
e*Way Intelligent Adapter for
Lotus Notes User’s Guide

Release 4.5.2
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBI, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 1999–2002 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20021014113416.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents
Contents

Chapter 1

Introduction 6
Overview 6

Intended Reader 6
Components 6

Supported Operating Systems 7

System Requirements 7
External System Requirements 7

Chapter 2

Installation 8
Windows NT 8

Pre-installation 8
Installation Procedure 8

Files/Directories Created by the Installation 9

Chapter 3

Configuration 11
e*Way Configuration Parameters 11

General Settings 11
Journal File Name 12
Max Resends Per Message 12
Max Failed Messages 12
Forward External Errors 12

Communication Setup 13
Start Exchange Data Schedule 13
Stop Exchange Data Schedule 14
Exchange Data Interval 14
Down Timeout 14
Up Timeout 14
Resend Timeout 15
Zero Wait Between Successful Exchanges 15

Monk Configuration 15
Operational Details 17
e*Way Intelligent Adapter for Lotus Notes User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents
How to Specify Function Names or File Names 23
Additional Path 24
Auxiliary Library Directories 24
Monk Environment Initialization File 25
Startup Function 25
Process Outgoing Message Function 26
Exchange Data with External Function 26
External Connection Establishment Function 27
External Connection Verification Function 28
External Connection Shutdown Function 28
Positive Acknowledgment Function 28
Negative Acknowledgment Function 29
Shutdown Command Notification Function 30

Lotus Notes Settings 30
Lotus Notes Server Name 30
Password for the Notes Server 30

Environment Configuration 31

External Configuration Requirements 31

Chapter 4

Implementation 32
Functional Overview of the Sample Schema 32

Installing the Lotus Notes Sample Schema 33
Install the Sample Schema on the Registry Host 33
Files Included with the Sample Schema 33

Chapter 5

Lotus Notes e*Way Functions 35
Basic Functions 35

event-send-to-egate 36
get-logical-name 37
send-external-down 38
send-external-up 39
shutdown-request 40
start-schedule 41
stop-schedule 42

Lotus Notes Functions 43
General Usage Notes 43
DBHandleOK 45
GetDBHandleStatus 46
GetFieldData 47
GetFieldList 48
GetNotHandleByUNID 49
LNAck 50
LNConnect 51
LNExchange 52
LNGetDBHandle 53
LNInit 54
e*Way Intelligent Adapter for Lotus Notes User’s Guide 4 SeeBeyond Proprietary and Confidential

Contents
LNNak 55
LNNotesRead 56
LNNotify 57
LNOutgoing 58
LNShutdown 59
LNStartup 60
LNVerify 61
MarkAsResponse 62
MarkNoteAsRead 63
MarkNoteAsUnRead 64
NextNoteHandle 65
NIFCloseCollection 66
NIFOpenCollection 67
NoteIDAsString 68
NoteHasParent 69
NotesInit 70
NotesTerm 71
NSFDbClose 72
NSFDbOpen 73
NSFDbOpenNet 74
NSFItemAppendTextList 75
NSFItemGetTextListEntries 76
NSFItemGetTextListEntry 77
NSFItemInfo 78
NSFItemSetNumber 79
NSFItemSetText 80
NSFNoteClose 81
NSFNoteCreate 82
NSFNoteDelete 83
NSFNoteUpdateExtended 84
OpenNoteByID 85
SendMail 86

Index 88
e*Way Intelligent Adapter for Lotus Notes User’s Guide 5 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This chapter includes an overview of SeeBeyondTM Technology Corporation’s
(SeeBeyondTM) e*Way Intelligent Adapter for Lotus Notes, the components that make
up the e*Way, and the system requirements for installing the e*Way.

1.1 Overview
Lotus Notes is an integrated environment that provides users with the ability to access
and manage many types of information including e-mail, calendar of appointments,
personal contacts and to-dos as well as Web pages, News Groups and intranet
applications

The Lotus Notes e*Way enables the e*Gate system to access data from a Lotus Notes,
database. The e*Way can act as an inbound or outbound e*Way depending on its
configuration. An inbound e*Way brings files into the e*Gate environment, queuing
Events. Similarly, an outbound e*Way populates a Lotus Notes database.

The Lotus Notes e*Way supports

! Remote or local database access

! Sending of e-mail messages

! Direct access by View or UNID

! Sequential access to Documents according to a View

This document describes how to install and configure the Lotus Notes e*Way.

1.1.1. Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the e*Gate system, to have expert-level knowledge of
Windows NT operations and administration, to be thoroughly familiar with Lotus
Notes and with Windows-style GUI operations.

1.1.2. Components
The Lotus Notes e*Way comprises the following:

! stcewgenericmonk.exe, the executable component
e*Way Intelligent Adapter for Lotus Notes User’s Guide 6 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction Supported Operating Systems
! Configuration files, which the e*Way Editor uses to define configuration
parameters

! Monk function scripts

! Library files

A complete list of installed files appears in Table 1 on page 10.

1.2 Supported Operating Systems
The Lotus Notes e*Way is available on the following operating system:

! Windows NT 4.0 SP6a

1.3 System Requirements
To use the Lotus Notes e*Way, you need the following:

! An e*Gate Participating Host version 4.5.1 or later.

! A TCP/IP network connection.

! Additional disk space for e*Way executable, configuration, library, and script files.
The disk space is required on both the Participating and the Registry Host.
Additional disk space is required to process and queue the data that this e*Way
processes; the amount necessary varies based on the type and size of the data being
processed, and any external applications performing the processing.

1.3.1. External System Requirements
The Lotus Notes e*Way can be installed on e*Gate Participating Hosts that run under
Windows NT 4.0 SP6a.

To enable the e*Way to communicate properly with the Lotus Notes system, the
following are required:

! There must be a Lotus Notes Client 4.6.2 installation on the same host as the e*Gate
Participating Host.

! The special DLL used for password event handling must be placed in the Lotus
Notes Client area.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 7 SeeBeyond Proprietary and Confidential

Chapter 2

Installation

This chapter explains how to install the Lotus Notes e*Way.

2.1 Windows NT

2.1.1. Pre-installation
Lotus Notes 4.6.2a Client and the ID file must be installed on the system that you are
going to install the e*Way on, as follows:

! You must also have a valid user name and password for Lotus Notes.

! The Lotus Notes installation directory must be on the environment path.

! If a Lotus Notes server is installed on the system that you are going to install the
e*Way on, shut down the server before running the setup program; otherwise,
InstallShield may not operate correctly.

! Exit all Windows programs before running the setup program, including any anti-
virus applications.

! You must have Administrator privileges to install this e*Way.

2.1.2. Installation Procedure
To install the Lotus Notes e*Way on a Window NT system:

1 Log in as an Administrator on the workstation on which you want to install the
e*Way.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s Autorun feature is enabled, the setup application should
launch automatically; skip ahead to step 4. Otherwise, use the Windows Explorer or
the Control Panel’s Add/Remove Applications feature to launch the file setup.exe on
the CD-ROM drive.

4 The InstallShield setup application will launch. Follow the on-screen instructions to
install the e*Way.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 8 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Installation Files/Directories Created by the Installation
Note: Be sure to install the e*Way files in the suggested client installation directory. The
installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not change the
suggested installation directory setting.

5 After the installation is complete, exit the install utility.

6 Copy the file stc_notesextmgr.dll from the system running e*Gate to your Lotus
Notes installation.

The Windows default directory for finding the file is:

c:\eGate\server\registry\repository\default\bin\win32

The default Lotus Notes directory is:

c:\notes

7 Edit the notes.ini file. This is usually found in the \winnt directory.

Add or edit the following line:

EXTMGR_ADDINS=stc_notesextmgr

Save the changes and exit notes.ini.

8 Launch the Enterprise Manager.

9 In the Component editor, create a new e*Way.

10 Display the new e*Way’s properties.

11 On the General tab, under Executable File, click Find.

12 Select the file stcewgenericmonk.exe.

13 Click OK to close the properties sheet, or continue to configure the e*Way.
Configuration parameters are discussed in Chapter 3.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, Intelligent Queues (IQs), and Event Types before this e*Way can perform its
intended functions. For more information about any of these procedures, please see
the online Help system.

For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.

2.2 Files/Directories Created by the Installation
The Lotus Notes e*Way installation process will install files shown in Table 1 below
within the e*Gate client directory tree. Files will be installed within the egate\client
e*Way Intelligent Adapter for Lotus Notes User’s Guide 9 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Installation Files/Directories Created by the Installation
tree on the Participating Host and committed to the default schema on the Registry
Host.

Table 1 Files Created by the Installation

e*Gate Client Directory File(s)

bin\ stc_monklnotes.dll
stc_notesextmgr.dll

configs\stcewgenericmonk\ LotusNotes.def

monk_library\ lnotes.gui

monk_library\ewlnotes\ LNAck.monk
LNConnect.monk
LNExchange.monk
LNGetDBHandle.monk
LNInit.monk
LNNak.monk
LNNotesRead.monk
LNNotesWriteByID.monk
LNNotify.monk
LNOutgoing.monk
LNShutdown.monk
LNStartup.monk
LNVerify.monk
e*Way Intelligent Adapter for Lotus Notes User’s Guide 10 SeeBeyond Proprietary and Confidential

Chapter 3

Configuration

The Lotus Notes e*Way must be configured before use. This chapter lists all the
configuration parameters used by the e*Way together with all supporting information
needed, including Monk configuration for connection to the external system. Also
provided are the parameters that control access to a Lotus Notes database.

3.1 e*Way Configuration Parameters
e*Way configuration parameters are set using the e*Way Editor.

To change e*Way configuration parameters:

1 In the Enterprise Manager’s Component editor, select the e*Way you want to
configure and display its properties.

2 Under Configuration File, click New to create a new file, Find to select an existing
configuration file, or Edit to edit the currently selected file.

3 In the Additional Command Line Arguments box, type any additional command line
arguments that the e*Way may require, taking care to insert them at the end of the
existing command-line string. Be careful not to change any of the default arguments
unless you have a specific need to do so.

For more information about how to use the e*Way Editor, see the e*Way Editor’s online
Help or the Working with e*Ways user guide.

The e*Way’s configuration parameters are organized into the following sections:

! General Settings

! Communication Setup

! Monk Configuration

! Lotus Notes Settings

3.1.1. General Settings
The General Settings control basic operational parameters.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 11 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Journal File Name

Description

Specifies the name of the journal file.

Required Values

A valid file name, optionally including an absolute path (for example,
c:\temp\filename.txt). If an absolute path is not specified, the file will be stored in the
e*Gate SystemData directory. See the e*Gate Integrator System Administration and
Operations Guide for more information about file locations.

Additional Information

An Event (package of data) will be journaled for the following conditions:

! When the number of resends is exceeded see “Max Resends Per Message” on
page 12.

! When its receipt is due to an external error, but Forward External Errors is set to
No. (See “Forward External Errors” on page 12 for more information.)

Max Resends Per Message

Description

Specifies the number of times the e*Way will attempt to resend an Event (message) to
the external system after receiving an error.

Required Values

An integer between 1 and 1,000,000. The default is 5.

Max Failed Messages

Description

Specifies the maximum number of failed Events (messages) that the e*Way will allow.
When the specified number of failed messages is reached, the e*Way will shut down
and exit.

Required Values

An integer between 1 and 1,000,000. The default is 3.

Forward External Errors

Description

Selects whether error messages that begin with the string “DATAERR” that are received
from the external system will be queued to the e*Way’s configured queue. See
“Exchange Data with External Function” on page 26 for more information.

Required Values

Yes or No. The default value, Yes, specifies that error messages will be forwarded.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
See “Schedule-driven Data Exchange Functions” on page 20 for information about
how the e*Way uses this function.

3.1.2. Communication Setup
The Communication Setup parameters control the schedule by which the e*Way
obtains data from the external system.

Note: The schedule you set using the e*Way’s properties in the Enterprise Manager
controls when the e*Way executable will run. The schedule you set within the
parameters discussed in this section (using the e*Way Editor) determines when data
will be exchanged. Be sure you set the exchange data schedule to fall within the
run the executable schedule.

Start Exchange Data Schedule

Description

Establishes the schedule to invoke the e*Way’s Exchange Data with External function.

Required Values

One of the following:

! One or more specific dates/times

! A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Also Required - If you set a schedule using this parameter, you must also define all
three of the following functions:

! Exchange Data With External

! Positive Acknowledgment

! Negative Acknowledgment

If you do not do so, the e*Way will terminate execution when the schedule attempts to
start.

Additional Information

When the schedule starts, the e*Way determines whether it is waiting to send an ACK
or NAK to the external system (using the Positive Acknowledgement and Negative
Acknowledgment functions) and whether the connection to the external system is
active. If no ACK/NAK is pending and the connection is active, the e*Way immediately
executes the Exchange Data with External function. Thereafter, the Exchange Data
with External function will be called according to the Exchange Data Interval
parameter until the Stop Exchange Data Schedule time is reached.

See “Exchange Data with External Function” on page 26, “Exchange Data Interval”
on page 14, and “Stop Exchange Data Schedule” on page 14 for more information.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Stop Exchange Data Schedule

Description

Establishes the schedule to stop data exchange.

Required Values

One of the following:

! One or more specific dates/times

! A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Exchange Data Interval

Description

Specifies the number of seconds the e*Way waits between calls to the Exchange Data
with External function during scheduled data exchanges.

Required Values

An integer between 0 and 86,400. The default is 120.

Additional Information

If Zero Wait Between Successful Exchanges is set to Yes and the Exchange Data with
External Function returns data, The Exchange Data Interval setting will be ignored
and the e*Way will invoke the Exchange Data with External Function immediately.

If this parameter is set to zero, there will be no exchange data schedule set and the
Exchange Data with External Function will never be called.

See “Down Timeout” on page 14 and “Stop Exchange Data Schedule” on page 14 for
more information about the data-exchange schedule.

Down Timeout

Description

Specifies the number of seconds that the e*Way will wait between calls to the External
Connection Establishment function. See “External Connection Establishment
Function” on page 27 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.

Up Timeout

Description

Specifies the number of seconds the e*Way will wait between calls to the External
Connection Verification function. See “External Connection Verification Function”
on page 28 for more information.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Required Values

An integer between 1 and 86,400. The default is 15.

Resend Timeout

Description

Specifies the number of seconds the e*Way will wait between attempts to resend an
Event (message) to the external system, after receiving an error message from the
external system.

Required Values

An integer between 1 and 86,400. The default is 10.

Zero Wait Between Successful Exchanges

Description

Selects whether to initiate data exchange after the Exchange Data Interval or
immediately after a successful previous exchange.

Required Values

Yes or No. If this parameter is set to Yes, the e*Way will immediately invoke the
Exchange Data with External function if the previous exchange function returned data.
If this parameter is set to No, the e*Way will always wait the number of seconds
specified by Exchange Data Interval between invocations of the Exchange Data with
External function. The default is No.

See “Exchange Data with External Function” on page 26 for more information.

3.1.3. Monk Configuration
The parameters in this section help you set up the information required by the e*Way to
utilize Monk for communication with the external system.

Conceptually, an e*Way is divided into two halves. One half of the e*Way (shown on
the left in Figure 1 on page 16) handles communication with the external system; the
other half manages the Collaborations that process data and subscribe or publish to
other e*Gate components.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 15 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 1 e*Way Internal Architecture

The communications side of the e*Way uses Monk functions to start and stop
scheduled operations, exchange data with the external system, package data as e*Gate
Events and send those Events to Collaborations, and manage the connection between
the e*Way and the external system. The Monk Configuration options discussed in this
section control the Monk environment and define the Monk functions used to perform
these basic e*Way operations. You may create and modify these functions using the
SeeBeyond Collaboration Rules Editor or a text editor (such as Notepad).

The communications side of the e*Way is single-threaded. Functions run serially, and
only one function can be executed at a time. The business logic side of the e*Way is
multi-threaded, with one executable thread for each Collaboration. Each thread
maintains its own Monk environment; therefore, information such as variables,
functions, path information, and so on cannot be shared between threads.

Communication
with External
System

Business Logic and
Communication
within e*Gate

External
system

Other e*Gate
components

e*Gate Events

Data
e*Way

Collaboration

Collaboration

Function

Function
e*Way Intelligent Adapter for Lotus Notes User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Operational Details

The Monk functions in the communications side of the e*Way fall into the following
groups:

A series of figures on the next several pages illustrate the interaction and operation of
these functions.

Type of Operation Name

Initialization Startup Function on page 25
(also see Monk Environment Initialization
File on page 25)

Connection External Connection Establishment Function
on page 27
External Connection Verification Function on
page 28
External Connection Shutdown Function on
page 28

Schedule-driven data
exchange

Exchange Data with External Function on
page 26
Positive Acknowledgment Function on
page 28
Negative Acknowledgment Function on
page 29

Shutdown Shutdown Command Notification Function
on page 30

Event-driven data exchange Process Outgoing Message Function on
page 26
e*Way Intelligent Adapter for Lotus Notes User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Initialization Functions

Figure 2 below illustrates how the e*Way executes its initialization functions.

Figure 2 Initialization Functions

Start e*Way

Load
"Monk Initialization"

file

Execute any Monk function
having the same name as

the initialization file

Load "Startup" file

Execute any Monk function
having the same name as

the startup file
e*Way Intelligent Adapter for Lotus Notes User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Connection Functions

Figure 3 below illustrates how the e*Way executes the connection establishment and
verification functions.

Figure 3 Connection Establishment and Verification Functions

Note: The e*Way selects the connection function based on an internal “up/down” flag
rather than a poll to the external system. See Figure 5 on page 21 and Figure 7 on
page 23 for examples of how different functions use this flag.

User functions can manually set this flag using Monk functions. See send-
external-up on page 39 and send-external-down on page 38 for more
information.

Connect e*Way to
external system

Internal
flag shows connection

active?

Wait for "Up Timeout"
schedule

Call External Connection
Verification function

Wait for "Down Timeout"
schedule

Call External Connection
Establishment function

Yes

No
e*Way Intelligent Adapter for Lotus Notes User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 4 below illustrates how the e*Way executes its connection shutdown function.

Figure 4 Connection Shutdown Function

Schedule-driven Data Exchange Functions

Figure 5 on page 21 illustrates how the e*Way performs schedule-driven data exchange
using the Exchange Data with External Function. The Positive Acknowledgement
Function and Negative Acknowledgement Function are also called during this
process.

“Start” can occur in any of the following ways:

! The Start Data Exchange time occurs

! Periodically during data-exchange schedule (after Start Data Exchange time, but
before Stop Data Exchange time), as set by the Exchange Data Interval

! The start-schedule Monk function is called

After the function exits, the e*Way waits for the next start-schedule time or command.

Control Broker issues
"Suspend" command

Call External Connection Shutdown
function with parameter

"SUSPEND_NOTIFICATION"

e*Way closes connection

Return any value
e*Way Intelligent Adapter for Lotus Notes User’s Guide 20 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 5 Schedule-driven Data Exchange Functions

Increment "Failed
Message" counter

DATAERR plus
additional data

Null
string

Data
(other than

error strings)

Forward
external
errors?

No

Yes

Set interval flag
"Connection

Down"

CONNERR

Wait for Resend
Timeout period

Roll back Event to
its publishing IQ

Increment "Failed
Message" counter

DATAERR only

Journal
enabled?

Create journal
entry

Yes

No

Start

Function exits

Send Event to
e*Gate

All
subscribing

Collaborations return
TRUE

?

Call Positive
Acknowledgment

function

Zero
wait after successful

exchange?

Call Negative
Acknowledgment

function

Yes

No

YesNo

Call Exchange Data with
External function

Figure 12 on page 33
e*Way Intelligent Adapter for Lotus Notes User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Shutdown Functions

Figure 6 below illustrates how the e*Way implements the shutdown request function.

Figure 6 Shutdown Functions

Control Broker issues
"Shutdown" command

Call Shutdown Notification function
with parameter

"SHUTDOWN_NOTIFICATION"

e*Way shuts down

Wait for
shutdown-request

function

Return

Null string or
"SUCCESS"

any other value
e*Way Intelligent Adapter for Lotus Notes User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Event-driven Data Exchange Functions

Figure 7 below illustrates event-driven data exchange using the Process Outgoing
Message function.

Every two minutes, the e*Way checks the Failed Message counter against the value
specified by the Max Failed Messages parameter. When the Failed Message counter
exceeds the specified maximum value, the e*Way logs an error and shuts down.

After the function exits, the e*Way waits for the next outgoing Event.

Figure 7 Event-driven Data-exchange Functions

How to Specify Function Names or File Names

Parameters that require the name of a Monk function will accept either a function name
or a file name. If you specify a file name, be sure that the file has one of the following
extensions:

! *.monk

! *.tsc

! *.dsc

Collaboration publishes
to <EXTERNAL>

Call Process Outgoing
Message function

Set internal flag
"Connection

Down"

Maximum
Resends per Message

exceeded?

Yes

Return

CONNERR DATAERR

Increment "Failed
Message" counter

Create journal
entry

Null
string

No
Journal

enabled?

No

Function exits

Wait for Resend
Timeout period

Roll back Event to
its publishing IQ

Yes

Wait for Resend
Timeout period

Increment
"Resend" counter

RESEND
e*Way Intelligent Adapter for Lotus Notes User’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Additional Path

Description

Specifies a path to be appended to the load path, the path Monk uses to locate files and
data (set internally within Monk). The directory specified in Additional Path will be
searched after the default load paths.

Required Values

A path name, or a series of paths separated by semicolons. This parameter is optional
and may be left blank.

Additional Information

The default load paths are determined by the bin and Shared Data settings in the
*.egate.store file. See the e*Gate Integrator System Administration and Operations Guide for
more information about this file.

To specify multiple directories, manually enter the directory names rather than
selecting them with the File Selection button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths. For example,

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

Auxiliary Library Directories

Description

Specifies a path to auxiliary library directories. Any *.monk files found within those
directories will automatically be loaded into the e*Way’s Monk environment. This
parameter is optional and may be left blank.

Required Values

A path name, or a series of paths separated by semicolons.

Additional Information

To specify multiple directories, manually enter the directory names rather than
selecting them with the File Selection button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths. For example,

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

The default is monk_library/ewlnotes.

This parameter is optional and may be left blank.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Monk Environment Initialization File

Specifies a file that contains environment initialization functions, which will be loaded
after the auxiliary library directories are loaded. Use this feature to initialize the
e*Way’s Monk environment (for example, to define Monk variables that are used by the
e*Way’s function scripts).

Required Values

A file name within the load path, or file name plus path information (relative or
absolute). If path information is specified, that path will be appended to the load path.
See “Additional Path” on page 24 for more information about the load path.

Additional Information

Any environment-initialization functions called by this file accept no input, and must
return a string. The e*Way will load this file and try to invoke a function of the same
base name as the file name (for example, for a file named my-init.monk, the e*Way
would attempt to execute the function my-init).

Typically, it is a good practice to initialize any global Monk variables that may be used
by any other Monk Extension scripts.

The default is LNInit.

The internal function that loads this file is called once when the e*Way first starts up
(see Figure 2 on page 18).

Startup Function

Description

Specifies a Monk function that the e*Way will load and invoke upon startup or
whenever the e*Way’s configuration is reloaded. This function should be used to
initialize the external system before data exchange starts.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is optional and may be left
blank.

Additional Information

The function accepts no input, and must return a string.

The string “FAILURE” indicates that the function failed; any other string (including a
null string) indicates success.

This function will be called after the e*Way loads the specified Monk Environment
Initialization file and any files within the specified Auxiliary Directories.

The default is LNStartup.

The e*Way will load this file and try to invoke a function of the same base name as the
file name (see Figure 2 on page 18). For example, for a file named my-startup.monk,
the e*Way would attempt to execute the function my-startup.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Process Outgoing Message Function

Description

Specifies the Monk function responsible for sending outgoing Events (messages) from
the e*Way to the external system. This function is event-driven (unlike the Exchange
Data with External function, which is schedule-driven).

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. You may not leave this field blank.

Additional Information

The e*Way invokes this function when one of its Collaborations publishes an Event to
an <EXTERNAL> destination, as specified within the Enterprise Manager (see Figure 7
on page 23 for more details).

This function requires a non-null string as input (the outgoing Event to be sent) and
must return a string, as follows:

! Null string - Indicates that the Event was published successfully to the external
system.

! “RESEND” - Indicates that the Event should be resent.

! “CONNERR” - Indicates that there is a problem communicating with the external
system.

! “DATAERR” - Indicates that there is a problem with the message (Event) data itself.

If a string other than those in the previous list is returned, the e*Way will create an
entry in the log file indicating that an attempt has been made to access an unsupported
function.

The default is LNOutgoing.

Note: If you wish to use event-send-to-egate to enqueue failed Events in a separate IQ,
the e*Way must have an inbound Collaboration (with appropr0iate IQs) configured
to process those Events. See event-send-to-egate on page 36 for more information.

Exchange Data with External Function

Description

Specifies a Monk function that initiates the transmission of data from the external
system to the e*Gate system and forwards that data as an inbound Event to one or more
e*Gate Collaborations. This function is called according to a schedule (unlike the
Process Outgoing Message Function, which is event-driven). See Figure 5 on page 21
for more details.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is optional and may be left
blank.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Additional Information

The function accepts no input and must return a string, as follows:

! Null string - Indicates that the data exchange was completed successfully. No
information will be sent into the e*Gate system.

! “CONNERR” - Indicates that a problem with the connection to the external system
has occurred.

! “DATAERR” - Indicates that a problem with the data itself has occurred. The
e*Way handles the string “DATAERR” and “DATAERR” plus additional data
differently; see Figure 5 on page 21 for more details.

! Any other string - The contents of the string are packaged as an inbound Event. The
e*Way must have at least one Collaboration configured suitably to process the
inbound Event, as well as any required IQs.

This function is initially triggered by the Start Data Exchange schedule or manually by
the Monk function start-schedule. After the function has returned true and the data
received by this function has been acknowledged or not acknowledged (by the Positive
Acknowledgment Function or Negative Acknowledgment Function, respectively),
the e*Way checks the Zero Wait Between Successful Exchanges parameter.

If this parameter is set to Yes, the e*Way will immediately call the Exchange Data with
External function again; otherwise, the e*Way will not call the function until the next
scheduled Exchange Data with External time or the schedule is manually invoked,
using the Monk function start-schedule (see Chapter 5 for more information).

The default is LNExchange.

External Connection Establishment Function

Description

Specifies a Monk function that the e*Way will call when it has determined that the
connection to the external system is down.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This field cannot be left blank.

Additional Information

The function accepts no input and must return a string:

! “SUCCESS” or “UP” - Indicates that the connection was established successfully.

! Any other string (including the null string) - Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Down Timeout
parameter, and is only called according to this schedule.

The default is LNConnect.

The External Connection Verification function (see below) is called when the e*Way
has determined that its connection to the external system is up.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
External Connection Verification Function

Description

Specifies a Monk function that the e*Way will call when its internal variables show that
the connection to the external system is up.

Required Values

The name of a Monk function. This function is optional; if no External Connection
Verification function is specified, the e*Way will execute the External Connection
Establishment function in its place.

Additional Information

The function accepts no input and must return a string:

! “SUCCESS” or “UP” - Indicates that the connection was established successfully.

! Any other string (including the null string) - Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Up Timeout
parameter, and is only called according to this schedule.

The default is LNVerify.

The External Connection Establishment function (see above) is called when the e*Way
has determined that its connection to the external system is down.

External Connection Shutdown Function

Description

Specifies a Monk function that the e*Way will call to shut down the connection to the
external system.

Required Values

The name of a Monk function. This parameter is optional.

Additional Information

This function requires a string as input, and may return a string.

This function will only be invoked when the e*Way receives a suspend command from
a Control Broker. When the suspend command is received, the e*Way will invoke this
function, passing the string “SUSPEND_NOTIFICATION” as an argument.

The default is LNShutdown.

Any return value indicates that the suspend command can proceed and that the
connection to the external system can be broken immediately.

Positive Acknowledgment Function

Description

Specifies a Monk function that the e*Way will call when all the Collaborations to which
the e*Way sent data have processed and enqueued that data successfully.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External function is defined.

Additional Information

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string:

! “CONNERR” - Indicates a problem with the connection to the external system.
When the connection is re-established, the Positive Acknowledgment function will
be called again, with the same input data.

! Null string - The function completed execution successfully.

After the Exchange Data with External function returns a string that is transformed
into an inbound Event, the Event is handed off to one or more Collaborations for
further processing. If the Event’s processing is completed successfully by all the
Collaborations to which it was sent, the e*Way executes the Positive Acknowledgment
function (otherwise, the e*Way executes the Negative Acknowledgment function).

The default is LNAck.

Negative Acknowledgment Function

Description

Specifies a Monk function that the e*Way will call when the e*Way fails to process and
queue Events from the external system.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External function is defined.

Additional Information

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string:

! “CONNERR” - Indicates a problem with the connection to the external system.
When the connection is re-established, the function will be called again.

! Null string - The function completed execution successfully.

This function is only called during the processing of inbound Events. After the
Exchange Data with External function returns a string that is transformed into an
inbound Event, the Event is handed off to one or more Collaborations for further
processing. If the Event’s processing is not completed successfully by all the
Collaborations to which it was sent, the e*Way executes the Negative
Acknowledgment function (otherwise, the e*Way executes the Positive
Acknowledgment function).

The default is LNNak.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Shutdown Command Notification Function

Description

Specifies a Monk function that will be called when the e*Way receives a shut-down
command from the Control Broker. This parameter is optional.

Required Values

The name of a Monk function.

Additional Information

When the Control Broker issues a shutdown command to the e*Way, the e*Way will
call this function with the string “SHUTDOWN_NOTIFICATION” passed as a
parameter.

The function accepts a string as input and must return a string, as follows:

! A null string or “SUCCESS” - Indicates that the shutdown can occur immediately.

! Any other string - Indicates that shutdown must be postponed. Once postponed,
shutdown will not proceed until the Monk function shutdown-request is executed
(see shutdown-request on page 40).

The default is LNNotify.

Note: If you postpone a shutdown using this function, be sure to use the
shutdown-request function to complete the process in a timely manner.

3.1.4. Lotus Notes Settings
The parameters in this section control access to a Lotus Notes database.

Note: Make sure you enter the user name first then the password.

Lotus Notes Server Name

Description

Specifies the name of the Lotus Notes Server. Use the server name, usually in the
format of NotesBox/NotesCert, or Local.

Required Values

Any vaild string. The default is NotesBox/NotesCert.

Password for the Notes Server

Description

Specifies the user password that provides access to the Lotus Notes database.

Required Values

Any valid string.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Configuration Environment Configuration
3.2 Environment Configuration
To support the operation of this e*Way, no changes are necessary

! In the Participating Host’s operating environment

! In the e*Gate system

Note: Changes to Monk files can be made using the Collaboration Rules Editor (available
from within the Enterprise Manager) or with a text editor. However, if you use a
text editor to edit Monk files directly, you must commit these changed files to the
e*Gate Registry or your changes will not be implemented.

For more information about committing files to the e*Gate Registry, see the
Enterprise Manager’s online Help system, or the stcregutil command-line utility
in the e*Gate Integrator System Administration and Operations Guide.

3.3 External Configuration Requirements
There are no configuration changes required in the external system. All necessary
configuration changes can be made within e*Gate.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 4

Implementation

This chapter provides instructions for installing the sample schema from the e*Gate
CD.

4.1 Functional Overview of the Sample Schema
In this sample the Lotus Notes e*Way intercepts the input file (Event), applies
associated Collaborations and Rules in relation to the Lotus Notes Address Book, and
outputs the results to a specified location.

Figure 8 Sample schema basic architecture

The Lotus Notes Schema—Overview

1 The FileIn e*Way reads the inbound information from the external data file and
publishes it as an Event to the IQ.

2 The ToLotusNotes e*Way subscribes to the inbound Event from the FileIn e*Way,
transforms the Event, and publishes it to the Lotus Notes (address book) system.

3 The Lotus Notes system processes the request and returns the reply to the
FromLotusNotes e*Way.

4 The FromLotusNotes e*Way receives the reply from the Lotus Notes (address book)
system, transforms the Event, and publishes it to the IQ.

5 The FileOut e*Way subscribes to the outbound Event from the [Lotus Notes e*Way]
and publishes it to the output data file.

3

5

Lotus Notes
Address Book

e*Gate 4.5
System

LNFeeder
Pass through

FileIn e*Way

FileOut e*Way

LNEater
Pass through

From Lotus
Notes e*Way

Collab 2

To Lotus Notes
e*Way
Collab 1

In IQ

Data
File

Data
File
e*Way Intelligent Adapter for Lotus Notes User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation Installing the Lotus Notes Sample Schema
4.2 Installing the Lotus Notes Sample Schema
The e*Gate Installation CD contains a sample schema to demonstrate a simple scenario
using the Lotus Notes e*Way.

4.2.1. Install the Sample Schema on the Registry Host
The following procedures are performed on the host machine.

For e*Gate 4.5.1 and higher

The first task in deploying the sample implementation is to create a new schema name.
While it is possible to use the default schema for the sample implementation, it is
recommended that you create a separate schema for testing purposes. After you install
the Lotus Notes e*Way, do the following:

1 Start the e*Gate Enterprise Manager GUI.

2 When the Enterprise Manager prompts you to log in, select the host that you
specified during installation, and enter your password.

3 You will then be prompted to select a schema. Click New.

4 Enter a name for the new Schema. In this case, enter LotusNotesSample, or any
appropriate name as desired.

5 Select Create from export, locate the LotusNotesSample.zip on the CD and click
Open. The repository files will be imported into the LotusNotesSample schema.

The e*Gate Enterprise Manager opens to your new schema. You are now ready to begin
creating the necessary components for this sample schema.

Prior to e*Gate 4.5.1

1 Extract the include LotusNotesSample.zip into a schema repository on the registry
server. For example: egate\server\registry\repository\LotusNotesSample\.

2 Using stcregutil.exe, import the LotusNotesSample.exp into this new schema. To do
this, open the command prompt and change directories to the directory where the
sample files were extracted. Type and execute the following command:

stcregutil.exe -rh localhost -rs LotusNotesSample -un
Administrator -up STC -i LotusNotesSample.exp

3 Register a control broker for this new schema. From the command prompt type and
execute the following:

stccb.exe -ln localhost_cb -rh localhost -rs LotusNotesSample -un
Administrator -up STC -sm

4 4. Start the newly registered cb. From control panel, double-click services, find
"eGate Control Broker (localhost)", select it and click start.

4.2.2. Files Included with the Sample Schema
Importing the Lotus Notes e*Way sample schema will install files shown in Table 2
within the e*Gate client directory tree. Files will be installed within the egate\client
e*Way Intelligent Adapter for Lotus Notes User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation Installing the Lotus Notes Sample Schema
tree on the Participating Host and committed to the default schema on the Registry
Host.

Table 2 Files for the Sample Schema

e*Gate Client Directory File(s)

monk_scripts\common\ AddressBook.ssc
AddressBookExtract.dsc
AddressBookInsert.tsc

data\LotusNotes\ LotusNotes.dat

configs\stcewgenericmonk\ FromLotusNotes.cfg
FromLotusNotes.sc
ToLotusNotes.cfg
ToLotusNotes.sc

configs\stcewfile\ LNeater.cfg
LNeater.sc
LNfeeder.cfg
LNfeeder.sc
e*Way Intelligent Adapter for Lotus Notes User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 5

Lotus Notes e*Way Functions

This chapter explains the functions used to control the Lotus Notes e*Way’s basic
operations, as well as the functions included within the library (file name
stc_monklnotes.dll).

The Lotus Notes e*Way’s functions fall into the following categories:

! Basic Functions on page 35

! Lotus Notes Functions on page 43

Note: The functions explained in this chapter can only be used by the functions defined
within the e*Way’s configuration file. None of the functions are available to
Collaboration Rules scripts executed by the e*Way.

5.1 Basic Functions
The functions in this category control the e*Way’s most basic operations.

The basic functions are

event-send-to-egate on page 36

get-logical-name on page 37

send-external-down on page 38

send-external-up on page 39

shutdown-request on page 40

start-schedule on page 41

stop-schedule on page 42
e*Way Intelligent Adapter for Lotus Notes User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Lotus Notes e*Way Functions Basic Functions
event-send-to-egate

Syntax

(event-send-to-egate string)

Description

event-send-to-egate sends data that the e*Way has already received from the external
system into the e*Gate system as an Event.

Parameters

Return Values

Boolean
Returns true (#t) if the data is sent successfully; otherwise, returns false (#f).

Throws

None.

Additional information

This function can be called by any e*Way function when it is necessary to send data to
the e*Gate system in a blocking fashion.

Name Type Description

string String The data to be sent to the e*Gate
system.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Lotus Notes e*Way Functions Basic Functions
get-logical-name

Syntax

(get-logical-name)

Description

get-logical-name returns the logical name of the e*Way.

Parameters

None.

Return Values

string
Returns the name of the e*Way (as defined by the Enterprise Manager).

Throws

None.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Lotus Notes e*Way Functions Basic Functions
send-external-down

Syntax

(send-external-down)

Description

send-external down instructs the e*Way that the connection to the external system is
down.

Parameters

None.

Return Values

None.

Throws

None.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Lotus Notes e*Way Functions Basic Functions
send-external-up

Syntax

(send-external-up)

Description

send-external-up instructs the e*Way that the connection to the external system is up.

Parameters

None.

Return Values

None.

Throws

None.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Lotus Notes e*Way Functions Basic Functions
shutdown-request

Syntax

(shutdown-request)

Description

shutdown request requests the e*Way to perform the shutdown procedure when there
is no outstanding incoming/outgoing event. When the e*Way is ready to act on the
shutdown request, in invokes the Shutdown Command Notification Function
(see“Shutdown Command Notification Function” on page 30). Once this function is
called, the shutdown proceeds immediately.

Once interrupted, the e*Way’s shutdown cannot proceed until this Monk function is
called. If you do interrupt an e*Way shutdown, we recommend that you complete the
process in a timely fashion.

Parameters

None.

Return Values

None.

Throws

None.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Lotus Notes e*Way Functions Basic Functions
start-schedule

Syntax

(start-schedule)

Description

start-schedule requests that the e*Way execute the Exchange Events with External
function specified within the e*Way’s configuration file. Does not effect any defined
schedules.

Parameters

None.

Return Values

None.

Throws

None.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 41 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Lotus Notes e*Way Functions Basic Functions
stop-schedule

Syntax

(stop-schedule)

Description

stop-schedule requests that the e*Way halt execution of the Exchange Events with
External function specified within the e*Way’s configuration file. Execution will be
stopped when the e*Way concludes any open transaction. Does not effect any defined
schedules, and does not halt the e*Way process itself.

Parameters

None.

Return Values

None.

Throws

None.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
5.2 Lotus Notes Functions
The current suite of Lotus Notes e*Way Monk functions support read-only activities.

Functions included within the library file stc_monklnotes.dll are

General Usage Notes

Closing Handles

It is unnecessary to explicitly invoke NSFClose, NIFCloseCollection or NSFNoteClose
to close any handle returned by any of these routines, because a handle is closed as it
becomes unbound, and any resources associated with it are relinquished.

Monk Error Objects

The “Return Value” sections for each function list the expected results of each function.
Keep in mind that incorrect usage and internal errors generate Monk error objects dealt
with by the Monk engine.

DBHandleOK on page 45 NIFCloseCollection on page 66

GetDBHandleStatus on page 46 NIFOpenCollection on page 67

GetFieldData on page 47 NoteIDAsString on page 68

GetFieldList on page 48 NoteHasParent on page 69

GetNotHandleByUNID on
page 49

NotesInit on page 70

LNAck on page 50 NotesTerm on page 71

LNConnect on page 51 NSFDbClose on page 72

LNExchange on page 52 NSFDbOpen on page 73

LNGetDBHandle on page 53 NSFDbOpenNet on page 74

LNInit on page 54 NSFItemAppendTextList on page 75

LNNak on page 55 NSFItemGetTextListEntries on
page 76

LNNotesRead on page 56 NSFItemGetTextListEntry on page 77

LNNotify on page 57 NSFItemInfo on page 78

LNOutgoing on page 58 NSFItemSetNumber on page 79

LNShutdown on page 59 NSFItemSetText on page 80

LNStartup on page 60 NSFNoteClose on page 81

LNVerify on page 61 NSFNoteCreate on page 82

MarkAsResponse on page 62 NSFNoteDelete on page 83

MarkNoteAsRead on page 63 NSFNoteUpdateExtended on page 84

MarkNoteAsUnRead on page 64 OpenNoteByID on page 85

NextNoteHandle on page 65 SendMail on page 86
e*Way Intelligent Adapter for Lotus Notes User’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
Flag Strings

Various flags are available to the C API, which impose control over the behavior of
some functions. At the C level, these flags are macros equating to numeric values.
These values are unavailable at the Monk level. Therefore, the Monk developer must
refer to these macro constants by their literal names.

Flags may be effectively OR’d, bit-wise by using the pipe “|” symbol, for example,

(NSFNoteUpdateExtended noteHandle "UPDATE_NOCOMMIT |
UPDATE_NOREVISION")

White space on either side of “|” is not necessary.

Knowledge of the C API and macro names is required in order to use them correctly. If
no flags are required the developer may allow the function to pass a null string, as
follows:

(NSFNoteUpdateExtended noteHandle "")
e*Way Intelligent Adapter for Lotus Notes User’s Guide 44 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
DBHandleOK

Syntax

(DBHandleOK handle)

Description

DBHandleOK determines the validity of a database handle returned from
NSFDbOpen or NSFDbOpenNet functions.

Parameters

Return Values

Boolean
Returns #t (true) if the handle returned is a valid handle; otherwise, returns #f (false).

Throws

None.

Examples

(let ((hDB (NSFDbOpen "foo.nsf")))
 (if (DBHandleOK hDB)

 (begin
 ; We have a valid database handle
)
 (begin
 (display "Could not open database.Error code=")
 (display (number->string (GetDBHandleStatus hDB)))
 (newline)
)

)
)

Name Type Description

handle Handle A database handle.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
GetDBHandleStatus

Syntax

(GetDBHandleStatus handle)

Description

GetDBHandleStatus returns the internal status code from a database handle. The code
number is Lotus C API-specific but could be useful in determining specific error
conditions related to the opening of the database.

Parameters

Return Values

integer
Returns a positive integer.

Note: A return value of zero does not imply that the handle being tested is available for use
in other procedure calls. Specifically, if the handle has been closed following a
successful invocation of NSFDbOpen or NSFDbOpenNet, this procedure returns
zero (see NSFDbOpen on page 73 and NSFDbOpenNet on page 74). Use
DBHandleOK for stronger validation (see DBHandleOK on page 45).

Throws

None.

Examples

(let ((hDB (NSFDbOpen "foo.nsf")))
(if (DBHandleOK hDB)
 (begin

; We have a valid database handle
)
 (begin

(display "Could not open database. Error code=")
(display (number->string (GetDBHandleStatus hDB)))
(newline)

)
)

)

Name Type Description

handle Handle A database handle.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 46 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
GetFieldData

Syntax

 (GetFieldData handle fieldname)

Description

GetField Data acquires the data associated with a specified field within a Note.

Parameters

Return Values

string
Returns a string object, with a possible length of zero.

Throws

None.

Examples

(let* ((field "name")(value (GetFieldData hNote field)))
(if value
 (display (string-append field "=" value "\n"))
 (display (string-append field " does not exist\n"))
)

)

Name Type Description

handle Handle A note handle.

fieldname String A name of a field.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
GetFieldList

Syntax

(GetFieldList handle)

Description

GetFieldList determines the names of all the fields in a Note.

Parameters

Return Values

string
Returns a Monk list of strings.

Throws

None.

Examples

; display the names of all fields in a Note
(let ((masterList (GetFieldList hNote)))

(if (list? masterList)
(do ((list masterList (cdr list)))

((null? List) #t)
(display (car list))
(newline)

)
)

)

Name Type Description

handle Handle A valid note handle.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 48 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
GetNotHandleByUNID

Syntax

(GetNoteHandleByUNID <dbH> <note_UNID>)

Description

GetNotHandleByUNID gets a note handle through its unique ID. If note_UNID is a
null string then a new note is created.

Parameters

Return Values

Handle or Boolean
A valid Lotus Notes handle or the boolean #f (false) upon failure.

Throws

None.

Name Type Description

dbh Handle A valid database handle.

note_UNID String A Monk string previously returned
from NoteIDAsString.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
LNAck

Syntax

(LNAck arg)

Description

LNAck is a dummy ACK function.

Parameters

Return Values

String
Empty string.

Throws

None.

Name Type Description

arg Any Parameter not used at this time.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 50 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
LNConnect

Syntax

(LNConnect)

Description

LNConnect initalizes connection to the Lotus Notes system.

Parameters

None

Return Values

String
Always returns the string “UP” indicates connection is up (operational).

Throws

None.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 51 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
LNExchange

Syntax

(LNExchange)

Description

LNExchange is a dummy Exchange Data function.

Parameters

None

Return Values

String
Empty string.

Throws

None.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 52 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
LNGetDBHandle

Syntax

(LNGetDBHandle <ln-adm-node>)

Description

LNGetDBHandle returns a Lotus Notes database handle based on the Lotus Notes
ETD structure.

Parameters

Return Values

Handle or Boolean
A valid Lotus Notes database handle, or a boolean #f (false) upon failure.

Throws

None.

Name Type Description

ln-adm-node Path Path to the ADM node which contains
the name and view.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 53 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
LNInit

Syntax

(LNInit)

Description

LNInit does global initializations for Lotus Notes eWay.

Parameters

None

Return Values

String
An empty string.

Throws

None.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 54 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
LNNak

Syntax

(LNNak arg)

Description

LNNak is a dummy NAK function

Parameters

Return Values

String
Empty string.

Throws

None.

Name Type Description

arg Any Parameter not used at this time.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 55 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
LNNotesRead

Syntax

(LNNotesRead <dbV> <dbC> <allNotes> <ln-root-node>)

Description

LNNotesRead allows the user to obtain a collection of Lotus Notes based on the Lotus
Notes ETD structure.

Parameters

Return Values

Integer or Boolean
The number of Lotus Notes obtained or the boolean #f (false) upon failure.

Throws

None.

Name Type Description

dbV Handle The location of the database where
the View is found.

dbC Handle The database where the Collection
will be formed.

allNotes boolean If set to "true" (#t) all Notes from the
Collection will be returned. If set to
"false" (#f) only unread Notes will be
returned from the Collection.

ln-root-node Path Root node of the ETD that will
populated with data returned from
Lotus Notes.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 56 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
LNNotify

Syntax

(LNNotify command)

Description

LNNotify is a dummy notify function

Parameters

Return Values

String
Empty string.

Throws

None.

Name Type Description

command Any Parameter not used at this time.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 57 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
LNOutgoing

Syntax

(LNOutgoing msg)

Description

LNOutgoing is a dummy outgoing function

Parameters

Return Values

String
Empty string.

Throws

None.

Name Type Description

msg Any Parameter not used at this time
e*Way Intelligent Adapter for Lotus Notes User’s Guide 58 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
LNShutdown

Syntax

(LNShutdown command)

Description

LNShutdown is a dummy shutdown function.

Parameters

Return Values

String
Empty string.

Throws

None.

Name Type Description

command Any Parameter not used at this time
e*Way Intelligent Adapter for Lotus Notes User’s Guide 59 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
LNStartup

Syntax

(LNStartup)

Description

LNStartup initializes connection with Lotus Notes.

Parameters

None

Return Values

String
Returns "UP" upons success, empty string upon failure.

Throws

None.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 60 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
LNVerify

Syntax

(LNVerify)

Description

LNVerify verifies connection to Lotus Notes.

Parameters

None

Return Values

String
Always returns the string “UP” indicates connection is up (operational).

Throws

None.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 61 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
MarkAsResponse

Syntax

(MarkAsResponse parentNote childNote)

Description

MarkAsResponse identifies a Note as being a response to another Note.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Examples

(MarkAsResponse hNoteP hNoteC)

Name Type Description

parentNote String A type of Note.

childNote String A response to a parentNote.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 62 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
MarkNoteAsRead

Syntax

(MarkNoteAsRead handleD handleN)

Description

MarkNoteAsRead marks the specified Note as having been read.

Parameters

Return Values

Boolean
Returns #t (true) if the respective handles are valid; otherwise, returns #f (false).

Throws

None.

Examples

(MarkNoteAsRead dbHandle noteHandle)

Name Type Description

handleD Handle A valid database Handle.

handleN Handle A note handle.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 63 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
MarkNoteAsUnRead

Syntax

(MarkNoteAsUnRead handleD handleN)

Description

MarkNoteAsUnRead marks the specified Note as unread.

Parameters

Return Values

Boolean
Returns #t (true) if the respective handles are valid; otherwise, returns #f (false).

Throws

None.

Examples

(MarkNoteAsUnRead dbHandle noteHandle)

Name Type Description

handleD Handle A valid database handle.

handleN Handle A note handle.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 64 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
NextNoteHandle

Syntax

(NextNoteHandle handleD handleC)

or

(NextNoteHandle handleD handleC boolean)

Description

NextNoteHandle enumerates a Collection (via its handle). The caller must specify
whether all Notes or only unread Notes are returned.

Parameters

Return Values

Returns a valid Note handle if successful; otherwise, returns Boolean #f (false).

Throws

None.

Examples

(NextNoteHandle dbHandle coHandle)

Note: See the example on Examples on page 48.

Name Type Description

handleD Handle The database handle where the Notes
are found.

handleC Handle A collection handle from
NIFOpenCollection function.

optional parameter Boolean A parameter used to determine
whether unread Notes or all Notes are
returned from the Collection. If set to
“true” (#t) only unread Notes are to be
returned from the Collection. If this
parameter is “false” (#f) or missing, all
Notes from the Collection will be
returned.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 65 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
NIFCloseCollection

Syntax

 (NIFCloseCollection handle)

Description

NIFCloseCollection closes a Collection handle and releases all associated resources.

Parameters

Return Values

Boolean
Returns #t (true) always.

Throws

None.

Examples

(NIFCloseCollection coHandle)

Name Type Description

handle Handle A valid return value from NIFOpen
Collection function (see
NIFOpenCollection on page 67).
e*Way Intelligent Adapter for Lotus Notes User’s Guide 66 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
NIFOpenCollection

Syntax

(NIFOpenCollection handleV handleC name)

Description

NIFOpenCollection opens a Notes Collection, using a View.

Parameters

Note: The handles must be acquired with NSFDbOpen (see NSFDbOpen on page 73) or
NSFDbOpenNet function (see NSFDbOpenNet on page 74).

Return Values

Returns a valid Collection handle, or a Boolean #f (false) upon failure.

Throws

None.

Examples

(let ((coHandle (NIFOpenCollection dbHandle dbHandle "myview")))
 (if coHandle
 (begin

 ; we have a valid collection handle
)
 (begin

 ; an error has occurred - read the error log
)
)
)

Name Type Description

handleV Handle The location of the database where
the View is found.

handleC Handle The database where the Collection
will be formed.

name String The name of the View to be used.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 67 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
NoteIDAsString

Syntax

(NoteIDAsString handle bool)

Description

NoteIDAsString gets the unique ID (UNID) of a Note and/or the UNID of a Note’s
parent, both as a Monk string.

Parameters

Return Values

A Monk string representing the required UNID in the following form:

“FXXXXXXXX:XXXXXXXX-NXXXXXXXX:XXXXXXXX”

Where XXXXXXXX are hexadecimal numbers.

If the second argument is present and is true (#t), the given Note’s parent UNID will be
returned. If there is no parent, the returned value is

“F00000000:00000000-N00000000:00000000”

This value does not represent any existing Note’s UNID.

Consider using this option in conjunction with NoteHasParent (see NoteHasParent on
page 69).

Throws

None.

Examples

(NoteIDAsString hNote #t)

or

(NoteIDAsString hNote #f)

These examples are equivalent to

(NoteIDAsString hNote)

Name Type Description

handle Handle A valid Note handle.

bool Boolean An optional Monk Boolean object.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 68 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
NoteHasParent

Syntax

(NoteHasParent handle)

Description

NoteHasParent determines if the specified Note has a parent, that is, if the specified
Note is a response Note.

Parameters

Return Values

Boolean
Returns #t (true); otherwise, #f (false).

Throws

None.

Examples

(if (NoteHasParent hNote)
(display "This is a response Note\n")
(display "This Note is not a response Note\n")

)

Name Type Description

handle Handle A valid Note handle.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 69 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
NotesInit

Syntax

(NotesInit password)

Description

NotesInit establishes an environment allowing use of the Lotus Notes C API. All other
functions will fail if this is not called or if it fails.

Parameters

Return Value

Boolean
Returns #t (true); otherwise, #f (false).

Throws

None.

Example

(if (NotesInit "foo")
 (begin

; Initialization was successful
)

 (display "Notes failed to initialize")
)

Name Type Description

password string The user’s password.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 70 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
NotesTerm

Syntax

(NotesTerm)

Description

NotesTerm terminates the Notes session.

Parameters

None.

Return Values

None.

Throws

None.

Examples

(NotesTerm)

Additional Information

It is unnecessary to call this function explicitly because it is invoked automatically
when (under Windows) the *.dll file is unloaded.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 71 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
NSFDbClose

Syntax

(NSFDbClose handle)

Description

NSFDbClose closes a database handle.

Parameters

Return Values

Boolean
Returns #t (true) always.

Throws

None.

Examples

(let ((dbHandle (NSFDbOpen "foo.nsf"))
 (if dbHandle

(NSFDbClose dbHandle)
)
)

Name Type Description

handle Handle A valid handle acquired from either
NSFDbOpen (see NSFDbOpen on
page 73)
or NSFDbOpenNet (see
NSFDbOpenNet on page 74).
e*Way Intelligent Adapter for Lotus Notes User’s Guide 72 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
NSFDbOpen

Syntax

(NSFDbOpen databasename)

Description

NSFDbOpen opens a local database and returns a handle to it.

Parameters

Return Values

handle
Returns a database handle.

Note: A returned database name is not necessarily valid. You may validate the object
using DBHandleOK (see DBHandleOK on page 45).

Throws

None.

Examples

(let ((dbHandle (NSFDbOpen "Api462re.nsf")))
 (if (DBHandleOK dbHandle)

 (begin
 ; We have a valid database handle
)
 (begin

(display “Failed to open database\nError code=”)
(display (number->string (GetDBHandleStatus dbHandle)))
(newline)

)
)
)

Name Type Description

databasename String The name of the database to be
opened.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 73 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
NSFDbOpenNet

Syntax

(NSFDbOpenNet databasename servername portname)

Description

NSFDbOpenNet opens a remote database and returns a handle to it.

Parameters

Return Values

handle
Returns a database handle, if successful.

Note: A returned database handle is not necessarily valid. You may validate the object,
using DBHandleOK (see DBHandleOK on page 45).

Examples

(let ((dbH (NSFDbOpenNet "Api462re.nsf" "joe.uk.xyzcorp.com/STC")))
(if (DBHandleOK dbH)
 (begin

; We have a valid database handle
)
 (begin

(display "Failed to open database\nError code=")
(display (number->string (GetDBHandleStatus dbH)))
(newline)

)
)

)

Name Type Description

databasename String The name of the database to be
opened.

servername String The name of the Lotus Notes server.

portname String Optional Lotus Notes port name.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 74 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
NSFItemAppendTextList

Syntax

(NSFItemAppendTextList handle name text bool)

Description

NSFItemAppendTextList creates or appends to a text list item.

Parameters

Return Values

Boolean
Returns #t (true); otherwise, #f (false).

Examples

(NSFItemAppendTextList hNote "Categories" "A" #f)

Additional Information

If the field name specified in the second parameter (name) does not exist, it is created
and the last parameter is not required.

If the text being passed contains a semicolon, ambiguous values could be returned from
GetFieldData (see GetFieldData on page 47). This is because the Notes’ internal
mechanism for presenting a text list item as a single value is to add a semicolon
separator to the individual elements. SeeBeyond recommends that you use
NSFItemGetTextListEntry (see NSFItemGetTextListEntry on page 77) for this type of
data. If data with a semicolon is added to a text list, a warning is written to the log.

If the last parameter (bool) is #f, and an attempt is made to append a duplicate value to
the text list, the procedure returns true (#t). This return is not an error.

Name Type Description

handle Handle A valid Note handle.

name String A text list field item name.

text String A string of text.

bool String A string that indicates whether or not
duplicates of the field item name are
allowed.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 75 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
NSFItemGetTextListEntries

Syntax

(NSFItemGetTextListEntries handle name)

Description

NSFItemGetTextListEntries determines the number of entries (elements) in a text list
item.

Parameters

Return Values

integer

Returns the number of entries in the specified field (as a Monk number object, integer
exact).

Throws

None.

Examples

(NSFItemGetTextListEntires hNote "Categories")

Name Type Description

handle Handle A valid Note handle.

name String A field name.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 76 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
NSFItemGetTextListEntry

Syntax

(NSFItemGetTextListEntry handle name element)

Description

NSFItemGetTextListEntry retrieves the “Nth” element in a text list field item.

Parameters

Return Values

Returns a Monk string object containing the requested data; otherwise, Boolean #f
(false) in case of an error.

Throws

None.

Examples

; dump the contents of each element of the "Category" field item
(assumed to be a text list item)
(let* ((field "Categories")(elements (NSFItemGetTextListEntries hNote
field)))

(if (number? elements)
 (do ((i 0 (+ i 1)))

((>= i elements) #t)
(display (NSFItemGetTextListEntry hNote field i))
(newline)

)
)

)

Name Type Description

handle Handle A valid Note handle.

name String A field name.

element Integer A base-zero element number
expressed as an integer.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 77 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
NSFItemInfo

Syntax

(NSFItemInfo handle item)

Description

NSFItemInfo determines the type of item (field) within a Note.

Parameters

Return Values

string
Returns a string object of the form TYPE_xxx, as follows:

Throws

None.

Examples

(display (string-append "Field 'Age' is of type "
(NSFItemInfo hNote "Age") "\n"))

Name Type Description

handle Handle A valid Note handle.

item String The name of a field expected to be
found in the Note.

TYPE_ACTION TYPE_QUERY

TYPE_ASSISTANT_INFO TYPE_SCHED_LIST

TYPE_CALENDAR_FORMAT TYPE_SEAL

TYPE_COLLATION TYPE_SEAL_LIST

TYPE_COMPOSITE TYPE_SEALDATA

TYPE_ERROR TYPE_SIGNATURE

TYPE_FORMULA TYPE_TEXT

TYPE_HIGHLIGHTS TYPE_TEXT_LIST

TYPE_HTML TYPE_TIME

TYPE_ICON TYPE_TIME_RANGE

TYPE_INVALID_OR_UNKNOWN TYPE_UNAVAILABLE

TYPE_LSOBJECT TYPE_USERDATA

TYPE_NOTELINK_LIST TYPE_USERID

TYPE_NOTEREF_LIST TYPE_VIEW_FORMAT

TYPE_NUMBER TYPE_VIEWMAP_DATASET

TYPE_NUMBER_RANGE TYPE_VIEWMAP_LAYOUT

TYPE_OBJECT TYPE_WORKSHEET_DATA
e*Way Intelligent Adapter for Lotus Notes User’s Guide 78 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
NSFItemSetNumber

Syntax

(NSFItemSetNumber handle name value)

Description

NSFItemSetNumber adds/updates an item (field) and its numeric value in a Note.

Parameters

Return Values

Boolean
Returns #t (true); otherwise, returns #f (false).

Throws

None.

Examples

(NSFItemSetNumber noteHandle "Age" "27")

or

(NSFItemSetNumber noteHandle "Age" 27)

or

(NSFItemSetNumber noteHandle "Age" 27.5)

Name Type Description

handle Handle A valid Note handle.

name String The item (field) name.

value String, integer or real
value

A numeric value represented in one of
three ways.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 79 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
NSFItemSetText

Syntax

(NSFItemSetText handle name value)

Description

NSFItemSetText adds/updates an item (field) and its text value in a Note.

Parameters

Return Values

Boolean
Returns #t (true); otherwise, returns #f (false).

Throws

None.

Examples

(NSFItemSetText noteHandle “Name” “Sam”)

Name Type Description

handle Handle A valid Note handle.

name String The item (field) name.

value String The text string to be associated with
the item.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 80 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
NSFNoteClose

Syntax

(NSFNoteClose handle)

Description

NSFNoteClose closes a Note.

Parameters

Return Values

Boolean
Returns #t (true) always.

Throws

None.

Examples

(NSFNoteClose noHandle)

Name Type Description

handle Handle A valid Note handle from
NextNoteHandle (see
NextNoteHandle on page 65).
e*Way Intelligent Adapter for Lotus Notes User’s Guide 81 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
NSFNoteCreate

Syntax

 (NSFCreateNote handle)

Description

NSFNoteCreate creates a new Note in memory.

Parameters

Return Values

handle
Returns a Note handle if successful; returns a Boolean #f (false) if an error occurs.

Throws

None.

Examples

(let ((noHandle (NSFNoteCreate dbHandle)))
(if noHandle

(begin
; We have an in-memory Note

)
(begin

; Check the error log - something horrible has
happened

)
)

)

Note: The initial creation of a Note gives a handle on an in-memory image. The Note will
not exist in the database unless and until NSFNoteUpdateExtended has been
called successfully (see NSFNoteUpdateExtended on page 84).

Name Type Description

handle Handle A valid database handle.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 82 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
NSFNoteDelete

Syntax

(NSFNoteDelete handleD handleN flags)

Description

NSFNoteDelete deletes a Note.

Parameters

Return Values

Boolean
Returns #t (true); otherwise, returns #f (false).

Throws

None.

Examples

(NSFNoteDelete dbHandle noteHandle "")

Name Type Description

handleD Handle A database handle where Notes are
found.

handleN Handle A Note handle.

flags String A flag string (see Flag Strings on
page 44).
e*Way Intelligent Adapter for Lotus Notes User’s Guide 83 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
NSFNoteUpdateExtended

Syntax

 (NSFNoteUpdateExtended handle flags)

Description

NSFNoteUpdateExtended updates (writes to database) an in-memory Note.

Parameters

Return Values

Boolean
Returns #t (true); otherwise, returns #f (false).

Throws

None.

Examples

(NSFNoteUpdateExtended noteHandle "UPDATE_NOCOMMIT")

Name Type Description

handle Handle A valid Note handle.

flags String A flag string (see Flag Strings on
page 44).
e*Way Intelligent Adapter for Lotus Notes User’s Guide 84 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
OpenNoteByID

Syntax

(OpenNoteByID handle unid)

Description

OpenNoteByID opens a Note given a handle on the database containing the Note and
its UNID.

Parameters

Return Values

Returns a Note handle; returns a Boolean #f (false) if the UNID does not match a Note
in the specified database.

Throws

None.

Examples

(let ((hNote (OpenNoteByID handle unid)))
(if hNote

(display "Got Note\n")
(display "Failed to get Note\n")

)
)

Name Type Description

handle Handle A valid database handle.

unid String A Monk string previously returned
from NoteIDAsString (see
NoteIDAsString on page 68).
e*Way Intelligent Adapter for Lotus Notes User’s Guide 85 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
SendMail

Syntax

(SendMail sendTo copyTo subject body)

Description

SendMail creates and sends an E-mail item.

Parameters

Return Values

Boolean
Returns #t (true); otherwise, returns #f (false).

Throws

None.

Example No. 1

(SendMail "andy@xyzcorp.com;fred@xyzcorp.com"
"john@xyzcorp.com;gail@xyzcorp.com"
"Just testing" "Dear Everyone:\nThis is just a test.\nBest

wishes,\nJoe")

Additional Information

Note the following properties of the previous example:

! Address separators may be a semicolon (;), colon (:), or comma (,).

! The body of the text must be passed as a Monk string containing newline characters
to delimit each line of text. The delimiter is not necessary for the last line.

Example No. 2 on page 87 loads the *.dll file and initializes the Lotus Notes run-time
environment. The file then opens the (local) database Api462re.nsf.

In this example the View is in the same database as the Notes data to be collected. The
View name is ($All). All Note handles that constitute this Collection are enumerated.
For each Note, the values associated with the fields Name and ShortDesc are then
displayed.

The handle closing routines have been commented out because they are not necessary
unless early resource release is required.

Name Type Description

sendTo String An e-mail address or list of addresses.

copyTo String An e-mail address or list of addresses.

subject String The e-mail subject line.

body String The body (text) of the e-mail.
e*Way Intelligent Adapter for Lotus Notes User’s Guide 86 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Lotus Notes e*Way Functions Lotus Notes Functions
Example No. 2

(load-extension "d:/Notes/notesDLL/release/NotesDLL.dll")

(define myPassword "abc123") ; Specify the password

(if (NotesInit myPassword) ; Initialise Notes session
(let ((dbH (NSFDbOpen "d:/notesapi/doc/Api462re.nsf")))

(if (DBHandleOK dbH)
(let ((dbC (NIFOpenCollection dbH dbH "All \

Alphabetical")))
(if dbC
 (do ((dbN (NextNoteHandle dbH dbC)

(NextNoteHandle dbH dbC)))
((not dbN) #t)
(display (GetFieldData dbN "Name"))
(display ", ")
(display (GetFieldData dbN "ShortDesc"))
(newline)
; (NSFNoteClose dbN)

)
; (NIFCloseCollection dbC)

)
; (NSFDbClose dbH)

)
)

(NotesTerm) ; Terminate the session
)
(display "Notes initialisation failed\n")

)

e*Way Intelligent Adapter for Lotus Notes User’s Guide 87 SeeBeyond Proprietary and Confidential

Index
Index

A
Additional Path parameter 24
Auxiliary Library Directories parameter 24

B
book 32

C
configuration parameters 11

Additional Path 24
Auxiliary Library Directories 24
changing, how to 11
Down Timeout 14
Exchange Data Interval 14
Exchange Data With External Function 26
External Connection Establishment Function 27
External Connection Shutdown Function 28
External Connection Verification Function 28
Forward External Errors 12
General Settings 11
Journal File Name 12
Lotus Notes settings 30

Password 30
Server Name 30

Max Failed Messages 12
Max Resends Per Message 12
Monk Environment Initialization File 25
Negative Acknowledgment Function 29
Positive Acknowledgement Function 28
Process Outgoing Message Function 26
Resend Timeout 15
Shutdown Command Notification Function 30
Start Exchange Data Schedule 14
Startup Function 25
Stop Exchange Data Schedule 14
Up Timeout 14
Zero Wait Between Successful Exchanges 15

D
DBHandleOK 45
Down Timeout parameter 14

E
e*Way components 6

stcewgenericmonk.exe 6
e-mail 6, 86
Exchange Data Interval parameter 14
Exchange Data with External Function parameter 26
External Connection Establishment Function
parameter 27
External Connection Shutdown Function parameter
28
External Connection Verification Function
parameter 28
external systems requirements 7

F
Files and Directories Created 9
flag strings 44
Forward External Errors parameter 12
functions, Lotus Notes e*Way 35

basic 35
event-send-to-egate 36
get-logical-name 37
send-external-down 38
start-schedule 41
stop-schedule 42

Lotus Notes specific
 43

specific
DBHandleOK 45
GetDBHandleStatus 46
GetFieldData 47
GetFieldList 48
MarkAsResponse 62
MarkNoteAsRead 63
MarkNoteAsUnRead 64
NextNoteHandle 65
NIFCloseCollection 66
NIFOpenCollection 67
NoteHasParent 69
NoteIDAsString 68
NotesINit 70
NotesTerm 71
NSFDbClose 72
NSFDbOpen 73
NSFDbOpenNet 74
NSFItemAppendTextList 75
NSFItemGetTextListEntries 76
NSFItemGetTextListEntry 77
NSFItemInfo 78
NSFItemSetNumber 79
NSFItemSetText 80
NSFNoteClose 81
e*Way Intelligent Adapter for Lotus Notes User’s Guide 88 SeeBeyond Proprietary and Confidential

Index
NSFNoteCreate 82
NSFNoteDelete 83
NSFNoteUpdateExtended 84
OpenNoteByID 85
SendMail 86

G
GetDBHandleStatus 46
GetFieldData 47
GetFieldList 48

I
implementation 32

sample schema, overview 32
index

book 32
installation

importing the sample schema 33
Lotus Notes sample schema 33

Installation Procedure
Windows 8

intended reader 6

J
Journal File Name parameter 12

L
Lotus Notes Client 8
Lotus Notes Server 8

M
MarkAsResponse 62
MarkNoteAsRead 63
MarkNoteAsUnRead 64
Max Failed Messages parameter 12
Max Resends Per Message parameter 12
Monk Environment Initialization File parameter 25

N
Negative Acknowledgment Function parameter 29
NextNoteHandle 65
NIFCloseCollection 66
NIFOpenCollection 67
NoteHasParent 69
NoteIDAsString 68
NotesInit 70
NotesTerm 71

NSFDbClose 72
NSFDbOpen 73
NSFDbOpenNet 74
NSFItemAppendTextList 75
NSFItemGetTextListEntries 76
NSFItemGetTextListEntry 77
NSFItemInfo 78
NSFItemSetNumber 79
NSFItemSetText 80
NSFNoteClose 81
NSFNoteCreate 82
NSFNoteDelete 83
NSFNoteUpdateExtended 84

O
OpenNoteByID 85

P
Password 8
Positive Acknowledgment Function parameter 28
Process Outgoing Message Function parameter 26

R
Resend Timeout parameter 15

S
SendMail 86
Shutdown Command Notification Function
parameter 30
Start Exchange Data Schedule parameter 14
start-schedule 41
Startup Function parameter 25
Stop Exchange Data Schedule parameter 14
stop-schedule 42
supported operating systems 7

U
Up Timeout parameter 14

W
Windows NT

installation 8

Z
Zero Wait Between Successful Exchanges 15
e*Way Intelligent Adapter for Lotus Notes User’s Guide 89 SeeBeyond Proprietary and Confidential

	e*Way Intelligent Adapter for Lotus Notes User’s Guide
	Contents
	Introduction
	1.1 Overview
	1.1.1. Intended Reader
	1.1.2. Components

	1.2 Supported Operating Systems
	1.3 System Requirements
	1.3.1. External System Requirements

	Installation
	2.1 Windows�NT
	2.1.1. Pre-installation
	2.1.2. Installation Procedure

	2.2 Files/Directories Created by the Installation

	Configuration
	3.1 e*Way Configuration Parameters
	3.1.1. General Settings
	Journal File Name
	Max Resends Per Message
	Max Failed Messages
	Forward External Errors

	3.1.2. Communication Setup
	Start Exchange Data Schedule
	Stop Exchange Data Schedule
	Exchange Data Interval
	Down Timeout
	Up Timeout
	Resend Timeout
	Zero Wait Between Successful Exchanges

	3.1.3. Monk Configuration
	Operational Details
	How to Specify Function Names or File Names
	Additional Path
	Auxiliary Library Directories
	Monk Environment Initialization File
	Startup Function
	Process Outgoing Message Function
	Exchange Data with External Function
	External Connection Establishment Function
	External Connection Verification Function
	External Connection Shutdown Function
	Positive Acknowledgment Function
	Negative Acknowledgment Function
	Shutdown Command Notification Function

	3.1.4. Lotus Notes Settings
	Lotus Notes Server Name
	Password for the Notes Server

	3.2 Environment Configuration
	3.3 External Configuration Requirements

	Implementation
	4.1 Functional Overview of the Sample Schema
	4.2 Installing the Lotus Notes Sample Schema
	4.2.1. Install the Sample Schema on the Registry Host
	4.2.2. Files Included with the Sample Schema

	Lotus Notes e*Way Functions
	5.1 Basic Functions
	event-send-to-egate
	get-logical-name
	send-external-down
	send-external-up
	shutdown-request
	start-schedule
	stop-schedule

	5.2 Lotus Notes Functions
	General Usage Notes
	DBHandleOK
	GetDBHandleStatus
	GetFieldData
	GetFieldList
	GetNotHandleByUNID
	LNAck
	LNConnect
	LNExchange
	LNGetDBHandle
	LNInit
	LNNak
	LNNotesRead
	LNNotify
	LNOutgoing
	LNShutdown
	LNStartup
	LNVerify
	MarkAsResponse
	MarkNoteAsRead
	MarkNoteAsUnRead
	NextNoteHandle
	NIFCloseCollection
	NIFOpenCollection
	NoteIDAsString
	NoteHasParent
	NotesInit
	NotesTerm
	NSFDbClose
	NSFDbOpen
	NSFDbOpenNet
	NSFItemAppendTextList
	NSFItemGetTextListEntries
	NSFItemGetTextListEntry
	NSFItemInfo
	NSFItemSetNumber
	NSFItemSetText
	NSFNoteClose
	NSFNoteCreate
	NSFNoteDelete
	NSFNoteUpdateExtended
	OpenNoteByID
	SendMail

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	O
	P
	R
	S
	U
	W
	Z

