.4 Natural Sub�programs
	5.4.1 Communication With e*Gate: Overview
	5.4.2 Communication With e*Gate: Basic Steps

	Java Methods
	6.1 e*Way Methods and Classes: Overview
	6.2 Using Java Methods
	6.3 Cicsclient Class
	6.3.1 Methods of the Cicsclient Class
	CicsClient()
	commAreaToPackedDecimal()
	commAreaZonedToString()
	execute()
	getCommArea()
	getCommAreaLength()
	getCommAreaString()
	getEciCallbackable()
	getEciExtend()
	getEciLuwToken()
	getEciSync()
	getEncodedCommAreaString()
	getEncoding()
	getHexString()
	getMessageQualifier()
	getPassword()
	getPort()
	getProgram()
	getServer()
	getServerList()
	getSslClass()
	getSslPassword()
	getTraceDumpOffset()
	getTraceFilename()
	getTraceLevel()
	getTraceTiming()
	getTraceTruncationSize()
	getTransId()
	getUrl()
	getUserId()
	handleConfigValues()
	handleTrace()
	initialize()
	initJavaGateway()
	main()
	packedDecimalToString()
	reset()
	sendRequest()
	setCommArea()
	setCommAreaLength()
	setEciCallbackable()
	setEciExtend()
	setEciLuwToken()
	setEciSync()
	setEncoding()
	setMessageQualifier()
	setPassword()
	setPort()
	setProgram()
	setServer()
	setSslClass()
	setSslPassword()
	setTraceDumpOffset()
	setTraceFilename()
	setTraceLevel()
	setTraceTiming()
	setTraceTruncationSize()
	setTransId()
	setUrl()
	setUserId()
	terminate()
	toPackedDecimal()
	toZoned()
	zonedToString()

	6.4 NaturalClient Class
	6.4.1 Methods of the NaturalClient Class
	NaturalClient()
	execute()
	getNatExecProgram()
	getNatExecTransId()
	getNatInitProgram()
	getNatInitTransId()
	getNatTermProgram()
	getNatTermTransId()
	handleConfigValues()
	initialize()
	main()
	reset()
	setNatExecProgram()
	setNatExecTransId()
	setNatInitProgram
	setNatInitTimeout()
	setNatInitTransId()
	setNatTermProgram()
	setNatTermTransId()

	CICS COBOL APIs
	7.1 Function Prototypes
	CLOSE
	OPEN
	RECEIVE
	SEND

	Using MUXNAT APIs
	8.1 MUXNAT APIs: Overview
	8.2 Using MUXNAT APIs
	8.3 MUXNAT API Function Sets
	Open
	Send
	Receive
	Close

	Error Return Codes
	8.4 MUXNAT Error Return Codes
	8.4.1 TCP/IP for MVS Return Codes
	8.4.2 Sockets Extended Return Codes
	8.4.3 MUXNAT API Return Codes

	Index
	B
	C
	D
	E
	F
	G
	H
	I
	J
	M
	N
	O
	P
	R
	S
	T
	U
	W
	Z

