
SeeBeyond Proprietary and Confidential

Batch e*Way Intelligent
Adapter User’s Guide

Release 4.5.2

Batch e*Way Intelligent Adapter User’s Guide 2 SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBI, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 1999–2001 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20011221172932.

Contents

Batch e*Way Intelligent Adapter User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents

Chapter 1

Introduction 11
Overview 11

Intended Reader 13
Components 13
Compatible Systems 13

Supported Operating Systems 14

System Requirements 14

External System Requirements 14
Client Components 14
FTP ETD Requirements 15
SOCKS Support 15

Chapter 2

Installation 16
Windows NT or Windows 2000 16

Pre-installation 16
Installation Procedure 16

UNIX 17
Pre-installation 17
Installation Procedure 17

Files/Directories Created by the Installation 18

Chapter 3

Configuration 21
e*Way Configuration Parameters 21

General Settings 22
Journal File Name 22
Max Resends Per Message 22
Max Failed Messages 23
Forward External Errors 23

Communication Setup 23
Start Exchange Data Schedule 23

Contents

Batch e*Way Intelligent Adapter User’s Guide 4 SeeBeyond Proprietary and Confidential

Stop Exchange Data Schedule 24
Exchange Data Interval 25
Down Timeout 25
Up Timeout 25
Resend Timeout 26
Zero Wait Between Successful Exchanges 26
Exchange-if-in-window-on-startup 26

Monk Configuration 26
Operational Details 27
How to Specify Function/File Names 33
Additional Path 34
Auxiliary Library Directories 34
Monk Environment Initialization File 34
Startup Function 35
Process Outgoing Message Function 35
Exchange Data with External Function 36
External Connection Establishment Function 37
External Connection Verification Function 38
External Connection Shutdown Function 38
Positive Acknowledgment Function 38
Negative Acknowledgment Function 39
Shutdown Command Notification Function 40

External Host Setup 40
Host Type 40
External Host Name 41
User Name 41
Encrypted Password 41
File Transfer Method 41

Subscribe to External 42
Remote Directory Name 42
Remote File Regexp 42
Record Type 43
Record Delimiter 43
Delimiter on Last Record 43
Record Size 44
Remote Command After Transfer 44
Remote Rename or Archive Name 44
Local Command After Transfer 45
Local Archive Directory 45

Publish to External 45
Remote Directory Name 45
Remote File Name 46
Append or Overwrite when Transferring Files 46
Record Type 46
Record Delimiter 47
Delimiter on Last Record 47
Record Size 47
Remote Command After Transfer 47
Remote Rename or Archive Name 48
Local Command After Transfer 48
Local Archive Directory 48

Sequence Numbering 49
Starting Sequence Number 49
Max Sequence Number 49

Contents

Batch e*Way Intelligent Adapter User’s Guide 5 SeeBeyond Proprietary and Confidential

Recourse Action 50
Action on Fetch Failure 50
Action on Send Failure 50

FTP 50
Server Port 50
Mode 51
Pretransfer Commands 51
Posttransfer Commands 51

SOCKS 52
Server Host Name 52
Server Port 52
Method 52
User Name 53
Encrypted Password 53

Using Special Characters 53

FTP Heuristics 55
Operating System or File Type Selection 56
Configuration Parameters 57

Commands Supported by FTP Server 57
Header Lines To Skip 57
Header Indication Regex Expression 57
Trailer Lines To Skip 58
Trailer Indication Regex Expression 58
Directory Indication Regex Expression 58
File Link Real Data Available 58
File Link Indication Regex Expression 59
File Link Symbol Regex Expression 59
List Line Format 59
Valid File Line Minimum Position 60
File Name Is Last Entity 60
File Name Position 60
File Name Length 61
File Extension Position 61
File Extension Length 62
File Size Verifiable 62
File Size Position 62
File Size Length 63
Special Envelope For Absolute Path Name 63
Listing Directory Yields Absolute Path Names 64
Absolute Path Name Delimiter Set 64
Change Directory Before Listing 65
Directory Name Requires Terminator 65

Environment Configuration 65

External Configuration Requirements 65

Chapter 4

Message-based Configuration 66
General Operation 66

Sending Data with a “Send” Order 67

Contents

Batch e*Way Intelligent Adapter User’s Guide 6 SeeBeyond Proprietary and Confidential

Receiving Data with a “Receive” Order 68
Error Reporting 70

Configuration 70
Dynamic Configuration 71

Enable Message Configuration 71
Publish Status Record on Success 74
Publish Status Record on Error 74
Include Order Record in Error Record 74
Include Payload in Error Record 75
Action on Mal-formed Command 75

Chapter 5

Implementation 76
Implementation Notes 76

How the e*Way Uses Temporary Files 76
Record Type Configuration 78

Delimited Record 78
Fixed-length Record 78
Single Record 79

Sample Configurations 79
Subscribing to an External System 79
Publishing to an External System 80

Chapter 6

Batch e*Way Functions 83
Basic Functions 83

event-send-to-egate 85
get-logical-name 86
send-external-down 87
send-external-up 88
shutdown-request 89
start-schedule 90
stop-schedule 91

Core Functions 91
batch-ack 92
batch-exchange-data 93
batch-ext-connect 94
batch-ext-shutdown 95
batch-ext-verify 96
batch-init 97
batch-nak 98
batch-proc-out 99
batch-regular-proc-out 100
batch-shutdown-notify 101
batch-startup 102

Connection and File Functions 102
batch-fetch-files-from-remote 104
batch-fetch-named-files 105
batch-send-path-file 106

Contents

Batch e*Way Intelligent Adapter User’s Guide 7 SeeBeyond Proprietary and Confidential

batch-validate-params 108
batch-write-file 109
disconnect-from-remote 110
fetch-files-from-remote 111
fetch-named-files 112
get-next-record 113
get-next-record-current-file 114
list-files-on-remote 115
open-next-working-file 116
persist-get-index 117
persist-get-list 118
persist-get-offset 119
persist-init 120
persist-read-number 121
persist-update-index 122
persist-update-list 123
persist-update-offset 124
persist-update-status 125
persist-write-pad 126
post-transfer-hook 127
pre-transfer-hook 128
send-files-to-remote 129
string-is-proc? 130
transfer-method? 131

File Name Expansion Functions 131
char-hex? 133
expand-char 134
expand-hex 135
expand-octal 136
expand-seqno 137
expand-string 138
expand-time 139
get-seqno 141
incr-seqno 142
set-seqno 143

Post-transfer Routines 143
batch-local-post-transfer 144
batch-rmt-post-transfer 145
local-post-transfer 146

File Copy Transfer Functions 146
file-ext-connect 148
file-ext-shutdown 149
file-ext-verify 150
file-fetch 151
file-fetch-path 152
file-init 153
file-remote-path-list 154
file-rmt-list 155
file-rmt-post-transfer 156
file-send 157
file-send-path-file 158
file-startup 159
file-validate-params 160

FTP Transfer Functions 160
ftp-do-connect 161
ftp-ext-connect 162
ftp-ext-shutdown 163
ftp-ext-verify 164
ftp-fetch 165
ftp-heuristic-download 166
ftp-init 167

Contents

Batch e*Way Intelligent Adapter User’s Guide 8 SeeBeyond Proprietary and Confidential

ftp-rmt-list 168
ftp-rmt-post-transfer 169
ftp-send 170
ftp-startup 171
ftp-validate-params 172

Advanced FTP Functions 172
ftp-append-file 174
ftp-append-path 175
ftp-archive 176
ftp-archive-path 177
ftp-capture-data 178
ftp-change-dir 179
ftp-close 180
ftp-connect 181
ftp-create-handle 183
ftp-disconnect 184
ftp-delete 185
ftp-delete-path 186
ftp-fetch-path 187
ftp-get-file 188
ftp-get-last-response 189
ftp-get-last-result-code 190
ftp-get-path 191
ftp-handle? 192
ftp-list-files 193
ftp-list-raw 194
ftp-login 195
ftp-make-dir 197
ftp-open-data-port 198
ftp-open-host 199
ftp-open-host-through-SOCKS 200
ftp-put-file 201
ftp-put-path 202
ftp-remote-path-list 203
ftp-rename 204
ftp-rename-path 205
ftp-send-command 206
ftp-send-path-file 207
ftp-send-reply-immediate 208
ftp-set-compare-time 209
ftp-set-mode 210
ftp-set-port 211
ftp-set-SOCKS-host 212
ftp-set-SOCKS-port 213
ftp-set-timeout 214

Advanced FTP Function Exceptions 215

File System Functions 217
fs-append-file 218
fs-copy-file 219
fs-delete-file 220
fs-list-files 221
fs-make-dir 222
fs-read-delim 223
fs-read-fixed 224
fs-rename-file 225

Contents

Batch e*Way Intelligent Adapter User’s Guide 9 SeeBeyond Proprietary and Confidential

Chapter 7

FTP Event Type Definition 226
FTP ETD: Introduction 226

Components 227
Client Components 227

FTP ETD: Overview 227
ETD Structure 228
ETD Java Methods 229

Chapter 8

e*Way Connection Configuration 230
Configuring e*Way Connections 230

Configuration Parameters 231
Connector 231

Type 231
Class 231
Property.Tag 231

FTP File 232
Directory Listing Style 232
Host Name 232
User Name 232
Password 233
Mode 233
Use PASV 233
Server Port 233
Remote Directory Name 233
Remote File Name 234
Overwrite Or Append 234
Command After Transfer 234
Rename or Archive Name 235
Pre Transfer Raw Commands 235
Post Transfer Raw Commands 235
Starting Sequence Number 236
Max Sequence Number 236

Chapter 9

Java Methods 237
FTP ETD Methods: Overview 237

FtpFileETD 237
get 239
getCommandAfterTransfer 239
getDirectoryListingStyle 240
getHostName 240
getMaxSequenceNumber 241

Contents

Batch e*Way Intelligent Adapter User’s Guide 10 SeeBeyond Proprietary and Confidential

getMode 241
getOverwriteOrAppend 242
getPassword 242
getPayload 243
getPostTransferRawCommands 243
getPreTransferRawCommands 244
getRemoteDirectoryName 244
getRemoteFileName 245
getRenameOrArchiveName 245
getServerPort 246
getStartingSequenceNumber 246
getUserName 247
getWorkingFileName 247
Initialize 248
isTrace 248
isUsePASV 249
put 249
reset 250
restoreConfigValues 250
setCommandAfterTransfer 251
setDirectoryListingStyle 252
setHostName 252
setMaxSequenceNumber 253
setMode 253
setOverwriteOrAppend 254
setPassword 254
setPayload 255
setPostTransferRawCommands 255
setPreTransferRawCommands 256
setRemoteDirectoryName 256
setRemoteFileName 257
setRenameOrArchiveName 258
setServerPort 258
setStartingSequenceNumber 259
setTrace 259
setUsePASV 260
setUserName 260
setWorkingFileName 261
terminate 261

Appendix A

Document Type Definitions 263
Send or Receive XML Messages 263

Error Messages 264

Data Message 265

Index 267

Batch e*Way Intelligent Adapter User’s Guide 11 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This chapter introduces you to SeeBeyondTM Technology Corporation’s (SeeBeyondTM)
Batch e*WayTM Intelligent Adapter, which enables the e*Gate system to exchange data
with other network hosts, using the file transfer protocol (FTP).

1.1 Overview
This document explains how to install and configure the Batch e*Way. This e*Way is
enabled by the Monk programming language.

Note: The FTP Event Type Definition (ETD) is enabled by the Java programming
language. For more information, see Chapter 7.

Figure 1 shows a diagram of how the e*Way operates.

Figure 1 e*Way Internal Architecture

Communication
with External
System

Business Logic and
Communication
Within e*Gate

External
system Other e*Gate

components

e*Gate Events

Data
e*Way

Collaboration

Collaboration

Function

Function

Chapter 1 Section 1.1
Introduction Overview

Batch e*Way Intelligent Adapter User’s Guide 12 SeeBeyond Proprietary and Confidential

Conceptually, an e*Way is divided into two halves. One half of the e*Way (shown on
the left in Figure 1 on page 11) handles communication with the external system; the
other half manages the Collaborations that process data and subscribe or publish to
other e*Gate components.

The communications side of the e*Way uses Monk functions to start and stop scheduled
operations, exchange data with the external system, package data as e*Gate Events and
send those Events to Collaborations, and manage the connection between the e*Way
and the external system. The Monk Configuration options discussed in this section
control the Monk environment and define the Monk functions used to perform these
basic e*Way operations. You can create and modify these functions using the
SeeBeyond Collaboration Rules Editor or a text editor (such as Notepad or UNIX vi).

The communications side of the e*Way is single-threaded. Functions run serially, and
only one function can be executed at a time. The business logic side of the e*Way is
multi-threaded, with one executable thread for each Collaboration. Each thread
maintains its own Monk environment; therefore, information such as variables,
functions, path information, and so on cannot be shared between threads.

The Batch e*Way has the following behavior models:

! Messages are published to the e*Way, then it collects the messages in temporary
files until its next scheduled release time. It then sends them out, either as single
files per message or multiple messages per single file, depending on configuration.

! The e*Way subscribes to messages and polls an external system based on a schedule
and searches for files based on specific criteria. It then retrieves the files that match
the criteria, stores them locally, and then reads the records in the files, while
simultaneously keeping track of its own progress by maintaining state information
in a separate file.

! A Dynamic Configuration is available that requires the use of the flag, Enable
Message configuration (See “Enable Message Configuration” on page 71). If this
flag is turned on, the e*Way has a subscription that determines its activity. This
subscription is an XML message, with all relevant parameters governing the
transfer, including the file to be sent (if it is an outbound transfer).

The Batch e*Way supports standard FTP commands according to RFC-959, for example:

APPE NOOP RNTO

CWD PASS SITE

DELE QUIT STOR

LIST RETR TYPE

MKD RNFR USER

Chapter 1 Section 1.1
Introduction Overview

Batch e*Way Intelligent Adapter User’s Guide 13 SeeBeyond Proprietary and Confidential

1.1.1 Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the e*Gate system, to have expert-level knowledge of
Windows operations and administration, to be thoroughly familiar with Windows-style
GUI operations, and to have an understanding of FTP.

1.1.2 Components
The Batch e*Way comprises the following elements:

! stcewgenericmonk.exe, the executable component

! Configuration files, which the e*Way Editor uses to define configuration parameters

! Monk function scripts; the scripts themselves are discussed in Chapter 3; the
functions they call, in Chapter 6

! Library files, which provide access to additional Monk application programming
interfaces (APIs); the APIs are discussed in Chapter 6.

A complete list of installed files appears in Table 1 on page 18.

1.1.3 Compatible Systems
Windows Systems: The e*Gate system is fully compliant with both Windows NT and
Windows 2000 platforms. When this document references Windows, such statements
apply to both Windows platforms.

UNIX Systems: This guide uses the backslash (“\”) as the separator within path names.
If you are working on a UNIX system, please make the appropriate substitutions (“/”).

Compaq Tru64 Systems: For the purposes of this document, the same instructions for
UNIX apply to this system. e*Gate is fully compatible with Compaq Tru64 Version 4.0F,
and Version 5.0A.

Chapter 1 Section 1.2
Introduction Supported Operating Systems

Batch e*Way Intelligent Adapter User’s Guide 14 SeeBeyond Proprietary and Confidential

1.2 Supported Operating Systems
The Batch e*Way is available on the following operating systems:

! Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

! Windows NT 4.0 SP6a

! Solaris 2.6, 7, and 8

! AIX 4.3.3

! HP-UX 11.0 and HP-UX 11i

! Compaq Tru64 V4.0F and V5.0A

! Red Hat Linux 6.2

! Japanese Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

! Japanese Windows NT 4.0 SP6a

! Japanese Solaris 2.6, 7, and 8

! Japanese HP-UX 11.0

! Korean Solaris 8

! Korean Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

! Korean Windows NT 4.0 SP6a

1.3 System Requirements
To use the Batch e*Way, you need the following:

! An e*Gate Participating Host, version 4.5 or later. For AIX operating systems, you
need an e*Gate Participating Host, version 4.5.1. or later.

! A TCP/IP network connection.

The e*Way must be configured and administered using the e*Gate Enterprise Manager.

1.4 External System Requirements
This section explains external system requirements for the Batch e*Way.

1.4.1 Client Components
Any client components of the Batch e*Way have their own requirements; see the subject
system’s documentation for more details.

Chapter 1 Section 1.4
Introduction External System Requirements

Batch e*Way Intelligent Adapter User’s Guide 15 SeeBeyond Proprietary and Confidential

To communicate with the Batch e*Way, the external system must run an FTP server
compliant with RFC-959.

A user name and password granting appropriate access to the FTP server must be
available for the e*Way’s use.

1.4.2 FTP ETD Requirements
To use the FTP ETD feature, you must have the following third-party packages:

! Montana\Java\ThirdParty\NetComponents\NetComponents-1.3.8a.jar

! Montana\Java\ThirdParty\gnu.regexp\gnu-regexp-1.1.1.jar

For more information, visit the following Web sites:

http://www.cacas.org/~wes/java/

http://www.savarese.org/oro/software/NetComponents.html

1.4.3 SOCKS Support
SOCKS is a generic proxy protocol for TCP/IP-based networking applications. When
an application client needs to connect to an application server, the client connects to a
SOCKS proxy server. The proxy server connects to the application server on behalf of
the client, and relays data between the client and the application server. For the
application server, the proxy server is the client.

The Batch e*Way now supports the SOCKS version 5 Authentication protocol. To
enable SOCKS 5 support, the SOCKS server name and port number, as well as the user
name and encrypted password, must be specified in the configuration file. Details of
these configuration parameters are provided in the chapter “Configuration” on
page 21.

See also “ftp-open-host-through-SOCKS” on page 200.

See also the subsection “Mode” on page 51, describing options for data transfer modes
to an FTP server.

http://www.cacas.org/~wes/java/
http://www.savarese.org/oro/software/NetComponents.html

Batch e*Way Intelligent Adapter User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 2

Installation

This chapter explains the system requirements and procedures for installing the Batch
e*Way.

2.1 Windows NT or Windows 2000

2.1.1 Pre-installation
! Exit all Windows programs before running the setup program, including any

anti-virus applications.

! You must have Administrator privileges to install this e*Way.

2.1.2 Installation Procedure
To install the Batch e*Way on Windows NT or Windows 2000 systems

1 Log in as an Administrator on the workstation on which you want to install the
e*Way.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s Auto-run feature is enabled, the setup application should
launch automatically; skip ahead to step 4. Otherwise, use the Windows Explorer or
the Control Panel’s Add/Remove Applications feature to launch the file setup.exe
on the CD-ROM drive.

4 The InstallShield setup application launches. Follow the on-screen instructions to
install the e*Way.

Note: Be sure to install the e*Way files in the suggested \client installation directory. The
installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not
change the suggested installation directory setting.

5 After the installation is complete, exit the install utility and launch the Enterprise
Manager.

6 In the Component editor, create a new e*Way.

Chapter 2 Section 2.2
Installation UNIX

Batch e*Way Intelligent Adapter User’s Guide 17 SeeBeyond Proprietary and Confidential

7 Display the new e*Way’s properties.

8 On the General tab, under Executable File, click Find.

9 Select the file stcgenericmonk.exe.

10 Click OK to close the properties sheet, or continue to configure the e*Way.
Configuration parameters are explained in Chapter 3.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, Intelligent Queues (IQs), and Event Types before this e*Way can perform its
intended functions. For more information about any of these procedures, please see
the online Help system.

For more information about configuring e*Ways or how to use the e*Way Editor, see
the Working with e*Ways user’s guide.

2.2 UNIX

2.2.1 Pre-installation
You do not require root privileges to install this e*Way. Log in under the user name
that you wish to own the e*Way files. Be sure that this user has sufficient privileges to
create files in the e*Gate directory tree.

Note: Installation instructions for Compaq Tru64 Version 4.0f are the same as those for
UNIX.

2.2.2 Installation Procedure
To install the Batch e*Way on a UNIX system

1 Log in on the workstation containing the CD-ROM drive, and insert the CD-ROM
into the drive.

2 If necessary, mount the CD-ROM drive.

3 At the shell prompt, type:

cd /cdrom/setup

4 Start the installation script by typing:

setup.sh

5 A menu of options appear. Select the e*Gate Addon Applications option. Then,
follow any additional on-screen directions.

Be sure to install the e*Way files in the suggested client installation directory. The
installation utility detects and suggests the appropriate installation directory.

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation

Batch e*Way Intelligent Adapter User’s Guide 18 SeeBeyond Proprietary and Confidential

Caution: Unless you are directed to do so by SeeBeyond support personnel, do not change the
suggested “installation directory” setting.

6 After installation is complete, exit the installation utility and launch the Enterprise
Manager.

7 In the Component editor, create a new e*Way.

8 Display the new e*Way’s properties.

9 On the General tab, under Executable File, click Find.

10 Select the file stcewgenericmonk.exe.

11 Click OK to close the properties sheet, or continue to configure the e*Way.
Configuration parameters are discussed in Chapter 3.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, please see the online Help
system.

For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.

2.3 Files/Directories Created by the Installation
The Batch e*Way installation process installs the files shown in Table 1 within the
e*Gate directory tree. Files are installed within the egate\client tree on the Participating
Host and committed to the “default” schema on the Registry Host.

Table 1 Files Created by the Installation

e*Gate Directory File(s)

bin\ stcewgenericmonk.exe
stc_ewftp.dll
stc_monkfilesys.dll

configs\stcewgenericmonk\ batch.def

monk_library\batch\ batch-ack.monk
batch-dynamic-init.monk
batch-dynamic-proc-out.monk
batch-dynamic-send-to-egate.monk
batch-exchange-data.monk
batch-exchange-utils.monk
batch-ext-connect.monk

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation

Batch e*Way Intelligent Adapter User’s Guide 19 SeeBeyond Proprietary and Confidential

batch-ext-shutdown.monk
batch-ext-verify.monk
batch-fetch-files-from-remote.monk
batch-fetch-named-files.monk
batch-init.monk
batch-nak.monk
batch-persist.monk
batch-post-transfer.monk
batch-proc-out.monk
batch-regular-init.monk
batch-regular-proc-out
batch-send-path-file.monk
batch-shutdown-notify.monk
batch-startup.monk
batch-utils.monk
batch-validate-params.monk
file-ext-connect.monk
file-ext-shutdown.monk
file-ext-verify.monk
file-fetch.monk
file-fetch-path.monk
file-init.monk
file-remote-path-list.monk
file-remote-post-transfer.monk
file-rmt-list.monk
file-rmt-post-transfer.monk
file-send.monk
file-send-path-file.monk
file-startup.monk
file-vaildate-params.monk
ftp-connect.monk
ftp-disconnect.monk
ftp-ext-connect.monk
ftp-ext-shutdown.monk
ftp-ext-verify.monk
ftp-fetch.monk
ftp-fetch-path.monk
ftp-init.monk
ftp-pre-post-commands.monk
ftp-remote-path-list.monk
ftp-remote-post-transfer.monk
ftp-rmt-list.monk
ftp-rmt-post-transfer.monk
ftp-send.monk
ftp-send-path-file.monk
ftp-startup.monk
ftp-validate-params.monk
local-post-transfer.monk

Table 1 Files Created by the Installation (Continued)

e*Gate Directory File(s)

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation

Batch e*Way Intelligent Adapter User’s Guide 20 SeeBeyond Proprietary and Confidential

eGate\client\monk_scripts\common batch_eway_data.jar
batch_eway_error.jar
batch_eway_order.jar
batch_eway_data.xsc
batch_eway_error.xsc
batch_eway_order.xsc

\eGate\client\etd\batchclient\ FtpFileETD.xsc

Table 1 Files Created by the Installation (Continued)

e*Gate Directory File(s)

Batch e*Way Intelligent Adapter User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 3

Configuration

This chapter explains the parameters used to configure the Batch e*Way.

3.1 e*Way Configuration Parameters
Set the e*Way configuration parameters, using the e*Way Editor graphical user
interface (GUI) available through the e*Gate Enterprise Manager.

To change e*Way configuration parameters:

1 In the Enterprise Manager’s Component editor, select the e*Way you want to
configure and display its properties.

2 Under Configuration File, click New to create a new file, Find to select an existing
configuration file, or Edit to edit the currently selected file.

3 In the Additional Command Line Arguments box, type any additional command-
line arguments that the e*Way may require, taking care to insert them at the end of
the existing command-line string.

Caution: Be careful not to change any of the default arguments unless you have a specific
need to do so.

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 22 SeeBeyond Proprietary and Confidential

For more information about how to use the e*Way Editor GUI, see the e*Way Editor’s
online Help or the e*Gate Integrator User’s Guide. The e*Way’s configuration parameters
are organized into the following sections:

! General Settings on page 22

! Communication Setup on page 23

! Monk Configuration on page 26

! External Host Setup on page 40

! Subscribe to External on page 42

! Publish to External on page 45

! Sequence Numbering on page 49

! Recourse Action on page 50

! FTP on page 50

! SOCKS on page 52

! Dynamic Configuration on page 71

3.1.1 General Settings
The General Settings control basic operational parameters.

Journal File Name

Description

Specifies the name of the journal file.

Required Values

A valid file name, including the absolute path (for example, c:\temp\filename.txt). See
the e*Gate Integrator System Administration and Operations Guide for more information
about file locations.

Additional Information

An Event will be journaled for the following conditions:

! When the number of resends is exceeded (see Max Resends Per Message)

! When its receipt is due to an external error, but Forward External Errors is set to
No. (See “Forward External Errors” on page 23 for more information.)

Max Resends Per Message

Description

Specifies the number of times the e*Way will attempt to resend an Event (message) to
the external system after receiving an error.

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 23 SeeBeyond Proprietary and Confidential

Required Values

An integer between 1 and 1,024. The default is 5.

Max Failed Messages

Description

Specifies the maximum number of failed Events (messages) that the e*Way will allow.
When the specified number of failed messages is reached, the e*Way will shut down
and exit.

Required Values

An integer between 1 and 1,024. The default is 3.

Forward External Errors

Description

Selects whether error messages that begin with the string “DATAERR” that are received
from the external system will be queued to the e*Way’s configured queue. See
“Schedule-driven Data Exchange Functions” on page 30 for more information about
how the e*Way uses this function.

Required Values

Yes or No. The default value, Yes, specifies that error messages are to be forwarded.

3.1.2 Communication Setup
The Communication Setup parameters control the schedule by which the e*Way
obtains data from the external system. These parameters are affected by the Dynamic
Configuration section. See Table 5 on page 72.

Note: The schedule (that is, timetable) you set using the e*Way’s properties in the
Enterprise Manager controls when the e*Way executable will run. The schedule you
set within the parameters discussed in this section (using the e*Way Editor)
determines when data will be exchanged. Be sure you set the “exchange data”
schedule to fall within the “run the executable” schedule.

Start Exchange Data Schedule

Description

Establishes the schedule to invoke the e*Way’s Exchange Data with External function
(see “Exchange Data with External Function” on page 36).

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 24 SeeBeyond Proprietary and Confidential

Required Values

One of the following:

! One or more specific dates/times

! A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Also Required: If you set a schedule using this parameter, you must also define all
three of the following functions:

! Exchange Data With External

! Positive Acknowledgment

! Negative Acknowledgment

If you do not do so, the e*Way will terminate execution when the schedule attempts to
start.

See “Exchange Data with External Function” on page 36, “Exchange Data Interval”
on page 25, and “Stop Exchange Data Schedule” on page 24 for more information. See
also, “Exchange-if-in-window-on-startup” on page 26.

Additional Information

When the schedule starts, the e*Way determines whether it is waiting to send a positive
or negative acknowledgment to the external system (using the Positive
Acknowledgment and Negative Acknowledgment functions) and whether the
connection to the external system is active.

If no positive or negative acknowledgements are pending and the connection is active,
the e*Way immediately executes the Exchange Data with External function. Thereafter,
the Exchange Data with External function will be called according to the Exchange
Data Interval parameter until the Stop Exchange Data Schedule time is reached.

Also, see start-schedule on page 90.

Stop Exchange Data Schedule

Description

Establishes the schedule to stop data exchange.

Required Values

One of the following:

! One or more specific dates/times

! A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Also, see stop-schedule on page 91.

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 25 SeeBeyond Proprietary and Confidential

Exchange Data Interval

Description

Specifies the number of seconds the e*Way waits between calls to the Exchange Data
with External function (see “Exchange Data with External Function” on page 36). If
the Start Exchange Data Schedule and Stop Exchange Data Schedule parameters have
been set to create a scheduled data-exchange window, then this interval only operates
during this window. If these parameters have not been set to create such a window,
then the Exchange Data Interval operates on a continuous basis, in conjunction with
the Exchange Data with External function.

Required Values

An integer between 0 and 86,400. The default is 120.

Additional Information

If Zero Wait Between Successful Exchanges is set to Yes and the Exchange Data with
External Function returns data, The Exchange Data Interval setting will be ignored
and the e*Way will invoke the Exchange Data with External Function immediately.

If this parameter is set to 0 (zero), there will be no exchange data schedule set and the
Exchange Data with External Function will never be called.

See “Down Timeout” on page 25 and “Stop Exchange Data Schedule” on page 24 for
more information about the data-exchange schedule.

Down Timeout

Description

Specifies the number of seconds that the e*Way will wait between calls to the External
Connection Establishment function. See “External Connection Establishment
Function” on page 37 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.

Up Timeout

Description

Specifies the number of seconds the e*Way will wait between calls to the External
Connection Verification function. See “External Connection Verification Function”
on page 38 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 26 SeeBeyond Proprietary and Confidential

Resend Timeout

Description

Specifies the number of seconds the e*Way will wait between attempts to resend a
message (Event) to the external system, after receiving an error message from the
external system.

Required Values

An integer between 1 and 86,400. The default is 10.

Zero Wait Between Successful Exchanges

Description

Selects whether to initiate data exchange after the Exchange Data Interval or
immediately after a successful previous exchange.

Required Values

Yes or No. If this parameter is set to Yes, the e*Way will immediately invoke the
Exchange Data with External function if the previous exchange function returned data.
If this parameter is set to No, the e*Way will always wait the number of seconds
specified by Exchange Data Interval between invocations of the Exchange Data with
External function. The default is Yes.

See “Exchange Data with External Function” on page 36 for more information.

Exchange-if-in-window-on-startup

If this parameter is set to Yes, and the e*Way starts within an exchange data window,
the e*Way immediately invokes the Exchange Data with External Function.

Required Values

Yes or No. The default is No.

3.1.3 Monk Configuration
The parameters in this section help you set up the information required by the e*Way to
utilize Monk for communication with the external system. These parameters are
affected by the Dynamic Configuration section. See Table 5 on page 72.

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 27 SeeBeyond Proprietary and Confidential

Operational Details

The Monk functions in the communications side of the e*Way fall into the groups
shown in Table 2 on page 27.

A series of figures on the next several pages illustrates the interaction and operation of
these functions.

Initialization Functions

Figure 2 on page 28 illustrates how the e*Way executes its initialization functions.

Table 2 Monk Communications Functions

Type of Operation Name

Initialization Startup Function on page 35
(also see Monk Environment Initialization
File on page 34)

Connection External Connection Establishment Function
on page 37
External Connection Verification Function on
page 38
External Connection Shutdown Function on
page 38

Schedule-driven data
exchange

Exchange Data with External Function on
page 36
Positive Acknowledgment Function on
page 38
Negative Acknowledgment Function on
page 39

Shutdown Shutdown Command Notification Function
on page 40

Event-driven data
exchange

Process Outgoing Message Function on
page 35

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 28 SeeBeyond Proprietary and Confidential

Figure 2 Initialization Functions

Connection Functions

Figure 3 on page 29 illustrates how the e*Way executes the connection establishment
and verification functions.

Start e*Way

Load
"Monk Initialization"

file

Execute any Monk function
having the same name as the

initialization file

Load "Startup" file

Execute any Monk function
having the same name as the

startup file

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 29 SeeBeyond Proprietary and Confidential

Figure 3 Connection Establishment and Verification Functions

Note: The e*Way selects the connection function based on an internal “up/down” flag
rather than a poll to the external system. See Figure 5 on page 31 and Figure 7 on
page 33 for examples of how different functions use this flag.

User functions can manually set this flag using Monk functions. See “send-
external-up” on page 88 and “send-external-down” on page 87 for more
information.

Figure 4 on page 30 illustrates how the e*Way executes its connection shutdown
function.

Connect e*Way to
external system

Internal
flag shows connection

active?

Wait for "Up Timeout"
schedule

Call External Connection
Verification function

Wait for "Down Timeout"
schedule

Call External Connection
Establishment function

Yes

No

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 30 SeeBeyond Proprietary and Confidential

Figure 4 Connection Shutdown Functions

Schedule-driven Data Exchange Functions

Figure 5 on page 31 illustrates how the e*Way performs schedule-driven data exchange
using the Exchange Data with External function. The Positive Acknowledgment
Function and Negative Acknowledgment function are also called during this process.

“Start” can occur in any of the following ways:

! The Start Data Exchange time occurs

! Periodically during data-exchange schedule (after Start Data Exchange time, but
before Stop Data Exchange time), as set by the Exchange Data Interval

! The start-schedule Monk function is called

After the function exits, the e*Way waits for the next start schedule time or command.

Control Broker issues
"Suspend" command

Call External Connection Shutdown
function with parameter

"SUSPEND_NOTIFICATION"

e*Way closes connection

Return any value

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 31 SeeBeyond Proprietary and Confidential

Figure 5 Schedule-driven Data Exchange Functions

Shutdown Functions

Figure 6 on page 32 illustrates how the e*Way implements the shutdown request
function.

Increment "Failed
Message" counter

DATAERR plus
additional data

Null
string

Data
(other than

error strings)

Forward
external
errors?

No

Yes

Set interval flag
"Connection Down"

CONNERR

Wait for Resend
Timeout period

Roll back Event to
its publishing IQ

Increment "Failed
Message" counter

DATAERR only

Journal
enabled?

Create journal entry

Yes

No

Start

Function exits

Send Event to
e*Gate

All
subscribing

Collaborations return
TRUE

?

Call Positive
Acknowledgment

function

Zero
wait after successful

exchange?

Call Negative
Acknowledgment

function

Yes

No

YesNo

Call Exchange Data with
External function

Return

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 32 SeeBeyond Proprietary and Confidential

Figure 6 Shutdown Functions

Event-driven Data Exchange Functions

Every two minutes, the e*Way checks the “Failed Message” counter against the value
specified by the Max Failed Messages parameter. When the “Failed Message” counter
exceeds the specified maximum value, the e*Way logs an error and shuts down.

After the function exits, the e*Way waits for the next outgoing Event.

Figure 7 on page 33 illustrates event-driven data-exchange using the Process Outgoing
Message Function.

Control Broker issues
"Shutdown" command

Call Shutdown Notification function
with parameter

"SHUTDOWN_NOTIFICATION"

e*Way shuts down

Wait for
shutdown-request

function

Return

Null string or
"SUCCESS"

any other value

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 33 SeeBeyond Proprietary and Confidential

Figure 7 Event-driven Data Exchange Functions

How to Specify Function/File Names

Parameters that require the name of a Monk function accept either a function name or a
file name. If you specify a file name, be sure that the file has one of the following
extensions:

! *.monk

! *.tsc

! *.dsc

Collaboration publishes
to <EXTERNAL>

Call Process Outgoing
Message function

Set internal flag
"Connection Down"

Maximum
Resends per Message

exceeded?

Yes

Return

CONNERR DATAERR

Increment "Failed
Message" counter

Create journal entry

Null
string

No
Journal

enabled?

No

Function exits

Wait for Resend
Timeout period

Roll back Event to
its publishing IQ

Yes

Wait for Resend
Timeout period

Increment
"Resend" counter

RESEND

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 34 SeeBeyond Proprietary and Confidential

Additional Path

Description

Specifies a path to be appended to the “load path,” the path Monk uses to locate files
and data (set internally within Monk). The directory specified in Additional Path will
be searched after the default load paths.

Required Values

A path, or a series of paths separated by semicolons. This parameter is optional and
may be left blank.

Additional Information

The default load paths are determined by the “bin” and “Shared Data” settings in the
*.egate.store file. See the e*Gate Integrator System Administration and Operations Guide for
more information about this file.

To specify multiple directories, manually enter the directory names rather than
selecting them with the “file selection” button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths. For example,

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

Auxiliary Library Directories

Description

Specifies a path to auxiliary library directories. Any .monk files found within those
directories will automatically be loaded into the e*Way’s Monk environment. This
parameter is optional and may be left blank.

Required Values

A path name, or a series of paths separated by semicolons.

Additional Information

To specify multiple directories, manually enter the directory names rather than
selecting them with the “file selection” button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths. For example,

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

This parameter is optional and may be left blank.

Monk Environment Initialization File

Specifies a file that contains environment initialization functions, which will be loaded
after the auxiliary library directories are loaded. Use this feature to initialize the
e*Way’s Monk environment (for example, to define Monk variables that are used by the
e*Way’s function scripts).

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 35 SeeBeyond Proprietary and Confidential

Required Values

A file name within the “load path”, or file name plus path information (relative or
absolute). If path information is specified, that path will be appended to the “load
path.” See “Additional Path” on page 34 for more information about the “load path.”

Additional Information

Any environment-initialization functions called by this file accept no input, and must
return a string. The e*Way will load this file and try to invoke a function of the same
base name as the file name (for example, for a file named my-init.monk, the e*Way
would attempt to execute the function my-init).

Typically, it is a good practice to initialize any global Monk variables that may be used
by any other Monk Extension scripts.

The internal function that loads this file is called once when the e*Way first starts up
(see Figure 2 on page 28).

Startup Function

Description

Specifies a Monk function that the e*Way will load and invoke upon startup or
whenever the e*Way’s configuration is reloaded. This function should be used to
initialize the external system before data exchange starts.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is optional and may be left
blank.

Additional Information

The function accepts no input, and must return a string.

The string “FAILURE” indicates that the function failed; any other string (including a
null string) indicates success.

This function will be called after the e*Way loads the specified “Monk Environment
Initialization file” and any files within the specified Auxiliary Directories.

The e*Way will load this file and try to invoke a function of the same base name as the
file name (see Figure 2 on page 28). For example, for a file named my-startup.monk,
the e*Way would attempt to execute the function my-startup.

Process Outgoing Message Function

Description

Specifies the Monk function responsible for sending outgoing messages (Events) from
the e*Way to the external system. This function is event-driven (unlike the Exchange
Data with External function, which is schedule-driven).

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 36 SeeBeyond Proprietary and Confidential

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. You may not leave this field blank.

Additional Information

The function requires a non-null string as input (the outgoing Event to be sent) and
must return a string.

The e*Way invokes this function when one of its Collaborations publishes an Event to
an <EXTERNAL> destination (as specified within the Enterprise Manager). The
function returns one of the following (see Figure 7 on page 33 for more details):

! Null string: Indicates that the Event was published successfully to the external
system.

! RESEND: Indicates that the Event should be resent.

! CONNERR: Indicates that there is a problem communicating with the external
system.

! DATAERR: Indicates that there is a problem with the message (Event) data itself.

! Any other string: If a string other than the preceding is returned, the e*Way will
create an entry in the log file indicating that an attempt has been made to access an
unsupported function.

Note: If you wish to use event-send-to-egate to enqueue failed Events in a separate IQ,
the e*Way must have an inbound Collaboration (with appropriate IQs) configured
to process those Events. See “event-send-to-egate” on page 85 for more
information.

Exchange Data with External Function

Description

Specifies a Monk function that initiates the transmission of data from the external
system to the e*Gate system and forwards that data as an inbound Event to one or more
e*Gate Collaborations. This function is called according to a schedule (unlike the
Process Outgoing Message Function, which is event-driven).

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is optional and may be left
blank.

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 37 SeeBeyond Proprietary and Confidential

Additional Information

The function accepts no input and must return a string (see Figure 5 on page 31 for
more details):

! Null string: Indicates that the data exchange was completed successfully. No
information will be sent into the e*Gate system.

! CONNERR: Indicates that a problem with the connection to the external system has
occurred.

! DATAERR: Indicates that a problem with the data itself has occurred. The e*Way
handles the string “DATAERR” and “DATAERR” plus additional data differently;
see Figure 5 on page 31 for more details.

! Any other string: The contents of the string are packaged as an inbound Event. The
e*Way must have at least one Collaboration configured suitably to process the
inbound Event, as well as any required IQs.

This function is initially triggered by the Start Data Exchange schedule or manually by
the Monk function start-schedule. After the function has returned true and the data
received by this function has been positively or negatively acknowledged (by the
Positive Acknowledgment Function or Negative Acknowledgment Function,
respectively), the e*Way checks the Zero Wait Between Successful Exchanges
parameter.

If this parameter is set to Yes, the e*Way will immediately call the Exchange Data with
External function again; otherwise, the e*Way will not call the function until the next
scheduled start-exchange time or the schedule is manually invoked using the Monk
function start-schedule (see “start-schedule” on page 90 for more information).

External Connection Establishment Function

Description

Specifies a Monk function that the e*Way will call when it has determined that the
connection to the external system is down.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This field cannot be left blank.

Additional Information

The function accepts no input and must return a string:

! SUCCESS or UP: Indicates that the connection was established successfully.

! Any other string (including the null string): Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Down Timeout
parameter, and is only called according to this schedule.

The External Connection Verification function (see below) is called when the e*Way
has determined that its connection to the external system is up.

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 38 SeeBeyond Proprietary and Confidential

External Connection Verification Function

Description

Specifies a Monk function that the e*Way will call when its internal variables show that
the connection to the external system is up.

Required Values

The name of a Monk function. This function is optional; if no External Connection
Verification function is specified, the e*Way will execute the External Connection
Establishment function in its place.

Additional Information

The function accepts no input and must return a string as follows:

! SUCCESS or UP: Indicates that the connection was established successfully.

! Any other string (including the null string): Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Up Timeout
parameter, and is only called according to this schedule.

The External Connection Establishment function (see above) is called when the e*Way
has determined that its connection to the external system is down.

External Connection Shutdown Function

Description

Specifies a Monk function that the e*Way will call to shut down the connection to the
external system.

Required Values

The name of a Monk function. This parameter is optional.

Additional Information

This function requires a string as input, and may return a string.

This function will only be invoked when the e*Way receives a suspend command from
a Control Broker. When the suspend command is received, the e*Way will invoke this
function, passing the string SUSPEND_NOTIFICATION as an argument.

Any return value indicates that the suspend command can proceed and that the
connection to the external system can be broken immediately.

Positive Acknowledgment Function

Description

Specifies a Monk function that the e*Way will call when all the Collaborations to which
the e*Way sent data have processed and enqueued that data successfully.

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 39 SeeBeyond Proprietary and Confidential

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External function is defined.

Additional Information

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string:

! CONNERR: Indicates a problem with the connection to the external system. When
the connection is reestablished, the Positive Acknowledgment function will be
called again, with the same input data.

! Null string: The function completed execution successfully.

After the Exchange Data with External function returns a string that is transformed
into an inbound Event, the Event is handed off to one or more Collaborations for
further processing. If the Event’s processing is completed successfully by all the
Collaborations to which it was sent, the e*Way executes the Positive Acknowledgment
function (otherwise, the e*Way executes the Negative Acknowledgment function).

Negative Acknowledgment Function

Description

Specifies a Monk function that the e*Way will call when the e*Way fails to process and
queue Events from the external system.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External function is defined.

Additional Information

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string:

! CONNERR: Indicates a problem with the connection to the external system. When
the connection is reestablished, the function will be called again.

! Null string: The function completed execution successfully.

This function is only called during the processing of inbound Events. After the
Exchange Data with External function returns a string that is transformed into an
inbound Event, the Event is handed off to one or more Collaborations for further
processing.

If the Event’s processing is not completed successfully by all the Collaborations to
which it was sent, the e*Way executes the Negative Acknowledgment function
(otherwise, the e*Way executes the Positive Acknowledgment function).

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 40 SeeBeyond Proprietary and Confidential

Shutdown Command Notification Function

Description

Specifies a Monk function that is called when the e*Way receives a shutdown command
from the Control Broker. This parameter is optional.

Required Values

The name of a Monk function.

Additional Information

When the Control Broker issues a shutdown command to the e*Way, the e*Way calls
this function with the string SHUTDOWN_NOTIFICATION passed as a parameter.

The function accepts a string as input and must return a string as follows:

! A null string or SUCCESS: Indicates that the shutdown can occur immediately.

! Any other string: Indicates that shutdown must be postponed. Once postponed,
shutdown will not proceed until the Monk function shutdown-request is executed
(see “shutdown-request” on page 89).

Note: If you postpone a shutdown using this function, be sure to use the
(shutdown-request) function to complete the process in a timely manner.

3.1.4 External Host Setup
The External Host Setup parameters describe the FTP server to which the e*Way will
connect.

Note: These parameters may be overridden depending on how parameters in the Dynamic
Configuration section are set. See Table 5 on page 72.

Host Type

Description

Specifies the operating system of the FTP Server. The e*Way uses this parameter when
analyzing the output of the FTP list command.

Required Values

The default is UNIX. Use any one of following supported host types:

Host Type Directory structure

UNIX /dir1/dir2/file.ext

NT \dir1\dir2\file.ext

VMS disk1:[dir1.dir2]file.ext;1

MVS dir1.dir2(file)

MVS PS dir1.dir2.file

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 41 SeeBeyond Proprietary and Confidential

External Host Name

Description

Specifies the host name of the FTP server.

Required Values

A valid host name. The default is localhost.

User Name

Description

Specifies the user name the e*Way will use when gaining access to the FTP server.

Required Values

A valid user name. The default is anonymous.

Encrypted Password

Description

Specifies the password the e*Way will use when gaining access to the FTP server.

Required Values

The password appropriate for the user name specified earlier. First enter the user name
then enter the password in cleartext; the e*Way editor will store the password
encrypted. The encrypted form of the password is based on the combined username
and the password in cleartext. Therefore, an environment variable can not be used in
lieu of the username.

File Transfer Method

Description

Selects whether files are transferred via FTP protocol or by a simple file-copy operation.

Required Values

FTP or File Copy. The default is FTP.

MVS GDG dir1.dir2.file(version)

AS400 dir1/file.ext

AS400-UNIX /dir1/dir2/file.ext

HCLFTPD /dir1/dir2/file.ext

HCLFTPD /dir1/dir2/file.ext

MSFTPD /dir1/dir2/file.ext

VM/ESA file.ext

Host Type Directory structure

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 42 SeeBeyond Proprietary and Confidential

Additional Information

The File Copy parameter can be used when transferring files between physically
different systems across NFS mounts.

3.1.5 Subscribe to External
The Subscribe to External parameters control how the e*Way retrieves files from an
external system. Note that when you are archiving a local file, the archive destination
must be on the same volume as the source.

Note: These parameters may be overridden or ignored altogether depending on how
parameters in the Dynamic Configuration section are set. See Table 5 on
page 72.

Additional Information

When you are using the Batch e*Way’s Subscribe to External-related features to
retrieve files from external systems, keep the following facts in mind:

! The FTP process can copy an open file from the external system and into e*Gate. If
the file is currently being modified and correct results depend on the completed file,
an unready file could be copied into the e*Gate system. To avoid this problem, you
can set up external files to be copied using a signal to tell you whether the file is
open. For example, you can have the system try to rename the file first, and if the
rename operation fails, the file is not ready for use and not copied.

! Keep in mind that the FTP process copies files in the directory list order. You can
verify this operation by checking the persist.dat file. You can modify the list
command in this file to change the order.

Remote Directory Name

Description

Specifies a directory path on the external system from which the e*Way retrieves files.

Required Values

Leave this parameter blank to use the default directory assigned to the user name by
which the e*Way logs in (most often, the user’s home directory). Otherwise, specify an
absolute path. The path must exist on the FTP server’s system. There is no default
specified.

Remote File Regexp

Description

Specifies a regular expression that describes files to be retrieved.

Required Values

A valid regular expression. See below for restrictions on special characters.

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 43 SeeBeyond Proprietary and Confidential

Additional Information

Special characters can be used, which are expanded by the e*Way before the file is
transmitted. See “Using Special Characters” on page 53 for details.

Record Type

Description

Specifies the record structure of the files being retrieved.

Required Values

One of Delimited, Fixed, or Single Record. The default is Delimited.

Additional Information

! For delimited files, the delimiter characters are defined by the Record Delimiter
parameter

! For fixed-record files, the record size is defined by the Record Size parameter

! For single-record files, it is recommended that you use message sequencing to
prevent any messages from being overwritten (see “Sequence Numbering” on
page 49 for more information)

Record Delimiter

Description

Specifies the record delimiter in delimited files.

Required Values

A string. The delimiter can be entered in ASCII, escaped ASCII, octal, or hex. The
default is \n (new line).

Additional Information

The delimiter is stripped and is not queued as part of the record data.

Delimiter on Last Record

Description

Specifies whether the last record in a delimited file is terminated by a delimiter.

Required Values

Yes or No. The default is Yes.

Additional Information

This parameter is only used when Record Type is set to Delimited.

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 44 SeeBeyond Proprietary and Confidential

Record Size

Description

Specifies the record length for fixed-record files, in bytes.

Required Values

A positive integer between 1 and 214,783,647.

Remote Command After Transfer

Description

Specifies the command that the e*Way executes on the external system after a
successful file transfer.

Required Values

One of Rename, Archive, or None. The default is None.

Additional Information

The Archive command moves the file to the directory specified in the Remote Rename
or Archive Name (see that section) parameter.

The Rename and Archive values may not be available on all systems because they rely
on the FTP command RNFR being available on the external system. If the external
system does not support RNFR, these commands do not work.

If you are receiving multiple files, using Rename overwrites the file each time another
file is transferred. Do not use Rename unless you are providing your own handler for
manipulating the file name (see the Remote Rename or Archive Name section).

Note: MVS does not permit the renaming of partitioned data sets into different partitioned
data sets. Therefore, neither the Remote Rename nor Archive Name commands are
supported on MVS systems.

Remote Rename or Archive Name

Description

Depending on the value of Remote Command After Transfer, the parameter specifies
either the name to which to rename the external file (for Rename) or the directory in
which to archive the external file (for Archive).

Required Values

A file name or path name. There is no default specified.

Additional Information

Special characters can be used, which are expanded by the e*Way before the file is
transmitted. See “Using Special Characters” on page 53 for details. The expansion of
any special character is carried out each time this parameter is used.

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 45 SeeBeyond Proprietary and Confidential

Note: If you are entering a path name, use the forward slash (/) instead of the back slash
(\) because the e*Way interprets the back slash as a special character and not a path
separator. For example, use c:/temp/dir for that path location, not c:\temp\dir.

Local Command After Transfer

Description

Specifies the action to be performed on the temporary file after all the records in it have
been queued.

Required Values

One of Delete or Archive. The default is Delete.

Local Archive Directory

Description

Specifies the directory in which to archive the file.

Required Values

A path to a directory. There is no default specified.

Additional Information

The local file must be removed from the working directory by archiving.

Special characters can be used, which are expanded by the e*Way before the file is
transmitted. See “Using Special Characters” on page 53 for details. The expansion of
any special character is carried out each time this parameter is used.

Note: If you are entering a path, use the forward slash (/) instead of the back slash (\)
because the e*Way interprets the back slash as a special character and not a path
separator. For example, use c:/temp/dir for that path location, not c:\temp\dir.

3.1.6 Publish to External
The Publish to External parameters control how the e*Way publishes data to an
external system.

Note: These parameters may be overridden or ignored altogether depending on how
parameters in the Dynamic Configuration section are set. See Table 5 on
page 72.

Remote Directory Name

Description

Specifies a path to the directory on the external system to which the e*Way will transfer
files.

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 46 SeeBeyond Proprietary and Confidential

Required Values

Leave this parameter blank to use the default directory assigned to the user name by
which the e*Way will log in (most often, the user’s home directory). Otherwise, specify
an absolute path. The path must exist on the FTP server’s system. There is no default
specified.

Remote File Name

Description

Specifies the file name on the external system to be used for the file transfer.

Required Values

Any valid file name, as an absolute path. A file name must be specified; do not specify a
directory name.

Additional Information

Special characters can be used which are expanded by the e*Way before the file is
transmitted. See “Using Special Characters” on page 53 for details.

Append or Overwrite when Transferring Files

Description

Specifies whether to append the records in the file being transferred to the existing file
on the external system, or to overwrite the existing file on the external system with the
file being transferred.

Required Values

One of Append or Overwrite. The default is Append.

Record Type

Description

Specifies the record structure of the files being transferred to the external system.

Required Values

One of Delimited, Fixed, or Single Record. The default is Delimited.

Additional Information

! For delimited files, the delimiter characters are defined by the Record Delimiter
parameter

! For fixed-record files, the record size is defined by the Record Size parameter

! For single-record files, it is recommended that you use message sequencing to
prevent any messages from being overwritten (see “Sequence Numbering” on
page 49 for more information)

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 47 SeeBeyond Proprietary and Confidential

Record Delimiter

Description

Specifies the record delimiter in delimited files.

Required Values

A string. The delimiter can be entered in ASCII, escaped ASCII, octal, or hex. The
default is \n (new line).

Delimiter on Last Record

Description

Specifies whether the last record in a delimited file is terminated by a delimiter.

Required Values

Yes or No. The default is Yes.

Additional Information

This parameter is only used when Record Type is set to Delimited.

Record Size

Description

Specifies the record length for fixed-record files, in bytes.

Required Values

A positive integer. The range is between 1 and 214,783,647.

Remote Command After Transfer

Description

Specifies the command that the e*Way executes on the external system after a
successful file transfer.

Required Values

One of Rename, Archive, or None. The default is None.

Additional Information

The Archive command moves the file to the directory specified in the Remote Rename
or Archive Name (see that section) parameter.

The Rename and Archive values may not be available on all systems because they rely
on the FTP command RNFR being available on the external system. If the external
system does not support RNFR, these commands do not work.

If you are receiving multiple files, using Rename overwrites the file each time another
file is transferred. Do not use Rename unless you are providing your own handler for
manipulating the file name (see the Remote Rename or Archive Name section).

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 48 SeeBeyond Proprietary and Confidential

Note: MVS does not permit the renaming of partitioned data sets into different partitioned
data sets. Therefore, neither the Remote Rename nor Archive Name commands
are supported on MVS systems.

Remote Rename or Archive Name

Description

Depending on the value of Remote Command After Transfer, the parameter specifies
either the name to which to rename the external file (for Rename) or the directory in
which to archive the external file (for Archive).

Required Values

A file name or path. There is no default specified.

Additional Information

Special characters can be used, which are expanded by the e*Way before the file is
transmitted. See “Using Special Characters” on page 53 for details. The expansion of
any special character is carried out each time this parameter is used.

Note: If you are entering a path name, use the forward slash (/) instead of the back slash
(\) because the e*Way interprets the back slash as a special character and not a path
separator. For example, use c:/temp/dir for that path location, not c:\temp\dir.

Local Command After Transfer

Description

Specifies the action to be performed on the temporary file after all the records in it have
been queued.

Required Values

One of Delete or Archive. The default is Delete.

Local Archive Directory

Description

Specifies the directory in which to archive the file.

Required Values

A file name or path. There is no default specified.

Additional Information

The local file must be removed from the working directory by archiving.

Special characters can be used, which are expanded by the e*Way before the file is
transmitted. See “Using Special Characters” on page 53 for details. The expansion of
any special character is carried out each time this parameter is used.

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 49 SeeBeyond Proprietary and Confidential

Note: If you are entering a path name, use the forward slash (/) instead of the back slash
(\) because the e*Way interprets the back slash as a special character and not a path
separator. For example, use c:/temp/dir for that path location, not c:\temp\dir.

3.1.7 Sequence Numbering
The Sequence Numbering parameters determine how to use sequence numbers to
generate file names. These parameters are affected by the Dynamic Configuration
section. See Table 5 on page 72.

If sequence numbering is used, the file name must contain a single occurrence of a
special format string that designates the sequence number (see “Sequence
Numbering” on page 55). The sequence number is incremented by one after each
successful file “get.”

Note: When composing external file names, do not use wildcard characters immediately
before or after the special format string because these may cause file name expansion
ambiguities. Wild cards may not be used in the name of a sending file.

Starting Sequence Number

Description

Specifies the starting sequence number used if there is no number from a previous run
(if there is, the previous number will be used).

Required Values

A non-negative integer. The default range is from 0 to 1, but you may change the upper
limit of the range. No default is specified.

Additional Information

To change the default range in the e*Way Editor, simply change the value in the To
box. You will only be able to add a starting value higher than 1 after you change the
limit.

The number must be less than the Max Sequence Number. When the Max Sequence
Number is reached, the current sequence number rolls back to this parameter.

Max Sequence Number

Description

Specifies the last sequence number to be used before rolling over to the Starting
Sequence Number.

Required Values

A positive integer. The default range is between 1 and 214,783,647. No default is
specified.

Additional Information

This number must be greater than the Starting Sequence Number.

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 50 SeeBeyond Proprietary and Confidential

3.1.8 Recourse Action
The Recourse Action parameters determine the action to be taken if the FTP transfer
fails. This action will depend on the interface to the external system and the data
contained in the files. The default action is to shut down the e*Way, which we
recommend as the safest course of action. These parameters are affected by the
Dynamic Configuration section. See Table 5 on page 72.

Action on Fetch Failure

Description

Specifies the recourse action to be taken if the FTP operation failed when retrieving a
file from the external system.

Required Values

One of Exit, Skip File, or Next Schedule. The default is Exit.

! Exit: Shuts down the e*Way immediately.

! Skip File: Ignores the file that could not be retrieved, leaving it on the external
server. The e*Way will retry the retrieval on the next scheduled attempt.

! Next Schedule: Stops the e*Way from retrieving more files until the next schedule.
However, any files that are already retrieved will be processed.

Action on Send Failure

Specifies the recourse action to be taken if the FTP operation failed when sending a file
to the external system.

Required Values

One of Exit, Skip File, or Next Schedule. The default is Exit.

! Exit: Shuts down the e*Way immediately.

! Skip File: Ignores the file that could not be retrieved, leaving it on the external
server. The e*Way will try the retrieval again on the next scheduled attempt.

! Next Schedule: Stops the e*Way from retrieving more files until the next schedule.
However, any files that are already retrieved will be processed.

3.1.9 FTP
This section contains the parameters for communicating with a FTP server.

Server Port

Description

Specifies the port number to use for connection to the FTP server.

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 51 SeeBeyond Proprietary and Confidential

Required Values

A integer from 0 through 100000. Default is 21.

Mode

Description

Specifies the mode to use for the transfer of data to, or from, the FTP server.

Required Values

A, B, or E where A = ASCII, B = BINARY (or Image) and E = EBCDIC. The default is A.

Note: The E value is supported only within AIX systems. To transport EBCDIC data to
an ASCII-based system (UNIX or Windows), you must use the ebcdic->ascii
Monk function. See the Monk Developer’s Reference Guide.

Additional Information

The mode selected will produce different results, depending on the type of data
transferred, and the types of systems involved. The table below illustrates the possible
different configurations of systems, data, and modes, with the corresponding results.

Pretransfer Commands

Description

Specifies a set of FTP commands to use before a FTP file transfer. The command
delimiter is ‘;’. For example:

SITE RECFM=FB;SITE LRECL=50;SITE BLOCKSIZE=32750;SITE TRACKS;SITE
PRI=5;SITE SEC=5

Posttransfer Commands

Description

Specifies a set of FTP commands to use after a FTP file transfer. The command delimiter
is ‘;’.

Table 3 Results of Modes Under Different Configurations

Configuration Mode Results

Batch e*Way on ASCII
machine retrieving data
from an EBCDIC
machine.

ASCII Data converts to ASCII which can be
read on ASCII machine.

EBCDIC Data converts to ASCII which can be
read on ASCII machine.

Binary Data remains in EBCDIC.

Batch e*Way on ASCII
machine retrieving data
from an ASCII machine.

ASCII Data remains in ASCII.

EBCDIC Data converts to unreadable format.

Binary Data will be in ASCII.

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 52 SeeBeyond Proprietary and Confidential

3.1.10 SOCKS
This section contains the parameters the e*Way will use when it connects to a SOCKS5
server. These parameters are affected by the Dynamic Configuration section. See
Table 5 on page 72.

Server Host Name

Description

Specifies the SOCKS server name to use to communicate with a SOCKS5 server.

Required Values

A string indicating the name of the SOCKS server.

Server Port

Description

Specifies the port number to use on the SOCKS server for connection. A non-negative
integer implies that the e*Way will be connecting to a SOCKS server. Therefore, leave
this parameter empty if the e*Way will not be connecting to a SOCKS server.

Required Values

An integer from 0 through 100000. Default is 0.

Leave this field blank if the e*Way will not connect to a SOCKS server. Otherwise, enter
a non-negative integer in the range 0 through 100,000.

Note: Check with your System Administrator to verify the availability and necessity of
configuring the SOCKS server.

Method

Description

Specifies the SOCKS5 method-dependent subnegotiation, and determines whether a
user name and encrypted password are required.

Required Values

No Authentication (the default) or User/Password. These are the only two methods
that the Batch e*Way supports. No Authentication indicates that neither the User
Name nor a password are required.

If User/Password is selected, specifying the values for these two parameters is required:

! User Name

! Encrypted Password

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 53 SeeBeyond Proprietary and Confidential

User Name

Description

When User/Password is selected for the Method parameter, the user name specified
here (and the Encrypted Password) is used for authentication with the SOCKS server.

Required Values

String value of the user name. The default value is anonymous.

Encrypted Password

Description

When User/Password is selected for the Method parameter, the password specified
here is used (with the User Name) for authentication with SOCKS server.

Required Values

String value of the Password.

Note: The Batch e*Way does not support Kerberos authentication protocol.

3.1.11 Using Special Characters
Directory and file names can contain special characters. In most cases, these characters
are undesirable for directory names and for outbound file names, but are not
prohibited.

Literal Characters

If a literal character is required, the special character must be preceded by a backslash
(\), for example, * for the asterisk character.

Wildcard Expansion

The wildcard characters can be used when retrieving files. After the Batch e*Way
requests and receives a list from remote directory, it filters the list using Remote File
Regexp.

(For more information, see “Remote File Regexp” on page 42. See also, “batch-fetch-
files-from-remote” on page 104, “file-remote-path-list” on page 154, “ftp-remote-
path-list” on page 203.)

The filtering is Batch e*Way implementation-specific. These wildcard characters are:

Wildcard
Character Description

* Zero or more matches of the preceding character

+ One or more matches of the preceding character

. Any single character

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 54 SeeBeyond Proprietary and Confidential

Hexadecimal and Octal

To insert a hexadecimal value, use the notation \xNN where NN is a hexadecimal
number.

To insert an octal value, use the notation \oNNN where N is a valid octal digit.

Unprintable Characters

A number of common characters have a well-defined representation. These characters
are frequently used as record delimiters, especially \n and \r. They are:

Date and Time Expansion

The following expansions relate to those provided by the C strftime() function (the
expansion is site-specific):

Special
Character Description

\0 Null character (\x00)

\a Audible bell character (\x07)

\b Backspace (\x08)

\f Form feed (\x0c)

\n New line (\x0a)

\r Line feed (\x0d)

\t Tab (\x09)

\c Vertical tab (\x0b)

Special
Character Description

%a Abbreviated weekday

%A Full weekday

%b Abbreviated month name

%B Full month name

%c Date and time representation (location-specific)

%d Day of month (01-31)

%H Hour (00-23)

%I Hour (01-12)

%j Day of the year (001-366)

%m Month (01-12)

%M Minute (00-59)

%p AM or PM

Chapter 3 Section 3.2
Configuration FTP Heuristics

Batch e*Way Intelligent Adapter User’s Guide 55 SeeBeyond Proprietary and Confidential

Sequence Numbering

Special characters used for sequence numbering are

File Name Replacement

Use the special character %f if you need a working file name replacement. For example,
if the original working file name is abcd, %f.txt stands for abcd.txt.

3.2 FTP Heuristics
The FTP heuristics are a set of parameters which the e*Way uses (via the FTP .dll file) to
interact with external FTP daemons on a system-specific level. The primary functions
create and parse both path and file names in the style required by the external system.

You do not normally need to change any of the FTP heuristics, since the default
parameters have been set up for the most commonly used operating systems. This
section is provided as a reference should any changes be necessary to accommodate
your site’s requirements.

The FTP heuristics are stored in the file FtpHeuristics.cfg, which are downloaded from
the e*Gate Registry when the e*Way invokes the Monk function ftp-init (see ftp-init on
page 167 for more information), and configuration changes can be made using the
e*Gate Enterprise Manager’s e*Way Editor GUI.

%S Seconds (00-61)
Note: Seconds may be as high as 61 if there are leap
seconds to be accounted for.

%U Week number, starting on the first Sunday

%W Week number, starting on the first Monday

%w Day of the week, (Sunday=0)

%x Date representation (location-specific)

%y Year (00-99)

%Y Year including century

%Z Time zone

Special
Character Description

%# Sequence number

%5# Sequence number padded to five places

Special
Character Description (Continued)

Chapter 3 Section 3.2
Configuration FTP Heuristics

Batch e*Way Intelligent Adapter User’s Guide 56 SeeBeyond Proprietary and Confidential

3.2.1 Operating System or File Type Selection
Each operating system defined within the FTP heuristics file sets the same parameters,
described below. In the e*Way Editor GUI, the operating system is selected by the Goto
Selection list.

FTP Heuristics support the following file types:

! UNIX

! Windows NT 3.5

! Windows NT 4.0

! HCLFTPD 5.1

! HCLFTPD 6.0.1.3

! VMS

! MSFTPD 2.0

! MVS (Partitioned Data Set (PDS))

! MVS PS (Physical Sequential)

! MVS GDG (Generation Data Group)

! VM/ESA

! AS400

! AS400-UNIX

! MPE

The FTP heuristic functions used for communication with MVS PDS, MVS PS, and MVS
GDG for the Batch e*Way are designed for FTP servers (at the mainframe) that use IBM
IP stack.

Therefore, when you use FTP to an MVS, MVS PS, or MVS GDG file system on a
Mainframe, you need to make sure that the FTP server is using IBM IP stack. If any
other IP stack is in place, the FTP heuristic functions do not work or can require
modification.

Note: The following MONK function APIs are not supported on heuristics MVS GDG:
ftp-rename
ftp-rename-path
ftp-archive
ftp-archive-path
ftp-delete
ftp-delete-path

For more information, see Advanced FTP Functions on page 172

Chapter 3 Section 3.2
Configuration FTP Heuristics

Batch e*Way Intelligent Adapter User’s Guide 57 SeeBeyond Proprietary and Confidential

3.2.2 Configuration Parameters
The section explains the configuration parameters for FTP heuristics feature of the
Batch e*Way.

Commands Supported by FTP Server

Description

Specifies the commands that the FTP server on the given host supports.

Required Values

One or more FTP commands as selected from the list.

Header Lines To Skip

Description

Specifies the number of beginning lines from a LIST command to be considered as a
potential header (subject to the Header Indication Regex Expression configuration
parameter, discussed below) and skipped.

Required Values

A non-negative integer. Enter zero if there are no headers.

Additional Information

In the example below, the line “total 6” comprises a one-line header.

total 6
-rw-r----- 1 ed usr 110 Apr 15 13:43 AAA
-rw-r--r-- 1 ed usr 110 Apr 15 13:33 aaa

Header Indication Regex Expression

Description

Specifies a regular expression used to help identify lines which comprise the header in
the output of a LIST command. All the declared lines of the header (see Header Lines
To Skip, above) must match the regular expression.

Required Values

A regular expression. The default varies based on the FTP server’s operating system. If
there is no reliable way of identifying the header lines in the LIST command’s output,
leave this parameter undefined.

Additional Information

The regular expression “^ *total” indicates that each line in the header starts with
“total,” possibly preceded by blanks. For example,

total 6
-rw-r----- 1 ed usr 110 Apr 15 13:43 AAA
-rw-r--r-- 1 ed usr 110 Apr 15 13:33 aaa

Chapter 3 Section 3.2
Configuration FTP Heuristics

Batch e*Way Intelligent Adapter User’s Guide 58 SeeBeyond Proprietary and Confidential

If the regular expression is undefined, then the header is solely determined by the value
of the configuration parameter Header Lines To Skip.

Trailer Lines To Skip

Definition

Specifies the number of ending lines from a LIST command that are to be considered as
a potential Trailer (subject to the Trailer Indication Regex Expression) and skipped.

Required Values

A non-negative integer. Enter zero if there are no trailers.

Trailer Indication Regex Expression

Definition

Specifies the regular expression used to help identify lines which comprise the trailer in
the output of a LIST command. All the declared lines of the trailer (see Trailer Lines To
Skip) must match the regular expression.

Required Values

A regular expression. If there is no reliable way of identifying the trailer lines in the
LIST output, then leave this parameter undefined.

Additional Information

If the regular expression is undefined, then the header is determined solely by the value
of the Trailer Lines To Skip configuration parameter.

Directory Indication Regex Expression

Definition

Specifies a regular expression used to identify external directories in the output of a
LIST command. Directories cannot be retrieved and must be filtered out of the file list.

Required Values

A regular expression. If there is no reliable way of identifying the trailer lines in the
LIST output, then leave this parameter undefined.

Additional Information

The regular expression “^ *d” specifies that a directory is indicated by a line starting
with the lowercase ‘d,’ possibly preceded by blanks. For example,

drwxr-xr-x 2 ed usr 2048 Apr 17 17:43 public_html

File Link Real Data Available

Definition

Specifies whether a file may be a file link (a pointer to a file) on those operating systems
whereon an FTP server will return the data for the real file as opposed to the content of
the link itself.

Chapter 3 Section 3.2
Configuration FTP Heuristics

Batch e*Way Intelligent Adapter User’s Guide 59 SeeBeyond Proprietary and Confidential

Required Values

Yes or No.

File Link Indication Regex Expression

Definition

Specifies a regular expression that identifies external file links in the output of a LIST
command. File links are pointers to the real file and usually have some visual symbol,
such as ->, mixed in with the file name in the output of the LIST command. Only the
link name is desired within the returned list.

Required Values

A regular expression. If there is no reliable way of identifying a file link within a LIST
output, then leave this parameter undefined.

Additional Information

The regular expression “^ *l” specifies that a file link is indicated by a line starting with
the lowercase “l,” preceded possibly by blanks. For example,

lrwxr-xr-x 2 ed usr 2048 Apr 17 17:43 p -> public_html

File Link Symbol Regex Expression

Definition

Specifies a regular expression that parses the external file link name in the output of a
LIST command. Only the link name is required for the file list to be returned.

Required Values

A regular expression. If there is no reliable way of identifying a file link within a LIST
output, then leave this parameter undefined.

Additional Information

The regular expression “[] ->[]” defines that a file link symbol is represented by an
arrow surrounded by spaces (“ -> “). When parsed, only the file name to the right of the
symbol will be used. In the following example, only the public_html would be used,
not the “p” character:

lrwxrwxrwx 2 ed usr 4 Apr 17 17:43 p -> public_html

List Line Format

Definition

Specifies whether fields in each line are blank delimited or fixed, that is, whether
information always appears at certain columns.

Required Values

Blank Delimited or Fixed.

Chapter 3 Section 3.2
Configuration FTP Heuristics

Batch e*Way Intelligent Adapter User’s Guide 60 SeeBeyond Proprietary and Confidential

Additional Information

Even though some lines appear to be blank delimited, be wary of certain fields
continuing their maximum value when juxtaposed with the next field without any
separating blank. In such a case, we recommend you declare the line as “Fixed”. For
example,

-rw-r--r-- 1 ed usr 110 Apr 15 13:33 aaa
^^^^^^^^^^ ^ ^^ ^^^ ^^^ ^^^ ^^ ^^^^^ ^^^

 1 2 3 4 5 6 7 8 9

Valid File Line Minimum Position

Definition

Specifies the minimum number of positions (inclusive) a listing line must have in order
to be considered as a possible valid file name line.

Required Values

For a Fixed list line format, enter a value equal to the number of columns, counting the
first column at the far left as column 1. For a Blank Delimited list line format, enter a
value equal to the number of fields, counting the first field on the far left as field 1.

For either case, if no minimum can be determined, set this value to zero (0).

Additional Information

For example, in the Blank Delimited line below, the minimum number of fields is 9:

-rw-r--r-- 1 ed usr 110 Apr 15 13:33 aaa
^^^^^^^^^^ ^ ^^ ^^^ ^^^ ^^^ ^^ ^^^^^ ^^^

 1 2 3 4 5 6 7 8 9
 File Name

Note: The URL FTP Proxy will fail on ascertaining file names that have leading and/or
trailing blanks.

File Name Is Last Entity

Definition

Specifies whether the file name is the last entity on each line. This allows the file name
to have imbedded blanks (however, leading or trailing blanks are not supported).

Required Values

Yes or No.

File Name Position

Definition

Specifies the starting position (inclusive) of a file name.

Chapter 3 Section 3.2
Configuration FTP Heuristics

Batch e*Way Intelligent Adapter User’s Guide 61 SeeBeyond Proprietary and Confidential

Required Values

For Fixed list line format, enter the column number, counting the first column on the far
left as column 1. For Blank Delimited list line format, enter the field number, counting
the first field on the extreme left as field 1.

Additional Information

For Blank Delimited List Line Format only, if the file name has imbedded blanks, then
it can span over several fields.

For example,
-rw-r--r-- 1 ed usr 110 Apr 15 13:33 aaa
^^^^^^^^^^ ^ ^^ ^^^ ^^^ ^^^ ^^ ^^^^^ ^^^

1 2 3 4 5 6 7 8 9
 File Name

File Name Length

Definition

Represents the maximum width of a file name; valid only for Fixed list line format.

Required Values

! An Integer: Positive lengths imply that the file name is right-justified within the
maximum field width, and thus leading-blanks are discarded.

! Negative Lengths: That is, compared to the absolute length, imply that the file
name is left-justified and trailing-blanks are discarded.

! Zero (0) Value Length: If the file name is at the end of a file listing line, this value
implies that the file name field extends to the end of the line.

Note: For Blank Delimited list line format, this value is usually zero (0). However, if the
File Name Length parameter is supplied even though a Blank Delimited list line
format is specified, this implies that if the file name field exceeds the given length,
then the rest of the List Line data occurs on the following line.

File Extension Position

Definition

Specifies the left-most position of the file extension for those operating systems that
present the file name extension separated from the main file name.

Required Values

For Fixed list line format, enter the column number, counting the first column at the
extreme left as column 1. For Blank Delimited list line format, enter the field number,
counting the first field at the far left as field 1. If there is no file extension (as on UNIX
systems) set the value to zero (0).

Chapter 3 Section 3.2
Configuration FTP Heuristics

Batch e*Way Intelligent Adapter User’s Guide 62 SeeBeyond Proprietary and Confidential

File Extension Length

Definition

Specifies the maximum width of the file extension; valid only for Fixed list line format.

Required Values

! An Integer

! Positive Lengths: Imply that the file extension is right-justified within the
maximum field width and therefore leading-blanks are discarded.

! Negative Lengths: Imply that the file extension is left-justified and trailing-blanks
are discarded (the absolute length is used).

! Value of Zero (0): Always for the Blank Delimited list line format.

File Size Verifiable

Definition

Specifies whether the file size is verifiable, significant, and accurate within a directory
listing.

Required Values

Yes or No. The File Size Stability Check configurable parameter must also be enabled.

Additional Information

Even if the file size field of a listing line is not significant (that is, it is there but only
represents an approximate value), the value of this parameter should be No, but the file
size location should still be declared in the File Size Position parameter below to assist
determining which line of listing represents a valid file name.

Note: Use of this parameter does not guarantee that the file is actually stable. We do not
recommend that you rely on this functionality for critical data; the feature is
intended only for backward compatibility with previous FTP implementations.

Example
-rw-r--r-- 1 ed usr 110 Apr 15 13:33 aaa

 ^^^
 File Size

File Size Position

Definition

Specifies the left-most position in the listing line that represents the size of the file. Even
though for some operating systems the value shown might not truly reflect the file size,
this position is still important in ascertaining that the line contains a valid file name.

Chapter 3 Section 3.2
Configuration FTP Heuristics

Batch e*Way Intelligent Adapter User’s Guide 63 SeeBeyond Proprietary and Confidential

Required Values

A non-negative integer. For Fixed list line format, the position value is the column
number (starting with one (1) on the far left). For Blank Delimited, this value
represents the field number (starting with one (1) on the far left). If the LIST line does
not have a size field, set this parameter to zero (0).

Additional Information

Example
-rw-r--r-- 1 ed usr 110 Apr 15 13:33 aaa
^^^^^^^^^^ ^ ^^ ^^^ ^^^ ^^^ ^^ ^^^^^ ^^^

 1 2 3 4 5 6 7 8 9
File

 Size

The following represent valid number representations of file sizes:

1234 or 1,234,567 or -12345 or +12345 or ' 1234 ' or 12/34 or
1,234/56

The following represent invalid number representations of file sizes (the ^ indicates
where the error occurs):

'12 34' or 123,45,678 or 123-456-789 or --123 or 123-
 ^ ^ ^ ^ ^

or 12345678901 or any number > 4294967295 or < -2147483647
 ^ (too large)

or 123.45 or 12AB34 or 0x45 or ,123,456 or 12//34
^ ^ ^ ^ ^

or /123 or 123/ or 12,3/45
 ^ ^ ^

File Size Length

Definition

Specifies the maximum width (number of columns) of the file size field, only valid for
Fixed List Line Format.

Required Values

A non-negative integer. For Blank Delimited list line format, set this value to zero (0).

Special Envelope For Absolute Path Name

Definition

Specifies special enveloping characters required to surround an absolute path name
(for example, single quotes are used in MVS). Only use a single quote at the start of the
directory name.

Required Values

A pair of enveloping characters. Even if the leading and trailing character is identical,
enter it twice.

If no enveloping characters are required for an operating system, leave this parameter
undefined.

Chapter 3 Section 3.2
Configuration FTP Heuristics

Batch e*Way Intelligent Adapter User’s Guide 64 SeeBeyond Proprietary and Confidential

Note: On UNIX, this parameter is always undefined.

Listing Directory Yields Absolute Path Names

Definition

Specifies whether, when the DIR command is used on a directory name, the resulting
file names are absolute.

Required Values

Yes or No.

Note: On UNIX, this character is always set to No.

Absolute Path Name Delimiter Set

Definition

Specifies any absolute path requiring certain delimiters to separate directory names (or
their equivalent) from each other and from the file name.

Required Values

Enter the delimiters for the absolute path, starting from the left, for:

! Initial (left-most) directory delimiter

! Intermediate directory delimiters

! Initial (left-most) file name delimiter

! Optionally, the ending (right-most) file name delimiter

Wherever there is no specific delimiter, use “\0” (backslash zero) to act as a
placeholder. Delimiters that are backslashes need to be escaped with another backslash.

Additional Information

OS Path Name Format

Delimiter Set

1 2 3 4 Ente
r

UNIX /dir1/dir2/file.ext / / / ///

Windows C:\dir1\dir2\file.ext \\ \\ \\ \\\\\\

VMS disk1:[dir1.dir2]file.ext;1 [.] ; [.];

MVS dir1.dir2(file) \0 . () \0.()

MVS PS dir1.dir2.filename \0 . . \0..

MVS GDG dir1.dir2.file(version) \0 . . \0..

AS400 dir1/file.ext \0 / . \0/.

Chapter 3 Section 3.3
Configuration Environment Configuration

Batch e*Way Intelligent Adapter User’s Guide 65 SeeBeyond Proprietary and Confidential

Change Directory Before Listing

Definition

Determines whether a change directory (cd) needs to be done before issuing the DIR
command to get a listing of files under the desired directory.

Required Values

Yes or No.

Directory Name Requires Terminator

Definition

Determines whether a directory name that is not followed immediately by a file name
requires the ending directory delimiter as a terminator (for example, as on VMS).

Required Values

Yes or No.

3.3 Environment Configuration
To support the operation of this e*Way, no changes are necessary, either in the
Participating Host’s operating environment or in the e*Gate system.

Note: Changes to Monk files can be made using the Collaboration Rules Editor (available
from within the e*Gate Enterprise Manager) or with a text editor. However, if you
use a text editor to edit Monk files directly, you must commit these changed files to
the e*Gate Registry or your changes will not be implemented.

For more information about committing files to the e*Gate Registry, see the
Enterprise Manager’s online Help system, or the stcregutil command-line utility
section in the e*Gate Integrator System Administration and Operations
Guide.

3.4 External Configuration Requirements
There are no configuration changes required in the external system. All necessary
configuration changes can be made within e*Gate.

Batch e*Way Intelligent Adapter User’s Guide 66 SeeBeyond Proprietary and Confidential

Chapter 4

Message-based Configuration

This chapter explains the message-based operation of the Batch e*Way and explains
how to use the Dynamic Configuration parameters for this e*Way.

4.1 General Operation
There are the following cases for the ordering transmission:

" Order e*Way to send one time (possibly to multiple destinations)

" Order e*Way to receive one time (possibly from multiple sources)

In either of these cases, the “order” Extensible Markup Language (XML) message
has the following basic format:

<batch_e*Way_order>
<command> (command) </command>
<order_record>

<error_record>
</error_record>

</order_record>
<order_record>

<error_record>
</error_record>

</order_record>
<payload> (DATA) </payload>

</Batch_e*Way_Order>

The main record has the following subrecords:

! Command can be “send” or “receive.”

! Order contains the details for sending or retrieving to/from a single source/
destination.

! Error contains error information published by the e*Way after attempting to execute
the order. This subrecord is only sent if Publish Status Record on Error (see
“Publish Status Record on Error” on page 74) is set to Yes. See also “Publish
Status Record on Success” on page 74.

! Payload (send only) specifies the data to be sent.

Chapter 4 Section 4.1
Message-based Configuration General Operation

Batch e*Way Intelligent Adapter User’s Guide 67 SeeBeyond Proprietary and Confidential

The data can come in the following forms:

! In the first case, the payload node can contain base64 data, in which case it has a
payload attribute set to base64Insitu.

! In the second case, the payload node represents the directory for the payload, in
which case it has a payload attribute equal to localDir.

Dynamic Configuration

Use the following Document Type Definition (DTD) and e*Gate Event Type Definition
(ETD) files with dynamic configuration:

4.1.1 Sending Data with a “Send” Order
The following example shows an XML message:

<batch_e*way_order>
<command> send </command>
<order_record>
<external_host_setup>

<host_type> Unix </host_type>
<user_name> Alincoln </user_name>
<encrypted_password> liasdfLIJB </encrypted_password>
<file_transfer_method> ftp </file_transfer_method>

</external_host_setup>
<communication_setup>

<down_timeout> 10 </down_timeout>
<up_timeout> 20 </up_timeout>
<resend_timeout> 20 </resend_timeout>

</communication_setup>
<publish_to_external>

<remote_directory_name>/usr/home/honest_abe/to
</remote_directory_name>

<remote_file_name> X1.tmp </remote_file_name>
<append_or_overwrite>overwrite </append_or_overwrite>
<remote_rename_or_archive name>X1.dat

</remote_rename_or_archive_name>
</publish_to_external>
</order_record>
<payload> (DATA) </payload>

</batch_e*way_order>

The previous example shows the delivery of a file to an external system. It is one XML
message, batch_e*way_order, that contains a command record, one or more order
records, and finally a single payload. The order record represents one destination for
this payload. If any of the individual orders fails, then the e*Way publishes an error
record.

Table 4 Dynamic Configuration Files

DTD File Corresponding ETD File

batch_eway_data.dtd batch_eway_data.xsc

batch_eway_error.dtd batch_eway_error.xsc

batch_eway_order.dtd batch_eway_order.xsc

Chapter 4 Section 4.1
Message-based Configuration General Operation

Batch e*Way Intelligent Adapter User’s Guide 68 SeeBeyond Proprietary and Confidential

Please see “Send or Receive XML Messages” on page 263 for the corresponding DTD
file.

4.1.2 Receiving Data with a “Receive” Order
Receiving from a file is similar to sending, as shown in this example.

<batch_e*way_order>
<command> receive </command>
<external_host_setup>

<host_type> Unix </host_type>
<user_name> Alincoln </user_name>
<encrypted_password>liasdfLIJB </encrypted_password>
<file_transfer_method> ftp </file_transfer_method>
<return_tag> Factor order </return_tag>

</external_host_setup>
<communication_setup>

<down_timeout> 10 </down_timeout>
<up_timeout> 20 </up_timeout>
<resend_timeout> 20 </resend_timeout>

</communication_setup>
<subscribe_to_external>

<remote_directory_name> /usr/home/honest_abe/from
</remote_directory_name>

<remote_file_regexp> Y*.dat </remote_file_regexp>
</subscribe_to_external>

</batch_e*way_order>

In this case, the e*Way retrieves all of the files in the designated directory that match the
given regular expression, and stores them in a temporary directory. It then reads the
entire contents of each file and sends it to e*Gate as a publication (using the event-send-
to-egate function).

The message sent is similar to the XML message that initiated the transfer, except for
the following characteristics:

! There is one return message per order in the command, instead of one return per
command. Thus, if a command is received with orders for three transfers, the e*Way
attempts three transfers and returns the three files so retrieved as three “receive”
responses.

! The message contains a “payload” field with the data received. See the following
example:

<batch_e*way_order>
<command> receive </command>
<external_host_setup>

<host_type> Unix </host_type>
<user_name> Alincoln </user_name>
<encrypted_password> liasdfLIJB </encrypted_password>
<file_transfer_method> ftp </file_transfer_method>
<return_tag> Factor order </return_tag>

</external_host_setup>
<communication_setup>

<down_timeout> 10 </down_timeout>
<up_timeout> 20 </up_timeout>
<resend_timeout> 20 </resend_timeout>

</communication_setup>
<subscribe_to_external>

<remote_directory_name> /usr/home/honest_abe/from

Chapter 4 Section 4.1
Message-based Configuration General Operation

Batch e*Way Intelligent Adapter User’s Guide 69 SeeBeyond Proprietary and Confidential

</remote_directory_name>
<remote_file_regexp> Y*.dat </remote_file_regexp>

</subscribe_to_external>
<payload> (DATA) </payload>

</batch_e*way_order>

The e*Way only acknowledges (“ACK”) the order command message after all records
have been sent. The <return_tag> field of the XML message is used to store a unique
tag generated by the originator of the command. This tag allows the e*Gate system
administrator to determine, as each response comes back, which system gave that
response.

As a final example of the receive command, consider this example of a command to go
to three different systems for three different kinds of data, Factory Orders, Builds of
Materials, and Engineering Updates.

First, note the following command record (transfer details omitted for brevity):

<batch_e*way_order>
<command> receive </command>

<return_tag> Factory order </return_tag>
<return_tag> Build of Materials </return_tag>
<return_tag> Engineering Updates </return_tag>

</batch_e*way_order>

In this example, the Batch e*Way tries each receive transfer and follows its normal
procedures for retrying and raising exceptions, if there are problems. As each transfer
succeeds, it returns an XML message with the payload and the corresponding return
tag. If it fails, it returns an XML message with the error record.

The e*Way begins with the Factory Order as follows:

<batch_e*way_order>
<command> receive </command>

<return_tag> Factory order </return_tag>
<payload> (DATA) </payload>

</batch_e*way_order>

The e*Way then continues with each of the other two (Build of Materials and
Engineering Updates) as follows:

<batch_e*way_order>
<command> receive </command>

<return_tag> Build of Materials </return_tag>
<payload> (DATA) </payload>

</batch_e*way_order>

<batch_e*way_order>
<command> receive </command>

<return_tag> Engineering Updates </return_tag>
<payload> (DATA) </payload>

</batch_e*way_order>

See “Send or Receive XML Messages” on page 263 for the corresponding DTD file.

Chapter 4 Section 4.2
Message-based Configuration Configuration

Batch e*Way Intelligent Adapter User’s Guide 70 SeeBeyond Proprietary and Confidential

4.1.3 Error Reporting
If the parameter Publish Status Record on Error (see “Publish Status Record on Error”
on page 74) is set to Yes, and the e*Way has problems with one order, it publishes the
command message with all orders stripped out, except those that failed, as well as the
population of the corresponding error records.

See the following template:

<batch_e*way_order>
<command> (command) </command>
<order_record>
<error_record>
<error_code> </error_code>
<error_text> </error_text>
<last_action> </last_action>
</error_record>
</order_record>
<payload> (DATA) </payload>

</batch_e*way_order>

The “last action” record contains whatever command the e*Way can indicate. Thus, if
there is a failure on renaming a file after the transfer, the e*Way populates this field with
the rename command it is trying to carry out.

Please see “Error Messages” on page 264, for the corresponding DTD file.

4.2 Configuration
The Batch e*Way consists of several sections that contain parameters for configuring the
Batch e*Way, one of which is Dynamic Configuration. For details about the other
configuration sections for the Batch e*Way, see “e*Way Configuration Parameters” on
page 21.

The configuration parameters are set by using the e*Way Editor. To change e*Way
configuration parameters, do the following operations:

1 In the Enterprise Manager’s Component editor, select the e*Way you want to
configure and display its properties.

2 Under Configuration File, click New to create a new file, Find to select an existing
configuration file, or Edit to edit the currently selected file.

3 In the Additional Command Line Arguments box, type any additional command
line arguments that the e*Way may require, taking care to insert them at the end of
the existing command-line string. Be careful not to change any of the default
arguments unless you have a specific need to do so.

For more information about how to use the e*Way Editor, see the e*Way Editor’s online
Help or the e*Gate Integrator User’s Guide.

Chapter 4 Section 4.2
Message-based Configuration Configuration

Batch e*Way Intelligent Adapter User’s Guide 71 SeeBeyond Proprietary and Confidential

4.2.1 Dynamic Configuration
This section explains the following parameters for a dynamic Batch e*Way:

! “Enable Message Configuration” on page 71

! “Publish Status Record on Success” on page 74

! “Publish Status Record on Error” on page 74

! “Include Order Record in Error Record” on page 74

! “Include Payload in Error Record” on page 75

! “Action on Mal-formed Command” on page 75

Enable Message Configuration

Description

Use this parameter to indicate that the e*Way contains an XML message which
determines its activities. The XML message should contain all relevant parameters that
govern the transfer, including the data to be sent (if it is an outbound transfer). See
Appendix A, “Document Type Definitions” on page 263 for details about the DTD.

Note: When the XML message sets the e*Way to receive, Batch retrieves the external file
and wraps it into XML payload (see Data Message on page 265), and transforms
the data into Base64 format. To send the data back in its original format, use the
Base64-to-Raw Monk function. Details on how to use this function are explained
in the Monk Developer’s Reference Guide.

Required Values

Yes or No. (No is the default).

When this parameter is set to Yes, the Batch e*Way becomes Event-driven, so it does
NOT exchange data based on scheduling, and the record type is always a single record.

Note: If the fields marked as “Overridden by message” are set by the XML message, then
the table below holds true. However, if the fields are NOT set by the XML message,
then those fields marked as “Overridden by message” MUST be specified in the .cfg
file. Only publication OR subscriptions fields must be set, unless this e*Way is a
publisher AND a subscriber.

Chapter 4 Section 4.2
Message-based Configuration Configuration

Batch e*Way Intelligent Adapter User’s Guide 72 SeeBeyond Proprietary and Confidential

Furthermore, when the Message Configuration is enabled, certain Configuration
Sections (see page “e*Way Configuration Parameters” on page 21) and parameters are
affected, as shown in the Table 5 on page 72.

Table 5 Effect of Message Configuration Enabled

Section Parameter Effect

Communication
Setup

Start Exchange Data Schedule Ignored.

Stop Exchange Data Schedule Ignored.

Exchange Data Interval Ignored.

Zero Wait Between Successful
Exchanges

Ignored.

Down Timeout Ignored.

Up Timeout Ignored.

External Host Setup External Host Name Overridden by message.

Host Type Overridden by message.

User Name Overridden by message.

Encrypted Password Overridden by message.

File Transfer Method Overridden by message.

Monk Configuration Process Outgoing Message
Function

The XML event is parsed and
processed.

Exchange Data With External
Function

Ignored.

Positive Acknowledgment Function Ignored.

Negative Acknowledgment
Function

Ignored.

Startup Function Normal behavior, but the value
assigned to transfer method is
ignored.

Publish To External Remote Directory Name Overridden by message.

Chapter 4 Section 4.2
Message-based Configuration Configuration

Batch e*Way Intelligent Adapter User’s Guide 73 SeeBeyond Proprietary and Confidential

Publish To External Remote File Name Overridden by message.

Append or Overwrite when
Transferring Files

Overridden by message.

Record Type Automatically set to Single
Record. Any other value is
ignored.

Record Delimiter Ignored.

Delimiter on Last Record Ignored.

Record Size Ignored.

Remote Command After Transfer Overridden by message.

Remote Rename or Archive Name Overridden by message.

Local Command After Transfer Overridden by message.

Local Archive Directory Overridden by message.

Recourse Action Action on Fetch Failure Normal behavior, but an
additional option is needed to
publish the Event that contains
the configuration message.

Action on Send Failure Normal behavior, but an
additional option is needed to
publish the Event that contains
the configuration message.

Sequence Numbering Starting Sequence Number Ignored.

Max Sequence Number Ignored.

SOCKS Server Host Name Overridden by message.

Server Port Overridden by message.

Subscribe To External Remote Directory Name Overridden by message.

Remote File Regexp Overridden by message.

Record Type Ignored.

Record Delimiter Ignored.

Delimiter on Last Record Ignored.

Record Size Ignored.

Remote Command After Transfer Overridden by message.

Remote Rename or Archive Name Overridden by message.

Local Command After Transfer Overridden by message.

Local Archive Directory Overridden by message.

Table 5 Effect of Message Configuration Enabled (Continued)

Section Parameter Effect

Chapter 4 Section 4.2
Message-based Configuration Configuration

Batch e*Way Intelligent Adapter User’s Guide 74 SeeBeyond Proprietary and Confidential

Publish Status Record on Success

Description

When this parameter is set to Yes, the Batch e*Way will publish a "good error" record to
e*Gate, with the same format that is specified in batch_eway_error.dtd. (See “Error
Messages” on page 264.) The “good error” record is published only when the payload
has been successfully sent to the remote host.

Note: The user must configure an inbound topic and process this event.

The <error_code> element of the XML message will be zero (0) to indicate that there are
no errors, and the <error_text> will represent the time the file was successfully
transferred.

An example follows:

Successfully sent on: Fri, 29 Jun 2001 at 14:02:30 PDT

See also “Enable Message Configuration” on page 71 and “Publish Status Record on
Error” on page 74.

Required Values

Yes or No. No is the default.

Publish Status Record on Error

Description

This parameter determines whether or not the Batch e*Way publishes an error record to
e*Gate. The error record is in the format of batch_eway_error.dtd (See “Error
Messages” on page 264). However, you are required to configure an inbound topic to
process this Event.

Required Values

Yes or No. No is the default.

Include Order Record in Error Record

Description

If this parameter is set to Yes, the Batch e*Way includes an Order Record as part of an
error record when Publish Status Record on Error is enabled.

FTP server_port Overridden by message.

mode Overridden by message.

Pretransfer_Commands Overridden by message.

Posttransfer_Commands Overridden by message.

Table 5 Effect of Message Configuration Enabled (Continued)

Section Parameter Effect

Chapter 4 Section 4.2
Message-based Configuration Configuration

Batch e*Way Intelligent Adapter User’s Guide 75 SeeBeyond Proprietary and Confidential

Required Values

Yes or No. No is the default.

Include Payload in Error Record

Description

If this parameter is set to Yes, the Batch e*Way includes the Payload as part of an Error
Record when the Order Record Command is Send.

Required Values

Yes or No. No is the default.

Action on Mal-formed Command

Description

If Enable Message Configuration is set to Yes, the Batch e*Way requires a specific XML
message structure. This parameter specifies the action that the Batch e*Way takes when
the Outgoing Event doesn't match the XML message structure the e*Way requires.

Required Values

One of the following values:

! Exit

! Ignore

! Raise Alert

! Publish Error Record

Exit is the default.

Batch e*Way Intelligent Adapter User’s Guide 76 SeeBeyond Proprietary and Confidential

Chapter 5

Implementation

This chapter explains how the Batch e*Way is implemented and provides sample
configurations.

5.1 Implementation Notes
In implementing the Batch e*Way, you need to know the following important
functions:

! How the e*Way uses temporary files

! Record type configuration

Note: The Batch e*Way is unable to detect that a file is being transmitted and only checks
for a file entry, without trying to determine whether the file is still actively being
transmitted.

5.1.1 How the e*Way Uses Temporary Files
For each e*Way, a directory tree is created under the e*Way’s name in the following
directory:

egate/client/tmp

Chapter 5 Section 5.1
Implementation Implementation Notes

Batch e*Way Intelligent Adapter User’s Guide 77 SeeBeyond Proprietary and Confidential

For example, the directory structure shown in Figure 8 below would be created for the
e*Way called batch_sample.

Figure 8 Batch e*Way Directory Tree

The file sequence.dat is used for holding the current sequence number, if sequence
numbering is being used.

The file persist.dat is used only for inbound e*Ways. It holds information about the
current state of processing of temporary files.

Table 6 below shows the file structure of persist.dat.

The Batch e*Way fetches one or more files needed from the external system. Records
are read from these files one at a time. The persist.dat file stores the following
information:

! The list of files received

! The file being worked on (the index)

! The position within that file (the offset) is stored after every read from a file

Note: If the e*Way is shut down, it continues at the point where it left off.

Files retrieved from the external system are stored in the inbound directory, and
outbound files (waiting to be sent to the external system) are stored in the outbound
directory.

Table 6 File Structure of persist.dat

Bytes Description

0-19 file offset

20-29 list index

30+ file name list

“-*- End of Files -*-” (terminator)

Chapter 5 Section 5.1
Implementation Implementation Notes

Batch e*Way Intelligent Adapter User’s Guide 78 SeeBeyond Proprietary and Confidential

Note: It is recommended that you do not edit persist.dat or move files around in the
inbound or outbound directories.

5.1.2 Record Type Configuration
The Batch e*Way works with delimited files, fixed length record files and with single-
record files, as set by the Record Type parameters in the Subscribe to External Settings
(see “Subscribe to External” on page 42) and Publish to External Settings (see
“Publish to External” on page 45) configuration parameter sections.

The behavior of each Record Type differs with the direction of transfer.

Delimited Record

Subscribing to the External System

When subscribing to the external system, the Batch e*Way expects each record in an
inbound file to be separated with a delimiter defined by the Record Delimiter
parameter. The delimiter can be a multi-character text string, and it can contain special
characters (see “Using Special Characters” on page 53). These characters are expanded
once only, at initialization.

Records with the given delimiter are read from local temporary files, one at a time. If
the Delimiter on Last Record parameter is set to Yes, then a final record, which does
not have a terminating delimiter is ignored.

Publishing to the External System

When publishing to the external system, the e*Way creates a single local file containing
records for transmission to the external system. The file is sent to the external system at
the next scheduled time for data transfer.

All received records are appended to the local file separated by a single or multi-
character string as defined by the Record Delimiter parameter. The delimiter may
include special characters (see “Using Special Characters” on page 53). These
characters are expanded once only, at initialization.

If the Delimiter on Last Record parameter is set to Yes, then the delimiter character(s)
are added to the final record.

Fixed-length Record

Subscribing to the External System

Records of the size given in the parameter Subscribe to External: Record Size are read
from the local temporary files, and passed back through the e*Way one at a time.

Publishing to the External System

Only records of the size given in the parameter Publish to External: Record Size are
accepted and stored in the temporary file for later transmission. Records with a
different length are rejected as data errors.

The file is sent to the external system at the next scheduled time for data transfer.

Chapter 5 Section 5.2
Implementation Sample Configurations

Batch e*Way Intelligent Adapter User’s Guide 79 SeeBeyond Proprietary and Confidential

Single Record

Subscribing to the External System

Each local temporary file is treated as if it contains a single record. The file is read in its
entirety and passed through the e*Way.

Publishing to the External System

This setting means that only one record is written to the temporary file. Under normal
circumstances, this means that only one file will be created, containing a single record.
However, multiple files may be created if the parameter Publish To External File
Name:

! Contains a sequence number.

! Is the name of a Monk function (beginning with monk-). It is assumed that this
routine will return a different file name each time, and multiple files will be created.

5.2 Sample Configurations

5.2.1 Subscribing to an External System
In this example, the Batch e*Way fetches two files from the remote UNIX machine
wellington every 24 hours, using the FTP protocol. These files are stored in the home
directory of user adam, under the subdirectory pub/download.

Figure 9 below shows a diagram of this setup.

Figure 9 Subscribe-to-external-system Setup

Chapter 5 Section 5.2
Implementation Sample Configurations

Batch e*Way Intelligent Adapter User’s Guide 80 SeeBeyond Proprietary and Confidential

This setup has the following additional characteristics:

! The names of the two files are file1.txt and file2.txt. No other files are required.

! The two files contain multiple records delimited by a new line (\n) character.

! After retrieving the files from the remote system, the Batch e*Way deletes the
remote copy.

! The last seven day’s worth of files on the local system are kept.

The Table 7 on page 80 lists the most critical parameters and the settings required to
achieve the setup described previously.

5.2.2 Publishing to an External System
In this example, the Batch e*Way sends a file containing new line (\n) delimited
messages to the remote UNIX machine wellington, using the FTP protocol. The file is
created in the subdirectory pub/upload, under the user adam.

Table 7 Parameters for the Input Example

Section Parameter Value

Communication
Setup

Start Exchange Data Schedule Repeatedly, every
24 hours

External Host
Setup

Host Type UNIX

External Host Name wellington

User Name adam

Encrypted Password ********

File Transfer Method FTP

Subscribe To
External

Remote Directory Name pub/download

Remote File Regexp ^file[12].txt$

Record Type Delimited

Record Delimiter \n

Delimiter on Last Record Yes

Remote Command After
Transfer

delete

Local Command After Transfer archive

Local Rename or Archive Name d:\\archive/%a

Chapter 5 Section 5.2
Implementation Sample Configurations

Batch e*Way Intelligent Adapter User’s Guide 81 SeeBeyond Proprietary and Confidential

Figure 10 shows a diagram of this setup.

Figure 10 Publish-to-external-system Setup

This file is sent once every hour under the name myfile.tmp, and will be renamed after
it arrives to myfile.txt. This technique can be used if there is a process on the remote
machine watching for a file to be created, but we want to make sure that it does not see
the file until it is there in its entirety.

A copy of the file on the local system is not required and is deleted.

The Table 8 lists the most critical parameters and the settings required to achieve the
setup described previously.

Table 8 Parameters for the Output Example (Sheet 1 of 2)

Section Parameter Value

Communication
Setup

Start Exchange Data
Schedule

Repeatedly, every
1 hour

External Host Setup Host Type UNIX

External Host Name wellington

User Name adam

Encrypted Password ********

File Transfer Method FTP

Chapter 5 Section 5.2
Implementation Sample Configurations

Batch e*Way Intelligent Adapter User’s Guide 82 SeeBeyond Proprietary and Confidential

Note: For AIX system, you must use the ebcdic->ascii Monk function to convert any
EBCDIC data before transporting it to an ASCII-based system. See the Monk
Developer’s Reference Guide for more details about this function.

Publish To External Remote Directory Name pub/upload

Remote File Name myfile.tmp

Append or Overwrite
when Transferring Files

Overwrite

Record Type Delimited

Record Delimiter \n

Delimiter on Last Record Yes

Remote Command After
Transfer

rename

Local Command After
Transfer

delete

Remote Rename or Archive
Name

myfile.txt

Table 8 Parameters for the Output Example (Sheet 2 of 2)

Section Parameter Value

Batch e*Way Intelligent Adapter User’s Guide 83 SeeBeyond Proprietary and Confidential

Chapter 6

Batch e*Way Functions

The Batch e*Way’s functions fall into the following categories:

Basic Functions on page 83

Core Functions on page 91

Connection and File Functions on page 102

File Name Expansion Functions on page 131

Post-transfer Routines on page 143

File Copy Transfer Functions on page 146

FTP Transfer Functions on page 160

Advanced FTP Functions on page 172

File System Functions on page 217

Note: For AIX and system, you must use the ebcdic->ascii Monk function to convert
any EBCDIC data before transporting it to an ASCII-based system. See the Monk
Developer’s Reference Guide for more details about this function.

When the Batch e*Way is executing a send command, and a Monk exception goes
undetected while a message is being sent, the command is aborted, the Batch e*Way
will shut down, and the connection to the FTP server will be lost. This behavior is by
design to prevent the loss of a message.

6.1 Basic Functions
The functions in this category control the e*Way’s most basic operations. The functions
described in this section can only be used by the functions defined within the e*Way’s
configuration file. None of the functions are available to Collaboration Rules scripts
executed by the e*Way.

The basic functions are

event-send-to-egate on page 85

get-logical-name on page 86

send-external-down on page 87

Chapter 6 Section 6.1
Batch e*Way Functions Basic Functions

Batch e*Way Intelligent Adapter User’s Guide 84 SeeBeyond Proprietary and Confidential

send-external-up on page 88

shutdown-request on page 89

start-schedule on page 90

stop-schedule on page 91

Chapter 6 Section 6.1
Batch e*Way Functions Basic Functions

Batch e*Way Intelligent Adapter User’s Guide 85 SeeBeyond Proprietary and Confidential

event-send-to-egate

Syntax

(event-send-to-egate string)

Description

event-send-to-egate sends data that the e*Way has already received from the external
system into the e*Gate system as an Event.

Parameters

Return Values

Boolean
Returns #t (true) if the data is sent successfully; otherwise, returns #f (false).

Throws

None.

Additional Information

This function can be called by any e*Way function when it is necessary to send data to
the e*Gate system in a blocking fashion.

Name Type Description

string string The data to be sent to the e*Gate
system

Chapter 6 Section 6.1
Batch e*Way Functions Basic Functions

Batch e*Way Intelligent Adapter User’s Guide 86 SeeBeyond Proprietary and Confidential

get-logical-name

Syntax

(get-logical-name)

Description

get-logical-name returns the logical name of the e*Way.

Parameters

None.

Return Values

String
Returns the name of the e*Way (as defined by the Enterprise Manager).

Throws

None.

Chapter 6 Section 6.1
Batch e*Way Functions Basic Functions

Batch e*Way Intelligent Adapter User’s Guide 87 SeeBeyond Proprietary and Confidential

send-external-down

Syntax

(send-external-down)

Description

send-external-down instructs the e*Way that the connection to the external system is
down.

Parameters

None.

Return Values

None.

Throws

None.

Chapter 6 Section 6.1
Batch e*Way Functions Basic Functions

Batch e*Way Intelligent Adapter User’s Guide 88 SeeBeyond Proprietary and Confidential

send-external-up

Syntax

(send-external-up)

Description

send-external-up instructs the e*Way that the connection to the external system is up.

Parameters

None.

Return Values

None.

Throws

None.

Chapter 6 Section 6.1
Batch e*Way Functions Basic Functions

Batch e*Way Intelligent Adapter User’s Guide 89 SeeBeyond Proprietary and Confidential

shutdown-request

Syntax

(shutdown-request)

Description

shutdown-request completes the e*Gate shutdown procedure that was initiated by the
Control Broker but was interrupted by returning a non-null value within the
Shutdown Command Notification Function (see “Shutdown Command Notification
Function” on page 40). Once this function is called, shutdown proceeds immediately.

Once interrupted, the e*Way’s shutdown cannot proceed until this Monk function is
called. If you do interrupt an e*Way shutdown, we recommend that you complete the
process in a timely fashion.

Parameters

None.

Return Values

None.

Throws

None.

Chapter 6 Section 6.1
Batch e*Way Functions Basic Functions

Batch e*Way Intelligent Adapter User’s Guide 90 SeeBeyond Proprietary and Confidential

start-schedule

Syntax

(start-schedule)

Description

start-schedule requests that the e*Way open a one-time window for the exchange of
data with the external system (see “Exchange Data with External Function” on
page 36). This function operates with the Exchange Data Interval parameter (see
“Exchange Data Interval” on page 25), starting the exchange of data, according to this
parameter, until you close the window using the stop-schedule function (see stop-
schedule on page 91).

The start-schedule function does not affect any defined schedules. See also “Start
Exchange Data Schedule” on page 23.

Note: Use this function only when the Start Exchange Data Schedule and Stop
Exchange Data Schedule parameters are in operation. Otherwise, data exchange is
already occurring on a continuous basis, and no window needs to be opened.

Parameters

None.

Return Values

None.

Throws

None.

Chapter 6 Section 6.2
Batch e*Way Functions Core Functions

Batch e*Way Intelligent Adapter User’s Guide 91 SeeBeyond Proprietary and Confidential

stop-schedule

Syntax

(stop-schedule)

Description

stop-schedule requests that the e*Way halt execution of the Exchange Data with
External function specified within the e*Way’s configuration file (see “Exchange Data
with External Function” on page 36). Execution will be stopped when the e*Way
concludes any open transaction and does not halt the e*Way process itself.

This function does not affect any defined schedules. See also “Stop Exchange Data
Schedule” on page 24.

Parameters

None.

Return Values

None.

Throws

None.

6.2 Core Functions
The functions in this category are those called by e*Way configuration parameters (see
“Monk Configuration” on page 26).

The core functions are

batch-ack on page 92

batch-exchange-data on page 93

batch-ext-connect on page 94

batch-ext-shutdown on page 95

batch-ext-verify on page 96

batch-init on page 97

batch-nak on page 98

batch-proc-out on page 99

batch-regular-proc-out on page 100

batch-shutdown-notify on page 101

batch-startup on page 102

Chapter 6 Section 6.2
Batch e*Way Functions Core Functions

Batch e*Way Intelligent Adapter User’s Guide 92 SeeBeyond Proprietary and Confidential

batch-ack

Syntax

(batch-ack command)

Description

batch-ack is called automatically when the e*Way successfully processes and queues
Events from the external system.

Parameters

Return Values

String
Returns “FAILURE” on all errors; otherwise, returns a null string.

Throws

None.

Location

batch-ack.monk

Additional Information

This function is only called during the processing of inbound Events. After the
Exchange Data with External function returns a string that is transformed into an
inbound Event, the Event is handed off to a Collaboration for further processing. If the
Event’s processing is completed successfully, the e*Way executes the Positive
Acknowledgment function (otherwise, the e*Way executes the Negative
Acknowledgment function).

This function can return an Event to be queued, but the e*Way will not ACK/NAK the
external system.

The e*Way will exit if it fails its attempt to invoke this function or this function returns
a “FAILURE” string.

Name Type Description

command string Any non-null string

Chapter 6 Section 6.2
Batch e*Way Functions Core Functions

Batch e*Way Intelligent Adapter User’s Guide 93 SeeBeyond Proprietary and Confidential

batch-exchange-data

Syntax

(batch-exchange-data)

Description

batch-exchange-data initiates an exchange of Events with an external system. This
function can exchange either inbound or outbound Events.

Parameters

None.

Return Values

String
Returns a null string if the function processed an outbound Event successfully; otherwise,
returns a string to be packaged as an inbound Event.

Throws

None.

Location

batch-exchange-data.monk

Chapter 6 Section 6.2
Batch e*Way Functions Core Functions

Batch e*Way Intelligent Adapter User’s Guide 94 SeeBeyond Proprietary and Confidential

batch-ext-connect

Syntax

(batch-ext-connect)

Description

batch-ext-connect establishes (or re-establishes) a connection to the external system.

Parameters

None.

Return Values

String
Returns “UP” if the connection was made successfully; otherwise, returns “DOWN.”

Throws

except-method

Location

batch-ext-connect.monk

Chapter 6 Section 6.2
Batch e*Way Functions Core Functions

Batch e*Way Intelligent Adapter User’s Guide 95 SeeBeyond Proprietary and Confidential

batch-ext-shutdown

Syntax

(batch-ext-shutdown command)

Description

batch-ext-shutdown shuts down the connection between the external system and the
e*Way.

Parameters

Return Values

String
Returns a null string.

Throws

except-method

Location

batch-ext-shutdown.monk

Name Type Description

command string Any non-null string

Chapter 6 Section 6.2
Batch e*Way Functions Core Functions

Batch e*Way Intelligent Adapter User’s Guide 96 SeeBeyond Proprietary and Confidential

batch-ext-verify

Syntax

(batch-ext-verify)

Description

batch-ext-verify confirms that the external system is operating and available.

Parameters

None.

Return Values

String
Returns “UP” if the connection was verified successfully; otherwise, returns “DOWN.”

Throws

except-method

Location

batch-ext-verify.monk

Chapter 6 Section 6.2
Batch e*Way Functions Core Functions

Batch e*Way Intelligent Adapter User’s Guide 97 SeeBeyond Proprietary and Confidential

batch-init

Syntax

(batch-init)

Description

batch-init defines a number of variables upon which other e*Way functions will rely,
defines exceptions, and loads the library file stc_monkfilesys.dll.

Parameters

None.

Return Values

String
Returns “FAILURE” on all errors; otherwise, returns a null string.

Throws

except-method

Location

batch-init.monk

Chapter 6 Section 6.2
Batch e*Way Functions Core Functions

Batch e*Way Intelligent Adapter User’s Guide 98 SeeBeyond Proprietary and Confidential

batch-nak

Syntax

(batch-nak command)

Description

batch-ack is called automatically when the e*Way fails to process and queue Events
from the external system.

Parameters

Return Values

String
Returns “FAILURE” on all errors; otherwise, returns a null string.

Throws

None.

Location

batch-nak.monk

Additional Information

This function is only called during the processing of inbound Events. After the
Exchange Data with External function returns a string that is transformed into an
inbound Event, the Event is handed off to a Collaboration for further processing. If the
Event’s processing is completed unsuccessfully, the e*Way executes the Negative
Acknowledgment function; otherwise, the e*Way executes the Positive
Acknowledgment function.

This function can return an Event to be queued, but the e*Way does not return a
positive or negative acknowledgement to the external system.

The e*Way exits if it fails its attempt to invoke this function or this function returns a
“FAILURE” string.

Name Type Description

command string Any non-null string

Chapter 6 Section 6.2
Batch e*Way Functions Core Functions

Batch e*Way Intelligent Adapter User’s Guide 99 SeeBeyond Proprietary and Confidential

batch-proc-out

Syntax

(batch-proc-out Event)

Description

batch-proc-out sends the outbound Event from the e*Way to the external system.

Parameters

Return Values

String
Returns one of the following strings:

" Null

" RESEND

" CONNERR

" DATAERR

See Figure 7 on page 33 for an explanation of the effect of each of these return values.

Throws

None.

Location

batch-proc-out.monk

Name Type Description

Event string The Event to be sent

Chapter 6 Section 6.2
Batch e*Way Functions Core Functions

Batch e*Way Intelligent Adapter User’s Guide 100 SeeBeyond Proprietary and Confidential

batch-regular-proc-out

Syntax

(batch-regular-proc-out Event)

Description

batch-regular-proc-out sends the outbound Event from the e*Way to the external
system.

Parameters

Return Values

String
Returns one of the following strings:

" Null

" RESEND

" CONNERR

" DATAERR

See Figure 7 on page 33 for an explanation of the effect of each of these return values.

Throws

None.

Location

batch-regular-proc-out.monk

Name Type Description

Event string The Event to be sent

Chapter 6 Section 6.2
Batch e*Way Functions Core Functions

Batch e*Way Intelligent Adapter User’s Guide 101 SeeBeyond Proprietary and Confidential

batch-shutdown-notify

Syntax

(batch-shutdown-notify command)

Description

batch-shutdown-notify notifies the external system that the e*Way is shutting down.

Parameters

Return Values

String
Returns a null string.

Throws

None.

Location

batch-shutdown-notify.monk

Name Type Description

command string Any non-null string

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 102 SeeBeyond Proprietary and Confidential

batch-startup

Syntax

(batch-startup)

Description

batch-startup launches a Monk function that start the e*Way. The function invoked
depends on whether the e*Way uses FTP or file transfer via copy (selected by a
configuration parameter; see “File Transfer Method” on page 41).

Parameters

None.

Return Values

String
Returns “FAILURE” on all errors; otherwise, returns a null string.

Throws

except-method

Location

batch-startup.monk

6.3 Connection and File Functions
These functions initiate the connections to the external system and transfer files
between the e*Way and the external system. The functions described in this section can
only be used by the functions defined within the e*Way’s configuration file. None of
the functions are available to Collaboration Rules scripts executed by the e*Way.

The connection and file functions are:

batch-fetch-files-from-remote on page 104

batch-fetch-named-files on page 105

batch-send-path-file on page 106

batch-validate-params on page 108

batch-write-file on page 109

disconnect-from-remote on page 110

fetch-files-from-remote on page 111

fetch-named-files on page 112

get-next-record on page 113

list-files-on-remote on page 115

open-next-working-file on page 116

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 103 SeeBeyond Proprietary and Confidential

persist-get-index on page 117

persist-get-list on page 118

persist-get-offset on page 119

persist-init on page 120

persist-read-number on page 121

persist-update-index on page 122

persist-update-list on page 123

persist-update-offset on page 124

persist-update-status on page 125

persist-write-pad on page 126

post-transfer-hook on page 127

pre-transfer-hook on page 128

send-files-to-remote on page 129

string-is-proc? on page 130

transfer-method? on page 131

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 104 SeeBeyond Proprietary and Confidential

batch-fetch-files-from-remote

Syntax

(batch-fetch-files-from-remote transferMethod ftpHandle ftpMode
remoteDirectory remoteFileRegexp
postTransferCommand
remoteRenameArchiveName)

Description

batch-fetch-files-from-remote attempts to fetch all files from the external system
specified by an XML message.

Parameters

Return Values

List
Returns the list of files fetched.

Throws

except-abort

Location

batch-fetch-files-from-remote.monk

Name Type Description

transferMethod s5tring Identifies whether transfer method
is FTP.

ftpHandle string The FTP handle.

ftpMode string The FTP mode.

remoteDirectory string The path name at the remote
location from which the files are to
be fetched.

remoteFileRegexp string A regular expression that describes
files to be retrieved. (See “Using
Special Characters” on page 53.)

postTransferCommand string The command that the e*Way will
execute after a successful file
transfer (for example, Delete,
Rename, or Archive).

remoteRenameArchiveName string Depending on the value of
postTransferCommand, the
parameter specifies either the
name to which the external file will
be renamed (for Rename), or the
directory in which to archive the
external file (for Archive).

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 105 SeeBeyond Proprietary and Confidential

batch-fetch-named-files

Syntax

(batch-fetch-named-files transferMethod ftpHandle ftpMode
postTransferCommand
remoteRenameArchiveName file-list)

Description

batch-fetch-named-files attempts to fetch a list of files from the external system.

Parameters

Return Values

List
Returns a list of files successfully fetched.

Throws

except-method, except-abort

Location

batch-fetch-named-files.monk

Name Type Description

transferMethod string Identifies whether transfer method
is FTP.

ftpHandle string The FTP handle.

ftpMode string The FTP mode.

postTransferCommand string The command that the e*Way will
execute after a successful file
transfer (for example, Delete,
Rename, or Archive).

remoteRenameArchiveName string Depending on the value of
postTransferCommand, the
parameter specifies either the
name to which the external file will
be renamed (for Rename), or the
directory in which to archive the
external file (for Archive).

file-list List A list of files to be transferred from
the external system.

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 106 SeeBeyond Proprietary and Confidential

batch-send-path-file

Syntax

(batch-send-path-file transferMethod ftpHandle ftpMode
appendOverwrite localFilename
remoteDirectory remoteFilename
rmtpostTransferCommand
remoteRenameArchiveName
localPostTransferCommand
localArchiveDirectory)

Description

batch-send-path-file attempts to send files to an external system.

Parameters

Name Type Description

transferMethod string Identifies whether transfer method
is FTP.

ftpHandle string The FTP handle.

ftpMode string The FTP mode.

appendOverwrite string Specifies whether to append the
records in the file being
transferred to the existing file on
the external system, or to overwrite
the existing file on the external
system with the file being
transferred.

localFilename string The name of the file being sent to
the external system.

remoteDirectory string The path name at the remote
location to which the file is to be
sent.

remoteFilename string The name of the file on the
external system that is being
overwritten or appended.

rmtPostTransferCommand string The command that the e*Way will
execute on the remote system after
a successful file transfer (for
example, Delete, Rename, or
Archive).

RemoteRenameArchiveName string Depending on the value of
rmtPostTransferCommand, the
parameter specifies either the
name to which the external file will
be renamed (for Rename), or the
external system directory in which
to archive the file (for Archive).

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 107 SeeBeyond Proprietary and Confidential

Return Values

Undefined.

Throws

except-abort

Location

batch-send-path-file.monk

localPostTransferCommand string The command that the e*Way will
execute on the local after a
successful file transfer (for
example, Delete, Rename, or
Archive).

LocalArchiveDirectory string Specifies the local directory in
which to archive the file.

Name Type Description

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 108 SeeBeyond Proprietary and Confidential

batch-validate-params

Syntax

(batch-validate-params)

Description

batch-validate-params validates a number of parameters used by other functions. It
provides a double-check that any modifications made to selected crucial Monk
functions have not altered the validated parameters.

Parameters

None.

Return Values

Undefined.

Throws

except-param

Location

batch-validate-params.monk

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 109 SeeBeyond Proprietary and Confidential

batch-write-file

Syntax

(batch-write-file Event_data)

Description

batch-write-file writes a record to a temporary (outbound) file in the style defined by
the Publish To External section of the e*Way’s configuration parameters (see “Publish
to External” on page 45 for more information).

Parameters

Return Values

Undefined.

Throws

None.

Location

batch-proc-out.monk

Name Type Description

Event_Data string Event data

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 110 SeeBeyond Proprietary and Confidential

disconnect-from-remote

Syntax

(disconnect-from-remote)

Description

disconnect-from-remote is the top-level function that disconnects the e*Way from the
remote system.

Parameters

None.

Return Values

Undefined.

Throws

The function itself does not throw any exceptions, but it catches and logs exceptions
thrown by other functions.

Location

batch-exchange-utils.monk

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 111 SeeBeyond Proprietary and Confidential

fetch-files-from-remote

Syntax

(fetch-files-from-remote)

Description

fetch-files-from-remote attempts to fetch from the external system all the files specified
by the configuration parameters in the Subscribe To External section of the e*Way’s
configuration parameters (see “Subscribe to External” on page 42 for more
information).

Parameters

None.

Return Values

List
Returns the list of files fetched.

Throws

except-abort

Location

batch-exchange-utils.monk

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 112 SeeBeyond Proprietary and Confidential

fetch-named-files

Syntax

(fetch-named-files file_list)

Description

fetch-named-files attempts to fetch a list of files from the external system. The method
used to perform the actual transfer of each file is specified by the File Transfer Method
configuration parameter (see “File Transfer Method” on page 41 for more
information).

Parameters

Return Values

List
Returns a list of files successfully fetched.

Throws

except-method, except-abort

Location

batch-exchange-utils.monk

Name Type Description

file_list List A list of files to be transferred from
the external system.

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 113 SeeBeyond Proprietary and Confidential

get-next-record

Syntax

(get-next-record)

Description

get-next-record reads the next available record from the files in the inbound temporary
directory. If there are no more records in the current file, the next file is opened and
read.

Parameters

None.

Return Values

Returns one of the following values:

String
If a record is available and can be read, the function returns the record read.

Boolean
If there are no more records available for reading, the function returns #f (false).

Throws

None.

Location

batch-exchange-utils.monk

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 114 SeeBeyond Proprietary and Confidential

get-next-record-current-file

Syntax

(get-next-record-current-file)

Description

get-next-record-current-file reads and returns the next record from the currently open
file (in the inbound temporary directory).

Parameters

None.

Return Values

Returns one of the following values:

String
If a record is available and can be read, the function returns the record read.

Boolean
If there are no more records available for reading, the function returns #f (false).

Throws

None.

Location

batch-exchange-utils.monk

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 115 SeeBeyond Proprietary and Confidential

list-files-on-remote

Syntax

(list-files-on-remote)

Description

list-files-on-remote lists the files in the currently connected directory on the external
system, using a command appropriate to the File Transfer Method configuration
parameter (see “File Transfer Method” on page 41).

Parameters

None.

Return Values

List
Returns a list of files.

Throws

except-method

Location

batch-exchange-utils.monk

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 116 SeeBeyond Proprietary and Confidential

open-next-working-file

Syntax

(open-next-working-file)

Description

While the e*Way is reading temporary files in the inbound temporary directory, open-
next-working-file closes the current file, then opens a handle on the next available file.

Parameters

None.

Return Values

Returns one of the following values:

String
If a record is available and can be read, the function returns the record read.

Boolean
If there are no more records available for reading, the function returns #f (false).

Throws

None.

Location

batch-exchange-utils.monk

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 117 SeeBeyond Proprietary and Confidential

persist-get-index

Syntax

(persist-get-index)

Description

persist-get-index retrieves the current file list index from the persistency file.

Parameters

None.

Return Values

Integer
Returns the file list index.

Throws

None.

Location

batch-persist.monk

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 118 SeeBeyond Proprietary and Confidential

persist-get-list

Syntax

(persist-get-list)

Description

persist-get-list retrieves the current file list from the persistency file.

Parameters

None.

Return Values

List
Returns the file list.

Throws

None.

Location

batch-persist.monk

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 119 SeeBeyond Proprietary and Confidential

persist-get-offset

Syntax

(persist-get-offset)

Description

persist-get-offset retrieves the current file position offset from the persistency file.

Parameters

None.

Return Values

Integer
Returns the file offset.

Throws

None.

Location

batch-persist.monk

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 120 SeeBeyond Proprietary and Confidential

persist-init

Syntax

(persist-init)

Description

persist-init opens the persistency file if the file is not already open, creating the file if
necessary.

Parameters

None.

Return Values

Undefined.

Throws

None.

Location

batch-persist.monk

Additional Information

The persistency file is used when reading records from files in inbound data transfers.
The default file name is persist.dat.

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 121 SeeBeyond Proprietary and Confidential

persist-read-number

Syntax

(persist-read-number string_size)

Description

persist-read-number reads a string of the size given in the input argument from the
persistency file (persist.dat), and converts it to a numeric value.

Parameters

Return Values

Integer
Returns the numeric value of the string read from the persistency file.

Throws

None.

Location

batch-persist.monk

Name Type Description

string_size integer The size (in bytes) of the string to
be read from the persistency file.

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 122 SeeBeyond Proprietary and Confidential

persist-update-index

Syntax

(persist-update-index index)

Description

persist-update-index updates the file list index in the persistency file

Parameters

Return Values

Undefined.

Throws

None.

Location

batch-persist.monk

Name Type Description

index integer The file list index to update

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 123 SeeBeyond Proprietary and Confidential

persist-update-list

Syntax

(persist-update-list file_list)

Description

persist-update-list updates the file list in the persistency file.

Parameters

Return Values

Undefined.

Throws

None.

Location

batch-persist.monk

Name Type Description

file_list integer The file list to update

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 124 SeeBeyond Proprietary and Confidential

persist-update-offset

Syntax

(persist-update-offset offset)

Description

persist-update-offset updates the file position offset in the persistency file.

Parameters

Return Values

Undefined.

Throws

None.

Location

batch-persist.monk

Name Type Description

offset integer The file position offset

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 125 SeeBeyond Proprietary and Confidential

persist-update-status

Syntax

(persist-update-status offset list_index file_list)

Description

persist-update-status updates all elements of the persistency file in a single function
call.

Parameters

Return Values

Undefined.

Throws

None.

Location

batch-persist.monk

Name Type Description

offset integer The file position offset

list_index integer The file list index

file_list List The file list

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 126 SeeBeyond Proprietary and Confidential

persist-write-pad

Syntax

(persist-write-pad port text_string length)

Description

persist-write-pad writes the text to the output port, padded with leading spaces to the
specified length.

Parameters

Return Values

Undefined.

Throws

None.

Location

batch-persist.monk

Name Type Description

port Port The output port

text_string string The text to be written

length integer The length of the string to be written,
including padding (spaces)

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 127 SeeBeyond Proprietary and Confidential

post-transfer-hook

Syntax

(post-transfer-hook)

Description

post-transfer-hook sets a variable used by the ftp-ext-connect and ftp-ext-verify
functions that describes the state of the connection. The function is called by batch-
exchange-data immediately after the disconnect-from-remote function is called.

Parameters

None.

Return Values

Undefined.

Throws

None.

Location

batch-exchange-utils.monk

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 128 SeeBeyond Proprietary and Confidential

pre-transfer-hook

Syntax

(pre-transfer-hook)

Description

pre-transfer-hook sets a variable used by the ftp-ext-connect and ftp-ext-verify
functions that describes the state of the connection. The function is called by
batch-exchange-data immediately before the connect-to-remote function is called.

Parameters

None.

Return Values

Undefined.

Throws

None.

Location

batch-exchange-utils.monk

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 129 SeeBeyond Proprietary and Confidential

send-files-to-remote

Syntax

(send-files-to-remote file_list)

Description

send-files-to-remote attempts to send a list of files stored in the temporary outbound
directory to the external system according to the method defined by the File Transfer
Method parameter.

Parameters

Return Values

List
Returns a list of the files that were sent successfully.

Throws

except-method, except-abort

Location

batch-exchange-utils.monk

Name Type Description

file_list List A list of files to be sent to the external
system.

Chapter 6 Section 6.3
Batch e*Way Functions Connection and File Functions

Batch e*Way Intelligent Adapter User’s Guide 130 SeeBeyond Proprietary and Confidential

string-is-proc?

Syntax

(string-is-proc? procedurename)

Description

string-is-proc? tests whether the specified string is the name of a Monk procedure.

Parameters

Return Values

Boolean
Returns #t (true) if the specified string is the name of a Monk procedure; otherwise,
returns #f (false).

Throws

None.

Location

batch-utils.monk

Name Type Description

procedurename string The string to test

Chapter 6 Section 6.4
Batch e*Way Functions File Name Expansion Functions

Batch e*Way Intelligent Adapter User’s Guide 131 SeeBeyond Proprietary and Confidential

transfer-method?

Syntax

(transfer-method?)

Description

transfer-method? returns the transfer method established by the File Transfer Method
parameter.

Parameters

None.

Return Values

Quoted Symbol
Returns one of the following quoted symbols:

Throws

None.

Location

batch-utils.monk

6.4 File Name Expansion Functions
These functions are used when converting special character sequences in a string to
some other sequence. The functions described in this section can only be used by the
functions defined within the e*Way’s configuration file. None of the functions are
available to Collaboration Rules scripts executed by the e*Way.

The file name expansion functions are

char-hex? on page 133

expand-char on page 134

expand-hex on page 135

expand-octal on page 136

expand-seqno on page 137

expand-string on page 138

expand-time on page 139

get-seqno on page 141

‘METHOD_FTP File transfer method FTP

‘METHOD_FILE File transfer method File Copy

‘METHOD_UNKNOWN Unknown method

Chapter 6 Section 6.4
Batch e*Way Functions File Name Expansion Functions

Batch e*Way Intelligent Adapter User’s Guide 132 SeeBeyond Proprietary and Confidential

incr-seqno on page 142

set-seqno on page 143

Chapter 6 Section 6.4
Batch e*Way Functions File Name Expansion Functions

Batch e*Way Intelligent Adapter User’s Guide 133 SeeBeyond Proprietary and Confidential

char-hex?

Syntax

(char-hex? chr)

Description

char-hex? determines whether a character is a valid hexadecimal character (that is, in
the range 0 through 9, A through F, or a through f).

Parameters

Return Values

Boolean
Returns #t (true) if the tested character is a valid hexadecimal character; otherwise,
returns #f (false).

Throws

None.

Location

batch-exchange-utils.monk

Name Type Description

chr character The character to test

Chapter 6 Section 6.4
Batch e*Way Functions File Name Expansion Functions

Batch e*Way Intelligent Adapter User’s Guide 134 SeeBeyond Proprietary and Confidential

expand-char

Syntax

(expand-char chr)

Description

expand-char converts certain special characters from their escaped representation to
their ASCII character.

Parameters

The characters expand-char can convert are as follows:

Return Values

Character
Returns a character (see the conversion table above).

Throws

None.

Location

batch-exchange-utils.monk

Name Type Description

chr character The character to convert

Input character Converts To

0 Null character

a Audible bell

b Backspace

f Form feed

n New line

r Carriage return

t Tab

v Vertical tab

Chapter 6 Section 6.4
Batch e*Way Functions File Name Expansion Functions

Batch e*Way Intelligent Adapter User’s Guide 135 SeeBeyond Proprietary and Confidential

expand-hex

Syntax

(expand-hex hex_string)

Description

expand-hex converts two hexadecimal characters (0 through 9, A through F) to the
ASCII character that they represent.

Parameters

Return Values

String
Returns a single ASCII character.

Throws

None.

Location

batch-exchange-utils.monk

Name Type Description

hex_string string A two-character string to be converted
to an ASCII character.

Chapter 6 Section 6.4
Batch e*Way Functions File Name Expansion Functions

Batch e*Way Intelligent Adapter User’s Guide 136 SeeBeyond Proprietary and Confidential

expand-octal

Syntax

(expand-octal octal_string)

Description

expand-octal converts three octal digits (0 through 9) to a single ASCII character.

Parameters

Return Values

String
Returns a single ASCII character.

Throws

None.

Location

batch-exchange-utils.monk

Name Type Description

octal_string string A three-character string to be
converted to an ASCII character.

Chapter 6 Section 6.4
Batch e*Way Functions File Name Expansion Functions

Batch e*Way Intelligent Adapter User’s Guide 137 SeeBeyond Proprietary and Confidential

expand-seqno

Syntax

(expand-seqno padding)

Description

expand-seqno inserts a sequence number into a string, padded with the number of
zeros specified in the function call. The sequence number is incremented when this
function is called.

Parameters

Return Values

String
Returns the current sequence number, zero-padded as specified.

Throws

None.

Location

batch-utils.monk

Name Type Description

padding string The number of zeros to add as
padding to the sequence number.

Chapter 6 Section 6.4
Batch e*Way Functions File Name Expansion Functions

Batch e*Way Intelligent Adapter User’s Guide 138 SeeBeyond Proprietary and Confidential

expand-string

Syntax

(expand-string string)

Description

expand-string searches an arbitrary string for known special character sequences and
replaces them with the strings they represent. This function calls, as appropriate,
expand-octal, expand-hex, expand-char, expand-seqno (with zero padding), or
expand-time.

Parameters

Return Values

String
Returns the expanded string.

Throws

None.

Location

batch-utils.monk

Name Type Description

string string The string to expand

Chapter 6 Section 6.4
Batch e*Way Functions File Name Expansion Functions

Batch e*Way Intelligent Adapter User’s Guide 139 SeeBeyond Proprietary and Confidential

expand-time

Syntax

(expand-time chr)

Description

expand-time returns an expansion of the supplied character as described in the
C strftime() function call.

Parameters

The supported formats are:

Name Type Description

chr character A character representing a strftime()
format

Character Format

a Abbreviated weekday

A Full weekday

b Abbreviated month name

B Full month name

c Date and time representation

d Day of the month (01 through 31)

H Hour (00 through 23)

I Hour (01 through 12)

j Day of the year (001 through 366)

m Month (01 through 12)

M Minute (00 through 59)

p AM or PM

S Seconds (00 through 61)

U Week number, starting from the first Sunday

W Week number, starting from the first Monday

w Day of the week (Sunday = 0)

x Date representation

X Time representation

 y Year (00 through 99)

Y Year, including century

Z Time zone

Chapter 6 Section 6.4
Batch e*Way Functions File Name Expansion Functions

Batch e*Way Intelligent Adapter User’s Guide 140 SeeBeyond Proprietary and Confidential

Return Values

String
Returns a string containing time or date information.

Throws

None.

Location

batch-utils.monk

Chapter 6 Section 6.4
Batch e*Way Functions File Name Expansion Functions

Batch e*Way Intelligent Adapter User’s Guide 141 SeeBeyond Proprietary and Confidential

get-seqno

Syntax

(get-seqno)

Description

get-seqno reads the current sequence number from persistent storage (the text file
sequence.dat) and returns it. If this file does not exist, the sequence number is taken
from the configuration variable cfg-seq-no-start.

Parameters

None.

Return Values

String
Returns the current sequence number as a string.

Throws

None.

Location

batch-utils.monk

Chapter 6 Section 6.4
Batch e*Way Functions File Name Expansion Functions

Batch e*Way Intelligent Adapter User’s Guide 142 SeeBeyond Proprietary and Confidential

incr-seqno

Syntax

(incr-seqno)

Description

incr-seqno obtains the current sequence number through a call to the function ftp-get-
seqno, and increments it by one. If the new sequence number is greater than that
specified by the configuration variable Max Sequence Number, the number is reset to
the value of the configuration variable Start Sequence Number.

The configuration number is then written to persistent storage in the file sequence.dat.
This file will be created if it does not already exist and overwritten if it does.

Parameters

None.

Return Values

String
Returns a string containing a sequence number.

Throws

None.

Location

batch-utils.monk

Chapter 6 Section 6.5
Batch e*Way Functions Post-transfer Routines

Batch e*Way Intelligent Adapter User’s Guide 143 SeeBeyond Proprietary and Confidential

set-seqno

Syntax

(set-seqno new_number)

Description

set-seqno sets the current sequence number to the specified value. The value is not
checked, and therefore could be set outside the range defined by the configuration
variables Start Sequence Number and Max Sequence Number.

Parameters

Return Values

String
Returns a string that contains a sequence number.

Throws

None.

Location

batch-utils.monk

6.5 Post-transfer Routines
These functions are invoked after either an inbound or outbound transfer has taken
place. They specify actions that are defined by the settings of configuration variables,
which will be performed on the local temporary file or upon the external file. Some of
these operations are likely to be undesirable depending on the direction of transfer, but
this is a configuration issue.

The functions described in this section can only be used by the functions defined within
the e*Way’s configuration file. None of the functions are available to Collaboration
Rules scripts executed by the e*Way.

The post-transfer routines are:

batch-local-post-transfer on page 144.

batch-rmt-post-transfer on page 145.

local-post-transfer on page 146.

Name Type Description

new_number integer The value to which to set the
sequence number

Chapter 6 Section 6.5
Batch e*Way Functions Post-transfer Routines

Batch e*Way Intelligent Adapter User’s Guide 144 SeeBeyond Proprietary and Confidential

batch-local-post-transfer

Syntax

(batch-local-post-transfer local_filename)

Description

batch-local-post-transfer performs the relevant post-transfer operation on a specified
local file.

Parameters

Return Values

Undefined.

Throws

except-local-op

Location

batch-post-transfer.monk

Name Type Description

local_filename string The name of a local file

Chapter 6 Section 6.5
Batch e*Way Functions Post-transfer Routines

Batch e*Way Intelligent Adapter User’s Guide 145 SeeBeyond Proprietary and Confidential

batch-rmt-post-transfer

Syntax

(batch-rmt-post-transfer rmt_filename)

Description

batch-rmt-post-transfer performs the relevant post-transfer operation on the specified
remote file.

Parameters

Return Values

Undefined.

Throws

except-method

Location

batch-post-transfer.monk

Name Type Description

rmt_filename string The name of a remote file

Chapter 6 Section 6.6
Batch e*Way Functions File Copy Transfer Functions

Batch e*Way Intelligent Adapter User’s Guide 146 SeeBeyond Proprietary and Confidential

local-post-transfer

Syntax

(local-post-transfer direction command archiveDirectory filename)

Description

local-post-transfer performs the relevant post-transfer operation on a local system,
after the transfer of working files is complete.

Parameters

Return Values

Undefined.

Throws

except-local-op

Location

local-post-transfer.monk

6.6 File Copy Transfer Functions
These functions execute file-based “copy” transfers. The functions described in this
section can only be used by the functions defined within the e*Way’s configuration file.
None of the functions are available to Collaboration Rules scripts executed by the
e*Way.

Note: Many of the functions in this section are place-holders for user-supplied
customizations. If you need to add functionality to these place-holder functions, be
sure not to change the arguments required nor the type of value returned.

The file copy transfer functions are

file-ext-connect on page 148

file-ext-shutdown on page 149

Name Type Description

direction string (“inbound” or
“outbound”)

Indicates whether the e*Way is
inbound or outbound.

command string The command that the e*Way will
execute after a successful file transfer
(for example, Delete, Rename, or
Archive.

archiveDirectory string Specifies the local directory in which
to archive the working files.

filename string The name of a local file.

Chapter 6 Section 6.6
Batch e*Way Functions File Copy Transfer Functions

Batch e*Way Intelligent Adapter User’s Guide 147 SeeBeyond Proprietary and Confidential

file-ext-verify on page 150

file-fetch on page 151

file-fetch-path on page 152

file-init on page 153

file-remote-path-list on page 154

file-rmt-list on page 155

file-rmt-post-transfer on page 156

file-send on page 157

file-send-path-file on page 158

file-startup on page 159

file-validate-params on page 160

Chapter 6 Section 6.6
Batch e*Way Functions File Copy Transfer Functions

Batch e*Way Intelligent Adapter User’s Guide 148 SeeBeyond Proprietary and Confidential

file-ext-connect

Syntax

(file-ext-connect)

Description

file-ext-connect opens a connection to the external system.

Parameters

None.

Return Values

Boolean
Returns #t (true) under all circumstances.

Throws

None.

Location

file-ext-connect.monk

Chapter 6 Section 6.6
Batch e*Way Functions File Copy Transfer Functions

Batch e*Way Intelligent Adapter User’s Guide 149 SeeBeyond Proprietary and Confidential

file-ext-shutdown

Syntax

(file-ext-shutdown)

Description

file-ext-shutdown closes the connection to an external system.

Parameters

None.

Return Values

Boolean
Returns #t (true) under all circumstances.

Throws

None.

Location

file-ext-shutdown.monk

Chapter 6 Section 6.6
Batch e*Way Functions File Copy Transfer Functions

Batch e*Way Intelligent Adapter User’s Guide 150 SeeBeyond Proprietary and Confidential

file-ext-verify

Syntax

(file-ext-verify)

Description

file-ext-verify verifies the connection to an external system.

Parameters

None.

Return Values

Boolean
Returns #t (true) under all circumstances.

Throws

None.

Location

file-ext-verify.monk

Chapter 6 Section 6.6
Batch e*Way Functions File Copy Transfer Functions

Batch e*Way Intelligent Adapter User’s Guide 151 SeeBeyond Proprietary and Confidential

file-fetch

Syntax

(file-fetch filename)

Description

file-fetch fetches a file from a remote system.

Parameters

Return Values

Boolean
Returns #t (true) under all circumstances.

Throws

except-transfer, plus the name of the file.

Location

file-fetch.monk

Name Type Description

filename string The name of a file

Chapter 6 Section 6.6
Batch e*Way Functions File Copy Transfer Functions

Batch e*Way Intelligent Adapter User’s Guide 152 SeeBeyond Proprietary and Confidential

file-fetch-path

Syntax

(file-fetch-path remoteDirectory filename)

Description

file-fetch-path-list fetches a file from a specified location on a remote system.

Parameters

Return Values

Boolean
Returns #t (true) under all circumstances.

Throws

except-transfer, plus the name of the file.

Location

file-fetch.monk

Name Type Description

remoteDirectory string The complete directory path on the
remote system where the file to be
fetched resides.

filename string The name of a file.

Chapter 6 Section 6.6
Batch e*Way Functions File Copy Transfer Functions

Batch e*Way Intelligent Adapter User’s Guide 153 SeeBeyond Proprietary and Confidential

file-init

Syntax

(file-init)

Description

file-init initializes the Monk environment for file-based-transfer functions.

Parameters

None.

Return Values

Boolean
Returns #t (true) under all circumstances.

Throws

None.

Location

file-init.monk

Chapter 6 Section 6.6
Batch e*Way Functions File Copy Transfer Functions

Batch e*Way Intelligent Adapter User’s Guide 154 SeeBeyond Proprietary and Confidential

file-remote-path-list

Syntax

(file-remote-path-list remoteDirectory remoteFileRegexp)

Description

file-remote-path-list lists the files within a specified location on an external system.

Parameters

Return Values

List
Returns a list of files.

Throws

except-rmt-list

Location

file-remote-path-list.monk

Name Type Description

remoteDirectory string The complete directory path on the
remote system where the files to be
listed reside. A regular expression is
not accepted.

remoteFileRegexp string A regular expression that describes
the files to be listed. (See “Remote
File Regexp” on page 42 and “Using
Special Characters” on page 53.)

Chapter 6 Section 6.6
Batch e*Way Functions File Copy Transfer Functions

Batch e*Way Intelligent Adapter User’s Guide 155 SeeBeyond Proprietary and Confidential

file-rmt-list

Syntax

(file-rmt-list)

Description

file-rmt-list lists the files in the external source directory.

Parameters

None.

Return Values

List
Returns a list of files.

Throws

except-rmt-list

Location

file-rmt-list.monk

Chapter 6 Section 6.6
Batch e*Way Functions File Copy Transfer Functions

Batch e*Way Intelligent Adapter User’s Guide 156 SeeBeyond Proprietary and Confidential

file-rmt-post-transfer

Syntax

(file-rmt-post-transfer filename)

Description

file-rmt-post-transfer performs post-transfer operations on the named file, depending
on the setting of the Remote Command After Transfer configuration parameter.

Parameters

Return Values

Boolean
Returns #t (true) if the function evaluates the Remote Command After Transfer
configuration parameter’s to be None, or if the function succeeds. The exception except-
rmt-op is thrown if the function fails, or if an unrecognized transfer option (other than
none, archive, rename or delete) is selected. See “Remote Command After Transfer” on
page 44 for more information.

Throws

except-rmt-op.

Location

file-rmt-post-transfer.monk

Name Type Description

filename string The name of a file

Chapter 6 Section 6.6
Batch e*Way Functions File Copy Transfer Functions

Batch e*Way Intelligent Adapter User’s Guide 157 SeeBeyond Proprietary and Confidential

file-send

Syntax

(file-send filename)

Description

file-send sends the specified file to the external system.

Parameters

Return Values

Boolean
Returns #t (true) if the transfer succeeds; otherwise, returns #f (false).

Throws

except-transfer, plus the name of the file.

Location

file-send.monk

Name Type Description

filename string The name of a file

Chapter 6 Section 6.6
Batch e*Way Functions File Copy Transfer Functions

Batch e*Way Intelligent Adapter User’s Guide 158 SeeBeyond Proprietary and Confidential

file-send-path-file

Syntax

(file-send-path-file appendOverwrite localFilename remoteDirectory
remoteFilename)

Description

file-send-path-file sends the specified file to a specific directory on an external system.

Parameters

Return Values

Boolean
Returns #t (true) if the transfer succeeds; otherwise, returns #f (false).

Throws

except-transfer, plus the name of the file.

Location

file-send-path-file.monk

Name Type Description

appendOverwrite string Specifies whether to append the
records in the file being transferred to
the existing file on the external
system, or to overwrite the existing
file on the external system with the
file being transferred.

localFilename string The name of the file being sent to the
external system.

remoteDirectory string The path name at the remote location
to which the file is to be sent.

remoteFilename string The name of the file on the external
system that is being overwritten or
appended.

Chapter 6 Section 6.6
Batch e*Way Functions File Copy Transfer Functions

Batch e*Way Intelligent Adapter User’s Guide 159 SeeBeyond Proprietary and Confidential

file-startup

Syntax

(file-startup)

Description

file-startup performs startup functions specific to file-based transfers.

Parameters

None.

Return Values

Boolean
Returns #t (true) under all circumstances.

Throws

None.

Location

file-startup.monk

Chapter 6 Section 6.7
Batch e*Way Functions FTP Transfer Functions

Batch e*Way Intelligent Adapter User’s Guide 160 SeeBeyond Proprietary and Confidential

file-validate-params

Syntax

(file-validate-params)

Description

file-validate-params validates the configuration parameters specific to file-based
transfers.

Parameters

None.

Return Values

Boolean
Returns #t (true) under all circumstances.

Throws

None.

Location

file-validate-params.monk

6.7 FTP Transfer Functions
The functions in this section control the FTP connection and perform basic operations
such as send, list, and fetch. The functions described in this section can only be used by
the functions defined within the e*Way’s configuration file. None of the functions are
available to Collaboration Rules scripts executed by the e*Way.

The FTP transfer functions are

ftp-do-connect on
page 161

ftp-init on page 167

ftp-ext-connect on
page 162

ftp-rmt-list on page 168

ftp-ext-shutdown on
page 163

ftp-rmt-post-transfer on
page 169

ftp-ext-verify on page 164 ftp-send on page 170

ftp-fetch on page 165 ftp-startup on page 171

ftp-heuristic-download on
page 166

ftp-validate-params on
page 172

Chapter 6 Section 6.7
Batch e*Way Functions FTP Transfer Functions

Batch e*Way Intelligent Adapter User’s Guide 161 SeeBeyond Proprietary and Confidential

ftp-do-connect

Syntax

(ftp-do-connect)

Description

ftp-do-connect is a helper function related to ftp-ext-connect, which actually makes the
connection to the remote host.

Parameters

None.

Return Values

Undefined.

Throws

None.

Location

ftp-ext-connect.monk

Chapter 6 Section 6.7
Batch e*Way Functions FTP Transfer Functions

Batch e*Way Intelligent Adapter User’s Guide 162 SeeBeyond Proprietary and Confidential

ftp-ext-connect

Syntax

(ftp-ext-connect)

Description

ftp-ext-connect opens an FTP connection to an external system.

Parameters

None.

Return Values

Boolean
Returns #t (true) if the connection succeeds; otherwise, returns #f (false).

Throws

except-connect

Location

ftp-ext-connect.monk

Chapter 6 Section 6.7
Batch e*Way Functions FTP Transfer Functions

Batch e*Way Intelligent Adapter User’s Guide 163 SeeBeyond Proprietary and Confidential

ftp-ext-shutdown

Syntax

(ftp-ext-shutdown)

Description

ftp-ext-shutdown closes the FTP connection to the external system.

Parameters

None.

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

None.

Location

ftp-ext-shutdown.monk

Chapter 6 Section 6.7
Batch e*Way Functions FTP Transfer Functions

Batch e*Way Intelligent Adapter User’s Guide 164 SeeBeyond Proprietary and Confidential

ftp-ext-verify

Syntax

(ftp-ext-verify)

Description

ftp-ext-verify verifies that the FTP connection to the external system is still operating
properly.

Parameters

None.

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

None.

Location

ftp-ext-verify.monk

Chapter 6 Section 6.7
Batch e*Way Functions FTP Transfer Functions

Batch e*Way Intelligent Adapter User’s Guide 165 SeeBeyond Proprietary and Confidential

ftp-fetch

Syntax

(ftp-fetch filename)

Description

ftp-fetch retrieves the specified file from the external system.

Parameters

Return Values

Boolean
Returns #t (true) under all circumstances.

Throws

except-transfer, plus the file name.

Location

ftp-fetch.monk

Name Type Description

filename string The name of a file

Chapter 6 Section 6.7
Batch e*Way Functions FTP Transfer Functions

Batch e*Way Intelligent Adapter User’s Guide 166 SeeBeyond Proprietary and Confidential

ftp-heuristic-download

Syntax

(ftp-heuristic-download)

Description

ftp-heuristic-download downloads the file FtpHeuristics.cfg from the e*Gate Registry.

Parameters

None.

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

None.

Location

ftp-init.monk

Chapter 6 Section 6.7
Batch e*Way Functions FTP Transfer Functions

Batch e*Way Intelligent Adapter User’s Guide 167 SeeBeyond Proprietary and Confidential

ftp-init

Syntax

(ftp-init)

Description

ftp-init initializes the Monk environment for FTP-transfer functions.

Parameters

None.

Return Values

Boolean
Returns #t (true) if the initialization operations succeed; otherwise, returns #f (false).

Throws

None.

Location

ftp-init.monk

Chapter 6 Section 6.7
Batch e*Way Functions FTP Transfer Functions

Batch e*Way Intelligent Adapter User’s Guide 168 SeeBeyond Proprietary and Confidential

ftp-rmt-list

Syntax

(ftp-rmt-list)

Description

ftp-rmt-list returns a list of files in the external source directory.

Parameters

None.

Return Values

List
Returns a list of files.

Throws

except-rmt-list

Location

ftp-rmt-list.monk

Chapter 6 Section 6.7
Batch e*Way Functions FTP Transfer Functions

Batch e*Way Intelligent Adapter User’s Guide 169 SeeBeyond Proprietary and Confidential

ftp-rmt-post-transfer

Syntax

(ftp-rmt-post-transfer filename)

Description

ftp-rmt-post-transfer performs post-transfer operations on the named file, depending
on the setting of the Remote Command After Transfer configuration parameter.

Parameters

Return Values

Boolean
Returns #t (true) if the function evaluates the Remote Command After Transfer
configuration parameter’s to be “none” or if the function succeeds; #f (false) if an
unrecognized transfer option (other than none, archive, rename or delete) is selected or if
the function fails. See “Remote Command After Transfer” on page 44 for more
information.

Throws

except-rmt-op

Location

ftp-rmt-post-transfer.monk

Name Type Description

filename string The name of a file

Chapter 6 Section 6.7
Batch e*Way Functions FTP Transfer Functions

Batch e*Way Intelligent Adapter User’s Guide 170 SeeBeyond Proprietary and Confidential

ftp-send

Syntax

(ftp-send filename)

Description

ftp-send sends the specified file to the external system.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

except-transfer, plus the file name.

Location

ftp-send.monk

Name Type Description

filename string The name of a file

Chapter 6 Section 6.7
Batch e*Way Functions FTP Transfer Functions

Batch e*Way Intelligent Adapter User’s Guide 171 SeeBeyond Proprietary and Confidential

ftp-startup

Syntax

(ftp-startup)

Description

ftp-startup performs startup functions necessary for FTP transfers, such as establishing
the required handles.

Parameters

None.

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

None.

Location

ftp-startup.monk

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 172 SeeBeyond Proprietary and Confidential

ftp-validate-params

Syntax

(ftp-validate-params)

Description

ftp-validate-params validates configuration parameters specific to FTP transfers.

Parameters

None.

Return Values

Undefined.

Throws

except-param

Location

ftp-validate-params.monk

6.8 Advanced FTP Functions
The functions in this section perform advanced FTP functions. The functions described
in this section can only be used by the functions defined within the e*Way’s
configuration file. None of the functions are available to Collaboration Rules scripts
executed by the e*Way.

The advanced FTP functions are:

ftp-append-file on page 174

ftp-append-path on page 175

ftp-archive on page 176

ftp-archive-path on page 177

ftp-capture-data on page 178

ftp-change-dir on page 179

ftp-close on page 180

ftp-connect on page 181

ftp-create-handle on page 183

ftp-disconnect on page 184

ftp-delete on page 185

ftp-delete-path on page 186

ftp-fetch-path on page 187

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 173 SeeBeyond Proprietary and Confidential

ftp-get-file on page 188

ftp-get-last-response on page 189

ftp-get-last-result-code on page 190

ftp-get-path on page 191

ftp-handle? on page 192

ftp-list-files on page 193

ftp-list-raw on page 194

ftp-login on page 195

ftp-make-dir on page 197

ftp-open-data-port on page 198

ftp-open-host on page 199

ftp-open-host-through-SOCKS on page 200

ftp-put-file on page 201

ftp-put-path on page 202

ftp-remote-path-list on page 203

ftp-rename on page 204

ftp-rename-path on page 205

ftp-send-command on page 206

ftp-send-path-file on page 207

ftp-send-reply-immediate on page 208

ftp-set-compare-time on page 209

ftp-set-mode on page 210

ftp-set-port on page 211

ftp-set-SOCKS-host on page 212

ftp-set-SOCKS-port on page 213

ftp-set-timeout on page 214

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 174 SeeBeyond Proprietary and Confidential

ftp-append-file

Syntax

(ftp-append-file handle local_file remote_file)

Description

ftp-append-file sends a local file to the external host with the given external file name.
This function appends to the target file, or creates a new file if the target file does not
exist.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-append-file will throw the following exceptions:

$Ftp-Exception-Generic, E_STR 508

$Ftp-Exception-Generic, E_STR 507

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Name Type Description

handle Handle The FTP handle

local_file string The name of a file

remote_file string The name of a file

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 175 SeeBeyond Proprietary and Confidential

ftp-append-path

Syntax

(ftp-append-path handle local_file remote_dir remote_file)

Description

ftp-append-path sends a local file to the external host with the specified external file
name, to the specified directory. This function appends to the target file if it exists, or
creates a new file. ftp-append-path is functionally identical to ftp-append-file, except
that the FTP Heuristics database is used to generate a correct path name for the external
file.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-append-path will throw the following exceptions:

$Ftp-Exception-Generic, E_STR 509

$Ftp-Exception-Generic, E_STR 507

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Name Type Description

handle Handle The FTP handle

local_file string The name of a file

remote_dir string The name of a directory

remote_file string The name of a file

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 176 SeeBeyond Proprietary and Confidential

ftp-archive

Syntax

(ftp-archive handle filename directory)

Description

ftp-archive moves an external file to a different directory on the external host.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-archive will throw the following exceptions:

$Ftp-Exception-Generic, E_STR 509

$Ftp-Exception-Generic, E_STR 507

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Note: ftp-archive is not supported on heuristics MVS GDG. See Operating System or
File Type Selection on page 56. In addition, MVS does not allow partitioned data
sets to be renamed to another partitioned data set.

Name Type Description

handle Handle The FTP handle

filename string The name of a file

directory string The name of a directory

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 177 SeeBeyond Proprietary and Confidential

ftp-archive-path

Syntax

(ftp-archive-path handle old_dir filename new_dir)

Description

ftp-archive-path moves a file on the external system to a different directory on the
external system. The FTP Heuristics database is used to generate the correct path for the
external file.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-archive-path will throw the following exceptions:

$Ftp-Exception-Generic, E_STR 509

$Ftp-Exception-Generic, E_STR 506

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Note: ftp-archive-path is not supported on heuristics MVS GDG. See Operating
System or File Type Selection on page 56. In addition, MVS does not allow
partitioned data sets to be renamed to another partitioned data set.

Name Type Description

handle Handle The FTP handle

old_dir string The name of a directory

filename string The name of a file

new_dir string The name of a directory

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 178 SeeBeyond Proprietary and Confidential

ftp-capture-data

Syntax

(ftp-capture-data handle filename)

Description

ftp-capture-data reads the data from a data port previously opened with ftp-open-
data-port, and captures said data to the file specified. If the file already exists, it is
overwritten.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-capture-data will throw the following exceptions:

$Ftp-Exception-Generic, E_STR 509

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Name Type Description

handle Handle The FTP handle

filename string The name of a file

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 179 SeeBeyond Proprietary and Confidential

ftp-change-dir

Syntax

(ftp-change-dir handle directory)

Description

ftp-change-dir changes to the specified directory on the external host.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-change-dir will throw the following exceptions:

$Ftp-Exception-Generic, E_STR 506

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 30.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Name Type Description

handle Handle The FTP handle

directory string The name of a directory

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 180 SeeBeyond Proprietary and Confidential

ftp-close

Syntax

(ftp-close handle)

Description

ftp-close closes the FTP connection on the specified handle.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-close will throw the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Name Type Description

handle Handle The FTP handle

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 181 SeeBeyond Proprietary and Confidential

ftp-connect

Syntax

ftp-connect ftpHandle socksServerName socksServerPort SocksMethod
SocksUserName Sockspassword ftpServerName ftpServerPort
userName encryptedPassword

Description

ftp-connect makes a connection to a FTP server through a SOCKS host, and allows for a
configurable FTP server port number. If the FTP server port is an empty string, the
e*Way uses the default port number 21.

If SOCKS is not used, an empty string is passed for both the SOCKS server name and
the SOCKS server port.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-connect will throw the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 500.

Name Type Description

ftpHandle string The FTP handle.

socksServerName string A valid name for the SOCKS server.

socksServerPort integer The port number to use on the SOCKS
server for connection.

socksMethod string Indicates the Authentication method,
if any, for connecting to the SOCKS
server.

socksUserName string The User Name to be used for
authentication when connecting to
the SOCKS server.

sockspassword encrypted string The encrypted password to be used
for authentication when connecting
to the SOCKS server.

ftpServerName string A valid name for the FTP server

userName string The User Name to be used for
authentication when connecting to
the FTP server.

encryptedPassword encrypted string The encrypted password to be used
for authentication when connecting
to the FTP server.

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 182 SeeBeyond Proprietary and Confidential

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

ftp-connect.monk

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 183 SeeBeyond Proprietary and Confidential

ftp-create-handle

Syntax

(ftp-create-handle host-type)

Description

ftp-create-handle creates a new FTP handle for the specified host type. The host type
must be valid, and specified in the Ftp Heuristics configuration file.

You must supply the argument for this function; there is no default.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-create-handle will throw the following exceptions:

$Ftp-Exception-Catastrophic, E_STR 502.

Exception-InvalidArg, E_STR 39.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Name Type Description

host-type string A valid host type

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 184 SeeBeyond Proprietary and Confidential

ftp-disconnect

Syntax

(ftp-disconnect ftpHandle)

Description

ftp-disconnect closes the FTP connection on the specified handle.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-close will throw the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

ftp-disconnect.monk

Name Type Description

ftpHandle string The FTP handle

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 185 SeeBeyond Proprietary and Confidential

ftp-delete

Syntax

(ftp-delete handle filename)

Description

ftp-delete deletes a file from the external system.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-delete will throw the following exceptions:

$Ftp-Exception-Generic, E_STR 509

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Note: ftp-delete is not supported on heuristics MVS GDG. See Operating System or
File Type Selection on page 56.

Name Type Description

handle Handle The FTP handle

filename string The name of a file

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 186 SeeBeyond Proprietary and Confidential

ftp-delete-path

Syntax

(ftp-delete-path handle remote_dir remote_file)

Definition

ftp-delete-path deletes a file from a named directory on the external system. The FTP
Heuristics database is used to generate a correct path to the external file’ location.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-delete-path will throw the following exceptions:

$Ftp-Exception-Generic, E_STR 509

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Note: ftp-delete-path is not supported on heuristics MVS GDG. See Operating System
or File Type Selection on page 56.

Name Type Description

handle Handle The FTP handle

remote_dir string The name of a directory

remote_file string The name of a file

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 187 SeeBeyond Proprietary and Confidential

ftp-fetch-path

Syntax

(ftp-fetch-path ftphandle ftpMode remoteDirectory filename)

Description

ftp-fetch-path-list fetches a file, through a FTP connection, from a specified location on
a remote system.

Parameters

Return Values

Boolean
Returns #t (true) under all circumstances.

Throws

except-transfer, plus the name of the file.

$Ftp-Exception-Generic, E_STR 509

$Ftp-Exception-Generic, E_STR 508

$Ftp-Exception-Generic, E_STR 507

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

ftp-fetch-path.monk

Name Type Description

ftpHandle string The FTP handle.

ftpMode string The FTP mode.

remoteDirectory string The complete directory path on the
remote system where the file to be
fetched resides.

filename string The name of a file.

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 188 SeeBeyond Proprietary and Confidential

ftp-get-file

Syntax

(ftp-get-file handle remote_file local_file)

Description

ftp-get-file retrieves the specified file from the external host and stores it in the
specified local file.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-get-file will throw the following exceptions:

$Ftp-Exception-Generic, E_STR 509

$Ftp-Exception-Generic, E_STR 507

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Name Type Description

handle Handle The FTP handle

remote_file string The name of a file

local_file string The name of a file

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 189 SeeBeyond Proprietary and Confidential

ftp-get-last-response

Syntax

(ftp-get-last-response handle)

Description

ftp-get-last-response returns the full textual response of the last FTP transaction.

Parameters

Return Values

String
Returns the external system’s response.

Throws

ftp-get-last-response will throw the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Name Type Description

handle Handle The FTP handle

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 190 SeeBeyond Proprietary and Confidential

ftp-get-last-result-code

Syntax

(ftp-get-last-result-code handle)

Description

ftp-get-last-result-code returns the result code of the last FTP transaction. See RFC 959
for a description of the values that may be returned in this function.

Parameters

Return Values

Integer
Returns the external system’s response.

Throws

ftp-get-last-result-code will throw the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Name Type Description

handle Handle The FTP handle

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 191 SeeBeyond Proprietary and Confidential

ftp-get-path

Syntax

(ftp-get-path handle remote_dir remote_file local_file)

Description

ftp-get-path retrieves a file from a named directory on the external system. This is
functionally identical to ftp-get-file, except that the FTP Heuristics database is used to
generate a correct path name for the external file.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-get-path will throw the following exceptions:

$Ftp-Exception-Generic, E_STR 509

$Ftp-Exception-Generic, E_STR 508

$Ftp-Exception-Generic, E_STR 507

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Name Type Description

handle Handle The FTP handle

remote_dir string The name of a directory

remote_file string The name of a file

local_file string The name of a file

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 192 SeeBeyond Proprietary and Confidential

ftp-handle?

Syntax

(ftp-handle? handle)

Description

ftp-handle? determines whether the specified handle is a valid FTP handle.

Parameters

Return Values

Boolean
Returns #t (true) if the handle is valid; otherwise, returns #f (false).

Throws

ftp-handle? will throw the following exceptions:

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Additional Information

The fact that a file is of the same size on both occasions does not imply that it is stable.
This function and ftp-set-compare-time are provided for compatibility purposes only.

Name Type Description

handle Handle An FTP handle

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 193 SeeBeyond Proprietary and Confidential

ftp-list-files

Syntax

(ftp-list-files handle directory regexp_mask)

Description

ftp-list-files uses the FTP Heuristics to retrieve the list of the files, in the specified
directory, that match the given regular expression.

Parameters

Return Values

Returns one of the following values:

List
Returns a list of files.

Boolean
Returns #f (false) when it fails to find the list of files that match the given regular
expression.

Throws

ftp-list-files will throw the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 501.

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Examples

(define file-list (ftp-list-files “srcdir” “*.txt”))

Name Type Description

handle Handle The FTP handle

directory string The name of a directory

regexp_mask string A regular expression

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 194 SeeBeyond Proprietary and Confidential

ftp-list-raw

Syntax

(ftp-list-raw handle directory filename_regexp)

Description

ftp-list-raw performs a “LIST” command on the external system, using the specified
directory and file name regular expression. The reply from the FTP server is returned as
a list of lines, so that a Monk programmer can parse the output in any way that may be
required.

Parameters

Return Values

List
Returns a list of lines.

Throws

ftp-list-raw will throw the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Name Type Description

handle handle The FTP handle

directory string The name of a directory

filename_regexp string A regular expression

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 195 SeeBeyond Proprietary and Confidential

ftp-login

Syntax

(ftp-login handle username encryptedpwd)

Description

ftp-login performs the FTP login sequence for the host previously opened on the
current ftp handle.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-login will throw the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 505

$Ftp-Exception-Invalid-Arg, E_STR 504

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Additional Information

The following Monk environment variables contain the user name and password
specified in the e*Way Editor:

EXTERNAL_HOST_SETUP_ENCRYPTED_PASSWORD
EXTERNAL_HOST_SETUP_USER_NAME

See “User Name” on page 41 and “Encrypted Password” on page 41 for more
information on these variables. If the ftp-login function is called within the Batch
e*Way’s Monk environment, you can obtain the required username and password
information from those variables. For example,

Name Type Description

handle handle The FTP handle

username string A valid username

encryptedpwd string The encrypted password
corresponding to the specified
username

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 196 SeeBeyond Proprietary and Confidential

(ftp-login handle EXTERNAL_HOST_SETUP_ENCRYPTED_PASSWORD
EXTERNAL_HOST_SETUP_USER_NAME)

You may also use the (encrypt-password) function to generate an encrypted password.
For example,

(ftp-login handle "Administrator"
(encrypt-password "Administrator" "Admin-password"))

(encrypt-password) requires two string parameters (the user name and password), and
returns the encrypted password as a string. The (encrypt-password) function is defined
in the following file:

/monk_library/monkext/monkext.monk

You must load this file to use (encrypt-password). To load the monkext.monk file
within the e*Way’s Monk environment, add the directory /monk_library/monkext/ to
the list of Auxiliary Library Directories. See “Auxiliary Library Directories” on
page 34 for more information.

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 197 SeeBeyond Proprietary and Confidential

ftp-make-dir

Syntax

(ftp-make-dir handle directory)

Description

ftp-make-dir creates a directory on the external system.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-make-dir will throw the following exceptions:

$Ftp-Exception-Generic, E_STR 506

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 30.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Name Type Description

handle handle The FTP handle

directory string A valid directory name

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 198 SeeBeyond Proprietary and Confidential

ftp-open-data-port

Syntax

(ftp-open-data-port handle)

Description

ftp-open-data-port creates opens a TCP/IP port.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-open-data-port will throw the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Name Type Description

handle handle The FTP handle

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 199 SeeBeyond Proprietary and Confidential

ftp-open-host

Syntax

(ftp-open-host handle hostname)

Description

ftp-open-host opens a command connection to the FTP port of the given host name.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-open-host will throw the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 503.

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Name Type Description

handle handle The FTP handle

hostname string A valid hostname

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 200 SeeBeyond Proprietary and Confidential

ftp-open-host-through-SOCKS

Syntax

(ftp-open-host-through-SOCKS ftpHandle socksServerName
socksServerPort SocksMethod
SocksUserName Sockspassword
ftpServerName)

Description

ftp-open-host-through-SOCKS connects to the specified FTP Host through the SOCKS
Host.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-open-host-through-SOCKS will throw the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 500.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Name Type Description

ftpHandle string The FTP handle.

socksServerName string A valid name for the SOCKS server.

socksServerPort integer The port number to use on the SOCKS
server for connection.

socksMethod string Indicates the Authentication method,
if any, for connecting to the SOCKS
server.

socksUserName string The User Name to be used for
authentication when connecting to
the SOCKS server.

sockspassword encrypted string The encrypted password to be used
for authentication when connecting
to the SOCKS server.

ftpServerName string A valid name for the FTP server.

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 201 SeeBeyond Proprietary and Confidential

ftp-put-file

Syntax

(ftp-put-file handle local_file remote_file)

Description

ftp-put-file sends the specified local file to the external host, saving it under the
specified remote file name. A target file of the same name will be overwritten.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-put-file will throw the following exceptions:

$Ftp-Exception-Generic, E_STR 508

$Ftp-Exception-Generic, E_STR 507

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Name Type Description

handle Handle The FTP handle

local_file string The local file name

remote_file string The remote file name

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 202 SeeBeyond Proprietary and Confidential

ftp-put-path

Syntax

(ftp-put-path handle local_file remote_dir remote_file)

Description

ftp-put-path sends a file from the local system to a named directory on the external
system. This is functionally identical to ftp-put-file, except that the FTP Heuristics
database is used to generate a correct path name for the external file.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-put-path will throw the following exceptions:

$Ftp-Exception-Generic, E_STR 509

$Ftp-Exception-Generic, E_STR 507

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Name Type Description

handle Handle The FTP handle

local_file string The local file name

remote_dir string The remote directory name

remote_file string The remote file name

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 203 SeeBeyond Proprietary and Confidential

ftp-remote-path-list

Syntax

(ftp-remote-path-list ftpHandle remoteDirectory remoteFileRegexp)

Description

ftp-remote-path-list lists the files within a specified location on an external system,
through a FTP connection.

Parameters

Return Values

List
Returns a list of files.

Throws

except-rmt-list

$Ftp-Exception-Generic, E_STR 509

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

ftp-remote-path-list.monk

Name Type Description

ftpHandle string The FTP handle

remoteDirectory string The complete directory path on the
remote system where the files to be
listed resides.

remoteFileRegexp string A regular expression that describes
files to be listed. (See “Remote File
Regexp” on page 42 and “Using
Special Characters” on page 53.)

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 204 SeeBeyond Proprietary and Confidential

ftp-rename

Syntax

(ftp-rename handle old_name new_name)

Description

ftp-rename renames a file on the external host.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-rename will throw the following exceptions:

$Ftp-Exception-Generic, E_STR 509

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Note: Not all FTP daemons support this command.
ftp-rename is not supported on heuristics MVS GDG. See Operating System or
File Type Selection on page 56. In addition, MVS does not allow partitioned data
sets to be renamed to another partitioned data set.

Name Type Description

handle Handle The FTP handle

old_name string The current file name

new_name string A valid file name

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 205 SeeBeyond Proprietary and Confidential

ftp-rename-path

Syntax

(ftp-rename-path handle remote_dir old_name new_name)

Description

ftp-rename-path renames a file on the external system. The directory in which the file is
located is passed as a parameter. The FTP heuristics database is used to generate a
correct path name for the external file.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-rename-path will throw the following exceptions:

$Ftp-Exception-Generic, E_STR 509

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Note: ftp-rename-path is not supported on heuristics MVS GDG. See Operating
System or File Type Selection on page 56. In addition, MVS does not allow
partitioned data sets to be renamed to another partitioned data set.

Name Type Description

handle Handle The FTP handle

remote_dir string The remote directory name

old_name string The current file name

new_name string A valid file name

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 206 SeeBeyond Proprietary and Confidential

ftp-send-command

Syntax

(ftp-send-command handle command)

Description

ftp-send-command enables the developer to send any command to the external FTP
server. The results of the command should be read with ftp-get-last-result-code and
ftp-get-last-response.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false). This function
does not return the results of the FTP command itself.

Throws

ftp-send-command will throw the following exceptions:

$Ftp-Exception-Generic, E_STR 510.

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Name Type Description

handle Handle The FTP handle

command string A valid FTP command

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 207 SeeBeyond Proprietary and Confidential

ftp-send-path-file

Syntax

(ftp-send-path-file ftpHandle ftpMode appendOverwrite localFilename
remoteDirectory remoteFilename)

Description

ftp-send-path-file sends the specified file to a specific directory on an external system
through a FTP connection.

Parameters

Return Values

Boolean
Returns #t (true) if the transfer succeeds; otherwise, returns #f (false).

Throws

except-transfer, plus the name of the file.

$Ftp-Exception-Generic, E_STR 509

$Ftp-Exception-Invalid-Arg, E_STR 500

Exception-InvalidArg, E_STR 39.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

file-send-path-file.monk

Name Type Description

ftpHandle string The FTP handle.

ftpMode string The FTP mode.

appendOverwrite string Specifies whether to append the
records in the file being transferred to
the existing file on the external
system, or to overwrite the existing
file on the external system with the
file being transferred.

localFilename string The name of the file being sent to the
external system.

remoteDirectory string The path name at the remote location
to which the file is to be sent.

remoteFilename string The name of the file on the external
system that is being overwritten or
appended.

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 208 SeeBeyond Proprietary and Confidential

ftp-send-reply-immediate

Syntax

(ftp-send-reply-immediate handle flag)

Description

ftp-send-reply-immediate sets a Boolean flag. When the flag is set to #t, this function
prevents the FTP *.dll file from waiting for a reply from the command port before
starting a data transfer. The default for this flag is #f.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-send-reply-immediate will throw the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 500.

Exception-InvalidArg, E_STR 29.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Name Type Description

handle Handle The FTP handle

flag Boolean The value of the flag

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 209 SeeBeyond Proprietary and Confidential

ftp-set-compare-time

Syntax

(ftp-set-compare-time handle seconds)

Description

ftp-set-compare-time sets the time between file listings for size comparison to the
supplied number of seconds. See Additional Information on page 192 for more
information.

Parameters

Return Values

Boolean
Returns #t (true) under all circumstances.

Throws

ftp-set-compare-time will throw the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 500.

Exception-InvalidArg, E_STR 29.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Name Type Description

handle Handle The FTP handle

seconds integer A non-zero positive integer

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 210 SeeBeyond Proprietary and Confidential

ftp-set-mode

Syntax

(ftp-set-mode handle mode)

Description

ftp-set-mode sets the transfer mode to either A for ASCII, E for EBCDIC, or I for image
(binary).

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-set-port will throw the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 500.

Exception-InvalidArg, E_STR 30.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Additional Information

The mode selected will produce different results, depending on the type of data
transferred, and the types of systems involved. The table below illustrates the possible
different configurations of systems, data, and modes, with the corresponding results.

Name Type Description

handle Handle The FTP handle

mode character A, E, or I

Configuration Mode Results

Batch e*Way on ASCII
machine retrieving data
from an EBCDIC
machine.

ASCII Data converts to ASCII which can be
read on ASCII machine.

EBCDIC Data converts to ASCII which can be
read on ASCII machine.

Image Data remains in EBCDIC.

Batch e*Way on ASCII
machine retrieving data
from an ASCII machine.

ASCII Data remains in ASCII.

EBCDIC Data converts to unreadable format.

Image Data will be in ASCII.

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 211 SeeBeyond Proprietary and Confidential

ftp-set-port

Syntax

(ftp-set-port handle port)

Description

ftp-set-port sets the FTP port number. The default port is 21 if this port is not set.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-set-port will throw the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 500.

Exception-InvalidArg, E_STR 29.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Name Type Description

handle Handle The FTP handle

port integer A positive integer

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 212 SeeBeyond Proprietary and Confidential

ftp-set-SOCKS-host

Syntax

(ftp-set-SOCKS-host handle SOCKS-hostname)

Description

ftp-set-SOCKS-host sets the host name of the SOCKS server.

Note: This function is for backwards compatibility only. If you are using SOCKS version
5, you should use ftp-open-host-through-SOCKS on page 200.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-set-SOCKS-host will throw the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 500.

$Ftp-Exception-Invalid-Arg, E_STR 503.

Exception-InvalidArg, E_STR 39.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Name Type Description

handle Handle The FTP handle

SOCKS-hostname string A valid host name

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 213 SeeBeyond Proprietary and Confidential

ftp-set-SOCKS-port

Syntax

(ftp-set-SOCKS-port handle SOCKS-port)

Description

ftp-set-SOCKS-port sets the port number through which to connect to the SOCKS
server. When this SOCKS port is set, the FTP server is connected through the SOCKS
server.

Note: This function is for backwards compatibility only. If you are using SOCKS version
5, you should use ftp-open-host-through-SOCKS on page 200.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-set-SOCKS-port will throw the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 500.

Exception-InvalidArg, E_STR 29.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Name Type Description

handle Handle The FTP handle

SOCKS-port integer A positive integer

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 214 SeeBeyond Proprietary and Confidential

ftp-set-timeout

Syntax

(ftp-set-timeout handle time)

Description

ftp-set-timeout sets the number of seconds to wait for a response from the external FTP
host or that a data transfer can stall.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

ftp-set-timeout will throw the following exceptions:

$Ftp-Exception-Invalid-Arg, E_STR 500.

Exception-InvalidArg, E_STR 29.

Exception-InvalidArg E_STR 12.

See the Table, Advanced FTP Exceptions on page 215, for details about these
exceptions.

Location

stc_ewftp.dll

Name Type Description

handle Handle The FTP handle

time integer A non-zero positive integer

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 215 SeeBeyond Proprietary and Confidential

6.8.1 Advanced FTP Function Exceptions
The following table shows details of the exceptions which the advanced FTP functions
may throw.

Table 9 Advanced FTP Exceptions

symbol catego
ry

E_ST
R string Reason

$Ftp-Exception-
Generic

-51 510 argument %d - \"%s\" -
must be valid
Command.

Command is empty
string.

$Ftp-Exception-
Generic

-51 509 argument %d - \"%s\" -
must be valid File
name.

The file name is an
empty string.

$Ftp-Exception-
Generic

-51 508 argument %d - \"%s\" -
must be valid Local
Path.

Remote path is an
empty string.

$Ftp-Exception-
Generic

-51 507 argument %d - \"%s\" -
must be valid Local
Path.

Local path is an
empty string.

$Ftp-Exception-
Generic

-51 506 argument %d - \"%s\" -
must be valid
Directory.

Directory path is an
empty string.

$Ftp-Exception-
Invalid-Arg

-52 505 argument %d - \"%s\" -
must be valid User.

User name is an
empty string.

$Ftp-Exception-
Invalid-Arg

-52 504 "argument %d - \"%s\"
- must be password."

Password is an
empty string.

$Ftp-Exception-
Invalid-Arg

-52 503 argument %d - \"%s\" -
must be valid Host
name.

Host name is an
empty string.

$Ftp-Exception-
Catastrophic

-52 502 "Failed to create new
FTP session handle."

Failed to create FTP
handle.

$Ftp-Exception-
Invalid-Arg

-52 501 "argument %d - \"%s\"
- must be valid \filter
with length in range of
1-255."

File filter is an
empty string.

$Ftp-Exception-
Invalid-Arg

-52 500 argument %d must be a
valid FTP handle.

FTP handle is
invalid.

Exception-InvalidArg -10 39 argument %u must be a
string

The argument must
be a string.

Exception-InvalidArg -10 30 %s: argument %u must
be a char.

Mode must be a
character.

Chapter 6 Section 6.8
Batch e*Way Functions Advanced FTP Functions

Batch e*Way Intelligent Adapter User’s Guide 216 SeeBeyond Proprietary and Confidential

Exception-InvalidArg -10 29 argument %u must be
an integer.

Timeout must be an
integer.

Exception-InvalidArg -10 12 requires %u
argument(s).

Not enough input
parameters.

symbol catego
ry

E_ST
R string Reason

Chapter 6 Section 6.9
Batch e*Way Functions File System Functions

Batch e*Way Intelligent Adapter User’s Guide 217 SeeBeyond Proprietary and Confidential

6.9 File System Functions
This section describes functions that perform file-system operations. The functions
described in this section can only be used by the functions defined within the e*Way’s
configuration file. None of the functions are available to Collaboration Rules scripts
executed by the e*Way.

The file system functions are

fs-append-file on page 218

fs-copy-file on page 219

fs-delete-file on page 220

fs-list-files on page 221

fs-make-dir on page 222

fs-read-delim on page 223

fs-read-fixed on page 224

fs-rename-file on page 225

Chapter 6 Section 6.9
Batch e*Way Functions File System Functions

Batch e*Way Intelligent Adapter User’s Guide 218 SeeBeyond Proprietary and Confidential

fs-append-file

Syntax

(fs-append-file source_file dest_file)

Description

fs-append-file appends the contents of the source file to the destination file. If the
destination file does not exist, it is created.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

None.

Location

stc_monkfilesys.dll

Name Type Description

source_file string The source file name

dest_file string A valid file name

Chapter 6 Section 6.9
Batch e*Way Functions File System Functions

Batch e*Way Intelligent Adapter User’s Guide 219 SeeBeyond Proprietary and Confidential

fs-copy-file

Syntax

(fs-copy-file source_file dest_file)

Description

fs-copy-file copies the source file to the destination file. If the destination file does not
exist, it is created.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

None.

Location

stc_monkfilesys.dll

Name Type Description

source_file string The source file name

dest_file string A valid file name

Chapter 6 Section 6.9
Batch e*Way Functions File System Functions

Batch e*Way Intelligent Adapter User’s Guide 220 SeeBeyond Proprietary and Confidential

fs-delete-file

Syntax

(fs-delete-file filename)

Description

fs-delete-file deletes the specified file.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Throws

None.

Location

stc_monkfilesys.dll

Name Type Description

filename string The name of the file to delete.

Chapter 6 Section 6.9
Batch e*Way Functions File System Functions

Batch e*Way Intelligent Adapter User’s Guide 221 SeeBeyond Proprietary and Confidential

fs-list-files

Syntax

(fs-list-files directory regexp)

Description

fs-list-files lists all files in the specified directory. If a second parameter is entered, only
files matching the specified regular expression are listed. Directories are excluded from
the list. On Windows NT systems, files with the hidden, system or archive attributes
will be listed.

Parameters

Return Values

List
Returns a list of files.

Throws

None.

Location

stc_monkfilesys.dll

Name Type Description

directory string The directory containing files to list.

regexp string A regular expression (optional)

Chapter 6 Section 6.9
Batch e*Way Functions File System Functions

Batch e*Way Intelligent Adapter User’s Guide 222 SeeBeyond Proprietary and Confidential

fs-make-dir

Syntax

(fs-make-dir directory)

or

(fs-make-dir directory option)

Description

In the standard, single argument form, fs-make-dir creates the named directory,
returning #t on success. If the directory already exists, or it is not possible to create the
directory for some other reason, #f is returned.

In the alternate form, an optional Boolean value may be given as the second argument.
If this is set to #f, then the behavior described above is observed. A value of #t indicates
that all components of the directory given will be created. If any or all of these
components exist, including the final one, then no error is generated and #t is returned.

Parameters

Return Values

Boolean
Returns #t (true) or #f (false), as described above.

Throws

None.

Location

stc_monkfilesys.dll

Name Type Description

directory string A valid directory name

option Boolean Optional Boolean argument

Chapter 6 Section 6.9
Batch e*Way Functions File System Functions

Batch e*Way Intelligent Adapter User’s Guide 223 SeeBeyond Proprietary and Confidential

fs-read-delim

Syntax

(fs-read-delim port delimiter final_delim)

Description

fs-read-delim provides a fast method for reading delimiter records from an already
opened file. The input port and the delimiter string are passed as arguments, and the
next Event in the file is returned, minus the delimiter. If the final Event in the file is not
terminated with the delimiter string, it is not returned.

To change this behavior, an additional Boolean value may be supplied. A value of #t
will provide the same behavior as described above, while a value of #f indicates that
there is no delimiter on the final record.

Parameters

Return Values

String
Returns the string indicating the delimiter records that have been read.

Throws

Exception if the requested delimiter records are not read.

Location

stc_monkfilesys.dll

Name Type Description

port integer A valid port number

delimiter string A record-delimiter string

final_delim Boolean Optional Boolean argument

Chapter 6 Section 6.9
Batch e*Way Functions File System Functions

Batch e*Way Intelligent Adapter User’s Guide 224 SeeBeyond Proprietary and Confidential

fs-read-fixed

Syntax

(fs-read-fixed port bytes)

Description

fs-read-fixed attempts to read a specified number of bytes from an input port. If the
final record in the file is less than the requested number of bytes, it is ignored.

Parameters

Return Values

Returns one of the following values:

String
If the function successfully read the required number of bytes, returns a string of the
specified length.

Boolean
Returns #f (false) if the required number of bytes cannot be read.

Throws

None.

Location

stc_monkfilesys.dll

Name Type Description

port integer A valid port number

bytes integer A non-zero positive integer

Chapter 6 Section 6.9
Batch e*Way Functions File System Functions

Batch e*Way Intelligent Adapter User’s Guide 225 SeeBeyond Proprietary and Confidential

fs-rename-file

Syntax

(fs-rename-file old_name new_name)

Description

fs-rename-file renames a file.

Parameters

Return Values

Boolean
Returns #t (true) if the operation succeeds; otherwise, returns #f (false).

Note: When moving or renaming a file, the destination volume must be the same as the
source volume.

Throws

None.

Location

stc_monkfilesys.dll

Name Type Description

old_name string The current file name

new_name string A valid file name

Batch e*Way Intelligent Adapter User’s Guide 226 SeeBeyond Proprietary and Confidential

Chapter 7

FTP Event Type Definition

This chapter describes the FTP Event Type Definition (ETD) for the Batch e*Way
Intelligent Adapter, as well as the ETD’s features.

7.1 FTP ETD: Introduction
The Batch e*Way includes a Java programming language-enabled ETD that allows you
to perform FTP operations in a Java environment.

Note: For this release, the FTP ETD is available on all e*Gate-supported platforms except
the OS/390 system.

The combination of a specific ETD, working with a specific e*Way Connection, with a
set of configurable parameters for that e*Way Connection, defines the characteristics of
the external interface. Through the FTP ETD and one or more e*Way Connections, you
can create the Collaboration Rules to make the Batch e*Way behave in a specific way.

The FTP ETD enables the e*Gate system to exchange data with other network hosts, for
the purpose of receiving and delivering Events stored in files. Because of network-
mounted file systems or FTP servers on different platforms, the FTP ETD can send to,
and receive from, machines running numerous operating systems. This ETD supports
standard FTP commands according to RFC-959, for example:

Caution: The FTP ETD payload uses a byte array. You must also use a byte array for the
payload copy, specifically for binary transfers, but is a good idea in all cases. Failure
to do so can cause loss of data.

APPE NOOP RNTO

CWD PASS SITE

DELE QUIT STOR

LIST RETR TYPE

MKD RNFR USER

Chapter 7 Section 7.2
FTP Event Type Definition FTP ETD: Overview

Batch e*Way Intelligent Adapter User’s Guide 227 SeeBeyond Proprietary and Confidential

7.1.1 Components
The Java-enabled FTP ETD is comprised of the components listed in this section.

New features available only in Java Collaborations

! ETD: The FTP ETD can be used in a Collaboration Rule to operate with e*Way
Connections.

! e*Way Connection: The Java-enabled Batch e*Way Connection provides access to
the information necessary for connection to a specified external connection.

! Configuration and GUI: An e*Way Connection Properties dialog box is available to
centrally configure properties; the e*Way Editor uses configuration files to define
configuration parameters.

A complete list of installed files appears in Table 1 on page 18.

The FTP ETD must be configured and administered, using the e*Gate Enterprise
Manager GUI.

7.1.2 Client Components
Any client components relevant to the Java-enabled FTP ETD have their own
requirements. See the subject system’s documentation for details.

7.2 FTP ETD: Overview
Essentially, the FTP ETD is a mirror image of the e*Way Connection and allows you to
configure specific e*Way Connection parameters in the Java Collaboration controlling
the FTP process. Once you have done this configuration, you do not have to define the
same parameters in each relative e*Way Connection component that uses this
Collaboration.

Note: Chapter 8 lists the e*Way Connection configuration parameters for the FTP ETD
and explains each one.

Chapter 7 Section 7.2
FTP Event Type Definition FTP ETD: Overview

Batch e*Way Intelligent Adapter User’s Guide 228 SeeBeyond Proprietary and Confidential

7.2.1 ETD Structure
The file name and installed directory location of the FTP ETD is:

\eGate\client\etd\batchclient\FtpFileETD.xsc

Figure 11 shows the FTP ETD as it appears in the ETD Editor’s Main window.

Figure 11 FTP ETD Structure

Note that each field element in the ETD structure corresponds to one of the e*Way
Connection’s configuration parameters. See Chapter 8 for an explanation of each of
these parameters.

Chapter 7 Section 7.2
FTP Event Type Definition FTP ETD: Overview

Batch e*Way Intelligent Adapter User’s Guide 229 SeeBeyond Proprietary and Confidential

7.2.2 ETD Java Methods
In addition to the field elements shown in Figure 11 on page 228, the FTP ETD contains
the following Java methods:

! get(): Retrieves the payload from the FTP server, that is, it retrieves the first
matching file based on Remote Directory Name and Remote File Name to the
payload and performs Command After Transfer. It also returns a Boolean True if
the data is retrieved successfully or False if no data is available.

! put(): Places the payload on the FTP server, that is, it performs an append or put
from the payload to the remote FTP server and performs Command After Transfer.
It also returns a Boolean True if the data is sent successfully or False if the operation
fails.

! restoreConfigValues(): Restores all the values from the e*Way Connection to the
appropriate values in the FTP ETD.

See Chapter 9 for more information on each of these methods.

Note: Chapter 8 and Chapter 9 explain how to configure and use the FTP ETD.

Batch e*Way Intelligent Adapter User’s Guide 230 SeeBeyond Proprietary and Confidential

Chapter 8

e*Way Connection Configuration

This chapter describes how to configure e*Way Connections for the FTP ETD.

8.1 Configuring e*Way Connections
Set up e*Way Connections using the e*Gate Enterprise Manager graphical user
interface (GUI).

To create and configure e*Way Connections

1 In the Enterprise Manager’s Navigation pane, select the Component tab.

2 Select the e*Way Connections folder.

3 On the palette, click on the icon to create a new e*Way Connection.

The New e*Way Connection Component dialog box appears.

4 Enter a name for the e*Way Connection, then click OK.

An icon for your new e*Way Connection appears in the Navigation pane.

5 Double-click on the new e*Way Connection icon.

The e*Way Connection Properties dialog box appears.

6 From the e*Way Connection Type drop-down box, select (for the examples) Batch.

7 Enter 100 or 1000 for the Event Type “get” interval in the dialog box provided.

8 From the e*Way Connection Configuration File, click New to open the e*Way
Editor GUI.

Note: To use an existing file, click Find.

9 Use the e*Way Editor to create a new configuration file for this e*Way Connection.
Do this operation by selecting the appropriate configuration parameters available
in the GUI.

10 When you are finished, close the e*Way Editor and save the new configuration file.

Chapter 8 Section 8.2
e*Way Connection Configuration Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 231 SeeBeyond Proprietary and Confidential

The rest of this chapter explains the FTP ETD e*Way Connection configuration
parameters as follows:

! “Connector” on page 231

! “FTP File” on page 232

8.2 Configuration Parameters
This section explains the configuration parameters for the FTP ETD e*Way Connection.

8.2.1 Connector
The parameters in the Connector section allow the Collaboration engine to identify the
e*Way Connection.

Type

Description

Specifies the type of connection.

Required Values

FTPFile. The value defaults to FTPFile.

Class

Description

Specifies the class name of the FTP file connector object.

Required Values

A valid package name. The default is com.stc.eways.batch.FTPConnector.

Property.Tag

Description

Identifies the data source. This parameter is required by the current
EBobConnectorFactory.

Required Values

A valid data source package name.

Chapter 8 Section 8.2
e*Way Connection Configuration Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 232 SeeBeyond Proprietary and Confidential

8.2.2 FTP File
This section lists the following set of parameters:

! “Directory Listing Style” on page 232

! “Host Name” on page 232

! “User Name” on page 232

! “Password” on page 233

! “Mode” on page 233

! “Use PASV” on page 233

! “Server Port” on page 233

! “Remote Directory Name” on page 233

! “Remote File Name” on page 234

! “Overwrite Or Append” on page 234

! “Command After Transfer” on page 234

! “Rename or Archive Name” on page 235

! “Pre Transfer Raw Commands” on page 235

! “Post Transfer Raw Commands” on page 235

! “Starting Sequence Number” on page 236

! “Max Sequence Number” on page 236

Directory Listing Style

Description

Select the system that reflects the remote host. This parameter is used to determine the
format in which the LIST command returns file listing information.

Required Values

From the list provided, select the name of the desired system.

Host Name

Description

The name of the external system that the e*Way connects to.

Required Values

Enter the name of the external host system, for example, ftphost.

User Name

Description

When a log-in to the external system is required, enter the log-in user name to be used.

Chapter 8 Section 8.2
e*Way Connection Configuration Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 233 SeeBeyond Proprietary and Confidential

Required Values

Enter the desired user name.

Password

Description

If a password is required in order to log in to the external system, enter the password
that corresponds to the given user name.

Required Values

Enter the required password.

Mode

Description

This parameter describes the mode to transfer data to and from the FTP server.

Required Values

Enter one of the following modes:

! ASCII

! BINARY

Use PASV

Description

It causes the e*Way to enter the passive or active mode.

Required Values

Select either Yes or No. The default is No.

Server Port

Description

The port number to use on the FTP server when connecting to it.

Required Values

Enter the desired port number.

Remote Directory Name

Description

The directory (absolute path location) on the external system where files are retrieved
or sent.

Required Values

Enter the desired directory name and path location.

Chapter 8 Section 8.2
e*Way Connection Configuration Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 234 SeeBeyond Proprietary and Confidential

Remote File Name

Description

For inbound (subscriber), it is the remote file name regular expression. For outbound
(publisher), it is the remote file name.

For inbound, files in the remote directory that match the regular expression are
retrieved to payload, through get(), for processing.

For outbound, this is the name of the file as it appears on the remote system for put().
Special characters for date and time and sequence numbering expansions may be used,
which are expanded by the e*Way before the file is transmitted.

Required Values

Enter the appropriate remote file name, as specified previously. For example, for MVS
GDG, this entry can be the version of the data set.

Additional Examples:

! Remote Directory Name = 'STC.SAMPLE.GDGSET'

! Remote File Name = (0) to indicate the current version

Overwrite Or Append

Description

Select the appropriate parameter, as follows:

! If Append is selected and the remote file already exists, then the payload is
appended to the existing file.

! If Overwrite is selected, then the e*Way overwrites the existing file on the remote
system.

! If a file with the same name does not exist, both Append and Overwrite create a
new file on the external host.

This parameter is for outbound only.

Required Values

Select either Append or Overwrite, as directed previously.

Command After Transfer

Description

After a file has been successfully retrieved from or sent to the external system, the
following actions can be performed on the remote copy: delete, rename, archive. Also,
no action can be taken at all.

The rename and archive functions may not be available in all cases. In the case of FTP,
they rely on the RNFR command being available on the remote FTP daemon.

When retrieving multiple files, use the Rename parameter with care. You set this value
yourself, so, to use maximum caution, use name sequencing. There is no default.

Chapter 8 Section 8.2
e*Way Connection Configuration Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 235 SeeBeyond Proprietary and Confidential

Required Values

! Delete: Delete the file from the remote host.

! Rename: Rename the file.

! Archive: Move the file to another directory.

! None: Do nothing (leaves the file on the remote host intact).

Rename or Archive Name

Description

Depending on the value in the parameter Command After Transfer, this command
either specifies the name of the file that the remote file is renamed to or the directory it
is archived to (see “Command After Transfer” on page 234).

Required Values

Enter either the file or directory name, as explained previously.

Special characters are allowed. The expansion of any special characters is carried out
each time this parameter is used.

Note: If you are entering a path name, use the forward slash (/) instead of the back slash
(\) because the e*Way interprets the back slash as a special character and not a path
separator. For example, use c:/temp/dir for that path location, not c:\temp\dir.

Pre Transfer Raw Commands

Description

These are FTP raw commands needed before the file transfer command, for example,
some SITE commands.

Note: These commands are sent to the FTP server directly, so the commands must be FTP
raw commands.

Required Values

Enter the required FTP raw commands. Use semicolons (;) to separate the command
set, for example: PWD;CWD;SITE (and so on).

Post Transfer Raw Commands

Description

These are FTP raw commands needed after the file transfer command, for example,
some SITE commands.

Note: These commands are sent to the FTP server directly, so the commands must be FTP
raw commands.

Chapter 8 Section 8.2
e*Way Connection Configuration Configuration Parameters

Batch e*Way Intelligent Adapter User’s Guide 236 SeeBeyond Proprietary and Confidential

Required Values

Enter the required FTP raw commands. Use semicolons (;) to separate the command
set, for example: PWD;CWD;SITE (and so on).

Starting Sequence Number

Description

Use this parameter when you have set up the remote file name to contain a sequence
number. It tells the e*Way which value to start with in the absence of a sequence
number from a previous run.

Also, when the Max Sequence Number is reached, the sequence number rolls over to
the Starting Sequence Number.

This parameter is used for the name pattern %#.

Required Values

The value of the Starting Sequence Number must be less than the Max Sequence
Number. The default value is 1.

Max Sequence Number

Description

Use this parameter when you have set up the remote file name to contain a sequence
number. It tells the e*Way that when this value (the Max Sequence Number) is
reached, to reset the sequence number to the Starting Sequence Number.

This parameter is used for the name pattern %#.

Required Values

The value of the Max Sequence Number must be greater than the Starting Sequence
Number.

Batch e*Way Intelligent Adapter User’s Guide 237 SeeBeyond Proprietary and Confidential

Chapter 9

Java Methods

This chapter explains the Java methods used by the FTP Event Type Definition (ETD).

9.1 FTP ETD Methods: Overview
Java methods have been added to make it easier to set information in the
FtpFileETD.xsc ETD and get information from it. These methods are contained in the
following class:

9.2 FtpFileETD
The FtpFileETD class is the implementation of the FTP ETD. It is the core part of the
FTP ETD feature.

The FtpFileETD class is defined as:

public class FtpFileETD

The FtpFileETD class extends com.stc.jcsre.SimpleETDImpl.

The FtpFileETD class methods include:

! “FtpFileETD” on page 237

! get on page 239

! getCommandAfterTransfer on page 239

! getDirectoryListingStyle on page 240

! getHostName on page 240

! getMaxSequenceNumber on page 241

! getMode on page 241

! getOverwriteOrAppend on page 242

! getPassword on page 242

! getPayload on page 243

Chapter 9 Section 9.2
Java Methods FtpFileETD

Batch e*Way Intelligent Adapter User’s Guide 238 SeeBeyond Proprietary and Confidential

! getPostTransferRawCommands on page 243

! getPreTransferRawCommands on page 244

! getRemoteDirectoryName on page 244

! getRemoteFileName on page 245

! getRenameOrArchiveName on page 245

! getServerPort on page 246

! getStartingSequenceNumber on page 246

! getUserName on page 247

! getWorkingFileName on page 247

! Initialize on page 248

! isTrace on page 248

! isUsePASV on page 249

! put on page 249

! reset on page 250

! restoreConfigValues on page 250

! setCommandAfterTransfer on page 251

! setDirectoryListingStyle on page 252

! setHostName on page 252

! setMaxSequenceNumber on page 253

! setMode on page 253

! setOverwriteOrAppend on page 254

! setPassword on page 254

! setPayload on page 255

! setPostTransferRawCommands on page 255

! setPreTransferRawCommands on page 256

! setRemoteDirectoryName on page 256

! setRemoteFileName on page 257

! setRenameOrArchiveName on page 258

! setServerPort on page 258

! setStartingSequenceNumber on page 259

! setTrace on page 259

! setUsePASV on page 260

! setUserName on page 260

! setWorkingFileName on page 261

! terminate on page 261

Chapter 9 Section 9.2
Java Methods FtpFileETD

Batch e*Way Intelligent Adapter User’s Guide 239 SeeBeyond Proprietary and Confidential

get

Description

get retrieves a file from the FTP server and stores it in the payload (a byte array). It gets
the first matching entry under remoteDirectoryName and remoteFileName. It is
exposed in the ETD structure. This method encapsulates all necessary FTP operations.

Syntax

public boolean get()

Parameters

None.

Returns

Boolean

! true if it gets the file to the payload successfully

! false if no file is available to get

Throws

java.lang.Exception if some error occurs.

getCommandAfterTransfer

Description

getCommandAfterTransfer retrieves the action/command performed on a file after it
has been successfully retrieved from or sent to the external system as follows:

! Delete: The file has been deleted from the remote host.

! Rename: The file has been renamed.

! Archive: The file has been removed to another directory.

! None: The file has been left on the remote host intact; no action was taken.

The rename and archive functions may not be available in all cases. In the case of FTP,
they rely on the RNFR command being available on the remote FTP daemon.

The default value is None.

Syntax

public java.lang.String getCommandAfterTransfer()

Parameters

None.

Returns

java.lang.String

The command performed after transfer: Delete, Rename, Archive, or None.

Chapter 9 Section 9.2
Java Methods FtpFileETD

Batch e*Way Intelligent Adapter User’s Guide 240 SeeBeyond Proprietary and Confidential

Throws

None.

getDirectoryListingStyle

Description

getDirectoryListingStyle tells you the listing format the FTP server displays upon
issuing a LIST command. FtpHeuristics defines all styles supported.

The default value is UNIX.

Syntax

public java.lang.String getDirectoryListingStyle()

Parameters

None.

Returns

java.lang.String

The directory listing style.

Throws

None.

getHostName

Description

getHostName retrieves the name of the FTP server that the e*Way connects to. It can be
either an IP address or a host name.

The default value is localhost.

Syntax

public java.lang.String getHostName()

Parameters

None.

Returns

java.lang.String

The IP address or host name.

Throws

None.

Chapter 9 Section 9.2
Java Methods FtpFileETD

Batch e*Way Intelligent Adapter User’s Guide 241 SeeBeyond Proprietary and Confidential

getMaxSequenceNumber

Description

getMaxSequenceNumber is used for the name pattern %#.

The value of this parameter is used when you have set up the remote file name to
contain a sequence number. It tells the e*Way that, when this value (Max Sequence
Number) is reached, it must reset the sequence number to the value of Starting
Sequence Number.

The value of Max Sequence Number must be greater than Starting Sequence Number.

Syntax

public long getMaxSequenceNumber()

Parameters

None.

Returns

Long

The value of Max Sequence Number.

Throws

None.

getMode

Description

getMode retrieves the name of the mode used to transfer data to and from the FTP
server, Binary or ASCII.

The default value is ASCII.

Syntax

public java.lang.String getMode()

Parameters

None.

Returns

java.lang.String

The name of the mode, binary or ASCII.

Throws

None.

Chapter 9 Section 9.2
Java Methods FtpFileETD

Batch e*Way Intelligent Adapter User’s Guide 242 SeeBeyond Proprietary and Confidential

getOverwriteOrAppend

Description

getOverwriteOrAppend returns a value, Overwrite or Append, informing you of file
status. If the remote file exists already, it is overwritten or appended. If a file with the
same name does not exist, both Append and Overwrite create a new file on the external
host, and the same return values still apply.

Note: This method operates with outbound files only.

The default value is Overwrite.

Syntax

public java.lang.String getOverwriteOrAppend()

Parameters

None.

Returns

java.lang.String

Overwrite or Append.

Throws

None.

getPassword

Description

getPassword retrieves the encrypted password that corresponds to the current
logged-in user name (no default value).

Syntax

public java.lang.String getPassword()

Parameters

None.

Returns

java.lang.String

The desired password.

Throws

None.

Chapter 9 Section 9.2
Java Methods FtpFileETD

Batch e*Way Intelligent Adapter User’s Guide 243 SeeBeyond Proprietary and Confidential

getPayload

Description

getPayload retrieves the blob (byte array) used to store the raw content of the file; this
byte array is called the payload.

Syntax

public byte[] getPayload()

Parameters

None.

Returns

Byte array

The payload (blob).

Throws

None.

getPostTransferRawCommands

Description

getPostTransferRawCommands allows you to inquire about which FTP raw
Commands are used after the file transfer command. Some SITE commands use the
semi-colon (;) to separate the command set, for example:

SITE RECFM=FB;SITE LRECL=50;SITE BLOCKSIZE=32750;SITE TRACKS;SITE
PRI=5;SITE SEC=5

Note: These commands are sent to the FTP server directly, so the commands must be FTP
raw commands.

Syntax

public java.lang.String getPostTransferRawCommands()

Parameters

None.

Returns

java.lang.String

The post-transfer raw commands.

Throws

None.

Chapter 9 Section 9.2
Java Methods FtpFileETD

Batch e*Way Intelligent Adapter User’s Guide 244 SeeBeyond Proprietary and Confidential

getPreTransferRawCommands

Description

getPreTransferRawCommands allows you to get the FTP raw Commands used before
the file transfer command. Some SITE commands use the semi-colon (;) to separate the
command set, for example:

SITE RECFM=FB;SITE LRECL=50;SITE BLOCKSIZE=32750;SITE TRACKS;SITE
PRI=5;SITE SEC=5

Note: These commands are sent to the FTP server directly, so the commands must be FTP
raw commands.

Syntax

public java.lang.String getPreTransferRawCommands()

Parameters

None.

Returns

java.lang.String

The pre-transfer raw commands.

Throws

None.

getRemoteDirectoryName

Description

getRemoteDirectoryName retrieves the name of the directory on the external system
where files are sent or where they are taken from. For FTP transfers, this path is relative
to the home directory of the user in the parameter User Name.

Note: For the publisher (outbound), the directory is created if it does not exist.

Syntax

public java.lang.String getRemoteDirectoryName()

Parameters

None.

Returns

java.lang.String

The remote directory name.

Throws

None.

Chapter 9 Section 9.2
Java Methods FtpFileETD

Batch e*Way Intelligent Adapter User’s Guide 245 SeeBeyond Proprietary and Confidential

getRemoteFileName

Description

getRemoteFileName allows you to retrieve the remote file name. For the subscriber
(inbound), it is the remote file name regular expression, but for the publisher
(outbound), it is the remote file name. The following conditions apply:

! For inbound, files in the remote directory, which match the regular expression, are
retrieved to the payload (through get()) for processing.

! For outbound, the remote file name is the name of the file as it appears on the
remote system, for put(). Special characters for date, time, and sequence numbering
expansions can be used. These characters are expanded by the e*Way before the file
is transmitted.

For MVS GDG, this name can be the version of the data set, for example:

! Remote Directory Name = 'STC.SAMPLE.GDGSET'

! Remote File Name = (0) to indicate the current version

Syntax

public java.lang.String getRemoteFileName()

Parameters

None.

Returns

java.lang.String

The remote file name.

Throws

None.

getRenameOrArchiveName

Description

getRenameOrArchiveName specifies either the name of the file the remote file is
renamed to or the directory it is archived to, depending on the value specified in the
configuration parameter Command After Transfer.

Note: Special characters are allowed. The expansion of any special characters is carried out
each time this parameter is used, which may cause long file names because the
characters are concatenated.

Syntax

public java.lang.String getRenameOrArchiveName()

Chapter 9 Section 9.2
Java Methods FtpFileETD

Batch e*Way Intelligent Adapter User’s Guide 246 SeeBeyond Proprietary and Confidential

Parameters

None.

Returns

java.lang.String

The renamed file name or archive directory name.

Throws

None.

getServerPort

Description

getServerPort retrieves the number of the port to use on the FTP server when
connecting to it.

The default value is 21.

Syntax

public int getServerPort()

Parameters

None.

Returns

Integer

The server port number.

Throws

None.

getStartingSequenceNumber

Description

getStartingSequenceNumber is used for the name pattern %#.

The value of this parameter is used when you have set up the remote file name to
contain a sequence number. It tells the e*Way which value to start with in the absence of
a sequence number from the previous run.

Also, when the value Max Sequence Number value is reached, the sequence number
rolls over to the value of Starting Sequence Number.

The value of Starting Sequence Number must be less than Max Sequence Number.

The default value is 1.

Syntax

public long getStartingSequenceNumber()

Chapter 9 Section 9.2
Java Methods FtpFileETD

Batch e*Way Intelligent Adapter User’s Guide 247 SeeBeyond Proprietary and Confidential

Parameters

None.

Returns

Long

The value of Starting Sequence Number.

Throws

None.

getUserName

Description

getUserName retrieves the current user name that was used when logging in to the FTP
server.

The default value is anonymous.

Syntax

public java.lang.String getUserName()

Parameters

None.

Returns

java.lang.String

The desired user name.

Throws

None.

getWorkingFileName

Description

getWorkingFileName allows you, through a regular expression or file name
expansion, to get a real working file name after using the get() or put() methods.

Syntax

public java.lang.String getWorkingFileName()

Parameters

None.

Returns

java.lang.String

The desired working file name.

Chapter 9 Section 9.2
Java Methods FtpFileETD

Batch e*Way Intelligent Adapter User’s Guide 248 SeeBeyond Proprietary and Confidential

Throws

None.

Initialize

Description

Initialize is called by the Collaboration Service to initialize the object; it overrides
initialize in class com.stc.jcsre.SimpleETDImpl.

Syntax

public void initialize(com.stc.common.collabService.JCollabController
cntrCollab, java.lang.String key,int mode)

Parameters

Returns

Void.

Throws

! com.stc.common.collabService.CollabConnException for a connection exception

! com.stc.common.collabService.CollabDataException for a data exception

isTrace

Description

isTrace allows you to retrieve the trace flag status.

Syntax

public boolean isTrace()

Parameters

None.

Returns

Boolean

The trace flag status (true or false).

Throws

None.

Name Type Description

cntrCollab String The Java Collaboration controller
object.

key Integer The instance name.

mode String The input/output mode.

Chapter 9 Section 9.2
Java Methods FtpFileETD

Batch e*Way Intelligent Adapter User’s Guide 249 SeeBeyond Proprietary and Confidential

isUsePASV

Description

isUsePASV allows to inquire whether the current data transfer status is passive, that is,
using the passive mode.

Normally, when you connect to an FTP server, it establishes the data connection to your
client. However, some FTP servers allow passive transfers, meaning that your client
establishes the data connection.

By default, the passive mode is switched off, but it is a good idea that you use it for
transfers to and from FTP sites that support it.

The passive mode can be required in the following situations:

! For users on networks behind some types of router-based fire walls

! Users on networks behind a gateway requiring passive transfers

! If transfers are erratic

! If you keep getting failed data channel errors

Syntax

public boolean isUsePASV()

Parameters

None.

Returns

Boolean

! false if the status of the current data transfer is not the passive (PASV) mode

! true if the status is passive

Throws

None.

put

Description

put retrieves a file from the payload (a byte array) then stores it to the FTP server. This
method is exposed in the ETD structure and encapsulates all necessary FTP operations.

Syntax

public boolean put()

Parameters

None.

Chapter 9 Section 9.2
Java Methods FtpFileETD

Batch e*Way Intelligent Adapter User’s Guide 250 SeeBeyond Proprietary and Confidential

Returns

Boolean

! true if the file is transferred to FTP server successfully

! false if it is not

Throws

java.lang.Exception if some error occurs.

reset

Description

reset resets the data content of an ETD; it overrides reset in class
com.stc.jcsre.SimpleETDImpl.

Syntax

public boolean reset()

Parameters

None.

Returns

Boolean

! false if the ETD does not have a meaningful implementation of reset(); you must
correct the ETD’s implementation

! true if the reset clears the data content of the ETD

Throws

! com.stc.common.collabService.CollabConnException for a connection exception

! com.stc.common.collabService.CollabDataException for a data exception

restoreConfigValues

Description

restoreConfigValues allows you to restore all configuration properties from the e*Way
Connection. It is exposed in the ETD structure.

Syntax

public boolean restoreConfigValues()

Parameters

None.

Chapter 9 Section 9.2
Java Methods FtpFileETD

Batch e*Way Intelligent Adapter User’s Guide 251 SeeBeyond Proprietary and Confidential

Returns

Boolean

! true if the properties are successfully restored

! false if they are not

Throws

java.lang.Exception if some error occurs.

setCommandAfterTransfer

Description

setCommandAfterTransfer allows you to set the action/command to be performed on
a file after it has been successfully retrieved from or sent to the external system as
follows:

! Delete: The file is deleted from the remote host.

! Rename: The file is renamed.

! Archive: The file is removed to another directory.

! None: The file is left on the remote host intact; no action is taken.

The rename and archive functions may not be available in all cases. In the case of FTP,
they rely on the RNFR command being available on the remote FTP daemon.

The default value is None.

Syntax

public void setCommandAfterTransfer(java.lang.String
newCommandAfterTransfer)

Parameters

Returns

Void.

Throws

java.lang.Exception if some error occurs.

Name Type Description

newCommandAfterTransfer String The command to be performed
after transfer: Delete, Rename,
Archive, or None.

Chapter 9 Section 9.2
Java Methods FtpFileETD

Batch e*Way Intelligent Adapter User’s Guide 252 SeeBeyond Proprietary and Confidential

setDirectoryListingStyle

Description

setDirectoryListingStyle allows you to set the listing format the FTP server is to
display upon issuing a LIST command. FtpHeuristics defines all styles supported.

The default value is UNIX.

Syntax

public void setDirectoryListingStyle(java.lang.String
newDirectoryListingStyle)

Parameters

Returns

Void.

Throws

java.lang.Exception if some error occurs.

setHostName

Description

setHostName allows you to set the name of the FTP server the e*Way connects to. It can
be either an IP address or a host name. The default value is localhost.

Syntax

public void setHostName(java.lang.String newHostName)

Parameters

Returns

Void.

Throws

java.lang.Exception if some error occurs.

Name Type Description

newDirectoryListingStyle String The directory listing style.

Name Type Description

newHostName String The appropriate IP address or host
name.

Chapter 9 Section 9.2
Java Methods FtpFileETD

Batch e*Way Intelligent Adapter User’s Guide 253 SeeBeyond Proprietary and Confidential

setMaxSequenceNumber

Description

setMaxSequenceNumber is used for the name pattern %#.

The value of this parameter is used when you have set up the remote file name to
contain a sequence number. It tells the e*Way that when this value (Max Sequence
Number) is reached, it must reset the sequence number to the value of Starting
Sequence Number.

The value of Max Sequence Number must be greater than Starting Sequence Number.

Syntax

public void setMaxSequenceNumber(long newMaxSequenceNumber)

Parameters

Returns

Void.

Throws

java.lang.Exception if some error occurs.

setMode

Description

setMode allows you to set the mode used to transfer data to and from the FTP server,
Binary or ASCII.

The default value is ASCII.

Syntax

public void setMode(java.lang.String newMode)

Parameters

Returns

Void.

Throws

java.lang.Exception if some error occurs.

Name Type Description

newMaxSequenceNumber Long The Max Sequence Number.

Name Type Description

newMode String The desired mode, Binary or ASCII.

Chapter 9 Section 9.2
Java Methods FtpFileETD

Batch e*Way Intelligent Adapter User’s Guide 254 SeeBeyond Proprietary and Confidential

setOverwriteOrAppend

Description

setOverwriteOrAppend allows you to overwrite or append a file if the remote file
exists already. If a file with the same name does not exist, both Append and Overwrite
create a new file on the external host.

Note: This method operates with outbound files only.

The default value is Overwrite.

Syntax

public void setOverwriteOrAppend(java.lang.String
newOverwriteOrAppend)

Parameters

Returns

Void.

Throws

java.lang.Exception if some error occurs.

setPassword

Description

setPassword allows you to set the encrypted password that corresponds to the current
logged-in user name (no default value).

Syntax

public void setPassword(java.lang.String newPassword)

Parameters

Returns

Void.

Throws

None.

Name Type Description

newOverwriteOrAppend String Overwrite or Append.

Name Type Description

newPassword String The desired password.

Chapter 9 Section 9.2
Java Methods FtpFileETD

Batch e*Way Intelligent Adapter User’s Guide 255 SeeBeyond Proprietary and Confidential

setPayload

Description

setPayload allows you to set the payload, that is the blob or byte array, used to store the
raw content of the transferred file.

Syntax

public void setPayload(byte[] newPayload)

Parameters

Returns

Void.

Throws

None.

setPostTransferRawCommands

Description

setPostTransferRawCommands allows you to set the FTP raw Commands that are
used after the file transfer command. Some SITE commands use the semi-colon (;) to
separate the command set, for example:

SITE RECFM=FB;SITE LRECL=50;SITE BLOCKSIZE=32750;SITE TRACKS;SITE
PRI=5;SITE SEC=5

Note: These commands are sent to the FTP server directly, so the commands must be FTP
raw commands.

Syntax

public void setPostTransferRawCommands(java.lang.String
newPostTransferRawCommands)

Parameters

Returns

Void.

Name Type Description

newPayload Byte array The desired payload (blob).

Name Type Description

newPostTransferRawCommands String The desired post-transfer raw
commands.

Chapter 9 Section 9.2
Java Methods FtpFileETD

Batch e*Way Intelligent Adapter User’s Guide 256 SeeBeyond Proprietary and Confidential

Throws

None.

setPreTransferRawCommands

Description

setPreTransferRawCommands allows you to set the FTP raw Commands that are used
before the file transfer command. Some SITE commands use the semi-colon (;) to
separate the command set, for example:

SITE RECFM=FB;SITE LRECL=50;SITE BLOCKSIZE=32750;SITE TRACKS;SITE
PRI=5;SITE SEC=5

Note: These commands are sent to the FTP server directly, so the commands must be FTP
raw commands.

Syntax

public void setPreTransferRawCommands(java.lang.String
newPreTransferRawCommands)

Parameters

Returns

Void.

Throws

None.

setRemoteDirectoryName

Description

setRemoteDirectoryName allows you to set the directory on the external system where
files are to be sent or retrieved from. For FTP transfers, this path is relative to the home
directory of the user in the configuration parameter User Name.

Note: For the publisher (outbound), the directory is created if it does not exist.

Syntax

public void setRemoteDirectoryName(java.lang.String
newRemoteDirectoryName)

Name Type Description

newPreTransferRawCommands String The desired pre-transfer raw
commands.

Chapter 9 Section 9.2
Java Methods FtpFileETD

Batch e*Way Intelligent Adapter User’s Guide 257 SeeBeyond Proprietary and Confidential

Parameters

Returns

Void.

Throws

java.lang.Exception if some error occurs.

setRemoteFileName

Description

setRemoteFileName allows you to set the remote file name. For the subscriber
(inbound), it is the remote file name regular expression, but for the publisher
(outbound), it is the remote file name. The following conditions apply:

! For inbound, files in the remote directory, which match the regular expression, are
retrieved to the payload (through get()) for processing.

! For outbound, the remote file name is the name of the file as it appears on the
remote system, for put(). Special characters for date, time, and sequence numbering
expansions can be used. These characters are expanded by the e*Way before the file
is transmitted.

For MVS GDG, this name can be the version of the data set, for example:

! Remote Directory Name = 'STC.SAMPLE.GDGSET'

! Remote File Name = (0) to indicate the current version

Syntax

public void setRemoteFileName(java.lang.String newRemoteFileName)

Parameters

Returns

Void.

Throws

java.lang.Exception if some error occurs.

Name Type Description

newRemoteDirectoryName String The name of the remote directory.

Name Type Description

newRemoteFileName String The desired remote file name.

Chapter 9 Section 9.2
Java Methods FtpFileETD

Batch e*Way Intelligent Adapter User’s Guide 258 SeeBeyond Proprietary and Confidential

setRenameOrArchiveName

Description

setRenameOrArchiveName allows you either to specify the name of the file that the
remote file is renamed to or the directory it is archived to, depending on the value in the
configuration parameter Command After Transfer.

Note: Special characters are allowed. The expansion of any special characters is carried out
each time this parameter is used.

Syntax

public void setRenameOrArchiveName(java.lang.String
newRenameOrArchiveName)

Parameters

Returns

Void.

Throws

None.

setServerPort

Description

setServerPort allows you to specify the port number to use on the FTP server when
connecting to it.

The default value is 21.

Syntax

public void setServerPort(int newServerPort)

Parameters

Returns

Void.

Name Type Description

newRenameOrArchiveName The specified file name or
directory name.

Name Type Description

newServerPort Integer The server port number.

Chapter 9 Section 9.2
Java Methods FtpFileETD

Batch e*Way Intelligent Adapter User’s Guide 259 SeeBeyond Proprietary and Confidential

Throws

java.lang.Exception if some error occurs.

setStartingSequenceNumber

Description

setStartingSequenceNumber is used for the name pattern %#.

The value of this parameter is used when you have set up the remote file name to
contain a sequence number. It tells the e*Way which value to start with in the absence of
a sequence number from the previous run.

Also, when the Max Sequence Number value is reached, the sequence number rolls
over to the value of Starting Sequence Number.

The value of the Starting Sequence Number must be less than Max Sequence Number.

The default value is 1.

Syntax

public void setStartingSequenceNumber(long newStartingSequenceNumber)

Parameters

Returns

Void.

Throws

java.lang.Exception if some error occurs.

setTrace

Description

setTrace allows you to set the trace flag.

Syntax

public void setTrace(boolean newTrace)

Parameters

Name Type Description

newStartingSequenceNumber Long The Starting Sequence Number.

Name Type Description

newTrace Boolean The Trace flag (true or false).

Chapter 9 Section 9.2
Java Methods FtpFileETD

Batch e*Way Intelligent Adapter User’s Guide 260 SeeBeyond Proprietary and Confidential

Returns

Void.

Throws

None.

setUsePASV

Description

setUsePASV Normally, when you connect to an FTP site, the site establishes the data
connection to your PC. However, some FTP sites allow passive transfers. This means
that your PC establishes the data connection. By default, passive mode is turned off; we
recommend that you use it for transfers to and from FTP sites that support it.

The passive mode may be required in the following instances:

! For users on networks behind some types of router-based fire walls

! Users on networks behind a gateway requiring passive transfers

! If transfers are erratic

! If you keep getting failed data channel errors

Syntax

public void setUsePASV(boolean newUsePASV)

Parameters

Returns

Void.

Throws

None.

setUserName

Description

setUserName allows you to create a user name to use when logging in to the FTP
server.

The default value is anonymous.

Syntax

public void setUserName(java.lang.String newUserName)

Name Type Description

newUsePASV The Use PASV flag.

Chapter 9 Section 9.2
Java Methods FtpFileETD

Batch e*Way Intelligent Adapter User’s Guide 261 SeeBeyond Proprietary and Confidential

Parameters

Returns

Void.

Throws

java.lang.Exception if some error occurs.

setWorkingFileName

Description

setWorkingFileName allows you to set the working file name. This method is not
called by the client. It is ignored and updated by the get() and put() methods.

Syntax

public void setWorkingFileName(java.lang.String newWorkingFileName)

Parameters

Returns

Void.

Throws

None.

terminate

Description

terminate terminates the ETD. It overrides terminate in the class
com.stc.jcsre.SimpleETDImpl.

Syntax

public void terminate()

Parameters

None.

Returns

Void.

Name Type Description

newUserName String The desired user name.

Name Type Description

newWorkingFileName String The working file name.

Chapter 9 Section 9.2
Java Methods FtpFileETD

Batch e*Way Intelligent Adapter User’s Guide 262 SeeBeyond Proprietary and Confidential

Throws

com.stc.common.collabService.CollabConnException when there is an external
connection problem.

Batch e*Way Intelligent Adapter User’s Guide 263 SeeBeyond Proprietary and Confidential

Appendix A

Document Type Definitions

This appendix provides Document Type Definitions (DTDs) for the XML Messages
used in Dynamic Configuration. The payload element in each DTD contains a new
attribute, location, which can have two values: base64InSitu or localDir.

The base64InSitu value is the default, which implies that the data is Base64-encoded,
and that it is located in the body of the payload element.

If the location attribute is localDir, the Batch e*Way assumes that the payload data is
contained in a file in a local directory on the Participating Host. The local directory is
specified by a value (a the directory name) stored in the payload element. If you do not
want to transport large files through the Intelligent Queues, for the sole purpose of
sending the files to an external location, using the localDir attribute is recommended.

A.1 Send or Receive XML Messages
The DTD below provides details of the XML Message that can be used for Send orders,
or Receive orders.

<!-- Copyright (C) 2000, SeeBeyond Technology Corporation, All rights
reserved. -->
<!-- batch eway order record format. -->
<!ELEMENT batch_eWay_order (command, (order_record)+, payload?)>
<!ELEMENT command (#PCDATA)>
<!ATTLIST command

Enumeration (send | receive) "send"
>
<!ELEMENT order_record (external_host_setup?, (subscribe_to_external
| publish_to_external)?, FTP?, SOCKS?)>
<!ELEMENT external_host_setup (host_type?, external_host_name?,
user_name?, encrypted_password?, file_transfer_method?, return_tag?)>
<!ELEMENT host_type (#PCDATA)>
<!ELEMENT external_host_name (#PCDATA)>
<!ELEMENT user_name (#PCDATA)>
<!ELEMENT encrypted_password (#PCDATA)>
<!ELEMENT file_transfer_method (#PCDATA)>
<!ATTLIST file_transfer_method

Enumeration (ftp | copy) "ftp"
>
<!ELEMENT return_tag (#PCDATA)>
<!ELEMENT subscribe_to_external (remote_directory_name?,
remote_file_regexp?, remote_command_after_transfer?,
remote_rename_or_archive_name?, local_command_after_transfer?,
local_archive_directory?)>
<!ELEMENT remote_directory_name (#PCDATA)>

Appendix A Section A.2
Document Type Definitions Error Messages

Batch e*Way Intelligent Adapter User’s Guide 264 SeeBeyond Proprietary and Confidential

<!ELEMENT remote_file_regexp (#PCDATA)>
<!ELEMENT remote_command_after_transfer (#PCDATA)>
<!ATTLIST remote_command_after_transfer

Enumeration (archive | delete | none | rename) "delete"
>
<!ELEMENT remote_rename_or_archive_name (#PCDATA)>
<!ELEMENT local_command_after_transfer (#PCDATA)>
<!ATTLIST local_command_after_transfer

Enumeration (archive | delete) "delete"
>
<!ELEMENT local_archive_directory (#PCDATA)>
<!ELEMENT publish_to_external (remote_directory_name?,
remote_file_name?, append_or_overwrite_when_transferring_files?,
remote_command_after_transfer?, remote_rename_or_archive_name?,
local_command_after_transfer?, local_archive_directory?)>
<!ELEMENT remote_file_name (#PCDATA)>
<!ELEMENT append_or_overwrite_when_transferring_files (#PCDATA)>
<!ATTLIST append_or_overwrite_when_transferring_files

Enumeration (append | overwrite) "append"
>
<!ELEMENT FTP (server_port, mode, Pretransfer_Commands,
Posttransfer_Commands)>
<!ELEMENT server_port (#PCDATA)>
<!ELEMENT mode (#PCDATA)>
<!ELEMENT Pretransfer_Commands (#PCDATA)>
<!ELEMENT Posttransfer_Commands (#PCDATA)>
<!ELEMENT SOCKS (server_host_name, server_port, method, user_name,
encrypted_password)>
<!ELEMENT server_host_name (#PCDATA)>
<!ELEMENT method (#PCDATA)>
<!ELEMENT payload (#PCDATA)>
<!ATTLIST payload

Location (base64InSitu | localDir) #IMPLIED
>

A.2 Error Messages
The DTD below is used for the Error Reporting XML Message.

<!-- Copyright (C) 2000, SeeBeyond Technology Corporation, All rights
reserved. -->
<!-- batch eway error record format. -->
<!ELEMENT batch_eWay_error (command, (return_tag | order_record)?,
error_record, payload?)>
<!ELEMENT command (#PCDATA)>
<!ATTLIST command

Enumeration (send | receive) "send"
>
<!ELEMENT order_record (external_host_setup?, (subscribe_to_external
| publish_to_external)?, FTP?, SOCKS?)>
<!ELEMENT external_host_setup (host_type?, external_host_name?,
user_name?, encrypted_password?, file_transfer_method?, return_tag?)>
<!ELEMENT host_type (#PCDATA)>
<!ELEMENT external_host_name (#PCDATA)>
<!ELEMENT user_name (#PCDATA)>
<!ELEMENT encrypted_password (#PCDATA)>
<!ELEMENT file_transfer_method (#PCDATA)>
<!ATTLIST file_transfer_method

Enumeration (ftp | copy) "ftp"
>

Appendix A Section A.3
Document Type Definitions Data Message

Batch e*Way Intelligent Adapter User’s Guide 265 SeeBeyond Proprietary and Confidential

<!ELEMENT return_tag (#PCDATA)>
<!ELEMENT subscribe_to_external (remote_directory_name?,
remote_file_regexp?, remote_command_after_transfer?,
remote_rename_or_archive_name?, local_command_after_transfer?,
local_archive_directory?)>
<!ELEMENT remote_directory_name (#PCDATA)>
<!ELEMENT remote_file_regexp (#PCDATA)>
<!ELEMENT remote_command_after_transfer (#PCDATA)>
<!ATTLIST remote_command_after_transfer

Enumeration (archive | delete | none | rename) "delete"
>
<!ELEMENT remote_rename_or_archive_name (#PCDATA)>
<!ELEMENT local_command_after_transfer (#PCDATA)>
<!ATTLIST local_command_after_transfer

Enumeration (archive | delete) "delete"
>
<!ELEMENT local_archive_directory (#PCDATA)>
<!ELEMENT publish_to_external (remote_directory_name?,
remote_file_name?, append_or_overwrite_when_transferring_files?,
remote_command_after_transfer?, remote_rename_or_archive_name?,
local_command_after_transfer?, local_archive_directory?)>
<!ELEMENT remote_file_name (#PCDATA)>
<!ELEMENT append_or_overwrite_when_transferring_files (#PCDATA)>
<!ATTLIST append_or_overwrite_when_transferring_files

Enumeration (append | overwrite) "append"
>
<!ELEMENT FTP (server_port, mode, Pretransfer_Commands,
Posttransfer_Commands)>
<!ELEMENT server_port (#PCDATA)>
<!ELEMENT mode (#PCDATA)>
<!ELEMENT Pretransfer_Commands (#PCDATA)>
<!ELEMENT Posttransfer_Commands (#PCDATA)>
<!ELEMENT SOCKS (server_host_name, server_port, method, user_name,
encrypted_password)>
<!ELEMENT server_host_name (#PCDATA)>
<!ELEMENT method (#PCDATA)>
<!ELEMENT payload (#PCDATA)>
<!ATTLIST payload

Location (base64InSitu | localDir) #IMPLIED
>
<!ELEMENT error_record (error_code, error_text, last_action)>
<!ELEMENT error_code (#PCDATA)>
<!ELEMENT error_text (#PCDATA)>
<!ELEMENT last_action (#PCDATA)>

A.3 Data Message
The DTD file below provides a data structure, includes a data payload, and is used for
transporting data to Batch e*Way. See “Enable Message Configuration” on page 71.

<!-- Copyright (C) 2000, SeeBeyond Technology Corporation, All rights
reserved. -->
<!-- batch eway data record format. -->
<!ELEMENT batch_eWay_data (command,
 (return_tag|order_record)?,
 payload) >
<!ELEMENT command (#PCDATA) >
<!ATTLIST command Enumeration (send|receive) "send" >
<!ELEMENT order_record (external_host_setup?,

Appendix A Section A.3
Document Type Definitions Data Message

Batch e*Way Intelligent Adapter User’s Guide 266 SeeBeyond Proprietary and Confidential

 (subscribe_to_external|publish_to_external)?,
 FTP?,
 SOCKS?) >
<!ELEMENT external_host_setup (host_type?,
 external_host_name?,
 user_name?,
 encrypted_password?,
 file_transfer_method?,
 return_tag?) >
<!ELEMENT host_type (#PCDATA) >
<!ELEMENT external_host_name (#PCDATA) >
<!ELEMENT user_name (#PCDATA) >
<!ELEMENT encrypted_password (#PCDATA) >
<!ELEMENT file_transfer_method (#PCDATA) >
<!ATTLIST file_transfer_method Enumeration (ftp|copy) "ftp" >
<!ELEMENT return_tag (#PCDATA) >
<!ELEMENT subscribe_to_external (remote_directory_name?,
 remote_file_regexp?,
 remote_command_after_transfer?,
 remote_rename_or_archive_name?,
 local_command_after_transfer?,
 local_archive_directory?) >
<!ELEMENT remote_directory_name (#PCDATA) >
<!ELEMENT remote_file_regexp (#PCDATA) >
<!ELEMENT remote_command_after_transfer (#PCDATA) >
<!ATTLIST remote_command_after_transfer Enumeration
(archive|delete|none|rename) "delete" >
<!ELEMENT remote_rename_or_archive_name (#PCDATA) >
<!ELEMENT local_command_after_transfer (#PCDATA) >
<!ATTLIST local_command_after_transfer Enumeration (archive|delete)
"delete" >
<!ELEMENT local_archive_directory (#PCDATA) >
<!ELEMENT publish_to_external (remote_directory_name?,
 remote_file_name?,

append_or_overwrite_when_transferring_files?,
 remote_command_after_transfer?,
 remote_rename_or_archive_name?,
 local_command_after_transfer?,
 local_archive_directory?) >
<!ELEMENT remote_file_name (#PCDATA) >
<!ELEMENT append_or_overwrite_when_transferring_files (#PCDATA) >
<!ATTLIST append_or_overwrite_when_transferring_files Enumeration
(append|overwrite) "append" >
<!ELEMENT FTP (server_port,
 mode,
 Pretransfer_Commands,
 Posttransfer_Commands) >
<!ELEMENT server_port (#PCDATA) >
<!ELEMENT mode (#PCDATA) >
<!ELEMENT Pretransfer_Commands (#PCDATA) >
<!ELEMENT Posttransfer_Commands (#PCDATA) >
<!ELEMENT SOCKS
(server_host_name,server_port,method,user_name,encrypted_password) >
<!ELEMENT server_host_name (#PCDATA) >
<!ELEMENT method (#PCDATA) >
<!ELEMENT payload (#PCDATA) >

Index

Batch e*Way Intelligent Adapter User’s Guide 267 SeeBeyond Proprietary and Confidential

Index

A
Action on Fetch Failure parameter 50
Action on Send Failure parameter 50
Additional Path parameter 34
AIX 51
APIs

eX-get-attribute 248
Append or Overwrite when Transferring Files
parameter 46
Auxiliary Library Directories parameter 34

B
Base64 71, 263
Batch e*Way

operation 12
batch-ack function 92
batch-exchange-data function 93
batch-ext-connect function 94
batch-ext-shutdown function 95
batch-ext-verify function 96
batch-fetch-files-from-remote function 104
batch-fetch-named-files 105
batch-init function 97
batch-local-post-transfer function 144
batch-nak function 98
batch-proc-out function 99, 100
batch-rmt-post-transfer function 145
batch-send-path-file function 106
batch-shutdown-notify function 101
batch-startup function 102
batch-validate-params function 108
batch-write-file function 109
behavior models 12

C
char-hex? function 133
Compaq Tru64 17
configuration parameters 21–52

Action on Fetch Failure 50
Action on Send Failure 50
Additional Path 34
Append or Overwrite when Transferring Files 46

Auxiliary Library Directories 34
Delimiter on Last Record 43, 47
Down Timeout 25
Encrypted Password 41
Exchange Data Interval 25
Exchange Data With External Function 36
Exchange-if-in-window-on-startup 26
External Connection Establishment Function 37
External Connection Shutdown Function 38
External Connection Verification Function 38
External Host Name 41
File Transfer Method 41
Forward External Errors 23
Host Type 40
Journal File Name 22
Local Command After Transfer 45, 48
Local Rename or Archive Name 45, 48
Max Failed Messages 23
Max Resends Per Message 22
Max Sequence Number 49
Monk Environment Initialization File 34
Negative Acknowledgment Function 39
Positive Acknowledgment Function 38
Process Outgoing Message Function 35
Record Delimiter 43, 47
Record Size 44, 47
Record Type 43, 46
Remote Command After Transfer 44, 47
Remote Directory Name 42, 45
Remote Directory Regexp 42
Remote File Name 46
Remote Rename or Archive Name 44, 48
Resend Timeout 26
Shutdown Command Notification Function 40
Start Exchange Data Schedule 25
Starting Sequence Number 49
Startup Function 35
Stop Exchange Data Schedule 24
Up Timeout 25
User Name 41
Zero Wait Between Successful Exchanges 26

D
Delimited Record 78
Delimiter on Last Record parameter 43, 47
disconnect-from-remote function 110
Document Type Definitions 263
Down Timeout parameter 25
DTD 263
dynamic configuration 12, 71

XML message 12

Index

Batch e*Way Intelligent Adapter User’s Guide 268 SeeBeyond Proprietary and Confidential

E
EBCDIC 51, 82, 83

transfer data 51
Encrypted Password parameter 41
error reporting 70
Exchange Data Interval parameter 25
Exchange Data with External Function parameter 36
Exchange-if-in-window-on-startup parameter 26
eX-get-attribute 248
expand-char function 134
expand-hex function 135
expand-octal function 136
expand-seqno function 137
expand-string function 138
expand-time function 139
External Connection Establishment Function
parameter 37
External Connection Shutdown Function parameter
38
External Connection Verification Function
parameter 38
External Host Name parameter 41

F
fetch-files-from-remote function 111
fetch-named-files function 108, 112
File Copy Transfer Functions 146
File System Functions 217

fs-append-file 218
fs-copy-file 219
fs-delete-file 220
fs-list-files 221
fs-make-dir 222
fs-read-delim 223
fs-read-fixed 224
fs-rename-file 225

File Transfer Method parameter 41
file-ext-connect function 148
file-ext-shutdown function 149
file-ext-verify function 150
file-fetch function 151
file-fetch-path function 152
file-init function 153
file-rmt-list function 154, 155
file-rmt-post-transfer 156
file-rmt-post-transfer function 156
file-send function 157
file-send-path-file function 158
file-startup function 159
file-validate-params function 160
Fixed Length Record File 78
Forward External Errors parameter 23

fs-append-file function 218
fs-copy-file function 219
fs-delete-file function 220
fs-list-files function 221
fs-make-dir function 222
fs-read-delim function 223
fs-read-fixed function 224
fs-rename-file function 225
FTP configuration

data transfer mode 51
FTP Event Type Definition

e*Way Connection configuration 230
Java methods 237
overview 226

FTP Functions 172
ftp-append-file 174
ftp-append-path 175
ftp-archive 176
ftp-archive-path 177
ftp-capture-data 178
ftp-change-dir 179
ftp-close 180
ftp-create-handle host-type 183
ftp-delete 185
ftp-delete-path 186
ftp-get-file 188
ftp-get-last-response 189
ftp-get-last-result-code 190
ftp-get-path 191
ftp-handle? 192
ftp-list-files 193
ftp-list-raw 194
ftp-login 195
ftp-make-dir 197
ftp-open-data-port 198
ftp-open-host hostname 199
ftp-open-host-through-SOCKS 200
ftp-put-file 201
ftp-put-path 202
ftp-rename 204
ftp-rename-path 205
ftp-send-command 206
ftp-send-reply-immediate 208
ftp-set-compare-time 209
ftp-set-mode 210
ftp-set-port 211
ftp-set-SOCKS-host 212, 213
ftp-set-timeout 214

FTP handle 183
FTP Heuristics

configuration file 183
database 175, 177, 186, 191, 202, 205

FTP server port number
configuring 181

Index

Batch e*Way Intelligent Adapter User’s Guide 269 SeeBeyond Proprietary and Confidential

FTP Transfer Functions 160
ftp-append-file function 174
ftp-append-path function 175
ftp-archive function 176
ftp-archive-path function 177
ftp-capture-data function 178
ftp-change-dir function 179
ftp-close function 180
ftp-connect function 181
ftp-create-handle function 183
ftp-delete function 185
ftp-delete-path function 186
ftp-disconnect function 184
ftp-do-connect function 161
ftp-ext-connect function 162
ftp-ext-shutdown function 163
ftp-ext-verify function 164
ftp-fetch function 165
ftp-fetch-path function 187
ftp-get-file function 188
ftp-get-last-response function 189
ftp-get-last-result-code function 190
ftp-get-path function 191
ftp-handle? function 192
ftp-heuristic-download function 166
ftp-init function 167
ftp-list-compare-size function 192
ftp-list-files function 193
ftp-list-raw function 194
ftp-login function 195
ftp-make-dir function 197
ftp-open-data-port function 198
ftp-open-host function 199
ftp-open-host-through-SOCKS function 200
ftp-put-file function 201
ftp-put-path function 202
ftp-remote-path-list function 203
ftp-rename function 204
ftp-rename-path function 205
ftp-rmt-list function 168
ftp-rmt-post-transfer 169
ftp-rmt-post-transfer function 169
ftp-send function 170
ftp-send-command function 206
ftp-send-path function 207
ftp-send-reply-immediate function 208
ftp-set-compare-time function 209
ftp-set-mode function 210
ftp-set-port function 211
ftp-set-SOCKS-host function 212, 213
ftp-set-timeout function 214
ftp-startup function 171
ftp-validate-params function 172
functions 83–225

batch-ack 92
batch-exchange-data 93
batch-ext-connect 94
batch-ext-shutdown 95
batch-ext-verify 96
batch-fetch-files-from-remote 104
batch-fetch-named-files 105
batch-init 97
batch-local-post-transfer 144
batch-nak 98
batch-proc-out 99, 100
batch-rmt-post-transfer 145
batch-send-path-file 106
batch-shutdown-notify 101
batch-startup 102
batch-validate-params 108
batch-write-file 109
char-hex? 133
disconnect-from-remote 110
expand-char 134
expand-hex 135
expand-octal 136
expand-seqno 137
expand-string 138
expand-time 139
fetch-files-from-remote 111
fetch-named-files 108, 112
file-ext-connect 148
file-ext-shutdown 149
file-ext-verify 150
file-fetch 151
file-fetch-path 152
file-init 153
file-rmt-list 154, 155
file-rmt-post-transfer 156
file-send 157
file-send-path-file 158
file-startup 159
file-validate-params 160
fs-append-file 218
fs-copy-file 219
fs-delete-file 220
fs-list-files 221
fs-make-dir 222
fs-read-delim 223
fs-read-fixed 224
fs-rename-file 225
ft-heuristic-download 166
ftp-append-file 174
ftp-append-path 175
ftp-archive 176
ftp-archive-path 177
ftp-capture-data 178
ftp-change-dir 179

Index

Batch e*Way Intelligent Adapter User’s Guide 270 SeeBeyond Proprietary and Confidential

ftp-close 180
ftp-connect 181
ftp-create-handle 183
ftp-delete 185
ftp-delete-path 186
ftp-disconnect 184
ftp-do-connect 161
ftp-ext-connect 162
ftp-ext-shutdown 163
ftp-ext-verify 164
ftp-fetch 165
ftp-fetch-path 187
ftp-get-file 188
ftp-get-last-response 189
ftp-get-last-result-code 190
ftp-get-path 191
ftp-handle? 192
ftp-init 167
ftp-list-compare-size 192
ftp-list-files 193
ftp-list-raw 194
ftp-login 195
ftp-make-dir 197
ftp-open-data-port 198
ftp-open-host 199, 200
ftp-put-file 201
ftp-put-path 202
ftp-remote-path-list 203
ftp-rename 204
ftp-rename-path 205
ftp-rmt-list 168
ftp-rmt-post-transfer 169
ftp-send 170
ftp-send-command 206
ftp-send-path-file 207
ftp-send-reply-immediate 208
ftp-set-compare-time 209
ftp-set-mode 210
ftp-set-port 211
ftp-set-SOCKS-host 212, 213
ftp-set-timeout 214
ftp-startup 171
ftp-validate-params 172
get-logical-name 86
get-next-record 113
get-next-record-current-file 114
get-seqno 141
incr-seqno 142
list-files-on-remote 115
local-post-transfer 146
open-next-working-file 116
persist-get-index 117
persist-get-list 118
persist-get-offset 119

persist-init 120
persist-read-number 121
persist-update-index 122
persist-update-list 123
persist-update-offset 124
persist-update-status 125
persist-write-pad 126
post-transfer-hook 127
pre-transfer-hook 128
send-external-down 87
send-external-up 88
send-files-to-remote 129
set-seqno 143
start-schedule 90
stop-schedule 91
string-is-proc? 130
transfer-method? 131

G
Generation Data Group 56
get-logical-name function 86
get-next-record function 113
get-next-record-current-file function 114
get-seqno function 141

H
Heuristics

configuration file 183
database 175, 177, 186, 191, 202, 205

Host Type parameter 40

I
incr-seqno function 142
Intelligent Queues

sending large files through 263

J
Java Methods 237–262
Journal File Name parameter 22

L
list-files-on-remote function 115
Local Command After Transfer parameter 45, 48
Local Rename or Archive Name parameter 45, 48
local-post-transfer function 146

Index

Batch e*Way Intelligent Adapter User’s Guide 271 SeeBeyond Proprietary and Confidential

M
Max Failed Messages parameter 23
Max Resends Per Message parameter 22
Max Sequence Number parameter 49
Monk Environment Initialization File parameter 34
Monk Filename Expansion Functions

dgwftp-get-seqno 141
dgwftp-incr-seqno 142
dgwftp-set-seqno 143

Monk functions see also functions
MVS GDG 56
MVS PS 56

N
Negative Acknowledgment Function parameter 39

O
open-next-working-file function 116
operation

dynamic configuration 12
publishing to the e*Way 12
subscribes to messages 12
transmission orders 66

P
parameters seeconfiguration parameters
Partitioned Data Set 56
persist.dat 77
persist-get-index function 117
persist-get-list function 118
persist-get-offset function 119
persist-init function 120
persist-read-number function 121
persist-update-index function 122
persist-update-list function 123
persist-update-offset function 124
persist-update-status function 125
persist-write-pad function 126
Physical Sequential 56
Positive Acknowledgment Function parameter 38
post-transfer-hook function 127
pre-transfer-hook function 128
Process Outgoing Message Function parameter 35
publishing to the e*Way 12

R
Receiving Data with a Receive Order 68
Record Delimiter parameter 43, 47
Record Size parameter 44, 47

Record Type 78
Record Type Configuration

Delimited Record 78
Fixed Length Record 78
Single Record 79

Record Type parameter 43, 46
Remote Command After Transfer parameter 44, 47
Remote Directory Name parameter 42, 45
Remote Directory Regexp parameter 42
Remote File Name parameter 46
Remote Rename or Archive Name parameter 44, 48
requirements

for client components 14
for FTP ETD feature 15

Resend Timeout parameter 26
retrieving files

using special characters 53

S
send-external-down function 87
send-external-up function 88
send-files-to-remote function 129
Sending Data with a Send Order 67
sending large files to an external location 263
sequence.dat 77
set-seqno function 143
Shutdown Command Notification Function
parameter 40
Single Record File 79
SOCKS

description 15
SOCKS5 52
Special Characters 53
Start Exchange Data Schedule parameter 25
Starting Sequence Number parameter 49
start-schedule function 90
Startup Function parameter 35
Stop Exchange Data Schedule parameter 24
stop-schedule function 91
string-is-proc? function 130
subscribing to messages 12

T
transfer-method? function 131

U
Up Timeout parameter 25
User Name parameter 41

Index

Batch e*Way Intelligent Adapter User’s Guide 272 SeeBeyond Proprietary and Confidential

W
wildcard characters 53

X
XML message 12

sample 67

Z
Zero Wait Between Successful Exchanges parameter
26

	Batch e*Way Intelligent Adapter User’s Guide
	Contents
	Introduction
	1.1 Overview
	1.1.1 Intended Reader
	1.1.2 Components
	1.1.3 Compatible Systems

	1.2 Supported Operating Systems
	1.3 System Requirements
	1.4 External System Requirements
	1.4.1 Client Components
	1.4.2 FTP ETD Requirements
	1.4.3 SOCKS Support

	Installation
	2.1 Windows NT or Windows 2000
	2.1.1 Pre-installation
	2.1.2 Installation Procedure

	2.2 UNIX
	2.2.1 Pre-installation
	2.2.2 Installation Procedure

	2.3 Files/Directories Created by the Installation

	Configuration
	3.1 e*Way Configuration Parameters
	3.1.1 General Settings
	Journal File Name
	Max Resends Per Message
	Max Failed Messages
	Forward External Errors

	3.1.2 Communication Setup
	Start Exchange Data Schedule
	Stop Exchange Data Schedule
	Exchange Data Interval
	Down Timeout
	Up Timeout
	Resend Timeout
	Zero Wait Between Successful Exchanges
	Exchange-if-in-window-on-startup

	3.1.3 Monk Configuration
	Operational Details
	How to Specify Function/File Names
	Additional Path
	Auxiliary Library Directories
	Monk Environment Initialization File
	Startup Function
	Process Outgoing Message Function
	Exchange Data with External Function
	External Connection Establishment Function
	External Connection Verification Function
	External Connection Shutdown Function
	Positive Acknowledgment Function
	Negative Acknowledgment Function
	Shutdown Command Notification Function

	3.1.4 External Host Setup
	Host Type
	External Host Name
	User Name
	Encrypted Password
	File Transfer Method

	3.1.5 Subscribe to External
	Remote Directory Name
	Remote File Regexp
	Record Type
	Record Delimiter
	Delimiter on Last Record
	Record Size
	Remote Command After Transfer
	Remote Rename or Archive Name
	Local Command After Transfer
	Local Archive Directory

	3.1.6 Publish to External
	Remote Directory Name
	Remote File Name
	Append or Overwrite when Transferring Files
	Record Type
	Record Delimiter
	Delimiter on Last Record
	Record Size
	Remote Command After Transfer
	Remote Rename or Archive Name
	Local Command After Transfer
	Local Archive Directory

	3.1.7 Sequence Numbering
	Starting Sequence Number
	Max Sequence Number

	3.1.8 Recourse Action
	Action on Fetch Failure
	Action on Send Failure

	3.1.9 FTP
	Server Port
	Mode
	Pretransfer Commands
	Posttransfer Commands

	3.1.10 SOCKS
	Server Host Name
	Server Port
	Method
	User Name
	Encrypted Password

	3.1.11 Using Special Characters

	3.2 FTP Heuristics
	3.2.1 Operating System or File Type Selection
	3.2.2 Configuration Parameters
	Commands Supported by FTP Server
	Header Lines To Skip
	Header Indication Regex Expression
	Trailer Lines To Skip
	Trailer Indication Regex Expression
	Directory Indication Regex Expression
	File Link Real Data Available
	File Link Indication Regex Expression
	File Link Symbol Regex Expression
	List Line Format
	Valid File Line Minimum Position
	File Name Is Last Entity
	File Name Position
	File Name Length
	File Extension Position
	File Extension Length
	File Size Verifiable
	File Size Position
	File Size Length
	Special Envelope For Absolute Path Name
	Listing Directory Yields Absolute Path Names
	Absolute Path Name Delimiter Set
	Change Directory Before Listing
	Directory Name Requires Terminator

	3.3 Environment Configuration
	3.4 External Configuration Requirements

	Message-based Configuration
	4.1 General Operation
	4.1.1 Sending Data with a “Send” Order
	4.1.2 Receiving Data with a “Receive” Order
	4.1.3 Error Reporting

	4.2 Configuration
	4.2.1 Dynamic Configuration
	Enable Message Configuration
	Publish Status Record on Success
	Publish Status Record on Error
	Include Order Record in Error Record
	Include Payload in Error Record
	Action on Mal-formed Command

	Implementation
	5.1 Implementation Notes
	5.1.1 How the e*Way Uses Temporary Files
	5.1.2 Record Type Configuration
	Delimited Record
	Fixed-length Record
	Single Record

	5.2 Sample Configurations
	5.2.1 Subscribing to an External System
	5.2.2 Publishing to an External System

	Batch e*Way Functions
	6.1 Basic Functions
	event-send-to-egate
	get-logical-name
	send-external-down
	send-external-up
	shutdown-request
	start-schedule
	stop-schedule

	6.2 Core Functions
	batch-ack
	batch-exchange-data
	batch-ext-connect
	batch-ext-shutdown
	batch-ext-verify
	batch-init
	batch-nak
	batch-proc-out
	batch-regular-proc-out
	batch-shutdown-notify
	batch-startup

	6.3 Connection and File Functions
	batch-fetch-files-from-remote
	batch-fetch-named-files
	batch-send-path-file
	batch-validate-params
	batch-write-file
	disconnect-from-remote
	fetch-files-from-remote
	fetch-named-files
	get-next-record
	get-next-record-current-file
	list-files-on-remote
	open-next-working-file
	persist-get-index
	persist-get-list
	persist-get-offset
	persist-init
	persist-read-number
	persist-update-index
	persist-update-list
	persist-update-offset
	persist-update-status
	persist-write-pad
	post-transfer-hook
	pre-transfer-hook
	send-files-to-remote
	string-is-proc?
	transfer-method?

	6.4 File Name Expansion Functions
	char-hex?
	expand-char
	expand-hex
	expand-octal
	expand-seqno
	expand-string
	expand-time
	get-seqno
	incr-seqno
	set-seqno

	6.5 Post-transfer Routines
	batch-local-post-transfer
	batch-rmt-post-transfer
	local-post-transfer

	6.6 File Copy Transfer Functions
	file-ext-connect
	file-ext-shutdown
	file-ext-verify
	file-fetch
	file-fetch-path
	file-init
	file-remote-path-list
	file-rmt-list
	file-rmt-post-transfer
	file-send
	file-send-path-file
	file-startup
	file-validate-params

	6.7 FTP Transfer Functions
	ftp-do-connect
	ftp-ext-connect
	ftp-ext-shutdown
	ftp-ext-verify
	ftp-fetch
	ftp-heuristic-download
	ftp-init
	ftp-rmt-list
	ftp-rmt-post-transfer
	ftp-send
	ftp-startup
	ftp-validate-params

	6.8 Advanced FTP Functions
	ftp-append-file
	ftp-append-path
	ftp-archive
	ftp-archive-path
	ftp-capture-data
	ftp-change-dir
	ftp-close
	ftp-connect
	ftp-create-handle
	ftp-disconnect
	ftp-delete
	ftp-delete-path
	ftp-fetch-path
	ftp-get-file
	ftp-get-last-response
	ftp-get-last-result-code
	ftp-get-path
	ftp-handle?
	ftp-list-files
	ftp-list-raw
	ftp-login
	ftp-make-dir
	ftp-open-data-port
	ftp-open-host
	ftp-open-host-through-SOCKS
	ftp-put-file
	ftp-put-path
	ftp-remote-path-list
	ftp-rename
	ftp-rename-path
	ftp-send-command
	ftp-send-path-file
	ftp-send-reply-immediate
	ftp-set-compare-time
	ftp-set-mode
	ftp-set-port
	ftp-set-SOCKS-host
	ftp-set-SOCKS-port
	ftp-set-timeout
	6.8.1 Advanced FTP Function Exceptions

	6.9 File System Functions
	fs-append-file
	fs-copy-file
	fs-delete-file
	fs-list-files
	fs-make-dir
	fs-read-delim
	fs-read-fixed
	fs-rename-file

	FTP Event Type Definition
	7.1 FTP ETD: Introduction
	7.1.1 Components
	7.1.2 Client Components

	7.2 FTP ETD: Overview
	7.2.1 ETD Structure
	7.2.2 ETD Java Methods

	e*Way Connection Configuration
	8.1 Configuring e*Way Connections
	8.2 Configuration Parameters
	8.2.1 Connector
	Type
	Class
	Property.Tag

	8.2.2 FTP File
	Directory Listing Style
	Host Name
	User Name
	Password
	Mode
	Use PASV
	Server Port
	Remote Directory Name
	Remote File Name
	Overwrite Or Append
	Command After Transfer
	Rename or Archive Name
	Pre Transfer Raw Commands
	Post Transfer Raw Commands
	Starting Sequence Number
	Max Sequence Number

	Java Methods
	9.1 FTP ETD Methods: Overview
	9.2 FtpFileETD
	get
	getCommandAfterTransfer
	getDirectoryListingStyle
	getHostName
	getMaxSequenceNumber
	getMode
	getOverwriteOrAppend
	getPassword
	getPayload
	getPostTransferRawCommands
	getPreTransferRawCommands
	getRemoteDirectoryName
	getRemoteFileName
	getRenameOrArchiveName
	getServerPort
	getStartingSequenceNumber
	getUserName
	getWorkingFileName
	Initialize
	isTrace
	isUsePASV
	put
	reset
	restoreConfigValues
	setCommandAfterTransfer
	setDirectoryListingStyle
	setHostName
	setMaxSequenceNumber
	setMode
	setOverwriteOrAppend
	setPassword
	setPayload
	setPostTransferRawCommands
	setPreTransferRawCommands
	setRemoteDirectoryName
	setRemoteFileName
	setRenameOrArchiveName
	setServerPort
	setStartingSequenceNumber
	setTrace
	setUsePASV
	setUserName
	setWorkingFileName
	terminate

	Document Type Definitions
	A.1 Send or Receive XML Messages
	A.2 Error Messages
	A.3 Data Message

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X
	Z

