
SeeBeyond Proprietary and Confidential

HTTP e*Way Intelligent
Adapter User’s Guide

Release 4.5.2

Monk-enabled

HTTP e*Way Intelligent Adapter User’s Guide ii SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, eBI, eBusiness Web, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 1999–2001 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20011019181247.

Contents

HTTP e*Way Intelligent Adapter User’s Guide iii SeeBeyond Proprietary and Confidential

Contents

Chapter 1

Introduction 1
Overview 1

Intended Reader 1
Components 1

System Requirements 2

Chapter 2

Installation 3
Windows NT or Windows 2000 3

Pre-installation 3
Installation Procedure 3

UNIX 4
Pre-installation 4
Installation Procedure 4

Files/Directories Created by the Installation 5

Chapter 3

Configuration 6
Introduction 6

e*Way Configuration Parameters 6
General Settings 7

Journal File Name 7
Max Resends Per Message 7
Max Failed Messages 7
Forward External Errors 8

Communication Setup 8
Exchange Data Interval 8
Zero Wait Between Successful Exchanges 8
Start Exchange Data Schedule 9
Stop Exchange Data Schedule 9
Down Timeout 10
Up Timeout 10
Resend Timeout 10

Contents

HTTP e*Way Intelligent Adapter User’s Guide iv SeeBeyond Proprietary and Confidential

Monk Configuration 10
Operational Details 12
How to Specify Function Names or File Names 18
Additional Path 19
Auxiliary Library Directories 19
Monk Environment Initialization File 19
Startup Function 20
Process Outgoing Message Function 20
Exchange Data with External Function 21
External Connection Establishment Function 22
External Connection Verification Function 22
External Connection Shutdown Function 23
Positive Acknowledgment Function 23
Negative Acknowledgment Function 24
Shutdown Command Notification Function 25

HTTP Configuration 25
Request 25
Timeout 25
URL 26
User Name 26
Encrypted Password 26
Agent 27
Content-type 27
Request-content 27
Accept-type 27

HTTP Proxy Configuration 28
Use Proxy Server 28
User Name 28
Encrypted Password 28
Server Address 28
Port Number 29

Chapter 4

Implementation 30
Implementation Process: Overview 30

Creating Event Type Definitions from Form Data 31
Creating Event Type Definitions from a Command line 31
Creating Event Type Definitions from the ETD Editor 32

Sample Configurations 34
Creating a Schema Using httpnossl-outgoing 34
Creating a Schema Using httpnossl-exchange 39

Sample Monk Scripts 43
GET (Inbound) Example (HTTP_get) 43
POST (Outbound) Example (HTTP_post) 44
Input File based Example (AUTO_HTTP) 45

Contents

HTTP e*Way Intelligent Adapter User’s Guide v SeeBeyond Proprietary and Confidential

Chapter 5

HTTP e*Way Functions 46
Basic Functions 46

event-send-to-egate 47
get-logical-name 48
send-external-down 49
send-external-up 50
shutdown-request 51
start-schedule 52
stop-schedule 53

HTTP Standard Functions 54
httpnossl-ack 55
httpnossl-connect 56
httpnossl-exchange 57
httpnossl-init 58
httpnossl-nack 59
httpnossl-notify 60
httpnossl-outgoing 61
httpnossl-shutdown 62
httpnossl-startup 63
httpnossl-verify 64

HTTP Monk Functions 65
Rules for Encoding in the “x-www-form-urlencoded” Format 66

http-acquire-provider 69
http-add-content-type-param 70
http-add-header 71
http-clear-content-type-param 72
http-clear-headers 73
http-get 74
http-get-error-text 75
http-get-last-status 76
http-get-result-data 78
http-post 79
http-release-provider 81
http-set-proxy-properties 82
http-url-encode 83

Index 84

HTTP e*Way Intelligent Adapter User’s Guide 1 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This document describes how to install and configure the HTTP e*Way Intelligent
Adapter.

1.1 Overview
The HTTP e*Way is a Monk interface that enables the e*Gate system to exchange
messages with an HTTP web server; that is, to upload (or post) messages to the web
server and to download (get) data from it.

The HTTP Monk interface is a scriptable web client that offers a method of providing
the data usually entered in a form in an html page to a file on a web server. This file
may itself be a script that uses the data in an external application. The way in which the
data is processed is entirely dependent on the external application and is of no concern
to the HTTP Monk interface or the way in which it operates.

1.1.1 Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the e*Gate system; to have expert-level knowledge of
Windows NT and/or UNIX operations and administration; to be thoroughly familiar
with web servers and Windows-style GUI operations.

1.1.2 Components
The following components comprise the HTTP e*Way:

! stcewgenericmonk.exe, the executable component

! Configuration files, which the e*Way Editor uses to define configuration
parameters

! A function-library file (stc_monkhttp_nossl.dll)

! HTML Converter, a tool which builds a Monk Event Type Definition from a sample
HTML page. See “Creating Event Type Definitions from Form Data” on page 31.

A complete list of installed files appears in Table 1 on page 5.

Chapter 1 Section 1.2
Introduction System Requirements

HTTP e*Way Intelligent Adapter User’s Guide 2 SeeBeyond Proprietary and Confidential

1.2 System Requirements
The HTTP e*Way is available on the following operating systems:

! Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

! Windows 2000 (Japanese), Windows 2000 SP1 (Japanese), and
Windows 2000 SP2 (Japanese)

! Windows NT 4.0 SP6a

! Windows NT 4.0 SP6a (Japanese)

! Solaris 2.6, 7, and 8

! Solaris 2.6, 7, and 8 (Japanese)

! Solaris 8 (Korean)

! AIX 4.3.3

! HP-UX 11.0 and HP-UX 11.0i

! HP-UX 11.0 and HP-UX 11.0i (Japanese)

! Compaq Tru64 Version 5.0A

To use the HTTP e*Way, you need the following:

! An e*Gate Participating Host, version 4.5 or higher. For AIX systems, you need an
e*Gate Participating Host version 4.5.1.

! A TCP/IP network connection.

HTTP e*Way Intelligent Adapter User’s Guide 3 SeeBeyond Proprietary and Confidential

Chapter 2

Installation

This chapter describes how to install the HTTP e*Way.

2.1 Windows NT or Windows 2000

2.1.1 Pre-installation
! Exit all Windows programs before running the setup program, including any anti-

virus applications.

! You must have Administrator privileges to install this e*Way.

2.1.2 Installation Procedure
To install the HTTP e*Way on a Windows NT/ Windows 2000 system:

1 Log in as an Administrator to the workstation on which you are installing the
e*Way.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s Autorun feature is enabled, the setup application launches
automatically; skip ahead to step 4. Otherwise, use Windows Explorer to launch the
file setup.exe on the CD-ROM drive.

4 The InstallShield setup application launches. Follow the installation instructions until you
come to the Please choose the product to install dialog box.

5 Select e*Gate Integrator, then click Next.

6 Follow the on-screen instructions until you come to the second Please choose the product
to install dialog box.

7 Clear the check boxes for all selections except Add-ons, and then click Next.

8 Follow the on-screen instructions until you come to the Select Components dialog
box.

9 Highlight (but do not check) e*Ways, and then click the Change button. The
SelectSub-components dialog box appears.

Chapter 2 Section 2.2
Installation UNIX

HTTP e*Way Intelligent Adapter User’s Guide 4 SeeBeyond Proprietary and Confidential

10 Select the HTTP e*Way. Click the continue button to return to the Select Components
dialog box, then click Next.

11 Follow the rest of the on-screen instructions to install the HTTP e*Way. Be sure to install the
e*Way files in the suggested client installation directory. The installation utility detects and
suggests the appropriate installation directory. Unless you are directed to do so by
SeeBeyond support personnel, do not change the suggested installation directory
setting.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, please see the online Help.

For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.

2.2 UNIX

2.2.1 Pre-installation
You do not require root privileges to install this e*Way. Log in under the user name that
you wish to own the e*Way files. Be sure that this user has sufficient privilege to create
files in the e*Gate directory tree.

2.2.2 Installation Procedure
To install the HTTP e*Way on a UNIX system:

1 Log in on the workstation containing the CD-ROM drive, and insert the CD-ROM
into the drive.

2 If necessary, mount the CD-ROM drive.

3 At the shell prompt, type

cd /cdrom

4 Start the installation script by typing

setup.sh

5 A menu of options will appear. Select the Install e*Way option. Then, follow the
additional on-screen directions.

Note: Be sure to install the e*Way files in the suggested client installation directory. The
installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not
change the suggested “installation directory” setting.

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation

HTTP e*Way Intelligent Adapter User’s Guide 5 SeeBeyond Proprietary and Confidential

2.3 Files/Directories Created by the Installation
The HTTP e*Way installation process will install the following files within the e*Gate
directory tree. Files will be installed within the “egate\client” tree on the Participating
Host and committed to the “default” schema on the Registry Host.

Table 1 Files created by the installation

e*Gate Directory File(s)

bin\ stcewgenericmonk.exe
stc_monkfilesys.dll
stc_monkhttp_nossl.dll

configs\stcewgenericmonk\ stcewhttpnossl.def

monk_library httpnossl.gui

monk_library\ewhttpnossl\ httpnossl-ack.monk
httpnossl-nack.monk
httpnossl-connect.monk
httpnossl-exchange.monk
httpnossl-init.monk
httpnossl-notify.monk
httpnossl-outgoing.monk
httpnossl-shutdown.monk
httpnossl-startup.monk
httpnossl-verify.monk

HTTP e*Way Intelligent Adapter User’s Guide 6 SeeBeyond Proprietary and Confidential

Chapter 3

Configuration

This chapter describes the procedure for configuring a new e*Way. You can also edit an
existing e*Way and rename an e*Way. Procedures for creating and editing e*Gate
components are provided in the Enterprise Manager’s online help.

3.1 Introduction
Before you can run the HTTP e*Way, you must configure it using the e*Way Edit
Settings window, which is accessed from the e*Gate Enterprise Manager GUI. The
HTTP e*Way package includes a default configuration file which you can modify using
this window.

3.2 e*Way Configuration Parameters
e*Way configuration parameters are set using the e*Way Editor.

To change e*Way configuration parameters:

1 In the Enterprise Manager’s Component editor, select the e*Way you want to
configure and display its properties.

2 Under Configuration File, click New to create a new file, Find to select an existing
configuration file, or Edit to edit the currently selected file.

3 In the Additional Command Line Arguments box, type any additional command line
arguments that the e*Way may require, taking care to insert them at the end of the
existing command-line string. Be careful not to change any of the default arguments
unless you have a specific need to do so.

For more information about how to use the e*Way Editor, see the e*Way Editor’s online
Help or the e*Gate Integrator User’s Guide.

The e*Way’s configuration parameters are organized into the following sections:

! General settings

! Communication Setup

! Monk Configuration

! HTTP Configuration

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

HTTP e*Way Intelligent Adapter User’s Guide 7 SeeBeyond Proprietary and Confidential

! HTTP Proxy Configuration

3.2.1 General Settings
The General Settings control basic operational parameters.

Journal File Name

Description

Specifies the name of the journal file.

Required Values

A valid filename, optionally including an absolute path (for example,
c:\temp\filename.txt). If an absolute path is not specified, the file will be stored in the
e*Gate “SystemData” directory. See the e*Gate Integrator System Administration and
Operations Guide for more information about file locations.

Additional Information

An Event will be journaled for the following conditions:

! When the number of resends is exceeded (see Max Resends Per Message below)

! When its receipt is due to an external error, but Forward External Errors is set to No.
(See “Forward External Errors” on page 8 for more information.)

Max Resends Per Message

Description

Specifies the maximum number of times the e*Way will attempt to resend a message to
the external system after receiving an error. When this maximum number is reached,
the message is considered “failed” and will be written to the journal file.

Required Values

An integer between 1 and 1,024. The default is 5.

Max Failed Messages

Description

Specifies the maximum number of failed messages that the e*Way will allow. When the
specified number of failed messages is reached, the e*Way will shut down and exit.

Required Values

An integer between 1 and 1,024. The default is 3.

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

HTTP e*Way Intelligent Adapter User’s Guide 8 SeeBeyond Proprietary and Confidential

Forward External Errors

Description

Selects whether error messages that begin with the string “DATAERR” that are received
from the external system will be queued to the e*Way’s configured queue. See
“Exchange Data with External Function” on page 21 for more information.

Required Values

Yes or No. The default value, No, specifies that error messages will not be forwarded.

3.2.2 Communication Setup
The Communication Setup parameters control the schedule by which the e*Way
obtains data from the external system.

Note: The schedule that you set using the e*Way’s properties in the Enterprise Manager
controls when the e*Way executable will run. The schedule that you set within the
e*Way Editor determines when data will be exchanged. Be sure that you set the
"exchange data" schedule to fall within the "run the executable" schedule.

Exchange Data Interval

Description

Specifies the number of seconds the e*Way waits between calls to the Exchange Data
with External function during scheduled data exchanges.

Required Values

An integer between 0 and 86,400. The default is 120.

Additional Information

If Zero Wait Between Successful Exchanges is set to Yes and the Exchange Data with
External Function returns data, The Exchange Data Interval setting will be ignored
and the e*Way will invoke the Exchange Data with External Function immediately.

If this parameter is set to zero, there will be no exchange data schedule set and the
Exchange Data with External Function will never be called.

See “Down Timeout” on page 10 and “Stop Exchange Data Schedule” on page 9 for
more information about the data-exchange schedule.

Zero Wait Between Successful Exchanges

Description

Selects whether to initiate data exchange after the Exchange Data Interval or
immediately after a successful previous exchange.

Required Values

Yes or No. If this parameter is set to Yes, the e*Way will immediately invoke the
Exchange Data with External function if the previous exchange function returned a

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

HTTP e*Way Intelligent Adapter User’s Guide 9 SeeBeyond Proprietary and Confidential

data. If this parameter is set to No, the e*Way will always wait the number of seconds
specified by Exchange Data Interval between invocations of the Exchange Data with
External function. The default is No.

See “Exchange Data with External Function” on page 21 for more information.

Start Exchange Data Schedule

Description

Establishes the schedule to invoke the e*Way’s Exchange Data with External function.

Required Values

One of the following:

! One or more specific dates/times

! A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Also required: If you set a schedule using this parameter, you must also define all three
of the following:

! Exchange Data with External Function on page 21

! Positive Acknowledgment Function on page 23

! Negative Acknowledgment Function on page 24

If you do not do so, the e*Way will terminate execution when the schedule attempts to
start.

Since months do not all contain equal numbers of days, be sure not to provide
boundaries that would cause an invalid date selection (i.e. the 30th of every month
would not include February).

Additional Information

When the schedule starts, the e*Way determines whether it is waiting to send an ACK
or NAK to the external system (using the Positive and Negative Acknowledgment
functions) and whether the connection to the external system is active. If no ACK/NAK
is pending and the connection is active, the e*Way immediately executes the Exchange
Data with External function. Thereafter, the Exchange Data with External function will
be called according to the Exchange Data Interval parameter until the Stop Exchange
Data Schedule time is reached.

See “Exchange Data with External Function” on page 21, “Exchange Data Interval”
on page 8, and “Stop Exchange Data Schedule” on page 9 for more information.

Stop Exchange Data Schedule

Description

Establishes the schedule to stop data exchange.

Required Values

One of the following:

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

HTTP e*Way Intelligent Adapter User’s Guide 10 SeeBeyond Proprietary and Confidential

! One or more specific dates/times

! A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Since months do not all contain equal numbers of days, be sure not to provide
boundaries that would cause an invalid date selection (i.e. the 30th of every month
would not include February).

Down Timeout

Description

Specifies the number of seconds that the e*Way will wait between calls to the External
Connection Establishment Function. See “External Connection Establishment
Function” on page 22 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.

Up Timeout

Description

Specifies the number of seconds the e*Way will wait between calls to the External
Connection Verification Function. See “External Connection Verification Function”
on page 22 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.

Resend Timeout

Description

Specifies the number of seconds the e*Way will wait between attempts to resend a
message to the external system, after receiving an error message.

Required Values

An integer between 1 and 86,400. The default is 10.

3.2.3 Monk Configuration
The parameters in this section help you set up the information required by the e*Way to
utilize Monk for communication with the external system.

Conceptually, an e*Way is divided into two halves. One half of the e*Way (shown on
the left in Figure 1 below) handles communication with the external system; the other
half manages the Collaborations that process data and subscribe or publish to other
e*Gate components.

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

HTTP e*Way Intelligent Adapter User’s Guide 11 SeeBeyond Proprietary and Confidential

Figure 1 e*Way internal architecture

The “communications half” of the e*Way uses Monk functions to start and stop
scheduled operations, exchange data with the external system, package data as e*Gate
“Events” and send those Events to Collaborations, and manage the connection between
the e*Way and the external system. The Monk Configuration options discussed in this
section control the Monk environment and define the Monk functions used to perform
these basic e*Way operations. You can create and modify these functions using the
SeeBeyond Collaboration Rules Editor or a text editor (such as Notepad, or UNIX vi).

The “communications half” of the e*Way is single-threaded. Functions run serially, and
only one function can be executed at a time. The “business logic” side of the e*Way is
multi-threaded, with one executable thread for each Collaboration. Each thread
maintains its own Monk environment; therefore, information such as variables,
functions, path information, and so on cannot be shared between threads.

Communication
with external
system

Business logic and
communication
within e*Gate

External
system

Other e*Gate
components

e*Gate Events

Data
e*Way

Collaboration

Collaboration

Function

Function

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

HTTP e*Way Intelligent Adapter User’s Guide 12 SeeBeyond Proprietary and Confidential

Operational Details

The Monk functions in the “communications half” of the e*Way fall into the following
groups:

A series of figures on the next several pages illustrate the interaction and operation of
these functions.

Initialization Functions

Figure 2 illustrates how the e*Way executes its initialization functions.

Type of Operation Name

Initialization Startup Function on page 20
(also see Monk Environment
Initialization File on page 19)

Connection External Connection Establishment
Function on page 22
External Connection Verification
Function on page 22
External Connection Shutdown
Function on page 23

Schedule-driven data
exchange

Exchange Data with External
Function on page 21
Positive Acknowledgment Function
on page 23
Negative Acknowledgment Function
on page 24

Shutdown Shutdown Command Notification
Function on page 25

Event-driven data
exchange

Process Outgoing Message Function
on page 20

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

HTTP e*Way Intelligent Adapter User’s Guide 13 SeeBeyond Proprietary and Confidential

Figure 2 Initialization Functions

Connection Functions

Figure 3 illustrates how the e*Way executes the connection establishment and
verification functions.

Start e*Way

Load
"Monk Initialization"

file

Execute any Monk function
having the same name as

the initialization file

Load "Startup" file

Execute any Monk function
having the same name as

the startup file

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

HTTP e*Way Intelligent Adapter User’s Guide 14 SeeBeyond Proprietary and Confidential

Figure 3 Connection establishment and verification functions

Note: The e*Way selects the connection function based on an internal “up/down” flag
rather than a poll to the external system. See Figure 5 on page 16 and Figure 7 on
page 18 for examples of how different functions use this flag.

User functions can manually set this flag using Monk functions. See send-
external-up on page 50 and send-external-down on page 49 for more
information.

Figure 4 illustrates how the e*Way executes its “connection shutdown” function.

Connect e*Way to
external system

Internal
flag shows connection

active?

Wait for "Up Timeout"
schedule

Call External Connection
Verification function

Wait for "Down Timeout"
schedule

Call External Connection
Establishment function

Yes

No

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

HTTP e*Way Intelligent Adapter User’s Guide 15 SeeBeyond Proprietary and Confidential

Figure 4 Connection shutdown function

Schedule-driven Data Exchange Functions

Figure 5 (on the next page) illustrates how the e*Way performs schedule-driven data
exchange using the Exchange Data with External Function. The Positive
Acknowledgement Function and Negative Acknowledgement Function are also
called during this process.

“Start” can occur in any of the following ways:

! The “Start Data Exchange” time occurs

! Periodically during data-exchange schedule (after “Start Data Exchange” time, but
before “Stop Data Exchange” time), as set by the Exchange Data Interval

! The start-schedule Monk function is called

After the function exits, the e*Way waits for the next “start schedule” time or command.

Control Broker issues
"Suspend" command

Call External Connection Shutdown
function with parameter

"SUSPEND_NOTIFICATION"

e*Way closes connection

Return any value

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

HTTP e*Way Intelligent Adapter User’s Guide 16 SeeBeyond Proprietary and Confidential

Figure 5 Schedule-driven data exchange functions

Shutdown Functions

Figure 6 illustrates how the e*Way implements the shutdown request function.

Increment "Failed
Message" counter

DATAERR plus
additional data

Null
string

Data
(other than

error strings)

Forward
external
errors?

No

Yes

Set interval flag
"Connection

Down"

CONNERR

Increment "Failed
Message" counter

DATAERR only

Journal
enabled?

Create journal
entry

Yes

No

Start

Function exits

Send Event to
e*Gate

All
subscribing

Collaborations return
TRUE

?

Call Positive
Acknowledgment

function

Zero
wait after successful

exchange?

Call Negative
Acknowledgment

function

Yes

No

YesNo

Call Exchange Data with
External function

Return

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

HTTP e*Way Intelligent Adapter User’s Guide 17 SeeBeyond Proprietary and Confidential

Figure 6 Shutdown functions

Event-driven Data Exchange Functions

Figure 7 on the next page illustrates event-driven data-exchange using the Process
Outgoing Message Function.

Every two minutes, the e*Way checks the “Failed Message” counter against the value
specified by the Max Failed Messages parameter. When the “Failed Message” counter
exceeds the specified maximum value, the e*Way logs an error and shuts down.

After the function exits, the e*Way waits for the next outgoing Event.

Control Broker issues
"Shutdown" command

Call Shutdown Notification function
with parameter

"SHUTDOWN_NOTIFICATION"

e*Way shuts down

Wait for
shutdown-request

function

Return

Null string or
"SUCCESS"

any other value

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

HTTP e*Way Intelligent Adapter User’s Guide 18 SeeBeyond Proprietary and Confidential

Figure 7 Event-driven data-exchange functions

How to Specify Function Names or File Names

Parameters that require the name of a Monk function will accept either a function name
or a file name. If you specify a file name, be sure that the file has one of the following
extensions:

! .monk

! .tsc

! .dsc

Collaboration publishes
to <EXTERNAL>

Call Process Outgoing
Message function

Set internal flag
"Connection

Down"

Maximum
Resends per Message

exceeded?

Yes

Return

CONNERR DATAERR

Increment "Failed
Message" counter

Create journal
entry

Null
string

No
Journal

enabled?

No

Function exits

Wait for Resend
Timeout period

Roll back Event to
its publishing IQ

Yes

Wait for Resend
Timeout period

Increment
"Resend" counter

RESEND

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

HTTP e*Way Intelligent Adapter User’s Guide 19 SeeBeyond Proprietary and Confidential

Additional Path

Description

Specifies a path to be added to the “load path,” the path Monk uses to locate files and
data (set internally within Monk). The directory specified in Additional Path will be
searched before the default load path.

Required Values

A pathname, or a series of paths separated by semicolons. This parameter is optional
and may be left blank.

Additional information

The default load paths are determined by the “bin” and “Shared Data” settings in the
.egate.store file. See the e*Gate Integrator System Administration and Operations Guide for
more information about this file.

To specify multiple directories, manually enter the directory names rather than
selecting them with the “file selection” button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths. For example:

monk_scripts\my_dir;c:\my_directory
The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

Auxiliary Library Directories

Description

Specifies a path to auxiliary library directories. Any .monk files found within those
directories will automatically be loaded into the e*Way’s Monk environment.

Required Values

A pathname, or a series of paths separated by semicolons. The default is
monk_library/ewhttpnossl.

Additional information

To specify multiple directories, manually enter the directory names rather than
selecting them with the “file selection” button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths. For example:

monk_scripts\my_dir;c:\my_directory
This function is called once when the e*Way first starts up.

This parameter is optional and may be left blank.

Monk Environment Initialization File

Specifies a file that contains environment initialization functions, which will be loaded
after the auxiliary library directories are loaded. Typically, it is a good practice to
initialize any global Monk variables that may be used by any other Monk Extension
Scripts.

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

HTTP e*Way Intelligent Adapter User’s Guide 20 SeeBeyond Proprietary and Confidential

Required Values

A filename within the “load path”, or filename plus path information (relative or
absolute). If path information is specified, that path will be appended to the “load
path.” See “Additional Path” on page 19 for more information about the “load path.”
(The default is httpnossl-init.monk. See httpnossl-init on page 58 for more
information.)

Additional information

Any environment-initialization functions called by this file accept no input, and must
return a string. The e*Way will load this file and try to invoke a function of the same
base name as the file name (for example, for a file named my-init.monk, the e*Way
would attempt to execute the function my-init).

Typically, it is a good practice to initialize any global Monk variables that may be used
by any other Monk Extension scripts.

The internal function that loads this file is called once when the e*Way first starts up
(see Figure 2 on page 13).

Startup Function

Description

Specifies a Monk function that the e*Way will load and invoke upon startup or
whenever the e*Way’s configuration changes before it enters into its initial
Communication State. This function is used so that the external system can be
initialized before the message exchange starts.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. (The default is httpnossl-startup. See
httpnossl-startup on page 63 for more information.)

Additional information

The function accepts no input, and must return a string.

The string FAILURE indicates that the function failed; any other string (including a null
string) indicates success.

This function will be called after the e*Way loads the specified Monk Environment
Initialization file and any files within the specified Auxiliary Directories.

The e*Way will load this file and try to invoke a function of the same base name as the
file name (see Figure 2 on page 13). For example, for a file named my-startup.monk,
the e*Way would attempt to execute the function my-startup.

Process Outgoing Message Function

Description

Specifies the Monk function responsible for sending outgoing messages (Events) from
the e*Way to the external system. This function is event-driven (unlike the Exchange
Data with External function, which is schedule-driven).

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

HTTP e*Way Intelligent Adapter User’s Guide 21 SeeBeyond Proprietary and Confidential

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. You may not leave this field blank. (The
default is httpnossl-outgoing. See httpnossl-outgoing on page 61 for more
information.)

Additional Information

The function requires a non-null string as input (the outgoing Event to be sent) and
must return a string.

The e*Way invokes this function when one of its Collaborations publishes an Event to
an <EXTERNAL> destination (as specified within the Enterprise Manager). The
function returns one of the following (see Figure 7 on page 18 for more details):

! Null string: Indicates that the Event was published successfully to the external
system.

! “RESEND”: Indicates that the Event should be resent.

! “CONNERR”: Indicates that there is a problem communicating with the external
system.

! “DATAERR”: Indicates that there is a problem with the message (Event) data itself.

! If a string other than the following is returned, the e*Way will create an entry in the
log file indicating that an attempt has been made to access an unsupported
function.

Note: If you wish to use event-send-to-egate to enqueue failed Events in a separate IQ,
the e*Way must have an inbound Collaboration (with appropriate IQs) configured
to process those Events. See event-send-to-egate on page 47 for more information.

Exchange Data with External Function

Description

Specifies a Monk function that initiates the transmission of data from the external
system to the e*Gate system and forwards that data as an inbound Event to one or more
e*Gate Collaborations. This function is called according to a schedule (unlike the
Process Outgoing Message Function, which is event-driven).

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. (The default is httpnossl-exchange. See
httpnossl-exchange on page 57.)

Additional Information

The function accepts no input and must return a string (see Figure 5 on page 16 for
more details):

! Null string: Indicates that the data exchange was completed successfully. No
information will be sent into the e*Gate system.

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

HTTP e*Way Intelligent Adapter User’s Guide 22 SeeBeyond Proprietary and Confidential

! “CONNERR”: Indicates that a problem with the connection to the external system
has occurred.

! “DATAERR”: Indicates that a problem with the data itself has occurred. The e*Way
handles the string “DATAERR” and “DATAERR” plus additional data differently;
see Figure 5 on page 16 for more details.

! Any other string: The contents of the string are packaged as an inbound Event. The
e*Way must have at least one Collaboration configured suitably to process the
inbound Event, as well as any required IQs.

This function is initially triggered by the Start Data Exchange schedule or manually by
the Monk function start-schedule. After the function has returned true and the data
received by this function has been ACKed or NAKed (by the Positive
Acknowledgment Function or Negative Acknowledgment Function, respectively),
the e*Way checks the Zero Wait Between Successful Exchanges parameter. If this
parameter is set to Yes, the e*Way will immediately call the Exchange Data with
External function again; otherwise, the e*Way will not call the function until the next
scheduled “start exchange” time or the schedule is manually invoked using the Monk
function start-schedule. (see start-schedule on page 52 for more information.)

External Connection Establishment Function

Description

Specifies a Monk function that the e*Way will call when it has determined that the
connection to the external system is down.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This field cannot be left blank. (The default is
httpnossl-connect. See httpnossl-connect on page 56 for more information.)

Additional Information

The function accepts no input and must return a string.

! “SUCCESS” or “UP”: Indicates that the connection was established successfully.

! Any other string (including the null string): Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Down Timeout
parameter, and is only called according to this schedule.

The External Connection Verification function (see below) is called when the e*Way
has determined that its connection to the external system is up.

External Connection Verification Function

Description

Specifies a Monk function that the e*Way will call when its internal variables show that
the connection to the external system is up.

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

HTTP e*Way Intelligent Adapter User’s Guide 23 SeeBeyond Proprietary and Confidential

Required Values

The name of a Monk function. This function is optional; if no External Connection
Verification function is specified, the e*Way will execute the External Connection
Establishment function in its place. (The default is httpnossl-verify. See httpnossl-
verify on page 64 for more information.)

Additional Information

The function accepts no input and must return a string.

! “SUCCESS” or “UP”: Indicates that the connection was established successfully.

! Any other string (including the null string): Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Up Timeout
parameter, and is only called according to this schedule.

The External Connection Establishment function (see above) is called when the e*Way
has determined that its connection to the external system is down.

External Connection Shutdown Function

Description

Specifies a Monk function that the e*Way will call to shut down the connection to the
external system.

Required Values

The name of a Monk function. (The default is httpnossl-shutdown. See httpnossl-
shutdown on page 62 for more information.)

Additional Information

This function requires a string as input, and may return a string.

This function will only be invoked when the e*Way receives a “suspend” command
from a Control Broker. When the “suspend” command is received, the e*Way will
invoke this function, passing the string “SUSPEND_NOTIFICATION” as an argument.

Any return value indicates that the “suspend” command can proceed and that the
connection to the external system can be broken immediately.

Note: Include in this function any required “clean up” operations that must be performed
as part of the shutdown procedure, but before the e*Way exits.

Positive Acknowledgment Function

Description

Specifies a Monk function that the e*Way will call when all the Collaborations to which
the e*Way sent data have processed and enqueued that data successfully.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

HTTP e*Way Intelligent Adapter User’s Guide 24 SeeBeyond Proprietary and Confidential

Data with External function is defined. (The default is httpnossl-ack. See httpnossl-
ack on page 55 for more information.)

Additional Information

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string:

! “CONNERR”: Indicates a problem with the connection to the external system.
When the connection is re-established, the Positive Acknowledgment function will
be called again, with the same input data.

! Null string: The function completed execution successfully.

After the Exchange Data with External function returns a string that is transformed
into an inbound Event, the Event is handed off to one or more Collaborations for
further processing. If the Event’s processing is completed successfully by all the
Collaborations to which it was sent, the e*Way executes the Positive Acknowledgment
function (otherwise, the e*Way executes the Negative Acknowledgment function).

Note: If you configure the acknowledgment function to return a non-null string, you must
configure a Collaboration (with appropriate IQs) to process the returned Event.

Negative Acknowledgment Function

Description

Specifies a Monk function that the e*Way will call when the e*Way fails to process and
queue Events from the external system.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External function is defined. See httpnossl-nack on page 59 for more
information)

Additional Information

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string:

! “CONNERR”: Indicates a problem with the connection to the external system.
When the connection is re-established, the function will be called again.

! Null string: The function completed execution successfully.

This function is only called during the processing of inbound Events. After the
Exchange Data with External function returns a string that is transformed into an
inbound Event, the Event is handed off to one or more Collaborations for further
processing. If the Event’s processing is not completed successfully by all the
Collaborations to which it was sent, the e*Way executes the Negative Acknowledgment
function (otherwise, the e*Way executes the Positive Acknowledgment function).

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

HTTP e*Way Intelligent Adapter User’s Guide 25 SeeBeyond Proprietary and Confidential

Note: If you configure the acknowledgement function to return a non-null string, you
must configure a Collaboration (with appropriate IQs) to process the returned
Event.

Shutdown Command Notification Function

Description

Specifies a Monk function that will be called when the e*Way receives a “shut down”
command from the Control Broker. This parameter is optional.

Required Values

The name of a Monk function. For more information see httpnossl-notify on page 60.

Additional Information

When the Control Broker issues a shutdown command to the e*Way, the e*Way will call
this function with the string “SHUTDOWN_NOTIFICATION” passed as a parameter.

The function accepts a string as input and must return a string:

! A null string or “SUCCESS”: Indicates that the shutdown can occur immediately.

! Any other string: Indicates that shutdown must be postponed. Once postponed,
shutdown will not proceed until the Monk function shutdown-request is executed
(see shutdown-request on page 51).

Note: If you postpone a shutdown using this function, be sure to use
the (shutdown-request) function to complete the process in a timely manner.

3.2.4 HTTP Configuration
This section defines the HTTP parameters used in the http-acquire-provider (See http-
acquire-provider on page 69 for more information.) as well as the GET and POST
calls.(See Sample Monk Scripts on page 43 for more information.)

Request

Description

Specifies whether this request is to use the GET or POST method.

Required Values

GET or POST.

Timeout

Description

Specifies the amount of time in milliseconds the e*Way will await a response from the
web server.

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

HTTP e*Way Intelligent Adapter User’s Guide 26 SeeBeyond Proprietary and Confidential

Required Values

An integer between 1 and 864000. The default is 50000.

URL

Description

Specifies the URL to which the GET or POST command will be effected. This URL
nominally references a program that will process the POSTed data or GET request.

Required Values

A string containing a valid URL address. The user must include the full URL, i.e.,

http://www.stc.com

or

http://www.info.netscape.com/homesearch2.cgi

Additional Information

If using GET, you can provide parameters using the URL encoded query string
notation, for example,

http://www.peterw.com/search?p1+fort&p2=william&p3=levack

Whether or not you need to express GET method parameters using the application x-
www-form-urlencoded notation is dependent on whether the interfacing program
requires the data to be encoded in this manner prior to receiving it.

User Name

Description

Specifies the username necessary for connecting to the HTTP server.

Required Values

A string containing any valid username. (See also Encrypted Password on page 26
below.)

Additional information

The username is necessary for authentication purposes.

Encrypted Password

Description

Specifies the encrypted password corresponding to the username entered in the User
Name field (see above).

Required Values

A string containing the valid encrypted password associated with the username.

Additional Information

The username must be defined prior to defining the password.

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

HTTP e*Way Intelligent Adapter User’s Guide 27 SeeBeyond Proprietary and Confidential

Agent

Description

Specifies an agent name to pass to the HTTP server. This is an arbitrary name
identifying the e*Way to the HTTP server.

Required Values

A string. The default is e*Gate HTTP e*Way.

Content-type

Description

Specifies the content-type of the application data.

Required Values

A string.

Additional Information

Normally, the format below is sufficient to support most applications:

Content-Type: application/x-www-form-urlencoded.

It should not be changed unless there is a specific need to do so.

Request-content

Description

Specifies the content to be used with the POST method.

Required Values

A string. The expected string must follow the “stringx=string_data” format. See below
for an example.

Additional Information

This parameter will be ignored when the GET method is used.

The content will normally be in the following URL encoded query string format of
name/value pairs, i.e.,

p1=peterw&p2=walklett

Accept-type

Description

Specifies the parameters for the Accept-type request header.

Required Values

A string.

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

HTTP e*Way Intelligent Adapter User’s Guide 28 SeeBeyond Proprietary and Confidential

3.2.5 HTTP Proxy Configuration
The parameters in this section specify the information required for the e*Way to
connect to external systems through a proxy server.

Use Proxy Server

Description

Specifies whether the e*Way will use the parameter values in this section to connect
through a proxy server. Select YES if the e*Way should connect through a proxy server,
or NO to use a direct connection.

Required Values

YES or NO.

User Name

Description

Specifies the user name necessary for authentication to access the proxy server.

Required Values

A valid user name.

Important: Enter a value for this parameter before you enter a value for the Encrypted
Password parameter.

Encrypted Password

Description

Specifies the encrypted password corresponding to the username specified previously.

Required Values

The appropriate password.

Important: Be sure to enter a value for the User Name parameter before entering the
Encrypted Password.

Server Address

Description

Specifies the URL address of the proxy server.

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

HTTP e*Way Intelligent Adapter User’s Guide 29 SeeBeyond Proprietary and Confidential

Required Values

A valid URL. For example:

http://myproxy

Important: Do not specify a port number as part of the URL. Specify port number within the
Port Number parameter.

Port Number

Description

Specifies the port number to which the proxy server is listening.

Required Values

An Integer between 1 and 864000. The default is 8080.

HTTP e*Way Intelligent Adapter User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 4

Implementation

This chapter includes information pertinent to implementing the HTTP e*Way in a
production environment.

4.1 Implementation Process: Overview

Note: The HTTP e*Way Extension (stc_monkhttpnossl.dll) is not thread-safe. It must
only be used in an e*Way or a SINGLE COLLABORATION in a BOB.

To implement the HTTP e*Way within an e*Gate system, do the following:

! Define Event Type Definitions (ETDs) to package the data being exchanged with the
external system.

! In the e*Gate Enterprise Manager, do the following:

" Define Collaboration Rules to process Event data.

" Define any IQs to which Event data will be published prior to sending it to the
external system.

" Define the e*Way component (this procedure is discussed in Chapter 2).

" Within the e*Way component, configure Collaborations to apply the required
Collaboration Rules.

! Use the e*Way Editor to set the e*Way’s configuration parameters.

! Be sure that any other e*Gate components are configured as necessary to complete
the schema.

! Test the schema and make any necessary corrections.

See “Sample Monk Scripts” on page 43 for examples of how the above steps are
combined to create a working implementation.

Note: The delimiters for the configuration file must not appear within the URL string. The
default delimiter set contains the equals sign (=), to modify this delimiter, open the
configuration file, select Options, Config Delimiters, on the task bar, modify the
value of delimiter 3 with a value that will not conflict with the search string.

Chapter 4 Section 4.2
Implementation Creating Event Type Definitions from Form Data

HTTP e*Way Intelligent Adapter User’s Guide 31 SeeBeyond Proprietary and Confidential

Note: For more information about creating or modifying any component within the e*Gate
Enterprise Manager, see the Enterprise Manager’s Help system.

4.2 Creating Event Type Definitions from Form Data
You can use the ETD Editor to create or modify any necessary Event Type Definitions.
However, if you wish to base ETDs upon existing HTML forms, you can automatically
create these ETDs using the HTML Converter Build Tool.

The HTML Converter tool opens the HTML page, parses it for a <FORM> tag, and uses
the structure within the form to build the Event Type Definition. Both POST and GET
method types are supported. All <Input> types are supported except controls (such as
submit and reset buttons) which do not send data to the server and are ignored.

Important: If the form contains a link that is redirected to another Web page, you must save the
source HTML code to a file on disk first, then use the local HTML file as the source
for the HTML converter.

There are two ways to launch the HTML Converter: from the command line and from
the ETD Editor.

4.2.1 Creating Event Type Definitions from a Command line
To create an ETD using the HTML Converter command-line utility:

From the command line, type the following on one line:

stc_form2ssc –rh registry_host –rs schema_name –un username
–up password -html input_file -tf logfile output_file

where

! registry_host is the name of the computer on which the e*Gate Registry Host resides.

! schema_name is the name of the e*Gate schema you are creating. For requirements
regarding schema names, see the Enterprise Manager’s online Help system.

! username and password are the e*Gate administrator username and password,
respectively.

! input_file is the HTML filename (including the path) or the URL to the HTML page.

! logfile is the name of a log file to capture warning and error messages. This
argument is optional.

! output_file is the filename—including the path relative to the “eGate/client”
directory—of the Event Type Definition file to be created. Do not specify any file
extension— the converter will supply the .ssc extension automatically.

Note: The output_file argument must be the last argument listed.

Chapter 4 Section 4.2
Implementation Creating Event Type Definitions from Form Data

HTTP e*Way Intelligent Adapter User’s Guide 32 SeeBeyond Proprietary and Confidential

4.2.2 Creating Event Type Definitions from the ETD Editor
To create an ETD using the HTML Converter from the GUI:

1 Launch the ETD Editor.

2 On the ETD Editor’s Toolbar, click Build. The Build an Event Type Definition
dialog box appears.

Figure 8 Build an Event Type Definition

3 In the File name field, type the name of the ETD file you wish to build. Do not
specify any file extension—the Editor will supply the .ssc extension automatically.

4 Click Next. A new dialog box appears.

Figure 9 Build an Event Type Definition - HTML Converter

5 Leave the Input file field blank—the HTML Converter does not use this field.

Chapter 4 Section 4.2
Implementation Creating Event Type Definitions from Form Data

HTTP e*Way Intelligent Adapter User’s Guide 33 SeeBeyond Proprietary and Confidential

6 Under Build From, select Library Converter.

7 Under Select a Library Converter, select HTML Converter.

8 Under Additional Command Line Arguments, type the following:

-html input_file

where

input_file is the HTML filename (including the path) or the URL to the HTML
page

9 Click Finish. The Build tool will create the ETD.

If your input HTML page contains more than one form, the Build tool will create
multiple ETD files, one for each form. The name of each file will be the file name you
entered in step 3 above with an underscore and number appended to it, starting with
zero. For example: html_0.ssc, html_1.ssc, and so on.

If your HTML page contained only a single form the ETD Editor will open the resulting
ETD file automatically at the conclusion of the conversion process. If multiple ETD files
were created, you must open each file manually.

Chapter 4 Section 4.3
Implementation Sample Configurations

HTTP e*Way Intelligent Adapter User’s Guide 34 SeeBeyond Proprietary and Confidential

4.3 Sample Configurations
This section describes several sample implementations for the HTTP e*Way.

4.3.1 Creating a Schema Using httpnossl-outgoing
This section demonstrates how to set up a basic schema using the httpnossl-outgoing
function. In this sample, data is drawn from a text file using the file e*Way and sent to
an external system using the HTTP e*Way. The data returned from the external system
is received by the HTTP e*Way, then forwarded to another file e*Way and stored in an
output file on the local system (see Figure 10 on page 34).

Figure 10 Sample schema: basic architecture

This schema requires a number of components, as illustrated in Figure 11 on page 35.

Inbound
File e*Way

Outbound
File e*Way

HTTP e*Way

e*Gate

Remote
Web

Server

Input file

Output file

Chapter 4 Section 4.3
Implementation Sample Configurations

HTTP e*Way Intelligent Adapter User’s Guide 35 SeeBeyond Proprietary and Confidential

Figure 11 Sample schema (component view)

Note: For more information about creating or modifying any component within the e*Gate
Enterprise Manager, see the Enterprise Manager’s Help system.

1 Log into the e*Gate Enterprise Manager and click New to create a new schema.
Name the schema “http_sample_1”.

The Enterprise Manager main screen appears.

2 If the Navigator’s Components tab is not selected already, select it now.

3 Create an Event Type named “In”.

4 Display the properties of the In Event Type. Then, use the Find button, navigate to
the ”common” folder to assign the file GenericInEvent.ssc.

5 Create a Collaboration Rule named “Passthrough_Data”.

e*Gate

Remote Web
Server

Input file

Output file

HTTP e*Way

Inbound File e*Way

Outbound File e*Way

Inbound_Collab

HTTP_Collab1

HTTP_Collab2

Outbound_Collab

Inbound_IQ

HTTP_IQ

Chapter 4 Section 4.3
Implementation Sample Configurations

HTTP e*Way Intelligent Adapter User’s Guide 36 SeeBeyond Proprietary and Confidential

6 Edit the Properties of this Collaboration Rule as follows:

7 Create two IQs, named “Inbound_IQ” and “HTTP_IQ”.

8 Create an e*Way named “Inbound”.

9 Display the e*Way’s properties. Then, use the Find button to assign the file
stcewfile.exe.

The next part of the procedure requires that you launch the e*Way editor and define the
file-based e*Way’s properties.

1 With the e*Way’s Properties page still displayed, click New to launch the e*Way
Editor.

2 Using the e*Way Editor, make the following configuration settings:

3 Save the settings, promote to run time, and exit the e*Way Editor.

4 When you return to the e*Way’s Properties page, click OK to save all changes and
return to the Enterprise Manager’s main window.

Next, create a Collaboration for the Inbound e*Way.

1 Open the Inbound e*Way and create a Collaboration named “Inbound_collab”.

2 Set the Collaboration’s properties as follows:

Now that the “inbound” e*Way is completely configured, you must create an outbound
HTTP e*Way.

1 Create a new e*Way component named “http_eway”.

2 Display the e*Way’s properties. Then, use the Find button to assign the file
stcewgenericmonk.exe.

Service Pass Through

Subscription In (the Event Type defined in Step 1 above)

Publication In (Event Type defined in Step 1 above)

Section Parameter and setting

General Settings AllowIncoming:Yes
AllowOutgoing:No

Poller(inbound) Settings Polldirectory: C:\TEMP (or other
“temporary” directory)
Input File Mask: leave unchanged

Collaboration Rule Passthrough_Data

Subscriptions Event: In
Source: <External>.

Publications Event: In
Publish to: Inbound_IQ.

Chapter 4 Section 4.3
Implementation Sample Configurations

HTTP e*Way Intelligent Adapter User’s Guide 37 SeeBeyond Proprietary and Confidential

3 Click New to launch the e*Way Editor. When prompted with a list of templates,
select stcewhttpnossl.

4 Use the e*Way Editor to define the following parameters:

5 Save the settings, promote to runtime, and exit the e*Way Editor.

6 When you return to the e*Way’s Properties page, click OK to save all changes and
return to the Enterprise Manager’s main window.

Important: The above code loads the certificate (s) and private key (s) from the specified
directory.

Next, create the Collaboration for the HTTP e*Way.

1 Select the http_eway component and create a Collaboration named “http_collab1”.

2 Assign the following properties to the Collaboration:

Section Parameter and Settings

General Settings Leave all settings unchanged

Communication Setup Exchange Data Interval: 0 (zero)
Zero Wait Between Successful Exchanges: No

Monk Configuration Auxiliary Library Directories: monk_library/ewhttp
Monk Environment Initialization File: monk_library/ewhttpnossl/
httpnossl-init.monk
Startup Function: httpnossl-startup
Process Outgoing Message Function: httpnossl-outgoing
Exchange Data With External Function: httpnossl-exchange
External Connection Establishment Function: httpnossl-connect
External Connection Verification Function: httpnossl-verify
External Connection Shutdown Function: httpnossl-shutdown
Positive Acknowledgment Function: httpnossl-ack
Negative Acknowledgment Function: httpnossl-nack
The remaining parameters may be left blank for this sample.

HTTP Configuration Timeout: 5000
User Name: enter an appropriate user name if necessary
Encrypted Password: enter an appropriate password if necessary
Agent: e*Gate HTTP e*Way
Content-type: Content-Type:application/x-www-form-
urlencoded
Accept-type: accept:text/*
The remaining parameters may use the default values.

HTTP Proxy
Configuration

Leave blank unless required

HTTP Configuration Leave blank to test basic HTTP functionality; if required, enter any
necessary information to test HTTP functionality

Collaboration Rules Passthrough_Data

Chapter 4 Section 4.3
Implementation Sample Configurations

HTTP e*Way Intelligent Adapter User’s Guide 38 SeeBeyond Proprietary and Confidential

3 Create a second Collaboration for the http_eway, naming it “http_collab2”.

4 Assign the following properties to the Collaboration:

Now create and configure the final e*Way component.

1 Create a new e*Way named “Outbound”.

2 In its Properties Page, specify the executable file of “Outbound” as stcewfile.exe.

3 Display the e*Way’s properties. Then, use the Find button to assign the file
stcewfile.exe.

4 With the e*Way’s Properties page still displayed, click New to launch the e*Way
Editor.

5 Using the e*Way Editor, configure the following settings:

6 Save the settings, promote to run time, and exit the e*Way Editor.

7 When you return to the e*Way’s Properties page, click OK to save all changes and
return to the Enterprise Manager’s main window.

8 Create a Collaboration for the “Outbound” e*Way, naming it “outbound_collab”.

Subscriptions Event: In
Source: Inbound_collab

Publications Event: In
Publish to: <External>

Collaboration Rules Passthrough_Data

Subscriptions Event: In
Source: <External>

Publications Event: In
Publish to: HTTP_IQ

Section Parameter and setting

General Settings AllowIncoming: No
AllowOutgoing: Yes

Outbound (sender)
Settings

Output directory: C:\TEMP (or other
“temporary” directory)
Output File Name: httpnossl_out.txt

Chapter 4 Section 4.3
Implementation Sample Configurations

HTTP e*Way Intelligent Adapter User’s Guide 39 SeeBeyond Proprietary and Confidential

9 Set the Collaboration’s properties as follows:

The Enterprise Manager configuration is now complete. Now, you must create some
test data which will be sent via HTTP to external web sites. The results of these requests
will be saved to the output data file.

Note: The sites recommended within the test data are publicly available sites, and the test
data was accurate at the time this guide was published. If any of the recommended
sites are no longer available, or you wish to replace them with your own test sites,
please make the appropriate substitutions.

1 Use a text editor to create an input file. Create an Input File, using any ASCII text
editor. The input must have the following format (the pipe symbol “|” delimits
each field):

URL|POST or GET|data (POST only)

The following sample can also be used as your test data, changing “somesite” to a
valid http site name:

http://info.somesite.com|GET|
http://finance.somesite.asp|POST|s=amd&d=v1
http://search.somesite.com/cgi-bin/search|POST|search=Mars+missions
http://finance.somesite.com/q|GET|s=amd&d=v1
http://finance.somesite.com/q|GET|s=amd+&d=v4
http://finance.somesite.com/q|GET|s=amd&d=v1

Note: When using an input file, it is necessary to modify the fields within the
configuration file to match those within the input file, or to leave the fields blank. If a
field in the configuration file, such as the Request-content parameter contains a
string, and it does not appear within the input file, e*Gate will attempt to append
the information. If within the input file, the delimiters are left empty the action
within the configuration file will be used.

2 Save the file as C:\TEMP\TESTDATA.FIN (if you specified a different input
directory, please make the appropriate substitution).

Launch the sample schema. If the schema was configured properly and your
connection to the test sites is good, you should find response data from your requests in
the file C:\TEMP\httpnossl_out.txt (if you specified a different output directory,
please make the appropriate substitution).

4.3.2 Creating a Schema Using httpnossl-exchange
This schema, which illustrates the use of the Monk function httpnossl-exchange, is
simpler than the one illustrated in “Creating a Schema Using httpnossl-outgoing” on

Collaboration Rules: Passthrough_Data

Subscriptions Event: In
Source: http_collab2

Publications Event: In
Publish to: <External>

Chapter 4 Section 4.3
Implementation Sample Configurations

HTTP e*Way Intelligent Adapter User’s Guide 40 SeeBeyond Proprietary and Confidential

page 34. Rather than using an inbound e*Way, the data to be sent to the external Web
server is hard-coded into the HTTP e*Way’s configuration using the e*Way editor.
Except for this change, the architecture is the same.

Figure 12 Sample http-exchange schema

Note: For more information about creating or modifying any component within the e*Gate
Enterprise Manager, see the Enterprise Manager’s Help system.

1 Log into the e*Gate Enterprise Manager and select the New to create a new schema.

2 Enter the new schema name.

3 Create an Event Type named “In”.

4 Display the properties of the In Event Type. Then, use the Find button to assign the
file GenericInEvent.ssc.

5 Create a Collaboration Rule named “Passthrough_Data”.

6 Edit the Properties of this Collaboration Rule as follows:

e*Gate

Remote
Web

Server

Output file

HTTP e*Way

Outbound File e*Way

HTTP_Collab1

HTTP_Collab2

Outbound_Collab

HTTP_IQ

Chapter 4 Section 4.3
Implementation Sample Configurations

HTTP e*Way Intelligent Adapter User’s Guide 41 SeeBeyond Proprietary and Confidential

7 Create an Intelligent Queue, named “HTTP_IQ”.

You must create an outbound HTTP e*Way.

1 Create a new e*Way component named “http_eway”.

2 Display the e*Way’s properties. Then, use the Find button to assign the file
stcewgenericmonk.exe.

3 Click New to launch the e*Way Editor. When prompted with a list of templates,
select stcewhttpnossl.

4 Use the e*Way Editor to define the following parameters:

Service Pass Through

Subscription In (the Event Type defined in Step 1 above)

Publication In (Event Type defined in Step 1 above)

Section Parameter and Settings

General Settings Leave all settings unchanged

Communication Setup Exchange Data Interval: 10 (ten)
Zero Wait Between Successful Exchanges: No

Monk Configuration Auxiliary Library Directories: monk_library/ewhttpnossl
Monk Environment Initialization File: monk_library/
ewhttpnossl:/httpnossl-init.monk
Startup Function: httpnossl-startup
Process Outgoing Message Function: httpnossl-outgoing
Exchange Data With External Function: httpnossl-exchange
External Connection Establishment Function: httpnossl-
connect
External Connection Verification Function: httpnossl-verify
External Connection Shutdown Function: httpnossl-
shutdown
Positive Acknowledgment Function: httpnossl-ack
Negative Acknowledgment Function: httpnossl-nack
The remaining parameters may be left blank for this sample.

HTTP Configuration Request: GET
Timeout: 5000
URL: enter an appropriate URL to contact.
User Name: enter an appropriate user name if necessary
Encrypted Password: enter an appropriate password if
necessary
Agent: e*Gate HTTP e*Way
Content-type: Content-Type:application/x-www-form-
urlencoded
Request-content: Leave this entry blank (because this is a
sample using GET; fill in this field when using the POST
method).
Accept-type: accept:text/*
The remaining parameters may use the default values.

Chapter 4 Section 4.3
Implementation Sample Configurations

HTTP e*Way Intelligent Adapter User’s Guide 42 SeeBeyond Proprietary and Confidential

5 Save the settings, promote to run time, and exit the e*Way Editor.

6 When you return to the e*Way’s Properties page, click OK to save all changes and
return to the Enterprise Manager’s main window.

In the next step, you modify the initialization function (httpnossl-init) loads the correct
.dll.

1 From the Enterprise Manager’s File menu, select Edit File.

2 Open the file monk_library\ewhttpnossl\httpnossl-init.monk.

3 Verify that the stc_monkhttp_nossl.dll is the specified file in the (load-extension)
function call.

Save and exit the editor of the text file. Verify that the files are in the appropriate
location.

Next, create the Collaboration for the HTTP e*Way.

1 Create a Collaboration for the http_eway, naming it “http_collab2”.

2 Assign the following properties to the Collaboration:

Now create and configure the final e*Way component.

1 Create a new e*Way named “Outbound”.

2 In its Properties Page, specify the executable file of “Outbound” as stcewfile.exe.

3 Display the e*Way’s properties. Then, use the Find button, navigate to the “bin”
folder to assign the file stcewfile.exe.

4 With the e*Way’s Properties page still displayed, click New to launch the e*Way
Editor.

5 Using the e*Way Editor, configuration the following settings:

HTTP Proxy
Configuration

Leave blank unless required

Collaboration Rules Passthrough_Data

Subscriptions Event: In
Source: <External>

Publications Event: In
Publish to: HTTP_IQ

Section Parameter and setting

General Settings AllowIncoming: No
AllowOutgoing: Yes

Outbound (sender)
Settings

Output directory: C:\TEMP (or other
“temporary” directory)
Output File Name: httpnossl_out.txt

Section Parameter and Settings

Chapter 4 Section 4.4
Implementation Sample Monk Scripts

HTTP e*Way Intelligent Adapter User’s Guide 43 SeeBeyond Proprietary and Confidential

6 Save the settings, promote to run time, and exit the e*Way Editor.

7 When you return to the e*Way’s Properties page, click OK to save all changes and
return to the Enterprise Manager’s main window.

8 Create a Collaboration for the “Outbound” e*Way, naming it “outbound_collab”.

9 Set the Collaboration’s properties as follows:

The Enterprise Manager configuration is now complete. Now, you must create some
test data which will be sent via HTTP to external web sites. The results of these requests
will be saved to the output data file.

Note: The sites recommended within the test data are publicly available sites, and the test
data was accurate at the time this guide was published. If any of the recommended
sites are no longer available, or you wish to replace them with your own test sites,
please make the appropriate substitutions.

4.4 Sample Monk Scripts
This section describes several sample implementations for the HTTP e*Way.

The samples in this section can be run using the stctrans command-line utility. They do
not require a complete e*Gate schema configuration to function, and are designed to
illustrate the principles involved in creating your own custom Monk scripts. The library
(dll) files to be loaded and the script to be tested must be in the load path (or, for
simplicity’s sake, may be placed in the connected directory). See the Monk Developer’s
Reference for more information about the load path.

The syntax of the stctrans utility is

stctrans monk_file.monk

Additional command-line flags are available; enter stctrans -h to display a list, or see
the e*Gate Integrator System Administration and Operations Guide for more information.

The sample files may be created using any text editor. The samples use a generic
“www.sitename.com” site name; before testing any script, replace the generic name
with a working site name.

4.4.1 GET (Inbound) Example (HTTP_get)
The following script retrieves the URL http://www.somesite.com and displays the
results.

Collaboration Rules: Passthrough_Data

Subscriptions Event: In
Source: http_collab2

Publications Event: In
Publish to: <External>

Chapter 4 Section 4.4
Implementation Sample Monk Scripts

HTTP e*Way Intelligent Adapter User’s Guide 44 SeeBeyond Proprietary and Confidential

;; Load HTTP extension DLL
(load-extension "stc_monkhttp_nossl.dll")

;; Create an HTTP session handle
(define hCon (http-acquire-provider "jdoe" "0E0102" "" "" 0))

;; Execute the HTTP GET method
(http-get hCon "http://www.somesite.com" 0 “accept:text/*”)
(define pszData (http-get-result-data hCon)

;; Print the results
(display pszData)

;; Free HTTP session handle
(http-release-provider hCon)
(set! hCon 0)

Note: Parameters could be passed by this script by appending them to the URL using the
application/x-www-form-urlencoded format; for example,

http://peterw?param1=16¶m2=Lorne+Street

4.4.2 POST (Outbound) Example (HTTP_post)
The following script contains three examples: one posts to an ASP page, and the other
two post to scripts at the specified URLs. The results are displayed.

;; Load HTTP extension DLL
(load-extension "stc_monkhttp_nossl.dll")

;; Create an HTTP session handle
(define hCon (http-acquire-provider "jdoe" "0E0102" "" "" 0))

;; Post to an Active Server Page (ASP) and print server reply
(define postCmd (http-post hCon "http://stingray/Project3/Project3.asp" 0
"accept:text/*" "Content-Type: application/x-www-form-urlencoded" "text1=doe"))
(define postData (http-post-get-result hCon))
(if postCmd

(begin
(define postData (http-get-result-data hCon))
(display postData)
)

)

;; Post form data to a CGI script and print server reply
(define postCmd (http-post hCon "http://info.netscape.com/home_search2.cgi"
0 "accept:text/*" "Content-Type: application/x-www-form-urlencoded"
"cp=Netscape&version=C&searchstring=Martin+Luther+King"))
(define postData (http-post-get-result hCon))
(if postCmdHTTPS

(begin
(define postData (http-get-result-data hCon))
(display postData)
)

)

;; Post form data to a CGI script and print server reply
(define postCmd (http-post hCon "http://search.netscape.com/cgi-bin/search"
0 "accept:text/*" "Content-Type: application/x-www-form-urlencoded"
"search=Mars+missions"))
(define postData (http-post-get-result hCon))
(if postCmd

(begin
(define postData (http-get-result-data hCon))
(display postData)
)

)

;; Free HTTP session handle
(http-release-provider hCon)
(set! hCon 0)

Chapter 4 Section 4.4
Implementation Sample Monk Scripts

HTTP e*Way Intelligent Adapter User’s Guide 45 SeeBeyond Proprietary and Confidential

4.4.3 Input File based Example (AUTO_HTTP)
The sample below illustrates an input file for an inbound e*Way. (Change “somesite” to
a valid site address.

Note: When using an input file, it is necessary to modify the fields within the
configuration file to match those within the input file, or to leave the fields blank. If a
field in the configuration file, such as the Request-content parameter contains a
string, and it does not appear within the input file, e*Gate will attempt to append
the information. If within the input file, the delimiters are left empty the action
within the configuration file will be used.

The following input data is in the AUTO_HTTP schema and executes a POST or GET as
specified. The following illustrates typical GET input data which might be passed to an
HTTP e*Way.

http://www.somesitea.com|GET|
http://www.somesitea.com|GET|
http://www.somesiteb.com|GET|
http://info.somesitec.com|GET|
http://finance.somesiteb.com/q|GET|s=amd&d=v1
http://finance.somesiteb.com/q|GET|s=stcs&d=v1
http://finance.somesiteb.com/q|GET|s=dell&d=v4
http://finance.somesiteb.com/q|GET|s=turf&d=b
http://www.somesited.com|GET|
http://www.somesitee.com|GET|
http://lc6.law5.hotmail.passport.com/cgi-bin/login|GET|
http://www.somesite-facts.com/
srchgrp.asp|POST|keywords=beef&stype=AND&group=ALL
http://www.msn.com|GET|
http://shop.infospace.com/cat1.htm?qvcid=539&qcat=416&nA=11|GET|
http://www.foxnews.com/video/main.sml|GET|
http://www.launch.com/music/welcome/pvn_musicvideos/?seti=1|GET|
http://www.trip.com/content/guidesandtools/0,1324,1-1,00.html|GET|
http://microsoft.com|GET|
http://www.datek.com|GET|
http://www.home.com|GET|
http://www.hotmail.com|GET|
http://www.stc.com|GET|
http://www.nutri-facts.com/
srchgrp.asp|POST|keywords=shrimp&stype=AND&group=ALL
http://www.yahoo.com|GET|

HTTP e*Way Intelligent Adapter User’s Guide 46 SeeBeyond Proprietary and Confidential

Chapter 5

HTTP e*Way Functions

Note: The functions described in this chapter can only be used by the functions defined
within the e*Way’s configuration file. None of the functions are available to
Collaboration Rules scripts executed by the e*Way.

The HTTP e*Way’s functions fall into the following categories:

! Basic Functions on page 46

! HTTP Standard Functions on page 54

! HTTP Monk Functions on page 65

5.1 Basic Functions
The functions in this category control the e*Way’s most basic operations.

The basic functions are

event-send-to-egate on page 47

get-logical-name on page 48

send-external-down on page 49

send-external-up on page 50

shutdown-request on page 51

start-schedule on page 52

stop-schedule on page 53

Chapter 5 Section 5.1
HTTP e*Way Functions Basic Functions

HTTP e*Way Intelligent Adapter User’s Guide 47 SeeBeyond Proprietary and Confidential

event-send-to-egate

Syntax

(event-send-to-egate string)

Description

event-send-to-egate sends an event from the e*Way. If the external collaboration(s) is
successful in publishing the Event to the outbound queue, the function will return #t
(true), otherwise #f (false).

Parameters

Return Values

Boolean
Returns #t (true) when successful and #f (false) when an error occurs.

Throws

None.

Additional Information

This function can be called by any e*Way function when it is necessary to send data to
the e*Gate system in a blocking fashion.

Name Type Description

string string The data to be sent to the e*Gate
system

Chapter 5 Section 5.1
HTTP e*Way Functions Basic Functions

HTTP e*Way Intelligent Adapter User’s Guide 48 SeeBeyond Proprietary and Confidential

get-logical-name

Syntax

(get-logical-name)

Description

get-logical-name returns the logical name of the e*Way.

Parameters

None.

Return Values

string
Returns the name of the e*Way (as defined by the Enterprise Manager).

Throws

None.

Chapter 5 Section 5.1
HTTP e*Way Functions Basic Functions

HTTP e*Way Intelligent Adapter User’s Guide 49 SeeBeyond Proprietary and Confidential

send-external-down

Syntax

(send-external-down)

Description

send-external down instructs the e*Way that the connection to the external system is
down.

Parameters

None.

Return Values

None.

Throws

None.

Chapter 5 Section 5.1
HTTP e*Way Functions Basic Functions

HTTP e*Way Intelligent Adapter User’s Guide 50 SeeBeyond Proprietary and Confidential

send-external-up

Syntax

(send-external-up)

Description

send-external-up instructs the e*Way that the connection to the external system is up.

Parameters

None.

Return Values

None.

Throws

None.

Chapter 5 Section 5.1
HTTP e*Way Functions Basic Functions

HTTP e*Way Intelligent Adapter User’s Guide 51 SeeBeyond Proprietary and Confidential

shutdown-request

Syntax

(shutdown-request)

Description

shutdown request requests the e*Way to perform the shutdown procedure when there
is no outstanding incoming/outgoing event. When the e*Way is ready to act on the
shutdown request, in invokes the Shutdown Command Notification Function (see
“Shutdown Command Notification Function” on page 25). Once this function is
called, the shutdown proceeds immediately.

Parameters

None.

Return Values

None.

Throws

None.

Chapter 5 Section 5.1
HTTP e*Way Functions Basic Functions

HTTP e*Way Intelligent Adapter User’s Guide 52 SeeBeyond Proprietary and Confidential

start-schedule

Syntax

(start-schedule)

Description

start-schedule requests that the e*Way execute the Exchange Data with External
function specified within the e*Way’s configuration file. Does not effect any defined
schedules.

Parameters

None.

Return Values

None.

Throws

None.

Chapter 5 Section 5.1
HTTP e*Way Functions Basic Functions

HTTP e*Way Intelligent Adapter User’s Guide 53 SeeBeyond Proprietary and Confidential

stop-schedule

Syntax

(stop-schedule)

Description

stop-schedule requests that the e*Way halt execution of the Exchange Data with
External function specified within the e*Way’s configuration file. Execution will be
stopped when the e*Way concludes any open transaction. Does not effect any defined
schedules, and does not halt the e*Way process itself.

Parameters

None.

Return Values

None.

Throws

None.

Chapter 5 Section 5.2
HTTP e*Way Functions HTTP Standard Functions

HTTP e*Way Intelligent Adapter User’s Guide 54 SeeBeyond Proprietary and Confidential

5.2 HTTP Standard Functions
The current suite of HTTP Monk standard functions are:

httpnossl-ack on page 55

httpnossl-connect on page 56

httpnossl-exchange on page 57

httpnossl-init on page 58

httpnossl-nack on page 59

httpnossl-notify on page 60

httpnossl-outgoing on page 61

httpnossl-shutdown on page 62

httpnossl-startup on page 63

httpnossl-verify on page 64

Chapter 5 Section 5.2
HTTP e*Way Functions HTTP Standard Functions

HTTP e*Way Intelligent Adapter User’s Guide 55 SeeBeyond Proprietary and Confidential

httpnossl-ack

Syntax

(httpnossl-ack message-string)

Description

httpnossl-ack sends a positive acknowledgment to the external system after all
Collaborations to which the e*Way sent data have processed and enqueued that data
successfully.

Parameters

Return Values

string
An empty string indicates a successful operation. The e*Way will then be able to proceed
with the next request.

“CONNERR” indicates a problem with the connection to the external system. When the
connection is re-established, the function will be called again.

Additional Information

See “Positive Acknowledgment Function” on page 23 for more information.

Name Type Description

message-string string The Event for which an
acknowledgment is sent.

Chapter 5 Section 5.2
HTTP e*Way Functions HTTP Standard Functions

HTTP e*Way Intelligent Adapter User’s Guide 56 SeeBeyond Proprietary and Confidential

httpnossl-connect

Syntax

(httpnossl-connect)

Description

httpnossl-connect establishes a connection to the external system.

Parameters

None.

Return Values

string
“UP” indicates the connection is established. Anything else indicates no connection.

Throws

None.

Additional Information

See “External Connection Establishment Function” on page 22 for more information.

Chapter 5 Section 5.2
HTTP e*Way Functions HTTP Standard Functions

HTTP e*Way Intelligent Adapter User’s Guide 57 SeeBeyond Proprietary and Confidential

httpnossl-exchange

Syntax

(httpnossl-exchange)

Description

httpnossl-exchange sends a received event from the external system to e*Gate. The
function expects no input.

Parameters

None.

Return Values

string
An empty string indicates a successful operation. Nothing is sent to e*Gate.

A message-string indicates successful operation and the Event is sent to e*Gate.

“CONNERR” indicates a problem with the connection to the external system. When the
connection is re-established this function will be reexecuted with the same input Event.

Throws

None.

Additional Information

See “Exchange Data with External Function” on page 21 for more information.

Chapter 5 Section 5.2
HTTP e*Way Functions HTTP Standard Functions

HTTP e*Way Intelligent Adapter User’s Guide 58 SeeBeyond Proprietary and Confidential

httpnossl-init

Syntax

(httpnossl-init)

Description

httpnossl-init begins the initialization process for the e*Way. This function loads the
stc_monkhttp_nossl.dll file and the initialization file, thereby making the function
scripts available for future use.

Parameters

None.

Return Values

string
If a “FAILURE” string is returned, the e*Way will shutdown. Any other return indicates
success.

Throws

None.

Additional Information

Within this function, any necessary global variables to be used by the function scripts
could be defined. The internal function that loads this file is called once when the
e*Way first starts up.

See “Monk Environment Initialization File” on page 19 for more information.

Chapter 5 Section 5.2
HTTP e*Way Functions HTTP Standard Functions

HTTP e*Way Intelligent Adapter User’s Guide 59 SeeBeyond Proprietary and Confidential

httpnossl-nack

Syntax

(httpnossl-nack message-string)

Description

httpnossl-nack sends a negative acknowledgment to the external system when the
e*Way fails to process and queue Events from the external system.

Parameters

Return Values

string
An empty string indicates a successful operation.

“CONNERR” indicates a problem with the connection to the external system. When the
connection is re-established, the function will be called again.

Throws

None.

Additional Information

See “Negative Acknowledgment Function” on page 24 for more information.

Name Type Description

message-string string The Event for which a negative
acknowledgment is sent.

Chapter 5 Section 5.2
HTTP e*Way Functions HTTP Standard Functions

HTTP e*Way Intelligent Adapter User’s Guide 60 SeeBeyond Proprietary and Confidential

httpnossl-notify

Syntax

(httpnossl-notify command)

Description

httpnossl-notify notifies the external system that the e*Way is shutting down.

Parameters

Return Values

string
Returns a null string.

Throws

None.

Additional Information

See “Shutdown Command Notification Function” on page 25 for more information.

Name Type Description

command string When the e*Way calls this function,
it will pass the string
"SHUTDOWN_NOTIFICATION" as
the parameter.

Chapter 5 Section 5.2
HTTP e*Way Functions HTTP Standard Functions

HTTP e*Way Intelligent Adapter User’s Guide 61 SeeBeyond Proprietary and Confidential

httpnossl-outgoing

Syntax

(httpnossl-outgoing event-string)

Description

httpnossl-outgoing is used for sending a received message from e*Gate to the external
system.

Parameters

Return Values

string
An empty string indicates a successful operation.

“RESEND” causes the Event to be immediately resent.

“CONNERR” indicates a problem with the connection to the external system. When the
connection is re-established this function will be reexecuted with the same input Event.

“DATAERR” indicates the function had a problem processing data. If the e*Gate journal
is enabled, the Event is journaled and the failed Event count is increased. (The input
Event is essentially skipped in this process.) Use the event-send-to-egate function to
place bad events in a bad event queue. See event-send-to-egate on page 47 for more
information on this function.

Additional Information

See “Process Outgoing Message Function” on page 20 for more information.

Name Type Description

event-string string The Event to be processed.

Chapter 5 Section 5.2
HTTP e*Way Functions HTTP Standard Functions

HTTP e*Way Intelligent Adapter User’s Guide 62 SeeBeyond Proprietary and Confidential

httpnossl-shutdown

Syntax

(httpnossl-shutdown shutdown)

Description

httpnossl-shutdown requests that the external connection shutdown. A return value of
“SUCCESS” indicates that the shutdown can occur immediately. Any other return
value indicates that the shutdown Event must be delayed. The user is then required to
execute a (shutdown-request on page 51) call from within a Monk function to allow the
requested shutdown to process to continue.

Parameters

Return Values

string
“SUCCESS” allows an immediate shutdown to occur. Anything else delays shutdown
until the shutdown-request is executed successfully.

Throws

None.

Additional Information

See “External Connection Shutdown Function” on page 23.

Name Type Description

shutdown string When the e*Way calls this function, it will pass
the string "SUSPEND_NOTIFICATION" as the
parameter.

Chapter 5 Section 5.2
HTTP e*Way Functions HTTP Standard Functions

HTTP e*Way Intelligent Adapter User’s Guide 63 SeeBeyond Proprietary and Confidential

httpnossl-startup

Syntax

(httpnossl-startup)

Description

httpnossl-startup is used for function loads that are specific to this e*Way and invokes
startup.

Parameters

None.

Return Values

string
“FAILURE” causes shutdown of the e*Way. Any other return indicates success.

Throws

None.

Additional Information

This function should be used to initialize the external system before data exchange
starts. Any additional variables may be defined here.

See “Startup Function” on page 20 for more information.

Chapter 5 Section 5.2
HTTP e*Way Functions HTTP Standard Functions

HTTP e*Way Intelligent Adapter User’s Guide 64 SeeBeyond Proprietary and Confidential

httpnossl-verify

Syntax

(httpnossl-verify)

Description

httpnossl-verify is used to verify whether the connection to the external system is
established.

Parameters

None.

Return Values

string
“UP” or “SUCCESS” if connection established. Anything other value indicates the
connection is not established.

Throws

None.

Additional Information

See “External Connection Verification Function” on page 22 for more information.

Chapter 5 Section 5.3
HTTP e*Way Functions HTTP Monk Functions

HTTP e*Way Intelligent Adapter User’s Guide 65 SeeBeyond Proprietary and Confidential

5.3 HTTP Monk Functions
The HTTP Monk functions are used to invoke contact with the HTTP web server to
upload (post) or download (get) data from it.

The Monk functions are:

http-acquire-provider on page 69

http-add-content-type-param on page 70

http-add-header on page 71

http-clear-content-type-param on page 72

http-clear-headers on page 73

http-get on page 74

http-get-error-text on page 75

http-get-last-status on page 76

http-get-result-data on page 78

http-post on page 79

http-release-provider on page 81

http-set-proxy-properties on page 82

http-url-encode on page 83

Chapter 5 Section 5.3
HTTP e*Way Functions HTTP Monk Functions

HTTP e*Way Intelligent Adapter User’s Guide 66 SeeBeyond Proprietary and Confidential

5.3.1 Rules for Encoding in the “x-www-form-urlencoded” Format
The following tables show representations for reserved characters, control characters,
delimiters and symbols that are considered “ unwise” to use. For more information on
“x-www-form-urlencoded” rules, see IETF RFC 2396, Uniform Resource Identifiers
(URI): Generic Syntax. For more information, see http-post on page 79

Table 2 Reserved Characters

Reserved Character
Escaped Character

Representation

; %3B

| %7C

/ %2F

? %3F

: %3A

@ %4O

& %26

= %3D

+ %2B

$ %24

, %2C

Chapter 5 Section 5.3
HTTP e*Way Functions HTTP Monk Functions

HTTP e*Way Intelligent Adapter User’s Guide 67 SeeBeyond Proprietary and Confidential

Table 3 Control Characters

Control Character
Escaped Character

Representation

ASCII 0 %00

ASCII 1 %01

ASCII 2 %02

ASCII 3 %03

ASCII 4 %04

ASCII 5 %05

ASCII 6 %06

ASCII 7 %07

ASCII 8 %08

ASCII 9 %09

ASCII 10 %0A

ASCII 11 %0B

ASCII 12 %0C

ASCII 13 %0D

ASCII 14 %0E

ASCII 15 %0F

ASCII 16 %10

ASCII 17 %11

ASCII 18 %12

ASCII 19 %13

ASCII 20 %14

ASCII 21 %15

ASCII 22 %16

ASCII 23 %17

ASCII 24 %18

ASCII 25 %19

ASCII 26 %1A

ASCII 27 %1B

ASCII 28 %1C

ASCII 29 %1D

ASCII 30 %1E

ASCII 31 %1F

ASCII 127 %7F

SPACE char %20

Chapter 5 Section 5.3
HTTP e*Way Functions HTTP Monk Functions

HTTP e*Way Intelligent Adapter User’s Guide 68 SeeBeyond Proprietary and Confidential

Table 4 Delimiters

Delimiter Character Escaped Character Value

< %3C

> %3E

%23

% %25

“ %22

Table 5 Unwise Characters

Unwise Character Escaped Character Value

{ %7B

} %7D

| %7C

\ %5C

^ %5E

[%5B

] %5D

‘ %60

Chapter 5 Section 5.3
HTTP e*Way Functions HTTP Monk Functions

HTTP e*Way Intelligent Adapter User’s Guide 69 SeeBeyond Proprietary and Confidential

http-acquire-provider

Syntax

(http-acquire-provider username password agent proxy flags)

Description

http-acquire-provider performs the necessary initialization of underlying libraries and
resources used during operations. This functions returns a connection-handle needed
for subsequent operations.

Parameters

Return Values

handle
The handle associated with the HTTP session.

Throws

None.

Examples

(define hCon (http-acquire-provider "myusername" "0E102" "" "" 0))

Name Type Description

username a valid string The name of the user performing the inquiry.

password encrypted-
password

The valid password corresponding to the user
above.

agent agent name The user-agent name. This value is passed to the
web server by the client with each web request,
and it is usually used to specify the type of
browser running as a client.

proxy URL-string A valid URL for the proxy, for example,
"http://proxyname:8080" where ‘proxyname’ is the
host, and ’8080’ is the port number on which the
proxy server is serving requests. Specify ""
(empty string) if none is used.

flags a integer set to 0 (reserved)

Chapter 5 Section 5.3
HTTP e*Way Functions HTTP Monk Functions

HTTP e*Way Intelligent Adapter User’s Guide 70 SeeBeyond Proprietary and Confidential

http-add-content-type-param

Syntax

(http-add-content-type-param hCon content_type_name
content_type_value)

Description

http-add-content-type-param adds the content type parameter associated to the
specified handle.

Parameters

Return Values

Boolean
Returns #t (true) when successful; otherwise, returns #f (false) when an error occurs.

Throws

None.

Name Type Description

hCon opaque handle The handle provided by http-acquire-
provider.

content_type_name string The name of the content type
parameter to be added.

content_type_value string The value of the content type parameter
to be added.

Chapter 5 Section 5.3
HTTP e*Way Functions HTTP Monk Functions

HTTP e*Way Intelligent Adapter User’s Guide 71 SeeBeyond Proprietary and Confidential

http-add-header

Syntax

(http-add-header hCon field_name field_value)

Description

http-add-header adds a token value pair associated with the specified header.

Parameters

Return Values

Boolean
Returns #t (true) when successful; otherwise, returns #f (false) when an error occurs.

Name Type Description

hCon opaque handle The handle provided by http-acquire-provider.

field_name string The field name associated with the header being
added. Some of the possible field names are:

! Accept

! Accept-Charset

! Accept-Encoding

! Accept-Language

! Authorization

! Expect

! From

! Host

! If-Match

! If-Modified-Since

! If-None-Match

! If-Range

! If-Unmodified-Since

! Max-Forwards

! Proxy-Authorization

! Range

! Referer

field_value string The field value associated with the header being
added.

Chapter 5 Section 5.3
HTTP e*Way Functions HTTP Monk Functions

HTTP e*Way Intelligent Adapter User’s Guide 72 SeeBeyond Proprietary and Confidential

http-clear-content-type-param

Syntax

(http-clear-content-type-param hCon)

Description

http-clear-content-type-param clears the content type parameter associated with the
specified handle.

Parameters

Return Values

Boolean
Returns #t (true) when successful; otherwise, returns #f (false) when an error occurs.

Throws

None.

Name Type Description

hCon opaque handle The handle provided by http-acquire-
provider.

Chapter 5 Section 5.3
HTTP e*Way Functions HTTP Monk Functions

HTTP e*Way Intelligent Adapter User’s Guide 73 SeeBeyond Proprietary and Confidential

http-clear-headers

Syntax

(http-clear-headers hCon)

Description

http-clear-headers clears the headers associated with the specified handle.

Parameters

Return Values

Boolean
Returns #t (true) when successful; otherwise, returns #f (false) when an error occurs.

Throws

None.

Name Type Description

hCon opaque handle The handle provided by http-acquire-
provider.

Chapter 5 Section 5.3
HTTP e*Way Functions HTTP Monk Functions

HTTP e*Way Intelligent Adapter User’s Guide 74 SeeBeyond Proprietary and Confidential

http-get

Syntax

(http-get hCon URL timeout accept-type)

Description

http-get obtains and stores the data referenced by the specified URL.

Parameters

Return Values

Boolean
Returns #t (true) when successful; otherwise, returns #f (false) when an error occurs.

Throws

None.

Additional Information

This function stores the data internally. In order to retrieve the data, the http-get-result-
data function must be called. See http-get-result-data on page 78 for more information.

Examples

(define postCmd (http-get hCon "http://www.somesite.com" 20000 "Accept:text/*"))
(if postCmd

(begin
(define postData (http-get-result-data hCon))
(display postData)
)

)

(display pData)

Name Type Description

hCon opaque handle The handle provided by
http-acquire-provider.

URL string The URL that the http-get request is to
retrieve when executed.

timeout integer A number representing the timeout in
milliseconds that the client waits for a
response from the server.

accept-type string The MIME type of the output data to be
returned by the server.
NOTE: Only text types are supported.
Must be in the form:
Accept:xxxx/xxxx. For example:
“Accept:text/*”

Chapter 5 Section 5.3
HTTP e*Way Functions HTTP Monk Functions

HTTP e*Way Intelligent Adapter User’s Guide 75 SeeBeyond Proprietary and Confidential

http-get-error-text

Syntax

(http-get-error-text error_code)

Description

http-get-error-text obtains the explanation for the error code returned by
http-get-last-status.

Parameters

Return Values

string
Returns the message associated with the error code returned by http-get-last-status.

Throws

None.

Name Type Description

error_code integer The handle error code returned by
http-get-last-status.

Chapter 5 Section 5.3
HTTP e*Way Functions HTTP Monk Functions

HTTP e*Way Intelligent Adapter User’s Guide 76 SeeBeyond Proprietary and Confidential

http-get-last-status

Syntax

(http-get-last-status hCon)

Description

http-get-last-status returns the status from the last http-get or http-put call.

Parameters

Return Values

integer
Returns an integer corresponding to specified HTTP server status codes.

Figure 13 Server Status Return Codes

Name Type Description

hCon opaque handle The handle provided by http-acquire-provider.

Return Values Description Return CodeType

100 Continue Information

101 Switching Protocols Information

200 OK Success

201 Create Success

202 Accepted Success

203 Non-authoritative Information Success

204 Document Updated Success

205 Reset Content Success

206 Partial Content Success

207 Partial Update OK Success

300 Multiple Choices Redirection

301 Moved Permanently Redirection

302 Found Redirection

303 See Other Redirection

304 Not Modified Redirection

305 Use Proxy Redirection

306 Proxy Redirect Redirection

307 Temporary Redirect Redirection

400 Bad Request Client_error

401 Unauthorized Client_error

402 Payment Required Client_error

403 Forbidden Client_error

Chapter 5 Section 5.3
HTTP e*Way Functions HTTP Monk Functions

HTTP e*Way Intelligent Adapter User’s Guide 77 SeeBeyond Proprietary and Confidential

Note: See the HTTP Server documentation for more information.

404 Not Found Client_error

405 Method Not Allowed Client_error

406 Not Acceptable Client_error

407 Proxy Authentication Required Client_error

408 Request Timeout Client_error

409 Conflict Client_error

410 Gone Client_error

411 Length Required Client_error

412 Precondition Failed Client_error

413 Request Entity Too Large Client_error

414 Request-URI Too Large Client_error

415 Unsupported Media Type Client_error

416 Range Not Satisfiable Client_error

417 Expectation Failed Client_error

418 Reauthentication Required Client_error

419 Proxy Reauthentication Required Client_error

500 Internal Server Error Server_error

501 Not Implemented Server_error

502 Bad Gateway Server_error

503 Service Unavailable Server_error

504 Gateway Timeout Server_error

505 HTTP Version not supported Server_error

506 Partial Update Not Implemented Server_error

10 Response is Stale Cache

11 Revalidation Failed Cache

12 Disconnected Operation Cache

13 Heuristic Expiration Cache

14 Transformation Applied Cache

99 Cache Warning Cache

Return Values Description Return CodeType

Chapter 5 Section 5.3
HTTP e*Way Functions HTTP Monk Functions

HTTP e*Way Intelligent Adapter User’s Guide 78 SeeBeyond Proprietary and Confidential

http-get-result-data

Syntax

(http-get-result-data hCon)

Description

http-get-result-data retrieves the data returned by the server from the last http-get call.

Parameters

Return Values

string
The string contains the data requested.

Additional Information

Verify the success of the http-get or http-post function, prior to calling http-get-result-
data.

Note: The function must be passed a handle that is returned from http-acquire-provider.
The return value is valid only when called after a FORM get as shown below (via
http-get).

Examples

(define postCmd (http-post hCon "http://stingray/Project3/Project3.asp" 0
"accept:text/*" "Content-Type: application/x-www-form-urlencoded" "test1=hello&test2=world"))
(if postCmd

(begin
(define postData (http-get-result-data hCon))
(display postData)
)

)

Name Type Description

hCon opaque handle The handle provided by http-acquire-provider.

Chapter 5 Section 5.3
HTTP e*Way Functions HTTP Monk Functions

HTTP e*Way Intelligent Adapter User’s Guide 79 SeeBeyond Proprietary and Confidential

http-post

Syntax

(http-post hCon URL timeout accept-string content-type post-data)

Description

http-post posts to a specified URL. The post request submits data to a form.

Parameters

Return Values

Boolean
If successful, returns #t (true); otherwise, returns #f (false).

Throws

None.

Additional Information

Verify the successful result of the http-post call, prior to calling http-get-result-data.

For more information regarding acceptable format types, see Rules for Encoding in the
“x-www-form-urlencoded” Format on page 66.

When the web server sends a “cookie” to the e*Way, the e*Way stores it away in
memory. Each time the e*Way needs to “Post” to the same web site, it references the
same cookie as received initially (usually the login page). The e*Way is able to store
cookie “A” for one site, cookie “B” for another site, etc., and associates each cookie with
the relevant site.

Name Type Description

hCon opaque
handle

The handle provided by http-acquire-provider.

URL string The URL to which the data will be posted.

timeout integer A number representing the timeout in milliseconds that
the client waits for a response from the server.

accept-string string The MIME type of the output data to be returned by the
server.
NOTE: Only text types are supported. Must be in the
form: accept:xxxx/xxxx For example: “Accept:text/*”

content-type string Content-Type of the data passed to the post-data
parameter. The default:
application/x-www-form-urlencoded.

post-data string Defines the encoded value to pass to the web server as
part of a POST request. The example here is encoded in
the default "application/x-www-form-urlencoded"
scheme. (stringx=data_string&stingy=data_string)
example:”test1=hello&test2=world”

Chapter 5 Section 5.3
HTTP e*Way Functions HTTP Monk Functions

HTTP e*Way Intelligent Adapter User’s Guide 80 SeeBeyond Proprietary and Confidential

Example One

(define postCmd (http-post hCon "http://stingray/Project3/Project3.asp" 0
"accept:text/*" "Content-Type: application/x-www-form-urlencoded" "test1=hello&test2=world"))
(if postCmd

(begin
(define postData (http-get-result-data hCon))
(display postData)
)

)

Example Two

1st eWay post ---> login page
<---login page responds with cookie “A”

2nd eWay post (with cookie “A” ---> next page

Chapter 5 Section 5.3
HTTP e*Way Functions HTTP Monk Functions

HTTP e*Way Intelligent Adapter User’s Guide 81 SeeBeyond Proprietary and Confidential

http-release-provider

Syntax

(http-release-provider hCon)

Description

http-release-provider deallocates the HTTP session handle obtained from
http-acquire-provider.

Parameters

Return Values

None.

Throws

None.

Name Type Description

hCon opaque handle The handle provided by http-acquire-provider.

Chapter 5 Section 5.3
HTTP e*Way Functions HTTP Monk Functions

HTTP e*Way Intelligent Adapter User’s Guide 82 SeeBeyond Proprietary and Confidential

http-set-proxy-properties

Syntax

(http-set-proxy-properties hCon proxyUrl port proxyUser
proxyPassword)

Description

http-set-proxy-properties defines the parameters necessary to access the proxy server.

Parameters

Return Values

Boolean

If successful, returns #t (true); otherwise, returns #f (false).

Throws

None.

Name Type Description

hCon opaque handle The handle provided by http-acquire-provider.

proxyUrl string The proxy URL. For example:
“www.somesite.com” or
“www.somesite.com:8080”

port integer The port number on which the proxy server is
listening.

proxyUser string A valid user name.

proxyPassword string An encrypted password associated with the
above named user. Use the encrypt-password
function to create this password. See the Monk
Developer’s Reference for more information.

Chapter 5 Section 5.3
HTTP e*Way Functions HTTP Monk Functions

HTTP e*Way Intelligent Adapter User’s Guide 83 SeeBeyond Proprietary and Confidential

http-url-encode

Syntax

(http-url-encode input_data)

Description

http-url-encode encodes the given string into x-www-form-urlencoded format.

Parameters

Return Values

string
Returns the encoded string.

Throws

None.

Additional Information

In previous releases of the HTTP e*Way this was handled automatically. Currently, this
function must be called in order to transform the data string into urlencoded format.

Name Type Description

input_data string The string to be encoded.

Index

HTTP e*Way Intelligent Adapter User’s Guide 84 SeeBeyond Proprietary and Confidential

Index

A
Accept-type 27
Additional Path 19
Agent 27
AUTO_HTTP 45
Auxiliary Library Directories 19

B
basic functions

event-send-to-egate 47
get-logical-name 48
send-external-down 49
send-external-up 50
shutdown request 51
start-schedule 52
stop-schedule 53

C
Communication Setup 8

Down Timeout 10
Exchange Event Interval 8
Resend Timeout 10
Start Exchange Data Schedule 9
Stop Exchange Data Schedule 9
Up Timeout 10
Zero Wait Between Successful Exchanges 8

Configuration Parameters 6
Content-type 27

D
Directories and files installed 5
Down Timeout 10

E
Encrypted Password 26, 28
event-send-to-egate 47
example

hard coded 45
inbound 43
outbound 44

examples
GET 43
httpnossl-outgoing 34
POST 44

Exchange Data with External Function 21
Exchange Event Interval 8
External Connection Establishment Function 22
External Connection Shutdown Function 23
External Connection Verification Function 22

F
Forward External Errors 8
functions

event-send-to-egate 47
get-logical-name 48
http-acquire-provider 69
http-add-content-type-param 70
http-add-header 71
http-clear-content-type-param 72
http-clear-header 73
http-get 74
http-get-error-text 75
http-get-last-status 76
http-get-result-data 78
httpnossl-ack 55
httpnossl-connect 56
httpnossl-exchange 57
httpnossl-init 58
httpnossl-nack 59
httpnossl-notify 60
httpnossl-outgoing 61
httpnossl-shutdown 62
httpnossl-startup 63
httpnossl-verify 64
http-post 79
http-release-provider 81
http-set-proxy-properties 82
http-url-encode 83
send-external-down 49
send-external-up 50
shutdown request 51
start-schedule 52
stop-schedule 53

G
General Settings 7

Forward External Errors 8
Journal File Name 7
Max Failed Messages 7
Max Resends Per Event 7

GET example 43
get-logical-name 48

Index

HTTP e*Way Intelligent Adapter User’s Guide 85 SeeBeyond Proprietary and Confidential

H
hard coded example 45
HTTP configuration 25

Encrypted Password 26
Request 25
Timeout 25
User name 26

HTTP configurations
Accept-type 27
Agent 27
Content-type 27
Request-content 27
URL 26

HTTP functions
http-add-content-type-param 70
http-add-header 71
http-clear-content-type-param 72
http-clear-header 73
http-get-error-text 75
http-url-encode 83

HTTP Monk functions
http-acquire-provider 69
http-get 74
http-get-result-data 78
http-post 79
http-release-provider 81
http-set-proxy-properties 82

HTTP Proxy Configuration 28
Encrypted Password 28
Port Number 29
Server Address 28
User Name 28

HTTP Proxy configuration
Use Proxy Server 28

http standard functions
httpnossl-ack 55
httpnossl-connect 56
httpnossl-exchange 57
httpnossl-nack 59
httpnossl-notify 60
httpnossl-outgoing 61
httpnossl-shutdown 62
httpnossl-startup 63
httpnossl-verify 64

HTTP_get 43
HTTP_post 44
http-acquire-provider 69
http-add-content-type-param 70
http-add-header 71
http-clear-content-type-param 72
http-clear-header 73
http-get 74
http-get-error-text 75

http-get-last-status 76
http-get-result-data 78
httpnossl-ack 55
httpnossl-connect 56
httpnossl-exchange 57

using 39
httpnossl-init 58
httpnossl-nack 59
httpnossl-notify 60
httpnossl-outgoing 34, 61
httpnossl-shutdown 62
httpnossl-startup 63
httpnossl-verify 64
http-post 79
http-release-provider 81
http-set-proxy-properties 82
http-standard functions

httpnossl-init 58
http-url-encode 83

I
inbound example 43

J
Journal File Name 7

M
Max Failed Messages 7
Max Resends Per Event 7
Monk Configuration 10

Additional Path 19
Auxiliary Library Directories 19
Exchange Data with External Function 21
External Connection Establishment Function 22
External Connection Shutdown Function 23
External Connection Verification Function 22
Monk Environment Initialization 19
Negative Acknowledgment Function 24
Positive Acknowledgment Function 23
Process Outgoing Event Function 20
Shutdown Command Notification Function 25
Startup Function 20

Monk Environment Initialization File 19
monk functions

http-get-last-status 76

N
Negative Acknowledgment Function 24

Index

HTTP e*Way Intelligent Adapter User’s Guide 86 SeeBeyond Proprietary and Confidential

O
outbound example 44

P
Parameters

Accept-type 27
Additional Path 19
Agent 27
Auxiliary Library Directories 19
Content-type 27
Down Timeout 10
Encrypted Password 26, 28
Exchange Data with External Function 21
Exchange Event Interval 8
External Connection Establishment Function 22
External Connection Shutdown Function 23
External Connection Verification Function 22
Forward External Errors 8
General Settings 7
Journal File Name 7
Max Failed Messages 7
Max Resends Per Event 7
Monk Environment Initialization File 19
Negative Acknowledgment Function 24
Port Number 29
Positive Acknowledgment Function 23
Process Outgoing Event Function 20
Request 25
Request-content 27
Resend Timeout 10
Server Address 28
Shutdown Command Notification Function 25
Start Exchange Data Schedule 9
Startup Function 20
Stop Exchange Data Schedule 9
Timeout 25
Up Timeout 10
URL 26
Use Proxy Server 28
User Name 26, 28
Zero Wait Between Successful Exchanges 8

Port Number 29
Positive Acknowledgment Function 23
POST example 44
Process Outgoing Event Function 20

R
Request 25
Request-content 27
Resend Timeout 10

S
send-external-down function 49
send-external-up 50
Server Address 28
Shutdown Command Notification Function 25
shutdown request 51
Start Exchange Data Schedule 9
start-schedule function 52
Startup Function 20
Stop Exchange Data Schedule 9
stop-schedule function 53

T
Timeout 25

U
Up Timeout 10
URL 26
Use Proxy Server 28
User Name 28
User name 26
using httpnossl-exchange 39

Z
Zero Wait Between Successful Exchanges 8

	HTTP e*Way Intelligent Adapter User’s Guide
	Contents
	Introduction
	1.1 Overview
	1.1.1 Intended Reader
	1.1.2 Components

	1.2 System Requirements

	Installation
	2.1 Windows NT or Windows 2000
	2.1.1 Pre-installation
	2.1.2 Installation Procedure

	2.2 UNIX
	2.2.1 Pre-installation
	2.2.2 Installation Procedure

	2.3 Files/Directories Created by the Installation

	Configuration
	3.1 Introduction
	3.2 e*Way Configuration Parameters
	3.2.1 General Settings
	Journal File Name
	Max Resends Per Message
	Max Failed Messages
	Forward External Errors

	3.2.2 Communication Setup
	Exchange Data Interval
	Zero Wait Between Successful Exchanges
	Start Exchange Data Schedule
	Stop Exchange Data Schedule
	Down Timeout
	Up Timeout
	Resend Timeout

	3.2.3 Monk Configuration
	Operational Details
	How to Specify Function Names or File Names
	Additional Path
	Auxiliary Library Directories
	Monk Environment Initialization File
	Startup Function
	Process Outgoing Message Function
	Exchange Data with External Function
	External Connection Establishment Function
	External Connection Verification Function
	External Connection Shutdown Function
	Positive Acknowledgment Function
	Negative Acknowledgment Function
	Shutdown Command Notification Function

	3.2.4 HTTP Configuration
	Request
	Timeout
	URL
	User Name
	Encrypted Password
	Agent
	Content-type
	Request-content
	Accept-type

	3.2.5 HTTP Proxy Configuration
	Use Proxy Server
	User Name
	Encrypted Password
	Server Address
	Port Number

	Implementation
	4.1 Implementation Process: Overview
	4.2 Creating Event Type Definitions from Form Data
	4.2.1 Creating Event Type Definitions from a Command line
	4.2.2 Creating Event Type Definitions from the ETD Editor

	4.3 Sample Configurations
	4.3.1 Creating a Schema Using httpnossl-outgoing
	4.3.2 Creating a Schema Using httpnossl-exchange

	4.4 Sample Monk Scripts
	4.4.1 GET (Inbound) Example (HTTP_get)
	4.4.2 POST (Outbound) Example (HTTP_post)
	4.4.3 Input File based Example (AUTO_HTTP)

	HTTP e*Way Functions
	5.1 Basic Functions
	event-send-to-egate
	get-logical-name
	send-external-down
	send-external-up
	shutdown-request
	start-schedule
	stop-schedule

	5.2 HTTP Standard Functions
	httpnossl-ack
	httpnossl-connect
	httpnossl-exchange
	httpnossl-init
	httpnossl-nack
	httpnossl-notify
	httpnossl-outgoing
	httpnossl-shutdown
	httpnossl-startup
	httpnossl-verify

	5.3 HTTP Monk Functions
	5.3.1 Rules for Encoding in the “x-www-form-urlencoded” Format
	http-acquire-provider
	http-add-content-type-param
	http-add-header
	http-clear-content-type-param
	http-clear-headers
	http-get
	http-get-error-text
	http-get-last-status
	http-get-result-data
	http-post
	http-release-provider
	http-set-proxy-properties
	http-url-encode

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	M
	N
	O
	P
	R
	S
	T
	U
	Z

