
SeeBeyond Proprietary and Confidential

e*Way Intelligent Adapter for
Oracle User’s Guide

Release 4.5.2

Monk Version

e*Way Intelligent Adapter for Oracle User’s Guide 2 SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBI, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 1999–2002 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20020214144336.

Contents

e*Way Intelligent Adapter for Oracle User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents

Chapter 1

Introduction 8
Using SQL 8

Intended Reader 9

Components 9

System Requirements 9
External System Requirements 10

Chapter 2

Installation 11
Installation Overview 11

Installation Decisions 11
Installing Client and Network Components on Windows 12

Installing the Oracle e*Way on Windows 12
Pre-installation 12
Installation Procedure 12
Files/Directories Created by the Installation 14

Installing the Oracle e*Way on UNIX 14
Pre-installation 14
Installation Procedure 14

Oracle Network Components 16
SQL*Net Configuration files 17
Testing the SQL*Net Configuration 19
Troubleshooting Checklist 19
Setting up the Shared Library Search Path 20
Creating the Oracle e*Way Database User Account 21

Chapter 3

Configuration 22
Configuration Overview 22

e*Way Configuration Parameters 22
General Settings 23

Contents

e*Way Intelligent Adapter for Oracle User’s Guide 4 SeeBeyond Proprietary and Confidential

Journal File Name 23
Max Resends Per Message 23
Max Failed Messages 24
Forward External Errors 24

Communication Setup 24
Start Exchange Data Schedule 24
Stop Exchange Data Schedule 25
Exchange Data Interval 25
Down Timeout 26
Up Timeout 26
Resend Timeout 26
Zero Wait Between Successful Exchanges 26

Monk Configuration 27
Basic e*Way Processes 28
How to Specify Function Names or File Names 34
Additional Path 35
Auxiliary Library Directories 35
Monk Environment Initialization File 35
Startup Function 36
Process Outgoing Message Function 37
Exchange Data with External Function 37
External Connection Establishment Function 38
External Connection Verification Function 39
External Connection Shutdown Function 39
Positive Acknowledgment Function 40
Negative Acknowledgment Function 40
Shutdown Command Notification Function 41

Database Setup 41
Database Type 41
Database Name 42
User Name 42
Encrypted Password 42

External Configuration Requirements 42
Configuring the Oracle Environment 42

Chapter 4

Implementation 43
Using the ETD Editor’s Build Tool 43

The Event Type Definition Files 46
Table or View 46
Dynamic SQL Statement 49
Stored Procedure 51

Sample One—Publishing e*Gate Events to an Oracle Database 53
Create the Schema 55
Create the Event Type Definitions 56
Add the Event Types 57
Create the Monk Scripts 58
Add and Configure the e*Ways 59
Add the IQs 61
Create the Collaboration Rules 61

Contents

e*Way Intelligent Adapter for Oracle User’s Guide 5 SeeBeyond Proprietary and Confidential

Add and Configure the Collaborations 62
Run the Schema 63

Sample Two—Polling from an Oracle Database 64
Create the Schema 67
Create the Event Type Definitions 67
Add the Event Types 68
Create the Monk Scripts 69
Add and Configure the e*Ways 71
Add the IQs 73
Create the Collaboration Rules 74
Add and Configure the Collaborations 74
Run the Schema 76

Chapter 5

Oracle e*Way Functions 78
Basic Functions 78

event-send-to-egate 79
get-logical-name 80
send-external-down 81
send-external-up 82
shutdown-request 83
start-schedule 84
stop-schedule 85

Standard e*Way Functions 86
db-stdver-conn-estab 87
db-stdver-conn-shutdown 89
db-stdver-conn-ver 90
db-stdver-data-exchg 92
db-stdver-data-exchg-stub 93
db-stdver-init 94
db-stdver-neg-ack 96
db-stdver-pos-ack 97
db-stdver-proc-outgoing 98
db-stdver-proc-outgoing-stub 100
db-stdver-shutdown 102
db-stdver-startup 103

General Connection Functions 104
connection-handle? 105
db-alive 106
db-commit 108
db-get-error-str 109
db-login 111
db-logout 113
db-max-long-data-size 114
db-rollback 115
db-std-timestamp-format 116
make-connection-handle 117
statement-handle? 118

Static SQL Functions 119
Static vs. Dynamic SQL Functions 119
Oracle SQL Type Support 122
db-sql-column-names 123
db-sql-column-types 125
db-sql-column-values 127

Contents

e*Way Intelligent Adapter for Oracle User’s Guide 6 SeeBeyond Proprietary and Confidential

db-sql-execute 129
db-sql-fetch 130
db-sql-fetch-cancel 131
db-sql-format 132
db-sql-select 134

Dynamic SQL Functions 135
db-stmt-bind 136
db-stmt-bind-binary 137
db-stmt-column-count 138
db-stmt-column-name 139
db-stmt-column-type 140
db-stmt-execute 141
db-stmt-fetch 142
db-stmt-fetch-cancel 143
db-stmt-param-assign 144
db-stmt-param-bind 145
db-stmt-param-count 146
db-stmt-param-type 147
db-stmt-row-count 148

Stored Procedure Functions 149
db-proc-bind 151
db-proc-bind-binary 152
db-proc-column-count 153
db-proc-column-name 155
db-proc-column-type 157
db-proc-execute 159
db-proc-fetch 161
db-proc-fetch-cancel 163
db-proc-max-records 164
db-proc-param-assign 165
db-proc-param-count 167
db-proc-param-io 169
db-proc-param-name 170
db-proc-param-type 171
db-proc-param-value 172
db-proc-return-exist 174
db-proc-return-type 176
db-proc-return-value 178

Message Event Functions 180
db-struct-bulk-insert 181
db-struct-call 182
db-struct-execute 183
db-struct-fetch 184
db-struct-insert 186
db-struct-select 188
db-struct-update 190

Sample Monk Scripts 192
Initializing Monk Extensions 193
Calling Stored Procedures 194
Inserting Records with Dynamic SQL Statements 196
Updating Records with Dynamic SQL Statements 198
Selecting Records with Dynamic SQL Statements 200
Deleting Records with Dynamic SQL Statements 202
Inserting a Binary Image to a Database 203
Retrieving an Image from a Database 206
Common Supporting Routines 208

Contents

e*Way Intelligent Adapter for Oracle User’s Guide 7 SeeBeyond Proprietary and Confidential

Index 211

e*Way Intelligent Adapter for Oracle User’s Guide 8 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

SeeBeyond™ developed the e*Way Intelligent Adapter for Oracle as a graphically-
configurable e*Way. The Oracle e*Way implements the logic that sends Events (data) to
e*Gate and queues the next Event for processing and transport to the database.

A Monk database access library is available to log into the database, issue Structured
Query Language (SQL) statements, and call stored procedures. The Oracle e*Way uses
Monk to execute user-supplied database access Monk scripts to retrieve information
from or send information to a database. The fetched data (information) can be returned
in a Monk Collaboration which simplifies the accessibility of each column in the
database table. This document describes how to install and configure the Oracle e*Way.

Note: For information on the Java-enabled e*Way Intelligent Adapter for Oracle, see the
e*Way Intelligent Adapter for Oracle User’s Guide (Java-enabled)—
Oracle_eWay_Java.pdf.

This Chapter Explains:

“Using SQL” on page 8

“Intended Reader” on page 9

“Components” on page 9

“System Requirements” on page 9

“External System Requirements” on page 10

1.1 Using SQL
The Oracle e*Way uses a Monk extension library to issue SQL statements. The library
contains functions to access the database and generate SQL statements. SQL is the
language used to communicate with the database server to access and manipulate data.
By populating a database with the data flowing through an integration engine, all the
information available to an integrated delivery network (IDN) is stored for evaluation.
This allows the Oracle e*Way to operate independently of the underlying DBMS
(database management system).

To access the database, you execute an SQL command, which is the American National
Standards Institute (ANSI) standard language for operating upon relational databases.

Chapter 1 Section 1.2
Introduction Intended Reader

e*Way Intelligent Adapter for Oracle User’s Guide 9 SeeBeyond Proprietary and Confidential

The language contains a large set of operators for defining and manipulating tables.
SQL statements can be used to create, alter, and drop tables from a database.

1.2 Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the e*Gate system; to have expert-level knowledge of
Windows 2000 (or Windows NT) and/or UNIX operations and administration; to be
thoroughly familiar with Oracle and to be thoroughly familiar with Windows-style
GUI operations.

1.3 Components
The Oracle e*Way is comprised of the following:

stcewgenericmonk.exe, the executable component

Configuration files, which the e*Way Editor uses to define configuration parameters

Monk external function scripts

e*Way Monk Functions

A complete list of installed files appears in Table 1 on page 14 and Table 2 on page 16.

1.4 System Requirements
The Oracle e*Way is available on the following operating systems:

Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

Windows NT 4.0 SP6a

Solaris 2.6, 7, and 8

AIX 4.3.3, 5.1

HP-UX 11.0 and HP-UX 11i

Japanese Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

Japanese Windows NT 4.0 SP6a

Japanese Solaris 2.6, 7, and 8

Japanese HP-UX 11.0

Korean Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

Korean Windows NT 4.0 SP6a

Chapter 1 Section 1.4
Introduction System Requirements

e*Way Intelligent Adapter for Oracle User’s Guide 10 SeeBeyond Proprietary and Confidential

Korean Solaris 8

Korean AIX 4.3.3

To use the Oracle e*Way, you need the following:

An e*Gate Participating Host, version 4.5 or later. For AIX operating systems, you
need an e*Gate Participating Host, version 4.5.1. or later.

A TCP/IP network connection.

The client components of the databases with which the e*Way interfaces have their own
requirements; see the appropriate client external documentation for more details.

1.4.1 External System Requirements
To enable the e*Way to communicate properly with the external system, the following
are required:

A database: Oracle 8i.

The Oracle client library must be installed on Windows 2000 or Windows NT to
utilize the build tool.

e*Way Intelligent Adapter for Oracle User’s Guide 11 SeeBeyond Proprietary and Confidential

Chapter 2

Installation

This chapter describes the procedures for installing the Oracle e*Way on both Windows
and UNIX systems. A list of the files and directories created by the installation are
included.

This Chapter Explains:

“Installation Overview” on page 11

“Installing the Oracle e*Way on Windows” on page 12

“Installing the Oracle e*Way on UNIX” on page 14

“Oracle Network Components” on page 16

2.1 Installation Overview
The installation procedure depends upon the operating system of the Participating
Host on which you are installing this e*Way. You must have Administrator privileges to
install this e*Way on either Windows or UNIX.

2.1.1 Installation Decisions
This section presents decisions to be made before beginning the installation. These
decisions apply to both UNIX and Windows:

1 The operating system/platform on which the Oracle e*Way will operate.

2 The database network software required to operate the Oracle e*Way.

SQL*Net8

Note: While the client version need not be the same as the server version it connects to,
specific additional Oracle products may require a corresponding Net8 or SQL *Net
release. Please refer to Oracle’s Net8 Quick Reference Card for more information.

3 The Oracle networking options to be installed.

On UNIX:

SQL*Net8

TCP/IP Protocol Adaptor

Chapter 2 Section 2.2
Installation Installing the Oracle e*Way on Windows

e*Way Intelligent Adapter for Oracle User’s Guide 12 SeeBeyond Proprietary and Confidential

On Windows:

SQL*Net8

TCP/IP Protocol Adapter

OCI (Oracle Call Interface)

Issue the following command to determine which version of SQL*Net is installed:

On UNIX:

echo $ORACLE_HOME
/opt/oracle/app/oracle/product/8.1.6

The output shows that SQL *Plus Version 8.1.6 is installed.

On Windows:

From Program Files, go to the directory where Oracle for Windows is installed.
If Plus80 appears, version 8.x.x is installed.

2.1.2 Installing Client and Network Components on Windows
The following Networking Options must be installed and configured before running
the Oracle e*Way:

The Oracle Client Oracle8i

SQL*Net8 for Oracle8i

TCP/IP Protocol Adapter

OCI (Oracle Call Interface)

Note: The Oracle e*Way requires a 32-bit version of the Oracle Client. The 64-bit Oracle
Client is not compatible with this e*Way.

2.2 Installing the Oracle e*Way on Windows

2.2.1 Pre-installation
1 Exit all Windows programs before running the setup program, including any anti-

virus applications.

2 You must have Administrator privileges to install this e*Way.

2.2.2 Installation Procedure
To install the Oracle e*Way on a Windows system

1 Log in as an Administrator on the workstation on which you want to install the
e*Way.

Chapter 2 Section 2.2
Installation Installing the Oracle e*Way on Windows

e*Way Intelligent Adapter for Oracle User’s Guide 13 SeeBeyond Proprietary and Confidential

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s “Autorun” feature is enabled, the setup application should
launch automatically; skip ahead to step 4. Otherwise, use the Windows Explorer or
the Control Panel’s Add/Remove Applications feature to launch the file setup.exe
on the CD-ROM drive.

4 The InstallShield setup application will launch. Follow the on-screen instructions to
install the e*Way.

Note: Be sure to install the e*Way files in the suggested “client” installation directory. The
installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not
change the suggested “installation directory” setting.

5 After the installation is complete, exit the install utility and launch the Enterprise
Manager.

6 In the Component editor, create a new e*Way.

7 Display the new e*Way’s properties.

8 On the General tab, under Executable File, click Find.

9 Select the file stcewgenericmonk.exe.

10 Under Configuration file, click New.

11 From the Select an e*Way template list, select dart and click OK.

Figure 1 e*Way Template Selection

12 The e*Way Editor will launch. Make any necessary changes, then save the
configuration file.

13 You will return to the e*Way’s property sheet. Click OK to close the properties
sheet, or continue to configure the e*Way. Configuration parameters are discussed
in Chapter 3.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, please see the online Help
system.

Chapter 2 Section 2.3
Installation Installing the Oracle e*Way on UNIX

e*Way Intelligent Adapter for Oracle User’s Guide 14 SeeBeyond Proprietary and Confidential

For more information about configuring e*Ways or how to use the e*Way Editor, see
the Working with e*Ways chapter in the e*Way Integrator User’s Guide.

2.2.3 Files/Directories Created by the Installation
The Oracle e*Way CD-ROM contains the following files, which the Install Shield
Wizard copies to the indicated directories on your computer, creating them if necessary.

2.3 Installing the Oracle e*Way on UNIX

2.3.1 Pre-installation
You do not require root privileges to install this e*Way. Log in under the user name that
you wish to own the e*Way files. Be sure that this user has sufficient privilege to create
files in the e*Gate directory tree.

2.3.2 Installation Procedure
To install the Oracle e*Way on a UNIX system:

1 Log in on the workstation containing the CD-ROM drive, and insert the CD-ROM
into the drive.

Table 1 Installation Directories and Files (Windows)

Install Directory Files

bin\ stcewgenericmonk.exe
stcstruct.exe
stc_dbapps.dll
stc_dbmonkext.dll
stc_dbora8.dll
stc_dbora8i.dll

configs\stcewgenericmonk\ dart.def
dartRule.txt

monk_library dart.gui

monk_library\dart\ db-struct-bulk-insert.monk
db-struct-call.monk
db-struct-execute.monk
db-struct-fetch.monk
db-struct-insert.monk
db-struct-select.monk
db-struct-update.monk
db-stdver-eway-funcs.monk
oramsg.ssc
oramsg-display.monk
db_bind.monk

Chapter 2 Section 2.3
Installation Installing the Oracle e*Way on UNIX

e*Way Intelligent Adapter for Oracle User’s Guide 15 SeeBeyond Proprietary and Confidential

2 If necessary, mount the CD-ROM drive.

3 At the shell prompt, type

cd /cdrom

4 Start the installation script by typing:

setup.sh

5 A menu of options will appear. Select the “install e*Way” option. Then, follow any
additional on-screen directions.

Note: Be sure to install the e*Way files in the suggested “client” installation directory. The
installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not
change the suggested “installation directory” setting.

6 After installation is complete, exit the installation utility and launch the Enterprise
Manager.

7 In the Component editor, create a new e*Way.

8 Display the new e*Way’s properties.

9 On the General tab, under Executable File, click Find.

10 Select the file stcewgenericmonk.exe.

11 Under Configuration file, click New.

12 From the Select an e*Way template list, select dart and click OK.

Figure 2 e*Way Template Selection

13 The e*Way Editor will launch. Make any necessary changes, then save the
configuration file.

14 You will return to the e*Way’s property sheet. Click OK to close the properties
sheet, or continue to configure the e*Way. Configuration parameters are discussed
in Chapter 3.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, please see the online Help
system.

Chapter 2 Section 2.4
Installation Oracle Network Components

e*Way Intelligent Adapter for Oracle User’s Guide 16 SeeBeyond Proprietary and Confidential

For more information about configuring e*Ways or how to use the e*Way Editor, see
the Working with e*Ways chapter in the e*Way Integrator User’s Guide.

The CD-ROM contains the following files, which are copied to the indicated path on
your computer.

2.4 Oracle Network Components
The following Networking Options must be installed and configured before running
the Oracle e*Way.

SQL*Net8

TCP/IP Protocol Adapter

SQL*Plus (Recommended)

SQL*Plus is not required for the Oracle e*Way, but is helpful in testing connections and
diagnosing connection problems.

Table 2 Installation Directories and Files (UNIX)

Install Directory Files

bin/ stcewgenericmonk.exe
stcstruct.exe
stc_dbapps.dll
stc_dbmonkext.dll
stc_dbora7.dll
stc_dbora8.dll
stc_dbora8i.dll

lib/ stc_dbora7.dll
stc_dbora8.dll
stc_monkfilesys.dll

configs/stcewgenericmonk/ dart.def

monk_library dart.gui

monk_library/dart/ db-struct-bulk-insert.monk
db-struct-call.monk
db-struct-execute.monk
db-struct-fetch.monk
db-struct-insert.monk
db-struct-select.monk
db-struct-update.monk
db-stdver-eway-funcs.monk
oramsg.ssc
oramsg-display.monk
db_bind.monk

Chapter 2 Section 2.4
Installation Oracle Network Components

e*Way Intelligent Adapter for Oracle User’s Guide 17 SeeBeyond Proprietary and Confidential

2.4.1 SQL*Net Configuration files
Before you can configure SQL*Net8 you must have the following files ready:

listener.ora

tnsnames.ora

sqlnet.ora

Example Listener configuration file—listener.ora

LISTENER.ORA Configuration
File:/opt/oracle/app/oracle/product/8.1.6/network/admin/listener.ora
Generated by Oracle configuration tools.

LISTENER =
 (DESCRIPTION_LIST =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC))
)
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = circe)(PORT = 1521))
)
)
 (DESCRIPTION =
 (PROTOCOL_STACK =
 (PRESENTATION = GIOP)
 (SESSION = RAW)
)
 (ADDRESS = (PROTOCOL = TCP)(HOST = circe)(PORT = 2481))
)
)

SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (SID_NAME = PLSExtProc)
 (ORACLE_HOME = /opt/oracle/app/oracle/product/8.1.6)
 (PROGRAM = extproc)
)
 (SID_DESC =
 (ORACLE_HOME = /opt/oracle/app/oracle/product/8.1.6)
 (SID_NAME = orcl816)
)
)

LISTENER is the default listener name, which is recommended by Oracle in a standard
installation that requires only one listener on a machine.

The listener address section ADDRESS specifies what address to listen to. The listener
listens for inter-process calls (IPCs) as well as calls from other nodes.

Two IPC addresses are created for each database that a listener listens to. In one, the key
value is equal to the service name (for example, finance.world). It is used for
connections from other applications on the same node. The other IPC address (for
example, orcl) is used by the database dispatcher to identify the listener.

For communication with other nodes, listener listens to the host (for example,
finance.company.com) at a particular port (for example, 1521) using the specified
protocol (for example, TCP/IP).

Chapter 2 Section 2.4
Installation Oracle Network Components

e*Way Intelligent Adapter for Oracle User’s Guide 18 SeeBeyond Proprietary and Confidential

The section SID_LIST_LISTENER is used to list the SID (system identifier) of the
databases (for example, orcl) on which the listener listens. The service name (for
example, finance.world) is used as the global name.

The control parameter STARTUP_WAIT_TIME_LISTENER sets the number of seconds
that the listener sleeps before responding to the first listener control status command.
This feature assures that a listener with a slow protocol will have had time to start up
before responding to a status request. The default is 0.

CONNECT_TIMEOUT_LISTENER sets the number of seconds that the listener waits to
get a valid SQL*Net connection request before dropping the connection.

TRACE_LEVEL_LISTENER indicates the level of detail the trace facility records for
listener events. ADMIN is the highest.

Example Client file—tnsnames.ora

TNSNAMES.ORA Configuration
File:/opt/oracle/app/oracle/product/8.1.6/network/admin/tnsnames.ora
Generated by Oracle configuration tools.

CIRCE =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = circe)(PORT = 1521))
 (CONNECT_DATA = (SERVICE_NAME = orcl816))
)
ENIGMA =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = enigma)(PORT = 1521))
 (CONNECT_DATA = (SID = orcl8))
)
LAMBDA =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(Host = lambda)(Port = 1521))
 (CONNECT_DATA = (SERVICE_NAME = LAMBDA))
)

All connect distributors are assigned service names (for example, CIRCE). The user
specifies the service name to identify the service to which the user wants to connect.
The ADDRESS section specifies the listener address. See listener.ora above for listener
address.

The CONNECT_DATA section specifies the SID (system identifier) or
SERVICE_NAME by the remote database. This setting will vary depending upon the
version of the Oracle server.

Chapter 2 Section 2.4
Installation Oracle Network Components

e*Way Intelligent Adapter for Oracle User’s Guide 19 SeeBeyond Proprietary and Confidential

Example Network component file

The name of this file is sqlnet.ora

################
Filename......: sqlnet.ora
Node..........: local.world
Date..........: 24-MAR-98 13:21:20
################
AUTOMATIC_IPC = OFF
TRACE_LEVEL_CLIENT = OFF
names.directory_path = (TNSNAMES)
names.default_domain = world
name.default_zone = world
sqlnet.expire_time = 10

The sqlnet.expire_time parameter determines how often SQL*Net sends a probe to
verify that a client-server connection is still active. A value of 10 (minutes) is
recommended by Oracle.

After you have generated the required configuration files, do the following:

On the server side, move all three files to:

$ORACLE_HOME/network/admin

On the client side, distribute tnsnames.ora and sqlnet.ora and put them in:

$ORACLE_HOME/network/admin

Verify that the file /etc/services has the entry LISTENER 1521/tcp.

2.4.2 Testing the SQL*Net Configuration
Before you can use SQL*Net with the server, you need to start a listener on the server. A
listener is used by SQL*Net on the server side to receive an incoming connection from
SQL*Net clients.

To start a listener, enter the following command on the server:

lsnrctl start

When you are running as a client, if the listener starts up successfully, you can use
SQL*Plus on the client side to test whether SQL*Net is configured properly by
establishing a connection with the server. The syntax of the command is:

sqlplus <user name>/<password>@<service name>

For example, if the Oracle server has user

sqlplus dart/dart@oracle.world

This command will start up SQL*Plus in the client machine and connect to the server
specified by oracle.world as user <user name> with password <password>. The
$ORACLE_HOME/network/admin/tnsnames.ora defines the service name for each
Oracle data source.

2.4.3 Troubleshooting Checklist
Ensure that you have protocol-level connectivity

Chapter 2 Section 2.4
Installation Oracle Network Components

e*Way Intelligent Adapter for Oracle User’s Guide 20 SeeBeyond Proprietary and Confidential

Action: Use the PING utility to verify TCP/IP connectivity

Ensure that the configuration files, client file and network files are in the proper
directory.

Actions:

A Verify that tnsnames.ora exists on the client machine in the
$ORACLE_HOME/network/ directory.

B Verify that listener.ora exists on the server machine in the
$ORACLE_HOME/network/ directory.

C Verify that sqlnet.ora exists on the server machine in the
$ORACLE_HOME/network/ directory.

Ensure that the listener is “listening” for the same protocol that the client is trying to
connect through.

Action: Verify that listener.ora and tnsnames.ora specify the same protocol.

Ensure that both server and client are running either Net8 or SQL *Net V2.

Action: Run the Oracle Universal Installer to determine the version number.

Ensure that you have the necessary Net8 protocol support installed.

Action: Run the Oracle Universal Installer to determine that the correct product has
been installed.

Ensure that SQL*Net can recognize the host that must connect to if it is using
TCP/IP.

Action: If you are using TCP/IP, try replacing the HOST name in the net service
name address with the IP address of the server machine.

For more information on specific error messages or technical bulletins on errors
received when performing these diagnostics tests, refer:

The Net8 Administrator’s Guide

2.4.4 Setting up the Shared Library Search Path
The following sections provide detailed descriptions for setting the shared library
search path used by both the Oracle e*way and the Oracle Open Client. The shared
library search path follows:

HP-UX
 SHLIB_PATH

AIX
LIBPATH

DEC
LD_LIBRARY_PATH

Solaris
LD_LIBRARY_PATH

Chapter 2 Section 2.4
Installation Oracle Network Components

e*Way Intelligent Adapter for Oracle User’s Guide 21 SeeBeyond Proprietary and Confidential

2.4.5 Creating the Oracle e*Way Database User Account
Check to see if the Oracle server is running. If not, start the server and make sure the
"listener" is running, do the following to create the Oracle e*Way database user in the
Oracle database.

At the prompt type the following:

svrmgrl
connect internal
create user_name identified by password

After creating the user, privileges must be granted. Type the following:

grant dba to user name

e*Way Intelligent Adapter for Oracle User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 3

Configuration

This chapter describes how to configure the Oracle e*Way by setting the configuration
parameters using the e*Way Editor.

This Chapter Explains:

“Configuration Overview” on page 22

“General Settings” on page 23

“Communication Setup” on page 24

“Monk Configuration” on page 27

“Database Setup” on page 41

“Configuring the Oracle Environment” on page 42

3.1 Configuration Overview
Before you can run the Oracle e*Way, you must configure it using the e*Way Edit
Settings window, which is accessed from the e*Gate Enterprise Manager GUI. The
Oracle e*Way package includes a default configuration file which you can modify using
this window.

3.2 e*Way Configuration Parameters
The e*Way configuration parameters are set using the e*Way Editor.

To change e*Way configuration parameters:

1 In the Enterprise Manager’s Component editor, select the e*Way you want to
configure and display its properties.

2 Under Configuration File, click New to create a new file, Find to select an existing
configuration file, or Edit to edit the currently selected file.

Note: When creating a new e*Way, you must also select the dart template file from the
e*Way Template Selection list.

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for Oracle User’s Guide 23 SeeBeyond Proprietary and Confidential

3 In the Additional Command Line Arguments box, type any additional command
line arguments that the e*Way may require, taking care to insert them at the end of
the existing command-line string. Be careful not to change any of the default
arguments unless you have a specific need to do so.

For more information about how to use the e*Way Editor, see the e*Way Editor’s online
Help or the Working with e*Ways chapter in the e*Way Integrator User’s Guide.

The e*Way’s configuration parameters are organized into the following four sections:

General Settings

Communication Setup

Monk Configuration

Database Setup

3.2.1 General Settings
The General Settings control basic operational parameters.

Journal File Name

Description

Specifies the name of the journal file.

Required Values

A valid filename, optionally including an absolute path (for example,
c:\temp\filename.txt). If an absolute path is not specified, the file is stored in the
e*Gate “SystemData” directory. See the e*Gate Integrator System Administration and
Operations Guide for more information about file locations.

Additional Information

An Event is journaled for the following conditions:

When the number of resends is exceeded (see Max Resends Per Message below).

When its receipt is due to an external error, but Forward External Errors is set to
No. (See “Forward External Errors” on page 24 for more information.)

Max Resends Per Message

Description

Specifies the number of times the e*Way attempts to resend a message (Event) to the
external system after receiving an error. When this maximum is reached, the message is
considered “Failed” and is written to the journal file.

Required Values

An integer between 1 and 1,024. The default is 5.

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for Oracle User’s Guide 24 SeeBeyond Proprietary and Confidential

Max Failed Messages

Description

Specifies the maximum number of failed messages (Events) that the e*Way allows.
When the specified number of failed messages is reached, the e*Way shut downs and
exits.

Required Values

An integer between 1 and 1,024. The default is 3.

Forward External Errors

Description

Selects whether error messages that begin with the string “DATAERR” that are received
from the external system are queued to the e*Way’s configured queue. If this parameter
is set to No, then error messages will be ignored. See “Exchange Data with External
Function” on page 37 for more information.

Required Values

Yes or No. The default value, No, specifies that error messages is not forwarded. See
Figure 8 on page 32 for more information about how the e*Way uses this function.

3.2.2 Communication Setup
The Communication Setup parameters control the schedule by which the e*Way
obtains data from the external system.

Note: The schedule you set using the e*Way’s properties (Start Up tab) in the Enterprise
Manager controls when the e*Way executable runs. The schedule you set within the
parameters discussed in this section (using the e*Way Editor) determines when data
is exchanged. Be sure you set the "exchange data" schedule to fall within the "run
the executable" schedule.

Start Exchange Data Schedule

Description

Establishes the schedule to invoke the e*Way’s Exchange Data with External Function.

Required Values

One of the following:

One or more specific dates/times.

A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Also required: If you set a schedule using this parameter, you must also define all three
of the following:

Exchange Data With External Function

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for Oracle User’s Guide 25 SeeBeyond Proprietary and Confidential

Positive Acknowledgment Function

Negative Acknowledgment Function

If you do not do so, the e*Way terminates execution when the schedule attempts to
start.

Additional Information

When the schedule starts, the e*Way determines whether it is waiting to send an ACK
or NAK to the external system (using the Positive Acknowledgement Function and
Negative Acknowledgement Function) and whether the connection to the external
system is active. If no ACK/NAK is pending and the connection is active, the e*Way
immediately executes the Exchange Data with External Function. Thereafter, the
Exchange Data with External Function is called according to the Exchange Data
Interval parameter until the Stop Exchange Data Schedule time is reached.

See “Exchange Data with External Function” on page 37, “Exchange Data Interval”
on page 25, and “Stop Exchange Data Schedule” on page 25 for more information.

Stop Exchange Data Schedule

Description

Establishes the schedule to stop data exchange.

Required Values

One of the following:

One or more specific dates/times.

A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Exchange Data Interval

Description

Specifies the number of seconds the e*Way waits between calls to the Exchange Data
with External Function during scheduled data exchanges.

Required Values

An integer between 0 and 86,400. The default is 120.

Additional Information

If Zero Wait Between Successful Exchanges is set to Yes and the Exchange Data with
External Function returns data, the Exchange Data Interval setting is ignored and the
e*Way invokes the Exchange Data with External Function immediately.

If this parameter is set to zero, there is no exchange data schedule set and the Exchange
Data with External Function is never called.

See “Down Timeout” on page 26 and “Stop Exchange Data Schedule” on page 25 for
more information about the data-exchange schedule.

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for Oracle User’s Guide 26 SeeBeyond Proprietary and Confidential

Down Timeout

Description

Specifies the number of seconds that the e*Way waits between calls to the External
Connection Establishment Function. See “External Connection Establishment
Function” on page 38 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.

Up Timeout

Description

Specifies the number of seconds the e*Way waits between calls to the External
Connection Verification Function. See “External Connection Verification Function”
on page 39 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.

Resend Timeout

Description

Specifies the number of seconds the e*Way waits between attempts to resend a message
(Event) to the external system, after receiving an error message from the external
system.

Required Values

An integer between 1 and 86,400. The default is 10.

Zero Wait Between Successful Exchanges

Description

Selects whether to initiate data exchange after the Exchange Data Interval or
immediately after a successful previous exchange.

Required Values

Yes or No. The default is No.

Additional Information

If this parameter is set to Yes and the previous exchange function returned data, then
the e*Way immediately invokes the Exchange Data With External Function. If this
parameter is set to No, the e*Way always waits the number of seconds specified by
Exchange Data Interval between invocations of the Exchange Data with External
Function.

See “Exchange Data with External Function” on page 37 for more information.

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for Oracle User’s Guide 27 SeeBeyond Proprietary and Confidential

3.2.3 Monk Configuration
The parameters in this section help you set up the information required by the e*Way to
utilize Monk for communication with the external system.

Architecturally, an e*Way can be viewed as a multi-layered structure, consisting of one
or more layers that handle communication with the external application, built upon an
e*Way Kernel layer that manages the processing of data and subscribing or publishing
to other e*Gate components (see Figure 3).

Figure 3 Typical e*Way Architecture

Each layer contains Monk scripts and/or functions, and makes use of lower-level Monk
functions residing in the layer beneath. You, as user, primarily use the highest-level
functions, which reside in the upper layer(s).

The upper layers of the e*Way use Monk functions to start and stop scheduled
operations, exchange data with the external system, package data as e*Gate “Events,”
send those Events to Collaborations, and manage the connection between the e*Way
and the external system (see Figure 4).

Figure 4 Basic e*Way Operations

Additional Layer
such as API Model

Communications
Layer

such as Remote
Function Call (RFC)

Transport

e*Way Kernel Layer

e*GateExternal
Application

PUB/SUB

RFC

Typical e*Way

External
Application

Event

Communications Layer

Event

e*GatePUB/SUB

e*Way Kernel Layer

Collaboration

Collaboration

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for Oracle User’s Guide 28 SeeBeyond Proprietary and Confidential

Configuration options that control the Monk environment and define the Monk
functions used to perform these basic e*Way operations are discussed in Chapter 4. You
can create and modify these functions using the SeeBeyond Collaboration Rules Editor
or a text editor (such as Microsoft Wordpad or Notepad).

The upper layers of the e*Way are single-threaded. Functions run serially, and only one
function can be executed at a time. The e*Way Kernel is multi-threaded, with one
executable thread for each Collaboration. Each thread maintains its own Monk
environment; therefore, information such as variables, functions, path information, and
so on cannot be shared between threads.

The basic set of e*Way Kernel Monk functions is described in Chapter 5. Generally,
e*Way Kernel Monk functions should be called directly only when there is a specific
need not addressed by higher-level Monk functions, and should be used only by
experienced developers.

Basic e*Way Processes
The Monk functions in the “communications half” of the e*Way fall into the following
groups:

A series of figures on the next several pages illustrate the interaction and operation of
these functions.

Initialization Functions

Figure 5 illustrates how the e*Way executes its initialization functions.

Type of Operation Name

Initialization “Startup Function” on page 36
(also see “Monk Environment Initialization File” on
page 35)

Connection “External Connection Establishment Function” on
page 38
“External Connection Verification Function” on page 39
“External Connection Shutdown Function” on page 39

Schedule-driven data
exchange

“Exchange Data with External Function” on page 37
“Positive Acknowledgment Function” on page 40
“Negative Acknowledgment Function” on page 40

Shutdown “Shutdown Command Notification Function” on
page 41

Event-driven data
exchange

“Process Outgoing Message Function” on page 37

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for Oracle User’s Guide 29 SeeBeyond Proprietary and Confidential

Figure 5 Initialization Functions

Connection Functions

Figure 6 illustrates how the e*Way executes the connection establishment and
verification functions.

Start e*Way

Load
"Monk Initialization"

file

Execute any Monk function
having the same name as

the initialization file

Load "Startup" file

Execute any Monk function
having the same name as

the startup file

Load
"Auxiliary Library Directories"

files

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for Oracle User’s Guide 30 SeeBeyond Proprietary and Confidential

Figure 6 Connection Establishment and Verification Functions

Note: The e*Way selects the connection function based on an internal “up/down” flag
rather than a poll to the external system. See Figure 8 on page 32 and Figure 10
on page 34 for examples of how different functions use this flag.

User functions can manually set this flag using Monk functions. See send-
external-up on page 82 and send-external-down on page 81 for more
information.

Figure 7 illustrates how the e*Way executes its “connection shutdown” function.

Figure 7 Connection Shutdown Function

Connect e*Way to
external system

Internal
flag shows connection

active?

Wait for "Up Timeout"
schedule

Call External Connection
Verification function

Wait for "Down Timeout"
schedule

Call External Connection
Establishment function

Yes

No

Control Broker issues
"Suspend" command

Call External Connection Shutdown
function with parameter

"SUSPEND_NOTIFICATION"

e*Way closes connection

Return any value

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for Oracle User’s Guide 31 SeeBeyond Proprietary and Confidential

Schedule-driven Data Exchange Functions

Figure 8 (on the next page) illustrates how the e*Way performs schedule-driven data
exchange using the Exchange Data with External Function. The Positive
Acknowledgement Function and Negative Acknowledgement Function are also
called during this process.

“Start” can occur in any of the following ways:

The “Start Data Exchange” time occurs.

Periodically during data-exchange schedule (after “Start Data Exchange” time, but
before “Stop Data Exchange” time), as set by the Exchange Data Interval.

The start-schedule Monk function is called.

After the function exits, the e*Way waits for the next “start schedule” time or command.

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for Oracle User’s Guide 32 SeeBeyond Proprietary and Confidential

Figure 8 Schedule-Driven Data Exchange Functions

Shutdown Functions

Figure 9 illustrates how the e*Way implements the shutdown request function.

Increment "Failed
Message" counter

DATAERR plus
additional data

Null
string

Data
(other than

error strings)

Forward
external
errors?

No

Yes

Set interval flag
"Connection

Down"

CONNERR

Increment "Failed
Message" counter

DATAERR only

Journal
enabled?

Create journal
entry

Yes

No

Start

Function exits

Send Event to
e*Gate

All
subscribing

Collaborations return
TRUE

?

Call Positive
Acknowledgment

function

Zero
wait after successful

exchange?

Call Negative
Acknowledgment

function

Yes

No

No

Call Exchange Data with
External function

Return

Yes

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for Oracle User’s Guide 33 SeeBeyond Proprietary and Confidential

Figure 9 Shutdown Functions

Event-driven Data Exchange Functions

Figure 10 on the next page illustrates event-driven data-exchange using the Process
Outgoing Message Function.

Every two minutes, the e*Way checks the “Failed Message” counter against the value
specified by the Max Failed Messages parameter. When the “Failed Message” counter
exceeds the specified maximum value, the e*Way logs an error and shuts down.

After the function exits, the e*Way waits for the next outgoing Event.

Control Broker issues
"Shutdown" command

Call Shutdown Notification function
with parameter

"SHUTDOWN_NOTIFICATION"

e*Way shuts down

Wait for
shutdown-request

function

Return

Null string or
"SUCCESS"

any other value

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for Oracle User’s Guide 34 SeeBeyond Proprietary and Confidential

Figure 10 Event-Driven Data-exchange Functions

How to Specify Function Names or File Names

Parameters that require the name of a Monk function accepts either a function name or
a file name. If you specify a file name, be sure that the file has one of the following
extensions:

.monk

.tsc

.dsc

Collaboration publishes
to <EXTERNAL>

Call Process Outgoing
Message function

Set internal flag
"Connection

Down"

Maximum
Resends per Message

exceeded?

Increment "Failed
Message" counter

Create journal
entry

Null
string

No
Journal

enabled?

End

Roll back Event
to its publishing

IQ

Yes

Wait for Resend
Timeout period

Increment
"Resend"
counter

RESENDCONNERR DATAERR

Yes

No

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for Oracle User’s Guide 35 SeeBeyond Proprietary and Confidential

Additional Path

Description

Specifies a path to be appended to the “load path,” the path Monk uses to locate files
and data (set internally within Monk). The directory specified in Additional Path is
searched after the default load path.

Required Values

A path name, or a series of paths separated by semicolons. This parameter is optional
and may be left blank.

Additional information

The default load paths are determined by the “bin” and “Shared Data” settings in the
.egate.store file. See the e*Gate Integrator System Administration and Operations Guide for
more information about this file.

To specify multiple directories, manually enter the directory names rather than
selecting them with the “file selection” button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths. For example:

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

Auxiliary Library Directories

Description

Specifies a path to auxiliary library directories. Any .monk files found within those
directories are automatically loaded into the e*Way’s Monk environment. This
parameter is optional and may be left blank.

Required Values

A path name, or a series of paths separated by semicolons. The default is
monk_library/dart.

Additional information

To specify multiple directories, manually enter the directory names rather than
selecting them with the “file selection” button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths. For example:

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

This parameter is optional and may be left blank.

Monk Environment Initialization File

Specifies a file that contains environment initialization functions, which are loaded
after the Auxiliary Library Directories are loaded. Use this feature to initialize the

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for Oracle User’s Guide 36 SeeBeyond Proprietary and Confidential

e*Way’s Monk environment (for example, to define Monk variables that are used by the
e*Way’s function scripts).

Required Values

A filename within the “load path”, or filename plus path information (relative or
absolute). If path information is specified, that path is appended to the “load path.” See
“Additional Path” on page 35 for more information about the “load path.”

The default is db-stdver-init. See db-stdver-init on page 94 for more information.

Additional information

Any environment-initialization functions called by this file accept no input, and must
return a string. The e*Way loads this file and tries to invoke a function of the same base
name as the file name (for example, for a file named my-init.monk, the e*Way would
attempt to execute the function my-init).

Typically, it is a good practice to initialize any global Monk variables that may be used
by any other Monk Extension scripts.

The internal function that loads this file is called once when the e*Way first starts up
(see Figure 5 on page 29).

Startup Function

Description

Specifies a Monk function that the e*Way loads and invokes upon startup or whenever
the e*Way’s configuration is reloaded. This function should be used to initialize the
external system before data exchange starts.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is optional and may be left
blank.

The default is db-stdver-startup. See db-stdver-startup on page 103 for more
information.

Additional information

The function accepts no input, and must return a string.

The string “FAILURE” indicates that the function failed; any other string (including a
null string) indicates success.

This function is called after the e*Way loads the specified Monk Environment
Initialization File and any files within the specified Auxiliary Library Directories.

The e*Way loads this file and tries to invoke a function of the same base name as the file
name (see Figure 5 on page 29). For example, for a file named my-startup.monk, the
e*Way would attempt to execute the function my-startup.

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for Oracle User’s Guide 37 SeeBeyond Proprietary and Confidential

Process Outgoing Message Function

Description

Specifies the Monk function responsible for sending outgoing messages (Events) from
the e*Way to the external system. This function is event-driven (unlike the Exchange
Data with External Function, which is schedule-driven).

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. You may not leave this field blank.

The default is db-stdver-proc-outgoing. See db-stdver-proc-outgoing on page 98 for
more information.

Additional Information

The function requires a non-null string as input (the outgoing Event to be sent) and
must return a string.

The e*Way invokes this function when one of its Collaborations publishes an Event to
an <EXTERNAL> destination (as specified within the Enterprise Manager). The
function returns one of the following (see Figure 8 on page 32 for more details):

Null string: Indicates that the Event was published successfully to the external
system.

“RESEND”: Indicates that the Event should be resent.

“CONNERR”: Indicates that there is a problem communicating with the external
system.

“DATAERR”: Indicates that there is a problem with the message (Event) data itself.

Note: If you wish to use event-send-to-egate to enqueue failed Events in a separate IQ,
the e*Way must have an inbound Collaboration (with appropriate IQs) configured
to process those Events. See “event-send-to-egate” on page 79 for more
information.

Exchange Data with External Function

Description

Specifies a Monk function that initiates the transmission of data from the external
system to the e*Gate system and forwards that data as an inbound Event to one or more
e*Gate Collaborations. This function is called according to a schedule (unlike the
Process Outgoing Message Function, which is event-driven).

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is optional and may be left
blank. However, this parameter is required if a schedule was set using the Start
Exchange Data Schedule parameter. If so, you must also define the following:

Positive Acknowledgement Function

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for Oracle User’s Guide 38 SeeBeyond Proprietary and Confidential

Negative Acknowledgement Function

The default is db-stdver-data-exchg. See db-stdver-data-exchg on page 92 for more
information.

Additional Information

The function accepts no input and must return a string (see Figure 10 on page 34 for
more details):

Null string: Indicates that the data exchange was completed successfully. No
information is sent into the e*Gate system.

“CONNERR”: Indicates that a problem with the connection to the external system
has occurred.

“DATAERR”: Indicates that a problem with the data itself has occurred.

Any other string: The contents of the string are packaged as an inbound Event. The
e*Way must have at least one Collaboration configured suitably to process the
inbound Event, as well as any required IQs.

This function is initially triggered by the Start Exchange Data Schedule or manually by
the Monk function start-schedule. After the function has returned true and the data
received by this function has been ACKed or NAKed (by the Positive
Acknowledgment Function or Negative Acknowledgment Function, respectively),
the e*Way checks the Zero Wait Between Successful Exchanges parameter. If this
parameter is set to Yes, the e*Way immediately calls the Exchange Data with External
Function again; otherwise, the e*Way does not call the function until the next
scheduled “start exchange” time or the schedule is manually invoked using the Monk
function start-schedule (see start-schedule on page 84 for more information).

External Connection Establishment Function

Description

Specifies a Monk function that the e*Way calls when it has determined that the
connection to the external system is down (or is unknown).

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This field cannot be left blank.

The default is db-stdver-conn-estab. See db-stdver-conn-estab on page 87 for more
information.

Additional Information

The function accepts no input and must return a string:

“SUCCESS” or “UP”: Indicates that the connection was established successfully.

Any other string (including the null string): Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Down Timeout
parameter, and is only called according to this schedule.

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for Oracle User’s Guide 39 SeeBeyond Proprietary and Confidential

The External Connection Verification Function (see below) is called when the e*Way
has determined that its connection to the external system is up.

External Connection Verification Function

Description

Specifies a Monk function that the e*Way calls when its internal variables show that the
connection to the external system is up.

Required Values

The name of a Monk function. This function is optional; if no External Connection
Verification Function is specified, the e*Way executes the External Connection
Establishment Function in its place.

The default is db-stdver-conn-ver. See db-stdver-conn-ver on page 90 for more
information.

Additional Information

The function accepts no input and must return a string:

“SUCCESS” or “UP”: Indicates that the connection was established successfully.

Any other string (including the null string): Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Up Timeout
parameter, and is only called according to this schedule.

The External Connection Establishment Function is called when the e*Way has
determined that its connection to the external system is down or is unknown.

External Connection Shutdown Function

Description

Specifies a Monk function that the e*Way calls to shut down the connection to the
external system.

Required Values

The name of a Monk function. This parameter is optional.

The default is db-stdver-conn-shutdown. See db-stdver-conn-shutdown on page 89
for more information.

Additional Information

This function requires a string as input, and may return a string.

This function is only invoked when the e*Way receives a “suspend” command from a
Control Broker. When the “suspend” command is received, the e*Way invokes this
function, and passes the string “SUSPEND_NOTIFICATION” as an argument.

Any return value indicates that the “suspend” command can proceed and that the
connection to the external system can be broken immediately.

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for Oracle User’s Guide 40 SeeBeyond Proprietary and Confidential

Positive Acknowledgment Function

Description

Specifies a Monk function that the e*Way calls when all the Collaborations to which the
e*Way sent data have processed and enqueued that data successfully.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External Function is defined.

The default is db-stdver-pos-ack. See db-stdver-pos-ack on page 97 for more
information.

Additional Information

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string:

“CONNERR”: Indicates a problem with the connection to the external system.
When the connection is re-established, the Positive Acknowledgment Function is
called again, with the same input data.

Null string: The function completed execution successfully.

After the Exchange Data with External Function returns a string that is transformed
into an inbound Event, the Event is handed off to one or more Collaborations for
further processing. If the Event’s processing is completed successfully by all the
Collaborations to which it was sent, the e*Way executes the Positive Acknowledgment
Function (otherwise, the e*Way executes the Negative Acknowledgment Function).

Negative Acknowledgment Function

Description

Specifies a Monk function that the e*Way calls when the e*Way fails to process and
queue Events from the external system.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External Function is defined.

The default is db-stdver-neg-ack. See db-stdver-neg-ack on page 96 for more
information.

Additional Information

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string:

“CONNERR”: Indicates a problem with the connection to the external system.
When the connection is re-established, the function is called again.

Null string: The function completed execution successfully.

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for Oracle User’s Guide 41 SeeBeyond Proprietary and Confidential

This function is only called during the processing of inbound Events. After the
Exchange Data with External Function returns a string that is transformed into an
inbound Event, the Event is handed off to one or more Collaborations for further
processing. If the Event’s processing is not completed successfully by all the
Collaborations to which it was sent, the e*Way executes the Negative
Acknowledgment Function (otherwise, the e*Way executes the Positive
Acknowledgment Function).

Shutdown Command Notification Function

Description

Specifies a Monk function that is called when the e*Way receives a “shut down”
command from the Control Broker. This parameter is optional.

Required Values

The name of a Monk function.

The default is db-stdver-shutdown. See db-stdver-shutdown on page 102 for more
information.

Additional Information

When the Control Broker issues a shutdown command to the e*Way, the e*Way calls
this function with the string “SHUTDOWN_NOTIFICATION” passed as a parameter.

The function accepts a string as input and must return a string:

A null string or “SUCCESS”: Indicates that the shutdown can occur immediately.

Any other string: Indicates that shutdown must be postponed. Once postponed,
shutdown does not proceed until the Monk function shutdown-request is executed
(see shutdown-request on page 83).

Note: If you postpone a shutdown using this function, be sure to use
the (shutdown-request) function to complete the process in a timely manner.

3.2.4 Database Setup

Database Type

Description

Specifies the type of database.

Required Values

DB2, ODBC, ORACLE7, ORACLE8, ORACLE8i, SYBASE11, or SYBASE12

The default is SYBASE11. Change this value according to the Oracle client version used
by your Oracle implementation.

Chapter 3 Section 3.3
Configuration External Configuration Requirements

e*Way Intelligent Adapter for Oracle User’s Guide 42 SeeBeyond Proprietary and Confidential

Database Name

Description

The name of the database. Refer to the TNS service name as configured in the
tnsnames.ora file.

Required Values

None. Any valid string.

User Name

Description

The name used to access the database.

Required Values

None. Any valid string.

Encrypted Password

Description

The password that provides access to the database.

Required Values

Any valid string.

3.3 External Configuration Requirements
This section describes environment variable requirements to support the Oracle e*Way.

3.3.1 Configuring the Oracle Environment
Make sure your database server has been set up and the following environment
variables have been defined:

ORACLE_HOME - This specifies where you installed Oracle.

i.e., D:Oracle\Ora81

This specifies where the Oracle Client is installed.

ORACLE_SID - This specifies the name of the server.

Note: You can define these environment variables in .cshrc in the C shell or .profile in the
Korn/Bash shell.

e*Way Intelligent Adapter for Oracle User’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 4

Implementation

This chapter contains information explaining the use of the ETD Editor’s Build Tool as
well as two sample Oracle e*Way scenarios.

This Chapter Includes:

“Using the ETD Editor’s Build Tool” on page 43

“Sample One—Publishing e*Gate Events to an Oracle Database” on page 53

“Sample Two—Polling from an Oracle Database” on page 64

4.1 Using the ETD Editor’s Build Tool
The Event Type Definition Editor’s Build tool automatically creates an Event Type
Definition file based on the tables in an existing database. The Event Type
Definition (ETD) can be created based on one of (or a combination of) the following
criteria:

Table or View – Displays all of the columns in the specified table or view.

Dynamic SQL Statement – Displays the format of the results of an SQL statement.
This can be used to return only a few of the columns in a table.

Stored Procedure – Displays the format of the results of an SQL Stored Procedure.
This option is only available for Delimited messages.

The results of these three types of message criteria are explained in “The Event Type
Definition Files” on page 46.

To create an Event Type Definition using the Build tool:

1 Launch the ETD (Event Type Definition) Editor.

2 On the ETD Editor’s Toolbar, click Build.

The Build an Event Type Definition dialog box appears.

3 In the File name box, type the name of the ETD file you wish to build. Do not specify
any file extension—the Editor will supply an "ssc" extension for you.

4 Under Build From, select Library Converter.

5 Under Select a Library Converter, select DART Converter.

6 Click OK.

e*Way Intelligent Adapter for Oracle User’s Guide 44 SeeBeyond Proprietary and Confidential

7 The Converter Wizard will launch.

Figure 11 Converter Wizard Subordinate Dialog Box

8 Enter the Data Source.

9 Enter the User Name.

10 Enter the Password.

11 Select the DART Library. You must have installed the corresponding e*Way prior to
making your selection.

12 Select the correct Message Type.

Note: It is important to enter the correct Data Source and Message Type. For Oracle the
Data Source is in the Servicename.world format
The Fixed-length Message Type is used for DART bulk insert only.
The Delimited Message Type is for all other DART structure calls.
See Figure 11 on page 44

If you select Delimited Message Type the following dialog box will appear.

Chapter 4 Section 4.1
Implementation Using the ETD Editor’s Build Tool

e*Way Intelligent Adapter for Oracle User’s Guide 45 SeeBeyond Proprietary and Confidential

Figure 12 Converter Wizard Delimited Message Type Dialog Box

13 Select or Add the correct Table or View

14 Select or Add the correct SQL Statement

15 Select or Add the correct Stored Procedure.

If you select the Fixed-Length Message Type the following dialog box will appear.

Chapter 4 Section 4.1
Implementation Using the ETD Editor’s Build Tool

e*Way Intelligent Adapter for Oracle User’s Guide 46 SeeBeyond Proprietary and Confidential

Figure 13 Converter Wizard Fixed-Length Message Type Dialog Box

16 Select or Add the correct Table or View

17 Select or Add the correct SQL Statement

18 Edit or Finish your selections.

Note: The (#) character cannot be used in the node name of the .ssc file. The Oracle e*Way
will be unable to generate the correct node name for the column name of a table that
contains the (#) character, as Monk will filter out the character.

For Oracle, ($), or (#) can be used in a name, although the Oracle User’s Guide strongly
discourages their use.

4.1.1 The Event Type Definition Files
The DART Converter Build Tool will create a different ETD based on the criteria that
was specified in the Build Tool Wizard (see Figure 12 on page 45 and Figure 13 on
page 46).

Table or View

Entering a table or view name as a selection criteria will display all of the columns in
that table or view. This is useful when you want to access an entire record from the table

Chapter 4 Section 4.1
Implementation Using the ETD Editor’s Build Tool

e*Way Intelligent Adapter for Oracle User’s Guide 47 SeeBeyond Proprietary and Confidential

as an e*Gate Event. The criteria shown in Figure 14 generates the ETD shown in Figure
15.

Figure 14 Table or View Selection

Selection criteria

Chapter 4 Section 4.1
Implementation Using the ETD Editor’s Build Tool

e*Way Intelligent Adapter for Oracle User’s Guide 48 SeeBeyond Proprietary and Confidential

Figure 15 Table or View ETD

The ETD that is generated by the DART Converter Build Tool using the Table or View
criteria contains the elements shown in the table below.

Table 3 Elements of the Table or View ETD

Element Description

ETD Name This is the root node of the Event Type Definition.

Table Name This node displays the name of the table or view.

Column Name This is the name of the column(s) in the selected table or view.

Field Value This is the value of the data in the column. This can be thought of as
the payload data for this column.

Data Type This node designates the type of data contained in the value field.

Constraint Code The constraint codes are based on the column constraints in the table.
The possible codes are:

I – Insert operations are allowed in this column.
U – Update operations are allowed in this column.
N – Neither insert nor update operations are allowed in this column.
B – Both insert and update operations are allowed in this column.

Table Name

ETD Name

Column Names

Data Type

Constraint Code

Field Value

Chapter 4 Section 4.1
Implementation Using the ETD Editor’s Build Tool

e*Way Intelligent Adapter for Oracle User’s Guide 49 SeeBeyond Proprietary and Confidential

Dynamic SQL Statement

Entering an SQL statement as a selection criteria will display the format of the results of
that SQL statement. This is useful when you only want to access certain columns from
the table for a particular e*Gate Event.

To use this type of ETD, you should use the db-stmt-bind function to bind the dynamic
statement and db-struct-execute function to execute the SQL statement. For more
information, see db-stmt-bind on page 136 and db-struct-execute on page 183.

The SQL statement shown in Figure 16 generates an ETD that returns specific records
from the table based on the selection criteria (which is represented by a question
mark “?”). The resulting ETD is shown in Figure 17 on page 50.

Note: It is not necessary to include the terminating semi-colon as part of the SQL
statement.

Figure 16 Dynamic SQL Statement Selection

Selection criteria

Chapter 4 Section 4.1
Implementation Using the ETD Editor’s Build Tool

e*Way Intelligent Adapter for Oracle User’s Guide 50 SeeBeyond Proprietary and Confidential

Figure 17 Dynamic SQL Statement ETD

The PARAM0 node in the ETD shown in Figure 17 represents the criteria specified in
the SQL statement. Additional criteria would be represented in additional nodes
(PARAM1, PARAM2, and so forth). For example, using the following SQL statement:

SELECT * FROM db_employee WHERE last_name = ? AND first_name = ?

the Build Tool would generate an ETD with two input parameter nodes (PARAM0 and
PARAM1)—one for each of the criteria (?). The VALUE nodes of these input parameter
nodes are used to carry the payload of the selection statement.

Chapter 4 Section 4.1
Implementation Using the ETD Editor’s Build Tool

e*Way Intelligent Adapter for Oracle User’s Guide 51 SeeBeyond Proprietary and Confidential

Stored Procedure

Entering a stored procedure name as a selection criteria will generate an ETD that will
access a stored procedure in the external database. This is useful when you want to
access the results of a stored procedure.

The stored procedure specified in Figure 18 generates an the ETD shown in Figure 19.
Below is the contents of the sample stored procedure:

procedure GET_EMPLOYEES
(
 dept_number in integer,
 batch_size in integer,
 found in out integer,
 done_fetch out integer,
 emp_name out charArrayTyp,
 job_title out charArrayTyp,
 salary out numArrayTyp
) is
begin
 if not get_emp%isopen then
 open get_emp(dept_number);
 end if;
 done_fetch := 0;
 found := 0;
 for i in 1..batch_size loop
 fetch get_emp into emp_name(i),
 job_title(i), salary(i);
 if get_emp%notfound then
 close get_emp;
 done_fetch := 1;
 exit;
 else
 found := found + 1;
 end if;
 end loop;
end get_employees;

Note: The stored procedure shown above uses the PL/SQL table (array) type that is unique
to Oracle stored procedures. The output parameters emp_name, job_title, and
salary are returned as an array. These parameters are represented in the generated
ETD as a “result set.” See Figure 19 on page 53 for an example of a result set.

Chapter 4 Section 4.1
Implementation Using the ETD Editor’s Build Tool

e*Way Intelligent Adapter for Oracle User’s Guide 52 SeeBeyond Proprietary and Confidential

Figure 18 Stored Procedure Selection

Note: Although periods can be entered in the selection criteria in the Build Tool, they are
not permitted in the node names of the ETD. Any periods in the selection criteria
will be converted to asterisks in the generated ETD. See Figure 19 on page 53.

Selection criteria

Chapter 4 Section 4.2
Implementation Sample One—Publishing e*Gate Events to an Oracle Database

e*Way Intelligent Adapter for Oracle User’s Guide 53 SeeBeyond Proprietary and Confidential

Figure 19 Stored Procedure ETD

This Event Type Definition is used to pass certain input to the stored procedure. The
nodes with types of IN or INOUT are used as input. The nodes with types of OUT or
INOUT can be used for output. The results of the stored procedure are returned to the
RESULT_SET0 node. The Build Tool will create additional result set nodes
(RESULT_SET1, RESULT_SET2, and so forth) for stored procedures returning
multiple results.

4.2 Sample One—Publishing e*Gate Events to an Oracle
Database

This section describes how to use the Oracle e*Way in a sample implementation. This
sample schema demonstrates the publishing of e*Gate Events to an Oracle database.

This scenario uses a file e*Way to load an input file containing employee information
and generate the initial Event. The Oracle e*Way subscribes to the Event and inserts the
employee records into the external Oracle database.

Possible types of node values
are IN, INOUT, and OUT.

Result set returned by
the stored procedure

Chapter 4 Section 4.2
Implementation Sample One—Publishing e*Gate Events to an Oracle Database

e*Way Intelligent Adapter for Oracle User’s Guide 54 SeeBeyond Proprietary and Confidential

Figure 20 Publishing to Oracle database

Overview of Steps

The sample implementation follows these general steps:

“Create the Schema” on page 55

“Create the Event Type Definitions” on page 56

“Add the Event Types” on page 57

“Create the Monk Scripts” on page 58

“Add and Configure the e*Ways” on page 59

“Add the IQs” on page 61

“Create the Collaboration Rules” on page 61

“Add and Configure the Collaborations” on page 62

“Run the Schema” on page 63

e*Gate

Oracle
 e*Way

db_rcv

Input File
e*Way

FileIn

Pub

Sub

IQ

Pub

Sub
Outbound

Oracle
Collaboration

Sub

Input File
Collaboration

Pub
Oracle

Database

Input
File

External

Chapter 4 Section 4.2
Implementation Sample One—Publishing e*Gate Events to an Oracle Database

e*Way Intelligent Adapter for Oracle User’s Guide 55 SeeBeyond Proprietary and Confidential

Figure 21 Schema Configuration Steps

4.2.1 Create the Schema
The first step in deploying the sample implementation is to create a new Schema. After
installing the Oracle e*Way Intelligent Adapter, do the following:

1 Launch the e*Gate Enterprise Manager GUI.

2 When the Enterprise Manager prompts you to log in, select the Registry Host, User
Name, and Password to be used to log in and click Open.

Create Schema

Create Event Type
Definitions

Add Event Types

Create Monk Scripts

Add and Configure
e*Ways

Add IQs

Create Collaboration
Rules

Add and Configure
Collaborations

Run the Schema

Chapter 4 Section 4.2
Implementation Sample One—Publishing e*Gate Events to an Oracle Database

e*Way Intelligent Adapter for Oracle User’s Guide 56 SeeBeyond Proprietary and Confidential

3 From the list of Schemas, click New to create a new Schema.

4 For this sample implementation, enter the name Oracle_Sample1 and click Open.

The Enterprise Manager will launch and display the newly created Schema.

4.2.2 Create the Event Type Definitions
Three Event Type Definitions are used in this sample. The ETDs are:

EventMsg.ssc – This standard ETD is used by the FileInEvent Event Type.

db_rcv_in.ssc – This user-created ETD contains basic employee information such as
name, rate, and date.

db_rcv_struct.ssc – This user-created ETD contains the same basic employee
information formatted appropriately for the Oracle data source.

To create the db_rcv_in ETD:

1 From the e*Gate Enterprise Manager, click to launch the ETD Editor.

2 Click to create the new ETD.

The New ETD dialog will be displayed.

3 Enter db_rcv_in.ssc as the file name for the ETD.

4 Add the nodes and subnodes to create an ETD with the structure shown below:

Figure 22 The db_rcv_in.ssc ETD

5 Click to save the ETD.

6 From the File menu, select Promote to Run Time. Click Yes to confirm the
promotion of the file.

To create the db_rcv_struct ETD:

1 From the e*Gate Enterprise Manager, click to launch the ETD Editor.

2 Click to create the new ETD.

The New ETD dialog will be displayed.

3 Enter db_rcv_struct.ssc as the file name for the ETD.

Chapter 4 Section 4.2
Implementation Sample One—Publishing e*Gate Events to an Oracle Database

e*Way Intelligent Adapter for Oracle User’s Guide 57 SeeBeyond Proprietary and Confidential

4 Add the nodes and subnodes to create an ETD with the structure shown below:

Figure 23 The db_rcv_struct.ssc ETD

5 Click to save the ETD.

6 From the File menu, select Promote to Run Time. Click Yes to confirm the
promotion of the file.

4.2.3 Add the Event Types
Three Event Types are used in this sample. The Event Types are:

FileInEvent – This Event Type represents the inbound data from an external input
file. This Event Type uses the EventMsg.ssc ETD.

db_rcv_in – This Event Type represents the data transported by the input file
e*Way. This Event Type uses the db_rcv_in.ssc ETD.

db_rcv_struct – This Event Type represents the transformed Event that will be
written to the external Oracle database. This Event Type uses the db_rcv_struct.ssc
ETD.

To add the Event Types:

1 In the components pane of the Enterprise Manager, select the Event Types folder.

Chapter 4 Section 4.2
Implementation Sample One—Publishing e*Gate Events to an Oracle Database

e*Way Intelligent Adapter for Oracle User’s Guide 58 SeeBeyond Proprietary and Confidential

2 Click to add a new Event Type.

3 Enter FileInEvent and click OK.

4 Select the newly created Event Type and click to display the Event Type’s
properties.

5 Click Find to display the list of Event Types.

6 Navigate to the monk_scripts\common folder, select EventMsg.ssc, and click
Select.

7 Click OK to close the Event Type’s properties.

Repeat these steps for the db_rcv_in and db_rcv_struct Event Types using the
appropriate Event Type Definition files.

4.2.4 Create the Monk Scripts
This sample implementation uses a DART script (db_rcv.dsc) to communicate with the
external Oracle database.

To create the DART script:

1 From the e*Gate Enterprise Manager, click to launch the Collaboration Rules
Editor.

2 Click to create a new DART script.

The New Collaboration Rules Script dialog will be displayed.

3 Enter the name db_rcv (with no file extension) as the File name.

4 Select DART Send from the list of file types. The extension .dsc will be appended to
the file name.

5 Click to display the list of source files. Select db_rcv_in.ssc as the source file.

6 Click to display the list of destination files. Select db_rcv_struct.ssc as the
destination file.

7 Enter the rules as shown in Figure 24.

Note: The rules shown in Figure 24 use a table named db_employee. In order for this
sample to work correctly, you must either create a table in your Oracle database
called db_employee or change each of the references to the table name in your
DART script rules as appropriate.

Chapter 4 Section 4.2
Implementation Sample One—Publishing e*Gate Events to an Oracle Database

e*Way Intelligent Adapter for Oracle User’s Guide 59 SeeBeyond Proprietary and Confidential

Figure 24 The db_rcv.dsc DART script

8 Click to save the script.

9 Close the Collaboration Rules Script Editor.

4.2.5 Add and Configure the e*Ways
The sample Schema uses two e*Ways: FileIn and Oracle_rcv. The FileIn e*Way reads in
the input data file and queues it for the Oracle e*Way. The Oracle_rcv e*Way writes the
records to the db_employee table in the Oracle database.

To add and configure the FileIn e*Way:

1 In the components pane of the Enterprise Manager, select the Control Broker and

click to add a new e*Way.

2 Enter FileIn for the component name and click OK.

3 Select the newly created e*Way and click to display the e*Way’s properties.

4 Use the Find button to select stcewfile.exe as the executable file.

5 Click New to create a new configuration file.

Table name

Column name

Chapter 4 Section 4.2
Implementation Sample One—Publishing e*Gate Events to an Oracle Database

e*Way Intelligent Adapter for Oracle User’s Guide 60 SeeBeyond Proprietary and Confidential

6 Enter the parameters for the e*Way as shown in Table 4.

7 Select Save from the File menu. Enter FileIn as the file name and click Save.

8 Select Promote to Run Time from the File menu. Click OK to continue.

9 A message will notify you that the file has been promoted to run time. Click OK to
close the e*Way configuration file editor.

10 In the Start Up tab of the e*Way properties, select the Start automatically check box.

11 Click OK to save the e*Way properties.

To add and configure the Oracle_rcv e*Way:

1 In the components pane of the Enterprise Manager, select the Control Broker and

click to add a new e*Way.

2 Enter Oracle_rcv for the component name and click OK.

3 Select the newly created e*Way and click to display the e*Way’s properties.

4 Use the Find button to select stcewgenericmonk.exe as the executable file.

5 Click New to create a new configuration file.

6 Select the dart e*Way template and click OK. See Figure 25.

Figure 25 DART e*Way Template Selection

Table 4 FileIn e*Way Parameters

Section Name Parameter Value

General Settings AllowIncoming YES

AllowOutgoing NO

PerformanceTesting default

Outbound (send) settings All default

Poller (inbound) settings PollDirectory c:\egate\data\dart

InputFileMask *.dat

All others default

Performance Testing All default

Chapter 4 Section 4.2
Implementation Sample One—Publishing e*Gate Events to an Oracle Database

e*Way Intelligent Adapter for Oracle User’s Guide 61 SeeBeyond Proprietary and Confidential

7 Enter the parameters for the e*Way as shown in Table 5.

Note: Use the appropriate Database Name, User Name, and Encrypted Password
according to your local Oracle implementation.

8 Save the e*Way’s configuration file and promote it to run time.

9 In the Start Up tab of the e*Way properties, select the Start automatically check box.

10 Click OK to save the e*Way properties.

4.2.6 Add the IQs
The sample Schema requires one Intelligent Queue—OracleIQ.

To add the IQ:

1 In the components pane of the Enterprise Manager, select the IQ manager. Click
to create the new IQ.

2 Enter the name OracleIQ and click OK to save the IQ.

3 Select the IQ Manager and click to display the IQ Manager’s properties.

4 In the Start Up tab of the IQ Manager’s properties, select the Start automatically
check box.

5 Click OK to save the IQ Manager’s properties.

4.2.7 Create the Collaboration Rules
This sample schema uses two Collaboration Rules:

Table 5 Oracle_rcv e*Way Parameters

Section Name Parameter Value

General Settings All default

Communication Setup Start Exchange Data
Schedule

Repeatedly, every 1
minute

All others default

Monk Configuration Process Outgoing
Message Function

monk_scripts\common\
db_rcv.dsc

Exchange Data With
External Function

monk_scripts\common\
db_rcv.dsc

All others default

Database Setup Database Type ORACLE7,
ORACLE8, or
ORACLE8i

All others Use local settings

Chapter 4 Section 4.2
Implementation Sample One—Publishing e*Gate Events to an Oracle Database

e*Way Intelligent Adapter for Oracle User’s Guide 62 SeeBeyond Proprietary and Confidential

InboundEvent – This Collaboration Rule is used by the FileIn e*Way’s
collaboration to transform the FileInEvent Events into db_rcv_in Events.

OutboundEvent – This Collaboration Rule is used by the Oracle_rcv e*Way’s
collaboration to transform the db_rcv_in Events into db_rcv_struct Events.

To add the InboundEvent Collaboration Rule:

1 In the components pane of the Enterprise Manager, select the Collaboration Rules
folder.

2 Click the button to create a new Collaboration Rule.

3 Enter the name InboundEvent and click OK.

4 Select the newly created Collaboration Rule and click to display the
Collaboration Rule’s properties.

5 In the General tab, select the Pass Through service.

6 Under the Subscriptions tab, select the FileInEvent Event Type.

7 Under the Publications tab, select the db_rcv_in Event Type.

8 Click OK to save and close the Collaboration Rule.

To add the OutboundEvent Collaboration Rule:

1 In the components pane of the Enterprise Manager, select the Collaboration Rules
folder.

2 Click the button to create a new Collaboration Rule.

3 Enter the name OutboundEvent and click OK.

4 Select the newly created Collaboration Rule and click to display the
Collaboration Rule’s properties.

5 In the General tab, select the Pass Through service.

6 Under the Subscriptions tab, select the db_rcv_in Event Type.

7 Under the Publications tab, select the db_rcv_struct Event Type.

8 Click OK to save and close the Collaboration Rule.

4.2.8 Add and Configure the Collaborations
Each of the two e*Ways uses one Collaboration to route the Events through the sample
Schema.

FileIn_collab – This collaboration is used by the FileIn e*Way to process the
inbound Event and queue it for the Oracle_rcv e*Way.

Oracle_rcv_collab – This collaboration subscribes to the Event from the
FileIn_collab and publishes the Event to the Oracle database.

Chapter 4 Section 4.2
Implementation Sample One—Publishing e*Gate Events to an Oracle Database

e*Way Intelligent Adapter for Oracle User’s Guide 63 SeeBeyond Proprietary and Confidential

To create the FileIn_collab Collaboration:

1 In the components pane of the Enterprise Manager, select the FileIn e*Way.

2 Click the button to create a new Collaboration.

3 Enter the name FileIn_collab and click OK.

4 Select the newly created Collaboration and click to display the Collaboration’s
properties.

5 Select InboundEvent from the list of Collaboration Rules.

6 Click Add to add a new Subscription.

7 Select the FileInEvent Event Type and the <External> source.

8 Click Add to add a new Publication.

9 Select the db_rcv_in Event Type and the OracleIQ destination.

10 Click OK to close the Collaboration’s properties.

To create the Oracle_rcv_collab Collaboration:

1 In the components pane of the Enterprise Manager, select the Oracle_rcv e*Way.

2 Click the button to create a new Collaboration.

3 Enter the name Oracle_rcv_collab and click OK.

4 Select the newly created Collaboration and click to display the Collaboration’s
properties.

5 Select OutboundEvent from the list of Collaboration Rules.

6 Click Add to add a new Subscription.

7 Select the db_rcv_in Event Type and the FileIn_collab source.

8 Click Add to add a new Publication.

9 Select the db_rcv_struct Event Type and the <External> destination.

10 Click OK to close the Collaboration’s properties.

4.2.9 Run the Schema
Running the sample Schema requires a sample input file to be created. Once the input
file has been created, you can start the Control Broker from a command prompt to
execute the Schema. After the Schema has been run, you can use a query utility to query
the results in the Oracle database.

The sample input file

Use a text editor to create an input file to be read by the inbound file e*Way (FileIn).
The file must be formatted to match the ETD used by the DART script (see Figure 22 on
page 56). An example of an input file is shown in Figure 26. Save the file to the directory
specified in the e*Way’s configuration file (such as c:\egate\data\dart).

Chapter 4 Section 4.3
Implementation Sample Two—Polling from an Oracle Database

e*Way Intelligent Adapter for Oracle User’s Guide 64 SeeBeyond Proprietary and Confidential

Figure 26 Sample Input File

To run the Control Broker:

From a command line, type the following command:

stccb -ln logical_name -rh registry -rs schema -un user_name -up
password

where

logical_name is the logical name of the Control Broker,

registry is the name of the Registry Host,

schema is the name of the Registry Schema, and

user_name and password are a valid e*Gate username/password combination.

To verify the results:

Use an SQL query utility (such as Oracle SQL Plus) to query the results of the output to
the Oracle database. Figure 27 shows an example of a query to verify the results of the
schema’s output based on the input file used by this example.

Figure 27 Sample Output Console

4.3 Sample Two—Polling from an Oracle Database
This section describes how to use the Oracle e*Way in a sample implementation. This
sample schema demonstrates the polling of records from an Oracle database and
converting the records into e*Gate Events.

Chapter 4 Section 4.3
Implementation Sample Two—Polling from an Oracle Database

e*Way Intelligent Adapter for Oracle User’s Guide 65 SeeBeyond Proprietary and Confidential

The scenario uses a file e*Way to load an input file containing employee numbers.
These employee numbers are used to converted into e*Gate Events. The Oracle e*Way
uses these inbound Events to poll employee records from the external Oracle database.
As the records are returned to the Oracle e*Way, the Events are published to the
outbound IQ. The Outbound file e*Way finally writes the employee records to the
output file.

Chapter 4 Section 4.3
Implementation Sample Two—Polling from an Oracle Database

e*Way Intelligent Adapter for Oracle User’s Guide 66 SeeBeyond Proprietary and Confidential

Figure 28 Polling from Oracle Database

Inbound File
e*Way

Oracle
e*Way

Outbound
File e*Way

IQ

e*Gate

Oracle
Database

Output
File

IQ

Intput
File

Chapter 4 Section 4.3
Implementation Sample Two—Polling from an Oracle Database

e*Way Intelligent Adapter for Oracle User’s Guide 67 SeeBeyond Proprietary and Confidential

Overview of Steps

This sample implementation follows these general steps:

“Create the Schema” on page 67

“Create the Event Type Definitions” on page 67

“Add the Event Types” on page 68

“Create the Monk Scripts” on page 69

“Add and Configure the e*Ways” on page 71

“Add the IQs” on page 73

“Create the Collaboration Rules” on page 74

“Add and Configure the Collaborations” on page 74

“Run the Schema” on page 76

Note: The procedures outlined in this sample are not explained in the same level of detail
as in Sample One—Publishing e*Gate Events to an Oracle Database on
page 53. For additional information regarding the configuration of e*Gate
components, see Creating an End-to-End Scenario with e*Gate Integrator.

4.3.1 Create the Schema
The first step in deploying this sample implementation is to create a new Schema.

To add the new Schema:

1 Log into the e*Gate Enterprise Manager.

2 When you are prompted to select a Schema, click New to add a new Schema.

3 Name the Schema Oracle_Sample2.

4.3.2 Create the Event Type Definitions
The sample scenario requires two Event Type Definitions. The ETDs are:

db_request.ssc – This ETD is used to format the inbound request Events.

db_reply.ssc – This ETD is used to format the outbound reply Events.

To create the db_request ETD:

1 From the e*Gate Enterprise Manager, click to launch the ETD Editor.

2 Create a new ETD named db_request.ssc.

3 Add the nodes and subnodes to create an ETD with the structure shown below:

Figure 29 The db_request.ssc ETD

Chapter 4 Section 4.3
Implementation Sample Two—Polling from an Oracle Database

e*Way Intelligent Adapter for Oracle User’s Guide 68 SeeBeyond Proprietary and Confidential

4 Save the ETD and promote it to Run Time.

To create the db_reply ETD:

1 From the e*Gate Enterprise Manager, click to launch the ETD Editor.

2 Create a new ETD named db_reply.ssc.

3 Add the nodes and subnodes to create an ETD with the structure shown below:

Figure 30 The db_reply.ssc ETD

4 Save the ETD and promote it to Run Time.

4.3.3 Add the Event Types
The sample scenario requires six Event Types. The Event Types are:

InboundFile – This Event Type represents the inbound file as it is loaded from the
file system.

InboundEvent – This Event Type represents the inbound record that has been
converted to an e*Gate Event.

PollRequest – This Event Type represents the request that is sent to the Oracle
database.

Chapter 4 Section 4.3
Implementation Sample Two—Polling from an Oracle Database

e*Way Intelligent Adapter for Oracle User’s Guide 69 SeeBeyond Proprietary and Confidential

PollReply – This Event Type represents the reply that is returned by the Oracle
database.

OutboundEvent – This Event Type represents the outbound Event to be sent to the
external file system.

4.3.4 Create the Monk Scripts
This sample implementation uses a DART script (db_poll.dsc) to poll the external
Oracle database.

To create the DART script:

1 From the e*Gate Enterprise Manager, click to launch the Collaboration Rules
Editor.

2 Click to create a new DART script.

The New Collaboration Rules Script dialog will be displayed.

3 Enter the name db_poll (with no file extension) as the File name.

4 Select DART Poll from the list of file types. The extension .dsc will be appended to
the file name.

5 Click to display the list of source files. Select db_request.ssc as the source file.

6 Click to display the list of destination files. Select db_struct.ssc as the
destination file.

7 Enter the rules as shown in Figure 31.

Note: The rules shown in Figure 31 use a table named db_employee. In order for this
sample to work correctly, you must either create a table in your Oracle database
called db_employee or change each of the references to the table name in your
DART script rules as appropriate.

Chapter 4 Section 4.3
Implementation Sample Two—Polling from an Oracle Database

e*Way Intelligent Adapter for Oracle User’s Guide 70 SeeBeyond Proprietary and Confidential

Figure 31 The db_poll.dsc DART script

Chapter 4 Section 4.3
Implementation Sample Two—Polling from an Oracle Database

e*Way Intelligent Adapter for Oracle User’s Guide 71 SeeBeyond Proprietary and Confidential

8 Click to save the script.

9 Close the Collaboration Rules Script Editor.

4.3.5 Add and Configure the e*Ways
The sample Schema uses three e*Ways:

FileIn – The FIleIn e*Way reads in the input data file and queues it for the Oracle
e*Way.

Oracle – The Oracle e*Way polls the db_employee table in the Oracle database and
queues the returned data for the outbound file e*Way.

FileOut – The FileOut e*Way writes the records returned by the Oracle e*Way to
the output text file.

To add and configure the FileIn e*Way:

1 In the components pane of the Enterprise Manager, select the Control Broker and

click to add a new e*Way.

2 Enter FileIn for the component name and click OK.

3 Select the newly created e*Way and click to display the e*Way’s properties.

4 Use the Find button to select stcewfile.exe as the executable file.

5 Click New to create a new configuration file.

6 Enter the parameters for the e*Way as shown in Table 6.

7 Save the e*Way’s configuration file and promote it to run time.

8 In the Start Up tab of the e*Way properties, select the Start automatically check box.

9 Click OK to save the e*Way properties.

Table 6 FileIn e*Way Parameters

Section Name Parameter Value

General Settings AllowIncoming Yes

AllowOutgoing No

Performance Testing default

Outbound (send)
settings

All settings default

Poller (inbound)
settings

PollDirectory c:\egate\data\dart

OutputFileName *.dat

AllOthers default

Performance Testing All settings default

Chapter 4 Section 4.3
Implementation Sample Two—Polling from an Oracle Database

e*Way Intelligent Adapter for Oracle User’s Guide 72 SeeBeyond Proprietary and Confidential

To add and configure the Oracle e*Way:

1 In the components pane of the Enterprise Manager, select the Control Broker and

click to add a new e*Way.

2 Enter Oracle for the component name and click OK.

3 Select the newly created e*Way and click to display the e*Way’s properties.

4 Use the Find button to select stcewgenericmonk.exe as the executable file.

5 Click New to create a new configuration file.

6 Select the dart e*Way template and click OK. See Figure 32.

Figure 32 DART e*Way Template Selection

7 Enter the parameters for the e*Way as shown in Table 7.

Note: Use the appropriate Database Name, User Name, and Encrypted Password
according to your local Oracle implementation.

8 Save the e*Way’s configuration file and promote it to run time.

9 In the Start Up tab of the e*Way properties, select the Start automatically check box.

10 Click OK to save the e*Way properties.

Table 7 Oracle e*Way Parameters

Section Name Parameter Value

General Settings All default

Communication Setup Start Exchange Data
Schedule

Repeatedly, 30 seconds

All others default

Monk Configuration Process Outgoing
Message Function

monk_scripts\common\
db_poll.dsc

All others default

Database Setup Database Type ORACLE7,
ORACLE8, or
ORACLE8i

All others Use local settings

Chapter 4 Section 4.3
Implementation Sample Two—Polling from an Oracle Database

e*Way Intelligent Adapter for Oracle User’s Guide 73 SeeBeyond Proprietary and Confidential

To add and configure the FileIn e*Way:

1 In the components pane of the Enterprise Manager, select the Control Broker and

click to add a new e*Way.

2 Enter FileOut for the component name and click OK.

3 Select the newly created e*Way and click to display the e*Way’s properties.

4 Use the Find button to select stcewfile.exe as the executable file.

5 Click New to create a new configuration file.

6 Enter the parameters for the e*Way as shown in Table 6.

7 Save the e*Way’s configuration file and promote it to run time.

8 In the Start Up tab of the e*Way properties, select the Start automatically check box.

9 Click OK to save the e*Way properties.

4.3.6 Add the IQs
This sample Schema requires two Intelligent Queues: Oracle1IQ and Oracle2IQ.

To add the IQs:

1 In the components pane of the Enterprise Manager, select the IQ manager. Click
to create the first new IQ.

2 Enter the name Oracle1IQ and click Apply to save the first IQ.

3 Enter the name Oracle2IQ and click OK to save the second IQ.

4 Select the IQ Manager and click to display the IQ Manager’s properties.

5 In the Start Up tab of the IQ Manager’s properties, select the Start automatically
check box.

6 Click OK to save the IQ Manager’s properties.

Table 8 FileOut e*Way Parameters

Section Name Parameter Value

General Settings AllowIncoming No

AllowOutgoing Yes

Performance Testing default

Outbound (send)
settings

OutputDirectory c:\egate\data\dart

OutputFileName PollOutput%d.dat

All Others default

Poller (inbound)
settings

All default

Performance Testing All default

Chapter 4 Section 4.3
Implementation Sample Two—Polling from an Oracle Database

e*Way Intelligent Adapter for Oracle User’s Guide 74 SeeBeyond Proprietary and Confidential

4.3.7 Create the Collaboration Rules
This sample schema uses four Collaboration Rules:

FileIn – This Collaboration Rule is used by the FileIn e*Way’s Collaboration to
transform the InboundFile Events into InboundEvent Events.

OracleRequest – This Collaboration Rule is used by the Oracle e*Way’s
Collaboration to transform the InboundEvent Events into PollRequest Events.

OracleReply – This Collaboration Rule is used by the Oracle e*Way’s Collaboration
to transform the PollRequest Events into PollReply Events.

FileOut – This Collaboration Rule is used by the FileOut e*Way’s Collaboration to
transform the PollReply Events into OutboundEvent Events.

To add the FileIn Collaboration Rule:

1 In the components pane of the Enterprise Manager, select the Collaboration Rules
folder.

2 Click the button to create a new Collaboration Rule.

3 Enter the name FileIn and click OK.

4 Select the newly created Collaboration Rule and click to display the
Collaboration Rule’s properties.

5 In the General tab, select the Pass Through service.

6 Under the Subscriptions tab, select the InboundFile Event Type.

7 Under the Publications tab, select the InboundEvent Event Type.

8 Click OK to save and close the Collaboration Rule.

To add the remaining Collaboration Rules:

Follow the same steps used to add the FileIn Collaboration Rule using the names and
Event Types shown at the beginning of this section.

4.3.8 Add and Configure the Collaborations
This sample schema uses four Collaborations:

FileIn_collab – This Collaboration is used to transform the InboundFile Events into
InboundEvent Events.

OracleRequest_collab – This Collaboration is used to transform the InboundEvent
Events into PollRequest Events.

OracleReply_collab – This Collaboration is used to transform the PollRequest
Events into PollReply Events.

FileOut_collab – This Collaboration is used to transform the PollReply Events into
OutboundEvent Events.

Chapter 4 Section 4.3
Implementation Sample Two—Polling from an Oracle Database

e*Way Intelligent Adapter for Oracle User’s Guide 75 SeeBeyond Proprietary and Confidential

To create the FileIn_collab Collaboration:

1 In the components pane of the Enterprise Manager, select the FileIn e*Way.

2 Click the button to create a new Collaboration.

3 Enter the name FileIn_collab and click OK.

4 Select the newly created Collaboration and click to display the Collaboration’s
properties.

5 Select InboundFile from the list of Collaboration Rules.

6 Click Add to add a new Subscription.

7 Select the InboundEvent Event Type and the <External> source.

8 Click Add to add a new Publication.

9 Select the InboundEvent Event Type and the Oracle1IQ destination.

10 Click OK to close the Collaboration’s properties.

To create the OracleRequest_collab Collaboration:

1 In the components pane of the Enterprise Manager, select the Oracle e*Way.

2 Click the button to create a new Collaboration.

3 Enter the name OracleRequest_collab and click OK.

4 Select the newly created Collaboration and click to display the Collaboration’s
properties.

5 Select OracleRequest from the list of Collaboration Rules.

6 Click Add to add a new Subscription.

7 Select the InboundFile Event Type and the FileIn_Collab source.

8 Click Add to add a new Publication.

9 Select the OracleRequest Event Type and the <External> destination.

10 Click OK to close the Collaboration’s properties.

To create the OracleReply_collab Collaboration:

1 In the components pane of the Enterprise Manager, select the Oracle e*Way.

2 Click the button to create a new Collaboration.

3 Enter the name OracleReply_collab and click OK.

4 Select the newly created Collaboration and click to display the Collaboration’s
properties.

5 Select OracleRereply from the list of Collaboration Rules.

6 Click Add to add a new Subscription.

7 Select the OracleRequest Event Type and the <External> source.

Chapter 4 Section 4.3
Implementation Sample Two—Polling from an Oracle Database

e*Way Intelligent Adapter for Oracle User’s Guide 76 SeeBeyond Proprietary and Confidential

8 Click Add to add a new Publication.

9 Select the OracleReply Event Type and the Oracle2IQ destination.

10 Click OK to close the Collaboration’s properties.

To create the FileOut_collab Collaboration:

1 In the components pane of the Enterprise Manager, select the FileOut e*Way.

2 Click the button to create a new Collaboration.

3 Enter the name FileOut_collab and click OK.

4 Select the newly created Collaboration and click to display the Collaboration’s
properties.

5 Select FileOut from the list of Collaboration Rules.

6 Click Add to add a new Subscription.

7 Select the OracleReply Event Type and the OracleReply_collab source.

8 Click Add to add a new Publication.

9 Select the OutboundEvent Event Type and the <External> destination.

10 Click OK to close the Collaboration’s properties.

4.3.9 Run the Schema
Running the sample Schema requires a sample input file to be created. Once the input
file has been created, you can start the Control Broker from a command prompt to
execute the Schema. After the Schema has been run, you can view the results in the
output file.

The sample input file

Use a text editor to create an input file to be ready by the inbound file e*Way (FileIn).
The file must be formatted to match the simple ETD used by the DART script (see
Figure 29 on page 67). An example of an input file is shown in Figure 33. Save the file to
the directory specified in the e*Way’s configuration file (such as c:\egate\data\dart).

Note: The “employee numbers” used in this example must exist in your Oracle database.
The sample shown below uses employee numbers that exist from the records in the
previous sample schema.

Figure 33 Sample Input File

Chapter 4 Section 4.3
Implementation Sample Two—Polling from an Oracle Database

e*Way Intelligent Adapter for Oracle User’s Guide 77 SeeBeyond Proprietary and Confidential

To run the Control Broker:

From a command line, type the following command:

stccb -ln logical_name -rh registry -rs OracleSample2 -un user_name
-up password

where

logical_name is the logical name of the Control Broker,

registry is the name of the Registry Host, and

user_name and password are a valid e*Gate username/password combination.

To verify the results:

Use a text editor to view the records that were written to the output file specified by the
FileOut e*Way. The records should correspond to the records in the external database.

e*Way Intelligent Adapter for Oracle User’s Guide 78 SeeBeyond Proprietary and Confidential

Chapter 5

Oracle e*Way Functions

The functions described in this chapter control the Oracle e*Way’s basic operations as
well as those needed for database access.

This Chapter Explains:

“Basic Functions” on page 78

“Standard e*Way Functions” on page 86

“General Connection Functions” on page 104

“Static SQL Functions” on page 119

“Dynamic SQL Functions” on page 135

“Stored Procedure Functions” on page 149

“Message Event Functions” on page 180

“Sample Monk Scripts” on page 192

5.1 Basic Functions
The functions in this category control the e*Way’s most basic operations.

The basic functions are:

event-send-to-egate on page 79

get-logical-name on page 80

send-external-down on page 81

send-external-up on page 82

shutdown-request on page 83

start-schedule on page 84

stop-schedule on page 85

Chapter 5 Section 5.1
Oracle e*Way Functions Basic Functions

e*Way Intelligent Adapter for Oracle User’s Guide 79 SeeBeyond Proprietary and Confidential

event-send-to-egate

Syntax

(event-send-to-egate string)

Description

event-send-to-egate sends an Event from the e*Way. If the external collaboration(s) is
successful in publishing the Event to the outbound queue, the function will return #t,
otherwise #f.

Parameters

Return Values

Boolean
Returns #t when successful and #f when an error occurs.

Throws

None.

Additional information

This function can be called by any e*Way function when it is necessary to send data to
the e*Gate system in a blocking fashion.

Name Type Description

string string The data to be sent to the e*Gate
system

Chapter 5 Section 5.1
Oracle e*Way Functions Basic Functions

e*Way Intelligent Adapter for Oracle User’s Guide 80 SeeBeyond Proprietary and Confidential

get-logical-name

Syntax

(get-logical-name)

Description

get-logical-name returns the logical name of the e*Way.

Parameters

None.

Return Values

string
Returns the name of the e*Way (as defined by the Enterprise Manager).

Throws

None.

Chapter 5 Section 5.1
Oracle e*Way Functions Basic Functions

e*Way Intelligent Adapter for Oracle User’s Guide 81 SeeBeyond Proprietary and Confidential

send-external-down

Syntax

(send-external-down)

Description

send-external down instructs the e*Way that the connection to the external system is
down.

Parameters

None.

Return Values

None.

Throws

None.

Chapter 5 Section 5.1
Oracle e*Way Functions Basic Functions

e*Way Intelligent Adapter for Oracle User’s Guide 82 SeeBeyond Proprietary and Confidential

send-external-up

Syntax

(send-external-up)

Description

send-external-up instructs the e*Way that the connection to the external system is up.

Parameters

None.

Return Values

None.

Throws

None.

Chapter 5 Section 5.1
Oracle e*Way Functions Basic Functions

e*Way Intelligent Adapter for Oracle User’s Guide 83 SeeBeyond Proprietary and Confidential

shutdown-request

Syntax

(shutdown-request)

Description

shutdown-request completes the e*Gate shutdown procedure that was initiated by the
Control Broker but was interrupted by returning a non-null value within the Shutdown
Command Notification Function (see “Shutdown Command Notification Function”
on page 41). Once this function is called, shutdown proceeds immediately.

Once interrupted, the e*Way’s shutdown cannot proceed until this Monk function is
called. If you do interrupt an e*Way shutdown, we recommend that you complete the
process in a timely fashion.

Parameters

None.

Return Values

None.

Throws

None.

Chapter 5 Section 5.1
Oracle e*Way Functions Basic Functions

e*Way Intelligent Adapter for Oracle User’s Guide 84 SeeBeyond Proprietary and Confidential

start-schedule

Syntax

(start-schedule)

Description

start-schedule requests that the e*Way execute the “Exchange Data with External”
function specified within the e*Way’s configuration file. Does not effect any defined
schedules.

Parameters

None.

Return Values

None.

Throws

None.

Chapter 5 Section 5.1
Oracle e*Way Functions Basic Functions

e*Way Intelligent Adapter for Oracle User’s Guide 85 SeeBeyond Proprietary and Confidential

stop-schedule

Syntax

(stop-schedule)

Description

stop-schedule requests that the e*Way halt execution of the “Exchange Data with
External” function specified within the e*Way’s configuration file. Execution will be
stopped when the e*Way concludes any open transaction. Does not effect any defined
schedules, and does not halt the e*Way process itself.

Parameters

None.

Return Values

None.

Throws

None.

Chapter 5 Section 5.2
Oracle e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for Oracle User’s Guide 86 SeeBeyond Proprietary and Confidential

5.2 Standard e*Way Functions
The functions in this category control the e*Way’s standard operations.

The standard functions are:

db-stdver-conn-estab on page 87

db-stdver-conn-shutdown on page 89

db-stdver-conn-ver on page 90

db-stdver-data-exchg on page 92

db-stdver-data-exchg-stub on page 93

db-stdver-init on page 94

db-stdver-neg-ack on page 96

db-stdver-pos-ack on page 97

db-stdver-proc-outgoing on page 98

db-stdver-proc-outgoing-stub on page 100

db-stdver-shutdown on page 102

db-stdver-startup on page 103

Chapter 5 Section 5.2
Oracle e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for Oracle User’s Guide 87 SeeBeyond Proprietary and Confidential

db-stdver-conn-estab

Syntax

(db-stdver-conn-estab)

Description

db-stdver-conn-estab is used to establish external system connection.The following
tasks are performed by this function:

construct a new connection handle

call db-long to connect to database

setup timestamp format if required

setup maximum long data buffer limit if required

bind dynamic SQL statement and stored procedures.

Parameters

None.

Return Values

A string
UP or SUCCESS if connection established, anything else if connection not established.

Throws

None.

Additional Information

To use standard database time format, add the following function call to this function:
(db-std-timestamp-format connection-handle) after the (db-bind) call.

For "Maximum Long Data Size" the DART library allocates an internal buffer for each
SQL_LONGVARCHAR and SQL_LONGVARBINARY data, when the SQL statement
or stored procedure that contains these data types are bound. The default size of each
internal data buffer is 1024K(1048576) bytes. If the user needs to handle long data larger
than this default value, add the following function call to specify the maximum data
size:

(db-max-long-data-size connection-handle maximum-data-size)

(see db-max-long-data-size on page 114 for more information.

Standard Implementation

(define db-stdver-conn-estab
 (lambda ()
 (let ((result "DOWN")(last_dberr ""))
 (display "[++] Executing e*Way external connection establishment
function.")
 (display "db-stdver-conn-estab: logging into the database
with:\n")
 (display "DATABASE NAME = ")
 (display DATABASE_SETUP_DATABASE_NAME)
 (newline)
 (display "USER NAME = ")
 (display DATABASE_SETUP_USER_NAME)

Chapter 5 Section 5.2
Oracle e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for Oracle User’s Guide 88 SeeBeyond Proprietary and Confidential

 (newline)
 (set! connection-handle (make-connection-handle))
 (if (connection-handle? connection-handle)
 (begin
 (if (db-login connection-handle
 DATABASE_SETUP_DATABASE_NAME
 DATABASE_SETUP_USER_NAME
 DATABASE_SETUP_ENCRYPTED_PASSWORD)
 (begin
 (db-std-timestamp-format connection-handle)
 (db-bind)
 (set! result "UP")
)
 (begin
 (set! last_dberr (db-get-error-str connection-handle))
 (display last_dberr)
 (event-send "ALERTCAT_OPERATIONAL"
 "ALERTSUBCAT_CANTCONN"
 "ALERTINFO_FATAL"
 "0" "Cannot connect to database"
 (string-append
 "Failed to connect to database: "
 DATABASE_SETUP_DATABASE_NAME
 "with error" last_dberr)
 0 (list))
 (newline)
 (db-logout connection-handle)
 (set! result "DOWN")
)
)
)
 (begin
 (set! result "DOWN")
 (display "Failed to create connection handle.")
 (event-send "ALERTCAT_OPERATIONAL"
 "ALERTSUBCAT_UNUSABLE"
 "ALERTINFO_FATAL"
 "0"
 "database connection handle creation error"
 "Failed to create database connection handle"
 0 (list))
)
)
 result
)
))

Chapter 5 Section 5.2
Oracle e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for Oracle User’s Guide 89 SeeBeyond Proprietary and Confidential

db-stdver-conn-shutdown

Syntax

(db-stdver-conn-shutdown string)

Description

db-stdver-conn-shutdown is called by the system to request that the interface
disconnect from the external system, preparing for a suspend/reload cycle. Any return
value indicates that the suspend can occur immediately, and the interface will be placed
in the down state.

Parameters

Return Values

A string
A return of "SUCCESS" indicates that the external is ready to suspend.

Throws

None.

Standard Implementation

(define db-stdver-conn-shutdown
 (lambda (message-string)
 (let ((result "SUCCESS"))
 (display "[++] Executing e*Way external connection shutdown
function.")
 (display message-string)
 (db-logout connection-handle)
 result
)
))

Name Type Description

string string When the e*Way calls this function, it will pass the
string "SUSPEND_NOTIFICATION" as the parameter.

Chapter 5 Section 5.2
Oracle e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for Oracle User’s Guide 90 SeeBeyond Proprietary and Confidential

db-stdver-conn-ver

Syntax

(db-stdver-conn-ver)

Description

db-stdver-conn-ver is used to verify whether external system connection is established.

Parameters

None.

Return Values

A string
UP or SUCCESS if connection established, anything else if connection not established.

Throws

None.

Additional Information

To use standard database time format, add the following function call to this function:
(db-std-timestamp-format connection handle) after the (db-bind) call.

Standard Implementation

(define db-stdver-conn-ver
 (lambda ()
 (let ((result "DOWN")(last_dberr ""))
 (display "[++] Executing e*Way external connection verification
function.")
 (display "db-stdver-conn-ver: checking connection status...\n")
 (cond
 ((string=? STCDB "SYBASE")
 (db-sql-select connection-handle "verify" "select getdate()"))
 ((string=? STCDB "ORACLE8i")
 (db-sql-select connection-handle "verify" "select sysdate from
dual"))
 ((string=? STCDB "ORACLE8")
 (db-sql-select connection-handle "verify" "select sysdate from
dual"))
 ((string=? STCDB "ORACLE7")
 (db-sql-select connection-handle "verify" "select sysdate from
dual"))
 (else
 (db-sql-select connection-handle "verify" "select {fn NOW()}"))
)
 (if (db-alive connection-handle)
 (begin
 (db-sql-fetch-cancel connection-handle "verify")
 (set! result "UP")
)
 (begin
 (set! last_dberr (db-get-error-str connection-handle))
 (display last_dberr)
 (event-send "ALERTCAT_OPERATIONAL"
 "ALERTSUBCAT_LOSTCONN"
 "ALERTINFO_FATAL"
 "0"
 "Lost connection to database"

Chapter 5 Section 5.2
Oracle e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for Oracle User’s Guide 91 SeeBeyond Proprietary and Confidential

 (string-append
 "Lost connection to database: "
 DATABASE_SETUP_DATABASE_NAME
 "with error" last_dberr)
 0 (list))
 (set! result "DOWN")
)
)
 result
)
))

Chapter 5 Section 5.2
Oracle e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for Oracle User’s Guide 92 SeeBeyond Proprietary and Confidential

db-stdver-data-exchg

Syntax

(db-stdver-data-exchg)

Description

db-stdver-data-exchg is used for sending a received Event from the external system to
e*Gate. The function expects no input.

Parameters

None.

Return Values

A string
An empty string indicates a successful operation. Nothing is sent to e*Gate.

A message-string indicates successful operation and the Event is sent to e*Gate.

CONNERR indicates the loss of connection with the external, client moves to a down
state and attempts to connect, on reconnect this function will be re-executed with the
same Event.

Throws

None.

Standard Implementation

(define db-stdver-data-exchg
 (lambda ()
 (let ((result ""))
 (display "[++] Executing e*Way external data exchange function.")
 result
)
))

Chapter 5 Section 5.2
Oracle e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for Oracle User’s Guide 93 SeeBeyond Proprietary and Confidential

db-stdver-data-exchg-stub

Syntax

(db-stdver-data-exchg-stub)

Description

db-stdver-data-exchg-stub is used as a place holder for the function entry point for
sending an Event from the external system to e*Gate. When the interface is configured
as an outbound only connection, this function should not be called. The function
expects no input.

Parameters

None.

Return Values

A string
An empty string indicates a successful operation. Nothing is sent to e*Gate.

A message-string indicates a successful operation and the Event is sent to e*Gate.

CONNERR indicates the loss of connection with the external, client moves to a down
state and attempts to connect, on reconnect this function will be re-executed with the
same input message.

Throws

None.

Standard Implementation

(define db-stdver-data-exchg-stub
 (lambda ()
 (let ((result ""))
 (display "[++] Executing e*Way external data exchange function
stub.")
 (event-send "ALERTCAT_OPERATIONAL"
 "ALERTSUBCAT_INTEREST"
 "ALERTINFO_NONE"
 "0"
 "Possible configuration error."
 "Default eway data exchange function called."
 0 (list))
 result
)
))

Chapter 5 Section 5.2
Oracle e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for Oracle User’s Guide 94 SeeBeyond Proprietary and Confidential

db-stdver-init

Syntax

(db-stdver-init)

Description

db-stdver-init begins the initialization process for the e*Way. The function loads all of
the monk extension library files that the other e*Way functions will access.

Parameters

None.

Return Values

A string
If a FAILURE string is returned, the e*Way will shutdown. Any other return indicates
success.

Throws

None.

Standard Implementation

(define db-stdver-init
 (lambda ()
 (let ((result "SUCCESS"))
 (display "[++] Executing dart e*Way external init function.")
 (display "[++] Loading db-eWay-stdver-funcs.monk ")
 (display "DATABASE TYPE = ")
 (display DATABASE_SETUP_DATABASE_TYPE)
 (newline)
 (define STCDB DATABASE_SETUP_DATABASE_TYPE)
 (define DART_NULL "_NULL_")
 (define DART_NULL_MODE "INOUT")
 (define STCDATADIR (get-data-dir))
 (define connection-handle 0)
 (if (not (load-extension "stc_monkutils.dll"))
 (begin
 (set! result "FAILURE")
 (display "Failed to load stc_monkutils.dll.")
)
 (begin
 (display " Loaded stc_monkutils.dll ")
)
)
 (if (not (load-extension "stc_dbmonkext.dll"))
 (begin
 (set! result "FAILURE")
 (display "Failed to load stc_dbmonkext.dll.")
 (event-send "ALERTCAT_OPERATIONAL"
 "ALERTSUBCAT_UNUSABLE"
 "ALERTINFO_FATAL" "0"
 "stc_dbmonkext.dllloaderror"
 "Failedtoloadstc_dbmonkext.dll"
 0 (list))
)
 (begin
 (display "Loaded stc_dbmonkext.dll")
)
)

Chapter 5 Section 5.2
Oracle e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for Oracle User’s Guide 95 SeeBeyond Proprietary and Confidential

 result
)
))

Chapter 5 Section 5.2
Oracle e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for Oracle User’s Guide 96 SeeBeyond Proprietary and Confidential

db-stdver-neg-ack

Syntax

(db-stdver-neg-ack message-string)

Description

db-stdver-neg-ack is used to send a negative acknowledgement to the external system,
and for post processing after failing to send data to e*Gate.

Parameters

Return Values

A string
An empty string indicates a successful operation.

CONNERR indicates a loss of connection with the external, client moves to a down
state and attempts to connect, on reconnect neg-ack function will be re-executed.

Throws

None.

Standard Implementation

(define db-stdver-neg-ack
 (lambda (message-string)
 (let ((result ""))
 (display "[++] Executing e*Way external negative acknowledgement
function.")
 (display message-string)
 result
)
))

Name Description

message-string The Event for which a negative acknowledgment is sent.

Chapter 5 Section 5.2
Oracle e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for Oracle User’s Guide 97 SeeBeyond Proprietary and Confidential

db-stdver-pos-ack

Syntax

(db-stdver-pos-ack message-string)

Description

db-stdver-pos-ack is used to send a positive acknowledgement to the external system,
and for post processing after successfully sending data to e*Gate.

Parameters

Return Values

A string
An empty string indicates a successful operation. The e*Way will then be able to
proceed with the next request.

CONNERR indicates a loss of connection with the external, client moves to a down
state and attempts to connect, on reconnect pos-ack function will be re-executed.

Throws

None.

Standard Implementation

(define db-stdver-pos-ack
 (lambda (message-string)
 (let ((result ""))
 (display "[++] Executing e*Way external positive acknowledgement
function.")
 (display message-string)
 result
)
))

Name Description

message-string The Event for which an acknowledgment is
sent.

Chapter 5 Section 5.2
Oracle e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for Oracle User’s Guide 98 SeeBeyond Proprietary and Confidential

db-stdver-proc-outgoing

Syntax

(db-stdver-proc-outgoing message-string)

Description

db-stdver-proc-outgoing is used for sending a received message (Event) from e*Gate to
the external system.

Parameters

Return Values

A string
An empty string indicates a successful operation.

RESEND causes the message to be immediately resent. The e*Way will compare the
number of attempts it has made to send the Event to the number specified in the Max
Resends per Messages parameter, and does one of the following:

If the number of attempts does not exceed the maximum, the e*Way will pause the
number of seconds specified by the Resend Timeout parameter, increment the
“resend attempts” counter for that message, then repeat the attempt to send the
message.

If the number of attempts exceeds the maximum, the function returns false and rolls
back the message to the e*Gate IQ from which it was obtained.

CONNERR indicates that there is a problem communicating with the external system.
First, the e*Way will pause the number of seconds specified by the Resend Timeout
parameter. Then, the e*Way will call the External Connection Establishment function
according to the Down Timeout schedule, and will roll back the message (Event) to
the IQ from which it was obtained.

DATAERR indicates that there is a problem with the message (Event) data itself. First,
the e*Way will pause the number of seconds specified by the Resend Timeout
parameter. Then, the e*Way increments its “failed message (Event)” counter, and rolls
back the message (Event) to the IQ from which it was obtained. If the e*Way’s journal is
enabled (see Journal File Name on page 23) the message (Event) will be journaled.

If a string other than the following is returned, the e*Way will create an entry in the log
file indicating that an attempt has been made to access an unsupported function.

Throws

None.

Standard Implementation

(define db-stdver-proc-outgoing

Name Type Description

message-string string The Event to be processed.

Chapter 5 Section 5.2
Oracle e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for Oracle User’s Guide 99 SeeBeyond Proprietary and Confidential

 (lambda (message-string)
 (let ((result ""))
 (display "[++] Executing e*Way external process outgoing message
function.")
 (display message-string)
 result
)
))

Chapter 5 Section 5.2
Oracle e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for Oracle User’s Guide 100 SeeBeyond Proprietary and Confidential

db-stdver-proc-outgoing-stub

Syntax

(db-stdver-proc-outgoing-stub message-string)

Description

db-stdver-proc-outgoing-stub is used as a place holder for the function entry point for
sending an Event received from e*Gate to the external system. When the interface is
configured as an inbound only connection, this function should not be used. This
function is used to catch configuration problems.

Parameters

Return Values

A string
An empty string indicates a successful operation.

RESEND causes the message to be immediately resent. The e*Way will compare the
number of attempts it has made to send the Event to the number specified in the Max
Resends per Messages parameter, and does one of the following:

If the number of attempts does not exceed the maximum, the e*Way will pause the
number of seconds specified by the Resend Timeout parameter, increment the
“resend attempts” counter for that message, then repeat the attempt to send the
message.

If the number of attempts exceeds the maximum, the function returns false and rolls
back the message to the e*Gate IQ from which it was obtained.

CONNERR indicates that there is a problem communicating with the external system.
First, the e*Way will pause the number of seconds specified by the Resend Timeout
parameter. Then, the e*Way will call the External Connection Establishment function
according to the Down Timeout schedule, and will roll back the message (Event) to the
IQ from which it was obtained.

DATAERR indicates that there is a problem with the message (Event) data itself. First,
the e*Way will pause the number of seconds specified by the Resend Timeout
parameter. Then, the e*Way increments its “failed message (Event)” counter, and rolls
back the message (Event) to the IQ from which it was obtained. If the e*Way’s journal is
enabled (see Journal File Name on page 23) the message (Event) will be journaled.

If a string other than the following is returned, the e*Way will create an entry in the log
file indicating that an attempt has been made to access an unsupported function.

Throws

None.

Name Type Description

message-string string The Event to be processed.

Chapter 5 Section 5.2
Oracle e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for Oracle User’s Guide 101 SeeBeyond Proprietary and Confidential

Standard Implementation

(define db-stdver-proc-outgoing-stub
 (lambda (message-string)
 (let ((result ""))
 (display "[++] Executing e*Way external process outgoing message
function stub.")
 (display message-string)
 (event-send "ALERTCAT_OPERATIONAL"
 "ALERTSUBCAT_INTEREST"
 "ALERTINFO_NONE"
 "0"
 "Possible configuration error."
 (string-append
 "Default eway process outgoing msg function "
 "passed following message: " msg)
 0 (list))
 result
)
))

Chapter 5 Section 5.2
Oracle e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for Oracle User’s Guide 102 SeeBeyond Proprietary and Confidential

db-stdver-shutdown

Syntax

(db-stdver-shutdown shutdown_notification)

Description

db-stdver-shutdown is called by the system to request that the external shutdown. A
return value of SUCCESS indicates that the shutdown can occur immediately, any
other return value indicates that the shutdown Event must be delayed. The user is then
required to execute a shutdown-request call from within a Monk function to allow the
requested shutdown process to continue.

Parameters

Return Values

A string
SUCCESS allows an immediate shutdown to occur, anything else delays shutdown
until a shutdown-request is executed successfully.

Throws

None.

Standard Implementation

(define db-stdver-shutdown
 (lambda (message-string)
 (let ((result "SUCCESS"))
 (display "[++] Executing e*Way external shutdown command
notification function.")
 result
)
))

Name Type Description

shutdown_notifi
cation

string When the e*Way calls this function, it will pass the
string "SHUTDOWN_NOTIFICATION" as the
parameter.

Chapter 5 Section 5.2
Oracle e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for Oracle User’s Guide 103 SeeBeyond Proprietary and Confidential

db-stdver-startup

Syntax

(db-stdver-startup)

Description

db-stdver-startup is used for instance specific function loads and invokes setup.

Parameters

None.

Return Values

A string
FAILURE causes shutdown of the e*Way. Any other return indicates success.

Throws

None.

Standard Implementation

(define db-stdver-startup
 (lambda ()
 (let ((result "SUCCESS"))
 (display "[++] Executing e*Way external startup function.")
 result
)
))

Chapter 5 Section 5.3
Oracle e*Way Functions General Connection Functions

e*Way Intelligent Adapter for Oracle User’s Guide 104 SeeBeyond Proprietary and Confidential

5.3 General Connection Functions
The functions in this category control the e*Way’s database connection operations.

The general connection functions are:

connection-handle? on page 105

db-alive on page 106

db-commit on page 108

db-get-error-str on page 109

db-login on page 111

db-logout on page 113

db-max-long-data-size on page 114

db-rollback on page 115

db-std-timestamp-format on page 116

make-connection-handle on page 117

statement-handle? on page 118

Chapter 5 Section 5.3
Oracle e*Way Functions General Connection Functions

e*Way Intelligent Adapter for Oracle User’s Guide 105 SeeBeyond Proprietary and Confidential

connection-handle?

Syntax

(connection-handle? any-variable)

Description

connection-handle? determines whether or not the input argument is a
connection-handle data type.

Parameters

This function requires a single variable of any data type.

Return Values

Boolean
Returns #t (true) if the argument is a connection handle; otherwise, returns #f (false).
Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

Explanation

The above example creates a connection handle called hdbc. An error message is
displayed if the newly defined hdbc is not a connection handle.

Chapter 5 Section 5.3
Oracle e*Way Functions General Connection Functions

e*Way Intelligent Adapter for Oracle User’s Guide 106 SeeBeyond Proprietary and Confidential

db-alive

Syntax

(db-alive connection-handle)

Description

db-alive is used to determine if the cause of a failing operation is due to a broken
connection. It returns whether or not the database connection was alive during the last
call to any procedure that sends commands to the database server.

Parameters

Return Values

Boolean
Returns #t (true) if the connection to the database server is still alive; otherwise, returns
#f (false) if the connection to the database server is either dead or down.Use
db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc "Payroll" "user" "password")
 (begin
 (define sql_statement "select * from person where sex = ‘M’")
 (do ((status #t)) ((not status))
 (if (db-sql-select hdbc "male" sql_statement)
 (begin
 ...
)
 (begin
 (display (db-get-error-str hdbc))
 (set! status (db-alive hdbc))
)
)
)
 (display "lost database connection !\n"))
 (db-logout hdbc))
)
)

Explanation

The example above illustrates an application that is looking for a certain record in the
person table of the “Payroll” database. The function will exit the loop only if it loses the
connection to the database.

Notes

1 Most functions can detect a dead connection handle except db-commit and db-
rollback. Therefore, when the function returns false, users must check for loss of
connection.

Name Type Description

connection-handle connection handle A connection handle to the database.

Chapter 5 Section 5.3
Oracle e*Way Functions General Connection Functions

e*Way Intelligent Adapter for Oracle User’s Guide 107 SeeBeyond Proprietary and Confidential

2 Once the db-alive returns #f to indicate either a dead connection handle or an un-
available database server, all the subsequent function calls associated with that
connection handle will not be executed, with the exception of db-logout. Each of
these functions will return false with a “lost database connection” error message.

3 Once it is determined the connection handle is not alive, the only course of action
the user can take is to log out from that connection handle, redefine a new
connection handle, and try to reconnect to the database.

Chapter 5 Section 5.3
Oracle e*Way Functions General Connection Functions

e*Way Intelligent Adapter for Oracle User’s Guide 108 SeeBeyond Proprietary and Confidential

db-commit

Syntax

(db-commit connection-handle)

Description

db-commit performs all transactions specified by the connection.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

...
(if
 (and
 (db-sql-execute hdbc “delete from employee where first_name =
‘John’”)
 (db-sql-execute hdbc “update employee set first_name = ‘Mary’
where ssn = 123456789”)
)
 (db-commit hdbc)
 (begin
 (display (db-get-error-str hdbc))
 (db-rollback hdbc)
)
)
...

Explanation

This example shows that if the application can successfully delete “John’s record” and
update “Mary’s record” it will commit the transaction specified by the connection.
Otherwise, it prints out the error message and rolls back the transaction.

Name Type Description

connection-handle connection handle A connection handle to the database.

Chapter 5 Section 5.3
Oracle e*Way Functions General Connection Functions

e*Way Intelligent Adapter for Oracle User’s Guide 109 SeeBeyond Proprietary and Confidential

db-get-error-str

Syntax

(db-get-error-str connection-handle)

Description

db-get-error-str returns the last error message, and is used when the Oracle e*Way
returns a #f value.

Parameters

Return Values

A string
A simple error message is returned.

To parse the return error message when it contains an error, use the two standard files
that define the error message structure and display the contents of each component of
the error message.

ORACLE - oramsg.ssc, oramsg_display.monk

Throws

None.

Examples

 Scenario #1 — sample code for db-get-error-str

...
(if (db-sql-execute hdbc "delete from employee" where
first_name=‘John’)
 (db-commit hdbc)
 (display (db-get-error-str hdbc))
)
...

Explanation

This example shows that if the application can successfully delete “John’s record” it
will commit the transaction. Otherwise, the application will print out the error message
and roll back the same transaction.

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "database login succeed !\n")
 (if (db-sql-execute hdbc "INSERT INTO UNKNOWN VALUES (NULL)")
 (db-commit hdbc)
 (oramsg-display (db-get-error-str hdbc))
)
 (if (not (db-logout hdbc))
 (oramsg-display (db-get-error-str hdbc))
)
)
 (oramsg-display (db-get-error-str hdbc))

Name Type Description

connection-handle connection handle A connection handle to the database.

Chapter 5 Section 5.3
Oracle e*Way Functions General Connection Functions

e*Way Intelligent Adapter for Oracle User’s Guide 110 SeeBeyond Proprietary and Confidential

)

Program output of the above example:

Output of (db-get-error-str hdbc)

ORACLE|ORA-00942|table or view does not exist
Output of (oramsg-display (db-get-error-str hdbc))

ORACLE message #0:

msg_source : ORACLE
error_code : ORA-00942
msg_string : table or view does not exist

Chapter 5 Section 5.3
Oracle e*Way Functions General Connection Functions

e*Way Intelligent Adapter for Oracle User’s Guide 111 SeeBeyond Proprietary and Confidential

db-login

Syntax

(db-login connection-handle data-source user-name password)

Description

db-login allocates the resources and performs login to a database system.

This function requires an encrypted password. If you have specified a password in the
Database Setup section of the e*Way Editor, it has already been encrypted. (See
“Database Setup” on page 41.)

If you define the password within a monk function (which is not encrypted), you must
use the monk function encrypt-password found in the e*Gate Monk extension library
stc_monkext.dll:

encrypt-password encryption key plain password

where encryption key is public knowledge, i.e., in this case user id, and plain
password is the password to be encrypted.

The standard encrypt-password function returns an encrypted password string to be
used with db-login.

Parameters

Note: The data_source, user_name, and password must not be empty strings.

Return Values

Boolean
Returns #t (true) if the argument is a connection handle; otherwise, returns #f (false).
Use db-get-error-str to retrieve the error message.

Throws

None.

Example

;demo-login.monk

; define eGate path
(define EGATE "/eGate/client")

; load Monk basic extension
(define MONKLIB (string-append EGATE "/bin/stc_monkext.dll"))
(load-extension MONKLIB)

 Name Type Description

connection-handle connection
handle

A connection handle to the database.

data-source string A data source name.

user-name string The database user login name.

password string The user login password.

Chapter 5 Section 5.3
Oracle e*Way Functions General Connection Functions

e*Way Intelligent Adapter for Oracle User’s Guide 112 SeeBeyond Proprietary and Confidential

; load Monk database extension
(define STCDB "ORACLE8")
(define DARTLIB (string-append EGATE "/bin/stc_dbmonkext.dll"))
(load-extension DARTLIB)

; define data source, user ID, and password
(define dsn "Houston")
(define uid "NASA")
(define pwd (encrypt-password uid "Lunar"))

(define hdbc (make-connection-handle))
(display (string-append "\nDART Login " dsn " ...\n"))
(if (db-login hdbc dsn uid pwd)
 (begin
 (display "database login succeed !\n")
 (db-logout hdbc)
)
 (display (db-get-error-str hdbc))
)

Explanation

This example shows how to use the connection handle (hbdc) to log into the data source
“Houston” as “NASA” with the password “Lunar.”

Chapter 5 Section 5.3
Oracle e*Way Functions General Connection Functions

e*Way Intelligent Adapter for Oracle User’s Guide 113 SeeBeyond Proprietary and Confidential

db-logout

Syntax

(db-logout connection-handle)

Description

db-logout performs a disconnect from the database system and releases the connection
handle resources.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

...
(define hdbc (make-connection-handle))
(define uid "James")
(define pwd (encrypt-password uid "12345"))
(if (db-login hdbc "Payroll" "James" "12345")
 ...
)

Explanation

The above example shows how to disconnect from a database. For every db-login,
there should be a corresponding db-logout.

Notes

Make sure to roll back or commit a transaction before you call db-logout. If a
transaction is neither committed nor rolled back, it will be automatically rolled back
before logout.

Name Type Description

connection-handle connection handle A connection handle to the database.

Chapter 5 Section 5.3
Oracle e*Way Functions General Connection Functions

e*Way Intelligent Adapter for Oracle User’s Guide 114 SeeBeyond Proprietary and Confidential

db-max-long-data-size

Syntax

(db-max-long-data-size connection-handle size)

Description

db-max-long-data specifies the maximum buffer size for the long data
(SQL_LONGVARCHAR, SQL_LONGVARBINARY). Long data may have a range in
size up to 2 Gigabytes (2x109). In order to limit the memory consumption of the DART
library, it is necessary to use this function to specify the maximum data size expected.
Long data larger than the specified size will be truncated. This data size will be used for
buffer allocation for both long data columns as well as long data parameters.

Parameters

Return Values

Boolean
Returns #t (true) if successful; and If unsuccessful, returns #f (false). Use db-get-error-
str to retrieve the error message.

Throws

None.

Notes

The default maximum buffer size for long data type is 1 megabyte (1048576). It is not
necessary to call this function unless the long data is in excess of 1 megabyte.

Name Type Description

connection-handle connection handle A connection handle to the database.

size integer Specifies the buffer size of the
specified long data type.
Note: The default buffer size is 1
megabyte.

Chapter 5 Section 5.3
Oracle e*Way Functions General Connection Functions

e*Way Intelligent Adapter for Oracle User’s Guide 115 SeeBeyond Proprietary and Confidential

db-rollback

Syntax

(db-rollback connection-handle)

Description

db-rollback rolls back the entire transaction for the connection.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

...
(if
 (and
 (db-sql-execute hdbc "delete from employee where first_name =
‘John’")
 (db-sql-execute hdbc "update employee set first_name = ‘Mary’
where ssn = 123456789")
)
 (db-commit hdbc)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
 (db-rollback hdbc)
)
)
...

Explanation

This example shows that if the application can successfully delete “John’s record” and
update “Mary’s record,” it will commit the transaction specified by the connection.
Otherwise, it prints out the error message and rolls back the transaction.

Name Type Description

connection-handle connection handle A connection handle to the database.

Chapter 5 Section 5.3
Oracle e*Way Functions General Connection Functions

e*Way Intelligent Adapter for Oracle User’s Guide 116 SeeBeyond Proprietary and Confidential

db-std-timestamp-format

Syntax

(db-std-timestamp-format connection-handle)

Description

db-std-timestamp-format sets the date to SQL92 standard format—”YYYY-MM-DD
HH:MI:SS.SSS”—at the connection level and must be called immediately after login.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Notes

1 When the user logs into the database, the database server will have a default
timestamp format set. The default format could be any non-standard format.

Note: The db-std-timestamp-format function forces the input and output of the
timestamp format to the standard SQL92 standard format. Using standard format
frees the user from reformatting each time data is exchanged with other applications.

2 Oracle does not support sub-second format such as “YYYY-MM-DD HH:MI:SS.” In
a stored procedure a PL/SQL Table of Date data type will ALWAYS return in
standard timestamp format.

Name Type Description

connection-handle connection handle A connection handle to the database.

Chapter 5 Section 5.3
Oracle e*Way Functions General Connection Functions

e*Way Intelligent Adapter for Oracle User’s Guide 117 SeeBeyond Proprietary and Confidential

make-connection-handle

Syntax

(make-connection-handle)

Description

make-connection-handle constructs the connection handle.

Parameters

None.

Return Values

A handle
Returns a connection-handle if successful, otherwise;

Boolean
Returns #f (false) if the function fails to create a connection-handle.Use db-get-error-str
to retrieve the error message.

Throws

None.

Examples

(define hdbc (make-connection-handle))

Explanation

The above example creates a connection handle variable called hdbc.

Chapter 5 Section 5.3
Oracle e*Way Functions General Connection Functions

e*Way Intelligent Adapter for Oracle User’s Guide 118 SeeBeyond Proprietary and Confidential

statement-handle?

Syntax

(statement-handle? any-variable)

Description

statement-handle? determines whether or not the input argument is a statement
handle data type.

Parameters

This function requires a single variable of any data type.

Return Values

Boolean
Returns #t (true) if the argument is a statement handle; otherwise, returns #f (false). Use
db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define hstmt (db-proc-bind hdbc "test"))
(if (not (statement-handle? hstmt))
 (display (db-get-error-str hdbc))
)

Explanation

The above example creates a statement handle called hstmt, then it displays an error
message if the newly defined hstmt is not a statement handle.

Chapter 5 Section 5.4
Oracle e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 119 SeeBeyond Proprietary and Confidential

5.4 Static SQL Functions
The functions in this category control the e*Way’s interaction with static SQL
commands. For information about the differences between static and dynamic SQL
functions, see “Static vs. Dynamic SQL Functions” on page 119.

The static SQL functions are:

db-sql-column-names on page 123

db-sql-column-types on page 125

db-sql-column-values on page 127

db-sql-execute on page 129

db-sql-fetch on page 130

db-sql-fetch-cancel on page 131

db-sql-format on page 132

db-sql-select on page 134

Static vs. Dynamic SQL Functions

Dynamic SQL statements are built and executed at run time versus Static SQL
statements that are embedded within the program source code. Dynamic statements do
not require knowledge of the complete structure of an SQL statement before building
the application. This allows for run time input to provide information about the
database objects to query.

The application can be written so that it prompts the user or scans a file for information
that is not available at compilation time.

In Dynamic statements the four steps of processing an SQL statement take place at run
time, but they are performed only once. Execution of the plan takes place only when
EXECUTE is called. Figure 35 on page 121 shows the difference between Dynamic SQL
with immediate execution, and Dynamic SQL with prepared execution.

Benefits of Dynamic SQL

Using dynamic SQL commands, an application can prepare a "generic" SQL statement
once and execute it multiple time. Statements can also contain markers for parameter
values to be supplied at execution time, so that the statement can be executed with
varying inputs.

Limitations of Dynamic SQL

The use of dynamic SQL commands has some significant limitations. A dynamic SQL
implementation of an application generally performs worse than an implementation
where permanent stored procedures are created and the client program invokes them
with RPC (remote procedure call) commands.

Chapter 5 Section 5.4
Oracle e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 120 SeeBeyond Proprietary and Confidential

Figure 34 Dynamic Statement Function Flow Chart

db-stm t-bind-binary
or

db-stm t-bind

db-stm t-param-assign

db-stm t-execute

db-stm t-param-count
db-stm t-param-type

db-stm t-column-count
db-stm t-column-name
db-stm t-column-type

db-stm t-column-count
> 0?

db-stm t-fetch

Is result
a boolean?

db-stm t-fetch-cancel

End of
execution cycle Yes

No

Yes
No

OR

db-stm t-param-bind

Chapter 5 Section 5.4
Oracle e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 121 SeeBeyond Proprietary and Confidential

Figure 35 Example of Dynamic SQL Processing

Select A,B,C
From X, Y
Where A<500
AND C = 'EFG'

Parse Statement

Validate
Statement

Optimize
Statement

Generate access
plan

Execute access
plan

SQL Statement Dynamic SQL

Runtime
PREPARE statement

EXECUTE
IMMEDIATE

statement

EXECUTE
IMMEDIATE

statement

db-sql-execute

db-stmt-bind

db-stmt-execute

Chapter 5 Section 5.4
Oracle e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 122 SeeBeyond Proprietary and Confidential

Oracle SQL Type Support

The following table shows the supported SQL data types and the corresponding native
data type for an Oracle database.

+Oracle uses number (p) to define data types that span TINYINT, BIGINT, SMALLINT,
and INTEGER. Oracle integer type is internally mapped to NUMBER (38) which will be
returned as SQL_INTERGER.

*Oracle float (b) specifies a floating point number with binary precision range from 1 to
126.

Note: All variable precision data types require precision values.

SQL_DECIMAL and SQL_NUMERIC data types require specification of scale which
indicates the number of digits to the right of the decimal point.

Table 9 Oracle SQL Type Support

SQL Type Name SQL Datatype Oracle Datatype

SQL_BIT BIT N/A

SQL_BINARY BINARY (n) N/A

SQL_VARBINARY VARBINARY (n) RAW (n)

SQL_CHAR CHAR (n) CHAR (n)

SQL_VARCHAR VARCHAR (n) VARCHAR2 (n)

SQL_DECIMAL DECIMAL (p, s) NUMBER (p, s)

SQL_NUMERIC NUMERIC (p, s) N/A

SQL_TINYINT TINYINT +

SQL_BIGINT BIGINT +

SQL_SMALLINT SMALLINT +

SQL_INTEGER INTEGER +

SQL_REAL REAL *

SQL_FLOAT FLOAT(p) FLOAT(b)

SQL_DOUBLE DOUBLE PRECISION FLOAT

SQL_DATE DATE N/A

SQL_TIME TIME N/A

SQL_TIMESTAMP TIMESTAMP DATE

SQL_LONGVARCHAR LONG VARCHAR LONG

SQL_LONGVARBINARY LONGVARBINARY LONG RAW

Chapter 5 Section 5.4
Oracle e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 123 SeeBeyond Proprietary and Confidential

db-sql-column-names

Syntax

(db-sql-column-names connection-handle selection-name)

Description

db-sql-column-names returns a vector of column names which are the result of an SQL
SELECT statement identified by the parameter selection-name. This procedure can be
called after an SQL SELECT statement has been issued successfully.

Parameters

Return Values

A string
This function returns a vector of column names in string format if successful.

Boolean
If the selection-name string is unavailable for any reason, this function returns a #f
(false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define selection "select * from person where title=’manager’")
(if (db-login hdbc "dsn" "uid" "pwd")
 (begin
 (if (db-sql-select hdbc "manager" selection)
 (begin
 (define name-array (db-sql-column-names hdbc
"manager"))
 (if (vector? name-array)
 (begin
 (display "name of the first column: ")
 (display (vector-ref name-array 0))
 (newline)
 ...
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
 (display (db-get-error-str hdbc))
 (newline)
)
)
 (if (db-alive hdbc)
 (begin

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the
selection.

Chapter 5 Section 5.4
Oracle e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 124 SeeBeyond Proprietary and Confidential

 ...
)
)
 (db-logout hdbc)
)
)

Explanation

This example shows that after issuing a successful SQL SELECT statement, the program
will display the name of the first column.

Chapter 5 Section 5.4
Oracle e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 125 SeeBeyond Proprietary and Confidential

db-sql-column-types

Syntax

(db-sql-column-types connection-handle selection-name)

Description

db-sql-column-types returns a vector of column types which are the result of an SQL
SELECT statement identified by the parameter selection-name. This procedure can be
called after an SQL SELECT statement has been issued successfully.

Parameters

Return Values

A string
This function returns a vector of column types in string format if successful.

Boolean
If the string type is unavailable for any reason, this function returns a #f. Use db-get-
error-str to retrieve the error message.

Throws

None.

Examples

(define selection "select * from person where title= ‘manager’")
 (if (db-sql-select hdbc "manager" selection)
 (begin
 (define type-array (db-sql-column-types hdbc
"manager"))
 (if (vector? type-array)
 (begin
 (display "type of the first column:")
 (display (vector-ref type-array 0))
 (newline)
 ...
 ...
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
 (display (db-get-error-str hdbc))
)
)
 (if (db-alive hdbc)
 (begin
 ...
)

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the
selection.

Chapter 5 Section 5.4
Oracle e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 126 SeeBeyond Proprietary and Confidential

)

Explanation

This example shows that after issuing a successful SQL SELECT statement, the program
will display the first column type.

Chapter 5 Section 5.4
Oracle e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 127 SeeBeyond Proprietary and Confidential

db-sql-column-values

Syntax

(db-sql-column-values connection-handle selection-name)

Description

db-sql-column-values returns a vector of column values, which is the result of an SQL
FETCH statement identified by the parameter selection-name. This procedure can be
called after an SQL FETCH statement has been issued successfully.

Parameters

Return Values

A string
Returns a vector of SQL values in string format if successful.

Boolean
If the values string is unavailable for any reason, this function returns a #f (false).Use
db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define selection "select * from person where title= ‘manager’")
 (if (db-sql-select hdbc "manager" selection)
 (do ((result "") (value-array #())) ((boolean? result))
 (set! result (db-sql-fetch hdbc "manager"))
 (if (not (boolean? reslt))
 (begin
 (set! value-array (db-sql-column-values hdbc
"manager"))
 (do ((index 0 (+ index 1)) (count (vector-length
value-array))
 ((= index count))
 (display (vector-ref value-array index))
 (display "\t")
)
 (newline)
)
 (if (not result) (display (db-get-error-str hdbc)))
)
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
 (if (db-alive hdbc)

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the
selection.

Chapter 5 Section 5.4
Oracle e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 128 SeeBeyond Proprietary and Confidential

 (begin
 ...
)
)

Explanation

This example shows that after issuing a successful SQL SELECT statement, the program
will loop through a fetch cycle. Within each fetch loop, the program displays the value
of each column in the same line, separated by a tab character.

Notes

1 A successful db-sql-fetch call returns a string which contains the concatenation of
all column values with the comma (,) character as the separator. Although this
single string is suitable for display purposes, the user must parse the result string to
retrieve the value of each column.

2 If the value of the column contains the comma (,) character, the user will be unable
to differentiate the comma data from the comma separator. Therefore, db-sql-
column-values returns the result as a vector of values in string type to allow the
user to make use of the vector-ref function to retrieve the value of each column and
avoid any parsing problem.

Chapter 5 Section 5.4
Oracle e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 129 SeeBeyond Proprietary and Confidential

db-sql-execute

Syntax

(db-sql-execute connection-handle SQL-stmt)

Description

db-sql-execute executes the specified SQL statement.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc "Payroll" "James" "12345")
 (begin
 ...
 (if (db-sql-execute hdbc "insert into employee
values(‘John’...)")
 (db-commit hdbc)
)

)
 (display (db-get-error-str hdbc))
)
...

Explanation

This example shows that if the application can successfully log into the data source
“Payroll,” it will insert a record into the table “employee.”

Notes

1 Use the db-sql-select function to execute a select statement.

2 Use db-commit or db-rollback to commit and roll back transactions.

Name Type Description

connection-handle connection handle A connection handle to the
database.

SQL-stmt string The SQL statement being
executed.

Chapter 5 Section 5.4
Oracle e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 130 SeeBeyond Proprietary and Confidential

db-sql-fetch

Syntax

(db-sql-fetch connection-handle selection-name)

Description

db-sql-fetch “fetches” the result of a SELECT statement. The statement handle is “free”
after the function fetches the last record.

Parameters

Return Values

A string
Returns a comma, delimited string containing all the column values for the record.

Boolean
Returns #t (true) at the end of the “fetch cycle,” when no more records are available to
“fetch"; otherwise, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

...
(if (db-sql-select hdbc "GreaterThan25" "select * employee where age
> 25")
 (begin
 (display (db-sql-fetch hdbc "GreaterThan25"))
 (newline)
 (db-sql-fetch-cancel hdbc "GreaterThan25")
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
...

Explanation

This example shows that the application selects the first record of employees who are
older than age 25, by fetching the record once and cancelling the rest of the records.

Notes

The return result is temporarily stored in RAM. The buffer is allocated when db-sql-
select is called. The maximum size of the buffer is determined by the operating system.

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the
selection.

Chapter 5 Section 5.4
Oracle e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 131 SeeBeyond Proprietary and Confidential

db-sql-fetch-cancel

Syntax

(db-sql-fetch-cancel connection-handle selection-name)

Description

db-sql-fetch-cancel closes the cursor associated with an SQL SELECT statement and
cancels the fetch command. It also frees up the memory allocation for the selection.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

...
(if (db-sql-select hdbc "GreaterThan25" "select * employee where age
> 25")
 (begin
 (define result (db-sql-fetch hdbc "GreaterThan25"))
 (if (not (boolean? result))
 (db-sql-fetch-cancel hdbc "GreaterThan25")
 (if (not result)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
)
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
...

Explanation

This example shows that the application selects the first record of employees who are
older than age 25, by fetching the record once and cancelling the rest of the records.

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the
selection.

Chapter 5 Section 5.4
Oracle e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 132 SeeBeyond Proprietary and Confidential

db-sql-format

Syntax

(db-sql-format data-string SQL-type)

Description

db-sql-format returns a formatted string of the data-string, so it can be used in an SQL
statement as a literal value of a corresponding SQL-type.

In the current implementation, only the SQL_CHAR, SQL_VARCHAR, SQL_DATE,
SQL_TIME, and SQL_TIMESTAMP SQL-types will be formatted. If the data-string is an
empty string, the procedure will return a NULL value for all SQL data types except
SQL_CHAR and SQL_VARCHAR.

Parameters

Return Values

A string
Returns a formatted string used as a literal data value in an SQL statement.

Throws

None.

Examples

(define last-name (db-sql-format "O’Reilly" "SQL_VARCHAR"))
(define timestamp (db-sql-format "1998-02-19 12:34:56"
SQL_TIMESTAMP"))
(define sql-stmt (string-append "update employee set lastname =
"last-name ", MODIFYTIME = "timestamp "WHERE SSN = 123456789"))
(if (db-login hdbc "Payroll" "user" "password")
 (begin
 (if (db-sql-execute hdbc sql-stmt)
 (db-commit hdbc)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
 (db-rollback hdbc)
)
)
 ...
 (db-logout hdbc)
)
)

Explanation

The example above illustrates how the program uses db-sql-format to format the last
name and the timestamp and use the results as part of an SQL statement.

Name Type Description

data-string string A data string to be used as a literal
value in an SQL statement.

SQL-type string An SQL datatype string, i.e.,
SQL_VARCHAR.

Chapter 5 Section 5.4
Oracle e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 133 SeeBeyond Proprietary and Confidential

Notes

1 This function will only work with the db-std-timestamp-format function since the
db-sql-format function handles only standard timestamp format.

2 The (timestamp) Monk built-in function is used to insert the timestamp to an Event
Type Definition. You should specify the following format for it to be accepted by the
db-sql-format function:

%Y-%m-%d %H:%M:%S

For SQL_CHAR and SQL_VARCHAR (SQL data types) db-sql-format will place a
single quotation mark (‘) before and after the data-string, and expand each single
quotation mark in the data-string to two single quotation mark characters.

The following table shows the typical data-string and the corresponding result of the
formatting for these SQL types.

Table 10 SQL Statement Format

SQL_type Value Data_string Value Formatted Result String

SQL_CHAR This is a string ‘This is a string.’

SQL_VARCHAR O’Reilly ‘O’ ‘Reilly’

SQL_TIMESTAMP 1998-02-19 12:34:56.789 ‘1998-02-19 12:34:56’

Chapter 5 Section 5.4
Oracle e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 134 SeeBeyond Proprietary and Confidential

db-sql-select

Syntax

(db-sql-select connection-handle selection-name SQL-statement)

Description

db-sql-select executes an SQL SELECT statement.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

...
(if (db-sql-select hdbc "GreaterThan25" "select * employee where age
> 25")
 (begin
 (display (db-sql-fetch hdbc "GreaterThan25"))
 (newline)
 (db-sql-fetch-cancel hdbc "GreaterThan25")
)
 (display (db-get-error-str hdbc))
)
...

Explanation

This example shows that the application selects the first record of employees who are
older than age 25 by fetching the records one at a time and cancelling the remainder of
the return records.

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The selection identifier.

SQL-statement string The SELECT statement used.

Chapter 5 Section 5.5
Oracle e*Way Functions Dynamic SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 135 SeeBeyond Proprietary and Confidential

5.5 Dynamic SQL Functions
The functions in this category control the e*Way’s interaction with dynamic SQL
commands. For information about the differences between static and dynamic SQL
functions, see “Static vs. Dynamic SQL Functions” on page 119.

The dynamic SQL functions are:

db-stmt-bind on page 136

db-stmt-bind-binary on page 137

db-stmt-column-count on page 138

db-stmt-column-name on page 139

db-stmt-column-type on page 140

db-stmt-execute on page 141

db-stmt-fetch on page 142

db-stmt-fetch-cancel on page 143

db-stmt-param-assign on page 144

db-stmt-param-bind on page 145

db-stmt-param-count on page 146

db-stmt-param-type on page 147

db-stmt-row-count on page 148

Chapter 5 Section 5.5
Oracle e*Way Functions Dynamic SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 136 SeeBeyond Proprietary and Confidential

db-stmt-bind

Syntax

(db-stmt-bind connection-handle dynamic-SQL-statement)

Description

db-stmt-bind binds the dynamic statement specified. The binary data type should be
input or output parameters with hexadecimal format.

Parameters

Return Values

Statement handle
The statement handle that identifies the dynamic statement specified.

Boolean
If unsuccessful, returns #f (false).Use db-get-error-str to retrieve the error message.

Throws

None.

Additional Information

 If the user needs to input /output binary data in the raw (binary) format, they should
use db-stmt-bind-binary.

Notes

1 Oracle OCI API is not able to report the data type for each bound parameter in a
dynamic statement. All bound parameters will default to VARCHAR data types.
This will allow Oracle to implicitly convert the data string of each parameter into
the correct data value of the parameter at the execution of the dynamic statement.

2 If the user needs to select long data type column, the long column should appear at
the end of the selection list.

Example

...
(db-stmt-bind connection-handle “select last_name from db_employee
where emp_no = 155”)
...

Name Type Description

connection-handle connection handle A connection handle to the database.

dynamic-SQL-statement string The dynamic statement to be bound

Chapter 5 Section 5.5
Oracle e*Way Functions Dynamic SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 137 SeeBeyond Proprietary and Confidential

db-stmt-bind-binary

Syntax

(db-stmt-bind-binary connection-handle dynamic-SQL-statement)

Description

db-stmt-bind-binary binds the dynamic statement specified. The binary data type will
be input and output with raw format.

Parameters

Return Values

Statement handle
The statement handle that identifies the dynamic statement specified.

Boolean
If unsuccessful, returns #f (false).Use db-get-error-str to retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

dynamic-SQL-statement string The dynamic statement to be bound

Chapter 5 Section 5.5
Oracle e*Way Functions Dynamic SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 138 SeeBeyond Proprietary and Confidential

db-stmt-column-count

Syntax

(db-stmt-column-count connection-handle statement-handle)

Description

db-stmt-column-count returns the number of columns in the return result set.

Parameters

Return Values

A number
Returns a number greater than zero (0) when the record set is available.

Boolean
If no record set is available, the return value will be #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
stmt-bind.

Chapter 5 Section 5.5
Oracle e*Way Functions Dynamic SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 139 SeeBeyond Proprietary and Confidential

db-stmt-column-name

Syntax

(db-stmt-column-name connection-handle statement-handle index)

Description

db-stmt-column-name returns the name string of the specified column in the result set.

Parameters

Return Values

A string
Returns the name string if successful.

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
stmt-bind.

index integer An integer equal to --0 to db-stmt-
column-count minus 1.

Chapter 5 Section 5.5
Oracle e*Way Functions Dynamic SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 140 SeeBeyond Proprietary and Confidential

db-stmt-column-type

Syntax

(db-stmt-column-type connection-handle statement-handle index)

Description

db-stmt-column-type returns the SQL data type of the specified column in the record
set.

Parameters

Return Values

A string
Returns a string of SQL data type when successful.

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
stmt-bind.

index integer An integer equal to --0 to db-stmt-
column-count minus 1.

Chapter 5 Section 5.5
Oracle e*Way Functions Dynamic SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 141 SeeBeyond Proprietary and Confidential

db-stmt-execute

Syntax

(db-stmt-execute connection-handle statement-handle)

Description

db-stmt-execute executes the dynamic statement of a specified statement-handle.

Parameters

Return Values

Boolean
If an error occurred, returns #f (false). Use db-get-error-str to obtain the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-stmt-
bind.

Chapter 5 Section 5.5
Oracle e*Way Functions Dynamic SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 142 SeeBeyond Proprietary and Confidential

db-stmt-fetch

Syntax

(db-stmt-fetch connection-handle statement-handle)

Description

db-stmt-fetch retrieves the column values of the record set.

Parameters

Return Values

A Vector and a Boolean
Returns a vector containing all the column values and at the end of the “fetch cycle”
returns #t (true) when no more records are available to “fetch.”

Boolean
If an error occurred, returns #f (false). Use db-get-error-str to obtain the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
stmt-bind.

Chapter 5 Section 5.5
Oracle e*Way Functions Dynamic SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 143 SeeBeyond Proprietary and Confidential

db-stmt-fetch-cancel

Syntax

(db-stmt-fetch-cancel connection-handle statement-handle)

Description

db-stmt-fetch-cancel terminates the current “fetch” cycle.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Notes

The db-stmt-fetch-cancel function (and other db-stmt-xxxx functions) will never close
its associated cursor, because it is designed to bind once and execute multiple times.
The same dynamic statement can be executed multiple times without the need to
reopen the cursor and rebind the same statement. This conserves processing time by
reducing the amount of parsing. However, it is important to know that the cursor will
not be closed until the function disconnects from the database.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement-handle The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
stmt-bind.

Chapter 5 Section 5.5
Oracle e*Way Functions Dynamic SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 144 SeeBeyond Proprietary and Confidential

db-stmt-param-assign

Syntax

(db-stmt-param-assign connection-handle statement-handle index value)

Description

db-stmt-param-assign assigns the parameter and executes the dynamic statement of a
specified parameter.

Parameters

Return Values

Boolean
If an error occurred, returns #f (false). Use db-get-error-str to obtain the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
proc-bind.

index integer The number between 0 and db-stmt-
param-count minus 1.

value string The value to be assigned to the
parameter.

Chapter 5 Section 5.5
Oracle e*Way Functions Dynamic SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 145 SeeBeyond Proprietary and Confidential

db-stmt-param-bind

Syntax

(db-stmt-bind hdbc hstmt index sqltype precision scale)

Description

db-stmt-param-bind binds the each of the input parameters properties of the dynamic
statement specified.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).Use db-get-error-str to
retrieve the error message.

Throws

Name Type Description

hdbc connection handle A connection handle to the database

hstmt string The statement handle that identifies
the stored procedure specified.

index integer The number between 0 and db-stmt-
param-count-minus 1.

sqltype string The string that identifies the SQL
type being used.

precision integer, including
decimal points

The number of places to the right
and left of the decimal point to
represent the total amount of space
occupied by the SQL type.

scale integer The number of places to the right of
the decimal point.

Chapter 5 Section 5.5
Oracle e*Way Functions Dynamic SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 146 SeeBeyond Proprietary and Confidential

db-stmt-param-count

Syntax

(db-stmt-param-count connection-handle statement-handle

Description

db-stmt-param-count retrieves the number of parameters in the dynamic statement.

Parameters

Return Values

An Integer
Returns a number, which represents the number of parameters for the dynamic
statement specified, when successful.

Boolean
If unsuccessful, returns #f (false).Use db-get-error-str to retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
stmt-bind.

Chapter 5 Section 5.5
Oracle e*Way Functions Dynamic SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 147 SeeBeyond Proprietary and Confidential

db-stmt-param-type

Syntax

(db-stmt-param-type connection-handle statement-handle index)

Description

db-stmt-param-type retrieves the SQL data type of the specified parameter.

Parameters

Return Values

A string
If successful, db-stmt-param-type returns a string which represents the SQL data type.

Boolean
If an error occurred, returns #f (false). Use db-get-error-str to obtain the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-stmt-
bind.

index integer The number between 0 and db-stmt-
param-count minus 1.

Chapter 5 Section 5.5
Oracle e*Way Functions Dynamic SQL Functions

e*Way Intelligent Adapter for Oracle User’s Guide 148 SeeBeyond Proprietary and Confidential

db-stmt-row-count

Syntax

(db-stmt-row-count connection-handle statement-handle index)

Description

db-stmt-column-size returns the number of rows affected by the execution of the SQL
statement.

Parameters

Return Values

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
stmt-bind.

index integer An integer equal to --0 to db-stmt-
column-count minus 1.

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 149 SeeBeyond Proprietary and Confidential

5.6 Stored Procedure Functions
The functions in this category control the e*Way’s interaction with stored procedures.

The stored procedure functions are:

db-proc-bind on page 151

db-proc-bind-binary on page 152

db-proc-column-count on page 153

db-proc-column-name on page 155

db-proc-column-type on page 157

db-proc-execute on page 159

db-proc-fetch on page 161

db-proc-fetch-cancel on page 163

db-proc-max-records on page 164

db-proc-param-assign on page 165

db-proc-param-count on page 167

db-proc-param-io on page 169

db-proc-param-name on page 170

db-proc-param-type on page 171

db-proc-param-value on page 172

db-proc-return-exist on page 174

db-proc-return-type on page 176

db-proc-return-value on page 178

Benefits of Stored Procedures

When a stored procedure is created for an application, SQL statement compilation and
optimization are performed once when the procedure is created. With a dynamic SQL
application, compilation and optimization are performed every time the client program
runs. A dynamic SQL implementation also incurs database space overhead because
each instance of the client program must create separate compiled versions of the
application’s prepared statements. When you design an application to use stored
procedures and RPC commands, all instances of the client program can share the same
stored procedures. (See Figure 36 on page 150)

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 150 SeeBeyond Proprietary and Confidential

Figure 36 Calling a Stored Procedure (Oracle)

Process Flow Chart
for Calling a Stored

Procedure
For Oracle DBMS

db-proc-bind

db-proc-
param-assign

db-proc-
column-count >

0

db-proc-
fetch

Is the result a
boolean value?

db-proc-execute

Yes

No

db-proc-param-count
db-proc-param-name
db-proc-param-type
db-proc-param-io
db-proc-return-exist
db-proc-return-type

db-proc-
fetch-cancel

End Of
Fetch Cycle

Yes

db-proc-param-
value

End Of Execution
Cycle

db-proc-return-
value

Yes

NoNo

Yes

No

db-proc-return-
exist?

Are there any
output

parameters?

T h e f u n c t i o n s
enclosed in the box
to the left (outlined in
a b r o k e n l i n e
pattern) are for the
Oracle vers ion of
DART only.

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 151 SeeBeyond Proprietary and Confidential

db-proc-bind

Syntax

(db-proc-bind connection-handle procedure-name)

Description

db-proc-bind binds the input/output parameters of the stored procedure specified.

Parameters

Return Values

A string
Returns a statement-handle when successful; otherwise,

Boolean
Returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define hstmt (db-proc-bind hdbc "test")
(if (not (statement-handle? hstmt)
 (display "fail to bind stored procedure test\n")
)

Name Type Description

connection-handle connection handle A connection handle to the database.

procedure-name string The stored procedure to be bound.

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 152 SeeBeyond Proprietary and Confidential

db-proc-bind-binary

Syntax

(db-proc-bind-binary connection-handle dynamic-SQL-statement)

Description

db-proc-bind-binary binds the dynamic statement specified. The format of the input
and output data is binary.

Parameters

Return Values

A string
Returns a statement-handle when successful; otherwise,

Boolean
Returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

dynamic-SQL-statement string The dynamic statement to be bound

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 153 SeeBeyond Proprietary and Confidential

db-proc-column-count

Syntax

(db-proc-column-count connection-handle statement-handle)

Description

db-proc-column-count retrieves the number of columns in the return result set.

Parameters

Return Values

A number
Returns a number greater than zero (0) when the record set is available.

Boolean
If no record set is available, the return value will be #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "database login succeed !\n")
 (define hstmt (db-proc-bind hdbc "TEST_PROC"))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 "5")
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((i 0 (+ i 1))) ((= i col-count))
 (display "column ")
 (display (db-proc-column-name hdbc hstmt i))
 (display ": type = ")
 (display (db-proc-column-type hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 154 SeeBeyond Proprietary and Confidential

)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Notes

Oracle does not provide a simple mechanism for returning multiple records from the
stored procedure. The PL/SQL table type is used to contain the multiple records to be
returned. After binding the stored procedure, db-proc-column-count returns the
number of PL/SQL table types that contain multiple return records.

The Oracle procedure to return result set is given here:

oracle_odbc.sql

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 155 SeeBeyond Proprietary and Confidential

db-proc-column-name

Syntax

(db-proc-column-name connection-handle statement-handle column-index)

Description

db-proc-column-name retrieves the name string of the specified column in the result
set.

Parameters

Return Values

A string
Returns the name string if successful.

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "database login succeed !\n")
 (define hstmt (db-proc-bind hdbc "TEST_PROC"))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 "5")
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((i 0 (+ i 1))) ((= i col-count))
 (display "column ")
 (display (db-proc-column-name hdbc hstmt i))
 (display ": type = ")
 (display (db-proc-column-type hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.

column-index string The SQL data type of the specified
column in the results set--0 to db-
proc-column-count minus 1.

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 156 SeeBeyond Proprietary and Confidential

)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Notes

Since the result set of a stored procedure is returned through the parameters of the
PL/SQL table type, the name of the table type parameter will be returned.

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 157 SeeBeyond Proprietary and Confidential

db-proc-column-type

Syntax

(db-proc-column-type connection-handle statement-handle column-index)

Description

db-proc-column-type retrieves the SQL data type of the specified column in the record
set.

Parameters

Return Values

A string
Returns a string of SQL data type when successful.

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "database login succeed !\n")
 (define hstmt (db-proc-bind hdbc "TEST_PROC"))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 "5")
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((i 0 (+ i 1))) ((= i col-count))
 (display "column ")
 (display (db-proc-column-name hdbc hstmt i))
 (display ": type = ")
 (display (db-proc-column-type hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.

column-index string The SQL data type of the specified
column in the record set--0 to db-
proc-column-count minus 1.

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 158 SeeBeyond Proprietary and Confidential

)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Notes

Since the result set of the stored procedure is returned through the parameters of the
PL/SQL table type, a PL/SQL table can only contain one standard Oracle data type.

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 159 SeeBeyond Proprietary and Confidential

db-proc-execute

Syntax

(db-proc-execute connection-handle statement-handle)

Description

db-proc-execute executes a stored procedure.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "database login succeed !\n")
 (define hstmt (db-proc-bind hdbc "TEST_PROC"))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 "5")
 (if (db-proc-execute hdbc hstmt)
 ...
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
 (db-logout hdbc)
)
 (display (db-get-error-str hdbc))
)

Notes

The default precision for number or real type is 38 for a column in the table. This is
important when executing a stored procedure that retrieves values from that column in
the table. The db-proc-execute function will fail if the exponential part of the value is
larger than 38.

For example:

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 160 SeeBeyond Proprietary and Confidential

1.555E+38 is acceptable

1.55E+39 will prevent the successful retrieval of the column values

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 161 SeeBeyond Proprietary and Confidential

db-proc-fetch

Syntax

(db-proc-fetch connection-handle statement-handle)

Description

db-proc-fetch retrieves the column values of the record set.

Parameters

Return Values

A vector and Boolean
Returns a vector containing all the column values and at the end of the “fetch cycle”
returns #t (true) when no more records are available to “fetch.”

Boolean
If unsuccessful, this function returns #f (false). Use db-get-error-str to retrieve the error
message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "database login succeed !\n")
 (define hstmt (db-proc-bind hdbc "TEST_PROC"))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 "5")
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((result (db-proc-fetch hdbc hstmt) (db-proc-
fetch hdbc hstmt)))
 ((boolean? result) (begin (display result)
(newline)))
 (display result
 (newline)
)
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)
 (display (db-get-error-str hdbc)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 162 SeeBeyond Proprietary and Confidential

)
 (display (db-get-error-str hdbc)
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 163 SeeBeyond Proprietary and Confidential

db-proc-fetch-cancel

Syntax

(db-proc-fetch-cancel connection-handle statement-handle)

Description

db-proc-fetch-cancel terminates the current “fetch” cycle.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "database login succeed !\n")
 (define hstmt (db-proc-bind hdbc "TEST_PROC"))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 "5")
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (db-proc-fetch-cancel hdbc hstmt)
)
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)
 (display (db-get-error-str hdbc)
)
 (display (db-get-error-str hdbc)
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 164 SeeBeyond Proprietary and Confidential

db-proc-max-records

Syntax

(db-proc-max-records connection-handle num_of_records)

Description

db-proc-max-records sets the maximum number of records that the Oracle e*Way can
hold for a stored procedure. By default, the maximum number of records is set to 100.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "database login succeed !\n")
 (if (db-proc-max-records hdbc 1000)
 ...
)
 ...
)
 ...
)

Notes

1 This function should be called as soon as the connection has been established and
before binding the stored procedure. At most, it should be called only once for each
connection.

2 The number of records that can be returned by the Oracle e*Way for a stored
procedure is dependent upon the memory available and should not be greater than
32512 (which is the maximum number of records that can be returned by an Oracle
stored procedure). Keep in mind that large numbers of records or large records use
extensive resources and require more processing time.

Name Type Description

connection-handle connection handle A connection handle to the database.

num_of_records integer The number of records the Oracle
e*Way can hold for a stored
procedure.

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 165 SeeBeyond Proprietary and Confidential

db-proc-param-assign

Syntax

(db-proc-param-assign connection-handle statement-handle param-
index param-value)

Description

db-proc-param-assign "assigns" the value of an IN or INOUT parameter and places
that value into internal storage.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

Scenario #1 - sample code for db-proc-param-assign

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "database login succeed !\n")
 (define hstmt (db-proc-bind hdbc "TEST_PROC"))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 "5")
 (if (db-proc-execute hdbc hstmt)
 ...
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
 (db-logout hdbc)
)
 (display (db-get-error-str hdbc))

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.

param-index integer The number between 0 and db-proc-
param-count minus 1.

param-value string The input value of the IN or INOUT
parameter.

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 166 SeeBeyond Proprietary and Confidential

Scenario #2 — sample code for db-proc-param-assign with multiple input arguments

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "database login succeed !\n")
 (define hstmt (db-proc-bind hdbc "TEST_PROC"))
 (if (statement-handle? hstmt)
 (if (and
 (db-proc-param-assign hdbc hstmt 0 "5")
 (db-proc-param-assign hdbc hstmt 2 "O’REILLY")
 (db-proc-param-assign hdbc hstmt 7 "1A2B78F0")
)
 (if (db-proc-execute hdbc hstmt)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))

Notes

1 The value for the param-value argument should be entered as a string, without
enclosure in single quotation marks (‘) for SQL_CHAR and SQL_VARCHAR.

2 The literal value for SQL_BINARY and SQL_VARBINARY should be a hexadecimal
string. Refer to Scenario #2 above.

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 167 SeeBeyond Proprietary and Confidential

db-proc-param-count

Syntax

(db-proc-param-count connection-handle statement-handle)

Description

db-proc-param-count retrieves the number of parameters in the stored procedure.

Parameters

Return Values

A integer
Returns a integer, which represents the number of parameters for the stored procedure
specified, when successful.

Boolean
If the number is unavailable due to a problem within one of the arguments, the function
returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "database login succeed !\n")
 (define hstmt (db-proc-bind hdbc "TEST_PROC"))
 (if (statement-handle? hstmt)
 (do ((i 0 (+ i 1))) ((= i (db-proc-param-count hdbc hstmt)))
 (display "parameter ")
 (display (db-proc-param-name hdbc hstmt i))
 (display ": type = ")
 (display (db-proc-param-type hdbc hstmt i))
 (display ", io = ")
 (display (db-proc-param-io hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 168 SeeBeyond Proprietary and Confidential

Notes

The PL/SQL table type parameter is treated as a column rather than a parameter
because it contains multiple values. A parameter contains only one value. Because of
this the return value of this function will be the number of non-table type parameters
only. The db-proc-column-count function will return the number of table type
parameters.

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 169 SeeBeyond Proprietary and Confidential

db-proc-param-io

Syntax

(db-proc-param-io connection-handle statement-handle param-index)

Description

db-proc-param-io retrieves the IO type for the specified parameter.

Parameters

Return Values

A string
Returns an IO type string as IN, OUT, or INOUT

Boolean
otherwise, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "database login succeed !\n")
 (define hstmt (db-proc-bind hdbc "TEST_PROC"))
 (if (statement-handle? hstmt)
 (do ((i 0 (+ i 1))) ((= i (db-proc-param-count hdbc hstmt)))
 (display "parameter ")
 (display (db-proc-param-name hdbc hstmt i))
 (display ": type = ")
 (display (db-proc-param-type hdbc hstmt i))
 (display ", io = ")
 (display (db-proc-param-io hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.

param-index integer The number between 0 and db-proc-
param-count minus 1.

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 170 SeeBeyond Proprietary and Confidential

db-proc-param-name

Syntax

(db-proc-param-name connection-handle statement-handle param-index)

Description

db-proc-param-name retrieves the name of the specified parameter.

Parameters

Return Values

A string
Returns the string containing the name of the parameter.

Boolean
Returns #f (false) if unable to return the string containing the name of the parameter.
Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "database login succeed !\n")
 (define hstmt (db-proc-bind hdbc "TEST_PROC"))
 (if (statement-handle? hstmt)
 (do ((i 0 (+ i 1))) ((= i (db-proc-param-count hdbc hstmt)))
 (display "parameter ")
 (display (db-proc-param-name hdbc hstmt i))
 (display ": type = ")
 (display (db-proc-param-type hdbc hstmt i))
 (display ", io = ")
 (display (db-proc-param-io hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.

param-index integer The number between 0 and db-proc-
param-count minus 1.

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 171 SeeBeyond Proprietary and Confidential

db-proc-param-type

Syntax

(db-proc-param-type connection-handle statement-handle param-index)

Description

db-proc-param-type retrieves the SQL data type of the specified parameter.

Parameters

Return Values

A string
If successful, db-proc-param-type returns a string which represents the SQL data type.

Boolean
If an error occurred, returns #f (false). Use db-get-error-str to obtain the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "database login succeed !\n")
 (define hstmt (db-proc-bind hdbc "TEST_PROC"))
 (if (statement-handle? hstmt)
 (do ((i 0 (+ i 1))) ((= i (db-proc-param-count hdbc hstmt)))
 (display "parameter ")
 (display (db-proc-param-name hdbc hstmt i))
 (display ": type = ")
 (display (db-proc-param-type hdbc hstmt i))
 (display ", io = ")
 (display (db-proc-param-io hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.

param-index integer The number between 0 and db-proc-
param-count minus 1.

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 172 SeeBeyond Proprietary and Confidential

db-proc-param-value

Syntax

(db-proc-param-value connection-handle statement-handle param-
index)

Description

db-proc-param-value retrieves the value of the OUT or INOUT parameter.

Parameters

Return Values

A string
Returns a string which represents the value of the OUT or INOUT parameter.

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "database login succeed !\n")
 (define hstmt (db-proc-bind hdbc "TEST_PROC"))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 "5")
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count hdbc hstmt))
 (if (and (number? col-count) (> col-count 0))
 (do ((result (db-proc-fetch hdbc hstmt) (db-proc-
fetch hdbc hstmt)))
 ((boolean? result))
 (display result)
 (newline)
)
)
 (define prm-count (db-proc-param-count hdbc hstmt))
 (do ((i 0 (+ i 1))) ((= i prm-count))
 (if (not (equal? (db-proc-param-io hdbc hstmt i)
"IN"))
 (begin
 (display "output parameter ")

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.

param-index integer The number between 0 and db-proc-
param-count minus 1.

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 173 SeeBeyond Proprietary and Confidential

 (display (db-proc-param-name hdbc hstmt i))
 (display "= ")
 (display (db-proc-param-value hdbc hstmt i))
 (newline)
)
)
)
 ...
 ...
)

Notes

The parameter value will be made available after the stored procedure has been
executed.

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 174 SeeBeyond Proprietary and Confidential

db-proc-return-exist

Syntax

(db-proc-return-exist connection-handle statement-handle)

Description

db-proc-return-exist determines whether or not the stored procedure has a return
value.

Parameters

Return Values

Boolean
Returns #t (true) if a return value exists or #f (false) when no return value exists or an
error occurs. Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "database login succeed !\n")
 (define hstmt (db-proc-bind hdbc "TEST_PROC"))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 "5")
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((result (db-proc-fetch hdbc hstmt) (db-proc-
fetch hdbc hstmt)))
 ((boolean? result))
 (display result)
 (newline)
)
)
 (if (db-proc-return-exist hdbc hstmt)
 (begin
 (display "return type = ")
 (display (db-proc-return-type hdbc hstmt))
 (newline)
 (display "return value = ")
 (display (db-proc-return-value hdbc hstmt))
 (newline)
)
)
 ...

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 175 SeeBeyond Proprietary and Confidential

 ...
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 176 SeeBeyond Proprietary and Confidential

db-proc-return-type

Syntax

(db-proc-return-type connection-handle statement-handle)

Description

db-proc-return-type determines the SQL data type for the return value.

Parameters

Return Values

A string
Returns an SQL data type string, i.e., SQL_VARCHAR.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "database login succeed !\n")
 (define hstmt (db-proc-bind hdbc "TEST_PROC"))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 "5")
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((result (db-proc-fetch hdbc hstmt) (db-proc-
fetch hdbc hstmt)))
 ((boolean? result))
 (display result)
 (newline)
)
)
 (if (db-proc-return-exist hdbc hstmt)
 (begin
 (display "return type = ")
 (display (db-proc-return-type hdbc hstmt))
 (newline)
 (display "return value = ")
 (display (db-proc-return-value hdbc hstmt))
 (newline)
)
)
 ...
 ...
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 177 SeeBeyond Proprietary and Confidential

 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Notes

The stored functions defined in the Oracle DBMS can have any SQL data type as the
return value.

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 178 SeeBeyond Proprietary and Confidential

db-proc-return-value

Syntax

(db-proc-return-value connection-handle statement-handle)

Description

db-proc-return-value retrieves the return value (return status) for the stored procedure.

Parameters

Return Values

A string
Returns a string which represents the return value.

Throws

None.

Examples

(begin
 (display "database login succeed !\n")
 (define hstmt (db-proc-bind hdbc "TEST_PROC"))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 "5")
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((result (db-proc-fetch hdbc hstmt) (db-proc-
fetch hdbc hstmt)))
 ((boolean? result))
 (display result)
 (newline)
)
)
 (if (db-proc-return-exist hdbc hstmt)
 (begin
 (display "return type = ")
 (display (db-proc-return-type hdbc hstmt))
 (newline)
 (display "return value = ")
 (display (db-proc-return-value hdbc hstmt))
 (newline)
)
)
 ...
 ...
)
 (display (db-get-error-str hdbc))

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.

Chapter 5 Section 5.6
Oracle e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for Oracle User’s Guide 179 SeeBeyond Proprietary and Confidential

)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Notes

1 Stored procedures can return an integer value called a return status. This status
indicates that the procedure completed successfully or shows the reason for failure.
SQL Server has a defined set of return values; or users can define their own return
values.

2 The SQL Server reserves 0 to indicate a successful return, and negative values in the
range of -1 to -99 are assigned to a listing of reasons for failure. Numbers 0 and -1 to
-14 are in use currently.

Value Meaning

0 procedure executed without error

-1 missing object

-2 datatype error

-3 process was chosen as deadlock victim

-4 permission error

-5 syntax error

-6 miscellaneous user error

-7 resource error, such as out of space

-8 non-fatal internal problem

-9 system limit was reached

-10 fatal internal inconsistency

-11 fatal internal inconsistency

-12 table or index is corrupt

-13 database is corrupt

-14 hardware error

Chapter 5 Section 5.7
Oracle e*Way Functions Message Event Functions

e*Way Intelligent Adapter for Oracle User’s Guide 180 SeeBeyond Proprietary and Confidential

5.7 Message Event Functions
The functions in this category control the e*Way’s message Event operations.

The message Event functions are:

db-struct-bulk-insert on page 181

db-struct-call on page 182

db-struct-execute on page 183

db-struct-fetch on page 184

db-struct-insert on page 186

db-struct-select on page 188

db-struct-update on page 190

Chapter 5 Section 5.7
Oracle e*Way Functions Message Event Functions

e*Way Intelligent Adapter for Oracle User’s Guide 181 SeeBeyond Proprietary and Confidential

db-struct-bulk-insert

Syntax

(db-struct-bulk-insert connection-handle table-path)

Description

db-struct-bulk-insert inserts an Event Type Definition with repeating nodes (for
example, multiple records) into a table.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error notification.

Throws

None.

Notes

1 The Event type MUST be a fixed-length, which can be generated using stcstruct.exe
with the -f option.

2 The number of records that can be inserted into a table is dependent on the memory
available and cannot be greater than 32512.

The format of the literal value of the SQL_DECIMAL and SQL_TIMESTAMP data
type is dependent on the national language support parameter of the SQL server.
You can use the SQL statement ALTER SESSION to modify the date format and the
decimal character. For example:

alter session set NLS_DATE_FORMAT= ‘DD-MON-YY’
alter session set NLS_NUMERIC_CHARACTERS = ’.,’

3 To insert a NULL value into a table, specify binary 0 in the VALUE field of a node.

For example:

(make-string 1 (integer->char(0)))

Name Type Description

connection-handle connection handle A connection handle to the database.

table-path path A path which represents a table.

Chapter 5 Section 5.7
Oracle e*Way Functions Message Event Functions

e*Way Intelligent Adapter for Oracle User’s Guide 182 SeeBeyond Proprietary and Confidential

db-struct-call

Syntax

(db-struct-call connection-handle statement-handle procedure-path)

Description

db-struct-call calls the stored procedure using the value from the procedure-path node of
the DART Event Type Definition, retrieves all procedure output and places this
information into the DART Event Type Definition.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).Use db-get-error-str to
retrieve the error message.

Name Type Description

connection-handle connection-handle A connection handle to the
database.

statement-handle statement-handle The statement handle that
identifies the stored procedure
specified. This is the handle
produced by db-proc-bind.

procedure-path path The absolute path to the
procedure nodes in the DART
Event Type Definition.

Chapter 5 Section 5.7
Oracle e*Way Functions Message Event Functions

e*Way Intelligent Adapter for Oracle User’s Guide 183 SeeBeyond Proprietary and Confidential

db-struct-execute

Syntax

(db-struct-execute connection-handle statement-handle statement-path)

Description

db-struct-execute calls the dynamic statement using the value from the statement-path
node of the Event Type Definition, retrieves all dynamic statement output and places
this information into the Event Type Definition.

Parameters

Return Values

Boolean
Returns #t (true) when successful; otherwise #f (false).

 Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the
database.

statement-handle statement handle The statement handle that
identifies the stored procedure
specified. This is the handle
produced by db-proc-bind.

statement-path statement-path The absolute path to the
statement nodes in the DART
Event Type Definition.

Chapter 5 Section 5.7
Oracle e*Way Functions Message Event Functions

e*Way Intelligent Adapter for Oracle User’s Guide 184 SeeBeyond Proprietary and Confidential

db-struct-fetch

Syntax

(db-struct-fetch connection-handle table-path)

Description

db-struct-fetch composes and executes an SQL FETCH statement according to the
information and data carried under the table-path node of an Event Type Definition,
and stores the return column values inside each of the column nodes.

Parameters

Return Values

Path
Returns the table path if the execution of the SQL FETCH statement is successful, or

Boolean
Returns #t (true) when the end of the fetch cycle is reached; otherwise, returns #f (false).
Use db-get-error-str to retrieve error message.

Throws

None.

Examples

(define xlate
 (let ((input ($make-event-map in-delm in-struct))
 (output ($make-event-map out-delm out-struct)))
 (lambda ($make-event-string)
 ($event-parse input $make-event-string)
 ($event-clear output)
 (begin
 (if (db-struct-select hdbc ~output%out.dbo.table2)
 (do ((result ““) ((boolean? result))
 (set! result (db-struct-fetch hdbc
~output%out.dbo.table2))
 (if (boolean? result))
 (if (not result)
 (begin
 (display “db-struct-fetch
failed!\n”)
 (display (db-get-error-str hdbc))
 (newline)
)
 (begin
 ...
)
)
 (begin

Name Type Description

connection-handle connection handle A connection handle to the
database.

table-path Event path A table node of a DART Event
Type Definition.

Chapter 5 Section 5.7
Oracle e*Way Functions Message Event Functions

e*Way Intelligent Adapter for Oracle User’s Guide 185 SeeBeyond Proprietary and Confidential

 (display result)
 (newline)
)
)
)
)
 ...
 (insert ”” ~output%out ””)
)
)
)
)

Explanation

The example above shows a typical code segment of a Collaboration Rule that uses the
Event Type Definition. In this example, the output defined by out.ssc is an Event Type
Definition. After clearing the Output Event-string with the Output Event Type
Definition, the Collaboration procedure uses db-struct-select to issue an SQLSELECT
statement based on the information carried under Event- path
[~output%out.dbo.table2].

It repeatedly uses db-struct-fetch to issue the SQL FETCH statement and stores the
resulting column values inside each column node under the table path
[~output%out.dbo.table2] until there are no more records to fetch.

Chapter 5 Section 5.7
Oracle e*Way Functions Message Event Functions

e*Way Intelligent Adapter for Oracle User’s Guide 186 SeeBeyond Proprietary and Confidential

db-struct-insert

Syntax

(db-struct-insert connection-handle table-path)

Description

db-struct-insert composes and executes an SQL INSERT statement according to the
information and data carried under the table-path node of a DART Event Type
Definition.

Parameters

Return Values

Boolean
Returns #t (true) if the execution of the SQL INSERT statement is successful; otherwise,
returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define xlate
 (let ((input ($make-event-map in-delm in-struct))
 (output ($make-event-map out-delm out-struct)))
 (lambda ($make-event-string)
 ($event-parse input $make-event-string)
 ($event-clear output)
 (begin
 (if (db-struct-insert hdbc ~input%in.dbo.table2)
 (begin
 ...
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
 ...
 (insert ”” ~output%out ””)
)
)
)
)

Explanation

The example above shows a typical code segment of a Collaboration Rule that uses the
Event Type Definition. In this example, the input defined by in.ssc is an Event Type

Name Type Description

connection-handle connection handle A connection handle to the
database.

table-path Event path A table node of a DART Event Type
Definition.

Chapter 5 Section 5.7
Oracle e*Way Functions Message Event Functions

e*Way Intelligent Adapter for Oracle User’s Guide 187 SeeBeyond Proprietary and Confidential

Definition. After parsing the Input Event-string with the Input Event Type Definition,
the Collaboration procedure uses db-struct-insert to issue an SQL INSERT statement
based on the information carried under the Event-path [~input%in.dbo.table2].

Chapter 5 Section 5.7
Oracle e*Way Functions Message Event Functions

e*Way Intelligent Adapter for Oracle User’s Guide 188 SeeBeyond Proprietary and Confidential

db-struct-select

Syntax

(db-struct-select connection-handle table-path where-clause)

Description

db-struct-select composes and executes an SQL SELECT statement according to the
information and data carried under the table-path node of a DART Event Type
Definition.

Parameters

Return Values

Boolean
Returns #t (true) if the execution of the SQL SELECT statement is successful; otherwise,
returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Notes

1 Both db-struct-select, and db-struct-fetch use the same algorithm to generate the
selection name for the db-sql-select and db-sql-fetch procedure call. If the table
path is a table node under an owner (schema) node the selection name will be
owner.table.

2 If the table path does not have an owner node above it, the selection name will be
table. You must issue a db-sql-fetch-cancel call with either owner.table or table as
the selection name, if you want to cancel the selection.

Note: Important to use the exact table name previously used in structure to cancel,
including case.

Examples

(define xlate
 (let ((input ($make-event-map in-delm in-struct))
 (output ($make-event-map out-delm out-struct)))
 (lambda ($make-event-string)
 ($event-parse input $make-event-string)
 ($event-clear output)
 ($event-parse output (event->string output))
 (begin

Name Type Description

connection-handle connection handle A connection handle to the database.

table-path Event path A table node of a DART Event Type
Definition.

where-clause string The where clause used by the SQL
SELECT statement.

Chapter 5 Section 5.7
Oracle e*Way Functions Message Event Functions

e*Way Intelligent Adapter for Oracle User’s Guide 189 SeeBeyond Proprietary and Confidential

 (if (db-struct-select hdbc ~output%out.dbo.table2 “ID
= 5”)
 (begin
 (db-struct-fetch hdbc ~output%out.dbo.table2)
 ...
 (db-sql-fetch-cancel hdbc “dbo.table2”)
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
 ...
 (insert ”” ~output%out ””)
)
)
)
)

Explanation

The example above shows a typical code segment of a Collaboration Rules file that uses
the Event Type Definition. In this example, the output defined by out.ssc is an Event
Type Definition. After clearing the Output Event-string, the Collaboration Service uses
db-struct-select to issue an SQL SELECT statement based on the information carried
under the Event-path [~output%out.dbo.table2]. The selection was cancelled by db-sql-
fetch-cancel with dbo.table2 as the selection name.

Chapter 5 Section 5.7
Oracle e*Way Functions Message Event Functions

e*Way Intelligent Adapter for Oracle User’s Guide 190 SeeBeyond Proprietary and Confidential

db-struct-update

Syntax

(db-struct-update connection-handle table-path where-clause)

Description

db-struct-update composes and executes an SQL UPDATE statement according to the
information and data carried under the table-path node of an Event Type Definition.

Parameters

Return Values

Boolean
Returns #t (true) if the execution of the SQL UPDATE statement is successful;
otherwise, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define xlate
 (let ((input ($make-event-map in-delm in-struct))
 (output ($make-event-map out-delm out-struct)))
 (lambda ($make-event-string)
 ($event-parse input $make-event-string)
 ($event-clear output)
 (begin
 (if (db-struct-update hdbc ~input%in.dbo.table2 “ID =
5”)
 (begin
 ...
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
 ...
 (insert ”” ~output%out ””)
)
)
)
)

Name Type Description

connection-handle connection handle A connection handle to the
database.

table-path Event path A table node of a DART Event Type
Definition

where-clause string A where clause used by the SQL
SELECT statement.

Chapter 5 Section 5.7
Oracle e*Way Functions Message Event Functions

e*Way Intelligent Adapter for Oracle User’s Guide 191 SeeBeyond Proprietary and Confidential

Explanation

The example above shows a typical code segment of a Collaboration Rule that uses the
Event Type Definition. In this example, the input defined by in.ssc is an Event Type
Definition. After parsing the Input Event-string with the Input Event Type Definition,
the Collaboration procedure uses db-struct-update to issue an SQL UPDATE statement
based on the information carried under the Event-path [~input%in.dbo.table2].

Chapter 5 Section 5.8
Oracle e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for Oracle User’s Guide 192 SeeBeyond Proprietary and Confidential

5.8 Sample Monk Scripts
This section includes sample Monk scripts which demonstrate how to use the Oracle
e*Way’s Monk functions. These Monk scripts demonstrate the following activities:

“Initializing Monk Extensions” on page 193

“Calling Stored Procedures” on page 194

“Inserting Records with Dynamic SQL Statements” on page 196

“Updating Records with Dynamic SQL Statements” on page 198

“Selecting Records with Dynamic SQL Statements” on page 200

“Deleting Records with Dynamic SQL Statements” on page 202

“Inserting a Binary Image to a Database” on page 203

“Retrieving an Image from a Database” on page 206

“Common Supporting Routines” on page 208

Chapter 5 Section 5.8
Oracle e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for Oracle User’s Guide 193 SeeBeyond Proprietary and Confidential

5.8.1 Initializing Monk Extensions
The sample script shows how to initialize the Monk extensions. This function is used by
many of the other sample Monk scripts shown in this chapter.

To use this sample script in an actual implementation, modify the following values:

EGATE – This designates the location of the e*Gate client.

dsn – This is he name of the data source.

uid – This is the user name.

pwd – This is the login password.

;demo-init.monk

(define EGATE "/eGate/client")

; routine to load DART Monk extension
(define (load-library extension)
 (define filename (string-append EGATE "/bin/" extension))
 (if (file-exists? filename)
 (load-extension filename)
 (begin
 (display (string-append "File " filename " does not
exist.\n"))
 (abort filename)
)
)
)

(load-library "stc_monkext.dll")

;;
;; define STCDB variables, data source, user ID, and password
;;

(define STCDB "ORACLE8")

(load-library "stc_dbmonkext.dll")

(define dsn "database")
(define uid "Administrator")
(define pwd (encrypt-password uid "password"))

Chapter 5 Section 5.8
Oracle e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for Oracle User’s Guide 194 SeeBeyond Proprietary and Confidential

5.8.2 Calling Stored Procedures
This script gives an example of calling Stored Procedures. See “Stored Procedure
Functions” on page 149 for more details.

;demo-proc-execute.monk

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

; call stored procedure and display results
(define (execute-procedure hdbc hstmt)
 (let ((prm-count (db-proc-param-count hdbc hstmt)))
 (if (db-proc-execute hdbc hstmt)
 (begin
 (do ((col-count (db-proc-column-count hdbc hstmt) (db-
proc-column-count hdbc hstmt)))
 ((or (not (number? col-count)) (= col-count 0)))
 (display-proc-column-property hdbc hstmt col-count)
 (display-proc-column-value hdbc hstmt col-count)
)
 (display-proc-parameter-output-value hdbc hstmt prm-count)
 (if (db-proc-return-exist hdbc hstmt)
 (begin
 (display "return: value = ")
 (display (db-proc-return-value hdbc hstmt))
 (newline)
)
)
)
 (display (db-get-error-str hdbc))
)
)
)

; make new connection handle
(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")

 ; bind the stored procedure
 (define hstmt1 (bind-procedure hdbc "PERSONNEL.GET_EMPLOYEES"))

 ; call the stored procedure if the binding is successful
 (if (statement-handle? hstmt1)
 (begin
 (display "call PERSONNEL.GET_EMPLOYEES to get all sales
...\n\n")
 (if (and
 (db-proc-param-assign hdbc hstmt1 0 "30")
 (db-proc-param-assign hdbc hstmt1 1 "10")
)
 (execute-procedure hdbc hstmt1)
 (display (db-get-error-str hdbc))
)
)
)

Chapter 5 Section 5.8
Oracle e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for Oracle User’s Guide 195 SeeBeyond Proprietary and Confidential

 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

Chapter 5 Section 5.8
Oracle e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for Oracle User’s Guide 196 SeeBeyond Proprietary and Confidential

5.8.3 Inserting Records with Dynamic SQL Statements
;demo-stmt-insert.monk

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

; execute dynamic statement and display results
(define (execute-statement hdbc hstmt)
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (display-stmt-row-count hdbc hstmt)
 #t
)
 #f
)
)

; make new connection handle
(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

(define stmt1 "INSERT INTO SCOTT.BONUS SELECT ENAME, JOB, SAL, COMM
FROM SCOTT.EMP WHERE DEPTNO = ?")

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")

 ; bind the dynamic statement
 (define hstmt1 (bind-statement hdbc stmt1))

 ; assign parameter and execute the dynamic statement
 (if (statement-handle? hstmt1)
 (begin
 (display "\nInsert accounting department into bonus table
...\n")
 (if (db-stmt-param-assign hdbc hstmt1 0 "10")
 (if (execute-statement hdbc hstmt1)
 (begin
 (display "\nCommit the insertions ...\n")
 (if (not (db-commit hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)

 (display "\nInsert sales department into bonus table
...\n")
 (if (db-stmt-param-assign hdbc hstmt1 0 "20")
 (if (execute-statement hdbc hstmt1)
 (begin
 (display "\nCommit the insertions ...\n")
 (if (not (db-commit hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))

Chapter 5 Section 5.8
Oracle e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for Oracle User’s Guide 197 SeeBeyond Proprietary and Confidential

)
 (display (db-get-error-str hdbc))
)
)
)

 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

Chapter 5 Section 5.8
Oracle e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for Oracle User’s Guide 198 SeeBeyond Proprietary and Confidential

5.8.4 Updating Records with Dynamic SQL Statements
;demo-stmt-update.monk

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

; execute dynamic statement and display results
(define (execute-statement hdbc hstmt)
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (display-stmt-row-count hdbc hstmt)
 #t
)
 #f
)
)

; make new connection handle
(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

(define stmt1 "UPDATE SCOTT.BONUS SET COMM = ? WHERE JOB = ?")

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")

 ; bind the dynamic statement
 (define hstmt1 (bind-statement hdbc stmt1))

 ; assign parameter and execute the dynamic statement
 (if (statement-handle? hstmt1)
 (begin
 (display "\nUpdate commission of manager ...\n")
 (if
 (and
 (db-stmt-param-assign hdbc hstmt1 0 "10")
 (db-stmt-param-assign hdbc hstmt1 1 "MANAGER")
)
 (if (execute-statement hdbc hstmt1)
 (begin
 (display "\nCommit the updates ...\n")
 (if (not (db-commit hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)

 (display "\nUpdate commission of clerk ...\n")
 (if
 (and
 (db-stmt-param-assign hdbc hstmt1 0 "20")
 (db-stmt-param-assign hdbc hstmt1 1 "CLERK")
)
 (if (execute-statement hdbc hstmt1)
 (begin
 (display "\nCommit the updates ...\n")

Chapter 5 Section 5.8
Oracle e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for Oracle User’s Guide 199 SeeBeyond Proprietary and Confidential

 (if (not (db-commit hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
)
)

 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

Chapter 5 Section 5.8
Oracle e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for Oracle User’s Guide 200 SeeBeyond Proprietary and Confidential

5.8.5 Selecting Records with Dynamic SQL Statements
;demo-stmt-select.monk

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

; execute dynamic statement and display results
(define (execute-statement hdbc hstmt)
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (display-stmt-column-value hdbc hstmt)
 #t
)
 #f
)
)

; make new connection handle
(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

(define stmt1 "SELECT EMPNO, ENAME, JOB FROM SCOTT.EMP WHERE JOB = ?")
(define stmt2 "SELECT ENAME, DNAME, JOB, HIREDATE FROM SCOTT.EMP,
SCOTT.DEPT WHERE EMP.DEPTNO = DEPT.DEPTNO AND DEPT.DNAME = ?")

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")

 ; bind the dynamic statements
 (define hstmt1 (bind-statement hdbc stmt1))
 (define hstmt2 (bind-statement hdbc stmt2))

 ; assign parameter and execute the dynamic statement
 (if (statement-handle? hstmt1)
 (begin
 (display "\nList all salesman ...\n\n")
 (if (db-stmt-param-assign hdbc hstmt1 0 "SALESMAN")
 (if (not (execute-statement hdbc hstmt1))
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display "\nList all manager ...\n\n")
 (if (db-stmt-param-assign hdbc hstmt1 0 "MANAGER")
 (if (not (execute-statement hdbc hstmt1))
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
)
)

 (if (statement-handle? hstmt2)
 (begin
 (display "\nList employee of accounting department
...\n\n")
 (if (db-stmt-param-assign hdbc hstmt2 0 "ACCOUNTING")
 (if (not (execute-statement hdbc hstmt2))
 (display (db-get-error-str hdbc))

Chapter 5 Section 5.8
Oracle e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for Oracle User’s Guide 201 SeeBeyond Proprietary and Confidential

)
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

Chapter 5 Section 5.8
Oracle e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for Oracle User’s Guide 202 SeeBeyond Proprietary and Confidential

5.8.6 Deleting Records with Dynamic SQL Statements
;demo-stmt-delete.monk

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

; execute dynamic statement and display results
(define (execute-statement hdbc hstmt)
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (display-stmt-row-count hdbc hstmt)
 #t
)
 #f
)
)

; make new connection handle
(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

(define stmt1 "DELETE FROM SCOTT.BONUS WHERE ENAME IS NOT NULL")

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")

 ; bind the dynamic statement
 (define hstmt1 (bind-statement hdbc stmt1))

 ; assign parameter and execute the dynamic statement
 (if (statement-handle? hstmt1)
 (begin
 (display "\nDelete records from scott.bonus table ...\n")
 (if (execute-statement hdbc hstmt1)
 (begin
 (display "\nCommit the deletions ...\n")
 (if (not (db-commit hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)
)
)

 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

Chapter 5 Section 5.8
Oracle e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for Oracle User’s Guide 203 SeeBeyond Proprietary and Confidential

5.8.7 Inserting a Binary Image to a Database
This sample shows how to insert a Binary Image into a Database. It uses both Static and
Dynamic SQL functions. See “Static SQL Functions” on page 119 and “Dynamic SQL
Functions” on page 135 for more details.

;demo-image-insert.monk

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

(define (query-exist hdbc hstmt id)
 (let ((rec-count 0) (result '#()))
 (if (db-stmt-param-assign hdbc hstmt 0 id)
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (set! result (vector-ref (db-stmt-fetch hdbc hstmt) 0))
 (set! rec-count (string->number result))
 (set! result (db-stmt-fetch-cancel hdbc hstmt))
 (if (> rec-count 0)
 (begin
 (display "image already exist\n")
 #t
)
 #f
)
)
 (begin
 (display (db-get-error-str hdbc))
 #f
)
)
 (begin
 (display (db-get-error-str hdbc))
 #f
)
)
)
)

(define (execute-statement hdbc hstmt)
 (let ((col-count (db-stmt-column-count hdbc hstmt)) (row-count 0))
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (if (> col-count 0)
 (if (not (display-stmt-column-value hdbc hstmt col-
count))
 (display (db-get-error-str hdbc))
)
)
 (set! row-count (db-stmt-row-count hdbc hstmt))
 (if (boolean? row-count)
 (display (db-get-error-str hdbc))
 (display (string-append "number of image insert = "
(number->string row-count) "\n"))
)
 (newline)
 #t
)
 #f
)
)

Chapter 5 Section 5.8
Oracle e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for Oracle User’s Guide 204 SeeBeyond Proprietary and Confidential

)

(define (bind-image-statement hdbc stmt)
 (let ((hstmt (db-stmt-bind-binary hdbc stmt)))
 (display (string-append "\nDynamic statement : " stmt "\n"))
 (if (statement-handle? hstmt)
 (begin
; (db-stmt-param-bind hdbc hstmt 0 "SQL_INTEGER" 4 0)
; (db-stmt-param-bind hdbc hstmt 1 "SQL_VARCHAR" 20 0)
; (db-stmt-param-bind hdbc hstmt 2 "SQL_VARCHAR" 10 0)
; (db-stmt-param-bind hdbc hstmt 3 "SQL_INTEGER" 38 0)
; (db-stmt-param-bind hdbc hstmt 4 "SQL_INTEGER" 38 0)
; (db-stmt-param-bind hdbc hstmt 5 "SQL_INTEGER" 10 0)
 (db-stmt-param-bind hdbc hstmt 6 "SQL_LONGVARBINARY"
2000000 0)
 (define prm-count (db-stmt-param-count hdbc hstmt))
 (display-stmt-parameter-property hdbc hstmt prm-count)

 (define col-count (db-stmt-column-count hdbc hstmt))
 (display-stmt-column-property hdbc hstmt col-count)
)
 (display (db-get-error-str hdbc))
)
 hstmt
)
)

(define image1-id "7100")
(define image1-name "Coast")
(define image1-type "JPEG")
(define image1-width "1280")
(define image1-height "1024")
(define image1-file (string-append image1-name ".jpg"))

(define image-port (open-input-file image1-file))
(define image1-data (read image-port 1000000))
(close-port image-port)
(define image1-size (number->string (string-length image1-data)))

(define image2-id "7200")
(define image2-name "Launch")
(define image2-type "JPEG")
(define image2-width "2000")
(define image2-height "1600")
(define image2-file (string-append image2-name ".jpg"))

(define image-port (open-input-file image2-file))
(define image2-data (read image-port 2000000))
(close-port image-port)
(define image2-size (number->string (string-length image2-data)))

(define hdbc (make-connection-handle))
(display (connection-handle? hdbc)) (newline)

(define stmt0 "select count(0) from SCOTT.IMAGE where PIX_ID = ?")
(define stmt1 "insert into SCOTT.IMAGE (PIX_ID, PIX_NAME, PIX_TYPE,
BYTE_SIZE, PIX_WIDTH, PIX_HEIGHT, PIX_DATA) values (?, ?, ?, ?, ?, ?,
?)")

(if (db-login hdbc dsn uid pwd)
(begin
(display "\ndatabase login succeed !\n")
(display (db-dbms hdbc)) (newline)

Chapter 5 Section 5.8
Oracle e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for Oracle User’s Guide 205 SeeBeyond Proprietary and Confidential

(display (db-std-timestamp-format hdbc)) (newline)
(display (db-max-long-data-size hdbc 2000000)) (newline)

; bind the query and insert statement
(define hquery (bind-statement hdbc stmt0))
(define hinsert (bind-image-statement hdbc stmt1))

(if (and
(statement-handle? hquery)
(statement-handle? hinsert)

)
(begin
(if (not (query-exist hdbc hquery image1-id))
(begin
(display (string-append "insert image " image1-file "\n"))
(if (and

(db-stmt-param-assign hdbc hinsert 0 image1-id)
(db-stmt-param-assign hdbc hinsert 1 image1-name)
(db-stmt-param-assign hdbc hinsert 2 image1-type)
(db-stmt-param-assign hdbc hinsert 3 image1-size)
(db-stmt-param-assign hdbc hinsert 4 image1-width)
(db-stmt-param-assign hdbc hinsert 5 image1-height)
(db-stmt-param-assign hdbc hinsert 6 image1-data)

)
(if (execute-statement hdbc hinsert)
(db-commit hdbc)
(display (db-get-error-str hdbc))

)
(display (db-get-error-str hdbc))

)
)

)

(if (not (query-exist hdbc hquery image2-id))
(begin
(display (string-append "insert image " image2-file "\n"))
(if (and

(db-stmt-param-assign hdbc hinsert 0 image2-id)
(db-stmt-param-assign hdbc hinsert 1 image2-name)
(db-stmt-param-assign hdbc hinsert 2 image2-type)
(db-stmt-param-assign hdbc hinsert 3 image2-size)
(db-stmt-param-assign hdbc hinsert 4 image2-width)
(db-stmt-param-assign hdbc hinsert 5 image2-height)
(db-stmt-param-assign hdbc hinsert 6 image2-data)

)
(if (execute-statement hdbc hinsert)
(db-commit hdbc)
(display (db-get-error-str hdbc))

)
(display (db-get-error-str hdbc))

)
)

)
)

)

(if (not (db-logout hdbc))
(display (db-get-error-str hdbc))

)
)
(display (db-get-error-str hdbc))

)

Chapter 5 Section 5.8
Oracle e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for Oracle User’s Guide 206 SeeBeyond Proprietary and Confidential

5.8.8 Retrieving an Image from a Database
This sample shows how to Retrieve an image from a Database. It uses both Static and
Dynamic SQL functions. See “Static SQL Functions” on page 119 and “Dynamic SQL
Functions” on page 135 for more details.

;demo-image-select.monk

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

(define (get-image hdbc hstmt)
 (do (
 (result (db-stmt-fetch hdbc hstmt) (db-stmt-fetch hdbc
hstmt))
 (first_name "")
 (file_type "")
 (file_name "")
 (width "")
 (height "")
 (output_port '())
)
 ((boolean? result) result)
 (set! first_name (vector-ref result 0))
 (set! file_type (strip-trailing-whitespace (vector-ref result
1)))
 (set! width (strip-trailing-whitespace (vector-ref result 2)))
 (set! height (strip-trailing-whitespace (vector-ref result 3)))
 (cond
 ((string=? file_type "JPEG") (set! file_name (string-append
first_name ".jpg")))
 ((string=? file_type "GIF") (set! file_name (string-append
first_name ".gif")))
 ((string=? file_type "BITMAP") (set! file_name (string-append
first_name ".bmp")))
 ((string=? file_type "TIFF") (set! file_name (string-append
first_name ".tif")))
 (else (set! file_name (string-append first_name ".raw")))
)
 (if (file-exists? file_name)
 (file-delete file_name)
)
 (display (string-append "picture name = " file_name "\n"))
 (display (string-append "picture size = " width " x " height
"\n\n"))
 (set! output_port (open-output-file file_name))
 (display (vector-ref result 4) output_port)
 (close-port output_port)
)
)

(define (execute-statement hdbc hstmt)
 (let ((col-count (db-stmt-column-count hdbc hstmt)) (row-count 0))
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (if (> col-count 0)
 (if (not (get-image hdbc hstmt))
 (display (db-get-error-str hdbc))
)
)
 (set! row-count (db-stmt-row-count hdbc hstmt))
 (if (boolean? row-count)

Chapter 5 Section 5.8
Oracle e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for Oracle User’s Guide 207 SeeBeyond Proprietary and Confidential

 (display (db-get-error-str hdbc))
 (display (string-append "number of image retrieved = "
(number->string row-count) "\n"))
)
 (newline)
 #t
)
 #f
)
)
)

(define hdbc (make-connection-handle))
(display (connection-handle? hdbc)) (newline)

(define stmt "select PIX_NAME, PIX_TYPE, PIX_WIDTH, PIX_HEIGHT,
PIX_DATA from SCOTT.IMAGE where PIX_ID = ?")

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")
 (display (db-dbms hdbc)) (newline)
 (display (db-std-timestamp-format hdbc)) (newline)
 (display (db-max-long-data-size hdbc 2000000)) (newline)

 ; bind the select statement
 (define hselect (bind-binary-statement hdbc stmt))

 ; execute the dynamic statement
 (display "select IMAGE table\n")
 (if (statement-handle? hselect)
 (begin
 (if (db-stmt-param-assign hdbc hselect 0 "7100")
 (if (not (execute-statement hdbc hselect))
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (if (db-stmt-param-assign hdbc hselect 0 "7200")
 (if (not (execute-statement hdbc hselect))
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
)
)

 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

Chapter 5 Section 5.8
Oracle e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for Oracle User’s Guide 208 SeeBeyond Proprietary and Confidential

5.8.9 Common Supporting Routines
This sample script displays and defines values and parameters for stored procedures.
The routines contained in this script are used by many of the Monk samples in this
chapter. For more details about functions used in this script, see “Stored Procedure
Functions” on page 149

;demo-common.monk

;;
;; stored procedure auxiliary functions
;;

; display parameter properties of the stored procedure
(define (display-proc-parameter-property hdbc hstmt prm-count)
 (display "parameter count = ") (display prm-count) (newline)
 (do ((i 0 (+ i 1))) ((= i prm-count))
 (display "parameter ")
 (display (db-proc-param-name hdbc hstmt i))
 (display ": type = ")
 (display (db-proc-param-type hdbc hstmt i))
 (display ", io = ")
 (display (db-proc-param-io hdbc hstmt i))
 (newline)
)
)

; display value of output parameters from stored procedure
(define (display-proc-parameter-output-value hdbc hstmt prm-count)
 (do ((i 0 (+ i 1))) ((= i prm-count))
 (if (not (equal? (db-proc-param-io hdbc hstmt i) "IN"))
 (begin
 (display "output parameter ")
 (display (db-proc-param-name hdbc hstmt i))
 (display " = ")
 (display (db-proc-param-value hdbc hstmt i))
 (newline)
)
)
)
)

; display column properties of the return result set
(define (display-proc-column-property hdbc hstmt col-count)
 (display "column count = ") (display col-count) (newline)
 (do ((i 0 (+ i 1))) ((= i col-count))
 (display "column ")
 (display (db-proc-column-name hdbc hstmt i))
 (display ": type = ")
 (display (db-proc-column-type hdbc hstmt i))
 (newline)
)
 (newline)
)

; display column value of the return result set of the stored
procedure
(define (display-proc-column-value hdbc hstmt col-count)
 (define (fetch-next)
 (let ((result (db-proc-fetch hdbc hstmt)))
 (if (boolean? result)
 result
 (begin (display result) (newline) (fetch-next))

Chapter 5 Section 5.8
Oracle e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for Oracle User’s Guide 209 SeeBeyond Proprietary and Confidential

)
)
)
 (fetch-next)
 (newline)
)

; bind stored procedure and display parameter properties
(define (bind-procedure hdbc proc)
 (let ((hstmt (db-proc-bind hdbc proc)))
 (if (statement-handle? hstmt)
 (begin
 (display (string-append "bind stored procedure : " proc
"\n"))
 (define prm-count (db-proc-param-count hdbc hstmt))
 (display-proc-parameter-property hdbc hstmt prm-count)
 (newline)
 (if (db-proc-return-exist hdbc hstmt)
 (begin
 (display "return: type = ")
 (display (db-proc-return-type hdbc hstmt))
 (newline)
)
)
 (newline)
)
 (display (db-get-error-str hdbc))
)
 hstmt
)
)

;;
;; dynamic statement auxiliary functions
;;

; display parameter properties of the SQL statement
(define (display-stmt-parameter-property hdbc hstmt prm-count)
 (display "parameter count = ") (display prm-count) (newline)
 (do ((i 0 (+ i 1))) ((= i prm-count))
 (display "parameter #")
 (display i)
 (display ": type = ")
 (display (db-stmt-param-type hdbc hstmt i))
 (newline)
)
 (newline)
)

; display column properties of the SQL statement
(define (display-stmt-column-property hdbc hstmt col-count)
 (display "column count = ") (display col-count) (newline)
 (do ((i 0 (+ i 1))) ((= i col-count))
 (display "column ")
 (display (db-stmt-column-name hdbc hstmt i))
 (display ": type = ")
 (display (db-stmt-column-type hdbc hstmt i))
 (newline)
)
 (newline)
)

Chapter 5 Section 5.8
Oracle e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for Oracle User’s Guide 210 SeeBeyond Proprietary and Confidential

; display column value of the return result set of the SQL statement
(define (display-stmt-column-value hdbc hstmt)
 (define (fetch-next)
 (let ((result (db-stmt-fetch hdbc hstmt)))
 (if (boolean? result)
 result
 (begin (display result) (newline) (fetch-next))
)
)
)
 (fetch-next)
 (newline)
)

; display row count affected by the execution of the SQL statement
(define (display-stmt-row-count hdbc hstmt)
 (let ((row-count (db-stmt-row-count hdbc hstmt)))
 (cond
 ((= row-count 0) (display "\n(no row affected)\n"))
 ((= row-count 1) (display "\n(1 row affected)\n"))
 (else (display (string-append "\n(" (number->string row-
count) " rows affected)\n")))
)
)
)

; bind dynamic statement and display paramters and column properties
(define (bind-statement hdbc stmt)
 (let ((hstmt (db-stmt-bind hdbc stmt)))
 (display (string-append "\nDynamic statement : " stmt "\n"))
 (if (statement-handle? hstmt)
 (begin
 (define prm-count (db-stmt-param-count hdbc hstmt))
 (display-stmt-parameter-property hdbc hstmt prm-count)

 (define col-count (db-stmt-column-count hdbc hstmt))
 (display-stmt-column-property hdbc hstmt col-count)
)
 (display (db-get-error-str hdbc))
)
 hstmt
)
)

; bind dynamic statement to input/output raw binary data
(define (bind-binary-statement hdbc stmt)
 (let ((hstmt (db-stmt-bind-binary hdbc stmt)))
 (display (string-append "\nDynamic statement : " stmt "\n"))
 (if (statement-handle? hstmt)
 (begin
 (define prm-count (db-stmt-param-count hdbc hstmt))
 (display-stmt-parameter-property hdbc hstmt prm-count)

 (define col-count (db-stmt-column-count hdbc hstmt))
 (display-stmt-column-property hdbc hstmt col-count)
)
 (display (db-get-error-str hdbc))
)
 hstmt
)
)

Index

e*Way Intelligent Adapter for Oracle User’s Guide 211 SeeBeyond Proprietary and Confidential

Index

A
additional path 35
auxiliary library directories 35

B
basic e*Way processes 28
basic functions 78

event-send-to-egate 79
get-logical-name 80
send-external-down 81
send-external-up 82
shutdown-request 83
start-schedule 84
stop-schedule 85

build an event type 43
build tool 43

C
calling stored procedures, sample 194
common supporting routines, sample 208
communication setup 24
components 9
configuration 22
configuration parameters 22
connection-handle? 105
converter, DART 43
creating database user account 21

D
DART 21, 22

converter 43
library 44

data exchange functions
event-driven 33
schedule-driven 31

database management system 8
database name 42
database setup 41

database name 42
database type 41
encrypted password 42

user name 42
database type 41
db-alive 106
db-commit 108
db-get-error-str 109
db-login 111
db-logout 113
db-max-long-data-size 114
DBMS 8
db-proc-bind 151
db-proc-bind-binary 152
db-proc-column-count 153
db-proc-column-name 155
db-proc-column-type 157
db-proc-execute 159
db-proc-fetch function 161
db-proc-fetch-cancel 163
db-proc-max-records 164
db-proc-param-assign 165
db-proc-param-count 167
db-proc-param-io 169
db-proc-param-name 170
db-proc-param-type 171
db-proc-param-value 172
db-proc-return-exist 174
db-proc-return-type 176
db-proc-return-value 178
db-rollback 115
db-sql-column-names 123
db-sql-column-types 125
db-sql-column-values 127
db-sql-execute 129
db-sql-fetch 130
db-sql-fetch-cancel 131
db-sql-format 132
db-sql-select 134
db-stdver-conn-estab 87
db-stdver-conn-shutdown 89
db-stdver-conn-ver 90
db-stdver-data-exchg 92
db-stdver-data-exchg-stub 93
db-stdver-init 94
db-stdver-neg-ack 96
db-stdver-pos-ack 97
db-stdver-proc-outgoing 98
db-stdver-proc-outgoing-stub 100
db-stdver-shutdown 102
db-stdver-startup 103
db-stmt-bind 136
db-stmt-bind-binary 137
db-stmt-column-count 138
db-stmt-column-name 139
db-stmt-column-type 140
db-stmt-execute 141

Index

e*Way Intelligent Adapter for Oracle User’s Guide 212 SeeBeyond Proprietary and Confidential

db-stmt-fetch 142
db-stmt-fetch-cancel 143
db-stmt-param-assign 144
db-stmt-param-bind 145
db-stmt-param-count 146
db-stmt-param-type 147
db-stmt-row-count 148
db-struct-bulk-insert 181
db-struct-call 182
db-struct-execute 183
db-struct-fetch 184
db-struct-insert 186
db-struct-select 188
db-struct-update 190
deleting records, sample 202
down timeout 26
dynamic SQL functions 119, 135

db-stmt-bind 136
db-stmt-bind-binary 137
db-stmt-column-count 138
db-stmt-column-name 139
db-stmt-column-type 140
db-stmt-execute 141
db-stmt-fetch 142
db-stmt-fetch-cancel 143
db-stmt-param-assign 144
db-stmt-param-bind 145
db-stmt-param-count 146
db-stmt-param-type 147
db-stmt-row-count 148

E
e*Way configuration parameters 22
encrypted password 42
ETD editor’s build tool 43
event-driven data exchange functions 33
event-send-to-egate 79
exchange data interval 25
exchange data with external function 37
external connection establishment function 38
external connection shutdown function 39
external connection verification function 39
external system requirements 10

F
forward external errors 24
functions

connection-handle 105
db-alive 106
db-commit 108
db-get-error-str 109
db-login 111

db-logout 113
db-max-long-data-size 114
db-proc-bind 151
db-proc-bind-binary 152
db-proc-column-count 153
db-proc-column-name 155
db-proc-column-type 157
db-proc-execute 159
db-proc-fetch 161
db-proc-fetch-cancel 163
db-proc-max-records 164
db-proc-param-assign 165
db-proc-param-count 167
db-proc-param-io 169
db-proc-param-name 170
db-proc-param-type 171
db-proc-param-value 172
db-proc-return-exist 174
db-proc-return-type 176
db-proc-return-value 178
db-rollback 115
db-sql-column-names 123
db-sql-column-types 125
db-sql-column-values 127
db-sql-execute 129
db-sql-fetch 130
db-sql-fetch-cancel 131
db-sql-format 132
db-sql-select 134
db-std-timestamp-format 116
db-stdver-conn-estab 87
db-stdver-conn-shutdown 89
db-stdver-conn-ver 90
db-stdver-data-exchg 92
db-stdver-data-exchg-stub 93
db-stdver-init 94
db-stdver-neg-ack 96
db-stdver-pos-ack 97
db-stdver-proc-outgoing 98
db-stdver-proc-outgoing-stub 100
db-stdver-shutdown 102
db-stdver-startup 103
db-stmt-bind 136
db-stmt-bind-binary 137
db-stmt-column-count 138
db-stmt-column-name 139
db-stmt-column-type 140
db-stmt-execute 141
db-stmt-fetch 142
db-stmt-fetch-cancel 143
db-stmt-param-assign 144
db-stmt-param-bind 145
db-stmt-param-count 146
db-stmt-param-type 147

Index

e*Way Intelligent Adapter for Oracle User’s Guide 213 SeeBeyond Proprietary and Confidential

db-stmt-row-count 148
db-struct-bulk-insert 181
db-struct-call 182
db-struct-execute 183
db-struct-fetch 184
db-struct-insert 186
db-struct-select 188
db-struct-update 190
event-send-to-egate 79
get-logical-name 80
make-connection-handle 117
send-external-down 81
send-external-up 82
shutdown-request 83
start-schedule 84
statement-handle? 118
stop-schedule 85

G
general connection functions 104

connection-handle? 105
db-alive 106
db-commit 108
db-get-error-str 109
db-login 111
db-logout 113
db-max-long-data-size 114
db-rollback 115
db-std-timestamp-format 116
make-connection-handle 117
statement-handle? 118

general settings 23
get-logical-name function 80

I
IDN 8
implementation 43
initializing Monk extensions, sample 193
inserting records, sample 196
Installation

UNIX 14
installation 11

client 12
decisions 11
files 14, 16
network components 12
overview 11
pre-installation 12, 14
procedure 12, 14
troubleshooting 19
Windows 2000 12
Windows NT 12

integrated delivery network 8
intended reader 9
introduction 8

J
journal file name 23

L
library converter 43
library, DART 44
listener 19
listener.ora 17

M
make-connection-handle 117
max failed messages 24
max resends per message 23
message event functions 180

db-struct-bulk-insert 181
db-struct-call 182
db-struct-execute 183
db-struct-fetch 184
db-struct-insert 186
db-struct-select 188
db-struct-update 190

monk
notes 35

monk environment initialization file 35

N
negative acknowledgment function 40
notes on monk 35

O
OCI 12, 16
Oracle Call Interface 12, 16
oracle e*Way functions 78
oracle SQL type support 122
ORACLE_HOME 42
ORACLE_SID 42

P
parameters

additional path 35
auxiliary library directories 35
communication setup 24
configuration 22

Index

e*Way Intelligent Adapter for Oracle User’s Guide 214 SeeBeyond Proprietary and Confidential

database name 42
database setup 41
database type 41
down timeout 26
encrypted password 42
exchange data interval 25
exchange data with external function 37
external connection establishment function 38
external connection shutdown function 39
external connection verification function 39
forward external errors 24
general settings 23
journal file name 23
max failed messages 24
max resends per message 23
monk environment initialization file 35
negative acknowledgment function 40
positive acknowledgment function 40
process outgoing message function 37
resend timeout 26
shutdown command notification function 41
start exchange data schedule 24
startup function 36
stop exchange data schedule 25
up timeout 26
user name 42
zero wait between successful exchanges 26

positive acknowledgment function 40
process outgoing message function 37
publishing to an Oracle database, sample 53

R
requirements

external configuration 42
external system 10
system 9

resend timeout 26

S
sample

calling stored procedures 194
common routines 208
common supporting routines 208
deleting records with dynamic SQL statements

202
dynamic SQL statements 196, 198, 200, 202
initializing Monk extensions 193
inserting binary images 203
inserting records with dynamic SQL statements

196
Monk scripts 192
publishing to an Oracle database 53

retrieving images 206
selecting records with dynamic SQL statements

200
stored procedures 194
updating records with dynamic SQL statements

198
sample Monk scripts 192
schedule-driven data exchange functions 31
search path, shared library 20
selecting records, sample 200
send-external-down function 81
send-external-up function 82
shared library 20
shutdown command notification function 41
Shutdown Functions 33
shutdown-request 83
specify file names 34
specify function names 34
SQL 8
SQL*Net 12, 16, 19
SQL92 standard format 116
sqlnet.ora 17
standard e*Way functions 86

db-stdver-conn-estab 87
db-stdver-conn-shutdown 89
db-stdver-conn-ver 90
db-stdver-data-exchg 92
db-stdver-data-exchg-stub 93
db-stdver-init 94
db-stdver-neg-ack 96
db-stdver-pos-ack 97
db-stdver-proc-outgoing 98
db-stdver-proc-outgoing-stub 100
db-stdver-shutdown 102
db-stdver-startup 103

start exchange data schedule 24
starting a listener 19
start-schedule function 84
startup function 36
statement-handle? 118
static SQL functions 119

db-sql-column-names 123
db-sql-column-types 125
db-sql-column-values 127
db-sql-execute 129
db-sql-fetch 130
db-sql-fetch-cancel 131
db-sql-format 132
db-sql-select 134

static vs. dynamic SQL functions 119
stcewgenericmonk.exe 9, 13, 14, 15, 16
stop exchange data schedule 25
stop-schedule function 85
stored procedure functions 149

Index

e*Way Intelligent Adapter for Oracle User’s Guide 215 SeeBeyond Proprietary and Confidential

db-proc-bind 151
db-proc-bind-binary 152
db-proc-column-count 153
db-proc-column-name 155
db-proc-column-type 157
db-proc-execute 159
db-proc-fetch 161
db-proc-fetch-cancel 163
db-proc-max-records 164
db-proc-param-assign 165
db-proc-param-count 167
db-proc-param-io 169
db-proc-param-name 170
db-proc-param-type 171
db-proc-param-value 172
db-proc-return-exist 174
db-proc-return-type 176
db-proc-return-value 178

stored procedures, sample 194
supported variable SQL data types 122
system requirements 9

T
TCP/IP 12, 16
testing

SQL*Net 19
tnsnames.ora 17

U
up timeout 26
updating records, sample 198
user account, creating 21
user name 42
using SQL 8

Z
zero wait between successful exchanges 26

	e*Way Intelligent Adapter for Oracle User’s Guide
	Contents
	Introduction
	1.1 Using SQL
	1.2 Intended Reader
	1.3 Components
	1.4 System Requirements
	1.4.1 External System Requirements

	Installation
	2.1 Installation Overview
	2.1.1 Installation Decisions
	2.1.2 Installing Client and Network Components on Windows

	2.2 Installing the Oracle e*Way on Windows
	2.2.1 Pre-installation
	2.2.2 Installation Procedure
	2.2.3 Files/Directories Created by the Installation

	2.3 Installing the Oracle e*Way on UNIX
	2.3.1 Pre-installation
	2.3.2 Installation Procedure

	2.4 Oracle Network Components
	2.4.1 SQL*Net Configuration files
	2.4.2 Testing the SQL*Net Configuration
	2.4.3 Troubleshooting Checklist
	2.4.4 Setting up the Shared Library Search Path
	2.4.5 Creating the Oracle e*Way Database User Account

	Configuration
	3.1 Configuration Overview
	3.2 e*Way Configuration Parameters
	3.2.1 General Settings
	Journal File Name
	Max Resends Per Message
	Max Failed Messages
	Forward External Errors

	3.2.2 Communication Setup
	Start Exchange Data Schedule
	Stop Exchange Data Schedule
	Exchange Data Interval
	Down Timeout
	Up Timeout
	Resend Timeout
	Zero Wait Between Successful Exchanges

	3.2.3 Monk Configuration
	Basic e*Way Processes
	How to Specify Function Names or File Names
	Additional Path
	Auxiliary Library Directories
	Monk Environment Initialization File
	Startup Function
	Process Outgoing Message Function
	Exchange Data with External Function
	External Connection Establishment Function
	External Connection Verification Function
	External Connection Shutdown Function
	Positive Acknowledgment Function
	Negative Acknowledgment Function
	Shutdown Command Notification Function

	3.2.4 Database Setup
	Database Type
	Database Name
	User Name
	Encrypted Password

	3.3 External Configuration Requirements
	3.3.1 Configuring the Oracle Environment

	Implementation
	4.1 Using the ETD Editor’s Build Tool
	4.1.1 The Event Type Definition Files
	Table or View
	Dynamic SQL Statement
	Stored Procedure

	4.2 Sample One—Publishing e*Gate Events to an Oracle Database
	4.2.1 Create the Schema
	4.2.2 Create the Event Type Definitions
	4.2.3 Add the Event Types
	4.2.4 Create the Monk Scripts
	4.2.5 Add and Configure the e*Ways
	4.2.6 Add the IQs
	4.2.7 Create the Collaboration Rules
	4.2.8 Add and Configure the Collaborations
	4.2.9 Run the Schema

	4.3 Sample Two—Polling from an Oracle Database
	4.3.1 Create the Schema
	4.3.2 Create the Event Type Definitions
	4.3.3 Add the Event Types
	4.3.4 Create the Monk Scripts
	4.3.5 Add and Configure the e*Ways
	4.3.6 Add the IQs
	4.3.7 Create the Collaboration Rules
	4.3.8 Add and Configure the Collaborations
	4.3.9 Run the Schema

	Oracle e*Way Functions
	5.1 Basic Functions
	event-send-to-egate
	get-logical-name
	send-external-down
	send-external-up
	shutdown-request
	start-schedule
	stop-schedule

	5.2 Standard e*Way Functions
	db-stdver-conn-estab
	db-stdver-conn-shutdown
	db-stdver-conn-ver
	db-stdver-data-exchg
	db-stdver-data-exchg-stub
	db-stdver-init
	db-stdver-neg-ack
	db-stdver-pos-ack
	db-stdver-proc-outgoing
	db-stdver-proc-outgoing-stub
	db-stdver-shutdown
	db-stdver-startup

	5.3 General Connection Functions
	connection-handle?
	db-alive
	db-commit
	db-get-error-str
	db-login
	db-logout
	db-max-long-data-size
	db-rollback
	db-std-timestamp-format
	make-connection-handle
	statement-handle?

	5.4 Static SQL Functions
	Static vs. Dynamic SQL Functions
	Oracle SQL Type Support
	db-sql-column-names
	db-sql-column-types
	db-sql-column-values
	db-sql-execute
	db-sql-fetch
	db-sql-fetch-cancel
	db-sql-format
	db-sql-select

	5.5 Dynamic SQL Functions
	db-stmt-bind
	db-stmt-bind-binary
	db-stmt-column-count
	db-stmt-column-name
	db-stmt-column-type
	db-stmt-execute
	db-stmt-fetch
	db-stmt-fetch-cancel
	db-stmt-param-assign
	db-stmt-param-bind
	db-stmt-param-count
	db-stmt-param-type
	db-stmt-row-count

	5.6 Stored Procedure Functions
	db-proc-bind
	db-proc-bind-binary
	db-proc-column-count
	db-proc-column-name
	db-proc-column-type
	db-proc-execute
	db-proc-fetch
	db-proc-fetch-cancel
	db-proc-max-records
	db-proc-param-assign
	db-proc-param-count
	db-proc-param-io
	db-proc-param-name
	db-proc-param-type
	db-proc-param-value
	db-proc-return-exist
	db-proc-return-type
	db-proc-return-value

	5.7 Message Event Functions
	db-struct-bulk-insert
	db-struct-call
	db-struct-execute
	db-struct-fetch
	db-struct-insert
	db-struct-select
	db-struct-update

	5.8 Sample Monk Scripts
	5.8.1 Initializing Monk Extensions
	5.8.2 Calling Stored Procedures
	5.8.3 Inserting Records with Dynamic SQL Statements
	5.8.4 Updating Records with Dynamic SQL Statements
	5.8.5 Selecting Records with Dynamic SQL Statements
	5.8.6 Deleting Records with Dynamic SQL Statements
	5.8.7 Inserting a Binary Image to a Database
	5.8.8 Retrieving an Image from a Database
	5.8.9 Common Supporting Routines

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	Z

