SeeBeyond™ eBusiness Integration Suite

HTTPS e*Way Intelligent
Adapter User’s Guide

Release 4.5.2

Java-enabled

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, eBI, eBusiness Web, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 2001 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20011019122004.

HTTPS e*Way Intelligent Adapter User’s Guide i SeeBeyond Proprietary and Confidential

Contents

Contents
Chapter 1
Introduction 1
Overview 1
The Java Classes that Make up the e*Way 4
JDK Classes 4
SeeBeyondClasses 4
SSL Handshake 5
SSL Support 8
KeyStores and TrustStores 8
Methods for generating a KeyStore and a TrustStore 9
Creating a KeyStore in JKS Format 10
Creating a KeyStore in PKCS12 Format 11
Intended Reader 12
Components 12
System Requirements 13
Chapter 2
Installation 14
Windows NT or Windows 2000 14
Pre-installation 14
Installation Procedure 14
UNIX 15
Pre-installation 15
Installation Procedure 15
Files/Directories Created by the Installation 16
Chapter 3
Multi-Mode e*Way Configuration 17
Multi-Mode e*Way 17
JVM Settings 17
JNI DLL Absolute Pathname 17
CLASSPATH Prepend 18
CLASSPATH Override 18
Initial Heap Size 19

HTTPS e*Way Intelligent Adapter User’s Guide iii

SeeBeyond Proprietary and Confidential

Contents

Maximum Heap Size 19
Maximum Stack Size for Native Threads 19
Maximum Stack Size for JVM Threads 19
Class Garbage Collection 20
Garbage Collection Activity Reporting 20
Asynchronous Garbage Collection 20
Report JVM Info and all Class Loads 20
Disable JIT 20
Allow Remote Debugging of JVM 21
Chapter 4
e*Way Connection Configuration 22
Configuring e*Way Connections 22
Connector 22
Type 23
Class 23
Property.Tag 23
HTTP 23
DefaultUrl 23
AllowCookies 24
ContentType 24
Accept-type 24
Proxies 24
UseProxy 24
HttpProxyHost 25
HttpProxyPort 25
HttpsProxyHost 25
HttpsProxyPort 26
User Name 26
PassWord 26
HttpAuthentication 26
UseHttpAuthentication 26
UserName 27
PassWord 27
SSL 27
UseSSL 27
HttpsProtocollmpl 28
Provider 28
X509Certificatelmpl 28
SSLSocketFactorylmpl 28
SSLServerSocketFactorylmpl 29
KeyStore 29
KeyStoreType 29
KeyStorePassword 29
TrustStore 29
TrustStore Password 30
KeyManager Algorithm 30
TrustManagerAlgorithm 30
HTTPS e*Way Intelligent Adapter User’s Guide iv SeeBeyond Proprietary and Confidential

Contents

Chapter 5
Implementation 31
Simple HTTP Implementation 31
Creating the New Schema 32
Event Types 32
Creating an Event Type from an Existing DTD 32
Creating an Event Type Without an Existing DTD 33
Creating an Event Type from an Existing .xsc 35
Creating and Configuring the e*Ways 35
Create the e*Way Connection 38
Intelligent Queues 38
Collaborations Rules 39
Creating the Collaboration Rules Class 43
Collaborations 51
Sample Schema 54
Sample Input Data 54
Execute the Schema 55
Chapter 6

Java Classes and Methods 56
HttpAuthenicator Class 57
register 57
setHttpPassWord 57
setHttpUserName 58
setProxyHost 58
setProxyPassWord 59
setProxyUserName 59
HttpClient Class 60
addContentType 60
addHeader 61
addHeader 61
clearContentType 62
clearContentTypes 62
clearHeader 63
clearHeader 63
clearHeaders 64

get 64
getBinaryData 65
getHttpAuthenticator 65
getHttpHeader 65
getHttpProxyHost 66
getHttpProxyPort 66
getHttpResult 66
getHttpsProxyHost 67
getHttpsProxyPort 67
getQueryString 68
getTextData 68
getURL 68
initialize 69

post 69

reset 70
setBinaryData 70

HTTPS e*Way Intelligent Adapter User’s Guide v

SeeBeyond Proprietary and Confidential

Contents

setCookie
setHttpAuthenticator
setHttpHeader
setHttpProxyHost
setHttpProxyPort
setHttpResult
setHttpsProxyHost
setHttpsProxyPort
setQueryString
setTextData
setURL

HttpClientAPI Class

HttpClientConnector Class

addContentType
addHeader
addHeader
clearContentType
clearContentTypes
clearHeader
clearHeader
clearHeaders

get

getBinaryData
getHttpAuthenticator
getHttpProxyHost
getHttpProxyPort
getHttpsProxyHost
getHttpsProxyPort
getQueryString
getTextData
getURL

post

reset
setBinaryData
setCookie
setHttpAuthenticator
setHttpProxyHost
setHttpProxyPort
setHttpsProxyHost
setHttpsProxyPort
setQueryString
setTextData
setURL

close
getProperties
isOpen

open

HttpHeader Class

HttpHeader
HttpHeader

HttpResult Class

HTTPS e*Way Intelligent Adapter User’s Guide

getBinaryResult
getHeader
getHeaderCount
getlsTextResult
getResponseCode
getResponseMessage
getTextResult
setBinaryResult
setHeaders
setlsTextResult

vi SeeBeyond Proprietary and Confidential

Contents

setResponseCode 98
setResponseMessage 99
setTextResult 99
HttpsSecurityProperties Class 100
addProvider 100
getKeyManagerAlgorithm 101
getProviders 101
getSSLServerSocketFactorylmpl 101
getSSLSocketFactorylmpl 102
getTrustManagerAlgorithm 102
getX509Certificatelmpl 102
insertProviderAt 103
setKeyManagerAlgorithm 103
setSSLServerSocketFactorylmpl 104
setSSLSocketFactorylmpl 104
setTrustManagerAlgorithm 105
setX509Certificatelmpl 105
HttpsSystemProperties Class 107
getHttpsProtocollmpl 107
getKeyStore 107
getKeyStorePassword 108
getKeyStoreType 108
getTrustStore 109
getTrustStorePassword 109
getTrustStoreType 109
setHttpsProtocollmpl 110
setKeyStore 110
setKeyStorePassword 111
setKeyStoreType 111
setTrustStore 112
setTrustStorePassword 112
setTrustStoreType 113
QueryPair Class 114
getName 114
getValue 114
setName 115
setValue 115
toString 116
QueryString Class 117
add(QueryPair queryPair) 117
add(java.lang.String name, java.lang.String value) 117

clone 118
getCount 118
getQueryPair() 119
getQueryPair(int index) 119
getQueryString 120
setQueryPair 120
toString 121

Appendix A

Appendix A 122
Openssl 122
Creating a Sample CA Certificate 122
Signing Certificates With Your Own CA 123

HTTPS e*Way Intelligent Adapter User’s Guide vii SeeBeyond Proprietary and Confidential

Contents

Appendix B
Appendix B 125
Openssl.cnf 125
Openssl.cnf for Windows 125
Index 127

HTTPS e*Way Intelligent Adapter User’s Guide viii SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This document describes how to install and configure the Java-enabled version of the
HTTPS e*Way.

11 Overview

The Java-enabled version of the HTTPS e*Way Intelligent Adapter (HTTPS e*Way)
allows integration with third party applications using HTTP protocol (Hyper-Text
Transfer Protocol) and HTTPS (HyperText Transfer Protocol over SSL). This e*Way
supports both the GET and POST methods. The GET method can be used to retrieve a
page specified by the URL or to retrieve information from a form-based web page by
submitting URL encoded key and name value pairs. In the latter case, the page must
support the GET method. The following is an example of a URL encoded query string:

htt p:// googl e. yahoo. cont bi n/ quer y?p=seebeyond+i nt egr at or

The URL specifies the search page and the name value pair for the search. The question
mark (?) indicates the beginning of the name value pair encoding. In the above sample,

the name portion of the query is “p”, and the value to search is “seebeyond integrator”.
A query may consist of one or more of these name-value pairs.

Note: See the HTTP specification for more details.

The POST method is more versatile, in that it supports form-based requests as well as
sending large amounts of data. The POST method does not have the size limitation of
255 or 1024 maximum number of characters (depending on the web server) that the
GET method has. As with GET, the web page must support the POST method in order
to use POST. Taking the above URL as an example, the user specifies
http://google.yahoo.com/bin/query as the URL, and then specifies the name value pair
separately. The HTTP Client allows for specification of the URL and n-number of value
pairs through its methods.

The HTTP/HTTPS Java-enabled e*Way also supports automatic URL redirection.
Automatic redirection occurs when the e*Way receives a 300 status code, specifically
301.

The HTTPS portion of the e*Way is currently handled through the use of Java Server
Socket Extension (JSSE) 1.0.2. The reference implementation of JSSE will be used and
described in this document.

HTTPS e*Way Intelligent Adapter User’s Guide 1 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.1
Introduction Overview

Cookies are also supported. Essentially a cookie is an HTTP header. An HTTP header is
a key-value pair that gets added to the header section of an HTTP message. The HTTP
message has basically two parts: the header and the body. A sample header appears
below:

HTTP 1.1 200 K

Date: Mon, 18 Oct 1999 20: 06: 48 GMVI

Server: Apache/1.3.4 (Unix) PHP/3.0.6 nod_perl/1.17

Last-Modified: Mn, 18 Cct 1999 12:58:21 GMI

ETag: “1e05f 2-89bb-380b196d”

Accept - Ranges: bytes

Content - Lengt h: 35259

Connection: cl ose

Content-Type: text/htm
The header consists of the HTTP version (HTTP 1.1) and the status code, along with the
status message (200 OK). Following the HTTP version and status are eight headers,
Date, Server, Last-Modified, ETag, Accept-Ranges, Content-Length, Connection, and
Content-Type. An application can supply any header to be sent along with the HTTP
message. The most common, known headers are Accept-type, Content-length, and

Content-type.

With regards to cookies, the headers used are Set-Cookie and Cookie. The Cookie-
request header is sent from the server in request for cookies on the client side. An
example of a Cookie-request header appears below:

Set - Cooki e: sessaut h=44c46a10; expires=Wednesday, 27-Sep-2000

03:59: 59 GVIr
The server requests for the client to store the cookie “sessauth=44c46a10”. Everything
after the first semi-colon contains additional information about the cookie, such as the
expiration date. When the e*Way sees this header, it will extract the cookie
“sessauth=44c46al0” and return it to the server on subsequent requests. The e*Way
prepends a Cookie header to the HTTP request. For example:

Cooki e: sessaut h=44c46al10

Each time the e*Way sends a request to the same server during a session, the cookie is
sent along with the request.

An HTTP message contains the body after the header. An example would be an HTML
document sent back if you specify the URL:

http://wwv i bi blio.org/javafaq/ books/jnp2e/ exanpl es/i ndex. ht n

<htm >

<head>

<title>

Exanpl es from Java Network Programm ng, 2nd Edition

</title>

<META name="description" content="This site contains the conplete
source code for all exanples fromJava Network Progranm ng by Elliotte
Rusty Harol d,

O Reilly and Associ ates, 2000">

<META nane="keywor ds" content="Java, source, code, network

pr ogr anmm ng,

Elliotte, Rusty, Harold, OReilly">

</ head>

<body bgcol or=#ffffff text=#000000>

<hl>Exanpl es from Java Network Programmi ng, 2nd Editi on</hl>

HTTPS e*Way Intelligent Adapter User’s Guide 2 SeeBeyond Proprietary and Confidential

Chapter 1
Introduction

Section 1.1
Overview

<p>
If you want any one particular programfromthe book
you should be able to find it here fairly easily.
The conpl ete set
of exanples is available for anonymous ftp
from
<a href="ftp://netal ab. unc. edu/ pub/ | anguages/j ava/j avaf aq/
j np2exanpl es. tar.gz">ftp://metal ab. unc. edu/ pub/ | anguages/j ava/
j avaf ag/ j np2exanpl es. tar. gz</ a>.
as well as for browsing here.
If you download this, please do ne a favor and do not put this
on any web site. Once mrror copies start proliferating it becones
i mpossi bl e
to correct any m stakes that are found.
The canonical site for these exmaples is
http://
i bi blio.org/javafaq/books/jnp2e/ exanpl es/ </ a>.
If you' re reading this at any other URL, you may not have the npbst up-
to-date copy.
</ p>

Chapter 1. Wy Networked Java?

<l i >Chapter 2. Basic Network Concepts

Chapter 3. Basic Wb Concepts
Chapter 4. Java |/0O </ a>

Chapter 5. Threads

Chapter 6. Looking Up Internet

Addr esses</ a>

Chapter 7. Retrieving Data with URLs
Chapter 8. HITM. in Swi ng

Chapter 9. The Network Methods of

j ava. appl et . Appl et </ a>

Chapter 10. Sockets for Cients
Chapter 11. Sockets for Servers
Chapter 12. Secure Sockets

<l i>Chapter 13. UDP Dat agrans and Socket s</ a>
<l i >Chapter 14. Milticast Sockets
Chapter 15. The URLConnecti on C ass
Chapter 16. Protocol Handl ers
Chapter 17. Content Handl ers

<l i>Chapter 18. Renpte Method | nvocati on</ a>
Chapter 19. The JavaMai |l API

<HR NOSHADE S| ZE="-1">

<pP>

Return to Java Network Progranmi ng, 2nd

Edi ti on</ a>

<pP>

<hr >

<di v align=center>

[Cafe au Lait

| Exanpl es

| <A HREF="http://ibiblio.org/javafaq/books/jnp2e/corrections/
i ndex. ht m ">Corrections

| <A HREF="http://ww. amazon. com exec/ obi dos/ | SBN¥8D1565928709/
caf eaul ai t A/ " >Or der </ A>

1</ div>

<hr >

Copyri ght 2000 Elliotte
Rusty Har ol d</ a>

HTTPS e*Way Intelligent Adapter User’s Guide 3 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.1
Introduction Overview

el har o@et al ab. unc. edu</
a>

Last Mbdified October 9, 2000

</ body>

</ htm >

111 The Java Classes that Make up the e*Way

JDK Classes

The SeeBeyond Java HTTP(S) e*Way primarily uses the JDK 1.3 URL, URLConnection,
and HttpURLConnection classes. These classes allow for URL specification, opening
and closing of connections, and reading and writing of data through the use of
abstracted streaming classes. The Authenticator class is sub-classed in order to provide
HTTP and Proxy authentication. The System and Security classes are also used to
support the setting of properties in order to use SSL.

SeeBeyondClasses

There are a total of ten classes that comprise the Java HTTP(S) e*Way. They are divided
into the following groups:

= Core Classes
+ HttpAuthenticator
+ HttpClient
+ HttpClientAPI
+ HttpClientConnector
+ HttpHeader
+ HttpResult
= SSL Related Classes
+ HttpsSecurityProperties
* HttpsSystemProperties
+ SSLTunnel SocketFactory
= Supporting Classes
* QueryPair
* QueryString
Core Classes

The core classes implement the functionality of the e*Way by exposing objects and
methods to the user. HttpClientAPI is the class that implements the HTTP functionality
while HttpClient wraps the HttpClientAPI to enable the SeeBeyond GUI to expose the
HttpClientAPIs via the .xsc description file. Http Authenticator implements username
and password authentication for both proxy authentication and/or HTTP web site
authentication. HttpClientConnector implements EbobConnector and is used to handle

HTTPS e*Way Intelligent Adapter User’s Guide 4 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.1
Introduction Overview

the e*Way’s configuration. HttpHeader is used to encapsulate the name and value pair
of an HTTP header (i.e., “Accept-type” is the name and “text/xml” is the value).
Header names are case sensitive.

The SSL related classes are used to set up the JSSE runtime environment properties.
HttpsSecurityProperties is used to set the Security properties such as setting the
Provider information. The HttpsSystemProperties sets the System properties relating to
security, such as the KeyStore file. The SSLTunnelSocketFactory is used to create a
tunnelled socket connection to the web server via a proxy.

The supporting classes are provided for convenience and further encapsulation.
QueryPair encapsulates the name and value pair for part of the query. Methods are
exposed for setting both the name and values without having the user to specify the
encoding. QueryPair handles the encoding for the user. QueryString represents the
form data used to submit form data in general, whether it is a query or filling out some
form data. QueryString uses QueryPair for the construction of the form data; essentially
it is a collection of QueryPair.

112 SSL Handshake

There are two options available for setting up SSL connectivity with a web server. The
first option is Server-side authentication and the second option is Dual authentication.

The majority of eCommerce web sites on the internet are configured for Server-side
authentication. With Server-side authentication, the HTTPS e*Way will request a
certificate from the web server and authenticate the web server by verifying that the
certificate can be trusted. Essentially, the e*Way does this by looking into its TrustStore
for a CA certificate with a public key that can validate the signature on the certificate
received from the web server.

The other option, Dual authentication, requires both the HTTPS e*Way authentication
and web server authentication. With this option, the Server-side part (web server) of
the authentication process is the same as described in the previous paragraph. In
addition, the web server will request a certificate from the e*Way. The e*Way will send
its certificate to the web server. The web server, in turn, will authenticate the e*Way by
looking into its “trust store” for a matching trusted CA certificate. So what we get is a
communication channel that is established by both parties requesting for certificate
information.

Figure 1 illustrates a dialog of an SSL handshake for Server-side authentication. Figure
2 illustrates an SSL handshake for Dual authentication. Figure 3 is a diagram on an
HTTPS e*Way.

HTTPS e*Way Intelligent Adapter User’s Guide 5 SeeBeyond Proprietary and Confidential

Chapter 1
Introduction

Section 1.1
Overview

Figure 1 SSL Handshake for Server-Side Authentication

Client SErVEr
Handshake:ClientHello
—
Handshake:ServerHello
44—
Handshake Certificate
-~
Handshake:ServerHelloDone
44—
Handshake ClhientF eyExchange
—
ChangeCiphetSpec
—
Handshake Finished
—
ChangeCipherspec
44—
Handshake Finished
44—
HTTPS e*Way Intelligent Adapter User’s Guide 6 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.1
Introduction Overview

Figure 2 SSL Handshake for Dual Authentication

Client Server
Handshake :ClientHello

—»
Handshake :ServerHello

Handshake Certificate

Handshake :Certificate Fecuest

Handshake :ServerHelloDone

£o44 s

Handshake Certificate

Handshake ClientEeyExchange

Handshake Certificate Verifsy

ChangeCipherSpec

Hardshake Firashed

Y YV Y YN

ChangeCipherSpec

*

Handshake Finished

*

HTTPS e*Way Intelligent Adapter User’s Guide 7 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.1
Introduction Overview

Figure 3 HTTPS e*Way

251 Conmroancation Chamel

/ POSTIGET /O,

L Tie l\ /| > Web Zerver

Sponse
e
"
Y
kS
.
S
,
"
"
Y
\\\ Manmmuddle atack,
i cannot break semued
\K charmel
A
.
",
A
™.

Trusted Ok
Certificates

Certificate

113 SSL Support

SSL is supported through the use of JSSE 1.0.2. Currently, the JSSE reference
implementation is used. JSSE is a provider-based architecture. Essentially, this means
that there is a set of standard interfaces for cryptographic algorithms, hashing
algorithms, secured socket layered (SSL) URL stream handlers, etc. Because the user is
interfacing with JSSE through these interfaces, the different components can be mixed
and matched as long as the implementation is programmed under the published
interfaces. However, some implementations may not support a particular algorithm.
For further details, please refer to the JSSE documentation provided by Sun
Microsystems at http://java.sun.com.

KeyStores and TrustStores

JSSE makes use of files called KeyStores and TrustStores. A KeyStore is a database
consisting of a private key and an associated certificate, or an associated certificate
chain. The certificate chain consists of the client certificate and one or more CA
certificates. A KeyStore contains a private key, in addition to the certificate, while
TrustStore only contains the certificates trusted by the client (ergo, “trust” store). The
installation of the Java HTTP(S) e*Way installs a TrustStore file named
trustedcacertsjks. This file can be used as the TrustStore for the e*Way.

HTTPS e*Way Intelligent Adapter User’s Guide 8 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.1
Introduction Overview

A KeyStore is used by the e*Way for client authentication, while a TrustStore is used to
authenticate a server in SSL authentication. Both KeyStore and TrustStores are managed
via a utility called keytool, which is a part of the JDK 1.3 installation.

Note: To use keytool, you must set your CLASSPATH to jcert.jar, jnet.jar, and jsse.jar.

The following line must also be added to the jre\lib\security \java.security:

security. provider.3=com sun.net.ssl.internal.ssl.Provider

See the Installation manual for the JSSE 1.0.2 for more information.

Methods for generating a KeyStore and a TrustStore

In this section, detailed steps on how to create a KeyStore and a TrustStore (or import a
certificate into an existing TrustStore such as trustedcacertsjks) will be described. The
primary tool used is keytool, but openssl will be used as a reference for generating
pkcs12 KeyStores. For more information on Openssl, and available downloads, see
http://www.openssl.org.

Creating a TrustStore

For demonstration purposes, suppose we have the following CA certificates that we
trust: firstCA.cert, secondCA.cert, thirdCA.cert, located in the directory C:\cascerts. We
can create a TrustStore consisting of these three trusted certificates by performing three
simple steps.

If you are creating a TrustStore from scratch, perform the following commands:
1 keytool -import -file C:\cascerts\firstCA.cert -alias firstCA -keystore myTrustStore

This command creates a KeyStore file name myTrustStore in the current working
directory and imports the firstCA certificate into the TrustStore with an alias of
“tirstCA”. The format of myTrustStore is JKS.

2 keytool -import -file C:\cacerts\secondCA.cert -alias secondCA -keystore
myTrustStore

This command imports the secondCA certificate into the TrustStore, myTrustStore,
which was created in step 1.

Note: This is the same command as in step 1.

3 keytool -import -file C:\cacerts\thirdCA.cert -alias thirdCA -keystore myTrustStore

Again, this is the same command, issued to import the thirdCA certificate into the
TrustStore.

Once completed, myTrustStore is available to be used as the TrustStore for the e*Way:.
See “TrustStore” on page 29 for more information.

Using an Existing TrustStore

This section describes how to use an existing TrustStore such as trustedcacertsjks.
Notice that in the previous section, “Creating a TrustStore”, steps 2 and 3 were used to
import two CA certificates into a TrustStore created in step 1.

HTTPS e*Way Intelligent Adapter User’s Guide 9 SeeBeyond Proprietary and Confidential

http://www.openssl.org

Chapter 1 Section 1.1
Introduction Overview

For demonstration purposes, suppose we have a trusted certificate file named:
C:\trustedcerts\foo.cert and want to import it to the trustedcacertsjks TrustStore.

If you are importing certificates into an existing TrustStore.

1 keytool -import -file C:\cacerts\secondCA.cert -alias secondCA -keystore
trustedcacertsjks

Once completed, trustedcacertsjks can be used as the TrustStore for the e*Way. See
“TrustStore” on page 29 for more information.

Creating a KeyStore in JKS Format

This section describes how to create a KeyStore using the JKS format as the database
format for both the private key, and the associated certificate or certificate chain. By
default, as specified in the java.security file, keytool uses JKS as the format of the key
and certificate databases (KeyStore and TrustStores). A CA must sign the certificate
request (CSR). The CA should be trusted by the server side application to which the
e*Way will be connected.

Generating a KeyStore
1 keytool -keystore clientkeystore -genkey -alias client

The user is prompted for several pieces of information required to generate a
Certificate signing Request (CSR). Below is a sample key generation section:

Enter keystore password: seebyond

VWhat is your first and | ast name?

[Unknown] : devel opnent. seebeyond. com

What is the name of your organi zational unit?

[Unknown] : Devel opnent

what is the name of your organi zation?

[Unknown] : SeeBeyond

VWat is the nanme of your City of Locality?

[Unknown]: Monrovi a

VWhat is the nane of your State or Province?

[Unknown]: California

What is the two-letter country code for this unit?
[Unknown] : US

| s<CN=devel opnent . seebeyond. com Bar, OU=Devel oprment, O=SeeBeyond,
L=Monrovi a, ST=California, C=US> correct?

[no]: vyes

Enter key password for <client>
(RETURN i f sane as keystore password):
If the KeyStore password is specified, then the password must be provided for the
e*Way. Press <RETURN> when prompted for the key password (this makes the key
password the same as the KeyStore password).

This creates a KeyStore file clientkeystore in the current working directory. You MUST
specify a fully-qualified domain for the “ first and last name” question. The sample
uses “development.seebeyond.com”. The reason for this is that some CAs such as
Verisign expect this parameter to be a fully qualified domain name. There are CAs that
do not require the fully qualified domain, but it is recommended to use the fully
qualified domain name for the sake of portability. All the other information given must
be valid. If the information can not be validated, a Certificate Authority such as
Verisign will not sign a generated CSR for this entry.

HTTPS e*Way Intelligent Adapter User’s Guide 10 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.1
Introduction Overview

This KeyStore contains an entry with an alias of “client”. This entry consists of the
Generated private key and information needed for generating a CSR.

2 keytool -keystore clientkeystore -certreq alias client -keyalg rsa -file client.csr

This will generate a Certificate Signing Request which can be provided to a CA for a
certificate request. The file client.csr contains the CSR in PEM format.

3 Some Certificate Authority (one trusted by the web server to which the e*Way is
connecting) must sign the CSR. The CA generates a certificate for the corresponding
CSR and signs the certificate with its private key. For more information, visit:

http://www.thawte.com
or
http://www.verisign.com

See Appendix A for directions on creating your own CA with Openssl that can be
used for signing certificates for development purposes.

4 If the certificate is chained with the CA’s certificate, follow step A below. Otherwise,
follow B. The following assumes the client certificate is in the file client.cer and the
CA's certificate is in the file CARoot.cer.

A keytool -import -keystore clientstore -file client.cer -alias client

Imports the Certificate (which may include more than one CA in addition to the
Client’s certificate.

B keytool -import -keystore clientkeystore -file CARootcer -alias theCARoot

Imports the CA’s certificate into the KeyStore for chaining with the client’s
certificate.

keytool -import -keystore clientkeystore -file client.cer -alias client

Imports the client’s certificate signed by the CA whose certificate was imported in
the preceding step.

The generated file clientkeystore contains the client’s private key and the associated
certificate chain which is used for client authentication and signing. The KeyStore and /
or clientkeystore, can then be used as the e*Way’s KeyStore. See the “KeyStore” on
page 29 for more information.

Creating a KeyStore in PKCS12 Format

This section describes how to create a PKCS12 KeyStore to work with JSSE. In a real
working environment, a customer may already have an existing private key and
certificate (signed by a known CA). In this case, JKS format can not be used, because it
does not allow the user to import/export the private key through keytool. It is
necessary to generate a PKCS12 database consisting of the private key and its
certificate. The generated PKCS12 database can then be used as the e*Way’s KeyStore.
The keytool utility is currently lacking the ability to write to a PKCS12 database.
However, it can read from a PKCS12 database. There are other third party tools

HTTPS e*Way Intelligent Adapter User’s Guide 11 SeeBeyond Proprietary and Confidential

http://www.thawte.com
http://www.verisign.com

Chapter 1 Section 1.1
Introduction Overview

available for generating PKCS12 certificates. For the example below, Openssl is used to
generate the PKCS12 KeyStore.

1 cat mykey.pem.txt mycertificate.pem.txt>mykeycertificate.pem.txt

The existing key is in the file mykey.pem.txt in PEM format. The certificate is in
myecertificate.pem.txt, which is also in PEM format. A text file must be created
which contains the key followed by the certificate.

2 openssl pkcs12 -export -in mykeycertificate.pem.txt -out mykeystore.pkcs12 -name
myAlias -noiter -nomaciter

This command prompts the user for a password. The password is REQUIRED. The
KeyStore fails to work with JSSE without a password. This password must also be
supplied as the password for the e*Way’s KeyStore password. (See
“KeyStorePassword” on page 29)

The command above uses the openssl pkcs12 command to generate a PKCS12
KeyStore with the private key and certificate. The generated KeyStore is
mykeystore.pkcs12 with an entry specified by the “myAlias” alias. This entry
contains the private key and the certificate provided by the “-in” argument. The
“noiter” and “nomaciter” options must be specified, to allow the generated
KeyStore to be recognized properly by JSSE.

114 Intended Reader

The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the e*Gate system; to have expert-level knowledge of the
Java Programming Language; to have expert-level knowledge of Windows and UNIX
operations and administration; to be thoroughly familiar with HTTP and HTTPS
protocol and to be thoroughly familiar with Windows-style GUI operations.

115 Components

The following components comprise the Java-enabled HTTP(S) e*Way:
= stchttp.jar: Contains the logic required by the e*Way to gain access to the HTTP etc.

= httpclient.xsc: Allows the user to create hierarchical Event Type Definitions
manually to be used in conjunction with the parsing engine contained within the
extended Java Collaboration Service.

= e*Way Connection: The HTTP e*Way Connections provide the access to the
information necessary for connection to a specified external connection.

= Multi-mode e*Way: Amulti-threaded host for java Collaborations.
A complete list of installed files appears in Table 1 on page 16.

HTTPS e*Way Intelligent Adapter User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction System Requirements

12 System Requirements

The HTTPS e*Way is available on the following operating systems:
= Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

= Windows 2000 (Japanese), Windows 2000 SP1 (Japanese), and
Windows 2000 SP2 (Japanese)

= Windows NT 4.0 SP6a

= Windows NT 4.0 SP6a (Japanese)
= Solaris 2.6, 7, and 8

= Solaris 2.6, 7, and 8 (Japanese)

= Solaris 8 (Korean)

= AIX 4.3.3

= HP-UX 11.0 and HP-UX 11i

= HP-UX 11.0 (Japanese)

= Compaq Tru64 5.0A

To use the HTTPS e*Way, you need an e*Gate Participating Host, version 4.5 or later.
For AIX operating systems, you need an e*Gate Participating Host version 4.5.1.

HTTPS e*Way Intelligent Adapter User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 2

Installation

This chapter describes how to install the HTTP e*Way. Although both the Monk and
Java-enabled versions are installed, this document only addresses the Java-enabled
version.

21 Windows NT or Windows 2000

211 Pre-installation

1 Exit all Windows programs before running the setup program, including any anti-
virus applications.

2 You must have Administrator privileges to install this e*Way.

212 Installation Procedure
To install the HTTPS e*Way on a Windows NT/ Windows 2000 system:

1 Log in as an Administrator on the workstation on which you want to install the
e*Way.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s “Autorun” feature is enabled, the setup application should
launch automatically; skip ahead to step 4. Otherwise, use Windows Explorer to
launch the file setup.exe on the CD-ROM drive.

4 The InstallShield setup application will launch. Follow the on-screen instructions to
install the e*Way.

Note: Be sure to install the e*Way files in the suggested “client” installation directory. The
installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not
change the suggested “installation directory” setting.

HTTPS e*Way Intelligent Adapter User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Installation UNIX

22 UNIX

221 Pre-installation

You do not require root privileges to install this e*Way. Log in under the user name that
you wish to own the e*Way files. Be sure that this user has sufficient privileges to create
files in the e*Gate directory tree.

222 Installation Procedure
To install the HTTPS e*Way on a UNIX system:

1 Log in on the workstation containing the CD-ROM drive. If necessary, mount the
CD-ROM drive.

2 Insert the CD-ROM into the drive.

3 At the shell prompt, type
cd /cdrom

4 Start the installation script by typing
setup.sh

5 A menu of options will appear. Select the “install e*Way” option. Then follow any
additional on-screen directions.

Be sure to install the e*Way files in the suggested “client” installation directory. The
installation utility detects and suggests the appropriate installation directory. Unless
you are directed to do so by SeeBeyond support personnel, do not change the
suggested “installation directory” setting.

HTTPS e*Way Intelligent Adapter User’s Guide 15 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation

23 Files/Directories Created by the Installation

The HTTP e*Way installation process will install the following files within the e*Gate
directory tree. Files will be installed within the “egate\client” tree on the Participating
Host and committed to the “default” schema on the Registry Host.

Table 1 Files created by the installation of the Java-enabled HTTPS e*Way

e*Gate Directory File(s)
client\classes\ stchttp.jar
stcutil.jar
etd\httpclient\ httpclient.xsc
configs\httpclient\ httpclient.def
client\pkicerts\client certmap.txt
client\pkicerts\trustedcas GTECyberTrustGlobalRoot.cer

MircrosoftRootAuthority.cer
SecureServerCertificationAuthority.cer
ThawtePremiumServerCA.cer
ThawteServerCA.cer
versisign_class3.cer

client\pkicerts\trustedstore trustcacertsjks

Note: Please see the HTTP e*Way Intelligent Adapter User’s Guide (Monk-enabled) for
information regarding the files installed by the Monk-enabled version of the e*Way).

HTTPS e*Way Intelligent Adapter User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 3

Multi-Mode e*Way Configuration

This chapter describes how to configure the Multi-Mode e*Way.

31 Multi-Mode e*Way

Multi-Mode e*Way properties are set using the Enterprise Manager.
To create and configure a New Multi-Mode e*Way:
1 Select the Navigator’s Components tab.
Open the host on which you want to create the e*Way.
On the Palette, click on the icon to create a new e*Way.

2

3

4 Enter the name of the new e*Way, then click OK.

5 Select the new component, then click to edit its properties.
6

When the e*Way Properties window opens, click on the Find button beneath the
Executable File tield, and select an executable file. (stceway.exe is located in the
“bin\"” directory.)

7 Under the Configuration File field, click on the New button. When the Settings page
opens, set the configuration parameters for this configuration file.

8 After selecting the desired parameters, save the configuration file. Close the .cfg file
and select OK to close the e*Way Properties Window.

The Multi-Mode e*Way configuration parameters are organized into the following
section:

= JVM Settings

311 JVM Settings

The JVM Settings control basic Java Virtual Machine settings.

JNI DLL Absolute Pathname

Description

Specifies the absolute pathname to where the JNI DLL installed by the Java 2 SDK 1.2.2
is located on the Participating Host. This parameter is mandatory.

HTTPS e*Way Intelligent Adapter User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way
Required Values
A valid pathname.
Additional Information

The JNI dll name varies on different O/S platforms:

0OS Java 2 JNI DLL Name
NT 4.0/ Windows 2000 jvm.dll
Solaris 2.6,2.7,2.8 libjvm.so
HP-UX libjvm.sl
AlX 4.3 libjvm.a

The value assigned can contain a reference to an environment variable, by enclosing the
variable name within a pair of % symbols. For example:

%MY_JINIDLL%

Such variables can be used when multiple Participating Hosts are used on different
platforms.

To ensure that the INI DLL loads successfully, the Dynamic Load Library search path
environment variable must be set appropriately to include all the directories under the Java 2
SDK (or JDK) installation directory that contain shared libraries (UNIX) or DLLs (NT).

CLASSPATH Prepend

Description

Specifies the paths to be prepended to the CLASSPATH environment variable for the
Java VM.

Required Values

An absolute path or an environmental variable. This parameter is optional.
Additional Information

If left unset, no paths will be prepended to the CLASSPATH environment variable.

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_PRECLASSPATH%

CLASSPATH Override

Description

Specifies the complete CLASSPATH variable to be used by the Java VM. This parameter
is optional. If left unset, an appropriate CLASSPATH environment variable (consisting
of required e*Gate components concatenated with the system version of CLASSPATH)
will be set.

HTTPS e*Way Intelligent Adapter User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way

Note: All necessary JAR and ZIP files needed by both e*Gate and the Java VM must be
included. It is advised that the CLASSPATH Prepend parameter should be used.
Required Values
An absolute path or an environmental variable. This parameter is optional.
Additional Information

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_CLASSPATH%

Initial Heap Size

Description

Specifies the value for the initial heap size in bytes. If set to 0 (zero), the preferred value
for the initial heap size of the Java VM will be used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Heap Size

Description

Specifies the value of the maximum heap size in bytes. If set to 0 (zero), the preferred
value for the maximum heap size of the Java VM will be used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Stack Size for Native Threads

Description

Specifies the value of the maximum stack size in bytes for native threads. If set to 0
(zero), the default value will be used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Stack Size for JVM Threads

Description

Specifies the value of the maximum stack size in bytes for JVM threads. If set to 0 (zero),
the preferred value for the maximum heap size of the Java VM will be used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

HTTPS e*Way Intelligent Adapter User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way

Class Garbage Collection

Description

Specifies whether the Class Garbage Collection will be done automatically by the Java
VM. The selection affects performance issues.

Required Values
YES or NO.

Garbage Collection Activity Reporting

Description

Specifies whether garbage collection activity will be reported for debugging purposes.
Required Values

YES or NO.

Asynchronous Garbage Collection

Description

Specifies whether asynchronous garbage collection activity will be reported for
debugging purposes.

Required Values
YES or NO.

Report JVM Info and all Class Loads

Description

Specifies whether the JVM information and all class loads will be reported for
debugging purposes.

Required Values
YES or NO.

Disable JIT

Description

Specifies whether the Just-In-Time (JIT) compiler will be disabled.
Required Values

YES or NO.

Note: This parameter is not supported for Java Release 1.

HTTPS e*Way Intelligent Adapter User’s Guide 20 SeeBeyond Proprietary and Confidential

M Mode e*Way Configuration Multi-MgceiSieo*r\l/\?z;:/
Allow Remote Debugging of JVM
Description
Specifies whether to allow remote debugging of the JVM.
Required Values
YES or NO.

HTTPS e*Way Intelligent Adapter User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 4

e*Way Connection Configuration

This chapter describes how to configure the HTTPS e*Way Connection Configuration.

21 Configuring e*Way Connections

e*Way Connections are set using the Enterprise Manager.
To create and configure e*Way Connections:

1 In the Enterprise Manager’s Component editor, select the e*Way Connections
folder.

2 On the palette, click on the icon to create a new e*Way Connection.

3 The New e*Way Connection Component dialog box opens, enter a name for the
e*Way Connection. Click OK.

4 Double-click on the new e*Way Connection. For this example, the connection has
been defined as SimpleHttpCP.

The e*Way Connection Properties dialog box opens.
From the e*Way Connection Type drop-down box, select HTTP(S).
Enter the Event Type “get” interval in the dialog box provided.

O N O G

From the e*Way Connection Configuration File, click New to create a new
Configuration File for this e*Way Connection. (To use an existing file, click Find.)

The HTTPS e*Way Connection configuration parameters are organized into the
following sections:

= connector

= HTTP

= Proxies

= HttpAuthentication
= SSL

411 Connector

This section contains a set of top level parameters:

HTTPS e*Way Intelligent Adapter User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections

= type
= class

= Property.Tag

Type
Description

Specifies the type of connection.
Required Values

Http. The value defaults to HTTP.

Class

Description
Specifies the class name of the HTTP Client connector object.
Required Values

A valid package name. The default is com.stc.eways.http.HttpClientConnector.

Property.Tag

Description

Specifies the data source identity. This parameter is required by the current
EBobConnectorFactory.

Required Values

A valid data source package name.

412 HTTP

This section contains a set of top level parameters used by HTTP:
= DefaultUrl
= AllowCookies
= ContentType
= AcceptType

DefaultUrl

Description

Specifies the default URL to be used. If “https” protocol is specified, SSL must be
configured. See the “SSL” section.

Required Values
A valid URL.

HTTPS e*Way Intelligent Adapter User’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections

Additional Information
You must include the full URL. For example,
http:/ /www.seebeyond.com
or
http:/ /google.yahoo.com/bin/query

If using GET functionality, you can provide the parameters, using encoded query string
notation. For example,

http:/ /www.ee.cornell.edu/cgi-bin/cgiwrap/~wes/pq?FirstName=John&LastName=Doe

AllowCookies
Description

Specifies whether cookies sent from servers will be stored and sent on subsequent
requests. If cookies are not allowed, sessions will not be supported.

Required Values

Yes or No.

ContentType
Description

Specifies the request content-type.
Required Values

A string. The default is set to “application/x-www-form-urlencoded”. If sending other
forms of data, set to the appropriate content-type. For example, “text/html”.

Accept-type
Description
Specifies the parameters for the “Accept-type” request header.

Required Values

i

A string. For example “text/html”, “text/plain”, “text/xml” etc.

413 Proxies
The parameters in this section specify the information required for the connection point

to access the external systems through a proxy server.

UseProxy
Description

Specifies whether an HTTP or HTTPS proxy will be used. If set to HTTP, then an HTTP
Proxy for non-secured connection will be used. If HTTPS is selected, then an HTTPS

HTTPS e*Way Intelligent Adapter User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections

Proxy for secured connection will be used. Select NO if a Proxy is not used. Select
AUTO to allow the e*Way to automatically switch between HTTPS proxy when using a
proxy for HTTPS connections or HTTP proxy when using a proxy for HTTP
connections. When AUTO is selected, both HTTPS and HTTP proxy hosts and ports
must be specified. AUTO allows the e*Way to switch from an HTTPS url to an HTTP url
and vice versa via the proxy server. See the configuration parameters HttpProxyHost,
HttpProxyPort, HttpsProxyHost, HttpsProxyPort, UserName, and Password in this
section for Proxy usage.

Required Values
HTTP HTTPS, or NO.

HttpProxyHost

Description

Specifies the HTTP proxy host name to which to delegate requests to an HTTP server or
reception of data from an HTTP server may be delegated to a proxy. This sets the proxy
host for non-secured HTTP connections. To turn on proxy use, see the UseProxy
configuration parameter.

Required Values

A HTTP proxy host name.

HttpProxyPort

Description

Specifies the HTTP proxy port to which requests to an HTTP server or reception of data
from an HTTP server may be delegated to a proxy. This sets the proxy port for non-
secured HTTP connections. To turn on proxy use, see the UseProxy configuration
parameter.

Required Values

A valid HTTP proxy port number.

HttpsProxyHost

Description

Specifies the HTTPS proxy host to which requests to an HTTP server or reception of
data from an HTTP server may be delegated to a proxy. This sets the proxy port for
secured HTTP connections. To turn on proxy use, see the UseProxy configuration
parameter.

Required Values
A valid HTTPS proxy host number.

HTTPS e*Way Intelligent Adapter User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections

HttpsProxyPort

Description

Specifies the HTTPS proxy port to which requests to an HTTP server or reception of
data from an HTTP server may be delegated to a proxy. This sets the proxy port for
secured HTTP connections. To turn on proxy use, see the UseProxy configuration
parameter.

Required Values

A valid HTTPS proxy port name.

User Name

Description

Specifies the user name necessary for authentication to access the proxy server. To turn
on proxy use, see the UseProxy configuration parameter.

Required Values
A valid user name.
Additional Information
The username is required by URLs that require “HTTP Basic Authentication” to access

the site.

Important: Enter a value for this parameter before you enter a value for the Password
parameter.

PassWord

Description
Specifies the password corresponding to the username specified previously.
Required Values

The appropriate password.

Important: Be sure to enter a value for the User Name parameter before entering the
Password.

414 HttpAuthentication

The parameters in this section are used to perform HTTP authentication.

UseHttpAuthentication

Description

Specifies whether standard HTTP Authentication will be used. This is used when the
web site requires username and password authentication. If this is selected, the

HTTPS e*Way Intelligent Adapter User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections

UserName and Password configuration parameters must be set. See UserName and
PassWord configuration parameters in this section.

Required Values

Yes or No.

UserName

Description

Specifies the user name for standard HTTP Authentication. See UseHttp Authentication
configuration parameter.

Required Values
A valid user name.

Important: Enter a value for this parameter before you enter a value for the Password
parameter.

PassWord

Description

Specifies the password associated with the specified user name for standard HTTP
Authentication. See UseHttp Authentication configuration parameter.

Required Values
A valid password.

Important: Be sure to enter a value for the User Name parameter before entering the
Password.

415 SSL

The parameters in this section control the information required to set up an SSL
connection via HTTP.

UseSSL

Description

Specifies whether SSL needs to be configured in order to use the “https” protocol. If set
to YES, then at least HttpsProtocollmpl and Provider must be given as well as a valid
TrustStore setting.

Required Values

Yes or No.

HTTPS e*Way Intelligent Adapter User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections

HttpsProtocollmpl

Description

Specifies the package that contains the HTTPS protocol implementation. This will add
the “https” URLStreamHandler implementation by including the handler’s
implementation package name to the list of packages which are searched by the Java
URL class. The default value specified is the package which contains the SUN reference
implementation of the “https” URLStreamHandler.

Required Values

A valid package name. The default is com.sun.net.ssl.internal. www.protocol. This
parameter is mandatory if using HTTPS.

Provider

Description

Specifies the Cryptographic Service Provider. This will add a JSSE provider
implementation to the list of provider implementations. The default value specified is
the SUN reference implementation of the Cryptographic Service Provider, “SunJSSE”.

Required Values

A valid provider name. The default is com.sun.net.ssl.internal.ssl.Provider. This
parameter is mandatory if using HTTPS.

X509Certificatelmpl

Description
Specifies the implementation class of the X509Certificate.
Required Values

A valid package location. For example, if the implementation class is called,
“MyX509Certificatelmpl”, and it resides in the com.radcrypto package, you would
specify com.radcrypto.MyX509CertificateImpl.

SSLSocketFactorylmpl

Description
Specifies the implementation class of the SSL Socket Factory.
Required Values

A valid package location. For example, if the implementation class is called
MySSLSocketFactoryImpl and it resides in the com.radcrypto package, you would
specify com.radcrypto.MySSLSocketFactoryImpl.

HTTPS e*Way Intelligent Adapter User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections

SSLServerSocketFactorylmpl

Description
Specifies the implementation class of the SSL Server Socket Factory.
Required Values

A valid package location. For example, if the implementation class is called
MySSLServerSocketFactorylmpl and it resides in com.radcrypto package, you would
specify com.radcrypto.MySSLServerSocketFactorylmpl.

KeyStore

Description

Specifies the default KeyStore file for use by the KeyManager. If the default KeyStore is
not specified with this method, the KeyStore managed by KeyManager is empty.

Required Values

A valid package location.

KeyStoreType

Description

Specifies the default KeyStore type. If the default KeyStore type is not set by this
method, the default KeyStore type, “jks” is used.

KeyStorePassword

Description

Specifies the default KeyStore password. If the default KeyStore password is not set by

" oa

this method, the default KeyStore password is assumed to be “ “.

TrustStore

Description

Specifies the default TrustStore. If the default TrustStore is not set here, then a default
TrustStore search is performed. If a TrustStore named

<java-home>/lib/security /jssecacerts is found, it is used. If not, a search for a
TrustStore name <java-home>/lib/security/cacerts is made, and used if located. If a
TrustStore is not found, the TrustStore managed by the TrustManager will be a new
empty TrustStore.

Required Values

A valid TrustStore name.

HTTPS e*Way Intelligent Adapter User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections

TrustStore Password

Description

Specifies the default TrustStore password. If the default TrustStore password is not set

" 4

by this method, the default TrustStore password is “ .

KeyManager Algorithm

Description

Specifies the default key manager algorithm name to use. For example, the default key
manager algorithm used in the SUN reference implementation of JSSE is “SunX509”.

Required Values

A valid key manager algorithm name.

TrustManagerAlgorithm

Description

Specifies the default trust manager algorithm name to use. For example, the default
trust manager algorithm used in the SUN reference implementation of JSSE is
“SunX509”.

Required Values

A valid trust manager algorithm name.

HTTPS e*Way Intelligent Adapter User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 5

Implementation

This chapter includes information pertinent to implementing the Java-enabled HTTPS
e*Way in a production environment. Also included is a sample schema.

The following assumptions are applicable to this implementation: 1) The HTTP e*Way
has been successfully installed. 2) The executable and the configuration files have been
appropriately assigned. 3) All necessary .jar files are accessible.

51 Simple HTTP Implementation

During installation, the host and Control Broker are automatically created and
configured. The default name of each is the name of the host on which you are
installing the e*Gate Enterprise Manager GUI To complete the implementation of the
Java-enabled HTTPS e*Way, do the following:

= Make sure that the Control Broker is activated.

= In the e*Gate Enterprise Manager, define and configure the following as necessary:
+ Inbound e*Way using stcewfile.exe
+ Outbound e*Way using stcewfile.exe
* The Multi-Mode e*Way component.

+ Event Type Definitions used to package the data to be exchanged with the
external system.

+ Collaboration Rules to process Events.
+ The e*Way Connection to be created as described in Chapter 4.

+ Collaborations, to be associated with each e*Way component, to apply the
required Collaboration Rules.

+ The destination to which data will be published prior to being sent to the
external system.

The following sections describe how to define and associate each of the above
components. However, the section “Sample Schema” on page 54 provides the details
necessary to create the components of a specific schema consisting of two e*Ways, three
Event Types, one Collaboration Rule, two Intelligent Queues and three Collaborations.

HTTPS e*Way Intelligent Adapter User’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 5

Implementation

Section 5.1
Simple HTTP Implementation

511 Creating the New Schema

The first task in deploying the sample implementation is to create a new schema name.
While it is possible to use the default schema for the sample implementation, it is
recommended that you create a separate schema for testing purposes. After you install
the HTTP e*Way Intelligent Adapter, do the following:

1
2

Start the e*Gate Enterprise Manager GUL

When the Enterprise Manager prompts you to log in, select the host that you
specified during installation, and enter your password.

You will then be prompted to select a schema. Click on New.

Enter a name for the new Schema; In this case, enter HTTP_Test_New, or any name
as desired.

The e*Gate Enterprise Manager opens under your new schema. You are now ready to
begin creating the necessary components for this sample schema.

512 Event Types

The HTTPS e*Way installation includes the file “httpclient.xsc” which represents a
standard HTTP Event Type template.

Creating an Event Type from an Existing DTD

For the purpose of this example, the following procedure shows how to create an Event
Type Definition (ETD) from an existing Document Type Definition (DTD) using
(Httpevent2dtd) as the input file.

1
2
3

Highlight the Event Types folder on the Components tab of the e*Gate Navigator.
On the palette, click the icon to create a new Event Type.

Enter the name of the Event, then click OK. (For the purpose of this sample, the first
Event Type is defined as “HttpEvent”.)

Select the new Event Type, then right-click to edit its properties.
When the Properties window opens, click the New button. The ETD Editor opens.

Select New from the File menu on Task Manager.

HTTPS e*Way Intelligent Adapter User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Simple HTTP Implementation

7 The Event Type Definition Wizard opens.

Figure 4 Event Type Definition Wizard

*E2 New Event Type Definition ' x|
Hew I
X =%
\
BAPM zard IDOCWizard DBWizard
r‘ & E J—'Fi -:.'.-'.E
Standard ETD SEPWizard S50Cwizard #50Wizard
kK | Cancel | Help |

8 Select the desired wizard. (For this Event Type, select DTDWizard.)

9 Enter a package name where the DTD builder can place all the generated Java
classes associated with the created ETD. (For this sample use SimpleHTTP.)

10 Select a DTD file to be used by the DTD builder to generate an ETD file. (Using the
browse button, navigate to an existing DTD. For this sample, the file
HttpEvent2.dtd was used.)

11 Click Next. and review the summary information.
12 Click Back to edit.; otherwise, click Finish.
13 The ETD Editor opens displaying the newly converted .xsc file.
An ETD is a graphical representation of the layout of data in an Event.
14 Save the file as HttpEvent, and Promote the file to Run Time.

Note: For more information on the creation and modification of Java-enabled ETDs, please
see the “Java-based ETD Editor” guide.

Creating an Event Type Without an Existing DTD

For the purpose of this example, the following procedure shows how to create an ETD
without using an existing DTD file as the input file.

1 Highlight the Event Types folder on the Components tab of the e*Gate Navigator.
2 On the palette, click the icon to create a new Event Type.

3 Enter the name of the Event, then click OK. (For the purpose of this sample, the first
Event Type is defined as “Outgoing_Event”.)

4 Select the new Event Type, then right-click to edit its properties.
5 When the Properties window opens, click the New button. The ETD Editor opens.

HTTPS e*Way Intelligent Adapter User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 5
Implementation

6 Select New from the File menu on Task Manager.

7 The Event Type Definition Wizard opens.

Figure 5 Event Type Definition Wizard

“E2 New Event Type Definition x|
Mew |
a4 o = N
BaPIWwizard DTDWizard |DOCWizard DBwizard
N R OF
SEPwizard S50wfizard x5Dwizard
ok | Cancel | Help |

Section 5.1
Simple HTTP Implementation

8 Select the desired wizard. (For this Event Type, select StandardETD.)

9 Enter a package name where the DTD builder can place all the generated Java
classes associated with the created ETD. (For this sample, use SimpleHTTP as the

package name.)
10 The ETD Editor opens, select New from the File menu.
11 Select EventTypeDefintion1.
12 Right click, select Add Field, as Child Node.
13 Change the structure type to fixed.

Figure 6

ETD Editor: EventTypeDefinition1.xsc {Sandbox - Modified)

File Edit Help

O

)
"

7

=101 x]

Event Type _Event Type Definition Properties - EventTypeDefinition

I EventTupeDefinition] =-"18 EventTypeDefiition]
e Field1 (Mame)
bvpe
comment
minoecurs

—Intemal Templates

maxCCours

skruckure
order
optional
defaultalue
inputMatch
length

14 Right click on the EventTypeDefinition1, rename OutEvent.
15 Right click on the Field1, rename OutgoingData.

EventTypeDefinition]
CLASS

fized -

HTTPS e*Way Intelligent Adapter User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 5

Implementation

Section 5.1
Simple HTTP Implementation

Figure 7
“E£ ETD Editor: EventTypeDefinitionl.xsc (Sandbox - Modified) -0 x|
Fil= Edit Help
Ned|:]? |
—Ewent Type———————— ~ Event Type Definition
IB OutE went =" OutEvent :
i OutgoingData (Mame) QutgmngDat?

Eype jarva.lang. String
i~ Internal Templates —"—

minQccurs 1

maxCIceurs 1

arder senUEnCE

skructure fixed

apkianal False

defaultvalue

inpukiatch

length undefined

offset undefined

beginbelim

endDelim

endOfRec
— Enternal Templates required

array

anchored

beginAnchored

endanchored

sepatatar

16

Save the file as OutgoingEvent.xsc, and Promote the file toRun Time.

Creating an Event Type from an Existing .xsc

For the purpose of this example, the following procedure shows how to create an Event
Type Definition (ETD) from an existing .xsc file using (HttpClient.xsc) as the input file.

1
2

N & G A

Highlight the Event Types folder on the Components tab of the e*Gate Navigator.
On the palette, click the icon to create a new Event Type.

Enter the name of the Event, then click OK. (For the purpose of this sample, the first
Event Type is defined as “HttpClient”.)

Select the new Event Type, then right-click to edit its properties.
When the Properties window opens, click the Find button.

Select HttpClient.xsc (provided as the default destination .xsc file).
Click OK to continue.

513 Creating and Configuring the e*Ways

The first components to be created are the following e*Ways:

HTTPS e*Way Intelligent Adapter User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 5
Implementatio

n

= Inbound_eWay
= Outbound_eWay
= Multi-Mode_eWay

Section 5.1
Simple HTTP Implementation

The following sections provide instructions for creating each e*Way.

Inbound e*Way

1

2
3
4
5
6
7

9 Save the .cfg file, and exit from Settings.

Select the Navigator's Components tab.

Open the host on which you want to create the e*Ways.

Select the Control Broker that will manage the new e*Ways.

On the palette, click the icon.

Enter the name of the new e*Way, (in this case, Inbound_eWay), then click OK.

Select Inbound_eWay, then double-click to edit its properties.

When the e*Way Properties window opens, click on the Find button beneath the
Executable File field, and select stcewfile.exe for the executable file.

Under the Configuration File field, click on the New button. When the Settings
page opens, set the following for this configuration file:

Table 2 Configuration Parameters for the Inbound e*Way

Parameter

Value

General Settings

Allowlncoming Yes
AllowOutgoing No
Outbound Settings Default

Poller Inbound Settings

PollDirectory

C:\Indata (input file folder)

InputFileExtension

*fin (input file extension)

PollMilliseconds Default
Remove EOL Default
MultipleRecordsPerFile Default
MaxBytesPerLine Default
BytesPerLinelsFixed Default

10 After selecting the desired parameters, save the configuration file and promote the

tile to Run Time. Close the .cfg file.

11 Use the Startup, Advanced, and Security tabs to modify the default settings for each

HTTPS e*Way |

e*Way you configure.

C Use the Startup tab to specify whether the e*Way starts automatically, or
restarts after abnormal termination or due to scheduling, etc.

ntelligent Adapter User’s Guide

SeeBeyond Proprietary and Confidential

Chapter 5

Implementation

12

Section 5.1
Simple HTTP Implementation

D Use the Advanced tab to specify or view the activity and error logging levels, as
well as the Event threshold information.

E Use Security to view or set privilege assignments.

Select OK to close the e*Way Properties window.

Outbound e*Way

1

2
3
4
5
6
7

9

Select the Navigator's Components tab.

Open the host on which you want to create the e*Ways.

Select the Control Broker that will manage the new e*Ways.

On the palette, click the icon.

Enter the name of the new e*Way, (in this case, Outbound_eWay), then click OK.
Select Outbound_eWay, then double-click to edit its properties.

When the e*Way Properties window opens, click the Find button beneath the
Executable File field, and select stcewfile.exe for the executable file.

Under the Configuration File field, click the New button. When the Settings page
opens, set the following for this configuration file:

Table 3 Configuration Parameters for the Outbound e*Way

Parameter Value
General Settings
Allowlncoming No
AllowOutgoing Yes
Outbound Settings
OutputDirectory CADATA\HTTP
OutputFileName output%d.dat
MultipleRecordsPerFile Yes
MaxRecordsPerFile 10000
AddEOL Yes
Poller Inbound Settings Default
Performance Testing Default

Save the .cfg file, promote to run time and exit from Settings.

Multi-Mode e*Way

1

2
3
4
5

Select the Navigator's Components tab.

Open the host on which you want to create the e*Way.
Select the Control Broker that will manage the new e*Way.
On the palette, click the icon to create a new e*Way.

Enter the name of the new e*Way, then click OK. (Http_Multi_Mode)

HTTPS e*Way Intelligent Adapter User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Simple HTTP Implementation
6 Select the new component, then double-click to edit its properties.

7 When the e*Way Properties window opens, the default Executable File is
stceway.exe.

8 To edit the JVM Settings, select New under Configuration file.

See “Multi-Mode e*Way Configuration” on page 17 for details on the parameters
associated with the Multi-Mode e*Way.

Save the .cfg file, and exit from Settings.

9 Use the Startup, Advanced, and Security tabs to modify the default settings for
each.

F Use the Startup tab to specify whether the Multi-Mode e*Way starts
automatically, restarts after abnormal termination or due to scheduling, etc.

G Use the Advanced tab to specify or view the activity and error logging levels, as
well as the Event threshold information.

H Use Security to view or set privilege assignments.

10 Select OK to close the Business Object Broker Properties window.

514 Create the e*Way Connection

The e*Way Connection configuration file contains the connection information along
with the information needed to communicate via HTTPS.

To create and configure a New e*Way Connection :

1 Highlight the e*Way Connection folder on the Components tab of the e*Gate
Navigator.

2 On the palette, click the icon to create a new e*Way Connection.

3 Enter the name of the e*Way Connection, then click OK. (For the purpose of this
sample, the first Event Type is defined as “HttpEP”.)

4 Select the new e*Way Connection, then right-click to edit its properties.

5 When the Properties window opens, select HTTP/HTTPS from the e*Way
Connection Type drop-down menu, .

6 Under e*Way Connection Configuration File, click the New button.
7 The e*Way Connection editor opens, select the necessary parameters.

For more information on the HTTP(S) e*Way Connection Type parameters, see
“e*Way Connection Configuration” on page 22.

8 Save the .cfg file and Promote to Run Time.

515 Intelligent Queues

The next step is to create and associate an Intelligent Queue (I1Q). IQs manage the
exchange of information between components within the e*Gate system, providing
non-volatile storage for data as it passes from one component to another. IQs use IQ

HTTPS e*Way Intelligent Adapter User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 5

Implementation

Section 5.1
Simple HTTP Implementation

Services to transport data. IQ Services provide the mechanism for moving Events
between IQs, handling the low-level implementation of data exchange (such as system
calls to initialize or reorganize a database).

To create and modify an Intelligent Queue for the HTTP e*Way:

1

SO N O Gk~ W DN

Select the Navigator's Components tab.

Open the host on which you want to create the IQ.

Open a Control Broker.

Select an IQ Manager.

On the palette, click the icon.

Enter the name of the new IQ, then click OK. (ig_standard).

Select the new IQ, then double-click to edit its properties.

On the General tab, specify the Service and the Event Type Get Interval.

The Standard_STC IQ Service provides sufficient functionality for most
applications. If specialized services are required, custom IQ Service DLLs may be
created.

The default Event Type Get Interval of 100 Milliseconds is satisfactory for the
purposes of this initial implementation.

On the Advanced tab, make sure that Simple publish/subscribe is checked under
the IQ behavior section.

516 Collaborations Rules

The next step is to create the Collaboration Rules that will extract and process selected
information from the source Event Type defined above, according to its associated
Collaboration Service. The Default Editor can be set to either Monk or Java.

From the Enterprise Manager Task Bar, select Options and click Default Editor. For
the beta Release, the default should be set to Java.

To create a Collaboration Rules file:

1

2
3
4

Select the Navigator's Components tab in the e*Gate Enterprise Manager.
In the Navigator, select the Collaboration Rules folder.
On the palette, click the icon.

Enter the name of the new Collaboration Rule, then click OK. (Http_Get is used for
the sample.)

Select the new Collaboration Rule, then right-click to edit its properties.
The Collaboration Rules - HTTPGet Properties box opens.

HTTPS e*Way Intelligent Adapter User’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Simple HTTP Implementation

6 On the General tab, in the Service box, select the Java Collaboration Service. The
Collaboration Rules will use the Java Collaboration Service to manipulate Events or
Event data.

Figure 8 Collaboration Rules Properties

@ Collaboration Rules - HTTPGet Properties

7 In the Initialization string box, enter any required initialization string that the
Collaboration Service may require. This field can be left blank.

8 Select the Collaboration Mapping tab.
The Collaboration Rules - Collaboration Mapping Properties box opens:

Figure 9 Collaboration Rules - Collaboration Mapping Properties

@ Collaboration Rules - HTTPGet Propetties

= I e s

9 Using the Add Instance button, create instances to coincide with the Event Types.

HTTPS e*Way Intelligent Adapter User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 5
Implementation

10
11

12
13
14

15

16

Simple HTTP Implesni((:etri(t):ti%;

For this sample, do the following:
In the Instance Name column, enter In for the instance name.
Click Find, navigate to etd \HttpEvent.xsc, double-click to select.
HttpEvent.xsc is added to the ETD column of the instance row.
In the Mode column, select In from the drop—-down menu available.
In the Trigger column, click the box to enable trigger mechanism.
Repeat steps 9-13 using the following values:

+ Instance Name — Out

¢ ETD — Outgoing_Event.xsc

+ Mode — Out

+ Trigger — do not select.
Repeat steps 9 - 13 using the following values:

+ Instance Name — HttpClient

+ ETD — HttpClient.xsc

+ Mode — Out

+ Trigger — do not select.

Select the General tab, under the Collaboration Rule box, select New.

Figure 10 Collaboration Rules - Http_Get Properties General Tab

@ Collaboration Rules - HTTPGet Properties x|

General |Subscripti0ns | Eullicatams | Collahoration Mappingl

—y
{n-:l[% HTTPGet

Service: IJava - |

Initialization string: I

- Caollaboration Rules

[zl | Finc | ey | =z |

- Initialization file

LZ{EaT | Fincd |

Cancel | Apply | Help |

HTTPS e*Way Intelligent Adapter User’s Guide 4 SeeBeyond Proprietary and Confidential

Chapter 5
Implementation

Section 5.1
Simple HTTP Implementation

The Collaboration Rules — Collaboration Mapping Properties dialog opens.

17 Expand to full size for optimum viewing, expanding the Source and Destination

Events as well.

Figure 11 Collaboration Rules — Collaboration Mapping Properties

/Cullahuratiun Rules Editor - Http_Get i IEIZI
File Edit “ew Tools Help
i
"r®Sowce Events " 1® Destination Events
2"zl Fioticn RSP
=TS HT TPEvert HttpClient "12-=)
&t SitelJRL URL g&t
-2 MameString TextData gt
-5 W alueSiing BinaryD ata gt

2 getProperty
2 setProperty

QuerySting "85
HttpHeader "5-H
HitpFiesult "2
ResponzeCode &L
ResponseMessage &t
15T extFesult gt
TextFesult EEL-
BinanyResult g&t-
getHeadeCount =%
getHeader =%+

i
L&}t (4

clearHeader =&
clearHeader =&
clearHeader

-

addContent T yp 4
rlearContent Tune =S+ L‘
{1} block| =% method| & var| 3 Far| A i [0 ru\el E, switchl —+ casel L5 whilal 15 dulO;— retuml I thruwl(}h syncl(D tryl 1 catchl
Business Rules
=" Hetp_Get Class Properties =l
B Hitp_Get
executeBusinessRules Destriptinn:lHttp_Get
tB ool
() BB Name:lHttpret
return
% uzerlnitialize Implements: |JCOIIaboratorE><t
useleminate Extends: IHttp_GetBase
Access Modifiers: W poblic [abstract T final
Documentation:
=]
25

HTTPS e*Way Intelligent Adapter User’s Guide

42

SeeBeyond Proprietary and Confidential

Chapter 5
Implementation

Section 5.1
Simple HTTP Implementation

Creating the Collaboration Rules Class

1 Highlight retBoolean in the Business Rules pane.

All of the user—defined business rules are added as part of this method.

2 Select SiteUrl from the Source Events pane. Drag—and-drop onto URL in the
Destination Events pane. A connecting line appears between the properties objects.
In the Business Rules pane, a rule expression appears, with the properties of that
rule displayed in the Rule Properties pane.

Figure 12 Collaboration Rules — Collaboration Mapping Properties

Collaboration Rules Editor - Http_Get
File Edit Yew Tools Help

==

]
1% Source Events "2 Destination Everts
B In [HTTPEvent] Hetpclient [Hepient ! =21 = |
e SitelIRL URL gt
e MameString TextData gt
YalueString BinaryData gt
getProperty QueryStringpEL
setProperty HttpHeader gt
hasData HttpResult p&t =+
getMextSrcEvent post =B
- igPut get =
addHeader =
addHeader =
dlearHeader =*
dearContent Ty = r
reset = ;[
1} block| =® method| @ var| [Far| v if| {1 rulal B swwtchl ol casel (] whilel (k| dol £ returnl ! throwl (O] tryl ! catchl
Business Rules
= =
T3 Hetp_Get Rule Properties S|
[Http_Get
| =l mis Description: [rule
=% executeBusinessRules
Rule:
@ retBoolean - -
1} e getHEpClient). setURL(getIng). getSicel URL{)) ;I
[=E (D kry
e} Eet
S i

B4} then

“ed } Set Outgaing
lse

“{} Error Information
! catch

{1 rule
finally
-4 return

- userInitialize
-8 userTerminate

Documentation:
I = |
= |

B

3 Select the newly created rule highlighted as above,

4 Change the description of the method from rule to UrlMapping. Reselect the rule
to affect the updated description name.

5 Click the try conditional expression, it will appear below the UrlMapping rule.

6 With the try conditional expression selected, click rule. When asked whether peer
or child, select child (for this sample).

HTTPS e*Way Intelligent Adapter User’s Guide

SeeBeyond Proprietary and Confidential

Chapter 5
Implementation

Section 5.1
Simple HTTP Implementation

Figure 13 Child or Peer Dialog Box

i, Child or Peer x|

Do you want thiz to be a peer or child?

Child |

7 With the newly created rule selected, drag-and-drop the get() method from the
HttpClient Destination Event to the Rule Properties Rule: dialog box.

Figure 14 Collaboration Rules — Collaboration Mapping Properties

Collaboration Rules Editor - Http_Get

_{Elx]

File Edit Wew Tools Help

i

"1 Source Events 1% Destination Events

=™ 2 In [HTTPEvent] Hetplient [Hetplient T2 1 = |

E&SikelURL
- EEiMamestring TextData gt

W aluestring BinaryData gt
getProperty QueryStringpgt &+
setProperty HttpHeader &t
hasData HttpResul: EE

getMextSrcEvent post =B
-=@igPut o
addContentType -
clearContentType = |_
clearContentTypes =&
resel =B ;I
{} block| =% methiod| & var| 19 For| A if| 1} rulal E switchl — casel (ha wh\lel |5 dol@:‘:- raturnl 1 thrnwl@/tryl I catchl
Busingss Rules
= 5
1713 Hitp_Get Rule Properties =l
-8 Hitp_Get
{} rule Description: [G=t
=% executeBusinessRules
: Rule:
@ retBoolean
) LURL Mapping getHtkpClientiy, gekdy| ;I
ted b Set Outgaing
-1} else
LA b Ervor Information
I catch
{F rle
finally
= return
- userInitialize
- userTerminate e
Documentation:
| =
=l
-]

The method will appear in the Rules Properties box. Change the description from

rule to Get (method).

8 With the Get method selected, click the if conditional expression. Drag-and-drop
the IsTextResult to the Condition dialog box. Ensure that the condition line says:

(getHttpCient().getHtpOient().getlsTextResult())
Add IsTextResult to the description of the conditional expression.

HTTPS e*Way Intelligent Adapter User’s Guide

SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Simple HTTP Implementation

Figure 15 Collaboration Rules — Collaboration Mapping Properties

#¥ Collaboration Rules Editor - Http_Get

File Edit View Tools Help

LIRS

#h

1% Source Events "1% Destination Events

=™ 2 In [HTTPEvent] BinaryDiata gl -
-ElSitelRL QueryString gt
E&NameString HttpHeader g8t]
-EEYaluestring MName g&l
=S getProperty Value &l

HttpResult gt
ResponseCaode gl
ResponseMessage p&L

B getMNextSrcEvent
=WigPut

TextResult gl
BinaryResul g&l-
getHeaderCodnt =f
getHgader =
post =

gel
addHeade
addHeader =
clearHeader =&.H ;I

{F block] =% method| & var| 159 For| v iff Lk rulal i, switchl —+ case| 15 whilel [dol #= et ! throwl (0 tryl ! /étchl
Business Rules
12 Hitp_Get If Properties
: Description: |iF IsTextResult
executeBusinessRules o
Condition:
@ retBoolean -
} URL Mapping getHetpClient(). getHttpResultd), getIsTextResul) ;I
LA b Ervor Information
catch
{F rle
finally
= return
userInitialize
usetTerminate LI
Documentation:
=
~
HTTPS e*Way Intelligent Adapter User’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 5
Implementation

Section 5.1
Simple HTTP Implementation

9 Select the then condition, click rule. Drag-and-drop the OutgoingData property
node to the Documentation dialog box.

Bk Collaboration Rules Editor - Http_Get
File Edit Wiew Tools Help

Figure 16

=1 %]

B

"2 Souree Events
™2 In [HTTPEvert]
- EEMSitelIRL
EEiNamestring
EEtvaluestring

gethextSrcEvent
igPuE

12 Destination Everits

HetpClient [HetpClient 021
LRL &

TextData gl

BinaryData gl

QueryString it [+

HtkpHeader g&t

ResponseCode p&t-
ResponseMessage gL
IsTextResult p&t
TextResult g&t
BinaryResult gt

addHeader =@
addHeader =%-[+
dleartHeadsr =Bk
clearHeadsr =S [3
clearHeaders

(ERREIRED tT)

addCaontentType =@+
clearContentType =& [+
clearContent Types =&

reset =@

Quk [Dutgoing_Event:
g

i} block] =% method] & var| [41 for| if| {F

rulel B switchl = case| [whilal Loy

dol‘:—' returnl ! throwl (1

tryl ! catchl

jusiness Rules
2 ®12 Hitp_Get

1} rule

% executeBusinessRules

@ retBoolean

{1} URL Mapping

D try

L) Get

if IsTextResul:

{} then

~{} Set Outgoing
e

Soen e

j=1 BRule Properties

Description: ISEt Cutgaing

/

10 Change the Description to SetOutgoingData.

HTTPS e*Way Intelligent Adapter User’s Guide 46

Rule:

getout(). sekOutgoingDatal) d
=

Documentation:

I =1
=l

SeeBeyond Proprietary and Confidential

Chapter 5
Implementation

Section 5.1
Simple HTTP Implementation

11 Drag-and-drop TextResult node into the setOutgoingData() method. Before
releasing the node, ensure that the cursor is placed between the correct ()

(parenthesis).

Figure 17 Business Rules

Collaboration Rules Editor - Http_Get
File Edit Wew Tools Help

=l =]

]
"1 Source Everts
E1%12 In [HTTPEvent]

12 Destination Events
Heepclient [Heepcliene T - £

TextData gt -

BinaryData gt
Querystring gt #
HttpHeader gt

Mame gL

Value gL

HttpResul
ResponseCods gL
ResponseMessage gl
IsTextResult gt
TextResult

addConkentType
clfarContentType =% [+
clgarContentTypes =

reset =@
‘Out [Outgoing_Event]* -]
OutgoingData gl
O bock| =mettod] @ wnfim el a 0 e E s 0 ceselio wnie[19 o] e 1 e @ e[1 ot
Business Rules
u 5
EHI3 Http_Get J=i BRule Properties |
-+ Hetp_Get
A ruls Description: [Set Outgeing
= executeBusinessRUles Rule:
- @ retBoolean -
1} URL Mapping lgebCuk(), sekOutgoingDatalgetHEtpClient(), aetHE pResUIED), get TextResUlEd) ;I
=Dty
b d) Get S
I IsTextResult LI
- then Documentation:
~{} Set Oukgoing I :‘l
-1} else =l =

12 Ensure that the condition line says:

ge
t(

HTTPS e*Way Intelligent Adapter User’s Guide

47

Qut ().setQutgoi ngDat a(getHttpCient().getHtpResult().getTextResul

SeeBeyond Proprietary and Confidential

Chapter 5
Implementation

13 Select the else condition, click rule.

14 Enter the desired trace information:

Section 5.1
Simple HTTP Implementation

EGate.tracel n (EGat e. TRACE_COLLABSERVI CE, EGate. TRACE_EVENT_I NFORMATI ON, "Unabl e to obtain GET

i nformation")

Figure 18 Business Rules

¥ collaboration Rules Editor - Http_Get
Fle Edit Wiew Tools Help

=18 x|

]

1% Source Everts
= ™2 In [HTTPEvent]

=& Mamestring
£l YalueString

£ gethlext SrcEvent
“BigPut

12 Destination Events
HttpClient [HetpClient T e-21
LRL @&l

TextDats gl

BinaryData gl
CuerySkring pEl- B
HttpHeader pEE

MName g&l

Walue &L

HttpResult 25t El
ResponseCode gl
ResponseMessage pEl

getHeaderCount -
getHeader

get

addHeader
addHeader
clearHeadsr
clearHeader
clearHeaders
addContentType
clearContentType
clearContentTypes
reset

Cut [Cutgoing_Ewvent]
QutgoingData gl

1} b\ockl '—'_Qmethodl L ar| [far| v if| {1 ru\el =, switchl o casel {5 whilel b dol

= returnl 1 throwl@ tryl I catchl

Business Rules
=D try
L) et

iF IsTextResult

{} then

([} Set Oukgoing
E-1} else

‘e { } Error Information
catch

{} rule

I Finally

= return

userlnitialize

HTTPS e*Way Intelligent Adapter User’s Guide

=

48

Rule Properties =

Description: |Errnr Infarmation

Rule:
EGate.traceln (EGate, TRACE_COLLABSERYICE, ;I
EGate, TRACE_EVEMT_INFORMATION, "Unable to obtain GET information™)
=
Documentation:
| = |
=l

SeeBeyond Proprietary and Confidential

Section 5.1

Chapter 5
Simple HTTP Implementation

Implementation

15 Select try, click catch.
16 Select child node. For this sample, in the Exception dialog box, type:
Exception ex
Figure 19 Business Rules

1Bl x]

Collaboration Rules Editor - Http_Get
File Edt Yew Tools Help

4
1% source Events
E1™18 In [HTTPEwent]

®1% Destination Events
HitpClient [HetpClient 18- 1

E&! SitelRL

e MameString TextData pit-

& Valuestring BinaryData g&t-
QueryString gt F

HttpHeader g5t

Mame &t

Value &L
HttpResult gt
ResponseCode gL
ResponseMessage gL
IsTextResult gt -
TextResult g&t-
BinaryResult g&t-
getHeaderCount =%
getHeader

get =B

addHeader =%+
addHeader =B
clearHeader =@ [
clearHeader =& F
dearHeaders =%
addContentType =% [+
clearContentType =2 [#
clearContentTypes =S

reset =
Qut [Outgoing_Event]® 5=
CutgoingData gL
i b\ockl a‘methodl P varI *1 Forl o \fl {1 ruIeI B switchI = casel | wh\lal % doI & returnI ! throwl n tryl ! catchI
Business Rules
2@ try IS lcatch Properties =
b Get
Ju i IsTextResult Description: [catch
@-L} then Exception:
~{} Set Outgoing pron:
i} else Exception ex ;I
} Error Information
[
Documentation:
' o || =
- userInitialize ;I ;I

HTTPS e*Way Intelligent Adapter User’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 5
Implementation

17 With catch selected, click rule.

18 In the rule dialog box type:

Section 5.1
Simple HTTP Implementation

EGate. tracel n (EGate. TRACE_COLLABSERVI CE, EGat e. TRACE_EVENT_| NFORMATI ON, "Got exception" +
ex.toString())
Change the name of the rule to Output Error Information.
. .
Figure 20 Business Rules
#% Collaboration Rules Editor - Http_Get = x|
File Edit Wew Tools Help
i
1% Source Events ™12 Destination Events
E1™18 In [HTTPEvent] HitpClient [Hetplient e =)
- EESiteURL
- g MameString TextData gt
B Yaluestring BinaryData gt
getProperty GQueryString gt #
setProperty HttpHeader g&E
hasData Mame gL
getMextSrcEvent Value &L
iqPut HttpResul gt -]
ResponseCode gL
ResponseMessage gL
IsTextResult gt -
TextResult g&t-
BinaryResult g&t-
getHeaderCount =%
getHeader
post
get =B
addHeader =%+
addHeader =B
clearHeader =@ [
clearHeader =& F
dearHeaders =%
addContentType =% [+
clearContentType =2 [#
clearContentTypes =S
reset =
Out [Outgoing_Event]"T
OutgoingData gt
i} b\ockl'— methodl L varI (| Forl .A. \fl 1+ ruIeI B, switchI —+ casel 5 wh\lal &5 doI = returnI ! throwl () tryl ! catchI
Business Rules
=@ al |
b oGet
' IF IsTextResult Description: [Out Errar Informatior|
{} then Rule:
-1} Set Qutgaing 2
alse FGate.traceln {EGate, TRACE_COLLABSERVICE, EGate. TRACE_EVEMT_INFORMATION, "Got ;I
. exception” + ex tostring())
-{} Etror Infarmation
I catch
{} Qut Error Infarmation LI
finally Documentation:
eturn -l I :l
B userlnitislize ;I ;I
HTTPS e*Way Intelligent Adapter User’s Guide 50 SeeBeyond Proprietary and Confidential

Chapter 5
Implementation

19
20

21

22

23

24

Section 5.1
Simple HTTP Implementation
Before compiling the code, select Tools, Options,.

Verify that all necessary .jar files are included. For HTTP (SSL not enabled), ensure
that the stchttp.jar and stcutils.jar file are added.

For a collaboration that uses SSL, ensure that jcert.jar, jnet.jar, and jsse.jar are
included.

Figure 21 Business Rules

Clazspath I

Default Classpath:

0:1eGatel Clientibintjavaljintegra. jar -
g:iecatelClientibinijava
q:ieEatelClientibintjavaljcscomp. jar
gviecatelClient!classesistojcs, jar
0:1eGatel Clientibintjavalxerces. jar LI

User Classpath:
3t heGateldienticlasseshstoutil, jar

GileGateiclienticlassesistchttp. jar Up |

(B ellg]

Add Direckary ... |

Reset |

Remove |

ok | Cancel |

When all the business logic has been defined, the code can be compiled by selecting
Compile from the File menu. The Save menu opens, provide a name for the .xpr
file. For the sample, use Http_Get.xpr.

If the code compiles successfully, the message Compile Completed appears. If the
outcome is unsuccessful, a Java Compiler error message appears.

Once the compilation is complete, save the file and exit.

Under the Collaboration Rules, the path for the .class file created appears. (For the
sample, the path “collaboration_rules\Http_Class_Get.class “appears.)

Under Initialization file, the path for the .ctl file created appears. (For the sample
the path “collaboration_rules\Http_Class_Get.ctl” appears.)

Click OK to exit the Properties Box.

517 Collaborations

Collaborations are the components that receive and process Event Types, then forward
the output to other e*Gate components or an external. Collaborations consist of the
Subscriber, which “listens” for Events of a known type (sometimes from a given
source), and the Publisher, which distributes the transformed Event to a specified
recipient.

HTTPS e*Way Intelligent Adapter User’s Guide 51 SeeBeyond Proprietary and Confidential

Chapter 5

Implementation

Section 5.1
Simple HTTP Implementation

Create the Inbound_eWay collaboration as follows:

1

O N O G ks~ W N

10

In the e*Gate Enterprise Manager, select the Navigator's Components tab.

Open the host on which you want to create the Collaboration.

Select a Control Broker.

Select the Inbound_eWay to assign the Collaboration.

On the palette, click the icon.

Enter the name of the new Collaboration, then click OK. (For the sample, “PassIn”.)
Select the new Collaboration, then right-click to edit its properties.

From the Collaboration Rules list, select the Collaboration Rules file that you
created previously. (For the sample, “PassIn”.)

In the Subscriptions area, click Add to define the input Event Types to which this
Collaboration will subscribe.

A From the Event Type list, select the Event Type that you previously defined
(HttpEvent).

B Select the Source from the Source list. In this case, it should be <External>.

In the Publications area, click Add to define the output Event Types that this
Collaboration will publish.

A From the Event Types list, select the Event Type that you previously defined
(HttpEvent).

B Select the publication destination from the Destination list. In this case, it
should be <iq_standard>.

Create the HTTP_Multi_Mode collaboration as follows:

1

2
3
4
5
6

N

In the e*Gate Enterprise Manager, select the Navigator's Components tab.
Open the host on which you want to create the Collaboration.

Select a Control Broker.

Select the HTTP_Multi_Mode to assign the Collaboration.

On the palette, click the icon.

Enter the name of the new Collaboration, then click OK. (For the sample,
“collab_HTTP”.)

Select the new Collaboration, then right-click to edit its properties.

From the Collaboration Rules list, select the Collaboration Rules file that you
created previously. (For the sample, “Http_Get”.)

In the Subscriptions area, click Add to define the input Event Types to which this
Collaboration will subscribe.

A From the Instance Name list, select the Instance Name that you previously
defined In.

B From the Event Type list, select the Event Type that you previously defined
(HttpEvent).

HTTPS e*Way Intelligent Adapter User’s Guide 52 SeeBeyond Proprietary and Confidential

Chapter 5
Implementation

10
11

12
Create
1

2
3
4
5
6

N

10

Section 5.1
Simple HTTP Implementation
C Select the Source from the Source list. In this case, it should be <PassIn>.

In the Publications area, click Add to define the output Event Types that this
Collaboration will publish.

A From the Instance Name list, select the Instance Name that you previously
defined HttpClient.

B From the Event Types list, select the Event Type that you previously defined
(HttpClient).

C Select the publication destination from the Destination list. In this case, it
should be <SimpleHttpCP>.

In the Publications area, click Add to define the output Event Types that this
Collaboration will publish.

A From the Instance Name list, select the Instance Name that you previously
defined Out.

B From the Event Types list, select the Event Type that you previously defined
(OutgoingEvent).

C Select the publication destination from the Destination list. In this case, it
should be <External>.

Click OK to exit.

the Outbound_eWay collaboration as follows:

In the e*Gate Enterprise Manager, select the Navigator's Components tab.
Open the host on which you want to create the Collaboration.

Select a Control Broker.

Select the Outbound_eWay to assign the Collaboration.

On the palette, click the icon.

Enter the name of the new Collaboration, then click OK. (For the sample,
“PassOut”.)

Select the new Collaboration, then right-click to edit its properties.

From the Collaboration Rules list, select the Collaboration Rules file that you
created previously. (For the sample, “PassOut”.)

In the Subscriptions area, click Add to define the input Event Types to which this
Collaboration will subscribe.

A From the Event Type list, select the Event Type that you previously defined
(HttpClient).

B Select the Source from the Source list. In this case, it should be <collab_HTTP>.

In the Publications area, click Add to define the output Event Types that this
Collaboration will publish.

A From the Event Types list, select the Event Type that you previously defined
(HttpClient).

HTTPS e*Way Intelligent Adapter User’s Guide 53 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation Sample Schema

B Select the publication destination from the Destination list. In this case, it
should be <External>.

s> Sample Schema

The previous sections provided the basics for implementing the HTTP e*Way. This
section describes how to use the HTTP e*Way within a sample Schema. The sample will
send and receive Events from any platform file. It is assumed that the HTTP e*Way has
been installed properly, and that all of the necessary files and scripts are located in the
default location.

This implementation will consist of two file-based e*Ways, one Multi-Mode e*Way,
three Event Types, three Collaboration Rules, one Intelligent Queues and three
Collaboration, as follows:

= Inbound_eWay- This e*Way will receive input from an external source, apply pass
through Collaboration Rules, and publish the information to an Intelligent Queue.

= HTTP_Multi_Mode - This e*Way applies extended Java Collaboration Rules to an
inbound Event to perform the desired business logic, in this case a “get” from a
specified URL Site.

= Outbound_eWay - This e*Way will receive information from the BOB and publish
to the external system.

= HttpClient- This Event Type contains the methods to be used to perform the
necessary transformation.

= HttpEvent - This Event Type describes an Event that is input to the extended Java
Collaboration Service.

= OutgoingEvent - This Event Type describes an Event that contains the transformed
data.

= PassIn- This Collaboration Rule is associated with the Inbound_eWay, and is used for
receiving the input Event.

= HttpGet - The Collaboration Rule is associated with the HTTP_BOB, and is used to
perform the transformation process.

= PassOut - This Collaboration Rule is associated with the Outbound_eWay, and is
used for sending the Event to the External.

= iq_standard - This Intelligent Queue is a STC_Standard IQ, and forwards data to
the Http_bob.

This sample will perform a “get” upon a specified URL Site.

Sample Input Data

The code below is an example of input data

<HTTPEvent >
<SiteURL>http://ww. seebeyond. conx/ Si t eURL>

HTTPS e*Way Intelligent Adapter User’s Guide 54 SeeBeyond Proprietary and Confidential

Chapter 5

Implementation

Section 5.2
Sample Schema

<MessageSt ri ng></ MessageStri ng>

<HTTPEvent >

521 Execute the Schema

To execute the Http_Test_New schema, do the following:

1

Note:

Go to the command line prompt, and enter the following:

stccbh -rh hostnanme -rs HTTP_Test New -un usernane -up user
passwor d
-1 n host nanme_cb

Substitute hostname, username and user password as appropriate.
Exit from the command line prompt, and start the e*Gate Monitor GUI.

When prompted, specify the hostname which contains the Control Broker you
started in Step 1 above.

Select the HTTP_ Test New schema.

After you verify that the Control Broker is connected (the message in the Control
tab of the console will indicate command succeeded and status as up), highlight the
IQ Manager, hostname_igmgr, then click on the right button of the mouse, and
select Start.

Highlight each of the e*Ways, right-click the mouse, and select Start.
To view the output, copy the output file (specified in the Outbound_eWay

configuration file). Save to a convenient location, open.

While the schema is running, opening the destination file, will cause errors.

HTTPS e*Way Intelligent Adapter User’s Guide 55 SeeBeyond Proprietary and Confidential

Chapter 6

Java Classes and Methods

This chapter documents the Java methods that are featured in the new HTTPS e*Way.
For any e*Way, of course, communication takes place both on the e*Gate system and the
external side. Communication between the e*Way and the e*Gate environment is
common to all e*Ways, while the communication between the e*Way the external
system is different for each e*Way. For a the HTTPS e*Way, the executable file
stceway.exe is used to communicate between the e*Way and the e*Gate, leaving the
communiction between the e*Way and the external system open through the Java
collaboration. Java methods have been added to make it easier to set information in the
e*Insight Event (ETD) and to get information from it. These methods are contained in
classes:

= “HttpAuthenicator Class” on page 57

= “HttpClient Class” on page 60

= “HttpClientAPI Class” on page 76

= “HttpClientConnector Class” on page 90

= “HttpHeader Class” on page 92

= “HttpResult Class” on page 94

= “HttpsSecurityProperties Class” on page 100
= “HttpsSystemProperties Class” on page 107
= “QueryPair Class” on page 114

= “QueryString Class” on page 117

HTTPS e*Way Intelligent Adapter User’s Guide 56 SeeBeyond Proprietary and Confidential

Chapter 6
Java Classes and Methods

Section 6.1
HttpAuthenicator Class

61 HttpAuthenicator Class

The HttpAuthenicator class constructs an Http Authenticator, and extends

java.net.Authenticator.

The HttpAuthenticator class is defined as:

public class HttpAuthenticator

The HttpAuthenticator class extends java.net.Authenticator

The HttpAuthenticator class methods include:

register on page 57

setHttpPassWord on page 57

setHttpUserName on page 58

setProxyHost on page 58
setProxyPassWord on page 59

setProxyUserName on page 59

register

Description

register registers this HTTP authentication instance for Proxy and/or HTTP

authentication.

Syntax

public void register()

Parameters

Name

Type

Description

httpPassWord

string

The password for HTTP authentication.

Returns
void

Throws

java.lang.SecurityException.

setHttpPassWord

Description

setHttpPassWord sets the password for HT TP authentication.

Syntax

public void setHtt pPassWrd(java.lang. String httpPassWrd)

HTTPS e*Way Intelligent Adapter User’s Guide

57

SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Classes and Methods HttpAuthenicator Class

Parameters

Name Type Description

httpPassWord string The password for HTTP authentication.

Returns
void
Throws

None.

setHttpUserName
Description
setHttpUserName Sets the username for HT TP authentication.

Syntax
public void setHttpUser Name(j ava.l ang. String htt pUser Nane)
Parameters

Name Type Description

httpUserName string The username for HTTP authentication.

Returns
void
Throws

None.

setProxyHost
Description

setProxyHost sets the the Proxy host so that when proxy authentication is requested, this
Authenticator can send the appropriate username and password to the Proxy Host..

Syntax
public void setVal ue(java.lang. String proxyHost)
Parameters
Name Type Description
proxyHost string The host name or IP address (dotted
quad address)

HTTPS e*Way Intelligent Adapter User’s Guide 58 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Classes and Methods HttpAuthenicator Class
Returns
void
Throws

java.net.UnknownHostException - thrown when the IP address or host provided
cannot be determined.

setProxyPassWord

Description
setProxyPassWord sets the Proxy password for Proxy authentication..
Syntax
public void setProxyPassWrd(java.lang. String proxyPassWrd)

Parameters

Name Type Description

proxyPassWord string The username for Proxy authentication.

Returns
void
Throws

None.

setProxyUserName

Description
setProxyUserName Sets the Proxy username for Proxy authentication.
Syntax
public void setProxyUserNane(java.l ang. String proxyUser Nane)

Parameters

Name Type Description

proxyUserName string The username for Proxy authentication.

Returns
void
Throws

None.

HTTPS e*Way Intelligent Adapter User’s Guide 59 SeeBeyond Proprietary and Confidential

Chapter 6
Java Classes and Methods

Section 6.2
HttpClient Class

62 HttpClient Class

The HttpAuthenicator class constructs an HTTP Client.

The HttpClient class is defined as:

public class Htpdient
The HttpClient class methods include:

addContentType on page 60
addHeader on page 61
addHeader on page 61
clearContentType on page 62
clearContentTypes on page 62
clearHeader on page 63
clearHeader on page 63
clearHeaders on page 64

get on page 64

getBinaryData on page 65
getHttpAuthenticator on page 65
getHttpHeader on page 65
getHttpProxyHost on page 66
getHttpProxyPort on page 66
getHttpResult on page 66
getHttpsProxyHost on page 67
getHttpsProxyPort on page 67
getQueryString on page 68

getTextData on page 68
getURL on page 68

initialize on page 69

post on page 69

reset on page 70
setBinaryData on page 70
setCookie on page 70

setHttp Authenticator on page 71
setHttpHeader on page 71
setHttpProxyHost on page 72
setHttpProxyPort on page 72
setHttpResult on page 73
setHttpsProxyHost on page 73
setHttpsProxyPort on page 74
setQueryString on page 74
setTextData on page 75
setURL on page 75

addContentType

Description

addContentType adds a Content-Type value, such that the next request sent will
contain the specified value in the Content-Type header.

Syntax

public void addCont ent Type(java.lang. String content Type)

HTTPS e*Way Intelligent Adapter User’s Guide

SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2

Java Classes and Methods HttpClient Class
Parameters
Name Type Description
contentType string The string specifying the type of
message content of the request.

Returns
void
Throws

None.

addHeader

Description

addHeader adds the specified header, such that the next request sent will contain the
specified header information.

Syntax

publ i ¢ void addHeader (Htt pHeader header)
Parameters

Name Type Description

header object The header to be added.

Returns
void
Throws

None.

addHeader

Description

addHeader adds the specified header, such that the next request sent will contain the
specified header information.

Syntax

publ i c void addHeader (j ava.lang. String nane, java.lang. String val ue)

HTTPS e*Way Intelligent Adapter User’s Guide 61 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2

Java Classes and Methods HttpClient Class
Parameters
Name Type Description
name string The NAME portion of the of the
header to be added.
value string The VALUE portion of the of the
header to be added.

Returns
void
Throws

None.

clearContentType

Description

clearContentType removes the Content-Type value if the specified Content-Type was
previously added, such that the next request sent will not contain the specified
Content-Type value.

Syntax

public void C ear Content Type(java.lang. String content Type)
Parameters

Name Type Description

contentType string The Content Type to remove.

Returns
void
Throws

None.

clearContentTypes

Description

clearContentTypes removes all previously added Content-Type values, such that the
next request sent will not contain any of the previously added Content-Type
information.

Syntax
public void cl ear Cont ent sTypes()

HTTPS e*Way Intelligent Adapter User’s Guide 62 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Classes and Methods HttpClient Class
Parameters
None.
Returns
void
Throws

None.

clearHeader

Description

clearHeader removes the specified header if the header was previously set, such that
the next request sent will not contain the specified header information.

Syntax

public void cl ear Header (Ht t pHeader header)
Parameters

Name Type Description

header object The header to remove fromthe list of
headers.

Returns
void
Throws

None.

clearHeader

Description

clearHeader removes the specified header if the header was previously set, such that
the next request sent will not contain the specified header information.

Syntax
public void cl ear Header (j ava. | ang. Stri ng. nane)
Parameters
Name Type Description
name string The name of the header used to locate

the HTTP header for removal from the
list of headers.

HTTPS e*Way Intelligent Adapter User’s Guide 63 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Classes and Methods HttpClient Class

Returns
void
Throws

None.

clearHeaders
Description

clearHeaders removes all previously added headers, such that the next request sent
will not contain any of the previously added header information.

Syntax

public void cl ear Header s()

Parameters
None.

Returns
void

Throws

None.

get
Description

get gets the data previously set by the following methods: setURL, setFormData.
Syntax

public void get()
Parameters

None.

Returns
void

Throws
java.lang.Exception

java.io.JOException - when an exception is returned from attempting to open an input
stream from the connection.

java.net.MalformedURLException - when the protocol in the URL specified is not a
legal protocol or the URL string could not be parsed.

HTTPS e*Way Intelligent Adapter User’s Guide 64 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Classes and Methods HttpClient Class

getBinaryData

getBinaryData gets the binary data to be posted that was previously set by
setBinaryData.

Syntax
public byte[] getBinaryData()

Parameters

None.
Returns

The text data to be posted. Returns null if binary data was not previously set.
Throws

None.

getHttpAuthenticator

Description

getHttpAuthenticator gets the current HTTP Authenticator object that was previously
set with setHttpAuthenticator method.

Syntax
public HttpAuthenticator getHTTPAuthenticator()

Parameters

None.
Returns

The HTTP Authenticator object that was previously set or null, if not previously set.
Throws

None.

getHttpHeader

Description

getHttpHeader gets the HttpHeader placeholder object. Added to work with the .XSC
file and the java collaboration editor for drag and drop. Once data is populated in the
HttpHeader placeholder object, use one of the other methods for managing header
information.

Syntax
public HttpHeader getHttpHeader ()

Parameters

None.

HTTPS e*Way Intelligent Adapter User’s Guide 65 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Classes and Methods HttpClient Class
Returns

The HttpHeader object being used as a placeholder for adding HTTP header
information.

Throws

None.

getHttpProxyHost

Description
getHttpProxyHost gets the current HTTP proxy host that was previously set.
Syntax
public java.lang. String getHttpProxyHost()

Parameters

None.
Returns

The HTTP proxy host currently being used or null if HTTP proxy host was not set.
Throws

None.

getHttpProxyPort

Description
getHttpProxyPort gets the current HTTP proxy port that was previously set.
Syntax

public int getHttpProxyPort()
Parameters

None.
Return Values

The HTTP proxy port currently being used or -1 if HTTP proxy host was not set.
Throws

None.

getHttpResult

Description

getHttpResult gets the HttpResult placeholder object.

HTTPS e*Way Intelligent Adapter User’s Guide 66 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Classes and Methods HttpClient Class
Syntax
public HttpResult getHttpResult()

Parameters

None.
Return Values

The HttpResult placeholder object used for setting and getting header information.
Throws

None.

getHttpsProxyHost

Description
getHttpsProxyHost gets the current HTTPS proxy host that was previously set.
Syntax
public java.lang. String getHttpsProxyHost()

Parameters

None.
Returns

The HTTPS proxy host currently being used or null if HTTPS proxy host was not set.
Throws

None.

getHttpsProxyPort

Description
getHttpsProxyPort gets the current HTTPS proxy port that was previously set.
Syntax
public int getHttpsProxyPort()

Parameters

None.
Returns

The HTTPS proxy port currently being used or -1 if HTTPS proxy port was not set
Throws

None.

HTTPS e*Way Intelligent Adapter User’s Guide 67 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Classes and Methods HttpClient Class

getQueryString
Description

getQueryString gets the query data that was previously set by setQueryString.
Syntax

public QueryString getQueryString()

Parameters

None.
Returns

The text data to be posted. Returns null if form data was not previously set.
Throws

None.

getTextData

Description
getTextData gets the text data to be posted that was previously set by setTextData.
Syntax
public java.lang. String getTextData()

Parameters

None.
Returns

The text data to be posted. Returns null if text data was not previously set.
Throws

None.

getURL

Description
getURL gets the URL.
Syntax

public java.lang. String getURL()
Parameters

None.
Returns

The URL String previously set by setURL.

HTTPS e*Way Intelligent Adapter User’s Guide 68 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Classes and Methods HttpClient Class

Throws

None.

initialize
Description

initialize initializes an object when called by an external collaboration service.
Syntax

public void initialize(comstc. eways. http.JCollabController
cntrCol | ab, java.lang. String key, int node)

Parameters
Name Type Description

cntrCollab object The Java Collaboration Controller object.

key string The initialization key.

mode integer The mode of initialization.
Returns

void

Throws

com.stc.eways.http.CollabConnException

com.stc.eways.http.CollabDataException

post

Description

post posts the data previously set by one of the following methods: setTextData,
setBinaryData, setFormData. The Content-Type can be changed with
setContentType() before posting the data.

Syntax
public void post ()

Parameters
None.

Returns
void

Throws

java.lang.String.Exception

HTTPS e*Way Intelligent Adapter User’s Guide 69 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Classes and Methods HttpClient Class

java.io.IOException - thrown when an exception is returned from attempting to open an
input stream from the connection.

java.net.MalformedURLException - thrown when the protocol in the URL specified is
not a legal protocol or the URL string could not be parsed.

reset

Description
reset clears all headers and request data from memory.
Syntax

public bool ean reset()
Parameters

None.
Returns

None.
Throws

None.

setBinaryData
Description
setBinaryData sets the raw binary data to be posted.

Syntax
public void setBinaryData(byte[] binaryData)

Parameters

Name Type Description

binaryData byte array The binary data to be posted.

Returns
void
Throws

None.

setCookie

Description

setCookie enables or disables cookies.

HTTPS e*Way Intelligent Adapter User’s Guide 70 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2

Java Classes and Methods HttpClient Class
Syntax
public void set Cooki e(bool ean al | owCooki es)
Parameters
Name Type Description
allowCookies boolean Set to TRUE to allow cookies;

otherwise, set to false to disable
cookies.

Returns

voi d
Throws
None.

setHttpAuthenticator

Description

setHttpAuthenticator sets the HTTP Authenticator object for use with web sites that
require username and password authentication.

Syntax
public void setHttpAut henticator(HtpAuthenticator httpAuthenticator)

Parameters

Name Type Description

httpAuthenticator object The HTTP Authenticator object.

Returns
void
Throws

None.

setHttpHeader

setHttpHeader sets the HttpHeader placeholder object. Added to work with . XSC files
and the Java Collaboration Editor for drag and drop. Once data is populated in the
HttpHeader placeholder object, use one of the other methods for managing header
information. If this method is not called, a default HttpHeader object is used.

Syntax
public void setHttpHeader (Htt pHeader header)

HTTPS e*Way Intelligent Adapter User’s Guide 71 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Classes and Methods HttpClient Class

Parameters

Name Type Description

header object The HttpHeader object to be used as a
placeholder for adding HTTP header
information.

Returns
void
Throws

None.

setHttpProxyHost
Description

setHttpProxyHost sets the HTTP proxy host.
Syntax

public void setHttpProxyHost(java.lang. String httpProxyHost)
Parameters

Name Type Description

httpProxyHost string The HTTP proxy host to use.

Returns
void
Throws

java.lang.Exception - thrown if unable to set HTTP proxy host.

setHttpProxyPort

Description

setHttpProxyPort sets the HTTP proxy port.

Syntax
public void setHtt pProxyPort (int httpProxyPort)
Parameters
Name Type Description
httpProxyPort integer The HTTP proxy port to use on the HTTP
proxy host set with setHttpProxyHost.

HTTPS e*Way Intelligent Adapter User’s Guide 72 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Classes and Methods HttpClient Class
Returns
void
Throws

java.lang.Exception - thrown if unable to set HTTP Proxy Port.

setHttpResult

Description

setHttpResult sets the HttpResult placeholder object. Added to work with .XSC and
Java Collaboration Editor for drag and drop. Use the HttpResult placeholder object to
retrieve data from the HTTP server. If this method is not called, a default HttpResult
object is used.

Syntax
public void setHt pResult(HttpResult result)

Parameters

Name Type Description

result object The HttpResult object to be used as a
placeholder for retrieving HTTP results
from the HTTP server.

Returns
void
Throws

None.

setHttpsProxyHost

Description

setHttpsProxyHost sets the HTTPS proxy host.

Syntax
public void setHttpsProxyHost(java.lang. String httpsProxyHost)
Parameters
Name Type Description
httpsProxyHost string The HTTPS proxy host to use.

Return Values

void

HTTPS e*Way Intelligent Adapter User’s Guide 73 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Classes and Methods HttpClient Class

Throws

java.lang.Exception - thrown if unable to set HTTPS Proxy Host.

setHttpsProxyPort

Description

setHttpsProxyPort sets the HTTPS proxy port.

Syntax
public void setHttpsProxyPort(int httpsProxyPort)
Parameters
Name Type Description
httpsProxyPort integer The HTTPS proxy port to use on the
HTTPS proxy host set with
setHttpsProxyHost.

Return Values
void
Throws

java.lang.Exception - thrown if unable to set HTTPS Proxy Port.

setQueryString
Description
setQueryString sets the QueryString for a query.
Syntax
public void setQueryString(QueryString query)

Parameters

Name Type Description

query string The QueryString which contains the
URL-encoded name value pairs.

Returns
void
Throws

None.

HTTPS e*Way Intelligent Adapter User’s Guide 74 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Classes and Methods HttpClient Class

setTextData

Description

setTextData sets the raw text data to be posted.

Syntax
public void setTextData(java.lang. String textData)
Parameters
Name Type Description
textData string The text data to be posted.
Returns
void
Throws
None.
setURL
Description
setURL sets the URL.
Syntax
public void setURL(java.lang. String url String)
Parameters
Name Type Description
urlString string The URL string associated with the URL setting. The
name value pairs that are supplied in the URL must be
URL-encoded. The QueryString class is preferred
when doing a Post or Get with multiple name value
pairs, rather than hardcoded in the URL.
Returns
void
Throws

java.net.MalformedURLException - thrown when an exception is returned in an
attempt to construct a java.net.URL object with the supplied URL string.

HTTPS e*Way Intelligent Adapter User’s Guide 75 SeeBeyond Proprietary and Confidential

Chapter 6
Java Classes and Methods

Section 6.3
HttpClientAPI Class

63 HttpClientAPI Class

The HttpClientAPI class extends the java.lang.Object.

The HttpClientAPI class is defined as:
public class Htpdient APl

The HttpClientAPI class methods include:

addContentType on page 76
addHeader on page 77
addHeader on page 77
clearContentType on page 78
clearContentTypes on page 78
clearHeader on page 78
clearHeader on page 79
clearHeaders on page 79

get on page 80

getBinaryData on page 80
getHttpAuthenticator on page 81
getHttpProxyHost on page 81
getHttpProxyPort on page 81
getHttpsProxyHost on page 82
getHttpsProxyPort on page 82

getQueryString on page 82
getTextData on page 83
getURL on page 83

post on page 84

reset on page 84
setBinaryData on page 85
setCookie on page 85
setHttpAuthenticator on page 85
setHttpProxyHost on page 86
setHttpProxyPort on page 86
setHttpsProxyHost on page 87
setHttpsProxyPort on page 87
setQueryString on page 88
setTextData on page 88
setURL on page 88

addContentType

Description

addContentType adds a Content-Type value, such that the next request sent will
contain the specified value in the Content-Type header.

Syntax
public void addCont ent Type(java.lang. String content Type)
Parameters
Name Type Description
contentType string The String specifying the type of
message content of the request.
Returns
void

HTTPS e*Way Intelligent Adapter User’s Guide 76

SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Classes and Methods HttpClientAPI Class

Throws

None.

addHeader

Description

addHeader adds the specified header, such that the next request sent will contain the
specified header information.

Syntax

public void addHeader (Ht t pHeader header)
Parameters

Name Type Description

header HttpHeader The header to be added.

Returns
void
Throws

None.

addHeader

Description

addHeader adds the specified header, such that the next request sent will contain the
specified header information.

Syntax
public void addHeader (j ava.l ang. String nanme, java.lang. String val ue)
Parameters
Name Type Description
name string The NAME portion of the header to be
added.
value string The VALUE portion of the header to be
added.
Returns
void
Throws
None.

HTTPS e*Way Intelligent Adapter User’s Guide 77 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Classes and Methods HttpClientAPI Class

clearContentType

clearContentType removes, if the specified Content-Type was previously added, the
Content-Type value, such that the next request sent will not contain the specified
Content-Type value.

Syntax

public void cl earContent Type(java.lang. String content Type)
Parameters

Name Type Description

contentType string The Content Type to remove

Returns
void
Throws

None.

clearContentTypes

Description

clearContentTypes removes all previously-added Content-Type values, such that the
next request sent will not contain any previously added Content-Type information.

Syntax
public void clearContentTypes()

Parameters
None.

Returns
void

Throws

None.

clearHeader

Description

clearHeader removes, if the specified header was previously set, the header, such that
the next request sent will not contain the specified header information.

Syntax
public void clearHeader(Ht t pHeader header)

HTTPS e*Way Intelligent Adapter User’s Guide 78 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Classes and Methods HttpClientAPI Class

Parameters

Name Type Description

header HttpHeader The header to remove from the list of
headers.

Returns
void
Throws

None.

clearHeader

Description

clearHeader removes, if the specified header was previously set, the header, such that
the next request sent will not contain the specified header information.

Syntax
public void clearHeader(j ava.l ang. Stri ng nane)
Parameters
Name Type Description
name string The name of the header used to locate
the HTTP header for removal from the
list of headers.
Returns
void
Throws
None.

clearHeaders

Description

clearHeaders removes all previously added headers, such that the next request sent
will not contain any of the previously added header information.

Syntax

public void clearHeaders()

Parameters

None.

HTTPS e*Way Intelligent Adapter User’s Guide 79 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Classes and Methods HttpClientAPI Class

Returns
void
Throws

None.

get
Description

get gets the data previously set by the following methods: set URL, setFormData.
Syntax

public HttpResult get()
Parameters

None.
Returns

An HttpResponse structure containing the response
Throws

java.lang.Exception

java.io.IOException - thrown when an exception is returned from attempting to open an
input stream fromthe connection.

java.net.MalformedURLException - thrown when the protocol in the URL specified is
not a legal protocol or the URL string could not be parsed.

getBinaryData

getBinaryData gets the binary data to be posted that was previously set by
setBinaryData.

Syntax

public byte[] getBinaryData()
Parameters

None.
Returns

The text data to be posted. Returns null if binary data was not previously set.
Throws

None.

HTTPS e*Way Intelligent Adapter User’s Guide 80 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Classes and Methods HttpClientAPI Class

getHttpAuthenticator

Description

getHttpAuthenticator gets the current HTTP Authenticator object that was previously
set with the setHttp Authenticator method.

Syntax

public HttpAuthenticator getHttp Authenticator()
Parameters

None.
Returns

The HTTP Authenticator object that was previously set, or null if not previously set.
Throws

None.

getHttpProxyHost

Description
getHttpProxyHost gets the current HTTP proxy host that was previously set.
Syntax
public java.lang. String getHttpProxyHost()

Parameters

None.
Returns

The HTTP proxy host currently being used, or null if HTTP proxy host was not set.
Throws

None.

getHttpProxyPort
Description
getHttpProxyPort gets the current HTTP proxy port that was previously set.
Syntax
public int getHttpProxyPort()

Parameters

None.

HTTPS e*Way Intelligent Adapter User’s Guide 81 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Classes and Methods HttpClientAPI Class
Returns
The HTTP proxy port currently being used, or -1 if HTTP proxy host was not set.
Throws

None.

getHttpsProxyHost

Description
getHttpsProxyHost gets the current HTTPS proxy host that was previously set.
Syntax

public java.lang. String getHttpsProxyHost()
Parameters

None.
Returns

The HTTPS proxy host currently being used, or null if HTTPS proxy host was not set.
Throws

None.

getHttpsProxyPort

Description
getHttpsProxyPort gets the current HTTPS proxy port that was previously set.
Syntax
public int getHttpsProxyPort()

Parameters

None.
Returns

The HTTPS proxy port currently being used, or -1 if the HTTPS host was not set.
Throws

None.

getQueryString
getQueryString gets the query data that was previously set by setQueryString.
Syntax

public QueryString getQueryString()

HTTPS e*Way Intelligent Adapter User’s Guide 82 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Classes and Methods HttpClientAPI Class
Parameters
None.
Returns
The text data to be posted. Returns null if form data was not previously set.
Throws

None.

getTextData

Description
getTextData gets the text data to be posted that was previously set by setTextData.
Syntax
public java.lang.String getTextData()

Parameters

None.
Returns

The text data to be posted. Returns null if text data was not set.
Throws

None.

getURL

Description
getURL gets the URL.
Syntax
public java.lang. String getURL()

Parameters

None.
Returns

The URL String previously set by setURL.
Throws

None.

HTTPS e*Way Intelligent Adapter User’s Guide 83 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Classes and Methods HttpClientAPI Class

post
Description

post posts the data previously set by one of the following methods: setTextData,
setBinaryData, setFormData. The Content-Type can be changed with
setContentType() before posting the data.

Syntax
public HttpResult post()
Parameters
Name Type Description
_index integer The location of the attribute.
Returns

An HTTPResponse structure containing the response.
Throws
java.lang.Exception

java.io.JOException - when an exception is returned from attempting to open an input
stream from the connection.

java.net.MalformedURLException - when the protocol in the URL specified is not a
legal protocol, or the URL string could not be parsed.

reset

Description
reset clears all headers and request data from memory.
Syntax

public void reset()

Parameters
None.

Returns
void

Throws

None.

HTTPS e*Way Intelligent Adapter User’s Guide 84 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Classes and Methods HttpClientAPI Class

setBinaryData
Description
setBinaryData sets the raw binary data to be posted.
Syntax
public void setBinaryData(byte[] bi naryDat a)

Parameters

Name Type Description

binaryData byte array The binary data to be posted.

Returns
void
Throws

None.

setCookie

setCookie enables or disables cookies.
Syntax

public void setCookie(bool ean al | owCooki e)

Parameters

Name Type Description

allowCookie boolean Set to true to allow cookies; otherwise,
set to false to disable cookies.

Returns
void
Throws

None.

setHttpAuthenticator

Description

setHttpAuthenticator sets the HTTP Authenticator object for use with web sites that
require username and password authentication.

Syntax
public void setHttpAuthenticator(Ht t pAut henti cat or htt pAut henti cat or)

HTTPS e*Way Intelligent Adapter User’s Guide 85 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Classes and Methods HttpClientAPI Class

Parameters

Name Type Description

httpAuthenticator object The HTTP Authenticator object.

Returns
void
Throws

None.

setHttpProxyHost
Description

setHttpProxyHost sets the HTTP proxy host.
Syntax

public voi d setHttpProxyHost(j ava. | ang. String httpProxyHost)
Parameters

Name Type Description

httpProxyHost string The HTTP proxy host to use.

Returns
void
Throws

java.lang.Exception - thrown if unable to set HTTP proxy host.

setHttpProxyPort

Description

setHttpProxyPort sets the HTTP proxy port.

Syntax
public voi d setHttpProxyPort(i nt httpProxyPort)
Parameters
Name Type Description
httpProxyPort integer The proxy port to use on the HTTP
proxy host set with setHttpProxyHost.

HTTPS e*Way Intelligent Adapter User’s Guide 86 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Classes and Methods HttpClientAPI Class

Returns
void
Throws

java.lang.Exception - thrown if unable to set HTTP Proxy Port.

setHttpsProxyHost
Description

setHttpsProxyHost sets the HTTPS proxy host.
Syntax

public voi d setHttpsProxyHost(j ava. | ang. String httpsProxyHost)
Parameters

Name Type Description

httpsProxyHost string The HTTPS proxy host to use.

Returns
void
Throws

java.lang.Exception - thrown if unable to set HTTPS Proxy Host.

setHttpsProxyPort

Description

setHttpsProxyPort sets the HTTPS proxy port.

Syntax
public voi d setHttpsProxyPort(i nt httpsProxyPort)
Parameters
Name Type Description
httpsProxyPort integer The HTTPS proxy port to use on the
HTTPS proxy host set with
setHttpsProxyHost.
Returns
void
Throws

java.lang.Exception - thrown if unable to set HTTPS Proxy Port.

HTTPS e*Way Intelligent Adapter User’s Guide 87 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Java Classes and Methods HttpClientAPI Class

setQueryString
setQueryString sets the QueryString for a query.
Syntax
public void setQueryString(QueryString query)

Parameters

Name Type Description

query string The QueryString which contains the
URL-encoded name value pairs.

Returns
void
Throws

None.

setTextData

Description
setTextData sets the raw text data to be posted.
Syntax
public void setTextData(j ava. | ang. Stri ng t ext Dat a)

Parameters

Name Type Description

textData string The text data to be posted.

Returns
void
Throws

None.

setURL

Description
setURL set the URL.
Syntax
public void setURL(java.lang. String url String)

HTTPS e*Way Intelligent Adapter User’s Guide 88 SeeBeyond Proprietary and Confidential

Chapter 6
Java Classes and Methods

Section 6.3
HttpClientAPI Class

Parameters
Name Type Description
urlString string The name value pairs that are supplied in the

URL and must be URL-encoded. The
QueryString class is preferred when doing a
Post or Get with multiple name value pairs,
rather than hardcoded in the URL.

Returns

void
Throws

java.net.MalformedURLException - thrown when an exception is returned in an
attempt to construct a java.net.URL object with the supplied URL string.

HTTPS e*Way Intelligent Adapter User’s Guide

89

SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Java Classes and Methods HttpClientConnector Class

6+ HttpClientConnector Class

The HttpClientConnector class makes a connection to the external HTTP server. The
main use of this class is to collect configuration parameters. Unlike a connection to a
database, there is no persistent connection to a HTTP server, and, thus, most of the
methods do nothing.

The HttpClientConnector class is defined as:

public class Httpdient Connector
The HttpClientConnector class methods include:

close on page 90 isOpen on page 91
getProperties on page 90 open on page 91
close
Description

close closes the connector to the external system and releases resources.
Syntax

public void cl ose()

Parameters
None.

Returns
void

Throws

com.stc.jecsre. EBobConnectorException - thrown when connection problems occur.

getProperties

Description

getProperties retrieves the connector properties (stored by the constructor) used by the
connector to access the external system.

Syntax

public java.util.Properties getProperties()

Parameters
None.
Returns

Connection properties of the external system.

HTTPS e*Way Intelligent Adapter User’s Guide 90 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Java Classes and Methods HttpClientConnector Class

Throws

None.

isOpen
Description
isOpen verifies that the connector to the external system is still available.

Syntax
public bool ean i sOpen()

Parameters
None.
Returns

boolean
TRUE if the connector is still open and available; FALSE otherwise.

Throws

com.stc.jcsre. EBobConnectionException - thrown when connection problems occur.

open
Description

open opens the connector for accessing the external system.

Syntax
public void open(bool ean int oEgate)
Parameters
Name Type Description
intoEgate boolean TRUE if the connector is to subscribe for

events initially from an external system and
inbound to e*Gate; FALSE if the connector is
to publish events outbound from e*Gate to
an external system.

Returns

Void
Throws

com.stc.jcsre. EBobConnectionException - thrown when connection problems occur.

HTTPS e*Way Intelligent Adapter User’s Guide 91 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Java Classes and Methods HttpHeader Class

s HttpHeader Class

The HttpHeader class is composed of two constructors only (constructors are not being
defined in the Java Classes and Methods chapter, except where only constructors are
defined). Both constructors, each named HttpHeader, construct an HttpHeader.

The HttpHeader class is defined as:
public class HttpHeader ()

The HttpHeader class constructors include:

HttpHeader on page 92 HttpHeader on page 92

HttpHeader

Description
HttpHeader constructs an HttpHeader.
Syntax
public HttpHeader ()

Parameters
None.

Returns
None.

Throws

None.

HttpHeader

Description

HttpHeader constructs an HttpHeader.

Syntax
public HttpHeader(java.lang.String nane, java.lang.String val ue)
Parameters
Name Type Description

name java.lang.String The name portion of the HttpHeader.

value java.lang.String The value portion of the HttoHeader.
Returns

None.

HTTPS e*Way Intelligent Adapter User’s Guide 92 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Java Classes and Methods HttpHeader Class

Throws

None.

HTTPS e*Way Intelligent Adapter User’s Guide 93 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Java Classes and Methods HttpResult Class

6o HttpResult Class

The HttpResult class extends java.lang.Object.
The HttpResult class is defined as:

public class HttpResult
The HttpResult class methods include:

getBinaryResult on page 94

getHeader on page 94 setBinaryResult on page 97
getHeaderCount on page 95 setHeaders on page 97
getIsTextResult on page 95 setIsTextResult on page 98
getResponseCode on page 96 setResponseCode on page 98
getResponseMessage on page 96 setResponseMessage on page 99
getTextResult on page 96 setTextResult on page 99

getBinaryResult

Description

getBinaryResult gets the binary result returned from the server.
Syntax

public byte[] getBinaryResult()
Parameters

None.
Returns

The HTTP binary result returned from the server.
Throws

java.lang.Exception

getHeader
Description
getHeader gets a header from the list of headers.

Syntax
public HttpHeader getHeader(int index)

HTTPS e*Way Intelligent Adapter User’s Guide 94 SeeBeyond Proprietary and Confidential

Chapter 6
Java Classes and Methods

Section 6.6
HttpResult Class

Parameters
Name Type Description
index integer The index of the header to retrieve.
Returns
The HTTP header
Throws

java.lang.Exception

getHeaderCount

Description

getHeaderCount gets a count of the headers.

Syntax

public int getHeader Count ()

Parameters
None.

Returns

The number of result headers from the server.

Throws

com.stc.jcsre.MarshalException - thrown if unable to marshall contents of this object

into a byte array.

getlsTextResult

Description

getIsTextResult checks the data type returned from the server; if the data is text, then
true is returned; otherwise, false is retuned for binary data.

Syntax

publ i ¢ bool ean get Text Resul t ()

Parameters
None.

Returns

If data received from the server is text data, the true is returned; otherwise, if binary

data, false is returned.
Throws

java.lang.Exception

HTTPS e*Way Intelligent Adapter User’s Guide

95

SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Java Classes and Methods HttpResult Class

getResponseCode

Description

getResponseCode gets the response code returned from the server. For esxample,
200 (HTTP_OK).

Syntax
public int get ResponseCode()

Parameters

None.
Returns

The HTTP response code from the server.
Throws

java.lang.Exception

getResponseMessage

Description
getResponseMessage gets the response message returned from the server.
Syntax

public java.lang. String get ResponseMessage()

Parameters

None.
Returns

The HTTP response message from the server.
Throws

java.lang.Exception

getTextResult

Description
getTextResult gets the text result returned from the server.
Syntax

public java.lang. String get Text Result()
Parameters

None.

HTTPS e*Way Intelligent Adapter User’s Guide 96 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Java Classes and Methods HttpResult Class
Returns
The HTTP result from the server.
Throws

java.lang.Exception

setBinaryResult

Description
setBinaryResult sets the binary result returned from the server.
Syntax

public void setBinaryResult(byte[] binaryResult)
Parameters

Name Type Description

binaryResult byte array The HTTP binary result from the
server.

Returns
void
Throws

None.

setHeaders
Description
setHeaders sets the result headers returned from the server.

Syntax

public void setHeaders(java.util.Vector headers)
Parameters

Name Type Description

headers java.util.Vector HTTP result headers from the server in
a Vector.

Returns
void
Throws

None.

HTTPS e*Way Intelligent Adapter User’s Guide 97 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Java Classes and Methods HttpResult Class

setlsTextResult

Description

setIsTextResult sets the response message returned from the server as text if given true;
otherwise, sets the response message as binary if given false.

Syntax

public void setlsTextResult(bool ean i sText Dat a)

Parameters

Name Type Description

isTextData boolean The flag to indicate text data if set to
true; otherwise, binary data is set to
false.

Returns
void
Throws

None.

setResponseCode

Description
setResponseCode sets the response code returned from the server.
Syntax

public void set ResponseCode(int responseCode)

Parameters

Name Type Description

responseCode integer The HTTP response code from the
server.

Returns
void
Throws

None.

HTTPS e*Way Intelligent Adapter User’s Guide 98 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Java Classes and Methods HttpResult Class

setResponseMessage

Description
setResponseMessage sets the response message returned from the server.
Syntax

public voi d set ResponseMessage(java.l ang. String responseMessage)

Parameters

Name Type Description

setResponseMessage string The HTTP response message from the
server.

Returns
void
Throws

None.

setTextResult

Description
setTextResult sets the binary result returned from the server.
Syntax

public void setTextResult(java.lang.String textResult)

Parameters

Name Type Description

textResult string The HTTP text result from the server.

Returns
void
Throws

com.stc.jcsre.UnmarshalException - thrown if unable to interpret the _blob into the
internal class attributes.

HTTPS e*Way Intelligent Adapter User’s Guide 99 SeeBeyond Proprietary and Confidential

Chapter 6
Java Classes and Methods

Section 6.7
HttpsSecurityProperties Class

- HttpsSecurityProperties Class

The HttpsSecurityProperties class extends the java.lang.Object.

The HttpsSecurityProperties class is defined as:

public final class HttpsSecurityProperties

The HttpsSecurityProperties class methods include:

addProvider on page 100
getKeyManagerAlgorithm on page 101
getProviders on page 101

getSSLServerSocketFactoryImpl on
page 101

getSSLSocketFactoryImpl on page 102
getTrustManagerAlgorithm on page 102
getX509CertificateImpl on page 102

insertProviderAt on page 103
setKeyManagerAlgorithm on page 103

setSSLServerSocketFactoryImpl on
page 104

setSSLSocketFactoryImpl on page 104

setTrustManagerAlgorithm on page 105
setX509CertificateImpl on page 105

addProvider

Description

addProvider adds a Cryptographic Service Provider (provider). This method will add a
JSSE provider implementation to the list of provider implementations. This method
must be called, after calling HttpsSystemProperties.setHttpsImplementation, in order

to use HTTPS.
Syntax
public static void addProvider(java.lang. String providerC ass)
Parameters
Name Type Description
providerClass string The JSSE Cryptographic Service

Provider to add to the list of JSSE
provider implementations.

Returns

static void
Throws

java.lang.Exception

HTTPS e*Way Intelligent Adapter User’s Guide 100

SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.7
Java Classes and Methods HttpsSecurityProperties Class

getKeyManagerAlgorithm

Description

getKeyManagerAlgorithm gets the default Key Manager Algorithm name previously
set.

Syntax

public static java.lang. String get KeyManager Al gorithm()
Parameters

None.
Returns

The name of the key manager algorithm that was previously set.
Throws

None.

getProviders

Description

getProviders gets a list of Cryptographic Service Providers (providers). This method
will get a list of the providers that were previously set.

Syntax

public static java.security.Provider[] getProviders()

Parameters

None.
Returns

An array of Providers that were added or installed.
Throws

java.lang.Exception - thrown when any generic error occurs.

getSSLServerSocketFactorylmpl

Description

getSSLServerSocketFactoryImpl gets the default SSL Server Socket Factory
implementation.

Syntax

public static java.lang. String get SSLServer Socket Fact oryl npl ()
Parameters

None.

HTTPS e*Way Intelligent Adapter User’s Guide 101 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.7
Java Classes and Methods HttpsSecurityProperties Class
Returns
The implementation class of SSL Server Socket Factory.
Throws

None.

getSSLSocketFactorylmpl

Description
getSSLSocketFactoryImpl gets the default SSL Socket Factory implementation.
Syntax

public static java.lang. String get SSLSocket Fact oryl npl ()
Parameters

None.
Returns

The implementation class of SSL Socket Factory.
Throws

None.

getTrustManagerAlgorithm

Description

getTrustManagerAlgorithm gets the default Trust Manager Algorithm name
previously set.

Syntax

public static java.lang. String get Trust Manager Al gorithm)
Parameters

None.
Returns

The name of the trust manager algorithm that was previously set.
Throws

None.

getX509Certificatelmpl

Description

getX509CertificateImpl gets the X509Certificate implementation.

HTTPS e*Way Intelligent Adapter User’s Guide 102 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.7
Java Classes and Methods HttpsSecurityProperties Class
Syntax

public static java.lang. String get X509Certificatel npl ()
Parameters

None.
Returns

the implementation class of X509Certificate.
Throws

None.

insertProviderAt

Description

insertProviderAt adds a Cryptographic Service Provider (provider). This method will
add a JSSE provider implementation to the list of provider implementations. This
method must be called, after calling HttpsSystemProperties.setHttpsImplementation,
in order to use HTTPS. The provider will be inserted into the list at the position
indicated by position.

Syntax

public static void insertProviderAt(java.lang. String providerd ass,
int position)

Parameters
Name Type Description
providerClass string The JSSE Cryptographic Service
Provider to add to the list of JSSE
provider implementations.
position integer The position to insert this Provider.
Returns

static void
Throws

java.lang.Exception

setKeyManagerAlgorithm
Description

setKeyManagerAlgorithm sets the default Key Manager Algorithm name.
Syntax

public static void set KeyManager Al gorithn(java.lang. String
keyManager Al goNane)

HTTPS e*Way Intelligent Adapter User’s Guide 103 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.7

Java Classes and Methods HttpsSecurityProperties Class
Parameters
Name Type Description
keyManagerAlgoName string The name of the key manager
algorithm to use.

Returns
static void
Throws

java.lang.Exception - thrown if unable to set the default key manager algorithm name.

setSSLServerSocketFactorylmpl

Description
setSSLServerSocketFactoryImpl sets the default SSL Socket Factory implementation.
Syntax

public static void set SSLServer Socket Fact oryl npl (j ava.l ang. Stri ng
ssl Server Socket Fact oryl npl d ass)

Parameters

Name Type Description

sslServerSocketFactorylmplClass The implementation class of SSL
Server Socket Factory. For example,
if the implementation class is called
MySSLServerSocketFactorylmpl and
it appears in the com.radcrypto
package, you should specify
com.radcrypto.MySSLServerSocketF
actorylmpl.

Returns
static void
Throws

java.lang.Exception - thrown if unable to set the default SSL Server Socket Factory
implementation.

setSSLSocketFactorylmpl

Description

setSSLSocketFactoryImpl sets the default SSL Socket Factory implementation.

HTTPS e*Way Intelligent Adapter User’s Guide 104 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.7
Java Classes and Methods HttpsSecurityProperties Class

Syntax

public static void set SSLSocket Factoryl npl (java.lang. String
ssl Socket Fact oryl npl Cl ass))

Parameters
Name Type Description
sslSocketFactorylmplClass integer The implementation class of SSL
Socket Factory.
Returns

static void
Throws

java.lang.Exception - thrown if unable to set the default SSL Socket Factory
implementation.

setTrustManagerAlgorithm

Description
setTrustManagerAlgorithm sets the default Trust Manager Algorithm name.
Syntax

public static void setTrust Manager Al gorithn{(java.l ang. String
t rust Manager Al goNane)

Parameters
Name Type Description
trustManagerAlgoName | string The name of the trust manager
algorithm to use.
Returns

static void
Throws

java.lang.String - thrown if unable to set the default trust manager algorithm name.

setX509Certificatelmpl

Description
setX509CertificateImpl sets the X509Certificate implementation.
Syntax

public static void set X509Certificatel npl(java.lang.String
x509Certificatel npl)

HTTPS e*Way Intelligent Adapter User’s Guide 105 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.7

Java Classes and Methods HttpsSecurityProperties Class
Parameters
Name Type Description
x509Certificatelmpl string The implementation class of
X509Certificate.
Returns

static void
Throws

java.lang.Exception - thrown if unable to set the X509Certificate implementation.

HTTPS e*Way Intelligent Adapter User’s Guide 106 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.8
Java Classes and Methods HttpsSystemProperties Class

s HttpsSystemProperties Class

The HttpsSystemProperties class extends java.lang.Object.
The HttpsSystemProperties class is defined as:

public final class HttpsSystemProperties
The HttpsSystemProperties class extends java.lang.Object

The HttpsSystemProperties class methods include:

getHttpsProtocolImpl on page 107 setHttpsProtocolImpl on page 110
getKeyStore on page 107 setKeyStore on page 110
getKeyStorePassword on page 108 setKeyStorePassword on page 111
getKeyStoreType on page 108 setKeyStoreType on page 111
getTrustStore on page 109 setTrustStore on page 112
getTrustStorePassword on page 109 setTrustStorePassword on page 112
getTrustStoreType on page 109 setTrustStoreType on page 113
getHttpsProtocollmpl
Description
getHttpsProtocolImpl gets the HTTPS protocol implementation that was previously
set.
Syntax
public static java.lang. String getHttpsProtocol I npl ()
Parameters
None.
Returns

static java.lang.String

The HTTPS protocol implementation package name. If not previously set, null will be
returned.

Throws

None.

getKeyStore

Description

getKeyStore gets the default KeyStore previously set.

HTTPS e*Way Intelligent Adapter User’s Guide 107 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.8
Java Classes and Methods HttpsSystemProperties Class
Syntax

public static java.lang. String get KeyStore()
Parameters

None.
Returns

Full path file name specifying the KeyStore if previously set; otherwise, returns null.
Throws

None.

getKeyStorePassword

Description
getKeyStorePassword gets the default KeyStore password previously set.
Syntax

public static void get KeyStorePassword()

Parameters

None.
Returns

The KeyStore password that was previously set. Null if not previously set.
Throws

None.

getKeyStoreType
Description

getKeyStoreType gets the default KeyStore type previously set.
Syntax

public static java.lang. String getKeyStoreType()
Parameters

None.
Returns

The KeyStore type that was previously set. Null if not previously set.
Throws

com.stc.jcsre.MarshalException - thrown if unable to marshall contents of this object
into a byte array.

HTTPS e*Way Intelligent Adapter User’s Guide 108 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.8
Java Classes and Methods HttpsSystemProperties Class

getTrustStore

Description
getTrustStore gets the default TrustStore previously set.
Syntax

public static java.lang. String get Trust Store()

Parameters

None.
Returns

Full path file name specifying the TrustStore, if previously set.
Throws

None.

getTrustStorePassword

Description
getTrustStorePassword gets the default TrustStore password previously set.
Syntax

public static java.lang. String get Trust St or ePasswor d()
Parameters

None.
Returns

The TrustStore password that was previously set. Null if not previously set.
Throws

None.

getTrustStoreType
Description
getTrustStoreType gets the default TrustStore type previously set.

Syntax
public void getTrust StoreType()

Parameters

None

HTTPS e*Way Intelligent Adapter User’s Guide 109 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.8
Java Classes and Methods HttpsSystemProperties Class

Returns
static java.lang.String
Throws

None.

setHttpsProtocollmpl

Description

setHttpsProtocollmpl sets the HTTPS protocol implementation. This method will add
the “https” URLStreamHandler implementation by including the handler’s
implementation package name to the list of packages that are searched by the Java URL
class.

Syntax

public static void setHttpsProtocol |l npl (java.lang. String
ht t psPr ot ocol | npl)

Parameters
Name Type Description
httpsProtocollmpl string The HTTPS protocol implementation package
name.
Returns

static void
Throws

java.lang.Exception - thrown if unable to set the HTTPS Protocol Implementation.

setKeyStore

Description

setKeyStore sets the default KeyStore file. If the default KeyStore is not specified with
this method, then the KeyStore managed by KeyManager is empty.

Syntax
public static void setKeyStore(java.lang.String keyStoreFile)
Parameters
Name Type Description
keyStoreFile string Full path file name specifying the KeyStore.
See Sun’s keytool utility program for more
detail.

HTTPS e*Way Intelligent Adapter User’s Guide 110 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.8
Java Classes and Methods HttpsSystemProperties Class
Returns
static void
Throws

java.lang.Exception - thrown if unable to set the default KeyStore.

setKeyStorePassword

Description

setKeyStorePassword sets the default KeyStore password. If the default KeyStore
password is not set with this method, then the default KeyStore password is assumed
to be ““. See the Sun keytool for more detail.

Syntax

public static void setKeyStorePassword(java.lang. String
keySt or ePasswor d)

Parameters
Name Type Description
keyStorePassword string The KeyStore password.
Returns

static void
Throws

java.lang.Exception - thrown if unable to set the default KeyStore password.

setKeyStoreType

Description

setKeyStoreType sets the default KeyStore type. If the default KeyStore type is not set
with this method, then the default KeyStore type “jks” is used.

Syntax
public static void setKeyStoreType(java.lang. String keyStoreType)
Parameters
Name Type Description
keyStoreType string The KeyStore type.
Returns

static void

HTTPS e*Way Intelligent Adapter User’s Guide 111 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.8
Java Classes and Methods HttpsSystemProperties Class

Throws

java.lang.Exception - thrown if unable to set the default KeyStore type.

setTrustStore

Description

setTrustStore sets the default TrustStore. If the default TrustStore is not specified with
this method, then a default TrustStore is searched for. For instance, if a TrustStore
named /lib/security/jssecacerts is found, it is used. If not, a search for /lib/security/
cacerts is performed, and, if found, is used. Finally, if a TrustStore is still not found, then
the TrustStore managed by the TrustManager will be a new empty TrustStore. See the
Sun keytool utility program for more detail.

Syntax
public static void setTrustStore(java.lang. String trustStoreFile)
Parameters
Name Type Description
trustStoreFile string Full path file name specifying the
TrustStore.
Returns

static void
Throws

java.lang.Exception - thrown if unable to set the default TrustStore.

setTrustStorePassword

Description

setTrustStorePassword sets the default TrustStore password. If the default TrustStore
password is not set with this method, then the default TrustStore password is assumed
to be “”. See the Sun keytool utility for more detail.

Syntax

public static void setTrust StorePassword(java.lang. String
trust St or ePasswor d)

Parameters
Name Type Description
trustStorePassword string The TrustStore password.
Returns

static void

HTTPS e*Way Intelligent Adapter User’s Guide 112 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.8
Java Classes and Methods HttpsSystemProperties Class

Throws

java.lang.Exception - thrown if unable to set the default TrustStore password.

setTrustStoreType
Description

setTrustStoreType sets the default TrustStore type.

Syntax
public static void setTrust StoreType(java.lang. String trustStoreType)
Parameters
Name Type Description
trustStoreType string The TrustStore type.
Returns

static void
Throws

java.lang.Exception - thrown if unable to set the default KeyStore type.

HTTPS e*Way Intelligent Adapter User’s Guide 113 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.9
Java Classes and Methods QueryPair Class

6o QueryPair Class

The QueryPair class extends java.lang.Object.
The QueryPair class is defined as:

public class QueryPair
The QueryPair class extends

The QueryPair class methods include:

getName on page 114 setValue on page 115
getValue on page 114 toString on page 116

setName on page 115

getName

Description
getName gets the name portion of the query pair.
Syntax

public java.lang. String get Nane()
Parameters

None.
Returns

The name portion of the query
Throws

None.

getValue

Description
getValue gets the value portion of the query pair.
Syntax

public java.lang.string getVal ue()

Parameters
None.
Returns

Value portion of the query.

HTTPS e*Way Intelligent Adapter User’s Guide 114 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.9
Java Classes and Methods QueryPair Class

Throws

None.

setName

Description
setName sets the name portion of the query pair.
Syntax

public void setNanme(java.lang. String nane)

Parameters

Name Type Description

name string The Name portion of the query.

_attribute Attribute The key-value pair mapping.

Returns
void
Throws

None.

setValue

Description
setValue sets the value portion of the query pair. The value will be URL-encoded.
Syntax

public void setVal ue(java.l ang. String val ue)

Parameters

Name Type Description

value string The Value portion of the query.

Returns
void
Throws

None.

HTTPS e*Way Intelligent Adapter User’s Guide 115 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.9
Java Classes and Methods QueryPair Class

toString

Description

toString returns the name/value query pair as URL-encoded strings. Overrides
toString in class java.lang.Object.

Syntax
public java.lang. String toString()

Parameters

None.
Returns

URL-encoded name/value pair string.
Throws

None.

HTTPS e*Way Intelligent Adapter User’s Guide 116 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.10
Java Classes and Methods QueryString Class

610 QueryString Class

The QueryString class extends java.lang.Object.
The QueryString class is defined as:

public class QueryString
The QueryString class methods include:

add(QueryPair queryPair) on page 117 getQueryPair(int index) on page 119

add(java.lang.String name, getQueryString on page 120
java.lang.String value) on page 117

clone on page 118 setQueryPair on page 120
getCount on page 118 toString on page 121

getQueryPair() on page 119

add(QueryPair queryPair)
Description
add adds a name/value pairing.
Syntax
public void add(QueryPair queryPair)

Parameters

Name Type Description

queryPair QueryPair The query name/value pair.

Returns
void
Throws

None.

add(java.lang.String name, java.lang.String value)
Description

add adds a name/value pairing.
Syntax

public void add(java.lang. String nanme, java.lang.String val ue)

HTTPS e*Way Intelligent Adapter User’s Guide 117 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.10
Java Classes and Methods QueryString Class

Parameters

Name Type Description

name string The name portion of the query pair.

value string The value portion of the query pair.

Returns
void
Throws

None.

clone

Description
clone constructs a QueryString by cloning itself.
Syntax
public java.lang. Obj ect clone()
The cloned QueryString object. Needs to be casted to a QueryString as

this
nmet hod overrides the Object clone() nethod.

Parameters
None.
Returns

The cloned QueryString object. Needs to be casted to a QueryString as this method
overrides the Object clone() method.

Throws

None.

getCount

Description

getCount gets a count of the query pairs.

Syntax
public int getCount()
Parameters
Name Type Description
_index integer The location of the attribute.
_attribute Attribute The key-value pair mapping.

HTTPS e*Way Intelligent Adapter User’s Guide 118 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.10
Java Classes and Methods QueryString Class
Returns
The number of query pairs in the query.
Throws

None.

getQueryPair()
Description

getQueryPair gets the QueryPair placeholder object. Added to work with .xsc and Java
collaboration editor for drag and drop. Once data is populated in the QueryPair
placeholder object, use one of the other methods for managing query or form data
information. If this method is not called, a default QueryPair object is used.

Syntax
public QueryPair getQueryPair()
Parameters
None.
Returns

The QueryPair object being used as a placeholder for adding HTTP query or form data
information.

Throws

None.

getQueryPair(int index)
Description
getQueryPair gets a query pair from the list of query pairs..
Syntax
public QueryPair getQueryPair(int index)

Parameters
Name Type Description
index integer The index to the QueryPair that is to
be retrieved.
Returns

a query pair in the query
Throws

None.

HTTPS e*Way Intelligent Adapter User’s Guide 119 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.10
Java Classes and Methods QueryString Class

getQueryString
Description
getQueryString returns the string format of QueryString.
Syntax
public java.lang. String toString()

Parameters
None.
Returns

The string format of QueryString; the name and value pairs of each query will be URL-
encoded.

Throws

None.

setQueryPair
Description

setQueryPair sets the QueryPair placeholder object. Added to work with .xsc and Java
collaboration editor for drag and drop. Once data is populated in the QueryPair
placeholder object, use one of the other methods for managing query or form data
information. If this method is not called, a default QueryPair object is used.

Syntax
public void setQueryPair(QueryPair gPair)
Parameters
Name Type Description
qpair object The QueryPair object to be used as a
place holder for adding HTTP query or
form data information.
Returns
void
Throws
None.

HTTPS e*Way Intelligent Adapter User’s Guide 120 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.10
Java Classes and Methods QueryString Class

toString
Description

toString returns the string format of QueryString. Overrides toString in class
java.lang.String.

Syntax

public java.lang. String toString()
Parameters

None.
Returns

The string format of QueryString; the name and value pairs of each query will be URL-
encoded.

Throws

None.

HTTPS e*Way Intelligent Adapter User’s Guide 121 SeeBeyond Proprietary and Confidential

Appendix A

Appendix A

a1 Openssl

The purpose of this appendix is to provide detailed information on the usage of the
“openssl” utility. Openssl is a free implementation of cryptographic, hashing, and
public key algorithms such as 3DES, SHA1, and RSA respectively. The openssl utility
has many options including certificate signing that keytool does not provide. Openssl
can be downloaded from :

http:/ /www.openssl.org
Follow the build and installation instruction for Openssl.

To learn more about SSL, and the high level aspects of cryptography, a good source of
reference is a book entitled SSL and TLS: Designing and Building Secure Systems (by Eric
Rescorla, Published by Addison Wesley Professional; ISBN: 0201615983).

A sample follows that demonstrates the use of the openssl utility to create a CA. This
generated CA is then used to sign a CSR (whether generated from keytool or openssl).

a11 Creating a Sample CA Certificate

For testing purposes a sample CA can be generated. To avoid spending additional
funds to have a commercial CA sign our test certificates, a sample is generated, and
used to sign the test certificate.

Perform the following from the command line.
1

openssl req -config c:\openssl\bin\openssl.cnf -new -x509 -keyout
ca-key.pemtxt -out ca-certificate.pemtxt -days 365

Usi ng configuration from c:\openssl\bin\openssl.cnf
Loadi ng 'screen' into random state - done
CGenerating a 1024 bit RSA private key

++++++

..................... ++++++

witing new private key to 'ca-key.pemtxt'

Ent er PEM pass phrase:

Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be

i ncorporated into your certificate request.

VWhat you are about to enter is what is called a Distingui shed Nane or
a DN.

HTTPS e*Way Intelligent Adapter User’s Guide 122 SeeBeyond Proprietary and Confidential

http://www.openssl.org

Appendix A
Appendix A

Section A.1
Openssl

There are quite a few fields but you can | eave sone bl ank
For some fields there will be a default val ue,

If you enter '.', the field will be left blank.
Country Name (2 letter code) []:US

State or Province Nane (full nane) []:California
Locality Nane (eg, city) []:Mnrovia

Organi zati on Nane (eg, conpany) []: SeeBeyond

Organi zational Unit Nanme (eg, section) []:Devel opnent
Comon Nane (eg, your websites domai n nane)

[1:devel opnent. seebeyond. com

Emai | Address []:devel opment @eebeyond. com

You will be prompted for information; you must enter a password and remember this
password for signing certificates with the CA’s private key. This command creates a
private key and the corresponding certificate for our CA. The certificate is valid for 365
days starting from the date and time it was created.

The configuration file “C:\openssl\bin\openssl.cnf” is needed for the req command.
The default config.cnf file is in the Openssl package under “apps” subdirectory.

Note: That to use this file in Windows, you must change the paths to use double back-

slashes. See Appendix B for a complete Config.cnf that is known to work in a
Windows environment.

a12 Signing Certificates With Your Own CA

Let’s create a CSR with keytool and generate a signed Certificate for the CSR with the
CA we had created. The following steps for generating a KeyStore and a CSR were
already described in Creating a KeyStore in JKS Format on page 10. No details are
given here for the keytool commands; refer to the fore mentioned sections for the
details.

1
keyt ool —keystore clientkeystore —genkey —alias client
Enter keystore password: seebeyond

VWhat is your first and | ast name?

[Unknown] : devel opnent . seebeyond. com

What is the name of your organizational unit?

[Unknown]: Devel opnent

What is the name of your organization?

[Unknown] : SeeBeyond

VWhat is the name of your City or Locality?

[Unknown]: Mbdnrovi a

What is the nanme of your State or Province?

[Unknown]: California

VWhat is the two-letter country code for this unit?

[Unknown] : US

I s <CN=Foo Bar, OU=Devel opnent, O=SeeBeyond, L=Mbonrovi a,
ST=Cal i fornia, C=US> correct?

[no]: vyes

Enter key password for <client>

(RETURN i f sane as keystore password):

HTTPS e*Way Intelligent Adapter User’s Guide

123 SeeBeyond Proprietary and Confidential

Appendix A Section A.1
Appendix A Openssl

keytool —keystore clientkeystore -—certreq -alias client —keyalg
rsa —file client.csr

3

openssl x509 -req -CAca-certificate.pemtxt -CAkey ca-key.pemtxt
-in client.csr -out client.cer -days 365 -Cacreateserial

This is how we create a signed Certificate for the associated CSR. The option “-
Cacreateserial” is needed if this is the first time the command is issued. It is used to
create an initial serial number file used for tracking certificate signing. This
certificate will be valid for 365 days.

keytool -import -keystore clientkeystore -file client.cer -alias
client

Enter keystore password: seebeyond
keytool error: java.lang.Exception: Failed to establish chain from

reply

We get an exception because there is no certificate chain in the client certificate so
we have to import the CA’s certificate into the KeyStore first. We can then import
the client.cer itself to form a certificate chain. Thus, we need two steps :

keytool -import -keystore clientkeystore -file CA ca-
certificate.pemtxt -alias theCARoot

Enter keystore password: seebeyond

Owner: Enmi | Addr ess=devel oprment @eebeyond. com

CN=devel opnent . seebeyond. com OU=Devel opnent, O=SeeBeyond,
L=Monrovi a, ST=California, C=US

| ssuer: Emmil Addr ess=devel opnent @eebeyond. com

CN=devel opnent . seebeyond. com

OU=Devel opnent, O=SeeBeyond, L=Monrovia, ST=California, C=US
Serial nunmber: O

Valid from Tue May 08 15:09: 07 PDT 2001 until: Wd May 08 15:09: 07
PDT 2002

Certificate fingerprints:

MD5: 60:73:83: A0: 7C: 33: 28: C3: D3: A4: 35: A2: 1E: 34: 87: FO

SHAL: C6: DO: C7: 93: 8E: A4: 08: F8: 38: BB: D4: 11: 03: C9: E6: CB: 9C: DO: 72: DO
Trust this certificate? [no]: vyes

Certificate was added to keystore

keyt ool —inport —keystore clientkeystore —file <client.cer -alias
client

Enter keystore password: seebeyond

Certificate reply was installed in keystore
Now that we have a private key and an associating certificate chain in the KeyStore
“clientkeystore”, we can use it as a KeyStore for client (eWay) authentication. The
only caveat is that our CA certificate must be imported into the trusted certificate
store of the web server to which we will be connecting. More over, the web server
should be configured for client authentication (httpd.conf for Apache for example).

HTTPS e*Way Intelligent Adapter User’s Guide 124 SeeBeyond Proprietary and Confidential

Appendix B

Appendix B

81 Openssl.cnf

This appendix contains the contents of the openssl.cnf file that can be used on
Windows. Make the appropriate changes to the directories.

1.1 Openssl.cnf for Windows

#

SSLeay exanple configuration file.

This is nostly being used for generation of certificate requests.
#

RANDFI LE= . rnd

HRBHHH BB HHH B R PR R A R PR R R R R R R A R R R R R R R R R H?
[ca]

default _ca= CA default# The default ca section

HERHHHHH I
[CA default]

dir = G \\openssl\\\bi n\\ denoCA# Where everything is kept
certs = $dir\\certs # Where the issued certs are kept
crl_dir= $dir\\crl # Where the issued crl are kept

dat abase= $dir\\index. txt# database index file.
new certs_dir= $dir\\newcerts# default place for new certs.

certificate= $dir\\cacert.pem # The CA certificate
seri al = $dir\\serial # The current serial numnber
crl = $dir\\crl.pem # The current CRL

private_key= $dir\\private\\cakey. pem # The private key
RANDFI LE= $dir\\private\\private.rnd # private random nunber file

x509 ext ensi ons= x509v3_ext ensi ons# The extentions to add to the cert
defaul t _days= 365 # how long to certify for
default _crl _days= 30# how | ong before next CRL

def aul t _nd= nd5 # which md to use.

preserve = no # keep passed DN ordering

A few difference way of specifying how sinmlar the request should
| ook

For type CA the listed attributes nust be the sanme, and the

opt i onal

and supplied fields are just that :-)

policy = policy _match

For the CA policy
[policy_match]

HTTPS e*Way Intelligent Adapter User’s Guide 125 SeeBeyond Proprietary and Confidential

Appendix B Section B.1
Appendix B Openssl.cnf

countryNane = match

stat eOr Provi nceName= mat ch

or gani zati onName= mat ch

or gani zat i onal Uni t Nane= opti onal
conmonNane = supplied

emai | Address = opti onal

For the '"anything' policy

At this point in tinme, you nust list all acceptable 'object'
types.

[policy anything]

count ryName= opti onal

st at eO Provi nceNanme= opti onal

| ocal i tyNane= opti onal

or gani zati onName= opti onal

or gani zat i onal Uni t Nane= opti onal

commonNane = supplied

emai | Address = opti onal

HHHHBHHH PR H B H R H R R R R R R R R R R
[req]

default_bits= 1024

default _keyfile = privkey. pem

di stingui shed_nanme= req_di sti ngui shed_nane

attributes= req_attributes

[req_distingui shed_nane]

countryNane = Country Nane (2 |letter code)
countryName_m n= 2

countryName_max= 2

stateOr Provi nceNane= State or Province Name (full nane)

| ocalityName = Locality Nane (eg, city)

0. organi zat i onName= Or gani zati on Nanme (eg, comnpany)

or gani zati onal Uni t Nane= Organi zational Unit Nane (eg, section)

commonNarme = Common Name (eg, your website's domai n nane)
comonNanme_max= 64

emai | Address = Enmi | Address
emai | Address_nmax= 40

[reg_attributes]

chal | engePassword= A chal | enge password
chal | engePassword_m n= 4

chal | engePasswor d_nmax= 20

[x509v3_extensions]

under ASN. 1, the 0 bit would be encoded as 80
nsCert Type = 0x40

#nsBaselr |
#nsRevocati onUr |
#nsRenewal Ur |
#nsCaPol i cyUr |
#nsSsl| Ser ver Nane
#nsCert Sequence
#nsCert Ext

#nsDat aType

HTTPS e*Way Intelligent Adapter User’s Guide 126 SeeBeyond Proprietary and Confidential

Index

Index

A

Accept-type 24

APIs
eX-count-attribute 91
eX-get-attribute 90
eX-set-attribute 58, 80, 91
eX-set-BP_EVENT 58

C

Classpath Override 18
Classpath Prepend 18
Collaborations 51
components 12

D
Disable JIT 20

E

e*Insight Java Helper Methods 56-100
eX-count-attribute 91

eX-get-attribute 90

eX-set-attribute 58, 80, 91
eX-set-BP_EVENT 58

H

HTTP configurations
Accept-type 24

HTTP Proxy Configuration
User Name 26

HTTP Proxy configuration
Use Proxy Server 24

Initial Heap Size 19

installation 14
Windows NT 14

intended reader 12

HTTPS e*Way Intelligent Adapter User’s Guide 127

M

Maximum Heap Size 19

O

overview 1

U

Use Proxy Server 24
User Name 26

SeeBeyond Proprietary and Confidential

	HTTPS e*Way Intelligent Adapter User’s Guide
	Contents
	Introduction
	1.1 Overview
	1.1.1 The Java Classes that Make up the e*Way
	JDK Classes
	SeeBeyondClasses

	1.1.2 SSL Handshake
	1.1.3 SSL Support
	KeyStores and TrustStores
	Methods for generating a KeyStore and a TrustStore
	Creating a KeyStore in JKS Format
	Creating a KeyStore in PKCS12 Format

	1.1.4 Intended Reader
	1.1.5 Components

	1.2 System Requirements

	Installation
	2.1 Windows NT or Windows 2000
	2.1.1 Pre-installation
	2.1.2 Installation Procedure

	2.2 UNIX
	2.2.1 Pre-installation
	2.2.2 Installation Procedure

	2.3 Files/Directories Created by the Installation

	Multi-Mode e*Way Configuration
	3.1 Multi-Mode e*Way
	3.1.1 JVM Settings
	JNI DLL Absolute Pathname
	CLASSPATH Prepend
	CLASSPATH Override
	Initial Heap Size
	Maximum Heap Size
	Maximum Stack Size for Native Threads
	Maximum Stack Size for JVM Threads
	Class Garbage Collection
	Garbage Collection Activity Reporting
	Asynchronous Garbage Collection
	Report JVM Info and all Class Loads
	Disable JIT
	Allow Remote Debugging of JVM

	e*Way Connection Configuration
	4.1 Configuring e*Way Connections
	4.1.1 Connector
	Type
	Class
	Property.Tag

	4.1.2 HTTP
	DefaultUrl
	AllowCookies
	ContentType
	Accept-type

	4.1.3 Proxies
	UseProxy
	HttpProxyHost
	HttpProxyPort
	HttpsProxyHost
	HttpsProxyPort
	User Name
	PassWord

	4.1.4 HttpAuthentication
	UseHttpAuthentication
	UserName
	PassWord

	4.1.5 SSL
	UseSSL
	HttpsProtocolImpl
	Provider
	X509CertificateImpl
	SSLSocketFactoryImpl
	SSLServerSocketFactoryImpl
	KeyStore
	KeyStoreType
	KeyStorePassword
	TrustStore
	TrustStore Password
	KeyManager Algorithm
	TrustManagerAlgorithm

	Implementation
	5.1 Simple HTTP Implementation
	5.1.1 Creating the New Schema
	5.1.2 Event Types
	Creating an Event Type from an Existing DTD
	Creating an Event Type Without an Existing DTD
	Creating an Event Type from an Existing .xsc

	5.1.3 Creating and Configuring the e*Ways
	5.1.4 Create the e*Way Connection
	5.1.5 Intelligent Queues
	5.1.6 Collaborations Rules
	Creating the Collaboration Rules Class

	5.1.7 Collaborations

	5.2 Sample Schema
	Sample Input Data
	5.2.1 Execute the Schema

	Java Classes and Methods
	6.1 HttpAuthenicator Class
	6.2 HttpClient Class
	6.3 HttpClientAPI Class
	6.4 HttpClientConnector Class
	6.5 HttpHeader Class
	6.6 HttpResult Class
	6.7 HttpsSecurityProperties Class
	6.8 HttpsSystemProperties Class
	6.9 QueryPair Class
	6.10 QueryString Class

	Appendix A
	A.1 Openssl
	A.1.1 Creating a Sample CA Certificate
	A.1.2 Signing Certificates With Your Own CA

	Appendix B
	B.1 Openssl.cnf
	B.1.1 Openssl.cnf for Windows

	Index
	A
	C
	D
	E
	H
	I
	M
	O
	U

