
e*Way Intelligent Adapter for
CICS User’s Guide

Release 4.5.2

Java Version
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, eBI, eBusiness Web, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 1999–2001 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20011019165012.
e*Way Intelligent Adapter for CICS User’s Guide ii SeeBeyond Proprietary and Confidential

Contents
Contents

Chapter 1

Introduction 1
Overview 1

Intended Reader 1
Components 2

System Requirements 2
CICS Server Requirements 2

Chapter 2

Installation 3
Windows NT 4.0 and Windows 2000 3

Pre-installation 3
Installation Procedure 3

UNIX 5
Pre-installation 5
Installation Procedure 5

Files/Directories Created by the Installation 5

CICS Transaction Gateway 4.0 Configuration 6

Chapter 3

Multi-Mode e*Way Configuration 7
Multi-Mode e*Way 7

JVM Settings 7
JNI DLL Absolute Pathname 8
CLASSPATH Prepend 8
CLASSPATH Override 9
CLASSPATH Append From Environment Variable 9
Initial Heap Size 9
Maximum Heap Size 9
Maximum Stack Size for Native Threads 10
Maximum Stack Size for JVM Threads 10
Class Garbage Collection 10
Garbage Collection Activity Reporting 10
Asynchronous Garbage Collection 10
e*Way Intelligent Adapter for CICS User’s Guide iii SeeBeyond Proprietary and Confidential

Contents
Report JVM Info and all Class Loads 11
Disable JIT 11
Allow Remote Debugging of JVM 11

Chapter 4

e*Way Connection Configuration 12
Configuring e*Way Connections 12

Connector 13
Type 13
Class 13
Property.Tag 13

CICS Gateway 13
Url 14
Port 14
SSL KeyRing Class 14
SSL KeyRing Password 14

Cics Client 14
Cics UserId 15
Cics Password 15
ECI call type 15
CICS Program 15
CICS TransId 16
COMMAREA length 16
ECI extend mode 16
ECI LUW token 16
Message qualifier 17
Encoding 17

Tracing 17
Level 17
Filename 18
Truncation Size 18
Dump Offset 18
Timing 19

Chapter 5

Implementation 20
Using the Cobol Copybook Converter 20

CICS Sample Implementation 20
Creating the New Schema 21
Event Types 21

Creating an Event Type Using the Standard ETD Wizard 21
Creating an Event Type From an Existing .xsc 23

Creating and Configuring the e*Ways 23
Create the e*Way Connection 26
Intelligent Queues 27
Collaboration Rules 28

Creating Collaboration Rules files 28
e*Way Intelligent Adapter for CICS User’s Guide iv SeeBeyond Proprietary and Confidential

Contents
Java (CICSClient) 29
Creating the Collaboration Rules Class 31

Collaborations 35

Sample Schema 39
Execute the Schema 40

Chapter 6

Java Methods 41
The Cicsclient Class 41

Methods of the Cicsclient Class 41
CicsClient() 42
commAreaToPackedDecimal() 42
commAreaZonedToString() 43
execute() 44
getCommArea() 45
getCommAreaLength() 45
getCommAreaString() 46
getEciCallbackable() 46
getEciExtend() 47
getEciLuwToken() 47
getEciSync() 48
getEncodedCommAreaString() 48
getEncoding() 49
getHexString() 49
getMessageQualifier() 50
getPassword() 50
getPort() 50
getProgram() 51
getServer() 51
getServerList() 52
getSslClass() 52
getSslPassword() 52
getTraceDumpOffset() 53
getTraceFilename() 53
getTraceLevel() 54
getTraceTiming() 54
getTraceTruncationSize() 54
getTransId() 55
getUrl() 55
getUserId() 56
handleConfigValues() 56
handleTrace() 56
initialize() 57
initJavaGateway() 58
packedDecimalToString() 58
reset() 59
sendRequest() 59
setCommArea() 60
setCommAreaLength() 60
setEciCallbackable() 60
setEciExtend() 61
setEciLuwToken() 61
setEciSync() 62
setEncoding() 62
setMessageQualifier() 63
setPassword() 63
setPort() 64
setProgram() 64
e*Way Intelligent Adapter for CICS User’s Guide v SeeBeyond Proprietary and Confidential

Contents
setServer() 64
setSslClass() 65
setSslPassword() 65
setTraceDumpOffset() 66
setTraceFilename() 66
setTraceLevel() 67
setTraceTiming() 67
setTraceTruncationSize() 67
setTransId() 68
setUrl() 68
setUserId() 69
terminate() 69
toPackedDecimal() 70
toZoned() 70
zonedToString() 71

Index 72
e*Way Intelligent Adapter for CICS User’s Guide vi SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This chapter includes a brief description of IBM’s Customer Information Control
System (CICS), an overview of SeeBeyondTM Technology Corporation’s (SeeBeyondTM)
e*Way Intelligent Adapter for CICS, as well as system requirements for using the
e*Way.

1.1 Overview
The CICS e*Way is an interface that makes bidirectional calls to CICS transactional
programs remotely. CICS is a transaction processor that supports a real-time
distributed processing environment and also supports online transaction processing
(OLTP).

IBM provides a CICS Client Gateway that has an API (the External Call Interface or
ECI) to call CICS transactions on the mainframe. The ECI allows a non-CICS
application program to call a CICS program in a CICS server. SeeBeyond’s CICS e*Way
uses this ECI method to connect to CICS.

The CICS e*Way includes a build tool, the Cobol Copybook Converter. This feature
takes as input a Cobol Copybook file and creates e*Gate Event Type Definitions (ETDs)
for use within the Monk environment. These Copybook file structures are passed into
the CICS environment as the data buffer (COMMAREA). These ETD files (.ssc) can be
converted into .xsc files that are compatible with the Java Collaboration Editor.

The CICS e*Way has the following modes of operation:

! Inbound

! Outbound

! Request/reply

For more information, see “Implementation” on page 21. This user’s guide explains
how to install and configure the CICS e*Way.

1.1.1 Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the e*Gate system; to have expert-level knowledge of
Windows operations and administration; to be thoroughly familiar with CICS and with
Windows-style GUI operations.
e*Way Intelligent Adapter for CICS User’s Guide 1 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction System Requirements
1.1.2 Components
The following components comprise the Java-enabled CICS e*Way:

! stcecics.jar: Contains the logic required by the e*Way to gain access to CICS.

! cicsclient.xsc: Allows the user to create hierarchical Event Type Definitions
manually to be used in conjunction with the parsing engine contained within the
extended Java Collaboration Service.

! e*Way Connection: The CICS e*Way Connections provide the access to the
information necessary for connection to a specified external connection.

A complete list of installed files appears in Table 1 on page 6.

1.2 System Requirements
The CICS e*Way is available on the following operating systems:

! Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

! Windows 2000 (Japanese), Windows 2000 SP1 (Japanese), and
Windows 2000 SP2 (Japanese)

! Windows NT 4.0 SP6a

! Windows NT 4.0 SP6a (Japanese)

! Solaris 7, and 8

! Solaris 7, and 8 (Japanese)

! AIX 4.3.3

! HP-UX 11.0

To use the CICS e*Way, you need the following:

! An e*Gate Participating Host, version 4.5 or later. For AIX operating Systems, you
need an e*Gate Participating Host, version 4.5.1.

! A TCP/IP network connection.

! CICS Transaction Gateway version 4.0 or greater.

! 2 MB free disk space for executable, configuration, library, and script files.

1.2.1 CICS Server Requirements
To enable the e*Way to communicate correctly with CICS, the following are required

! CICS for MVS/ESA V4.1 or CICS Transaction Server v1.2 or greater

! The CICS e*Way runs and has been tested using TCP62 connectivity provided by
the CICS Transaction Gateway. The Transaction Gateway supports SNA
communications on Windows and AIX platforms, but the CICS e*Way has not been
tested using SNA.
e*Way Intelligent Adapter for CICS User’s Guide 2 SeeBeyond Proprietary and Confidential

Chapter 2

Installation

This chapter explains procedures for installing the CICS e*Way.

! “Windows NT 4.0 and Windows 2000” on page 3

! “UNIX” on page 5

! “Files/Directories Created by the Installation” on page 5

2.1 Windows NT 4.0 and Windows 2000

2.1.1 Pre-installation
! Exit all Windows programs before running the setup program, including any

anti-virus applications.

! You must have Administrator privileges to install this e*Way.

2.1.2 Installation Procedure
To install the CICS e*Way on a Windows system

1 Log in as an Administrator to the workstation on which you are installing the
e*Way.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s Autorun feature is enabled, the setup application launches
automatically; skip ahead to step 4. Otherwise, use the Windows Explorer or the
Control Panel’s Add/Remove Applications feature to launch the file setup.exe on
the CD-ROM drive.

4 The InstallShield setup application launches. Follow the installation instructions until you
come to the Please choose the product to install dialog box.

5 Select e*Gate Integrator, then click Next.

6 Follow the on-screen instructions until you come to the second Please choose the product
to install dialog box.

7 Clear the check boxes for all selections except Add-ons, and then click Next.
e*Way Intelligent Adapter for CICS User’s Guide 3 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.1
Installation Windows NT 4.0 and Windows 2000
8 Follow the on-screen instructions until you come to the Select Components dialog
box.

9 Highlight (but do not check) e*Ways, and then click the Change button. The
SelectSub-components dialog box appears.

10 10 Select the CICS e*Way as shown in figure 1. Click the continue button to return to the
Select Components dialog box, then click Next.

Figure 1 Select Components

11 Follow the rest of the on-screen instructions to install the Java-enabled CICS e*Way. Be sure
to install the e*Way files in the suggested client installation directory. The installation utility
detects and suggests the appropriate installation directory. Unless you are directed to do so by
SeeBeyond support personnel, do not change the suggested installation directory setting.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, please see the online Help.

For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.
e*Way Intelligent Adapter for CICS User’s Guide 4 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Installation UNIX
2.2 UNIX

2.2.1 Pre-installation
You do not require root privileges to install this e*Way. Log in under the user name that
you wish to own the e*Way files. Be sure that this user has sufficient privileges to create
files in the e*Gate directory tree.

2.2.2 Installation Procedure
To install the CICS e*Way on a UNIX system

1 Log in on the workstation containing the CD-ROM drive, and insert the CD-ROM
into the drive.

2 If necessary, mount the CD-ROM drive.

3 At the shell prompt, type

cd /cdrom

4 Start the installation script by typing

setup.sh

5 A menu of options will appear. Select the Install e*Way option. Then, follow the
additional on-screen directions.

Note: Be sure to install the e*Way files in the suggested client installation directory. The
installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not
change the suggested “installation directory” setting.

6 After installation is complete, exit the installation utility and launch the Enterprise
Manager.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, please see the online Help
system.

For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.

2.3 Files/Directories Created by the Installation
The Java-enabled CICS e*Way installation process will install the following files, see the
table “Files Created by the Installation” on page 6, within the e*Gate directory tree.
e*Way Intelligent Adapter for CICS User’s Guide 5 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
Installation CICS Transaction Gateway 4.0 Configuration
Files will be installed within the egate\client tree on the Participating Host and
committed to the default schema on the Registry Host.

2.4 CICS Transaction Gateway 4.0 Configuration
IBM CICS Transaction Gateway 4.0 is required for Java-enabled CICS e*Ways. The
following describes how to configure CICS Transaction Gateway 4.0. Transaction
Gateway properties are set using the CTG Configuration Tool. The Configuration Tool
is located under the CICS Transaction Gateway program menu.

For system specific settings consult the CICS Transaction Gateway Documentation or
visit the IBM CICS Library Website at http://www-4.ibm.com/software/ts/cics/library/
manuals/ctg40dl.html#configs.

Note: The CICS e*Way runs and has been tested using TCP62 connectivity provided by
the CICS Transaction Gateway. The Transaction Gateway supports SNA
communications on Windows and AIX platforms, but the CICS e*Way has not been
tested using SNA.

Table 1 Files Created by the Installation

e*Gate Directory File(s)

\classes\ stccics.jar
stcutil.jar

\configs\cicsclient\ cicsclient.def

etd cics.ctl

\etd\cicsclient cicsclient.xsc

\ThirdParty\ibmctg\classes ctgclient.jar
ctgserver.jar

\ThirdParty\gnu-getopt\classes gnu-getopt.jar
e*Way Intelligent Adapter for CICS User’s Guide 6 SeeBeyond Proprietary and Confidential

http://www-4.ibm.com/software/ts/cics/library/manuals/ctg40dl.html#configs
http://www-4.ibm.com/software/ts/cics/library/manuals/ctg40dl.html#configs

Chapter 3

Multi-Mode e*Way Configuration

This chapter describes how to configure the Multi-Mode e*Way.

3.1 Multi-Mode e*Way
Multi-Mode e*Way properties are set using the Enterprise Manager.

To create and configure a New Multi-Mode e*Way:

1 Select the Navigator’s Components tab.

2 Open the host and control broker on which you want to create the e*Way.

3 On the Palette, click on the Create a New e*Way button.

4 The New e*Way Component window opens. Enter the name of the new e*Way, then
click OK.

5 Right-click the new e*Way and select Properties edit its properties.

6 When the e*Way Properties window opens, click on the Find button beneath the
Executable File field, and select an executable file. For the purposes of the sample
select stceway.exe (stceway.exe is located in the “bin\” directory).

7 Under the Configuration File field, click on the New button. When the Settings
page opens, set the configuration parameters for this configuration file.

8 After selecting the desired parameters, save the configuration file. Close the .cfg file
and select OK to close the e*Way Properties Window.

The Multi-Mode e*Way configuration parameters are organized into the following
section:

! JVM Settings

3.1.1 JVM Settings
The JVM Settings control basic Java Virtual Machine settings.
e*Way Intelligent Adapter for CICS User’s Guide 7 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way
JNI DLL Absolute Pathname

Description

Specifies the absolute pathname to where the JNI DLL installed by the Java 2 SDK 1.3 is
located on the Participating Host.

Required Values

A valid pathname.

Additional Information

The JNI dll name varies on different O/S platforms:

The value assigned can contain a reference to an environment variable, by enclosing the
variable name within a pair of % symbols. For example:

%MY_JNIDLL%

Such variables can be used when multiple Participating Hosts are used on different
platforms.

To ensure that the JNI DLL loads successfully, the Dynamic Load Library search path
environment variable must be set appropriately to include all the directories under the Java 2
SDK (or JDK) installation directory that contain shared libraries (UNIX) or DLLs (NT).

CLASSPATH Prepend

Description

Specifies the paths to be prepended to the CLASSPATH environment variable for the
Java VM.

Required Values

An absolute path or an environmental variable. This parameter is optional.

Additional Information

If left unset, no paths will be prepended to the CLASSPATH environment variable.

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_PRECLASSPATH%

OS Java 2 JNI DLL Name

NT 4.0/ Windows 2000 jvm.dll

Solaris 2.6, 2.7, 2.8 libjvm.so

HP-UX libjvm.sl

AIX 4.3 libjvm.a
e*Way Intelligent Adapter for CICS User’s Guide 8 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way
CLASSPATH Override

Description

Specifies the complete CLASSPATH variable to be used by the Java VM. This parameter
is optional. If left unset, an appropriate CLASSPATH environment variable (consisting
of required e*Gate components concatenated with the system version of CLASSPATH)
will be set.

Note: All necessary JAR and ZIP files needed by both e*Gate and the Java VM must be
included. It is advised that the CLASSPATH Prepend parameter should be used.

Required Values

An absolute path or an environmental variable. This parameter is optional.

Additional Information

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_CLASSPATH%

CLASSPATH Append From Environment Variable

Description

Specifies whether the path is appended for the CLASSPATH environmental variable to
jar and zip files needed by the Java VM.

Required Values

YES or NO. The configured default is YES.

Initial Heap Size

Description

Specifies the value for the initial heap size in bytes. If set to 0 (zero), the preferred value
for the initial heap size of the Java VM will be used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Heap Size

Description

Specifies the value of the maximum heap size in bytes. If set to 0 (zero), the preferred
value for the maximum heap size of the Java VM will be used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.
e*Way Intelligent Adapter for CICS User’s Guide 9 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way
Maximum Stack Size for Native Threads

Description

Specifies the value of the maximum stack size in bytes for native threads. If set to 0
(zero), the default value will be used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Stack Size for JVM Threads

Description

Specifies the value of the maximum stack size in bytes for JVM threads. If set to 0 (zero),
the preferred value for the maximum heap size of the Java VM will be used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Class Garbage Collection

Description

Specifies whether the Class Garbage Collection will be done automatically by the Java
VM. The selection affects performance issues. Reserved for future use. Do not change
from default value.

Required Values

YES or NO.

Garbage Collection Activity Reporting

Description

Specifies whether garbage collection activity will be reported for debugging purposes.
Reserved for future use. Do not change from default value.

Required Values

YES or NO.

Asynchronous Garbage Collection

Description

Specifies whether asynchronous garbage collection activity will be reported for
debugging purposes.

Required Values

YES or NO.
e*Way Intelligent Adapter for CICS User’s Guide 10 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way
Report JVM Info and all Class Loads

Description

Specifies whether the JVM information and all class loads will be reported for
debugging purposes. Reserved for future use. Do not change from default value.

Required Values

YES or NO.

Disable JIT

Description

Specifies whether the Just-In-Time (JIT) compiler will be disabled.

Required Values

YES or NO.

Note: This parameter is not supported for Java Release 1.

Allow Remote Debugging of JVM

Description

Specifies whether to allow remote debugging of the JVM.

Required Values

YES or NO.
e*Way Intelligent Adapter for CICS User’s Guide 11 SeeBeyond Proprietary and Confidential

Chapter 4

e*Way Connection Configuration

This chapter describes how to configure the Java-enabled CICS e*Way Connection
Configuration.

4.1 Configuring e*Way Connections
e*Way Connections are set using the Enterprise Manager.

To create and configure e*Way Connections:

1 In the Enterprise Manager’s Component editor, select the e*Way Connections
folder.

2 On the palette, click the Create a New e*Way Connection button.

3 The New e*Way Connection Component dialog box opens, enter a name for the
new e*Way Connection. Click OK.

4 Double-click on the new e*Way Connection. For this example, the connection has
been defined as ec_CICS.

5 The e*Way Connection Properties dialog box opens.

6 From the e*Way Connection Type drop-down box, select CICS.

7 Enter the Event Type “get” interval in the dialog box provided. The configured
default is 100 milliseconds.

8 From the e*Way Connection Configuration File, click New to create a new
Configuration File for this e*Way Connection. (To use an existing file, click Find.)

9 The e*Way Connection Edit Settings window opens. Make any necessary changes
to the CICS e*Way Connection parameters.

10 Go to File, Save to save settings.

11 Go to File, Promote to Run Time.

The CICS e*Way Connection configuration parameters are organized into the following
sections:

! Connector on page 13

! CICS Gateway on page 13

! Cics Client on page 14
e*Way Intelligent Adapter for CICS User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections
! Tracing on page 17

4.1.1 Connector
This section contains a set of top level parameters:

! type

! class

! Property.Tag

Type

Description

Specifies the connector type.

Required Values

CICS. The value always defaults to CICIS for CICS connections.

Class

Description

Specifies the class name of the CICS Client connector object.

Required Values

A valid package name. The default is com.stc.eways.cics.CicsClientConnector.

Property.Tag

Description

Specifies the data source identity. This parameter is required by the current
EBobConnectorFactory.

Required Values

A valid data source package name.

4.1.2 CICS Gateway
This section contains the following parameters for CICS Java Gateway setup:

! URL

! Port

! SSL KeyRing Class

! SSL KeyRing Password

! CICS User

! CICS user password
e*Way Intelligent Adapter for CICS User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections
Url

Description

Specifies the remote or local Gateway to which it is to connect.

Required Values

A valid remote or local Gateway (node name or IP address).

Port

Description

Specifies the TCP/IP port to connect to.

Required Values

An integer ranging from 1 to 864000.

SSL KeyRing Class

Description

Specifies the full classname of the SSL KeyRing class.

Required Values

A valid full classname.

SSL KeyRing Password

Description

Specifies the PASSWORD for the encrypted KeyRing class.

Required Values

A valid password for the SSL KeyRing class.

4.1.3 Cics Client
This section contains the following parameters for CICS Client setup:

! CICS UserId

! CICS Password

! ECI call type

! CICS Program

! CICS TransId

! COMMAREA length

! ECI extend mode

! ECI LUW token
e*Way Intelligent Adapter for CICS User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections
! Message qualifier

! Encoding

Cics UserId

Description

Specifies the ID of the CICS user. Maximum length is eight characters.

Required Values

A valid CICS user ID, eight characters or less.

Cics Password

Description

Specifies the password for the CICS user. Maximum length is eight characters.

Required Values

A valid password for the user ID, eight characters or less.

ECI call type

Description

Specifies whether the ECI call type is Asynchronous or Synchronous.

! Synchronous Calls will wait for the transaction to complete, then return the
contents of the commarea.

! Asynchronous calls will not wait for the transaction to complete, so no data is
returned.

For further detail, see the IBM publication “CICS Family: Client/Server Programming”
(document number SC33-1435-03).

Required Values

Asynchronous or Synchronous. Synchronous is the configured default.

CICS Program

Description

Specifies the CICS program to be run on the server. Maximum length is eight
characters.

Required Values

A valid CICS program name, eight characters or less.
e*Way Intelligent Adapter for CICS User’s Guide 15 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections
CICS TransId

Description

Specifies the CICS TransId to be run on the server. Maximum length is four characters.

Required Values

A valid CICS TransId, four characters or less.

COMMAREA length

Description

Specifies the length (in bytes) of the communication area (COMMAREA) passed to the
ECI.

Required Values

An integer in the range of 1 to 32659. The configured default is 1000.

ECI extend mode

Description

Specifies whether a logical unit of work is terminated at the end of a call.

! No (ECI_NO_EXTEND). IF the input eci_luw_token field is zero, this will be the
only call for a logical unit of work. If the input eci_luw_token field is not zero, this
will be the last call for the specified logical unit of work. In either case, changes to
recoverable resources are committed by a CICS end-of-task syncpoint, and the
logical unit of work ends.

! Yes (ECI_EXTENDED). If the input eci_luw_token field is zero, this will be the first
call for a logical unit of work that is to be continued. If the input eci_luw_token field
is not zero, this call will continue the specified logical unit of work. In either case the
logical unit of work continues after the called program completes, and changes to
recoverable resources remain uncommitted

Required Values

Yes or No. The configured default is No.

ECI LUW token

Description

Specifies the logical unit of work to which a call belongs. This must be set to zero at the
start of a logical work unit. The ECI will update the value on the first or only call of the
logical work unit. If the unit of work is to be extended, this value should be used as
input to all subsequent calls associated with the same logical work unit.

If the return code is not ECI_NO_ERROR and a call is ending or continuing an existing
logical work unit, then this field will be used to report the state of the logical work unit.
If it is zero, the logical work unit has ended and updates have been backed out. If it is
not zero, the value is the same as the input value. The logical work unit is continuing,
and updates are still pending.
e*Way Intelligent Adapter for CICS User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections
Required Values

A valid integer in the range of 0 to 1000. The configured default is 0. This is a required
input and output parameter.

Message qualifier

Description

The ECI Message Qualifier identifies each asynchronous call if more than one call is
made.

Required Values

A valid integer in the range of 0 to 1000. This is an optional input parameter,

Encoding

Description

Specifies default encoding.

Required Values

The Canonical Name for any encoding set supported by Sun's Java Runtime
Environment 1.1.8 (contained in rt.jar and i18n.jar). Examples are ASCII and Cp500
(EBCDIC).

4.1.4 Tracing
This section contains a set of top level parameters:

! Level

! Filename

! Truncation Size

! Dump Offset

! Timing

Level

Description

Specifies the level of trace information available. Options are:

! 0 - None: no CICS Java client application tracing.

! 1 - Standard: By default, it displays only the first 128 bytes of any data blocks (for
example the commarea, or network flows). This trace level is equivalent to the
Gateway trace set by the ctgstart -trace option. (Can also set using System property
"gateway.T.trace=on".)

! 2 - Full Debug: By default, it traces out the whole of any data blocks. The trace
contains more information about CICS Transaction Gateway than the standard trace
e*Way Intelligent Adapter for CICS User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections
level. This trace level is equivalent to the Gateway debug trace set by the ctgstart -x
option. (Can also set using System property "gateway.T=on".)

! 3 - Exception Stacks: It traces most Java exceptions, including exception which are
expected during normal operation of the CICS Transaction Gateway. No other
tracing is written. This trace level is equivalent to the Gateway stack trace set by the
ctgstart -stack option. (Can also set using System property "gateway.T.stack=on".)

Required Values

An integer in the range of 0 to 3.

Filename

Description

Integer-set. Specifies a file location for writing the trace output. This is as an alternative
to the default output on stderr. Long filenames must be surrounded by quotation
marks, for example: "trace output file.log". (Can also be set using System property
"gateway.T.setTFile=xxx" where xxx is a filename.)

Required Values

A valid output file name.

Truncation Size

Description

Specifies the maximum size of any data blocks that will be written in the trace.
Specifying 0 will cause no data blocks written in the trace. Leave it blank if you do not
want to specify truncation size. (Can also be set using System property
"gateway.T.setTruncationSize=xxx" where xxx is a number.)

Required Values

An integer in the range of 0 to 864000. The configured default is 100.

Dump Offset

Description

Specifies the offset from which displays of any data blocks will start. If the offset is
greater than the total length of data to be displayed, an offset of 0 will be used. (Can
also be set using System property "gateway.T.setDumpOffset=xxx" where xxx is a
number.)

Required Values

An integer in the range of 0 to 864000.
e*Way Intelligent Adapter for CICS User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections
Timing

Description

Specifies whether or not to display time-stamps in the trace. (Can also be set using
System property "gateway.T.timing=on".)

Required Values

Off or On. The configured default is On.
e*Way Intelligent Adapter for CICS User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 5

Implementation

This chapter includes information pertinent to implementing the Java-enabled CICS
e*Way in a production environment. Also included is a sample schema.

The following assumptions are applicable to this implementation: 1) The CICS e*Way
has been successfully installed. 2) The executable and the configuration files have been
appropriately assigned. 3) All necessary .jar files are accessible.

5.1 Using the Cobol Copybook Converter
The Cobol Copybook Converter is a build tool that takes a Cobol copybook as input
and creates an ETD .ssc file. Use the SSC Wizard feature of the ETD Editor to create Java
ETDs. These ETDs can be used to map the contents of the CICS commarea, allowing
parsing and data conversion as needed.

For complete instructions on using the Copybook Convertor, see the Cobol Copybook
Converter User's Guide.

5.2 CICS Sample Implementation
During installation, the host and Control Broker are automatically created and
configured. The default name of each is the name of the host on which you are
installing the e*Gate Enterprise Manager GUI. To complete the implementation of the
Java-enabled CICS e*Way, you will do the following:

! Make sure that the Control Broker is activated.

! In the e*Gate Enterprise Manager, define and configure the following as necessary:

" Inbound e*Way using stcewfile.exe

" Outbound e*Way using stcewfile.exe

" The Multi-Mode e*Way component as described in Chapter 3

" Event Type Definitions used to package the data to be exchanged with the
external system.

" Collaboration Rules to process Events.

" The e*Way Connection as described in Chapter 4.
e*Way Intelligent Adapter for CICS User’s Guide 20 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation CICS Sample Implementation
" Collaborations, to be associated with each e*Way component, to apply the
required Collaboration Rules.

" The destination to which data will be published prior to being sent to the
external system.

The following sections describe how to define and associate each of the above
components. However, the section “Sample Schema” on page 39 provides the details
necessary to create the components of a specific schema consisting of three e*Ways,
three Event Types, one Collaboration Rule, two Intelligent Queues and three
Collaborations.

5.2.1 Creating the New Schema
The first task in deploying the sample implementation is to create a new schema name.
While it is possible to use the default schema for the sample implementation, it is
recommended that you create a separate schema for testing purposes. After you install
the CICS e*Way, do the following:

1 Start the e*Gate Enterprise Manager GUI.

2 When the Enterprise Manager prompts you to log in, select the host that you
specified during installation, and enter your password.

3 You will then be prompted to select a schema. Click New.

4 Enter a name for the new Schema. In this case, enter CICSSample, or any name as
desired.

The e*Gate Enterprise Manager opens under your new schema. You are now ready to
begin creating the necessary components for this sample schema.

5.2.2 Event Types
The CICS e*Way installation includes the file “cicsclient.xsc” which represents a
standard CICS Event Type template.

Creating an Event Type Using the Standard ETD Wizard

For the purpose of this example, the following procedure shows how to create an ETD
using the Standard ETD Wizard.

1 Highlight the Event Types folder on the Components tab of the e*Gate Navigator.

2 On the palette, click the Create a New Event Type button to create a new Event
Type.

3 Enter the name of the event type, then click OK. (For the purpose of this sample, the
first Event Type is defined as “etd_Blob.”)

4 Double-click the new event type to edit its properties.

5 When the Properties window opens, click the New button. The ETD Editor opens.

6 Select New from the File menu on Task Manager.
e*Way Intelligent Adapter for CICS User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation CICS Sample Implementation
7 The Event Type Definition Wizard opens.

Figure 2 The New Event Type Definition Wizard

8 Select the appropriate wizard. (For this Event Type, select StandardETD.)

9 Enter a root node name. (For this example type GenericIn.)

10 Enter a package name where the ETD Editor can place all the generated Java classes
associated with the created ETD. (For this sample, use com.stc.GenericBlob as the
package name.)

11 Click OK and Finish to accept the names and open the ETD Editor.

12 Select GenericIn in the Event Type Definition pane.

13 Right click, and select Add Field, as Child Node.

14 Select GenericIn and change the length value under the Properties pane to -1 in the
Properties window.

Figure 3 Event Type Definition Editor
e*Way Intelligent Adapter for CICS User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation CICS Sample Implementation
15 Select Field1 and change the structure value under the Properties pane to fixed in
the Properties window.

Figure 4 ETD Editor Properties

16 Click File, Compile and Save, saving the file as BlobGeneric. When the file has
been compiled the methods will appear in the Event Type Definition pane.

17 Click File, Promote to Run Time. The ETD Editor closes

Creating an Event Type From an Existing .xsc

For the purpose of this example, the following procedure shows how to create an Event
Type Definition (ETD) from an existing .xsc file using cicsclient.xsc as the input file.
The cicsclient.xsc comes with the CICS e*Way and is used when creating all Schemas.

1 Select the Event Types folder on the Components tab of the e*Gate Navigator.

2 On the palette, click the Create a New Event Type button.

3 Enter the name of the Event Type in the New Event Type Component window,
then click OK. (For this sample, the Event Type is defined as “etd_CICSClient.”)

4 Double-click the new Event Type to edit its properties.

5 When the Properties window opens, click the Find button.

6 Browse to and select cicsclient.xsc (provided as the default destination .xsc file).

7 Click Apply and OK to close the Event Type Properties dialog box.

5.2.3 Creating and Configuring the e*Ways
The first components to be created are the following e*Ways.
e*Way Intelligent Adapter for CICS User’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation CICS Sample Implementation
! “Creating the Inbound e*Way (Feeder)” on page 24

! “Creating the Outbound e*Way (Eater)” on page 25

! “Creating the Multi-Mode e*Way (CICSClient)” on page 26

The following sections provide instructions for creating each e*Way.

Creating the Inbound e*Way (Feeder)

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the e*Ways.

3 Select the Control Broker that will manage the new e*Ways.

4 On the palette, click the Create a New e*Way button.

5 Enter the name of the new e*Way (in this case “Feeder”), then click OK.

6 Right-click the new e*Way and select Properties to edit its properties.

7 The e*Way Properties window opens. Click the Find button beneath the Executable
File field, and select stcewfile.exe as the executable file.

8 Under the Configuration File field, click the New button. The Edit Settings
window opens. Select the following settings for this configuration file.

:

9 After selecting the desired parameters, save the configuration file (as “Feeder.cfg”).

10 Click File, Promote to Run Time. This will close the .cfg file.

11 In the e*Way - Properties window, use the Startup, Advanced, and Security tabs to
modify the default settings for each e*Way you configure.

Table 2 Configuration Parameters for the Inbound e*Way

Parameter Value

General Settings (unless otherwise stated, leave settings as default)

AllowIncoming YES

AllowOutgoing NO

Outbound Settings Default

Poller Inbound Settings

PollDirectory C:Indata (input file folder)

InputFileExtension *.fin (input file extension)

PollMilliseconds 1000

Remove EOL YES

MultipleRecordsPerFile YES

MaxBytesPerLine 4096

BytesPerLineIsFixed NO

File Records Per eGate Event 1

Performance Testing Default
e*Way Intelligent Adapter for CICS User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation CICS Sample Implementation
A Use the Startup tab to specify whether the e*Way starts automatically, or restarts
after abnormal termination or due to scheduling, and so forth.

B Use the Advanced tab to specify or view the activity and error logging levels, as
well as the Event threshold information.

C Use Security to view or set privilege assignments.

12 Select OK to close the e*Way Properties window.

Creating the Outbound e*Way (Eater)

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the e*Ways.

3 Select the Control Broker that will manage the new e*Ways.

4 On the palette, click the Create a New e*Way button.

5 Enter the name of the new e*Way (in this case “Eater”), then click OK.

6 Select the new e*Way, right-click and select Properties to edit its properties.

7 When the e*Way Properties window opens, click the Find button beneath the
Executable File field. Select stcewfile.exe as the executable file.

8 Under the Configuration File field, click the New button. The Edit Settings
window opens. Select the following settings for this configuration file.

:

9 Save the .cfg file (Eater.cfg), and click File, Promote to Run Time, to close the Edit
Settings window.

10 In the e*Way - Properties window, use the Startup, Advanced, and Security tabs to
modify the default settings for the e*Way.

11 Use Security to view or set privilege assignments.

12 Click OK to close the e*Way Properties window.

Table 3 Configuration Parameters for the Outbound e*Way

Parameter Value

General Settings (unless otherwise stated, leave settings as default)

AllowIncoming NO

AllowOutgoing YES

Outbound Settings

OutputDirectory C:\DATA

OutputFileName output%d.dat

MultipleRecordsPerFile NO

MaxRecordsPerFile 10000

AddEOL YES

Poller Inbound Settings Default

Performance Testing Default
e*Way Intelligent Adapter for CICS User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation CICS Sample Implementation
Creating the Multi-Mode e*Way (CICSClient)

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the e*Way.

3 Select the Control Broker that will manage the new e*Way.

4 On the palette, click the Create a New e*Way button.

5 Enter the name of the new e*Way (in this case, “CICSClient”), then click OK.

6 Right-click the new e*Way and select Properties to edit its properties.

7 When the e*Way Properties window opens, click the Find button beneath the
Executable File field, and select stceway.exe as the executable file.

8 To edit the JVM Settings, select New (or Edit if you are editing the existing .cfg file)
under Configuration file.

See “Multi-Mode e*Way Configuration” on page 7 for details on the parameters
associated with the Multi-Mode e*Way.

9 Save the .cfg file (CICSClient.cfg), and click File, Promote to Run Time.

10 In the e*Way Properties window, use the Startup, Advanced, and Security tabs to
modify the default settings for each.

A Use the Startup tab to specify whether the e*Way starts automatically, restarts
after abnormal termination or due to scheduling, etc.

B Use the Advanced tab to specify or view the activity and error logging levels, as
well as the Event threshold information.

C Use Security to view or set privilege assignments.

11 Click OK to close e*Way Properties window.

5.2.4 Create the e*Way Connection
The e*Way Connection configuration file contains the connection information along
with the information needed to communicate using CICS.

To create and configure a New e*Way Connection

1 Select the e*Way Connection folder on the Components tab of the e*Gate
Navigator.

2 On the palette, click the Create a New e*Way Connection button.

3 Enter the name of the e*Way Connection (for this sample, “eWc_CICSClient”), then
click OK.

4 Double-click the new e*Way Connection to edit its properties.

5 The e*Way Connection Properties window opens. Select CICS from the e*Way
Connection Type drop-down menu.

6 Under e*Way Connection Configuration File, click the New button.
e*Way Intelligent Adapter for CICS User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation CICS Sample Implementation
7 The e*Way Connection Editor opens. Select the following parameters listed in Table
4. For more information on the CICS e*Way Connection parameters, see “e*Way
Connection Configuration” on page 12.

8 Save the .cfg file (eWc_CICSClient.cfg)and click File, Promote to Run Time.

5.2.5 Intelligent Queues
The next step is to create and associate Intelligent Queues (IQs). IQs manage the
exchange of information between components within the e*Gate system, providing
non-volatile storage for data as it passes from one component to another. IQs use IQ
Services to transport data. IQ Services provide the mechanism for moving Events
between IQs, handling the low-level implementation of data exchange (such as system
calls to initialize or reorganize a database).

To create and modify an Intelligent Queue for the CICS e*Way

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the IQ.

3 Open a Control Broker.

Table 4 e*Way Connection Configuration Parameters

Parameter Value

connector (unless otherwise stated, leave settings as default)

type CICS

class com.stc.eways.cics.CicsClientConnector

CICS Gateway

Port 8888

AddEOL YES

CICS Client Default

CICS Program STCPROGB

COMMAREA length 1000

ECI extend mode No

ECI LUW token 0

Message qualifier 0

Encoding cp500

Performance Testing

Level 0

Filename CICSJava_Trace.txt

Truncation Size 100

Dump Offset 0

Timing On
e*Way Intelligent Adapter for CICS User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation CICS Sample Implementation
4 Select an IQ Manager.

5 On the palette, click the Create a New IQ button.

6 Enter the name of the new IQ (in this case “IQ1”), then click OK.

7 Double-click the new IQ to edit its properties.

8 On the General tab, specify the Service and the Event Type Get Interval.

The STC_Standard IQ Service provides sufficient functionality for most
applications. If specialized services are required, custom IQ Service DLLs may be
created.

The default Event Type Get Interval of 100 Milliseconds is satisfactory for the
purposes of this initial implementation.

9 On the Advanced tab, make sure that Simple publish/subscribe is checked under
the IQ behavior section.

10 Click OK to close the IQ Properties window

11 For this schema, repeat steps 1 through 10 to create an additional IQ (for this
sample, “IQ2”).

5.2.6 Collaboration Rules
The next step is to create the Collaboration Rules that will extract and process selected
information from the source Event Type defined above, according to its associated
Collaboration Service. The Default Editor can be set to either Monk or Java.

From the Enterprise Manager Task Bar, select Options and click Default Editor. The
default should be set to Java.

The sample schema calls for the creation of three collaboration Rules files.

! PassThru (Pass Through)

! CICSClient (Java)

Creating Collaboration Rules files

Pass Through

1 Select the Navigator's Components tab in the e*Gate Enterprise Manager.

2 In the Navigator, select the Collaboration Rules folder.

3 On the palette, click the Create New Collaboration Rules button.

4 Enter the name of the new Collaboration Rule Component (for this case
“PassThru”), then click OK.

5 Double-click the new Collaboration Rules Component. The Collaboration Rules
Properties window opens.
e*Way Intelligent Adapter for CICS User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation CICS Sample Implementation
Figure 5 Collaboration Rules Properties - Pass Through

6 The Service field defaults to Pass Through.

7 Go to the Subscriptions tab. Select etd_Blob under Available Input Event Types,
and click the right arrow to move it to Selected Input Event Types. The box under
Triggering Event should be checked.

8 Go to the Publications tab. Select etd_Blob under Available Output Event Types,
and click the right arrow to move it to Selected Output Event Types. Make sure
that etd_Blob is selected as the default.

Figure 6 Collaboration Properties

9 Click OK to close the Collaboration Rules - Pass_In Properties window.

Java (CICSClient)

1 Select the Navigator's Components tab in the e*Gate Enterprise Manager.
e*Way Intelligent Adapter for CICS User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation CICS Sample Implementation
2 In the Navigator, select the Collaboration Rules folder.

3 On the palette, click the Create New Collaboration Rules button.

4 Enter the name of the new Collaboration Rule, then click OK (for this case, use
CICSClient).

5 Double-click the new Collaboration Rules Component to edit its properties. The
Collaboration Rules Properties window opens.

6 From the Service field drop-down box, select Java. The Collaboration Mapping tab
is now enabled, and the Subscriptions and Publications tabs are disabled.

7 In the Initialization string field, enter any required initialization string that the
Collaboration Service may require. This field can be left blank.

8 Select the Collaboration Mapping tab.

9 Using the Add Instance button, create instances to coincide with the Event Types.
For this sample, do the following:

10 In the Instance Name column, enter CICSOut for the instance name.

11 Click Find, navigate to and double-click cicsclient.xsc. This adds cicsclient.xsc to
the ETD column for this instance.

12 In the Mode column, select In from the drop–down list box. To access the drop-
down list box, click the right portion of the Mode field for this instance.

13 In the Trigger column, make sure that the checkbox is cleared (no trigger).

14 In the Manual Publish column, make sure the checkbox is selected.

Figure 7 Collaboration Rules - Collaboration Mapping

15 Repeat steps 9–13 using the following values:

" Instance Name — GenericOut

" ETD — GenericBlob.xsc

" Mode — Out
e*Way Intelligent Adapter for CICS User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation CICS Sample Implementation
" Trigger — clear

" Manual Publish - clear

16 Repeat steps 9–13 again using the following values:

" Instance Name — GenericIn

" ETD — GenericBlob.xsc

" Mode — In

" Trigger — select

" Manual Publish - clear

Figure 8 Collaboration Rules - Collaboration Mapping Properties

17 Select the General tab, under the Collaboration Rule box, select New. The
Collaboration Rules Editor opens.

18 Expand to full size for optimum viewing, expanding the Source and Destination
Events as well. The following section describes the setting up the collaboration rules
for CICSclient using the Java Collaboration Rules Editor.

Creating the Collaboration Rules Class

The section is given as an example of how to create the Collaboration Rules Class using
the Java Collaboration Rules Editor. The completed Collaboration Rules .xpr file is
included with the sample schema on the CD. The following section gives a number of
examples that demonstrate how these rules were setup. Please refer to the completed
class, CICSClient.class when completing the Collaboration Rules Properties.

1 As stated in the above section, the Java Collaboration Rules Editor opens from the
Collaboration Rules Properties dialog box when the Collaboration Rules field, New
or Edit button is clicked. Expand to full size for optimum viewing, expanding the
Source and Destination Events as well.
e*Way Intelligent Adapter for CICS User’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation CICS Sample Implementation
2 Select retBoolean in the Business Rules pane. All of the user–defined business
rules are added as part of this method.

Figure 9 The Collaboration Rules Editor

3 From the Collaboration Rules Editor toolbar, click on rule. This places a rule
“space” in the Business Rules pane, to which the user can add the Java expression.
A rule space is now available under retBoolean in the Business Rules window.
Select the new rule.

4 With the new Rule selected, drag-and-drop CommAreaLength from the
Destination Events pane into the Rule Properties, Rules window. This enters the
Java code in the Rule Properties, Rules window.

5 In the Rules window, place the curser between the parenthesis following
CommAreaLength and type 1100. This sets the sets the length to 1100 bytes.

6 Select retBoolean again and click on rule in the toolbar. An additional Rule space is
placed in the Business Rules above the earlier Rule. Select the new Rule.

7 In Rule Properties, Description, type logging. This now appears as the name of the
rule.

8 Place the curser in the Rule Properties, Rules window. Type the following:

EGate.traceln (EGate.TRACE_EWAY, EGate.TRACE_EVENT_DEBUG, "Inside
Rule")

9 Select logging in the Business Rules pane, right-click and select copy.
e*Way Intelligent Adapter for CICS User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation CICS Sample Implementation
10 Select rule in the Business Rules pane, right-click and select paste. logging is pasted
below the rule.

11 With the new “logging” rule selected, go to the Rule Properties, Rules window, and
change the code from "Inside Rule" to "Finish Set Array".

12 Click rule on the toolbar again. A new rule is placed under logging in the Business
Rules pane. Select the new rule.

13 With the new rule selected, drag-and-drop Field1 from the Source Events pane to
the Rules window. this places the following code in the Rules window:

getGenericIn().getField1()

14 From the Destination Events pane, drag and drop the getCommAreaString method
(under getEncodedCommAreaString) into the second set of parenthesis in the Rules
window (see Figure 10 on page 33).

Figure 10 The Collaboration Rules Editor - Rules window

15 A Properties dialog box opens for getCommAreaString encoding. Type in cp500
and click OK. (See Figure 11 on page 34)
e*Way Intelligent Adapter for CICS User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation CICS Sample Implementation
Figure 11 Properties window - getCommAreaString encoding

16 The code in the Rules window should now appear as follows:

getGenericOut().setField1(getCICSOut().getCommAreaString("cp500"))

17 In the Business Rules pane, select the last rule. From the toolbar, click the var
button to add a variable. In the Rule Properties pane, Description field, type pd.

18 In the Rule Properties pane, Name field, type pd.

19 From the Destination Events pane, drag-and-drop the commAreaPackedDecimal to
the Rule Properties pane, Initial Value field. This opens a Properties window for
commAreaPackedDecimal.

Figure 12 Properties window - commAreaPackedDecimal

20 In the commAreaPackedDecimal method Properties window, enter 25 for the
offset integer, 5 for the intSize integer, and 0 for the decSize integer, and click OK.

21 In the Rule Properties pane, Type field drop-down list box, select
com.stc.eways.cics.PackedDecimal.

22 Select the pd variable in the Business Rules pane. Click on the rule button on the
toolbar. A rule appears under the pd variable.

23 Select the new Rule. From the Source Events pane, drag-and-drop Field1 to the Rule
Properties, Rules window. The following code appears.

getGenericIn().getField1()

24 From the Destination Events pane, drag-and-drop the packedDecimaltoString
method into the second set of parenthesis in the Rules Window.

25 A packedDecimaltoString Properties window opens. Type pd in the packedDec
field, and click OK. The code in the Rules window should appear as follows:

getGenericIn().getField1(getCICSOut().packedDecimalToString(pd))
e*Way Intelligent Adapter for CICS User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation CICS Sample Implementation
26 When the Collaboration Rules are completed, click File, Compile to compile the
new collaboration.

27 Before compiling the code, select Tools, Options,.

28 Verify that all necessary .jar files are included. Add stccics.jar.

Figure 13 Business Rules

29 When all the business logic has been defined, the code can be compiled by selecting
Compile from the File menu. The Save menu opens, provide a name for the .xpr
file.

Important: This is not a complete collaboration, but an example of how the various components
of the collaboration are setup. For the sample schema, select CICSClient.class in the
Collaboration Rules - CICSClient Properties dialog box to use the completed
CICSClient.xpr file. For further information on using the Collaboration Rules
Editor see the e*Gate Integrator User’s Guide.

5.2.7 Collaborations
Collaborations are the components that receive and process Event Types and forward
the output to other e*Gate components or to an external. Collaborations consist of the
Subscriber, which “listens” for Events of a known type (sometimes from a given source)
and the Publisher, which distributes the transformed Event to a specified recipient.

Create the CICIS_Multi_Mode collaboration

1 In the e*Gate Enterprise Manager, select the Navigator's Components tab.

2 Open the host on which you want to create the Collaboration.

3 Select a Control Broker.

4 Select an e*Way to assign the Collaboration (for this sample, “CICSClient”).

5 On the palette, click the Create a New Collaboration button.
e*Way Intelligent Adapter for CICS User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation CICS Sample Implementation
6 Enter the name of the new Collaboration, then click OK. (For the sample,
“col_CICSclient”)

7 Double-click the new Collaboration to edit its properties. The Collaboration
Properties dialog box opens.

8 From the Collaboration Rules drop-down list box select the Collaboration Rules
file that you created previously (for the sample, “CICSclient”).

9 In the Subscriptions area, click Add to define the input Event Types to which this
Collaboration will subscribe.

A From the Instance Name field drop-down list box, select the Instance Name that
you previously defined “GenericIn.”

B From the Event Type drop-down list box, select the Event Type that you
previously defined “etd_Blob.”

C From the Source drop-down list box, select the source (for this sample
“eWc_CICSClient”).

10 In the Publications area, click Add to define the output Event Types that this
Collaboration will publish.

A From the Instance Name drop-down list box, select the Instance Name that you
previously defined “GenericOut.”

B From the Event Types drop-down list box, select the Event Type that you
previously defined “etd_Blob.”

C Select the publication destination from the Destination drop-down list box. In
this case, it should be “IQ2.”

D The value in the Priority column defaults to 5.

11 In the Publications area, click Add to add an additional instance.

A From the Instance Name drop-down list box, select the Instance Name that you
previously defined “CICSOut.”

B From the Event Types drop-down list box, select the Event Type that you
previously defined “etd_CICSClient.”

C Select the publication destination from the Destination drop-down list box. In
this case, it should be “eWc_CICSClient.”

D The value in the Priority column defaults to 5.
e*Way Intelligent Adapter for CICS User’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation CICS Sample Implementation
Figure 14 Collaboration Properties - col_CICSClient

12 Click the Apply button and click OK to close the Collaboration Properties dialog
box.

Create the Inbound e*Way collaboration

1 In the e*Gate Enterprise Manager, select the Navigator's Components tab.

2 Open the host on which you want to create the Collaboration.

3 Select a Control Broker.

4 Select the Feeder e*Way to assign its Collaboration.

5 On the palette, click the Create a New Collaboration button.

6 Enter the name of the new Collaboration (for the sample, “col_Feeder”) then click
OK.

7 Double-click the new Collaboration to edit its properties. The Collaboration
Properties dialog box opens.

8 From the Collaboration Rules drop-down list box, select the Collaboration Rules
file that you created previously (for the sample, “PassThru”).

9 In the Subscriptions area, click Add to define the input Event Types to which this
Collaboration will subscribe.

A From the Event Type drop-down list box, select the Event Type that you
previously defined “etd_Blob.”

B Select the Source from the Source drop-down list box. In this case, it should be
<External>.

10 In the Publications area, click Add to define the output Event Types that this
Collaboration will publish.
e*Way Intelligent Adapter for CICS User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation CICS Sample Implementation
A From the Event Types list, select the Event Type that you previously defined
“etd_Blob.”

B Select the publication destination from the Destination list. In this case, it
should be “IQ1.”

C The value in the Priority column defaults to 5.

Figure 15 Collaboration Properties_col_Feeder

11 Click the Apply button and click OK to close the Collaboration Properties dialog
box.

Create the Outbound e*Way collaboration

1 In the e*Gate Enterprise Manager, select the Navigator's Components tab.

2 Open the host on which you want to create the Collaboration.

3 Select a Control Broker.

4 Select the Eater e*Way to assign its Collaboration.

5 On the palette, click the Create a New Collaboration button.

6 Enter the name of the new Collaboration (for this sample, “col_Eater”), then click
OK.

7 Double-click the new Collaboration to edit its properties.

8 From the Collaboration Rules drop-down list box, select the Collaboration Rules
file that you created previously (for the sample, “PassThru”).

9 In the Subscriptions area, click Add to define the input Event Types to which this
Collaboration will subscribe.

A From the Event Type drop-down list box, select the Event Type that you
previously defined “etd_Blob.”
e*Way Intelligent Adapter for CICS User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Implementation Sample Schema
B Select the Source from the Source list. In this case, it should be
“col_CICSClient.”

10 In the Publications area, click Add to define the output Event Types that this
Collaboration will publish.

A From the Event Types list box, select the Event Type that you previously
defined “etd_Blob.”

B Select the publication destination from the Destination list. In this case, it
should be <External>.

C The value in the Priority column defaults to 5.

Figure 16 Collaboration Properties_col_Feeder

11 Click the Apply button and click OK to close the Collaboration Properties dialog
box.

5.3 Sample Schema
The previous sections provided the basics for implementing the CICS e*Way. This
section describes how to use the CICS e*Way within a sample Schema. It is assumed
that the CICS e*Way has been installed properly, and that all of the necessary files and
scripts are located in the default location.

This implementation will consist of two file-based e*Ways, one Multi-Mode e*Way,
two Event Types, two Collaboration Rules, two Intelligent Queues and three
Collaborations, as follows:

! Feeder - This e*Way will receive input from an external source, apply pass through
Collaboration Rules, and publish the information to an Intelligent Queue.
e*Way Intelligent Adapter for CICS User’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Implementation Sample Schema
! CICSClient - This Multi-Mode e*Way applies extended Java Collaboration Rules to
an inbound Event to perform the desired business logic, in this case encryption and
decryption.

! Eater - This e*Way will receive information from the Multi-Mode e*Way and
publish to the external system.

! etd_CICSClient - This Event Type contains the methods to be used to perform the
necessary transformation.

! etd_Blob - This Event Type describes an Event that is input to the extended Java
Collaboration Service.

! PassThru - This Collaboration Rule is associated with the ewInbound e*Way, and is
used for receiving the input Event and sending the Event to the External.

! CICSClient - This Collaboration Rule is associated with the CICSClient Multi-
Mode e*Way, and is used to perform the transformation process.

! IQ1 - This Intelligent Queue is an STC_JMS IQ, and forwards data to the CICSClient
Multi-Mode e*Way.

! IQ2 - This Intelligent Queue is a STC_JMS IQ, and forwards data to the outbound
Eater e*Way.

5.3.1 Execute the Schema
To execute the CICSSample schema, do the following:

1 Go to the command line prompt, and enter the following:

stccb -rh hostname -rs CICSSample -un username -up user password
-ln hostname_cb

Substitute hostname, username and user password as appropriate.

2 Exit from the command line prompt, and start the e*Gate Monitor GUI.

3 When prompted, specify the hostname which contains the Control Broker you
started in Step 1 above.

4 Select the CICSSample schema.

5 After you verify that the Control Broker is connected (the message in the Control
tab of the console will indicate command succeeded and status as up), highlight the
IQ Manager, hostname_igmgr, then click on the right button of the mouse, and
select Start.

6 Select each of the e*Ways, right-click the mouse, and select Start.

7 To view the output, copy the output file (specified in the Outbound e*Way
configuration file). Save to a convenient location, open.

Note: While the schema is running, opening the destination file, will cause errors.
e*Way Intelligent Adapter for CICS User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 6

Java Methods

The e*Way’s Java Methods fall into the following categories:

A number of Java methods have been added to make it easier to set information in the
e*Way ETD Editor and to get information from it. These methods are contained in
classes:

! The Cicsclient Class on page 41

6.1 The Cicsclient Class
java.lang.Object

com.stc.jcsre.SimpleETDImpl(implements com.stc.jcsre.ETD)
com.stc.eways.cics.CicsClient

public class CicsClient extends com.stc.jcsre.

Methods of the Cicsclient Class

These methods are described in detail on the following pages:

commAreaToPackedDecimal() on page 42 initialize() on page 57

commAreaZonedToString() on page 43 initJavaGateway() on page 58

execute() on page 44 packedDecimalToString() on page 58

getCommArea() on page 45 reset() on page 59

getCommAreaLength() on page 45 sendRequest() on page 59

getCommAreaString() on page 46 setCommArea() on page 60

getEciCallbackable() on page 46 setCommAreaLength() on page 60

getEciExtend() on page 47 setEciCallbackable() on page 60

getEciLuwToken() on page 47 setEciExtend() on page 61

getEciSync() on page 48 setEciLuwToken() on page 61

getEncodedCommAreaString() on page 48 setEciSync() on page 62

getEncoding() on page 49 setEncoding() on page 62

getHexString() on page 49 setMessageQualifier() on page 63

getMessageQualifier() on page 50 setPassword() on page 63
e*Way Intelligent Adapter for CICS User’s Guide 41 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
CicsClient()

Description

Constructor.

Syntax

public CicsClient()

Parameters

None.

Return Values

None.

Throws

None.

commAreaToPackedDecimal()

Description

Converts a packed decimal (Cobol comp-3) commarea field to a PackedDecimal object.

getPassword() on page 50 setPort() on page 64

getPort() on page 50 setProgram() on page 64

getProgram() on page 51 setServer() on page 64

getServer() on page 51 setSslClass() on page 65

getServerList() on page 52 setSslPassword() on page 65

getSslClass() on page 52 setTraceDumpOffset() on page 66

getSslPassword() on page 52 setTraceFilename() on page 66

getTraceDumpOffset() on page 53 setTraceLevel() on page 67

getTraceFilename() on page 53 setTraceTiming() on page 67

getTraceLevel() on page 54 setTraceTruncationSize() on page 67

getTraceTiming() on page 54 setTransId() on page 68

getTraceTruncationSize() on page 54 setUrl() on page 68

getTransId() on page 55 setUserId() on page 69

getUrl() on page 55 terminate() on page 69

getUserId() on page 56 toPackedDecimal() on page 70

handleConfigValues() on page 56 toZoned() on page 70

handleTrace() on page 56 zonedToString() on page 71
e*Way Intelligent Adapter for CICS User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
Syntax

public com.stc.eways.cics.PackedDecimal commAreaToPackedDecimal(int
offset, int intSize, int decSize)

Parameters

Return Values

com.stc.eways.cics.PackedDecimal
Returns the new PackedDecimal object.

Throws

None

commAreaZonedToString()

Description

Converts a zoned decimal (Cobol PIC S9) commarea field to a string.

Syntax

public java.lang.String commAreaZonedToString(int offset, int length)

public java.lang.String commAreaZonedToString(int offset, int length,
java.lang.String encoding)

Parameters

Name Type Description

offset integer Offset of the packed decimal field
relative to the start of the commarea
(a field starting in byte 1 would have
an offset of 0)

intSize integer The number of integer digits in the
resulting object.

decSize integer The number of decimal digits in the
resulting object.

Name Type Description

offset integer Offset of the zoned decimal field
relative to the start of the commarea
(a field starting in byte 1 would have
an offset of 0).

length integer The length of the zoned decimal
field.

encoding java.lang.String The desired character encoding
type (ASCII, cp500 for EBCDIC, etc.)
e*Way Intelligent Adapter for CICS User’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
Return Values

java.lang.String
Returns the new string.

Throws

None.

execute()

Description

Executes the CICS program.

Syntax

public void execute()

public void execute(boolean eciSynCall, java.lang.String
cicsServerName, java.lang.String cicsUserId, java.lang.String
cicsPassword, java.lang.String cicsProgram, java.lang.String
cicsTransId, byte[] byteArray, int length, boolean eciExtendMode, int
eciLUWToken, int msgQualifier, com.stc.eways.cics.Callbackable
eciCallbackableObj)

Parameters

Name Type Description

eciSynCall boolean A Boolean value indicating whether
to use ECI Synchronous Call.

 cicsServerName java.lang.String The CICS server name.

 cicsUserId java.lang.String The user id.

 cicsPassword java.lang.String The password associated with the
specified user id.

 cicsProgram java.lang.String The CICS Program name to be
executed.

 cicsTransId java.lang.String The CICS transaction id.

byteArray byte [] A byte array for the COMMAREA
length.

length integer The COMMAREA length

 eciExtendMode boolean A Boolean value indicating whether
to implement ECI extend mode.

eciLUWToken integer An ECI LUW token (Logical Unit of
Work token)

msgQualifier integer Application provided identifier

 eciCallbackableObj com.stc.eways.cics.Call
backable

ECI callbackable object. This may be
null if no callback is required.
e*Way Intelligent Adapter for CICS User’s Guide 44 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
Return Values

None.

Throws

com.stc.common.collabService.CollabConnException
Indicating a connection error.

com.stc.common.collabService.CollabDataException
Indicating a data error.

getCommArea()

Description

Constructs a CommArea object.

Syntax

public byte[] getCommArea()

Parameters

None.

Return Values

byte array
Returns the CommArea byte array.

Throws

None.

getCommAreaLength()

Description

Constructs the CommArea length.

Syntax

public int getCommAreaLength()

Parameters

None

Return Values

integer
Returns the CommArea length.

Throws

None.
e*Way Intelligent Adapter for CICS User’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
getCommAreaString()

Description

Constructs a CommArea String by converting the CommArea array of bytes using the
platform's default character encoding, or:

Constructs a CommArea String by converting the CommArea array of bytes with offset
and length using the platform's default character encoding, or;

Construct a CommArea String by converting the CommArea array of bytes with offset
and length using the character encoding specified as an argument, or;

Constructs a CommArea String by converting the CommArea array of bytes using the
character encoding specified as an argument.

Syntax

public java.lang.String getCommAreaString()

public java.lang.String getEncodedCommAreaString(int offset, int
length)

public java.lang.String getCommAreaString(int offset, int length,
java.lang.String encoding)

public java.lang.String getCommAreaString(java.lang.String encoding)

Parameters

Return Values

java.lang.String
Returns the CommArea string.

Throws

None.

getEciCallbackable()

Description

Gets the ECI callbackable object.

Name Type Description

offset integer Offset of the area to be converted
relative to the start of the commarea
(a field starting in byte 1 would have
an offset of 0).

length integer The length of the area to be
converted.

encoding java.lang.String The desired character encoding
type (ASCII, cp500 for EBCDIC, etc.)
e*Way Intelligent Adapter for CICS User’s Guide 46 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
Syntax

public com.stc.eways.cics.Callbackable getEciCallbackable()

Parameters

None.

Return Values

com.stc.eways.cics.Callbackable
Returns the ECI callbackable value.

Throws

None.

getEciExtend()

Description

Determines whether the ECI LUW has been set to extended.

Syntax

public boolean getEciExtend()

Parameters

None

Return Values

boolean
Returns true to indicate that the extended request is implemented; otherwise,
returns false.

Throws

None.

getEciLuwToken()

Description

Gets the ECI LUW token value.

Syntax

public int getEciLuwToken()

Parameters

None.

Return Values

integer
Returns the ECI LUW token value.
e*Way Intelligent Adapter for CICS User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
Throws

None.

getEciSync()

Description

Queries whether the state is set to synchronous.

Syntax

public boolean getEciSync()

Parameters

None.

Return Values

boolean
Returns true to indicate that the ECI state is set to synchronous.

Throws

None.

getEncodedCommAreaString()

Description

Constructs a CommArea String by converting the CommArea array of bytes using the
character encoding specified earlier for the ETD, or:

Constructs a CommArea String by converting the CommArea array of bytes with offset
and length using the character encoding specified earlier for the ETD.

Syntax

public java.lang.String getEncodedCommAreaString()

public java.lang.String getEncodedCommAreaString(int offset, int
length)

Parameters

Name Type Description

offset integer Offset of the area to be converted
relative to the start of the commarea
(a field starting in byte 1 would have
an offset of 0).

length integer The length of the area to be
converted.
e*Way Intelligent Adapter for CICS User’s Guide 48 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
Return Values

java.lang.String
Returns the encoded CommArea string value.

Throws

java.io.UnsupportedEncodingException
Indicating unsupported encoding.

getEncoding()

Description

Gets the encoding key.

Syntax

public java.lang.String getEncoding()

Parameters

None.

Return Values

java.lang.String
Returns the encoding type.

Throws

None.

getHexString()

Description

Gets the hexidecimal string.

Syntax

public static java.lang.String getHexString(byte[] byteArray)

Parameters

Return Values

java.lang.String
Returns the hexidecimal string.

Throws

None

Name Type Description

byteArray byte []
e*Way Intelligent Adapter for CICS User’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
getMessageQualifier()

Description

Gets the Message Qualifier information.

Syntax

public int getMessageQualifier()

Parameters

None

Return Values

integer
Returns the Message Qualifier information.

Throws

None.

getPassword()

Description

Gets the password and decrypts it.

Syntax

public java.lang.String getPassword()

Parameters

None.

Return Values

java.lang.String
Returns the password.

Throws

None.

getPort()

Description

Gets the port information.

Syntax

public int getPort()

Parameters

None.
e*Way Intelligent Adapter for CICS User’s Guide 50 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
Return Values

integer
Returns the port information.

Throws

None.

getProgram()

Description

Gets the name of the CICS program.

Syntax

public java.lang.String getProgram()

Parameters

None.

Return Values

java.lang.String
Returns the CICS program name.

Throws

None.

getServer()

Description

Gets the CICS server information.

Syntax

public java.lang.String getServer()

Parameters

None

Return Values

java.lang.String
Returns the name of the CICS server.

Throws

None.
e*Way Intelligent Adapter for CICS User’s Guide 51 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
getServerList()

Description

Gets a list of CICS servers defined.

Syntax

public java.lang.String[] getServerList(int maxNumSystems)

Parameters

Return Values

java.lang.String[]
Returns a list of the defined CICS servers.

Throws

com.stc.common.collabService.CollabConnException
Indicating a connection error.

com.stc.common.collabService.CollabDataException
Indicating a data error.

getSslClass()

Description

Gets the name of the SSL class.

Syntax

public java.lang.String getSslClass()

Parameters

None

Return Values

java.lang.String
Returns the name of the SSL class.

Throws

None.

getSslPassword()

Description

Gets the SSL password.

Name Type Description

maxNumSystems integer The maximum number of systems.
e*Way Intelligent Adapter for CICS User’s Guide 52 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
Syntax

public java.lang.String getSslPassword()

Parameters

None

Return Values

java.lang.String
Returns the SSL password.

Throws

None.

getTraceDumpOffset()

Description

Gets the trace dump offset value.

Syntax

public int getTraceDumpOffset()

Parameters

None.

Return Values

integer
Returns the trace dump offset value.

Throws

None.

getTraceFilename()

Description

Gets the trace filename.

Syntax

public java.lang.String getTraceFilename()

Parameters

None.

Return Values

java.lang.String
Returns the trace filename.

Throws

None.
e*Way Intelligent Adapter for CICS User’s Guide 53 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
getTraceLevel()

Description

Gets the defined trace level value.

Syntax

public int getTraceLevel()

Parameters

None.

Return Values

integer
Returns the trace level.

Throws

None.

getTraceTiming()

Description

Gets the defined trace timing information.

Syntax

public boolean getTraceTiming()

Parameters

None

Return Values

boolean
Returns true to indicate the timing trace mask is implemented.

Throws

None.

getTraceTruncationSize()

Description

Gets the trace truncation size of the hex dumps.

Syntax

public int getTraceTruncationSize()

Parameters

None.
e*Way Intelligent Adapter for CICS User’s Guide 54 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
Return Values

integer
Returns the size of the trace truncation setting.

Throws

None.

getTransId()

Description

Gets the transaction ID of the current transaction.

Syntax

public java.lang.String getTransId()

Parameters

None.

Return Values

java.lang.String
Returns the transaction ID for the current transaction.

Throws

None.

getUrl()

Description

Gets the URL of the CICS Transaction Gateway.

Syntax

public java.lang.String getUrl()

Parameters

None.

Return Values

java.lang.String
Returns the URL of the CICS Transaction Gateway.

Throws

None.
e*Way Intelligent Adapter for CICS User’s Guide 55 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
getUserId()

Description

Gets the user ID associated with the terminal.

Syntax

public java.lang.String getUserId()

Parameters

None.

Return Values

java.lang.String
Returns the user ID associated with the terminal or null if the user id is set to null or
it is a basic terminal.

Throws

None.

handleConfigValues()

Description

Implements the values assigned in the configuration file for the e*Way Connection.

Syntax

protected void handleConfigValues(java.util.Properties props)

Parameters

Return Values

None.

Throws

com.stc.common.collabService.CollabConnException
Indicating a communication error.

com.stc.common.collabService.CollabDataException
Indicating a data error.

handleTrace()

Description

Implements the trace flags based on parsed configuration values.

Name Type Description

props java.util.Properties The configuration property values.
e*Way Intelligent Adapter for CICS User’s Guide 56 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
Syntax

public void handleTrace()

Parameters

None.

Return Values

None.

Throws

None.

initialize()

Description

Initializes the Event Type Definition.

Syntax

public void initialize(com.stc.common.collabService.JCollabController
cntrCollab, java.lang.String sKey, int iMode)

Parameters

Return Values

None.

Throws

com.stc.common.collabService.CollabConnException
Indicating a connection error.

com.stc.common.collabService.CollabDataException
Indicating a data error.

Additional Information

Overrides initialize in class com.stc.jcsre.SimpleETDImpl.

Name Type Description

cntrCollab com.stc.common.colla
bService.JCollabContr
oller

The Java CollabConroller object.

sKey java.lang.String The key to a JMsgObject

iMode integer Mode for the ETD. The possible
values are:
IN_MODE
OUT_MODE
IN_OUT_MODE
e*Way Intelligent Adapter for CICS User’s Guide 57 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
initJavaGateway()

Description

Initializes the Java Gateway object to allow the flow of data.

Syntax

public void initJavaGateway()

Parameters

None.

Return Values

None.

Throws

com.stc.common.collabService.CollabConnException
Indicating a connection error.

com.stc.common.collabService.CollabDataException
Indicating a data error.

packedDecimalToString()

Description

Converts a PackedDecimal object to a string.

Syntax

public static java.lang.String
packedDecimalToString(com.stc.eways.cics.PackedDecimal pd)

Parameters

Return Values

java.lang.String

Throws

None.

Name Type Description

 pd com.stc.eway.cics.Pack
edDecimal

The PackedDecimal object to be
converted.
e*Way Intelligent Adapter for CICS User’s Guide 58 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
reset()

Description

Resets the data content of an ETD.

Syntax

public boolean reset()

Parameters

None.

Return Values

boolean
Returns true if the reset clears the data content of the ETD; otherwise, returns false if
the ETD does not have a meaningful implementation of reset(), in which case it is
necessary to create a new ETD.

Throws

None.

Additional Information

Overrides reset in class com.stc.jcsre.SimpleETDImpl

sendRequest()

Description

Sends a flow of data contained in the ECI Request object to the Gateway, and
determines whether the send has been successful by checking the return code.

Syntax

public void sendRequest(com.stc.eways.cics.ECIRequest request)

Parameters

Return Values

None.

Throws

com.stc.common.collabService.CollabConnException
Indicating a connection error.

com.stc.common.collabService.CollabDataException
Indicating a data error.

Name Type Description

request com.stc.eway.cics.ECIR
equest

The ECI Request object to be sent.
e*Way Intelligent Adapter for CICS User’s Guide 59 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
setCommArea()

Description

Sets the CommArea to be made available to CICS.

Syntax

public void setCommArea(byte[] byteArray)

Parameters

Return Values

None.

Throws

None.

setCommAreaLength()

Description

Sets the Commarea length.

Syntax

public void setCommAreaLength(int i)

Parameters

Return Values

None.

Throws

None.

setEciCallbackable()

Description

Sets the ECI callbackable value.

Name Type Description

byteArray byte[] A byte array containing the
information required to set the
CommArea.

Name Type Description

i integer Description
e*Way Intelligent Adapter for CICS User’s Guide 60 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
Syntax

public void setEciCallbackable(com.stc.eways.cics.Callbackable c)

Parameters

Return Values

None.

Throws

None.

setEciExtend()

Description

Sets the ECI Extend Mode.

Syntax

public void setEciExtend(boolean b)

Parameters

Return Values

None.

Throws

None.

setEciLuwToken()

Description

Sets the ECI LUW token value.

Syntax

public void setEciLuwToken(int i)

Parameters

Name Type Description

c com.stc.eway.cics.Call
backable

ECI callbackable value.

Name Type Description

b boolean true sets the mode to extended.

Name Type Description

i integer The application identifier.
e*Way Intelligent Adapter for CICS User’s Guide 61 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
Return Values

None.

Throws

None.

setEciSync()

Description

Sets the ECI to synchronous.

Syntax

public void setEciSync(boolean b)

Parameters

Return Values

None.

Throws

None.

setEncoding()

Description

Sets the encryption type for encoding purposes.

Syntax

public void setEncoding(java.lang.String s)

Parameters

Return Values

None.

Throws

None.

Name Type Description

b boolean true sets the mode to synchronous.

Name Type Description

s java.lang.String Description
e*Way Intelligent Adapter for CICS User’s Guide 62 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
setMessageQualifier()

Description

Sets the Message Qualifier associated with this request.

Syntax

public void setMessageQualifier(int i)

Parameters

Return Values

None.

Throws

None.

setPassword()

Description

Sets the password associated with the terminal.

Syntax

public void setPassword(java.lang.String s)

Parameters

Return Values

None.

Throws

None.

Additional Information

Invoking this method automatically flags the terminal as an extended type of terminal.
The password will not be picked up until another send is completed or the terminal is
connected.

Name Type Description

i integer The application identifier.

Name Type Description

s java.lang.String Description
e*Way Intelligent Adapter for CICS User’s Guide 63 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
setPort()

Description

Sets the port number necessary to communicate with the Gateway.

Syntax

public void setPort(int i)

Parameters

Return Values

None.

Throws

None.

setProgram()

Description

Sets the CICS program identity.

Syntax

public void setProgram(java.lang.String s)

Parameters

Return Values

None.

Throws

None.

setServer()

Description

Sets the server identity on which the CICS program is running.

Syntax

public void setServer(java.lang.String s)

Name Type Description

i integer The Gateway port number.

Name Type Description

s java.lang.String The name of the CICS program.
e*Way Intelligent Adapter for CICS User’s Guide 64 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
Parameters

Return Values

None.

Throws

None.

setSslClass()

Description

Sets the identity of the SSL class.

Syntax

public void setSslClass(java.lang.String s)

Parameters

Return Values

None.

Throws

None.

setSslPassword()

Description

Sets the password required to access SSL information.

Syntax

public void setSslPassword(java.lang.String s)

Parameters

Name Type Description

s java.lang.String The name of the server on which
CICS resides.

Name Type Description

s java.lang.String The SSL class name.

Name Type Description

s java.lang.String The SSL password.
e*Way Intelligent Adapter for CICS User’s Guide 65 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
Return Values

None.

Throws

None.

setTraceDumpOffset()

Description

Sets the offset value for trace dumping.

Syntax

public void setTraceDumpOffset(int i)

Parameters

Return Values

None.

Throws

None.

setTraceFilename()

Description

Sets the name of the trace file to be used.

Syntax

public void setTraceFilename(java.lang.String s)

Parameters

Return Values

None.

Throws

None.

Name Type Description

i integer The offset amount.

Name Type Description

s java.lang.String The name of the trace file.
e*Way Intelligent Adapter for CICS User’s Guide 66 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
setTraceLevel()

Description

Sets the debugging trace level.

Syntax

public void setTraceLevel(int i)

Parameters

Return Values

None.

Throws

None.

setTraceTiming()

Description

Sets the debugging trace timing.

Syntax

public void setTraceTiming(boolean b)

Parameters

Return Values

None.

Throws

None.

setTraceTruncationSize()

Description

Sets the trace truncation size.

Syntax

public void setTraceTruncationSize(int i)

Name Type Description

i integer The trace level to be set.

Name Type Description

b boolean true sets trace timing to On.
e*Way Intelligent Adapter for CICS User’s Guide 67 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
Parameters

Return Values

None.

Throws

None.

setTransId()

Description

Sets the CICS transaction id.

Syntax

public void setTransId(java.lang.String s)

Parameters

Return Values

None.

Throws

None.

setUrl()

Description

Sets the URL to the Transaction Gateway.

Syntax

public void setUrl(java.lang.String s)

Parameters

Name Type Description

i integer The truncation size to be set.

Name Type Description

s java.lang.String The CICS transaction id.

Name Type Description

s java.lang.String The URL for the Transaction
Gateway.
e*Way Intelligent Adapter for CICS User’s Guide 68 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
Return Values

None.

Throws

None.

setUserId()

Description

Sets the used ID associated with the terminal.

Syntax

public void setUserId(java.lang.String s)

Parameters

Return Values

None.

Throws

None.

terminate()

Description

Terminates the ETD.

Syntax

public void terminate()

Parameters

None

Return Values

None.

Throws

com.stc.common.collabService.CollabConnException
Indicating a connection error.

Additional Information

Overrides terminate in class com.stc.jcsre.SimpleETDImpl

Name Type Description

s java.lang.String The terminal user ID.
e*Way Intelligent Adapter for CICS User’s Guide 69 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
toPackedDecimal()

Description

Converts a string to a PackedDecimal object.

Syntax

public static com.stc.eways.cics.PackedDecimal
toPackedDecimal(java.lang.String number, int intSize, int decSize)

Parameters

Return Values

com.stc.eways.cics.PacedDecimal

Throws

java.lang.NumberFormatException

toZoned()

Description

Converts a number to zoned decimal (Cobol PIC S9).

Syntax

public static byte[] toZoned(java.lang.String number)

public static byte[] toZoned(java.lang.String number,
java.lang.String encoding)

Parameters

Name Type Description

 number java.lang.String Decimal String representation to be
converted

intSize integer The number of integer digits in the
resulting object.

decSize integer The number of decimal digits in the
resulting object.

Name Type Description

number java.lang.String The number to be converted

 encoding java.lang.String The encryption type.
e*Way Intelligent Adapter for CICS User’s Guide 70 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The Cicsclient Class
Return Values

byte []
Returns a byte array containing the new zoned data.

Throws

java.lang.NumberFormatException
Indicating an error occurred as a result of a numeric format exception.

zonedToString()

Description

Converts zoned decimal (Cobol PIC s9) byte array to a string.

Syntax

public static java.lang.String zonedToString(byte[] zoned)

public static java.lang.String zonedToString(byte[] zoned,
java.lang.String encoding)

Parameters

Return Values

java.lang.String
Returns the new converted string.

Throws

java.lang.NumberFormatException

Name Type Description

zoned byte[] Description

 encoding java.lang.String The character encoding type (ASCII,
cp500 for EBCDIC, etc.) of the
number to be converted.
e*Way Intelligent Adapter for CICS User’s Guide 71 SeeBeyond Proprietary and Confidential

Index
Index

C
CICS

described 1
CICS e*Way

defined 1
UNIX installation 5
Windows installation 3

CicsClient() 42
Classpath Override 9
Classpath Prepend 8
Cobol Copybook Converter

function described 1
collaboration rules 28

creating collaboration rules files 28
collaborations 35

for the Multi-Mode e*Way 35
COMMAREA 1
commAreaToPackedDecimal() 42
commAreaZonedToString() 43
Constructor

CicsClient 42
creating a new schema 21
Customer Information Control System

described 1

D
directories

created by installation 5
Disable JIT 11

E
e*Way Connection 26
e*Ways

creating and configuring 23
Inbound e*Way 24
Multi-Mode e*Way 26
Outbound e*Way 25

event type
creating

from an existing .xsc 23
without an existing DTD 21

event types 21

execute() 44

F
files

created by installation 5

G
getCommArea() 45
getCommAreaLength() 45
getCommAreaString() 46
getEciCallbackable() 46
getEciExtend() 47
getEciLuwToken() 47
getEciSync() 48
getEncodedCommAreaString() 48
getEncoding() 49
getHexString() 49
getMessageQualifier() 50
getPassword() 50
getPort() 50
getProgram() 51
getServer() 51
getServerList() 52
getSslClass() 52
getSslPassword() 52
getTraceDumpOffset() 53
getTraceFilename() 53
getTraceLevel() 54
getTraceTiming() 54
getTraceTruncationSize() 54
getTransId() 55
getUrl() 55
getUserId() 56

H
handleConfigValues() 56
handleTrace() 56

I
implementation 20

overview 20
Initial Heap Size 9
initialize() 57
initJavaGateway() 58
installation

directories created by 5
files created by 5

intelligent queues 27
e*Way Intelligent Adapter for CICS User’s Guide 72 SeeBeyond Proprietary and Confidential

Index
J
JNI DLL Absolute Pathname 8
JVM settings 7

M
Maximum Heap Size 9
Multi-Mode e*Way 7

configuration 7
parameters 7

P
packedDecimalToString() 58
parameters

Connector 13
Class 13
Type 13

Multi-Mode e*Way
CLASSPATH Override 9
CLASSPATH prepend 8
Disable JIT 11
Initial Heap Size 9
JNI DLL absolute pathname 8
JVM settings 7
Maximum Heap Size 9

Property.Tag 13
pre-installation

UNIX 5
Windows NT 3

R
reset() 59

S
sample schema 39

executing the schema 40
sample input data 40

sendRequest() 59
setCommArea() 60
setCommAreaLength() 60
setEciCallbackable() 60
setEciExtend() 61
setEciLuwToken() 61
setEciSync() 62
setEncoding() 62
setMessageQualifier() 63
setPassword() 63
setPort() 64
setProgram() 64
setServer() 64

setSslClass() 65
setSslPassword() 65
setTraceDumpOffset() 66
setTraceFilename() 66
setTraceLevel() 67
setTraceTiming() 67
setTraceTruncationSize() 67
setTransId() 68
setUrl() 68
setUserId() 69

T
terminate() 69
toPackedDecimal() 70
toZoned() 70

U
UNIX

CICS e*Way installation 5
pre-installation 5

W
Windows NT

CICS e*Way installation 3
Windows NT 4.0

pre-installation 3

Z
zonedToString() 71
e*Way Intelligent Adapter for CICS User’s Guide 73 SeeBeyond Proprietary and Confidential

	e*Way Intelligent Adapter for CICS User’s Guide
	Contents
	Introduction
	1.1 Overview
	1.1.1 Intended Reader
	1.1.2 Components

	1.2 System Requirements
	1.2.1 CICS Server Requirements

	Installation
	2.1 Windows�NT 4.0 and Windows 2000
	2.1.1 Pre-installation
	2.1.2 Installation Procedure

	2.2 UNIX
	2.2.1 Pre-installation
	2.2.2 Installation Procedure

	2.3 Files/Directories Created by the Installation
	2.4 CICS Transaction Gateway 4.0 Configuration

	Multi-Mode e*Way Configuration
	3.1 Multi-Mode e*Way
	3.1.1 JVM Settings
	JNI DLL Absolute Pathname
	CLASSPATH Prepend
	CLASSPATH Override
	CLASSPATH Append From Environment Variable
	Initial Heap Size
	Maximum Heap Size
	Maximum Stack Size for Native Threads
	Maximum Stack Size for JVM Threads
	Class Garbage Collection
	Garbage Collection Activity Reporting
	Asynchronous Garbage Collection
	Report JVM Info and all Class Loads
	Disable JIT
	Allow Remote Debugging of JVM

	e*Way Connection Configuration
	4.1 Configuring e*Way Connections
	4.1.1 Connector
	Type
	Class
	Property.Tag

	4.1.2 CICS Gateway
	Url
	Port
	SSL KeyRing Class
	SSL KeyRing Password

	4.1.3 Cics Client
	Cics UserId
	Cics Password
	ECI call type
	CICS Program
	CICS TransId
	COMMAREA length
	ECI extend mode
	ECI LUW token
	Message qualifier
	Encoding

	4.1.4 Tracing
	Level
	Filename
	Truncation Size
	Dump Offset
	Timing

	Implementation
	5.1 Using the Cobol Copybook Converter
	5.2 CICS Sample Implementation
	5.2.1 Creating the New Schema
	5.2.2 Event Types
	Creating an Event Type Using the Standard ETD Wizard
	Creating an Event Type From an Existing .xsc

	5.2.3 Creating and Configuring the e*Ways
	5.2.4 Create the e*Way Connection
	5.2.5 Intelligent Queues
	5.2.6 Collaboration Rules
	Creating Collaboration Rules files
	Java (CICSClient)
	Creating the Collaboration Rules Class

	5.2.7 Collaborations

	5.3 Sample Schema
	5.3.1 Execute the Schema

	Java Methods
	6.1 The Cicsclient Class
	Methods of the Cicsclient Class
	CicsClient()
	commAreaToPackedDecimal()
	commAreaZonedToString()
	execute()
	getCommArea()
	getCommAreaLength()
	getCommAreaString()
	getEciCallbackable()
	getEciExtend()
	getEciLuwToken()
	getEciSync()
	getEncodedCommAreaString()
	getEncoding()
	getHexString()
	getMessageQualifier()
	getPassword()
	getPort()
	getProgram()
	getServer()
	getServerList()
	getSslClass()
	getSslPassword()
	getTraceDumpOffset()
	getTraceFilename()
	getTraceLevel()
	getTraceTiming()
	getTraceTruncationSize()
	getTransId()
	getUrl()
	getUserId()
	handleConfigValues()
	handleTrace()
	initialize()
	initJavaGateway()
	packedDecimalToString()
	reset()
	sendRequest()
	setCommArea()
	setCommAreaLength()
	setEciCallbackable()
	setEciExtend()
	setEciLuwToken()
	setEciSync()
	setEncoding()
	setMessageQualifier()
	setPassword()
	setPort()
	setProgram()
	setServer()
	setSslClass()
	setSslPassword()
	setTraceDumpOffset()
	setTraceFilename()
	setTraceLevel()
	setTraceTiming()
	setTraceTruncationSize()
	setTransId()
	setUrl()
	setUserId()
	terminate()
	toPackedDecimal()
	toZoned()
	zonedToString()

	Index
	C
	D
	E
	F
	G
	H
	I
	J
	M
	P
	R
	S
	T
	U
	W
	Z

