
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide

Release 4.5.2
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Index, e*Insight, e*Way, e*Xchange, e*Xpressway, iBridge, IQ, SeeBeyond, and the SeeBeyond logo are trademarks and
service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their respective
companies

© 1999–2002 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20020919151120.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents
Contents

Chapter 1

Introduction 15
JDBC/ODBC e*Way Overview 15

Driver Types 15
Type One Driver 15
Type Two Driver 16
Type Three Driver 17
Type Four Driver 18

Intended Reader 18
Components 19

Operational Overview 19

Supported Operating Systems 19

System Requirements 20
Host System Requirements 20

GUI Host Requirements 20
Participating Host Requirements 20

ODBC e*Way Overview 21

Using SQL 21

Components 21

Intended Reader 22

Supported Operating Systems 22

System Requirements 22
External System Requirements 23

Chapter 2

Installation 24
Installing the JDBC/ODBC e*Way on Windows NT or Windows 2000 24

Pre-installation 24
Installation Procedure 24

Installing the JDBC/ODBC e*Way on UNIX 25
Pre-installation 25
Installation Procedure 25

Files/Directories Created by the Installation 25
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents
Monk ODBC Installation 26
Installation Overview 26
Installation Decisions 26
Installing Client and Network Components on Windows NT/2000 27

Installing the ODBC e*Way on Windows NT and Windows 2000 27
Pre-installation 27
Installation Procedure 28

Installing the ODBC e*Way on UNIX 29
Pre-installation 29
Installation Procedure 29

DataDirect 4.1 ODBC Drivers 30
Setting up the Shared Library Search Path 30
Setting up the ODBC Data Source Definition File 31

Sample .odbc.ini File 31
Optional Environment Variables 34

The ivtestlib Tool 34
Testing the ODBC Driver 34

Installing the ODBC Drivers for Compaq 35

Oracle Network Components 35
SQL *Net V2 Configuration Files 36
Testing the SQL *Net Configuration 38
Troubleshooting Checklist 38

Chapter 3

e*Way Connection Configuration 40
Create e*Way Connections 40

DataSource Settings 41
class 41
connection method 42
jdbc url 43
data source attribute value pair separator 43
data source attributes 43
user name 44
password 44
timeout 44

Connector Settings 44
connector 45
class 45
transaction mode 45
connection establishment mode 45
connection inactivity timeout 46
connection verification interval 46

Connection Manager 46
Controlling When a Connection is Made 47
Controlling When a Connection is Disconnected 47
Controlling the Connectivity Status 48
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 4 SeeBeyond Proprietary and Confidential

Contents
Monk ODBC Configuration 48

Configuration Overview 48

e*Way Configuration Parameters 48
General Settings 49

Journal File Name 49
Max Resends Per Message 49
Max Failed Messages 50
Forward External Errors 50

Communication Setup 50
Start Exchange Data Schedule 50
Stop Exchange Data Schedule 51
Exchange Data Interval 51
Down Timeout 52
Up Timeout 52
Resend Timeout 52
Zero Wait Between Successful Exchanges 52

Monk Configuration 53
Basic e*Way Processes 54
How to Specify Function Names or File Names 61
Additional Path 62
Auxiliary Library Directories 62
Monk Environment Initialization File 62
Startup Function 63
Process Outgoing Message Function 63
Exchange Data with External Function 64
External Connection Establishment Function 65
External Connection Verification Function 65
External Connection Shutdown Function 66
Positive Acknowledgment Function 66
Negative Acknowledgment Function 67
Shutdown Command Notification Function 68

Database Setup 68
Database Type 68
Database Name 68
User Name 69
Encrypted Password 69

Chapter 4

Implementation 70
Implementing Java-enabled Components 70

The Java Collaboration Service 70
Java-enabled Components 71

The Java ETD Builder 71
The Parts of the ETD 71
Using the DBWizard ETD Builder 72
The Generated ETDs 80
Editing an Existing .XSC Using the Database Wizard 80

Using ETDs with Tables, Views, Stored Procedure, and Prepared Statements 81
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 5 SeeBeyond Proprietary and Confidential

Contents
Tables 81
The query Operation 82
The insert Operation 82
The update Operation 84
The delete Operation 85

The View 86
The Stored Procedure 86

Executing Stored Procedures 86
Returning Result Sets from Rows in the Stored Procedure 87

Prepared Statement 88
Batch Operations 88
Database Configuration Node 89

Sample Scenario—Polling from a JDBC/ODBC Generic Database 89
Create the Schema 92
Add the Event Types and Event Type Definitions 92
Create the Collaboration Rules and the Java Collaboration 95
Add and Configure the e*Ways 99
Add and Configure the e*Way Connections 101
Add the IQs 101
Add and Configure the Collaborations 102
Run the Schema 103

The Empty ETD 104

Troubleshooting the JDBC/ODBC Java e*Way 108

Monk ODBC Implementation 110

Using the ETD Editor’s Build Tool 110
The Event Type Definition Files 113

Table or View 114
Dynamic SQL Statement 116
Stored Procedure 117

Vendor-Specific Driver Notes 119
IBM ODBC DB2 Drivers 119

Support for BLOB and CLOB Data Types 120
Merant ODBC Drivers 120

Support for BLOB and CLOB Data Types 120

Sample One—Publishing e*Gate Events to an ODBC Database 121
Create the Schema 122
Create the Event Type Definitions 123
Add the Event Types 124
Create the Monk Scripts 125
Add and Configure the e*Ways 125
Add the IQs 127
Create the Collaboration Rules 128
Add and Configure the Collaborations 129
Run the Schema 130

Sample Two—Polling from an ODBC Database 131
Create the Schema 133
Create the Event Type Definitions 133
Add the Event Types 134
Create the Monk Scripts 135
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 6 SeeBeyond Proprietary and Confidential

Contents
Add and Configure the e*Ways 137
Add the IQs 139
Create the Collaboration Rules 140
Add and Configure the Collaborations 140
Run the Schema 142

Chapter 5

JDBC/ODBC e*Way Methods 144
JDBC/ODBC e*Way Methods 144

com.stc.eways.jdbcx.StatementAgent Class 144
resultSetTypeToString 145
resultSetDirToString 145
resultSetConcurToString 146
isClosed 146
queryName 146
queryDescription 146
sessionOpen 147
sessionClosed 147
resetRequested 147
getResultSetType 147
getResultSetConcurrency 148
setEscapeProcessing 148
setCursorName 148
setQueryTimeout 149
setQueryTimeout 149
getFetchDirection 149
setFetchDirection 149
getFetchSize 150
getMaxRows 150
setMaxRows 150
getMaxFieldSize 150
setMaxFieldSize 151
getUpdateCount 151
getResultSet 151
getMoreResults 152
clearBatch 152
executeBatch 152
cancel 152
getWarnings 152
clearWarnings 153
stmtInvoke 153

com.stc.eways.jdbcx.PreparedStatementAgent Class 153
sessionOpen 154
setNull 155
setNull 155
setObject 155
setObject 156
setObject 156
setBoolean 157
setByte 157
setShort 157
setInt 157
setLong 158
setFloat 158
setDouble 158
setBigDecimal 159
setDate 159
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 7 SeeBeyond Proprietary and Confidential

Contents
setDate 159
setTime 160
setTime 160
setTimestamp 160
setTimestamp 161
setString 161
setBytes 161
setAsciiStream 162
setBinaryStream 162
setCharacterStream 163
setArray 163
setBlob 163
setClob 164
setRef 164
clearParameters 164
addBatch 164
execute 165
executeQuery 165
executeUpdate 165

com.stc.eways.jdbcx.PreparedStatementResultSet Class 165
Constructor PreparedStatementResultSet 168
getMetaData 168
getConcurrency 168
getFetchDirection 168
setFetchDirection 169
getFetchSize 169
setFetchSize 169
getCursorName 169
close 170
next 170
previous 170
absolute 170
relative 171
first 171
isFirst 171
last 171
isLast 172
beforeFirst 172
isBeforeFirst 172
afterLast 172
isAfterLast 172
getType 173
findColumn 173
getObject 173
getObject 174
getObject 174
getObject 174
getBoolean 175
getBoolean 175
getByte 175
getShort 176
getShort 176
getInt 176
getInt 177
getLong 177
getLong 177
getFloat 178
getFloat 178
getDouble 178
getBigDecimal 179
getBigDecimal 179
getDate 179
getDate 180
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 8 SeeBeyond Proprietary and Confidential

Contents
getDate 180
getTime 180
getTime 181
getTime 181
getTime 181
getTimestamp 182
getTimestamp 182
getTimestamp 183
getTimestamp 183
getString 183
getString 184
getBytes 184
getBytes 184
getAsciiStream 185
getAsciiStream 185
getBinaryStream 185
getBinaryStream 186
getCharacterStream 186
getArray 186
getBlob 187
getBlob 187
getClob 187
getClob 188
getRef 188
getRef 188
wasNull 189
getWarnings 189
clearWarnings 189
getRow 189
refreshRow 190
insertRow 190
updateRow 190
deleteRow 190

com.stc.eways.jdbcx.SqlStatementAgent Class 190
Constructor SqlStatementAgent 191
Constructor SqlStatementAgent 191
execute 192
executeQuery 192
executeUpdate 192
addBatch 193

com.stc.eways.jdbcx.CallableStatementAgent Class 193
Constructor CallableStatementAgent 194
Constructor CallableStatementAgent 194
Constructor CallableStatement Agent 195
sessionOpen 195
registerOutParameter 195
registerOutParameter 196
registerOutParameter 196
wasNull 196
getObject 197
getObject 197
getBoolean 197
getByte 198
getShort 198
getInt 198
getLong 199
getFloat 199
getDouble 199
getBigDecimal 200
getDate 200
getDate 200
getTime 201
getTime 201
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 9 SeeBeyond Proprietary and Confidential

Contents
getTimestamp 201
getTimestamp 202
getString 202
getBytes 202
getArray 203
getBlob 203
getClob 203
getRef 204

com.stc.eways.jdbcx.TableResultSet Class 204
select 205
next 205
previous 206
absolute 206
relative 206
first 207
isFirst 207
last 207
isLast 207
beforeFirst 208
isBeforeFirst 208
afterLast 208
isAfterLast 208
findColumn 209
getAsciiStream 209
getAsciiStream 209
getBinaryStream 209
getBinaryStream 209
getCharacterStream 210
getCharacterStream 210
refreshRow 210
insertRow 210
updateRow 210
deleteRow 210
moveToInsertRow 211
moveToCurrentRow 211
cancelRowUpdates 211
rowInserted 211
rowUpdated 211
rowDeleted 212
wasNull 212

$DB Configuration Node Methods 212

Com_stc_jdbcx_dbcfg.DataSource 212
getClass 213
setClass 213
hasClass 214
omitClass 214
getConnectionMethod 214
setConnectionMethod 214
hasConnectionMethod 215
omitConnectionMethod 215
getJdbcUrl 215
setJdbcUrl 215
hasJdbcUrl 216
omitJdbcUrl 216
getDataSourceAttributeValuePairSeparator 216
setDataSourceAttributeValuePairSeparator 216
hasDataSourceAttributeValuePairSeparator 217
omitDataSourceAttributeValuePairSeparator 217
getDataSourceAttributes 217
setDataSourceAttributes 217
getDataSourceAttributes 217
setDataSourceAttributes 218
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 10 SeeBeyond Proprietary and Confidential

Contents
countDataSourceAttributes 218
removeDataSourceAttributes 218
addDataSourceAttributes 218
addDataSourceAttributes 218
clearDataSourceAttributes 219
getUserName 219
setUserName 219
hasUserName 219
omitUserName 219
getPassword 219
setPassword 220
setPassword_AsIs 220
hasPassword 220
omitPassword 220
getTimeout 220
setTimeout 221
hasTimeout 221
omitTimeout 221

Com_stc_jdbcx_dbcfg 221
getDataSource 221
setDataSource 221

Monk ODBC e*Way Functions 222

Basic Functions 222
event-send-to-egate 223
get-logical-name 224
send-external-down 225
send-external-up 226
shutdown-request 227
start-schedule 228
stop-schedule 229

Standard e*Way Functions 230
db-stdver-conn-estab 231
db-stdver-conn-shutdown 233
db-stdver-conn-ver 234
db-stdver-data-exchg 236
db-stdver-data-exchg-stub 237
db-stdver-init 238
db-stdver-neg-ack 239
db-stdver-pos-ack 240
db-stdver-proc-outgoing 241
db-stdver-proc-outgoing-stub 243
db-stdver-shutdown 245
db-stdver-startup 246

General Connection Functions 247
connection-handle? 248
db-alive 249
db-commit 251
db-get-error-str 252
db-login 254
db-logout 256
db-max-long-data-size 257
db-rollback 258
make-connection-handle 259
statement-handle? 260

Static SQL Functions 261
Static vs. Dynamic SQL Functions 261
ODBC SQL Type Support 266
db-sql-column-names 267
db-sql-column-types 269
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 11 SeeBeyond Proprietary and Confidential

Contents
db-sql-column-values 270
db-sql-execute 272
db-sql-fetch 273
db-sql-fetch-cancel 274
db-sql-format 275
db-sql-select 277

Dynamic SQL Functions 278
db-stmt-bind 279
db-stmt-bind-binary 280
db-stmt-column-count 281
db-stmt-column-name 282
db-stmt-column-type 283
db-stmt-execute 284
db-stmt-fetch 285
db-stmt-fetch-cancel 286
db-stmt-param-assign 287
db-stmt-param-count 288
db-stmt-param-type 289
db-stmt-row-count 290

Stored Procedure Functions 291
db-proc-bind 292
db-proc-bind-binary 293
db-proc-column-count 294
db-proc-column-name 296
db-proc-column-type 298
db-proc-execute 300
db-proc-fetch 302
db-proc-fetch-cancel 304
db-proc-param-assign 305
db-proc-param-count 307
db-proc-param-io 308
db-proc-param-name 309
db-proc-param-type 310
db-proc-param-value 311
db-proc-return-exist 313
db-proc-return-type 315
db-proc-return-value 317

Message Event Functions 319
db-struct-call 320
db-struct-execute 321
db-struct-fetch 322
db-struct-insert 324
db-struct-select 326
db-struct-update 328

Sample Monk Scripts 330
Initializing Monk Extensions 331
Calling Stored Procedures 332
Inserting Records with Dynamic SQL Statements 334
Updating Records with Dynamic SQL Statements 336
Selecting Records with Dynamic SQL Statements 338
Deleting Records with Dynamic SQL Statements 340
Inserting a Binary Image to a Database 341
Retrieving an Image from a Database 344
Common Supporting Routines 346
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 12 SeeBeyond Proprietary and Confidential

Contents
Chapter 6

Monk ODBC e*Way Functions 349
Basic Functions 349

event-send-to-egate 350
get-logical-name 351
send-external-down 352
send-external-up 353
shutdown-request 354
start-schedule 355
stop-schedule 356

Standard e*Way Functions 357
db-stdver-conn-estab 358
db-stdver-conn-shutdown 360
db-stdver-conn-ver 361
db-stdver-data-exchg 363
db-stdver-data-exchg-stub 364
db-stdver-init 365
db-stdver-neg-ack 366
db-stdver-pos-ack 367
db-stdver-proc-outgoing 368
db-stdver-proc-outgoing-stub 370
db-stdver-shutdown 372
db-stdver-startup 373

General Connection Functions 374
connection-handle? 375
db-alive 376
db-commit 378
db-get-error-str 379
db-login 381
db-logout 383
db-max-long-data-size 384
db-rollback 385
make-connection-handle 386
statement-handle? 387

Static SQL Functions 388
Static vs. Dynamic SQL Functions 388
ODBC SQL Type Support 393
db-sql-column-names 394
db-sql-column-types 396
db-sql-column-values 397
db-sql-execute 399
db-sql-fetch 400
db-sql-fetch-cancel 401
db-sql-format 402
db-sql-select 404

Dynamic SQL Functions 405
db-stmt-bind 406
db-stmt-bind-binary 407
db-stmt-column-count 408
db-stmt-column-name 409
db-stmt-column-type 410
db-stmt-execute 411
db-stmt-fetch 412
db-stmt-fetch-cancel 413
db-stmt-param-assign 414
db-stmt-param-count 415
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 13 SeeBeyond Proprietary and Confidential

Contents
db-stmt-param-type 416
db-stmt-row-count 417

Stored Procedure Functions 418
db-proc-bind 419
db-proc-bind-binary 420
db-proc-column-count 421
db-proc-column-name 423
db-proc-column-type 425
db-proc-execute 427
db-proc-fetch 429
db-proc-fetch-cancel 431
db-proc-param-assign 432
db-proc-param-count 434
db-proc-param-io 435
db-proc-param-name 436
db-proc-param-type 437
db-proc-param-value 438
db-proc-return-exist 440
db-proc-return-type 442
db-proc-return-value 444

Message Event Functions 446
db-struct-call 447
db-struct-execute 448
db-struct-fetch 449
db-struct-insert 451
db-struct-select 453
db-struct-update 455

Sample Monk Scripts 457
Initializing Monk Extensions 458
Calling Stored Procedures 459
Inserting Records with Dynamic SQL Statements 461
Updating Records with Dynamic SQL Statements 463
Selecting Records with Dynamic SQL Statements 465
Deleting Records with Dynamic SQL Statements 467
Inserting a Binary Image to a Database 468
Retrieving an Image from a Database 471
Common Supporting Routines 473

Index 476
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This document describes how to install and configure the e*Way Intelligent Adapter for
JDBC/ODBC and ODBC.

This Chapter Includes:

“JDBC/ODBC e*Way Overview” on page 15

“Operational Overview” on page 19

1.1 JDBC/ODBC e*Way Overview
The JDBC/ODBC e*Way enables the e*Gate system to exchange data with external
databases. This document describes how to install and configure the JDBC/ODBC
e*Way.

1.1.1 Driver Types
JDBC technology drivers fit into one of four categories:

Type One Driver

A JDBC/ODBC bridge provides JDBC API access through one or more ODBC drivers.
Some ODBC native code and in many cases native database client code must be loaded
on each client machine that uses this type of driver.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 15 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.1
Introduction JDBC/ODBC e*Way Overview
Figure 1 Typical Type 1 Driver Configuration

Pros

Allows access to almost any database since the databases ODBC drivers are readily
available

Cons

Performance is degraded since the JDBC call goes through the bridge to the ODBC
driver then to the native database connectivity interface. The results are then sent
back through the reverse process

Limited Java feature set

May not be suitable for a large-scale application

Type Two Driver

A native-API partly Java technology-enabled driver converts JDBC calls into calls on
the client API for DBMSs. Like the bridge driver, this style of driver requires that some
binary code be loaded on each client machine.

Figure 2 Typical Type 2 Driver Configuration

JDBC - ODBC Bridge

ODBC Driver

Applicable Client
Library

Database

Connection

Database

Connection
JDBC Driver

Applicable DB
Client Library

Native API - partly
Java Driver
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.1
Introduction JDBC/ODBC e*Way Overview
Pros

Allows access to almost any database since the databases ODBC drivers are readily
available

Offers significantly better performance than the JDBC/ODBC Bridge

Limited Java feature set

Cons

Applicable Client library must be installed

Type 2 driver shows lower performance than type 3 or 4

Type Three Driver

A net-protocol fully Java-enabled driver translates JDBC API calls into a DBMS-
independent net protocol which is then translated to a DBMS protocol by a server. This
net server middleware is able to connect all of its Java technology-based clients to many
different databases.

Figure 3 Typical Type 3 Middleware Driver Configuration

Pros

Allows access to almost any database since the databases ODBC drivers are readily
available

Offers significantly better performance than the JDBC/ODBC Bridge and Type 2
Drivers

Advanced Java feature set

Scalable

Caching

Advanced system administration

Does not require applicable database client libraries

JDBC Driver

Applicable DB Client
Library needed

Connection

Database

Connection

Net-Protocol
Database

Server
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.1
Introduction JDBC/ODBC e*Way Overview
Cons

Requires a separate JDBC middleware server to translate specific native-
connectivity interface.

Type Four Driver

A native-protocol fully Java technology-enabled driver converts JDBC technology calls
into the network protocol used by DBMSs directly. This allows a direct call from the
client machine to the DBMS server.

Figure 4 Typical Type 4 Driver Configuration

Pros

Allows access to almost any database since the databases ODBC drivers are readily
available

Offers significantly better performance than the JDBC/ODBC Bridge and Type 2
Drivers

Scalable

Caching

Advanced system administration

Superior performance

Advance Java feature set

Does not require applicable database client libraries

Cons

Each database will require a driver

1.1.2 Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the e*Gate system; to have expert-level knowledge of
Windows NT or Windows 2000 operations and administration; to be thoroughly

Database

Connection

JDBC Driver

Native-Protocol
Pure-Java DriverDo not need DB

Client Libraries
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction Operational Overview
familiar with JDBC/ODBC and SQL functions; and to be thoroughly familiar with
Windows-style GUI operations.

1.1.3 Components
The following components comprise the JDBC/ODBC e*Way:

e*Way Connections: The database e*Way Connections provide access to the
information necessary for connecting to a specified external system.

stcjdbcx.jar: Contains the logic required by the e*Way to interact with the external
databases.

A complete list of installed files appears in Table 1 on page 25.

1.2 Operational Overview
The JDBC/ODBC e*Way uses Java Collaborations to interact with one or more external
databases. By using the Java Collaboration Service it is possible for e*Gate
components—such as e*Way Intelligent Adapters (e*Ways) and Business Object
Brokers (BOBs)—to connect to external databases and execute business rules written
entirely in Java.

An e*Gate component is defined as Java-enabled based on the selection of the Java
Collaboration Service in the Collaboration Rule setup. For more information on the Java
Collaboration Service, see “The Java Collaboration Service” on page 70.

1.3 Supported Operating Systems
Although the JDBC/ODBC e*Way components will run on the supported platforms
listed below, the Java-enabled ETD Editor and Collaboration Editor require
Windows NT or Windows 2000.

The JDBC/ODBC e*Way is available on the following operating systems:

Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

Windows NT 4.0 SP6a

Solaris 2.6, 7, and 8

AIX 4.3.3 and AIX 5.1

HP-UX 11.0 and HP-UX 11i

Compaq Tru64 V4.0F and V5.0A

Japanese Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

Japanese Windows NT 4.0 SP6a

Japanese Solaris 2.6, 7, and 8
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction System Requirements
Japanese HP-UX 11.0

Traditional Chinese Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

Traditional Chinese Windows NT 4.0 SP6a

Traditional Chinese Solaris 8

1.4 System Requirements
The performance and functionality of the JDBC/ODBC e*Way will depend on the
driver(s) selected. Certain drivers may not support all JDBC features. Consult the
documentation for your respective driver(s) for more information.

To use the JDBC/ODBC e*Way, you need the following:

An e*Gate Participating Host, version 4.5.1 or later. For AIX operating systems, you
need an e*Gate Participating Host, version 4.5.1. or later.

A TCP/IP network connection.

1.4.1 Host System Requirements
The external system requirements are different for a GUI host machine—specifically a
machine running the ETD Editor and the Java Collaboration Editor GUIs—versus a
participating host which is used solely to run the e*Gate schema.

GUI Host Requirements

To enable the GUI editors to communicate with the external system, the following
items must be installed on any host machines running the GUI editors:

If you are using driver types 1, 2, or 3, the client library for your specific database
installed on Windows NT or Windows 2000 to utilize the ETD builder.

ODBC driver.

If the GUI host machine will also be executing the JDBC/ODBC e*Way, the host
machine must also meet the “Participating Host Requirements” on page 20.

Participating Host Requirements

The appropriate driver type for your database.

A list of drivers from third party vendors is available at:

http://industry.java.sun.com/products/jdbc/drivers
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 20 SeeBeyond Proprietary and Confidential

http://industry.java.sun.com/products/jdbc/drivers

Chapter 1 Section 1.5
Introduction ODBC e*Way Overview
1.5 ODBC e*Way Overview
SeeBeyond™ developed the e*Way Intelligent Adapter for ODBC as a graphically-
configurable e*Way. The ODBC e*Way implements the logic that sends Events (data) to
e*Gate and queues the next Event for processing and transport to the database.

A Monk database access library is available to log into the database, issue Structured
Query Language (SQL) statements, and call stored procedures. The ODBC e*Way uses
Monk to execute user-supplied database access Monk scripts to retrieve information
from or send information to a database. The fetched data (information) can be returned
in a Monk Collaboration which simplifies the accessibility of each column in the
database table. This document describes how to install and configure the ODBC e*Way.

This Section Explains:

“Using SQL” on page 21

“Components” on page 21

“Intended Reader” on page 22

“External System Requirements” on page 23

1.6 Using SQL
The ODBC e*Way uses a Monk extension library to issue SQL (Structured Query
Language) statements. The library contains functions to access the database and
generate SQL statements. SQL is the language used to communicate with the database
server to access and manipulate data. By populating a database with the data flowing
through an integration engine, all the information available to an integrated delivery
network (IDN) is stored for evaluation. This allows the ODBC e*Way to operate
independently of the underlying DBMS (database management system).

To access the database, you execute an SQL command, which is the American National
Standards Institute (ANSI) standard language for operating upon relational databases.
The language contains a large set of operators for defining and manipulating tables.
SQL statements can be used to create, alter, and drop tables from a database.

1.7 Components
The ODBC e*Way is comprised of the following:

stcewgenericmonk.exe, the executable component

Configuration files, which the e*Way Editor uses to define configuration
parameters

Monk external function scripts

e*Way Monk functions
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.8
Introduction Intended Reader
A complete list of installed files appears in Table 1 on page 13 or Table 2 on page 15.

1.8 Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the e*Gate system; to have expert-level knowledge of
Windows NT and/or UNIX operations and administration; to be thoroughly familiar
with ODBC and to be thoroughly familiar with Windows-style GUI operations.

1.9 Supported Operating Systems
The ODBC e*Way is available on the following operating systems:

Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

Windows NT 4.0 SP6a

Solaris 2.6, 7, and 8

AIX 4.3.3

HP-UX 11.0 and HP-UX 11i

Compaq Tru64 V4.0F and V5.0A

Japanese Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

Japanese Windows NT 4.0 SP6a

Japanese Solaris 2.6, 7, and 8

Japanese HP-UX 11.0

Korean Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

Korean Windows NT 4.0 SP6a

Korean Solaris 8

Korean HP-UX 11.0

Korean AIX 4.3.3

1.10 System Requirements
To use the ODBC e*Way, you need the following:

An e*Gate Participating Host, version 4.5 or later. For AIX operating systems, you
need an e*Gate Participating Host, version 4.5.1. or later.

A TCP/IP network connection.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.10
Introduction System Requirements
The client components of the databases with which the e*Way interfaces have their own
requirements; see the appropriate documentation for more details.

1.10.1 External System Requirements
The ODBC e*Way supports the following external databases:

Oracle 8.1.6

Oracle 8.1.7

Sybase 11

Sybase 12

SQL Server 7.0

DB2

Note: DB2 support is provided by using the IBM v5 drivers for UNIX or IBM v7 drivers
for Windows NT/2000.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 2

Installation

This chapter describes how to install the JDBC/ODBC and ODBC e*Ways.

This Section Includes:

“Installing the JDBC/ODBC e*Way on Windows NT or Windows 2000” on
page 24

“Installing the JDBC/ODBC e*Way on UNIX” on page 25

“Files/Directories Created by the Installation” on page 25

2.1 Installing the JDBC/ODBC e*Way on Windows NT or
Windows 2000

2.1.1 Pre-installation
1 Exit all Windows programs before running the setup program, including any anti-

virus applications.

2 You must have Administrator privileges to install this e*Way.

2.1.2 Installation Procedure
To install the JDBC/ODBC e*Way on a Windows NT or Windows 2000 system:

1 Log in as an Administrator on the workstation on which you want to install the
e*Way.

2 Insert the e*Gate installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s “Autorun” feature is enabled, the setup application should
launch automatically; skip ahead to step 4. Otherwise, use Windows Explorer or the
Control Panel’s Add/Remove Applications feature to launch the file setup.exe on
the CD-ROM drive.

The InstallShield setup application will launch. Follow the on-screen instructions to
install the e*Way.

Be sure to install the e*Way files in the suggested “client” installation directory. The
installation utility detects and suggests the appropriate installation directory. Unless
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Installation Installing the JDBC/ODBC e*Way on UNIX
you are directed to do so by STC support personnel, do not change the suggested
“installation directory” setting.

2.2 Installing the JDBC/ODBC e*Way on UNIX

2.2.1 Pre-installation
You do not require root privileges to install this e*Way. Log in under the user name
that you wish to own the e*Way files. Be sure that this user has sufficient privileges to
create files in the e*Gate directory tree.

2.2.2 Installation Procedure
To install the JDBC/ODBC e*Way on a UNIX system:

1 Log in on the workstation containing the CD-ROM drive, and insert the CD-ROM
into the drive.

2 If necessary, mount the CD-ROM drive.

3 At the shell prompt, type

cd /cdrom

4 Start the installation script by typing

setup.sh

5 A menu of options will appear. Select the “install e*Way” option. Then follow any
additional on-screen directions.

Be sure to install the e*Way files in the suggested “client” installation directory. The
installation utility detects and suggests the appropriate installation directory. Unless
you are directed to do so by SeeBeyond support personnel, do not change the
suggested “installation directory” setting.

2.3 Files/Directories Created by the Installation
The JDBC/ODBC e*Way installation process will install the following files within the
e*Gate directory tree. Files will be installed within the “egate\client” tree on the
Participating Host and committed to the “default” schema on the Registry Host.

Table 1 Files created by the installation

e*Gate Directory File(s)

classes stcjdbcx.jar

configs\jdbcodbc\ jdbcodbc.def
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 25 STC Proprietary and Confidential

Chapter 2 Section 2.4
Installation Monk ODBC Installation
2.4 Monk ODBC Installation

2.4.1 Installation Overview
The installation procedure depends upon the operating system of the Participating
Host on which you are installing this e*Way. You must have Administrator privileges
to install this e*Way on either Windows NT or Windows 2000 or UNIX.

2.4.2 Installation Decisions
This section presents decisions to be made before beginning the installation. These
decisions apply to both UNIX and Windows NT or Windows 2000:

1 The operating system/platform on which the ODBC e*Way will operate.

2 The database network software required to operate the ODBC e*Way.

For Oracle:

SQL *Net8

For Sybase:

Open Client version11.1.x or 12

3 The Oracle networking options to be installed.

On UNIX:

SQL *Net8

TCP/IP Protocol Adaptor

On Windows NT or Windows 2000:

SQL *Net8

etd\ stcewjdbcx.ctl
jdbcodbc.ctl
dbwizard.ctl
db.ctl

etd\db\ Com_stc_jdbcx_dbcfg.java
Com_stc_jdbcx_dbcfg.xsc
emptyETD.xsc
emptyETD.xbs
emptyETD.jar

ThirdParty\merant\classes DGbase.jar
spy.jar

ThirdParty\sun\classes jdbc2_0-stdext.jar

Table 1 Files created by the installation

e*Gate Directory File(s)
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 26 STC Proprietary and Confidential

Chapter 2 Section 2.5
Installation Installing the ODBC e*Way on Windows NT and Windows 2000
TCP/IP Adapter

OCI

Issue the following command to determine which version of SQL *Net is installed:

On UNIX:

echo $ORACLE_HOME
/opt/oracle/app/oracle/product/8.1.6

The output shows that SQL *Plus Version 8.1.6 is installed.

2.4.3 Installing Client and Network Components on
Windows NT/2000

The following Networking Options must be installed and configured before running
the ODBC e*Way:

The Oracle8 or Oracle8i Oracle Client

Note: The Oracle Client is not required for the ODBC e*Way to communicate with
Microsoft SQL Server. The Oracle Client is required in order to communicate with
any other database.

SQL*Net8 for Oracle8 and 8i

TCP/IP Protocol Adapter

OCI (Oracle Call Interface)

The Sybase Open Client

Note: The ODBC e*Way requires a 32-bit version of the Oracle Client. The 64-bit Oracle
Client is not compatible with this e*Way.

2.5 Installing the ODBC e*Way on Windows NT and
Windows 2000

2.5.1 Pre-installation
1 Exit all Windows programs before running the setup program, including any anti-

virus applications.

2 You must have Administrator privileges to install this e*Way.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 27 STC Proprietary and Confidential

Chapter 2 Section 2.5
Installation Installing the ODBC e*Way on Windows NT and Windows 2000
2.5.2 Installation Procedure
To install the ODBC e*Way on a Windows NT or Windows 2000 system:

1 Log in as an Administrator on the workstation on which you want to install the
e*Way.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s “Autorun” feature is enabled, the setup application should
launch automatically; skip ahead to step 4. Otherwise, use the Windows NT
Explorer or the Control Panel’s Add/Remove Applications feature to launch the
file setup.exe on the CD-ROM drive.

4 The InstallShield setup application will launch. Follow the on-screen instructions to
install the e*Way.

Note: Be sure to install the e*Way files in the suggested “client” installation directory.
The installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not
change the suggested “installation directory” setting.

The ODBC e*Way CD-ROM contains the following files, which the InstallShield
Wizard copies to the indicated directories on your computer, creating them if
necessary.

These files are installed in the Registry during your initial installation. The first time
you access the e*Way to configure it, the following files (with the exception of all the
Monk files) move to the Client directory.

Table 2 Installation Directories and Files (Windows)

Install Directory Files

bin\ stcewgenericmonk.exe
stcstruct.exe
stc_dbapps.dll
stc_dbmonkext.dll
stc_dbodbc.dll
stccdbctest.exe

configs\stcewgenericmonk\ dart.def
dartRule.txt

monk_library\ dart.gui
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 28 STC Proprietary and Confidential

Chapter 2 Section 2.6
Installation Installing the ODBC e*Way on UNIX
2.6 Installing the ODBC e*Way on UNIX

2.6.1 Pre-installation
You do not require root privileges to install this e*Way. Log in under the user name
that you wish to own the e*Way files. Be sure that this user has sufficient privilege to
create files in the e*Gate directory tree.

2.6.2 Installation Procedure
To install the ODBC e*Way on a UNIX system:

1 Log in on the workstation containing the CD-ROM drive, and insert the CD-ROM
into the drive.

2 If necessary, mount the CD-ROM drive.

3 At the shell prompt, type

cd /cdrom

4 Start the installation script by typing:

setup.sh

5 A menu of options will appear. Select the e*Gate Add-on Application option.
Then, follow any additional on-screen directions.

Note: Be sure to install the e*Way files in the suggested “client” installation directory.
The installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not
change the suggested “installation directory” setting.

monk_library\dart\ db-struct-bulk-insert.monk
db-struct-call.monk
db-struct-execute.monk
db-struct-fetch.monk
db-struct-insert.monk
db-struct-select.monk
db-struct-update.monk
db-stdver-eway-funcs.monk
odbcmsg.ssc
odbcmsg-display.monk
db_bind.monk
db-sanitize-symbol.monk

Table 2 Installation Directories and Files (Windows)

Install Directory Files
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 29 STC Proprietary and Confidential

Chapter 2 Section 2.7
Installation DataDirect 4.1 ODBC Drivers
The CD-ROM contains the following files, which are copied to the indicated path on
your computer. Refer to the installation instructions for e*Gate for the most up-to-date
information.

2.7 DataDirect 4.1 ODBC Drivers
This section covers installation, setup, and testing of the DataDirect ODBC Drivers. If
you are using the Japanese version of the ODBC e*Way, you will need to install the
DataDirect 4.1 ODBC drivers. If you are using DB2 with the ODBC e*Way, you will
need to install the DataDirect 4.1 ODBC drivers.

2.7.1 Setting up the Shared Library Search Path
You must set up the shared library search path used by both the ODBC e*Way and the
Sybase Open Client. The library search path environment variables are required to be
set so that the ODBC core components and drivers can be located at the time of
execution.

You can define these environment variables in .cshrc in the C shell or .profile in the
Korn/Bash shell. Follow these scripts when setting up the shared library search path:

Table 3 Installation Directories and Files (UNIX)

Install Directory Files

bin/ stcewgenericmonk.exe
stc_dbapps.dll
stc_dbmonkext.dll
stc_dbodbc.dll
stc_dbctest.exe
stcstruct.exe
stc_dbodbc.dll

configs/stcewgenericmonk/ dart.def
dartRule.txt

monk_library dart.gui

monk_library/dart/ db-struct-bulk-insert.monk
db-struct-call.monk
db-struct-execute.monk
db-struct-fetch.monk
db-struct-insert.monk
db-struct-select.monk
db-struct-update.monk
db-stdver-eway-funcs.monk
db_bind.monk
odbcmsg.ssc
odbcmsg-display.monk
db-sanitize-symbol.monk
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 30 STC Proprietary and Confidential

Chapter 2 Section 2.7
Installation DataDirect 4.1 ODBC Drivers
Korn/Bash Shell

if ["$LD_LIBRARY_PATH" = ""]; then
LD_LIBRARY_PATH=/opt/odbc/lib

else
LD_LIBRARY_PATH=/opt/odbc/lib:$LD_LIBRARY_PATH

fi
export LD_LIBRARY_PATH

C Shell

if ($?LD_LIBRARY_PATH == 1) then
setenv LD_LIBRARY_PATH /opt/odbc/lib:${LD_LIBRARY_PATH}

else
setenv LD_LIBRARY_PATH /opt/odbc/lib

endif

2.7.2 Setting up the ODBC Data Source Definition File
In the UNIX environment, there is no ODBC Administrator. To configure a data source,
you must edit the odbc.ini file, a plain text file that is normally located in the user’s
$HOME directory. This file is maintained using any text editor to define data source
entries as described in the “Connecting to a Data Source Using a Connection String”
section of each driver’s chapter. A sample file (odbc.ini) is located in the driver
installation directory.

UNIX support of the database drivers also allows the use of a centralized .odbc.ini file
that a system administrator can control. This is accomplished by setting the
environment variable ODBCINI to point to the fully qualified pathname of the
centralized file.

The search order for the location of the .odbc.ini file is as follows:

1 Check $ODBCINI

2 Check $HOME/.odbc.ini

There must be an ODBC section in the .odbc.ini file that includes the InstallDir
keyword. The value of this keyword must be the path to the directory under which the
/lib and /messages directories are contained. For example, if you choose the default
install directory, then the following line must be in the [ODBC] section:

InstallDir=/opt/odbc

Sample .odbc.ini File

The following is an .odbc.ini file which contains some sample values to use when
setting these environment variables.

[ODBC Data Sources]
DB2 Wire Protocol=DataDirect 4.00 DB2 Wire Protocol Driver
dBase=DataDirect 4.0 dBaseFile(*.dbf)
Informix=DataDirect 4.0 Informix
Informix Wire Protocol=DataDirect 4.0 Informix Wire Protocol
Oracle=DataDirect 4.0 Oracle
Oracle Wire Protocol=DataDirect 4.0 Oracle Wire Protocol
SQLServer Wire Protocol=DataDirect 4.0 SQL Server Wire Protocol
Sybase Wire Protocol=DataDirect 4.0 Sybase Wire Protocol
Text=DataDirect 4.0 TextFile(*.*)
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 31 STC Proprietary and Confidential

Chapter 2 Section 2.7
Installation DataDirect 4.1 ODBC Drivers
[DB2 Wire Protocol]
Driver=/opt/odbc/lib/DGdb217.so
Description=DB2 Wire Protocol Driver
LogonID=uid
Password=pwd
DB2AppCodePage=1252
ServerCharSet=1252
IpAddress=db2host
Database=db
TcpPort=50000
Package=db2package
Action=REPLACE
QueryBlockSize=8
CharSubTypeType=SYSTEM_DEFAULT
ConversationType=SINGLE_BYTE
CloseConversation=DEALLOC
UserBufferSize=32
MaximumClients=35
GrantExecute=1
GrantAuthid=PUBLIC
OEMANSI=1
DecimalDelimiter=PERIOD
DecimalPrecision=15
StringDelimiter=SINGLE_QUOTE
IsolationLevel=CURSOR_STABILITY
ResourceRelease=DEALLOCATION
DynamicSections=32
Trace=0
WithHold=0

[dBase]
Driver=/opt/odbc/lib/DGdbf17.so
Description=dBaseFile(*.dbf)
Database=/opt/odbc/demo
CacheSize=4
Locking=RECORD
CreateType=dBASE5
IntlSort=0
UseLongNames=1
UseLongQualifiers=1
ApplicationUsingThreads=1

[Informix]
Driver=/opt/odbc/lib/DGinf17.so
Description=Informix
Database=db
LogonID=uid
Password=pwd
ServerName=informixserver
HostName=informixhost
Service=online
Protocol=onsoctcp
EnableInsertCursors=0
GetDBListFromInformix=0
CursorBehavior=0
CancelDetectInterval=0
TrimBlankFromIndexName=1
ApplicationUsingThreads=1

[Informix Wire Protocol]
Driver=/opt/odbc/lib/DGifcl17.so
Description=Informix Wire Protocol
Database=db
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 32 STC Proprietary and Confidential

Chapter 2 Section 2.7
Installation DataDirect 4.1 ODBC Drivers
LogonID=uid
Password=pwd
HostName=informixhost
PortNumber=1500
ServerName=informixserver
EnableInsertCursors=0
GetDBListFromInformix=0
CursorBehavior=0
CancelDetectInterval=0
TrimBlankFromIndexName=1
ApplicationUsingThreads=1

[Oracle]
Driver=/opt/odbc/lib/DGor817.so
Description=Oracle
LogonID=uid
Password=pwd
ServerName=oraclehost
CatalogOptions=0
ProcedureRetResults=0
EnableDescribeParam=0
EnableStaticCursorsForLongData=0
ApplicationUsingThreads=1

[Oracle Wire Protocol]
Driver=/opt/odbc/lib/DGora17.so
Description=Oracle Wire Protocol
LogonID=uid
Password=pwd
HostName=oracleserver
PortNumber=1521
SID=oraclesid
CatalogOptions=0
ProcedureRetResults=0
EnableDescribeParam=0
EnableStaticCursorsForLongData=0
ApplicationUsingThreads=1

[SQLServer Wire Protocol]
Driver=/opt/odbc/lib/DGmsss17.so
Description=SQL Server Wire Protocol
Database=db
LogonID=uid
Password=pwd
Address=sqlserverhost,1433
QuotedId=No
AnsiNPW=No

[Sybase Wire Protocol]
Driver=/opt/odbc/lib/DGase17.so
Description=Sybase Wire Protocol
Database=db
LogonID=uid
Password=pwd
NetworkAddress=serverhost,4100
EnableDescribeParam=1
EnableQuotedIdentifiers=0
OptimizePrepare=1
RaiseErrorPositionBehavior=0
SelectMethod=0
ApplicationUsingThreads=1

[Text]
Driver=/opt/odbc/lib/DGtxt17.so
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 33 STC Proprietary and Confidential

Chapter 2 Section 2.7
Installation DataDirect 4.1 ODBC Drivers
Description=TextFile(*.*)
Database=/opt/odbc/demo
AllowUpdateAndDelete=0
CacheSize=4
CenturyBoundary=20
FileOpenCache=0
UndefinedTable=GUESS
IntlSort=0
ScanRows=25
TableType=Comma
UseLongQualifiers=0
ApplicationUsingThreads=1

[ODBC]
Trace=0
TraceFile=odbctrace.out
TraceDll=/opt/odbc/odbctrac.so
InstallDir=/opt/odbc
ConversionTableLocation=/opt/odbc/tables
UseCursorLib=0

Caution: The “Trace” value must be set to 0. Setting this value to 1 can cause some third-
party applications to interfere with e*Gate.

Optional Environment Variables

Many of the drivers must have environment variables set as required by the database
client components used by the drivers. Consult the system requirements in each of the
individual driver sections for additional information pertaining to individual driver
requirements.

2.7.3 The ivtestlib Tool
The ivtestlib tool is provided to help diagnose configuration problems (such as
environment variables not correctly set or missing database management system client
components) in the UNIX environment. This command will attempt to load a specified
ODBC driver and will print out all available error information if the load fails. For
example, the following command will attempt to load the Oracle driver on Solaris.

ivtestlib /opt/odbc/lib/dgor816.so

The executable [ivtestlib] is located in the /opt/odbc/bin directory

2.7.4 Testing the ODBC Driver
To test if the driver is running correctly, log in as the client (e.g., ODBC) and run the test
program stcodbctest.exe.

stcodbctest data_source user_name password

Example stcodbctest ODBC e*Way

Here’s a typical output message for stcodbctest:

Environment handle allocated.
Connection handle allocated.
Data source: SQL4.0 found.
Database connection established.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 34 STC Proprietary and Confidential

Chapter 2 Section 2.8
Installation Installing the ODBC Drivers for Compaq
ODBC Driver Information:
 Driver Name : DGSS617.DLL
 Driver Version : 04.00.0004
 Driver Manager ODBC Version : 03.52.0000
 Driver ODBC Version : 03.51
 Driver ODBC API Conformance : Level 1 supported
 Driver ODBC SQL Conformance : Core grammar supported
 Driver ODBC Procedure Support : Yes

DBMS Product Information:
 DBMS Name : Microsoft SQL Server
 DBMS Version : 08.00.0194

Data Source Information:
 Data Source Name : SQL4.0
 Server Name : anu2000
 Database Name : pubs
 User Name : dbo
 Transaction Support : Both DML and DDL statements
are supported

ODBC Function Information:
 SQLNumResultCols : supported
 SQLDescribeCol : supported
 SQLBindCol : supported
 SQLNumParams : supported
 SQLDescribeParam : not supported
 SQLBindParameter : supported
 SQLProcedures : supported
 SQLProcedureColumns : supported

Database connection terminated.
Connection handle freed.

It is important that all of the above ODBC Function Information parameters indicate
that they are supported.

Note: In order to assure that the latest statement functionality is available, the
SQLDescribeParam line item must be present, and indicate "supported".

2.8 Installing the ODBC Drivers for Compaq
To operate the ODBC e*Way on Compaq Tru64 systems, obtain the Compaq ODBC
drivers from the following location:

http://tru64unix.compaq.com/data-access/download.htm

You will be required to register prior to downloading the drivers.

2.9 Oracle Network Components
Install the following Oracle networking options when running as a client database.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 35 STC Proprietary and Confidential

http://tru64unix.compaq.com/data-access/download.htm

Chapter 2 Section 2.9
Installation Oracle Network Components
SQL *Net8 (Oracle8)

TCP/IP Protocol Adapter

Note: Install SQL *PLUS to test out the connection.

2.9.1 SQL *Net V2 Configuration Files
Before you can configure SQL *Net8 you must have the following files ready:

listener.ora

tnsnames.ora

sqlnet.ora

Example Listener configuration file—listener.ora

LISTENER.ORA Configuration
File:/opt/oracle/app/oracle/product/8.1.6/network/admin/listener.ora
Generated by Oracle configuration tools.

LISTENER =
 (DESCRIPTION_LIST =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC))
)
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = circe)(PORT = 1521))
)
)
 (DESCRIPTION =
 (PROTOCOL_STACK =
 (PRESENTATION = GIOP)
 (SESSION = RAW)
)
 (ADDRESS = (PROTOCOL = TCP)(HOST = circe)(PORT = 2481))
)
)

SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (SID_NAME = PLSExtProc)
 (ORACLE_HOME = /opt/oracle/app/oracle/product/8.1.6)
 (PROGRAM = extproc)
)
 (SID_DESC =
 (ORACLE_HOME = /opt/oracle/app/oracle/product/8.1.6)
 (SID_NAME = orcl816)
)
)

LISTENER is the default listener name, which is recommended by Oracle in a standard
installation that requires only one listener on a machine.

Listener address section ADDRESS specifies what address to listen to. The listener
listens for inter-process calls (IPC’s) as well as calls from other nodes.

Two IPC addresses are created for each database that a listener listens to. In one, the
key value is equal to the service name (e.g., finance.world). It is used for connections
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 36 STC Proprietary and Confidential

Chapter 2 Section 2.9
Installation Oracle Network Components
from other applications on the same node. The other IPC address (e.g., orcl) is used by
the database dispatcher to identify the listener.

For communication with other nodes, listener listens to the host (e.g.,
finance.company.com) at a particular port (e.g., 1521) using the specified protocol (e.g.,
TCP/IP).

The section SID_LIST_LISTENER is used to describe the SID (system identified) of the
databases (e.g., orcl) on which the listener listens. The service name (e.g.,
finance.world) is used as the global name.

The control parameter STARTUP_WAIT_TIME_LISTENER sets the number of seconds
that the listener sleeps before responding to the first listener control status command.
This feature assures that a listener with a slow protocol will have had time to start up
before responding to a status request. The default is 0.

CONNECT_TIMEOUT_LISTENER sets the number of seconds that the listener waits to
get a valid SQL*Net connection request before dropping the connection.

TRACE_LEVEL_LISTENER indicates the level of detail the trace facility records for
listener events. ADMIN is the highest.

Example Client file—tnsnames.ora

TNSNAMES.ORA Configuration
File:/opt/oracle/app/oracle/product/8.1.6/network/admin/tnsnames.ora
Generated by Oracle configuration tools.

CIRCE =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = circe)(PORT = 1521))
 (CONNECT_DATA = (SERVICE_NAME = orcl816))
)
ENIGMA =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = enigma)(PORT = 1521))
 (CONNECT_DATA = (SID = orcl8))
)
LAMBDA =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(Host = lambda)(Port = 1521))
 (CONNECT_DATA = (SERVICE_NAME = LAMBDA))
)

All connect distributors are assigned service names (e.g., finance.world). The user
specifies the service name to identify the service to which the user wants to connect.
The ADDRESS section specifies the listener address. See listener.ora above for listener
address.

The CONNECT_DATA section specifies the SID (system identified) by the remote
database.

Network component file—sqlnet.ora

File: sqlnet.ora
################
Filename......: sqlnet.ora
Node..........: local.world
Date..........: 24-MAR-98 13:21:20
################
AUTOMATIC_IPC = OFF
TRACE_LEVEL_CLIENT = OFF
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 37 STC Proprietary and Confidential

Chapter 2 Section 2.9
Installation Oracle Network Components
names.directory_path = (TNSNAMES)
names.default_domain = world
name.default_zone = world
sqlnet.expire_time = 10

The sqlnet.expire_time parameter determines how often SQL*Net sends a probe to
verify that a client-server connection is still active. A value of 10 (minutes) is
recommended by Oracle.

After you have generated the required configuration files, do the following:

On the server side, move all three files to:

$ORACLE_HOME/network/admin

On the client side, distribute tnsnames.ora and sqlnet.ora and put them in:

$ORACLE_HOME/network/admin

Verify that the file/etc/services has the entry LISTENER 1521/tcp.

2.9.2 Testing the SQL *Net Configuration
Before you can use SQL*Net with the server, you need to start a listener on the server.
A listener is used by SQL*Net on the server side to receive an incoming connection
from SQL*Net clients.

To start a listener, enter the following command in the server:

lsnrctl start listener name

Where <listener name> is optional for the default listener. For example, to start up the
default LISTENER in the machine enterprise, the command would be:

lsnrct start

When you are running as a client, if the listener starts up successfully, you can use
SQL*Plus on the client side to test whether SQL*Net is configured properly by
establishing a connection with the server. For example:

sqlplus hcaufield/phoebie@oracle.world

This command will start up sqlplus in the client machine enterprise and connect to the
server specified by oracle.world as user hcaufield with password phoebie. The syntax of
the command is:

sqlplus user name/password@service name

Note: The $ORACLE_HOME/network/admin/tnsnames.ora defines the service name for
each Oracle data source.

2.9.3 Troubleshooting Checklist
Ensure you have protocol-level connectivity (for TCP/IP, connectivity can be tested
using the ping utility).

Ensure client machine has configuration files (TNSNAMES.ORA and
SQLNET.ORA) in the $ORACLE_HOME/network/admin directory. Also check
that the server has the configuration files (LISTENER.ORA, TNSNAMES.ORA, and
SQLNET.ORA) in its default directory.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 38 STC Proprietary and Confidential

Chapter 2 Section 2.9
Installation Oracle Network Components
Check whether the listener is "listening" for the same protocol the client is trying to
connect through.

Verify that both server and client are running either Net8 or SQL *Net V2. Net 8 and
SQL *Net V2 can communicate to each other. Verify the version by running the
Oracle Universal Installer.

Ensure that you have the necessary Net8 protocol support installed. Verify by
running the Oracle Universal Installer.

Verify that the net service name is typed correctly. The net service name should be
listed under the Net Service Names folder in the Net8 Assistant.

check to see if the default domain in your profile is set. If it is, then the net service
names will have the same value appended to them. For example, if the default
domain in your profile is set to ACME.COM, then all net service names will have
the.ACME.COM extension appended.

If you are using TCP/IP, try replacing the HOST name in the net service name
address with the IP address of the server machine.

For more information on specific error messages or technical bulletins on errors
received when performing these diagnostics tests, refer:

The Net8 Administrator’s Guide
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 39 STC Proprietary and Confidential

Chapter 3

e*Way Connection Configuration

This chapter describes how to configure the JDBC/ODBC and ODBC e*Way
Connections.

3.1 Create e*Way Connections
The e*Way Connections are created and configured in the Enterprise Manager.

To create and configure the e*Way Connections:

1 In the Enterprise Manager’s Component editor, select the e*Way Connections
folder.

Figure 5 The e*Way Connections Folder

2 On the Palette, click the New e*Way Connection icon.

3 The New e*Way Connection Component dialog box opens. Enter a name for the
e*Way Connection and click OK.

4 Double-click the new e*Way Connection to open the e*Way Connection Properties
dialog box. See Figure 6 on page 41.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
e*Way Connection Configuration Create e*Way Connections
Figure 6 e*Way Connection Properties Dialog Box

5 From the e*Way Connection Type dropdown box, select JDBCODBC.

6 Enter the Event Type “get” interval in the dialog box provided (optional).

7 Click New to create a new e*Way Connection Configuration File.

The e*Way Connection Configuration File Editor will appear.

The e*Way Connection configuration file parameters are organized into the following
sections:

DataSource Settings

Connector Settings

3.1.1 DataSource Settings
The DataSource settings define the parameters used to interact with the external
database.

class

Description

Specifies the name of the Java class in the JDBC driver that is used to implement the
ConnectionPoolDataSource interface.

Required Values

The default is sun.jdbc.odbc.JdbcOdbcDriver.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 41 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
e*Way Connection Configuration Create e*Way Connections
Additional Drivers

If you wish to use any other type of driver, you must add the driver through the
Collaboration Editor. To do this do the following:

1 Copy your choice of drivers to:

\ThirdParty\<driver>\classes

Where <driver> is the name of your driver provider. For example

\ThirdParty\Merant\classes

or

\ThirParty\Sun\classes

You must also include the above copied files in the classpath. To do this do the
following:

2 From the Collaboration Editor Tools menu select Options.

3 From with in the Java ClassPaths window, select the driver files from the list of
available files.

4 From the File menu in the Collaboration Editor, select Compile.

This will enable the .ctl file to find your chosen drivers during runtime.

For Users of the Merant Type 4 drivers

If you are using Merant’s type 4 drivers, you will need to do the following:

1 Copy the util.jar, base.jar and <database>.jar files to:

\ThirdParty\Merant\classes

Where <database>.jar is the name of the your particular database’s .jar file.

You must also include the above copied files in the classpath. To do this do the
following:

2 From the Collaboration Editor Tools menu select Options.

3 From with in the Java ClassPaths window, select the driver files from the list of
available files.

4 From the File menu in the Collaboration Editor, select Compile.

This will enable the .ctl file to find your chosen drivers during runtime.

connection method

Description

DataSource.connection_method:

Specifies which method is used to connect to the database server.

URL: A connection will be establish using the information specified in jdbc url.

Pooled Data Source: A connection is establish using the information specified in
data source attributes.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
e*Way Connection Configuration Create e*Way Connections
XA Data Source: A connection is established using the information specified in data
source attributes. If the driver does not support XA, it will be downgraded to
Pooled Data Source. For more information regarding XA, please see the e*Gate
User Guide.

Required Values

“URL”, “Pooled Data Source”, or “XA Data Source”. The default is “URL”.

jdbc url

Description

DataSource.jdbc_url:

This is the JDBC URL necessary to gain access to the database. The URL usually starts
with jdbc; followed by <subprotocol> and ends with information for identifying the
data source. For a JDBC-ODBC bridge, the subprotocol is odbc:. The information that
identifies the rest of the data source is usually:

[;<attribute-name>=<attribute-value>].

For additional information on this, please consult the documentation of your specific
driver.

For SUN’s JDBC-ODBC bridge, the URL looks like this:

jdbc:odbc:<data-source-name>[;<attribute-name>=<attribute-value>]

For example:

jdbc:odbc:myDataSource;Cachesize=300

If you do not select URL in the connection method this parameter will be ignored.

Required Values

“URL”, “Pooled Data Source”, or “XA Data Source”. The default is “URL”.

data source attribute value pair separator

Description

DataSource.data_source_attribute_value_pair_seperator:

This entry specifies the character separator used to separate the attribute-value pair
used data source attributes. For example, the attribute-value pair
“ServerName!myHost” has “!“as a separator.

Required Values

Any valid separator. The default is “!”

data source attributes

Description

DataSource.data_source_attributes:
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
e*Way Connection Configuration Create e*Way Connections
A list of “!” separated attribute-value pairs. This information is used to identify the
database and set the connection properties. The attribute name should be exactly the
same as the one that is specified in the documentation of the driver you selected.

The attribute name should be exactly the same as the one that is specified in the driver
documentation and the value should be a valid one. The whole list will be used to
specify the connection properties. To disable an attribute, simple deselect it.

For example: PortNumber!8888

The separator used in this parameter should match the one specified in data source
attribute value pair separator

Data source attributes will not be used if the connection method you specified was
URL.

Required Values

Any valid separator. The default separator is “!”.

user name

Description

Specifies the user name this e*Way will use to connect to the database.

Required Values

Any valid string.

password

Description

Encrypted password:

Specifies the password used to access the database.

Required Values

Any valid string.

timeout

Description

This is the login time out in seconds.

Required Values

The default value is 300 seconds.

3.1.2 Connector Settings
The Connector settings define the high level characteristics of the e*Way Connection.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 44 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
e*Way Connection Configuration Create e*Way Connections
connector

Description

Connector type:

Specifies the connector type for the JDBC ODBC connection. Currently there is only one
type, DB.

Required Values

The default is DB.

class

Description

Specifies the class name of the JDBC connector object.

Required Values

The default is com.stc.eways.jdbcx.DbConnector.

transaction mode

This parameter specifies how a transaction should be handled.

Automatic — e*Gate will take care of transaction control and users should not issue
a commit or rollback. If you are using XA, you must set your connection
establishment mode and your transaction mode both to Automatic.

Manual — You will manually take care of transaction control by issuing a commit
or rollback.

Required Values

The required values are Automatic or Manual. The default is set to Automatic.

Mixing XA-Compliant and XA-Noncompliant e*Way Connections

A Collaboration can be XA-enabled if and only if all its sources and destinations are
XA-compliant e*Way Connections. However, XA-related advantages can accrue to a
Collaboration that uses one (and only one) e*Way Connection that is transactional but
not XA-compliant—in other words, it connects to exactly one external system that
supports commit/rollback (and is thus transactional) but does not support two-phase
commit (and is thus not XA-compliant). Please see the e*Gate User’s Guide for usage and
restrictions.

connection establishment mode

This parameter specifies how a connection with the database server is established and
closed.

Automatic indicates that the connection is automatically established when the
collaboration is started and keeps the connection alive as needed. If you are using
XA, you must set your connection establishment mode and your transaction mode
both to Automatic.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
e*Way Connection Configuration Connection Manager
OnDemand indicates that the connection will be established on demand as
business rules requiring a connection to the external system are performed. The
connection will be closed after the methods are completed.

Manual indicates that the user will explicitly call the connection connect and
disconnect methods in their collaboration as business rules.

Required Values

The required values are Automatic, OnDemand or Manual. The default is set to
Automatic.

Note: If you are using Manual connection establishment mode, you must also use
Manual transaction mode.

connection inactivity timeout

This value is used to specify the timeout for the Automatic connection establishment
mode. If this is set to 0, the connection will not be brought down due to inactivity. The
connection is always kept alive; if it goes down, re-establishing the connection will
automatically be attempted. If a non-zero value is specified, the connection manager
will try to monitor for inactivity so that the connection is brought down if the timeout
specified is reached.

Required Values

Any valid string.

connection verification interval

This value is used to specify the minimum period of time between checks for
connection status to the database server. If the connection to the server is detected to be
down during verification, your collaboration’s onDown method is called. If the
connection comes up from a previous connection error, your collaboration’s onUp
method is called.

Required Values

Any valid string.

3.2 Connection Manager
The Connection Manager allows you to define the connection functionality of your
e*Way. You choose:

When an e*Way connection is made.

When to close the e*Way connection and disconnect.

What the status of your e*Way connection is.

When the connection fails, an OnConnectionDown method is called by the
Collaboration
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 46 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
e*Way Connection Configuration Connection Manager
The Connection Manager was specifically designed to take full advantage of e*Gate
4.5.2 and higher’s enhanced functionality. If you are running e*Gate 4.5.1 or earlier, this
enhanced functionality is visible but will be ignored.

The Connection Manager is controlled in the e*Way configuration as described in
Connector Settings on page 44. If you choose to manually control the e*Way
connections, you may find the following chart helpful.

Figure 7 e*Way Connection Control methods

Controlling When a Connection is Made

As a user, you can control when a connection is made. Using Connector Settings, you
can choose to have e*Way connections controlled manually — through the
Collaboration, or automatically — through the e*Way Connection Configuration. If you
choose to control the connection you can specify the following:

To connect when the Collaboration is loaded.

To connect when the Collaboration is executed.

To connect by using an additional connection method in the ETD.

To connect by overriding any custom values you have assigned in the
Collaboration.

To connect by using the isConnected() method. The isConnected() method is called
per connection if your ETD has multiple connections.

Controlling When a Connection is Disconnected

In addition to controlling when a connection is made, you can also manually or
automatically control when an e*Way connection is terminated or disconnected. To
control the disconnect you can specify:

To disconnect at the end of a Collaboration.

To disconnect at the end of the execution of the Collaborations Business Rules.

Automatic On-Demand Manual

onConnectionUp yes no no

onConnectionDown yes yes only if the
connection
attempt fails

no

Automatic Transaction (XA) yes no no

Manual Transaction yes no no

connect no no yes

isConnect no no yes

disconnect no no yes

timeout or connect yes yes no

verify connection interval yes no no
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
e*Way Connection Configuration Monk ODBC Configuration
To disconnect during a timeout.

To disconnect after a method call.

Controlling the Connectivity Status

You can control how often the e*Way connection checks to verify if it is still alive and
you can set how often it checks. See Connector Settings on page 44.

3.3 Monk ODBC Configuration
Before you can run the ODBC e*Way, you must configure it using the e*Way Editor,
which is accessed from the e*Gate Enterprise Manager GUI. The ODBC e*Way package
includes a default configuration file which you can modify using this window.

This section describes the procedure for configuring a new e*Way. You can also edit an
existing e*Way and rename an e*Way. Procedures for creating and editing e*Gate
components are provided in the Enterprise Manager’s online help.

This Section Explains:

“Configuration Overview” on page 48

“General Settings” on page 49

“Communication Setup” on page 50

“Monk Configuration” on page 53

“Database Setup” on page 68

3.4 Configuration Overview
Before you can run the ODBC e*Way, you must configure it using the e*Way Edit
Settings window, which is accessed form the e*Gate Enterprise Manager GUI. The
ODBC e*Way package includes a default configuration file which you can modify
using this window.

3.5 e*Way Configuration Parameters
e*Way configuration parameters are set using the e*Way Editor.

To change e*Way configuration parameters:

1 In the Enterprise Manager’s Component editor, select the e*Way you want to
configure and display its properties.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 48 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
e*Way Connection Configuration e*Way Configuration Parameters
2 Under Configuration File, click New to create a new file, Find to select an existing
configuration file, or Edit to edit the currently selected file.

3 In the Additional Command Line Arguments box, type any additional command line
arguments that the e*Way may require, taking care to insert them at the end of the
existing command-line string. Be careful not to change any of the default arguments
unless you have a specific need to do so.

For more information about how to use the e*Way Editor, see the e*Way Editor’s online
Help or the Working with e*Ways chapter in the e*Gate Integrator User’s Guide.

The e*Way’s configuration parameters are organized into the following sections:

General Settings

Communication Setup

Monk Configuration

Database Setup

3.5.1 General Settings
The General Settings control basic operational parameters.

Journal File Name

Description

Specifies the name of the journal file, which will store messages that are not picked up
from the queue.

Required Values

A valid filename, optionally including an absolute path (for example,
c:\temp\filename.txt). If an absolute path is not specified, the file will be stored in the
e*Gate “SystemData” directory. See the e*Gate Integrator System Administration and
Operations Guide for more information about file locations. If the directory does not
exist, the e*Way will create it.

Additional Information

The Journal File is used for the following conditions:

Journal a message when it exceeds the number of retries.

When its receipt is due to an external error, but Forward External Errors is set to
No. (See “Forward External Errors” on page 50 for more information.)

Max Resends Per Message

Description

Specifies the maximum number of times the e*Way will attempt to resend a message to
the external system after receiving an error. When this maximum number is reached,
the message is considered “failed” and will be written to the journal file.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
e*Way Connection Configuration e*Way Configuration Parameters
Required Values

An integer between 1 and 1,024. The default is 5.

Max Failed Messages

Description

Specifies the maximum number of failed messages the e*Way will allow. When the
specified number of failed messages is reached and journaled, the e*Way will shut
down and exit.

Required Values

An integer between 1 and 1,024. The default is 3.

Forward External Errors

Description

Selects whether error messages that begin with the string DATAERR that are received
from the external system will be queued to the e*Way’s configured queue. See
“Exchange Data with External Function” on page 64 for more information.

Required Values

Yes or No. The default value, No, specifies that error messages will not be forwarded.

See “Schedule-driven data exchange functions” on page 59 for information about how
the e*Way uses this function.

3.5.2 Communication Setup
The Communication Setup parameters control the schedule by which the e*Way
obtains data from the external system.

Note: The schedule you set using the e*Way’s properties in the Enterprise Manager
controls when the e*Way executable will run. The schedule you set within the
parameters discussed in this section (using the e*Way Editor) determines when data
will be exchanged. Be sure you set the "exchange data" schedule to fall within the
"run the executable" schedule.

Start Exchange Data Schedule

Description

Establishes the schedule to invoke the e*Way’s Exchange Data with External function.

Required Values

One of the following:

One or more specific dates/times

A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 50 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
e*Way Connection Configuration e*Way Configuration Parameters
.Since months do not all contain equal numbers of days, be sure not to provide
boundaries that would cause an invalid date selection (i.e. the 30th of every month
would not include February).

Also required: If you set a schedule using this parameter, you must also define all three
of the following:

Exchange Data with External Function on page 64

Positive Acknowledgment Function on page 66

Negative Acknowledgment Function on page 67

If you do not do so, the e*Way will terminate execution when the schedule attempts to
start.

Additional Information

When the schedule starts, the e*Way determines whether it is waiting to send an ACK
or NAK to the external system (using the Positive and Negative Acknowledgment
functions) and whether the connection to the external system is active. If no ACK/NAK
is pending and the connection is active, the e*Way immediately executes the Exchange
Data with External function. Thereafter, the Exchange Data with External function
will be called according to the Exchange Data Interval parameter until the Stop
Exchange Data Schedule time is reached.

See “Exchange Data with External Function” on page 64, “Exchange Data Interval”
on page 51, and “Stop Exchange Data Schedule” on page 51 for more information.

Stop Exchange Data Schedule

Description

Establishes the schedule to stop data exchange.

Required Values

One of the following:

One or more specific dates/times

A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Since months do not all contain equal numbers of days, be sure not to provide
boundaries that would cause an invalid date selection (i.e. the 30th of every month
would not include February).

Exchange Data Interval

Description

Specifies the number of seconds the e*Way waits between calls to the Exchange Data
with External function during scheduled data exchanges.

Required Values

An integer between 0 and 86,400. The default is 120.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 51 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
e*Way Connection Configuration e*Way Configuration Parameters
Additional Information

If Zero Wait Between Successful Exchanges is set to Yes and the Exchange Data with
External Function returns data, The Exchange Data Interval setting will be ignored
and the e*Way will invoke the Exchange Data with External Function immediately.

If this parameter is set to zero, there will be no exchange data schedule set and the
Exchange Data with External Function will never be called.

See “Start Exchange Data Schedule” on page 50 and “Stop Exchange Data Schedule”
on page 51 for more information about the data-exchange schedule.

Down Timeout

Description

Specifies the number of seconds that the e*Way will wait between calls to the External
Connection Establishment function. See “External Connection Establishment
Function” on page 65 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.

Up Timeout

Description

Specifies the number of seconds that the e*Way will wait between calls to the External
Connection Verification function to verify that the connection is still up. See “External
Connection Verification Function” on page 65 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.

Resend Timeout

Description

Specifies the number of seconds the e*Way will wait between attempts to resend a
message to the external system, after receiving an error message from the external.

Required Values

An integer between 1 and 86,400. The default is 10.

Zero Wait Between Successful Exchanges

Description

Selects whether to initiate data exchange after the Exchange Data Interval or
immediately after a successful previous exchange.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 52 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
e*Way Connection Configuration e*Way Configuration Parameters
Required Values

Yes or No. If this parameter is set to Yes, the e*Way will immediately invoke the
Exchange Data with External function if the previous exchange function returned
data. If this parameter is set to No, the e*Way will always wait the number of seconds
specified by Exchange Data Interval between invocations of the Exchange Data with
External function. The default is No.

See “Exchange Data with External Function” on page 64 for more information.

3.5.3 Monk Configuration
The parameters in this section help you set up the information required by the e*Way to
utilize Monk for communication with the external system.

Architecturally, an e*Way can be viewed as a multi-layered structure, consisting of one
or more layers that handle communication with the external application, built upon an
e*Way Kernel layer that manages the processing of data and subscribing or publishing
to other e*Gate components (see Figure 8).

Figure 8 Typical e*Way Architecture

Each layer contains Monk scripts and/or functions, and makes use of lower-level Monk
functions residing in the layer beneath. You, as user, primarily use the highest-level
functions, which reside in the upper layer(s).

The upper layers of the e*Way use Monk functions to start and stop scheduled
operations, exchange data with the external system, package data as e*Gate “Events,”
send those Events to Collaborations, and manage the connection between the e*Way
and the external system (see Figure 9 on page 54).

Additional Layer
such as API Model

Communications
Layer

such as Remote
Function Call (RFC)

Transport

e*Way Kernel Layer

e*GateExternal
Application

PUB/SUB

RFC

Typical e*Way
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 53 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
e*Way Connection Configuration e*Way Configuration Parameters
Figure 9 Basic e*Way Operations

Configuration options that control the Monk environment and define the Monk
functions used to perform these basic e*Way operations are discussed in Chapter 4. You
can create and modify these functions using the SeeBeyond Collaboration Rules Editor
or a text editor (such as Microsoft Wordpad or Notepad).

The upper layers of the e*Way are single-threaded. Functions run serially, and only one
function can be executed at a time. The e*Way Kernel is multi-threaded, with one
executable thread for each Collaboration. Each thread maintains its own Monk
environment; therefore, information such as variables, functions, path information, and
so on cannot be shared between threads.

The basic set of e*Way Kernel Monk functions is described in Chapter 5. Generally,
e*Way Kernel Monk functions should be called directly only when there is a specific
need not addressed by higher-level Monk functions, and should be used only by
experienced developers.

Basic e*Way Processes

The Monk functions in the “communications half” of the e*Way fall into the following
groups:

Type of Operation Name

Initialization Startup Function on page 63
(also see Monk Environment Initialization
File on page 62)

Connection External Connection Establishment Function
on page 65
External Connection Verification Function on
page 65
External Connection Shutdown Function on
page 66

External
Application

Event

Communications Layer

Event

e*GatePUB/SUB

e*Way Kernel Layer

Collaboration

Collaboration
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 54 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
e*Way Connection Configuration e*Way Configuration Parameters
A series of figures on the next several pages illustrates the interaction and operation of
these functions.

Initialization Functions

Figure 10 illustrates how the e*Way executes its initialization functions.

Schedule-driven data
exchange

Exchange Data with External Function on
page 64
Positive Acknowledgment Function on
page 66
Negative Acknowledgment Function on
page 67

Shutdown Shutdown Command Notification Function
on page 68

Event-driven data exchange Process Outgoing Message Function on
page 63

Type of Operation Name
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 55 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
e*Way Connection Configuration e*Way Configuration Parameters
Figure 10 Initialization Functions

Connection Functions

Figure 11 illustrates how the e*Way executes the connection establishment and
verification functions.

Start e*Way

Load
"Monk Initialization"

file

Execute any Monk function
having the same name as

the initialization file

Load "Startup" file

Execute any Monk function
having the same name as

the startup file

Load
"Auxiliary Library Directories"

files
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 56 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
e*Way Connection Configuration e*Way Configuration Parameters
Figure 11 Connection establishment and verification functions

Note: The e*Way selects the connection function based on an internal “up/down” flag
rather than a poll to the external system. See Figure 13 on page 59 and Figure 15
on page 61 for examples of how different functions use this flag.

User functions can manually set this flag using Monk functions. See and send-
external-up on page 86 send-external-down on page 85 for more information.

Figure 12 illustrates how the e*Way executes its “connection shutdown” function.

Figure 12 Connection shutdown function

Connect e*Way to
external system

Internal
flag shows connection

active?

Wait for "Up Timeout"
schedule

Call External Connection
Verification function

Wait for "Down Timeout"
schedule

Call External Connection
Establishment function

Yes

No

Control Broker issues
"Suspend" command

Call External Connection Shutdown
function with parameter

"SUSPEND_NOTIFICATION"

e*Way closes connection

Return any value
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 57 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
e*Way Connection Configuration e*Way Configuration Parameters
Schedule-driven Data Exchange Functions

Figure 13 (on the next page) illustrates how the e*Way performs schedule-driven data
exchange using the Exchange Data with External Function. The Positive
Acknowledgement Function and Negative Acknowledgement Function are also
called during this process.

“Start” can occur in any of the following ways:

The “Start Data Exchange” time occurs

Periodically during data-exchange schedule (after “Start Data Exchange” time, but
before “Stop Data Exchange” time), as set by the Exchange Data Interval

The start-schedule Monk function is called

After the function exits, the e*Way waits for the next “start schedule” time or
command.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 58 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
e*Way Connection Configuration e*Way Configuration Parameters
Figure 13 Schedule-driven data exchange functions

Shutdown Functions

Figure 14 illustrates how the e*Way implements the shutdown request function.

Increment "Failed
Message" counter

DATAERR plus
additional data

Null
string

Data
(other than

error strings)

Forward
external
errors?

No

Yes

Set interval flag
"Connection

Down"

CONNERR

Increment "Failed
Message" counter

DATAERR only

Journal
enabled?

Create journal
entry

Yes

No

Start

Function exits

Send Event to
e*Gate

All
subscribing

Collaborations return
TRUE

?

Call Positive
Acknowledgment

function

Zero
wait after successful

exchange?

Call Negative
Acknowledgment

function

Yes

No

No

Call Exchange Data with
External function

Return

Yes
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 59 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
e*Way Connection Configuration e*Way Configuration Parameters
Figure 14 Shutdown functions

Event-driven Data Exchange Functions

Figure 15 on the next page illustrates event-driven data-exchange using the Process
Outgoing Message Function.

Every two minutes, the e*Way checks the “Failed Message” counter against the value
specified by the Max Failed Messages parameter. When the “Failed Message” counter
exceeds the specified maximum value, the e*Way logs an error and shuts down.

Control Broker issues
"Shutdown" command

Call Shutdown Notification function
with parameter

"SHUTDOWN_NOTIFICATION"

e*Way shuts down

Wait for
shutdown-request

function

Return

Null string or
"SUCCESS"

any other value
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 60 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
e*Way Connection Configuration e*Way Configuration Parameters
Figure 15 Event-driven data-exchange functions

How to Specify Function Names or File Names

Parameters that require the name of a Monk function will accept either a function name
or a file name. If you specify a file name, be sure that the file has one of the following
extensions:

.monk

.tsc

.dsc

Collaboration publishes
to <EXTERNAL>

Call Process Outgoing
Message function

Set internal flag
"Connection

Down"

Maximum
Resends per Message

exceeded?

Increment "Failed
Message" counter

Create journal
entry

Null
string

No
Journal

enabled?

End

Roll back Event
to its publishing

IQ

Yes

Wait for Resend
Timeout period

Increment
"Resend"
counter

RESENDCONNERR DATAERR

Yes

No
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 61 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
e*Way Connection Configuration e*Way Configuration Parameters
Additional Path

Description

Specifies a path to be added to the “load path,” the path Monk uses to locate files and
data (set internally within Monk). The directory specified in Additional Path will be
searched before the default load path.

Required Values

A pathname, or a series of paths separated by semicolons. This parameter is optional
and may be left blank.

Additional information

The default load paths are determined by the “bin” and “Shared Data” settings in the
.egate.store file. See the e*Gate Integrator System Administration and Operations Guide for
more information about this file.

To specify multiple directories, manually enter the directory names rather than
selecting them with the “file selection” button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths. For example:

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

Auxiliary Library Directories

Description

Specifies a path to auxiliary library directories. Any .monk files found within those
directories will automatically be loaded into the e*Way’s Monk environment.

Required Values

A pathname, or a series of paths separated by semicolons. (The default is
monk_library/dart.)

Additional information

To specify multiple directories, manually enter the directory names rather than
selecting them with the “file selection” button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths. For example:

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

This parameter is optional and may be left blank.

Monk Environment Initialization File

Specifies a file that contains environment initialization functions, which will be loaded
after the auxiliary library directories are loaded. Use this feature to initialize any global
Monk variables that are used by the Monk Extension scripts.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 62 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
e*Way Connection Configuration e*Way Configuration Parameters
Required Values

A filename within the “load path”, or filename plus path information (relative or
absolute). If path information is specified, that path will be appended to the “load
path.” See Additional Path on page 62 for more information about the “load path.”(The
default is db-stdver-init on page 98.)

Additional information

Any environment-initialization functions called by this file accept no input, and must
return a string. The e*Way will load this file and try to invoke a function of the same
base name as the file name (for example, for a file named my-init.monk, the e*Way
would attempt to execute the function my-init).

Typically, it is a good practice to initialize any global Monk variables that may be used
by any other Monk Extension scripts.

The internal function that loads this file is called once when the e*Way first starts up
(see Figure 10 on page 56).

Startup Function

Description

Specifies a Monk function that the e*Way will load and invoke upon startup or
whenever the e*Way’s configuration changes before it enters into its initial
communication state. This function is used so that the external system can be initialized
before message exchange starts.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function.(The default is
db-stdver-startup on page 106.)

Additional information

The function accepts no input, and must return a string.

The string “FAILURE” indicates that the function failed; any other string (including a
null string) indicates success.

This function will be called after the e*Way loads the specified “Monk Environment
Initialization file” and any files within the specified Auxiliary Directories.

The e*Way will load this file and try to invoke a function of the same base name as the
file name (see Figure 10 on page 56). For example, for a file named my-startup.monk,
the e*Way would attempt to execute the function my-startup.

Process Outgoing Message Function

Description

Specifies the Monk function responsible for sending outgoing messages (Events) from
the e*Way to the external system. This function is event-driven (unlike the Exchange
Data with External function, which is schedule-driven).
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 63 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
e*Way Connection Configuration e*Way Configuration Parameters
Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. You may not leave this field blank. (The
default is db-stdver-proc-outgoing on page 101 or db-stdver-proc-outgoing-stub on
page 103.)

Additional Information

The function requires a non-null string as input (the outgoing Event to be sent) and
must return a string.

The e*Way invokes this function when one of its Collaborations publishes an Event to
an <EXTERNAL> destination (as specified within the Enterprise Manager). The
function returns one of the following (see Figure 15 on page 61 for more details):

Null string: Indicates that the Event was published successfully to the external
system.

“RESEND”: Indicates that the Event should be resent.

“CONNERR”: Indicates that there is a problem communicating with the external
system.

“DATAERR”: Indicates that there is a problem with the message (Event) data itself.

If a string other than the following is returned, the e*Way will create an entry in the
log file indicating that an attempt has been made to access an unsupported
function.

Note: If you wish to use event-send-to-egate to enqueue failed Events in a separate IQ,
the e*Way must have an inbound Collaboration (with appropriate IQs) configured
to process those Events. See event-send-to-egate on page 83 for more information.

Exchange Data with External Function

Description

Specifies a Monk function that initiates an exchange of data with an external
system.This function can exchange Events either inbound or outbound. This function is
used with schedule based exchanges of data, predominantly inbound.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. (The defaults are db-stdver-data-exchg on
page 96 or db-stdver-data-exchg-stub on page 97.)

Additional Information

The function accepts no input and must return a string (see Figure 13 on page 59 for
more details):

Null string: Indicates that the data exchange was completed successfully. No
information will be sent into the e*Gate system.

“CONNERR”: Indicates that a problem with the connection to the external system
has occurred.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 64 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
e*Way Connection Configuration e*Way Configuration Parameters
“DATAERR”: Indicates that a problem with the data itself has occurred. The e*Way
handles the string “DATAERR” and “DATAERR” plus additional data differently;
see Figure 13 on page 59 for more details.

Any other string: The contents of the string are packaged as an inbound Event. The
e*Way must have at least one Collaboration configured suitably to process the
inbound Event, as well as any required IQs.

This function is initially triggered by the Start Data Exchange schedule or manually by
the Monk function start-schedule. After the function has returned true and the data
received by this function has been ACKed or NAKed (by the Positive
Acknowledgment Function or Negative Acknowledgment Function, respectively),
the e*Way checks the Zero Wait Between Successful Exchanges parameter. If this
parameter is set to Yes, the e*Way will immediately call the Exchange Data with
External function again; otherwise, the e*Way will not call the function until the next
scheduled “start exchange” time or the schedule is manually invoked using the Monk
function start-schedule (see start-schedule on page 88 for more information).

External Connection Establishment Function

Description

Specifies a Monk function that the e*Way will call to establish (or re-establish) a
connection to the external system.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This field cannot be left blank. (The default is
db-stdver-conn-estab on page 91.)

Additional Information

The function accepts no input and must return a string:

“SUCCESS” or “UP”: Indicates that the connection was established successfully.

Any other string (including the null string): Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Down Timeout
parameter, and is only called according to this schedule.

The External Connection Verification function (see below) is called when the e*Way
has determined that its connection to the external system is up.

External Connection Verification Function

Description

Specifies a Monk function that the e*Way will call to confirm that the external system is
operating and available.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 65 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
e*Way Connection Configuration e*Way Configuration Parameters
Required Values

The name of a Monk function. This function is optional; if no External Connection
Verification function is specified, the e*Way will execute the External Connection
Establishment function in its place. (The default is db-stdver-conn-ver on page 94.)

Additional Information

The function accepts no input and must return a string:

“SUCCESS” or “UP”: Indicates that the connection was established successfully.

Any other string (including the null string): Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Up Timeout
parameter, and is only called according to this schedule.

The External Connection Establishment function (see above) is called when the e*Way
has determined that its connection to the external system is down.

External Connection Shutdown Function

Description

Specifies a Monk function that the e*Way will call to shut down the connection to the
external system.

Required Values

The name of a Monk function. (The default is db-stdver-conn-shutdown on page 93.)

Additional Information

This function requires a string as input, and may return a string.

This function will only be invoked when the e*Way receives a “suspend” command
from a Control Broker. When the “suspend” command is received, the e*Way will
invoke this function, passing the string “SUSPEND_NOTIFICATION” as an argument.

Any return value indicates that the “suspend” command can proceed and that the
connection to the external system can be broken immediately.

Note: Include in this function any required “clean up” that must be performed as part of
the shutdown procedure, but before the e*Way exits.

Positive Acknowledgment Function

Description

Specifies a Monk function that the e*Way will call when all the Collaborations to which
the e*Way sent data have processed and enqueued that data successfully.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External function is defined. (The default is db-stdver-pos-ack on page 100.)
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 66 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
e*Way Connection Configuration e*Way Configuration Parameters
Additional Information

The function requires a non-null string as input, and returns a string.

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string:

“CONNERR”: Indicates a problem with the connection to the external system.
When the connection is re-established, the Positive Acknowledgment function will
be called again, with the same input data.

Null string: The function completed execution successfully.

After the Exchange Data with External function returns a string that is transformed
into an inbound Event, the Event is handed off to one or more Collaborations for
further processing. If the Event’s processing is completed successfully by all the
Collaborations to which it was sent, the e*Way executes the Positive Acknowledgment
function (otherwise, the e*Way executes the Negative Acknowledgment function).

Note: If you configure the acknowledgment function to return a non-null string, you must
configure a Collaboration (with appropriate IQs) to process the returned Event.

Negative Acknowledgment Function

Description

Specifies a Monk function the e*Way will call when the e*Way fails to process and
queue data from the external system.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External function is defined. (The is default is db-stdver-neg-ack on
page 99.)

Additional Information

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string:

“CONNERR”: Indicates a problem with the connection to the external system.
When the connection is re-established, the function will be called again.

Null string: The function completed execution successfully.

This function is only called during the processing of inbound Events. After the
Exchange Data with External function returns a string that is transformed into an
inbound Event, the Event is handed off to one or more Collaborations for further
processing. If the Event’s processing is not completed successfully by all the
Collaborations to which it was sent, the e*Way executes the Negative Acknowledgment
function (otherwise, the e*Way executes the Positive Acknowledgment function).

Note: If you configure the acknowledgment function to return a non-null string, you must
configure a Collaboration (with appropriate IQs) to process the returned Event.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 67 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
e*Way Connection Configuration e*Way Configuration Parameters
The e*Way will exit if it fails its attempt to invoke this function or this function returns
a FAILURE string.

Shutdown Command Notification Function

Description

Specifies a Monk function that will be called when the e*Way receives a “shut down”
command from the Control Broker. This parameter is optional.

Required Values

The name of a Monk function. (The default is db-stdver-shutdown on page 105.)

Additional Information

When the Control Broker issues a shutdown command to the e*Way, the e*Way will
call this function with the string “SHUTDOWN_NOTIFICATION” passed as a
parameter.

The function accepts a string as input and must return a string:

A null string or “SUCCESS”: Indicates that the shutdown can occur immediately.

Any other string: Indicates that shutdown must be postponed. Once postponed,
shutdown will not proceed until the Monk function shutdown-request is executed.

Note: If you postpone a shutdown using this function, be sure to use
the (shutdown-request) function to complete the process in a timely manner.

3.5.4 Database Setup

Database Type

Description

Specifies the type of database.

Required Values

DB2, ODBC, ORACLE7, ORACLE8, ORACLE8i, SYBASE11, or SYBASE12

Note: Any other value is effectively equal to ODBC.

Database Name

Description

The name of the database.

Required Values

None. Any valid string.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 68 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
e*Way Connection Configuration e*Way Configuration Parameters
User Name

Description

The name used to access the database.

Required Values

None. Any valid string.

Encrypted Password

Description

The password that provides access to the database.

Required Values

Any valid string.

Note: Changes to Monk files can be made using the Collaboration Rules Editor (available
from within the Enterprise Manager) or with a text editor. However, if you use a
text editor to edit Monk files directly, you must commit these changed files to the
e*Gate Registry or your changes will not be implemented.

For more information about committing files to the e*Gate Registry, see the
Enterprise Manager’s online Help system, or the “stcregutil” command-line utility
in the e*Gate Integrator System Administration and Operations Guide.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 69 SeeBeyond Proprietary and Confidential

Chapter 4

Implementation

This chapter discusses how to implement the JDBC/ODBC and ODBC e*Ways in a
production environment. Also included is a sample configuration.

4.1 Implementing Java-enabled Components
An e*Way or a BOB can be Java-enabled by selecting the Java Collaboration Service in
the Collaboration Rules Properties. Either of these components can use e*Way
Connections to exchange data with external systems.

Figure 16 The Java Collaboration Service

4.1.1 The Java Collaboration Service
The Java Collaboration Service makes it possible to develop external Collaboration
Rules that will execute e*Gate business logic using Java code. Using the Java
Collaboration Editor, you create Java classes that utilize the executeBusinessRules(),
userTerminate(), and userInitialize() methods.

Java Collaboration
Service
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 70 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation The Java ETD Builder
For more information on the Java Collaboration Service and sub collaborations, see the
e*Gate Integrator Collaboration Services Reference Guide. For more information on the Java
ETD Editor and the Java Collaboration Editor, see the e*Gate Integrator User’s Guide.

4.1.2 Java-enabled Components
To make an e*Gate component Java-enabled, the component’s Collaboration Rule must
use the Java Collaboration Service. This requires all the intermediate components to
also be configured correctly, since there is not a direct relationship between the
e*Way/BOB and the Collaboration Service.

The e*Way/BOB requires one or more Collaborations. The Collaboration uses a
Collaboration Rule. The Collaboration Rule uses a Collaboration Service. In order for
the e*Way or BOB to be Java-enabled, the component’s Collaboration Rule must use the
Java Collaboration Service.

4.2 The Java ETD Builder
The Java ETD Builder is used to generate a Java-enabled ETD. The ETD Builder
connects to the external database and generates the ETD corresponding to the external
tables and procedures.

Note: Database ETD’s are not messagable.

4.2.1 The Parts of the ETD
There are four possible parts to the Java-enabled Event Type Definition as shown in
Figure 17.

Figure 17 The Java-enabled ETD

Element – This is the highest level in the ETD tree. The element is the basic
container that holds the other parts of the ETD. The element can contain fields and
methods.

Field – Fields are used to represent data. A field can contain data in any of the
following formats: string, boolean, int, double, or float.

Method – Method nodes represent actual Java methods.

Parameter – Parameter nodes represent the Java methods’ parameters.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 71 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation The Java ETD Builder
4.2.2 Using the DBWizard ETD Builder
The DBWizard ETD Builder generates Java-enabled ETDs by connecting to external
data sources and creating corresponding Event Type Definitions. The ETD Builder can
create ETDs based on any combination of tables, stored procedures, or prepared SQL
statements.

Field nodes are added to the ETD based on the tables in the external data source. Java
method and parameter nodes are added to provide the appropriate JDBC functionality.
For more information on the Java methods, refer to your JDBC developer’s reference.

To create a new ETD using the DBWizard

1 From the Options menu of the Enterprise Manager, choose Default Editor….

2 Verify that Java is selected, then click OK.

3 Click the ETD Editor button to launch the Java ETD Editor.

4 In the Java ETD Editor, click the New button to launch the New Event Type
Definition Wizard.

5 In the New Event Type Definition Wizard, select the DBWizard and click OK to
continue.

Figure 18 New Event Type Definition

6 Enter the name of the new .xsc file you want to create or enter the name of the .xsc
file you want to edit by browsing to its location.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 72 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation The Java ETD Builder
Figure 19 Database Wizard - Introduction

7 Select your Data Source: from the drop down list and enter your User Name: and
Password:.

Figure 20 Database Wizard - DSN Selection

8 Select what type of database ETD you would like to generate. The data source you
selected in the Database Wizard - DSN Selection window is the default. Note: Do
not change this unless instructed to do so by SeeBeyond personnel.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 73 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation The Java ETD Builder
Figure 21 Database Wizard - ETD Type Selection

9 In the Database Wizard - Object Selection window, select any combination of
Tables, Views, Procedures, or Prepared Statements you would like to include in
your .xsc file. Click Next to continue.

Figure 22 Database Wizard - Object Selection

10 In the Database Wizard - Tables window, click Add Tables.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 74 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation The Java ETD Builder
Figure 23 Database Wizard - Tables

11 In the Add Tables window, type the exact name of the database table or use
wildcard characters to return table names.

Figure 24 Add Tables

12 To see a list of valid wildcard characters, click the round ball with a question mark
located in its center.

Figure 25 Wildcards

13 Select Include System Tables if you wish to include them and click Search. If your
search was successful, you will see the results in the Results window. To select the
name of the tables you wish to add to your .xsc, double click on the table name or
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 75 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation The Java ETD Builder
highlight the table names and click Add Tables. You may also use adjacent
selections or nonadjacent selections to select multiple table names. When you have
finished, click Close.

14 In the Database Wizard - Tables window, review the tables you have selected. If
you would like to change any of the tables you have selected, click Change.

15 In the Columns Selection window, you can select or deselect your table choices.
You can also change the data type for each table by highlighting the data type and
selecting a different data type from the drop down list. Once you have completed
your choices, click OK.

Figure 26 Columns Selection

16 In the Database Wizard - Tables window, review the tables you have selected. If
you do not want to use fully-qualified table names in the generated Java code, click
to clear the check box and click Next to continue.

17 If you selected Views on the Database Wizard - Object Selection window, you are
presented with the Database Wizard - Views window. Follow steps 9 - 15 to select
and add views to your .xsc. Views are read-only.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 76 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation The Java ETD Builder
Figure 27 Database Wizard - Views

18 If you selected Procedures on the Database Wizard - Object Selection window,
you are presented with the Database Wizard - Procedures window. Follow steps 9
- 15 to select and add Procedures to your .xsc. If you do not want to use fully-
qualified procedure names in the generated Java code, click to clear the check box
and click Next to continue.

Figure 28 Database Wizard - Procedures
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 77 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation The Java ETD Builder
19 If you selected Prepared Statements on the Database Wizard - Object Selection
window, you are presented with the Database Wizard - Prepared Statement
window. To add Prepared Statements to your .xsc. complete the following steps:

A Click Add to add a new prepared statement

B Enter a prepared SQL statement.

C Enter the Prepared Statement Name to be used by the statement.

D Use the Open… or Save… buttons to open pre-existing statements or save the
current one. SeeFigure 29.

Figure 29 Add Prepared Statement

E Click OK to return to the Database Wizard - Prepared Statements screen.

20 Repeat steps A–E to add additional prepared statements or click Next to continue.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 78 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation The Java ETD Builder
Figure 30 Database Wizard - Prepared Statements

21 Enter the Java Class Name that will contain the selected tables and/or procedures
and the Package Name of the generated classes.

Figure 31 Database Wizard - Class and Package

22 View the summary of the database wizard information and click Finish to begin
generating the ETD.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 79 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation The Java ETD Builder
Figure 32 Database Wizard - Summary

4.2.3 The Generated ETDs
The DataBase Wizard ETD builder can create three editable Event Type Definitions
(ETDs) and one non-editable Event Type Definition (ETD). These types of ETDs can
also be combined with each other. The four types of ETDs are:

The Table ETD – The table ETD contains fields for each of the columns in the
selected table as well as the methods required to exchange data with the external
data source. To edit this type of ETD, you will need to open the .xsc in the DataBase
Wizard.

The View ETD - The view ETD contains selected columns from selected tables.
View ETD’s are read-only.

The Stored Procedure ETD – The stored procedure ETD contains fields which
correspond to the input and output fields in the procedure. To edit this type of ETD,
you will need to open the .xsc in the DataBase Wizard

The Prepared Statement ETD – The prepared statement ETD contains a result set
for the prepared statement. To edit this type of ETD, you will need to open the .xsc
in the DataBase Wizard.

4.2.4 Editing an Existing .XSC Using the Database Wizard
If you choose to edit an existing .xsc that you have created using the Database Wizard,
do the following:

1 From the Options menu of the Enterprise Manager, choose Default Editor….

2 Verify that Java is selected, then click OK.

3 From the Tools menu, click ETD Editor...

4 From the ETD Tool menu click File and click New.

5 From the New Event Type Definition window, select DBWizard and click OK.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 80 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Using ETDs with Tables, Views, Stored Procedure, and Prepared Statements
6 On the Database Wizard - Introduction window, select Modify an existing XSC
file: and browse to the appropriate .xbs file that you would like to edit.

You are now able to edit your .xsc file.

Note: When you add a new element type to your existing .xsc, you must reselect any pre-
existing elements or you will loose them when the new .xsc is created.

If you attempt to edit an .xsc whose elements no longer exist in the database, you will see a
warning and the element will be dropped from the ETD.

4.3 Using ETDs with Tables, Views, Stored Procedure, and
Prepared Statements

Tables, Views, Stored Procedures and Prepared Statements are manipulated through
ETDs. Common operations include insert, delete, update, and query. These are driver
dependent. Sun’s JDBC/ODBC bridge which is a type 1 driver does not support them.

4.3.1 Tables
A table ETD represents a database table. It consists of fields and methods. Fields
correspond to the columns of a table while methods are the operations that you can
apply to the ETD. This allows you to perform query, update, insert and delete SQL
operations in a table.

Using the select() method, you can specify the following types of ResultSets:

TYPE_FORWARD_ONLY

TYPE_SCROLL_INSENSITIVE

TYPE_SCROLL_SENSITIVE

You can also specify ResultSets with a type of Concurrency:

CONCUR_READ_ONLY

CONCUR_UPDATABLE

To perform the update, insert or delete operation, the type of the ResultSet returned by
the select() method must be CONCUR_UPDATABLE. Instead of specifying the type of
ResultSet and concurrency in the select() method, you can also use the following
methods:

SetConcurrencytoUpdatabale

SetConcurrentlytoRead Only

SetScrollTypetoForwardOnly

SetScrollTypetoScrollSensitive

SetScrollTypetoInsensitive
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 81 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Using ETDs with Tables, Views, Stored Procedure, and Prepared Statements
The methods should be called before executing the select() method. For example,

getDBEmp().setConcurToUpdatable();
getDBEmp().setScroll_TypeToForwardOnly();
getDBEmp().getDB_EMPLOYEE().select(““);

The query Operation

To perform a query operation on a table:

1 Execute the select() method with the “where” clause specified if necessary.

2 Loop through the ResultSet using the “next” method.

3 For each loop, process the return record.

For example:

getDBEmp().getDB_EMPLOYEE().select(““);
While(getDBEmp().getDB_EMPLOYEE().next());
{ //Process the returning record

getGenericOut.SetPayLoad(getDBEmp().getDB_Employee().
getDBEmp().getFirstName());

}

If you want to check if the last value read was SQL NULL or not, you can use the
wasNull() method. It is most useful for native datatypes like “int”. Note that a getxxx
method should be called before wasNull() is called.

For example:

int empNo = getDBEmp().getDB_EMPLOYEE().getEMP_NO();
if (getDBEMP().getDB_EMLOYEE().wasNULL())
{ //Check to see if empNo is SQL NULL
//Do something if empNo is SQL NULL

}
else
{ //Do something if empNo is not SQL NULL
}

If you are using the Merant DataDirect 2.2 drivers in XA mode, you need to set your
datasource attribute SelectMethod to cursor.

The insert Operation

To perform an insert operation on a table, do the following:

1 Execute the select() method. You can specify the following types of ResultSets:

TYPE_FORWARD_ONLY

TYPE_SCROLL_INSENSITIVE

TYPE_SCROLL_SENSITIVE

You must specify ResultSets with:

CONCUR_UPDATABLE

2 Move to the insert row by the moveToInsertRow method.

3 Set the fields of the table ETD

4 Insert the row by calling insertRow
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 82 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Using ETDs with Tables, Views, Stored Procedure, and Prepared Statements
This example inserts an employee record.

getDBEmp().getDB_EMPLOYEE(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE).select("");
getDBEmp().getDB_EMPLOYEE().moveToInsertRow();
getDBEmp().getDB_EMPLOYEE().setEMP_NO(123);
. . .
getDBEmp().getDB_EMPLOYEE().setRATE(123.45);
getDBEmp().getDB_EMPLOYEE().insertRow();

Figure 33 Insert Method Business Rule

Figure 34 Insert Method Properties

Table ResultSet Behavior

To make repeated insertions using a “select” into the table ResultSet without having to
re-populate all the column values do the following:

Before the schema runs, we have

SQL> select * from MARKET_TEMP;

Where:
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 83 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Using ETDs with Tables, Views, Stored Procedure, and Prepared Statements
C1 C2 C3
-- -------- --------
1 A1 B1

After the schema runs we have:

SQL> select * from MARKET_TEMP;

Becomes:

C1 C2 C3
-- -------- --------
1 A1 B1
2 A2 B1
3 A3 B1

Buffer the value of the selected column by :

String buf3 = getTempTbl().getMARKET_TEMP().getC3();

Call moveToInsertRow()

 getTempTbl().getMARKET_TEMP().moveToInsertRow();

Set all the columns the first time

 getTempTbl().getMARKET_TEMP().setC1("2");;
 getTempTbl().getMARKET_TEMP().setC2("A2");
 getTempTbl().getMARKET_TEMP().setC3(buf3);

Call insertRow()

 getTempTbl().getMARKET_TEMP().insertRow();

Set all the columns except the unchanged column.

 getTempTbl().getMARKET_TEMP().setC1("3");
 getTempTbl().getMARKET_TEMP().setC2("A3");

Call insertRow()

 getTempTbl().getMARKET_TEMP().insertRow();

In the above example, column C3 will always have the same value (buf3).

The update Operation

To perform an update operation on a table, do the following:

1 Execute the select() method. You can specify the following types of ResultSets:

TYPE_FORWARD_ONLY

TYPE_SCROLL_INSENSITIVE

TYPE_SCROLL_SENSITIVE

You must specify ResultSets with:

CONCUR_UPDATABLE

2 Move to the row that you want to update.

3 Set the fields of the table ETD

4 Update the row by calling updateRow.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 84 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Using ETDs with Tables, Views, Stored Procedure, and Prepared Statements
In this example, we move to the third record and update the EMP_NO and RATE
fields.

getDBEmp().getDB_EMPLOYEE(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE).select("");
getDBEmp().getDB_EMPLOYEE().absolute(3);
getDBEmp().getDB_EMPLOYEE().setEMP_NO(123);
getDBEmp().getDB_EMPLOYEE().setRATE(123.45);
getDBEmp().getDB_EMPLOYEE().updateRow();

Figure 35 Update() Method Business Rule

The delete Operation

To perform a delete operation on a table do the following:

1 Execute the select() method. You can specify the following types of ResultSets:

TYPE_FORWARD_ONLY

TYPE_SCROLL_INSENSITIVE

TYPE_SCROLL_SENSITIVE

You must specify ResultSets with:

CONCUR_UPDATABLE

2 Move to the row that you want to delete.

3 Set the fields of the table ETD

4 Delete the row by calling deleteRow.

In this example DELETE the first record of the result set.

getDBEmp().getDB_EMPLOYEE(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE).select("");
getDBEmp().getDB_EMPLOYEE().first();
getDBEmp().getDB_EMPLOYEE().deleteRow();
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 85 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Using ETDs with Tables, Views, Stored Procedure, and Prepared Statements
4.3.2 The View
Views are used to look at data from selected columns within selected tables. Views are
read-only.

For query operations, please refer to "Tables" sub section.

4.3.3 The Stored Procedure
A Stored Procedure ETD represents a database stored procedure. Fields correspond to
the arguments of a stored procedure while methods are the operations that you can
apply to the ETD. It allows you to execute a stored procedure. Remember that while in
the Collaboration Editor you can drag and drop nods from the ETD’s into the
Collaboration Editor.

Executing Stored Procedures

Assuming that you have the following procedure:

create procedure LookupGlobal
(inlocalID in varchar, outglobalProductID out varchar)
as
begin
select outglobalProductID into globalProductID from SimpleLookup
where localID = inlocalID
end

The ETD represents the Stored Procedure “LookUpGlobal” with two parameters, an
inbound parameter (INLOCALID) and an outbound parameter
(OUTGLOBALPRODUCTID) can be generated by the DB Wizard. Representing these
as nodes in an ETD allows you to drag values from other ETD’s to the input
parameters, execute the call, and collect the output parameter data by dragging from
it’s node to elsewhere.

Below are the steps for executing the Stored Procedure:

1 Specify the input values.

2 Execute the Stored Procedure.

3 Retrieve the output parameters if any.

For example:

getLookUp().getLookUpGlobal().setIntlocalID(“123”);
getLookUp().getLookUPGlobal().execute();
String s =
getLookUp().getLookUpGlobal.getOutGlobelProductID;
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 86 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Using ETDs with Tables, Views, Stored Procedure, and Prepared Statements
Figure 36 Stored Procedure LookUpGlobal

Returning Result Sets from Rows in the Stored Procedure

The following Result Set processing returns rows into the body of the Stored Procedure.
Support for this feature will depend on the drivers and the specific database you have
selected.

A stored procedure in a database can perform update and select operations. The
application checks what operation has been performed. The following methods allow
you to collect this information:

getUpdateCount:

This method should be called only after a call to executeRetVal or getMoreResults,
and should be called only once per result. An int greater than 0 represents the number
of rows affected by an operation. A value of 0 means no rows were affected or the
operation is a DDL command. -1 means the result is a result set or there are no more
results.

getResultSet:

When the executeRetVal method has been used to execute the stored procedure. This
method returns the current result set if there is one. Otherwise, it returns a null value
which indicates the result is an update count or there are no more results.

getMoreResults:

Moves to the next result. This method returns true if it gets the next result set. It returns
false if it is an update count or there are no more results.

This example prints out the update count and result sets that are returned from the
stored procedures.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 87 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Using ETDs with Tables, Views, Stored Procedure, and Prepared Statements
int iRow;
 com.stc.eways.jdbcx.ResultSetAgent rs;
 getpoller().getMrsSp().execute();

 do
 {
 iRow = getpoller().getMrsSp().getUpdateCount();
 System.out.println("\n*********iRow = " +
Integer.toString(iRow));

 if (iRow >= 0)
 {
 getblobout().setField1("Number of rows affected: " +
Integer.toString(iRow));
 getblobout().send();
 }
 else
 {
 rs = getpoller().getMrsSp().getResultSet();
 while (rs.next())
 {
 getblobout().setField1("Col5 = " +
Integer.toString(rs.getInt(1)) + ", Col6 = " +
Integer.toString(rs.getInt(2)));
 getblobout().send();
 }
 }
 }
 while (getpoller().getMrsSp().getMoreResults());

Use an outbound parameter to enrich another ETD.

4.3.4 Prepared Statement
A Prepared Statement ETD represents a SQL statement that has been compiled. Fields
in the ETD correspond to the input values that users need to provide.

Prepared Statements can be used to perform insert, update, delete and query
operations. A Prepared Statement uses a question mark (?) as a place holder for input.
For example:

insert into EMP_TAB(Age, Name, Dept No) value(?, ?, ?)

To execute a Prepared Statement, set the input parameters and call executeUpdate()
and specify the input values if any.

getPrepStatement().getPreparedStatementTest().setAge(23);
getPrepStatement().getPreparedStatementTest().setName(“Peter Pan”);
getPrepStatement().getPreparedStatementTest().setDeptNo(6);
getPrepStatement().getPreparedStatementTest().executeUpdate();

4.3.5 Batch Operations
While the Java API used by SeeBeyond does not support traditional bulk insert or
update operations, there is an equivalent feature that can achieve comparable results,
with better performance. This is the “Add Batch” capability. The only modification
required is to include the addBatch() method for each SQL operation and then the
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 88 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Scenario—Polling from a JDBC/ODBC Generic Database
executeBatch() call to submit the batch to the database server. Batch operations apply
only to Prepared Statements.

getPrepStatement().getPreparedStatementTest().setAge(23);
getPrepStatement().getPreparedStatementTest().setName(“Peter Pan”);
getPrepStatement().getPreparedStatementTest().setDeptNo(6);
getPrepStatement().getPreparedStatementTest().addBatch();

getPrepStatement().getPreparedStatementTest().setAge(45);
getPrepStatement().getPreparedStatementTest().setName(“Harrison
Ford”);
getPrepStatement().getPreparedStatementTest().setDeptNo(7);
getPrepStatement().getPreparedStatementTest().addBatch();
getPrepStatement().getPreparedStatementTest().executeBatch();

4.3.6 Database Configuration Node
The Database Configuration node allows you to manage the “transaction mode”
through the Collaboration if you have set the mode to manual in the e*Way connection
configuration. See “Connector Settings” on page 44.

4.4 Sample Scenario—Polling from a JDBC/ODBC Generic
Database

This section describes how to use the JDBC/ODBC e*Way in a sample implementation.
This sample schema demonstrates the polling of records from a generic database and
converting the records into e*Gate Events.

Figure 37 shows a graphical overview of the sample schema.

Figure 37 The Database Select Scenario—Overview

1 The FileIn e*Way retrieves an Event (text file) containing the database select criteria
and publishes it to the Q1 IQ.

2 The DBselect e*Way retrieves the Generic Event (Blob) from the IQ. This triggers
the rest of the Collaboration which has two parts.

3 The information in Blob is used to retrieve information from the database via the
JDBCODBC_eWc e*Way Connection. This e*Way Connection contains information
used by the Collaboration to connect to the JDBCODBC database.

Blob

Local File
System

DBselect
e*Way

DBselect_collab

FileOut
e*Way

FileOut_PassThruBlob Blob

2

4

FileIn
e*Way

FileIn_PassThru
3

Q1 IQ

Q2 IQ

Oracle
Database

1

Oracle
_eWc

Local File
System BlobBlob

DBEmployee

Blob

5

e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 89 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Scenario—Polling from a JDBC/ODBC Generic Database
4 The information retrieved from the database is copied to the Generic Event (Blob)
and published to the Q2 IQ.

5 The FileOut e*Way retrieves the Generic Event (Blob) from the Q2 IQ then writes it
out to a text file on the local file system.

Overview of Steps

The sample implementation follows these general steps:

“Create the Schema” on page 92

“Add the Event Types and Event Type Definitions” on page 92

“Create the Collaboration Rules and the Java Collaboration” on page 95

“Add and Configure the e*Ways” on page 99

“Add and Configure the e*Way Connections” on page 101

“Add the IQs” on page 101

“Add and Configure the Collaborations” on page 102

“Run the Schema” on page 103
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 90 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Scenario—Polling from a JDBC/ODBC Generic Database
Figure 38 Schema Configuration Steps

External Database Tables

The sample uses a simple external JDBCODBC database with a table called
DB_EMPLOYEE. The table contains the following columns:

Table 4 The DB_EMPLOYEE Table

Column Format Description

EMP_NO INTEGER The employee number.

LAST_NAME VARCHAR2 The employee’s last name.

FIRST_NAME VARCHAR2 The employee’s first name.

RATE FLOAT The employee’s pay rate.

LAST_DATE DATE The last transaction date for the employee

Create Schema

Add Event Types and
ETDs

Create Collaboration
Rules & the Java Collab

Add and Configure
e*Ways

Add and Configure
e*Way Connections

Add IQs

Add and Configure
Collaborations

Run the Schema
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 91 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Scenario—Polling from a JDBC/ODBC Generic Database
4.4.1 Create the Schema
The first step in deploying the sample implementation is to create a new schema. After
installing the JDBC/ODBC e*Way, do the following:

1 Launch the e*Gate Enterprise Manager GUI.

2 Log into the appropriate Registry Host.

3 From the list of schemas, click New to create a new schema.

4 For this sample implementation, enter the name DBSelect and click Open.

The Enterprise Manager will launch and display the newly the created schema.

4.4.2 Add the Event Types and Event Type Definitions
Two Event Types and Event Type Definitions are used in this sample.

DBEmployee – This Event Type represents the layout of the employee records in
the DB_Employee table. The Event Type uses the DBEmployee.xsc Event Type
Definition. The ETD will be generated by using the Java ETD Editor’s Database
Wizard (DBWizard).

GenericBlob – This Event Type is used to pass records with no specific format
(blob). The Event Type uses the GenericBlob.xsc ETD. The ETD will be manually
created as a fixed-length ETD.

To create the DBEmployee Event Type and ETD:

1 From the Options menu of the Enterprise Manager, choose Default Editor….

2 Verify that Java is selected, then click OK.

3 In the Components pane of the Enterprise Manager, select the Event Types folder.

4 Click the New Event Type button to add a new Event Type.

5 Enter the name DBEmployee and click OK.

6 Double-click the new DBEmployee Event Type to display its properties.

7 Click the New button to create a new Event Type Definition (ETD). The Java Event
Type Definition Editor will appear.

8 From the File menu, choose New. The New Event Type Definition dialog box will
appear.

9 In the New Event Type Definition dialog box, select DBWizard and click OK.

10 Select Create a new .XSC file. Click Next to continue. See Figure 39.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 92 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Scenario—Polling from a JDBC/ODBC Generic Database
Figure 39 Database Wizard Introduction

11 Enter the database DNS source and login information.

A Select the Data Source from the dropdown list of ODBC data sources.

B Enter the User Name and Password used to log into the database.

Click Next to continue.

12 The Database Wizard - ETD Type Selection window appears. The DNS source you
selected on the previous window is the default selection for this window. Do not
change this selection type unless instructed to do so by SeeBeyond support
personal. Click Next to continue.

13 This scenario uses a table rather than a procedure. Select Table and click Next to
continue.

14 From the Database Wizard - Tables window, click Add Tables... Enter the exact
Table Name or enter any valid wildcards. From the drop down list select the
appropriate database schema and click Search. The wizard connects to the data
source and display a list of tables.

15 Select the table to be included in the ETD and click Next.

16 The Java Class Name/ Package Name dialog box will appear. Enter the Group and
Package information.

A Enter your database name as the Java Class Name.

B Enter DBEmployee for the Package Name and click Next to continue.

17 Click Finish to complete the Wizard. The Wizard will generate and display the
ETD.

18 From the File menu, choose Save.

19 Name the ETD DBEmployee.xsc and click OK.

20 From the File menu, choose Promote to Run Time and click OK when finished.

21 From the File menu, choose Close to exit the ETD Editor.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 93 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Scenario—Polling from a JDBC/ODBC Generic Database
22 In the Event Type properties dialog box, click OK to save and close the Event Type.

To create the GenericBlob Event Type and ETD:

1 In the Components pane of the Enterprise Manager, select the Event Types folder.

2 Click the New Event Type button to add a new Event Type.

3 Enter the name GenericBlob and click OK.

4 Double-click the new GenericBlob Event Type to display its properties.

5 Click the New button to create a new Event Type Definition.

The Java Event Type Definition Editor will appear.

6 From the File menu, choose New.

The New Event Type Definition dialog box will appear.

7 In the New Event Type Definition dialog box, select Standard ETD and click OK.

8 Read the introductory screen, then click Next to continue.

The Root Node Name / The Package Name dialog box will appear.

9 Enter a Root Node Name for the GenericBlob

10 Enter GenericBlobPackage for the Package Name and click Next to continue.

11 Read the summary information and click Finish to generate the ETD.

12 In the Event Type Definition pane, right-click the root node, point to Add Field in
the shortcut menu, and click As Child Node.

13 Enter the properties for the two nodes as shown in Table 5.

Table 5 GenericBlob ETD Properties

14 From the File menu, choose Save.

15 Enter the name GenericBlob.xsc and click OK.

16 From the File menu, choose Compile.

17 From the File menu, choose Compile And Save.

18 From the File menu, choose Promote to Run Time and click OK when finished.

19 From the File menu, choose Close to exit the ETD Editor.

20 In the Event Type properties dialog box, click OK to save and close the Event Type.

Node Property Value

Root Node Name GenericBlob

Structure fixed

Length undefined

Child Node Name Data

Structure fixed

Length undefined
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 94 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Scenario—Polling from a JDBC/ODBC Generic Database
4.4.3 Create the Collaboration Rules and the Java Collaboration
The sample scenario uses two Collaboration Rules and one Java Collaboration:

GenericPassThru – This Collaboration Rule is used to pass the GenericBlob Event
Type through the schema without modifying the Event.

DBSelect – This Collaboration Rule is used to convert the inbound Event’s selection
criteria into a SQL statement, poll the external database, and return the matching
records as an outbound Event.

DBSelectCollab – This Java Collaboration contains the logic required to
communicate with the external database.

Before creating the Collaboration Rules, assure your default Collaboration Editor is set
to Java. To do this do the following:

1 From the e*Gate Enterprise Manager toolbar, click Options.

2 Click Default Editor...

3 Select Java.

4 Click OK.

To create the GenericPassThru Event Type:

1 In the components pane of the Enterprise Manager, select the Collaboration Rules
folder.

2 Click the New Collaboration Rules button to add a new Collaboration Rule.

3 Name the Collaboration Rule GenericPassThru and click OK.

4 Click the Properties button to display the Collaboration Rule’s properties.

5 On the General tab, select Pass Through from the Services drop down list.

6 Click the Subscriptions tab, select the GenericBlob Event Type, and click the right
arrow.

7 Click the Publications tab, select the GenericBlob Event Type, and click the right
arrow.

8 Click OK to save the Collaboration Rule.

To create the DBSelect Event Type:

1 In the components pane of the Enterprise Manager, select the Collaboration Rules
folder.

2 Click the New Collaboration Rules button to add a new Collaboration Rule.

3 Name the Collaboration Rule DBSelect and click OK.

4 Click the Properties button to display the Collaboration Rule’s properties.

5 In the Service list, click Java.

6 Click the Collaboration Mapping tab.

7 Add three instances. See Figure 40
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 95 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Scenario—Polling from a JDBC/ODBC Generic Database
Figure 40 DBSelect Instances

8 Click Apply to save the current changes.

9 Click the General tab.

10 Click New to create the new Collaboration file.

The Java Collaboration Editor appears. Note that Source and Destination Events are
already supplied based on the Collaboration Rule’s Collaboration Mapping. See
Figure 40.

11 From the View menu, choose Display Code.

This displays the Java code associated with each of the Collaboration’s rules.

12 In the Business Rules pane, select the retBoolean rule and click the rule button to
add a new Rule.

13 In the Destination Events pane, expand the DBEmployee Event Type until the
select method is visible.

14 Drag the select method into the Rule field of the Rule Properties pane. Click OK to
close the dialog box without entering any criteria. See Figure 41.

Figure 41 Rule Properties

15 In the Source Events pane, expand the GenericBlobIn Event Type until the Data
node is visible.

16 In the Rule Properties pane, position the cursor inside the parentheses of the select
method. Then drag the Data node from the Source Events pane into the select
method’s parentheses. See Figure 42.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 96 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Scenario—Polling from a JDBC/ODBC Generic Database
Figure 42 Rule Properties (Continued)

17 Select the newly edited rule in the Business Rules pane and click the while button
to add a new while loop beneath the current rule.

18 Drag the next method from the Destination Events pane into the Condition field of
the While Properties pane. Click OK to close the dialog box. See Figure 43.

Figure 43 While Properties

19 Select the newly edited while loop in the Business Rules pane and click the rule
button to add a new rule as a child to the while loop.

20 In the Destination Events pane, expand the GenericBlobOut Event Type until the
Data node is visible.

21 Drag the Data node into the Rule field of the Rule Properties pane. See Figure 44.

Figure 44 Rule Properties

22 In the Rule Properties pane, position the cursor inside the parentheses of the
setData() method. Then drag each of the five data nodes of DB_EMPLOYEE from
the Source Events into the parentheses of the rule. See Figure 45.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 97 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Scenario—Polling from a JDBC/ODBC Generic Database
Figure 45 Rule Properties (Continued)

23 Edit the text of the condition to add a newline character and pipe (|) delimiters
between each of the five data nodes. See Figure 46.

Figure 46 Rule Properties (Continued)

24 Select the newly edited rule in the Business Rules pane and click the rule button to
add a new rule inside the while loop.

25 Drag the root node of the GenericBlobOut Event into the rule field in the Rule
Properties pane.

26 Edit the rule; add a send() method as shown in Figure 47.

Figure 47 GenericBlobOut iqPut()

27 From the File menu, choose Save to save the file.

28 From the File menu, choose Compile to compile the Collaboration.

View the bottom pane to ensure that there were no compiler errors.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 98 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Scenario—Polling from a JDBC/ODBC Generic Database
29 From the File menu, choose Exit to close the Java Collaboration Rules Editor and
return to the Collaboration Rule.

Note that the Collaboration Rules and Initialization file fields have been
completed by closing the Java Collaboration Editor.

30 Click OK to save and close the DBSelect Collaboration Rule.

4.4.4 Add and Configure the e*Ways
The sample scenario uses three e*Ways:

FileIn – This e*Way retrieves an Event (text file) containing the database select
criteria and publishes it to the Q1 IQ.

DBSelect – This e*Way retrieves the Generic Event (Blob) from the Q1 IQ. This
triggers the e*Way to request information from the external database (via the e*Way
Connection) and publishes the results to the Q2 IQ.

FileOut – This e*Way retrieves the Generic Event (Blob) from the Q2 IQ then writes
it out to a text file on the local file system.

To create the FileIn e*Way:

1 In the Components pane of the Enterprise Manager, select the Control Broker and
click the New e*Way button.

2 Enter FileIn for the component name and click OK.

3 Select the newly created e*Way and click the Properties button to display the
e*Way’s properties.

4 Use the Find button to select stcewfile.exe as the executable file.

5 Click New to create a new configuration file.

6 Enter the parameters for the e*Way as shown in Table 6.

Table 6 FileIn e*Way Parameters

7 Select Save from the File menu. Enter FileIn as the file name and click Save.

8 Select Promote to Run Time from the File menu. Click OK to close the e*Way
configuration file editor.

Section Name Parameter Value

General Settings AllowIncoming YES

AllowOutgoing NO

PerformanceTesting default

Outbound (send)
settings

All default

Poller (inbound) settings PollDirectory c:\egate\data\dbSelect_In

All others default

Performance Testing All default
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 99 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Scenario—Polling from a JDBC/ODBC Generic Database
9 In the Start Up tab of the e*Way properties, select the Start automatically check
box.

10 Click OK to save the e*Way properties.

To create the DBSelect e*Way:

1 In the Components pane of the Enterprise Manager, select the Control Broker and
click the New e*Way button.

2 Enter DBselect for the component name and click OK.

3 Select the newly created e*Way and click the Properties button to display the
e*Way’s properties.

4 Use the Find button to select stceway.exe as the executable file.

5 Click New to create a new configuration file.

6 Enter the parameters for the e*Way as shown in Table 7.

Table 7 DBSelect e*Way Parameters

7 Select Save from the File menu. Enter DBSelect as the file name and click Save.

8 Select Promote to Run Time from the File menu. Click OK to close the
configuration file editor.

9 In the Start Up tab of the Business Object Broker properties, select the Start
automatically check box.

10 Click OK to save the e*Way’s properties.

To create the FileOut e*Way:

1 In the Components pane of the Enterprise Manager, select the Control Broker and
click the New e*Way button.

2 Enter FileOut for the component name and click OK.

3 Select the newly created e*Way and click the Properties button to display the
e*Way’s properties.

4 Use the Find button to select stcewfile.exe as the executable file.

5 Click New to create a new configuration file.

6 Enter the parameters for the e*Way as shown in Table 8.

Table 8 FileOut e*Way Parameters

Section Name Parameter Value

JVM Settings All default

Section Name Parameter Value

General Settings AllowIncoming NO

AllowOutgoing YES

PerformanceTesting default
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 100 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Scenario—Polling from a JDBC/ODBC Generic Database
7 Select Save from the File menu. Enter FileOut as the file name and click Save.

8 Select Promote to Run Time from the File menu. Click OK to close the
configuration file editor.

9 In the Start Up tab of the e*Way properties, select the Start automatically check
box.

10 Click OK to save the e*Way properties.

4.4.5 Add and Configure the e*Way Connections
The sample scenario uses one e*Way Connection:

JDBCODBC_eWc – This e*Way Connection connects the DBselect component to
the external database and returns the requested records to be published to the Q2
IQ.

To create the e*Way Connection:

1 In the Components pane of the Enterprise Manager, select the e*Way Connections
folder.

2 Click the New e*Way Connection button to add a new e*Way Connection.

3 Enter JDBCODBC_eWc for the component name and click OK.

4 Select the newly created e*Way Connection and click the Properties button to
display the e*Way Connection’s properties.

5 Select JDBCODBC from the e*Way Connection Type dropdown list.

6 Enter the timeout parameter of the e*Way by entering a number in milliseconds in
the Event Type “get” Interval dialog box. The default value is 10000.

7 Click New to create a new configuration file.

8 Enter the parameters for the e*Way Connection.

9 Select Save from the File menu. Enter JDBCODBC_eWc as the file name and click
Save.

10 Select Promote to Run Time from the File menu. Click OK to close the e*Way
Connection configuration file editor.

11 Click OK to save the e*Way Connection’s properties.

4.4.6 Add the IQs
The sample scenario uses two IQs

Outbound (send)
settings

OutputDirectory c:\egate\data\dbSelect_Out

OutputFileName dbSelect%d.dat

Poller (inbound) settings All default

Performance Testing All default

Section Name Parameter Value
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 101 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Scenario—Polling from a JDBC/ODBC Generic Database
Q1 – This IQ queues the inbound Events for the DBSelect e*Way.

Q2 – This IQ queues the outbound Events for the FileOut e*Way.

To add the IQs:

1 In the components pane of the Enterprise Manager, select the IQ Manager.

2 Click the New IQ button to add a new IQ.

3 Enter the name Q1 and click Apply to save the IQ and leave the New IQ dialog box
open.

4 Enter the name Q2 and click OK to save the second IQ.

5 Select the IQ Manger and click the Properties button.

6 Select the Start automatically check box and click OK to save the properties.

4.4.7 Add and Configure the Collaborations
The sample scenario uses three Collaborations:

FileIn_PassThru – This Collaboration uses the GenericPassThru Collaboration
Rule.

DBselect_collab – This Collaboration uses the GenericEventToDatabase
Collaboration Rule to execute the dbCollab.class Java Collaboration file.

FileOut_PassThru – This Collaboration uses the GenericPassThru Collaboration
Rule.

To add the FileIn_PassThru Collaboration:

1 In the components pane of the Enterprise Manager, select the FileIn e*Way.

2 Click the New Collaboration button to create a new Collaboration.

3 Enter the name FileIn_PassThru and click OK.

4 Select the newly created Collaboration and click the Properties button.

5 Select GenericPassThru from the dropdown list of Collaboration Rules.

6 Click the upper Add button to add a new Subscription.

7 Select the GenericEvent Event Type and the <External> source.

8 Click the lower Add button to add a new Publication

9 Select the GenericEvent Event Type and the Q1 destination.

10 Click OK to close the Collaboration’s properties.

To add the DBselect_collab Collaboration:

1 In the components pane of the Enterprise Manager, select the DBSelect e*Way.

2 Click the New Collaboration button to create a new Collaboration.

3 Enter the name DBselect_collab and click OK.

4 Select the newly created Collaboration and click the Properties button.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 102 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Scenario—Polling from a JDBC/ODBC Generic Database
5 Select DBSelect from the dropdown list of Collaboration Rules.

6 Click the upper Add button to add a new Subscription.

7 Select the GenericEvent Event Type and the FileIn_PassThru source.

8 Click the lower Add button to add a new Publication

9 Select the DBEmployee Event Type and the JDBCODBC_eWc destination.

10 Click the lower Add button to add a new Publication

11 Select the GenericEvent Event Type and the Q2 destination.

12 Click OK to close the Collaboration’s properties.

To add the FileOut_PassThru Collaboration:

1 In the components pane of the Enterprise Manager, select the FileOut e*Way.

2 Click the New Collaboration button to create a new Collaboration.

3 Enter the name FileOut_PassThru and click OK.

4 Select the newly created Collaboration and click the Properties button.

5 Select GenericPassThru from the dropdown list of Collaboration Rules.

6 Click the upper Add button to add a new Subscription.

7 Select the GenericEvent Event Type and the DBSelect_collab source.

8 Click the lower Add button to add a new Publication

9 Select the GenericEvent Event Type and the <External> destination.

10 Click OK to close the Collaboration’s properties.

4.4.8 Run the Schema
Running the sample Schema requires that a sample input file be created. Once the input
file has been created, you can start the Control Broker from a command prompt to
execute the Schema. After the Schema has been run, you can view the output text file to
verify the results.

The sample input file

Use a text editor to create an input file to be read by the inbound file e*Way (FileIn).
This simple input file contains the criteria for the dbSelect.class Collaboration’s select
statement. An example of an input file is shown in Figure 48.

Figure 48 Sample Input File
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 103 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.5
Implementation The Empty ETD
To start the Control Broker:

From a command prompt, type the following command:

stccb -ln logical_name -rh registry -rs DBSelect -un user_name
-up password

where

logical_name is the logical name of the Control Broker,

registry is the name of the Registry Host, and

user_name and password are a valid e*Gate username/password combination.

To verify the results:

Use a text editor to view the output file c:\eGate\data\dbSelect_out\dbSelect0.dat.
Figure 49 shows an example of the records that were returned by the sample schema.

Figure 49 Sample Output File

4.5 The Empty ETD
If you are unable to connect to the Database Wizard using a valid ODBC driver, we
have provided an empty ETD for you so that you may hand build your collaboration
using the Collaboration Editor.

The empty ETD is EmptyETD.xsc located at
/werver/registry/repository/default/etd/db/

To use the empty ETD, you will need to use SqlStatementAgent:

1 Declare SqlStatementAgent with a specific name using the method
getSqlStatementAgent or the method getPreparedSqlAgent.

2 Specify and execute a SQL statement.

The following sample briefly illustrates how to build a collaboration using the empty
ETD. In the sample collaboration, we copy new rows from the table DB_EMPLOYEE to
the table EMPLOYEE_UPDATE whenever new records in the table EMPLOYEE are
found.

The table description of DB_EMPLOYEE is:
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 104 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.5
Implementation The Empty ETD
Figure 50 DB_Employee

The table description of EMPLOYEE_UPDATE is:

Figure 51 EMPLOYEE_UPDATE

1 Create a new java collaboration.

2 Select the provided empty ETD in “Collaboration Mapping” as in Figure 52.

Figure 52 EmptyETD_crProperties

3 Click on the tab General in the above Collaboration Mapping window, click the
New button to open the collaboration editor window.

4 Drag and drop the method getSQLAgent into the first collaboration rule. You can
drag and drop a getPreparedSqlAgent method if you have a prepared SQL
statement. Label it with a name “fromDbEmployee”. This will create a
SqlStatementAgent object, which we assigned to variable “fromAgent”. See Figure
53.

Name Null Type

EMP_NO NUMBER(38)

LAST_NAME VARCHAR2(30)

FIRST_NAME VARCHAR2(30)

RATE FLOAT(126)

LAST_UPDATE DATE

Name Null Type

EMP_NO NUMBER(38)

LAST_NAME VARCHAR2(30)

RATE FLOAT(126)
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 105 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.5
Implementation The Empty ETD
Figure 53 Collaboration Rules Editor - EmptyETD_cr

5 In the second collaboration rule, we use the above SqlStatementAgent object to
execute this SQL statement:

select EMP_NO, LAST_NAME from db_employee where db_employee.EMP_NO
not in(select EMP_NO from employee_update)

which selects new records from the DB_EMPLOYEE table that don’t exist in the
EMPLOYEE_UPDATE table. The execution of the query will return a
ResultSetAgent object, which we assigned to the variable “rs”.

Figure 54 Collaboration Rules Editor - EmptyETD_cr, Step 5

6 Drag and drop the method getSqlAgent which has three parameters into the
collaboration rule. For the third parameter we pass in the value
“ResultSet.CONCUR_UPDATABLE” so that later we can use this
SqlStatementAgent to update database. Label it with a name “toEmployeeUpdate”.
This will create a SqlStatementAgent object, which we assigned to variable
“toAgent”. See Figure 55.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 106 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.5
Implementation The Empty ETD
Figure 55 Collaboration Rules Editor - EmptyETD_cr, Step 6

7 Next, we create a while loop to loop through the previously created ResultSetAgent
object “rs”.

Figure 56 Collaboration Rules Editor - EmptyETD_cr, Step 7

8 Inside the loop, we use the above SqlStatementAgent object to execute this runtime
created SQL statement:

"insert into employee_update (emp_no, last_name) values(" +
rs.getInt(1)
+ ", '" + rs.getString(2) + "')"

which gets a record from the ResultSetAgent rs and inserts it into the table
EMPLOYEE_UPDATE
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 107 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
Implementation Troubleshooting the JDBC/ODBC Java e*Way
Figure 57 Collaboration Rules Editor - EmptyETD_cr, Step 9

The sample schema for the above has been included in the samples directory on the
e*Gate installation disk \samples\ewjdbcodbc\EmptyDBETD.zip. To import the
sample schema, do the following:

1 From the Enterprise Manger toolbar, click File.

2 Click Import Definitions from File...

3 From the Import Definitions window, click Next.

4 From the Import Wizard - Step 1 window, select Schema and click Next.

5 From the Import Wizard - Step 2 window, click Select to navigate to the Samples
folder located on the Installation CD-ROM.

6 Highlight the file EmptyDBETD.zip and click Next.

If you use getSQLAgent and getPreparedSQLAgent, with multiple connections within
the same ETD, for example connect, disconnect, then connect again, the name you used
for the SQLAgent should only be used in the scope of one connection period. Even if
the you pass the same SQL statement string.

4.6 Troubleshooting the JDBC/ODBC Java e*Way
This section should provide you with additional support when troubleshooting your
e*Way.

The performance and functionality of the JDBC/ODBC e*Way will depend on the
driver(s) selected. Certain drivers may not support all JDBC features. Consult the
documentation for your respective drivers) for more information.

1 When using DataDirect JDBC driver with some databases, you will need to specify
"cursor" for the connection attribute "SelectMethod" for the following reasons:

A This e*Way implementation uses the same JDBC connection to create multiple
JDBC statements.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 108 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
Implementation Troubleshooting the JDBC/ODBC Java e*Way
B and the default transaction behavior is set to "false" for Autocommit.

DataDirect’s JDBC driver cannot use the same JDBC connection to create more than
one statement when Autocommit is set to false. For additional information
regarding this, please see your DataDirect JDBC driver documentation.

2 Using fully qualified table names can throw a SQL syntax error or exception while
using Informix. Try using short names.

3 When using a combination of database native ODBC drivers and the Sun JDBC -
ODBC Bridge drivers, unpredictable results may occur. Try using a driver type that
does not require database native libraries. Type 1 and 2 drivers have limited
functionality and are unable to take full advantage of Java feature sets.

4 Updatable ResultSets are not supported by Sun’s JDBC-ODBC Bridge driver. This is
a Type 1 driver. Type 1 and 2 drivers have limited functionality and are unable to
take full advantage of Java feature sets. Try using a Type 3 or 4 driver.

5 When using non-XA compliant drivers in XA mode throws a java.sql.SQL
Exception. Try using an XA compliant driver to avoid this problem.

6 If you are using an AIX 4.3.3 Korean supported operating system, the Merant
JDBC/ODBC bridge driver is expecting member libodbc.o in libodbc.a. Check the
member name in your libodbc.a by doing the following:

dump -H libodbc.a

If your libodbc.a has a different member name for libodbc.o, for example, odbc.so,
then perform the following operations after saving your original libodbc.a in a
backup directory.

To extract and rename the member, do the following:

ar -p libodbc.a odbc.so > libodbc.o

To add the libodbc.o member to libodbc.a, then do the following:

ar -v -r libodbc.a libodbc.o

Failure to do this will result in an error message as follows: 'No Suitable Driver'
resulting in the e*Way not connecting to the database.

7 For Korean Solaris 8 operating systems, the JDBC/ODBC bridge is expecting
different names for the shared libraries. Thus, the user must create a softlink as
follows in the Merant ODBC drivers directory:

ln -s libodbcinst.so libodbcinst.so.1
 ln -s libodbc.so libodbc.so.1

Failure to do this will result in the following error message: 'No Suitable Driver' and
the e*Way will be unable to connect to the database.

8 Some type 4 drivers support Double Byte Character Set (DBCS) table names and
column names within the tables. If the current driver you are using does not
support DBCS, you will see unexpected results.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 109 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.7
Implementation Monk ODBC Implementation
4.7 Monk ODBC Implementation
This section contains information explaining the use of the ETD Editor’s Build Tool as
well as two sample ODBC e*Way scenarios.

This Section Explains:

“Using the ETD Editor’s Build Tool” on page 110

“Vendor-Specific Driver Notes” on page 119

“Sample One—Publishing e*Gate Events to an ODBC Database” on page 121

“Sample Two—Polling from an ODBC Database” on page 131

4.8 Using the ETD Editor’s Build Tool
The Event Type Definition Editor’s Build tool automatically creates an Event Type
Definition file based on the tables in an existing database. The Event Type
Definition (ETD) can be created based on one of (or a combination of) the following
criteria:

Table or View – Displays all of the columns in the specified table or view.

Dynamic SQL Statement – Displays the format of the results of a SQL statement.
This can be used to return only a few of the columns in a table.

Stored Procedure – Displays the format of the results of a SQL Stored Procedure.
This option is only available for Delimited messages.

The results of these three types of message criteria are explained in “The Event Type
Definition Files” on page 113.

To create an Event Type Definition using the Build tool:

1 Launch the ETD (Event Type Definition) Editor.

2 On the ETD Editor’s Toolbar, click Build.

The Build an Event Type Definition dialog box appears.

3 In the File name box, type the name of the ETD file you wish to build. Do not specify
any file extension—the Editor will supply an "ssc" extension for you.

4 Under Build From, select Library Converter.

5 Under Select a Library Converter, select DART Converter.

6 Click Finish.

7 The Converter Wizard will launch.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 110 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.8
Implementation Using the ETD Editor’s Build Tool
Figure 58 Converter Wizard Subordinate Dialog Box

8 Enter the Data Source.

9 Enter the User Name.

10 Enter the Password.

11 Select the DART Library. You must have the corresponding e*Way installed prior to
your selection.

12 Select the correct Message Type.

Note: It is important to enter the correct Data Source and Message Type. For Oracle the
Data Source is in the Servicename.world format
The Fixed-length Message Type is used for DART bulk insert only.
The Delimited Message Type is for all other DART structure calls.
See Figure 58 on page 111

If you select Delimited Message Type the following dialog box will appear.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 111 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.8
Implementation Using the ETD Editor’s Build Tool
Figure 59 Converter Wizard Delimited Message Type Dialog Box

13 Select or Add the correct Table or View

14 Select or Add the correct SQL Statement

15 Select or Add the correct Stored Procedure.

If you select the Fixed-Length Message Type the following dialog box will appear.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 112 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.8
Implementation Using the ETD Editor’s Build Tool
Figure 60 Converter Wizard Fixed-Length Message Type Dialog Box

16 Select or Add the correct Table or View

17 Select or Add the correct SQL Statement

18 Edit or Finish your selections.

Note: The (#) character cannot be used in the node name of the .ssc file. The Oracle e*Way
will be unable to generate the correct node name for the column name of a table that
contains the (#) character, as Monk will filter out the character.

For Oracle, ($), or (#) can be used in a name, although the Oracle User’s Guide strongly
discourages their use.

4.8.1 The Event Type Definition Files
The DART Converter Build Tool will create a different ETD based on the criteria that
was specified in the Build Tool Wizard (see Figure 59 on page 112 and Figure 60 on
page 113).
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 113 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.8
Implementation Using the ETD Editor’s Build Tool
Table or View

Entering a table or view name as a selection criteria will display all of the columns in
that table or view. This is useful when you want to access an entire record from the
table as an e*Gate Event. The criteria shown in Figure 61 generates the ETD shown in
Figure 62.

Figure 61 Table or View Selection

Selection criteria
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 114 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.8
Implementation Using the ETD Editor’s Build Tool
Figure 62 Table or View ETD

The ETD that is generated by the DART Converter Build Tool using the Table or View
criteria contains the elements shown in the table below.

Table 9 Elements of the Table or View ETD

Element Description

ETD Name This is the root node of the Event Type Definition.

Table Name This node displays the name of the table or view.

Column Name This is the name of the column(s) in the selected table or view.

Field Value This is the value of the data in the column. This can be thought of as
the payload data for this column.

Data Type This node designates the type of data contained in the value field.

Constraint Code The constraint codes are based on the column constraints in the table.
The possible codes are:

I – Insert operations are allowed in this column.
U – Update operations are allowed in this column.
N – Neither insert nor update operations are allowed in this column.
B – Both insert and update operations are allowed in this column.

Table Name

ETD Name

Column Names

Data Type

Constraint Code

Field Value
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 115 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.8
Implementation Using the ETD Editor’s Build Tool
Dynamic SQL Statement

Entering an SQL statement as a selection criteria will display the format of the results of
that SQL statement. This is useful when you only want to access certain columns from
the table for a particular e*Gate Event.

To use this type of ETD, you should use the db-stmt-bind function to bind the dynamic
statement and db-struct-execute function to execute the SQL statement. For more
information, see db-stmt-bind on page 139 and db-struct-execute on page 181.

The SQL statement shown in Figure 63 generates an ETD that returns specific records
from the table based on the selection criteria (which is represented by a question
mark “?”). The resulting ETD is shown in Figure 64 on page 117.

Note: It is not necessary to include the terminating semi-colon as part of the SQL
statement.

Figure 63 Dynamic SQL Statement Select

Selection criteria
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 116 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.8
Implementation Using the ETD Editor’s Build Tool
Figure 64 Dynamic SQL Statement ETD

The PARAM0 node in the ETD shown in Figure 64 represents the criteria specified in
the SQL statement. Additional criteria would be represented in additional nodes
(PARAM1, PARAM2, and so forth). For example, using the following SQL statement:

SELECT * FROM db_employee WHERE last_name = ? AND first_name = ?

the Build Tool would generate an ETD with two input parameter nodes (PARAM0 and
PARAM1)—one for each of the criteria (?). The VALUE nodes of these input parameter
nodes are used to carry the payload of the selection statement.

Stored Procedure

Entering a stored procedure name as a selection criteria will generate an ETD that will
access a stored procedure in the external database. This is useful when you want to
access the results of a stored procedure.

The stored procedure specified in Figure 65 generates an the ETD shown in Figure 66.
Below is the contents of the sample stored procedure:

procedure VARIABLE_NUM_NEW_PROC
(
 BATCH_SIZE in integer,
 FOUND in out integer,
 DONE_FETCH out integer,
 INT_RET out integer,
 FLOAT_RET out float,
 SMALL_INT_RET out smallint,
 DOUBLE_RET out double precision,
 REAL_RET out real,
 DECIMAL_RET out decimal,
 DECIMAL_PRECISE_RET out decimal,
 NUMBER_RET out number,
 NUMBER_PRECISE_RET out number
)
as
 temp int := 0;
 cursor GET_COUNT IS
 select count(*) from NUM_TABLE;
 cursor GET_TYPE IS
 select INT_NUM, FLOAT_NUM, SMALL_INT_NUM, DOUBLE_NUM, REAL_NUM,
 DECIMAL_NUM, DECIMAL_PRECISE, NUM_NUM, NUM_PRECISE
 from NUMBER_TYPE;
begin
 OPEN GET_COUNT;
 fetch GET_COUNT into temp;
 CLOSE GET_COUNT;
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 117 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.8
Implementation Using the ETD Editor’s Build Tool
 DONE_FETCH := temp;
 if temp = 0
 then
 FOUND := 0;
 else
 FOUND := 1;
 end if;
 OPEN GET_TYPE;
 fetch GET_TYPE into INT_RET, FLOAT_RET, SMALL_INT_RET, DOUBLE_RET,
 REAL_RET, DECIMAL_RET, DECIMAL_PRECISE_RET, NUMBER_RET,
 NUMBER_PRECISE_RET;
 CLOSE GET_TYPE;
end;

Figure 65 Stored Procedure Selection
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 118 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.9
Implementation Vendor-Specific Driver Notes
Figure 66 Stored Procedure ETD

This Event Type Definition is used to pass certain input to the stored procedure. The
nodes with types of “IN” or “INOUT” are used as input. The results are returned to the
“OUT” or “INOUT” nodes.

4.9 Vendor-Specific Driver Notes
Certain functions are known to behave differently based on the type of ODBC drivers
being used on the client machine. These differences in functionality are explained
below.

4.9.1 IBM ODBC DB2 Drivers
The following issues are known to exist with the IBM DB2 ODBC drivers.

Possible types of node values
are IN, INOUT, and OUT.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 119 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.9
Implementation Vendor-Specific Driver Notes
Support for BLOB and CLOB Data Types

The IBM ODBC DB2 drivers support BLOB (Binary Large Object) or CLOB (Character
Large Object) data only if specifically configured to do so.

Note: Large records (CLOB or BLOB) should be inserted by using the db-stmt-bind and
db-stmt-execute functions. For more information on these functions, see “db-
stmt-bind” on page 139 and “db-stmt-execute” on page 144.

Follow the procedures below for configuring your client workstation to support BLOB
and CLOB data.

Configuring a Windows NT / 2000 Client to Support Long Objects

1 Open the Control Panel.

2 Open the Administrative Tools (Windows 2000 only).

3 Open the ODBC Data Sources.

4 Select the System DSN tab.

5 Select appropriate driver for your IBM DB2 implementation (such as “IBM_UDB2”)
and click Configure.

6 Enter the appropriate username and password to connect to the DB2 data source.

7 Select the Data Type tab.

8 Select the Long object binary treatment parameter.

9 Choose the As LONGVAR data setting.

10 Save the settings and close the ODBC configuration utility.

Configuring a UNIX Client to Support Long Objects

1 Use a text editor to open the db2cli.ini file.

2 Add the following line:

LONGDATACOMPAT = 1

Note: Large records using the CLOB data type are limited to approximately 1GB in size.
Larger records should not be inserted.

4.9.2 Merant ODBC Drivers
The following issues are known to exist with the Merant ODBC drivers.

Support for BLOB and CLOB Data Types

The Merant ODBC drivers do not support BLOB (Binary Large Object) or CLOB
(Character Large Object) data. This affects the size and type of large records that can be
inserted into tables from a client using the Merant ODBC drivers.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 120 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation Sample One—Publishing e*Gate Events to an ODBC Database
4.10 Sample One—Publishing e*Gate Events to an ODBC
Database

This section describes how to use the ODBC e*Way in a sample implementation. This
sample schema demonstrates the publishing of e*Gate Events to an external database.

This scenario uses a file e*Way to load an input file containing employee information
and generate the initial Event. The ODBC e*Way subscribes to the Event and inserts the
employee records into the external database.

Figure 67 Publishing to an External Database

Overview of Steps

The sample implementation follows these general steps:

“Create the Schema” on page 122

“Create the Event Type Definitions” on page 123

“Add the Event Types” on page 124

“Create the Monk Scripts” on page 125

“Add and Configure the e*Ways” on page 125

“Add the IQs” on page 127

“Create the Collaboration Rules” on page 128

“Add and Configure the Collaborations” on page 129

“Run the Schema” on page 130

e*Gate

ODBC
 e*Way
dart_rcv

Input File
e*Way

FileIn

Pub

Sub

IQ

Pub

Sub
Outbound

ODBC
Collaboration

Sub

Input File
Collaboration

Pub
External
Database

Input
File

External
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 121 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation Sample One—Publishing e*Gate Events to an ODBC Database
Figure 68 Schema Configuration Steps

4.10.1 Create the Schema
The first step in deploying the sample implementation is to create a new Schema. After
installing the ODBC e*Way Intelligent Adapter, do the following:

1 Launch the e*Gate Enterprise Manager GUI.

2 When the Enterprise Manager prompts you to log in, select the Registry Host, User
Name, and Password to be used to log in and click Log In.

3 From the list of Schemas, click New to create a new Schema.

Create Schema

Create Event Type
Definitions

Add Event Types

Create Monk Scripts

Add and Configure
e*Ways

Add IQs

Create Collaboration
Rules

Add and Configure
Collaborations

Run the Schema
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 122 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation Sample One—Publishing e*Gate Events to an ODBC Database
4 For this sample implementation, enter the name ODBC_Sample1 and click Open.

The Enterprise Manager will launch and display the newly created Schema.

4.10.2 Create the Event Type Definitions
Three Event Type Definitions are used in this sample. The ETDs are:

EventMsg.ssc – This standard ETD is used by the FileInEvent Event Type.

db_rcv_in.ssc – This user-created ETD contains basic employee information such as
name, rate, and date.

db_rcv_struct.ssc – This user-created ETD contains the same basic employee
information formatted appropriately for the external data source.

To create the db_rcv_in ETD:

1 From the e*Gate Enterprise Manager, click to launch the ETD Editor.

2 Click to create the new ETD.

The New ETD dialog will be displayed.

3 Enter db_rcv_in.ssc as the file name for the ETD.

4 Add the nodes and subnodes to create an ETD with the structure shown below:

Figure 69 The db_rcv_in.ssc ETD

5 Click to save the ETD.

6 From the File menu, select Promote to Run Time. Click Yes to confirm the
promotion of the file.

To create the db_rcv_struct ETD:

1 From the e*Gate Enterprise Manager, click to launch the ETD Editor.

2 Click to create the new ETD.

The New ETD dialog will be displayed.

3 Enter db_rcv_struct.ssc as the file name for the ETD.

4 Add the nodes and subnodes to create an ETD with the structure shown below:
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 123 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation Sample One—Publishing e*Gate Events to an ODBC Database
Figure 70 The db_rcv_struct.ssc ETD

5 Click to save the ETD.

6 From the File menu, select Promote to Run Time. Click Yes to confirm the
promotion of the file.

4.10.3 Add the Event Types
Three Event Types are used in this sample. The Event Types are:

FileInEvent – This Event Type represents the inbound data from an external input
file. This Event Type uses the EventMsg.ssc ETD.

db_rcv_in – This Event Type represents the data transported by the input file
e*Way. This Event Type uses the db_rcv_in.ssc ETD.

db_rcv_struct – This Event Type represents the transformed Event that will be
written to the external database. This Event Type uses the db_rcv_struct.ssc ETD.

To add the Event Types:

1 In the components pane of the Enterprise Manager, select the Event Types folder.

2 Click to add a new Event Type.

3 Enter FileInEvent and click OK.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 124 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation Sample One—Publishing e*Gate Events to an ODBC Database
4 Select the newly created Event Type and click to display the Event Type’s
properties.

5 Click Find to display the list of Event Types.

6 Navigate to the monk_scripts\common folder, select EventMsg.ssc, and click
Select.

7 Click OK to close the Event Type’s properties.

Repeat these steps for the db_rcv_in and db_rcv_struct Event Types using the
appropriate Event Type Definition files.

4.10.4 Create the Monk Scripts
This sample implementation uses a DART script (db_rcv.dsc) to communicate with the
external Oracle database.

To create the DART script:

1 From the e*Gate Enterprise Manager, click to launch the Collaboration Rules
Editor.

2 Click to create a new DART script.

The New Collaboration Rules Script dialog will be displayed.

3 Enter the name db_rcv (with no file extension) as the File name.

4 Select DART Send from the list of file types. The extension .dsc will be appended to
the file name.

5 Click to display the list of source files. Select db_rcv_in.ssc as the source file.

6 Click to display the list of destination files. Select db_rcv_struct.ssc as the
destination file.

7 Enter the rules.

8 Click to save the script.

9 Close the Collaboration Rules Script Editor.

4.10.5 Add and Configure the e*Ways
The sample Schema uses two e*Ways: FileIn and ODBC_rcv. The FileIn e*Way reads
in the input data file and queues it for the ODBC e*Way. The ODBC_rcv e*Way writes
the records to the db_employee table in the external database.

To add and configure the FileIn e*Way:

1 In the components pane of the Enterprise Manager, select the Control Broker and

click to add a new e*Way.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 125 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation Sample One—Publishing e*Gate Events to an ODBC Database
2 Enter FileIn for the component name and click OK.

3 Select the newly created e*Way and click to display the e*Way’s properties.

4 Use the Find button to select stcewfile.exe as the executable file.

5 Click New to create a new configuration file.

6 Enter the parameters for the e*Way as shown in Table 10.

7 Select Save from the File menu. Enter FileIn as the file name and click Save.

8 Select Promote to Run Time from the File menu. Click OK to continue.

9 A message will notify you that the file has been promoted to run time. Click OK to
close the e*Way configuration file editor.

10 In the Start Up tab of the e*Way properties, select the Start automatically check
box.

11 Click OK to save the e*Way properties.

To add and configure the ODBC_rcv e*Way:

1 In the components pane of the Enterprise Manager, select the Control Broker and

click to add a new e*Way.

2 Enter ODBC_rcv for the component name and click OK.

3 Select the newly created e*Way and click to display the e*Way’s properties.

4 Use the Find button to select stcewgenericmonk.exe as the executable file.

5 Click New to create a new configuration file.

6 Select the dart e*Way template and click OK. See Figure 71.

Table 10 FileIn e*Way Parameters

Section Name Parameter Value

General Settings AllowIncoming YES

AllowOutgoing NO

PerformanceTesting default

Outbound (send) settings All default

Poller (inbound) settings PollDirectory c:\egate\data\dart

InputFileMask *.dat

All others default

Performance Testing All default
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 126 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation Sample One—Publishing e*Gate Events to an ODBC Database
Figure 71 DART e*Way Template Selection

7 Enter the parameters for the e*Way as shown in Table 11.

Note: Use the appropriate Database Name, User Name, and Encrypted Password
according to your local ODBC configuration.

8 Save the e*Way’s configuration file and promote it to run time.

9 In the Start Up tab of the e*Way properties, select the Start automatically check
box.

10 Click OK to save the e*Way properties.

4.10.6 Add the IQs
The sample Schema requires one Intelligent Queue—ODBC_IQ.

To add the IQ:

1 In the components pane of the Enterprise Manager, select the IQ manager. Click

 to create the new IQ.

2 Enter the name ODBC_IQ and click OK to save the IQ.

Table 11 ODBC_rcv e*Way Parameters

Section Name Parameter Value

General Settings All default

Communication Setup Start Exchange Data
Schedule

Repeatedly, every 1
minute

All others default

Monk Configuration Process Outgoing
Message Function

monk_scripts\common\
db_rcv.dsc

Exchange Data With
External Function

monk_scripts\common\
db_rcv.dsc

All others default

Database Setup Database Type ODBC

All others Use local settings
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 127 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation Sample One—Publishing e*Gate Events to an ODBC Database
3 Select the IQ Manager and click to display the IQ Manager’s properties.

4 In the Start Up tab of the IQ Manager’s properties, select the Start automatically
check box.

5 Click OK to save the IQ Manager’s properties.

4.10.7 Create the Collaboration Rules
This sample schema uses two Collaboration Rules:

InboundEvent – This Collaboration Rule is used by the FileIn e*Way’s
collaboration to transform the FileInEvent Events into db_rcv_in Events.

OutboundEvent – This Collaboration Rule is used by the ODBC_rcv e*Way’s
collaboration to transform the db_rcv_in Events into db_rcv_struct Events.

To add the InboundEvent Collaboration Rule:

1 In the components pane of the Enterprise Manager, select the Collaboration Rules
folder.

2 Click the button to create a new Collaboration Rule.

3 Enter the name InboundEvent and click OK.

4 Select the newly created Collaboration Rule and click to display the
Collaboration Rule’s properties.

5 In the General tab, select the Pass Through service.

6 Under the Subscriptions tab, select the FileInEvent Event Type.

7 Under the Publications tab, select the db_rcv_in Event Type.

8 Click OK to save and close the Collaboration Rule.

To add the OutboundEvent Collaboration Rule:

1 In the components pane of the Enterprise Manager, select the Collaboration Rules
folder.

2 Click the button to create a new Collaboration Rule.

3 Enter the name OutboundEvent and click OK.

4 Select the newly created Collaboration Rule and click to display the
Collaboration Rule’s properties.

5 In the General tab, select the Pass Through service.

6 Under the Subscriptions tab, select the db_rcv_in Event Type.

7 Under the Publications tab, select the db_rcv_struct Event Type.

8 Click OK to save and close the Collaboration Rule.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 128 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation Sample One—Publishing e*Gate Events to an ODBC Database
4.10.8 Add and Configure the Collaborations
Each of the two e*Ways uses one Collaboration to route the Events through the sample
Schema.

FileIn_collab – This collaboration is used by the FileIn e*Way to process the
inbound Event and queue it for the ODBC_rcv e*Way.

ODBC_rcv_collab – This collaboration subscribes to the Event from the
FileIn_collab and publishes the Event to the external database.

To create the FileIn_collab Collaboration:

1 In the components pane of the Enterprise Manager, select the FileIn e*Way.

2 Click the button to create a new Collaboration.

3 Enter the name FileIn_collab and click OK.

4 Select the newly created Collaboration and click to display the Collaboration’s
properties.

5 Select InboundEvent from the list of Collaboration Rules.

6 Click Add to add a new Subscription.

7 Select the FileInEvent Event Type and the <External> source.

8 Click Add to add a new Publication.

9 Select the db_rcv_in Event Type and the ODBC_IQ destination.

10 Click OK to close the Collaboration’s properties.

To create the ODBC_rcv_collab Collaboration:

1 In the components pane of the Enterprise Manager, select the ODBC_rcv e*Way.

2 Click the button to create a new Collaboration.

3 Enter the name ODBC_rcv_collab and click OK.

4 Select the newly created Collaboration and click to display the Collaboration’s
properties.

5 Select OutboundEvent from the list of Collaboration Rules.

6 Click Add to add a new Subscription.

7 Select the db_rcv_in Event Type and the FileIn_collab source.

8 Click Add to add a new Publication.

9 Select the db_rcv_struct Event Type and the <External> destination.

10 Click OK to close the Collaboration’s properties.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 129 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation Sample One—Publishing e*Gate Events to an ODBC Database
4.10.9 Run the Schema
Running the sample Schema requires a sample input file to be created. Once the input
file has been created, you can start the Control Broker from a command prompt to
execute the Schema. After the Schema has been run, you can use a query utility to query
the results in the external database.

The sample input file

Use a text editor to create an input file to be read by the inbound file e*Way (FileIn).
The file must be formatted to match the ETD used by the DART script. An example of
an input file is shown in Figure 72. Save the file to the directory specified in the e*Way’s
configuration file (such as c:\egate\data\dart).

Figure 72 Sample Input File

To run the Control Broker:

From a command line, type the following command:

stccb -ln logical_name -rh registry -rs schema -un user_name -up
password

where

logical_name is the logical name of the Control Broker,

registry is the name of the Registry Host,

schema is the name of the Registry Schema, and

user_name and password are a valid e*Gate username/password combination.

To verify the results:

Use an SQL query utility (such as Oracle SQL Plus) to query the results of the output to
the Oracle database. Figure 73 shows an example of a query to verify the results of the
schema’s output based on the input file used by this example.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 130 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.11
Implementation Sample Two—Polling from an ODBC Database
Figure 73 Sample Output Console

4.11 Sample Two—Polling from an ODBC Database
This section describes how to use the ODBC e*Way in a sample implementation. This
sample schema demonstrates the polling of records from an external ODBC database
and converting the records into e*Gate Events.

This scenario uses a file e*Way to load an input file containing employee numbers.
These employee numbers are converted into e*Gate Events. The ODBC e*Way uses
these inbound Events to poll employee records from the external database. As the
records are returned to the ODBC e*Way, the Events are published to the outbound IQ.
The Outbound file e*Way finally writes the employee records to the output file.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 131 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.11
Implementation Sample Two—Polling from an ODBC Database
Figure 74 Polling from an External Database

Inbound File
e*Way

ODBC e*Way

Outbound
File e*Way

IQ

e*Gate

External
Database

Output
File

IQ

Intput
File
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 132 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.11
Implementation Sample Two—Polling from an ODBC Database
Overview of Steps

This sample implementation follows these general steps:

“Create the Schema” on page 133

“Create the Event Type Definitions” on page 133

“Add the Event Types” on page 134

“Create the Monk Scripts” on page 135

“Add and Configure the e*Ways” on page 137

“Add the IQs” on page 139

“Create the Collaboration Rules” on page 140

“Add and Configure the Collaborations” on page 140

“Run the Schema” on page 142

Note: The procedures outlined in this sample are not explained in the same level of detail
as in Sample One—Publishing e*Gate Events to an ODBC Database on
page 121. For additional information regarding the configuration of e*Gate
components, see Creating an End-to-End Scenario with e*Gate Integrator.

4.11.1 Create the Schema
The first step in deploying this sample implementation is to create a new Schema.

To add the new Schema:

1 Log into the e*Gate Enterprise Manager.

2 When you are prompted to select a Schema, click New to add a new Schema.

3 Name the Schema ODBC_Sample2.

4.11.2 Create the Event Type Definitions
The sample scenario requires two Event Type Definitions. The ETDs are:

db_request.ssc – This ETD is used to format the inbound request Events.

db_reply.ssc – This ETD is used to format the outbound reply Events.

To create the db_request ETD:

1 From the e*Gate Enterprise Manager, click to launch the ETD Editor.

2 Create a new ETD named db_request.ssc.

3 Add the nodes and subnodes to create an ETD with the structure shown below:

Figure 75 The db_request.ssc ETD
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 133 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.11
Implementation Sample Two—Polling from an ODBC Database
4 Save the ETD and promote it to Run Time.

To create the db_reply ETD:

1 From the e*Gate Enterprise Manager, click to launch the ETD Editor.

2 Create a new ETD named db_reply.ssc.

3 Add the nodes and subnodes to create an ETD with the structure shown below:

Figure 76 The db_reply.ssc ETD

4 Save the ETD and promote it to Run Time.

4.11.3 Add the Event Types
The sample scenario requires six Event Types. The Event Types are:

InboundFile – This Event Type represents the inbound file as it is loaded from the
file system.

InboundEvent – This Event Type represents the inbound record that has been
converted to an e*Gate Event.

PollRequest – This Event Type represents the request that is sent to the external
database.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 134 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.11
Implementation Sample Two—Polling from an ODBC Database
PollReply – This Event Type represents the reply that is returned by the external
database.

OutboundEvent – This Event Type represents the outbound Event to be sent to the
external file system.

4.11.4 Create the Monk Scripts
This sample implementation uses a DART script (db_poll.dsc) to poll the external
database.

To create the DART script:

1 From the e*Gate Enterprise Manager, click to launch the Collaboration Rules
Editor.

2 Click to create a new DART script.

The New Collaboration Rules Script dialog will be displayed.

3 Enter the name db_poll (with no file extension) as the File name.

4 Select DART Poll from the list of file types. The extension .dsc will be appended to
the file name.

5 Click to display the list of source files. Select db_request.ssc as the source file.

6 Click to display the list of destination files. Select db_struct.ssc as the
destination file.

7 Enter the rules as shown in Figure 77.

Note: The rules shown in Figure 77 use a table named db_employee. In order for this
sample to work correctly, you must either create a table in your external database
called db_employee or change each of the references to the table name in your
DART script rules as appropriate.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 135 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.11
Implementation Sample Two—Polling from an ODBC Database
Figure 77 The db_poll.dsc DART script
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 136 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.11
Implementation Sample Two—Polling from an ODBC Database
8 Click to save the script.

9 Close the Collaboration Rules Script Editor.

4.11.5 Add and Configure the e*Ways
The sample Schema uses three e*Ways:

FileIn – The FIleIn e*Way reads in the input data file and queues it for the ODBC
e*Way.

ODBC – The ODBC e*Way polls the db_employee table in the external database
and queues the returned data for the outbound file e*Way.

FileOut – The FileOut e*Way writes the records returned by the ODBC e*Way to
the output text file.

To add and configure the FileIn e*Way:

1 In the components pane of the Enterprise Manager, select the Control Broker and

click to add a new e*Way.

2 Enter FileIn for the component name and click OK.

3 Select the newly created e*Way and click to display the e*Way’s properties.

4 Use the Find button to select stcewfile.exe as the executable file.

5 Click New to create a new configuration file.

6 Enter the parameters for the e*Way as shown in Table 12.

7 Save the e*Way’s configuration file and promote it to run time.

8 In the Start Up tab of the e*Way properties, select the Start automatically check
box.

9 Click OK to save the e*Way properties.

Table 12 FileIn e*Way Parameters

Section Name Parameter Value

General Settings AllowIncoming Yes

AllowOutgoing No

Performance Testing default

Outbound (send)
settings

All settings default

Poller (inbound)
settings

PollDirectory c:\egate\data\dart

OutputFileName *.dat

AllOthers default

Performance Testing All settings default
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 137 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.11
Implementation Sample Two—Polling from an ODBC Database
To add and configure the ODBC e*Way:

1 In the components pane of the Enterprise Manager, select the Control Broker and

click to add a new e*Way.

2 Enter ODBC for the component name and click OK.

3 Select the newly created e*Way and click to display the e*Way’s properties.

4 Use the Find button to select stcewgenericmonk.exe as the executable file.

5 Click New to create a new configuration file.

6 Select the dart e*Way template and click OK. See Figure 78.

Figure 78 DART e*Way Template Selection

7 Enter the parameters for the e*Way as shown in Table 13.

Note: Use the appropriate Database Name, User Name, and Encrypted Password
according to your local ODBC configuration.

8 Save the e*Way’s configuration file and promote it to run time.

9 In the Start Up tab of the e*Way properties, select the Start automatically check
box.

10 Click OK to save the e*Way properties.

Table 13 ODBC e*Way Parameters

Section Name Parameter Value

General Settings All default

Communication Setup Start Exchange Data
Schedule

Repeatedly, 30 seconds

All others default

Monk Configuration Process Outgoing
Message Function

monk_scripts\common\
db_poll.dsc

All others default

Database Setup Database Type ODBC

All others Use local settings
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 138 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.11
Implementation Sample Two—Polling from an ODBC Database
To add and configure the FileIn e*Way:

1 In the components pane of the Enterprise Manager, select the Control Broker and

click to add a new e*Way.

2 Enter FileOut for the component name and click OK.

3 Select the newly created e*Way and click to display the e*Way’s properties.

4 Use the Find button to select stcewfile.exe as the executable file.

5 Click New to create a new configuration file.

6 Enter the parameters for the e*Way as shown in Table 12.

7 Save the e*Way’s configuration file and promote it to run time.

8 In the Start Up tab of the e*Way properties, select the Start automatically check
box.

9 Click OK to save the e*Way properties.

4.11.6 Add the IQs
This sample Schema requires two Intelligent Queues: ODBC_1IQ and ODBC_2IQ.

To add the IQs:

1 In the components pane of the Enterprise Manager, select the IQ manager. Click

 to create the first new IQ.

2 Enter the name ODBC_1IQ and click Apply to save the first IQ.

3 Enter the name ODBC_2IQ and click OK to save the second IQ.

4 Select the IQ Manager and click to display the IQ Manager’s properties.

5 In the Start Up tab of the IQ Manager’s properties, select the Start automatically
check box.

Table 14 FileOut e*Way Parameters

Section Name Parameter Value

General Settings AllowIncoming No

AllowOutgoing Yes

Performance Testing default

Outbound (send)
settings

OutputDirectory c:\egate\data\dart

OutputFileName PollOutput%d.dat

All Others default

Poller (inbound)
settings

All default

Performance Testing All default
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 139 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.11
Implementation Sample Two—Polling from an ODBC Database
6 Click OK to save the IQ Manager’s properties.

4.11.7 Create the Collaboration Rules
This sample schema uses four Collaboration Rules:

FileIn – This Collaboration Rule is used by the FileIn e*Way’s Collaboration to
transform the InboundFile Events into InboundEvent Events.

ODBCRequest – This Collaboration Rule is used by the ODBC e*Way’s
Collaboration to transform the InboundEvent Events into PollRequest Events.

ODBCReply – This Collaboration Rule is used by the ODBC e*Way’s Collaboration
to transform the PollRequest Events into PollReply Events.

FileOut – This Collaboration Rule is used by the FileOut e*Way’s Collaboration to
transform the PollReply Events into OutboundEvent Events.

To add the FileIn Collaboration Rule:

1 In the components pane of the Enterprise Manager, select the Collaboration Rules
folder.

2 Click the button to create a new Collaboration Rule.

3 Enter the name FileIn and click OK.

4 Select the newly created Collaboration Rule and click to display the
Collaboration Rule’s properties.

5 In the General tab, select the Pass Through service.

6 Under the Subscriptions tab, select the InboundFile Event Type.

7 Under the Publications tab, select the InboundEvent Event Type.

8 Click OK to save and close the Collaboration Rule.

To add the remaining Collaboration Rules:

Follow the same steps used to add the FileIn Collaboration Rule using the names and
Event Types shown at the beginning of this section.

4.11.8 Add and Configure the Collaborations
This sample schema uses four Collaborations:

FileIn_collab – This Collaboration is used to transform the InboundFile Events into
InboundEvent Events.

ODBCRequest_collab – This Collaboration is used to transform the InboundEvent
Events into PollRequest Events.

ODBCReply_collab – This Collaboration is used to transform the PollRequest
Events into PollReply Events.

FileOut_collab – This Collaboration is used to transform the PollReply Events into
OutboundEvent Events.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 140 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.11
Implementation Sample Two—Polling from an ODBC Database
To create the FileIn_collab Collaboration:

1 In the components pane of the Enterprise Manager, select the FileIn e*Way.

2 Click the button to create a new Collaboration.

3 Enter the name FileIn_collab and click OK.

4 Select the newly created Collaboration and click to display the Collaboration’s
properties.

5 Select InboundFile from the list of Collaboration Rules.

6 Click Add to add a new Subscription.

7 Select the InboundEvent Event Type and the <External> source.

8 Click Add to add a new Publication.

9 Select the InboundEvent Event Type and the ODBC_1IQ destination.

10 Click OK to close the Collaboration’s properties.

To create the ODBCRequest_collab Collaboration:

1 In the components pane of the Enterprise Manager, select the ODBC e*Way.

2 Click the button to create a new Collaboration.

3 Enter the name ODBCRequest_collab and click OK.

4 Select the newly created Collaboration and click to display the Collaboration’s
properties.

5 Select ODBCRequest from the list of Collaboration Rules.

6 Click Add to add a new Subscription.

7 Select the InboundFile Event Type and the FileIn_Collab source.

8 Click Add to add a new Publication.

9 Select the ODBCRequest Event Type and the <External> destination.

10 Click OK to close the Collaboration’s properties.

To create the ODBCReply_collab Collaboration:

1 In the components pane of the Enterprise Manager, select the ODBC e*Way.

2 Click the button to create a new Collaboration.

3 Enter the name ODBCReply_collab and click OK.

4 Select the newly created Collaboration and click to display the Collaboration’s
properties.

5 Select ODBCReply from the list of Collaboration Rules.

6 Click Add to add a new Subscription.

7 Select the ODBCRequest Event Type and the <External> source.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 141 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.11
Implementation Sample Two—Polling from an ODBC Database
8 Click Add to add a new Publication.

9 Select the ODBCReply Event Type and the ODBC_2IQ destination.

10 Click OK to close the Collaboration’s properties.

To create the FileOut_collab Collaboration:

1 In the components pane of the Enterprise Manager, select the FileOut e*Way.

2 Click the button to create a new Collaboration.

3 Enter the name FileOut_collab and click OK.

4 Select the newly created Collaboration and click to display the Collaboration’s
properties.

5 Select FileOut from the list of Collaboration Rules.

6 Click Add to add a new Subscription.

7 Select the ODBCReply Event Type and the ODBCReply_collab source.

8 Click Add to add a new Publication.

9 Select the OutboundEvent Event Type and the <External> destination.

10 Click OK to close the Collaboration’s properties.

4.11.9 Run the Schema
Running the sample Schema requires a sample input file to be created. Once the input
file has been created, you can start the Control Broker from a command prompt to
execute the Schema. After the Schema has been run, you can view the results in the
output file.

The sample input file

Use a text editor to create an input file to be ready by the inbound file e*Way (FileIn).
The file must be formatted to match the simple ETD used by the DART script (see
Figure 75 on page 133). An example of an input file is shown in Figure 79. Save the file
to the directory specified in the e*Way’s configuration file (such as c:\egate\data\dart).

Note: The “employee numbers” used in this example must exist in your external database.
The sample shown below uses employee numbers that exist from the records in the
previous sample schema.

Figure 79 Sample Input File
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 142 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.11
Implementation Sample Two—Polling from an ODBC Database
To run the Control Broker:

From a command line, type the following command:

stccb -ln logical_name -rh registry -rs ODBC_Sample2 -un user_name
-up password

where

logical_name is the logical name of the Control Broker,

registry is the name of the Registry Host, and

user_name and password are a valid e*Gate username/password combination.

To verify the results:

Use a text editor to view the records that were written to the output file specified by the
FileOut e*Way. The records should correspond to the records in the external database.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 143 SeeBeyond Proprietary and Confidential

Chapter 5

JDBC/ODBC e*Way Methods

5.1 JDBC/ODBC e*Way Methods
The JDBC/ODBC e*Way contains Java methods that are used to extend the
functionality of the e*Way. These methods are contained in the following classes:

com.stc.eways.jdbcx.StatementAgent Class on page 144

com.stc.eways.jdbcx.PreparedStatementAgent Class on page 153

com.stc.eways.jdbcx.PreparedStatementResultSet Class on page 165

com.stc.eways.jdbcx.SqlStatementAgent Class on page 190

com.stc.eways.jdbcx.CallableStatementAgent Class on page 193

com.stc.eways.jdbcx.TableResultSet Class on page 204

5.2 com.stc.eways.jdbcx.StatementAgent Class
java.lang.Object
|
+ - - com.stc.eways.jdbcx.StatementAgent

All Implemented Interfaces

ResetEventListener, SessionEventListener

Direct Known Subclasses

PreparedStatementAgent, SQLStatementAgent, TableResultSet

public abstract class StatementAgent

extends java.lang.Object

Implements SessionEventListener, ResetEventListener

Abstract class for other Statement Agent.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 144 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.StatementAgent Class
Methods of the StatementAgent

resultSetTypeToString

This method gets the symbol string corresponding to the ResultSet type enumeration.

public static java.lang.String resultSetTypeToString(int type)

Returns

Enumeration symbol string.

resultSetDirToString

This method gets the symbol string corresponding to the ResultSet direction
enumeration.

public static java.lang.String resultSetDirToString(int dir)

cancel on page 152 clearBatch on page 152

clearWarnings on page 153 executeBatch on page 152

getFetchDirection on page 149 getFetchSize on page 150

getMaxFieldSize on page 150 getMaxRows on page 150

getMoreResults on page 152 getResultSet on page 151

getResultSetConcurrency on page 148 getResultSetType on page 147

getUpdateCount on page 151 getWarnings on page 152

isClosed on page 146 queryDescription on page 146

queryName on page 146 resetRequested on page 147

resultSetConcurToString on page 146 resultSetDirToString on page 145

resultSetTypeToString on page 145 sessionClosed on page 147

sessionOpen on page 147 setCursorName on page 148

setEscapeProcessing on page 148 setFetchDirection on page 149

setMaxFieldSize on page 151 setMaxRows on page 150

setQueryTimeout on page 149 setQueryTimeout on page 149

stmtInvoke on page 153

Name Description

type ResultSet type.

Name Description

dir ResultSet scroll directions.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 145 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.StatementAgent Class
Returns

Enumeration symbol string.

resultSetConcurToString

This method gets the symbol string corresponding to the ResultSet concurrency
enumeration.

public static java.lang.String resultSetConcurToString(int concur)

Returns

Enumeration symbol string.

isClosed

This method returns the statement agent’s close status.

public boolean isClosed()

Returns

True if the statement agent is closed.

queryName

This method supplies the name of the listener.

public java.lang.String queryName()

Specified By

queryName in interface SessionEventListener.

Returns

The listener’s class name.

queryDescription

This method gives a description of the query.

public java.lang.String queryDescription()

Returns

The description of the query.

Name Description

concur ResultSet concurrency.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 146 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.StatementAgent Class
sessionOpen

Opens the session event handler.

public void sessionOpen(SessionEvent evt)

Specified by

sessionOpen in interface SessionEventListener

sessionClosed

Closes the session event handler.

public void sessionClosed(SessionEvent evt)

Specified by

sessionClosed in interface SessionEventListener

resetRequested

Resets the event handler.

public void resetRequested(ResetEvent evt)

Specified by

resetRequested in interface ResetEventListener

Throws

java.sql.SQLException

getResultSetType

Returns the result set scroll type.l

public int getResultSetType()

Name Description

evt Session event.

Name Description

evt Session event.

Name Description

evt Requested Reset event.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 147 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.StatementAgent Class
Returns

ResultSet type

Throws

java.sql.SQLException

getResultSetConcurrency

Returns the result set concurrency mode.

public int getResultSetConcurrency()

Returns

ResultSet concurrency

Throws

java.sql.SQLException

setEscapeProcessing

Sets escape syntax processing

public void setEscapeProcessing (boolean bEscape)

Throws

java.sql.SQLException

setCursorName

Sets result set cursor name.

public void setCursorName(java.lang.String sName)

Throws

java.sql.SQLException

Name Description

bEscape True to enable
False to disable

Name Description

sName Cursor name.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 148 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.StatementAgent Class
setQueryTimeout

Returns query timeout duration.

public int getQueryTimeout()

Returns

The number of seconds to wait before timeout.

Throws

java.sql.SQLException

setQueryTimeout

Sets the query timeout duration

public void setQueryTimeout(int nInterval)

Throws

java.sql.SQLException

getFetchDirection

Returns result set fetch direction.

public int getFetchDirection()

Returns

The fetch direction of the ResultSet: FETCH_FORWARD, FETCH_REVERSE,
FETCH_UNKNOWN.

Throws

java.sql.SQLException

setFetchDirection

Sets result set fetch direction.

public void setFetchDirection (int iDir)

Name Description

nInterval The number of seconds before timeout.

Name Description

iDir The fetch direction of the ResultSet:
FETCH_FORWARD, FETCH_REVERSE,
FETCH_UNKNOWN.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 149 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.StatementAgent Class
Throws

java.sql.SQLExeption

getFetchSize

Returns the result set prefetch record count.

public int getFetchSize()

Returns

The fetch size this StatementAgent object set.

Throws

java.sql.SQLException

getMaxRows

Returns the maximum number of fetch records.

public int getMaxRows()

Returns

The maximum number of rows that a ResultSetAgent may contain.

Throws

java.sql.SQLException

setMaxRows

Sets the maximum number of fetch records.

public void setMaxRows (int nRow)

Throws

java.sql.SQLException

getMaxFieldSize

Returns the maximum field data size.

public int getMaxFieldSize()

Name Description

nRow The maximum number of rows in the
ResultSetAgent.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 150 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.StatementAgent Class
Returns

The maximum number of bytes that a ResultSetAgent column may contain; 0 means no
limit.

Throws

java.sql.SQLException

setMaxFieldSize

Sets the maximum field data size.

public void setMaxFieldSize (int nSize)

Throws

java.sql.SQLException

getUpdateCount

Returns the records count of the last executed statement.

public int getUpdateCount()

Returns

The number of rows affected by an updated operation. O if no rows were affected or the
operation was a DDL command. -1 if the result is a ResultSetAgent or there are no more
results.

Throws

java.sql.SQLException

getResultSet

Returns the result set of the last executed statement.

public ResultSetAgent getResultSet()

Returns

The ResultSetAgent that was produced by the call to the method execute.

Throws

java.sql.SQLExcetpion

Name Description

nSize The maximum size for a column in a
ResultSetAgent.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 151 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.StatementAgent Class
getMoreResults

Returns if there are more result sets.

public boolean getMoreResults()

Returns

True if the next result is a ResultSetAgent; False if it is an integer indicating an update
count or there are no more results).

Throws

java.sql.SQLException

clearBatch

Clears the batch operation.

public void clearBatch()

Throws

java.sql.SQLException

executeBatch

Executes batch statements.

public int[] executeBatch ()

Returns

An array containing update counts that correspond to the commands that executed
successfully. An update count of -2 means the command was successful but that the
number of rows affected is unknown.

Throws

java.sql.SQLException

cancel

Cancels a statement that is being executed.

public void cancel()

Throws

java.sql.SQLException

getWarnings

Returns SQL warning object.

public java.sql.SQLWarning getWarnings()
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 152 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementAgent Class
Returns

The first SQL warning or null if there are no warnings.

Throws

java.sql.SQLException

clearWarnings

Clear all SQL Warning objects.

public void clearWarnings()

Throws

java.sql.SQLException

stmtInvoke

Invokes a method of the database Statement object of this ETD.

public java.lang.Object stmtInvoke (java.lang.String methodName,
java.lang.Class[] argsCls, java.lang.Object[] args)

Returns

The Object instance resulting from the method invocation. Can be null if nothing is
returned (void return declaration).

Throws

java.lang.Exception. Whatever exception the invoked method throws.

5.3 com.stc.eways.jdbcx.PreparedStatementAgent Class
java.lang.Object

|

+ --com.stc.eways.jdbcx.StatementAgent

Name Description

methodName The name of the method.

argsCls Class array for types of formal arguments
for method, in the declared order. Can be
null if there are no formal arguments.
However, cannot invoke constructor here.

args Object array of formal arguments for
method in the declared order. Can be null
if there are no formal arguments. However,
cannot invoke constructor here.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 153 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementAgent Class
|

+ -- com.stc.eways.jdbcx.PreparedStatementAgent

All Implemented Interfaces

ResetEventListener, SessionEventListener

Direct Known Subclasses

CallableStatementAgent

public class PreparedStatementAgent

extends StatementAgent

Agent hosts PreparedStatement Object

Methods of the PreparedStatementAgent

sessionOpen

Opens the session event handler.

public void sessionOpen(SessionEvent evt)

Overrides

sessionOpen in class StatementAgent

addBatch on page 164 clearParameters on page 164

execute on page 165 executeQuery on page 165

executeUpdate on page 165 sessionOpen on page 195

setArray on page 163 setAsciiStream on page 162

setBigDecimal on page 159 setBinaryStream on page 162

setBlob on page 163 setBoolean on page 157

setByte on page 157 setBytes on page 161

setCharacterStream on page 163 setClob on page 164

setDate on page 159 setDate on page 159

setDouble on page 158 setFloat on page 158

setInt on page 157 setLong on page 158

setNull on page 155 setObject on page 155

setObject on page 156 setObject on page 156

setRef on page 164 setShort on page 157

setString on page 161 setTime on page 160

setTime on page 160 setTimestamp on page 160

setTimestamp on page 161
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 154 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementAgent Class
setNull

Nullify value of indexed parameter.

public void setNull(int index, int type)

Throws

java.sql.SQLException

setNull

Nullify value of indexed parameter.

public void setNul(int index, int type, java.lang.String tname)

Throws

java.sql.SQLException

setObject

Sets value of indexed parameter with an object.

public void setObject(int index, java.lang.Object ob)

Name Description

evt Session event.

Name Description

index Parameter index starting from 1.

type A JDBC type defined by java.sql.Types

Name Description

index Parameter index starting from 1.

type A JDBC type defined by java.sql.Types

tname The fully-qualified name of the parameter
being set. If type is not REF, STRUCT,
DISTINCT, or JAVA_OBJECT, this parameter
will be ignored.

Name Description

index Parameter index starting from 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 155 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementAgent Class
Throws

java.sql.SQLException

setObject

Sets value of indexed parameter with an object.

public void setObject(int index, java.lang.Object ob, int iType)

Throws

java.sql.SQLException

setObject

Sets value of indexed parameter with an object.

public void setObject(int index, java.lang.Object ob, int iType, int
iScale)

Throws

java.sql.SQLException

ob An instance of a Java Object containing the
input parameter value.

Name Description

index Parameter index starting from 1.

ob An instance of a Java Object containing the
input parameter value.

iType A JDBC type defined by java.sql.Types

Name Description

index Parameter index starting from 1.

ob An instance of a Java Object containing the
input parameter value.

iType A JDBC type defined by java.sql.Types

iScale The number of digits to the right of the
decimal point. Only applied to DECIMAL
and NUMERIC types

Name Description
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 156 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementAgent Class
setBoolean

Sets the boolean value of the indexed parameter.

public void setBoolean(int index, boolean b)

Throws

java.sql.SQLException

setByte

Sets the byte value of the indexed parameter.

public void setByte(int index, byte byt)

Throws

java.sql.SQLException

setShort

Sets the short value of the indexed parameter.

public void setShort(int index, short si)

Throws

java.sql.SQLException

setInt

Sets the integer value of the indexed parameter.

public void setInt(int index, int i)

Name Description

index Parameter index starting from 1.

b true or false.

Name Description

index Parameter index starting from 1.

byt The byte parameter value to be set.

Name Description

index Parameter index starting from 1.

si The short parameter value to be set.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 157 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementAgent Class
Throws

java.sql.SQLException

setLong

Sets the long value of the indexed parameter.

public void setLong(int index, long l)

Throws

java.sql.SQLException

setFloat

Sets the float value of the indexed parameter.

public void setFloat(int index, float f)

Throws

java.sql.SQLException

setDouble

Sets the double value of the indexed parameter.

public void setDouble(int index, double d)

Name Description

index Parameter index starting from 1.

i The integer parameter value to be set.

Name Description

index Parameter index starting from 1.

l The long parameter value to be set.

Name Description

index Parameter index starting from 1.

f The float parameter value to be set.

Name Description

index Parameter index starting from 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 158 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementAgent Class
Throws

java.sql.SQLException

setBigDecimal

Sets the decimal value of the indexed parameter.

public void setBigDecimal(int index, java.math.BigDecimal dec)

Throws

java.sql.SQLException

setDate

Sets the date value of the indexed parameter.

public void setDate(int index, java.sql.Date date)

Throws

java.sql.SQLException

setDate

Sets the date value of indexed parameter with time zone from calendar.

public void setDate(int index, java.sql.Date date, java.util.Calendar
cal)

d The double parameter value to be set.

Name Description

index Parameter index starting from 1.

dec The BigDecimal parameter value to be set.

Name Description

index Parameter index starting from 1.

date The Date parameter value to be set.

Name Description

index Parameter index starting from 1.

date The Date parameter value to be set.

Name Description
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 159 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementAgent Class
Throws

java.sql.SQLException

setTime

Sets the time value of the indexed parameter.

public void setTime(int index, java.sql.Time t)

Throws

java.sql.SQLException

setTime

Sets the time value of the indexed parameter.

public void setTime(int index, java.sql.Time t, java.util.Calendar
cal)

Throws

java.sql.SQLException

setTimestamp

Sets the timestamp value of the indexed parameter.

public void setTimestamp(int index, java.sql.Timestamp ts)

cal The calender object used to construct the
date.

Name Description

index Parameter index starting from 1.

t The Time parameter value to be set.

Name Description

index Parameter index starting from 1.

t The Time parameter value to be set.

cal The Calendar object used to construct the
time.

Name Description
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 160 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementAgent Class
Throws

java.sql.SQLException

setTimestamp

Sets the timestamp value of the indexed parameter with the time zone from the
calendar.

public void setTimestamp(int index, java.sql.timestamp ts,
java.util.Calendar cal)

Throws

java.sql.SQLException

setString

Sets the string value of the indexed parameter.

public void setString(int index, java.lang.String s)

Throws

java.sql.SQLException

setBytes

Sets the byte array value of the indexed parameter.

public void setBytes(int index, byte[] bytes)

Name Description

index Parameter index starting from 1.

ts The Timestamp parameter value to be set.

Name Description

index Parameter index starting from 1.

ts The Timestamp parameter value to be set.

cal The Calendar object used to construct the
timestamp.

Name Description

index Parameter index starting from 1.

s The String parameter value to be set.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 161 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementAgent Class
Throws

java.sql.SQLException

setAsciiStream

Sets the character value of the indexed parameter with an input stream and specified
length.

public void setAsciiStream(int index, java.io.InputStream is, int
length)

Throws

java.sql.SQLException

setBinaryStream

Sets the binary value of the indexed parameter with an input stream and specified
length.

public void setBinaryStream(int index, java.io.InputStream is, int
length)

Throws

java.sql.SQLException

Name Description

index Parameter index starting from 1.

bytes The byte array parameter value to be set.

Name Description

index Parameter index starting from 1.

is The InputStream that contains the Ascii
parameter value to be set.

length The number of bytes to be read from the
stream and sent to the database.

Name Description

index Parameter index starting from 1.

is The InputStream that contains the binary
parameter value to be set.

length The number of bytes to be read from the
stream and sent to the database.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 162 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementAgent Class
setCharacterStream

Sets the character value of the indexed parameter with a reader stream and specified
length.

public void setCharacterStream(int index, java.io.Reader rd, int
length)

Throws

java.sql.SQLException

setArray

Sets the Array value of the indexed parameter.

public void setArray(int index, java.sql.Array a)

Throws

java.sql.SQLException

setBlob

Sets the Blob value of the indexed parameter.

public void setBlob(int index, java.sql.Blob blob)

Throws

java.sql.SQLException

Name Description

index Parameter index starting from 1.

rd The Reader that contains the Unicode
parameter value to be set.

length The number of characters to be read from
the stream and sent to the database.

Name Description

index Parameter index starting from 1.

a The Array value to be set.

Name Description

index Parameter index starting from 1.

blob The Blob value to be set.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 163 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementAgent Class
setClob

Sets the Clob value of the indexed parameter.

public void setClob(int index, java.sql.Clob clob)

Throws

java.sql.SQLException

setRef

Sets the Ref value of the indexed parameter.

public void setRef(int index, java.sql.Ref ref)

Throws

java.sql.SQLException

clearParameters

Clears the parameters of all values.

public void clearParameters()

Throws

java.sql.SQLException

addBatch

Adds a set of parameters to the list of commands to be sent as a batch.

public void addBatch()

Throws

java.sql.SQLException

Name Description

index Parameter index starting from 1.

clob The Clob value to be set.

Name Description

index Parameter index starting from 1.

ref The Ref parameter value to be set.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 164 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementResultSet Class
execute

Executes the Prepared SQL statement.

public void execute()

Throws

java.sql.SQLException

executeQuery

Executes the prepared SQL query and returns a ResultSetAgent that contains the
generated result set.

public ResultSetAgent executeQuery()

Returns

ResultSetAgent or null.

Throws

java.sql.SQLException

executeUpdate

Executes the prepared SQL statement and returns the number of rows that were
affected.

public int executeUpdate()

Returns

The number of rows affected by the update operation; 0 if no rows were affected.

Throws

java.sql.SQLException

5.4 com.stc.eways.jdbcx.PreparedStatementResultSet
Class

java.lang.Object

|

+ -- com.stc.eways.jdbcx.PreparedStatementResultSet

public abstract class PreparedStatementResultSet

extends java.lang.Object

Base class for Result Set returned from a Prepared Statement execution.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 165 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementResultSet Class
Constructors of PreparedStatementResultSet

PreparedStatementResultSet
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 166 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementResultSet Class
Methods of PreparedStatementResultSet

absolute on page 170 afterLast on page 172

beforeFirst on page 172 clearWarnings on page 189

close on page 170 deleteRow on page 190

findColumn on page 173 first on page 171

getArray on page 186 getArray on page 186

getAsciiStream on page 185 getAsciiStream on page 185

getBigDecimal on page 179 getBigDecimal on page 179

getBinaryStream on page 185 getBinaryStream on page 186

getBlob on page 187 getBlob on page 187

getBoolean on page 175 getBoolean on page 175

getByte on page 175 getByte on page 175

getBytes on page 184 getBytes on page 184

getCharacterStream on page 186 getCharacterStream on page 186

getClob on page 187 getClob on page 188

getConcurrency on page 168 getCursorName on page 169

getDate on page 179 getDate on page 180

getDate on page 180 getDate on page 180

getDouble on page 178 getDouble on page 178

getFetchDirection on page 168 getFetchSize on page 169

getFloat on page 178 getFloat on page 178

getInt on page 176 getInt on page 177

getLong on page 177 getLong on page 177

getMetaData on page 168 getObject on page 173

getObject on page 174 getObject on page 174

getObject on page 174 getRef on page 188

getRef on page 188 getRow on page 189

getShort on page 176 getShort on page 176

getString on page 183 getString on page 184

getTime on page 180 getTime on page 181

getTime on page 181 getTime on page 181

getTimestamp on page 182 getTimestamp on page 182

getTimestamp on page 183 getTimestamp on page 183

getType on page 173 getWarnings on page 189

insertRow on page 190 isAfterLast on page 172

isBeforeFirst on page 172 isFirst on page 171
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 167 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementResultSet Class
Constructor PreparedStatementResultSet

Constructs a Prepared Statement Result Set object.

public PreparedStatementResultSet(ResultSetAgent rsAgent)

getMetaData

Retrieves a ResultSetMetaData object that contains ResultSet properties.

public java.sql.ResultSetMetaData getMetaData()

Returns

ResultSetMetaData object

Throws

java.sql.SQLException

getConcurrency

Gets the concurrency mode for this ResultSet object.

public int getConcurrency()

Returns

Concurrency mode

Throws

java.sql.SQLException

getFetchDirection

Gets the direction suggested to the driver as the row fetch direction.

public int getFetchDirection()

isLast on page 172 last on page 171

next on page 170 previous on page 170

refreshRow on page 210 relative on page 171

getFetchDirection on page 168 getFetchSize on page 169

updateRow on page 190 wasNull on page 189

Name Description

rsAgent The ResultSetAgent underlying control.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 168 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementResultSet Class
Returns

Row fetch direction

Throws

java.sql.SQLException

setFetchDirection

Gives the driver a hint as to the row process direction.

public void setFetchDirection(int iDir)

Throws

java.sql.SQLException

getFetchSize

Gets the number of rows to fetch suggested to the driver.

public int getFetchSize()

Returns

Number of rows to fetch at a time.

Throws

java.sql.SQLException

setFetchSize

Gives the drivers a hint as to the number of rows that should be fetched each time.

public void setFetchSize(int nSize)

Throws

java.sql.SQLException

getCursorName

Retrieves the name for the cursor associated with this ResultSet object.

Name Description

iDir Fetch direction to use.

Name Description

nSize Number of rows to fetch at a time.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 169 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementResultSet Class
public java.lang.String getCursorName()

Returns

Name of cursor

Throws

java.sql.SQLException

close

Immediately releases a ResultSet object’s resources.

public void close()

Throws

java.sql.SQLException

next

Moves the cursor to the next row of the result set.

public boolean next()

Returns

true if successful

Throws

java.sql.SQLException

previous

Moves the cursor to the previous row of the result set.

public boolean previous()

Returns

true if successful

Throws

java.sql.SQLException

absolute

Moves the cursor to the specified row of the result set.

public boolean absolute(int index)

Returns

true if successful
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 170 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementResultSet Class
Throws

java.sql.SQLException

relative

Moves the cursor to the specified row relative to the current row of the result set.

public boolean relative(int index)

Returns

true if successful

Throws

java.sql.SQLException

first

Moves the cursor to the first row of the result set.

public boolean first()

Returns

true if successful

Throws

java.sql.SQLException

isFirst

Determines whether the cursor is on the first row of the result set.

public boolean isFirst()

Returns

true if on the first row.

Throws

java.sql.SQLException

last

Moves the cursor to the last row of the result set.

public boolean last()

Returns

true if successful
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 171 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementResultSet Class
Throws

java.sql.SQLException

isLast

Determines whether the cursor is on the last row of the result set.

public boolean isLast()

Returns

true if on the last row

Throws

java.sql.SQLException

beforeFirst

Moves the cursor before the first row of the result set.

public void beforeFirst()

Throws

java.sql.SQLException

isBeforeFirst

Determines whether the cursor is before the first row of the result set.

public boolean isBeforeFirst()

Returns

true if before the first row

Throws

java.sql.SQLException

afterLast

Moves the cursor after the last row of the result set.

public void afterLast()

Throws

java.sql.SQLException

isAfterLast

Determines whether the cursor is after the last row of the result set.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 172 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementResultSet Class
public boolean isAfterLast()

Returns

true if after the last row

Throws

java.sql.SQLException

getType

Retrieves the scroll type of cursor associated with the result set.

public int getType()

Returns

Scroll type of cursor.

Throws

java.sql.SQLException

findColumn

Returns the column index for the named column in the result set.

public int findColumn(java.lang.String index)

Returns

Corresponding column index.

Throws

java.sql.SQLException

getObject

Gets the object value of the specified column.

public java.lang.Object getObject(int index)

Returns

Object form of column value.

Name Description

index Column name.

Name Description

index Column index.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 173 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementResultSet Class
Throws

java.sql.SQLException

getObject

Gets the object value of the specified column.

public java.lang.Object getObject(java.lang.String index)

Returns

Object form of column value.

Throws

java.sql.SQLException

getObject

Gets the object value of the specified column using the given type map.

public java.lang.Object getObject(int index, java.util.Map.map)

Returns

Object form of column value.

Throws

java.sql.SQLException

getObject

Gets the object value of the specified column using the given type map.

public java.lang.Object getObject(java.lang.String index,
java.util.Map map)

Name Description

index Column index.

Name Description

index Column index.

map Type map.

Name Description

index Column index.

map Type map.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 174 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementResultSet Class
Returns

Object form of column value.

Throws

java.sql.SQLException

getBoolean

Gets the boolean value of the specified column.

public boolean getBoolean(int index)

Returns

Boolean value of the column.

Throws

java.sql.SQLException

getBoolean

Gets the boolean value of the specified column.

public boolean getBoolean(java.lang.String index))

Returns

Boolean value of the column.

Throws

java.sql.SQLException

getByte

Gets the byte value of the specified column.

public byte getByte(int index)

Name Description

index Column index.

Name Description

index Column name.

Name Description

index Column index.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 175 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementResultSet Class
Returns

Boolean value of the column.

Throws

java.sql.SQLException

getShort

Gets the short value of the specified column.

public short getShort(int index)

Returns

Short value of the column.

Throws

java.sql.SQLException

getShort

Gets the short value of the specified column.

public short getShort(java.lang.String index)

Returns

Short value of the column.

Throws

java.sql.SQLException

getInt

Gets the integer value of the specified column.

public int getInt(int index)

Name Description

index Column index.

Name Description

index Column name.

Name Description

index Column index.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 176 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementResultSet Class
Returns

Int value of the column.

Throws

java.sql.SQLException

getInt

Gets the integer value of the specified column.

public int getInt(java.lang.String index)

Returns

Int value of the column.

Throws

java.sql.SQLException

getLong

Gets the long value of the specified column.

public long getLong(int index)

Returns

Long value of the column.

Throws

java.sql.SQLException

getLong

Gets the long value of the specified column.

public long getLong(java.lang.String index)

Name Description

index Column name.

Name Description

index Column index.

Name Description

index Column name.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 177 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementResultSet Class
Returns

Long value of the column.

Throws

java.sql.SQLException

getFloat

Gets the float value of the specified column.

public float getFloat(int index)

Returns

Float value of the column.

Throws

java.sql.SQLException

getFloat

Gets the float value of the specified column.

public float getFloat(java.lang.String index)

Returns

Float value of the column.

Throws

java.sql.SQLException

getDouble

Gets the double value of the specified column.

public double getDouble(int index)

Name Description

index Column index.

Name Description

index Column name.

Name Description

index Column index.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 178 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementResultSet Class
Returns

Double value of the column.

Throws

java.sql.SQLException

getBigDecimal

Gets the decimal value of the specified column.

public java.math.BigDecimal getBigDecimal(int index)

Returns

Big decimal value of the column.

Throws

java.sql.SQLException

getBigDecimal

Gets the decimal value of the specified column.

public java.math.BigDecimal getBigDecimal(java.lang.String index)

Returns

Big decimal value of the column.

Throws

java.sql.SQLException

getDate

Gets the date value of the specified column.

public java.sql.Date getDate(int index)

Name Description

index Column index.

Name Description

index Column name.

Name Description

index Column index.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 179 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementResultSet Class
Returns

Date value of the column.

Throws

java.sql.SQLException

getDate

Gets the date value of the specified column.

public java.sql.Date getDate(java.lang.String index)

Returns

Date value of the column.

Throws

java.sql.SQLException

getDate

Gets the date value of the specified column using the time zone from the calendar.

public java.sql.Date getDate(java.lang.String index,
java.util.Calendar calendar)

Returns

Date value of the column.

Throws

java.sql.SQLException

getTime

Gets the time value of the specified column.

public java.sql.Time getTime(int index)

Name Description

index Column name.

Name Description

index Column name.

calendar Calendar to use.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 180 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementResultSet Class
Returns

Time value of the column.

Throws

java.sql.SQLException

getTime

Gets the time value of the specified column.

public java.sql.Time getTime(java.lang.String index)

Returns

Time value of the column.

Throws

java.sql.SQLException

getTime

Gets the time value of the specified column.

public java.sql.Time getTime(int index, java.util.Calendar calendar)

Returns

Time value of the column.

Throws

java.sql.SQLException

getTime

Gets the time value of the specified column.

Name Description

index Column index.

Name Description

index Column name.

Name Description

index Column index.

calendar Calendar to use.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 181 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementResultSet Class
public java.sql.Time getTime(java.lang.String index,
java.util.Calendar calendar)

Returns

Time value of the column.

Throws

java.sql.SQLException

getTimestamp

Gets the timestamp value of the specified column.

public java.sql.Timestamp getTimestamp(int index)

Returns

The timestamp value of the column.

Throws

java.sql.SQLException

getTimestamp

Gets the timestamp value of the specified column.

public java.sql.Timestamp getTimestamp(java.lang.String index)

Returns

The timestamp value of the column.

Throws

java.sql.SQLException

Name Description

index Column name.

calendar Calendar to use.

Name Description

index Column index.

Name Description

index Column name.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 182 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementResultSet Class
getTimestamp

Gets the timestamp value of the specified column using the time zone from the
calendar.

public java.sql.Timestamp getTimestamp(int index, java.util.Calendar
calendar)

Returns

The timestamp value of the column.

Throws

java.sql.SQLException

getTimestamp

Gets the timestamp value of the specified column using the time zone from the
calendar.

public java.sql.Timestamp getTimestamp(java.lang.String index,
java.util.Calendar calendar)

Returns

The timestamp value of the column.

Throws

java.sql.SQLException

getString

Gets the string value of the specified column.

public java.lang.String getString(int index)

Name Description

index Column index.

Name Description

index Column name.

calendar Calendar to use.

Name Description

index Column index.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 183 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementResultSet Class
Returns

Returns the String value of the column.

Throws

java.sql.SQLException

getString

Gets the string value of the specified column.

public java.lang.String getString(java.lang.String index)

Returns

Returns the String value of the column.

Throws

java.sql.SQLException

getBytes

Gets the byte array value of the specified column.

public byte[] getBytes(int index)

Returns

Byte array value of the column.

Throws

java.sql.SQLException

getBytes

Gets the byte array value of the specified column.

public byte[] getBytes(java.lang.String index)

Name Description

index Column name.

Name Description

index Column index.

Name Description

index Column name.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 184 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementResultSet Class
Returns

Byte array value of the column.

Throws

java.sql.SQLException

getAsciiStream

Retrieves the value of the specified column value as a stream of ASCII characters.

public java.io.InputStream getAsciiStream(int index)

Returns

ASCII output stream value of the column.

Throws

java.sql.SQLException

getAsciiStream

Retrieves the value of the specified column value as a stream of ASCII characters.

public java.io.InputStream getAsciiStream(java.lang.String index)

Returns

ASCII output stream value of the column.

Throws

java.sql.SQLException

getBinaryStream

Retrieves the value of the specified column as a stream of uninterpreted bytes.

public java.io.InputStream getBinaryStream(int index)

Name Description

index Column index.

Name Description

index Column name.

Name Description

index Column index.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 185 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementResultSet Class
Returns

Binary out steam value of the column.

Throws

java.sql.SQLException

getBinaryStream

Retrieves the value of the specified column as a stream of uninterpreted bytes.

public java.io.InputStream getBinaryStream(java.lang.String index)

Returns

Binary out steam value of the column.

Throws

java.sql.SQLException

getCharacterStream

Retrieves the value of the specified column as a Reader object.

public java.io.Reader getCharacterStream(int index)

Returns

Reader for value in the column.

Throws

java.sql.SQLException

getArray

Gets the Array value of the specified column.

public java.sql.Array getArray(int index)

Name Description

index Column name.

Name Description

index Column index.

Name Description

index Column index.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 186 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementResultSet Class
Returns

Array value of the column.

Throws

java.sql.SQLException

getBlob

Gets the Blob value of the specified column.

public java.sql.Blob getBlob(int index)

Returns

Blob value of the column.

Throws

java.sql.SQLException

getBlob

Gets the Blob value of the specified column.

public java.sql.Blob getBlob(java.lang.String index)

Returns

Blob value of the column.

Throws

java.sql.SQLException

getClob

Gets the Clob value of the specified column.

public java.sql.Clob getClob(int index)

Name Description

index Column index.

Name Description

index Column name.

Name Description

index Column index.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 187 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementResultSet Class
Returns

Clob value of the column.

Throws

java.sql.SQLException

getClob

Gets the Clob value of the specified column.

public java.sql.Clob getClob(java.lang.String index)

Returns

Clob value of the column.

Throws

java.sql.SQLException

getRef

Gets the Ref value of the specified column.

public java.sql.Ref getRef(int index)

Returns

Ref value of the column.

Throws

java.sql.SQLException

getRef

Gets the Ref value of the specified column.

public java.sql.Ref getRef(java.lang.String index)

Name Description

index Column name.

Name Description

index Column index.

Name Description

index Column name.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 188 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.PreparedStatementResultSet Class
Returns

Ref value of the column.

Throws

java.sql.SQLException

wasNull

Checks to see if the last value read was SQL NULL or not.

public boolean wasNull()

Returns

true if SQL NULL.

Throws

java.sql.SQLException

getWarnings

Gets the first SQL Warning that has been reported for this object.

public java.sql.SQLWarning getWarnings()

Returns

SQL warning.

Throws

java.sql.SQLException

clearWarnings

Clears any warnings reported on this object.

public void clearWarnings()

Throws

java.sql.SQLException

getRow

Retrieves the current row number in the result set.

public int getRow()

Returns

Current row number
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 189 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.SqlStatementAgent Class
Throws

java.sql.SQLException

refreshRow

Replaces the values int the current row of the result set with their current values in the
database.

public void refreshRow()

Throws

java.sql.SQLException

insertRow

Inserts the contents of the insert row into the result set and the database.

public void insertRow()

Throws

java.sql.SQLException

updateRow

Updates the underlying database with the new contents of the current row.

public void updateRow()

Throws

java.sql.SQLException

deleteRow

Deletes the current row from the result set and the underlying database.

public void deleteRow()

Throws

java.sql.SQLException

5.5 com.stc.eways.jdbcx.SqlStatementAgent Class
java.lang.Object

|

+ -- com.stc.eways.jdbcx.StatementAgent
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 190 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.SqlStatementAgent Class
|

+ -- com.stc.eways.jdbcx.SqlStatementAgent

All Implemented Interfaces

ResetEventListener, SessionEventListener

public class SqlStatementAgent

extends StatementAgent

SQLStatement Agent that hosts a managed Statement object.

Constructors of the SqlStatementAgent

SqlStatementAgent

SqlStatementAgent

Methods of the SqlStatementAgent

Constructor SqlStatementAgent

Creates new SQLStatementAgent with scroll direction TYPE_FORWARD_ONLY and
concurrency CONCUR_READ_ONLY.

public SqlStatementAgent(Session session)

Constructor SqlStatementAgent

Creates a new SQLStatementAgent.

public SqlStatementAgent(Session session, int iScroll, int iConcur)

addBatch on page 193 execute on page 192

executeQuery on page 192 executeUpdate on page 192

Name Description

session Connection session.

Name Description

session Connection session.

iScroll Scroll direction: TYPE_FORWARD_ONLY,
TYPE_SCROLL_INSENSITIVE,
TYPE_SCROLL_SENSITIVE.

iConcur Concurrency: CONCUR_READ_ONLY,
CONCUR_UPDATABLE.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 191 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.SqlStatementAgent Class
execute

Executes the specified SQL statement.

public boolean execute(java.lang.String sSql)

Returns

true if the first result is a ResultSetAgent or false if it is an integer.

Throws

java.sql.SQLException

executeQuery

Executes the specified SQL query and returns a ResultSetAgent that contains the
generated result set.

public ResultSetAgent executeQuery(java.lang.String sSql)

Returns

A ResultSetAgent or null

Throws

java.sql.SQLException

executeUpdate

Executes the specified SQL statement and returns the number of rows that were
affected.

public int executeUpdate(jave.lang.String sSql)

Returns

The number of rows affected by the update operation; 0 if no rows were affected.

Name Description

sSql SQL statement.

Name Description

sSql SQL statement.

Name Description

sSql SQL statement.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 192 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.CallableStatementAgent Class
Throws

java.sql.SQLException

addBatch

Adds the specified SQL statement to the list of commands to be sent as a batch.

public void addBatch(java.lang.String sSql)

Throws

java.sql.SQLException

5.6 com.stc.eways.jdbcx.CallableStatementAgent Class
java.lang.Object

|

+ -- com.stc.eways.jdbcx.StatementAgent

|

+ -- com.stc.eways.jdbcx.PreparedStatementAgent

|

+ -- com.stc.eways.jdbcx.CallableStatementAgent

All Implemented Interfaces

ResetEventListener, SessionEventListener

Direct Known Subclasses

StoredProcedureAgent

public abstract class CallableStatementAgent

extends PreparedStatementAgent

Agent hosts CallableStatement interface

Constructors of the CallableStatementAgent

CallableStatementAgent

CallableStatementAgent

CallableStatementAgent

Name Description

sSql SQL statement.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 193 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.CallableStatementAgent Class
Methods of the CallableStatementAgent

Constructor CallableStatementAgent

Creates new CallableStatementAgent with scroll direction TYPE_FORWARD_ONLY
and concurrency CONCUR_READ_ONLY.

public CallableStatementAgent(Session session, java.lang.String
sCommand)

Constructor CallableStatementAgent

Creates a new CallableStatementAgent.

public CallableStatementAgent(Session session, int iScroll, int
iConcur)

getArray on page 203 getBigDecimal on page 200

getBlob on page 203 getBoolean on page 197

getByte on page 198 getBytes on page 202

getClob on page 203 getDate on page 200

getDate on page 200 getDouble on page 199

getFloat on page 199 getInt on page 198

getLong on page 199 getObject on page 197

getObject on page 197 getRef on page 204

getShort on page 198 getString on page 202

getTime on page 201 getTimestamp on page 201

getTimestamp on page 202 registerOutParameter on page 195

registerOutParameter on page 196 registerOutParameter on page 196

sessionOpen on page 195 wasNull on page 196

Name Description

session Connection session.

sCommand The Call statement used to invoke a stored
procedure.

Name Description

session Connection session.

iScroll Ignored.

iConcur Ignored
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 194 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.CallableStatementAgent Class
Constructor CallableStatement Agent

Creates a new CallableStatementAgent.

public CallableStatementAgent(Session session, java.lang.String
sCommand, int iScroll, int iConcur)

sessionOpen

Opens the session event handler.

public void sessionOpen(SessionEvent evt)

Overrides

sessionOpen in class PreparedStatementAgent

registerOutParameter

Registers the indexed OUT parameter with specified type.

public void registerOutParameter(int index, int iType)

Throws

java.sql.SQLException

Name Description

session Connection session.

sCommand The Call statement used to invoke a stored
procedure.

iScroll Scroll direction: TYPE_FORWARD_ONLY,
TYPE SCROLL_INSENSITIVE,
TYPE_SCROLL_SENSITIVE

iConcur Concurrency: CONCUR_READ_ONLY,
CONCUR_UPDATEABLE

Name Description

evt Session event.

Name Description

index Parameter index starting from 1.

iType A JDBC type defined by java.sql.Types.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 195 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.CallableStatementAgent Class
registerOutParameter

Registers the indexed OUT parameter with specified type and scale.

public void registerOutParameter(int index, int iType, int iScale)

Throws

java.sql.SQLException

registerOutParameter

Registers the indexed OUT parameter with specified user-named type or REF type.

public void registerOutParameter(int index, int iType,
java.lang.String sType)

Throws

java.sql.SQLException

wasNull

Returns whether or not the last OUT parameter read had the SQL NULL value.

public boolean wasNull()

Returns

true if the parameter read is SQL NULL; otherwise, false

Throws

java.sql.SQLException

Name Description

index Parameter index starting from 1.

iType A JDBC type defined by java.sql.Types.

iScale The number of digits to the right of the
decimal point. Only applied to DECIMAL
and NUMERIC types.

Name Description

index Parameter index starting from 1.

iType A JDBC type defined by java.sql.Types.

tName The fully-qualified name of the parameter
being set. It is intended to be used by REF,
STRUCT, DISTINCT, or JAVA_OBJECT.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 196 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.CallableStatementAgent Class
getObject

Gets the value of the indexed parameter as an instance of Object.

public java.lang.Object getObject(int index)

Returns

The Object value

Throws

java.sql.SQLException

getObject

Gets the value of the indexed parameter as an instance of Object and uses map for the
customer mapping of the parameter value.

public java.lang.Object getObject(int index, java.util.Map map)

Returns

An Object value

Throws

java.sql.SQLException

getBoolean

Gets the boolean value of the indexed parameter.

public boolean getBoolean(int index)

Returns

A boolean value

Name Description

index Parameter index starting from 1.

Name Description

index Parameter index starting from 1.

map A Map object for mapping from SQL type
names for user-defined types to classes in
the Java programming language.

Name Description

index Parameter index starting from 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 197 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.CallableStatementAgent Class
Throws

java.sql.SQLException

getByte

Gets byte value of the indexed parameter.

public byte getByte(int index)

Returns

A byte value

Throws

java.sql.SQLException

getShort

Gets short value of the indexed parameter.

public short getShort(int index)

Returns

A short value

Throws

java.sql.SQLException

getInt

Gets integer value of the indexed parameter.

public int getInt(int index)

Returns

A int value

Throws

java.sql.SQLException

Name Description

index Parameter index starting from 1.

Name Description

index Parameter index starting from 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 198 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.CallableStatementAgent Class
getLong

Gets long value of the indexed parameter.

public long getLong(int index)

Returns

A long value

Throws

java.sql.SQLException

getFloat

Gets float value of the indexed parameter.

public float getFloat(int index)

Returns

A float value

Throws

java.sql.SQLException

getDouble

Gets double value of the indexed parameter.

public double getDouble(int index)

Returns

A float value

Throws

java.sql.SQLException

Name Description

index Parameter index starting from 1.

Name Description

index Parameter index starting from 1.

Name Description

index Parameter index starting from 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 199 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.CallableStatementAgent Class
getBigDecimal

Gets decimal value of the indexed parameter.

public java.math.BigDecimal getBigDecimal(int index)

Returns

A BigDecimal object

Throws

java.sql.SQLException

getDate

Gets date value of the indexed parameter.

public java.sql.Date getDate(int index)

Returns

A Date object

Throws

java.sql.SQLException

getDate

Gets date value of the indexed parameter with time zone from calendar.

public java.sql.Date getDate(int index, java.util.Calendar calendar)

Returns

A Date object

Name Description

index Parameter index starting from 1.

Name Description

index Parameter index starting from 1.

Name Description

index Parameter index starting from 1.

cal The Calendar object used to construct the
timestamp.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 200 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.CallableStatementAgent Class
Throws

java.sql.SQLException

getTime

Gets time value of the indexed parameter.

public java.sql.Time getTime(int index)

Returns

A Time object

Throws

java.sql.SQLException

getTime

Gets time value of the indexed parameter with time zone from calendar.

public java.sql.Time getTime(int index, java.util.Calendar calendar)

Returns

A Time object

Throws

java.sql.SQLException

getTimestamp

Gets timestamp value of the indexed parameter.

public java.sql.timestamp getTimestamp(int index)

Name Description

index Parameter index starting from 1.

Name Description

index Parameter index starting from 1.

cal The Calendar object used to construct the
timestamp.

Name Description

index Parameter index starting from 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 201 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.CallableStatementAgent Class
Returns

A Timestamp object

Throws

java.sql.SQLException

getTimestamp

Gets timestamp value of the indexed parameter.

public java.sql.timestamp getTimestamp(int index, java.util.Calendar
calendar)

Returns

A Timestamp object

Throws

java.sql.SQLException

getString

Gets string value of the indexed parameter.

public java.lang.String getString(int index)

Returns

A String object

Throws

java.sql.SQLException

getBytes

Gets byte array value of the indexed parameter.

public byte[] getBytes(int index)

Name Description

index Parameter index starting from 1.

cal The Calendar object used to construct the
timestamp.

Name Description

index Parameter index starting from 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 202 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.CallableStatementAgent Class
Returns

An array of bytes

Throws

java.sql.SQLException

getArray

Gets Array value of the indexed parameter.

public java.sql.Array getArray(int index)

Returns

An Array object

Throws

java.sql.SQLException

getBlob

Gets Blob value of the indexed parameter.

public java.sql.Blob getBlob(int index)

Returns

A Blob object

Throws

java.sql.SQLException

getClob

Gets Clob value of the indexed parameter.

public java.sql.Clob getClob(int index)

Name Description

index Parameter index starting from 1.

Name Description

index Parameter index starting from 1.

Name Description

index Parameter index starting from 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 203 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.TableResultSet Class
Returns

A Blob object

Throws

java.sql.SQLException

getRef

Gets Ref value of the indexed parameter.

public java.sql.Ref getRef(int index)

Returns

A Ref object

Throws

java.sql.SQLException

5.7 com.stc.eways.jdbcx.TableResultSet Class
java.lang.Object

|

+ -- com.stc.eways.jdbcx.StatementAgent

|

+ -- com.stc.eways.jdbcx.TableResultSet

All Implemented Interfaces

ResetEventListener, SessionEventListener

public abstract class TableResultSet

extends StatementAgent

ResultSet to map selected records of table in the database

Name Description

index Parameter index starting from 1.

Name Description

index Parameter index starting from 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 204 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.TableResultSet Class
Methods of the TableResultSet

select

Select table records.

public void select(java.lang.String sWhere)

Throws

java.sql.SQLException

next

Navigate one row forward.

public boolean next()

Returns

true if the move to the next row is successful; otherwise, false.

Throws

java.sql.SQLException

absolute on page 206 afterLast on page 208

beforeFirst on page 208 cancelRowUpdates on page 211

deleteRow on page 210 findColumn on page 209

first on page 207 getAsciiStream on page 209

getAsciiStream on page 209 getBinaryStream on page 209

getBinaryStream on page 209 getCharacterStream on page 210

getCharacterStream on page 210 insertRow on page 210

isAfterLast on page 208 isBeforeFirst on page 208

isFirst on page 207 isLast on page 207

last on page 207 moveToCurrentRow on page 211

moveToInsertRow on page 211 next on page 205

previous on page 206 relative on page 206

rowDeleted on page 212 rowInserted on page 211

rowUpdated on page 211 select on page 205

updateRow on page 210 wasNull on page 212

Name Description

sWhere Where condition for the query.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 205 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.TableResultSet Class
previous

Navigate one row backward. It should be called only on ResultSetAgent objects that are
TYPE_SCROLL_SENSITIVE or TYPE_SCROLL_INSENSITIVE.

public boolean previous()

Returns

true if the cursor successfully moves to the previous row; otherwise, false.

Throws

java.sql.SQLException

absolute

Move cursor to specified row number. It should be called only on ResultSetAgent
objects that are TYPE_SCROLL_SENSITIVE or TYPE_SCROLL_INSENSITIVE.

Returns

true if the cursor successfully moves to the specified row; otherwise, false.

Throws

java.sql.SQLException

relative

Move the cursor forward or backward a specified number of rows. It should be called
only on ResultSetAgent objects that are TYPE_SCROLL_SENSITIVE or
TYPE_SCROLL_INSENSITIVE.

public boolean relative(int rows)

Returns

true if the cursor successfully moves to the number of rows specified; otherwise, false.

Throws

java.sql.SQLException

Name Description

row An integer other than 0.

Name Description

rows The number of rows to move the cursor,
starting at the current row. If the rows are
positive, the cursor moves forward; if the
rows are negative, the cursor moves
backwards.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 206 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.TableResultSet Class
first

Move the cursor to the first row of the result set. It should be called only on
ResultSetAgent objects that are TYPE_SCROLL_SENSITIVE or
TYPE_SCROLL_INSENSITIVE.

public boolean first()

Returns

true if the cursor successfully moves to the first row; otherwise, false.

Throws

java.sql.SQLException

isFirst

Check if the cursor is on the first row. It should be called only on ResultSetAgent objects
that are TYPE_SCROLL_SENSITIVE or TYPE_SCROLL_INSENSITIVE.

public boolean isFirst()

Returns

true if the cursor successfully moves to the first row; otherwise, false.

Throws

java.sql.SQLException

last

Move to the last row of the result set. It should be called only on ResultSetAgent objects
that are TYPE_SCROLL_SENSITIVE or TYPE_SCROLL_INSENSITIVE.

public boolean last()

Returns

true if the cursor successfully moves to the last row; otherwise, false.

Throws

java.sql.SQLException

isLast

Check if the cursor is positioned on the last row. It should be called only on
ResultSetAgent objects that are TYPE_SCROLL_SENSITIVE or
TYPE_SCROLL_INSENSITIVE.

public boolean isLast()

Returns

true if the cursor is on the last row; otherwise, false
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 207 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.TableResultSet Class
Throws

java.sql.SQLException

beforeFirst

Move the cursor before the first row. It should be called only on ResultSetAgent objects
that are TYPE_SCROLL_SENSITIVE or TYPE_SCROLL_INSENSITIVE.

public void beforeFirst()

Throws

java.sql.SQLException

isBeforeFirst

Check if the cursor is positioned before the first row. It should be called only on
ResultSetAgent objects that are TYPE_SCROLL_SENSITIVE or
TYPE_SCROLL_INSENSITIVE.

public boolean isBeforeFirst()

Returns

true if the cursor successfully moves before the first row; otherwise, false

Throws

java.sql.SQLException

afterLast

Move the cursor after the last row.It should be called only on ResultSetAgent objects
that are TYPE_SCROLL_SENSITIVE or TYPE_SCROLL_INSENSITIVE.

public void afterLast()

Throws

java.sql.SQLException

isAfterLast

Returns true if the cursor is positioned after the last row. It should be called only on
ResultSetAgent objects that are TYPE_SCROLL_SENSITIVE or
TYPE_SCROLL_INSENSITIVE.

public boolean isAfterLast()

Returns true if the cursor successfully moves after the last row; otherwise, false.

Throws

java.sql.SQLException
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 208 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.TableResultSet Class
findColumn

Finds the index of the named column.

public int findColumn(java.lang.String index)

Throws

java.sql.SQLException

getAsciiStream

Returns the column data as an AsciiStream.

public java.io.InputStream getAsciiStream(int index)

Throws

java.sql.SQLException

getAsciiStream

Returns the column data as an AsciiStream.

public java.io.InputStream getAsciiStream(java.lang.String
columnName)

Throws

java.sql.SQLException

getBinaryStream

Returns the column data as BinaryStream.

public java.io.InputStream getBinaryStream(int index)

Throws

java.sql.SQLException

getBinaryStream

Returns the column data as BinaryStream.

public java.io.InputStream getBinaryStream(java.lang.String
columnName)

Throws

java.sql.SQLException
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 209 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.TableResultSet Class
getCharacterStream

Returns the column data as CharacterStream.

public java.io.Reader getCharacterStream(int index)

Throws

java.sql.SQLException

getCharacterStream

Returns the column data as CharacterStream.

public java.io.Reader getCharacterStream(java.lang.String columnName)

Throws

java.sql.SQLException

refreshRow

Refreshes the current row with its most recent value from the database.

public void refreshRow()

Throws

java.sql.SQLException

insertRow

Inserts the contents of the current row into the database.

public void insertRow()

Throws

java.sql.SQLException

updateRow

Updates the contents of the current row into the database.

public void updateRow()

Throws

java.sql.SQLException

deleteRow

Deletes the contents of the current row from the database.

public void deleteRow()
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 210 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
JDBC/ODBC e*Way Methods com.stc.eways.jdbcx.TableResultSet Class
Throws

java.sql.SQLException

moveToInsertRow

Moves the current position to a new insert row.

public void moveToInsertRow()

Throws

java.sql.SQLException

moveToCurrentRow

Moves the current position to the current row. It is used after you insert a row.

public void moveToCurrentRow()

Throws

java.sql.SQLException

cancelRowUpdates

Cancels any updates made to this row.

public void cancelRowUpdates()

Throws

java.sql.SQLException

rowInserted

Returns true if the current row has been inserted.

public boolean rowInserted()

Throws

java.sql.SQLException

rowUpdated

Returns true i the current row has been updated.

public boolean rowUpdated()

Throws

java.sql.SQLException
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 211 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.8
JDBC/ODBC e*Way Methods $DB Configuration Node Methods

8

rowDeleted

Returns true if the current row has been deleted.

public boolean rowDeleted()

Throws

java.sql.SQLException

wasNull

Returns true if the last data retrieved is NULL.

public boolean wasNull()

Throws

java.sql.SQLException

5.8 $DB Configuration Node Methods
The following methods are associated with the $DB configuration node in the
Collaboration. These methods are driver and database specific and will vary from
database to database. It is recommended that you consult your specific databases
documentation.

These methods are contained in the following classes:

Com_stc_jdbcx_dbcfg.DataSource on page 212

Com_stc_jdbcx_dbcfg on page 221

5.9 Com_stc_jdbcx_dbcfg.DataSource
Java.lang.Object

|

+ - - com_stc_jdbcx_dbcfg.Com_stc_jdbcx_dbcfg.DataSource

Direct Known Subclasses

public class Com_stc_jdbcx_dbcfg.DataSource

extends java.lang.Object

Methods of the DataSource

addDataSourceAttributes on page 218 addDataSourceAttributes on page 218

clearDataSourceAttributes on page 219 countDataSourceAttributes on page 21
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 212 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.9
JDBC/ODBC e*Way Methods Com_stc_jdbcx_dbcfg.DataSource

a

getClass

Retrieves the class name.

public java.lang.String getClass_()

Returns

Class name.

setClass

Specifies the name of the Java class that implements the JDBC driver, the Connection
Pool DataSource or the XA DataSource.

The selection of the class should match the connection method that is used. For
example, driver class should use the “URL” connection method. Connection Pool
DataSource should use “Pooled Data Source” method.

By default, it is set to the Sun JDBC/ODBC bridge driver. e.g.
sun.jdbc.odbc.JdbcOdbcDriver.

One should consult the JDBC driver documentation to determine which connection
option is supported.

getClass on page 213 getConnectionMethod on page 214

getDataSourceAttributes on page 217 getDataSourceAttributes on page 217

getDataSourceAttributeValuePairSeparator on page 216 getJdbcUrl on page 215

getPassword on page 219 getTimeout on page 220

getUserName on page 219 hasClass on page 214

hasConnectionMethod on page 215 hasDataSourceAttributeValuePairSep
rator on page 217

hasJdbcUrl on page 216 hasPassword on page 220

hasTimeout on page 221 hasUserName on page 219

omitClass on page 214 omitConnectionMethod on page 215

omitDataSourceAttributeValuePairSeparator on
page 217

omitJdbcUrl on page 216

hasPassword on page 220 omitTimeout on page 221

omitUserName on page 219 removeDataSourceAttributes on
page 218

setClass on page 213 setConnectionMethod on page 214

setDataSourceAttributes on page 218 setDataSourceAttributes on page 217

setDataSourceAttributeValuePairSeparator on page 216 setJdbcUrl on page 215l

setPassword_AsIs on page 220 setPassword on page 220

setTimeout on page 221 setUserName on page 219
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 213 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.9
JDBC/ODBC e*Way Methods Com_stc_jdbcx_dbcfg.DataSource
public void setClass_(java.lang.String val)

Returns

None.

hasClass

Returns True if the java class has been set.

public boolean hasClass_()

Returns

True.

omitClass

Sets the java class name to null.

public void omitClass_()

Returns

None.

getConnectionMethod

Retrieves the connection method.

public java.lang.String getConnectionMethod()

Returns

Connection method.

setConnectionMethod

Specifies which method is used to connect to the database server.

URL - a JDBC URL provides a way of identifying a data source so that the appropriate
driver will recognize it and establish a connection with it. It will use the information in
“jdbc url” to establish connection. If URL is used, one does not need to specify the “data
source attributes” parameter.

Pooled Data Source - a ConnectionPoolDataSource object for creating
PooledConnection objects. A PooledConnection object represents a physical connection
and is cached in memory for reuse, which saves the overhead of establishing a new
connection. It will use the information in “data source attributes” to establish
connection. If this is specified, one does not need to specify the “jdbc url” parameter.

XA Data Source - an XADataSource object for creating XAConnection objects,
connections that can be used for distributed transactions. It will use the information in
“data source attributes” to establish connection. If this is specified, one does not need to
specify the “jdbc url” parameter.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 214 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.9
JDBC/ODBC e*Way Methods Com_stc_jdbcx_dbcfg.DataSource
One should make sure that the class specified in “class” parameter supports the
connection method that used here.

The default is URL, which is used by Sun’s JDBC/ODBC bridge driver.

public void setConnectionMethod(java.lang.String val)

Returns

None.

hasConnectionMethod

Returns True if the connection method has been set.

public boolean hasConnectionMethod()

Returns

True.

omitConnectionMethod

Sets the connection method to null.

public void omitConnectionMethod()

Returns

None.

getJdbcUrl

Retrieves the JDBC URL

public java.lang.String getJdbcUrl()

Returns

JDBC URL

setJdbcUrl

This is the JDBC URL necessary to gain access to the database.

The URL usually starts with jdbc:, follows by and ends with information for identifying
the data source. For JDBC/ODBC bridge, the subprotocol is odbc:. The information that
identifies the rest of the data source are usually in {;=].

Consult the documentation of the driver that you use for further detail.

This parameter will be ignored if URL is not selected in the “connection method”
section.

For Sun JDBC/ODBC bridge, the URL looks like this: jdbc:odbc:[;=] e.g.
jdbc:odbc:myDataSource; Cachesize=300.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 215 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.9
JDBC/ODBC e*Way Methods Com_stc_jdbcx_dbcfg.DataSource
public void setJdbcUrl(java.lang.String val)

Returns

None.

hasJdbcUrl

Returns True if the JDBC URL has been set.

public boolean hasJdbcUrl()

Returns

True.

omitJdbcUrl

Sets the JDBC URL to null.

public void omitJdbcUrl()

Returns

None.

getDataSourceAttributeValuePairSeparator

Retrieves the data source attribute separator.

public java.lang.String getDataSourceAttributeValuePairSeparator()

Returns

Data source attribute separator.

setDataSourceAttributeValuePairSeparator

This entry specifies the character separator used to separate the attribute-value pair
used in the “data source attributes” section.

For example, the attribute-value pair “ServerName!myHost” has\”!\” as a separator.

One should select a separator that will NOT be part of the attribute-name of the
attribute-value.

The default value is “!”.

public void setDataSourceAttributeValuePairSeparator(java.lang.String
val)

Returns

None.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 216 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.9
JDBC/ODBC e*Way Methods Com_stc_jdbcx_dbcfg.DataSource
hasDataSourceAttributeValuePairSeparator

Returns True if the data source Attribute ValuePair Separator has been set.

public boolean hasDataSourceATtributeValuePairSeparator()

Returns

True.

omitDataSourceAttributeValuePairSeparator

Sets data source Attribute ValuePair Separator to null.

public void omitDataSourceAttributeValuePairSeparator()

Returns

None.

getDataSourceAttributes

Get the list of data source attributes.

public java.lang.String[] getDataSourceAttributes()

Returns

java.lang.String[]

setDataSourceAttributes

A list of separated attribute-value pairs.

This information is used to identify the database and set the connection properties. The
attribute name should be exactly the same as the one that is specified in the driver
documentation and the value should be a valid one. The whole list will be used to
specify the connection properties. To disable an attribute, simply un check it.

It will not be used if the “connection method” section is specified as “URL”. For
example PortNumber!8888.

The separator used in this parameter should match the one specified in the “data source
attribute value pair separator” section. By default, the separator used is “!”.

public void setDataSourceAttributes(java.lang.String[] val)

Returns

None.

getDataSourceAttributes

Retrieves the data source attribute of the input index.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 217 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.9
JDBC/ODBC e*Way Methods Com_stc_jdbcx_dbcfg.DataSource
public java.lang.String getDataSourceAttributes(int i)

Returns

Data Source attribute.

setDataSourceAttributes

Sets the data source attributes of the specified index.

public void setDataSourceAttributes(int i, java.lang.String val)

Returns

None.

countDataSourceAttributes

Returns the number of data source Attributes

public int countDataSourceAttributes()

Returns

Int.

removeDataSourceAttributes

Removes the data source attribute at specified index.

public void removeDataSourceAttributes(int i)

Returns

None.

addDataSourceAttributes

Appends the data source attribute at the end.

public void addDataSourceAttributes(int i, java.lang.String val)

Returns

None

addDataSourceAttributes

Add a data source attribute to a specified index.

public void addDataSourceAttributes(java.lang.String val)

Returns

None.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 218 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.9
JDBC/ODBC e*Way Methods Com_stc_jdbcx_dbcfg.DataSource
clearDataSourceAttributes

Removes all data source attributes.

public void clearDataSourceAttributes()

Returns

None.

getUserName

Retrieves the user name that the e*Way uses to connect to the database.

public java.lang.String getUserName()

Returns

User name.

setUserName

Sets the user name that the e*Way uses to connect to the database.

public void setUserName(java.lang.String val)

Returns

None.

hasUserName

Returns true if the user name has been set.

public boolean hasUserName()

Returns

True.

omitUserName

Sets the user Name to null.

public void omitUserName()

Returns

None.

getPassword

Retrieves the password that the e*Way uses to connect to the database.

public java.lang.String getPassword()
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 219 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.9
JDBC/ODBC e*Way Methods Com_stc_jdbcx_dbcfg.DataSource
Returns

Password.

setPassword

Sets the internally encrypted password that the e*Way uses to connect to the database.

public void setPassword(java.lang.String val)

Returns

None.

setPassword_AsIs

Sets the non-encrypted password that the e*Way uses to connect to the database.

public void setPassword_AsIs(java.lang.String val)

Returns

None.

hasPassword

Returns True if the password has been set.

public boolean hasPassword()

Returns

True.

omitPassword

Sets the password to null.

public void omitPassword()

Returns

None.

getTimeout

Retrieves the login timeout in seconds.

public java.lang.String getTimeout()

Returns

java.lang.String
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 220 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.10
JDBC/ODBC e*Way Methods Com_stc_jdbcx_dbcfg
setTimeout

Sets the login timeout in seconds.

public void setTimeout(java.lang.String val)

Returns

None.

hasTimeout

Returns True if the time out has been set.

public boolean hasTimeout()

Returns

True.

omitTimeout

Sets the time out to null.

public void omitTimeout()

Returns

None.

5.10 Com_stc_jdbcx_dbcfg
public class Com_stc_jdbcx_dbcfg

Methods of the dbdfg

getDataSource on page 221

setDataSource on page 221

getDataSource

Returns the Datasource object.

public Com_stc_jdbcx_oraclecfg.DataSource getDataSource()

Returns

DataSource object.

setDataSource

Sets the DataSource object.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 221 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.11
JDBC/ODBC e*Way Methods Monk ODBC e*Way Functions
public void setDataSource(Com_stc_jdbcx_oraclecfg.DataSource val)

Returns

None.

5.11 Monk ODBC e*Way Functions
The functions described in this section control the ODBC e*Way’s basic operations as
well as those needed for database access.

Note: The functions described in this section can only be used by the functions defined
within the e*Way’s configuration file. None of the functions are available to
Collaboration Rules scripts executed by the e*Way.

This Section Explains:

Basic Functions on page 222

Standard e*Way Functions on page 230

General Connection Functions on page 247

Static SQL Functions on page 261

Dynamic SQL Functions on page 278

Stored Procedure Functions on page 291

Message Event Functions on page 319

Sample Monk Scripts on page 330

5.12 Basic Functions
The functions in this category control the e*Way’s most basic operations.

The basic functions are:

event-send-to-egate on page 223

get-logical-name on page 224

send-external-down on page 225

send-external-up on page 226

shutdown-request on page 227

start-schedule on page 228

stop-schedule on page 229
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 222 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.12
JDBC/ODBC e*Way Methods Basic Functions
event-send-to-egate

Syntax

(event-send-to-egate string)

Description

event-send-to-egate sends an Event from the e*Way. If the external collaboration(s) is
successful in publishing the Event to the outbound queue, the function will return #t,
otherwise #f.

Parameters

Return Values

Boolean
Returns #t when successful and #f when an error occurs.

Throws

None.

Additional information

This function can be called by any e*Way function when it is necessary to send data to
the e*Gate system in a blocking fashion.

Name Type Description

string string The data to be sent to the e*Gate
system
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 223 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.12
JDBC/ODBC e*Way Methods Basic Functions
get-logical-name

Syntax

(get-logical-name)

Description

get-logical-name returns the logical name of the e*Way.

Parameters

None.

Return Values

string
Returns the name of the e*Way (as defined by the Enterprise Manager).

Throws

None.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 224 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.12
JDBC/ODBC e*Way Methods Basic Functions
send-external-down

Syntax

(send-external-down)

Description

send-external down instructs the e*Way that the connection to the external system is
down.

Parameters

None.

Return Values

None.

Throws

None.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 225 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.12
JDBC/ODBC e*Way Methods Basic Functions
send-external-up

Syntax

(send-external-up)

Description

send-external-up instructs the e*Way that the connection to the external system is up.

Parameters

None.

Return Values

None.

Throws

None.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 226 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.12
JDBC/ODBC e*Way Methods Basic Functions
shutdown-request

Syntax

(shutdown-request)

Description

shutdown-request completes the e*Gate shutdown procedure that was initiated by the
Control Broker but was interrupted by returning a non-null value within the Shutdown
Command Notification Function (see “Shutdown Command Notification Function”
on page 45). Once this function is called, shutdown proceeds immediately.

Once interrupted, the e*Way’s shutdown cannot proceed until this Monk function is
called. If you do interrupt an e*Way shutdown, we recommend that you complete the
process in a timely fashion.

Parameters

None.

Return Values

None.

Throws

None.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 227 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.12
JDBC/ODBC e*Way Methods Basic Functions
start-schedule

Syntax

(start-schedule)

Description

start-schedule requests that the e*Way execute the Exchange Data with External
Function specified within the e*Way’s configuration file. Does not effect any defined
schedules.

Parameters

None.

Return Values

None.

Throws

None.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 228 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.12
JDBC/ODBC e*Way Methods Basic Functions
stop-schedule

Syntax

(stop-schedule)

Description

stop-schedule requests that the e*Way halt execution of the Exchange Data with
External Function specified within the e*Way’s configuration file. Execution will be
stopped when the e*Way concludes any open transaction. Does not effect any defined
schedules, and does not halt the e*Way process itself.

Parameters

None.

Return Values

None.

Throws

None.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 229 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.13
JDBC/ODBC e*Way Methods Standard e*Way Functions
5.13 Standard e*Way Functions
The functions in this category control the e*Way’s standard operations.

The standard functions are:

db-stdver-conn-estab on page 231

db-stdver-conn-shutdown on page 233

db-stdver-conn-ver on page 234

db-stdver-data-exchg on page 236

db-stdver-data-exchg-stub on page 237

db-stdver-init on page 238

db-stdver-neg-ack on page 239

db-stdver-pos-ack on page 240

db-stdver-proc-outgoing on page 241

db-stdver-proc-outgoing-stub on page 243

db-stdver-shutdown on page 245

db-stdver-startup on page 246
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 230 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.13
JDBC/ODBC e*Way Methods Standard e*Way Functions
db-stdver-conn-estab

Syntax

(db-stdver-conn-estab)

Description

db-stdver-conn-estab is used to establish external system connection.The following
tasks are performed by this function:

construct a new connection handle

call db-long to connect to database

setup timestamp format if required

setup maximum long data buffer limit if required

bind dynamic SQL statement and stored procedures.

Parameters

None.

Return Values

A string
UP or SUCCESS if connection established, anything else if connection not established.

Throws

None.

Additional Information

In order to use the standard database time format, the following function call has been
added to this function (immediately before the call to the db-bind function):

(db-std-timestamp-format connection-handle)

To override the use of the standard database time format, the db-std-timestamp-format
function call should be removed.

For "Maximum Long Data Size" the ODBC library allocates an internal buffer for each
SQL_LONGVARCHAR and SQL_LONGVARBINARY data, when the SQL statement
or stored procedure that contains these data types are bound. The default size of each
internal data buffer is 1024K(1048576) bytes. If the user needs to handle long data larger
than this default value, add the following function call to specify the maximum data
size:

(db-max-long-data-size connection-handle maximum-data-size)

See db-max-long-data-size on page 257 for more information.

Examples

(define db-stdver-conn-estab
 (lambda ()
 (let ((result "DOWN")(last_dberr ""))
 (display "[++] Executing e*Way external connection establishment
function.")
 (display "db-stdver-conn-estab: logging into the database with:\n")
 (display "DATABASE NAME = ")
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 231 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.13
JDBC/ODBC e*Way Methods Standard e*Way Functions
 (display DATABASE_SETUP_DATABASE_NAME)
 (newline)
 (display "USER NAME = ")
 (display DATABASE_SETUP_USER_NAME)
 (newline)
 (set! connection-handle (make-connection-handle))
 (if (connection-handle? connection-handle)
 (begin
 (if (db-login connection-handle DATABASE_SETUP_DATABASE_NAME
DATABASE_SETUP_USER_NAME DATABASE_SETUP_ENCRYPTED_PASSWORD)
 (begin
 (db-bind)
 (set! result "UP")
)
 (begin
 (set! last_dberr (db-get-error-str connection-handle))
 (display last_dberr)
 (event-send "ALERTCAT_OPERATIONAL" "ALERTSUBCAT_CANTCONN"
"ALERTINFO_FATAL" "0" "Cannot connect to database" (string-append
"Failed to connect to database: " DATABASE_SETUP_DATABASE_NAME "with
error" last_dberr) 0 (list))
 (newline)
 (db-logout connection-handle)
 (set! result "DOWN")
)
)
)
 (begin
 (set! result "DOWN")
 (display "Failed to create connection handle.")
 (event-send "ALERTCAT_OPERATIONAL" "ALERTSUBCAT_UNUSABLE"
"ALERTINFO_FATAL" "0" "database connection handle creation error"
"Failed to create database connection handle" 0 (list))
)
)
 result
)
))
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 232 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.13
JDBC/ODBC e*Way Methods Standard e*Way Functions
db-stdver-conn-shutdown

Syntax

(db-stdver-conn-shutdown string)

Description

db-stdver-conn-shutdown is called by the system to request that the interface
disconnect from the external system, preparing for a suspend/reload cycle. Any return
value indicates that the suspend can occur immediately, and the interface will be placed
in the down state.

Parameters

Return Values

A string
A return of "SUCCESS" indicates that the external is ready to suspend.

Throws

None.

Examples

(define db-stdver-conn-shutdown
 (lambda (message-string)
 (let ((result "SUCCESS"))
 (comment "Std e*Way connection shutdown function" "[++] Usage:
Function called by system to request that the interface disconnect
from the external system, preparing for a suspend/reload cycle. Any
return value indicates that the suspend can occur immediately, and the
interface will be placed in the down state. [++] Input to expect:
Function should not expect input. [++] Expected return values:
anything indicates that the external is ready to suspend.n")
 (comment "db-stdver-conn-shutdown [++] Implementation specific
comment" "none")
 (display "[++] Executing e*Way external connection shutdown
function.")
 (display message-string)
 (db-logout connection-handle)
 result
)
))

Name Type Description

string string When the e*Way calls this function, it will pass the
string "SUSPEND_NOTIFICATION" as the parameter.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 233 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.13
JDBC/ODBC e*Way Methods Standard e*Way Functions
db-stdver-conn-ver

Syntax

(db-stdver-conn-ver)

Description

db-stdver-conn-ver is used to verify whether the external system connection is
established.

Parameters

None.

Return Values

A string
UP or SUCCESS if connection established, anything else if connection not established.

Throws

None.

Additional Information

To use standard database time format, add the following function call to this function:
(db-std-timestamp-format connection-handle) after the (db-bind) call.

This SQL statement is designed for DBMSs other than Oracle; the use of this function
occasionally results in an error in the e*Way’s log file. Despite the error, the function
will complete successfully.

Note: To users of earlier versions of DART: db-check-connect calls should be replaced
with db-alive calls.

Examples

(define db-stdver-conn-ver
 (lambda ()
 (let ((result "DOWN")(last_dberr ""))
 (display "[++] Executing e*Way external connection verification
function.")
 (display "db-stdver-conn-ver: checking connection status...\n")
 (cond ((string=? STCDB "SYBASE") (db-sql-select connection-handle
"verify" "select getdate()")) ((string=? STCDB "ORACLE8i") (db-sql-
select connection-handle "verify" "select sysdate from dual"))
((string=? STCDB "ORACLE8") (db-sql-select connection-handle "verify"
"select sysdate from dual")) ((string=? STCDB "ORACLE7") (db-sql-
select connection-handle "verify" "select sysdate from dual")) (else
(db-sql-select connection-handle "verify" "select {fn NOW()}")))
 (if (db-alive connection-handle)
 (begin
 (db-sql-fetch-cancel connection-handle "verify")
 (set! result "UP")
)
 (begin
 (set! last_dberr (db-get-error-str connection-handle))
 (display last_dberr)
 (event-send "ALERTCAT_OPERATIONAL" "ALERTSUBCAT_LOSTCONN"
"ALERTINFO_FATAL" "0" "Lost connection to database" (string-append
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 234 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.13
JDBC/ODBC e*Way Methods Standard e*Way Functions
"Lost connection to database: " DATABASE_SETUP_DATABASE_NAME "with
error" last_dberr) 0 (list))
 (set! result "DOWN")
)
)
 result
)
))
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 235 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.13
JDBC/ODBC e*Way Methods Standard e*Way Functions
db-stdver-data-exchg

Syntax

(db-stdver-data-exchg)

Description

db-stdver-data-exchg is used for sending a received Event from the external system to
e*Gate. The function expects no input.

Parameters

None.

Return Values

A string
A message-string indicates a successful operation. The Event is sent to e*Gate

An empty string indicates a successful operation. Nothing is sent to e*Gate.

CONNERR indicates the loss of connection with the external, client moves to a down
state and attempts to connect. Upon reconnecting, this function will be re-executed
with the same input message.

Throws

None.

Examples

(define db-stdver-data-exchg
 (lambda ()
 (let ((result ""))
 (display "[++] Executing e*Way external data exchange function.")
 result
)
))
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 236 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.13
JDBC/ODBC e*Way Methods Standard e*Way Functions
db-stdver-data-exchg-stub

Syntax

(db-stdver-data-exchg-stub)

Description

db-stdver-data-exchg-stub is used as a place holder for the function entry point for
sending an Event from the external system to e*Gate. When the interface is configured
as an outbound only connection, this function should not be called. The function
expects no input.

Parameters

None.

Return Values

A string
A message-string indicates a successful operation. The Event is sent to e*Gate

An empty string indicates a successful operation. Nothing is sent to e*Gate.

CONNERR indicates the loss of connection with the external, client moves to a down
state and attempts to connect. Upon reconnecting, this function will be re-executed
with the same input message.

Throws

None.

Examples

(define db-stdver-data-exchg-stub
 (lambda ()
 (let ((result ""))
 (event-send "ALERTCAT_OPERATIONAL" "ALERTSUBCAT_INTEREST"
"ALERTINFO_NONE" "0" "Possible configuration error." "Default eway
data exchange function called." 0 (list))
 result
)
))
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 237 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.13
JDBC/ODBC e*Way Methods Standard e*Way Functions
db-stdver-init

Syntax

(db-stdver-init)

Description

db-stdver-init begins the initialization process for the e*Way. The function loads all of
the monk extension library files that the other e*Way functions will access.

Parameters

None.

Return Values

A string
If a FAILURE string is returned, the e*Way will shutdown. Any other return indicates
success.

Throws

None.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 238 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.13
JDBC/ODBC e*Way Methods Standard e*Way Functions
db-stdver-neg-ack

Syntax

(db-stdver-neg-ack message-string)

Description

db-stdver-neg-ack is used to send a negative acknowledgement to the external system,
and for post processing after failing to send data to e*Gate.

Parameters

Return Values

A string
An empty string indicates a successful operation.

CONNERR indicates a loss of connection with the external, client moves to a down
state and attempts to connect, on reconnect neg-ack function will be re-executed.

Throws

None.

Examples

(define db-stdver-neg-ack
 (lambda (message-string)
 (let ((result ""))
 ((display "[++] Executing e*Way external negative acknowledgment
function.")
 (display message-string)
 result
)
))

Name Description

message-string The Event for which a negative acknowledgment is sent.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 239 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.13
JDBC/ODBC e*Way Methods Standard e*Way Functions
db-stdver-pos-ack

Syntax

(db-stdver-pos-ack message-string)

Description

db-stdver-pos-ack is used to send a positive acknowledgement to the external system,
and for post processing after successfully sending data to e*Gate.

Parameters

Return Values

A string
An empty string indicates a successful operation. The e*Way will then be able to
proceed with the next request.

CONNERR indicates a loss of connection with the external, client moves to a down
state and attempts to connect, on reconnect pos-ack function will be re-executed.

Throws

None.

Examples

(define db-stdver-pos-ack
 (lambda (message-string)
 (let ((result ""))
 (display "[++] Executing e*Way external positive acknowledgement
function.")
 (display message-string)
 result
)
))

Name Description

message-string The Event for which an acknowledgment is
sent.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 240 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.13
JDBC/ODBC e*Way Methods Standard e*Way Functions
db-stdver-proc-outgoing

Syntax

(db-stdver-proc-outgoing message-string)

Description

db-stdver-proc-outgoing is used for sending a received message (Event) from e*Gate to
the external system.

Parameters

Return Values

A string
An empty string indicates a successful operation.

RESEND causes the message to be immediately resent. The e*Way will compare the
number of attempts it has made to send the Event to the number specified in the Max
Resends per Messages parameter, and does one of the following:

1 If the number of attempts does not exceed the maximum, the e*Way will pause the
number of seconds specified by the Resend Timeout parameter, increment the
“resend attempts” counter for that message, then repeat the attempt to send the
message.

2 If the number of attempts exceeds the maximum, the function returns false and rolls
back the message to the e*Gate IQ from which it was obtained.

CONNERR indicates that there is a problem communicating with the external system.
First, the e*Way will pause the number of seconds specified by the Resend Timeout
parameter. Then, the e*Way will call the External Connection Establishment function
according to the Down Timeout schedule, and will roll back the message (Event) to
the IQ from which it was obtained.

DATAERR indicates that there is a problem with the message (Event) data itself. First,
the e*Way will pause the number of seconds specified by the Resend Timeout
parameter. Then, the e*Way increments its “failed message (Event)” counter, and rolls
back the message (Event) to the IQ from which it was obtained. If the e*Way’s journal is
enabled (see Journal File Name on page 26) the message (Event) will be journaled.

If a string other than the following is returned, the e*Way will create an entry in the log
file indicating that an attempt has been made to access an unsupported function.

Throws

None.

Examples

(define db-stdver-proc-outgoing

Name Type Description

message-string string The Event to be processed.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 241 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.13
JDBC/ODBC e*Way Methods Standard e*Way Functions
 (lambda (message-string)
 (let ((result ""))
 (display "[++] Executing e*Way external process outgoing message
function.")
 (display message-string)
 result
)
))
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 242 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.13
JDBC/ODBC e*Way Methods Standard e*Way Functions
db-stdver-proc-outgoing-stub

Syntax

(db-stdver-proc-outgoing-stub message-string)

Description

db-stdver-proc-outgoing-stub is used as a place holder for the function entry point for
sending an Event received from e*Gate to the external system. When the interface is
configured as an inbound only connection, this function should not be used. This
function is used to catch configuration problems.

Parameters

Return Values

A string
An empty string indicates a successful operation.

RESEND causes the message to be immediately resent. The e*Way will compare the
number of attempts it has made to send the Event to the number specified in the Max
Resends per Messages parameter, and does one of the following:

1 If the number of attempts does not exceed the maximum, the e*Way will pause the
number of seconds specified by the Resend Timeout parameter, increment the
“resend attempts” counter for that message, then repeat the attempt to send the
message.

2 If the number of attempts exceeds the maximum, the function returns false and rolls
back the message to the e*Gate IQ from which it was obtained.

CONNERR indicates that there is a problem communicating with the external system.
First, the e*Way will pause the number of seconds specified by the Resend Timeout
parameter. Then, the e*Way will call the External Connection Establishment function
according to the Down Timeout schedule, and will roll back the message (Event) to
the IQ from which it was obtained.

DATAERR indicates that there is a problem with the message (Event) data itself. First,
the e*Way will pause the number of seconds specified by the Resend Timeout
parameter. Then, the e*Way increments its “failed message (Event)” counter, and rolls
back the message (Event) to the IQ from which it was obtained. If the e*Way’s journal is
enabled (see Journal File Name on page 26) the message (Event) will be journaled.

If a string other than the following is returned, the e*Way will create an entry in the log
file indicating that an attempt has been made to access an unsupported function.

Throws

None.

Name Type Description

message-string string The Event to be processed.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 243 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.13
JDBC/ODBC e*Way Methods Standard e*Way Functions
Examples

(define db-stdver-proc-outgoing-stub
 (lambda (message-string)
 (let ((result ""))
 (display "[++] Executing e*Way external process outgoing message
function stub.")
 (display message-string)
 (event-send "ALERTCAT_OPERATIONAL" "ALERTSUBCAT_INTEREST"
"ALERTINFO_NONE" "0" "Possible configuration error." (string-append
"Default eway process outgoing msg function passed following message:
" msg) 0 (list))
 result
)
))
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 244 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.13
JDBC/ODBC e*Way Methods Standard e*Way Functions
db-stdver-shutdown

Syntax

(db-stdver-shutdown shutdown_notification)

Description

db-stdver-shutdown is called by the system to request that the external shutdown, a
return value of SUCCESS indicates that the shutdown can occur immediately, any other
return value indicates that the shutdown Event must be delayed. The user is then
required to execute a shutdown-request call from within a monk function to allow the
requested shutdown process to continue.

Parameters

Return Values

A string
SUCCESS allows an immediate shutdown to occur, anything else delays shutdown
until (shutdown-request) is executed successfully.

Throws

None.

Examples

(define db-stdver-shutdown
 (lambda (message-string)
 (let ((result "SUCCESS"))
 (display "[++] Executing e*Way external shutdown command
notification function.")
 result
)
))

Name Type Description

shutdown_notification string When the e*Way calls this function, it will pass
the string "SHUTDOWN_NOTIFICATION" as the
parameter.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 245 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.13
JDBC/ODBC e*Way Methods Standard e*Way Functions
db-stdver-startup

Syntax

(db-stdver-startup)

Description

db-stdver-startup is used for instance specific function loads and invokes setup.

Parameters

None.

Return Values

A string
FAILURE causes shutdown of the e*Way. Any other return indicates success.

Throws

None.

Examples

(define db-stdver-startup
 (lambda ()
 (let ((result "SUCCESS"))
 (display "[++] Executing e*Way external startup function.")
 result
)
))
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 246 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.14
JDBC/ODBC e*Way Methods General Connection Functions
5.14 General Connection Functions
The functions in this category control the e*Way’s database connection operations.

The general connection functions are:

connection-handle? on page 248

db-alive on page 249

db-commit on page 251

db-get-error-str on page 252

db-login on page 254

db-logout on page 256

db-max-long-data-size on page 257

db-rollback on page 258

make-connection-handle on page 259

statement-handle? on page 260
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 247 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.14
JDBC/ODBC e*Way Methods General Connection Functions
connection-handle?

Syntax

(connection-handle? any-variable)

Description

connection-handle? determines whether or not the input argument is a connection
handle datatype.

Parameters

This function requires a single variable of any datatype.

Return Values

Boolean
Returns #t (true) if the argument is a connection handle; otherwise, returns #f (false).
Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

Explanation

The above example creates a connection handle called hdbc. An error message is
displayed if the newly defined hdbc is not a connection handle.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 248 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.14
JDBC/ODBC e*Way Methods General Connection Functions
db-alive

Syntax

(db-alive connection-handle)

Description

db-alive is used to determine if the cause of a failing ODBC operation is due to a
broken connection. It returns whether or not the database connection was alive during
the last call to any ODBC procedure that sends commands to the database server.

Parameters

Return Values

Boolean
Returns #t (true) if the connection to the database server is still alive; otherwise, returns
#f (false) if the connection to the database server is either dead or down. Use db-get-
error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc “dsn” “uid” “pwd”)
 (begin
 (define sql_statement “select * from person where sex = ‘M’”)
 (do ((status #t)) ((not status))
 (if (db-sql-select hdbc “male” sql_statement)
 (begin
 ...
)
 (begin
 (display (db-get-error-str hdbc))
 (set! status (db-alive hdbc))
)
)
)
 (display “lost database connection !\n”))
 (db-logout hdbc))
)
)

Explanation

The example above illustrates an application that is looking for a certain record in the
person table of the “Payroll” database. The function will exit the loop only if it loses the
connection to the database.

Notes

1 Most ODBC procedures can detect a dead connection handle except db-commit and
db-rollback. Therefore, when the ODBC procedure returns false, users must check
for loss of connection.

Name Type Description

connection-handle connection handle A connection handle to the database.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 249 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.14
JDBC/ODBC e*Way Methods General Connection Functions
2 Once the db-alive returns #f to indicate either a dead connection handle or an un-
available database server, all the subsequent ODBC function calls associated with
that connection handle will not be executed, with the exception of db-logout. Each
of these procedures will return false with a “lost database connection” error
message.

3 Once the ODBC e*Way determines the connection handle is not alive, the only
course of action the user can take is to log out from that connection handle, redefine
a new connection handle, and try to reconnect to the database.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 250 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.14
JDBC/ODBC e*Way Methods General Connection Functions
db-commit

Syntax

(db-commit connection-handle)

Description

db-commit performs all transactions specified by the connection.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

...
(if
 (and
 (db-sql-execute hdbc “delete from employee where first_name =
‘John’”)
 (db-sql-execute hdbc “update employee set first_name = ‘Mary’
where ssn = 123456789”)
)
 (db-commit hdbc)
 (begin
 (display (db-get-error-str hdbc))
 (db-rollback hdbc)
)
)
...

Explanation

This example shows that if the application can successfully delete “John’s record” and
update “Mary’s record” it will commit the transaction specified by the connection.
Otherwise, it prints out the error message and rolls back the transaction.

Name Type Description

connection-handle connection handle A connection handle to the database.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 251 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.14
JDBC/ODBC e*Way Methods General Connection Functions
db-get-error-str

Syntax

(db-get-error-str connection-handle)

Description

db-get-error-str returns the last error message, and is used when the function returns a
#f value.

Parameters

Return Values

A string
A simple error message is returned.

To parse the return error message when it contains an error, use the two standard files
that define the error message structure and display the contents of each component of
the error message.

ODBC - odbcmsg.ssc, odbcmsg_display.monk

Throws

None.

Examples

Scenario #1 — sample code for db-get-error-str

...
(if (db-sql-execute hdbc "delete from employee" where
first_name=‘John’)
 (db-commit hdbc)
 (display (db-get-error-str hdbc))
)
...

Explanation

This example shows that if the application can successfully delete “John’s record” it
will commit the transaction. Otherwise, the application will print out the error message
and roll back the same transaction. Each commit begins a new transaction
automatically.

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "database login succeed !\n")
 (if (db-sql-execute hdbc "INSERT INTO UNKNOWN VALUES (NULL)")
 (db-commit hdbc)
 (odbcmsg-display (db-get-error-str hdbc))
)
 (if (not (db-logout hdbc))
 (odbcmsg-display (db-get-error-str hdbc))
)

Name Type Description

connection-handle connection handle A connection handle to the database.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 252 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.14
JDBC/ODBC e*Way Methods General Connection Functions
)
 (odbcmsg-display (db-get-error-str hdbc))
)

Program output of the above example:

Output of (db-get-error-str hdbc)
ODBC|S0002|942|INTERSOLV|ODBC Oracle driver|Oracle|ORA-00942: table
or view does not exist
DART|63|STCDB_X_conn_sql_exec_len||unable to execute SQL statement

Output of (odbcmsg-display (db-get-error-str hdbc))
ODBC message #0:
msg_source : ODBC
sql_state : S0002
native_code : 942
drv_vendor : INTERSOLV
component : ODBC Oracle driver
err_source : Oracle
msg_string : ORA-00942: table or view does not exist

DART message #0:
msg_source : DART
msg_number : 63
function : STCDB_X_conn_sql_exec_len
err_item :
msg_string : unable to execute SQL statement
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 253 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.14
JDBC/ODBC e*Way Methods General Connection Functions
db-login

Syntax

(db-login connection-handle data-source user-name password)

Description

db-login allocates the resources and performs login to a database system.

This function requires an encrypted password. If you have specified a password in the
Database Setup section of the e*Way Editor, it has already been encrypted. (See
“Database Setup” on page 45.)

If you define the password within a monk function (which is not encrypted), you must
use the monk function encrypt-password found in the e*Gate Monk extension library
stc_monkext.dll:

encrypt-password encryption key plain password

where encryption key is public knowledge, i.e., in this case user id, and plain
password is the password to be encrypted.

The standard encrypt-password function returns an encrypted password string to be
used with db-login.

 Parameters

Note: The data_source, user_name, and password must not be an empty string.

Return Values

Boolean
Returns #t (true) if the argument is a connection handle; otherwise, returns #f (false).
Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

...
(define hdbc (make-connection-handle))
(define uid "James")
(define pwd)
(if (db-login hdbc 'Payroll' 'James' pwd)
 ...
)

Name Type Description

connection-handle connection handle A connection handle to the database.

data-source string The name of the data source.

user-name string The database user login name.

password string The database user login password.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 254 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.14
JDBC/ODBC e*Way Methods General Connection Functions
Explanation

The above example shows how to use the connection handle (hdbc) to log into the data
source “Payroll” as “James”.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 255 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.14
JDBC/ODBC e*Way Methods General Connection Functions
db-logout

Syntax

(db-logout connection-handle)

Description

db-logout performs a disconnect from the database system and releases the connection
handle resources.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

...
(define hdbc (make-connection handle))
(define uid "James")
(define pwd)
(if (db-login hdbc “Payroll” “James” “pwd”)
 ...
 (db-logout hdbc)
)
...

Explanation

The above example shows how to disconnect from a database. For every db-login,
there should be a corresponding db-logout.

Notes

Make sure you roll back or commit a transaction before you call db-logout. If a
transaction is neither committed nor rolled back, it will be automatically rolled back
before logout.

Name Type Description

connection-handle connection handle A connection handle to the database.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 256 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.14
JDBC/ODBC e*Way Methods General Connection Functions
db-max-long-data-size

Syntax

(db-max-long-data-size connection-handle size)

Description

db-max-long-data-size specifies the maximum buffer size for the long
data.(SQL_LONGVARCHAR, SQL_LONGVARBINARY) Long data may have a range
in size up to 2 gigabytes (2x109). In order to limit the memory consumption of the
ODBC library, it is necessary to use this function to specify the maximum data size
expected. Long data larger than the specified size will be truncated. This data size will
be used for buffer allocation for both long data columns as well as long data
parameters.

Parameters

Return Values

Boolean
Returns #t (true) if successful; and If unsuccessful, returns #f (false). Use db-get-error-
str to retrieve the error message.

Throws

None.

Additional Information

The default maximum buffer size for long data type is 1 megabyte (1048576). It is not
necessary to call this function unless the long data is in excess of 1 megabyte.

Name Type Description

connection-handle connection handle A connection handle to the database.

size integer This parameter is used to identify the
buffer size of the specified long data
type. Note: The default buffer size is
1 megabyte.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 257 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.14
JDBC/ODBC e*Way Methods General Connection Functions
db-rollback

Syntax

(db-rollback connection-handle)

Description

db-rollback rolls back the entire transaction for the connection.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

...
(if
 (and
 (db-sql-execute hdbc “delete from employee where first_name =
‘John’”)
 (db-sql-execute hdbc “update employee set first_name = ‘Mary’
where ssn = 123456789”)
)
 (db-commit hdbc)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
 (db-rollback hdbc)
)
)
...

Explanation

This example shows that if the application can successfully delete “John’s record” and
update “Mary’s record,” it will commit the transaction specified by the connection.
Otherwise, it prints out the error message and rolls back the transaction.

Name Type Description

connection-handle connection handle A connection handle to the database.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 258 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.14
JDBC/ODBC e*Way Methods General Connection Functions
make-connection-handle

Syntax

(make-connection-handle)

Description

make-connection-handle constructs the connection handle.

Parameters

None.

Return Values

A handle
Returns a connection-handle if successful, otherwise;

Boolean
Returns #f (false) if the function fails to create a connection-handle. Use db-get-error-str
to retrieve the error message.

Throws

None.

Examples

(let ((hConnection (make-connection-handle)))
(if (connection-handle? hConnection)

(begin
(display “Established a valid connection handle\n”)

)
(begin

(display “Failed to get a connection handle: “)
(display (db-get-error-str connection-handle))
(newline)

)
)

)

Explanation

The above example creates a connection handle variable called hConnection. The
results are verified by using the connection-handle? function to check the type of the
hConnection variable. If the results are a connection handle, then the message
“Established a valid connection handle” is displayed. If the return value is not a
connection handle, then the message “Failed to get a connection handle:” and the error
string are displayed.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 259 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.14
JDBC/ODBC e*Way Methods General Connection Functions
statement-handle?

Syntax

(statement-handle? any-variable)

Description

statement-handle? determines whether or not the input argument is a statement
handle datatype.

Parameters

This function requires a single variable of any datatype.

Return Values

Boolean
Returns #t (true) if the argument is a statement handle; otherwise, returns #f (false). Use
db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define hstmt (db-proc-bind hdbc “test”))
(if (not (statement-handle? hstmt))
 (display (db-get-error-str hdbc))
)

Explanation

The above example creates a statement handle called hstmt, then it displays an error
message if the newly defined hstmt is not a statement handle.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 260 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.15
JDBC/ODBC e*Way Methods Static SQL Functions
5.15 Static SQL Functions
The functions in this category control the e*Way’s interaction with static SQL
commands.

The static SQL functions are:

db-sql-column-names on page 267

db-sql-column-types on page 269

db-sql-column-values on page 270

db-sql-execute on page 272

db-sql-fetch on page 273

db-sql-fetch-cancel on page 274

db-sql-format on page 275

db-sql-select on page 277

Static vs. Dynamic SQL Functions

Dynamic SQL statements are built and executed at run time versus Static SQL
statements that are embedded within the program source code. Dynamic statements do
not require knowledge of the complete structure on an SQL statement before building
the application. This allows for run time input to provide information about the
database objects to query.

The application can be written so that it prompts the user or scans a file for information
that is not available at compilation time.

In Dynamic statements the four steps of processing an SQL statement take place at run
time, but they are performed only once. Execution of the plan takes place only when
EXECUTE is called. Figure 83 on page 265 shows the difference between Dynamic SQL
with immediate execution and Dynamic SQL with prepared execution.

Benefits of Dynamic SQL

Using dynamic SQL commands, an application can prepare a “generic” SQL statement
once and execute it multiple times. Statements can also contain markers for parameter
values to be supplied at execution time, so that the statement can be executed with
varying inputs.

Limitations of Dynamic SQL

The use of dynamic SQL commands has some significant limitations. A dynamic SQL
implementation of an application generally performs worse than an implementation
where permanent stored procedures are created and the client program invokes them
with RPC (remote procedure call) commands.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 261 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.15
JDBC/ODBC e*Way Methods Static SQL Functions
Figure 80 Calling a Stored Procedure (Oracle)

Process Flow Chart
for Calling a Stored

Procedure
For Oracle DBMS

db-proc-bind

db-proc-
param-assign

db-proc-
column-count >

0

db-proc-
fetch

Is the result a
boolean value?

db-proc-execute

Yes

No

db-proc-param-count
db-proc-param-name
db-proc-param-type
db-proc-param-io
db-proc-return-exist
db-proc-return-type

db-proc-
fetch-cancel

End Of
Fetch Cycle

Yes

db-proc-param-
value

End Of Execution
Cycle

db-proc-return-
value

Yes

NoNo

Yes

No

db-proc-return-
exist?

Are there any
output

parameters?

T h e f u n c t i o n s
enclosed in the box
to the left (outlined in
a b r o k e n l i n e
pattern) are for the
Oracle version of
DART only.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 262 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.15
JDBC/ODBC e*Way Methods Static SQL Functions
Figure 81 Calling a Stored Procedure (Sybase)

Process Flow Chart
for Calling a Stored

Procedure For Sybase DBMS

db-proc-bind

db-proc-
param-assign

db-proc-
execute

db-proc-
column-count >

0

db-proc-
fetch

Is result a
boolean?

End of Fetch
Cycle

db-proc-param-count
db-proc-param-name
db-proc-param-type
db-proc-param-io
db-proc-return-exist
db-proc-return-type

Are there any
output

parameters?

db-proc-
param-value

Yes

End of Execution
Cycle

db-proc-return-
exist?

db-proc-return-
value

Yes

Yes

No

db-proc-
fetch-cancel

Yes

No No

No
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 263 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.15
JDBC/ODBC e*Way Methods Static SQL Functions
Figure 82 Dynamic Statement Flow Chart

db-stmt-param-assign

db-stmt-execute

db-stmt-column-count
> 0?

db-stmt-fetch

Is result
a boolean?

db-stmt-fetch-cancel

End of
execution cycle Yes

No

Yes
No

OR

db-stmt-bind

db-stmt-param-count
db-stmt-param-type

db-stmt-column-count
db-stmt-column-name
db-stmt-column-type
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 264 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.15
JDBC/ODBC e*Way Methods Static SQL Functions
Figure 83 Example of Dynamic SQL processing

Select A,B,C
From X, Y
Where A<500
AND C = 'EFG'

Parse Statement

Validate
Statement

Optimize
Statement

Generate access
plan

Execute access
plan

SQL Statement Dynamic SQL

Runtime
PREPARE statement

EXECUTE
IMMEDIATE
statement

EXECUTE
IMMEDIATE
statement

db-sql-execute

db-stmt-bind

db-stmt-execute
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 265 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.15
JDBC/ODBC e*Way Methods Static SQL Functions
ODBC SQL Type Support

The following table shows the supported SQL datatypes and the corresponding native
datatype for the database.

*Oracle float (p) specifies a floating point number with precision range from 1 to 126.

+Oracle uses number (p) to define datatypes that span TININT, BIGINT, SMALLINT,
and INTEGER. Oracle int type is internally mapped to NUMBER (38) which will be
returned as SQL_DECIMAL.

Note: All variable precision datatypes require precision values.

SQL_DECIMAL and SQL_NUMERIC datatypes require specification of scale which
indicates the number of digits to the right of the decimal point.

Table 15 ODBC SQL Type Support

SQL Type Name SQL Datatype Oracle Datatype

SQL_BIT BIT N/A

SQL_BINARY BINARY (n) N/A

SQL_VARBINARY VARBINARY (n) RAW (n)

SQL_CHAR CHAR (n) CHAR (n)

SQL_VARCHAR VARCHAR (n) VARCHAR2 (n)

SQL_DECIMAL DECIMAL (p, s) NUMBER (p, s)

SQL_NUMERIC NUMERIC (p, s) N/A

SQL_TINYINT TINYINT +

SQL_BIGINT BIGINT +

SQL_SMALLINT SMALLINT +

SQL_INTEGER INTEGER +

SQL_REAL REAL *

SQL_FLOAT FLOAT(p) FLOAT(b)

SQL_DOUBLE DOUBLE PRECISION FLOAT

SQL_DATE DATE N/A

SQL_TIME TIME N/A

SQL_TIMESTAMP TIMESTAMP DATE

SQL_LONGVARCHAR LONG VARCHAR LONG

SQL_LONGVARBINARY LONG VARBINARY LONG RAW
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 266 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.15
JDBC/ODBC e*Way Methods Static SQL Functions
db-sql-column-names

Syntax

(db-sql-column-names connection-handle selection-name)

Description

db-sql-column-names returns a vector of column names which are the result of an SQL
SELECT statement identified by the parameter selection-name. This procedure can be
called after a SQL SELECT statement has been issued successfully.

Parameters

Return Values

A string
This function returns a vector of column names in string format if successful.

Boolean
If the selection-name string is unavailable for any reason, this function returns a #f
(false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define selection “select * from person where title=’manager’”)
(if (db-login hdbc “dsn” “uid” “pwd”)
 (begin
 (if (db-sql-select hdbc “manager” selection)
 (begin
 (define name-array (db-sql-column-names hdbc
“manager”))
 (if (vector? name-array)
 (begin
 (display “name of the first column: ”)
 (display (vector-ref name-array 0))
 (newline)
 ...
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
 (display (db-get-error-str hdbc))
 (newline)
)
)
 (if (db-alive hdbc)
 (begin

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the
selection.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 267 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.15
JDBC/ODBC e*Way Methods Static SQL Functions
 ...
)
)
 (db-logout hdbc)
)
)

Explanation

This example shows that after issuing a successful SQL SELECT statement, the program
will display the name of the first column.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 268 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.15
JDBC/ODBC e*Way Methods Static SQL Functions
db-sql-column-types

Syntax

(db-sql-column-types connection-handle selection-name)

Description

db-sql-column-types returns a vector of column types which are the result of an SQL
SELECT statement identified by the parameter selection-name. This procedure can be
called after a SQL SELECT statement has been issued successfully. Refer to the
description for db-bind-proc for a list of SQL-type names.

Parameters

A string
This function returns a vector of column types in string format if successful.

Boolean
If the string type is unavailable for any reason, this function returns a #f. Use db-get-
error-str to retrieve the error message.

Throws

None.

Examples

(define selection “select * from person where title= ‘manager’”)
 (define type-array (db-sql-column-types hdbc “manager”))
 (if (vector? type-array)
 (begin
 (display “type of the first column:”)
 (display (vector-ref type-array 0))
 (newline)
 ...
 ...
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
 (display (db-get-error-str hdbc))
)
)
 (if (db-alive hdbc)
 (begin
 ...

Explanation

This example shows that after issuing a successful SQL SELECT statement, the program
will display the first column type.

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the
selection.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 269 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.15
JDBC/ODBC e*Way Methods Static SQL Functions
db-sql-column-values

Syntax

(db-sql-column-values connection-handle selection-name)

Description

db-sql-column-values returns a vector of column values, which is the result of an SQL
FETCH statement identified by the parameter selection-name. This procedure can be
called after a SQL FETCH statement has been issued successfully.

Parameters

Return Values

A string
Returns a vector of SQL values in string format if successful.

Boolean
If the values string is unavailable for any reason, this function returns a #f (false).Use
db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define selection "select * from person where title= 'manager'")

(if (db-sql-select hdbc "manager" selection)
 (do ((result "") (value-array 0)) ((boolean? result))
 (set! result (db-sql-fetch hdbc "manager"))
 (if (not (boolean? reslt))
 (begin
 (set! value-array (db-sql-column-values hdbc "manager"))
 (do (
 (index 0 (+ index 1))
 (count (vector-length value-array))
)
 ((= index count))
 (display (vector-ref value-array index))
 (display "\t")
)
 (newline)
)
 (if (not result) (display (db-get-error-str hdbc)))
)
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the
selection.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 270 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.15
JDBC/ODBC e*Way Methods Static SQL Functions
)

Explanation

This example shows that after issuing a successful SQL SELECT statement, the program
will loop through a fetch cycle. Within each fetch loop, the program displays the value
of each column in the same line, separated by a tab character.

Notes

1 A successful db-sql-fetch call returns a string which contains the concatenation of
all column values with the comma (,) character as the separator. Although this
single string is suitable for display purposes, the user must parse the result string to
retrieve the value of each column.

2 If the value of the column contains the comma (,) character, the user will be unable
to differentiate the comma data from the comma separator. Therefore, db-sql-
column-values returns the result as a vector of values in string type to allow the
user to make use of the vector-ref function to retrieve the value of each column and
avoid any parsing problem.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 271 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.15
JDBC/ODBC e*Way Methods Static SQL Functions
db-sql-execute

Syntax

(db-sql-execute connection-handle SQL-stmt)

Description

db-sql-execute executes the specified SQL statement.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

...
(if (db-login hdbc "Payroll" "James" "pwd")
 (begin
 ...
 (if (db-sql-execute hdbc "insert into employee
values(‘John’...)")
 (db-commit hdbc)
)

)
 (display (db-get-error-str hdbc))
)
...

Explanation

This example shows that if the application can successfully log into the data source
“Payroll,” it will insert a record into the table “employee.”

Notes

Use the db-sql-select function to execute a select statement.

The db-sq.-execute function can no longer be used to commit and roll back
transactions. Instead, use db-commit or db-rollback.

Note: The Merant ODBC drivers limit the size of the SQL statement to 32 Kbyte.

Name Type Description

connection-handle connection handle A connection handle to the database.

SQL-stmt string The SQL statement being executed.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 272 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.15
JDBC/ODBC e*Way Methods Static SQL Functions
db-sql-fetch

Syntax

(db-sql-fetch connection-handle selection-name)

Description

db-sql-fetch “fetches” the result of a SELECT statement. The statement handle is “free”
after the function fetches the last record.

Parameters

Return Values

A string
Returns a comma, delimited string containing all the column values for the record.

Boolean
Returns #t (true) at the end of the “fetch cycle,” when no more records are available to
“fetch"; otherwise, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

...
(if (db-sql-select hdbc “GreaterThan25” “select * employee where age
> 25”)
 (begin
 (display (db-sql-fetch hdbc “GreaterThan25”))
 (newline)
 (db-sql-fetch-cancel hdbc “GreaterThan25”)
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
...

Explanation

This example shows that the application selects the first record of employees who are
older than age 25, by fetching the record once and cancelling the rest of the records.

Notes

The return result is temporarily stored in RAM. The buffer is allocated when db-sql-
select is called. The maximum size of the buffer is determined by the operating system.

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the
selection.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 273 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.15
JDBC/ODBC e*Way Methods Static SQL Functions
db-sql-fetch-cancel

Syntax

(db-sql-fetch-cancel connection-handle selection-name)

Description

db-sql-fetch-cancel closes the cursor associated with an SQL SELECT statement and
cancels the fetch command. It also frees up the memory allocation for the selection.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

...
(if (db-sql-select hdbc “GreaterThan25” “select * employee where age
> 25”)
 (begin
 (define result (db-sql-fetch hdbc “GreaterThan25”))
 (if (not (boolean? result))
 (db-sql-fetch-cancel hdbc “GreaterThan25”)
 (if (not result)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
)
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
...

Explanation

This example shows that the application selects the first record of employees who are
older than age 25, by fetching the record once and cancelling the rest of the records.

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the
selection.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 274 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.15
JDBC/ODBC e*Way Methods Static SQL Functions
db-sql-format

Syntax

(db-sql-format data-string SQL-type)

Description

db-sql-format returns a formatted string of the data-string, so it can be used in an SQL
statement as a literal value of a corresponding SQL-type.

In the current implementation, only the SQL_CHAR, SQL_VARCHAR, SQL_DATE,
SQL_TIME, and SQL_TIMESTAMP SQL-types will be formatted. If the data-string is an
empty string, the procedure will return a NULL value for all SQL datatypes except
SQL_CHAR and SQL_VARCHAR.

Parameters

Return Values

A string
Returns a formatted string used as a data value in an SQL statement.

Throws

None.

Examples

(define last-name (db-sql-format “O’Reilly” “SQL_VARCHAR”))
(define timestamp (db-sql-format “1998-02-19 12:34:56”
SQL_TIMESTAMP”))
(define sql-stmt (string-append “update employee set lastname =
“last-name “, MODIFYTIME = “timestamp “WHERE SSN = 123456789”))
(if (db-login hdbc “Payroll” “user” “password”)
 (begin
 (if (db-sql-execute hdbc sql-stmt)
 (db-commit hdbc)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
 (db-rollback hdbc)
)
)
 ...
 (db-logout hdbc)
)
)

Explanation

The example above illustrates how the program uses db-sql-format to format the last
name and the timestamp and use the results as part of an SQL statement.

Name Type Description

data-string string A data string to be used as a literal
value in an SQL statement.

SQL-type string An SQL datatype string, i.e.,
SQL_VARCHAR.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 275 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.15
JDBC/ODBC e*Way Methods Static SQL Functions
Notes

1 For SQL_CHAR and SQL_VARCHAR (SQL datatypes) db-sql-format will place a
single quotation mark (‘) before and after the <data-string>, and expand each single
quotation mark in the <data-string> to two single quotation mark characters.

2 If you use the (timestamp) Monk built-in function to insert the timestamp to an
Event Type Definition, you should specify the following format for it to be accepted
by the db-sql-format function:

“%Y-%m-%d %H:%M:%S”

For SQL_CHAR and SQL_VARCHAR (SQL datatypes) db-sql-format will place a
single quotation mark (‘) before and after the data-string, and expand each single
quotation mark in the data-string to two single quotation mark characters.

The following table shows the typical data-string and the corresponding results of
the formatting for the OBDC e*Way.

Table 16 SQL Statement Format

SQL_type Value Data_string Value Formatted Result String

SQL_CHAR This is a string ‘This is a string.’

SQL_VARCHAR O’Reilly ‘O’ ‘Reilly’

SQL_DATE 1998-02-19 {d ‘1998-02019’}

SQL_DATE 19980219 {d ‘1998-02-19’}

SQL_TIME 12 :34:56 {t ‘12:34:56’}

SQL_TIME 1234 {t ‘12:34:00’}

SQL_TIMESTAMP 1998-02-19 12:34:56.789 {ts ‘1998-02-19
12:34:56.789’}
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 276 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.15
JDBC/ODBC e*Way Methods Static SQL Functions
db-sql-select

Syntax

(db-sql-select connection-handle selection-name SQL-statement)

Description

db-sql-select executes an SQL SELECT statement.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

...
(if (db-sql-select hdbc “GreaterThan25” “select * employee where age
> 25”)
 (begin
 (display (db-sql-fetch hdbc “GreaterThan25”))
 (newline)
 (db-sql-fetch-cancel hdbc “GreaterThan25”)
)
 (display (db-get-error-str hdbc))
)
...

Explanation

This example shows that the application selects the first record of employees who are
older than age 25, by fetching the records one at a time and cancelling the remainder of
the return records.

Note: The Merant ODBC drivers limit the size of the SQL statement to 32 Kbyte.

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the
selection.

SQL-statement string The SELECT statement.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 277 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.16
JDBC/ODBC e*Way Methods Dynamic SQL Functions
5.16 Dynamic SQL Functions
The function sin this category control the e*Way’s interaction with dynamic SQL
commands. For information about the differences between static and dynamic SQL
functions, see “Static vs. Dynamic SQL Functions” on page 261.

The dynamic SQL functions are:

db-stmt-bind on page 279

db-stmt-bind-binary on page 280

db-stmt-column-count on page 281

db-stmt-column-name on page 282

db-stmt-column-type on page 283

db-stmt-execute on page 284

db-stmt-fetch on page 285

db-stmt-fetch-cancel on page 286

db-stmt-param-assign on page 287

db-stmt-param-count on page 288

db-stmt-param-type on page 289

db-stmt-row-count on page 290
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 278 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.16
JDBC/ODBC e*Way Methods Dynamic SQL Functions
db-stmt-bind

Syntax

(db-stmt-bind connection-handle dynamic-SQL-statement)

Description

db-stmt-bind binds the dynamic statement specified. The binary data type should be
input or output parameters with hexadecimal format.

Parameters

Return Values

Statement handle
The statement handle that identifies the dynamic statement specified.

Boolean
If unsuccessful, returns #f (false).Use db-get-error-str to retrieve the error message.

Throws

None.

Additional Information

 If the user needs to input /output binary data in the raw (binary) format, they should
use db-stmt-bind-binary.

Notes

1 Oracle OCI API is unable to report the datatype for each bound parameter in a
dynamic statement. All bound parameters will default to VARCHAR datatypes.
This will allow Oracle to implicitly convert the data string of each parameter into
the correct data value of the parameter at the execution of the dynamic statement.

2 If the user needs to select the long datatype column, the long column should appear
at the end of the selection list.

Name Type Description

connection-handle connection handle A connection handle to the database.

dynamic-SQL-statement string The dynamic statement to be bound.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 279 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.16
JDBC/ODBC e*Way Methods Dynamic SQL Functions
db-stmt-bind-binary

Syntax

(db-stmt-bind-binary connection-handle dynamic-SQL-statement)

Description

db-stmt-bind-binary binds the dynamic statement specified. The binary data type will
be input and output with raw format.

Parameters

Return Values

Statement handle
The statement handle that identifies the dynamic statement specified.

Boolean
If unsuccessful, returns #f (false).Use db-get-error-str to retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

dynamic-SQL-statement string The dynamic statement to be bound.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 280 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.16
JDBC/ODBC e*Way Methods Dynamic SQL Functions
db-stmt-column-count

Syntax

(db-stmt-column-count connection-handle statement-handle)

Description

db-stmt-column-count returns the number of columns in the return result set.

Parameters

Return Values

A number
Returns a number greater than zero (0) when the record set is available.

Boolean
If no record set is available, the return value will be #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
stmt-bind.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 281 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.16
JDBC/ODBC e*Way Methods Dynamic SQL Functions
db-stmt-column-name

Syntax

(db-stmt-column-name connection-handle statement-handle index)

Description

db-stmt-column-name returns the name string of the specified column in the result set.

Parameters

Return Values

A string
Returns the name string if successful.

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.

index integer An integer equal to -- 0 to db-stmt-
column-count minus 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 282 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.16
JDBC/ODBC e*Way Methods Dynamic SQL Functions
db-stmt-column-type

Syntax

(db-stmt-column-type connection-handle statement-handle index)

Description

db-stmt-column-type returns the SQL datatype of the specified column in the record
set.

Parameters

Return Values

A string
Returns a string of SQL datatype when successful.

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.

index integer An integer equal to -- 0 to db-stmt-
column-count minus 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 283 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.16
JDBC/ODBC e*Way Methods Dynamic SQL Functions
db-stmt-execute

Syntax

(db-stmt-execute connection-handle statement-handle)

Description

db-stmt-execute executes the dynamic statement of a specified statement-handle.

Parameters

Return Values

Boolean
If an error occurred, returns #f (false). Use db-get-error-str to obtain the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
stmt-bind.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 284 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.16
JDBC/ODBC e*Way Methods Dynamic SQL Functions
db-stmt-fetch

Syntax

(db-stmt-fetch connection-handle statement-handle)

Description

db-stmt-fetch retrieves the column values of the record set.

Parameters

Return Values

A Vector and a Boolean
Returns a vector containing all the column values and at the end of the “fetch cycle”
returns #t (true) when no more records are available to “fetch.”

Boolean
If an error occurred, returns #f (false). Use db-get-error-str to obtain the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
stmt-bind.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 285 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.16
JDBC/ODBC e*Way Methods Dynamic SQL Functions
db-stmt-fetch-cancel

Syntax

(db-stmt-fetch-cancel connection-handle statement-handle)

Description

db-stmt-fetch-cancel terminates the current “fetch” cycle.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
stmt-bind.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 286 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.16
JDBC/ODBC e*Way Methods Dynamic SQL Functions
db-stmt-param-assign

Syntax

(db-stmt-param-assign connection-handle statement-handle index value)

Description

db-stmt-param-assign assigns the parameter and executes the dynamic statement of a
specified parameter.

Parameters

Return Values

Boolean
If an error occurred, returns #f (false). Use db-get-error-str to obtain the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
stmt-bind.

index integer The number between 0 and db-stmt-
param-count minus 1.

value string The value to be assigned to the
parameter.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 287 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.16
JDBC/ODBC e*Way Methods Dynamic SQL Functions
db-stmt-param-count

Syntax

(db-stmt-param-count connection-handle statement-handle)

Description

db-stmt-param-count retrieves the number of parameters in the dynamic statement.

Parameters

Return Values

An Integer
Returns a number, which represents the number of parameters for the dynamic
statement specified, when successful.

Boolean
If unsuccessful, returns #f (false).Use db-get-error-str to retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
stmt-bind.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 288 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.16
JDBC/ODBC e*Way Methods Dynamic SQL Functions
db-stmt-param-type

Syntax

(db-stmt-param-type connection-handle statement-handle index)

Description

db-stmt-param-type retrieves the SQL datatype of the specified parameter.

Parameters

Return Values

A string
If successful, db-stmt-param-type returns a string which represents the SQL datatype.

Boolean
If an error occurred, returns #f (false). Use db-get-error-str to obtain the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
stmt-bind.

index integer The number between 0 and db-stmt-
param-count minus 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 289 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.16
JDBC/ODBC e*Way Methods Dynamic SQL Functions
db-stmt-row-count

Syntax

(db-stmt-row-count connection-handle statement-handle index)

Description

db-stmt-row-count returns the number of rows affected by the execution of the SQL
statement.

Parameters

Return Values

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.

index integer An integer equal to -- 0 to db-stmt-
column-count minus 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 290 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.17
JDBC/ODBC e*Way Methods Stored Procedure Functions
5.17 Stored Procedure Functions
The functions in this category control the e*Way’s interaction with stored procedures.

The stored procedure functions are:

db-proc-bind on page 292

db-proc-bind-binary on page 293

db-proc-column-count on page 294

db-proc-column-name on page 296

db-proc-column-type on page 298

db-proc-execute on page 300

db-proc-fetch on page 302

db-proc-fetch-cancel on page 304

db-proc-param-assign on page 305

db-proc-param-count on page 307

db-proc-param-io on page 308

db-proc-param-name on page 309

db-proc-param-type on page 310

db-proc-param-value on page 311

db-proc-return-exist on page 313

db-proc-return-type on page 315

db-proc-return-value on page 317

Benefits of Stored Procedures

When a stored procedure is created for an application, SQL statement compilation and
optimization are performed once when the procedure is created. With a dynamic SQL
application, compilation and optimization are performed every time the client program
runs. A dynamic SQL implementation also incurs database space overhead because
each instance of the client program must create separate compiled versions of the
application’s prepared statements. When you design an application to use stored
procedures and RPC commands, all instances of the client program can share the same
stored procedure.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 291 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.17
JDBC/ODBC e*Way Methods Stored Procedure Functions
db-proc-bind

Syntax

(db-proc-bind connection-handle procedure-name)

Description

db-proc-bind binds the input/output parameters of the stored procedure specified.

Parameters

Return Values

Boolean
Returns a proc-handle if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

(define hstmt (db-proc-bind hdbc “test”)
(if (not (statement-handle? hstmt)
 (display “fail to bind stored procedure test\n”)
)

Notes

ODBC does not recognize any procedure inside the PACKAGE of the Oracle DBMS.
Therefore, you cannot bind any procedure defined inside the PACKAGE of the Oracle
DBMS.

The procedure name is limited to 30 characters.

Name Type Description

connection-handle connection handle A connection handle to the database.

procedure-name string The stored procedure to be bound.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 292 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.17
JDBC/ODBC e*Way Methods Stored Procedure Functions
db-proc-bind-binary

Syntax

(db-proc-bind-binary connection-handle dynamic-SQL-statement)

Description

db-proc-bind-binary binds the dynamic statement specified. The format of the input
and output data is binary.

Parameters

Return Values

A string
Returns a statement-handle when successful; otherwise

Boolean
Returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

dynamic-SQL-statement string The dynamic statement to be bound
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 293 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.17
JDBC/ODBC e*Way Methods Stored Procedure Functions
db-proc-column-count

Syntax

(db-proc-column-count connection-handle statement-handle)

Description

db-proc-column-count retrieves the number of columns in the return result set.

Parameters

Return Values

A number
Returns a number greater than zero (0) when the record set is available.

Boolean
If no record set is available, the return value will be #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((i 0 (+ i 1))) ((= i col-count))
 (display “column “)
 (display (db-proc-column-name hdbc hstmt i))
 (display “: type = ”)
 (display (db-proc-column-type hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 294 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.17
JDBC/ODBC e*Way Methods Stored Procedure Functions
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Notes

1 The Oracle procedure to return the result set is given here:

oracle_odbc.sql

2 The ODBC configuration parameter to set up the return result set must show

ProcedureRetResult = 1

For more information see “Sample .odbc.ini File” on page 16.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 295 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.17
JDBC/ODBC e*Way Methods Stored Procedure Functions
db-proc-column-name

Syntax

(db-proc-column-name connection-handle statement-handle column-
index)

Description

db-proc-column-name retrieves the name string of the specified column in the result
set.

Parameters

Return Values

A string
Returns the name string if successful.

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((i 0 (+ i 1))) ((= i col-count))
 (display “column “)
 (display (db-proc-column-name hdbc hstmt i))
 (display “: type = ”)
 (display (db-proc-column-type hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.

column-index string SQL datatype of the specified
column in the results set --0 to db-
proc-column-count minus 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 296 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.17
JDBC/ODBC e*Way Methods Stored Procedure Functions
 ...
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Notes

Since the result set of a stored procedure is returned through the parameters of the PL/
SQL table type, the name of the table type parameter will be returned.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 297 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.17
JDBC/ODBC e*Way Methods Stored Procedure Functions
db-proc-column-type

Syntax

(db-proc-column-type connection-handle statement-handle column-
index)

Description

db-proc-column-type retrieves the SQL datatype of the specified column in the record
set.

Parameters

Return Values

A string
Returns a string of SQL datatype when successful.

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((i 0 (+ i 1))) ((= i col-count))
 (display “column “)
 (display (db-proc-column-name hdbc hstmt i))
 (display “: type = ”)
 (display (db-proc-column-type hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.

column-index string SQL datatype of the specified
column in the record set --0 to db-
proc-column-count minus 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 298 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.17
JDBC/ODBC e*Way Methods Stored Procedure Functions
 ...
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Notes

Since the result set of the stored procedure is returned through the parameters of the
PL/SQL table type, a PL/SQL table can only contain one standard Oracle datatype.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 299 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.17
JDBC/ODBC e*Way Methods Stored Procedure Functions
db-proc-execute

Syntax

(db-proc-execute connection-handle statement-handle)

Description

db-proc-execute executes out a stored procedure.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 ...
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
 (db-logout hdbc)
)
 (display (db-get-error-str hdbc))
)

Notes

The default precision for number or real type is 38 for a column in the table. This is
important when executing a stored procedure that retrieves values from that column in
the table. The db-proc-execute function will fail if the exponential part of the value is
larger than 38.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 300 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.17
JDBC/ODBC e*Way Methods Stored Procedure Functions
For example:

1.555E+38 is acceptable

1.55E+39 will prevent the successful retrieval of the column values
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 301 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.17
JDBC/ODBC e*Way Methods Stored Procedure Functions
db-proc-fetch

Syntax

(db-proc-fetch connection-handle statement-handle)

Description

db-proc-fetch retrieves the column values of the record set.

Parameters

Return Values

A vector and Boolean
Returns a vector containing all the column values and at the end of the “fetch cycle”
returns #t (true) when no more records are available to “fetch.”

Boolean
If unsuccessful, this function returns #f (false). Use db-get-error-str to retrieve the error
message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((result (db-proc-fetch hdbc hstmt) (db-proc-
fetch hdbc hstmt)))
 ((boolean? result) (begin (display result)
(newline)))
 (display result
 (newline)
)
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)
 (display (db-get-error-str hdbc)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 302 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.17
JDBC/ODBC e*Way Methods Stored Procedure Functions
)
 (display (db-get-error-str hdbc)
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Notes

1 The Oracle procedure to return result set is given here:

oracle_odbc.sql

2 ODBC configuration parameter to set up the capability of return result set must
show

ProcedureRetResult = 1

For more information see Sample.odbc.ini “Sample .odbc.ini File” on page 16.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 303 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.17
JDBC/ODBC e*Way Methods Stored Procedure Functions
db-proc-fetch-cancel

Syntax

(db-proc-fetch-cancel connection-handle statement-handle)

Description

db-proc-fetch-cancel terminates the current “fetch” cycle.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (db-proc-fetch-cancel hdbc hstmt)
)
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)
 (display (db-get-error-str hdbc)
)
 (display (db-get-error-str hdbc)
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 304 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.17
JDBC/ODBC e*Way Methods Stored Procedure Functions
db-proc-param-assign

Syntax

(db-proc-param-assign connection-handle statement-handle param-
index param-value)

Description

db-proc-param-assign "assigns" the value of an IN or INOUT parameter and places
that value into internal storage.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

Scenario #1 — sample code for db-proc-param-assign

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 ...
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
 (db-logout hdbc)
)
 (display (db-get-error-str hdbc))

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
proc-bind.

param-index integer The number between 0 and db-proc-
param-count minus 1.

param-value string The input value of the IN or INOUT
parameter.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 305 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.17
JDBC/ODBC e*Way Methods Stored Procedure Functions
)

Scenario #2 — sample code for db-proc-param-assign with
multiple input arguments

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (and
 (db-proc-param-assign hdbc hstmt 0 “5”)
 (db-proc-param-assign hdbc hstmt 2 “O’REILLY”)
 (db-proc-param-assign hdbc hstmt 7 “1998-11-22
12:34:56”)
 (db-proc-param-assign hdbc hstmt 8 “1A2B78F0”)
)
 (if (db-proc-execute hdbc hstmt)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)

Notes

The value for the param-value argument should be entered as a string, without
enclosure in single quotation marks (‘) for SQL_CHAR and SQL_VARCHAR.

The literal value for SQL_BINARY and SQL_VARBINARY should be a hexadecimal
string. Refer to Scenario #2 on above.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 306 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.17
JDBC/ODBC e*Way Methods Stored Procedure Functions
db-proc-param-count

Syntax

(db-proc-param-count connection-handle statement-handle)

Description

db-proc-param-count retrieves the number of parameters in the stored procedure.

Parameters

Return Values

A number
Returns a number, which represents the number of parameters for the stored procedure
specified, when successful.

Boolean
If the number is unavailable due to a problem within one of the arguments, the function
returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (do ((i 0 (+ i 1))) ((= i (db-proc-param-count hdbc hstmt)))
 (display “parameter ”)
 (display (db-proc-param-name hdbc hstmt i))
 (display “: type = ”)
 (display (db-proc-param-type hdbc hstmt i))
 (display “, io = ”)
 (display (db-proc-param-io hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 307 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.17
JDBC/ODBC e*Way Methods Stored Procedure Functions
db-proc-param-io

Syntax

(db-proc-param-io connection-handle statement-handle param-index)

Description

db-proc-param-io retrieves the IO type for the specified parameter.

Parameters

Return Values

A string
Returns an IO type string as IN, OUT, or INOUT

Boolean
otherwise, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (do ((i 0 (+ i 1))) ((= i (db-proc-param-count hdbc hstmt)))
 (display “parameter ”)
 (display (db-proc-param-name hdbc hstmt i))
 (display “: type = ”)
 (display (db-proc-param-type hdbc hstmt i))
 (display “, io = ”)
 (display (db-proc-param-io hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
proc-bind.

param-index integer The number between 0 and db-proc-
param-count minus 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 308 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.17
JDBC/ODBC e*Way Methods Stored Procedure Functions
db-proc-param-name

Syntax

(db-proc-param-name connection-handle statement-handle param-
index)

Description

db-proc-param-name retrieves the name of the specified parameter.

Parameters

Return Values

A string
Returns the string containing the name of the parameter.

Boolean
Returns #f (false) if unable to return the string containing the name of the parameter.
Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (do ((i 0 (+ i 1))) ((= i (db-proc-param-count hdbc hstmt)))
 (display “parameter ”)
 (display (db-proc-param-name hdbc hstmt i))
 (display “: type = ”)
 (display (db-proc-param-type hdbc hstmt i))
 (display “, io = ”)
 (display (db-proc-param-io hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.

param-index integer The number between 0 and db-proc-
param-count minus 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 309 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.17
JDBC/ODBC e*Way Methods Stored Procedure Functions
db-proc-param-type

Syntax

(db-proc-param-type connection-handle statement-handle param-
index)

Description

db-proc-param-type retrieves the SQL datatype of the specified parameter.

Parameters

Return Values

A string
If successful, db-proc-param-type returns a string which represents the SQL datatype.

Boolean
If an error occurred, returns #f (false). Use db-get-error-str to obtain the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (do ((i 0 (+ i 1))) ((= i (db-proc-param-count hdbc hstmt)))
 (display “parameter ”)
 (display (db-proc-param-name hdbc hstmt i))
 (display “: type = ”)
 (display (db-proc-param-type hdbc hstmt i))
 (display “, io = ”)
 (display (db-proc-param-io hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
proc-bind.

param-index integer The number between 0 and db-proc-
param-count minus 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 310 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.17
JDBC/ODBC e*Way Methods Stored Procedure Functions
db-proc-param-value

Syntax

(db-proc-param-value connection-handle statement-handle param-index)

Description

db-proc-param-value is used to retrieve the value of the OUT or INOUT parameter.

Parameters

Return Values

A string
Returns a string which represents the value of the OUT or INOUT parameter.

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count hdbc hstmt))
 (if (and (number? col-count) (> col-count 0))
 (do ((result (db-proc-fetch hdbc hstmt) (db-proc-
fetch hdbc hstmt)))
 ((boolean? result))
 (display result)
 (newline)
)
)
 (define prm-count (db-proc-param-count hdbc hstmt))
 (do ((i 0 (+ i 1))) ((= i prm-count))
 (if (not (equal? (db-proc-param-io hdbc hstmt i)
“IN”))
 (begin
 (display “output parameter ”)
 (display (db-proc-param-name hdbc hstmt i))

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
proc-bind.

param-index integer The number between 0 and db-proc-
param-count minus 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 311 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.17
JDBC/ODBC e*Way Methods Stored Procedure Functions
 (display “ = ”)
 (display (db-proc-param-value hdbc hstmt i))
 (newline)
)
)
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 312 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.17
JDBC/ODBC e*Way Methods Stored Procedure Functions
db-proc-return-exist

Syntax

(db-proc-return-exist connection-handle statement-handle)

Description

db-proc-return-exist determines whether or not the stored procedure has a return
value.

Parameters

Return Values

Boolean
Returns #t (true) if a return value exists or #f (false) when no return value exists or an
error occurs. Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((result (db-proc-fetch hdbc hstmt) (db-proc-
fetch hdbc hstmt)))
 ((boolean? result))
 (display result)
 (newline)
)
)
 (if (db-proc-return-exist hdbc hstmt)
 (begin
 (display “return type = ”)
 (display (db-proc-return-type hdbc hstmt))
 (newline)
 (display “ return value = ”)
 (display (db-proc-return-value hdbc hstmt))
 (newline)
)
)
 ...

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
proc-bind.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 313 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.17
JDBC/ODBC e*Way Methods Stored Procedure Functions
 ...
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 314 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.17
JDBC/ODBC e*Way Methods Stored Procedure Functions
db-proc-return-type

Syntax

(db-proc-return-type connection-handle statement-handle)

Description

db-proc-return-type determines the SQL datatype for the return value.

Parameters

Return Values

A string
Returns a SQL datatype string, i.e., SQL_VARCHAR.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "database login succeed !\n")
 (define hstmt (db-proc-bind hdbc "TEST_PROC"))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 "5")
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((result (db-proc-fetch hdbc hstmt) (db-proc-
fetch hdbc hstmt)))
 ((boolean? result))
 (display result)
 (newline)
)
)
 (if (db-proc-return-exist hdbc hstmt)
 (begin
 (display "return type = ")
 (display (db-proc-return-type hdbc hstmt))
 (newline)
 (display "return value = ")
 (display (db-proc-return-value hdbc hstmt))
 (newline)
)
)
 ...
 ...
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 315 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.17
JDBC/ODBC e*Way Methods Stored Procedure Functions
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 316 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.17
JDBC/ODBC e*Way Methods Stored Procedure Functions
db-proc-return-value

Syntax

(db-proc-return-value connection-handle statement-handle)

Description

db-proc-return-value retrieves the return value (return status) for the stored procedure.

Parameters

Return Values

A string
Returns a string which represents the return value.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((result (db-proc-fetch hdbc hstmt) (db-proc-
fetch hdbc hstmt)))
 ((boolean? result))
 (display result)
 (newline)
)
)
 (if (db-proc-return-exist hdbc hstmt)
 (begin
 (display “return type = ”)
 (display (db-proc-return-type hdbc hstmt))
 (newline)
 (display “ return value = ”)
 (display (db-proc-return-value hdbc hstmt))
 (newline)
)
)
 ...
 ...
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 317 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.17
JDBC/ODBC e*Way Methods Stored Procedure Functions
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Notes

1 Stored procedures can return an integer value called a return status. This status
indicates that the procedure completed successfully or shows the reason for failure.
The SQL Server has a defined set of return values; or users can define their own
return values.

2 The SQL Server reserves 0 to indicate a successful return, and negative values in the
range of -1 to -99 are assigned to a listing of reasons for failure. Numbers 0 and -1 to
-14 are in use currently (see below).

Value Meaning

0 procedure executed without error

-1 missing object

-2 datatype error

-3 process was chosen as deadlock victim

-4 permission error

-5 syntax error

-6 miscellaneous user error

-7 resource error, such as out of space

-8 non-fatal internal problem

-9 system limit was reached

-10 fatal internal inconsistency

-11 fatal internal inconsistency

-12 table or index is corrupt

-13 database is corrupt

-14 hardware error
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 318 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.18
JDBC/ODBC e*Way Methods Message Event Functions
5.18 Message Event Functions
The functions in this category control the e*Way’s message Event operations.

The message Event functions are:

db-struct-call on page 320

db-struct-execute on page 321

db-struct-fetch on page 322

db-struct-insert on page 324

db-struct-select on page 326

db-struct-update on page 328
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 319 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.18
JDBC/ODBC e*Way Methods Message Event Functions
db-struct-call

Syntax

(db-struct-call connection-handle statement-handle procedure-path)

Description

db-struct-call calls the stored procedure using the value from the procedure-path node
of the DART Event Type Definition, retrieves all procedure output and places this
information into the DART Event Type Definition

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).Use db-get-error-str to
retrieve the error message.

Name Type Description

connection-handle connection handle A connection handle to the
database.

statement-handle statement handle The statement handle that
identifies the stored
procedure specified. This is
the handle produced by db-
proc-bind.

procedure-path path The absolute path to the
procedure nodes in the Event
Type Definition.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 320 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.18
JDBC/ODBC e*Way Methods Message Event Functions
db-struct-execute

Syntax

(db-struct-execute connection-handle statement-handle statement-path)

Description

db-struct-execute calls the dynamic statement using the value from the statement-path
node of the DART Event Type Definition, retrieves all dynamic statement output and
places this information into the DART Event Type Definition.

Parameters

Return Values

Boolean
Returns #t (true) when successful; otherwise #f (false).

 Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the
database.

statement-handle statement handle The statement handle that
identifies the stored
procedure specified. This is
the handle produced by db-
stmt-bind.

statement-path statement path The absolute path to the
statement nodes in the Event
Type Definition.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 321 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.18
JDBC/ODBC e*Way Methods Message Event Functions
db-struct-fetch

Syntax

(db-struct-fetch connection-handle table-path)

Description

db-struct-fetch composes and executes an SQL FETCH statement according to the
information and data carried under the table-path node of an Event Type Definition,
and stores the return column values inside each of the column nodes.

Parameters

Return Values

Path
Returns the table path if the execution of the SQL FETCH statement is successful, or

Boolean
Returns #t (true) when the end of the fetch cycle is reached; otherwise, returns #f (false).
Use db-get-error-str to retrieve error message.

Throws

None.

Examples

(define input-event-format-file-name “in.ssc”)
(define output-event-format-file-name “out.ssc”)
(load “in.ssc”)
(load “out.ssc”)
(define src-collapsed-nodes ‘())
(define dest-collapsed-nodes ‘())
(define collapsed-rules ‘())
(define xlate
 (let ((input ($make-event-map in-delm in-struct))
 (output ($make-event-map out-delm out-struct)))
 (lambda ($make-event-string)
 ($event-parse input $make-event-string)
 ($event-clear output)
 (begin
 (if (db-struct-select hdbc ~output%out.dbo.table2)
 (do ((result ““) ((boolean? result))
 (set! result (db-struct-fetch hdbc
~output%out.dbo.table2))
 (if (boolean? result))
 (if (not result)
 (begin
 (display “db-struct-fetch
failed!\n”)
 (display (db-get-error-str hdbc))

Name Type Description

connection-handle connection handle A connection handle to the
database.

table-path Event path A table node in an Event Type
Definition.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 322 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.18
JDBC/ODBC e*Way Methods Message Event Functions
 (newline)
)
 (begin
 ...
)
)
 (begin
 (display result)
 (newline)
)
)
)
)
 ...
 (insert ”” ~output%out ””)
)
)
)
)

Explanation

The example above shows a typical code segment of a Collaboration Rule that uses the
Event Type Definition. In this example, the output defined by out.ssc is an Event Type
Definition. After clearing the output Event-string with the output Event Type
Definition, the Collaboration procedure uses db-struct-select to issue an SQLSELECT
statement based on the information carried under Event- path
[~output%out.dbo.table2].

It repeatedly uses db-struct-fetch to issue the SQL FETCH statement and store the
resulting column values inside each column node under the table path
[~output%out.dbo.table2] until there are no more records to fetch.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 323 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.18
JDBC/ODBC e*Way Methods Message Event Functions
db-struct-insert

Syntax

(db-struct-insert connection-handle table-path)

Description

db-struct-insert composes and executes an SQL INSERT statement according to the
information and data carried under the table-path node of an Event Type Definition.

Parameters

Return Values

Boolean
Returns #t (true) if the execution of the SQL INSERT statement is successful; otherwise,
returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define input-event-format-file-name “in.ssc”)
(define output-event-format-file-name “out.ssc”)
(load “in.ssc”)
(load “out.ssc”)
(define src-collapsed-nodes ‘())
(define dest-collapsed-nodes ‘())
(define collapsed-rules ‘())
(define xlate
 (let ((input ($make-event-map in-delm in-struct))
 (output ($make-event-map out-delm out-struct)))
 (lambda ($make-event-string)
 ($event-parse input $make-event-string)
 ($event-clear output)
 (begin
 (if (db-struct-insert hdbc ~input%in.dbo.table2)
 (begin
 ...
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
 ...
 (insert ”” ~output%out ””)
)
)
)

Name Type Description

connection-handle connection handle A connection handle to the
database.

table-path Event path A table node in an Event Type
Definition.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 324 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.18
JDBC/ODBC e*Way Methods Message Event Functions
)

Explanation

The example above shows a typical code segment of a Collaboration Rule that uses the
Event Type Definition. In this example, the input Event Definition defined by “in.ssc” is
an Event Type Definition. After parsing the input Event-string with the input Event
Definition, the Collaboration procedure uses db-struct-insert to issue an SQL INSERT
statement based on the information carried under Event path [~input%in.dbo.table2].
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 325 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.18
JDBC/ODBC e*Way Methods Message Event Functions
db-struct-select

Syntax

(db-struct-select connection-handle table-path where-clause)

Description

db-struct-select composes and executes an SQL SELECT statement according to the
information and data carried under the table-path node of an Event Type Definition.

Parameters

Return Values

Boolean
Returns #t (true) if the execution of the SQL SELECT statement is successful; otherwise,
returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define input-event-format-file-name “in.ssc”)
(define output-event-format-file-name “out.ssc”)
(load “in.ssc”)
(load “out.ssc”)
(define src-collapsed-nodes ‘())
(define dest-collapsed-nodes ‘())
(define collapsed-rules ‘())
(define xlate
 (let ((input ($make-event-map in-delm in-struct))
 (output ($make-event-map out-delm out-struct)))
 (lambda ($make-event-string)
 ($event-parse input $make-event-string)
 ($event-clear output)
 ($event-parse output (event->string output))
 (begin
 (if (db-struct-select hdbc ~output%out.dbo.table2 “ID
= 5”)
 (begin
 (db-struct-fetch hdbc ~output%out.dbo.table2)
 ...
 (db-sql-fetch-cancel hdbc “dbo.table2”)
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)

Name Type Description

connection-handle connection handle A connection handle to the
database.

table-path Event path A table node in an Event Type
Definition.

where-clause string The where clause of the SQL
SELECT statement.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 326 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.18
JDBC/ODBC e*Way Methods Message Event Functions
)
 ...
 (insert ”” ~output%out ””)
)
)
)
)

Explanation

The example above shows a typical code segment of a Collaboration Rules file that uses
the Event Type Definition. In this example, the output defined by out.ssc is an Event
Type Definition. After clearing the output Event-string, the Collaboration procedure
uses db-struct-select to issue an SQL SELECT statement based on the information
carried under the Event-path [~output%out.dbo.table2]. The selection was cancelled by
db-sql-fetch-cancel with “dbo.table2” as the selection name.

Notes

1 Both db-struct-select, and db-struct-fetch use the same algorithm to generate the
selection name for the db-sql-select and db-sql-fetch procedure call. If the table
path is a table node under an owner (schema) node the selection name will be
owner.table.

2 If the table path does not have an owner node above it, the selection name will be
table. You must issue a db-sql-fetch-cancel call with either owner.table or table as
the selection name, if you want to cancel the selection.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 327 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.18
JDBC/ODBC e*Way Methods Message Event Functions
db-struct-update

Syntax

(db-struct-update connection-handle table-path where-clause)

Description

db-struct-update composes and executes an SQL UPDATE statement according to the
information and data carried under the table-path node of an Event Type Definition.

Parameters

Return Values

Boolean
Returns #t (true) if the execution of the SQL UPDATE statement is successful;
otherwise, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define input-event-format-file-name “in.ssc”)
(define output-event-format-file-name “out.ssc”)
(load “in.ssc”)
(load “out.ssc”)
(define src-collapsed-nodes ‘())
(define dest-collapsed-nodes ‘())
(define collapsed-rules ‘())
(define xlate
 (let ((input ($make-event-map in-delm in-struct))
 (output ($make-event-map out-delm out-struct)))
 (lambda ($make-event-string)
 ($event-parse input $make-event-string)
 ($event-clear output)
 (begin
 (if (db-struct-update hdbc ~input%in.dbo.table2 “ID =
5”)
 (begin
 ...
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
 ...
 (insert ”” ~output%out ””)

Name Type Description

connection-handle connection handle A connection handle to the
database.

table-path Event path A table node in an Event Type
Definition.

where-clause string The where clause of the SQL
SELECT statement.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 328 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.18
JDBC/ODBC e*Way Methods Message Event Functions
)
)
)
)

Explanation

The example above shows a typical code segment of a Collaboration Rule that uses the
Event Type Definition. In this example, the input defined by in.ssc is an Event Type
Definition. After parsing the input Event-string with the input Event Type Definition,
the Collaboration procedure uses db-struct-update to issue an SQL UPDATE statement
based on the information carried under the Event-path [~input%in.dbo.table2].
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 329 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.19
JDBC/ODBC e*Way Methods Sample Monk Scripts
5.19 Sample Monk Scripts
This section includes sample Monk scripts which demonstrate how to use the ODBC
e*Way’s Monk functions. These Monk scripts demonstrate the following activities:

“Initializing Monk Extensions” on page 331

“Calling Stored Procedures” on page 332

“Inserting Records with Dynamic SQL Statements” on page 334

“Updating Records with Dynamic SQL Statements” on page 336

“Selecting Records with Dynamic SQL Statements” on page 338

“Deleting Records with Dynamic SQL Statements” on page 340

“Inserting a Binary Image to a Database” on page 341

“Retrieving an Image from a Database” on page 344

“Common Supporting Routines” on page 346
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 330 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.19
JDBC/ODBC e*Way Methods Sample Monk Scripts
5.19.1 Initializing Monk Extensions
The sample script shows how to initialize the Monk extensions. This function is used by
many of the other sample Monk scripts shown in this chapter.

To use this sample script in an actual implementation, modify the following values:

EGATE – This designates the location of the e*Gate client.

dsn – This is he name of the data source.

uid – This is the user name.

pwd – This is the login password.

;demo-init.monk

(define EGATE "/eGate/client")

; routine to load DART Monk extension
(define (load-library extension)
 (define filename (string-append EGATE "/bin/" extension))
 (if (file-exists? filename)
 (load-extension filename)
 (begin
 (display (string-append "File " filename " does not
exist.\n"))
 (abort filename)
)
)
)

(load-library "stc_monkext.dll")

;;
;; define STCDB variables, data source, user ID, and password
;;

(define STCDB "ORACLE8")

(load-library "stc_dbmonkext.dll")

(define dsn "database")
(define uid "Administrator")
(define pwd (encrypt-password uid "password"))
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 331 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.19
JDBC/ODBC e*Way Methods Sample Monk Scripts
5.19.2 Calling Stored Procedures
This script gives an example of calling Stored Procedures. See “Stored Procedure
Functions” on page 291 for more details.

;demo-proc-execute.monk

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

; call stored procedure and display results
(define (execute-procedure hdbc hstmt)
 (let ((prm-count (db-proc-param-count hdbc hstmt)))
 (if (db-proc-execute hdbc hstmt)
 (begin
 (do ((col-count (db-proc-column-count hdbc hstmt) (db-
proc-column-count hdbc hstmt)))
 ((or (not (number? col-count)) (= col-count 0)))
 (display-proc-column-property hdbc hstmt col-count)
 (display-proc-column-value hdbc hstmt col-count)
)
 (display-proc-parameter-output-value hdbc hstmt prm-count)
 (if (db-proc-return-exist hdbc hstmt)
 (begin
 (display "return: value = ")
 (display (db-proc-return-value hdbc hstmt))
 (newline)
)
)
)
 (display (db-get-error-str hdbc))
)
)
)

; make new connection handle
(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")

 ; bind the stored procedure
 (define hstmt1 (bind-procedure hdbc "PERSONNEL.GET_EMPLOYEES"))

 ; call the stored procedure if the binding is successful
 (if (statement-handle? hstmt1)
 (begin
 (display "call PERSONNEL.GET_EMPLOYEES to get all sales
...\n\n")
 (if (and
 (db-proc-param-assign hdbc hstmt1 0 "30")
 (db-proc-param-assign hdbc hstmt1 1 "10")
)
 (execute-procedure hdbc hstmt1)
 (display (db-get-error-str hdbc))
)
)
)
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 332 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.19
JDBC/ODBC e*Way Methods Sample Monk Scripts
 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 333 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.19
JDBC/ODBC e*Way Methods Sample Monk Scripts
5.19.3 Inserting Records with Dynamic SQL Statements
;demo-stmt-insert.monk

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

; execute dynamic statement and display results
(define (execute-statement hdbc hstmt)
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (display-stmt-row-count hdbc hstmt)
 #t
)
 #f
)
)

; make new connection handle
(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

(define stmt1 "INSERT INTO SCOTT.BONUS SELECT ENAME, JOB, SAL, COMM
FROM SCOTT.EMP WHERE DEPTNO = ?")

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")

 ; bind the dynamic statement
 (define hstmt1 (bind-statement hdbc stmt1))

 ; assign parameter and execute the dynamic statement
 (if (statement-handle? hstmt1)
 (begin
 (display "\nInsert accounting department into bonus table
...\n")
 (if (db-stmt-param-assign hdbc hstmt1 0 "10")
 (if (execute-statement hdbc hstmt1)
 (begin
 (display "\nCommit the insertions ...\n")
 (if (not (db-commit hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)

 (display "\nInsert sales department into bonus table
...\n")
 (if (db-stmt-param-assign hdbc hstmt1 0 "20")
 (if (execute-statement hdbc hstmt1)
 (begin
 (display "\nCommit the insertions ...\n")
 (if (not (db-commit hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 334 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.19
JDBC/ODBC e*Way Methods Sample Monk Scripts
)
 (display (db-get-error-str hdbc))
)
)
)

 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 335 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.19
JDBC/ODBC e*Way Methods Sample Monk Scripts
5.19.4 Updating Records with Dynamic SQL Statements
;demo-stmt-update.monk

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

; execute dynamic statement and display results
(define (execute-statement hdbc hstmt)
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (display-stmt-row-count hdbc hstmt)
 #t
)
 #f
)
)

; make new connection handle
(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

(define stmt1 "UPDATE SCOTT.BONUS SET COMM = ? WHERE JOB = ?")

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")

 ; bind the dynamic statement
 (define hstmt1 (bind-statement hdbc stmt1))

 ; assign parameter and execute the dynamic statement
 (if (statement-handle? hstmt1)
 (begin
 (display "\nUpdate commission of manager ...\n")
 (if
 (and
 (db-stmt-param-assign hdbc hstmt1 0 "10")
 (db-stmt-param-assign hdbc hstmt1 1 "MANAGER")
)
 (if (execute-statement hdbc hstmt1)
 (begin
 (display "\nCommit the updates ...\n")
 (if (not (db-commit hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)

 (display "\nUpdate commission of clerk ...\n")
 (if
 (and
 (db-stmt-param-assign hdbc hstmt1 0 "20")
 (db-stmt-param-assign hdbc hstmt1 1 "CLERK")
)
 (if (execute-statement hdbc hstmt1)
 (begin
 (display "\nCommit the updates ...\n")
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 336 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.19
JDBC/ODBC e*Way Methods Sample Monk Scripts
 (if (not (db-commit hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
)
)

 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 337 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.19
JDBC/ODBC e*Way Methods Sample Monk Scripts
5.19.5 Selecting Records with Dynamic SQL Statements
;demo-stmt-select.monk

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

; execute dynamic statement and display results
(define (execute-statement hdbc hstmt)
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (display-stmt-column-value hdbc hstmt)
 #t
)
 #f
)
)

; make new connection handle
(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

(define stmt1 "SELECT EMPNO, ENAME, JOB FROM SCOTT.EMP WHERE JOB = ?")
(define stmt2 "SELECT ENAME, DNAME, JOB, HIREDATE FROM SCOTT.EMP,
SCOTT.DEPT WHERE EMP.DEPTNO = DEPT.DEPTNO AND DEPT.DNAME = ?")

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")

 ; bind the dynamic statements
 (define hstmt1 (bind-statement hdbc stmt1))
 (define hstmt2 (bind-statement hdbc stmt2))

 ; assign parameter and execute the dynamic statement
 (if (statement-handle? hstmt1)
 (begin
 (display "\nList all salesman ...\n\n")
 (if (db-stmt-param-assign hdbc hstmt1 0 "SALESMAN")
 (if (not (execute-statement hdbc hstmt1))
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display "\nList all manager ...\n\n")
 (if (db-stmt-param-assign hdbc hstmt1 0 "MANAGER")
 (if (not (execute-statement hdbc hstmt1))
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
)
)

 (if (statement-handle? hstmt2)
 (begin
 (display "\nList employee of accounting department
...\n\n")
 (if (db-stmt-param-assign hdbc hstmt2 0 "ACCOUNTING")
 (if (not (execute-statement hdbc hstmt2))
 (display (db-get-error-str hdbc))
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 338 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.19
JDBC/ODBC e*Way Methods Sample Monk Scripts
)
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 339 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.19
JDBC/ODBC e*Way Methods Sample Monk Scripts
5.19.6 Deleting Records with Dynamic SQL Statements
;demo-stmt-delete.monk

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

; execute dynamic statement and display results
(define (execute-statement hdbc hstmt)
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (display-stmt-row-count hdbc hstmt)
 #t
)
 #f
)
)

; make new connection handle
(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

(define stmt1 "DELETE FROM SCOTT.BONUS WHERE ENAME IS NOT NULL")

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")

 ; bind the dynamic statement
 (define hstmt1 (bind-statement hdbc stmt1))

 ; assign parameter and execute the dynamic statement
 (if (statement-handle? hstmt1)
 (begin
 (display "\nDelete records from scott.bonus table ...\n")
 (if (execute-statement hdbc hstmt1)
 (begin
 (display "\nCommit the deletions ...\n")
 (if (not (db-commit hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)
)
)

 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 340 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.19
JDBC/ODBC e*Way Methods Sample Monk Scripts
5.19.7 Inserting a Binary Image to a Database
This sample shows how to insert a Binary Image into a Database. It uses both Static and
Dynamic SQL functions. See “Static SQL Functions” on page 261 and “Dynamic SQL
Functions” on page 278 for more details.

;demo-image-insert.monk

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

(define (query-exist hdbc hstmt id)
 (let ((rec-count 0) (result '#()))
 (if (db-stmt-param-assign hdbc hstmt 0 id)
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (set! result (vector-ref (db-stmt-fetch hdbc hstmt) 0))
 (set! rec-count (string->number result))
 (set! result (db-stmt-fetch-cancel hdbc hstmt))
 (if (> rec-count 0)
 (begin
 (display "image already exist\n")
 #t
)
 #f
)
)
 (begin
 (display (db-get-error-str hdbc))
 #f
)
)
 (begin
 (display (db-get-error-str hdbc))
 #f
)
)
)
)

(define (execute-statement hdbc hstmt)
 (let ((col-count (db-stmt-column-count hdbc hstmt)) (row-count 0))
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (if (> col-count 0)
 (if (not (display-stmt-column-value hdbc hstmt col-
count))
 (display (db-get-error-str hdbc))
)
)
 (set! row-count (db-stmt-row-count hdbc hstmt))
 (if (boolean? row-count)
 (display (db-get-error-str hdbc))
 (display (string-append "number of image insert = "
(number->string row-count) "\n"))
)
 (newline)
 #t
)
 #f
)
)
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 341 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.19
JDBC/ODBC e*Way Methods Sample Monk Scripts
)

(define (bind-image-statement hdbc stmt)
 (let ((hstmt (db-stmt-bind-binary hdbc stmt)))
 (display (string-append "\nDynamic statement : " stmt "\n"))
 (if (statement-handle? hstmt)
 (begin
; (db-stmt-param-bind hdbc hstmt 0 "SQL_INTEGER" 4 0)
; (db-stmt-param-bind hdbc hstmt 1 "SQL_VARCHAR" 20 0)
; (db-stmt-param-bind hdbc hstmt 2 "SQL_VARCHAR" 10 0)
; (db-stmt-param-bind hdbc hstmt 3 "SQL_INTEGER" 38 0)
; (db-stmt-param-bind hdbc hstmt 4 "SQL_INTEGER" 38 0)
; (db-stmt-param-bind hdbc hstmt 5 "SQL_INTEGER" 10 0)
 (db-stmt-param-bind hdbc hstmt 6 "SQL_LONGVARBINARY"
2000000 0)
 (define prm-count (db-stmt-param-count hdbc hstmt))
 (display-stmt-parameter-property hdbc hstmt prm-count)

 (define col-count (db-stmt-column-count hdbc hstmt))
 (display-stmt-column-property hdbc hstmt col-count)
)
 (display (db-get-error-str hdbc))
)
 hstmt
)
)

(define image1-id "7100")
(define image1-name "Coast")
(define image1-type "JPEG")
(define image1-width "1280")
(define image1-height "1024")
(define image1-file (string-append image1-name ".jpg"))

(define image-port (open-input-file image1-file))
(define image1-data (read image-port 1000000))
(close-port image-port)
(define image1-size (number->string (string-length image1-data)))

(define image2-id "7200")
(define image2-name "Launch")
(define image2-type "JPEG")
(define image2-width "2000")
(define image2-height "1600")
(define image2-file (string-append image2-name ".jpg"))

(define image-port (open-input-file image2-file))
(define image2-data (read image-port 2000000))
(close-port image-port)
(define image2-size (number->string (string-length image2-data)))

(define hdbc (make-connection-handle))
(display (connection-handle? hdbc)) (newline)

(define stmt0 "select count(0) from SCOTT.IMAGE where PIX_ID = ?")
(define stmt1 "insert into SCOTT.IMAGE (PIX_ID, PIX_NAME, PIX_TYPE,
BYTE_SIZE, PIX_WIDTH, PIX_HEIGHT, PIX_DATA) values (?, ?, ?, ?, ?, ?,
?)")

(if (db-login hdbc dsn uid pwd)
(begin
(display "\ndatabase login succeed !\n")
(display (db-dbms hdbc)) (newline)
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 342 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.19
JDBC/ODBC e*Way Methods Sample Monk Scripts
(display (db-std-timestamp-format hdbc)) (newline)
(display (db-max-long-data-size hdbc 2000000)) (newline)

; bind the query and insert statement
(define hquery (bind-statement hdbc stmt0))
(define hinsert (bind-image-statement hdbc stmt1))

(if (and
(statement-handle? hquery)
(statement-handle? hinsert)

)
(begin
(if (not (query-exist hdbc hquery image1-id))
(begin
(display (string-append "insert image " image1-file "\n"))
(if (and

(db-stmt-param-assign hdbc hinsert 0 image1-id)
(db-stmt-param-assign hdbc hinsert 1 image1-name)
(db-stmt-param-assign hdbc hinsert 2 image1-type)
(db-stmt-param-assign hdbc hinsert 3 image1-size)
(db-stmt-param-assign hdbc hinsert 4 image1-width)
(db-stmt-param-assign hdbc hinsert 5 image1-height)
(db-stmt-param-assign hdbc hinsert 6 image1-data)

)
(if (execute-statement hdbc hinsert)
(db-commit hdbc)
(display (db-get-error-str hdbc))

)
(display (db-get-error-str hdbc))

)
)

)

(if (not (query-exist hdbc hquery image2-id))
(begin
(display (string-append "insert image " image2-file "\n"))
(if (and

(db-stmt-param-assign hdbc hinsert 0 image2-id)
(db-stmt-param-assign hdbc hinsert 1 image2-name)
(db-stmt-param-assign hdbc hinsert 2 image2-type)
(db-stmt-param-assign hdbc hinsert 3 image2-size)
(db-stmt-param-assign hdbc hinsert 4 image2-width)
(db-stmt-param-assign hdbc hinsert 5 image2-height)
(db-stmt-param-assign hdbc hinsert 6 image2-data)

)
(if (execute-statement hdbc hinsert)
(db-commit hdbc)
(display (db-get-error-str hdbc))

)
(display (db-get-error-str hdbc))

)
)

)
)

)

(if (not (db-logout hdbc))
(display (db-get-error-str hdbc))

)
)
(display (db-get-error-str hdbc))

)

e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 343 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.19
JDBC/ODBC e*Way Methods Sample Monk Scripts
5.19.8 Retrieving an Image from a Database
This sample shows how to Retrieve an image from a Database. It uses both Static and
Dynamic SQL functions. See “Static SQL Functions” on page 261 and “Dynamic SQL
Functions” on page 278 for more details.

;demo-image-select.monk

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

(define (get-image hdbc hstmt)
 (do (
 (result (db-stmt-fetch hdbc hstmt) (db-stmt-fetch hdbc
hstmt))
 (first_name "")
 (file_type "")
 (file_name "")
 (width "")
 (height "")
 (output_port '())
)
 ((boolean? result) result)
 (set! first_name (vector-ref result 0))
 (set! file_type (strip-trailing-whitespace (vector-ref result
1)))
 (set! width (strip-trailing-whitespace (vector-ref result 2)))
 (set! height (strip-trailing-whitespace (vector-ref result 3)))
 (cond
 ((string=? file_type "JPEG") (set! file_name (string-append
first_name ".jpg")))
 ((string=? file_type "GIF") (set! file_name (string-append
first_name ".gif")))
 ((string=? file_type "BITMAP") (set! file_name (string-append
first_name ".bmp")))
 ((string=? file_type "TIFF") (set! file_name (string-append
first_name ".tif")))
 (else (set! file_name (string-append first_name ".raw")))
)
 (if (file-exists? file_name)
 (file-delete file_name)
)
 (display (string-append "picture name = " file_name "\n"))
 (display (string-append "picture size = " width " x " height
"\n\n"))
 (set! output_port (open-output-file file_name))
 (display (vector-ref result 4) output_port)
 (close-port output_port)
)
)

(define (execute-statement hdbc hstmt)
 (let ((col-count (db-stmt-column-count hdbc hstmt)) (row-count 0))
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (if (> col-count 0)
 (if (not (get-image hdbc hstmt))
 (display (db-get-error-str hdbc))
)
)
 (set! row-count (db-stmt-row-count hdbc hstmt))
 (if (boolean? row-count)
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 344 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.19
JDBC/ODBC e*Way Methods Sample Monk Scripts
 (display (db-get-error-str hdbc))
 (display (string-append "number of image retrieved = "
(number->string row-count) "\n"))
)
 (newline)
 #t
)
 #f
)
)
)

(define hdbc (make-connection-handle))
(display (connection-handle? hdbc)) (newline)

(define stmt "select PIX_NAME, PIX_TYPE, PIX_WIDTH, PIX_HEIGHT,
PIX_DATA from SCOTT.IMAGE where PIX_ID = ?")

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")
 (display (db-dbms hdbc)) (newline)
 (display (db-std-timestamp-format hdbc)) (newline)
 (display (db-max-long-data-size hdbc 2000000)) (newline)

 ; bind the select statement
 (define hselect (bind-binary-statement hdbc stmt))

 ; execute the dynamic statement
 (display "select IMAGE table\n")
 (if (statement-handle? hselect)
 (begin
 (if (db-stmt-param-assign hdbc hselect 0 "7100")
 (if (not (execute-statement hdbc hselect))
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (if (db-stmt-param-assign hdbc hselect 0 "7200")
 (if (not (execute-statement hdbc hselect))
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
)
)

 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 345 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.19
JDBC/ODBC e*Way Methods Sample Monk Scripts
5.19.9 Common Supporting Routines
This sample script displays and defines values and parameters for stored procedures.
The routines contained in this script are used by many of the Monk samples in this
chapter. For more details about functions used in this script, see “Stored Procedure
Functions” on page 291

;demo-common.monk

;;
;; stored procedure auxiliary functions
;;

; display parameter properties of the stored procedure
(define (display-proc-parameter-property hdbc hstmt prm-count)
 (display "parameter count = ") (display prm-count) (newline)
 (do ((i 0 (+ i 1))) ((= i prm-count))
 (display "parameter ")
 (display (db-proc-param-name hdbc hstmt i))
 (display ": type = ")
 (display (db-proc-param-type hdbc hstmt i))
 (display ", io = ")
 (display (db-proc-param-io hdbc hstmt i))
 (newline)
)
)

; display value of output parameters from stored procedure
(define (display-proc-parameter-output-value hdbc hstmt prm-count)
 (do ((i 0 (+ i 1))) ((= i prm-count))
 (if (not (equal? (db-proc-param-io hdbc hstmt i) "IN"))
 (begin
 (display "output parameter ")
 (display (db-proc-param-name hdbc hstmt i))
 (display " = ")
 (display (db-proc-param-value hdbc hstmt i))
 (newline)
)
)
)
)

; display column properties of the return result set
(define (display-proc-column-property hdbc hstmt col-count)
 (display "column count = ") (display col-count) (newline)
 (do ((i 0 (+ i 1))) ((= i col-count))
 (display "column ")
 (display (db-proc-column-name hdbc hstmt i))
 (display ": type = ")
 (display (db-proc-column-type hdbc hstmt i))
 (newline)
)
 (newline)
)

; display column value of the return result set of the stored
procedure
(define (display-proc-column-value hdbc hstmt col-count)
 (define (fetch-next)
 (let ((result (db-proc-fetch hdbc hstmt)))
 (if (boolean? result)
 result
 (begin (display result) (newline) (fetch-next))
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 346 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.19
JDBC/ODBC e*Way Methods Sample Monk Scripts
)
)
)
 (fetch-next)
 (newline)
)

; bind stored procedure and display parameter properties
(define (bind-procedure hdbc proc)
 (let ((hstmt (db-proc-bind hdbc proc)))
 (if (statement-handle? hstmt)
 (begin
 (display (string-append "bind stored procedure : " proc
"\n"))
 (define prm-count (db-proc-param-count hdbc hstmt))
 (display-proc-parameter-property hdbc hstmt prm-count)
 (newline)
 (if (db-proc-return-exist hdbc hstmt)
 (begin
 (display "return: type = ")
 (display (db-proc-return-type hdbc hstmt))
 (newline)
)
)
 (newline)
)
 (display (db-get-error-str hdbc))
)
 hstmt
)
)

;;
;; dynamic statement auxiliary functions
;;

; display parameter properties of the SQL statement
(define (display-stmt-parameter-property hdbc hstmt prm-count)
 (display "parameter count = ") (display prm-count) (newline)
 (do ((i 0 (+ i 1))) ((= i prm-count))
 (display "parameter #")
 (display i)
 (display ": type = ")
 (display (db-stmt-param-type hdbc hstmt i))
 (newline)
)
 (newline)
)

; display column properties of the SQL statement
(define (display-stmt-column-property hdbc hstmt col-count)
 (display "column count = ") (display col-count) (newline)
 (do ((i 0 (+ i 1))) ((= i col-count))
 (display "column ")
 (display (db-stmt-column-name hdbc hstmt i))
 (display ": type = ")
 (display (db-stmt-column-type hdbc hstmt i))
 (newline)
)
 (newline)
)

e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 347 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.19
JDBC/ODBC e*Way Methods Sample Monk Scripts
; display column value of the return result set of the SQL statement
(define (display-stmt-column-value hdbc hstmt)
 (define (fetch-next)
 (let ((result (db-stmt-fetch hdbc hstmt)))
 (if (boolean? result)
 result
 (begin (display result) (newline) (fetch-next))
)
)
)
 (fetch-next)
 (newline)
)

; display row count affected by the execution of the SQL statement
(define (display-stmt-row-count hdbc hstmt)
 (let ((row-count (db-stmt-row-count hdbc hstmt)))
 (cond
 ((= row-count 0) (display "\n(no row affected)\n"))
 ((= row-count 1) (display "\n(1 row affected)\n"))
 (else (display (string-append "\n(" (number->string row-
count) " rows affected)\n")))
)
)
)

; bind dynamic statement and display paramters and column properties
(define (bind-statement hdbc stmt)
 (let ((hstmt (db-stmt-bind hdbc stmt)))
 (display (string-append "\nDynamic statement : " stmt "\n"))
 (if (statement-handle? hstmt)
 (begin
 (define prm-count (db-stmt-param-count hdbc hstmt))
 (display-stmt-parameter-property hdbc hstmt prm-count)

 (define col-count (db-stmt-column-count hdbc hstmt))
 (display-stmt-column-property hdbc hstmt col-count)
)
 (display (db-get-error-str hdbc))
)
 hstmt
)
)

; bind dynamic statement to input/output raw binary data
(define (bind-binary-statement hdbc stmt)
 (let ((hstmt (db-stmt-bind-binary hdbc stmt)))
 (display (string-append "\nDynamic statement : " stmt "\n"))
 (if (statement-handle? hstmt)
 (begin
 (define prm-count (db-stmt-param-count hdbc hstmt))
 (display-stmt-parameter-property hdbc hstmt prm-count)

 (define col-count (db-stmt-column-count hdbc hstmt))
 (display-stmt-column-property hdbc hstmt col-count)
)
 (display (db-get-error-str hdbc))
)
 hstmt
)
)

e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 348 SeeBeyond Proprietary and Confidential

Chapter 6

Monk ODBC e*Way Functions

The functions described in this chapter control the ODBC e*Way’s basic operations as
well as those needed for database access.

Note: The functions described in this section can only be used by the functions defined
within the e*Way’s configuration file. None of the functions are available to
Collaboration Rules scripts executed by the e*Way.

This Chapter Explains:

Basic Functions on page 349

Standard e*Way Functions on page 357

General Connection Functions on page 374

Static SQL Functions on page 388

Dynamic SQL Functions on page 405

Stored Procedure Functions on page 418

Message Event Functions on page 446

Sample Monk Scripts on page 457

6.1 Basic Functions
The functions in this category control the e*Way’s most basic operations.

The basic functions are:

event-send-to-egate on page 350

get-logical-name on page 351

send-external-down on page 352

send-external-up on page 353

shutdown-request on page 354

start-schedule on page 355

stop-schedule on page 356
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 349 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Monk ODBC e*Way Functions Basic Functions
event-send-to-egate

Syntax

(event-send-to-egate string)

Description

event-send-to-egate sends an Event from the e*Way. If the external collaboration(s) is
successful in publishing the Event to the outbound queue, the function will return #t,
otherwise #f.

Parameters

Return Values

Boolean
Returns #t when successful and #f when an error occurs.

Throws

None.

Additional information

This function can be called by any e*Way function when it is necessary to send data to
the e*Gate system in a blocking fashion.

Name Type Description

string string The data to be sent to the e*Gate
system
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 350 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Monk ODBC e*Way Functions Basic Functions
get-logical-name

Syntax

(get-logical-name)

Description

get-logical-name returns the logical name of the e*Way.

Parameters

None.

Return Values

string
Returns the name of the e*Way (as defined by the Enterprise Manager).

Throws

None.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 351 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Monk ODBC e*Way Functions Basic Functions
send-external-down

Syntax

(send-external-down)

Description

send-external down instructs the e*Way that the connection to the external system is
down.

Parameters

None.

Return Values

None.

Throws

None.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 352 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Monk ODBC e*Way Functions Basic Functions
send-external-up

Syntax

(send-external-up)

Description

send-external-up instructs the e*Way that the connection to the external system is up.

Parameters

None.

Return Values

None.

Throws

None.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 353 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Monk ODBC e*Way Functions Basic Functions
shutdown-request

Syntax

(shutdown-request)

Description

shutdown-request completes the e*Gate shutdown procedure that was initiated by the
Control Broker but was interrupted by returning a non-null value within the
Shutdown Command Notification Function (see “Shutdown Command Notification
Function” on page 45). Once this function is called, shutdown proceeds immediately.

Once interrupted, the e*Way’s shutdown cannot proceed until this Monk function is
called. If you do interrupt an e*Way shutdown, we recommend that you complete the
process in a timely fashion.

Parameters

None.

Return Values

None.

Throws

None.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 354 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Monk ODBC e*Way Functions Basic Functions
start-schedule

Syntax

(start-schedule)

Description

start-schedule requests that the e*Way execute the Exchange Data with External
Function specified within the e*Way’s configuration file. Does not effect any defined
schedules.

Parameters

None.

Return Values

None.

Throws

None.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 355 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Monk ODBC e*Way Functions Basic Functions
stop-schedule

Syntax

(stop-schedule)

Description

stop-schedule requests that the e*Way halt execution of the Exchange Data with
External Function specified within the e*Way’s configuration file. Execution will be
stopped when the e*Way concludes any open transaction. Does not effect any defined
schedules, and does not halt the e*Way process itself.

Parameters

None.

Return Values

None.

Throws

None.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 356 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Monk ODBC e*Way Functions Standard e*Way Functions
6.2 Standard e*Way Functions
The functions in this category control the e*Way’s standard operations.

The standard functions are:

db-stdver-conn-estab on page 358

db-stdver-conn-shutdown on page 360

db-stdver-conn-ver on page 361

db-stdver-data-exchg on page 363

db-stdver-data-exchg-stub on page 364

db-stdver-init on page 365

db-stdver-neg-ack on page 366

db-stdver-pos-ack on page 367

db-stdver-proc-outgoing on page 368

db-stdver-proc-outgoing-stub on page 370

db-stdver-shutdown on page 372

db-stdver-startup on page 373
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 357 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Monk ODBC e*Way Functions Standard e*Way Functions
db-stdver-conn-estab

Syntax

(db-stdver-conn-estab)

Description

db-stdver-conn-estab is used to establish external system connection.The following
tasks are performed by this function:

construct a new connection handle

call db-long to connect to database

setup timestamp format if required

setup maximum long data buffer limit if required

bind dynamic SQL statement and stored procedures.

Parameters

None.

Return Values

A string
UP or SUCCESS if connection established, anything else if connection not established.

Throws

None.

Additional Information

In order to use the standard database time format, the following function call has been
added to this function (immediately before the call to the db-bind function):

(db-std-timestamp-format connection-handle)

To override the use of the standard database time format, the db-std-timestamp-format
function call should be removed.

For "Maximum Long Data Size" the ODBC library allocates an internal buffer for each
SQL_LONGVARCHAR and SQL_LONGVARBINARY data, when the SQL statement
or stored procedure that contains these data types are bound. The default size of each
internal data buffer is 1024K(1048576) bytes. If the user needs to handle long data larger
than this default value, add the following function call to specify the maximum data
size:

(db-max-long-data-size connection-handle maximum-data-size)

See db-max-long-data-size on page 384 for more information.

Examples

(define db-stdver-conn-estab
 (lambda ()
 (let ((result "DOWN")(last_dberr ""))
 (display "[++] Executing e*Way external connection establishment
function.")
 (display "db-stdver-conn-estab: logging into the database with:\n")
 (display "DATABASE NAME = ")
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 358 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Monk ODBC e*Way Functions Standard e*Way Functions
 (display DATABASE_SETUP_DATABASE_NAME)
 (newline)
 (display "USER NAME = ")
 (display DATABASE_SETUP_USER_NAME)
 (newline)
 (set! connection-handle (make-connection-handle))
 (if (connection-handle? connection-handle)
 (begin
 (if (db-login connection-handle DATABASE_SETUP_DATABASE_NAME
DATABASE_SETUP_USER_NAME DATABASE_SETUP_ENCRYPTED_PASSWORD)
 (begin
 (db-bind)
 (set! result "UP")
)
 (begin
 (set! last_dberr (db-get-error-str connection-handle))
 (display last_dberr)
 (event-send "ALERTCAT_OPERATIONAL" "ALERTSUBCAT_CANTCONN"
"ALERTINFO_FATAL" "0" "Cannot connect to database" (string-append
"Failed to connect to database: " DATABASE_SETUP_DATABASE_NAME "with
error" last_dberr) 0 (list))
 (newline)
 (db-logout connection-handle)
 (set! result "DOWN")
)
)
)
 (begin
 (set! result "DOWN")
 (display "Failed to create connection handle.")
 (event-send "ALERTCAT_OPERATIONAL" "ALERTSUBCAT_UNUSABLE"
"ALERTINFO_FATAL" "0" "database connection handle creation error"
"Failed to create database connection handle" 0 (list))
)
)
 result
)
))
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 359 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Monk ODBC e*Way Functions Standard e*Way Functions
db-stdver-conn-shutdown

Syntax

(db-stdver-conn-shutdown string)

Description

db-stdver-conn-shutdown is called by the system to request that the interface
disconnect from the external system, preparing for a suspend/reload cycle. Any return
value indicates that the suspend can occur immediately, and the interface will be
placed in the down state.

Parameters

Return Values

A string
A return of "SUCCESS" indicates that the external is ready to suspend.

Throws

None.

Examples

(define db-stdver-conn-shutdown
 (lambda (message-string)
 (let ((result "SUCCESS"))
 (comment "Std e*Way connection shutdown function" "[++] Usage:
Function called by system to request that the interface disconnect
from the external system, preparing for a suspend/reload cycle. Any
return value indicates that the suspend can occur immediately, and the
interface will be placed in the down state. [++] Input to expect:
Function should not expect input. [++] Expected return values:
anything indicates that the external is ready to suspend.n")
 (comment "db-stdver-conn-shutdown [++] Implementation specific
comment" "none")
 (display "[++] Executing e*Way external connection shutdown
function.")
 (display message-string)
 (db-logout connection-handle)
 result
)
))

Name Type Description

string string When the e*Way calls this function, it will pass the
string "SUSPEND_NOTIFICATION" as the
parameter.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 360 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Monk ODBC e*Way Functions Standard e*Way Functions
db-stdver-conn-ver

Syntax

(db-stdver-conn-ver)

Description

db-stdver-conn-ver is used to verify whether the external system connection is
established.

Parameters

None.

Return Values

A string
UP or SUCCESS if connection established, anything else if connection not established.

Throws

None.

Additional Information

To use standard database time format, add the following function call to this function:
(db-std-timestamp-format connection-handle) after the (db-bind) call.

This SQL statement is designed for DBMSs other than Oracle; the use of this function
occasionally results in an error in the e*Way’s log file. Despite the error, the function
will complete successfully.

Note: To users of earlier versions of DART: db-check-connect calls should be replaced
with db-alive calls.

Examples

(define db-stdver-conn-ver
 (lambda ()
 (let ((result "DOWN")(last_dberr ""))
 (display "[++] Executing e*Way external connection verification
function.")
 (display "db-stdver-conn-ver: checking connection status...\n")
 (cond ((string=? STCDB "SYBASE") (db-sql-select connection-handle
"verify" "select getdate()")) ((string=? STCDB "ORACLE8i") (db-sql-
select connection-handle "verify" "select sysdate from dual"))
((string=? STCDB "ORACLE8") (db-sql-select connection-handle "verify"
"select sysdate from dual")) ((string=? STCDB "ORACLE7") (db-sql-
select connection-handle "verify" "select sysdate from dual")) (else
(db-sql-select connection-handle "verify" "select {fn NOW()}")))
 (if (db-alive connection-handle)
 (begin
 (db-sql-fetch-cancel connection-handle "verify")
 (set! result "UP")
)
 (begin
 (set! last_dberr (db-get-error-str connection-handle))
 (display last_dberr)
 (event-send "ALERTCAT_OPERATIONAL" "ALERTSUBCAT_LOSTCONN"
"ALERTINFO_FATAL" "0" "Lost connection to database" (string-append
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 361 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Monk ODBC e*Way Functions Standard e*Way Functions
"Lost connection to database: " DATABASE_SETUP_DATABASE_NAME "with
error" last_dberr) 0 (list))
 (set! result "DOWN")
)
)
 result
)
))
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 362 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Monk ODBC e*Way Functions Standard e*Way Functions
db-stdver-data-exchg

Syntax

(db-stdver-data-exchg)

Description

db-stdver-data-exchg is used for sending a received Event from the external system to
e*Gate. The function expects no input.

Parameters

None.

Return Values

A string
A message-string indicates a successful operation. The Event is sent to e*Gate

An empty string indicates a successful operation. Nothing is sent to e*Gate.

CONNERR indicates the loss of connection with the external, client moves to a down
state and attempts to connect. Upon reconnecting, this function will be re-executed
with the same input message.

Throws

None.

Examples

(define db-stdver-data-exchg
 (lambda ()
 (let ((result ""))
 (display "[++] Executing e*Way external data exchange function.")
 result
)
))
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 363 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Monk ODBC e*Way Functions Standard e*Way Functions
db-stdver-data-exchg-stub

Syntax

(db-stdver-data-exchg-stub)

Description

db-stdver-data-exchg-stub is used as a place holder for the function entry point for
sending an Event from the external system to e*Gate. When the interface is configured
as an outbound only connection, this function should not be called. The function
expects no input.

Parameters

None.

Return Values

A string
A message-string indicates a successful operation. The Event is sent to e*Gate

An empty string indicates a successful operation. Nothing is sent to e*Gate.

CONNERR indicates the loss of connection with the external, client moves to a down
state and attempts to connect. Upon reconnecting, this function will be re-executed
with the same input message.

Throws

None.

Examples

(define db-stdver-data-exchg-stub
 (lambda ()
 (let ((result ""))
 (event-send "ALERTCAT_OPERATIONAL" "ALERTSUBCAT_INTEREST"
"ALERTINFO_NONE" "0" "Possible configuration error." "Default eway
data exchange function called." 0 (list))
 result
)
))
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 364 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Monk ODBC e*Way Functions Standard e*Way Functions
db-stdver-init

Syntax

(db-stdver-init)

Description

db-stdver-init begins the initialization process for the e*Way. The function loads all of
the monk extension library files that the other e*Way functions will access.

Parameters

None.

Return Values

A string
If a FAILURE string is returned, the e*Way will shutdown. Any other return indicates
success.

Throws

None.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 365 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Monk ODBC e*Way Functions Standard e*Way Functions
db-stdver-neg-ack

Syntax

(db-stdver-neg-ack message-string)

Description

db-stdver-neg-ack is used to send a negative acknowledgement to the external system,
and for post processing after failing to send data to e*Gate.

Parameters

Return Values

A string
An empty string indicates a successful operation.

CONNERR indicates a loss of connection with the external, client moves to a down
state and attempts to connect, on reconnect neg-ack function will be re-executed.

Throws

None.

Examples

(define db-stdver-neg-ack
 (lambda (message-string)
 (let ((result ""))
 ((display "[++] Executing e*Way external negative acknowledgment
function.")
 (display message-string)
 result
)
))

Name Description

message-string The Event for which a negative acknowledgment is sent.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 366 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Monk ODBC e*Way Functions Standard e*Way Functions
db-stdver-pos-ack

Syntax

(db-stdver-pos-ack message-string)

Description

db-stdver-pos-ack is used to send a positive acknowledgement to the external system,
and for post processing after successfully sending data to e*Gate.

Parameters

Return Values

A string
An empty string indicates a successful operation. The e*Way will then be able to
proceed with the next request.

CONNERR indicates a loss of connection with the external, client moves to a down
state and attempts to connect, on reconnect pos-ack function will be re-executed.

Throws

None.

Examples

(define db-stdver-pos-ack
 (lambda (message-string)
 (let ((result ""))
 (display "[++] Executing e*Way external positive acknowledgement
function.")
 (display message-string)
 result
)
))

Name Description

message-string The Event for which an acknowledgment is
sent.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 367 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Monk ODBC e*Way Functions Standard e*Way Functions
db-stdver-proc-outgoing

Syntax

(db-stdver-proc-outgoing message-string)

Description

db-stdver-proc-outgoing is used for sending a received message (Event) from e*Gate to
the external system.

Parameters

Return Values

A string
An empty string indicates a successful operation.

RESEND causes the message to be immediately resent. The e*Way will compare the
number of attempts it has made to send the Event to the number specified in the Max
Resends per Messages parameter, and does one of the following:

1 If the number of attempts does not exceed the maximum, the e*Way will pause the
number of seconds specified by the Resend Timeout parameter, increment the
“resend attempts” counter for that message, then repeat the attempt to send the
message.

2 If the number of attempts exceeds the maximum, the function returns false and rolls
back the message to the e*Gate IQ from which it was obtained.

CONNERR indicates that there is a problem communicating with the external system.
First, the e*Way will pause the number of seconds specified by the Resend Timeout
parameter. Then, the e*Way will call the External Connection Establishment function
according to the Down Timeout schedule, and will roll back the message (Event) to
the IQ from which it was obtained.

DATAERR indicates that there is a problem with the message (Event) data itself. First,
the e*Way will pause the number of seconds specified by the Resend Timeout
parameter. Then, the e*Way increments its “failed message (Event)” counter, and rolls
back the message (Event) to the IQ from which it was obtained. If the e*Way’s journal is
enabled (see Journal File Name on page 26) the message (Event) will be journaled.

If a string other than the following is returned, the e*Way will create an entry in the log
file indicating that an attempt has been made to access an unsupported function.

Throws

None.

Examples

(define db-stdver-proc-outgoing

Name Type Description

message-string string The Event to be processed.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 368 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Monk ODBC e*Way Functions Standard e*Way Functions
 (lambda (message-string)
 (let ((result ""))
 (display "[++] Executing e*Way external process outgoing message
function.")
 (display message-string)
 result
)
))
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 369 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Monk ODBC e*Way Functions Standard e*Way Functions
db-stdver-proc-outgoing-stub

Syntax

(db-stdver-proc-outgoing-stub message-string)

Description

db-stdver-proc-outgoing-stub is used as a place holder for the function entry point for
sending an Event received from e*Gate to the external system. When the interface is
configured as an inbound only connection, this function should not be used. This
function is used to catch configuration problems.

Parameters

Return Values

A string
An empty string indicates a successful operation.

RESEND causes the message to be immediately resent. The e*Way will compare the
number of attempts it has made to send the Event to the number specified in the Max
Resends per Messages parameter, and does one of the following:

1 If the number of attempts does not exceed the maximum, the e*Way will pause the
number of seconds specified by the Resend Timeout parameter, increment the
“resend attempts” counter for that message, then repeat the attempt to send the
message.

2 If the number of attempts exceeds the maximum, the function returns false and rolls
back the message to the e*Gate IQ from which it was obtained.

CONNERR indicates that there is a problem communicating with the external system.
First, the e*Way will pause the number of seconds specified by the Resend Timeout
parameter. Then, the e*Way will call the External Connection Establishment function
according to the Down Timeout schedule, and will roll back the message (Event) to
the IQ from which it was obtained.

DATAERR indicates that there is a problem with the message (Event) data itself. First,
the e*Way will pause the number of seconds specified by the Resend Timeout
parameter. Then, the e*Way increments its “failed message (Event)” counter, and rolls
back the message (Event) to the IQ from which it was obtained. If the e*Way’s journal is
enabled (see Journal File Name on page 26) the message (Event) will be journaled.

If a string other than the following is returned, the e*Way will create an entry in the log
file indicating that an attempt has been made to access an unsupported function.

Throws

None.

Name Type Description

message-string string The Event to be processed.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 370 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Monk ODBC e*Way Functions Standard e*Way Functions
Examples

(define db-stdver-proc-outgoing-stub
 (lambda (message-string)
 (let ((result ""))
 (display "[++] Executing e*Way external process outgoing message
function stub.")
 (display message-string)
 (event-send "ALERTCAT_OPERATIONAL" "ALERTSUBCAT_INTEREST"
"ALERTINFO_NONE" "0" "Possible configuration error." (string-append
"Default eway process outgoing msg function passed following message:
" msg) 0 (list))
 result
)
))
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 371 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Monk ODBC e*Way Functions Standard e*Way Functions
db-stdver-shutdown

Syntax

(db-stdver-shutdown shutdown_notification)

Description

db-stdver-shutdown is called by the system to request that the external shutdown, a
return value of SUCCESS indicates that the shutdown can occur immediately, any
other return value indicates that the shutdown Event must be delayed. The user is then
required to execute a shutdown-request call from within a monk function to allow the
requested shutdown process to continue.

Parameters

Return Values

A string
SUCCESS allows an immediate shutdown to occur, anything else delays shutdown
until (shutdown-request) is executed successfully.

Throws

None.

Examples

(define db-stdver-shutdown
 (lambda (message-string)
 (let ((result "SUCCESS"))
 (display "[++] Executing e*Way external shutdown command
notification function.")
 result
)
))

Name Type Description

shutdown_notification string When the e*Way calls this function, it will pass
the string "SHUTDOWN_NOTIFICATION" as the
parameter.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 372 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Monk ODBC e*Way Functions Standard e*Way Functions
db-stdver-startup

Syntax

(db-stdver-startup)

Description

db-stdver-startup is used for instance specific function loads and invokes setup.

Parameters

None.

Return Values

A string
FAILURE causes shutdown of the e*Way. Any other return indicates success.

Throws

None.

Examples

(define db-stdver-startup
 (lambda ()
 (let ((result "SUCCESS"))
 (display "[++] Executing e*Way external startup function.")
 result
)
))
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 373 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Monk ODBC e*Way Functions General Connection Functions
6.3 General Connection Functions
The functions in this category control the e*Way’s database connection operations.

The general connection functions are:

connection-handle? on page 375

db-alive on page 376

db-commit on page 378

db-get-error-str on page 379

db-login on page 381

db-logout on page 383

db-max-long-data-size on page 384

db-rollback on page 385

make-connection-handle on page 386

statement-handle? on page 387
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 374 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Monk ODBC e*Way Functions General Connection Functions
connection-handle?

Syntax

(connection-handle? any-variable)

Description

connection-handle? determines whether or not the input argument is a connection
handle datatype.

Parameters

This function requires a single variable of any datatype.

Return Values

Boolean
Returns #t (true) if the argument is a connection handle; otherwise, returns #f (false).
Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

Explanation

The above example creates a connection handle called hdbc. An error message is
displayed if the newly defined hdbc is not a connection handle.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 375 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Monk ODBC e*Way Functions General Connection Functions
db-alive

Syntax

(db-alive connection-handle)

Description

db-alive is used to determine if the cause of a failing ODBC operation is due to a
broken connection. It returns whether or not the database connection was alive during
the last call to any ODBC procedure that sends commands to the database server.

Parameters

Return Values

Boolean
Returns #t (true) if the connection to the database server is still alive; otherwise, returns
#f (false) if the connection to the database server is either dead or down. Use db-get-
error-str to retrieve the error message.

Throws

None.

Examples

(define pwd (encrypt-password “uid” “pwd”))
(if (db-login hdbc “dsn” “uid” pwd)
 (begin
 (define sql_statement “select * from person where sex = ‘M’”)
 (do ((status #t)) ((not status))
 (if (db-sql-select hdbc “male” sql_statement)
 (begin
 ...
)
 (begin
 (display (db-get-error-str hdbc))
 (set! status (db-alive hdbc))
)
)
)
 (display “lost database connection !\n”))
 (db-logout hdbc))
)
)

Explanation

The example above illustrates an application that is looking for a certain record in the
person table of the “Payroll” database. The function will exit the loop only if it loses the
connection to the database.

Name Type Description

connection-handle connection handle A connection handle to the database.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 376 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Monk ODBC e*Way Functions General Connection Functions
Notes

1 Most ODBC procedures can detect a dead connection handle except db-commit
and db-rollback. Therefore, when the ODBC procedure returns false, users must
check for loss of connection.

2 Once the db-alive returns #f to indicate either a dead connection handle or an un-
available database server, all the subsequent ODBC function calls associated with
that connection handle will not be executed, with the exception of db-logout. Each
of these procedures will return false with a “lost database connection” error
message.

3 Once the ODBC e*Way determines the connection handle is not alive, the only
course of action the user can take is to log out from that connection handle, redefine
a new connection handle, and try to reconnect to the database.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 377 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Monk ODBC e*Way Functions General Connection Functions
db-commit

Syntax

(db-commit connection-handle)

Description

db-commit performs all transactions specified by the connection.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

...
(if
 (and
 (db-sql-execute hdbc “delete from employee where first_name =
‘John’”)
 (db-sql-execute hdbc “update employee set first_name = ‘Mary’
where ssn = 123456789”)
)
 (db-commit hdbc)
 (begin
 (display (db-get-error-str hdbc))
 (db-rollback hdbc)
)
)
...

Explanation

This example shows that if the application can successfully delete “John’s record” and
update “Mary’s record” it will commit the transaction specified by the connection.
Otherwise, it prints out the error message and rolls back the transaction.

Name Type Description

connection-handle connection handle A connection handle to the database.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 378 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Monk ODBC e*Way Functions General Connection Functions
db-get-error-str

Syntax

(db-get-error-str connection-handle)

Description

db-get-error-str returns the last error message, and is used when the function returns a
#f value.

Parameters

Return Values

A string
A simple error message is returned.

To parse the return error message when it contains an error, use the two standard files
that define the error message structure and display the contents of each component of
the error message.

ODBC - odbcmsg.ssc, odbcmsg_display.monk

Throws

None.

Examples

Scenario #1 — sample code for db-get-error-str

...
(if (db-sql-execute hdbc "delete from employee" where
first_name=‘John’)
 (db-commit hdbc)
 (display (db-get-error-str hdbc))
)
...

Explanation

This example shows that if the application can successfully delete “John’s record” it
will commit the transaction. Otherwise, the application will print out the error message
and roll back the same transaction. Each commit begins a new transaction
automatically.

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "database login succeed !\n")
 (if (db-sql-execute hdbc "INSERT INTO UNKNOWN VALUES (NULL)")
 (db-commit hdbc)
 (odbcmsg-display (db-get-error-str hdbc))
)
 (if (not (db-logout hdbc))
 (odbcmsg-display (db-get-error-str hdbc))
)

Name Type Description

connection-handle connection handle A connection handle to the database.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 379 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Monk ODBC e*Way Functions General Connection Functions
)
 (odbcmsg-display (db-get-error-str hdbc))
)

Program output of the above example:

Output of (db-get-error-str hdbc)
ODBC|S0002|942|INTERSOLV|ODBC Oracle driver|Oracle|ORA-00942: table
or view does not exist
DART|63|STCDB_X_conn_sql_exec_len||unable to execute SQL statement

Output of (odbcmsg-display (db-get-error-str hdbc))
ODBC message #0:
msg_source : ODBC
sql_state : S0002
native_code : 942
drv_vendor : INTERSOLV
component : ODBC Oracle driver
err_source : Oracle
msg_string : ORA-00942: table or view does not exist

DART message #0:
msg_source : DART
msg_number : 63
function : STCDB_X_conn_sql_exec_len
err_item :
msg_string : unable to execute SQL statement
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 380 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Monk ODBC e*Way Functions General Connection Functions
db-login

Syntax

(db-login connection-handle data-source user-name password)

Description

db-login allocates the resources and performs login to a database system.

This function requires an encrypted password. If you have specified a password in the
Database Setup section of the e*Way Editor, it has already been encrypted. (See
“Database Setup” on page 45.)

If you define the password within a monk function (which is not encrypted), you must
use the monk function encrypt-password found in the e*Gate Monk extension library
stc_monkext.dll:

encrypt-password encryption key plain password

where encryption key is public knowledge, i.e., in this case user id, and plain
password is the password to be encrypted.

The standard encrypt-password function returns an encrypted password string to be
used with db-login.

 Parameters

Note: The data_source, user_name, and password must not be an empty string.

Return Values

Boolean
Returns #t (true) if the argument is a connection handle; otherwise, returns #f (false).
Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

...
(define hdbc (make-connection-handle))
(define uid "James")
(define pwd (encrypt-password uid "12345"))
(if(db-login hdbc “Payroll” James” pwd)
)

Name Type Description

connection-handle connection handle A connection handle to the database.

data-source string The name of the data source.

user-name string The database user login name.

password string The database user login password.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 381 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Monk ODBC e*Way Functions General Connection Functions
Explanation

The above example shows how to use the connection handle (hdbc) to log into the data
source “Payroll” as “James” with the password “12345.”
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 382 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Monk ODBC e*Way Functions General Connection Functions
db-logout

Syntax

(db-logout connection-handle)

Description

db-logout performs a disconnect from the database system and releases the connection
handle resources.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

...
(define hdbc (make-connection handle))
(define uid "James")
(define pwd (encrypt-password uid "12345"))
(if (db-login hdbc “Payroll” “James” pwd)
 ...
 (db-logout hdbc)
)
...

Explanation

The above example shows how to disconnect from a database. For every db-login,
there should be a corresponding db-logout.

Notes

Make sure you roll back or commit a transaction before you call db-logout. If a
transaction is neither committed nor rolled back, it will be automatically rolled back
before logout.

Name Type Description

connection-handle connection handle A connection handle to the database.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 383 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Monk ODBC e*Way Functions General Connection Functions
db-max-long-data-size

Syntax

(db-max-long-data-size connection-handle size)

Description

db-max-long-data-size specifies the maximum buffer size for the long
data.(SQL_LONGVARCHAR, SQL_LONGVARBINARY) Long data may have a range
in size up to 2 gigabytes (2x109). In order to limit the memory consumption of the
ODBC library, it is necessary to use this function to specify the maximum data size
expected. Long data larger than the specified size will be truncated. This data size will
be used for buffer allocation for both long data columns as well as long data
parameters.

Parameters

Return Values

Boolean
Returns #t (true) if successful; and If unsuccessful, returns #f (false). Use db-get-error-
str to retrieve the error message.

Throws

None.

Additional Information

The default maximum buffer size for long data type is 1 megabyte (1048576). It is not
necessary to call this function unless the long data is in excess of 1 megabyte.

Name Type Description

connection-handle connection handle A connection handle to the database.

size integer This parameter is used to identify the
buffer size of the specified long data
type. Note: The default buffer size is
1 megabyte.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 384 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Monk ODBC e*Way Functions General Connection Functions
db-rollback

Syntax

(db-rollback connection-handle)

Description

db-rollback rolls back the entire transaction for the connection.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

...
(if
 (and
 (db-sql-execute hdbc “delete from employee where first_name =
‘John’”)
 (db-sql-execute hdbc “update employee set first_name = ‘Mary’
where ssn = 123456789”)
)
 (db-commit hdbc)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
 (db-rollback hdbc)
)
)
...

Explanation

This example shows that if the application can successfully delete “John’s record” and
update “Mary’s record,” it will commit the transaction specified by the connection.
Otherwise, it prints out the error message and rolls back the transaction.

Name Type Description

connection-handle connection handle A connection handle to the database.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 385 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Monk ODBC e*Way Functions General Connection Functions
make-connection-handle

Syntax

(make-connection-handle)

Description

make-connection-handle constructs the connection handle.

Parameters

None.

Return Values

A handle
Returns a connection-handle if successful, otherwise;

Boolean
Returns #f (false) if the function fails to create a connection-handle. Use db-get-error-str
to retrieve the error message.

Throws

None.

Examples

(let ((hConnection (make-connection-handle)))
(if (connection-handle? hConnection)

(begin
(display “Established a valid connection handle\n”)

)
(begin

(display “Failed to get a connection handle: “)
(display (db-get-error-str connection-handle))
(newline)

)
)

)

Explanation

The above example creates a connection handle variable called hConnection. The
results are verified by using the connection-handle? function to check the type of the
hConnection variable. If the results are a connection handle, then the message
“Established a valid connection handle” is displayed. If the return value is not a
connection handle, then the message “Failed to get a connection handle:” and the error
string are displayed.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 386 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Monk ODBC e*Way Functions General Connection Functions
statement-handle?

Syntax

(statement-handle? any-variable)

Description

statement-handle? determines whether or not the input argument is a statement
handle datatype.

Parameters

This function requires a single variable of any datatype.

Return Values

Boolean
Returns #t (true) if the argument is a statement handle; otherwise, returns #f (false). Use
db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define hstmt (db-proc-bind hdbc “test”))
(if (not (statement-handle? hstmt))
 (display (db-get-error-str hdbc))
)

Explanation

The above example creates a statement handle called hstmt, then it displays an error
message if the newly defined hstmt is not a statement handle.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 387 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Monk ODBC e*Way Functions Static SQL Functions
6.4 Static SQL Functions
The functions in this category control the e*Way’s interaction with static SQL
commands.

The static SQL functions are:

db-sql-column-names on page 394

db-sql-column-types on page 396

db-sql-column-values on page 397

db-sql-execute on page 399

db-sql-fetch on page 400

db-sql-fetch-cancel on page 401

db-sql-format on page 402

db-sql-select on page 404

Static vs. Dynamic SQL Functions

Dynamic SQL statements are built and executed at run time versus Static SQL
statements that are embedded within the program source code. Dynamic statements do
not require knowledge of the complete structure on an SQL statement before building
the application. This allows for run time input to provide information about the
database objects to query.

The application can be written so that it prompts the user or scans a file for information
that is not available at compilation time.

In Dynamic statements the four steps of processing an SQL statement take place at run
time, but they are performed only once. Execution of the plan takes place only when
EXECUTE is called. Figure 87 on page 392 shows the difference between Dynamic SQL
with immediate execution and Dynamic SQL with prepared execution.

Benefits of Dynamic SQL

Using dynamic SQL commands, an application can prepare a “generic” SQL statement
once and execute it multiple times. Statements can also contain markers for parameter
values to be supplied at execution time, so that the statement can be executed with
varying inputs.

Limitations of Dynamic SQL

The use of dynamic SQL commands has some significant limitations. A dynamic SQL
implementation of an application generally performs worse than an implementation
where permanent stored procedures are created and the client program invokes them
with RPC (remote procedure call) commands.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 388 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Monk ODBC e*Way Functions Static SQL Functions
Figure 84 Calling a Stored Procedure (Oracle)

Process Flow Chart
for Calling a Stored

Procedure
For Oracle DBMS

db-proc-bind

db-proc-
param-assign

db-proc-
column-count >

0

db-proc-
fetch

Is the result a
boolean value?

db-proc-execute

Yes

No

db-proc-param-count
db-proc-param-name
db-proc-param-type
db-proc-param-io
db-proc-return-exist
db-proc-return-type

db-proc-
fetch-cancel

End Of
Fetch Cycle

Yes

db-proc-param-
value

End Of Execution
Cycle

db-proc-return-
value

Yes

NoNo

Yes

No

db-proc-return-
exist?

Are there any
output

parameters?

T h e f u n c t i o n s
enclosed in the box
to the left (outlined in
a b r o k e n l i n e
pattern) are for the
Oracle version of
DART only.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 389 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Monk ODBC e*Way Functions Static SQL Functions
Figure 85 Calling a Stored Procedure (Sybase)

Process Flow Chart
for Calling a Stored

Procedure For Sybase DBMS

db-proc-bind

db-proc-
param-assign

db-proc-
execute

db-proc-
column-count >

0

db-proc-
fetch

Is result a
boolean?

End of Fetch
Cycle

db-proc-param-count
db-proc-param-name
db-proc-param-type
db-proc-param-io
db-proc-return-exist
db-proc-return-type

Are there any
output

parameters?

db-proc-
param-value

Yes

End of Execution
Cycle

db-proc-return-
exist?

db-proc-return-
value

Yes

Yes

No

db-proc-
fetch-cancel

Yes

No No

No
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 390 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Monk ODBC e*Way Functions Static SQL Functions
Figure 86 Dynamic Statement Flow Chart

db-stmt-param-assign

db-stmt-execute

db-stmt-column-count
> 0?

db-stmt-fetch

Is result
a boolean?

db-stmt-fetch-cancel

End of
execution cycle Yes

No

Yes
No

OR

db-stmt-bind

db-stmt-param-count
db-stmt-param-type

db-stmt-column-count
db-stmt-column-name
db-stmt-column-type
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 391 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Monk ODBC e*Way Functions Static SQL Functions
Figure 87 Example of Dynamic SQL processing

Select A,B,C
From X, Y
Where A<500
AND C = 'EFG'

Parse Statement

Validate
Statement

Optimize
Statement

Generate access
plan

Execute access
plan

SQL Statement Dynamic SQL

Runtime
PREPARE statement

EXECUTE
IMMEDIATE
statement

EXECUTE
IMMEDIATE
statement

db-sql-execute

db-stmt-bind

db-stmt-execute
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 392 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Monk ODBC e*Way Functions Static SQL Functions
ODBC SQL Type Support

The following table shows the supported SQL datatypes and the corresponding native
datatype for the database.

*Oracle float (p) specifies a floating point number with precision range from 1 to 126.

+Oracle uses number (p) to define datatypes that span TININT, BIGINT, SMALLINT,
and INTEGER. Oracle int type is internally mapped to NUMBER (38) which will be
returned as SQL_DECIMAL.

Note: All variable precision datatypes require precision values.

SQL_DECIMAL and SQL_NUMERIC datatypes require specification of scale which
indicates the number of digits to the right of the decimal point.

Table 17 ODBC SQL Type Support

SQL Type Name SQL Datatype Oracle Datatype

SQL_BIT BIT N/A

SQL_BINARY BINARY (n) N/A

SQL_VARBINARY VARBINARY (n) RAW (n)

SQL_CHAR CHAR (n) CHAR (n)

SQL_VARCHAR VARCHAR (n) VARCHAR2 (n)

SQL_DECIMAL DECIMAL (p, s) NUMBER (p, s)

SQL_NUMERIC NUMERIC (p, s) N/A

SQL_TINYINT TINYINT +

SQL_BIGINT BIGINT +

SQL_SMALLINT SMALLINT +

SQL_INTEGER INTEGER +

SQL_REAL REAL *

SQL_FLOAT FLOAT(p) FLOAT(b)

SQL_DOUBLE DOUBLE PRECISION FLOAT

SQL_DATE DATE N/A

SQL_TIME TIME N/A

SQL_TIMESTAMP TIMESTAMP DATE

SQL_LONGVARCHAR LONG VARCHAR LONG

SQL_LONGVARBINARY LONG VARBINARY LONG RAW
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 393 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Monk ODBC e*Way Functions Static SQL Functions
db-sql-column-names

Syntax

(db-sql-column-names connection-handle selection-name)

Description

db-sql-column-names returns a vector of column names which are the result of an SQL
SELECT statement identified by the parameter selection-name. This procedure can be
called after a SQL SELECT statement has been issued successfully.

Parameters

Return Values

A string
This function returns a vector of column names in string format if successful.

Boolean
If the selection-name string is unavailable for any reason, this function returns a #f
(false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define selection “select * from person where title=’manager’”)
(if (db-login hdbc “dsn” “uid” pwd)
 (begin
 (if (db-sql-select hdbc “manager” selection)
 (begin
 (define name-array (db-sql-column-names hdbc
“manager”))
 (if (vector? name-array)
 (begin
 (display “name of the first column: ”)
 (display (vector-ref name-array 0))
 (newline)
 ...
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
 (display (db-get-error-str hdbc))
 (newline)
)
)
 (if (db-alive hdbc)
 (begin

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the
selection.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 394 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Monk ODBC e*Way Functions Static SQL Functions
 ...
)
)
 (db-logout hdbc)
)
)

Explanation

This example shows that after issuing a successful SQL SELECT statement, the
program will display the name of the first column.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 395 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Monk ODBC e*Way Functions Static SQL Functions
db-sql-column-types

Syntax

(db-sql-column-types connection-handle selection-name)

Description

db-sql-column-types returns a vector of column types which are the result of an SQL
SELECT statement identified by the parameter selection-name. This procedure can be
called after a SQL SELECT statement has been issued successfully. Refer to the
description for db-bind-proc for a list of SQL-type names.

Parameters

A string
This function returns a vector of column types in string format if successful.

Boolean
If the string type is unavailable for any reason, this function returns a #f. Use db-get-
error-str to retrieve the error message.

Throws

None.

Examples

(define selection “select * from person where title= ‘manager’”)
 (define type-array (db-sql-column-types hdbc “manager”))
 (if (vector? type-array)
 (begin
 (display “type of the first column:”)
 (display (vector-ref type-array 0))
 (newline)
 ...
 ...
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
 (display (db-get-error-str hdbc))
)
)
 (if (db-alive hdbc)
 (begin
 ...

Explanation

This example shows that after issuing a successful SQL SELECT statement, the
program will display the first column type.

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the
selection.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 396 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Monk ODBC e*Way Functions Static SQL Functions
db-sql-column-values

Syntax

(db-sql-column-values connection-handle selection-name)

Description

db-sql-column-values returns a vector of column values, which is the result of an SQL
FETCH statement identified by the parameter selection-name. This procedure can be
called after a SQL FETCH statement has been issued successfully.

Parameters

Return Values

A string
Returns a vector of SQL values in string format if successful.

Boolean
If the values string is unavailable for any reason, this function returns a #f (false).Use
db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define selection "select * from person where title= 'manager'")

(if (db-sql-select hdbc "manager" selection)
 (do ((result "") (value-array 0)) ((boolean? result))
 (set! result (db-sql-fetch hdbc "manager"))
 (if (not (boolean? reslt))
 (begin
 (set! value-array (db-sql-column-values hdbc "manager"))
 (do (
 (index 0 (+ index 1))
 (count (vector-length value-array))
)
 ((= index count))
 (display (vector-ref value-array index))
 (display "\t")
)
 (newline)
)
 (if (not result) (display (db-get-error-str hdbc)))
)
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the
selection.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 397 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Monk ODBC e*Way Functions Static SQL Functions
)

Explanation

This example shows that after issuing a successful SQL SELECT statement, the
program will loop through a fetch cycle. Within each fetch loop, the program displays
the value of each column in the same line, separated by a tab character.

Notes

1 A successful db-sql-fetch call returns a string which contains the concatenation of
all column values with the comma (,) character as the separator. Although this
single string is suitable for display purposes, the user must parse the result string to
retrieve the value of each column.

2 If the value of the column contains the comma (,) character, the user will be unable
to differentiate the comma data from the comma separator. Therefore, db-sql-
column-values returns the result as a vector of values in string type to allow the
user to make use of the vector-ref function to retrieve the value of each column and
avoid any parsing problem.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 398 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Monk ODBC e*Way Functions Static SQL Functions
db-sql-execute

Syntax

(db-sql-execute connection-handle SQL-stmt)

Description

db-sql-execute executes the specified SQL statement.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

...
(if (db-login hdbc "Payroll" "James" pwd)
 (begin
 ...
 (if (db-sql-execute hdbc "insert into employee
values(‘John’...)")
 (db-commit hdbc)
)

)
 (display (db-get-error-str hdbc))
)
...

Explanation

This example shows that if the application can successfully log into the data source
“Payroll,” it will insert a record into the table “employee.”

Notes

Use the db-sql-select function to execute a select statement.

The db-sq.-execute function can no longer be used to commit and roll back
transactions. Instead, use db-commit or db-rollback.

Note: The Merant ODBC drivers limit the size of the SQL statement to 32 Kbyte.

Name Type Description

connection-handle connection handle A connection handle to the database.

SQL-stmt string The SQL statement being executed.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 399 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Monk ODBC e*Way Functions Static SQL Functions
db-sql-fetch

Syntax

(db-sql-fetch connection-handle selection-name)

Description

db-sql-fetch “fetches” the result of a SELECT statement. The statement handle is “free”
after the function fetches the last record.

Parameters

Return Values

A string
Returns a comma, delimited string containing all the column values for the record.

Boolean
Returns #t (true) at the end of the “fetch cycle,” when no more records are available to
“fetch"; otherwise, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

...
(if (db-sql-select hdbc “GreaterThan25” “select * employee where age
> 25”)
 (begin
 (display (db-sql-fetch hdbc “GreaterThan25”))
 (newline)
 (db-sql-fetch-cancel hdbc “GreaterThan25”)
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
...

Explanation

This example shows that the application selects the first record of employees who are
older than age 25, by fetching the record once and cancelling the rest of the records.

Notes

The return result is temporarily stored in RAM. The buffer is allocated when db-sql-
select is called. The maximum size of the buffer is determined by the operating system.

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the
selection.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 400 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Monk ODBC e*Way Functions Static SQL Functions
db-sql-fetch-cancel

Syntax

(db-sql-fetch-cancel connection-handle selection-name)

Description

db-sql-fetch-cancel closes the cursor associated with an SQL SELECT statement and
cancels the fetch command. It also frees up the memory allocation for the selection.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

...
(if (db-sql-select hdbc “GreaterThan25” “select * employee where age
> 25”)
 (begin
 (define result (db-sql-fetch hdbc “GreaterThan25”))
 (if (not (boolean? result))
 (db-sql-fetch-cancel hdbc “GreaterThan25”)
 (if (not result)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
)
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
...

Explanation

This example shows that the application selects the first record of employees who are
older than age 25, by fetching the record once and cancelling the rest of the records.

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the
selection.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 401 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Monk ODBC e*Way Functions Static SQL Functions
db-sql-format

Syntax

(db-sql-format data-string SQL-type)

Description

db-sql-format returns a formatted string of the data-string, so it can be used in an SQL
statement as a literal value of a corresponding SQL-type.

In the current implementation, only the SQL_CHAR, SQL_VARCHAR, SQL_DATE,
SQL_TIME, and SQL_TIMESTAMP SQL-types will be formatted. If the data-string is an
empty string, the procedure will return a NULL value for all SQL datatypes except
SQL_CHAR and SQL_VARCHAR.

Parameters

Return Values

A string
Returns a formatted string used as a data value in an SQL statement.

Throws

None.

Examples

(define last-name (db-sql-format “O’Reilly” “SQL_VARCHAR”))
(define timestamp (db-sql-format “1998-02-19 12:34:56”
SQL_TIMESTAMP”))
(define sql-stmt (string-append “update employee set lastname =
“last-name “, MODIFYTIME = “timestamp “WHERE SSN = 123456789”))
(if (db-login hdbc “Payroll” “user” pwd)
 (begin
 (if (db-sql-execute hdbc sql-stmt)
 (db-commit hdbc)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
 (db-rollback hdbc)
)
)
 ...
 (db-logout hdbc)
)
)

Explanation

The example above illustrates how the program uses db-sql-format to format the last
name and the timestamp and use the results as part of an SQL statement.

Name Type Description

data-string string A data string to be used as a literal
value in an SQL statement.

SQL-type string An SQL datatype string, i.e.,
SQL_VARCHAR.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 402 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Monk ODBC e*Way Functions Static SQL Functions
Notes

1 For SQL_CHAR and SQL_VARCHAR (SQL datatypes) db-sql-format will place a
single quotation mark (‘) before and after the <data-string>, and expand each single
quotation mark in the <data-string> to two single quotation mark characters.

2 If you use the (timestamp) Monk built-in function to insert the timestamp to an
Event Type Definition, you should specify the following format for it to be accepted
by the db-sql-format function:

“%Y-%m-%d %H:%M:%S”

For SQL_CHAR and SQL_VARCHAR (SQL datatypes) db-sql-format will place a
single quotation mark (‘) before and after the data-string, and expand each single
quotation mark in the data-string to two single quotation mark characters.

The following table shows the typical data-string and the corresponding results of
the formatting for the OBDC e*Way.

Table 18 SQL Statement Format

SQL_type Value Data_string Value Formatted Result String

SQL_CHAR This is a string ‘This is a string.’

SQL_VARCHAR O’Reilly ‘O’ ‘Reilly’

SQL_DATE 1998-02-19 {d ‘1998-02019’}

SQL_DATE 19980219 {d ‘1998-02-19’}

SQL_TIME 12 :34:56 {t ‘12:34:56’}

SQL_TIME 1234 {t ‘12:34:00’}

SQL_TIMESTAMP 1998-02-19 12:34:56.789 {ts ‘1998-02-19
12:34:56.789’}
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 403 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Monk ODBC e*Way Functions Static SQL Functions
db-sql-select

Syntax

(db-sql-select connection-handle selection-name SQL-statement)

Description

db-sql-select executes an SQL SELECT statement.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

...
(if (db-sql-select hdbc “GreaterThan25” “select * employee where age
> 25”)
 (begin
 (display (db-sql-fetch hdbc “GreaterThan25”))
 (newline)
 (db-sql-fetch-cancel hdbc “GreaterThan25”)
)
 (display (db-get-error-str hdbc))
)
...

Explanation

This example shows that the application selects the first record of employees who are
older than age 25, by fetching the records one at a time and cancelling the remainder of
the return records.

Note: The Merant ODBC drivers limit the size of the SQL statement to 32 Kbyte.

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the
selection.

SQL-statement string The SELECT statement.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 404 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Monk ODBC e*Way Functions Dynamic SQL Functions
6.5 Dynamic SQL Functions
The function sin this category control the e*Way’s interaction with dynamic SQL
commands. For information about the differences between static and dynamic SQL
functions, see “Static vs. Dynamic SQL Functions” on page 388.

The dynamic SQL functions are:

db-stmt-bind on page 406

db-stmt-bind-binary on page 407

db-stmt-column-count on page 408

db-stmt-column-name on page 409

db-stmt-column-type on page 410

db-stmt-execute on page 411

db-stmt-fetch on page 412

db-stmt-fetch-cancel on page 413

db-stmt-param-assign on page 414

db-stmt-param-count on page 415

db-stmt-param-type on page 416

db-stmt-row-count on page 417
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 405 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Monk ODBC e*Way Functions Dynamic SQL Functions
db-stmt-bind

Syntax

(db-stmt-bind connection-handle dynamic-SQL-statement)

Description

db-stmt-bind binds the dynamic statement specified. The binary data type should be
input or output parameters with hexadecimal format.

Parameters

Return Values

Statement handle
The statement handle that identifies the dynamic statement specified.

Boolean
If unsuccessful, returns #f (false).Use db-get-error-str to retrieve the error message.

Throws

None.

Additional Information

 If the user needs to input /output binary data in the raw (binary) format, they should
use db-stmt-bind-binary.

Notes

1 Oracle OCI API is unable to report the datatype for each bound parameter in a
dynamic statement. All bound parameters will default to VARCHAR datatypes.
This will allow Oracle to implicitly convert the data string of each parameter into
the correct data value of the parameter at the execution of the dynamic statement.

2 If the user needs to select the long datatype column, the long column should appear
at the end of the selection list.

Name Type Description

connection-handle connection handle A connection handle to the database.

dynamic-SQL-statement string The dynamic statement to be bound.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 406 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Monk ODBC e*Way Functions Dynamic SQL Functions
db-stmt-bind-binary

Syntax

(db-stmt-bind-binary connection-handle dynamic-SQL-statement)

Description

db-stmt-bind-binary binds the dynamic statement specified. The binary data type will
be input and output with raw format.

Parameters

Return Values

Statement handle
The statement handle that identifies the dynamic statement specified.

Boolean
If unsuccessful, returns #f (false).Use db-get-error-str to retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

dynamic-SQL-statement string The dynamic statement to be bound.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 407 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Monk ODBC e*Way Functions Dynamic SQL Functions
db-stmt-column-count

Syntax

(db-stmt-column-count connection-handle statement-handle)

Description

db-stmt-column-count returns the number of columns in the return result set.

Parameters

Return Values

A number
Returns a number greater than zero (0) when the record set is available.

Boolean
If no record set is available, the return value will be #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
stmt-bind.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 408 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Monk ODBC e*Way Functions Dynamic SQL Functions
db-stmt-column-name

Syntax

(db-stmt-column-name connection-handle statement-handle index)

Description

db-stmt-column-name returns the name string of the specified column in the result set.

Parameters

Return Values

A string
Returns the name string if successful.

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.

index integer An integer equal to -- 0 to db-stmt-
column-count minus 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 409 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Monk ODBC e*Way Functions Dynamic SQL Functions
db-stmt-column-type

Syntax

(db-stmt-column-type connection-handle statement-handle index)

Description

db-stmt-column-type returns the SQL datatype of the specified column in the record
set.

Parameters

Return Values

A string
Returns a string of SQL datatype when successful.

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.

index integer An integer equal to -- 0 to db-stmt-
column-count minus 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 410 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Monk ODBC e*Way Functions Dynamic SQL Functions
db-stmt-execute

Syntax

(db-stmt-execute connection-handle statement-handle)

Description

db-stmt-execute executes the dynamic statement of a specified statement-handle.

Parameters

Return Values

Boolean
If an error occurred, returns #f (false). Use db-get-error-str to obtain the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
stmt-bind.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 411 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Monk ODBC e*Way Functions Dynamic SQL Functions
db-stmt-fetch

Syntax

(db-stmt-fetch connection-handle statement-handle)

Description

db-stmt-fetch retrieves the column values of the record set.

Parameters

Return Values

A Vector and a Boolean
Returns a vector containing all the column values and at the end of the “fetch cycle”
returns #t (true) when no more records are available to “fetch.”

Boolean
If an error occurred, returns #f (false). Use db-get-error-str to obtain the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
stmt-bind.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 412 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Monk ODBC e*Way Functions Dynamic SQL Functions
db-stmt-fetch-cancel

Syntax

(db-stmt-fetch-cancel connection-handle statement-handle)

Description

db-stmt-fetch-cancel terminates the current “fetch” cycle.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
stmt-bind.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 413 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Monk ODBC e*Way Functions Dynamic SQL Functions
db-stmt-param-assign

Syntax

(db-stmt-param-assign connection-handle statement-handle index value)

Description

db-stmt-param-assign assigns the parameter and executes the dynamic statement of a
specified parameter.

Parameters

Return Values

Boolean
If an error occurred, returns #f (false). Use db-get-error-str to obtain the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
stmt-bind.

index integer The number between 0 and db-stmt-
param-count minus 1.

value string The value to be assigned to the
parameter.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 414 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Monk ODBC e*Way Functions Dynamic SQL Functions
db-stmt-param-count

Syntax

(db-stmt-param-count connection-handle statement-handle)

Description

db-stmt-param-count retrieves the number of parameters in the dynamic statement.

Parameters

Return Values

An Integer
Returns a number, which represents the number of parameters for the dynamic
statement specified, when successful.

Boolean
If unsuccessful, returns #f (false).Use db-get-error-str to retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
stmt-bind.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 415 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Monk ODBC e*Way Functions Dynamic SQL Functions
db-stmt-param-type

Syntax

(db-stmt-param-type connection-handle statement-handle index)

Description

db-stmt-param-type retrieves the SQL datatype of the specified parameter.

Parameters

Return Values

A string
If successful, db-stmt-param-type returns a string which represents the SQL datatype.

Boolean
If an error occurred, returns #f (false). Use db-get-error-str to obtain the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
stmt-bind.

index integer The number between 0 and db-stmt-
param-count minus 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 416 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Monk ODBC e*Way Functions Dynamic SQL Functions
db-stmt-row-count

Syntax

(db-stmt-row-count connection-handle statement-handle index)

Description

db-stmt-row-count returns the number of rows affected by the execution of the SQL
statement.

Parameters

Return Values

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.

index integer An integer equal to -- 0 to db-stmt-
column-count minus 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 417 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Monk ODBC e*Way Functions Stored Procedure Functions
6.6 Stored Procedure Functions
The functions in this category control the e*Way’s interaction with stored procedures.

The stored procedure functions are:

db-proc-bind on page 419

db-proc-bind-binary on page 420

db-proc-column-count on page 421

db-proc-column-name on page 423

db-proc-column-type on page 425

db-proc-execute on page 427

db-proc-fetch on page 429

db-proc-fetch-cancel on page 431

db-proc-param-assign on page 432

db-proc-param-count on page 434

db-proc-param-io on page 435

db-proc-param-name on page 436

db-proc-param-type on page 437

db-proc-param-value on page 438

db-proc-return-exist on page 440

db-proc-return-type on page 442

db-proc-return-value on page 444

Benefits of Stored Procedures

When a stored procedure is created for an application, SQL statement compilation and
optimization are performed once when the procedure is created. With a dynamic SQL
application, compilation and optimization are performed every time the client program
runs. A dynamic SQL implementation also incurs database space overhead because
each instance of the client program must create separate compiled versions of the
application’s prepared statements. When you design an application to use stored
procedures and RPC commands, all instances of the client program can share the same
stored procedure.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 418 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Monk ODBC e*Way Functions Stored Procedure Functions
db-proc-bind

Syntax

(db-proc-bind connection-handle procedure-name)

Description

db-proc-bind binds the input/output parameters of the stored procedure specified.

Parameters

Return Values

Boolean
Returns a proc-handle if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

(define hstmt (db-proc-bind hdbc “test”)
(if (not (statement-handle? hstmt)
 (display “fail to bind stored procedure test\n”)
)

Notes

ODBC does not recognize any procedure inside the PACKAGE of the Oracle DBMS.
Therefore, you cannot bind any procedure defined inside the PACKAGE of the Oracle
DBMS.

The procedure name is limited to 30 characters.

Name Type Description

connection-handle connection handle A connection handle to the database.

procedure-name string The stored procedure to be bound.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 419 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Monk ODBC e*Way Functions Stored Procedure Functions
db-proc-bind-binary

Syntax

(db-proc-bind-binary connection-handle dynamic-SQL-statement)

Description

db-proc-bind-binary binds the dynamic statement specified. The format of the input
and output data is binary.

Parameters

Return Values

A string
Returns a statement-handle when successful; otherwise

Boolean
Returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

dynamic-SQL-statement string The dynamic statement to be bound
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 420 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Monk ODBC e*Way Functions Stored Procedure Functions
db-proc-column-count

Syntax

(db-proc-column-count connection-handle statement-handle)

Description

db-proc-column-count retrieves the number of columns in the return result set.

Parameters

Return Values

A number
Returns a number greater than zero (0) when the record set is available.

Boolean
If no record set is available, the return value will be #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((i 0 (+ i 1))) ((= i col-count))
 (display “column “)
 (display (db-proc-column-name hdbc hstmt i))
 (display “: type = ”)
 (display (db-proc-column-type hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 421 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Monk ODBC e*Way Functions Stored Procedure Functions
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Notes

1 The Oracle procedure to return the result set is given here:

oracle_odbc.sql

2 The ODBC configuration parameter to set up the return result set must show

ProcedureRetResult = 1

For more information see “Sample .odbc.ini File” on page 16.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 422 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Monk ODBC e*Way Functions Stored Procedure Functions
db-proc-column-name

Syntax

(db-proc-column-name connection-handle statement-handle column-
index)

Description

db-proc-column-name retrieves the name string of the specified column in the result
set.

Parameters

Return Values

A string
Returns the name string if successful.

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((i 0 (+ i 1))) ((= i col-count))
 (display “column “)
 (display (db-proc-column-name hdbc hstmt i))
 (display “: type = ”)
 (display (db-proc-column-type hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.

column-index string SQL datatype of the specified
column in the results set --0 to db-
proc-column-count minus 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 423 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Monk ODBC e*Way Functions Stored Procedure Functions
 ...
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Notes

Since the result set of a stored procedure is returned through the parameters of the PL/
SQL table type, the name of the table type parameter will be returned.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 424 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Monk ODBC e*Way Functions Stored Procedure Functions
db-proc-column-type

Syntax

(db-proc-column-type connection-handle statement-handle column-
index)

Description

db-proc-column-type retrieves the SQL datatype of the specified column in the record
set.

Parameters

Return Values

A string
Returns a string of SQL datatype when successful.

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((i 0 (+ i 1))) ((= i col-count))
 (display “column “)
 (display (db-proc-column-name hdbc hstmt i))
 (display “: type = ”)
 (display (db-proc-column-type hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.

column-index string SQL datatype of the specified
column in the record set --0 to db-
proc-column-count minus 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 425 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Monk ODBC e*Way Functions Stored Procedure Functions
 ...
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Notes

Since the result set of the stored procedure is returned through the parameters of the
PL/SQL table type, a PL/SQL table can only contain one standard Oracle datatype.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 426 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Monk ODBC e*Way Functions Stored Procedure Functions
db-proc-execute

Syntax

(db-proc-execute connection-handle statement-handle)

Description

db-proc-execute executes out a stored procedure.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 ...
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
 (db-logout hdbc)
)
 (display (db-get-error-str hdbc))
)

Notes

The default precision for number or real type is 38 for a column in the table. This is
important when executing a stored procedure that retrieves values from that column in
the table. The db-proc-execute function will fail if the exponential part of the value is
larger than 38.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 427 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Monk ODBC e*Way Functions Stored Procedure Functions
For example:

1.555E+38 is acceptable

1.55E+39 will prevent the successful retrieval of the column values
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 428 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Monk ODBC e*Way Functions Stored Procedure Functions
db-proc-fetch

Syntax

(db-proc-fetch connection-handle statement-handle)

Description

db-proc-fetch retrieves the column values of the record set.

Parameters

Return Values

A vector and Boolean
Returns a vector containing all the column values and at the end of the “fetch cycle”
returns #t (true) when no more records are available to “fetch.”

Boolean
If unsuccessful, this function returns #f (false). Use db-get-error-str to retrieve the error
message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((result (db-proc-fetch hdbc hstmt) (db-proc-
fetch hdbc hstmt)))
 ((boolean? result) (begin (display result)
(newline)))
 (display result
 (newline)
)
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)
 (display (db-get-error-str hdbc)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 429 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Monk ODBC e*Way Functions Stored Procedure Functions
)
 (display (db-get-error-str hdbc)
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Notes

1 The Oracle procedure to return result set is given here:

oracle_odbc.sql

2 ODBC configuration parameter to set up the capability of return result set must
show

ProcedureRetResult = 1

For more information see Sample .odbc.ini “Sample .odbc.ini File” on page 16.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 430 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Monk ODBC e*Way Functions Stored Procedure Functions
db-proc-fetch-cancel

Syntax

(db-proc-fetch-cancel connection-handle statement-handle)

Description

db-proc-fetch-cancel terminates the current “fetch” cycle.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (db-proc-fetch-cancel hdbc hstmt)
)
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)
 (display (db-get-error-str hdbc)
)
 (display (db-get-error-str hdbc)
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 431 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Monk ODBC e*Way Functions Stored Procedure Functions
db-proc-param-assign

Syntax

(db-proc-param-assign connection-handle statement-handle param-
index param-value)

Description

db-proc-param-assign "assigns" the value of an IN or INOUT parameter and places
that value into internal storage.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

Scenario #1 — sample code for db-proc-param-assign

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 ...
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
 (db-logout hdbc)
)
 (display (db-get-error-str hdbc))

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
proc-bind.

param-index integer The number between 0 and db-proc-
param-count minus 1.

param-value string The input value of the IN or INOUT
parameter.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 432 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Monk ODBC e*Way Functions Stored Procedure Functions
)

Scenario #2 — sample code for db-proc-param-assign with
multiple input arguments

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (and
 (db-proc-param-assign hdbc hstmt 0 “5”)
 (db-proc-param-assign hdbc hstmt 2 “O’REILLY”)
 (db-proc-param-assign hdbc hstmt 7 “1998-11-22
12:34:56”)
 (db-proc-param-assign hdbc hstmt 8 “1A2B78F0”)
)
 (if (db-proc-execute hdbc hstmt)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)

Notes

The value for the param-value argument should be entered as a string, without
enclosure in single quotation marks (‘) for SQL_CHAR and SQL_VARCHAR.

The literal value for SQL_BINARY and SQL_VARBINARY should be a hexadecimal
string. Refer to Scenario #2 on above.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 433 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Monk ODBC e*Way Functions Stored Procedure Functions
db-proc-param-count

Syntax

(db-proc-param-count connection-handle statement-handle)

Description

db-proc-param-count retrieves the number of parameters in the stored procedure.

Parameters

Return Values

A number
Returns a number, which represents the number of parameters for the stored procedure
specified, when successful.

Boolean
If the number is unavailable due to a problem within one of the arguments, the function
returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (do ((i 0 (+ i 1))) ((= i (db-proc-param-count hdbc hstmt)))
 (display “parameter ”)
 (display (db-proc-param-name hdbc hstmt i))
 (display “: type = ”)
 (display (db-proc-param-type hdbc hstmt i))
 (display “, io = ”)
 (display (db-proc-param-io hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 434 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Monk ODBC e*Way Functions Stored Procedure Functions
db-proc-param-io

Syntax

(db-proc-param-io connection-handle statement-handle param-index)

Description

db-proc-param-io retrieves the IO type for the specified parameter.

Parameters

Return Values

A string
Returns an IO type string as IN, OUT, or INOUT

Boolean
otherwise, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (do ((i 0 (+ i 1))) ((= i (db-proc-param-count hdbc hstmt)))
 (display “parameter ”)
 (display (db-proc-param-name hdbc hstmt i))
 (display “: type = ”)
 (display (db-proc-param-type hdbc hstmt i))
 (display “, io = ”)
 (display (db-proc-param-io hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
proc-bind.

param-index integer The number between 0 and db-proc-
param-count minus 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 435 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Monk ODBC e*Way Functions Stored Procedure Functions
db-proc-param-name

Syntax

(db-proc-param-name connection-handle statement-handle param-
index)

Description

db-proc-param-name retrieves the name of the specified parameter.

Parameters

Return Values

A string
Returns the string containing the name of the parameter.

Boolean
Returns #f (false) if unable to return the string containing the name of the parameter.
Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (do ((i 0 (+ i 1))) ((= i (db-proc-param-count hdbc hstmt)))
 (display “parameter ”)
 (display (db-proc-param-name hdbc hstmt i))
 (display “: type = ”)
 (display (db-proc-param-type hdbc hstmt i))
 (display “, io = ”)
 (display (db-proc-param-io hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.

param-index integer The number between 0 and db-proc-
param-count minus 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 436 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Monk ODBC e*Way Functions Stored Procedure Functions
db-proc-param-type

Syntax

(db-proc-param-type connection-handle statement-handle param-
index)

Description

db-proc-param-type retrieves the SQL datatype of the specified parameter.

Parameters

Return Values

A string
If successful, db-proc-param-type returns a string which represents the SQL datatype.

Boolean
If an error occurred, returns #f (false). Use db-get-error-str to obtain the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (do ((i 0 (+ i 1))) ((= i (db-proc-param-count hdbc hstmt)))
 (display “parameter ”)
 (display (db-proc-param-name hdbc hstmt i))
 (display “: type = ”)
 (display (db-proc-param-type hdbc hstmt i))
 (display “, io = ”)
 (display (db-proc-param-io hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
proc-bind.

param-index integer The number between 0 and db-proc-
param-count minus 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 437 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Monk ODBC e*Way Functions Stored Procedure Functions
db-proc-param-value

Syntax

(db-proc-param-value connection-handle statement-handle param-index)

Description

db-proc-param-value is used to retrieve the value of the OUT or INOUT parameter.

Parameters

Return Values

A string
Returns a string which represents the value of the OUT or INOUT parameter.

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count hdbc hstmt))
 (if (and (number? col-count) (> col-count 0))
 (do ((result (db-proc-fetch hdbc hstmt) (db-proc-
fetch hdbc hstmt)))
 ((boolean? result))
 (display result)
 (newline)
)
)
 (define prm-count (db-proc-param-count hdbc hstmt))
 (do ((i 0 (+ i 1))) ((= i prm-count))
 (if (not (equal? (db-proc-param-io hdbc hstmt i)
“IN”))
 (begin
 (display “output parameter ”)
 (display (db-proc-param-name hdbc hstmt i))

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
proc-bind.

param-index integer The number between 0 and db-proc-
param-count minus 1.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 438 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Monk ODBC e*Way Functions Stored Procedure Functions
 (display “ = ”)
 (display (db-proc-param-value hdbc hstmt i))
 (newline)
)
)
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 439 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Monk ODBC e*Way Functions Stored Procedure Functions
db-proc-return-exist

Syntax

(db-proc-return-exist connection-handle statement-handle)

Description

db-proc-return-exist determines whether or not the stored procedure has a return
value.

Parameters

Return Values

Boolean
Returns #t (true) if a return value exists or #f (false) when no return value exists or an
error occurs. Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((result (db-proc-fetch hdbc hstmt) (db-proc-
fetch hdbc hstmt)))
 ((boolean? result))
 (display result)
 (newline)
)
)
 (if (db-proc-return-exist hdbc hstmt)
 (begin
 (display “return type = ”)
 (display (db-proc-return-type hdbc hstmt))
 (newline)
 (display “ return value = ”)
 (display (db-proc-return-value hdbc hstmt))
 (newline)
)
)
 ...

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
proc-bind.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 440 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Monk ODBC e*Way Functions Stored Procedure Functions
 ...
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 441 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Monk ODBC e*Way Functions Stored Procedure Functions
db-proc-return-type

Syntax

(db-proc-return-type connection-handle statement-handle)

Description

db-proc-return-type determines the SQL datatype for the return value.

Parameters

Return Values

A string
Returns a SQL datatype string, i.e., SQL_VARCHAR.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "database login succeed !\n")
 (define hstmt (db-proc-bind hdbc "TEST_PROC"))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 "5")
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((result (db-proc-fetch hdbc hstmt) (db-proc-
fetch hdbc hstmt)))
 ((boolean? result))
 (display result)
 (newline)
)
)
 (if (db-proc-return-exist hdbc hstmt)
 (begin
 (display "return type = ")
 (display (db-proc-return-type hdbc hstmt))
 (newline)
 (display "return value = ")
 (display (db-proc-return-value hdbc hstmt))
 (newline)
)
)
 ...
 ...
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 442 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Monk ODBC e*Way Functions Stored Procedure Functions
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 443 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Monk ODBC e*Way Functions Stored Procedure Functions
db-proc-return-value

Syntax

(db-proc-return-value connection-handle statement-handle)

Description

db-proc-return-value retrieves the return value (return status) for the stored
procedure.

Parameters

Return Values

A string
Returns a string which represents the return value.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((result (db-proc-fetch hdbc hstmt) (db-proc-
fetch hdbc hstmt)))
 ((boolean? result))
 (display result)
 (newline)
)
)
 (if (db-proc-return-exist hdbc hstmt)
 (begin
 (display “return type = ”)
 (display (db-proc-return-type hdbc hstmt))
 (newline)
 (display “ return value = ”)
 (display (db-proc-return-value hdbc hstmt))
 (newline)
)
)
 ...
 ...

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 444 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Monk ODBC e*Way Functions Stored Procedure Functions
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Notes

1 Stored procedures can return an integer value called a return status. This status
indicates that the procedure completed successfully or shows the reason for failure.
The SQL Server has a defined set of return values; or users can define their own
return values.

2 The SQL Server reserves 0 to indicate a successful return, and negative values in the
range of -1 to -99 are assigned to a listing of reasons for failure. Numbers 0 and -1 to
-14 are in use currently (see below).

Value Meaning

0 procedure executed without error

-1 missing object

-2 datatype error

-3 process was chosen as deadlock victim

-4 permission error

-5 syntax error

-6 miscellaneous user error

-7 resource error, such as out of space

-8 non-fatal internal problem

-9 system limit was reached

-10 fatal internal inconsistency

-11 fatal internal inconsistency

-12 table or index is corrupt

-13 database is corrupt

-14 hardware error
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 445 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.7
Monk ODBC e*Way Functions Message Event Functions
6.7 Message Event Functions
The functions in this category control the e*Way’s message Event operations.

The message Event functions are:

db-struct-call on page 447

db-struct-execute on page 448

db-struct-fetch on page 449

db-struct-insert on page 451

db-struct-select on page 453

db-struct-update on page 455
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 446 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.7
Monk ODBC e*Way Functions Message Event Functions
db-struct-call

Syntax

(db-struct-call connection-handle statement-handle procedure-path)

Description

db-struct-call calls the stored procedure using the value from the procedure-path node
of the DART Event Type Definition, retrieves all procedure output and places this
information into the DART Event Type Definition

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).Use db-get-error-str to
retrieve the error message.

Name Type Description

connection-handle connection handle A connection handle to the
database.

statement-handle statement handle The statement handle that
identifies the stored
procedure specified. This is
the handle produced by db-
proc-bind.

procedure-path path The absolute path to the
procedure nodes in the Event
Type Definition.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 447 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.7
Monk ODBC e*Way Functions Message Event Functions
db-struct-execute

Syntax

(db-struct-execute connection-handle statement-handle statement-path)

Description

db-struct-execute calls the dynamic statement using the value from the statement-path
node of the DART Event Type Definition, retrieves all dynamic statement output and
places this information into the DART Event Type Definition.

Parameters

Return Values

Boolean
Returns #t (true) when successful; otherwise #f (false).

 Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the
database.

statement-handle statement handle The statement handle that
identifies the stored
procedure specified. This is
the handle produced by db-
stmt-bind.

statement-path statement path The absolute path to the
statement nodes in the Event
Type Definition.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 448 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.7
Monk ODBC e*Way Functions Message Event Functions
db-struct-fetch

Syntax

(db-struct-fetch connection-handle table-path)

Description

db-struct-fetch composes and executes an SQL FETCH statement according to the
information and data carried under the table-path node of an Event Type Definition,
and stores the return column values inside each of the column nodes.

Parameters

Return Values

Path
Returns the table path if the execution of the SQL FETCH statement is successful, or

Boolean
Returns #t (true) when the end of the fetch cycle is reached; otherwise, returns #f (false).
Use db-get-error-str to retrieve error message.

Throws

None.

Examples

(define input-event-format-file-name “in.ssc”)
(define output-event-format-file-name “out.ssc”)
(load “in.ssc”)
(load “out.ssc”)
(define src-collapsed-nodes ‘())
(define dest-collapsed-nodes ‘())
(define collapsed-rules ‘())
(define xlate
 (let ((input ($make-event-map in-delm in-struct))
 (output ($make-event-map out-delm out-struct)))
 (lambda ($make-event-string)
 ($event-parse input $make-event-string)
 ($event-clear output)
 (begin
 (if (db-struct-select hdbc ~output%out.dbo.table2)
 (do ((result ““) ((boolean? result))
 (set! result (db-struct-fetch hdbc
~output%out.dbo.table2))
 (if (boolean? result))
 (if (not result)
 (begin
 (display “db-struct-fetch
failed!\n”)
 (display (db-get-error-str hdbc))

Name Type Description

connection-handle connection handle A connection handle to the
database.

table-path Event path A table node in an Event Type
Definition.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 449 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.7
Monk ODBC e*Way Functions Message Event Functions
 (newline)
)
 (begin
 ...
)
)
 (begin
 (display result)
 (newline)
)
)
)
)
 ...
 (insert ”” ~output%out ””)
)
)
)
)

Explanation

The example above shows a typical code segment of a Collaboration Rule that uses the
Event Type Definition. In this example, the output defined by out.ssc is an Event Type
Definition. After clearing the output Event-string with the output Event Type
Definition, the Collaboration procedure uses db-struct-select to issue an SQLSELECT
statement based on the information carried under Event- path
[~output%out.dbo.table2].

It repeatedly uses db-struct-fetch to issue the SQL FETCH statement and store the
resulting column values inside each column node under the table path
[~output%out.dbo.table2] until there are no more records to fetch.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 450 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.7
Monk ODBC e*Way Functions Message Event Functions
db-struct-insert

Syntax

(db-struct-insert connection-handle table-path)

Description

db-struct-insert composes and executes an SQL INSERT statement according to the
information and data carried under the table-path node of an Event Type Definition.

Parameters

Return Values

Boolean
Returns #t (true) if the execution of the SQL INSERT statement is successful; otherwise,
returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define input-event-format-file-name “in.ssc”)
(define output-event-format-file-name “out.ssc”)
(load “in.ssc”)
(load “out.ssc”)
(define src-collapsed-nodes ‘())
(define dest-collapsed-nodes ‘())
(define collapsed-rules ‘())
(define xlate
 (let ((input ($make-event-map in-delm in-struct))
 (output ($make-event-map out-delm out-struct)))
 (lambda ($make-event-string)
 ($event-parse input $make-event-string)
 ($event-clear output)
 (begin
 (if (db-struct-insert hdbc ~input%in.dbo.table2)
 (begin
 ...
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
 ...
 (insert ”” ~output%out ””)
)
)
)

Name Type Description

connection-handle connection handle A connection handle to the
database.

table-path Event path A table node in an Event Type
Definition.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 451 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.7
Monk ODBC e*Way Functions Message Event Functions
)

Explanation

The example above shows a typical code segment of a Collaboration Rule that uses the
Event Type Definition. In this example, the input Event Definition defined by “in.ssc” is
an Event Type Definition. After parsing the input Event-string with the input Event
Definition, the Collaboration procedure uses db-struct-insert to issue an SQL INSERT
statement based on the information carried under Event path [~input%in.dbo.table2].
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 452 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.7
Monk ODBC e*Way Functions Message Event Functions
db-struct-select

Syntax

(db-struct-select connection-handle table-path where-clause)

Description

db-struct-select composes and executes an SQL SELECT statement according to the
information and data carried under the table-path node of an Event Type Definition.

Parameters

Return Values

Boolean
Returns #t (true) if the execution of the SQL SELECT statement is successful; otherwise,
returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define input-event-format-file-name “in.ssc”)
(define output-event-format-file-name “out.ssc”)
(load “in.ssc”)
(load “out.ssc”)
(define src-collapsed-nodes ‘())
(define dest-collapsed-nodes ‘())
(define collapsed-rules ‘())
(define xlate
 (let ((input ($make-event-map in-delm in-struct))
 (output ($make-event-map out-delm out-struct)))
 (lambda ($make-event-string)
 ($event-parse input $make-event-string)
 ($event-clear output)
 ($event-parse output (event->string output))
 (begin
 (if (db-struct-select hdbc ~output%out.dbo.table2 “ID
= 5”)
 (begin
 (db-struct-fetch hdbc ~output%out.dbo.table2)
 ...
 (db-sql-fetch-cancel hdbc “dbo.table2”)
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)

Name Type Description

connection-handle connection handle A connection handle to the
database.

table-path Event path A table node in an Event Type
Definition.

where-clause string The where clause of the SQL
SELECT statement.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 453 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.7
Monk ODBC e*Way Functions Message Event Functions
)
 ...
 (insert ”” ~output%out ””)
)
)
)
)

Explanation

The example above shows a typical code segment of a Collaboration Rules file that uses
the Event Type Definition. In this example, the output defined by out.ssc is an Event
Type Definition. After clearing the output Event-string, the Collaboration procedure
uses db-struct-select to issue an SQL SELECT statement based on the information
carried under the Event-path [~output%out.dbo.table2]. The selection was cancelled by
db-sql-fetch-cancel with “dbo.table2” as the selection name.

Notes

1 Both db-struct-select, and db-struct-fetch use the same algorithm to generate the
selection name for the db-sql-select and db-sql-fetch procedure call. If the table
path is a table node under an owner (schema) node the selection name will be
owner.table.

2 If the table path does not have an owner node above it, the selection name will be
table. You must issue a db-sql-fetch-cancel call with either owner.table or table as
the selection name, if you want to cancel the selection.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 454 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.7
Monk ODBC e*Way Functions Message Event Functions
db-struct-update

Syntax

(db-struct-update connection-handle table-path where-clause)

Description

db-struct-update composes and executes an SQL UPDATE statement according to the
information and data carried under the table-path node of an Event Type Definition.

Parameters

Return Values

Boolean
Returns #t (true) if the execution of the SQL UPDATE statement is successful;
otherwise, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define input-event-format-file-name “in.ssc”)
(define output-event-format-file-name “out.ssc”)
(load “in.ssc”)
(load “out.ssc”)
(define src-collapsed-nodes ‘())
(define dest-collapsed-nodes ‘())
(define collapsed-rules ‘())
(define xlate
 (let ((input ($make-event-map in-delm in-struct))
 (output ($make-event-map out-delm out-struct)))
 (lambda ($make-event-string)
 ($event-parse input $make-event-string)
 ($event-clear output)
 (begin
 (if (db-struct-update hdbc ~input%in.dbo.table2 “ID =
5”)
 (begin
 ...
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
 ...
 (insert ”” ~output%out ””)

Name Type Description

connection-handle connection handle A connection handle to the
database.

table-path Event path A table node in an Event Type
Definition.

where-clause string The where clause of the SQL
SELECT statement.
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 455 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.7
Monk ODBC e*Way Functions Message Event Functions
)
)
)
)

Explanation

The example above shows a typical code segment of a Collaboration Rule that uses the
Event Type Definition. In this example, the input defined by in.ssc is an Event Type
Definition. After parsing the input Event-string with the input Event Type Definition,
the Collaboration procedure uses db-struct-update to issue an SQL UPDATE statement
based on the information carried under the Event-path [~input%in.dbo.table2].
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 456 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.8
Monk ODBC e*Way Functions Sample Monk Scripts
6.8 Sample Monk Scripts
This section includes sample Monk scripts which demonstrate how to use the ODBC
e*Way’s Monk functions. These Monk scripts demonstrate the following activities:

“Initializing Monk Extensions” on page 458

“Calling Stored Procedures” on page 459

“Inserting Records with Dynamic SQL Statements” on page 461

“Updating Records with Dynamic SQL Statements” on page 463

“Selecting Records with Dynamic SQL Statements” on page 465

“Deleting Records with Dynamic SQL Statements” on page 467

“Inserting a Binary Image to a Database” on page 468

“Retrieving an Image from a Database” on page 471

“Common Supporting Routines” on page 473
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 457 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.8
Monk ODBC e*Way Functions Sample Monk Scripts
6.8.1 Initializing Monk Extensions
The sample script shows how to initialize the Monk extensions. This function is used by
many of the other sample Monk scripts shown in this chapter.

To use this sample script in an actual implementation, modify the following values:

EGATE – This designates the location of the e*Gate client.

dsn – This is he name of the data source.

uid – This is the user name.

pwd – This is the login password.

;demo-init.monk

(define EGATE "/eGate/client")

; routine to load DART Monk extension
(define (load-library extension)
 (define filename (string-append EGATE "/bin/" extension))
 (if (file-exists? filename)
 (load-extension filename)
 (begin
 (display (string-append "File " filename " does not
exist.\n"))
 (abort filename)
)
)
)

(load-library "stc_monkext.dll")

;;
;; define STCDB variables, data source, user ID, and password
;;

(define STCDB "ORACLE8")

(load-library "stc_dbmonkext.dll")

(define dsn "database")
(define uid "Administrator")
(define pwd (encrypt-password uid "password"))
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 458 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.8
Monk ODBC e*Way Functions Sample Monk Scripts
6.8.2 Calling Stored Procedures
This script gives an example of calling Stored Procedures. See “Stored Procedure
Functions” on page 418 for more details.

;demo-proc-execute.monk

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

; call stored procedure and display results
(define (execute-procedure hdbc hstmt)
 (let ((prm-count (db-proc-param-count hdbc hstmt)))
 (if (db-proc-execute hdbc hstmt)
 (begin
 (do ((col-count (db-proc-column-count hdbc hstmt) (db-
proc-column-count hdbc hstmt)))
 ((or (not (number? col-count)) (= col-count 0)))
 (display-proc-column-property hdbc hstmt col-count)
 (display-proc-column-value hdbc hstmt col-count)
)
 (display-proc-parameter-output-value hdbc hstmt prm-count)
 (if (db-proc-return-exist hdbc hstmt)
 (begin
 (display "return: value = ")
 (display (db-proc-return-value hdbc hstmt))
 (newline)
)
)
)
 (display (db-get-error-str hdbc))
)
)
)

; make new connection handle
(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")

 ; bind the stored procedure
 (define hstmt1 (bind-procedure hdbc "PERSONNEL.GET_EMPLOYEES"))

 ; call the stored procedure if the binding is successful
 (if (statement-handle? hstmt1)
 (begin
 (display "call PERSONNEL.GET_EMPLOYEES to get all sales
...\n\n")
 (if (and
 (db-proc-param-assign hdbc hstmt1 0 "30")
 (db-proc-param-assign hdbc hstmt1 1 "10")
)
 (execute-procedure hdbc hstmt1)
 (display (db-get-error-str hdbc))
)
)
)
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 459 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.8
Monk ODBC e*Way Functions Sample Monk Scripts
 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 460 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.8
Monk ODBC e*Way Functions Sample Monk Scripts
6.8.3 Inserting Records with Dynamic SQL Statements
;demo-stmt-insert.monk

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

; execute dynamic statement and display results
(define (execute-statement hdbc hstmt)
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (display-stmt-row-count hdbc hstmt)
 #t
)
 #f
)
)

; make new connection handle
(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

(define stmt1 "INSERT INTO SCOTT.BONUS SELECT ENAME, JOB, SAL, COMM
FROM SCOTT.EMP WHERE DEPTNO = ?")

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")

 ; bind the dynamic statement
 (define hstmt1 (bind-statement hdbc stmt1))

 ; assign parameter and execute the dynamic statement
 (if (statement-handle? hstmt1)
 (begin
 (display "\nInsert accounting department into bonus table
...\n")
 (if (db-stmt-param-assign hdbc hstmt1 0 "10")
 (if (execute-statement hdbc hstmt1)
 (begin
 (display "\nCommit the insertions ...\n")
 (if (not (db-commit hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)

 (display "\nInsert sales department into bonus table
...\n")
 (if (db-stmt-param-assign hdbc hstmt1 0 "20")
 (if (execute-statement hdbc hstmt1)
 (begin
 (display "\nCommit the insertions ...\n")
 (if (not (db-commit hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 461 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.8
Monk ODBC e*Way Functions Sample Monk Scripts
)
 (display (db-get-error-str hdbc))
)
)
)

 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 462 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.8
Monk ODBC e*Way Functions Sample Monk Scripts
6.8.4 Updating Records with Dynamic SQL Statements
;demo-stmt-update.monk

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

; execute dynamic statement and display results
(define (execute-statement hdbc hstmt)
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (display-stmt-row-count hdbc hstmt)
 #t
)
 #f
)
)

; make new connection handle
(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

(define stmt1 "UPDATE SCOTT.BONUS SET COMM = ? WHERE JOB = ?")

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")

 ; bind the dynamic statement
 (define hstmt1 (bind-statement hdbc stmt1))

 ; assign parameter and execute the dynamic statement
 (if (statement-handle? hstmt1)
 (begin
 (display "\nUpdate commission of manager ...\n")
 (if
 (and
 (db-stmt-param-assign hdbc hstmt1 0 "10")
 (db-stmt-param-assign hdbc hstmt1 1 "MANAGER")
)
 (if (execute-statement hdbc hstmt1)
 (begin
 (display "\nCommit the updates ...\n")
 (if (not (db-commit hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)

 (display "\nUpdate commission of clerk ...\n")
 (if
 (and
 (db-stmt-param-assign hdbc hstmt1 0 "20")
 (db-stmt-param-assign hdbc hstmt1 1 "CLERK")
)
 (if (execute-statement hdbc hstmt1)
 (begin
 (display "\nCommit the updates ...\n")
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 463 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.8
Monk ODBC e*Way Functions Sample Monk Scripts
 (if (not (db-commit hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
)
)

 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 464 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.8
Monk ODBC e*Way Functions Sample Monk Scripts
6.8.5 Selecting Records with Dynamic SQL Statements
;demo-stmt-select.monk

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

; execute dynamic statement and display results
(define (execute-statement hdbc hstmt)
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (display-stmt-column-value hdbc hstmt)
 #t
)
 #f
)
)

; make new connection handle
(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

(define stmt1 "SELECT EMPNO, ENAME, JOB FROM SCOTT.EMP WHERE JOB = ?")
(define stmt2 "SELECT ENAME, DNAME, JOB, HIREDATE FROM SCOTT.EMP,
SCOTT.DEPT WHERE EMP.DEPTNO = DEPT.DEPTNO AND DEPT.DNAME = ?")

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")

 ; bind the dynamic statements
 (define hstmt1 (bind-statement hdbc stmt1))
 (define hstmt2 (bind-statement hdbc stmt2))

 ; assign parameter and execute the dynamic statement
 (if (statement-handle? hstmt1)
 (begin
 (display "\nList all salesman ...\n\n")
 (if (db-stmt-param-assign hdbc hstmt1 0 "SALESMAN")
 (if (not (execute-statement hdbc hstmt1))
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display "\nList all manager ...\n\n")
 (if (db-stmt-param-assign hdbc hstmt1 0 "MANAGER")
 (if (not (execute-statement hdbc hstmt1))
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
)
)

 (if (statement-handle? hstmt2)
 (begin
 (display "\nList employee of accounting department
...\n\n")
 (if (db-stmt-param-assign hdbc hstmt2 0 "ACCOUNTING")
 (if (not (execute-statement hdbc hstmt2))
 (display (db-get-error-str hdbc))
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 465 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.8
Monk ODBC e*Way Functions Sample Monk Scripts
)
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 466 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.8
Monk ODBC e*Way Functions Sample Monk Scripts
6.8.6 Deleting Records with Dynamic SQL Statements
;demo-stmt-delete.monk

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

; execute dynamic statement and display results
(define (execute-statement hdbc hstmt)
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (display-stmt-row-count hdbc hstmt)
 #t
)
 #f
)
)

; make new connection handle
(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

(define stmt1 "DELETE FROM SCOTT.BONUS WHERE ENAME IS NOT NULL")

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")

 ; bind the dynamic statement
 (define hstmt1 (bind-statement hdbc stmt1))

 ; assign parameter and execute the dynamic statement
 (if (statement-handle? hstmt1)
 (begin
 (display "\nDelete records from scott.bonus table ...\n")
 (if (execute-statement hdbc hstmt1)
 (begin
 (display "\nCommit the deletions ...\n")
 (if (not (db-commit hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)
)
)

 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 467 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.8
Monk ODBC e*Way Functions Sample Monk Scripts
6.8.7 Inserting a Binary Image to a Database
This sample shows how to insert a Binary Image into a Database. It uses both Static and
Dynamic SQL functions. See “Static SQL Functions” on page 388 and “Dynamic SQL
Functions” on page 405 for more details.

;demo-image-insert.monk

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

(define (query-exist hdbc hstmt id)
 (let ((rec-count 0) (result '#()))
 (if (db-stmt-param-assign hdbc hstmt 0 id)
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (set! result (vector-ref (db-stmt-fetch hdbc hstmt) 0))
 (set! rec-count (string->number result))
 (set! result (db-stmt-fetch-cancel hdbc hstmt))
 (if (> rec-count 0)
 (begin
 (display "image already exist\n")
 #t
)
 #f
)
)
 (begin
 (display (db-get-error-str hdbc))
 #f
)
)
 (begin
 (display (db-get-error-str hdbc))
 #f
)
)
)
)

(define (execute-statement hdbc hstmt)
 (let ((col-count (db-stmt-column-count hdbc hstmt)) (row-count 0))
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (if (> col-count 0)
 (if (not (display-stmt-column-value hdbc hstmt col-
count))
 (display (db-get-error-str hdbc))
)
)
 (set! row-count (db-stmt-row-count hdbc hstmt))
 (if (boolean? row-count)
 (display (db-get-error-str hdbc))
 (display (string-append "number of image insert = "
(number->string row-count) "\n"))
)
 (newline)
 #t
)
 #f
)
)
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 468 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.8
Monk ODBC e*Way Functions Sample Monk Scripts
)

(define (bind-image-statement hdbc stmt)
 (let ((hstmt (db-stmt-bind-binary hdbc stmt)))
 (display (string-append "\nDynamic statement : " stmt "\n"))
 (if (statement-handle? hstmt)
 (begin
; (db-stmt-param-bind hdbc hstmt 0 "SQL_INTEGER" 4 0)
; (db-stmt-param-bind hdbc hstmt 1 "SQL_VARCHAR" 20 0)
; (db-stmt-param-bind hdbc hstmt 2 "SQL_VARCHAR" 10 0)
; (db-stmt-param-bind hdbc hstmt 3 "SQL_INTEGER" 38 0)
; (db-stmt-param-bind hdbc hstmt 4 "SQL_INTEGER" 38 0)
; (db-stmt-param-bind hdbc hstmt 5 "SQL_INTEGER" 10 0)
 (db-stmt-param-bind hdbc hstmt 6 "SQL_LONGVARBINARY"
2000000 0)
 (define prm-count (db-stmt-param-count hdbc hstmt))
 (display-stmt-parameter-property hdbc hstmt prm-count)

 (define col-count (db-stmt-column-count hdbc hstmt))
 (display-stmt-column-property hdbc hstmt col-count)
)
 (display (db-get-error-str hdbc))
)
 hstmt
)
)

(define image1-id "7100")
(define image1-name "Coast")
(define image1-type "JPEG")
(define image1-width "1280")
(define image1-height "1024")
(define image1-file (string-append image1-name ".jpg"))

(define image-port (open-input-file image1-file))
(define image1-data (read image-port 1000000))
(close-port image-port)
(define image1-size (number->string (string-length image1-data)))

(define image2-id "7200")
(define image2-name "Launch")
(define image2-type "JPEG")
(define image2-width "2000")
(define image2-height "1600")
(define image2-file (string-append image2-name ".jpg"))

(define image-port (open-input-file image2-file))
(define image2-data (read image-port 2000000))
(close-port image-port)
(define image2-size (number->string (string-length image2-data)))

(define hdbc (make-connection-handle))
(display (connection-handle? hdbc)) (newline)

(define stmt0 "select count(0) from SCOTT.IMAGE where PIX_ID = ?")
(define stmt1 "insert into SCOTT.IMAGE (PIX_ID, PIX_NAME, PIX_TYPE,
BYTE_SIZE, PIX_WIDTH, PIX_HEIGHT, PIX_DATA) values (?, ?, ?, ?, ?, ?,
?)")

(if (db-login hdbc dsn uid pwd)
(begin
(display "\ndatabase login succeed !\n")
(display (db-dbms hdbc)) (newline)
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 469 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.8
Monk ODBC e*Way Functions Sample Monk Scripts
(display (db-std-timestamp-format hdbc)) (newline)
(display (db-max-long-data-size hdbc 2000000)) (newline)

; bind the query and insert statement
(define hquery (bind-statement hdbc stmt0))
(define hinsert (bind-image-statement hdbc stmt1))

(if (and
(statement-handle? hquery)
(statement-handle? hinsert)

)
(begin
(if (not (query-exist hdbc hquery image1-id))
(begin
(display (string-append "insert image " image1-file "\n"))
(if (and

(db-stmt-param-assign hdbc hinsert 0 image1-id)
(db-stmt-param-assign hdbc hinsert 1 image1-name)
(db-stmt-param-assign hdbc hinsert 2 image1-type)
(db-stmt-param-assign hdbc hinsert 3 image1-size)
(db-stmt-param-assign hdbc hinsert 4 image1-width)
(db-stmt-param-assign hdbc hinsert 5 image1-height)
(db-stmt-param-assign hdbc hinsert 6 image1-data)

)
(if (execute-statement hdbc hinsert)
(db-commit hdbc)
(display (db-get-error-str hdbc))

)
(display (db-get-error-str hdbc))

)
)

)

(if (not (query-exist hdbc hquery image2-id))
(begin
(display (string-append "insert image " image2-file "\n"))
(if (and

(db-stmt-param-assign hdbc hinsert 0 image2-id)
(db-stmt-param-assign hdbc hinsert 1 image2-name)
(db-stmt-param-assign hdbc hinsert 2 image2-type)
(db-stmt-param-assign hdbc hinsert 3 image2-size)
(db-stmt-param-assign hdbc hinsert 4 image2-width)
(db-stmt-param-assign hdbc hinsert 5 image2-height)
(db-stmt-param-assign hdbc hinsert 6 image2-data)

)
(if (execute-statement hdbc hinsert)
(db-commit hdbc)
(display (db-get-error-str hdbc))

)
(display (db-get-error-str hdbc))

)
)

)
)

)

(if (not (db-logout hdbc))
(display (db-get-error-str hdbc))

)
)
(display (db-get-error-str hdbc))

)

e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 470 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.8
Monk ODBC e*Way Functions Sample Monk Scripts
6.8.8 Retrieving an Image from a Database
This sample shows how to Retrieve an image from a Database. It uses both Static and
Dynamic SQL functions. See “Static SQL Functions” on page 388 and “Dynamic SQL
Functions” on page 405 for more details.

;demo-image-select.monk

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

(define (get-image hdbc hstmt)
 (do (
 (result (db-stmt-fetch hdbc hstmt) (db-stmt-fetch hdbc
hstmt))
 (first_name "")
 (file_type "")
 (file_name "")
 (width "")
 (height "")
 (output_port '())
)
 ((boolean? result) result)
 (set! first_name (vector-ref result 0))
 (set! file_type (strip-trailing-whitespace (vector-ref result
1)))
 (set! width (strip-trailing-whitespace (vector-ref result 2)))
 (set! height (strip-trailing-whitespace (vector-ref result 3)))
 (cond
 ((string=? file_type "JPEG") (set! file_name (string-append
first_name ".jpg")))
 ((string=? file_type "GIF") (set! file_name (string-append
first_name ".gif")))
 ((string=? file_type "BITMAP") (set! file_name (string-append
first_name ".bmp")))
 ((string=? file_type "TIFF") (set! file_name (string-append
first_name ".tif")))
 (else (set! file_name (string-append first_name ".raw")))
)
 (if (file-exists? file_name)
 (file-delete file_name)
)
 (display (string-append "picture name = " file_name "\n"))
 (display (string-append "picture size = " width " x " height
"\n\n"))
 (set! output_port (open-output-file file_name))
 (display (vector-ref result 4) output_port)
 (close-port output_port)
)
)

(define (execute-statement hdbc hstmt)
 (let ((col-count (db-stmt-column-count hdbc hstmt)) (row-count 0))
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (if (> col-count 0)
 (if (not (get-image hdbc hstmt))
 (display (db-get-error-str hdbc))
)
)
 (set! row-count (db-stmt-row-count hdbc hstmt))
 (if (boolean? row-count)
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 471 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.8
Monk ODBC e*Way Functions Sample Monk Scripts
 (display (db-get-error-str hdbc))
 (display (string-append "number of image retrieved = "
(number->string row-count) "\n"))
)
 (newline)
 #t
)
 #f
)
)
)

(define hdbc (make-connection-handle))
(display (connection-handle? hdbc)) (newline)

(define stmt "select PIX_NAME, PIX_TYPE, PIX_WIDTH, PIX_HEIGHT,
PIX_DATA from SCOTT.IMAGE where PIX_ID = ?")

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")
 (display (db-dbms hdbc)) (newline)
 (display (db-std-timestamp-format hdbc)) (newline)
 (display (db-max-long-data-size hdbc 2000000)) (newline)

 ; bind the select statement
 (define hselect (bind-binary-statement hdbc stmt))

 ; execute the dynamic statement
 (display "select IMAGE table\n")
 (if (statement-handle? hselect)
 (begin
 (if (db-stmt-param-assign hdbc hselect 0 "7100")
 (if (not (execute-statement hdbc hselect))
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (if (db-stmt-param-assign hdbc hselect 0 "7200")
 (if (not (execute-statement hdbc hselect))
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
)
)

 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 472 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.8
Monk ODBC e*Way Functions Sample Monk Scripts
6.8.9 Common Supporting Routines
This sample script displays and defines values and parameters for stored procedures.
The routines contained in this script are used by many of the Monk samples in this
chapter. For more details about functions used in this script, see “Stored Procedure
Functions” on page 418

;demo-common.monk

;;
;; stored procedure auxiliary functions
;;

; display parameter properties of the stored procedure
(define (display-proc-parameter-property hdbc hstmt prm-count)
 (display "parameter count = ") (display prm-count) (newline)
 (do ((i 0 (+ i 1))) ((= i prm-count))
 (display "parameter ")
 (display (db-proc-param-name hdbc hstmt i))
 (display ": type = ")
 (display (db-proc-param-type hdbc hstmt i))
 (display ", io = ")
 (display (db-proc-param-io hdbc hstmt i))
 (newline)
)
)

; display value of output parameters from stored procedure
(define (display-proc-parameter-output-value hdbc hstmt prm-count)
 (do ((i 0 (+ i 1))) ((= i prm-count))
 (if (not (equal? (db-proc-param-io hdbc hstmt i) "IN"))
 (begin
 (display "output parameter ")
 (display (db-proc-param-name hdbc hstmt i))
 (display " = ")
 (display (db-proc-param-value hdbc hstmt i))
 (newline)
)
)
)
)

; display column properties of the return result set
(define (display-proc-column-property hdbc hstmt col-count)
 (display "column count = ") (display col-count) (newline)
 (do ((i 0 (+ i 1))) ((= i col-count))
 (display "column ")
 (display (db-proc-column-name hdbc hstmt i))
 (display ": type = ")
 (display (db-proc-column-type hdbc hstmt i))
 (newline)
)
 (newline)
)

; display column value of the return result set of the stored
procedure
(define (display-proc-column-value hdbc hstmt col-count)
 (define (fetch-next)
 (let ((result (db-proc-fetch hdbc hstmt)))
 (if (boolean? result)
 result
 (begin (display result) (newline) (fetch-next))
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 473 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.8
Monk ODBC e*Way Functions Sample Monk Scripts
)
)
)
 (fetch-next)
 (newline)
)

; bind stored procedure and display parameter properties
(define (bind-procedure hdbc proc)
 (let ((hstmt (db-proc-bind hdbc proc)))
 (if (statement-handle? hstmt)
 (begin
 (display (string-append "bind stored procedure : " proc
"\n"))
 (define prm-count (db-proc-param-count hdbc hstmt))
 (display-proc-parameter-property hdbc hstmt prm-count)
 (newline)
 (if (db-proc-return-exist hdbc hstmt)
 (begin
 (display "return: type = ")
 (display (db-proc-return-type hdbc hstmt))
 (newline)
)
)
 (newline)
)
 (display (db-get-error-str hdbc))
)
 hstmt
)
)

;;
;; dynamic statement auxiliary functions
;;

; display parameter properties of the SQL statement
(define (display-stmt-parameter-property hdbc hstmt prm-count)
 (display "parameter count = ") (display prm-count) (newline)
 (do ((i 0 (+ i 1))) ((= i prm-count))
 (display "parameter #")
 (display i)
 (display ": type = ")
 (display (db-stmt-param-type hdbc hstmt i))
 (newline)
)
 (newline)
)

; display column properties of the SQL statement
(define (display-stmt-column-property hdbc hstmt col-count)
 (display "column count = ") (display col-count) (newline)
 (do ((i 0 (+ i 1))) ((= i col-count))
 (display "column ")
 (display (db-stmt-column-name hdbc hstmt i))
 (display ": type = ")
 (display (db-stmt-column-type hdbc hstmt i))
 (newline)
)
 (newline)
)

e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 474 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.8
Monk ODBC e*Way Functions Sample Monk Scripts
; display column value of the return result set of the SQL statement
(define (display-stmt-column-value hdbc hstmt)
 (define (fetch-next)
 (let ((result (db-stmt-fetch hdbc hstmt)))
 (if (boolean? result)
 result
 (begin (display result) (newline) (fetch-next))
)
)
)
 (fetch-next)
 (newline)
)

; display row count affected by the execution of the SQL statement
(define (display-stmt-row-count hdbc hstmt)
 (let ((row-count (db-stmt-row-count hdbc hstmt)))
 (cond
 ((= row-count 0) (display "\n(no row affected)\n"))
 ((= row-count 1) (display "\n(1 row affected)\n"))
 (else (display (string-append "\n(" (number->string row-
count) " rows affected)\n")))
)
)
)

; bind dynamic statement and display paramters and column properties
(define (bind-statement hdbc stmt)
 (let ((hstmt (db-stmt-bind hdbc stmt)))
 (display (string-append "\nDynamic statement : " stmt "\n"))
 (if (statement-handle? hstmt)
 (begin
 (define prm-count (db-stmt-param-count hdbc hstmt))
 (display-stmt-parameter-property hdbc hstmt prm-count)

 (define col-count (db-stmt-column-count hdbc hstmt))
 (display-stmt-column-property hdbc hstmt col-count)
)
 (display (db-get-error-str hdbc))
)
 hstmt
)
)

; bind dynamic statement to input/output raw binary data
(define (bind-binary-statement hdbc stmt)
 (let ((hstmt (db-stmt-bind-binary hdbc stmt)))
 (display (string-append "\nDynamic statement : " stmt "\n"))
 (if (statement-handle? hstmt)
 (begin
 (define prm-count (db-stmt-param-count hdbc hstmt))
 (display-stmt-parameter-property hdbc hstmt prm-count)

 (define col-count (db-stmt-column-count hdbc hstmt))
 (display-stmt-column-property hdbc hstmt col-count)
)
 (display (db-get-error-str hdbc))
)
 hstmt
)
)

e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 475 SeeBeyond Proprietary and Confidential

Index
Index

A
additional path 62
auxiliary library directories 62

B
basic functions

event-send-to-egate 223, 350
get-logical name 224, 351
send-external-down 225, 352
send-external-up 226, 353
shutdown-request 227, 354
start-schedule 228, 355
stop-schedule 229, 356

build an event type 110

C
calling stored procedures, sample 332, 459
class parameter

Connector settings 45
Data Source settings 41

Collaboration Service Java 70–71
Collecting Data from Output Parameters 86
common supporting routines, sample 346, 473
communication setup 50

down timeout 52
exchange data interval 51
resend timeout 52
start exchange data schedule 50
stop exchange data schedule 51
up timeout 52
zero wait between successful exchanges 52

component relationship 71
components 21
components, Java-enabled 71
configuration file

sqlnet.ora 37
configuration file sections

DataSource settings 41
configuration parameters 48

class 41, 45
connection establishment mode 45
connection inactivity timeout 46

connection method 42
connection verification interval 46
connector 45
data source attribute value pair separator 43
data source attributes 43
jdbc url 43
password 44
timeout 44
transaction mode 45
user name 44

configuration steps, schema 91
configuring e*Way connections 40
connection establishment mode parameter

Connector settings 45
connection inactivity timeout parameter

Connector settings 46
connection method 42
connection method parameter

Data Source settings 42
connection verification interval parameter

Connector settings 46
connection-handle? 248, 375
connector objects, JDBC 45
connector parameter

Connector settings 45
Controlling When a Connection is Disconnected 47
Controlling When a Connection is Made 47
converter, DART 110
creating e*Way connections 40

D
DART

converter 110
library 111

data source attribute value pair separator parameter
Data Source settings 43

data source attributes parameter
Data Source settings 43

database access functions
db-proc-bind 292, 293, 419, 420
db-stmt-bind 279, 406
db-stmt-bind-binary 280, 407
db-stmt-column-count 281, 408
db-stmt-column-name 282, 409
db-stmt-fetch-cancel 286, 413

database functions
connection-handle? 248, 375
db-alive 249, 376
db-commit 251, 378
db-get-error-str 252, 379
db-login 254, 381
db-logout 256, 383
db-max-long-data-size 257, 384
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 476 SeeBeyond Proprietary and Confidential

Index
db-proc-column-count 294, 421
db-proc-column-name 296, 423
db-proc-column-type 298, 425
db-proc-execute 300, 427
db-proc-fetch 302, 429
db-proc-fetch-cancel 304, 431
db-proc-param-assign 305, 432
db-proc-param-count 307, 434
db-proc-param-io 308, 435
db-proc-param-name 309, 436
db-proc-param-type 310, 437
db-proc-param-value 311, 438
db-proc-return-exist 313, 440
db-proc-return-type 315, 442
db-proc-return-value 317, 444
db-rollback 258, 385
db-sql-column-names 267, 394
db-sql-column-types 269, 396
db-sql-column-values 270, 397
db-sql-execute 272, 399
db-sql-fetch 273, 400
db-sql-fetch-cancel 274, 401
db-sql-format 275, 402
db-sql-select 277, 404
db-stmt-bind-binary 280, 407
db-stmt-execute 284, 411
db-stmt-fetch 285, 412
db-stmt-param-assign 287, 414
db-stmt-param-count 288, 415
db-stmt-param-type 289, 416
make-connection-handle 259, 386
statement-handle? 260, 387

database name 68
database setup 68

database name 68
database type 68
encrypted password 69
user name 69

database type 68
DataSource settings 41
db-alive 249, 376
db-commit 251, 378
db-get-error-str 252, 379
db-login 254, 381
db-logout 256, 383
db-max-long-data-size 257, 384
db-proc-bind 292, 293, 419, 420
db-proc-column-count 294, 421
db-proc-column-name 296, 423
db-proc-column-type 298, 425
db-proc-execute 300, 427
db-proc-fetch 302, 429
db-proc-fetch-cancel 304, 431
db-proc-param-assign 305, 432

db-proc-param-count 307, 434
db-proc-param-io 308, 435
db-proc-param-name 309, 436
db-proc-param-type 310, 437
db-proc-param-value 311, 438
db-proc-return-exist 313, 440
db-proc-return-type 315, 442
db-proc-return-value 317, 444
db-rollback 258, 385
db-sql-column-names 267, 394
db-sql-column-types 269, 396
db-sql-column-values 270, 397
db-sql-execute 272, 399
db-sql-fetch 273, 400
db-sql-fetch-cancel 274, 401
db-sql-format 275, 402
db-sql-select 277, 404
db-stdver-conn-estab 231, 358
db-stdver-conn-shutdown 233, 360
db-stdver-conn-ver 234, 361
db-stdver-data-exchg 236, 363
db-stdver-data-exchg-stub 237, 364
db-stdver-init 238, 365
db-stdver-neg-ack 239, 366
db-stdver-pos-ack 240, 367
db-stdver-proc-outgoing 241, 368
db-stdver-proc-outgoing-stub 243, 370
db-stdver-shutdown 245, 372
db-stdver-startup 246, 373
db-stmt-bind 279, 406
db-stmt-bind-binary 280, 407
db-stmt-column-count 281, 408
db-stmt-column-name 282, 409
db-stmt-execute 284, 411
db-stmt-fetch 285, 412
db-stmt-fetch-cancel 286, 413
db-stmt-param-assign 287, 414
db-stmt-param-count 288, 415
db-stmt-param-type 289, 416
db-struct-call 320, 447
db-struct-execute 321, 448
db-struct-fetch 321, 322, 448, 449
db-struct-insert 324, 451
db-struct-select 326, 453
db-struct-update 328, 455
DBWizard 72
DBWizard ETD Builder 72
deleting records, sample 340, 467
down timeout 52
driver class, JDBC 41

E
e*Way connections
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 477 SeeBeyond Proprietary and Confidential

Index
configuring 40
creating 40

Editing an Existing .XSC 80
encrypted password 69
environment variables

Merant drivers 34
ETD Editor 110
event-send-to-egate 223, 350
exchange data interval 51
exchange data with external function 64
executeBusinessRules() 70
external connection shutdown function 66
external connection verification function 65
external system requirements 23

F
forward external errors 50
functions

connection-handle? 248, 375
db-alive 249, 376
db-commit 251, 378
db-get-error-str 252, 379
db-login 254, 381
db-logout 256, 383
db-max-long-data-size 257, 384
db-proc-bind 292, 293, 419, 420
db-proc-column-count 294, 421
db-proc-column-name 296, 423
db-proc-column-type 298, 425
db-proc-execute 300, 427
db-proc-fetch 302, 429
db-proc-fetch-cancel 304, 431
db-proc-param-assign 305, 432
db-proc-param-count 307, 434
db-proc-param-io 308, 435
db-proc-param-name 309, 436
db-proc-param-type 310, 437
db-proc-param-value 311, 438
db-proc-return-exist 313, 440
db-proc-return-type 315, 442
db-proc-return-value 317, 444
db-rollback 258, 385
db-sql-column-names 267, 394
db-sql-column-types 269, 396
db-sql-column-values 270, 397
db-sql-execute 272, 399
db-sql-fetch 273, 400
db-sql-fetch-cancel 274, 401
db-sql-format 275, 402
db-sql-select 277, 404
db-stdver-conn-estab 231, 358
db-stdver-conn-shutdown 233, 360
db-stdver-conn-ver 234, 361

db-stdver-data-exchg 236, 363
db-stdver-data-exchg-stub 237, 364
db-stdver-init 238, 365
db-stdver-neg-ack 239, 366
db-stdver-pos-ack 240, 367
db-stdver-proc-outgoing 241, 368
db-stdver-proc-outgoing-stub 243, 370
db-stdver-shutdown 245, 372
db-stdver-startup 246, 373
db-stmt-bind 279, 406
db-stmt-bind-binary 280, 407
db-stmt-column-count 281, 408
db-stmt-column-name 282, 409
db-stmt-execute 284, 411
db-stmt-fetch 285, 412
db-stmt-fetch-cancel 286, 413
db-stmt-param-assign 287, 414
db-stmt-param-count 288, 415
db-stmt-param-type 289, 416
db-struct-call 320, 447
db-struct-execute 321, 448
db-struct-fetch 321, 322, 448, 449
db-struct-insert 324, 451
db-struct-select 326, 453
db-struct-update 328, 455
event-send-to-egate 223, 350
get-logical-name 224, 351
make-connection-handle 259, 386
send-external-down 225, 352
send-external-up 226, 353
shutdown-request 227, 354
start-schedule 228, 355
statement-handle? 260, 387
stop-schedule 229, 356

G
general settings 49

forward external errors 50
journal file name 49
max failed messages 50
max resends per message 49

get-logical-name 224, 351

H
host system requirements 20

I
Implementation 70
initialization functions (Monk) 62
initializing Monk extensions, sample 331, 458
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 478 SeeBeyond Proprietary and Confidential

Index
inserting records, sample 334, 461
installation

Windows NT 27
intended reader 22
ivtestlib tool

uses 34

J
Java Collaboration Service 70–71
Java-enabled components 71
JDBC 72

connector objects 45
driver class 41

jdbc url parameter
Data Source settings 43

journal file name 49

L
library converter 110
library directories 62
library, DART 111
load path 62

M
make-connection-handle 259, 386
max failed messages 50
max resends per message 49
Mixing XA-Compliant and XA-Noncompliant
e*Way Connections 45
monk configuration 53

additional path 62
auxiliary library directories 62
exchange data with external function 64
external connection 66
external connection verification function 65
monk environment initialization file 62
negative acknowledgment function 67
positive acknowledgment 66
process outgoing event function 63
shutdown command notification 68
startup function 63

monk environment initialization file 62

N
negative acknowledgment function 67
No Suitable Driver 109

O
ODBC e*Way 28
odbc.ini

sample file 31
odbcmsg_display.monk 252, 379

P
parameters

additional path 62
auxiliary library directories 62
communication setup 50
database name 68
database setup 68
database type 68
down timeout 52
encrypted password 69
exchange data interval 51
exchange data with external function 64
external connection shutdown function 66
external connection verification function 65
forward external errors 50
general settings 49
journal file name 49
max failed messaged 50
max resends per message 49
monk configuration 53
monk environment initialization file 62
negative acknowledgment function 67
positive acknowledgment function 66
process outgoing event function 63
resend timeout 52
shutdown command notification function 68
start exchange data schedule 50
startup function 63
stop exchange data schedule 51
up timeout 52
user name 69
zero wait between successful exchanges 52

password parameter 44
positive acknowledgment function 66
Prepared Statements 81
process outgoing event function 63

R
requirements

host system 20
resend timeout 52

S
sample
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 479 SeeBeyond Proprietary and Confidential

Index
calling stored procedures 332, 459
common routines 346, 473
common supporting routines 346, 473
deleting records with dynamic SQL statements

340, 467
dynamic SQL statements 334, 336, 338, 340, 461,

463, 465, 467
initializing Monk extensions 331, 458
inserting binary images 341, 468
inserting records with dynamic SQL statements

334, 461
retrieving images 344, 471
selecting records with dynamic SQL statements

338, 465
stored procedures 332, 459
updating records with dynamic SQL statements

336, 463
schema configuration steps 91
selecting records, sample 338, 465
send-external-down 225, 352
send-external-up function 226, 353
shutdown command notification function 68
shutdown-request 227, 354
SQL 21
standard functions

db-stdver-conn-estab 231, 358
db-stdver-conn-shutdown 233, 360
db-stdver-conn-ver 234, 361
db-stdver-data-exchg 236, 363
db-stdver-data-exchg-stub 237, 364
db-stdver-init 238, 365
db-stdver-neg-ack 239, 366
db-stdver-pos-ack 240, 367
db-stdver-proc-outgoing 241, 368
db-stdver-proc-outgoing-stub 243, 370
db-stdver-shutdown 245, 372
db-stdver-startup 246, 373

start exchange data schedule 50
starting a listener 38
start-schedule 228, 355
startup function 63
statement-handle? 260, 387
stcewgenericmonk.exe 21
stcjdbcx.jar 19
stop exchange data schedule 51
stop-schedule 229, 356
Stored Procedure 81
stored procedures, sample 332, 459
structure functions

db-struct-call 320, 447
db-struct-fetch 321, 322, 448, 449
db-struct-insert 324, 451
db-struct-select 326, 453
db-struct-update 328, 455

Supported Operating Systems 19
supported variable SQL datatypes 266, 393
System Requirements 20

T
Tables 81
testing

ODBC Driver 34
timeout parameter 44
transaction mode parameter

Connector settings 45

U
UNIX 25
up timeout 52
updating records, sample 336, 463
user name 69
user name parameter 44
userInitialize() 70
userTerminate() 70
using SQL 21

V
Views 81

W
Windows NT 27
Windows NT / Windows 2000 20
Windows NT or Windows 2000 18, 19, 24

Z
zero wait between successful exchanges 52
e*Way Intelligent Adapter for
JDBC/ODBC User’s Guide 480 SeeBeyond Proprietary and Confidential

	e*Way Intelligent Adapter for JDBC/ODBC User’s Guide
	Contents
	Introduction
	1.1 JDBC/ODBC e*Way Overview
	1.1.1 Driver Types
	Type One Driver
	Type Two Driver
	Type Three Driver
	Type Four Driver

	1.1.2 Intended Reader
	1.1.3 Components

	1.2 Operational Overview
	1.3 Supported Operating Systems
	1.4 System Requirements
	1.4.1 Host System Requirements
	GUI Host Requirements
	Participating Host Requirements

	1.5 ODBC e*Way Overview
	1.6 Using SQL
	1.7 Components
	1.8 Intended Reader
	1.9 Supported Operating Systems
	1.10 System Requirements
	1.10.1 External System Requirements

	Installation
	2.1 Installing the JDBC/ODBC e*Way on Windows NT or Windows 2000
	2.1.1 Pre-installation
	2.1.2 Installation Procedure

	2.2 Installing the JDBC/ODBC e*Way on UNIX
	2.2.1 Pre-installation
	2.2.2 Installation Procedure

	2.3 Files/Directories Created by the Installation
	2.4 Monk ODBC Installation
	2.4.1 Installation Overview
	2.4.2 Installation Decisions
	2.4.3 Installing Client and Network Components on Windows�NT/2000

	2.5 Installing the ODBC e*Way on Windows�NT and Windows 2000
	2.5.1 Pre-installation
	2.5.2 Installation Procedure

	2.6 Installing the ODBC e*Way on UNIX
	2.6.1 Pre-installation
	2.6.2 Installation Procedure

	2.7 DataDirect 4.1 ODBC Drivers
	2.7.1 Setting up the Shared Library Search Path
	2.7.2 Setting up the ODBC Data Source Definition File
	Sample .odbc.ini File
	Optional Environment Variables

	2.7.3 The ivtestlib Tool
	2.7.4 Testing the ODBC Driver

	2.8 Installing the ODBC Drivers for Compaq
	2.9 Oracle Network Components
	2.9.1 SQL *Net V2 Configuration Files
	2.9.2 Testing the SQL *Net Configuration
	2.9.3 Troubleshooting Checklist

	e*Way Connection Configuration
	3.1 Create e*Way Connections
	3.1.1 DataSource Settings
	class
	connection method
	jdbc url
	data source attribute value pair separator
	data source attributes
	user name
	password
	timeout

	3.1.2 Connector Settings
	connector
	class
	transaction mode
	connection establishment mode
	connection inactivity timeout
	connection verification interval

	3.2 Connection Manager
	Controlling When a Connection is Made
	Controlling When a Connection is Disconnected
	Controlling the Connectivity Status

	3.3 Monk ODBC Configuration
	3.4 Configuration Overview
	3.5 e*Way Configuration Parameters
	3.5.1 General Settings
	Journal File Name
	Max Resends Per Message
	Max Failed Messages
	Forward External Errors

	3.5.2 Communication Setup
	Start Exchange Data Schedule
	Stop Exchange Data Schedule
	Exchange Data Interval
	Down Timeout
	Up Timeout
	Resend Timeout
	Zero Wait Between Successful Exchanges

	3.5.3 Monk Configuration
	Basic e*Way Processes
	How to Specify Function Names or File Names
	Additional Path
	Auxiliary Library Directories
	Monk Environment Initialization File
	Startup Function
	Process Outgoing Message Function
	Exchange Data with External Function
	External Connection Establishment Function
	External Connection Verification Function
	External Connection Shutdown Function
	Positive Acknowledgment Function
	Negative Acknowledgment Function
	Shutdown Command Notification Function

	3.5.4 Database Setup
	Database Type
	Database Name
	User Name
	Encrypted Password

	Implementation
	4.1 Implementing Java-enabled Components
	4.1.1 The Java Collaboration Service
	4.1.2 Java-enabled Components

	4.2 The Java ETD Builder
	4.2.1 The Parts of the ETD
	4.2.2 Using the DBWizard ETD Builder
	4.2.3 The Generated ETDs
	4.2.4 Editing an Existing .XSC Using the Database Wizard

	4.3 Using ETDs with Tables, Views, Stored Procedure, and Prepared Statements
	4.3.1 Tables
	The query Operation
	The insert Operation
	The update Operation
	The delete Operation

	4.3.2 The View
	4.3.3 The Stored Procedure
	Executing Stored Procedures
	Returning Result Sets from Rows in the Stored Procedure

	4.3.4 Prepared Statement
	4.3.5 Batch Operations
	4.3.6 Database Configuration Node

	4.4 Sample Scenario—Polling from a JDBC/ODBC Generic Database
	4.4.1 Create the Schema
	4.4.2 Add the Event Types and Event Type Definitions
	4.4.3 Create the Collaboration Rules and the Java Collaboration
	4.4.4 Add and Configure the e*Ways
	4.4.5 Add and Configure the e*Way Connections
	4.4.6 Add the IQs
	4.4.7 Add and Configure the Collaborations
	4.4.8 Run the Schema

	4.5 The Empty ETD
	4.6 Troubleshooting the JDBC/ODBC Java e*Way
	4.7 Monk ODBC Implementation
	4.8 Using the ETD Editor’s Build Tool
	4.8.1 The Event Type Definition Files
	Table or View
	Dynamic SQL Statement
	Stored Procedure

	4.9 Vendor-Specific Driver Notes
	4.9.1 IBM ODBC DB2 Drivers
	Support for BLOB and CLOB Data Types

	4.9.2 Merant ODBC Drivers
	Support for BLOB and CLOB Data Types

	4.10 Sample One—Publishing e*Gate Events to an ODBC Database
	4.10.1 Create the Schema
	4.10.2 Create the Event Type Definitions
	4.10.3 Add the Event Types
	4.10.4 Create the Monk Scripts
	4.10.5 Add and Configure the e*Ways
	4.10.6 Add the IQs
	4.10.7 Create the Collaboration Rules
	4.10.8 Add and Configure the Collaborations
	4.10.9 Run the Schema

	4.11 Sample Two—Polling from an ODBC Database
	4.11.1 Create the Schema
	4.11.2 Create the Event Type Definitions
	4.11.3 Add the Event Types
	4.11.4 Create the Monk Scripts
	4.11.5 Add and Configure the e*Ways
	4.11.6 Add the IQs
	4.11.7 Create the Collaboration Rules
	4.11.8 Add and Configure the Collaborations
	4.11.9 Run the Schema

	JDBC/ODBC e*Way Methods
	5.1 JDBC/ODBC e*Way Methods
	5.2 com.stc.eways.jdbcx.StatementAgent Class
	resultSetTypeToString
	resultSetDirToString
	resultSetConcurToString
	isClosed
	queryName
	queryDescription
	sessionOpen
	sessionClosed
	resetRequested
	getResultSetType
	getResultSetConcurrency
	setEscapeProcessing
	setCursorName
	setQueryTimeout
	setQueryTimeout
	getFetchDirection
	setFetchDirection
	getFetchSize
	getMaxRows
	setMaxRows
	getMaxFieldSize
	setMaxFieldSize
	getUpdateCount
	getResultSet
	getMoreResults
	clearBatch
	executeBatch
	cancel
	getWarnings
	clearWarnings
	stmtInvoke

	5.3 com.stc.eways.jdbcx.PreparedStatementAgent Class
	sessionOpen
	setNull
	setNull
	setObject
	setObject
	setObject
	setBoolean
	setByte
	setShort
	setInt
	setLong
	setFloat
	setDouble
	setBigDecimal
	setDate
	setDate
	setTime
	setTime
	setTimestamp
	setTimestamp
	setString
	setBytes
	setAsciiStream
	setBinaryStream
	setCharacterStream
	setArray
	setBlob
	setClob
	setRef
	clearParameters
	addBatch
	execute
	executeQuery
	executeUpdate

	5.4 com.stc.eways.jdbcx.PreparedStatementResultSet Class
	Constructor PreparedStatementResultSet
	getMetaData
	getConcurrency
	getFetchDirection
	setFetchDirection
	getFetchSize
	setFetchSize
	getCursorName
	close
	next
	previous
	absolute
	relative
	first
	isFirst
	last
	isLast
	beforeFirst
	isBeforeFirst
	afterLast
	isAfterLast
	getType
	findColumn
	getObject
	getObject
	getObject
	getObject
	getBoolean
	getBoolean
	getByte
	getShort
	getShort
	getInt
	getInt
	getLong
	getLong
	getFloat
	getFloat
	getDouble
	getBigDecimal
	getBigDecimal
	getDate
	getDate
	getDate
	getTime
	getTime
	getTime
	getTime
	getTimestamp
	getTimestamp
	getTimestamp
	getTimestamp
	getString
	getString
	getBytes
	getBytes
	getAsciiStream
	getAsciiStream
	getBinaryStream
	getBinaryStream
	getCharacterStream
	getArray
	getBlob
	getBlob
	getClob
	getClob
	getRef
	getRef
	wasNull
	getWarnings
	clearWarnings
	getRow
	refreshRow
	insertRow
	updateRow
	deleteRow

	5.5 com.stc.eways.jdbcx.SqlStatementAgent Class
	Constructor SqlStatementAgent
	Constructor SqlStatementAgent
	execute
	executeQuery
	executeUpdate
	addBatch

	5.6 com.stc.eways.jdbcx.CallableStatementAgent Class
	Constructor CallableStatementAgent
	Constructor CallableStatementAgent
	Constructor CallableStatement Agent
	sessionOpen
	registerOutParameter
	registerOutParameter
	registerOutParameter
	wasNull
	getObject
	getObject
	getBoolean
	getByte
	getShort
	getInt
	getLong
	getFloat
	getDouble
	getBigDecimal
	getDate
	getDate
	getTime
	getTime
	getTimestamp
	getTimestamp
	getString
	getBytes
	getArray
	getBlob
	getClob
	getRef

	5.7 com.stc.eways.jdbcx.TableResultSet Class
	select
	next
	previous
	absolute
	relative
	first
	isFirst
	last
	isLast
	beforeFirst
	isBeforeFirst
	afterLast
	isAfterLast
	findColumn
	getAsciiStream
	getAsciiStream
	getBinaryStream
	getBinaryStream
	getCharacterStream
	getCharacterStream
	refreshRow
	insertRow
	updateRow
	deleteRow
	moveToInsertRow
	moveToCurrentRow
	cancelRowUpdates
	rowInserted
	rowUpdated
	rowDeleted
	wasNull

	5.8 $DB Configuration Node Methods
	5.9 Com_stc_jdbcx_dbcfg.DataSource
	getClass
	setClass
	hasClass
	omitClass
	getConnectionMethod
	setConnectionMethod
	hasConnectionMethod
	omitConnectionMethod
	getJdbcUrl
	setJdbcUrl
	hasJdbcUrl
	omitJdbcUrl
	getDataSourceAttributeValuePairSeparator
	setDataSourceAttributeValuePairSeparator
	hasDataSourceAttributeValuePairSeparator
	omitDataSourceAttributeValuePairSeparator
	getDataSourceAttributes
	setDataSourceAttributes
	getDataSourceAttributes
	setDataSourceAttributes
	countDataSourceAttributes
	removeDataSourceAttributes
	addDataSourceAttributes
	addDataSourceAttributes
	clearDataSourceAttributes
	getUserName
	setUserName
	hasUserName
	omitUserName
	getPassword
	setPassword
	setPassword_AsIs
	hasPassword
	omitPassword
	getTimeout
	setTimeout
	hasTimeout
	omitTimeout

	5.10 Com_stc_jdbcx_dbcfg
	getDataSource
	setDataSource

	5.11 Monk ODBC e*Way Functions
	5.12 Basic Functions
	event-send-to-egate
	get-logical-name
	send-external-down
	send-external-up
	shutdown-request
	start-schedule
	stop-schedule

	5.13 Standard e*Way Functions
	db-stdver-conn-estab
	db-stdver-conn-shutdown
	db-stdver-conn-ver
	db-stdver-data-exchg
	db-stdver-data-exchg-stub
	db-stdver-init
	db-stdver-neg-ack
	db-stdver-pos-ack
	db-stdver-proc-outgoing
	db-stdver-proc-outgoing-stub
	db-stdver-shutdown
	db-stdver-startup

	5.14 General Connection Functions
	connection-handle?
	db-alive
	db-commit
	db-get-error-str
	db-login
	db-logout
	db-max-long-data-size
	db-rollback
	make-connection-handle
	statement-handle?

	5.15 Static SQL Functions
	Static vs. Dynamic SQL Functions
	ODBC SQL Type Support
	db-sql-column-names
	db-sql-column-types
	db-sql-column-values
	db-sql-execute
	db-sql-fetch
	db-sql-fetch-cancel
	db-sql-format
	db-sql-select

	5.16 Dynamic SQL Functions
	db-stmt-bind
	db-stmt-bind-binary
	db-stmt-column-count
	db-stmt-column-name
	db-stmt-column-type
	db-stmt-execute
	db-stmt-fetch
	db-stmt-fetch-cancel
	db-stmt-param-assign
	db-stmt-param-count
	db-stmt-param-type
	db-stmt-row-count

	5.17 Stored Procedure Functions
	db-proc-bind
	db-proc-bind-binary
	db-proc-column-count
	db-proc-column-name
	db-proc-column-type
	db-proc-execute
	db-proc-fetch
	db-proc-fetch-cancel
	db-proc-param-assign
	db-proc-param-count
	db-proc-param-io
	db-proc-param-name
	db-proc-param-type
	db-proc-param-value
	db-proc-return-exist
	db-proc-return-type
	db-proc-return-value

	5.18 Message Event Functions
	db-struct-call
	db-struct-execute
	db-struct-fetch
	db-struct-insert
	db-struct-select
	db-struct-update

	5.19 Sample Monk Scripts
	5.19.1 Initializing Monk Extensions
	5.19.2 Calling Stored Procedures
	5.19.3 Inserting Records with Dynamic SQL Statements
	5.19.4 Updating Records with Dynamic SQL Statements
	5.19.5 Selecting Records with Dynamic SQL Statements
	5.19.6 Deleting Records with Dynamic SQL Statements
	5.19.7 Inserting a Binary Image to a Database
	5.19.8 Retrieving an Image from a Database
	5.19.9 Common Supporting Routines

	Monk ODBC e*Way Functions
	6.1 Basic Functions
	event-send-to-egate
	get-logical-name
	send-external-down
	send-external-up
	shutdown-request
	start-schedule
	stop-schedule

	6.2 Standard e*Way Functions
	db-stdver-conn-estab
	db-stdver-conn-shutdown
	db-stdver-conn-ver
	db-stdver-data-exchg
	db-stdver-data-exchg-stub
	db-stdver-init
	db-stdver-neg-ack
	db-stdver-pos-ack
	db-stdver-proc-outgoing
	db-stdver-proc-outgoing-stub
	db-stdver-shutdown
	db-stdver-startup

	6.3 General Connection Functions
	connection-handle?
	db-alive
	db-commit
	db-get-error-str
	db-login
	db-logout
	db-max-long-data-size
	db-rollback
	make-connection-handle
	statement-handle?

	6.4 Static SQL Functions
	Static vs. Dynamic SQL Functions
	ODBC SQL Type Support
	db-sql-column-names
	db-sql-column-types
	db-sql-column-values
	db-sql-execute
	db-sql-fetch
	db-sql-fetch-cancel
	db-sql-format
	db-sql-select

	6.5 Dynamic SQL Functions
	db-stmt-bind
	db-stmt-bind-binary
	db-stmt-column-count
	db-stmt-column-name
	db-stmt-column-type
	db-stmt-execute
	db-stmt-fetch
	db-stmt-fetch-cancel
	db-stmt-param-assign
	db-stmt-param-count
	db-stmt-param-type
	db-stmt-row-count

	6.6 Stored Procedure Functions
	db-proc-bind
	db-proc-bind-binary
	db-proc-column-count
	db-proc-column-name
	db-proc-column-type
	db-proc-execute
	db-proc-fetch
	db-proc-fetch-cancel
	db-proc-param-assign
	db-proc-param-count
	db-proc-param-io
	db-proc-param-name
	db-proc-param-type
	db-proc-param-value
	db-proc-return-exist
	db-proc-return-type
	db-proc-return-value

	6.7 Message Event Functions
	db-struct-call
	db-struct-execute
	db-struct-fetch
	db-struct-insert
	db-struct-select
	db-struct-update

	6.8 Sample Monk Scripts
	6.8.1 Initializing Monk Extensions
	6.8.2 Calling Stored Procedures
	6.8.3 Inserting Records with Dynamic SQL Statements
	6.8.4 Updating Records with Dynamic SQL Statements
	6.8.5 Selecting Records with Dynamic SQL Statements
	6.8.6 Deleting Records with Dynamic SQL Statements
	6.8.7 Inserting a Binary Image to a Database
	6.8.8 Retrieving an Image from a Database
	6.8.9 Common Supporting Routines

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

