SeeBeyond™ eBusiness Integration Suite

e*Way Intelligent Adapter for
MQSeries User’s Guide

Release 4.5.2

Java Version

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBl, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 2001 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20011224133934.

e*Way Intelligent Adapter for MQSeries User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents

Contents

Chapter 1
Introduction 8
Overview 8
MQSeries e*Way JMS and ETD 8
Intended Reader 9
Supported Operating Systems 9
System Requirements 9
External System Requirements 10

Chapter 2
Installation 11
Windows NT and Windows 2000 11
Pre-installation 11
Installation Procedure 11
UNIX 13
Pre-installation 13
Installation Procedure 13
Files/Directories Created by the Installation 13

Chapter 3
Multi-Mode e*Way Configuration 15
Multi-Mode e*Way 15
JVM Settings 15
JNI DLL Absolute Pathname 16
CLASSPATH Prepend 17
CLASSPATH Override 17
CLASSPATH Append From Environment Variable 17
Initial Heap Size 18
Maximum Heap Size 18
Maximum Stack Size for Native Threads 18
Maximum Stack Size for JVM Threads 18
Class Garbage Collection 18
Garbage Collection Activity Reporting 19

e*Way Intelligent Adapter for MQSeries User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents

Asynchronous Garbage Collection 19

Report JVM Info and all Class Loads 19

Disable JIT 19
Remote Debugging Port Number 19
Suspend Option for Debugging 20

Chapter 4

e*Way Connection Configuration (JMS) 21
Configuring e*Way Connections 21
General Settings 21
Connection Type 22
Transaction Type 22
Delivery Mode 22
Maximum Number of Bytes to read 23
Default Outgoing Message Type 23

Factory Class Name 23
MQSeries 23
Queue Manager Name 24
Transport Type 24

Host Name 24

Port Number 24
Channel 25

The valid name of the channel. 25

Chapter 5

Implementation (JMS) 26
MQSeries e*Way Implementation Overview 26
MQSeries Sample Schema Components 27
Step One: Creating the IBM MQSeries Queue 28
Step Two: Installing the MQSeries e*Way and Creating a New Schema 29
Implementing the Sample Schema on e*Gate 4.5.1 29

Step Three-Creating and Configuring the e*Ways 30
Step Four: Create the e*Way Connection (Includes Specifying the MQSeries Queue Manager) 33
Step Five: Creating Event Types (Also Specifies MQSeries Queue) 35
Step Six-Intelligent Queues 36
Step Seven: Collaboration Rules 37
Using the Collaboration Rules Editor 40
Step Eight: Collaborations 42
Step Nine: Setting CLASSPATH Variable 46
Execute the Schema 47
Error Messages 48

e*Way Intelligent Adapter for MQSeries User’s Guide 4 SeeBeyond Proprietary and Confidential

Contents

Chapter 6
ETD Overview 49
The MQSerieseTD 49
The QueueManager Node 50
Current Queue Manager 50
The queueAccessOptions Node 50
Methods Under the QueueManager Node 50
The Queue Node 51
Current Queue 51
Get and Put Methods 51
The newMessage Method 52
Methods Under the Queue Node 53
The Message Node 53
The MsgHeader Child Node 53
The MsgBody Child Node 53
Calling Read Methods 54
The MQMessage Class 54
Methods Under the Message Node 54
Exception Handling 57
Chapter 7
e*Way Connection Configuration (ETD) 58
Configuring e¥*Way Connections 58
General Settings 59
Transaction Type 59
MQSeries 60
Queue Manager Name 60
Host Name 60
Port Number 61
Channel 61
Connector 61
type 61
class 61
Property.Tag 62
Default GetMessageOptions 62
Wait Timeout 62
Wait Interval 62
Chapter 8
Implementation (ETD) 63
MQSeries (ETD) Sample Implementation Components 63
The MQSeries (ETD) Sample Schema 64
Step One: Creating the IBM MQSeries Queue 64
Step Two: Installing the MQSeries e*Way and Creating a New Schema 66
Importing the Sample Schema 66

e*Way Intelligent Adapter for MQSeries User’s Guide 5 SeeBeyond Proprietary and Confidential

Contents

Implementing the Sample Schema on e*Gate 4.5.1 66

Step Three-Creating and Configuring the e*Ways 66
Step Four: Create the e*Way Connection 70
Step Five: Creating Event Types 72
Creating an Event Types Using the Standard ETD Wizard 73
Creating Event Types From an Existing XSC 74

Step Six: Intelligent Queues 75

To create and modify an Intelligent Queue for the MQSeries e*Way 75

Step Seven: Collaboration Rules 75
Creating Pass Through Collaboration Rules 75
Creating Java Collaboration Rules 77

Using the Collaboration Rules Editor 79
Step Eight-Collaborations 86
Creating the Inbound_eWay Collaboration 87
Creating the Multi Mode e*Way Collaboration 88

Step Nine: Setting CLASSPATH Variable 90
Execute the Schema 91
Error Messages 91

Chapter 9

Java Methods (ETD) 93
MQSeriestTD Class 93
Methods of the MQSeriesETD class 93
connectToQueueManager() 94
selectQueueManager() 94
isQueueMgrConnected() 95
getCharacterSet() 95
getMaximumPriority() 96
commit() 96
backout() 96
queueAccessOptionsClearAll() 97
accessQueue() 97
selectQueue() 98

get() 98
getWithOptions() 98

put() 99
putWithOptions() 99
getCurrentDepth() 99
getMaximumDepth() 100
getMaximumMessagelength() 100
newMessage() 101

GMO Class 101
Methods of the GMO class 101
optionsClearAll() 101
setWaitValue() 102
setUnlimitedWait() 102
matchOptionsClearAll() 103

PMO Class 103
Methods of the PMO class 103
Message Class 103
Methods of the Message class 103
getTotalMessageLength () 104
getMessagelength () 105

e*Way Intelligent Adapter for MQSeries User’s Guide 6 SeeBeyond Proprietary and Confidential

Contents

getDatalength () 105
seek () 106
setDataOffset () 106
getDataOffset () 107
clearMessage () 107
getVersion () 107
resizeBuffer () 108
readBoolean () 108
readChar () 109
readDouble () 109
readFloat () 109
readFully () 110
readint () 111
readInt4 () 111
readLine () 111
readLong () 112
readInt8 () 112
readObject () 113
readShort () 113
readInt2 () 113
readUTF () 114
readUnsignedByte () 114
readUnsignedShort () 115
readUInt2 () 115
readString () 115
readDecimal2 () 116
readDecimal4 () 116
readDecimal8 () 117
setVersion () 117
skipBytes () 118
write () 118
writeBoolean () 119
writeByte () 119
writeBytes () 120
writeChar () 120
writeChars () 121
writeDouble () 121
writeFloat () 122
writelnt () 122
writeLong () 123
writeObject () 123
writeShort () 124
writeDecimal2 () 124
writeDecimal4 () 125
writeDecimal8 () 125
writeUTF () 126
writeString () 126
Appendix A
Appendix A (JMS) 128
Mapping Between JMS Standard Header Items and MQSeries Header Fields 128
Index 131

e*Way Intelligent Adapter for MQSeries User’s Guide

SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This chapter introduces you to SeeBeyond™ Technology Corporation’s (SeeBeyond™)
Java-enabled e*Way Intelligent Adapter for the MQSeries. It includes an overview of
this manual and a list of system requirements for installation.

11 Overview

MQSeries from IBM is a client-server message broker supporting an open API
(application programming interface), available on a variety of operating systems,
including AIX, Solaris, HP-UX, and Windows NT and 2000. MQSeries is “middleware”
that provides commercial messaging and queuing services. Messaging enables
programs to communicate with each other via messages instead of direct connection.
Placing these messages in queues for temporary storage frees up programs to continue
to work independently. This process also allows communication across a network of
dissimilar components, processors, operating systems, and protocols.

The Java-enabled MQSeries e*Way allows the e*Gate system to exchange data with
IBM’s MQSeries version 5.2. The MQSeries e*Way applies business logic within
Collaboration Rules to perform any of e*Gate’s range of data identification,
manipulation and transformation operations. Messages are tailored to meet the
communication requirements of specific applications or protocols. Intelligent Queues
(IQs) provide non-volatile storage for data within the e*Gate system allowing
applications to run independently of one another at different speeds or times.
Applications can freely send messages to a queue and get messages from a queue any
time.

The MQSeries e*Way is configurable and transparently integrates existing systems and
databases to IBM MQSeries through e*Gate. This document explains how to install and
configure the Java-enabled MQSeries e*Way.

111 MQSeries e*Way JMS and ETD

The Java-enabled MQSeries e*Way is equipped for two different configuration modes,
JMS-based and ETD-based. General implementation directions for each is provided in
this document. Each provides advantages for different applications.

= The JMS-based MQSeries e*Way schema uses the Java Messaging System (JMS)
e*Way connection and offers easy setup and high performance when connecting to
a single queue.

e*Way Intelligent Adapter for MQSeries User’s Guide 8 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction Supported Operating Systems

= The ETD-based MQSeries e*Way schema relies on a fixed Event Type Definition
(ETD) designed to expose various essential portions of the MQSeries Java API,
providing a wide range of available methods and properties, as well as access to all
message attributes. The ETD-based schema allows the e*Way to connect and switch
between multiple queue managers and their queues.

Sections of this user guide that relate specifically to JMS-based or ETD-based MQSeries
e*Way configuration and setup are marked with (JMS) or (ETD) in the chapter title.

112 Intended Reader

The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the e*Gate system; to have a working knowledge of
Windows or UNIX operations and administration; to be familiar with MQSeries, Java,
and Windows-style GUI operations.

12 Supported Operating Systems

The Java-enabled MQSeries e*Way is available on the following operating systems:
= Windows 2000, Windows 2000 SP1, and Windows 2000 SP2
= Windows NT 4.0 SP6a
= Solaris 2.6, 7, and 8 (See note below regarding Solaris 2.6)
= AIX 4.3.3
= HP-UX 11.0 and HP-UX 11i (See note below regarding HP-UX 11)
= Japanese Windows 2000, Windows 2000 SP1, and Windows 2000 SP2
= Japanese Windows NT 4.0 SP6a
= Japanese Solaris 2.6, 7, and 8
= Japanese HP-UX 11.0

Note: Solaris 2.6 requires the installation of patches 105210-13 and 105568-10 available
from Sun Microsystems at:
http://sunsolve.sun.com/pub-cgi/show.pl?target=patches/patch-access

Note: HP-UX Java binding support is only available for HP-UX 11 systems running the
POSIX draft 10 threaded version of MQSeries. The HP-UX Developers kit for Java
1.1.7, Release C.01.17.01 or above is also required.

13 System Requirements

To use the MQSeries e*Way, you need the following:

e*Way Intelligent Adapter for MQSeries User’s Guide 9 SeeBeyond Proprietary and Confidential

http://sunsolve.sun.com/pub-cgi/show.pl?target=patches/patch-access

Chapter 1 Section 1.4
Introduction External System Requirements

= An e*Gate Participating Host, version 4.5 or later. For AIX operating systems, you
need an e*Gate Participating Host, version 4.5.1 or later.

= A TCP/IP network connection.

= Additional disk space for e*Way executable, configuration, library, and script files.
The disk space is required on both the Participating and the Registry Host.
Additional disk space is required to process and queue the data that this e*Way
processes; the amount necessary varies based on the type and size of the data being
processed, and any external applications performing the processing.

14 External System Requirements

The Java-enabled MQSeries e*Way requires the following installed on the participating
host:

= IBM MQSeries version 5.2 (See note below).

Note: Install either the MQSeries server or the MQSeries client code. If the MQSeries
server is installed on the participating host, the e*Way will connect to the server in
bindings mode. If the MQSeries client code is installed on the participating host, the
e*Way will connect to the server in client mode. A client mode connection can not
participate in distributed coordination of units of work.

= IBM MQSeries classes for Java 5.2.0.
= Classes for Java Message Service 5.2.0.0

= The SupportPac MAS8S patch is required for all supported platforms. MA88
SupportPac downloads and installation information can be found at:

http://www-4.ibm.com/software/ts/mqseries/txppacs/ma88.html

The MAS88 patch includes updates to several jar files and DLL's/ shared libraries.
Most notably are com.ibm.mgq.jar, mqjbnd02.d1l and mqgxai01.dll. It is important
that the patch overwrites the existing versions of these files if they are present on
your machine. Alternatively, if they do not overwrite the existing versions, it is
important that the new versions of these files exist on your classpath and path
before the old versions.

e*Way Intelligent Adapter for MQSeries User’s Guide 10 SeeBeyond Proprietary and Confidential

http://www-4.ibm.com/software/ts/mqseries/txppacs/ma88.html

Chapter 2

Installation

This chapter explains how to install the Java-enabled MQSeries e*Way.

21 Windows NT and Windows 2000

211 Pre-installation

1 Quit all Windows programs before running the setup program, including any
anti-virus applications.

2 You must have Administrator privileges to install this e*Way.

212 Installation Procedure

To install the MQSeries e*Way on a Windows system

1 Log in as an Administrator on the work station on which you want to install the
e*Way.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.
If Autorun is enabled, the setup program automatically starts. Otherwise:
+ On the task bar, click the Start button, then click Run.
+ In the Open field, type D:\setup \setup.exe where D: is your CD-ROM drive.

3 The InstallShield setup application launches. Follow the installation instructions
until you come to the Please choose the product to install dialog box.

4 Select e*Gate Integrator, then click Next.

5 Follow the on-screen instructions until you come to the second Please choose the
product to install dialog box.

6 Clear the check boxes for all selections except Add-ons, and then click Next.

7 Follow the on-screen instructions until you come to the Select Components dialog
box.

8 Highlight (but do not check) e*Ways, and then click the Change button. The Select
Sub-components dialog box appears.

e*Way Intelligent Adapter for MQSeries User’s Guide 11 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.1
Installation Windows NT and Windows 2000

9 Select MQSeries e*Way as shown in figure 1. Click the Continue button to return
to the Select Components dialog box, then click Next.

Figure 1 Event Type Definition Wizard
x|

Select the components you want to install, clear the components
you do not wank bo install.

Components

] ETD Builders Ok
] ETD Libraries Ok
Deszcription
- “ ew'aps categary Change... | ‘
n Select Sub-components |
SEEREVOND Select the components yau want to inztall. clear the components
g wou do not want bo install.

Sub-compaonents

|| LDAR e™way

| | Lotus Motes e™way
[[E] 5 e !
M5 115 e*wiay
|1 MSMO eeiay

— Description
MOSenes e®wiay

Space Required: 488 K

Space Available: W|WIFFLK

10 Follow the rest of the on-screen instructions to install the Java-enabled MQSeries
e*Way. For details of e*Gate installation, refer to the e*Gate Integrator Installation
Guide.

Be sure to install the e*Way files in the suggested client installation directory. The
installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not change
the suggested installation directory setting.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, 1Qs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, please see the online Help
system.

For more information about configuring e*Ways or how to use the e*Way editors,
see the e*Gate Integrator User’s Guide.

e*Way Intelligent Adapter for MQSeries User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Installation UNIX

22 UNIX

221 Pre-installation

You do not require root privileges to install this e*Way. Log in under the user name that
you wish to own the e*Way files. Be sure that this user has sufficient privilege to create
files in the e*Gate directory tree.

222 Installation Procedure

To install the MQSeries e*Way on a UNIX system

1 Log in on the workstation containing the CD-ROM drive, and insert the CD-ROM
into the drive.

2 If necessary, mount the CD-ROM drive.
3 At the shell prompt, type:
cd /cdrom/setup
4 Start the installation script by typing:
setup.sh

5 A menu of options will appear. Select the Install e*Ways option. Then, follow any
additional on-screen directions to install the MQSeries e*Way.

Note: Be sure to install all files in the suggested client installation directory. The
installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not change the
suggested installation directory setting.

6 After installation is complete, exit the installation utility and launch the Enterprise
Manager.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, Intelligent Queues (1Qs), and Event Types before this e*Way can perform its
intended functions. For more information about any of these procedures, please see
the online Help system.

For more information about configuring e*Ways or how to use the e*Way editors,
see the e*Gate Integrator User’s Guide.

23 Files/Directories Created by the Installation

The MQSeries e*Way installation process will install the files shown in Table 1 below
within the e*Gate client directory tree. Files will be installed within the egate\client\

e*Way Intelligent Adapter for MQSeries User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation

tree on the Participating Host and committed to the default schema on the Registry

Host.
Table 1 Files Created by the Installation
Install Directory Files
configs\mqseries mgqseries.def
etd\mgqseriesetd\ MQSeriesETD.jar
MQSeriesETD.xsc

configs\mqseriesetd MQSeriesETD.def
etd\ mgqseriesetd.ctl
ThirdParty\sun\ jta.jar

e*Way Intelligent Adapter for MQSeries User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 3

Multi-Mode e*Way Configuration

A

Multi-Mode e*Way is a multi-threaded component used to route and transform data

within e*Gate. Unlike traditional e*Ways, Multi-Mode e*Ways can use multiple
simultaneous e*Way Connections to communicate with several external systems, as
well as IQs or JMS IQ Managers. This chapter describes how to configure the Multi-
Mode e*Way for the Java-enabled MQSeries e*Way.

31 Multi-Mode e*Way

Multi-Mode e*Way properties are set using the Enterprise Manager.

To create and configure a new Multi-Mode e*Way

1

2
3
4
5

Select the Navigator’s Components tab.

Open the host on which you want to create the e*Way.
On the Palette, click on the icon to create a new e*Way.
Enter the name of the new e*Way, then click OK.

Select the new component, then right-click and select Properties. The e*Way
Properties dialog box opens.

The Executable File field defaults to stceway.exe. (stceway.exe is located in the
“bin\” directory).

Under the Configuration File field, click on the New button. When the Settings page
opens, set the configuration parameters for this configuration file.

After selecting the desired parameters, save the configuration file. Close the .cfg file
and select OK to close the e*Way Properties Window.

The Multi-Mode e*Way configuration parameters are organized in the JVM Settings
section.

311 JVM Settings

The JVM Settings control the basic Java Virtual Machine configuration. Parameters are
organized into the following sections.

= JNI DLL Absolute Pathname on page 16
= CLASSPATH Prepend on page 17

e*Way Intelligent Adapter for MQSeries User’s Guide 15 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way

= CLASSPATH Override on page 17

= CLASSPATH Append From Environment Variable on page 17
= Initial Heap Size on page 18

= Maximum Heap Size on page 18

= Maximum Stack Size for Native Threads on page 18
= Maximum Stack Size for JVM Threads on page 18

= Class Garbage Collection on page 18

= Garbage Collection Activity Reporting on page 19

= Asynchronous Garbage Collection on page 19

= Report JVM Info and all Class Loads on page 19

= Disable JIT on page 19

= Remote Debugging Port Number on page 19

= Suspend Option for Debugging on page 20

JNI DLL Absolute Pathname

Description

Specifies the absolute pathname to where the JNI DLL installed by the Java 2 SDK 1.3 is
located on the Participating Host (for example, C:\eGate\client\bin\]Jre or
C:\jdk\jre\bin\server). This parameter is mandatory.

Required Values
A valid pathname.
Additional Information

The JNI dll name varies on different operating systems.

oS Java 2 JNI DLL Name
Windows jvm.dll
Solaris libjvm.so
HP-UX libjvm.sl
AlX4.3.3 libjvm.a

The value assigned can contain a reference to an environment variable by enclosing the
variable name within a pair of % symbols. For example:

%MY_JINIDLL%

Such variables can be used when multiple Participating Hosts are used on different
platforms.

To ensure that the JNI DLL loads successfully, the Dynamic Load Library search path
environment variable must be set appropriately to include all the directories under the Java 2
SDK (or |DK) installation directory that contain shared libraries (UNIX) or DLLs (NT).

e*Way Intelligent Adapter for MQSeries User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way

CLASSPATH Prepend

Description

Specifies the paths to be prepended to the CLASSPATH environment variable for the
Java VM.

Required Values
An absolute path or an environmental variable.
Additional Information

If left unset, no paths will be prepended to the CLASSPATH environment variable
unless CLASSPATH Append From Environment Variable is set to yes, in which case the
classpath will be appended to the variable.

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_PRECLASSPATH%

CLASSPATH Override

Description

Specifies the complete CLASSPATH variable to be used by the Java VM. If left unset, an
appropriate CLASSPATH environment variable (consisting of required e*Gate
components concatenated with the system version of CLASSPATH) will be set.

Note: All necessary .jar files and .zip files needed by both e*Gate and the Java VM must be
included. It is advised that the CLASSPATH Prepend parameter be used.
Required Values
An absolute path or an environmental variable.
Additional Information

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_CLASSPATH%

CLASSPATH Append From Environment Variable

Description
Specifies the classpath append from the environmental variable.
Required Values

YES or NO. Enter Yes to append.

e*Way Intelligent Adapter for MQSeries User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way

Initial Heap Size

Description

Specifies the value for the initial heap size in bytes. If set to 0 (zero), the preferred value
for the initial heap size of the Java VM will be used.

Required Values
An integer between 0 and 2147483647.

Maximum Heap Size

Description

Specifies the value of the maximum heap size in bytes. If set to 0 (zero), the preferred
value for the maximum heap size of the Java VM will be used.

Required Values
An integer between 0 and 2147483647 .

Maximum Stack Size for Native Threads

Description

Specifies the value of the maximum stack size in bytes for native threads. If set to 0
(zero), the default value will be used.

Required Values
An integer between 0 and 2147483647.

Maximum Stack Size for JVM Threads

Description

Specifies the value of the maximum stack size in bytes for JVM threads. If set to 0 (zero),
the preferred value for the maximum heap size of the Java VM will be used.

Required Values
An integer between 0 and 2147483647 .

Class Garbage Collection

Description

Specifies whether the Class Garbage Collection will be done automatically by the Java
VM. Reserved for future use. Do not change from default value.

Required Values
YES or NO.

e*Way Intelligent Adapter for MQSeries User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way

Garbage Collection Activity Reporting

Description

Specifies whether garbage collection activity will be reported for debugging purposes.
Reserved for future use. Do not change from default value.

Required Values
YES or NO.

Asynchronous Garbage Collection

Description

Specifies whether asynchronous garbage collection activity will be reported for
debugging purposes.

Required Values
YES or NO.

Report JVM Info and all Class Loads

Description

Specifies whether the JVM information and all class loads will be reported for
debugging purposes. Reserved for future use. Do not change from default value.

Required Values
YES or NO.

Disable JIT
Description

Specifies whether the Just-In-Time (JIT) compiler will be disabled.
Required Values

YES or NO.

Note: This parameter is not supported for Java Release 1.

Remote Debugging Port Number
Description

Specifies the port number for remote debugging of JVM.
Required Values

An integer ranging from 2000 and 65536.

e*Way Intelligent Adapter for MQSeries User’s Guide 19 SeeBeyond Proprietary and Confidential

M Mode e*Way Configuration Multi-MgceiSieo*r\l/\?z;:/
Suspend Option for Debugging
Description
Specifies whether to suspend the debugging of JVM option.
Required Values
YES or NO.

e*Way Intelligent Adapter for MQSeries User’s Guide 20 SeeBeyond Proprietary and Confidential

Chapter 4

e*Way Connection Configuration (JMS)

This chapter describes how to configure the Java-enabled MQSeries e*Way Connection
using the MQSeries JMS connection type.

21 Configuring e*Way Connections

e*Way Connections are set using the Enterprise Manager.
To create and configure e*Way Connections

1 In the Enterprise Manager’s Component editor, select the e*Way Connections
folder.

2 On the palette, click on the Create a New e*Way Connection button.

3 The New e*Way Connection Component dialog box opens, enter a name for the
e*Way Connection. For the purposes of the sample implementation enter
MQ_connl1 as the name.

4 Double-click on the new e*Way Connection. The e*Way Connection Properties
dialog box opens.

5 From the e*Way Connection Type drop-down box, select MQSeries JMS.

6 Enter the Event Type “get” interval in the dialog box provided. 10000 milliseconds
is the configured default. The “get” interval is the intervening period at which,
when subscribed to, the e*Way connection is polled.

7 From the e*Way Connection Configuration File, click New to create a new
Configuration File for this e*Way Connection. (To use an existing file, click Find.)

The MQSeries e*Way Connection configuration parameters are organized into the
following sections.

= General Settings

= MQSeries

211 General Settings

This section contains a set of top level parameters:

= Connection Type

e*Way Intelligent Adapter for MQSeries User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration (JMS) Configuring e*Way Connections
= Transaction Type
= Delivery Mode

* Maximum Number of Bytes to read

Default Outgoing Message Type

= Factory Class Name

Connection Type

Description

String-set. Specifies the JMS Messaging Model. Only Queue connection type is
supported.

= Queue (point to point)
Required Values

Value is Queue. Queue is the configured default.

Transaction Type

Description
String-set. Specifies the Transaction Type. There are three transaction types.

= Internal: Provides protection for transactions sent internally between IBM
MQSeries and e*Way queues. In the event of a system error, messages in transit are
rolled back, restoring the message. When the send() method is called the transaction
takes place at the end of the collaboration.

= Non-Transactional: Provides the highest level of performance, with the minimum
level of message protection. No rollback is available during the send and receive
period, causing the possible loss of data in the case of a system error. When the
send() method is called the transaction is immediate.

= XA-compliant: (two-phase transactional behavior) Highest level of transaction
protection, providing rollback for internal and XA compliant transactions. The
transaction is also extended to other XA supported data exchange applications,
such as Oracle, DB2, and MQSeries. When the send() method is called the
transaction takes place at the end of the collaboration.

Required Values

A valid transaction type. One of three provided: Internal, Non-Transactional or XA-
compliant. Internal is the configured default.

Delivery Mode
Description
String-set. Specifies the Message Delivery Mode. Marking the message as follows.

= Non-Persistent. Provides the highest performance. The message is cashed in
memory during the transaction.

e*Way Intelligent Adapter for MQSeries User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration (JMS) Configuring e*Way Connections

= Persistent. Provides the highest level of protection, ensuring that the message will
be saved to a reliable persistent store by the Message Server before the publish()
method returns.

This setting must match the setting in the IBM MQSeries queue manager.
Required Values

Non-Persistent or Persistent. Persistent is the configured default.

Maximum Number of Bytes to read

Description

Integer-set. Specifies the maximum number of bytes to read at a time from the received
Bytes Message.

Required Values

An integer in the range of 1 to 104,857,600. The configured default is 8192.

Default Outgoing Message Type

Description

String-set. Specifies the Message Type to create during publish/send. The outgoing
message type is published within the message header. This is only relevant to sending,
providing information for the receiver.

Required Values

Bytes or Text. The configured default is Bytes.

Factory Class Name

Description

String-set. Specifies the Factory class to be used to connect to the J]MS IQ Manager. This
is advanced configuration to be utilized in future development, and should not be
changed from the default.

Required Values

The valid factory class name. The configured default is
com.stc.common.collabService. MQJMSFactory. Retain the default setting.

412 MQSeries

This section contains a set of top level parameters:
* Queue Manager Name
= Transport Type
= Host Name

* Port Number

e*Way Intelligent Adapter for MQSeries User’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration (JMS) Configuring e*Way Connections

= Channel

Queue Manager Name
Description

String-set. Specifies the name of the IBM MQSeries Queue Manager.
Required Values

Enter the name of the IBM MQSeries Queue Manager.

Transport Type
Description
String-set. Specifies the Transport Type:
= Client
= Binding

JMS can communicate with MQSeries using either the client or bindings transports. Use
of the Java bindings requires the JMS application and the MQSeries queue manager to
be located on the same machine. The client permits the queue manager to be on a
different machine to the application. Binding has a performance advantage but requires
a local queue manager.

Required Values

Select Client or Binding. The configured default is Client

Host Name
Description

String-set. Specifies the name of the host on which the queue manager resides. This
option is only relevant with transport type 'Client' and will be ignored for transport
type 'Bindings' as for 'Bindings' the queue manager has to be on the same host.

Required Values

Enter the name of the queue manager host.

Port Number
Description

Integer-set. Specifies the number of the port to connect to. This option is only relevant
with a transport type 'Client' and will be ignored for transport type 'Bindings'. If this
option is left empty the default port will be used.

Required Values

Enter the port number, in the range of 1000 and 65536. The configured default is 1414.

e*Way Intelligent Adapter for MQSeries User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration (JMS) Configuring e*Way Connections

Channel

Description

String-set. Specifies the name of the channel being used. This option is only relevant
with transport type 'Client' and will be ignored for transport type '‘Bindings'. If no
channel is specified the default channel will be used.

Required Values

The valid name of the channel.

e*Way Intelligent Adapter for MQSeries User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 5

Implementation (JMS)

This chapter contains basic information for implementing the Java-enabled MQSeries
e*Way in the MQSeries JMS mode, in a production environment. Examples are given
for creating and configuring the necessary components to implement the sample
MQSeries schema included on the CD-ROM. For more information on creating and
configuring e*Way components see the e*Gate Integrator User’s Guide.

51 MQSeries e*Way Implementation Overview

The Java enabled MQSeries e*Way is an application specific e*Way which allows e*Gate
to connect with IBM’s MQSeries applications. When the MQSeries e*Way is installed
along with the e*Gate Integrator, schema’s can be created and configured using the
e*Gate Enterprise Manager. A schema is an organization scheme that contains the
parameters of all the components that control, route, and transform data as it moves
through e*Gate in a predefined system configuration. To create an e*Gate schema for
MQSeries you must do the following;:

= Install IBM’s MQSeries Server 5.2 and MQSeries Queue Manager: The MQSeries
Server 5.2 and MQSeries Queue Manager are installed on the localhost. Also install
Java Classes for MQSeries 5.2 and the MA88 SupportPac from IBM. (See External
System Requirements on page 10.)

= Install the MQSeries e*Way: The MQSeries e*Way is installed as an Add-on to the
E*Gate Integrator. For directions on installing the MQSeries e*Way from CD-ROM
on your specific operating system. (See Installation on page 11.)

= Create e*Ways: e*Ways connect with external systems to poll or send data. They
also transform and route data. Multi-Mode e*Ways are used to run Java
Collaborations that utilize e*Way Connections to send and receive Events to and
from multiple external systems.

= Configure e*Way Connections: An e*Way Connection is the encoding of access
information for a particular external connection. The e*Way Connection
configuration file contains the parameters necessary for communicating with IBM’s
MQSeries and specifying the MQSeries Queue Manager.

= Create Event Types: Each packet of data within e*Gate is referred to as an Event.
Event Types are data labels that allow e*Gate to process and route specific Events
differently. The Event Type specifies the MQSeries Queue (the Event Type must

e*Way Intelligent Adapter for MQSeries User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 5

Section 5.2

Implementation (JMS) MQSeries Sample Schema Components

have the same name as the IBM’s MQSeries Queue). Data is not routed in e*Gate
without an Event Type.

Create Intelligent Queues: Intelligent Queues (IQs) provide non-volatile storage
for data traveling through the e*Gate system. The IQ Manager oversees the
activities of the individual storage locations. The exact behavior of each IQ is
determined by the IQ Service configuration. The MQSeries e*Way uses the
MQSeries IQ Service.

Create Collaboration Rules: Collaboration Rules determine how input Event Types
are modified to the format of specific output Event Types. A Collaboration Rule
defines what type of data is received, how it will be transformed and what type of
data will be published.

Create Collaborations: A Collaboration is a message bus in e*Gate that specifies the
name and source of the incoming Event Types, the Collaboration Rules that will be
applied to the Event, and the name, destination and expiration date of the outgoing
Event Types. A Collaboration designates the Subscriber, which “listens” for Events
of a known type from a given source, and the Publisher, which distributes the
transformed Event to a specified recipient.

= Set the CLASSPATH Variable: The Final Step in creating and configuring the

MQSeries e*Way is to set the IBM MQSeries Java .jar files in the environment
CLASSPATH variable.

s MQSeries Sample Schema Components

A sample schema for MQSeries is available in the samples folder on the CD-ROM. In
addition, the following pages explain how the components for the MQSeries sample
schema were created. The Host and Control Broker are automatically created and
configured during the e*Gate installation. The default name for each is the name of the
host on which you are installing the e*Gate Enterprise Manager GUI. To complete the
sample implementation of the Java-enabled MQSeries e*Way requires the following
components:

= IBM MQSeries Server and the MQSeries Queue Manager.
= Java Classes for MQSeries 5.2.
= Install the MQSeries e*Way Add-on. Make sure that the Control Broker is activated

= In the e*Gate Enterprise Manager, define and configure the following as necessary:

+ Inbound e*Way using stcewfile.exe as the executable file.
+ Outbound e*Way using stcewfile.exe as the executable file.
+ The Multi-Mode e*Way component using stceway.exe as the executable file.

+ Event Type Definitions used to package the data to be exchanged with the
external system.

+ Intelligent Queues (IQs) to provide non-volatile storage Events

+ Collaboration Rules to process Events.

e*Way Intelligent Adapter for MQSeries User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation (JMS) MQSeries Sample Schema Components

+ The e*Way Connection to be created as described in Chapter 4.

+ Collaborations, to be associated with each e*Way component, to apply the
required Collaboration Rules.

+ The destination to which data will be published prior to being sent to the
external system.

The following sections describe how to define and associate each of the above
components. This sample implementation will demonstrate how the Java-enabled

MQSeries e*Way intercepts, stores, manipulates, and manages data in association with
IBM MQSeries.

Figure2 The MQSeries (JMS) Sample Implementation

IBM
MQSeries
Queue Mgr.

Inbound Multi-Mode

- e*Way e*Way
Lg)c/:ltel::e 101 ToMQSeries_CR

FromMQSeries_CR

Qutbound

e’Way
- Local File
(o e {2

521 Step One: Creating the IBM MQSeries Queue

Step one in creating the MQSeries e*Way is to install and configure IBM MQSeries (See
External System Requirements on page 10) and the IBM MQSeries Queue Manager
on the localhost. Also install Java Classes for MQSeries 5.2. It is assumed that the
reader is experienced in the use of IBM MQSeries Queue Manager. For more
information on IBM MQSeries Queue Manager please see MQSeries Queue Related
Commands, Chapter 9, in the e*Gate Integrator Intelligent Queue Services Reference
Guide. For the sample implementation do the following;:

1 Open IBM MQSeries Explorer.

Il

2 Create a new Queue Manager named Java_On.

3 From the Java_On Queue Manager create a new queue named Ev_1.
Important: The MQSeries Queue name and the Event Type name must be the same.

Regarding IBM MQSeries Server and Queue Manager Limits and Settings

= When using MQSeries Queue Manager on UNIX, the user must be a member of the
mqgm group to create and start MQ Series Queue manager.

= It is essential that the MQSeries Administrator regularly monitor the number of
messages in the queue. Message expiration settings should be set to allow for
extended storage.

= MQseries is limited in the number of messages that can be sent before a commit is
executed and the number of physical messages that can exist on the queue at any
one time. This can result in exception errors when the upper limit for these numbers

e*Way Intelligent Adapter for MQSeries User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation (JMS) MQSeries Sample Schema Components

is exceeded. Memory and performance of the specific server may also effect the
results.

Publishing Messages with MQSeriesJMS to a non-JMS conversant e*Way

The JMS standard specifies a header which includes encoding and reply information.
This header is prepended to any message published by the IBM JMS classes. Non-JMS
subscribers (that is, those using a non JMS API to MQSeries, such as the IBM C API)
will not be able to separate the JMS header from the body. To remedy this, the user is
advised to suppress the publication of the JMS header, if publishing to non-JMS
subscribers, using the following mechanism.

To send messages to a non-JMS MQ (Monk MQSeries) e*Way, call send() manually
from within the collaboration rules containing the following URI:

"queue://<QMGR_NAME>/<QNAME>?targetClient=1"
For example:
"queue:/ /EMEO2T/QR.EMEO(1?targetClient=1"

If this is not done then a 200+ byte header is pre-appended to the payload and placed in
the MQ queue and could easily throw off the non JMS conversant MQ reader.

For more information see the IBM Corp. manual MQSeries Using Java, Chapter 10, at:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/manuals/
crosslatest.html

522 Step Two: Installing the MQSeries e*Way and Creating a New
Schema

Step two is to install the MQSeries e*Way. For directions on installing the MQSeries
e*Way on your specific operating system, see Chapter 2, Installation, on page 11.

Once the MQSeries e*Way is installed, a new schema must be created. While it is
possible to use the default schema for the sample implementation, it is recommended
that you create a separate schema for testing purposes. After you install the MQSeries
e*Way, do the following:

1 Start the e*Gate Enterprise Manager GUI

2 When the Enterprise Manager prompts you to log in, select the host that you
specified during installation and enter your password.

3 You will then be prompted to select a schema. Click on New.

4 Enter a name for the new Schema. In this case, for the sample implementation, enter
MQSSample, or any name as desired.

The e*Gate Enterprise Manager opens to your new schema. You are now ready to begin
creating the necessary components for this schema.

Implementing the Sample Schema on e*Gate 4.5.1

The sample schema for the MQSeries e*Way was created using e*Gate 4.5.2. When
attempting to implement the sample using e*Gate 4.5.1, make note of the following:

e*Way Intelligent Adapter for MQSeries User’s Guide 29 SeeBeyond Proprietary and Confidential

http://www-4.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html

Chapter 5 Section 5.2
Implementation (JMS) MQSeries Sample Schema Components

= It is necessary to apply ESR 40737 before importing the sample schema that is
included on the cd.

= Import the sample schema.

These conditions only apply to implementation on e*Gate 4.5.1.

523 Step Three—Creating and Configuring the e*Ways

Step three is to create the e*Ways. These are used as components for transporting and
transforming data. They always interface with at least one external system, and Multi-
Mode e*Ways can use e*Way Connections to interface with many external systems. For
the sample implementation three e*Ways are required.

= Inbound_eWay

= Outbound_eWay

= Multi-Mode_eWay

The following sections provide instructions for creating each e*Way.
Inbound e*Way
1 Select the Navigator's Components tab.

Open the host on which you want to create the e*Ways.
Select the Control Broker that will manage the new e*Ways.
On the palette, click the Create a New e*Way button.

2

3

4

5 Enter the name of the new e*Way. In this case, ew_In. Click OK.
6 Right-click ew_In, and select Properties to edit its properties.

7

When the e*Way Properties window opens, click on the Find button beneath the
Executable File field and select stcewfile.exe as the executable file.

e*Way Intelligent Adapter for MQSeries User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 5
Implementation (JMS)

Section 5.2
MQSeries Sample Schema Components

Figure 3 e*Way Sample Implementation

@ e*Way - ew_In Properties

Genetal |S‘tart Llpl Advancedl Seu:ur'rtyl

Executable file

}:uin'l.s’tu:ewfile.exe

Clear | {

Additional command line arguments:

|% un %_USERMAME: -up %_PASSWORDS —rp %_REGPORTS

Run as user

IAdministratu:ur

=)

Configuration file

== | Fird | Py |

(034 Cancel |

Apply | Help

8 Under the Configuration File field, click on the New button. The Edit Settings
dialog box opens. Set the following for this configuration file.

Table 2 Configuration Parameters for the Inbound e*Way

Parameter

Value

General Settings (unless otherwise stated, leave settings as default)

Allowlncoming Yes
AllowOutgoing No
Outbound Settings Default

Poller Inbound Settings

PollDirectory

C:\Indata (input file folder)

InputFileExtension

*fin (input file extension)

PollMilliseconds Default
Remove EOL Default
MultipleRecordsPerFile Yes

MaxBytesPerLine Default
BytesPerLinelsFixed Default
Performance Testing Default

e*Way Intelligent Adapter for MQSeries User’s Guide 31

SeeBeyond Proprietary and Confidential

Chapter 5

Section 5.2

Implementation (JMS) MQSeries Sample Schema Components

9

10

11

After selecting the desired parameters, save the configuration file (ew_In.cfg) and
Promote to Run Time. Close the .cfg file.

Use the Startup, Advanced, and Security tabs to modify the default settings for each
e*Way you configure.

A Use the Startup tab to specify whether the e*Way starts automatically, or restarts
after abnormal termination or due to scheduling and so forth.

B Use the Advanced tab to specify or view the activity and error logging levels as
well as the Event threshold information.

C Use Security to view or set privilege assignments.

Select OK to close the e*Way Properties window.

Outbound e*Way

1

2
3
4
5
6
7

9
10

Select the Navigator's Components tab.

Open the host on which you want to create the e*Ways.

Select the Control Broker that will manage the new e*Ways.

On the palette, click the Create a New e*Way button.

Enter the name of the new e*Way, (in this case, ew_Out), then click OK.
Select ew_Out, then right-click and select Properties to edit its properties.

When the e*Way Properties window opens, click the Find button beneath the
Executable File field, and select stcewfile.exe as the executable file.

Under the Configuration File field, click the New button. When the Settings page
opens, set the following for this configuration file.

Table 3 Configuration Parameters for the Outbound e*Way

Parameter Value
General Settings (unless otherwise stated, leave settings as default)
Allowlncoming No
AllowOutgoing Yes
Outbound Settings
OutputDirectory C:\DATA
OutputFileName output%d.dat
MultipleRecordsPerFile No
MaxRecordsPerFile 10000
AddEOL Yes
Poller Inbound Settings Default
Performance Testing Default

Save the .cfg file (ew_Out.cfg), and promote to run time.

Click OK to close e*Way Properties window.

e*Way Intelligent Adapter for MQSeries User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation (JMS) MQSeries Sample Schema Components

Multi-Mode e*Way
1 Select the Navigator's Components tab.
Open the host on which you want to create the e*Way.
Select the Control Broker that will manage the new e*Way.
On the palette, click the Create a New e*Way button.

2
3
4
5 Enter the name of the new e*Way (in this case, MQ_stceway), then click OK.
6 Right-click the new e*Way and select Properties to edit its properties.

7

When the e*Way Properties window opens, click the Find button beneath the
Executable File field, and select stceway.exe as the executable file.

8 To edit the JVM Settings, select New under Configuration file.

See “Multi-Mode e*Way Configuration” on page 15 for details on the parameters
associated with the Multi-Mode e*Way.

Table 4 Configuration Parameters for the MultiMode e*Way

Parameter Value

JVM Settings (unless otherwise stated, leave settings as default)

JNI DLL absolute pathname C:\eGate\client\bin\Jre\jvm.dll (or
absolute path to proper JNI DLL)

CLASSPATH Append From Environmental Yes

Variable

9 Save the .cfg file (MQ_stceway).
10 Go to File and click Promote to Run Time.

11 In the e*Way Properties window, use the Startup, Advanced, and Security tabs to
modify the default settings for each.

D Use the Startup tab to specify whether the e*Way starts automatically, restarts
after abnormal termination or due to scheduling, etc.

E Use the Advanced tab to specify or view the activity and error logging levels, as
well as the Event threshold information.

F Use Security to view or set privilege assignments.

12 Click OK to close e*Way Properties window.

524 Step Four: Create the e*Way Connection (Includes Specifying
the MQSeries Queue Manager)

Step four is to create and configure the e*Way Connection. The e*Way Connection
configuration file contains the connection settings necessary for communicating with
IBM MQSeries and specifying the MQSeries Queue Manager.

e*Way Intelligent Adapter for MQSeries User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation (JMS) MQSeries Sample Schema Components
To create and configure a New e*Way Connection

1 Select the e*Way Connection folder on the Components tab of the e*Gate
Navigator.

2 On the palette, click the Create a New e*Way Connection button.

3 Enter the name of the e*Way Connection, then click OK. (For the purpose of this
sample, the e*Way Connection is defined as “MQ_conn1”.)

4 Double-click the new e*Way Connection to edit its properties. The e*Way
Connection Properties dialog box opens.

5 In the e*Way Connection Type field, select MQSeries JMS from the drop-down list
box.

Figure 4 e*Way Connection Properties

@e*\'ﬂay Connection - M)_connl Pro o]

General |

[= M _connd

eMNay Connection Type: [GleEEyE)

Bvent Type "get’ intemal

Time {in milliseconds) attar a retrieval
returns "no event availahle hefare
attermpting another retrieval.

10000

e"Way Connection Configuration File

| Finel | = |

Ik | Cancel | Anply | Help |

6 Enter the Event Type “get” interval in the dialog box provided. 10000 milliseconds
is the configured default. The “get” interval is the intervening period at which,
when subscribed to, the e*Way connection is polled.

7 Under e*Way Connection Configuration File, click the New button.

8 The e*Way Connection editor opens, select the necessary parameters. For more
information on the MQSeries e*Way Connection Type parameters, see
“Configuring e*Way Connections” on page 21.

9 Save the MQ_connl.cfg file.

10 From the File menu select Promote to Run Time to promote the file to the e*Way’s
run time environment.

e*Way Intelligent Adapter for MQSeries User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 5

Section 5.2

Implementation (JMS) MQSeries Sample Schema Components

525 Step Five: Creating Event Types (Also Specifies MQSeries
Queue)

Step five is to create the Event Type. This also specifies the MQSeries queue (the Event
Type must have the same name as the IBM MQSeries queue). An Event Type is a class
of Events with a common data structure. The e*Gate system packages data within
Events and categorizes them into Event Types. What these Events have in common
defines the Event Type and comprises the ETD. The following procedures show how to
create an ETD (Event Type Definition) using the Standard ETD Wizard.

1
2
3

Important:

4

10

Highlight the Event Types folder on the Components tab of the e*Gate Navigator.
On the palette, click the Create a New Event Type button.

Enter the name of the Event, then click OK. For the purpose of this sample the first
Event Type is defined as Ev_1.

The Event Type must have the same name as the IBM MQSeries Queue.
Double-click the new Event Type to edit its properties. The Event Type Properties
dialog box opens.

Click the New button. The ETD Editor opens.

Select New from the File menu. The New Event Type Definition window opens.

Figure 5 Event Type Definition Wizards

*E2 New Event Type Definition / x|
Mew I
. 4 e
N,
BaAPMwIzard DT DWizard IDOCWizard DBwWizard
RN

SEFWizard S5CwWizard wSDWizard

0] 4 | Cancel | Help |

Select the appropriate wizard. (For this Event Type, select the Standard ETD
wizard.)

Enter the Root Node Name (for this case, “Record”).

Enter a package name where the ETD Editor can place all the generated Java classes
associated with the created ETD. (For this sample, use com.stc.eway.mqseries as
the package name.)

Right click Record in the Event Type Definition pane, and select Add Field, as
Child Node. Repeat this to create Field1, Field2 and Field3.

e*Way Intelligent Adapter for MQSeries User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 5

Section 5.2

Implementation (JMS) MQSeries Sample Schema Components

11
12

13
14
15
16

17
18

19

Triple-click on Field1, and rename it Order.

Select the Order node. The properties for the Order node are displayed in the
Properties pane. Change the endDelim property to “|” (pipe, without the quotes).

Triple-click on Field2, and rename it Lineltem.
In the Lineltem node Properties, endDelim field, enter “|” (pipe).
Triple-click on Field3, and rename it Total.

In the Total node Properties, endDelim field, enter “|” (pipe).

Figure 6 Event Type Definition Editor

= ETD Editor: EventTypeDefinitionl.xsc {(Sandbox - Modified) o] 4|
File Edit Help
DEE|: |7 |
—Ewvent Type—————— ~ Event Type Defintion—————————— Properties -Order
[+# Recod =% Record
: (Marne) Crder -
: Lineltem pre '.:IELD .
— Internal Templates E5' Total javalype java.lang.String
carmrment
mincCCCurs 1
maxdocurs 1
order sEQUENCE
skructure delim
aptianal False
defaultyalue
inputMatch
length i}
offset undefined
childrax undefined
— External Templates childrin undefined
encoding
enumType
format
precedence child
readCnly False
sCavukpuk False e
SCEYENgEr
beginDelim
endDelim |
endOfRec
reauired LI
| [1052001 [1:05 PM S

From the File menu, click Compile and Save. Save the .xsc file as Record.xsc.

From the File menu, click Promote to Run Time to promote the file to the run time
environment.

Close the ETD Editor.

526 Step Six—Intelligent Queues

Step six in configuring the MQSeries e*Way is to create the IQs. IQs manage the
exchange of information between components within the e*Gate system, providing
non-volatile storage for data as it passes from one component to another. IQs use IQ
Services to transport data. IQ Services provide the mechanism for moving Events

e*Way Intelligent Adapter for MQSeries User’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 5

Section 5.2

Implementation (JMS) MQSeries Sample Schema Components

between IQs, handling the low-level implementation of data exchange (such as system
calls to initialize or reorganize a database).

To create and modify an Intelligent Queue for the MQSeries e*Way

1

SO N O W BN

10
11

Select the Navigator's Components tab.

Open the host on which you want to create the IQ.

Open a Control Broker.

Select an IQ Manager.

On the palette, click the Create a New 1Q button.

Enter the name of the new IQ (in this case, iq_1), then click OK.
Double-click the new IQ to edit its properties.

On the General tab, specify the Service and the Event Type Get Interval.

The STC_Standard IQ Service provides sufficient functionality for most
applications. If specialized services are required, custom IQ Service DLLs may be
created.

The default Event Type Get Interval of 100 Milliseconds is satisfactory for the
purposes of this initial implementation.

On the Advanced tab, make sure that Simple publish/subscribe is checked under
the IQ behavior section.

Click OK to close the IQ Properties window.
For this schema, repeat steps 1 through 10 to create an additional IQ (IQ_2).

527 Step Seven: Collaboration Rules

Step seven in creating the MQSeries e*Way is to create the Collaboration Rules that will
extract and process selected information from the source Event Type defined earlier,
according to its associated Collaboration Service. The Default Editor can be set to either
Monk or Java. From the Enterprise Manager Task Bar, select Options and click
Default Editor. The default should be set to Java.

The sample schema requires the creation of two collaboration Rules files

“Creating Pass Through Collaboration Rules” on page 37

= “Creating Java Collaboration Rules” on page 38

Creating Pass Through Collaboration Rules

1

2
3
4

Select the Navigator's Components tab in the e*Gate Enterprise Manager.
In the Navigator, select the Collaboration Rules folder.
On the palette, click the Create New Collaboration Rules button.

Enter the name of the new Collaboration Rule Component, then click OK (for this
case, use Pass).

Double-click the new Collaboration Rules Component. The Collaboration Rules
Properties window opens.

e*Way Intelligent Adapter for MQSeries User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 5

Section 5.2

Implementation (JMS) MQSeries Sample Schema Components

6

7

9

The Service field defaults to Pass Through.

Figure 7 Collaboration Properties

@ collaboration Rules - Pass Properties |

General | Subscriptionsl Publicationsl o [k atiEr Mappingl

{n-:E Pass

Service:

Initialization string:

- Collaboration Rules

s | Find | ey | TSt |

~Initialization file

Zleat: | Fincd |
(0]34 I Cancel | Anply | Help |

Go to the Subscriptions tab. Select GenericInEvent under Available Input Event
Types, and click the right arrow to move it to Selected Input Event Types. The box
under Triggering Event should be checked.

Go to the Publications tab. Select GenericInEvent under Available Output Event
Types, and click the right arrow to move it to Selected Output Event Types. The
Radio button under Default will be enabled.

Click OK to close the Collaboration Rules, Pass Properties window.

Creating Java Collaboration Rules

1

2
3
4

Select the Navigator's Components tab in the e*Gate Enterprise Manager.
In the Navigator, select the Collaboration Rules folder.
On the palette, click the Create New Collaboration Rules button.

Enter the name of the new Collaboration Rule, then click OK (for this case, use
JavaCollab).

Double-click the new Collaboration Rules Component to edit its properties. The
Collaboration Rules Properties window opens.

From the Service field drop-down box, select Java. The Collaboration Mapping tab
is now enabled, and the Subscriptions and Publications tabs are disabled.

In the Initialization string field, enter any required initialization string for the
Collaboration.

e*Way Intelligent Adapter for MQSeries User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation (JMS) MQSeries Sample Schema Components
Figure 8 Collaboration Rules - JavaCollab Properties
x
General |Subscriptions | Hibfieatinms | Collakaration Mappingl
{n-jﬁ:E JavaCollab
Service:
Initialization string:
- Collaboration Rules
}:ollaboration_rulesUavaCollab.class
Clear | Find | Edit | Test |
~Initialization file
l:oIlaboration_ruIesUavaCollab.ctl
Ok I Cancel | Apply | Help |
8 Select the Collaboration Mapping tab.
9 Using the Add Instance button, create instances to coincide with the Event Types.
For this sample, do the following:
10 In the Instance Name column, enter In for the instance name.
11 Click Find, navigate to etd\Record.xsc, double-click to select. Record.xsc is added
to the ETD column of the instance row.
12 In the Mode column, select In from the drop-down menu available.
13 In the Trigger column, click the box to enable trigger mechanism.
14 Repeat steps 9-13 using the following values:
+ Instance Name — Out
+ ETD — Record.xsc
* Mode — Out
Note: At least one of the ETD instances used by the Collaboration must be checked as the

trigger.

For specific information on creating and configuring Collaboration Rules, see the
e*Gate Integrator User’s Guide.

e*Way Intelligent Adapter for MQSeries User’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation (JMS) MQSeries Sample Schema Components

Figure 9 Collaboration Rules - Collaboration Mapping Properties

@ Collaboration Rules - JavaCollab Properties |
Generall SURBCHENE | Publications Sollakaration Mapping |
Instance Mame | ETD Mode | Trigger | Manual Publish
In Recard xsc Find ..|In = T4Ea,
Ot Record xsc Find .| Out Fia, [
Add Instance | Remove Instance |
Cancel | Apply | Help |

The “Read from MQSeries” is carried out by the following processes.

A The Event Type “Get” interval polls for available messages at the prescribed
interval.

B The receive() method for an ETD associated with an MQSeries e*Way
Connection is invoked, initiating a “read” on MQSeries.

15 Select the General tab, under the Collaboration Rule box, select New. The
Collaboration Rules Editor opens.

16 Expand to full size for optimum viewing, expanding the Source and Destination
Events as well.

528 Using the Collaboration Rules Editor

Part two of step seven is to define the business logic using the Collaboration Rules
Editor. The Java Collaboration Rules Editor is the GUI used to create and modify Java
Collaboration Rules. A Java Collaboration Rule is created by designating one or more
source Events and one or more destination Events and then setting up rules governing
the relationship between fields in the Event instances.

Creating the Collaboration Rules Class
1 Highlight retBoolean in the Business Rules pane.
All of the user—defined business rules are added as part of this method.

2 Select Order from the Source Events pane. Drag-and-drop onto Order in the
Destination Events pane. A connecting line appears between the properties objects.

3 In the Business Rules pane, a rule expression appears, with the properties of that
rule displayed in the Rule Properties pane.

e*Way Intelligent Adapter for MQSeries User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 5
Implementation (JMS)

Section 5.2

MQSeries Sample Schema Components

4 Select Lineltem from the Source Events pane. Drag—and—drop onto Lineltem in the
Destination Events pane.

5 Select Total from the Source Events pane. Drag-and—-drop onto Total in the
Destination Events pane.

Figure 10 Collaboration Rules — Collaboration Rules Editor

=& Collaboration Rules Editor - JavaCollab

File Edit View Tools Help

=Dl]

#h
"1 Saurce Events 1% Destination Events
4 | =2 n [Record] ot [Record] "2 E 4
- g Order Order gt
-~ ELineltem Lineltem E&t-
- g Total Total gt
=W reset reset ..
=B availablz available =B
2 Rk 2.
= i receive =
- i receive =B+
28 send =
[+ = send send =+
-2 rawInput rawInput ..
=l e®topic topic =& x|
i} blockl = methodl i@ varl [forl A ifl {} rulel B switchl —+ casel [k whilel ks dol & returnl

tryl I catchl

I theow] (D)

Business Rules

=18 JavaCollab

i) JavaCallab

- executeBusinessRules

B Usernitislize
% serTerminate

Rule Properties =

Description: |ru|e

Rule:

qetOut() setOrder{getIng). getOrder())

Documentation:

LL

[

6 When all the business logic has been defined, the code can be compiled by selecting
Compile from the File menu. The Save menu opens, provide a name for the .xpr
file. For the sample, use MQSSample.xpr.

If the code compiles successfully, the message Compile Completed appears. If the
outcome is unsuccessful, a Java Compiler error message appears.

Once the compilation is complete, save the file and exit.

7 Under the Collaboration Rules, the path for the .class file created appears. (For the
sample, the path “collaboration_rules\JavaCollab.class “appears.)

8 Under Initialization file, the path for the .ctl file created appears. (For the sample
the path “collaboration_rules\JavaCollab.ctl” appears.)

9 Click OK to exit the Properties Box.

Note:

Collaboration Rules Editor see the e*Gate Integrator User’s Guide.

e*Way Intelligent Adapter for MQSeries User’s Guide

For detailed information on creating Collaboration Rules using the Java

4 SeeBeyond Proprietary and Confidential

Chapter 5

Section 5.2

Implementation (JMS) MQSeries Sample Schema Components

529 Step Eight: Collaborations

Step eight in creating the MQSeries e*Way is to create the Collaborations.
Collaborations are the components that receive and process Event Types, then forward
the output to other e*Gate components or an external component. Collaborations
consist of the Subscriber, which “listens” for Events of a known type (sometimes from a
given source), and the Publisher, which distributes the transformed Event to a specified
recipient.

Create the Inbound_eWay Collaboration

1

0 N O G ks~ W N

10

In the e*Gate Enterprise Manager, select the Navigator's Components tab.

Open the host on which you want to create the Collaboration.

Select a Control Broker.

Select the ew_In e*Way to assign the Collaboration.

On the palette, click the Create a New Collaboration button.

Enter the name of the new Collaboration, then click OK. (For the sample, “In_cr”.)
Double-click the new Collaboration to edit its properties.

From the Collaboration Rules list, select the Collaboration Rules file that you
created previously (for this sample, “Pass”).

In the Subscriptions area, click Add to define the input Event Types to which this
Collaboration will subscribe.

A From the Event Type list, select the Event Type that you previously defined
GenericInEvent.

B Select the Source from the Source list. In this case, it should be <External>.

In the Publications area, click Add to define the output Event Types that this
Collaboration will publish.

A From the Event Types list, select the Event Type that you previously defined
GenericInEvent.

B Select the publication Destination from the Destination list. In this case, it
should be iq_1.

C The Priority column will default to 5.

e*Way Intelligent Adapter for MQSeries User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 5
Implementation (JMS)

Section 5.2
MQSeries Sample Schema Components

Figure 11 Collaboration - Inbound e*Way Properties

@ collaboration - In_cr Properties x|
General |
G
&g In_cr
Collaboration Rules:
Subscriptions:
Event Type Source A |
GenericinEvent (Required B =EXTERMNAL=
(Red) E‘ [rElEte |
Publications:
Event Type Destination Priarity A |
GenericinEvent Ig_1 3
g <= [rElEte |
Advaneed |
............. OKl PE— | éppw Help |

11 Click OK to close the Collaboration Properties window.
Create the MQ_stceway Multi Mode e*Way Collaborations
Two Collaboration will be created for the Multi-Mode e*Way MQ_cr_out, and

MQ_cr_in.

1 To create the MQ_cr_out Collaboration, Select the MQ_stceway e*Way to assign

another Collaboration.

2 On the palette, click the Create a New Collaboration button.

3 Enter the name of the new Collaboration, then click OK. (For the sample,

“MQ_cr_out”.)

4 Double -click the new Collaboration to edit its properties.

5 From the Collaboration Rules list, select the Collaboration Rules file that you
created previously. For the sample use JavaCollab.

6 In the Subscriptions field, click Add to define the input Event Types to which this
Collaboration will subscribe.

A
defined In.

From the Instance Name list, select the Instance Name that you previously

B From the Event Type list, select the Event Type previously defined

GenericInEvent.

C

Select the Source from the Source list. In this case, it should be In_cr.

7 In the Publications area, click Add to define the output Event Types that this

Collaboration will publish.

A From the Instance Name list, select the Instance Name previously defined Out.

e*Way Intelligent Adapter for MQSeries User’s Guide

43

SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation (JMS) MQSeries Sample Schema Components

B From the Event Types list, select the Event Type that you previously defined
Ev_1.

Important: The Event Type name must be the same as the IBM MQSeries queue name.

C Select the Destination from the Destination list. In this case, it should be
MQ_connl.

D The Priority column will default to 5.

Figure 12 Collaboration Properties - MQ_cr_out

0 Collaboration - MQ_cr_out Properties 1[

Genetal |

™
&g M@ _cr_out

Collabarstion Rules:

JavaCollsb

Subscriptions:

Instance Mame Event Type Source Al

In GenericinEvert o In_cr
DE & n. LElEte |

Publications:
Instance Mame Event Type Destination Priority Add

Out Ev_1 A mc_conni 5
DE = = [VE(EfE |
Advancedl

Ok I Cancel | Apply | Help |

8 Click OK to close the Properties window.

9 To create the MQ_cr_in collaboration, select the Navigator's Components tabIn the
e*Gate Enterprise Manager.

10 Open the host on which you want to create the Collaboration.
11 Select a Control Broker.

12 Select the MQ_stceway e*Way to assign the Collaboration.

13 On the palette, click the Create a New Collaboration button.

14 Enter the name of the new Collaboration, then click OK. (For the sample,
“MQ_cr_in”"))

15 Double-click the new Collaboration to edit its properties.

16 From the Collaboration Rules list, select the Collaboration Rules file that you
created previously. For the sample use JavaCollab.

17 In the Subscriptions field, click Add to define the input Event Types to which this
Collaboration will subscribe.

e*Way Intelligent Adapter for MQSeries User’s Guide 4 SeeBeyond Proprietary and Confidential

Chapter 5

Section 5.2

Implementation (JMS) MQSeries Sample Schema Components

18

19

20

A From the Instance Name list, select the Instance Name that you previously
defined (In).

B From the Event Type list, select the Event Type previously defined Ev_1.
C Select the Source from the Source list. In this case, it should be MQ_connl.

In the Publications area, click Add to define the output Event Types that this
Collaboration will publish.

A From the Instance Name list, select the Instance Name previously defined Out.

B From the Event Types list, select the Event Type that you previously defined
(GenericInEvent).

C Select the publication destination from the Destination list. In this case, it
should be iq2.

Click OK to close the Collaboration window.

Figure 13 Collaboration Properties - MQ_cr_in

0 Collaboration - M)_cr_in Properties il
General |
G

&g M@_cr_in
Collaboration Rules:
[pvacolab =] new | Edt |
Subscriptions:

Instance Mame Ewent Type Source Ao |

n o Ev_1

fd ma_conm
= [ElEtE |

Publications:
Instance Mame Event Type ‘:Destination Priority Ao |

Ot GenericinEvent l_2 3
DE g o [ElEtE |
Arlaneed |

ok | cancel Apply | Help |

Click OK to exit.

Create the Outbound_eWay Collaboration

1

2
3
4
5
6
7

In the e*Gate Enterprise Manager, select the Navigator's Components tab.

Open the host on which you want to create the Collaboration.

Select a Control Broker.

Select the ew_Out e*Way to assign the Collaboration.

On the palette, click the Create a New Collaboration button.

Enter the name of the new Collaboration, then click OK. (For the sample, “Out_cr”.)

Double-click the new Collaboration to edit its properties.

e*Way Intelligent Adapter for MQSeries User’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation (JMS) MQSeries Sample Schema Components

8 From the Collaboration Rules list, select the Collaboration Rules file that you
previously defined Pass.

9 In the Subscriptions area, click Add to define the input Event Types to which this
Collaboration will subscribe.

A From the Event Type list, select the Event Type that you previously defined
GenericInEvent.

B Select the Source from the Source list. In this case, it should be MQ_cr_in.

10 In the Publications area, click Add to define the output Event Types that this
Collaboration will publish.

A From the Event Types list, select the Event Type that you previously defined
GenericInEvent.

B Select the publication destination from the Destination list. In this case, it
should be <External>.

C Click OK to close the Collaboration Properties window.

5210 Step Nine: Setting CLASSPATH Variable

The final step in creating and configuring the MQSeries e*Way is to set the IBM
MQSeries Java jar files in the environment CLASSPATH variable. This includes the
following jar files.

\MQSeries\]Java\lib
\MQSeries\]Java\lib\providerutil jar
\MQSeries\Java\lib\ldap.jar
\MQSeries\]Java\lib\jndi.jar
\MQSeries\Java\lib\com.ibm.fscontext.jar
\MQSeries\Java\lib\com.ibm.mgjms.jar
\MQSeries\Java\lib\com.ibm.mgbind jar
\MQSeries\Java\lib\com.ibm.mgq jar

\MQSeries\Java\lib\com.ibm.mgq.iiop.jar (com.ibm.mgq.iiop.jar only applies for
Windows, not UNIX.)

Also, for Windows, set the \MQSeries\Java\lib in your PATH.

For Unix, include /MQSeries/Java/lib in the library path as follows:
= Solaris: LD_LIBRARY_PATH
= HP-UX: SHLIB_PATH
= AIX: LIBPATH

If the CLASSPATH and PATH already exist, add the jar files to the existing PATH and
CLASSPATH.

e*Way Intelligent Adapter for MQSeries User’s Guide 46 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation (JMS) MQSeries Sample Schema Components

Setting CLASSPATH variable on Windows
To set the jar files from java classes in classpath do the following:

1 Right-click My Computer and select Properties. The System Properties window
opens.

2 Select the Advanced tab and Click on Environment Variables. The Environment
Variables window opens.

3 Under System Variables click the New button.

4 In the New System Variable window type ClassPath in the Variable Name field. In
the Variable Value field type the absolute path for the first jar file (See figure 12),
and click OK.

Figure 14 Set Environment Variables

MNew System Yariable el

Yariable Mame: I ClassPath

Yariable Yalue: I CHAMOSeries! Javallibh com. ibm.mg. jar

QK I Cancel

5 Repeat steps 3 and 4 for each of the MQSeries .jar files.

6 Under System Variables click the New button.

7 In the New System Variable window type Path in the Variable Name field. In the
Variable Value field type the absolute path for \MQSeries\Java\lib and click OK.

8 Click OK to close the Environment Variables window and the System Properties
window.

5.2.11 Execute the Schema

To execute the MQSeries sample schema, do the following
1 Go to the command line prompt, and enter the following:

stccb -rh hostname -rs schemananme -un username -up user password
-1 n host narme_cb

Substitute hostname, schemaname, username and user password as appropriate.
2 Exit from the command line prompt, and start the e*Gate Monitor GUIL

3 When prompted, specify the hostname which contains the Control Broker you
started in Step 1 above.

4 Select the MQSeries sample schema.

5 After you verify that the Control Broker is connected (the message in the Control
tab of the console will indicate command succeeded and status as up), highlight the
IQ Manager, hostname_igmgr, then right-click and select Start.

6 Highlight each of the e*Ways, right-click the mouse, and select Start.

e*Way Intelligent Adapter for MQSeries User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation (JMS) MQSeries Sample Schema Components

s.2.12 Error Messages

If there is an error, such as a failed connection, an exception is thrown by the module
and logged to error log file at egate/client/logs. The error log will appear similar to the
following:

11:59:34.091 EWY 111 (initialize.cxx:1035): Exception thrown: Failed to access queue:
MQRC_UNKNOWN_OBJECT_NAMEc
om.ibm.mq.MQException: MQJE001: Completion Code 2, Reason 2085
at com.ibm.mq.MQQueueManager.accessQueue(MQQueueManager.java:1151)
at com.ibm.mq.MQQueueManager.accessQueue(MQQueueManager.java:1196)
at com.stc.eways.MQSeriesETD.MQSeriesConnector.accessQueue(MQSeriesConnector.java:395)
at com.stc.eways.MQSeriesETD.MQSeriesETD.accessQueue(MQSeriesETD.java:291)
at MQ_EMECollab.executeBusinessRules(MQ_EMECollab.java:106)
at com.stc.jcsre.JCollaboration.translate(JCollaboration.java:97)
at com.stc.common.collabService.JCCollabControllerImpl.
translate(JCCollabControllerImpl.java:1096

The reason code parameter or MQRGC, in this case Reason 2085, appears in the first few
lines of the error log. This reason code can be used in conjunction with IBMs online
document, MQSeries Messages, Chapter 9 at:

http://www-903.ibm.com/board/attach_files/mqseries/k1005706457257_messages.pdf

The chapter lists reason codes, exceptions, the associated errors and the corrective
actions to take. For the above example, the MQRC appears as follows:

2085 X'0825" |MQRC_UNKNOWN_OBJECT_NAME

An MQOPEN or MQPUTT1 call was issued, but the object identified by the
ObjectName and ObjectQMgrName fields in the object descriptor MQOD
cannot be found. One of the following applies:

* The ObjectQMgrName field is one of the following:
¢+ Blank
¢+ The name of the local queue manager
¢ The name of a local definition of a remote queue (a queue-manager alias)

in which the RemoteQMgrName attribute is the name of the local queue
manager but no object with the specified ObjectName and ObjectType
exists on the local queue manager.

" The object being opened is a cluster queue that is hosted on a remote queue
manager, but the local queue manager does not have a defined route to the
remote queue manager.

= The object being opened is a queue definition that has QSGDISP(GROUP).
Such definitions cannot be used with the MQOPEN and MQPUTT calls.

Corrective action: Specify a valid object name. Ensure that the name is padded
to the right with blanks if necessary. If this is correct, check the queue
definitions.

e*Way Intelligent Adapter for MQSeries User’s Guide 48 SeeBeyond Proprietary and Confidential

http://www-903.ibm.com/board/attach_files/mqseries/k1005706457257_messages.pdf

Chapter 6
ETD Overview

This chapter gives an overall view of the MQSeriesETD hierarchy structure, including
available methods and properties, and their application. For a more detailed
description of each method see MQSeries Java Methods (ETD) on page 81

61 The MQSeriesTD

The following is the general outline of the ETD and the methods and properties
exposed on each node. Any methods noted with *, are methods or properties above and
beyond the exposed base MQSeries java API. Ellipses for the parameters indicate one or
more arguments for the method. The purpose of each is explained below.

+ QueueManager

void connectToQueueManager(...)*
void selectQueueManager(String name)*
boolean isQueueMgrConnected ()
int getCharacterSet()
int getMaximumPriority()
void commit()
void backout()
queueAccessOptions*
accessQueue(name)*
+ Queue

+ GMO *

+ PMO *

selectQueue(name)*

void get()

void getWithOptions()*

void put()

void putWithOptions()*

int getCurrentDepth()

int getMaximumDepth()

int getMaximumMessageLength()

void newMessage()*

+ Message

+ MsgHeader*
all properties
+ MsgBody*

e*Way Intelligent Adapter for MQSeries User’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
ETD Overview The MQSerieseTD

byte[] Data*
readData()*
writeData()*
all the methods on MQMessage

611 The QueueManager Node

QueueManager is the root node and represents the interface to the MQQueueManager
object in the MQSeries API. The name of the node, QueueManager as opposed to
MQSeriesETD is used as a descriptive way of conveying the exposed hierarchy.
Internally, it is actually implemented in the ETD implementation class
com.stc.eways.MQSeriesETD.

The ETD implementation class will hold a collection of queue manager objects to allow
the user to connect to more than one queue manager and, once connections have been
established, to switch between them. An exception to this is when the e*Way is
configured as XA compliant. In this case, there can be exactly one queue manager
which is the one specified in the configuration.

Current Queue Manager

Connecting to a queue manager will automatically select it as the current queue
manager. If you have connected to more than one queue manager, you can switch
between them using the selectQueueManager method. Each queue manager is
accessible via its name. When the collaboration is initialized, it automatically connects
to the queue manager specified in the configuration (which, again, selects it as the
current queue manager). Thus, if you do not connect to another queue manager in the
collaboration, you need not ever call the selectQueueManager method.

The queueAccessOptions Node

The queueAccessOptions node and the accessQueue method are used to access a
queue on the current queue manager. First the desired queue access options are entered
(such as open for input or open for output, and so forth), and then the accessQueue
method is called. This method will access the named queue on the current queue
manager and select that queue as the current queue.

The remaining methods exposed on the queue manager route directly to the similarly
named method on the queue manager in the underlying MQSeries APL

Methods Under the QueueManager Node

Name Description

connectToQueueManager() on | Create a connection to the another queue manager
page 94 using the specified parameters. A connection to the
queue manager specified in the configuration is
automatically done. You need only call this method
when connecting to another queue manager in the
collaboration.

e*Way Intelligent Adapter for MQSeries User’s Guide 50 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1

ETD Overview The MQSerieseTD
Name Description

selectQueueManager() on Select from one of the connected queue managers.

page 94

isQueueMgrConnected() on Determine if the current queue manager is still

page 95 connected.

getCharacterSet() on page 95 Returns CCSID of the queue managers codeset for
the currently selected queue manager.

getMaximumPriority() on Returns maximum message priority that can be

page 96 handled by the queue manager.

commit() on page 96 Commit the operations on the currently selected
queue manager. Should only be called in Non-XA
mode.

backout() on page 96 Roll back the operations on the currently selected
queue manager. Should only be called in Non-XA
mode.

queueAccessOptionsClearAll() | Clear all flags.
on page 97

accessQueue() on page 97 Access a queue on the current queue manager.

612 The Queue Node

The Queue node corresponds to operations that are performed on the MQQueue object
in the MQSeries APIL In the ETD, it is shown as a child of the QueueManager node. This
is to enforce the concept that you access a queue from a queue manager. As in the
QueueManager node, the node name of Queue is a notational convenience for the user.
Internally, it is implemented in the MQSeriesETD class.

Current Queue

The ETD uses the concept of a current queue. This is not the same as the Current Queue
Manager concept noted earlier. The ETD will support accessing one or more queues
from the current queue manager via the accessQueue function on the QueueManager
node. Calling this will also select that queue as the current queue. The user can also
select different queues (which have already been accessed from the queue manager) by
using the selectQueue function. Selecting a queue sets it as the current queue. Early in
the collaboration code, it is typical that the user would call accessQueue to access the
queue to be used in the collaboration. The ETD does not automatically access a queue at
initialization time as it does for the queue manager. It is important to remember that all
the methods take effect on whichever queue or queue manager is current. For example,
calling the put method to put a message on the queue takes effect on the current queue.

Get and Put Methods

There are two versions of the get and put methods. Each operates on the message object
exposed in the ETD. Each routes directly to the corresponding underlying method on
the queue in the MQSeries API. One of the get and put methods take no arguments;

e*Way Intelligent Adapter for MQSeries User’s Guide 51 SeeBeyond Proprietary and Confidential

Chapter 6

Section 6.1

ETD Overview The MQSerieseTD

they use the default options in MQSeries, whatever these may be. The other uses the
GetMessageOptions (the GMO) or the PutMessageOptions (the PMO). These options
allow the user to set whatever options they wish (for example, the SET_ALL_
CONTEXT flag).

These classes contain options that control the action of the getWithOptions and
putWithOptions methods. The options are mostly bitfields in the MQSeries API. For
example, the MQC.MQGMO_WAIT and the MQC.MQGMO_SYNCPOINT are two
bitfields that can be set for the "options" member variable in the
MQGetMessageOptions class. To make it easier for the user, these bitfields have been
expanded into callable methods that take a boolean parameter to set or clear the
particular option. For example, if you want to set a wait timeout value in the
GetMessageOptions, you would call setMQGMO_WAIT(true) and then call the
setWaitValue method. If you wanted this message to be a syncpoint, you would call
setMQGMO_SYNCPOINT(true). Correspondingly, if you wanted to clear the
syncpoint flag, you would call setMQGMO_SYNCPOINT (false) then call
setMQGMO_NO_SYNCPOINT(true).

The optionsClearAll (and matchOptionsClearAll and so forth) allow you to clear all
previously set options with one method.

Whatever values you set in the GMO and PMO nodes remain in effect for the duration
of the collaboration. That is, if you are putting more than one message, and they both
take the same PutMessageOptions, you only need to set the options once.

Note, too, that some of these flags may be required in certain contexts. An example is
the SYNCPOINT flag when using transactions. In this case, calling commit in the ETD
(or when the XA transaction is committed by e*Gate) the SYNCPOINT flag MUST be
set.

Note: Some of the members of these classes may be shown as output fields in the API

documentation. In such cases, you should not attempt to set a value on them as they
are populated by the underlying API method.

Important: Some of the attributes of the message header, such as userld, are affected by the

SET_ALL_CONTEXT flag in the PutMessageOptions. Without SET_ALL_
CONTEXT set, MQSeries will overwrite whatever value you might put in. If the
flag is set, however, MQSeries will pass on the value you entered untouched.

The newMessage Method

The newMessage method allows the user to destroy and recreate a new Message object.
This is required when you want to call get multiple times in the collaboration (such as
in a loop). If get is called again, passing a dirty message, the API will throw an
exception indicating no message is available.

The remaining methods on the queue route directly to the similarly named method on
the underlying queue object in the MQSeries API. As a application note, be careful with
the "interrogative" type methods on the queue such as getCurrentDepth. In order to
call this, the queue must be accessed with MQOO_INQUIRE set.

e*Way Intelligent Adapter for MQSeries User’s Guide 52 SeeBeyond Proprietary and Confidential

Chapter 6
ETD Overview

6.1.3

Section 6.1
The MQSerieseTD

Methods Under the Queue Node

Name

Description

optionsClearAll() on page 101

Clear all option flags.

setWaitValue() on page 102

Specify a specific number of milliseconds to wait.

setUnlimitedWait() on page 102

Set the wait time to MQWI_UNLIMITED.

matchOptionsClearAll() on
page 103

Clear all match options flags set so far and set match
options to MQMO_NONE.

get() on page 98

Get a message off the queue using the default
options.

getWithOptions() on page 98

Get a message off the queue using the
GetMesageOptions (GMO).

put() on page 99

Put a message on the queue using the default
options.

putWithOptions() on page 99

Put a message on the queue using the
PutMesageOptions (PMO).

getCurrentDepth() on page 99

Get the number of messages currently in the queue.

getMaximumDepth() on
page 100

Get the maximum number of messages that can exist
on the current queue.

getMaximumMessageLength()
on page 100

Get the maximum length of data that can exist in any
one message on the current queue.

newMessage() on page 101

Destroy then recreate the Message object. After
doing a get, this must be called before doing another
get.

The Message Node

The Message node corresponds to methods that are called on the message object in the

MQSeries APL. It is shown as a child of the Queue node in the ETD to enforce the
concept that it is rather subservient to the queue. That is, you get and put messages

from and to a queue.

The MsgHeader Child Node

The MsgHeader child node of the Message wraps the concept of the attributes of the
MQMessage. There is no concept of a message header in the MQSeries API per se.
Rather, this is a notational convenience in the ETD. By using the nodes of the
MsgHeader, you can gain access to the attributes of the message (that is userld, msgld,
and so forth).

The MsgBody Child Node

e*Way Intelligent Adapter for MQSeries User’s Guide 53

The MsgBody child node of the Message wraps the concept of exposing the message
data as a byte array. There is no corresponding "body" concept in the MQSeries API.
That is, the only way to gain access to the data in the message is by calling one of the
read methods. MsgBody is a notational convenience for the user to allow them to access

SeeBeyond Proprietary and Confidential

Section 6.1

ETD Overview The MQSerieseTD

the entire data of the message as a blob and have that blob stored in a node in the ETD.
To access the message data after doing a get, the readData method is called. This routes
down to the readFully method on the message. The Data node is then populated with
the entire contents of the message. The data is now available from the Data node so you
can drag it to somewhere else in the collaboration. To put a blob on the queue, data is
“dragged and dropped” to the Data node and the writeData method on the MsgBody is
called. The writeData method on the MsgData node routes down to the write method
on the message.

Calling Read Methods

There are some important application caveats when dealing with the MQSeries API
when it comes to calling the read methods. As you call a read method (for example.
readUTF, readInt, and so forth) you are "consuming" the message data. Should you
continue to call them, you will eventually exhaust the available data of the message and
you will ultimately get an EOFException. This indicates you have reached the end of
the data. This exception is caught in the underlying implementation code of the e*Way
and is rethrown as a CollabConnException but the EOFException is still available. The
reason for the exception is logged. Therefore, if you want to re-read a portion of the
data you need to call seek to put the current data offset back. For example, if readFully
is called, all data is consumed. If you want to call readFully again you need to do a
seek(0).

The MQMessage Class

The remaining methods on the Message node all route down to the similarly named
methods on the MQMessage class. A brief description of each method is available in the
Properties field of the ETD Editor when the method is selected.

Methods Under the Message Node

Name Description

getTotalMessageLength () on
page 104

If MQQueue.get() fails with a message-truncated
error code, report the total number of bytes in the
stored message on the queue.

getMessageLength () on
page 105

Report the total number of bytes in the stored
message on the queue.

getDataLength () on page 105

Report the number of bytes of data remaining to be
read in the message.

seek () on page 106

Relocate the cursor to the absolute position in the
message buffer given by pos.

setDataOffset () on page 106

Relocate the cursor to the absolute position in the
message buffer. setDataOffset () is equivalent to
seek(), allowing for cross-language compatibility
with the other MQSeries APIs.

getDataOffset () on page 107

Return the current position of the cursor within the
message, that is the point at which read and write
operations take effect.

e*Way Intelligent Adapter for MQSeries User’s Guide

54 SeeBeyond Proprietary and Confidential

Chapter 6
ETD Overview

Section 6.1
The MQSerieseTD

Name

Description

clearMessage () on page 107

Discard data in the message buffer and reset the data
offset to zero.

getVersion () on page 107

Return the version of the current structure.

resizeBuffer () on page 108

Clue the MQMessage object as to the size of buffer
that may be necessary for subsequent get
operations. When a message contains message data,
and the new size is less than the current size, the
message data is truncated.

readBoolean () on page 108

Read a (signed) byte from the present position in the
message buffer.

readChar () on page 109

Read a Unicode character from the present position
in the message buffer.

readDouble () on page 109

Read a double from the present position in the
message buffer.

readFloat () on page 109

Read a float from the present position in the
message buffer.

readFully () on page 110

Fill the byte array b with data from the message
buffer.

Fill len elements of the byte array b with data from
the message buffer, starting at offset off.

readInt () on page 111

Read an integer from the present position in the
message buffer.

readInt4 () on page 111

Equivalent to readInt(), provided for cross-language
MQSeries APl compatibility.

readLine () on page 111

Converts from the codeset defined in the
characterSet member variable to Unicode, then
reads in a line that has been terminated by \n, \r, \r\n,
or EOF.

readLong () on page 112

Read a long from the present position in the
message buffer.

readInt8 () on page 112

Equivalent to readlong(), provided for cross-
language MQSeries APl compatibility.

readObject () on page 113

Read an object, its class, class signature, and the
value of the non-transient and non-static fields of the
class.

readShort () on page 113

Read a short from the present position in the
message buffer.

readInt2 () on page 113

Equivalent to readshort(), provided for cross-
language MQSeries APl compatibility.

readUTF () on page 114

Read a UTF string, prefixed by a 2-byte length field,
from the present position in the message buffer.

readUnsignedByte () on
page 114

Read an unsigned byte from the present position in
the message buffer.

e*Way Intelligent Adapter for MQSeries User’s Guide

55 SeeBeyond Proprietary and Confidential

Chapter 6
ETD Overview

Section 6.1
The MQSerieseTD

Name

Description

readUnsignedShort () on
page 115

Read an unsigned short from the present position in
the message buffer.

readUInt2 () on page 115

Equivalent to readUnsignedShort(), provided for
cross-language MQSeries APl compatibility.

readString () on page 115

Read a string in the codeset defined by the
characterSet member variable. Convert the string
into Unicode.

readDecimal2 () on page 116

Read a 2-byte packed decimal number.

readDecimal4 () on page 116

Read a 4-byte packed decimal number.

readDecimal8 () on page 117

Read a 8-byte packed decimal number.

setVersion () on page 117

Sets the version of the structure to be used.

skipBytes () on page 118

Advance n bytes in the message buffer. Block until all
the bytes are skipped, the end of message buffer is
detected, or an exception is thrown.

write () on page 118

Write a byte, an array of bytes, or a series of bytes
into the message buffer at the present position. len
bytes will be written, taken from offset off in the
array b.

writeBoolean () on page 119

Write a boolean into the message buffer at the
present position.

writeByte () on page 119

Write a byte into the message buffer at the present
position.

writeBytes () on page 120

Writes the string to the message buffer as a
sequence of bytes. Each character is written out in
sequence by discarding its high eight bits.

writeChar () on page 120

Write a Unicode character into the message buffer at
the present position.

writeChars () on page 121

Write a string as a sequence of Unicode characters
into the message buffer at the current position.

writeDouble () on page 121

Write a double into the message buffer at the
present position.

writeFloat () on page 122

Write a float into the message buffer at the present
position.

writeInt () on page 122

Write an integer into the message buffer at the
present position.

writeLong () on page 123

Write a long into the message buffer at the present
position.

writeObject () on page 123

Write the specified object, object class, class
signature, and the values of the non-transient and
non-static fields of the class and all its supertypes.

writeShort () on page 124

Write a short into the message buffer at the present
position.

e*Way Intelligent Adapter for MQSeries User’s Guide

56 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1

ETD Overview The MQSerieseTD
Name Description
writeDecimal2 () on page 124 Write a 2-byte packed decimal format number into
the message buffer at the present position.
writeDecimal4 () on page 125 Write a 4-byte packed decimal format number into
the message buffer at the present position.
writeDecimal8 () on page 125 Write an 8-byte packed decimal format number into
the message buffer at the present position.
writeUTF () on page 126 Write a UTF string, prefixed by a 2-byte length field,

into the message buffer at the present position.

writeString () on page 126 Write a string into the message buffer at the present
position, converting it to the codeset identified by
the characterSet member variable.

614 Exception Handling

A general note on exception handling when using the ETD in a collaboration:
Internally, the e*Way catches all of the MQExceptions thrown from the underlying
MQSeries API. It also catches all other possible exception types that could be thrown
from the MQSeries API methods (for instance, the EOFException on the message
read XXX methods). The reason for this is to prevent users from having to do multiple
catch clauses in their collaboration. It is only necessary to catch a total of two possible
types of exceptions from the e*Way; the CollabConnException or the
EBobConnectionException. The only time the EBobConnectionException is thrown
by the eWay is in the initialization and shutdown phase of the eWay.

While the eWay catches all MQExceptions internally, the original exception is still
available from the CollabConnException. Further, the MQExceptions "reasonCode" is

logged in a human readable format. That is, instead of a cryptic numeric ID, it would
log MOQRC_NO_MESSAGE_AVAILABLE.

e*Way Intelligent Adapter for MQSeries User’s Guide 57 SeeBeyond Proprietary and Confidential

Chapter 7

e*Way Connection Configuration (ETD)

This chapter describes how to configure the Java-enabled MQSeries *Way Connection
using the MQSeriesETD connection type.

71 Configuring e*Way Connections

e*Way Connections are set using the Enterprise Manager.

To create and configure e*Way Connections

1

In the Enterprise Manager’s Component editor, select the e*Way Connections
folder.

On the palette, click on the Create a New e*Way Connection button.

The New e*Way Connection Component dialog box opens, enter a name for the
e*Way Connection.

Double-click on the new e*Way Connection. The e*Way Connection Properties
dialog box opens.

From the e*Way Connection Type drop-down box, select MQSeriesETD.

Enter the Event Type “get” interval in the dialog box provided. 100 milliseconds is
the configured default. The “get interval is the intervening period at which, when
subscribed to, the e*Way connection is polled.

From the e*Way Connection Configuration File, click New to create a new
Configuration File for this e*Way Connection. (To use an existing file, click Find.)

The Edit Settings dialog box opens. Enter the correct parameters for your e*Way
Connection as defined in the following pages.

When all parameters have been entered, select File, Save to save the settings, and
File, Promote to Run Time to move the file to the runtime environment.

e*Way Intelligent Adapter for MQSeries User’s Guide 58 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.1
e*Way Connection Configuration (ETD) Configuring e*Way Connections

Figure 15 Edit Settings

/Edit Settings for C:/EGATE/Client/configs/.../ Test.chg (modified} - |I:I|i|
File “iew OCptions Help

Goto Section: | General Settings j Elal%l ||_j;§||

Goto Parameter; ITransactinn Type j

Transaction Type Dal%l ||§§|

i {Rlon-Transactional :

(" ®A-compliant

-
fNonTransactional selected.

The MQSeries e*Way Connection configuration parameters are organized into the
following sections.

= General Settings
= MQSeries
= Connector

* Default GetMessageOptions

711 General Settings

This section contains the following parameters:

= Transaction Type

Transaction Type
Description
String-set. Specifies the Transaction Type. There are two transaction types.

= Non-Transactional. Provides the highest level of performance, with the minimum
level of message protection. No rollback is available during the send and receive
period, causing the possible loss of data in the case of a system error. When the
send() method is called the transaction is immediate. Non-Transactional (single-
phase transaction) relys on the user to call the commit and backout methods.

= XA-compliant. (two-phase transactional behavior) Highest level of transaction
protection, providing rollback for internal and XA compliant transactions. The
transaction is also extended to other XA supported data exchange applications,

e*Way Intelligent Adapter for MQSeries User’s Guide 59 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.1
e*Way Connection Configuration (ETD) Configuring e*Way Connections

such as Oracle, DB2, and MQSeries. When the send() method is called the
transaction takes place at the end of the collaboration.

XA can only be used in Bindings mode. This means that a Host Name is not entered
in the configuration parameters. A Host Name in the configuration parameters
implies that the APl is setup in Client mode. XA cannot be used in Client mode. In
addition, when using XA:

+ There must only be one Queue Manager.
+ The method connectToQueueManager cannot be called.

+ The methods commit and backout cannot be called. In Bindings mode e*Gate is
the transaction coordinator and is in control of these methods.

Required Values

Select Non-Transactional or XA-compliant. Non-Transactional is the configured
default.

712 MQSeries

This section contains the following top level parameters:
* Queue Manager Name
= Host Name
= Port Number

= Channel

Queue Manager Name

Description

String-set. Specifies the name of the IBM MQSeries Queue Manager to which the e*Way
is to connect.

Required Values

Enter the name of the valid IBM MQSeries Queue Manager.

Host Name

Description

String-set. Specifies the name of the host on which the queue manager resides.

Note: If the Host Name field is left blank, the e*Way will attempt to connect to MQSeries
in Bindings mode. The Queue Manager must be on the local machine.

Required Values

A valid host name.

e*Way Intelligent Adapter for MQSeries User’s Guide 60 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.1
e*Way Connection Configuration (ETD) Configuring e*Way Connections

71.3

Port Number
Description

Integer-set. Specifies the port number to which the queue manager is set to listen.
Required Values

An integer in the range of 1000 to 65536. The configured default is 1414.

Channel

Description
String-set. Specifies the name of the channel being used.
Required Values

The valid name of the channel.

Connector

This section contains the following top level parameters:

Note: These parameters are used internally by the e*Way and are for future expansion
potentialities. The default values should always be used.

= type
= class

= Property.Tag

type
Description

String-set. Specifies the connector type for MQSeriesETD. The default value should
always be used.

Required Values

A valid connector type. The default value should always be used. The configured
default is MQSeriesETD

class

Description

String-set. Specifies the connector class for MQSeriesETD. The default value should
always be used.

Required Values

The configured default is "com.stc.eways.MQSeriesETD.MQSeriesConnector".

e*Way Intelligent Adapter for MQSeries User’s Guide 61 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.1
e*Way Connection Configuration (ETD) Configuring e*Way Connections

Property.Tag

Description

Specifies the data source identity. This parameter is required by the current
EBobConnectorFactory.

Required Values

A valid data source package name.

714 Default GetMessageOptions

This section contains the following top level parameters:
= Wait Timeout

= Wait Interval

Wait Timeout

Description

String-set. Specifies the time to wait for a message to arrive on the queue when calling
getWithOptions.

* Unlimited. Wait forever.
= No-Wait. Return immediately if no message is available.
= Wait-Timed. Wait for specified number of milliseconds (see Wait Interval).

Though the Wait Timeout can also be set through the collaboration, the advantage to
setting it as a parameter is that the setting becomes the default. The default parameter
value can still be overridden in the collaboration. This parameter is only in effect when
the getWithOptions method (not the get method) is used.

Required Values

Select either Unlimited, No-Wait or Wait-Timed. No-Wait is the configured default.

Wait Interval

Description

Integer-set. Specifies the number of milliseconds to wait for a message to arrive on the
queue when calling getWithOptions. This option only applies when the Wait-Timed
option has been selected for the Wait Timeout. If this is left blank, and Wait-Timed is
chosen, a value of 0 (zero) will be used.

Though the Wait Interval can also be set through the collaboration, the advantage to
setting it as a parameter is that the setting becomes the default. The default parameter
value can still be overridden in the collaboration. This parameter is only in effect when
the getWithOptions method (not the get method) is used.

Required Values

An integer in the range of 0 to 200000000. The configured default is 0.

e*Way Intelligent Adapter for MQSeries User’s Guide 62 SeeBeyond Proprietary and Confidential

Chapter 8
Implementation (ETD)

This chapter contains basic information for implementing the ETD-based Java-enabled
MQSeries e*Way in a production environment. A sample schema is included on the
CD-ROM for the ETD-based implementation of the e*Way. In addition, examples are
provided detailing how the various components of the sample schema were created.
For more information on creating and configuring e*Way components see the e*Gate
Integrator User’s Guide.

81 MQSeries (ETD) Sample Implementation Components

The Java ETD-based MQSeries e*Way is an application specific eWay which allows
e*Gate to connect with IBM’s MQSeries applications. With the MQSeries e*Way
installed along with the e*Gate Integrator, schema’s can be created to receive, transform
and route data through e*Gate in a predefined system configuration.

The following pages contain a sample implementation which serves to explain how the
components for an ETD-based MQSeries sample schema are created. The Host and
Control Broker are automatically created and configured during the e*Gate installation.
The default name for each is the name of the host on which you are installing the e*Gate
Enterprise Manager GUI To complete the sample implementation of the ETD-based
MQSeries e*Way will require the following;:

= Install IBM’s MQSeries (See External System Requirements on page 10) and
MQSeries Queue Manager: The MQSeries Server 5.2 and MQSeries Queue
Manager are installed on the localhost. Also install Java Classes for MQSeries 5.2
and the MA88 SupportPac from IBM.

= Install the MQSeries e*Way: The MQSeries e*Way is installed as an Add-on to the
e*Gate Integrator. For directions on installing the MQSeries e*Way from the CD-
ROM to your specific operating system, see Installation on page 11.

= Create e*Ways: e*Ways connect with external systems to poll or send data. They
also transform and route data. Multi-Mode e*Ways are used to run Java
Collaborations that utilize e*Way Connections to send and receive Events to and
from multiple external systems.

= Configure e*Way Connections: An e*Way Connection is the encoding of access
information for a specific external connection. The e*Way Connection configuration
file contains the parameters necessary for communicating with IBM’s MQSeries and
specifying the MQSeries Queue Manager.

e*Way Intelligent Adapter for MQSeries User’s Guide 63 SeeBeyond Proprietary and Confidential

Section 8.1
MQSeries (ETD) Sample Implementation Components

Chapter 8
Implementation (ETD)

= Create Event Types: Each packet of data within e*Gate is referred to as an Event.
Event Types are data labels that allow e*Gate to process and route specific Events
differently. Data is not routed in e*Gate without an Event Type.

= Create Intelligent Queues: Non-volatile storage for data traveling through the
e*Gate system is provided by creating Intelligent Queues (IQs). The IQ Manager
oversees the activities of the individual storage locations. The exact behavior of
each IQ is determined by the IQ Service configuration. The MQSeries e*Way uses
the MQSeries IQ Service.

= Create Collaboration Rules: Collaboration Rules determine how input Event Types
are modified to the format of specific output Event Types. A Collaboration Rule
defines what type of data is received, how it will be transformed and what type of
data will be published.

= Create Collaborations: A Collaboration is a message bus in e*Gate that specifies the
name and source of the incoming Event Types, the Collaboration Rules that will be
applied to the Event, and the name, destination and expiration date of the outgoing
Event Types. A Collaboration designates the Subscriber, which “listens” for Events
of a known type from a given source, and the Publisher, which distributes the
transformed Event to a specified recipient.

= Set the CLASSPATH Variable: The Final Step in creating and configuring the
MQSeries e*Way is to set the IBM MQSeries Java .jar files and the com.ibm.m9 jar
files in the environment CLASSPATH variable.

811 The MQSeries (ETD) Sample Schema

The following sections describe how to define and associate each of the above
components. This sample implementation will demonstrate how the Java-enabled
MQSeries e*Way intercepts, stores, manipulates, and manages data in association with
IBM MQSeries.

Figure 16 The MQSeries (ETD) Sample Implementation

Inbound Multi-Mode Multi-Mode Outbound
e*Way e*Way e’Way e*way
Local Feeder IQ IBM IQ Eater Local
System queue : Queue Mgr. ; queue System
XA-compliant Non-Transactional
e*Way Connection e*Way Connection

812 Step One: Creating the IBM MQSeries Queue

Step one in creating the MQSeries e*Way is to install and configure IBM MQSeries
Server 5.2 and the IBM MQSeries Queue Manager on the localhost. It is also necessary
to install Java Classes for MQSeries (See External System Requirements on page 10)
and the IBM MAS88 SupportPac.

e*Way Intelligent Adapter for MQSeries User’s Guide 64 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
Implementation (ETD) MQSeries (ETD) Sample Implementation Components

It is assumed that the reader is experienced in the use of IBM MQSeries Queue
Manager. For more information on IBM MQSeries Queue Manager please see MQSeries
Queue Related Commands, Chapter 9, in the e*Gate Integrator Intelligent Queue
Services Reference Guide. For the sample implementation do the following:

1 Open IBM MQSeries Explorer.
2 Create a new Queue Manager.

3 From the IBM MQSeries Queue Manager create a new queue.

Note: Unlike the [MS-based MQSeries e*Way schema, the ETD-based schema does not
require the MQSeries Queue name and the Event Type name to be the same.

Regarding IBM MQSeries Server and Queue Manager Limits and Settings

= When using MQSeries Queue Manager on Unix, the user must be a member of the
mqgm group to create and start MQ Series Queue manager.

= It is essential that the MQSeries Administrator regularly monitor the number of
messages in the queue. Message expiration settings should be set to allow for
extended storage.

= MQseries is limited in the number of messages that can be sent before a commit is
executed, and the number of physical messages that can exist on the queue at any
one time. This can result in exception errors when upper limits for these numbers
are exceeded. Memory and performance of the specific server may also effect the
results.

Publishing Messages with MQSeriesJMS to a non-JMS conversant e*Way

The JMS standard specifies a header which includes encoding and reply information.
This header is prepended to any message published by the IBM JMS classes. Non-JMS
subscribers (that is, those using a non JMS API to MQSeries, such as the IBM C API)
will not be able to separate the JMS header from the body. To remedy this, the user is
advised to suppress the publication of the JMS header, if publishing to non-JMS
subscribers, using the following mechanism.

To send messages to a non-JMS MQ (Monk MQSeries) e*Way, call send() manually from
within the collaboration rules containing the following URI:

"queue:/ /<QMGR_NAME>/<QNAME>?targetClient=1"
For example:
"queue://EMEO2T/QR EMEQ1?targetClient=1"

If this is not done then a 200+ byte header is pre-appended to the payload and placed in
the MQ queue and could easily throw off the non JMS conversant MQ reader.

For further information see the IBM manual MQSeries, Using Java, Chapter 10, at:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/manuals/
crosslatest.html

e*Way Intelligent Adapter for MQSeries User’s Guide 65 SeeBeyond Proprietary and Confidential

http://www-4.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html

Chapter 8 Section 8.1
Implementation (ETD) MQSeries (ETD) Sample Implementation Components

813 Step Two: Installing the MQSeries e*Way and Creating a New
Schema

Step two is to install the MQSeries e*Way. For directions on installing the MQSeries
e*Way on your specific operating system, see Chapter 2, Installation, on page 11.

Importing the Sample Schema

Once the MQSeries e*Way is installed, a new schema must be created. While it is
possible to use the default schema, it is recommended that you create a separate
schema for testing purposes. A sample schema, MQSeriesETDSample.zip, is included
on the CD-ROM. To import the sample schema once the MQSeries e*Way is installed,
do the following;:

1 Start the e*Gate Enterprise Manager GUL

2 When the Enterprise Manager prompts you to log in, select the host that you
specified during installation and enter your password.

3 You will then be prompted to select a schema. Click on New.

4 Enter a name for the new Schema. In this case, for the sample, enter
MQSeriesETDSample, or any name as desired.

5 Select Create from export. Click Find and navigate to following folder on the CD-
ROM \eGate\samples\ewmgq and select MQSeriesETD.zip.

6 Click open to import the sample schema.

The e*Gate Enterprise Manager opens to the new schema. The schema must be
configured to match the specific system before it can run. See Multi-Mode e*Way
Configuration on page 15 and e*Way Connection Configuration (ETD) on page 58 for
directions on configuring the schema components for your system. Further information
on importing and configuring the sample schema is available on the Readme file
included with the sample

The following steps are included to demonstrate how the components of the sample
schema are created.

Implementing the Sample Schema on e*Gate 4.5.1

The sample schema for the MQSeries e*Way was created using e*Gate 4.5.2. When
attempting to implement the sample using e*Gate 4.5.1, make note of the following:

= It is necessary to apply ESR 40737 before importing the sample schema that is
included on the cd.

= Import the sample schema.

These conditions only apply to implementation on e*Gate 4.5.1.
814 Step Three—Creating and Configuring the e*Ways

Step three is to create the e*Ways. e*Ways are components used for transporting and
transforming data. They always interface with at least one external system, and Multi-

e*Way Intelligent Adapter for MQSeries User’s Guide 66 SeeBeyond Proprietary and Confidential

Chapter 8

Section 8.1

Implementation (ETD) MQSeries (ETD) Sample Implementation Components

Mode e*Ways can use e*Way Connections to interface with many external systems. For
the sample implementation four e*Ways are required.

* Inbound (Feeder)
= OQutbound (Eater)
= Multi-Mode (MQ_Get)
= Multi-Mode (MQ_Put)

The following sections provide instructions for creating each e*Way.
Inbound e*Way (Feeder)

1

2
3
4
5
6
7

Select the Navigator's Components tab.

Open the host on which you want to create the e*Ways.

Select the Control Broker that will manage the new e*Ways.

On the palette, click the Create a New e*Way button.

Enter the name of the new e*Way (in this case, Feeder). Click OK.

Right-click the Feeder e*Way, and select Properties to edit its properties.

When the e*Way Properties window opens, click on the Find button beneath the

Executable File field and select stcewfile.exe as the executable file.

Figure 17 Inbound e*Way Properties
JRISTE

Genersl | Start UpI .&dvancedl Sec:urityl

Feeder

wecutshle file

}Jil‘l"StCEWf"E.EXE

Clear |

Additional command line arguments:

I% -un % _USERMAMES: -up % _PASSWORDS -rp % _REGPORT:

Run as user

IAdministratcur |

Configuration file

Clear | Find | Mewy |

Ok Cancel | Apply | Help |

8 Under the Configuration File field, click on the New button. The Edit Settings

dialog box opens. Set the following for this configuration file.

e*Way Intelligent Adapter for MQSeries User’s Guide 67 SeeBeyond Proprietary and Confidential

Chapter 8
Implementation (ETD)

Section 8.1
MQSeries (ETD) Sample Implementation Components

Table 5 Configuration Parameters for the Inbound e*Way

Parameter

Value

General Settings (unless otherwise stated, leave settings as default)

Allowlncoming YES
AllowOutgoing NO
PerformanceTesting NO
Outbound Settings Default
Poller Inbound Settings

PollDirectory CAINDATA

InputFileExtension

*fin (input file extension)

PolIMilliseconds 1000
Remove EOL YES
MultipleRecordsPerFile YES
MaxBytesPerLine 4096
BytesPerLinelsFixed NO
File Records Per eGate Event 1
Performance Testing Default

9 Use the Startup, Advanced, and Security tabs to modify the default settings for each

e*Way you configure.

D Use the Startup tab to specify whether the e*Way starts automatically, or restarts
after abnormal termination or due to scheduling and so forth.

E Use the Advanced tab to specify or view the activity and error logging levels as
well as the Event threshold information.

F Use Security to view or set privilege assignments.

10 After selecting the desired parameters, save the configuration file (Feeder.cfg) and

Promote to Run Time.

11 Select OK to close the e*Way Properties window.

Outbound e*Way (Eater)

1 Repeat step 1-9 above to create the Outbound e*Way changing the name in steps 5

and 6 to Eater.

2 Replace the following parameters for those in step 8.

Table 6 Configuration Parameters for the Inbound e*Way

Parameter

Value

General Settings (unless otherwise stated, leave settings as default)

Allowlncoming

NO

AllowOutgoing

YES

e*Way Intelligent Adapter for MQSeries User’s Guide

68

SeeBeyond Proprietary and Confidential

Chapter 8

Implementation (ETD)

Section 8.1
MQSeries (ETD) Sample Implementation Components

Table 6 Configuration Parameters for the Inbound e*Way

Parameter Value
PerformanceTesting NO
Poller Outbound Settings
OutputDirectory CA\DATA
OutputFileName output%d.dat
MultipleRecordsPerFile YES
MaxRecordsPerFile 10000
AddEOL YES
Poller Inbound Settings Default
Performance Testing Default

3 After selecting the desired parameters, Save the configuration file (Eater.cfg) and

Promote to Run Time.

4 Select OK to close the e*Way Properties window.
Multi-Mode e*Way (MQ_Get)

1

2
3
4
5
6
7

Select the Navigator's Components tab.

Open the host on which you want to create the e*Way.

Select the Control Broker that will manage the new e*Way.

On the palette, click the Create a New e*Way button.
Enter the name of the new e*Way (in this case, MQ_Get), then click OK.

Right-click the MQ_Get e*Way and select Properties to edit its properties.

When the e*Way Properties window opens, click the Find button beneath the
Executable File field, and select stceway.exe as the executable file.

To configure the Multi-Mode e*Way’s parameters, select New under the
Configuration File field and enter the following parameters.

Table 7 Configuration Parameters for the MQ_Get MultiMode e*Way

Parameter

Value

JVM Settings (unless otherwise stated, leave settings as default)

JNI DLL absolute pathname

C:\eGate\client\bin\Jre\jvm.dll (or
absolute path to proper JNI DLL)

CLASSPATH Append From Environmental
Variable

YES

See “Multi-Mode e*Way Configuration” on page 15 for details on the parameters

associated with the Multi-Mode e*Way.

In the e*Way Properties window, use the Startup, Advanced, and Security tabs to

modify the default settings for each.

e*Way Intelligent Adapter for MQSeries User’s Guide 69

SeeBeyond Proprietary and Confidential

Chapter 8

Section 8.1

Implementation (ETD) MQSeries (ETD) Sample Implementation Components

G Use the Startup tab to specify whether the e*Way starts automatically, restarts
after abnormal termination or due to scheduling, etc.

H Use the Advanced tab to specify or view the activity and error logging levels, as
well as the Event threshold information.

I Use Security to view or set privilege assignments.

10 After selecting the desired parameters, save the configuration file (MQ_Get.cfg)

11

and Promote to Run Time.

Click OK to close e*Way Properties window.

Multi-Mode e*Way (MQ_Put)

1

Repeat step 1-9 above to create the MQ_Put Multi-Mode e*Way changing the name
in steps 5 and 6 to MQ_Put.

After selecting the desired parameters, Save the configuration file (MQ_Put.cfg)
and Promote to Run Time.

Click OK to close e*Way Properties window.

815 Step Four: Create the e*Way Connection

Step four is to create and configure the e*Way Connections. The e*Way Connection
configuration file contains the settings necessary for communicating with IBM
MQSeries and specifying the MQSeries Queue Manager. For this sample two e*Way
Connections are created.

MQConn_Get e*Way Connection

1

Select the e*Way Connection folder on the Components tab of the e*Gate
Navigator.

On the palette, click the Create a New e*Way Connection button.

Enter the name of the e*Way Connection, then click OK. (For the purpose of this
sample, the e*Way Connection is defined as “MQconn_Get”.)

Double-click the new e*Way Connection to edit its properties. The e*Way
Connection Properties dialog box opens.

e*Way Intelligent Adapter for MQSeries User’s Guide 70 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
Implementation (ETD) MQSeries (ETD) Sample Implementation Components

5 In the e*Way Connection Type field, select MQSeriesETD from the drop-down list
box.

Figure 18 e*Way Connection Properties

@ e*Way Connection - MOConn_Gekt P =10 x|

General |

0| = MQConn_Get

~Ewvent Type "get" interval

Time {in milliseconds) after a retrieval
returns “no event available" hefore
attermpting anather retrieval.

100

ey Connection Configuration File
Clear | Find | e |
0]34 Cancel | Apply | Help

6 Enter the Event Type “get” Interval in the dialog box provided. 10000 milliseconds
(or 10 seconds) is the configured default. The “get interval is the intervening period
at which, when subscribed to, the e*Way connection is polled. For the purpose of
this sample set the “get interval to 100.

7 To configure the e*Way Connection parameters, click the New button under the
e*Way Connection Configuration File field.

8 The e*Way Connection editor opens, select the following parameters.

Table 8 Configuration Parameters for the MQConn_Get e*Way Connection

Parameter Value

General Settings (unless otherwise stated, leave settings as default)

Transaction Type ‘ Non-Transactional

MQSeries

Queue Manager Name MQ_mgr (a valid queue manager)
Port Number 1414 (a valid port number)
connector Default

Default GetMessageOptions

e*Way Intelligent Adapter for MQSeries User’s Guide 71 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
Implementation (ETD) MQSeries (ETD) Sample Implementation Components

Table 8 Configuration Parameters for the MQConn_Get e*Way Connection

Parameter Value

Wait Timeout Wait-Timed
Wait Interval 10000

For more information on the MQSeries e*Way Connection Type parameters, see
“e*Way Connection Configuration (ETD)” on page 58.

9 Save the MQConn_Get.cfg file.

10 From the File menu select Promote to Run Time to move the file to the e*Way’s run
time environment.

11 Click OK to close the Properties dialog box.
MQConn_PutXA e*Way Connection

1 Repeat step 1-8 above to create the MQConn_PutXA e*Way Connection changing
the name in step 3 to MQConn_PutXA.

2 Replace the following parameters for those in step 8.

Table 9 Configuration Parameters for the MQConn_PutXA e*Way Connection

Parameter Value

General Settings (unless otherwise stated, leave settings as default)

Transaction Type ‘ XA-compliant

MQSeries

Queue Manager Name MQ_mgr (a valid queue manager)
Port Number 1415 (a valid port number)
Channel Channel2Test

connector Default

Default GetMessageOptions
Wait Timeout No-Wait

Wait Interval 0

3 Save the MQConn_PutXA.cfg file.

4 From the File menu select Promote to Run Time to move the file to the e*Way’s run
time environment.

5 Click OK to close the Properties dialog box.

816 Step Five: Creating Event Types

Step five is to create the Event Types. An Event Type is a class of Events with a common
data structure. The e*Gate system packages data within Events and categorizes them
into Event Types. What these Events have in common defines the Event Type and
comprises the ETD.

e*Way Intelligent Adapter for MQSeries User’s Guide 72 SeeBeyond Proprietary and Confidential

Chapter 8

Section 8.1

Implementation (ETD) MQSeries (ETD) Sample Implementation Components

Creating an Event Types Using the Standard ETD Wizard

The following procedures show how to create an ETD (Event Type Definition) using
the Standard ETD Wizard.

1
2
3

10

11
12

Highlight the Event Types folder on the Components tab of the e*Gate Navigator.
On the palette, click the Create a New Event Type button.

Enter the name of the Event, then click OK. For the purpose of this sample the
Event Type is defined as DummyTrigger.

Double-click the new Event Type to edit its properties. The Event Type Properties
dialog box opens.

Click the New button. The ETD Editor opens.

Select New from the File menu. The New Event Type Definition window opens.

Figure 19 Event Type Definition Wizards

“E£ New Event Type Definition / x|
MNew I

4 B = O

BAPPizard DTDWizard IDOCWizard DEwizard

B

SEPwizard S5CWizard HEDwWizard

Ok | Cancel | Help |

Select the Standard ETD wizard.
Enter the Root Node Name (for this case, “Blob”).

Enter a package name where the ETD Editor can place all the generated Java classes
associated with the created ETD. (For this sample, use DummyTrigger as the
package name.) Click Next and Finish to close the wizard.

Right click Blob in the Event Type Definition pane of the ETD Editor, and select
Add Field, as Child Node.

Triple-click on Field1, and rename it Dummy:.

Select the Dummy node. The properties for the Dummy node are displayed in the
Properties pane. Change the endDelim property to “|” (pipe).

e*Way Intelligent Adapter for MQSeries User’s Guide 73 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
Implementation (ETD) MQSeries (ETD) Sample Implementation Components

Figure 20 Event Type Definition Editor

= ETD Editor: Blob.xsc (Sandbox) =10l x|
File Edit Help
NEE|:? |
— Ewvent Type—————— ~ Ewvent Type Definition———— Properties -Blob
[=4) Blob

(Mame) EBlob

corment

dataEncoding | ASCIT
— Internal Templates editable True

sscEncoding | ASCIT

byvpe S5C

xsciersion 0.4
packageMame | Dummy Trigger

-2 publications
- subgoriptions
-2 marshal

& unmarshal
[+ readProperty
[+ wiiteProperty

— External Templates

| [11/25/2001 [3:04 PM y

13 From the File menu, click Compile and Save. Save the .xsc file as
DummyTrigger.xsc.

14 From the File menu, click Promote to Run Time to move the file to the run time
environment.

15 Close the ETD Editor.

Creating Event Types From an Existing XSC

The following procedure shows how to create an Event Type Definition (ETD) from an
existing .xsc file.

1 Select the Event Types folder on the Components tab of the e*Gate Navigator.
2 On the palette, click the Create a New Event Type button.

3 Enter the name of the Event Type in the New Event Type Component window,
then click OK. (For this sample, the Event Type is defined as “fromMQ.”)

4 Double-click the new Event Type to edit its properties. The Event Type Properties
dialog box opens.

5 Click the Find button under the Event Type Definition field.

6 Browse to and select DummyTrigger.xsc.

e*Way Intelligent Adapter for MQSeries User’s Guide 74 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
Implementation (ETD) MQSeries (ETD) Sample Implementation Components

7 Click OK to close the Event Type Properties dialog box.

817 Step Six: Intelligent Queues

Step Six in configuring the MQSeries e*Way is to create the Intelligent Queues (IQs).
IQs manage the exchange of information between components within the e*Gate
system, providing non-volatile storage for data as it passes from one component to
another. IQs use IQ Services to transport data. IQ Services provide the mechanism for
moving Events between IQs, handling the low-level implementation of data exchange
(such as system calls to initialize or reorganize a database).

To create and modify an Intelligent Queue for the MQSeries e*Way

Select the Navigator's Components tab.

Open the host on which you want to create the 1Q.

Open a Control Broker.

Select an IQ Manager.

On the palette, click the Create a New 1Q button.

Enter the name of the new IQ, then click OK. (For this case, queue.)
Double-click the new IQ to edit its properties.

O N O U kR, W =

On the General tab, specify the Service (for this sample, STC_Standard). The
STC_Standard IQ Service provides sufficient functionality for most applications. If
specialized services are required, custom IQ Service DLLs may be created.

9 Specify and the Event Type Get Interval. The default Event Type Get Interval of
100 Milliseconds is satisfactory for the purposes of this initial implementation.

10 On the Advanced tab, make sure that Simple publish/subscribe is checked under
the I1Q behavior section.

11 Click OK to close the IQ Properties window

818 Step Seven: Collaboration Rules

Step seven in creating the ETD-based MQSeries e*Way is to create the Collaboration
Rules that will extract and process selected information from the source Event Type
defined earlier, according to its associated Collaboration Service. The Default Editor
can be set to either Monk or Java. From the Enterprise Manager Task Bar, select
Options and click Default Editor. Make sure that the default is set to Java.

Creating Pass Through Collaboration Rules

1 Select the Navigator's Components tab in the e*Gate Enterprise Manager.
2 In the Navigator, select the Collaboration Rules folder.
3 On the palette, click the Create New Collaboration Rules button.

e*Way Intelligent Adapter for MQSeries User’s Guide 75 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
Implementation (ETD) MQSeries (ETD) Sample Implementation Components

4 Enter the name of the new Collaboration Rule Component, then click OK (in this
case, use crDataln).

5 Double-click the new Collaboration Rules Component. The Collaboration Rules
Properties window opens.

6 Select Pass Through from the drop-down box for the Service field.

Figure 21 Pass Through Collaboration Properties

@ collaboration Rules - crDataln Propetrties o] |

General | Subscriptions' Publications' Collaharatiog Mappingl

—
{n-j% crDatain

Service: IPass Through LI

Initialization string: I

~Collaboration Rule

Cleat | Find | ey | Test |

Initialization file

Zlear | Finc |

Cancel | Apply | Help |

7 Go to the Subscriptions tab. Select DummyTrigger under Available Input Event
Types, and click the right arrow to move it to Selected Input Event Types. The box
under Triggering Event should be checked.

Figure 22 Pass Through Collaboration Properties, Subscriptions Tab

@ Collaboration Rules - crDataln Properties o] 4|

General Subscriptions | Publications I Collabaration Mapping |

|Awailable Input Event Types | Triggering ... |Se|ected In...| |
00000000 vl Cumimy Tricoer

GenericinEvert
GenericOutEvent
Motification
fromhdc

-
s

Cancel Apply Help

e*Way Intelligent Adapter for MQSeries User’s Guide 76 SeeBeyond Proprietary and Confidential

Chapter 8

Section 8.1

Implementation (ETD) MQSeries (ETD) Sample Implementation Components

8

10

Go to the Publications tab. Select DummyTrigger under Available Output Event
Types, and click the right arrow to move it to Selected Output Event Types. The
Radio button under Default will be enabled.

Click OK to close the Collaboration Rules, Pass Properties window.

Repeat steps 1-9 above to create the crDataOut Collaboration Rules, changing the
name in step 4 to crDataOut and the selected Input and Output Event Types in
steps 7 and 8 to fromMQ.

Creating Java Collaboration Rules

For the purpose of the sample schema two Java Collaboration Rules files are created.

Creating MQCollab Collaboration Rules

1

2
3
4

Select the Navigator's Components tab in the e*Gate Enterprise Manager.
In the Navigator, select the Collaboration Rules folder.
On the palette, click the Create New Collaboration Rules button.

Enter the name of the new Collaboration Rule, then click OK (for this case, use
MQCollab).

Double-click the new Collaboration Rules Component to edit its properties. The
Collaboration Rules Properties window opens.

The Service field defaults to Java. The Collaboration Mapping tab is enabled, and
the Subscriptions and Publications tabs are disabled.

In the Initialization string field, enter any required initialization string for the
Collaboration.

Figure 23 Collaboration Rules - Properties

@ collaboration Rules - MQCollab Properties - =] =]

General | SUbECHptinmE | Publicatinns' Collabaration Mappingl

oy
{E% M@Collab

Service: I.Java il |

Intialization strino: I»appendenvcp

Collaboration Rule

Cleat | Find | ey | Test |

~Initialization file

Zlear | Fincd |
(0] 34 I Cancel | Apply | Help |

e*Way Intelligent Adapter for MQSeries User’s Guide 77 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
Implementation (ETD) MQSeries (ETD) Sample Implementation Components
8 Select the Collaboration Mapping tab.
9 Using the Add Instance button, create instances to coincide with the Event Types.
For this sample, do the following;:
10 In the Instance Name column, enter outbound for the instance name.

11 Click Find, navigate to etd\MQSeriesETD.xsc, double-click to select.
MQSeriesETD.xsc is added to the ETD column of the instance row.

12 In the Mode column, select Out from the drop—-down menu available.
13 The Trigger setting defaults to N/A.
14 The Manual Publish setting is clear.
15 Repeat steps 9-13 using the following values:
+ Instance Name: trigger
¢ ETD: DummyTrigger.xsc
+ Mode: In
+ Trigger: select
+ Manual Publish: N/A

Note: At least one of the ETD instances used by the Collaboration must be checked as the
trigger.

For specific information on creating and configuring Collaboration Rules, see the
e*Gate Integrator User’s Guide.

Figure 24 Collaboration Rules - Collaboration Mapping Properties

@ collaboration Rules - MQCollab Propetties] |
Generall Subscriptionsl Fublications Collaboration Mapping |
Instance MName ETD tode | Trigg...| Manual Pukbl..
outhound MSEresETD Xsc Find .. jOut P2,]
trigoer Dumimy Trigger <sc Find .. JIn |7 [i,
Add Instance | Remove Instance |
Cancel | Apply | Help |

e*Way Intelligent Adapter for MQSeries User’s Guide 78 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
Implementation (ETD) MQSeries (ETD) Sample Implementation Components

16 Select the General tab. Under the Collaboration Rule field, select New. The
Collaboration Rules Editor opens.

17 Expand to full size for optimum viewing, expanding the Source and Destination
Events as well.

819 Using the Collaboration Rules Editor

Part two of step seven is to define the business logic using the Collaboration Rules
Editor. The Java Collaboration Rules Editor is the GUI used to create and modify Java
Collaboration Rules. A Java Collaboration Rule is created by designating one or more
source Events and one or more destination Events and then setting up rules governing
the relationship between fields in the Event instances.

Note: In order to compile the Collaboration that uses MQSeriesETD.xsc, first add
com.ibm.mgq.jar to the User Classpath from Tools, Options in the Collaboration
Rules editor.

1 Highlight retBoolean in the Business Rules pane.

All of the user—defined business rules are added as part of this method.

2 Click the rule button on the Business Rules tool bar. A rule expression is added to
the business rules.

3 From the Destination Events pane, drag-and-drop MQOO_OUTPUT into the
Business Rules pane, Rules window. When prompted for type of function for this
node select set. Place the curser between the last set of parentheses and type true.

e*Way Intelligent Adapter for MQSeries User’s Guide 79 SeeBeyond Proprietary and Confidential

Chapter 8
Implementation (ETD)

Section 8.1
MQSeries (ETD) Sample Implementation Components

Figure 25 Collaboration Rules Editor - Drag and Drop

=& Collaboration Rules Editor - MQCollab {Sandbox - Modified)

File Edit Wew Tools Help

—lolx|

dth

"% Source Events
=1 %= trigger [Blob]
Dumny
resek
=% available

A
Ly H

=% readProperty
o] =B writeProperty

I

"% Destination Events
outbound [QueueManager] '[:-E;
connect ToGueueManager |
queusMgriame @
hostMame
portMumm
channel
userld
password @ .
selechQueusManager

@

[2= _
@

@

E2]

getMaximumPriorit:
comm

B
.
B
..
B
backout «=%...
queusAccessOpkions e
aptionsClearsll <.
MQOO_INPUT_aS_Q_DEF B4
MQOO_INFUT_SHARED E2

MQOO_INPUIT_EXCLUSIVE B
MQOO_BROWSE 2

F
MQOO_SAYE_ALL/CONTEXT B
MO0 ALTERNATE USER/AUTHORITY [

g B Ra R ig g

=

1} block| =% method| &

rulel E switchl —r case| |9 while] [dﬂI@:"- ry{_lrnl 1 throw| (T3 tryl

I cateh

Business Rules
-2 MQCallab
& M(Collab

Rule Properties

B executeBusinessRules Description:

- @ retBoolean Irula

~{} rule Rules:

vz peturn -

& Lserinitislize getoutbound(). getqueusAccessOptions(),setMQO0_OUTPUT() ;I

B userTerminate

Kl

Documentation:

E

4 In the Description field type set the queue access options. This description now
displays as the rule tag in the Business Rules pane.

5 Click the rule button on the Business Rules tool bar again. A rule expression is
added to the Business Rules pane under the previous rule.

6 From the Destination Events pane, drag-and-drop the accessQueue method into
the Business Rules pane, Rules window. When prompted for the queueName type
in the name of the queue to which you have access.

e*Way Intelligent Adapter for MQSeries User’s Guide 80 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
Implementation (ETD) MQSeries (ETD) Sample Implementation Components

Figure 26 Collaboration Rules Editor — accessQueue

% Collaboration Rules Editor - MQCollab {Sandbox - Modified) - |EI|1|
Fle Edit Yiew Tools Help
ih
12 Source Events 12 Destination Events
- ™= trigger [Blob] outbound [QueueManager] 1= = |
ily connect ToQueueManages =
queueigrilame @
= available hosthame @
B nExt portMum @
-=Sreceive channel & i
[F-=Breceive userld @
=Bsend password @
[+ send seleckQueueManager =8|
rawInpuk istueueMarConnected =S
=% topic getCharacterSet =@
=% publications getMaximumPriority -
- subscriptions commit =S...
= marshal backout =S...
[#-=®unmarshal queuediccessOptions ®
[+ readProperty accessQueUe
[+ =B writeProperty
=i
1} block| =® method| @ war| 9 for| A if| {} rulel B, switchl —+ casell |9 whilel s doy/é returnl ! throwl (O] tryI

I catch

Business Rules

-8 MGColab Rule Properties
2 MOCollab
= zacuteBusinessRules Description: |rula
- @ retBoolsan
Rule:

{} set the queue access options e
A} [rlle getautbound().accessQueus{QueueName) ;I
-z return

B userInitialize
=% userTerminate

Documentation:

L

=

7 In the Description field type access the queue. This description now displays as the
rule tag in the Business Rules pane.

8 Click the rule button to add another rule expression.

9 From the Destination Events pane, drag-and-drop MQPMO_NO_SYNCPOINT
under PMO into the Business Rules pane, Rules window. When prompted for type
of function to insert for this node select set. Place the curser between the last set of
parentheses and type true.

10 In the Description field type set the PutMessageOptions. This description now
displays as the rule tag in the Business Rules pane.

11 Click the rule button to add another rule expression.

12 From the Destination Events pane, drag-and-drop the writeString method under
Message, MsgBody into the Business Rules pane, Rules window. When prompted
for a stringValue type your message into the field. The value (message) can also be
dragged and dropped to the write calls as appropriate, or to the MsgBody data
node and call writeData.

e*Way Intelligent Adapter for MQSeries User’s Guide 81 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
Implementation (ETD) MQSeries (ETD) Sample Implementation Components
.
Figure 27 Collaboration Rules Editor — writeString
=% Collaboration Rules Editor - MQCollab {(Sandbox - Modified) - |EI|1|
File Edit Wiew Tools Help
[
™1 Source Events "1 Destination Events
[=1- ™12 trigger [Blob] readDecimald =@ ;I
E& Durnmy setiersion =%
skipBytes =S+
wirite =S [+
write =S [+
wirite =S [+
writeBoolean =+
writeByte =9
writeBytes =%.F
writeChar =%
writeChars =%
% publications writeDouble =%+
& subscriptions writeFloat =%+
& marshal writeInt =+
& unmarshal writeLong =S [+
S readProperty writeObject =% [+
[H-=writeProperty writeShart =@ [+
writeDecimal? =%+
writeDecimald =2+
writeDecimald =+
writeUTF =%+
=]

13
14
15

16
17

{1} block] a‘methodl @ varl E5) far| if| £} rulel & switchl — casel 1 whilel {ha dol & r;kénl ! throwl [O)] tryT

I catch

Business Rules

-3 MCallsb Rule Properties
[+ MG Collab
=% executeBusinessRules Description: |ru|e

@ retBoolean

-1} setthe queue access options

-1} access the queue

-1} setthe PutMessageOptions

-1} rule

- return

userInitialize

- userTerminate

Rule:

getoutbound}. getQueuel), getMessage() writeString(" This message :I
brought ta wou by the MQSeriesETD design team!")

=

Documentation:

L

In the Description field type write a string to the message.
Once more, click the rule button to add another rule expression.

From the Destination Events pane, drag-and-drop the putWithOptions method
into the Business Rules pane, Rules window.

In the Description field type put the message on the queue.

When all the business logic has been defined, the code can be compiled by selecting
Compile from the File menu. In order to compile the Collaboration that uses
MQSeriesETD.xsc, first add com.ibm.mgqjar to the User Classpath from Tools,
Options in the Collaboration Rules editor. The Save menu opens, provide a name
for the .xpr file. For the sample, use MQCollab.xpr. If the code compiles
successfully, the message Compile Completed appears. If the outcome is
unsuccessful, a Java Compiler error message appears. Once the compilation is
complete, save the file and exit the Collaboration Rules Editor.

e*Way Intelligent Adapter for MQSeries User’s Guide 82 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
Implementation (ETD) MQSeries (ETD) Sample Implementation Components

Figure 28 Collaboration Rules — Collaboration Rules Editor

2% Collaboration Rules Editor - MQCollab (Sandbox - Modified) - I:Ilﬂ
Fle Edt View Tools Help

L]

"2 Source Events ™12 Destination Events

% trigger [Blot] outhound [QueueManager] ™12 4

connectToQueueManager =%
selectjueuehanager =S
isQueueMarConnected =%...
getCharacterSet
getMaximumPriarity

commit ...

backout ...

queuedccessOptions LN
optionsCleardll <.
MOOO_INPUT_AS_(_DEF
MQOO_INPUT_SHARED
MQUO_INPUIT_EXCLUSIYE
MQUO_BROWSE

ME0D oUTRUT
MOO0_SAYE_ALL_CONTERT

[H-=BuriteProperty MGOO_ALTERNATE_LUSER_AUTHORITY ﬂ
wAnn Can_wr nircecmars mid

{} b\ockl -_‘methodl @ varl [ha} forl A iFl {} rulel B swwtchl — casel [ha} whi\el ka dol G returnl ! thruwl 0] tryl ! catchl

Business Rules
E-*7 MQColab Variable Properties =
[MQCollab
A} e
B executeBusinessRules

Description: |retBoo|ean

i@ petBoolean Name: |retBouIean
1] setthe queus access options Twe:lboolean d R
-{} access the queue r
w{} set the PutMessageOptions Array
~{} write a string to the message Initial Yalue: |true
3”.“ put the message on the queus Access Modifiers: public C protected C private ® (nong)
-4 rehurn)
B ugerlnitizlize Documentation:
-8 ugerTarminate ﬂ

4 4

18 Under the Collaboration Rules field in the Collaboration Rules Properties dialog
box, the path for the created .class file appears.

19 Under the Initialization file field, the path for the created .ctl file appears.
20 Click OK to close the Properties dialog box.
Note: For detailed information on creating Collaboration Rules using the Java
Collaboration Rules Editor see the e*Gate Integrator User’s Guide.
Creating the MQGetCollab Collaboration Rules

1 Click on the Create New Collaboration Rules button again. Name the new
Collaboration Rules MQGetCollab for this sample.

2 Double-click the new Collaboration Rules. The Services field defaults to Java. Enter
any required initialization string in the Initialization string field.

3 Select the Collaboration Mapping tab and create an instance and settings for the
following;

+ Instance Name — inbound_MQ

* ETD — MQSeriesETD.xsc

e*Way Intelligent Adapter for MQSeries User’s Guide 83 SeeBeyond Proprietary and Confidential

Chapter 8

Section 8.1

Implementation (ETD) MQSeries (ETD) Sample Implementation Components

* Mode — In
+ Trigger — select
+ Manual Publish — N/A

4 Create another instance and settings for the following:

¢ Instance Name — out

¢ ETD — DummyTrigger.xsc
+ Mode — Out

+ Trigger — N/A

+ Manual Publish — Clear

Figure 29 Collaboration Rules - Collaboration Mapping Properties

@ collaboration Rules - MGetCollab Properties o] x|
General I SubEctiptions I Fublications Collaboration Mapping |
I Instance Mame ETD I Mode | Trigger | Manual Publish
inbound_mG MaSeriesETD xac Fircd ...|In |7 EFIN
ot Dumimey Trigger Ksc Firc ...|Out i, |_
Add Instance | Remove Instance |
Cancel | Apply | Help |

Select the General tab. Under the Collaboration Rule field, select New. The
Collaboration Rules Editor opens. Expand to full size for optimum viewing,
expanding the Source and Destination Events as well.

Highlight retBoolean in the Business Rules pane.

Click the rule button on the Business Rules tool bar. A rule expression is added to
the business rules.

From the Source Events pane, drag-and-drop MQOO_INPUT_AS_Q_DEEF into the
Business Rules pane, Rules window. When prompted for type of function for this
node select set. Place the curser between the last set of parentheses and type true.

In the Description field type set the queue access options. This description now
displays as the rule tag in the Business Rules pane.

e*Way Intelligent Adapter for MQSeries User’s Guide 84 SeeBeyond Proprietary and Confidential

Chapter 8

Section 8.1

Implementation (ETD) MQSeries (ETD) Sample Implementation Components

10

11

12

13
14

15

16
17

18
19
20

21
22

Click the rule button on the Business Rules tool bar again. A rule expression is
added to the Business Rules pane under the previous rule.

From the Source Events pane, drag-and-drop the accessQueue method into the
Business Rules pane, Rules window. When prompted for the queueName type in
the name of the queue to which you have access.

In the Description field type access the queue. This description now displays as the
rule tag in the Business Rules pane.

Click the rule button to add another rule expression.

From the Source Events pane, drag-and-drop MQPMO_NO_SYNCPOINT under
PMO into the Business Rules pane, Rules window. When prompted for type of
function to insert for this node select set. Place the curser between the last set of
parentheses and type true.

In the Description field type set the PutMessageOptions if any. This description
now displays as the rule tag in the Business Rules pane.

Click the rule button to add another rule expression.

From the Source Events pane, drag-and-drop the getWithOptions method into the
Business Rules pane, Rules window.

In the Description field type Calling getWithOptions().
Click the rule button to add another rule expression.

From the Source Events pane, drag-and-drop the readData method under Message,
MsgBody into the Business Rules pane, Rules window.

In the Description field type Calling readData().

From the Source Events pane, drag-and-drop the Data method under Message,

MsgBody to Dummy in the Destination Events pane. A line appears between Data
and Dummy, and the created code appears in the Rule Properties, Rules window. If
necessary, edit the code in the Rule Properties, Rules window to appear as follows:

getout (). set Dumy(newSt ri ng(geti nbound_MY). get Queue()
. get Message() . get MsgBody().getData()))

e*Way Intelligent Adapter for MQSeries User’s Guide 85 SeeBeyond Proprietary and Confidential

Chapter 8
Implementation (ETD)

Figure 30 Collaboration Rules — Collaboration Rules Editor

Section 8.1
MQSeries (ETD) Sample Implementation Components

=% Collaboration Rules Editor - MQGetCollab {(Sandbox - Modified) 10 x|
File Edit Wiew Tools Help
#h
™12 Source Events "2 Destination Events
- i sQueueMgrionnected out [Blob]
=% getCharacterSet Crurnrny
= getMaimumPriority reset =@
B commit available =
backout nexk =
2 queueAccessOptions receive =B
accessOUeUE receive =3[+
@ queushlame send =@
. send =[x
rawinput =%
topic =&
publications =%
subscriptions =%
S marshal =@
= getWithOptions unmarshal
B put blab
= pubWithOptions readProperty
=% getCurrentDepth prophlame @
= getMaximumDepth writeProperty
= getMaximumMessagelength prophame @
propyalue @
=]
{} blockl =% rmethod|| @ var| |5 Far| W if| 4} rulel E swwtchl —+ casel [E5) whilel 5] dol & returnl ! throwl [0} tryl I catchl
Business Rules
=717 Hoercoleb =l

MQGetCollab
executeBusinessRules
-~ @ retBoolean
~{} set the queue access options
~{} Access the Queue
~{} set PutMessageOptions if any
~{'} Calling gethwithOptionsi)
~{} Calling readDatal)
~{} from MsgBody Data to Blob Data
- return

userInitialize

userTerminate

Description: |From MsgBody Data ko Blob Data
Rule:

igetouk(). setDummyinew String{getinbound _MGQ().getQueus().getMessage ;I

().getMsgBody () getData()))

Documentation:

=

==

=l

23 When all the business logic has been defined, the code can be compiled by selecting
Compile from the File menu. In order to compile the Collaboration that uses
MQSeriesETD.xsc, first add com.ibm.mgqjar to the User Classpath from Tools,
Options in the Collaboration Rules editor. The Save menu opens, provide a name
for the .xpr file. For the sample, use MQGetCollab.xpr. If the code compiles
successfully, the message Compile Completed appears. If the outcome is
unsuccessful, a Java Compiler error message appears. Once the compilation is
complete, save the file and exit the Collaboration Rules Editor.

24 Click OK to close the Properties dialog box.

Note:

For detailed information on creating Collaboration Rules using the Java

Collaboration Rules Editor see the e*Gate Integrator User’s Guide.

8110 Step Eight—Collaborations

Step eight in creating the ETD-based MQSeries e*Way is to create the Collaborations.

Collaborations are the components that receive and process Event Types, then forward
the output to other e*Gate components or an external component. Collaborations
consist of the Subscriber, which “listens” for Events of a known type (sometimes from a

e*Way Intelligent Adapter for MQSeries User’s Guide

SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
Implementation (ETD) MQSeries (ETD) Sample Implementation Components

given source), and the Publisher, which distributes the transformed Event to a specified
recipient.

Creating the Inbound_eWay Collaboration

1 Create another new Collaboration In the e*Gate Enterprise Manager, select the
Navigator's Components tab.

Open the host on which you want to create the Collaboration.
Select a Control Broker.

Select the Feeder e*Way to assign the Collaboration.

On the palette, click the Create New Collaboration button.

S G s~ W N

Enter the name of the new Collaboration, then click OK. (For the sample,
“FeederCollab”.)

Double-click the new Collaboration to edit its properties.

N

8 From the Collaboration Rules list, select the Collaboration Rules file that you
created previously. (For the sample, “crDataln”.)

9 In the Subscriptions area, click Add to define the input Event Types to which this
Collaboration will subscribe.

A From the Event Type list, select the Event Type that you previously defined
DummyTrigger.

B Select the Source from the Source list. In this case, it should be <External>.

10 In the Publications area, click Add to define the output Event Types that this
Collaboration will publish.

A From the Event Types list, select the Event Type that you previously defined
DummyTrigger.

B Select the publication Destination from the Destination list. In this case, it
should be queue.

C The Priority column will default to 5.

e*Way Intelligent Adapter for MQSeries User’s Guide 87 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
Implementation (ETD) MQSeries (ETD) Sample Implementation Components

Figure 31 Inbound e*Way Collaboration Properties

@ collaboration - FeederCollab Propetties i =] 55|

&(E) FeederCallab

Collaboration Rules:

IchataIn =] Newl Edit |

Subscriptions:

Event Type Source | Al |
MEE Duminy Trigger (Reguired) g <EXTERMAL = |
Publications:

Event Type gsﬂnaﬁon Priarity Al |
“’EE Dumimy Trigger el 5 |

s

Ok I Cancel | Apply | Help |

11 Click OK to close the Collaboration Properties window.

Creating the Multi Mode e*Way Collaboration

Two Collaboration will be created for the Multi-Mode e*Way MQGetCollab, and
colMQPutCollab.

Creating the MQGetCollab Collaboration
1 To create the MQGetCollab Collaboration, Select the MQ_Get e*Way.
2 On the palette, click the Create a New Collaboration button.

3 Enter the name of the new Collaboration, then click OK. (For this sample,
“MQGetCollab”.)

4 Double-click the new Collaboration to edit its properties. The Collaboration
Properties dialog box opens.

5 From the Collaboration Rules drop-down list box, select the Collaboration Rules
file that you created previously. For the sample use MQGetCollab.

6 In the Subscriptions field, click Add to define the input Event Types to which this
Collaboration will subscribe.

A From the Instance Name list, select the Instance Name that you previously
defined inbound_MQ.

B From the Event Type list, select the Event Type previously defined
GenericOutEvent.

C Select the Source from the Source list. In this case, it should be MQConn_Get.

e*Way Intelligent Adapter for MQSeries User’s Guide 88 SeeBeyond Proprietary and Confidential

Chapter 8
Implementation (ETD)

Section 8.1

MQSeries (ETD) Sample Implementation Components

7 In the Publications area, click Add to define the output Event Types that this
Collaboration will publish.

A From the Instance Name list, select the Instance Name previously defined out.

B From the Event Types list, select the Event Type named GenericOutEvent.

C Select the Destination from the Destination list. In this case, it should be

Queue.

D The Priority column will default to 5.

Figure 32 Collaboration Properties - MQGetCollab

¥ Collaboration - MQGetCollab Properties

&(‘g) MEGetCollab

=101 |

Collakoration Rules:

IMQGetCUIIab

Subscriptions:

=] Newl Edit |

Instance Mame

Event Type

| Addl

inbouncd_hQ

"’E GenericOutEvent

Publications:

Source
MConn_Get |

Instance Mame

Event Type

Priority Adld |

oLt

elm fromM

Crestination
Qe

5

4]

1>

o |

Cancel |

Apply | Help |

8 Click OK to close the Properties window.
Creating the MQPutCollab Collaboration

1 To create the MQPutCollab, repeat steps 1-6 above substituting the Collaboration

name to MQPutCollab.

2 In the Subscriptions field, click Add to define the input Event Types to which this
Collaboration will subscribe.

A From the Instance Name list, select the Instance Name that you previously

defined trigger.

B From the Event Type list, select the Event Type previously defined

DummyTrigger.

C Select the Source from the Source list. In this case, it should be FeederCollab.

3 In the Publications area, click Add to define the output Event Types that this
Collaboration will publish.

A From the Instance Name list, select the Instance Name previously defined

outbound.

e*Way Intelligent Adapter for MQSeries User’s Guide

89

SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
Implementation (ETD) MQSeries (ETD) Sample Implementation Components
B From the Event Types list, select the Event Type named GenericOutEvent.

C Select the Destination from the Destination list. In this case, it should be
MQConn_PutXA.

4 The Priority column will default to 5.
5 Click OK to close the Properties window.

8.1.11 Step Nine: Setting CLASSPATH Variable

The final step in creating and configuring the MQSeries e*Way is to set the IBM
MQSeries Java .jar files in the environment CLASSPATH variable. This includes the
following jar files.

\MQSeries\]Java\lib
\MQSeries\Java\lib\com.ibm.mq.jar
Also, for Windows, set the \MQSeries\Java\lib in your PATH.
For Unix, include /MQSeries/Java/lib in the library path as follows:
= Solaris: LD_LIBRARY_PATH
= HP-UX: SHLIB_PATH
= AIX: LIBPATH

If the CLASSPATH and PATH already exist, add the jar files to the existing PATH and
CLASSPATH.

Setting CLASSPATH variable on Windows
To set the jar files from java classes in classpath do the following:

1 Right-click My Computer and select Properties. The System Properties window
opens.

2 Select the Advanced tab and Click on Environment Variables. The Environment
Variables window opens.

3 Under System Variables click the New button.

4 In the New System Variable window type ClassPath in the Variable Name field. In
the Variable Value field type the absolute path for the first .jar file (See figure 12),
and click OK.

Figure 33 Setting Environment Variables

MNew System ¥ariable llil

Wariable Mame: I ClassPath

Wariable Value: | C:AMQSeries) Javalliblcom,ibrm.mg. jar

oK I Cancel |

5 Repeat steps 3 and 4 for each of the MQSeries jar files.

e*Way Intelligent Adapter for MQSeries User’s Guide 90 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
Implementation (ETD) MQSeries (ETD) Sample Implementation Components

6 Under System Variables click the New button.

7 In the New System Variable window type Path in the Variable Name field. In the
Variable Value field type the absolute path for \MQSeries\Java\lib and click OK.

8 Click OK to close the Environment Variables window and the System Properties
window.

8112 Execute the Schema

To execute the schema, do the following;:
1 Go to the command line prompt, and enter the following:

stcch -rh hostnanme -rs schemaname -un usernanme -up user password
-l n host name_chb

Substitute hostname, schemaname, username and user password as appropriate.
2 Exit from the command line prompt, and start the e*Gate Monitor GUIL

3 When prompted, specify the hostname which contains the Control Broker you
started in Step 1 above.

4 Select the schema.

5 After you verify that the Control Broker is connected (the message in the Control
tab of the console will indicate command succeeded and status as up), highlight the
IQ Manager, hostname_igmgr, then right-click and select Start.

6 Highlight each of the e*Ways, right-click the mouse, and select Start.

s.1.13 Error Messages

If there is an error, such as a failed connection, an exception is thrown by the module
and logged to the error log file at egate/client/logs. The error log will appear similar to
the following:
11:59:34.091 EWY 111 (initialize.cxx:1035): Exception thrown: Failed to access queue:
MQRC_UNKNOWN_OBJECT_NAMEc
om.ibm.mq.MQException: MQJE001: Completion Code 2, Reason 2085
at com.ibm.mq.MQQueueManager.accessQueue(MQQueueManager.java:1151)
at com.ibm.mq.MQQueueManager.accessQueue(MQQueueManager.java:1196)
at com.stc.eways.MQSeriesETD.MQSeriesConnector.accessQueue(MQSeriesConnector.java:395)
at com.stc.eways.MQSeriesETD.MQSeriesETD.accessQueue(MQSeriesETD java:291)
at MQ_EMECollab.executeBusinessRules(MQ_EMECollab.java:106)
at com.stc.jcsre.JCollaboration.translate(JCollaboration.java:97)
at com.stc.common.collabService.JCCollabControllerImpl.
translate(JCCollabControllerImpl.java:1096
The reason code parameter or MQRG, in this case Reason 2085, appears in the first few
lines of the error log. This reason code can be used in conjunction with IBMs online

document, MQSeries Messages, Chapter 9 at:
http://www-903.ibm.com/board/attach_files/mqseries/k1005706457257_messages.pdf

The chapter lists reason codes, exceptions, the associated errors and the corrective
actions to take. For the above example, the MQRC appears as follows:

e*Way Intelligent Adapter for MQSeries User’s Guide 91 SeeBeyond Proprietary and Confidential

http://www-903.ibm.com/board/attach_files/mqseries/k1005706457257_messages.pdf

Chapter 8 Section 8.1
Implementation (ETD) MQSeries (ETD) Sample Implementation Components

2085 X'0825' |MQRC_UNKNOWN_OBJECT_NAME

An MQOPEN or MQPUTT1 call was issued, but the object identified by the
ObjectName and ObjectQMgrName fields in the object descriptor MQOD
cannot be found. One of the following applies:
" The ObjectQMgrName field is one of the following:
¢+ Blank
¢ The name of the local queue manager
¢ The name of a local definition of a remote queue (a queue-manager alias)
in which the RemoteQMgrName attribute is the name of the local queue
manager but no object with the specified ObjectName and ObjectType
exists on the local queue manager.
= The object being opened is a cluster queue that is hosted on a remote queue
manager, but the local queue manager does not have a defined route to the
remote queue manager.
" The object being opened is a queue definition that has QSGDISP(GROUP).
Such definitions cannot be used with the MQOPEN and MQPUTT calls.

Corrective action: Specify a valid object name. Ensure that the name is padded
to the right with blanks if necessary. If this is correct, check the queue
definitions.

e*Way Intelligent Adapter for MQSeries User’s Guide 92 SeeBeyond Proprietary and Confidential

Chapter 9
Java Methods (ETD)

The MQSeries e*Way contains Java methods that are used to extend the functionality of
the e*Way. These methods are contained in the following classes:

= MQSeriesETD Class

= GMO Class (GetMessageOptions)
= PMO Class (PutMessageOptions)
= Message Class

91 MQSeriesTD Class

MQSeriesETD class methods are located under the QueueManager node and Queue
node.

The MQSeriesETD class is defined as:

public class MXeriesETD

The MQSeriesETD class extends com.stc.jcsre.SimpleETDImpl and implements
com.stc.jcsre.ETD and com.stc.jcsre. ETDConstants.

Methods of the MQSeriestTD class

These methods are described in detail on the following pages

connectToQueueManager() on page 94 get() on page 98

selectQueueManager() on page 94 getWithOptions() on page 98
isQueueMgrConnected() on page 95 put() on page 99

getCharacterSet() on page 95 putWithOptions() on page 99
getMaximumPriority() on page 96 getCurrentDepth() on page 99

commit() on page 96 getMaximumDepth() on page 100
backout() on page 96 getMaximumMessageLength() on page 100

queueAccessOptionsClearAll() on page 97 newMessage() on page 101

accessQueue() on page 97

e*Way Intelligent Adapter for MQSeries User’s Guide 93 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
Java Methods (ETD) MQSeriestTD Class

connectToQueueManager()
Description

Create a connection to the queue manager using the specified parameters. As a by-
product it also selects as the current queue manager. This should only be called in Non-
Transactional mode.

Note: A connection to the queue manager specified in the configuration is automatically
done. You need not call this method unless you want to connect to another queue
manager in the collaboration.

Syntax

public void connect ToQueueManager (Stri ng sQueueMyr Nane, String Host,
int Port, String Channel, String UserlD, String Pwd)

Parameters
Name Type Description

QueueMgrName java.lang.String The queue manager name.

Host The host on which the QM resides.

Port The port to which the host system
QM is listening.

Channel The channel to use.

UserlD The user’s ID - if no ID is needed,
leave blank.

Pwd The user password - if no password
is needed, leave blank.

Return Values
None
Throws

com.stc.common.collabService.CollabConnException

selectQueueManager()
Description

Select from one of the connected queue managers.
Syntax

public void sel ect QueueManager (j ava. |l ang. Stri ng queueMyr Nane)

e*Way Intelligent Adapter for MQSeries User’s Guide 94 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1

Java Methods (ETD) MQSeriestTD Class
Parameters
Name Type Description
queueMgrName java.lang.String The name of the queue manager to
select.

Return Values
None
Throws

com.stc.common.collabService.CollabConnException

isQueueMgrConnected()
Description

Determine if the current queue manager is still connected.
Syntax

public bool ean i sQueueMgr Connect ed()
Parameters

None
Return Values

boolean
Trueif still connected, otherwise false.

Throws

com.stc.jcsre.EBobConnectionException

getCharacterSet()

Description

Returns CCSID of the queue managers codeset for the currently selected queue
manager.

Syntax
public int getCharacterSet()

Parameters
None

Return Values
integer

Throws

com.stc.common.collabService.CollabConnException

e*Way Intelligent Adapter for MQSeries User’s Guide 95 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
Java Methods (ETD) MQSeriestTD Class

getMaximumPriority()

Description
Returns maximum message priority that can be handled by the queue manager.
Syntax
public int getMaximunPriority()

Parameters
None

Return Values
integer

Throws

com.stc.common.collabService.CollabConnException

commit()

Description

Commit the operations on the currently selected queue manager. Should only be called
in Non-XA mode.

Syntax

public void commit()

Parameters
None

Return Values
None

Throws

com.stc.common.collabService.CollabConnException

backout()

Description

Roll back the operations on the currently selected queue manager. Should only be called
in Non-XA mode.

Syntax

public void backout ()
Parameters

None

e*Way Intelligent Adapter for MQSeries User’s Guide 96 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
Java Methods (ETD) MQSeriestTD Class
Return Values
None
Throws

com.stc.common.collabService.CollabConnException

queueAccessOptionsClearAll()
Description

Clear all flags
Syntax

public queueAccessOptionsCl earAll ()
Parameters

None
Return Values
None

Throws

None

accessQueue()

Description

Access a queue on the current queue manager. This routes down to the accessQueue
method on the queue manager. The user can access more than one queue on the current
queue manager. For each new queue accessed, add the queue to an internal collection
so they can be selected by name later. See selectQueue(). In addition, this method also
sets that queue as the "current queue". This is similar to the concept of the current
queue manager.

Syntax
public void accessQueue(java.l ang. String queueNane)
Parameters
Name Type Description
queueName java.lang.String The name of the queue to access on
the current queue manager

Return Values
None
Throws

com.stc.common.collabService.CollabConnException

e*Way Intelligent Adapter for MQSeries User’s Guide 97 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
Java Methods (ETD) MQSeriestTD Class

selectQueue()

Description

Select from one of the previously accessed queues.

Syntax
public void sel ect Queue(java.l ang. Stri ng queueNane)
Parameters
Name Type Description
queueName java.lang.String The name of the queue to select

Return Values
None
Throws

com.stc.common.collabService.CollabConnException

get()
Description

Get a message off the queue using the default options.
Syntax

public void get()
Parameters

None
Return Values

None
Throws

com.stc.common.collabService.CollabConnException

getWithOptions()

Description
Get a message off the queue using the GetMesageOptions (GMO).
Syntax
public void getWthQptions()
Parameters

None

e*Way Intelligent Adapter for MQSeries User’s Guide 98 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
Java Methods (ETD) MQSeriestTD Class
Return Values
None
Throws

com.stc.common.collabService.CollabConnException

put()
Description

Put a message on the queue using the default options.
Syntax

public void put()
Parameters

None
Return Values
None

Throws

com.stc.common.collabService.CollabConnException

putWithOptions()

Description

Put a message on the queue using the PutMesageOptions (PMO).
Syntax

public void putWthQOptions()

Parameters

None
Return Values

None
Throws

com.stc.common.collabService.CollabConnException

getCurrentDepth()

Description

Get the number of messages currently in the queue.

e*Way Intelligent Adapter for MQSeries User’s Guide 99 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
Java Methods (ETD) MQSeriestTD Class
Syntax
public int getCurrentDepth()

Parameters
None

Return Values
integer

Throws

com.stc.common.collabService.CollabConnException

getMaximumDepth()

Description
Get the maximum number of messages that can exist on the current queue.
Syntax
public int getMaxi munDept h()

Parameters
None
Return Values

integer
The number of messages.

Throws

com.stc.common.collabService.CollabConnException

getMaximumMessagelLength()

Description
Get the maximum length of data that can exist in any one message on the current queue
Syntax

public int getMxi munmvessagelLengt h()
Parameters

None
Return Values

integer
The maximum size

Throws

com.stc.common.collabService.CollabConnException

e*Way Intelligent Adapter for MQSeries User’s Guide 100 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Java Methods (ETD) GMO Class

newMessage()

Description

Destroy then recreate the Message object. After doing a get, this must be called first,
before doing another get. (See The newMessage Method on page 52.)

Syntax
public void newMessage()

Parameters
None

Return Values
None

Throws

None

92 GMO Class

GMO class methods are located under the Queue node.
The GMO class is defined as:

public class GVO
com.stc.eways.MQSeriesETD.GMO

Methods of the GMO class

These methods are described in detail on the following pages:

optionsClearAll() on page 101 setUnlimitedWait() on page 102
setWaitValue() on page 102 matchOptionsClearAll() on page 103
optionsClearAll()
Description
Clear all option flags.
Syntax
public void optionsC earAll()
Parameters
None

e*Way Intelligent Adapter for MQSeries User’s Guide 101 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Java Methods (ETD) GMO Class

Return Values
None
Throws

None

setWaitValue()

Description

Specify a specific number of milliseconds to wait.

Syntax
public void setWitValue(int v)
Parameters
Name Type Description
v integer the number of milliseconds

Return Values
None
Throws

None

setUnlimitedWait()

Description
Set the wait time to MQWI_UNLIMITED.
Syntax

public void setUnlinitedWit()
Parameters

None
Return Values

None
Throws

None

e*Way Intelligent Adapter for MQSeries User’s Guide 102 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.3
Java Methods (ETD) PMO Class

matchOptionsClearAll()
Description

Clear all match options flags set so far and set match options to MOQMO_NONE.
Syntax

public void matchQOptionsC earAll ()
Parameters

None
Return Values

None
Throws

None

935 PMO Class

PMO class methods are located under the Queue node
The PMO class is defined as:

public class GVO
com.stc.eways.MQSeriesETD.PMO

Methods of the PMO class

These methods are described in detail on the following pages:

optionsClearAll() on page 101

94 Message Class

Message class methods are located under the Message node.
The Message class is defined as:

public class Message
com.stc.eways.MQSeriesETD.Message

Methods of the Message class
These methods are described in detail on the following pages:

getTotalMessageLength () on page 104 readUInt2 () on page 115

e*Way Intelligent Adapter for MQSeries User’s Guide 103 SeeBeyond Proprietary and Confidential

Section 9.4

Chapter 9
Message Class

Java Methods (ETD)

getMessageLength () on page 105 readString () on page 115

getDataLength () on page 105
seek () on page 106
setDataOffset () on page 106
getDataOffset () on page 107
clearMessage () on page 107
getVersion () on page 107
resizeBuffer () on page 108
readBoolean () on page 108
readChar () on page 109
readDouble () on page 109
readFloat () on page 109
readFully () on page 110
readInt () on page 111
readInt4 () on page 111
readLine () on page 111
readLong () on page 112
readInt8 () on page 112
readObject () on page 113
readShort () on page 113
readInt2 () on page 113
readUTF () on page 114

readDecimal2 () on page 116
readDecimal4 () on page 116
readDecimal8 () on page 117
setVersion () on page 117
skipBytes () on page 118
write () on page 118
writeBoolean () on page 119
writeByte () on page 119
writeBytes () on page 120
writeChar () on page 120
writeChars () on page 121
writeDouble () on page 121
writeFloat () on page 122
writeInt () on page 122
writeLong () on page 123
writeObject () on page 123
writeShort () on page 124
writeDecimal2 () on page 124
writeDecimal4 () on page 125
writeDecimal8 () on page 125
writeUTF () on page 126

readUnsignedByte () on page 114 writeString () on page 126

readUnsignedShort () on page 115

getTotalMessagelength ()
Description

If MQQueue.get() fails with a message-truncated error code, report the total number of
bytesin the stored message on the queue.

Syntax

public int getTotal MessagelLength()
Parameters

None

e*Way Intelligent Adapter for MQSeries User’s Guide 104 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class

Return Values

integer
The number of bytes of the message as stored on the message queue

Throws

None

getMessagelength ()
Description
Report the total number of bytes in the stored message on the queue.
Syntax
public int get MessagelLength()

Parameters
None

Return Values
None

Throws

com.stc.common.collabService.CollabConnException

getDatalength ()

Description
Report the number of bytes of data remaining to be read in the message.
Syntax

public int getDatalLength()
Parameters

None
Return Values

integer
The number, in bytes, of message data remaining to be read.

Throws

com.stc.common.collabService.CollabConnException

e*Way Intelligent Adapter for MQSeries User’s Guide 105 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class

seek ()

Description

Relocate the cursor to the absolute position in the message buffer given by pos.
Following reads and writes will act at this position in the buffer.

Syntax
public void seek(int pos)
Parameters
Name Type Description
pos integer Gives the absolute position in the
message buffer.

Return Values
None
Throws

com.stc.common.collabService.CollabConnException

setDataOffset ()

Description

Relocate the cursor to the absolute position in the message buffer. setDataOffset () is
equivalent to seek(), allowing for cross-language compatibility with the other MQSeries

APls.
Syntax
public void setDataOffset(int offset)
Parameters
Name Type Description
offset integer Gives the absolute position in the
message buffer.

Return Values
None
Throws

com.stc.common.collabService.CollabConnException

e*Way Intelligent Adapter for MQSeries User’s Guide 106 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class

getDataOffset ()

Description

Return the current position of the cursor within the message, that is the point at which
read and write operations take effect.

Syntax
public int getDataCfset()

Parameters
None
Return Values

Integer
The current cursor position.

Throws

com.stc.common.collabService.CollabConnException

clearMessage ()

Description
Discard data in the message buffer and reset the data offset to zero.
Syntax

public void cl ear Message()

Parameters
None

Return Values
None

Throws

com.stc.common.collabService.CollabConnException

getVersion ()
Description

Return the version of the current structure.
Syntax

public int getVersion()
Parameters

None

e*Way Intelligent Adapter for MQSeries User’s Guide 107 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
Return Values
integer
The version of the structure in use.
Throws

None

resizeBuffer ()

Description

Clue the MQMessage object as to the size of buffer that may be necessary for
subsequent get operations. When a message contains message data, and the new size is
less than the current size, the message data is truncated.

Syntax
public void resizeBuffer(int size)
Parameters
Name Type Description
size integer The size of the buffer

Return Values

integer
The new message size.

Throws

com.stc.common.collabService.CollabConnException

readBoolean ()

Description
Read a (signed) byte from the present position in the message buffer.
Syntax

publ i ¢ bool ean readBool ean()

Parameters
None
Return Values

boolean
A byte from the current position in the message buffer

Throws

com.stc.common.collabService.CollabConnException

e*Way Intelligent Adapter for MQSeries User’s Guide 108 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class

readChar ()

Description
Read a Unicode character from the present position in the message buffer.
Syntax
public char readChar ()

Parameters
None
Return Values

character
Unicode character from the current position in the message bulffer.

Throws

com.stc.common.collabService.CollabConnException

readDouble ()

Description

Read a double from the present position in the message buffer. Actions are determined
by the value of the encoding member variable. MQC.MQENC_FLOAT_S390 reads a
System /390 format floating point number. MQC.MQENC_FLOAT_IEEE_NORMAL
and MQC.MQENC_FLOAT_IEEE_REVERSED read IEEE standard doubles in big-
endian and little-endian formats respectively.

Syntax
publ i c doubl e readDoubl e()

Parameters
None

Return Values
double

Throws

com.stc.common.collabService.CollabConnException

readFloat ()

Description

Read a float from the present position in the message buffer. Actions are determined by
the value of the encoding member variable. MQC.MQENC_FLOAT_S390 reads a
System /390 format floating point number. MQC.MQENC_FLOAT_IEEE_NORMAL
and MQC.MQENC_FLOAT_IEEE_REVERSED read IEEE standard floats in big-endian
and little-endian formats respectively.

e*Way Intelligent Adapter for MQSeries User’s Guide 109 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
Syntax

public float readFl oat()
Parameters

None
Return Values
fl oat

Throws

com.stc.common.collabService.CollabConnException

readFully ()
Description
Fill the byte array b with data from the message buffer.

Fill len elements of the byte array b with data from the message buffer, starting at offset
off.
Syntax

public void readFully(byte b[])
public void readFul l y(byte b[], int off, int len)

Parameters
Name Type Description
bl byte Fill the byte array b with data from
the message buffer.
Name Type Description
bl byte Fill the byte array b with data from
the message buffer.
off integer Start fill at offset off.
len integer Fill len elements of the byte array b
with data from the message buffer.

Return Values
None
Throws

com.stc.common.collabService.CollabConnException

e*Way Intelligent Adapter for MQSeries User’s Guide 110 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class

readInt ()

Description

Read an integer from the present position in the message buffer. Actions are
determined by the value of the encoding member variable. A value of
MQC.MQENC_INTEGER_NORMAL reads a big-endian integer, a value of
MQC.MQENC_INTEGER_REVERSED reads a little-endian integer.

Syntax

public int readlnt()
Parameters

None
Return Values

integer
An integer from the current position in the message buffer

Throws

com.stc.common.collabService.CollabConnException

readInt4 ()
Description
Equivalent to readint(), provided for cross-language MQSeries APl compatibility.
Syntax
public int readl nt4()

Parameters
None
Return Values

integer
An integer from the current position in the message buffer

Throws

com.stc.common.collabService.CollabConnException

readLine ()

Description

Converts from the codeset defined in the characterSet member variable to Unicode,
then reads in a line that has been terminated by \n, \r, \r\n, or EOF.

Syntax
public String readLi ne()

e*Way Intelligent Adapter for MQSeries User’s Guide 111 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
Parameters
None
Return Values
String
Throws

com.stc.common.collabService.CollabConnException

readLong ()

Description

Read a long from the present position in the message buffer. Actions are determined by
the value of the encoding member variable. A value of
MQC.MQENC_INTEGER_NORMAL reads a big-endian long, a value of
MQC.MQENC_INTEGER_REVERSED reads a little-endian long.

Syntax
public I ong readLong()

Parameters
None

Return Values
long

Throws

com.stc.common.collabService.CollabConnException

readint8 ()
Description
Equivalent to readlong(), provided for cross-language MQSeries APl compatibility.

Syntax
public int readlnt8()

Parameters
None

Return Values
long

Throws

com.stc.common.collabService.CollabConnException

e*Way Intelligent Adapter for MQSeries User’s Guide 112 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class

readObject ()

Description

Read an object, its class, class signature, and the value of the non-transient and non-
static fields of the class.

Syntax
public Object readObject()

Parameters
None

Return Values
Object

Throws

com.stc.common.collabService.CollabConnException

readShort ()

Description

Read a short from the present position in the message buffer. Actions are determined by
the value of the encoding member variable. A value of
MQC.MQENC_INTEGER_NORMAL reads a big-endian short, a value of
MQC.MQENC_INTEGER_REVERSED reads a little-endian short.

Syntax
public short readShort ()

Parameters
None

Return Values
Short

Throws

com.stc.common.collabService.CollabConnException

readInt2 ()

Description
Equivalent to readshort(), provided for cross-language MQSeries APl compatibility.
Syntax
public short readl nt2()

e*Way Intelligent Adapter for MQSeries User’s Guide 113 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
Parameters
None
Return Values
short
Throws

com.stc.common.collabService.CollabConnException

readUTF ()

Description

Read a UTF string, prefixed by a 2-byte length field, from the present position in the
message buffer.

Syntax
public String readUTF(Q)

Parameters
None

Return Values
String

Throws

com.stc.common.collabService.CollabConnException

readUnsignedByte ()
Description

Read an unsigned byte from the present position in the message buffer.
Syntax

public int readUnsi gnedByte()
Parameters

None
Return Values
integer

Throws

com.stc.common.collabService.CollabConnException

e*Way Intelligent Adapter for MQSeries User’s Guide 114 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class

readUnsignedShort ()

Description

Read an unsigned short from the present position in the message buffer. Actions are
determined by the value of the encoding member variable. A value of
MQC.MQENC_INTEGER_NORMAL reads a big-endian unsigned short, a value of
MQC.MQENC_INTEGER_REVERSED reads a little-endian unsigned short.

Syntax

public int readUnsi gnedShort ()
Parameters

None
Return Values
integer

Throws

com.stc.common.collabService.CollabConnException

readUInt2 ()

Description

Equivalent to readUnsignedShort(), provided for cross-language MQSeries API
compatibility.

Syntax
public int readU nt2()

Parameters
None

Return Values
integer

Throws

com.stc.common.collabService.CollabConnException

readString ()

Description

Read a string in the codeset defined by the characterSet member variable. Convert the
string into Unicode.

Syntax
public String readString(int |ength)

e*Way Intelligent Adapter for MQSeries User’s Guide 115 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class

Parameters
Name Type Description
length integer The number of characters to read
(not the same as the number of
bytes)

Return Values
String
Throws

com.stc.common.collabService.CollabConnException

readDecimal2 ()

Description

Read a 2-byte packed decimal number (-999 to 999). Actions are determined by the
value of the encoding member variable. A value of
MQC.MQENC_DECIMAL_NORMAL reads a big-endian packed decimal number, and
a value of MQC.MQENC_DECIMAL_REVERSED reads a little-endian packed decimal
number.

Syntax
public short readDecimal2()

Parameters
None

Return Values
short

Throws

com.stc.common.collabService.CollabConnException

readDecimal4 ()

Description

Read a 4-byte packed decimal number (9999999 to 9999999). Actions are determined
by the value of the encoding member variable. A value of
MQC.MQENC_DECIMAL_NORMAL reads a big-endian packed decimal number, and
a value of MQC.MQENC_DECIMAL_REVERSED reads a little-endian packed decimal
number.

Syntax

public int readDeci mal 4()

e*Way Intelligent Adapter for MQSeries User’s Guide 116 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
Parameters
None
Return Values
integer
Throws

com.stc.common.collabService.CollabConnException

readDecimal8 ()

Description
Read a 8-byte packed decimal number (-999999999999999 to 999999999999999).

Actions are determined by the value of the encoding member variable. A value of
MQC.MQENC_DECIMAL_NORMAL reads a big-endian packed decimal number, and
a value of MQC.MQENC_DECIMAL_REVERSED reads a little-endian packed decimal
number.

Syntax
public |l ong readDeci mal 8()

Parameters
None

Return Values
long

Throws

com.stc.common.collabService.CollabConnException

setVersion ()

Description

Sets the version of the structure to be used. Values may include
MQC.MOMD_VERSION_1 or MQC.MQMD_VERSION_2. This method is used when it
is necessary to force a client to use a version 1 structure when connected to a queue
manager that is able to handling version 2 structures. In all other situations, the client
determines the correct version by querying the queue manager's capabilities.

Syntax
public void setVersion(int version)
Parameters
Name Type Description
version integer The version number

e*Way Intelligent Adapter for MQSeries User’s Guide 117 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
Return Values
String
Throws

None

skipBytes ()
Description

Advance n bytes in the message buffer. Block until all the bytes are skipped, the end of
message buffer is detected, or an exception is thrown.

Syntax
public int skipBytes(int n)
Parameters
Name Type Description
n integer Move forward n bytes in the
message buffer.

Return Values

integer
Returns the number of bytes skipped, which is aways n.

Throws

com.stc.common.collabService.CollabConnException

write ()
Description

Write a byte, an array of bytes, or a series of bytes into the message buffer at the present
position. len bytes will be written, taken from offset off in the array b.

Syntax
public void wite(int b)

public void wite(byte b[])
public void wite(byte b[], int off, int len)

Parameters
Name Type Description
b integer The number of characters to read
(not the same as the number of
bytes)

e*Way Intelligent Adapter for MQSeries User’s Guide 118 SeeBeyond Proprietary and Confidential

Chapter 9
Java Methods (ETD)

Section 9.4
Message Class

Name Type Description
b[] byte The number of characters to read
(not the same as the number of
bytes)
Name Type Description
b[] byte The number of characters to read
(not the same as the number of
bytes)
off integer The offset in the array
len integer The number of bytes to be written

Return Values
None
Throws

com.stc.common.collabService.CollabConnException

writeBoolean ()

Description

Write a boolean into the message buffer at the present position.

Syntax
public void witeBool ean(bool ean v)
Parameters
Name Type Description
v boolean The boolean value

Return Values
None
Throws

com.stc.common.collabService.CollabConnException

writeByte ()
Description
Write a byte into the message buffer at the present position.
Syntax
public void witeByte(int v)

e*Way Intelligent Adapter for MQSeries User’s Guide 119 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4

Java Methods (ETD) Message Class
Parameters
Name Type Description
v integer The number of characters to read
(not the same as the number of
bytes)

Return Values
None
Throws

com.stc.common.collabService.CollabConnException

writeBytes ()

Description

Writes the string to the message buffer as a sequence of bytes. Each character is written
out in sequence by discarding its high eight bits.

Syntax
public void witeBytes(String s)
Parameters
Name Type Description
s String The string of bytes.

Return Values
None
Throws

com.stc.common.collabService.CollabConnException

writeChar ()

Description

Write a Unicode character into the message buffer at the present position.

Syntax
public void witeChar(int v)
Parameters
Name Type Description
v integer The unicode value.

e*Way Intelligent Adapter for MQSeries User’s Guide 120 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
Return Values
None
Throws

com.stc.common.collabService.CollabConnException

writeChars ()

Description

Write a string as a sequence of Unicode characters into the message buffer at the current
position.

Syntax
public void witeChars(String s)

Parameters

Name Type Description

s String The string value.

Return Values
None
Throws

com.stc.common.collabService.CollabConnException

writeDouble ()

Description

Write a double into the message buffer at the present position. The actions of this
method are determined by the value of the encoding member variable.

A Value of MQC.MQENC_FLOAT_IEEE_NORMAL or
MQC.MQENC_FLOAT_IEEE_REVERSED write IEEE standard floats in big-endian and
little-endian formats respectively.

A value of MQC.MQENC_FLOAT_S390 writes a System /390 format floating point
number. The range of IEEE doubles is greater than the range of S/390 double precision
floating point numbers. Very large numbers cannot be converted.

Syntax

public void writeDouble(double v)

e*Way Intelligent Adapter for MQSeries User’s Guide 121 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class

Parameters
Name Type Description
\Y double The number of characters to read
(not the same as the number of
bytes)

Return Values
None
Throws

com.stc.common.collabService.CollabConnException

writeFloat ()

Description

Write a float into the message buffer at the present position. The actions of this method
are determined by the value of the encoding member variable.

A Value of MQC.MQENC_FLOAT_IEEE_NORMAL or
MQC.MQENC_FLOAT_IEEE_REVERSED write IEEE standard floats in big-endian and
little-endian formats respectively.

A value of MQC.MQENC_FLOAT_S390 will write a System /390 format floating point

number.
Syntax
public void witeFl oat (fl oat v)
Parameters
Name Type Description
length integer The float value

Return Values
None
Throws

com.stc.common.collabService.CollabConnException

writelnt ()

Description

Write an integer into the message buffer at the present position. The actions of this
method are determined by the value of the encoding member variable.

e*Way Intelligent Adapter for MQSeries User’s Guide 122 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class

A value of MQC.MQENC_INTEGER_NORMAL writes a big-endian integer. A value of
MQC.MQENC_INTEGER_REVERSED writes a little-endian integer.

Syntax
public void witelnt(int v)
Parameters
Name Type Description
v integer The float value

Return Values
None
Throws

com.stc.common.collabService.CollabConnException

writeLong ()

Description

Write a long into the message buffer at the present position. The actions of this method
are determined by the value of the encoding member variable.

A value of MQC.MQENC_INTEGER_NORMAL writes a big-endian long. A value of
MQC.MQENC_INTEGER_REVERSED writes a little-endian long.

Syntax
public void witelLong(long v)
Parameters
Name Type Description
v long The long value

Return Values
None
Throws

com.stc.common.collabService.CollabConnException

writeObject ()

Description

Write the specified object, object class, class signature, and the values of the non-
transient and non-static fields of the class and all its supertypes.

e*Way Intelligent Adapter for MQSeries User’s Guide 123 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class

Syntax
public void witeQbject(Object obj)
Parameters
Name Type Description
obj object The object value

Return Values
None
Throws

com.stc.common.collabService.CollabConnException

writeShort ()

Description

Write a short into the message buffer at the present position. The actions of this method
are determined by the value of the encoding member variable.

A value of MQC.MQENC_INTEGER_NORMAL writes a big-endian short. A value of
MQC.MQENC_INTEGER_REVERSED writes a little-endian short.

Syntax
public void writeShort(int v)
Parameters
Name Type Description
v integer The integer value

Return Values
None
Throws

com.stc.common.collabService.CollabConnException

writeDecimal2 ()

Description

Write a 2-byte packed decimal format number into the message buffer at the present
position. The actions of this method are determined by the value of the encoding
member variable.

A value of MQC.MQENC_DECIMAL_NORMAL writes a big-endian packed decimal.
A value of MQC.MQENC_DECIMAL_REVERSED writes a little-endian packed
decimal.

e*Way Intelligent Adapter for MQSeries User’s Guide 124 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4

Java Methods (ETD) Message Class
Syntax
public void witeDeci mal 2(short v)
Parameters
Name Type Description
v short The 2-byte decimal value.

Return Values
None
Throws

com.stc.common.collabService.CollabConnException

writeDecimal4 ()

Description

Write a 4-byte packed decimal format number into the message buffer at the present
position. The actions of this method are determined by the value of the encoding
member variable.

A value of MQC.MQENC_DECIMAL_NORMAL writes a big-endian packed decimal.
A value of MQC.MQENC_DECIMAL_REVERSED writes a little-endian packed

decimal.
Syntax
public void writeDecimal4(int v)
Parameters
Name Type Description
v integer The 4-byte decimal value.

Return Values
None
Throws

com.stc.common.collabService.CollabConnException

writeDecimal8 ()

Description

Write an 8-byte packed decimal format number into the message buffer at the present
position. The actions of this method are determined by the value of the encoding
member variable.

e*Way Intelligent Adapter for MQSeries User’s Guide 125 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class

A value of MQC.MQENC_DECIMAL_NORMAL writes a big-endian packed decimal.
A value of MQC.MQENC _DECIMAL_REVERSED writes alittle-endian packed

decimal.
Syntax
public void writeDecimal8(long v)
Parameters
Name Type Description
v long The 8-byte decimal value.

Return Values
None
Throws

com.stc.common.collabService.CollabConnException

writeUTF ()

Description

Write a UTF string, prefixed by a 2-byte length field, into the message buffer at the
present position.

Syntax
public void writeUTF(String str)
Parameters
Name Type Description
str String The string value

Return Values
None
Throws

com.stc.common.collabService.CollabConnException

writeString ()

Description

Write a string into the message buffer at the present position, converting it to the
codeset identified by the characterSet member variable.

Syntax
public void witeString(String str)

e*Way Intelligent Adapter for MQSeries User’s Guide 126 SeeBeyond Proprietary and Confidential

Chapter 9
Java Methods (ETD)

Parameters

Section 9.4
Message Class

Name

Type

Description

str

String

The string value

Return Values
None

Throws

com.stc.common.collabService.CollabConnException

e*Way Intelligent Adapter for MQSeries User’s Guide

127

SeeBeyond Proprietary and Confidential

Appendix A

Appendix A (JMS)

95 Mapping Between JMS Standard Header Items and
MQSeries Header Fields

JMS Standard header items and their equivalent MQSeries header fields can be set
using the Collaboration Rules Editor. For information on mapping between JMS header
items and MQSeries header fields see IBM MQSeries online documentation at: http://
www-4.ibm.com/software/ts/mqseries/library/manual01/csqzaw07/
csqzaw07tfrm.htm

Table 20, at the above Web site shows how JMS header fields are used to set or get
MQSeries header fields (only some of which are available using this procedure). The
Collaboration Rules Editor sets the header properties by calling readProperty() or
writeProperty(). To map these properties do the following;:

1 In the Collaboration Rules Editor, click rule on the Business Rules toolbar to create a
rule at the appropriate place. Select the new rule.

2 Form the Source Events or Destination Events panes, drag-and-drop readProperty
into the Rule Properties, Rules window(seeFigure 34).

e*Way Intelligent Adapter for MQSeries User’s Guide 128 SeeBeyond Proprietary and Confidential

http://www-4.ibm.com/software/ts/mqseries/library/manual01/csqzaw07/csqzaw07tfrm.htm
http://www-4.ibm.com/software/ts/mqseries/library/manual01/csqzaw07/csqzaw07tfrm.htm

Appendix A
Appendix A (JMS)

Section 9.5
Mapping Between JMS Standard Header Items and MQSeries Header Fields

Figure 34 Collaboration Rules Editor

Z& Collaboration Rules Editor - J0utCollab {Sandbox - Modified})
File Edit Yiew Tools Help

g [l

i

"2 Source Events

E1™1% inst_in [rest]
- ElFieldl

|»

-2 getTest

[#-=% unmarshal
’_ [+ readProperty
LI [+ writeProperty

1% Destination Events

setFigld] =3[+ -
getTesk =S
setTest =@ [H

setTest =

receive =@
receive 2@

hal =S

[N =
@

1} block| =% method|

[ha

for

.A.

if

i1

rulel B switchI —

throw| (T3

&= return| |

catch

Business Rules

=13 J0utCallab

=B JoutCollab

B gxecuteBusinesshules
- retBoolean

A} copy rule

A} read MSReplyTo
A} rule

2= yeturn

“B userlnitislize

B userTerminate

Rule Properties

Description:
Irule

Rule:

s
=
i

3 A dialog box opens prompting for the property name. Enter the property as a string
with quotes. For example, “JMSDeliveryMode”. The following code displays in
the Rule Properties, Rule window:

getinst_out().readProperty(“JMsDel i veryMode”)
4 Click rule on the toolbar. A new rule expression appears in the Business Rules pane.

5 Form the Source Events or Destination Events panes, drag-and-drop writeProperty
into the Rule Properties, Rules window. A dialog box opens prompting for the
property name and the property value (see Figure 35).

e*Way Intelligent Adapter for MQSeries User’s Guide

129

SeeBeyond Proprietary and Confidential

Appendix A Section 9.5
Appendix A (JMS) Mapping Between JMS Standard Header Items and MQSeries Header Fields

Figure 35 Parameters for writeProperty()

=% Parameters for method: writeProperty() x|

Enter kext or drag a Field into the texthox

propldarne: I“‘JMSRBDWTD” jawva.lang, String

prop¥alue: |“OC Branch” java.lang, string

—Method details

Description: Creates a user-defined property Far Events in this ETD
inskance, Used in conjunckion with readPropertye(,
Together, these bwa methods allow vou to store daka
about an Event instance, outside of the Event itself, For
example, writeProperty() and readProperty() can be used
to store the name of the file containing the Event
instance, the date and time it was published, the name of
the publishing application, or even a checksum or
signature. They can also be used ta calculate and store
ke Fields used by Event Linking and Seguencing (ELS),
writeProperty(] is only applicable when using JM3 eWay
connections,

Returns: waid

[al'4 | Cancel | Help |

6 Enter the property as a string with quotes. For example, “JMSReplyTo” as the
property name, and “OC Branch” as the property value. The following code
appears in the Rule window:

getinst_out().witeProperty(“JMSRepl yTo”, “OC Branch”)

7 A description stating the purpose of this rule can be added in the Rule Properties,
Description field and will display in the Business Rules pane

Note: For detailed information on creating Collaboration Rules using the Java
Collaboration Rules Editor see the e*Gate Integrator User’s Guide.

e*Way Intelligent Adapter for MQSeries User’s Guide 130 SeeBeyond Proprietary and Confidential

Index

Index

A
Asynchronous Garbage Collection 19

C

CLASSPATH Append From Environment Variable
17
Classpath Override 17
CLASSPATH Prepend 17
CLASSPATH variables

for MQSeries jar files 46, 90
collaboration rules 37, 75
collaborations 42, 86

for the Multi-Mode e*Way 43, 88
Connection Type (JMS) 22
creating a new schema 29, 66

D
Disable JIT 19

E

e*Way Connection 33, 70
parameters 59
Connection Type (JMS) 22
Default Outgoing Message Type (JMS) 23
Factory Class Name (JMS) 23
Maximum Number of Bytes to read (JMS) 23
Transaction Type (JMS) 22
parameters (JMS) 21
e*Way connection configuration
JMS 21
e*Ways
creating and configuring 30, 66
Inbound e*Way 30, 67
Multi-Mode e*Way 33, 69, 70
Outbound e*Way 32
Error Messages 48
error messages 91
error log 91
MQRC 91
reason code 91
event type

e*Way Intelligent Adapter for MQSeries User’s Guide 131

from XSC 74
event types 35,72
external system requirements 10

G

Garbage Collection Activity Reporting 19
GMO Class 101
methods 101
matchOptionsClearAll 103
optionsClearAll 101
setUnlimitedWait 102
setWaitValue 102

H
Host Name (JMS) 24

IBM MQSeries jar files 46, 90
Initial Heap Size 18
installation 11

created files/directories 13

UNIX 13

Windows NT and 2000 11
installation procedure

Unix 13

Windows NT and 2000 11
intelligent queues 36, 75
intended reader 9

J

JNI DLL Absolute Pathname 16
JVM settings 15

M

MASS patch 10

Maximum Heap Size 18

Maximum Number of Bytes to read (JMS) 23

Message 103

Message Class 103

methods 103

clearMessage 107
getDataLength 105
getDataOffset 107
getMessageLength 105
getTotalMessageLength 104
getVersion 107
readBoolean 108
readChar 109

SeeBeyond Proprietary and Confidential

Index

readDecimal2 116
readDecimal4 116
readDecimal8 117
readDouble 109
readFloat 110
readFully 110
readInt 111
readInt2 113
readInt4 111
readInt8 112
readLine 111
readLong 112
readObject 113
readShort 113
readString 115
readUInt2 115

readUnsignedByte 114
readUnsignedShort 115

readUTF 114
resizeBuffer 108
seek 106
setDataOffset 106
setVersion 117
skipBytes 118
write 118
writeBoolean 119
writeByte 119
writeBytes 120
writeChar 120
writeChars 121
writeDecimal2 125
writeDecimal4 125
writeDecimal8 126
writeDouble 121
writeFloat 122
writelnt 123
writeLong 123
writeObject 124
writeShort 124
writeString 126
writeUTF 126

MQ_connl.cfg 34

MQRC 48

MQSeriesETD Class 93
methods 93

accessQueue 97
backout 96
commit 96

connectToQueueManager 94

getMaximumPriority 96
getWithOptions 98
isQueueMgrConnected 95
newMessage 101
put 99
putWithOptions 99
queueAccessOptionsClearAll 97
selectQueue 98
selectQueueManager 94
MQSeries]MS to a non-JMS conversant e*Way 29
Multi-Mode e*Way 15
configuration 15
parameters 15

N

Non-Transactional transaction type 59

O

Overview 8
overview
MQSeries 8
MQSeries e*Way 8
ETD-based 9
JMS-based 8

P

parameters
CLASSPATH Override 17
CLASSPATH prepend 17
Disable JIT 19
Initial Heap Size 18
JNIDLL absolute pathname 16
JVM settings 15
Maximum Heap Size 18
PATH settings for MQSeries]Java ib
for UNIX 46, 90
for Windows 46, 90
PMO Class 103
methods 103
OptionsClearAll 101
Port Number (JMS) 24
ptionsClearAll 101
publishing messages with MQSeries]MS to a non-
JMS e*Way 29

get 98 Q
ge:gharac:gse:}? i 00 Queue Manager Name 60
ggtMl::iiﬁurr?]gepth 100 Queue Manager Name (JMS) 24

getMaximumMessageLength 100

e*Way Intelligent Adapter for MQSeries User’s Guide 132 SeeBeyond Proprietary and Confidential

Index

R

readData 54

readFully 54

reason 91

reason code 48

Remote Debugging Port Number 19
Report JVM Info and all Class Loads 19

S

sample schema 47, 91
setting CLASSPATH variables 46, 90
for Windows 46, 90
Suspend Option for Debugging 20
system requirements
external system requirements 10
patches 10

T

Transaction Type 59
transaction type
Non-Transactional 59
XA-compliant. 59
Transaction Type (JMS) 22
Transport Type (JMS) 24

U

UNIX
installation 13

\\%

wait interval 62
wait timeout 62
Windows NT 11

X

XA 59
XA-compliant transaction type 59

e*Way Intelligent Adapter for MQSeries User’s Guide 133

SeeBeyond Proprietary and Confidential

	e*Way Intelligent Adapter for MQSeries User’s Guide
	Contents
	Introduction
	1.1 Overview
	1.1.1 MQSeries e*Way JMS and ETD
	1.1.2 Intended Reader

	1.2 Supported Operating Systems
	1.3 System Requirements
	1.4 External System Requirements

	Installation
	2.1 Windows�NT and Windows�2000
	2.1.1 Pre-installation
	2.1.2 Installation Procedure

	2.2 UNIX
	2.2.1 Pre-installation
	2.2.2 Installation Procedure

	2.3 Files/Directories Created by the Installation

	Multi-Mode e*Way Configuration
	3.1 Multi-Mode e*Way
	3.1.1 JVM Settings
	JNI DLL Absolute Pathname
	CLASSPATH Prepend
	CLASSPATH Override
	CLASSPATH Append From Environment Variable
	Initial Heap Size
	Maximum Heap Size
	Maximum Stack Size for Native Threads
	Maximum Stack Size for JVM Threads
	Class Garbage Collection
	Garbage Collection Activity Reporting
	Asynchronous Garbage Collection
	Report JVM Info and all Class Loads
	Disable JIT
	Remote Debugging Port Number
	Suspend Option for Debugging

	e*Way Connection Configuration (JMS)
	4.1 Configuring e*Way Connections
	4.1.1 General Settings
	Connection Type
	Transaction Type
	Delivery Mode
	Maximum Number of Bytes to read
	Default Outgoing Message Type
	Factory Class Name

	4.1.2 MQSeries
	Queue Manager Name
	Transport Type
	Host Name
	Port Number
	Channel
	The valid name of the channel.

	Implementation (JMS)
	5.1 MQSeries e*Way Implementation Overview
	5.2 MQSeries Sample Schema Components
	5.2.1 Step One: Creating the IBM MQSeries Queue
	5.2.2 Step Two: Installing the MQSeries e*Way and Creating a New Schema
	Implementing the Sample Schema on e*Gate 4.5.1

	5.2.3 Step Three–Creating and Configuring the e*Ways
	5.2.4 Step Four: Create the e*Way Connection (Includes Specifying the MQSeries Queue Manager)
	5.2.5 Step Five: Creating Event Types (Also Specifies MQSeries Queue)
	5.2.6 Step Six–Intelligent Queues
	5.2.7 Step Seven: Collaboration Rules
	5.2.8 Using the Collaboration Rules Editor
	5.2.9 Step Eight: Collaborations
	5.2.10 Step Nine: Setting CLASSPATH Variable
	5.2.11 Execute the Schema
	5.2.12 Error Messages

	ETD Overview
	6.1 The MQSeriesETD
	6.1.1 The QueueManager Node
	Current Queue Manager
	The queueAccessOptions Node
	Methods Under the QueueManager Node

	6.1.2 The Queue Node
	Current Queue
	Get and Put Methods
	The newMessage Method
	Methods Under the Queue Node

	6.1.3 The Message Node
	The MsgHeader Child Node
	The MsgBody Child Node
	Calling Read Methods
	The MQMessage Class
	Methods Under the Message Node

	6.1.4 Exception Handling

	e*Way Connection Configuration (ETD)
	7.1 Configuring e*Way Connections
	7.1.1 General Settings
	Transaction Type

	7.1.2 MQSeries
	Queue Manager Name
	Host Name
	Port Number
	Channel

	7.1.3 Connector
	type
	class
	Property.Tag

	7.1.4 Default GetMessageOptions
	Wait Timeout
	Wait Interval

	Implementation (ETD)
	8.1 MQSeries (ETD) Sample Implementation Components
	8.1.1 The MQSeries (ETD) Sample Schema
	8.1.2 Step One: Creating the IBM MQSeries Queue
	8.1.3 Step Two: Installing the MQSeries e*Way and Creating a New Schema
	Importing the Sample Schema
	Implementing the Sample Schema on e*Gate 4.5.1

	8.1.4 Step Three–Creating and Configuring the e*Ways
	8.1.5 Step Four: Create the e*Way Connection
	8.1.6 Step Five: Creating Event Types
	Creating an Event Types Using the Standard ETD Wizard
	Creating Event Types From an Existing XSC

	8.1.7 Step Six: Intelligent Queues
	To create and modify an Intelligent Queue for the MQSeries e*Way

	8.1.8 Step Seven: Collaboration Rules
	Creating Pass Through Collaboration Rules
	Creating Java Collaboration Rules

	8.1.9 Using the Collaboration Rules Editor
	8.1.10 Step Eight–Collaborations
	Creating the Inbound_eWay Collaboration
	Creating the Multi Mode e*Way Collaboration

	8.1.11 Step Nine: Setting CLASSPATH Variable
	8.1.12 Execute the Schema
	8.1.13 Error Messages

	Java Methods (ETD)
	9.1 MQSeriesETD Class
	Methods of the MQSeriesETD class

	9.2 GMO Class
	Methods of the GMO class

	9.3 PMO Class
	Methods of the PMO class

	9.4 Message Class
	Methods of the Message class

	Appendix A (JMS)
	9.5 Mapping Between JMS Standard Header Items and MQSeries Header Fields

	Index
	A
	C
	D
	E
	G
	H
	I
	J
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	X

