
SeeBeyond Proprietary and Confidential

e*Way Intelligent Adapter for
SOAP User’s Guide

Release 4.5.2

e*Way Intelligent Adapter for SOAP User’s Guide 2 SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBI, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 2001 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20011231141718.

Contents

e*Way Intelligent Adapter for SOAP User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents

Chapter 1

Introduction 9
SOAP e*Way: Overview 9

Introduction to SOAP 9
Conventions and Specifications 9
SOAP Messaging 10

e*Way Components and Features 11
Basic Components 11
Supported Features 12

Intended Reader 12

Supported Operating Systems 12

System Requirements 13

External System Requirements 13

Chapter 2

Installation 14
Windows NT or Windows 2000 14

Pre-installation 14
e*Way Installation Procedure 14

UNIX 15
Pre-installation 15
Installation Procedure 15

After Installation 16

Files/Directories Created by the Installation 16

Chapter 3

Multi-Mode e*Way Configuration 18
Multi-Mode e*Way Properties 18

JVM Settings 19
JNI DLL Absolute Pathname 19
CLASSPATH Prepend 19

Contents

e*Way Intelligent Adapter for SOAP User’s Guide 4 SeeBeyond Proprietary and Confidential

CLASSPATH Override 20
CLASSPATH Append From Environment Variable 20
Initial Heap Size 20
Maximum Heap Size 21
Maximum Stack Size for Native Threads 21
Maximum Stack Size for JVM Threads 21
Class Garbage Collection 21
Garbage Collection Activity Reporting 21
Asynchronous Garbage Collection 22
Report JVM Info and all Class Loads 22
Disable JIT 22
Remote debugging port number 22
Suspend Option for Debugging 22

Chapter 4

e*Way Connection Configuration 23
Configuring e*Way Connections 23

Configuration Parameters 24
Connector 24

Type 24
Class 24
Property.Tag 25

Transport Binding 25
Transport Type 25
SOAPAction URI 25
SOAP Style 25

Security 26
KeyStore 26
KeyStore Type 26
KeyStore Password 26
Default Alias 26
Signature Algorithm 27

Transport Level Retry 27
Timeout in Seconds 27
Retry Condition 27
Number of Seconds to Wait Before Retry 27
Maximum Retries 28

HTTP 28
DefaultUrl 28
AllowCookies 28
ContentType 28
AcceptType 29

Proxies 29
UseProxy 29
HttpProxyHost 29
HttpProxyPort 30
HttpsProxyHost 30
HttpsProxyPort 30
UserName 30
PassWord 31

Contents

e*Way Intelligent Adapter for SOAP User’s Guide 5 SeeBeyond Proprietary and Confidential

HttpAuthentication 31
UseHttpAuthentication 31
UserName 31
PassWord 31

SSL 32
UseSSL 32
HttpsProtocolImpl 32
Provider 32
X509CertificateImpl 32
SSLSocketFactoryImpl 33
SSLServerSocketFactoryImpl 33
KeyStore 33
KeyStoreType 33
KeyStorePassword 33
TrustStore 34
TrustStoreType 34
TrustStorePassword 34
KeyManagerAlgorithm 34
TrustManagerAlgorithm 34

Server Information 35
server name 35
port number 35
user name 35
password 35

Chapter 5

Implementation 36
SOAP e*Way: Architecture Overview 36

SOAP Sender 36
SOAP Receiver 37

Web Server Logical Steps 38
e*Gate System Logical Steps 39
SOAP Services 39

SOAP Sender Implementation 40
SOAP Sender Schema: Overview 40

Schema Operation 40
Schema Components 41
Location of Schema Files 41
Schema Implementation 42

Sample Sender Schema: Automatic Implementation 42
Installing and Configuring the Schema 42
Running the Schema 43

Sample Sender Schema: Manual Configuration 44
Step 1: Determine the SOAP Endpoint URL 45
Step 2: Determine the Format of the SOAP Message 46
Step 3: Create a Schema 48
Step 4: Create Event Types and Event Type Definitions 49
Step 5: Create Collaboration Rules 57
Step 6: Create the e*Way Connection 62
Step 7: Create Intelligent Queues 63

Contents

e*Way Intelligent Adapter for SOAP User’s Guide 6 SeeBeyond Proprietary and Confidential

Step 8: Add and Configure e*Ways 65
Step 9: Create and Configure Collaborations 67
Step 10: Test the Schema 70

SOAP Receiver Implementation 72
SOAP Receiver Schema: Overview 72

Schema Operation 73
Schema Components 73
Location of Schema Files 75
Schema Implementation 75

Sample Receiver Schema: Automatic Implementation 75
Sample Receiver Schema: Manual Configuration 77

Chapter 6

Java Methods 81
SOAP e*Way Methods and Classes: Overview 81

Attribute Class 82
getKey 82
getValue 82
setKey 83
setValue 83

SOAP Class 84
getSOAPActionURI 85
getSOAPRequest 85
getSOAPResponse 86
getSOAPTransport 86
getURL 86
marshal 87
marshalRequest 87
marshalResponse 88
receiveRequest 88
receiveResponse 89
reset 89
sendRequest 90
sendResponse 90
setSOAPActionURI 90
setSOAPRequest 91
setSOAPResponse 91
setSOAPTransport 92
setURL 92
unmarshal 93
unmarshalRequest 93
unmarshalResponse 94

SOAPAttachment Class 94
addReference 95
base64Encode 95
getContentType 96
getFileLocation 96
getName 96
getTransferEncoding 97
getValue 97
setContentType 98
setFileLocation 98
setName 99
setTransferEncoding 99

Contents

e*Way Intelligent Adapter for SOAP User’s Guide 7 SeeBeyond Proprietary and Confidential

setValue 100

SOAPBody Class 100
getAttribute 101
getBodyContents 101
getNumberOfAttributes 102
getSOAPFault 102
setAttribute 102
setBodyContents 103
setSOAPFault 103

SOAPFault Class 104
getDetail 104
getFaultActor 105
getFaultCode 105
getFaultString 106
setDetail 106
setFaultActor 106
setFaultCode 107
setFaultString 107

SOAPHeader Class 108
getAttribute 108
getHeaderContents 109
getNumberOfAttributes 109
setAttribute 109
setHeaderContents 110

SOAPMessage Class 110
getAttribute 111
getNumberOfAttributes 111
getSOAPBody 112
getSOAPHeader 112
marshal 113
setAttribute 113
setSOAPBody 113
setSOAPHeader 114
unmarshal 114

SOAPNode Class 115
countAttribute 116
getAttribute 116
getLocalName 116
setAttribute 117
unmarshal 117

SOAPRequest Class 118

SOAPResponse Class 118
unmarshal 119

SOAPSignature Class 119
getLocalName 120
getXMLSignature 120
setXMLSignature 121

SOAPSigner Class 121
getSignatureResults 122
getSignatures 122
setSignatureResults 122
setSignatures 123
sign 123

SOAPTransport Class 124
getStatusCode 124

Contents

e*Way Intelligent Adapter for SOAP User’s Guide 8 SeeBeyond Proprietary and Confidential

getStatusMessage 125
sendToSOAPServer 125
setStatusCode 126
setStatusMessage 126

SOAPVerification Class 127
getVerificationResults 127
setVerificationResults 128
verify 128

Chapter 7

Additional Features 129
Using Secured Sockets Layer 129

KeyStores and TrustStores 129
Methods for generating a KeyStore and TrustStore 130

Creating a TrustStore 130
Using an Existing TrustStore 130

Creating a KeyStore in JKS Format 131
Creating a KeyStore in PKCS12 Format 132
SSL Handshaking 133

Using SOAP Attachments 136
SOAP Attachments: Overview 137
Associating SOAP Messages and Attachments 138

SOAP Message Packages 138
SOAP References to Attachments 140
Relationship to SOAP 1.1 144
HTTP Binding 144

Using Digital Signatures 146
Header Entry Syntax 146

Namespace 146
Signature Header Entry 146
SOAP-SEC:id Attribute 147

Processing Rules 148
Signature Header Entry Generation 149
Signature Header Entry Validation 149
Security Considerations 150

Index 151

e*Way Intelligent Adapter for SOAP User’s Guide 9 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This chapter introduces you to SeeBeyondTM Technology Corporation’s (SeeBeyondTM)
e*WayTM Intelligent Adapter for SOAP (SOAP e*Way). It also provides an overview of
the Simple Object Access Protocol (SOAP) and how to use this e*Way.

1.1 SOAP e*Way: Overview
The SOAP e*Way enables the e*Gate system to exchange data with Internet and Web
Services applications that exchange information using SOAP. This e*Way is enabled by
the Java programming language.

1.1.1 Introduction to SOAP
SOAP, based on the Extensible Markup Language (XML), is a lightweight protocol for
the exchange of information in a distributed, decentralized environment. SOAP
specifies how to create an XML file and the encoding for HTTP. The protocol enables an
application to communicate over the Internet regardless of the operating system (OS),
object model, or implementation language.

SOAP is similar to IIOP, CORBA, and RMI. However, in contrast to these protocols,
SOAP has been designed to be fire-wall friendly, lightweight, and easy to implement.

Conventions and Specifications

SOAP defines a set of conventions for the following purposes:

! To format its own messages

! To contain rules for carrying a SOAP message within or on top of another protocol

! To process SOAP messages along the SOAP message path

SOAP specifications can be found on World Wide Web Consortium (W3C) Web site as
follows:

! SOAP Version 1.2, Part 1: Messaging Framework:

http:\\www.w3.org\TR\2001\WD-soap12-part1-20011002

! SOAP Version 1.2, Part 2: Adjuncts:

http:\\www.w3.org\TR\soap12-part2\

http:\\www.w3.orgR\2001\WD-soap12-part1-20011002
http:\\www.w3.orgRoap12-part2\

Chapter 1 Section 1.1
Introduction SOAP e*Way: Overview

e*Way Intelligent Adapter for SOAP User’s Guide 10 SeeBeyond Proprietary and Confidential

Note: The SOAP e*Way is compatible with both SOAP versions 1.1 and 1.2.

SOAP Messaging

Figure 1 shows a diagram of the SOAP message components.

Figure 1 Soap Message Components

SOAP messages (see Figure 1) consist of the following major parts:

! A required SOAP envelope that marks the start and end of the SOAP message and
defines a framework for describing what is in a message and how to process it

! An optional SOAP header that carries general information about the SOAP message
in one or more header blocks

! A required SOAP body made up of one or more blocks that carry the actual
message payload

SOAP messages also specify:

! A set of encoding rules for expressing instances of application-defined data types

! A convention for representing remote procedure calls and responses

Additionally, a special type of SOAP body block, a SOAP fault, is used to carry error
and/or status information. If it is present, a SOAP fault (body block) occurs only once.

Example: SOAP Message

Sample request envelope:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">

SOAP Envelope

SOAP Header

SOAP Block

SOAP Block

SOAP Body

SOAP Block

SOAP Block

Chapter 1 Section 1.1
Introduction SOAP e*Way: Overview

e*Way Intelligent Adapter for SOAP User’s Guide 11 SeeBeyond Proprietary and Confidential

<SOAP-ENV:Body>
<ns1:getQuote xmlns:ns1="urn:xmethods-delayed-quotes" SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<symbol xsi:type="xsd:string">IBM</symbol>
</ns1:getQuote>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Sample response envelope:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<SOAP-ENV:Body>
<ns1:getQuoteResponse xmlns:ns1="urn:xmethods-delayed-quotes" SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<return xsi:type="xsd:float">133.625</return>
</ns1:getQuoteResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A universal SOAP standard is in “working draft” status with W3C, but it is backed by
many leading organizations. SOAP is a major building block for emerging Web
Services. Web Services are the next generation model for businesses using the Internet
to allow business services and functions to be accessed by other applications across the
Internet.

You can learn more about SOAP by visiting the following Web sites:

! http:\\www.xmethods.net

! http:\\www.webservices.org

! http:\\www.ibm.com\developerworks\webservices\

! http:\\msdn.microsoft.com\soap

! http:\\www.develop.com\soap

! http:\\www.soapware.org\

1.1.2 e*Way Components and Features
This section provides an overview of the SOAP e*Way including its basic components
and features.

Basic Components

The SOAP e*Way includes the following components:

! stcsoap.jar contains the logic required to implement SOAP e*Way functions.

! stceway.exe provides all the basic e*Way functions and invokes stcsoap.jar.

! Third-party libraries, including xerces.jar, activation.jar, mail.jar, jsafe.jar,
certj.jar, and xalan.jar, are listed in Table 1 on page 16.

http:\\www.xmethods.net
http:\\www.webservices.org
http:\\www.ibm.com�eveloperworks\webservices\
http:\\msdn.microsoft.comoap
http:\\www.develop.comoap
http:\\www.soapware.org\

Chapter 1 Section 1.2
Introduction Intended Reader

e*Way Intelligent Adapter for SOAP User’s Guide 12 SeeBeyond Proprietary and Confidential

Supported Features

This SOAP e*Way version provides SOAP receiver and sender synchronous (RPC) and
asynchronous messaging support for the messaging framework, using HTTP transport
bindings.

In addition, this version of the SOAP e*Way supports the following features:

! SOAP version 1.2 and 1.1 messaging

! Message transport on top of HTTP(S)

! Messages with attachments

! Digital signatures

Note: When referring specifically to HTTP clear, this guide uses the term HTTP. For
HTTP over SSL, that is, secure HTTP, it uses the term HTTPS. For generic HTTP
that can be either clear or secure, it uses the term HTTP(S).

See Chapter 7 for more information on the SOAP e*Way’s additional features.

1.2 Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the e*Gate system; to have high-level knowledge of the
Java Programming Language; to have high-level knowledge of Windows and UNIX
operations and administration; to be thoroughly familiar with SOAP protocol and to be
thoroughly familiar with Windows-style GUI operations.

1.3 Supported Operating Systems
The SOAP e*Way is available on the following operating systems:

! Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

! Windows NT 4.0 SP6a

! Solaris 2.6, 7, and 8

! AIX 4.3.3

! HP-UX 11.0 and HP-UX 11i

! Compaq Tru64 V4.0F and V5.0A

Chapter 1 Section 1.4
Introduction System Requirements

e*Way Intelligent Adapter for SOAP User’s Guide 13 SeeBeyond Proprietary and Confidential

1.4 System Requirements
To use the SOAP e*Way, you need:

! An e*Gate Participating Host, version 4.5.1 or later

! A TCP/IP network connection

! Pentium-class 866 MHz CPU

1.5 External System Requirements
The SOAP e*Way supports the following external systems:

! To use the e*Way, you need a SOAP service on the network/Internet

! To use the SOAP e*Way sample schemas, you need access to the following Web
site:

www.xmethods.net

Additional Requirements

Use of the SOAP e*Way requires using the e*Gate API Kit and the HTTP(S) e*Way
Intelligent Adapter. See the e*Gate API Kit User’s Guide and the HTTP(S) e*Way
Intelligent Adapter User’s Guide for more information.

www.xmethods.com

e*Way Intelligent Adapter for SOAP User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 2

Installation

This chapter explains how to install the e*Way Intelligent Adapter for SOAP.

2.1 Windows NT or Windows 2000

2.1.1 Pre-installation
! Exit all Windows programs before running the setup program, including any

anti-virus applications.

! You must have Administrator privileges to install this e*Way.

2.1.2 e*Way Installation Procedure
To install the SOAP e*Way on a Windows NT or Windows 2000 system

1 Log in as an Administrator on the workstation where you want to install the e*Way.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s Auto-run feature is enabled, the setup application should
launch automatically; skip ahead to step 4. Otherwise, use Windows Explorer or the
Control Panel’s Add/Remove Applications feature to launch the setup.exe file on
the CD-ROM drive.

4 After the InstallShield setup application launches, follow the on-screen
instructions to install the e*Way.

Note: When you select the SOAP e*Way, the installation automatically selects the
HTTP(S) e*Way and the e*Gate Integrator API Kit for installation.

Be sure to install the e*Way files in the suggested \client installation directory. The
installation utility detects and suggests the appropriate installation directory.

Caution: Unless you are directed to do so by SeeBeyond support personnel, do not change the
suggested installation directory setting.

Chapter 2 Section 2.2
Installation UNIX

e*Way Intelligent Adapter for SOAP User’s Guide 15 SeeBeyond Proprietary and Confidential

Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, Intelligent Queues (IQs), and Event Types before this e*Way can perform its
intended functions.

2.2 UNIX

2.2.1 Pre-installation
You do not require root privileges to install this e*Way. Log in under your name with
which you wish to own the e*Way files. Be sure that this user has sufficient privileges to
create files in the e*Gate directory tree.

2.2.2 Installation Procedure
To install the SOAP e*Way on a UNIX system

1 Log in on the workstation containing the CD-ROM drive, and insert the CD-ROM
into the drive.

2 If necessary, mount the CD-ROM drive.

3 At the shell prompt, type:

cd /cdrom/setup

4 Start the installation script by typing:

setup.sh

5 A menu of options appears. Select the e*Gate Add-on Applications option. Then,
follow any additional on-screen directions.

Note: When you select the SOAP e*Way, the installation automatically selects the
HTTP(S) e*Way and the e*Gate Integrator API Kit for installation.

Be sure to install the e*Way files in the suggested \client installation directory. The
installation utility detects and suggests the appropriate installation directory.

Caution: Unless you are directed to do so by SeeBeyond support personnel, do not change the
suggested installation directory setting.

Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, Intelligent Queues (IQs), and Event Types before this e*Way can perform its
intended functions.

Chapter 2 Section 2.3
Installation After Installation

e*Way Intelligent Adapter for SOAP User’s Guide 16 SeeBeyond Proprietary and Confidential

2.3 After Installation
The SOAP e*Way installation automatically installs the e*Gate API Kit. After installing
the e*Way, you must follow the instructions in the e*Gate API Kit User's Guide and copy
the appropriate files to their Web server directories before you can use the SeeBeyond
JMS IQ Service.

Note: See the e*Gate API Kit User’s Guide for more information on this feature.

In addition, to run some of the sample e*Gate schemas, you must place the appropriate
ASP files included in the sample schema .zip file in the correct directories. The
configuration of your Web server determines these directory locations.

2.4 Files/Directories Created by the Installation
Whether for Windows or UNIX, the SOAP e*Way installation installs the files shown in
Table 1 within the e*Gate directory tree. Files are installed within the egate\client tree
on the Participating Host and committed to the “default” schema on the Registry Host.

Table 1 Installation Files and Directories

e*Gate Directory File

client\classes\ stcsoap.jar

client\Thirdparty\jaf-1.0.1\classes\ activation.jar

client\Thirdparty\javamail-1.2\classes\ mail.jar

server\registry\repository\default\classes\ stcsoap.jar
stcutil.jar

server\registry\repository\default\configs\ewsoap\ ewsoap.def

server\registry\repository\default\Thirdparty\jaf-1.0.1\classes\ activation.jar

server\registry\repository\default\Thirdparty\javamail-1.2\classes\ mail.jar

client\Thirdparty\RSA\certJ_2.0.1\classes\ certj.jar
xalan.jar

client\Thirdparty\RSA\cryptoj_3.3\classes\ jsafe.jar

server\Thirdparty\server\repository\default\Thirdparty\RSA\
certJ.2.0.1\classes

certj.jar
xalan.jar

server\Thirdparty\server\repository\default\Thirdparty\RSA\
cryptoj_3.3\classes

jsafe.jar

eGate\client\etd\ewsoap SOAPSimple.xsc
SOAPSimple.jar

Chapter 2 Section 2.4
Installation Files/Directories Created by the Installation

e*Way Intelligent Adapter for SOAP User’s Guide 17 SeeBeyond Proprietary and Confidential

eGate\client\etd soap.ctl
soapwizard.ctl
stcewsoap.ctl

server\registry\repository\default\ addonconnpt.ini

Table 1 Installation Files and Directories (Continued)

e*Gate Directory File

e*Way Intelligent Adapter for SOAP User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 3

Multi-Mode e*Way Configuration

This chapter describes how to configure the e*Gate Integrator’s Multi-Mode e*Way
Intelligent Adapter.

3.1 Multi-Mode e*Way Properties
Set the Multi-Mode e*Way properties using the e*Gate Enterprise Manager graphical
user interface (GUI).

To set properties for a new Multi-Mode e*Way

1 Select the Navigator pane’s Components tab in the Main window of the Enterprise
Manager.

2 Open the host and Control Broker where you want to create the e*Way.

3 On the Palette, click on the icon to create a new e*Way.

4 Enter the name of the new e*Way, then click OK.

5 Select the new component, then click the Properties icon to edit its properties.

The e*Way Properties dialog box opens

6 Click Find beneath the Executable File field, and select an executable file
(stceway.exe is located in the \bin directory).

7 Under the Configuration File field, click New.

The e*Way Editor GUI opens.

8 When the Settings page opens, set the configuration parameters for this e*Way’s
configuration file.

9 After selecting the desired parameters, click Save on the File menu to save and
close configuration (.cfg) file. This action also closes the e*Way Editor.

10 Click OK to close the e*Way Properties dialog box and save the properties.

After setting properties for the Multi-Mode e*Way, you must set the component’s
configuration parameters. These parameters are explained under the following section:

! JVM Settings

Chapter 3 Section 3.2
Multi-Mode e*Way Configuration JVM Settings

e*Way Intelligent Adapter for SOAP User’s Guide 19 SeeBeyond Proprietary and Confidential

3.2 JVM Settings
To correctly configure the Multi-Mode e*Way, you must configure the Java Virtual
Machine (JVM) settings. This section explains the configuration parameters in the
e*Way Editor GUI, which control these settings.

JNI DLL Absolute Pathname

Description

Specifies the absolute path name to where the JNI .dll (Windows) or shared library
(UNIX) file is installed by the Java 2 SDK 1.3, on the Participating Host. This parameter
is mandatory.

Required Values

A valid path name.

Additional Information

The JNI .dll or shared library file name varies, depending on the current operating
system (OS). The following table lists the file name by OS:

The value assigned can contain a reference to an environment variable, by enclosing the
variable name within a pair of “%” symbols, for example:

%MY_JNIDLL%

Such variables can be used when multiple Participating Hosts are used on different
OS/platforms.

Caution: To ensure that the JNI .dll file loads successfully, the Dynamic Load Library search
path environment variable must be set appropriately to include all the directories
under the Java 2 SDK (or JDK) installation directory, which contain shared library
or .dll files.

CLASSPATH Prepend

Description

Specifies the paths to be prepended to the CLASSPATH environment variable for the
JVM.

Operating System Java 2 JNI .dll or Shared
Library Name

Windows NT/2000 jvm.dll

Solaris libjvm.so

HP-UX libjvm.sl

AIX libjvm.a

Compaq libjvm.so

Chapter 3 Section 3.2
Multi-Mode e*Way Configuration JVM Settings

e*Way Intelligent Adapter for SOAP User’s Guide 20 SeeBeyond Proprietary and Confidential

Required Values

An absolute path or an environmental variable. This parameter is optional.

Additional Information

If left unset, no paths are prepended to the CLASSPATH environment variable.

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_PRECLASSPATH%

CLASSPATH Override

Description

Specifies the complete CLASSPATH variable to be used by the JVM. This parameter is
optional. If left unset, an appropriate CLASSPATH environment variable (consisting of
required e*Gate components concatenated with the system version of CLASSPATH)
will be set.

Note: All necessary JAR and ZIP files needed by both e*Gate and the JVM must be
included. It is advised that the CLASSPATH Prepend parameter should be used.

Required Values

An absolute path or an environmental variable. This parameter is optional.

Additional Information

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_CLASSPATH%

CLASSPATH Append From Environment Variable

Description

Specifies whether the path is appended for the CLASSPATH environmental variable to
jar and zip files needed by the JVM.

Required Values

YES or NO. The configured default is YES.

Initial Heap Size

Description

Specifies the value for the initial heap size in bytes. If set to 0 (zero), the preferred value
for the initial heap size of the JVM will be used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Chapter 3 Section 3.2
Multi-Mode e*Way Configuration JVM Settings

e*Way Intelligent Adapter for SOAP User’s Guide 21 SeeBeyond Proprietary and Confidential

Maximum Heap Size

Description

Specifies the value of the maximum heap size in bytes. If set to 0 (zero), the preferred
value for the maximum heap size of the JVM will be used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Stack Size for Native Threads

Description

Specifies the value of the maximum stack size in bytes for native threads. If set to 0
(zero), the default value will be used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Stack Size for JVM Threads

Description

Specifies the value of the maximum stack size in bytes for JVM threads. If set to 0 (zero),
the preferred value for the maximum heap size of the JVM will be used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Class Garbage Collection

Description

Specifies whether the Class Garbage Collection will be done automatically by the JVM.
The selection affects performance issues.

Required Values

YES or NO.

Garbage Collection Activity Reporting

Description

Specifies whether garbage collection activity will be reported for debugging purposes.

Required Values

YES or NO.

Chapter 3 Section 3.2
Multi-Mode e*Way Configuration JVM Settings

e*Way Intelligent Adapter for SOAP User’s Guide 22 SeeBeyond Proprietary and Confidential

Asynchronous Garbage Collection

Description

Specifies whether asynchronous garbage collection activity will be reported for
debugging purposes.

Required Values

YES or NO.

Report JVM Info and all Class Loads

Description

Specifies whether the JVM information and all class loads will be reported for
debugging purposes.

Required Values

YES or NO.

Disable JIT

Description

Specifies whether the Just-In-Time (JIT) compiler is disabled.

Required Values

YES or NO.

Remote debugging port number

Description

Specifies whether to allow remote debugging of the JVM.

Required Values

YES or NO.

Suspend Option for Debugging

Description

Indicates whether to suspend Option for Debugging on JVM startup.

Required Values

YES or NO.

e*Way Intelligent Adapter for SOAP User’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 4

e*Way Connection Configuration

This chapter explains how to configure e*Way Connections for the e*Way Intelligent
Adapter for SOAP.

4.1 Configuring e*Way Connections
Set up e*Way Connections using the e*Gate Enterprise Manager graphical user
interface (GUI).

To create and configure e*Way Connections

1 In the Enterprise Manager’s Navigation pane, select the Component tab.

2 Select the e*Way Connections folder.

3 On the palette, click on the icon to create a new e*Way Connection.

The New e*Way Connection Component dialog box appears.

4 Enter a name for the e*Way Connection, then click OK. For the examples given in
Chapter 5, the name is SoapConnection.

An icon for your new e*Way Connection appears in the Navigation pane.

5 Double-click on the new e*Way Connection icon.

The e*Way Connection Properties dialog box appears.

6 From the e*Way Connection Type drop-down box, select (for the examples) SOAP.

7 Enter -1 for the Event Type “get” interval in the dialog box provided.

8 From the e*Way Connection Configuration File, click New to open the e*Way
Editor GUI.

Note: To use an existing file, click Find.

9 Use the e*Way Editor to create a new configuration file for this e*Way Connection.
Do this operation by selecting the appropriate configuration parameters available
in the GUI.

10 When you are finished, close the e*Way Editor and save the new configuration file.
For the examples given in Chapter 5, the file name is SoapConnection.cfg.

Chapter 4 Section 4.2
e*Way Connection Configuration Configuration Parameters

e*Way Intelligent Adapter for SOAP User’s Guide 24 SeeBeyond Proprietary and Confidential

The rest of this chapter explains the SOAP e*Way Connection configuration parameters
as follows:

! “Connector” on page 24

! “Transport Binding” on page 25

! “Security” on page 26

! “Transport Level Retry” on page 27

! “HTTP” on page 28

! “Proxies” on page 29

! “HttpAuthentication” on page 31

! “SSL” on page 32

! “Server Information” on page 35

4.2 Configuration Parameters
This section explains the configuration parameters for the SOAP e*Way Connection.

4.2.1 Connector
The parameters in the Connector section allow the Collaboration engine to identify the
e*Way Connection.

Type

Description

Specifies the type of e*Way Connection.

Required Values

SOAP. The value defaults to SOAP.

Class

Description

Specifies the class name of the SOAP connector object.

Required Values

A valid package name. The default is com.stc.eways.SOAP.SOAPConnector.

Chapter 4 Section 4.2
e*Way Connection Configuration Configuration Parameters

e*Way Intelligent Adapter for SOAP User’s Guide 25 SeeBeyond Proprietary and Confidential

Property.Tag

Description

Identifies the data source. This parameter is required by the current
EBobConnectorFactory.

Required Values

A valid data source package name.

4.2.2 Transport Binding
Description

The parameters in the Transport Binding section configure the transport binding used
by the SOAP e*Way when sending messages to the SOAP server.

Transport Type

Description

A transport binding to be used for posting SOAP messages.

Required Values

HTTP or HTTPS. The value defaults to HTTP.

SOAPAction URI

Description

This parameter specifies the SOAPAction URI header and is used only if the transport
type is HTTP or HTTP(S).

Required Values

The value defaults to com.stc.eways.soap.SOAP, which is the only option.

SOAP Style

Description

This parameter specifies the SOAP style to use when interacting with a SOAP server.

Required Values

You can select either RPC or Document style. With RPC style, you can expect to receive
a valid SOAP message or a valid MIME message (if the SOAP message has
attachments). The valid message is unmarshaled into the SOAPResponse node of the
SOAP ETD. With Document style, no response is expected. Calling marshal on the
SOAPResponse node results in an empty SOAP document.

By default, SOAP Style is set to RPC. This value can be overridden by methods used in
the SOAP ETD.

Chapter 4 Section 4.2
e*Way Connection Configuration Configuration Parameters

e*Way Intelligent Adapter for SOAP User’s Guide 26 SeeBeyond Proprietary and Confidential

4.2.3 Security
Description

The parameters in this Security section allow you to specify the keys and certificates
used by the SOAP e*Way to sign and verify SOAP messages.

KeyStore

Description

This parameter sets the default KeyStore file for use by the KeyManager. If the default
KeyStore is not specified with this method, the KeyStore managed by KeyManager is
empty.

Required Values

A valid KeyStore file name.

KeyStore Type

Description

This parameter sets the default KeyStore type. If the default KeyStore type is not set
here, the default KeyStore type JKS is used. Other possible types include, for example,
PKCS12.

Required Values

The name of a valid KeyStore type.

KeyStore Password

Description

This parameter sets the default KeyStore password. If the default KeyStore password is
not set here, then the default KeyStore password is assumed to be “ “.

Required Values

A valid KeyStore password.

Default Alias

Description

This parameter sets the alias name for the private key and the digital certificate. All
entries in a KeyStore are identified by an alias. This parameter identifies the location of
the private key and the digital certificate in the KeyStore. If Default Alias is not set, the
default is assumed to be “ “.

Required Values

A valid alias name for the private key and the digital certificate.

Chapter 4 Section 4.2
e*Way Connection Configuration Configuration Parameters

e*Way Intelligent Adapter for SOAP User’s Guide 27 SeeBeyond Proprietary and Confidential

Signature Algorithm

Description

This parameter sets the signature algorithm to use when signing SOAP documents.
One of these two algorithms must be set for the authentication to work. The default
algorithm is dsa-sha1.

Required Values

The appropriate algorithm, either dsa-sha1 or rsa-sha1.

4.2.4 Transport Level Retry
Description

The parameters in the Transport Level Retry section are related to the retry of transport
posting. These parameters are used by the SendToSOAPServer function when it
encounters errors at the transport level.

Timeout in Seconds

Description

This parameter is reserved for future use. Currently, the SOAP e*Way relies on the
HTTP server to which the e*Way is posting to for time-out functionality.

Required Values

The number of seconds considered appropriate before timing out.

Retry Condition

Description

This parameter specifies the condition under which a retry of the transport posting is to
be carried out. If On Timeout Only is chosen, the posting is retried only if the failure is
due to a timeout on the connection. If On Any Transport Failure is chosen, the posting
is retried on any transport failure.

Required Values

On Timeout Only or On Any Transport Failure. The default is On Timeout Only.

Number of Seconds to Wait Before Retry

Description

This parameter specifies the number of seconds to wait before the next retry of the
transport posting. The e*Way will sleep through this period of time.

Required Values

The number of seconds considered appropriate before retrying the transport posting.

Chapter 4 Section 4.2
e*Way Connection Configuration Configuration Parameters

e*Way Intelligent Adapter for SOAP User’s Guide 28 SeeBeyond Proprietary and Confidential

Maximum Retries

Description

This parameter specifies the maximum number of transport level retries the e*Way
carries out before giving up and returning the appropriate status.

Required Values

The number of retries considered appropriate before giving up.

4.2.5 HTTP
This HTTP section contains a set of top-level parameters used by HTTP.

DefaultUrl

Description

Specifies the default URL to be used. If HTTPS protocol is specified, Secured Sockets
Layer (SSL) must be configured. See the “Using Secured Sockets Layer” on page 129.

Required Values

A valid URL.

Additional Information

You must include the full URL, for example:

http://www.seebeyond.com

or

http://google.yahoo.com/bin/query

AllowCookies

Description

Specifies whether cookies sent from servers are stored and sent on subsequent requests.
If cookies are not allowed, sessions are not supported.

Required Values

Yes or No.

ContentType

Description

Specifies the request content type.

Required Values

A string; the default is:

application/x-www-form-urlencoded

Chapter 4 Section 4.2
e*Way Connection Configuration Configuration Parameters

e*Way Intelligent Adapter for SOAP User’s Guide 29 SeeBeyond Proprietary and Confidential

If you are sending other forms of data, set this parameter to the appropriate content
type, for example:

text/xml

AcceptType

Description

Specifies the parameters for the AcceptType request header.

Required Values

A string. For example text/html, text/plain, text/xml, and so on.

4.2.6 Proxies
The Proxies parameters in this section specify the information required for the e*Way
Connection to access the external systems through a proxy server.

Note: When using proxy servers with Internet Information Services (IIS) Web servers,
you must configure the proxy and IIS servers to release connections in a timely
manner. Some proxies use Keep-Alive HTTP headers to keep connections open. If
you cannot configure the proxy and IIS servers to release connections quickly, do
not configure the IIS server with Keep-Alive headers. The SOAP e*Way does not
use Keep-Alive headers and is therefore unaware when the proxy is keeping the
connection alive.

UseProxy

Description

Specifies whether an HTTP or HTTPS proxy is being used. If you set this parameter to
HTTP, an HTTP proxy for a non-secured connection is used. If HTTPS is selected, an
HTTPS proxy for a secured connection is used. Select No if a proxy is not used. See the
following configuration parameters: HttpProxyHost, HttpProxyPort, HttpsProxyHost,
HttpsProxyPort, UserName, and PassWord in this section.

Required Values

HTTP, HTTPS, or No.

HttpProxyHost

Description

Specifies the HTTP proxy host name to which to delegate requests to an HTTP server or
reception of data from an HTTP server may be delegated to a proxy. This sets the proxy
host for non-secured HTTP connections. To turn on proxy use, see the UseProxy
configuration parameter.

Required Values

A valid HTTP proxy host name.

Chapter 4 Section 4.2
e*Way Connection Configuration Configuration Parameters

e*Way Intelligent Adapter for SOAP User’s Guide 30 SeeBeyond Proprietary and Confidential

HttpProxyPort

Description

Specifies the HTTP proxy port to which requests to an HTTP server or reception of data
from an HTTP server may be delegated to a proxy. This parameter sets the proxy port
for non-secured HTTP connections. To turn on proxy use, see the UseProxy
configuration parameter.

Required Values

A valid HTTP proxy port number.

HttpsProxyHost

Description

Specifies the HTTPS proxy host to which requests to an HTTP server or reception of
data from an HTTP server may be delegated to a proxy. This sets the proxy port for
secured HTTP connections. To turn on proxy use, see the UseProxy configuration
parameter.

Required Values

A valid HTTPS proxy host number.

HttpsProxyPort

Description

Specifies the HTTPS proxy port to which requests to an HTTP server or reception of
data from an HTTP server may be delegated to a proxy. This sets the proxy port for
secured HTTP connections. To turn on proxy use, see the UseProxy configuration
parameter.

Required Values

A valid HTTPS proxy port name.

UserName

Description

Specifies the user name necessary for authentication to access the proxy server. To turn
on proxy use, see the UseProxy configuration parameter.

Required Values

A valid user name.

Additional Information

The user name is required by URLs that require HTTP Basic Authentication to access
the site.

Important: Enter a value for this parameter before you enter a value for the PassWord
parameter.

Chapter 4 Section 4.2
e*Way Connection Configuration Configuration Parameters

e*Way Intelligent Adapter for SOAP User’s Guide 31 SeeBeyond Proprietary and Confidential

PassWord

Description

Specifies the password corresponding to the user name specified previously.

Required Values

The appropriate password.

Important: Be sure to enter a value for the UserName parameter before entering the
PassWord value.

4.2.7 HttpAuthentication
The HttpAuthentication parameters in this section are used to perform HTTP
authentication.

UseHttpAuthentication

Description

Specifies whether standard HTTP authentication is used. This is used when the Web
site requires user name and password authentication. If this parameter is selected, the
UserName and PassWord configuration parameters must be set. See UserName and
PassWord configuration parameters in this section.

Required Values

Yes or No.

UserName

Description

Specifies the user name for standard HTTP authentication. See the
UseHttpAuthentication configuration parameter.

Required Values

A valid user name.

Important: Enter a value for this parameter before you enter a value for the PassWord
parameter.

PassWord

Description

Specifies the password associated with the specified user name for standard HTTP
authentication. See UseHttpAuthentication configuration parameter.

Required Values

A valid password.

Chapter 4 Section 4.2
e*Way Connection Configuration Configuration Parameters

e*Way Intelligent Adapter for SOAP User’s Guide 32 SeeBeyond Proprietary and Confidential

Important: Be sure to enter a value for the UserName parameter before entering the
PassWord.

4.2.8 SSL
The parameters in this section control the information required to set up an SSL
connection via HTTP.

UseSSL

Description

Specifies whether SSL needs to be configured in order to use the HTTPS protocol. If this
parameter is set to Yes, at least HttpsProtocolImpl and Provider must be given.

Required Values

Yes or No.

HttpsProtocolImpl

Description

Specifies the package that contains the HTTP(S) protocol implementation. This
specification adds the HTTP(S) URLStreamHandler implementation by including the
handler’s implementation package name to the list of packages searched by the Java
URL class. The default value specified is the package that contains the Sun
Microsystems reference implementation of the HTTPS URLStreamHandler.

Required Values

A valid package name. The default is com.sun.net.ssl.internal.www.protocol. This
parameter is mandatory if you are using HTTP(S).

Provider

Description

Specifies the Cryptographic Service Provider. This will add a JSSE provider
implementation to the list of provider implementations. The default value specified is
the Sun Microsystems reference implementation of the Cryptographic Service Provider
SunJSSE.

Required Values

A valid provider name. The default is com.sun.net.ssl.internal.ssl.Provider. This
parameter is mandatory if you are using HTTP(S).

X509CertificateImpl

Description

Specifies the implementation class of the X509Certificate.

Chapter 4 Section 4.2
e*Way Connection Configuration Configuration Parameters

e*Way Intelligent Adapter for SOAP User’s Guide 33 SeeBeyond Proprietary and Confidential

Required Values

A valid package location. For example, if the implementation class is called,
MyX509CertificateImpl, and it resides in the com.radcrypto package, specify
com.radcrypto.MyX509CertificateImpl.

SSLSocketFactoryImpl

Description

Specifies the implementation class of the SSL socket factory.

Required Values

A valid package location. For example, if the implementation class is called
MySSLSocketFactoryImpl and it resides in the com.radcrypto package, specify
com.radcrypto.MySSLSocketFactoryImpl.

SSLServerSocketFactoryImpl

Description

Specifies the implementation class of the SSL server socket factory.

Required Values

A valid package location. For example, if the implementation class is called
MySSLServerSocketFactoryImpl and it resides in com.radcrypto package, specify
com.radcrypto.MySSLServerSocketFactoryImpl.

KeyStore

Description

Specifies the default KeyStore file for use by the KeyManager. If the default KeyStore is
not specified with this method, the KeyStore managed by KeyManager is empty.

Required Values

A valid package location.

KeyStoreType

Description

Specifies the default KeyStore type. If the default KeyStore type is not set by this
method, the default KeyStore type, JKS is used.

KeyStorePassword

Description

Specifies the default KeyStore password. If the default KeyStore password is not set by
this method, the default KeyStore password is assumed to be “ “.

Chapter 4 Section 4.2
e*Way Connection Configuration Configuration Parameters

e*Way Intelligent Adapter for SOAP User’s Guide 34 SeeBeyond Proprietary and Confidential

TrustStore

Description

Specifies the default TrustStore. If the default TrustStore is not set here, then a default
TrustStore search is performed. If a TrustStore named
<java-home>/lib/security/jssecacerts is found, it is used. If not, a search for a
TrustStore name <java-home>/lib/security/cacerts is made, and used if located. If a
TrustStore is not found, the TrustStore managed by the TrustManager is a new empty
TrustStore.

Required Values

A valid TrustStore name.

TrustStoreType

Description

Specifies the default TrustStore type.

Required Values

A valid TrustStore type.

TrustStorePassword

Description

Specifies the default TrustStore password. If the default TrustStore password is not set
by this method, the default TrustStore password is “ “.

KeyManagerAlgorithm

Description

Specifies the default KeyManager algorithm name to use. For example, the default
KeyManager algorithm used in the Sun Microsystems reference implementation of
JSSE is SunX509.

Required Values

A valid KeyManager algorithm name.

TrustManagerAlgorithm

Description

Specifies the default TrustManager algorithm name to use. For example, the default
TrustManager algorithm used in the Sun Microsystems reference implementation of
JSSE is SunX509.

Required Values

A valid TrustManager algorithm name.

Chapter 4 Section 4.2
e*Way Connection Configuration Configuration Parameters

e*Way Intelligent Adapter for SOAP User’s Guide 35 SeeBeyond Proprietary and Confidential

4.2.9 Server Information
The parameters in this section allow you to enter server information for the e*Way.

server name

Description

Specifies the host name of the e-mail server.

Required Values

A valid server host name.

port number

Description

Specifies the port number of the database server.

Required Values

A valid database host name.

user name

Description

Specifies the user’s log-in name.

Required Values

A valid user log-in name.

password

Description

Specifies the user’s log-in password.

Required Values

A valid user log-in password.

e*Way Intelligent Adapter for SOAP User’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 5

Implementation

This chapter explains how to implement sample schemas for the e*Way Intelligent
Adapter for SOAP, both the SOAP sender and receiver.

5.1 SOAP e*Way: Architecture Overview
SOAP messaging is essentially the delivery of a message from a SOAP sender to the
ultimate SOAP receiver. SOAP messages can be asynchronous, or they can be combined
to form a SOAP request/response synchronous message exchange.

This section describes the architectural framework for the implementation of SOAP
receivers and senders, regardless of the asynchronous or synchronous nature of the
message exchange.

5.1.1 SOAP Sender
Figure 2 shows a diagram of the basic SOAP sender setup in e*Gate.

Figure 2 SOAP Sender e*Gate Setup

e*Way

Collaboration

CRM

IBM

ERP

Collaboration

Web
Service

Database

Chapter 5 Section 5.1
Implementation SOAP e*Way: Architecture Overview

e*Way Intelligent Adapter for SOAP User’s Guide 37 SeeBeyond Proprietary and Confidential

An e*Gate Collaboration that sends a SOAP message is implemented using an e*Gate
Multi-Mode e*Way. The SOAP e*Way functionality is used by the Multi-Mode e*Way,
along with a SOAP e*Way Connection.

You can specify the SOAP endpoint, or URL, in the e*Way Connection or dynamically
in the Collaboration Rules. Additional HTTP binding and SOAP configuration
parameters are specified in the e*Way Connection configuration. The SOAP e*Way
supports sending request/reply messages, as well as “fire-and-forget” asynchronous
messages.

The installation of the SOAP e*Way includes all of the necessary files for sending SOAP
messages. Included are the SOAP e*Way and wizard, the HTTP/S e*Way, and third-
party libraries.

5.1.2 SOAP Receiver
Figure 3 shows a diagram of the basic SOAP receiver setup in e*Gate.

Figure 3 SOAP Receiver e*Gate Setup

In addition to the SOAP e*Way, implementing an e*Gate Collaboration that receives a
SOAP message requires:

! Use of a Web server, such as Apache/Tomcat, iPlanet, or MS IIS

! Either a Web-server e*Way such as the CGI e*Way or the e*Gate API Kit

The e*Gate API Kit provides a JMS application programming interface (API) to the
SeeBeyond JMS IQ Manager. In addition, the Web server (or application server)
provides the HTTP daemon “listener” facility. You can use either a Web-server e*Way or
the JMS IQ Manager (used in this chapter’s example) to pass SOAP messages into the
e*Gate system.

Web Server

e*Way

Collaboration

CRM

IB M

ERP
tcp/ip

JMS

JMS IQ Manager

Queues

Temp. Topics

Collaboration

Web (HTTP)
Server

HTTP CGI
e*Way

Topicstcp/ip

Web
Service

Database

Chapter 5 Section 5.1
Implementation SOAP e*Way: Architecture Overview

e*Way Intelligent Adapter for SOAP User’s Guide 38 SeeBeyond Proprietary and Confidential

Figure 3 on page 37 illustrates the components of a SOAP request/response message
where an e*Gate Collaboration is providing the SOAP service. External clients request
the SOAP service using an end-point URL within the Web server space. Apache/
Tomcat is an easily available Web server and is commonly used. Apache/Tomcat is
included with some SeeBeyond products, but the SOAP Web server can be any HTTP
server.

An e*Gate user implementing the SOAP service can use either:

! A plug-in provided with the SOAP e*Way installation, for example, a JavaServer
Page (JSP) that implements the e*Gate API Kit for JMS (API); see the example in this
chapter

! User-created code as a base you can use to build custom applications

Web Server Logical Steps

The logical steps on the Web-server side are:

! Capture the HTTP data.

! Create a JMS temporary topic.

! Populate the JMSReplyTo header field with the temporary topic.

! Publish the HTTP data to a known topic or queue.

! Subscribe to the temporary topic.

! Wait for the reply message.

! Return the message as the HTTP response body.

Note: JMS temporary topics and the JMSReplyTo header field are JMS features used in a
request/reply solution. A temporary topic is a unique, dynamically created topic that
is only active for the duration of the connection and is guaranteed to be unique
across all connections. Temporary topics are associated only with the message server
that the client is in session with. Any client can publish messages to a temporary
topic, but only the client connection that created the temporary topic can subscribe
to it.

An e*Gate Collaboration subscribes to the known topic or queue, publishes to the
temporary topic found in the JMSReplyTo header field, another IQ, or another
Collaboration. Depending on the complexity of the service implementation, one or
more Collaborations can be involved in processing a SOAP request.

A Collaboration uses a SOAP Event Type Definition (ETD) and the SOAP e*Way to
unmarshal the received SOAP message. The Collaboration Rules for the Collaboration
use the SOAP ETD to create the response SOAP message. This SOAP message is
published to the JMS temporary topic found in the JMSReplyTo header field.

Chapter 5 Section 5.1
Implementation SOAP e*Way: Architecture Overview

e*Way Intelligent Adapter for SOAP User’s Guide 39 SeeBeyond Proprietary and Confidential

e*Gate System Logical Steps

The logical steps on the e*Gate side are:

! Create a schema.

! Create Event Types.

! Create the ETD that receives the message from the JMS IQ Manager.

! Create the SOAP ETD to be used for processing the request and response.

! Create the ETD that sends the reply to the temporary JMS topic.

! Create Collaboration Rules as follows:

" Drag the source JMS payload onto the SOAP request.

" Define Java rules to create the SOAP response.

" Drag the SOAP response onto the JMS ReplyTo topic.

! Create e*Way Connections.

This section has described implementing the JMS interface as a request/reply schema.
Request/reply is used for both synchronous SOAP request/response messages, as well
as asynchronous SOAP messages that expect a SOAP response status message.

To receive true asynchronous “fire-and-forget” SOAP messages, you can implement the
JMS publish/subscribe (pub/sub) schema. For more information on the e*Gate API Kit
for the JMS (API), see the e*Gate API Kit Developer’s Guide.

SOAP Services

The implementation of the SOAP e*Way begins with the selection of SOAP service. For
the purposes of this chapter, a publicly available SOAP service is used to illustrate the
configuration steps for implementing the SOAP e*Way in SOAP RPC style.

An RPC-style SOAP message is a synchronous request/reply process where the SOAP
e*Way executes a remote SOAP service by passing input parameters and waiting for
output parameters. For a service list of the many publicly available SOAP services, see
the following Web site:

www.xmethods.net

http:\\www.soapware.org\

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 40 SeeBeyond Proprietary and Confidential

5.2 SOAP Sender Implementation
This section explains how to implement a sample schema for the SOAP e*Way, for the
SOAP sender.

5.2.1 SOAP Sender Schema: Overview
This section illustrates the SOAP service interface to Altavista’s BabelFish service. The
service entry is located at:

http:\\www.xmethods.net\detail.html?id=14

Schema Operation

The sample BabelFish schema does the following operations:

! Retrieves text from a text file on any platform

! Transforms the text into a SOAP message

! Posts the SOAP message to a SOAP server that translates the text of the message
into a different language (by default, the SOAP server translates an English
message into French); for this sample, the SOAP server is the www.xmethods.net
Web site

! Receives the translated text from the SOAP server

! Publishes the translated text to a different file

Schema Input Data

The following text is the input data used for this sample schema:

Good morning

Schema Output Data

The SOAP BabelFish service passes as request, or input parameters, a value for
translationmode and sourcedata. The response, or output parameter, is the value for
the return data, for example:

translationmode : en_fr

sourcedata : good morning

return : bonjour

http:\\www.xmethods.net�etail.html?id=14

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 41 SeeBeyond Proprietary and Confidential

Schema Components

This sample BabelFish schema implementation consists of the following components:

e*Ways

! Feeder receives text from an external source, applies the e*Gate Pass Through
Collaboration Service, and publishes the information to an Intelligent Queue (IQ)
that stores inbound data.

! SOAPBabelFishClient applies extended Java Collaboration Rules to an inbound
Event to perform the desired business logic. In this case, the e*Way translates the
inbound Event into a SOAP message, posts the SOAP message to a SOAP server,
receives a translated text response from the SOAP server, and publishes the
response to an IQ.

! Eater receives the outbound message from an IQ and publishes it (via Pass Through
again) to a file.

Event Types

! Feeder_In_Event contains raw data from the input file.

! Feeder_Out_Event contains raw data from the input file.

! SOAP_BabelFish_Event contains the request data, the response data (if any), and
the methods used to manipulate the data.

! Eater_In_Event contains the translated data.

! Eater_Out_Event contains the translated data.

Collaboration Rules

! FeederCollaboration is associated with the Feeder e*Way and is used for receiving
the input Event.

! SOAPBabelFishClient is associated with the SOAPBabelFishClient e*Way and is
used to perform the transformation process, send the Event to the SOAP server, and
receive a response from the SOAP server.

! EaterCollaboration is associated with the Eater e*Way and is used for sending the
Event to the output file.

IQs

! In_Q receives data from the Feeder e*Way and sends it to the
SOAPBabelFishClient e*Way.

! Out_Q receives data from the SOAPBabelFishClient e*Way and sends it to the
Eater e*Way.

Location of Schema Files

The completed BabelFish schema is included on the installation CD-ROM in the
following location:

\samples\ewSOAP\BabelFish.zip

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 42 SeeBeyond Proprietary and Confidential

To do this implementation, you first need to unzip the BabelFish.zip file. The files
listed in Table 2 are contained within this file.

To use this sample schema, the SOAP e*Way must be installed, the sample schema must
be installed, all of the necessary files and scripts must be located in the default location,
and the www.xmethods.net Web site must be available.

Schema Implementation

To implement this sample schema, you can do one of the following operations:

! To import the sample schema zip file, which automatically creates the sample
schema components, see the instructions provided in “Sample Sender Schema:
Automatic Implementation” on page 42.

! To manually create each of the components required to use the sample schema, see
the instructions provided in “Sample Sender Schema: Manual Configuration” on
page 44.

5.2.2 Sample Sender Schema: Automatic Implementation
This section explains how to automatically implement the SOAP e*Way within a
sample sender schema.

Installing and Configuring the Schema

To install and configure the BabelFish sample schema

1 Copy the file named BabelFish.zip from the SAMPLES directory in the install
CD-ROM to your desktop or to a temporary directory, then unzip the file.

2 Start the e*Gate Enterprise Manager graphical user interface (GUI).

3 On the Open Schema from Registry Host dialog box, click New.

4 On the New Schema dialog box, click Create from export, and then click Find.

5 On the Import from File dialog box, browse to the directory that contains the
sample schema, click BabelFish.zip, and then click Open.

The sample schema is installed.

Table 2 Sample Sender Schema Files

File Name Description

BabelFish.zip Export schema file

BabelFishRequest.dtd Document Type Definition (DTD) that
describes the BabelFish SOAP request

BabelFishResponse.dtd DTD that describes the BabelFish SOAP
response

Text.~in Input file

Readme.txt Information file

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 43 SeeBeyond Proprietary and Confidential

6 Configure the Feeder e*Way as follows:

A From e*Gate Enterprise Manager, display the properties of the Feeder e*Way,
then click Edit. The e*Way Editor GUI appears; use this GUI to configure or
modify an e*Way.

B In the Goto Section of the e*Way Editor, choose Poller (inbound) settings.

C For the Poll Directory parameter, specify the path name of the directory that
contains the sample input data. This directory is named \INDATA, and it is
located in the directory where you installed the sample schema.

7 Configure the Eater e*Way as follows:

A From the Enterprise Manager, display the properties of the Eater e*way, and
then click Edit.

B In the Goto Section of the e*Way Editor, choose Outbound (send) settings.

C For the OutputDirectory parameter, specify the path name of the directory that
contains the sample data. This directory is named \data and it is located in the
directory in which you installed the sample schema.

Running the Schema

To run the BabelFish schema

1 From the command line prompt, enter:

stccb -rh hostname -rs schemaname -un username
-up user password -ln hostname_cb

Substitute hostname, username, schemaname, and user password as appropriate.

2 Change the input file name extension to .fin.

The schema components start automatically. When there are no more run-time
messages, check the output file. If the schema is operating correctly, this file contains
the text translated into French.

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 44 SeeBeyond Proprietary and Confidential

Figure 4 shows an overview diagram of the BabelFish schema and how it operates. The
blue arrows show publication/subscription (pub/sub) relationships between the
components. Red arrows show the actual flow of data.

Figure 4 BabelFish Schema Overview

5.2.3 Sample Sender Schema: Manual Configuration
This section explains how to configure the BabelFish sender schema manually in
e*Gate, starting from the beginning.

SOAP Communication

Inbound
e*Way

Outbound
e*Way

IQ

Local File
System

Local File
System

Collaboration Collaboration

Pass
Through

Collab Rule

Pass
Through

Collab Rule

Multi-Mode
e*Way

Java
Source

Destin.

Collaboration

Collab RuleIQ

e*Way
Connection

Data Flow

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 45 SeeBeyond Proprietary and Confidential

Basic Implementation Steps

After you have located the SOAP service description, you must do the following steps:

1 Determine the SOAP endpoint URL.

2 Determine the format of the SOAP message.

3 Create a schema.

4 Create Event Types and Event Type Definitions (ETDs).

5 Create Collaboration Rules.

6 Create the e*Way Connection.

7 Add Intelligent Queues (IQs).

8 Add and configure e*Ways.

9 Create and configure Collaborations.

10 Test the schema.

The rest of this section explains each of the previous steps.

Note: For complete explanations of procedures in steps 3 through 10, see Creating an
End-to-End Scenario with e*Gate Integrator and the e*Gate Integrator
User’s Guide.

Step 1: Determine the SOAP Endpoint URL

Each service entry contains information describing the service. Find the service entry
detail and locate the SOAP endpoint URL. For the BabelFish service, the URL is:

http://services.xmethods.net:80/perl/soaplite.cgi

For details, see Figure 5 on page 46.

http://services.xmethods.net:80/perl/soaplite.cgi

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 46 SeeBeyond Proprietary and Confidential

Figure 5 BabelFish Service Entry Detail

Step 2: Determine the Format of the SOAP Message

The service entry typically provides either an example of the SOAP message format or
Web Services Definition Language (WSDL) URL. WSDL is an XML format for
describing network services. WSDL is commonly used to describe the endpoints and
message structure used with SOAP.

In this version of the SOAP e*Way and SOAP wizard, you have the option of describing
the SOAP message as a byte stream BLOB, or as structured data. Using structured data
allows the data to be marshalled and unmarshalled from the XML document and
e*Gate Java Collaboration.

To use structured data, DTDs are required to describe any SOAP request header and
bodies, and SOAP response header and bodies (see Figure 6 on page 47).

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 47 SeeBeyond Proprietary and Confidential

Figure 6 BabelFish DTD

The following examples illustrate DTDs that describe the SOAP message as
documented in the BabelFish WSDL:

Example 1: BabelFishRequest.dtd

This DTD describes the SOAP request as follows:

<?xml encoding="UTF-8"?>

<!ELEMENT ns1:BabelFish (translationmode, sourcedata)>
<!ATTLIST ns1:BabelFish SOAP-ENV:encodingStyle CDATA #REQUIRED>
<!ATTLIST ns1:BabelFish xmlns:SOAP-ENV CDATA #FIXED "http://
schemas.xmlsoap.org/soap/envelope/">
<!ATTLIST ns1:BabelFish xmlns:ns1 CDATA #FIXED
"urn:xmethodsBabelFish">

<!ELEMENT translationmode (#PCDATA)>
<!ATTLIST translationmode xsi:type CDATA #FIXED "xsd:string">
<!ATTLIST translationmode xmlns:xsi CDATA #FIXED "http://www.w3.org/
1999/XMLSchema-instance">

<!ELEMENT sourcedata (#PCDATA)>
<!ATTLIST sourcedata xsi:type CDATA #FIXED "xsd:string">
<!ATTLIST sourcedata xmlns:xsi CDATA #FIXED "http://www.w3.org/1999/
XMLSchema-instance">

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 48 SeeBeyond Proprietary and Confidential

Example 2: BabelFishResponse.dtd

This DTD describes the SOAP response as follows:

<?xml encoding="UTF-8"?>

<!ELEMENT namesp1:BabelFishResponse (return) >
<!ATTLIST namesp1:BabelFishResponse SOAP-ENV:encodingStyle CDATA
#FIXED "http://schemas.xmlsoap.org/soap/encoding">
<!ATTLIST namesp1:BabelFishResponse xmlns:SOAP-ENV CDATA #FIXED
"http://schemas.xmlsoap.org/soap/envelope/">
<!ATTLIST namesp1:BabelFishResponse xmlns:namesp1 CDATA #FIXED
"urn:xmethodsBabelFish">

<!ELEMENT return (#PCDATA) >
<!ATTLIST return xsi:type CDATA #FIXED "xsd:string">
<!ATTLIST return xmlns:xsi CDATA #FIXED "http://www.w3.org/1999/
XMLSchema-instance">

Note: The DTDs shown in the previous examples were created manually from information
contained in the WSDL entry.

Step 3: Create a Schema

Before creating a schema, first verify that you have the correct e*Gate installation and
that it is operating correctly.

Verifying the e*Gate Installation

You can run this schema on a single machine. Before beginning the configuration
process, you must verify that you have all the required software installed on the target
machine.

Check the following e*Gate system components:

! Registry Host

! Participating Host

! GUIs

" e*Gate Enterprise Manager

" e*Gate Monitor

You can install all the software components shown in the previous list on the machine
that runs this schema. See the e*Gate Integrator Installation Guide for instructions on how
to install the e*Gate components and for e*Gate system requirements.

To create a new schema

1 Start the e*Gate Enterprise Manager and log in as Administrator (or another user
with administrator privileges) to the appropriate Registry Host.

2 In the Open Schema on Registry Host dialog box, click New.

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 49 SeeBeyond Proprietary and Confidential

3 In the Enter New Schema Name box, type BabelFish, and then click Open.

The Enterprise Manager opens and displays the new BabelFish schema.

4 At the bottom of the Navigator (left) pane, click the Components tab.

You perform all configuration steps in this pane, on the Components tab.

Note: When you create a new schema, by default, e*Gate automatically creates a Control
Broker for the schema. The default name is host-name_cb, where host-name is the
logical name of the current host machine. For this example, use these default Control
Broker name and its default settings.

Step 4: Create Event Types and Event Type Definitions

In this step, you create Event Types and Event Type Definitions (ETDs) that the e*Gate
system uses to transport data.

Creating Event Types

An Event Type is a class of Events (packages of data) with a common data structure.
The e*Gate system packages data within Events and categorizes them into Event Types.
What these Events have in common defines the Event Type and comprises the ETD.

The following procedures show how to create an ETD using the an ETD wizard (see
“Using the SOAP Wizard” on page 50).

To create Event Types

1 Highlight the Event Types folder on the Components tab of the e*Gate Enterprise
Manager’s Navigator pane (Components tab).

2 On the palette, click the Create a New Event Type button.

A dialog box opens allowing you to enter the name of the new Event Type.

3 Enter the name of the Event Type. For the purpose of this sample, the SOAP Event
Type is named SOAP_BabelFish_Event.

4 Click OK. The dialog box closes, and e*Gate saves the name of your new Event
Type.

Using these steps, create the following Event Types:

! SOAP_BabelFish_Event: This Event Type contains the request data, the response
data (if any), and the methods used to manipulate the data.

! Feeder_In_Event: This Event Type contains raw data from the input file.

! Feeder_Out_Event: This Event Type contains raw data from the input file.

! Eater_In_Event: This Event Type contains the translated data.

! Eater_Out_Event: This Event Type contains the translated data.

When you have finished, the Enterprise Manager GUI shows all of your created Event
Types (see Figure 7 on page 50).

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 50 SeeBeyond Proprietary and Confidential

Figure 7 e*Gate Enterprise Manager: Event Types

Defining the SOAP ETD

Next, you must define the SOAP_BabelFish_Event Event Type you have created, that
is, create its Event Type Definition. To define this Event Type, create an ETD file named
SoapBabelFishEvent.xsc that describes the SOAP Message.

You can use any of the following methods to create this ETD:

! Using the ETD \eGate\client\etd\ewsoap\SOAPSimple.xsc

! Modifying a copy of the ETD \eGate\client\etd\ewsoap\SOAPSimple.xsc

! Using the SOAP wizard to create an ETD describing a byte stream BLOB

! Using the SOAP wizard to create an ETD describing a structured XML document

Use the Enterprise Manager’s ETD Editor GUI to create and modify ETDs. The
ETD Editor has convenient wizard features that help you to create ETDs. These sample
procedures use the SOAP wizard.

The rest of this section (Step 4) explains how to use the SOAP wizard to create the
SoapBabelFishEvent.xsc ETD file, a structured XML document.

Using the SOAP Wizard

The SOAP wizard takes a DTD file and converts it to an .xsc file that contains the
following elements:

! SOAP request header element: SOAP header of the request message

! SOAP request body element: SOAP body of the request message

! SOAP response header element: SOAP header of the response message

! SOAP response body element: SOAP body of the response message

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 51 SeeBeyond Proprietary and Confidential

You can use the SOAP wizard to create a generic ETD using well-formed XML but no
header or body format, or you can create an ETD from a specific DTD file. If you choose
the latter, the resulting ETD will contain precise format, syntax, and semantics for the
SOAP request and response header and body.

To convert a SOAP DTD to an e*Gate ETD using the wizard

1 To access the SOAP wizard, select the New option in the ETD Editor’s File menu.
The New Event Type Definitions window appears, displaying all installed ETD
wizards (see Figure 8).

Figure 8 New Event Type Definition Window

2 Click the SOAP Wizard icon.

3 Review the SOAP ETD Wizard Introduction page, then click Next.

4 On SOAP ETD Wizard - Step 1 (see Figure 9 on page 52), enter the following text:

" The Package Name for the container in which the wizard places the generated
Java classes

" The root name of the ETD

5 Click Next to continue.

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 52 SeeBeyond Proprietary and Confidential

Figure 9 SOAP ETD Wizard - Step 1 Window

6 On SOAP ETD Wizard - Step 2 (see Figure 10 on page 53), do one of the following
operations to describe the contents of the SOAP request header element:

" To create a generic SOAP request header element, choose BLOB as the
document type and continue to the next step.

" To create the SOAP request header element from a DTD file, choose DTD as the
document type, and enter the name of the type definition file. At this point, all
top level elements defined in the DTD file will be listed in the DTD root node
pull down list. Select the element you want to use for the SOAP request header.

If you do not know the name of the type file, click Browse to navigate to the
appropriate file. All the elements in the DTD file are listed as possible root node
names for this component.

7 Click Next to continue.

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 53 SeeBeyond Proprietary and Confidential

Figure 10 SOAP ETD Wizard - Step 2 Window (SOAP Request Header Element)

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 54 SeeBeyond Proprietary and Confidential

8 On the next SOAP ETD Wizard - Step 2, do one of the following steps to describe
the contents of the SOAP request body element:

" To create a generic SOAP request body element, choose BLOB as the document
type and continue to the next step. A type file is not required.

" To create the SOAP request body element from a DTD file, choose DTD as the
document type, enter the type file, and choose a DTD root node name from the
list.

If you do not know the name of the type file, click Browse to navigate to the
appropriate file. All the elements in the DTD file are listed as possible root node
names for this component.

9 Click Next to continue.

10 On the next SOAP ETD Wizard - Step 2, do one of the following to describe the
contents of the SOAP response header element:

" To create a generic SOAP response header element, choose BLOB as the
document type and continue to the next step.

" To create the SOAP response header element from a DTD file, choose DTD as
the document type, enter the type file, and choose a DTD root node name from
the list.

If you do not know the name of the type file, click Browse to navigate to the
appropriate file. All the elements in the DTD file are listed as possible root node
names for this component.

11 Click Next to continue.

12 On the next SOAP ETD Wizard - Step 2, do one of the following operations to
describe the contents of the SOAP response body element:

" To create a generic SOAP response body element, choose BLOB as the
document type and continue to the next step.

" To create the SOAP response body element from a DTD file, choose DTD as the
document type, enter the type file, and choose a DTD root node name from the
list.

If you do not know the name of the type file, click Browse to navigate to the
appropriate file. All the elements in the DTD file are listed as possible root node
names for this component.

13 Click Finish when you are done with the wizard.

The SOAP ETD appears in the ETD Editor Main window as shown in Figure 11 on
page 55.

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 55 SeeBeyond Proprietary and Confidential

Figure 11 ETD Editor: SOAP ETD

14 The title of the ETD, EventTypeDefinition_1, in the ETD you just created is an
invalid name and must be changed. Change the name using either of the following
steps:

" Click on EventTypeDefinition_1 twice in the Event Type Definition pane, type
the new name (BabelFish), and press ENTER.

" Highlight EventTypeDefinition_1 under the Abstract tab in the Properties
pane, type a new name BabelFish, and press ENTER.

15 Close the ETD Editor and save the ETD under the name BabelFish.xsc. This is your
new ETD file.

Defining the Additional ETDs

As explained previously, the BabelFish schema also uses the following Event Types:

! Feeder_In_Event

! Feeder_Out_Event

! Eater_In_Event

! Eater_Out_Event

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 56 SeeBeyond Proprietary and Confidential

Additionally, you must define each of these types, creating/defining an ETD for each
one.

To define the “Feeder/Eater” ETDs

1 In Enterprise Manager, on the toolbar or Tools menu, click the ETD Editor button in
the Toolbar.

Note: Be sure you have set your default editors to Java. Use the Options menu.

The ETD Editor Main window appears, with all panes empty.

2 In the ETD Editor, on File menu, click New.

The New Event Type Definition dialog box displays icons for the ETD wizards (see
Figure 8 on page 51).

3 Select the Standard ETD wizard icon and click OK.

The Standard ETD wizard launches displaying the Standard ETD Wizard -
Introduction dialog box (see Figure 12). It informs you that you must specify a
“Package Name” where all the Java source files are generated.

Figure 12 Standard ETD Wizard: Introduction

Note: For complete details on how to use all the ETD wizards, see the e*Gate Integrator
User’s Guide.

4 Click Next.

The Standard ETD Wizard - Step 1 dialog box appears.

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 57 SeeBeyond Proprietary and Confidential

5 Enter a Package Name in the text box (pkgSOAPSample). This is where the
ETD Editor places all the generated Java classes associated with this ETD. This
name must be a legal Java package name, such as custominPackage.

6 When you are finished, click Next.

7 The Standard ETD Wizard - Step 2 dialog box opens, requesting that you confirm
that the Package Name you entered is correct. If it is not correct, click Back to
change the name, or, if correct, click Finish to generate the ETD.

The ETD you just created appears in the Event Type Definition pane in the
ETD Editor, in the same way as the SOAP ETD created previously.

8 The title of the ETD, EventTypeDefinition1, in the ETD you just created is an
invalid name and must be changed. Change the name using either of the following
steps:

" Click on EventTypeDefinition1 twice in the Event Type Definition pane, type
the new name (Feeder_In_Event), and press ENTER.

" Highlight EventTypeDefinition1 under the Abstract tab in the Properties pane,
type a new name Feeder_In_Event, and press ENTER.

9 Repeat these procedures to create the rest of the ETDs: Feeder_Out_Event,
Eater_In_Event, and Eater_Out_Event.

Note: See the BabelFish schema sample for details on how to create these ETDs. Open the
ETDs given in the sample, and set up each of the remaining ETDs in the same way
as they are set up in the sample.

Step 5: Create Collaboration Rules

In the e*Gate system, Events become subject to business logic via processing,
transformation, or verification. e*Gate uses the following components to govern these
operations:

! Collaboration is the necessary, configurable component of an e*Way that
determines its operation; that is, the logical moving and transformation of Events.

! Collaboration Rules are the program logic that instructs a Collaboration how to
execute the business logic required to support e*Gate’s data transformation and
routing.

! Collaboration Service is the program that defines the structure and operation of a
Collaboration Rule’s basic Event-handling processes. For example, Java
Collaborations use the Java Collaboration Service.

! Collaboration Rules Script contains the specific operations (written in the Monk
programming language) that are used to govern Event-transformation processes
within a Collaboration.

! Business Rules are the Java source code that creates the output Events that are a
result of the Java Collaboration.

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 58 SeeBeyond Proprietary and Confidential

Collaboration .class files (Java) and Collaboration Rules scripts (Monk) are necessary if
you want to have any data transformed and/or verified in some way as it passes
through a Collaboration.

You must create Collaboration Rules before you create the Collaborations that use
them. For details on how to create the BabelFish Collaborations, see “Step 9: Create and
Configure Collaborations” on page 67.

For the BabelFish schema, you must create the following Collaboration Rules:

! Feeder: Pass Through Collaboration Rule (uses the Pass Through Collaboration
Service) and associated with the Feeder e*Way.

! Eater: Pass Through Collaboration Rule and associated with the Eater e*Way.

! SOAPBabelFishClient: associated with the SOAPBabelFishClient e*Way and is
used to perform the transformation process, send the Event to the SOAP service,
and receive a response from the SOAP service.

The following pseudo-code helps to explain the actions of the SOAPBabelFishClient
e*Way Collaboration/Collaboration Rules:

Set translation mode to en_fr
Populate the data source - an English sentence
Send SOAP request to the SOAP server and unmarshal the response into
SOAPResponse
Get the translated French sentence

To create Pass Through Collaboration Rules components

1 Select the Navigator pane's Components tab in the e*Gate Enterprise Manager.

2 In the Navigator, select the Collaboration Rules folder.

3 On the palette, click the Create New Collaboration Rules button.

4 Enter the name of the new Collaboration Rule Component, Feeder, then click OK.

5 Double-click the new Collaboration Rules Component icon. The Collaboration
Rules Properties dialog box opens (see Figure 13 on page 59).

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 59 SeeBeyond Proprietary and Confidential

Figure 13 Collaboration Rules Properties Dialog Box: Pass Through

6 The Service field defaults to Pass Through; accept the default.

7 Go to the Subscriptions tab. Select GenericInEvent under Available Input Event
Types, and click the right arrow to move it to Selected Input Event Types. The box
under Triggering Event should be checked.

8 Go to the Publications tab. Select GenericInEvent under Available Output Event
Types, and click the right arrow to move it to Selected Output Event Types. The
Radio button under Default is enabled.

9 Click OK to close the Collaboration Rules, Pass Properties window.

10 Repeat this same procedure for the Eater Collaboration Rule.

The SOAPBabelFishClient Collaboration Rule uses the Java Collaboration Service. The
procedures for creating it are different from those used for the Pass Through
Collaboration Rules.

To create and edit the Java Collaboration Rules component

1 Use the Enterprise Manager to create the new Java Collaboration Rules component
in the same way as you did the Pass Through Collaboration Rules components.

2 Double-click the new Collaboration Rules component icon to edit its properties.

The Collaboration Rules Properties dialog box opens (see Figure 13).

3 From the Service field drop-down box, select Java. The Collaboration Mapping tab
is now enabled, and the Subscriptions and Publications tabs are disabled (see
Figure 14 on page 60).

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 60 SeeBeyond Proprietary and Confidential

Figure 14 Collaboration Rules Properties Dialog Box: Java

4 In the Initialization string field, enter any required initialization string for the
Collaboration. If none is needed, you can skip this step.

5 Select the Collaboration Mapping tab.

6 Using the Add Instance button, create instances to coincide with the Event Types as
follows:

" In the Instance Name column, enter In for the instance name.

" Click Find, navigate to etd\BabelFish.xsc, double-click to select. BabelFish.xsc
is added to the ETD column of the instance row.

" In the Mode column, select In from the drop–down menu available.

" In the Trigger column, click the box to enable trigger mechanism.

7 Repeat the actions listed under step 6 using the following values:

" Instance Name: Out

" ETD: BabelFish.xsc

" Mode: Out

Note: At least one of the ETD instances used by the Collaboration must be checked as the
trigger.

For specific information on creating and configuring Collaboration Rules, see the
e*Gate Integrator User’s Guide.

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 61 SeeBeyond Proprietary and Confidential

8 Select the General tab, under the Collaboration Rule box, select New. The
Collaboration Rules Editor GUI opens (see Figure 15 on page 61).

Note: The example in the figure shows the opened SoapBabelFishClient.xpr file from the
sample.

Figure 15 Collaboration Rules: Collaboration Rules Editor

9 Expand the Collaboration Rules Editor to full size, expanding the Source and
Destination Events panes as well, then create the Collaboration Rule.

Using the Collaboration Rules Editor

The next part of this step is to define the business logic using the Collaboration Rules
Editor. The Java Collaboration Rules Editor is the GUI used to create and modify Java
Collaboration Rules (Business Rules).

A Java Collaboration Rule is created by designating one or more source ETDs and one
or more destination ETDs then setting up rules governing the relationship between
fields in the two ETDs. Use the Collaboration Rules Editor to tell e*Gate how you want
data taken from the source ETD, then manipulated and placed in the destination ETD.

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 62 SeeBeyond Proprietary and Confidential

Note: To create the Collaboration Rule for SoapBabelFishClient, open the .xpr file from the
sample and configure your new Collaboration Rule in the same way. For complete
information on creating Collaboration Rules using the Java Collaboration Rules
Editor see the e*Gate Integrator User’s Guide.

Figure 16 on page 62 shows the created Collaboration Rules in the Enterprise Manager
GUI.

Figure 16 e*Gate Enterprise Manager with Collaboration Rules

Step 6: Create the e*Way Connection

See Chapter 4 for complete information on how to configure the SOAP e*Way
Connection. Figure 17 on page 63 shows the created e*Way Connection
SoapConnection in the Enterprise Manager Main window.

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 63 SeeBeyond Proprietary and Confidential

Figure 17 e*Gate Enterprise Manager with e*Way Connection

Step 7: Create Intelligent Queues

The next step in setting up the BabelFish schema is to create the IQs. IQs manage the
exchange of information between components within the e*Gate system, providing
non-volatile storage for data as it passes from one component to another.

IQs use IQ Services to transport data. IQ Services provide the mechanism for moving
Events between IQs and handling the low-level implementation of data exchange (such
as system calls to initialize or reorganize a database).

For the BabelFish schema, you must create the following IQs:

! In_Q receives data from the Feeder e*Way and sends it to the
SOAPBabelFishClient e*Way.

! Out_Q receives data from the SOAPBabelFishClient e*Way and sends it to the
Eater e*Way.

To create and modify the IQs

1 Select the Navigation pane’s Components tab.

2 Open the host where you want to create the IQ.

3 Open the desired Control Broker.

4 Select the desired IQ Manager.

5 On the palette, click the Create a New IQ button.

6 Enter the name of the new IQ (in this case, In_Q), then click OK.

7 Double-click the new IQ’s icon in the Navigation pane to edit its properties.

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 64 SeeBeyond Proprietary and Confidential

The IQ Properties dialog box appears.

8 On the General tab, specify the Service and the Event Type Get Interval. Configure
these settings as follows:

" The STC_Standard IQ Service provides sufficient functionality for most
applications. If specialized services are required, you can create custom
IQ Service .dll files.

" The default Event Type Get Interval of 100 ms is satisfactory for the purposes of
this sample implementation.

9 On the Advanced tab, be sure that Simple publish/subscribe is checked under the
IQ behavior section.

10 Click OK to close the IQ Properties dialog box.

11 For this schema, repeat this procedure to create an additional IQ (Out_Q).

The IQs you have created appear in the Enterprise Manager Main window (see
Figure 18 on page 64)

Note: For more details on this procedure, see Creating an End-to-End Scenario with
e*Gate Integrator and/or the e*Gate Integrator User’s Guide.

Figure 18 e*Gate Enterprise Manager with IQs

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 65 SeeBeyond Proprietary and Confidential

Step 8: Add and Configure e*Ways

For the BabelFish schema, you must create the following e*Ways:

! Feeder receives text from an external source, applies Pass Through Collaboration
Service, and publishes the information to an IQ that stores inbound data.

! Eater receives the outbound message from an IQ and publishes it to a file; it also
uses the Pass Through Collaboration Service.

! SOAPBabelFishClient applies extended Java Collaboration Rules to an inbound
Event to perform the desired business logic. In this case, the e*Way translates the
inbound Event into a SOAP message, sends the SOAP message to a SOAP service,
receives a translated text response from the SOAP service, and publishes the
response to an IQ.

This e*Way uses the executable file stceway.exe, causing the e*Way to become a
Multi-Mode e*Way. For details on the Multi-Mode e*Way, see Chapter 3.

To create new e*Ways

1 In the Navigator pane (Components tab), select the desired Control Broker.

2 On the Palette, click the Create a New e*Way button.

The New e*Way Component dialog box appears.

3 Enter the desired name (Feeder) for the new e*Way and click Apply to enter it into
the system. The new name and an e*Way icon appear in both panes.

4 Name additional e*Ways as needed (Eater and SOAPBabelFishClient). Click
Apply after you name each one.

5 When you are finished, click OK to close the dialog box.

The new e*Way icons appear in the Enterprise Manager Main window as shown in
Figure 19.

Figure 19 e*Gate Enterprise Manager with e*Ways

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 66 SeeBeyond Proprietary and Confidential

To configure the Feeder e*Way

1 From e*Gate Enterprise Manager, double-click on the Feeder e*Way icon to display
the properties of the e*Way.

The e*Way Properties dialog box appears.

2 Select the executable file stcewfile.exe.

3 Click New.

The e*Way Editor GUI appears.

4 In the Goto Section of the e*Way Editor, choose the Poller (inbound) settings.

5 For the Poll Directory parameter, specify the path name of the directory that
contains the sample input data. This directory is named \INDATA and it is located
in the directory where you installed the sample schema.

6 Close the e*Way Editor and save the e*Way configuration file (Feeder.cfg).

To configure the Eater e*Way

1 From e*Gate Enterprise Manager, double-click on the Eater e*Way icon to display
the properties of the e*way, then click New.

The e*Way Properties dialog box appears.

2 Select the executable file stcewfile.exe.

3 Click New.

The e*Way Editor GUI appears.

4 In the Goto Section of the e*Way Editor, choose Outbound (send) settings.

5 For the OutputDirectory parameter, specify the path name of the directory that
contains the sample data. This directory is named \data and it is located in the
directory in which you installed the sample schema.

6 Close the e*Way Editor and save the e*Way configuration file (Eater.cfg).

To configure the SOAPBabelFishClient e*Way

1 From e*Gate Enterprise Manager, double-click on the SOAPBabelFishClient e*Way
icon to display the properties of the e*Way, then click New.

The e*Way Properties dialog box appears.

2 Select the executable file stceway.exe to create a Multi-Mode e*Way.

3 Click New.

The e*Way Editor GUI appears.

4 Configure this e*Way. For details on how to configure the Multi-Mode e*Way, see
Chapter 3.

5 Close the e*Way Editor and save the e*Way configuration file
(SOAPBabelFishClient.cfg).

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 67 SeeBeyond Proprietary and Confidential

Step 9: Create and Configure Collaborations

You must create the following Collaborations:

! Feeder: associated with the Feeder e*Way and is used for receiving input Events
into e*Gate; uses the Feeder Collaboration Rule you created previously.

! Eater: associated with the Eater e*Way and is used for sending Events out of e*Gate;
uses the Eater Collaboration Rule you created previously.

! SOAPBabelFishClient: associated with the SoapBabelFishClient e*Way and is
used to perform the transformation process, send the Event to the SOAP service,
and receive a response from the SOAP service; uses the SOAPBabelFishClient
Collaboration Rule you created previously.

To create the Collaborations

1 In the Navigator pane (Components tab), select the desired Control Broker.

2 Select the desired e*Way component (Feeder).

3 On the Palette, click the Create a New Collaboration button.

The New Collaboration Component dialog box appears.

4 Enter the desired name (Feeder) for the new Collaboration and click OK to enter it
into the system. The new name and a Collaboration icon appear in the Editor
(right) pane.

5 Repeat these procedures to create the Eater and SOAPBabelFishClient
Collaborations. Click OK after you name each one.

To configure the Collaborations

1 Double-click on the icon for the desired Collaboration (for this example, choose
Feeder first).

The Collaboration Properties dialog box appears.

2 Configure the properties for the Collaboration. Be sure to choose the appropriate
Collaboration Rule for each Collaboration.

The properties and settings for these Collaborations are shown in Figure 20 on
page 68 through Figure 22 on page 70.

3 When you are finished, click OK to save your configuration and close the dialog
box.

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 68 SeeBeyond Proprietary and Confidential

Figure 20 BabelFish Feeder Collaboration Properties

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 69 SeeBeyond Proprietary and Confidential

Figure 21 BabelFish Eater Collaboration Properties

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 70 SeeBeyond Proprietary and Confidential

Figure 22 BabelFish SOAPBabelFishClient Collaboration Properties

Step 10: Test the Schema

Table 3 lists all the components for the schema. Check all the settings. Substitute the
name of the machine running the schema for host-name where applicable.

Table 3 BabelFish Schema Components

Component Logical Name Settings

Schema BabelFish

Control Broker host-name_cb

IQ Manager host-name_iqmgr Start Up = Auto

Chapter 5 Section 5.2
Implementation SOAP Sender Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 71 SeeBeyond Proprietary and Confidential

Event Type Feeder_In_Event

Feeder_Out_Event

Eater_In_Event

Eater_Out_Event

SOAP_BabelFish_Event

Java ETD BabelFish.xsc ! Package Name = pkgSOAPSample

Collaboration Rules Feeder ! Service = Pass Through
! Subscription = Feeder_In_Event
! Publication = Feeder_Out_Event

Eater ! Service = Pass Through
! Subscription = Eater_In_Event
! Publication = Eater_Out_Event

SOAPBabelFishClient ! Service = Java
! Subscription = InOutInstance;

Feeder_Out_Event (In; Trigger)
! Publication = SoapInOutInstance;

SOAP_BabelFish_Event (Out)
InOutInstance; Eater_In_Event (Out)

Java Collaboration
Rule Class

JavaCollab.class ! Source = InOutInstance
! Destination = SoapInOutInstance

e*Way Connection SoapConnection ! -1 for Event Type “get” interval

Inbound e*Way Feeder ! Executable = stcewfile.exe
! Configuration file = Feeder.cfg
! Start Up = Auto
! Collaboration = Feeder

Outbound e*Way Eater ! Executable = stcewfile.exe
! Configuration file = Eater.cfg
! Start Up = Auto
! Collaboration = Eater

Multi-Mode e*Way SOAPBabelFishClient ! Executable = stceway.exe
! Configuration file =

SOAPBabelFishClient.cfg
! Start Up = Auto
! Collaboration = SOAPBabelFishClient

IQ In_Q ! Service = STC_Standard

Out_Q ! Service = STC_Standard

Table 3 BabelFish Schema Components (Continued)

Component Logical Name Settings

Chapter 5 Section 5.3
Implementation SOAP Receiver Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 72 SeeBeyond Proprietary and Confidential

To run the BabelFish schema

1 From the command line prompt, enter:

stccb -rh hostname -rs schemaname -un username
-up user password -ln hostname_cb

Substitute hostname, username, schemaname, and user password as appropriate.

2 Change the input file name extension to .fin.

The schema components start automatically. When there are no more run-time
messages, check the output file. If the schema is operating correctly, you can see that
this file contains the input text (good morning) translated into French (bon jour).

5.3 SOAP Receiver Implementation
This section explains how to implement a sample schema for the SOAP e*Way, for the
SOAP receiver.

5.3.1 SOAP Receiver Schema: Overview
The SOAPClientAndServer schema demonstrates the use of the SOAP e*Way in
implementing a Web server, a SOAP client, and a SOAP server.

Collaboration Feeder ! Collaboration Rule = Feeder
! Subscription = Feeder_In_Event from

<EXTERNAL>
! Publication = Feeder_Out_Event to In_Q

Eater ! Collaboration Rule = Eater
! Subscription = Eater_In_Event from

SOAPBabelFishClient
! Publication = Eater_Out_Event to

<EXTERNAL>

SOAPBabelFishClient ! Collaboration Rule = SOAPBabelFishClient
! Subscription = InOutInstance and

Feeder_Out_Event from Feeder
! Publication =
SoapInOutInstance and

SOAP_BabelFish_Event to SoapConnection
InOutInstance and Eater_In_Event to

Out_Q

Table 3 BabelFish Schema Components (Continued)

Component Logical Name Settings

Chapter 5 Section 5.3
Implementation SOAP Receiver Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 73 SeeBeyond Proprietary and Confidential

Schema Operation

The sample schema contains elements that do the following operations:

! A pair of file e*Ways that communicate with the SOAP client and an external
system via an IQ

! A SOAP client that posts data to and receives it from an ASP page on a Web server

! A JMS IQ Manager that exchanges data with a SOAP server and the Web server

The SOAP server implements an "add two numbers" service in an e*Gate Java
Collaboration Rule within its Collaboration. All elements outlined in the previous
paragraph, except the ASP page and external system, are within the e*Gate
SOAPClientAndServer schema.

Schema Input Data

The text of the input data file is:

<number1>5</number1>
<number2>11</number2>
<sum>0</sum>

Schema Output Data

The Feeder_eater e*Way passes the input data to the SOAPClient e*Way which, in
turn, sends the SOAP request to the SOAPServiceImpl e*Way (SOAP server) via the
ASP page. The JMS_CONN e*Way Connection receives the SOAP response and passes
it back to Feeder_eater via the Web server and SOAPClient. Feeder_eater then
produces the output file.

The SOAP server adds the two numbers and returns the sum as follows:

<number1>5</number1>
<number2>11</number2>
<sum>16</sum>

Schema Components

This sample SOAPClientAndServer schema implementation consists of the following
components:

e*Ways

! Feeder_eater file e*Way reads text from an external source, applies a Pass Through
Collaboration Rule, and publishes the information to an IQ that stores inbound
data. It also receives the outbound message from the same IQ and publishes it
externally to a file.

Chapter 5 Section 5.3
Implementation SOAP Receiver Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 74 SeeBeyond Proprietary and Confidential

! SOAPClient Multi-Mode e*Way applies extended Java Collaboration Rules to an
inbound Event to translate the input data into SOAP and back again. In this case,
the e*Way sends a SOAP message to a Web server, receives a processed text
response from the SOAP service (via the Web server), and publishes the response to
an IQ.

! SOAPServiceImpl Multi-Mode e*Way implements the SOAP service, also applying
Java Collaboration Rules. It receives a SOAP message from the JMS IQ Manager
and returns the processed Event to the SOAP client via the JMS_CONN e*Way
Connection and Web server.

Event Types

! GenericInEvent contains raw data from the input file.

! GenericOutEvent contains the processed data output file.

! TopicRequest contains the known topic used by the ASP page to publish the SOAP
message to the JMS_CONN e*Way Connection.

Collaboration Rules

! feed is associated with the Feeder_eater e*Way and is used for polling the input
Event.

! eat is associated with the Feeder_eater e*Way and is used for sending the processed
Event to the output file.

! SOAPClient is associated with the SOAPClient e*Way and is used to perform a
transformation process (translating the input data into SOAP), send the SOAP
request to the Web server, receive a SOAP response from the Web server, and
publish that response to the eat Collaboration.

! SOAPServiceImpl is associated with the SOAPServiceImpl e*Way and is also used
to do a transformation process, implementing the SOAP service. This Collaboration
implements the SOAP service. SOAPServiceImpl receives the Event from the
JMS_CONN e*Way Connection, does the calculation, and sends the Event back to
JMS_CONN.

IQ

! The_IQ receives data from the Feeder_eater e*Way and sends it to the SOAPClient
e*Way. It also sends and receives in the reverse direction.

Schema Configuration Notes

You must configure the SOAPClient e*Way and the JMS IQ Manager, then modify the
ASP file so all of them can find each other. Ensure the following operations:

! The SOAPClient e*Way must publish to the URL for the ASP file.

! The ASP file must refer to the correct host name and port number of the JMS
IQ Manager.

Chapter 5 Section 5.3
Implementation SOAP Receiver Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 75 SeeBeyond Proprietary and Confidential

Location of Schema Files

The completed SOAPClientAndServer schema is included on the installation CD-ROM
at the following location:

\samples\ewSOAP\SOAPServer.zip

To do this implementation, you first need to unzip the SOAPServer.zip file. The files
listed in Table 4 are contained within this file.

To use this sample schema, the SOAP e*Way must be installed, the sample schema must
be installed, and all of the necessary files and scripts must be located in the default
location.

Schema Implementation

To implement this sample schema, you can do one of the following operations:

! To import the sample schema zip file, which automatically creates the sample
schema components, see “Sample Receiver Schema: Automatic Implementation”
on page 75.

! To manually create each of the components required to use the sample schema, see
the instructions provided in “Sample Receiver Schema: Manual Configuration”
on page 77.

5.3.2 Sample Receiver Schema: Automatic Implementation
Install, configure, and run the SOAPClientAndServer sample schema in the same way
as you did the BabelFish sample schema explained under “Sample Sender Schema:
Automatic Implementation” on page 42.

Table 4 Sample Receiver Schema Files

File Name Description

SOAPClientAndServer.zip Export schema file

dtds\add2numsRequestBodyBlob.dtd DTD that describes the BabelFish SOAP
request; used to create the specific SOAP ETD
for the sample

dtds\add2numsResponseBodyBlob.dtd DTD that describes the BabelFish SOAP
response; used to create the specific SOAP ETD
for the sample

asp_jsp\TopicRequest.asp ASP file to place on the Web server

asp_jsp\MS.inc Additional file used by TopicRequest.asp to
communicate with the JMS

data\input\data.fin Input file

readme.html Information file

Chapter 5 Section 5.3
Implementation SOAP Receiver Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 76 SeeBeyond Proprietary and Confidential

The schema components start automatically. When there are no more run-time
messages, check the output file. If the schema is operating correctly, this file contains
the sum of the two numbers, 16.

Figure 23 on page 76 shows an overview diagram of the SOAPClientAndServer
schema and how it operates.

Figure 23 SOAPClientAndServer Schema Overview

Web Server

ASP

SOAP e*WayFeeder
Collaboration

Eater
Collaboration

SOAP e*Way
Connection

JMS e*Way
Connection

SeeBeyond
JMS IQ Manager

IQ

File
SOAPClient

Collaboration

SOAP e*Way

SOAPServImpl
Collaboration

e*Gate
Environment

IQ

Chapter 5 Section 5.3
Implementation SOAP Receiver Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 77 SeeBeyond Proprietary and Confidential

5.3.3 Sample Receiver Schema: Manual Configuration
This section describes how to configure the SOAPClientAndServer receiver schema
manually in e*Gate.

Basic Implementation Steps

After you have located the SOAP service description, you must do the following steps:

1 Determine the SOAP endpoint URL on your Web server.

2 Determine the format of the SOAP message (see “Step 2: Determine the Format of
the SOAP Message” on page 46).

3 Create a schema.

4 Create Event Types and Event Type Definitions (ETDs).

5 Create Collaboration Rules.

6 Create the e*Way Connection.

7 Add Intelligent Queues (IQs).

8 Add and configure e*Ways.

9 Create and configure Collaborations.

10 Test the schema.

See “Sample Sender Schema: Manual Configuration” on page 44 for details on each of
the previous steps.

Note: For complete explanations of procedures in steps 3 through 10, see Creating an
End-to-End Scenario with e*Gate Integrator and the e*Gate Integrator
User’s Guide.

Table 5 lists all the components for the SOAPClientAndServer schema. Check all the
settings. Substitute the name of the machine running the schema for host-name where
applicable.

Table 5 SOAPClientAndServer Schema Components

Component Logical Name Settings

Schema SOAPClientAndServer

Control Broker host-name_cb

IQ Manager localhost_iqmgr Start Up = Auto

JMS IQ Manager SBYN_JMS_QMGR Start Up = Auto

Event Type GenericInEvent

GenericOutEvent

TopicRequest

Chapter 5 Section 5.3
Implementation SOAP Receiver Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 78 SeeBeyond Proprietary and Confidential

Java ETD add2numbers.xsc ! Package Name = pkgSOAPSample

TopicRequest.xsc ! Package Name = pkgSOAPSample

SoapEvent.xsc ! Package Name = pkgSOAPSample

Collaboration Rules feed ! Service = Pass Through
! Subscription = GenericInEvent
! Publication = GenericInEvent

eat ! Service = Pass Through
! Subscription = GenericOutEvent
! Publication = GenericOutEvent

SOAPClient ! Service = Java
! Subscription = in; GenericInEvent (In/Out;

Trigger)
! Publication = soap; GenericInEvent; SOAP

(In; Trigger) in; GenericOutEvent; The_Q
(In/Out; Manual Publish)

SOAPServiceImpl ! Service = Java
! Subscription = data; TopicRequest;

JMS_CONN (In/Out; Trigger)
! Publication = soap; GenericInEvent; SOAP

(In/Out; Manual Publish)

Java Collaboration
Rule Class

SoapClient.class ! Source = in
! Destination = soap

SOAPServiceImpl.class ! Source = data
! Destination = soap

e*Way Connection SOAP ! 0 for Event Type “get” interval

JMS_CONN ! 100 for Event Type “get” interval

Inbound/Outbound
e*Way

Feeder_eater ! Executable = stcewfile.exe
! Configuration file = feeder_eater.cfg
! Start Up = Auto
! Collaborations = feed and eat

Multi-Mode e*Way SOAPClient ! Executable = stceway.exe
! Configuration file = SOAPClient.cfg
! Start Up = Auto
! Collaboration = SOAPClient

SOAPServiceImpl ! Executable = stceway.exe
! Configuration file = SOAPServiceImpl.cfg
! Start Up = Auto
! Collaboration = SOAPServiceImpl

IQ The_Q ! Service = STC_Standard

Table 5 SOAPClientAndServer Schema Components (Continued)

Component Logical Name Settings

Chapter 5 Section 5.3
Implementation SOAP Receiver Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 79 SeeBeyond Proprietary and Confidential

Contents of ASP File

The following text shows the contents of the ASP file:

<%@ Language=VBScript %>

<%
'Ensure that this page is not cached.
Response.Expires = 0

%>

<!--#include virtual ="ms.inc"-->
<%

'Create the topic Connection Factory
set topicConnectionFactory = server.CreateObject("STC_MSCOM.TopicC

onnectionFactory")

'Set the hostname where the STC Message Server is running
topicConnectionFactory.hostname = "xsongdell"

'Set the port the STC Message Server is on
topicConnectionFactory.port = "3600"

'Create the topic Connection
Set topicConnection = topicConnectionFactory.CreateTopicConnection

()

'Create the topic Session
Set topicSession = topicConnection.CreateTopicSession(false, msAut

oAcknowledge)

Collaboration feed ! Collaboration Rule = feed
! Subscription = GenericInEvent from

<EXTERNAL>
! Publication = GenericInEvent to The_Q

eat ! Collaboration Rule = eat
! Subscription = GenericOutEvent from

SOAPClient
! Publication = GenericOutEvent to

<EXTERNAL>

SOAPClient ! Collaboration Rule = SOAPClient
! Subscription = in and GenericInEvent from

feed
! Publication =
soap and GenericInEvent to SOAP
in and GenericOutEvent to The_Q

SOAPServiceImpl ! Collaboration Rule = SOAPServiceImpl
! Subscription = data and TopicRequest

from JMS_CONN
! Publication = soap and GenericInEvent to

SOAP

Table 5 SOAPClientAndServer Schema Components (Continued)

Component Logical Name Settings

Chapter 5 Section 5.3
Implementation SOAP Receiver Implementation

e*Way Intelligent Adapter for SOAP User’s Guide 80 SeeBeyond Proprietary and Confidential

'Start (or restart) a Connection's delivery of incoming messages.
Restart begins with the oldest unacknowledged message. Starting a sta
rted session is ignored.

topicConnection.Start

'Create the topic name to be used in the Message Server
Set Topic = topicSession.CreateTopic("TopicRequest")

'--
' The following sub routine reads the post in a binary append loop
'--

dim vntRequest()
dim cRead, cOff, iAsc
dim blnUseBinary, blnOK

cRead = Request.TotalBytes

ReDim vntRequest(cRead)

strSend = ""

do while cOff < cRead
vntRequest(cOff) = Request.BinaryRead(1)

strSend = strSend + Chr(AscB(vntRequest(cOff)))
cOff = cOff + 1
loop

blnOK = true

'--

'Create the message that is to be published and assigns it the con
tents of variable strSend, the ""+ is there to force string type

set MessagePublished = topicSession.CreateTextMessage(""+strSend)

'Creates the Topic Requestor object
set TopicRequestor = server.CreateObject("STC_MSCOM.TopicRequestor

")

'Initialize the Topic Requestor
TopicRequestor.Create topicSession, topic

'This line will send the message set in MessagePublished and recei
ve the unique reply into MessageReceived

set MessageReceived = topicRequestor.request(MessagePublished)

'This is an asp command to write the received response to the scre
en

Response.Write(MessageReceived.Text)

%>

Running the SOAPClientAndServer Schema

For details on how to run the SOAPClientAndServer schema, see “To run the
BabelFish schema” on page 72. The schema components start automatically. When
there are no more run-time messages, check the output file. If the schema is operating
correctly, you can see that this file contains the sum of the two numbers, 16, in the last
line.

e*Way Intelligent Adapter for SOAP User’s Guide 81 SeeBeyond Proprietary and Confidential

Chapter 6

Java Methods

This chapter explains the Java methods used in the e*Way Intelligent Adapter for
SOAP.

6.1 SOAP e*Way Methods and Classes: Overview
For any e*Way, communication takes place both on the e*Gate system and the external
system side. Communication between the e*Way and the e*Gate environment is
common to all e*Ways, while the communication between the e*Way the external
system is different for each e*Way.

For the SOAP e*Way, the stceway.exe file is used to communicate between the e*Way
and e*Gate, and a Java Collaboration is utilized to keep the communication open
between the e*Way and the SOAP service.

Java methods have been added to make it easier to set information in the SOAPEvent
Event Type Definition (ETD) and get information from it. The nature of this data
transfer depends on the Document Type Definition (DTD) processed by the SOAP
wizard in the e*Gate Enterprise Manager.

The Java methods for the SOAP e*Way are contained in the following classes:

! “Attribute Class” on page 82

! “SOAP Class” on page 84

! “SOAPAttachment Class” on page 94

! “SOAPBody Class” on page 100

! “SOAPFault Class” on page 104

! “SOAPHeader Class” on page 108

! “SOAPMessage Class” on page 110

! “SOAPNode Class” on page 115

! “SOAPRequest Class” on page 118

! “SOAPResponse Class” on page 118

! “SOAPSignature Class” on page 119

! “SOAPSigner Class” on page 121

Chapter 6 Section 6.2
Java Methods Attribute Class

e*Way Intelligent Adapter for SOAP User’s Guide 82 SeeBeyond Proprietary and Confidential

6.2 Attribute Class
The Attribute class represents an attribute of a SOAP ETD and is used to generate
attributes of a SOAP header, SOAP body, or SOAP envelope node.

The Attribute class is defined as:

public class Attribute

The Attribute class extends java.lang.Object.

The Attribute class methods include:

getKey

Description

getKey gets the key to this attribute.

Syntax

public java.lang.String getKey()

Parameters

None.

Returns

java.lang.String
The key to this attribute; can be null.

Throws

None.

getValue

Description

getValue retrieves the value of this attribute.

! “SOAPTransport Class” on page 124

! “SOAPVerification Class” on page 127

! getKey on page 82

! getValue on page 82

! setKey on page 83

! setValue on page 83

Chapter 6 Section 6.2
Java Methods Attribute Class

e*Way Intelligent Adapter for SOAP User’s Guide 83 SeeBeyond Proprietary and Confidential

Syntax

public java.lang.String getValue()

Parameters

None.

Returns

java.lang.String
The value of this attribute; can be null.

Throws

None.

setKey

Description

setKey sets the key to this attribute. _key must be a qualified name.

Syntax

public void setKey(java.lang.String _key)

Parameters

Returns

Void.

Throws

java.lang.Exception when any generic error occurs.

setValue

Description

setValue sets the value to this attribute.

Syntax

public void setValue(java.lang.String _value)

Parameters

Name Type Description

_key String The key to this attribute; can be null.

Name Type Description

_value String The key to this attribute; can be null.

Chapter 6 Section 6.3
Java Methods SOAP Class

e*Way Intelligent Adapter for SOAP User’s Guide 84 SeeBeyond Proprietary and Confidential

Returns

Void.

Throws

None.

6.3 SOAP Class
Implementation of a SOAP ETD. This ETD allows for processing of SOAP messages.
The SOAP ETD unmarshals valid Extensible Markup Language (XML) documents to
its SOAPRequest node. A typical client use of this ETD would be to unmarshal a well-
formed SOAP message (to the SOAPRequest node), call the sendToSOAPServer
method, which unmarshals the response into the SOAPResponse node.

Another client use of the ETD would be to fill in key fields of the SOAPRequest node,
then call the sendToSOAPServer method, which unmarshals the response into the
SOAPResponse node.

A SOAP ETD can also be used to unmarshal a SOAP request and form a SOAP
response, enabling implementation of SOAP services within a Collaboration.

The SOAP class is defined as:

public class SOAP

The SOAP class extends com.stc.jcsre.MsgETDImpl.

The SOAP class methods include:

! getSOAPActionURI on page 85

! getSOAPRequest on page 85

! getSOAPResponse on page 86

! getSOAPTransport on page 86

! getURL on page 86

! marshal on page 87

! marshalRequest on page 87

! marshalResponse on page 88

! receiveRequest on page 88

! receiveResponse on page 89

! reset on page 89

! sendRequest on page 90

! sendResponse on page 90

! setSOAPActionURI on page 90

! setSOAPRequest on page 91

Chapter 6 Section 6.3
Java Methods SOAP Class

e*Way Intelligent Adapter for SOAP User’s Guide 85 SeeBeyond Proprietary and Confidential

getSOAPActionURI

Description

getSOAPActionURI gets the SOAPAction header used to send the request message.

Syntax

public java.lang.String getSOAPActionURI()

Parameters

None.

Returns

java.lang.String
The SOAPAction URI.

Throws

None.

getSOAPRequest

Description

getSOAPRequest gets the SOAPRequest object.

Syntax

public SOAPRequest getSOAPRequest()

Parameters

None.

Returns

Object
The SOAPRequest object.

Throws

None.

! setSOAPResponse on page 91

! setSOAPTransport on page 92

! setURL on page 92

! unmarshal on page 93

! unmarshalRequest on page 93

Chapter 6 Section 6.3
Java Methods SOAP Class

e*Way Intelligent Adapter for SOAP User’s Guide 86 SeeBeyond Proprietary and Confidential

getSOAPResponse

Description

getSOAPResponse retrieves the SOAPResponse object.

Syntax

public SOAPResponse getSOAPResponse()

Parameters

None.

Returns

Object
The SOAPResponse object.

Throws

None.

getSOAPTransport

Description

getSOAPTransport retrieves the SOAPTransport object.

Syntax

public SOAPResponse getSOAPTransport()

Parameters

None.

Returns

Object
The SOAPTransport object.

Throws

None.

getURL

Description

getURL retrieves the URL to which the request message is sent.

Syntax

public java.lang.String getURL()

Parameters

None.

Chapter 6 Section 6.3
Java Methods SOAP Class

e*Way Intelligent Adapter for SOAP User’s Guide 87 SeeBeyond Proprietary and Confidential

Returns

java.lang.String
The URL to which the request message is sent.

Throws

None.

marshal

Description

marshal marshals the data content of the ETD into a byte array. The default behavior is
to marshal the SOAPRequest node. It overrides marshal in the class
com.stc.jcsre.SimpleETDImpl.

Syntax

public byte[] marshal()

Parameters

None.

Returns

byte[]

Byte array of the BLOB result from marshaling.

Throws

com.stc.jcsre.MarshalException when it is unable to marshal ETD.

marshalRequest

Description

marshalRequest provides a convenient method to marshal the SOAPRequest node
into a byte array.

Syntax

public byte[] marshalRequest()

Parameters

None.

Returns

byte[]

The byte array element representing the request.

Throws

com.stc.jcsre.MarshalException if it is unable to marshal the SOAPRequest node.

Chapter 6 Section 6.3
Java Methods SOAP Class

e*Way Intelligent Adapter for SOAP User’s Guide 88 SeeBeyond Proprietary and Confidential

marshalResponse

Description

marshalResponse provides a convenient method to marshal the SOAPResponse node
into an XML document, returning it as a byte array.

Syntax

public byte[] marshalResponse()

Parameters

None.

Returns

byte[]

The response is a valid SOAP XML document converted into a byte array.

Throws

com.stc.jcsre.MarshalException if it is unable to marshal the SOAPResponse node.

receiveRequest

Description

receiveRequest gets a message from the IQ for a specific topic name and unmarshals it
into the SOAPRequest node.

Syntax

public boolean receiveRequest(java.lang.String _topicName)

Parameters

Returns

Boolean

True if it is able to receive and unmarshal the SOAP message into the SOAPRequest
node.

Throws

com.stc.common.collabService.CollabDataException if any error occurs.

Name Type Description

_topicName String The name of the topic to subscribe
to.

Chapter 6 Section 6.3
Java Methods SOAP Class

e*Way Intelligent Adapter for SOAP User’s Guide 89 SeeBeyond Proprietary and Confidential

receiveResponse

Description

receiveResponse gets a message from the IQ for a specific topic name and unmarshal it
into the SOAPResponse node.

Syntax

public boolean receiveResponse()

Parameters

Returns

Boolean

True if able to receive and unmarshal the SOAP message from the given topic into the
SOAPRequest node.

Throws

Throws com.stc.common.collabService.CollabDataException if any error occurs.

reset

Description

reset resets the data content of an ETD. It overrides reset in the class
com.stc.jcsre.SimpleETDImpl.

Syntax

public boolean reset()

Parameters

None.

Returns

Boolean
Returns true if the reset clears data content of the ETD, false if the ETD does not
have meaningful implementation of reset(), thus necessitating the creation of a new
ETD.

Name Type Description

_topicName String The name of the topic to subscribe
to.

Chapter 6 Section 6.3
Java Methods SOAP Class

e*Way Intelligent Adapter for SOAP User’s Guide 90 SeeBeyond Proprietary and Confidential

sendRequest

Description

sendRequest marshals the SOAPRequest node and puts a message to the Intelligent
Queue (IQ) with the given topic name.

Syntax

public void sendRequest(java.lang.String _topicName)

Parameters

Returns

Void.

Throws

com.stc.common.collabService.CollabDataException if any error occurs.

sendResponse

Description

sendResponse marshals the SOAPResponse node and puts the message to the IQ.

Syntax

public Void. sendResponse()

Parameters

None.

Throws

com.stc.common.collabService.CollabDataException if any error occurs.

setSOAPActionURI

Description

setSOAPActionURI sets the SOAPAction URI used in sending the request message.

Syntax

public void setSOAPActionURI(java.lang.String _soapActionURI)

Name Type Description

_topicName String The name of the topic to send the
request to.

Chapter 6 Section 6.3
Java Methods SOAP Class

e*Way Intelligent Adapter for SOAP User’s Guide 91 SeeBeyond Proprietary and Confidential

Parameters

Returns

Void.

Throws

None.

setSOAPRequest

Description

setSOAPRequest sets the SOAPRequest object.

Syntax

public void setSOAPRequest(SOAPRequest _request)

Parameters

Returns

Void.

Throws

None.

setSOAPResponse

Description

setSOAPResponse sets the SOAPResponse object.

Syntax

public void setSOAPResponse(SOAPResponse _response)

Parameters

Name Type Description

_soapActionURI String The SOAPActionURI to set.

Name Type Description

_request Object The SOAPRequest object to set.

Name Type Description

_response Object The SOAPResponse object to set.

Chapter 6 Section 6.3
Java Methods SOAP Class

e*Way Intelligent Adapter for SOAP User’s Guide 92 SeeBeyond Proprietary and Confidential

Return Values

Void.

Throws

None.

setSOAPTransport

Description

setSOAPTransport sets the SOAPTransport object.

Syntax

public void setSOAPTransport(SOAPResponse _response)

Parameters

Parameters

None.

Returns

Void.

Throws

None.

setURL

Description

setURL sets the URL to which the request message is sent.

Syntax

public java.lang.String setURL(java.lang.String _url)

Parameters

Returns

java.lang.String
The URL to which the request message is sent.

Name Type Description

_response Object The SOAPResponse object to set.

Name Type Description

_url String The URL to set.

Chapter 6 Section 6.3
Java Methods SOAP Class

e*Way Intelligent Adapter for SOAP User’s Guide 93 SeeBeyond Proprietary and Confidential

Throws

java.net.MalformedURLException when _url is an invalid URL.

unmarshal

Description

unmarshal unmarshals a byte array into the data content of an ETD. The default
behavior is to unmarshal to the SOAPRequest node. It overrides unmarshal in the
class com.stc.jcsre.SimpleETDImpl.

Syntax

public void unmarshal(byte[] _blob)

Parameters

Returns

Void.

Throws

com.stc.jcsre.UnmarshalException when it is unable to unmarshal _blob into the ETD.

unmarshalRequest

Description

unmarshalRequest provides a convenient method to unmarshal a byte array into the
SOAPRequest node.

Syntax

public void unmarshalRequest(byte[] _blob)

Parameters

Returns

Void.

Throws

None.

Name Type Description

_blob Byte array Byte array of the XML document to
be unmarshaled.

Name Type Description

byte[] Byte array The XML document to unmarshal.

Chapter 6 Section 6.4
Java Methods SOAPAttachment Class

e*Way Intelligent Adapter for SOAP User’s Guide 94 SeeBeyond Proprietary and Confidential

unmarshalResponse

Description

unmarshalResponse provides a convenient method to unmarshal a byte array into the
SOAPResponse node. The byte array must be a valid XML document.

Syntax

public void unmarshalResponse(byte[] _blob)

Parameters

Returns

Void.

Throws

com.stc.jcsre.UnmarshalException if it is unable to unmarshal the SOAPResponse
node.

6.4 SOAPAttachment Class
The SOAPAttachment class is an ETD node that represents an attachment to a SOAP
message.

The SOAPAttachment class is defined as:

public class SOAPAttachment

The SOAPAttachment class extends java.lang.Object.

The SOAPAttachment class methods include:

Name Type Description

byte[] XML The XML document to unmarshal,
represented as a byte array.

! addReference on page 95

! base64Encode on page 95

! getContentType on page 96

! getFileLocation on page 96

! getName on page 96

! getTransferEncoding on page 97

! getValue on page 97

! setContentType on page 98

! setFileLocation on page 98

Chapter 6 Section 6.4
Java Methods SOAPAttachment Class

e*Way Intelligent Adapter for SOAP User’s Guide 95 SeeBeyond Proprietary and Confidential

addReference

Description

addReference adds a reference to _obj. The parameter _obj must implement the ETD
interface and have the setHref method. In other words, the XML element that the ETD
represents must have an Href attribute.

Syntax

public void addReference(com.stc.jcsre.ETD _obj)

Parameters

Returns

Void.

Throws

! java.lang.NoSuchMethodException if a setHref method does not exist

! java.lang.IllegalAccessException if the setHref method does not have sufficient
access privileges.

! java.lang.reflect.InvocationTargetException

base64Encode

Description

base64Encode encodes the current attachment in base 64. By default, the Content-
Transfer-Encoding is set to base64.

Syntax

public void base64Encode()

Parameters

None.

Returns

Void.

! setName on page 99

! setTransferEncoding on page 99

! setValue on page 100

Name Type Description

_obj Object Object implementing the ETD
interface.

Chapter 6 Section 6.4
Java Methods SOAPAttachment Class

e*Way Intelligent Adapter for SOAP User’s Guide 96 SeeBeyond Proprietary and Confidential

Throws

java.io.IOException if it is unable to encode the contents of this attachment in base 64.

getContentType

Description

getContentType retrieves the Content-Type for the current attachment. By default, the
content type of the attachment is set to application/octet-stream if no content type is
specified.

Syntax

public java.lang.String getContentType()

Parameters

None.

Returns

java.lang.String
The content type for the current attachment.

Throws

None.

getFileLocation

Description

getFileLocation retrieves the file name of the current attachment.

Syntax

public java.lang.String getFileLocation()

Parameters

None.

Returns

java.lang.String
The file name of the current attachment.

Throws

None.

getName

Description

getName retrieves the name of the current attachment. This name is used to generate
the Content-ID and must be unique across all attachments.

Chapter 6 Section 6.4
Java Methods SOAPAttachment Class

e*Way Intelligent Adapter for SOAP User’s Guide 97 SeeBeyond Proprietary and Confidential

Syntax

public java.lang.String getName()

Parameters

None.

Returns

java.lang.String
The attachment name.

Throws

None.

getTransferEncoding

Description

getTransferEncoding retrieves the content transfer encoding for the current
attachment. By default, Content-Transfer-Encoding is set to binary if no other
Content-Transfer-Encoding is set.

Syntax

public java.lang.String getTransferEncoding()

Parameters

None.

Returns

java.lang.String
The content transfer encoding for the current attachment.

Throws

None.

getValue

Description

getValue retrieves the value of the attachment. If the value was set previously, it
returns the value. If the value was not set, but a file location was specified, it retrieves
the contents of the file and returns those contents as a byte array.

Syntax

public byte[] getValue()

Parameters

None.

Chapter 6 Section 6.4
Java Methods SOAPAttachment Class

e*Way Intelligent Adapter for SOAP User’s Guide 98 SeeBeyond Proprietary and Confidential

Returns

byte[]
The value of the current attachment or the file contents as a byte array.

Throws

None.

setContentType

Description

setContentType sets the content type for the current attachment. The possible values
are defined by RFC.

Syntax

public void setContentType(java.lang.String _contentType)

Parameters

Returns

Void.

Throws

None.

setFileLocation

Description

setFileLocation sets the file name of the current attachment. This method checks the
following properties before setting the file name:

! The file must exist.

! The file must be a valid file and not a directory or a symbolic link.

! The file must be readable.

This method clears out any previous setting of the value field.

Syntax

public void setFileLocation(java.lang.String _fileLocation)

Name Type Description

_contentType String The content type for this
attachment.

Chapter 6 Section 6.4
Java Methods SOAPAttachment Class

e*Way Intelligent Adapter for SOAP User’s Guide 99 SeeBeyond Proprietary and Confidential

Parameters

Returns

Void.

Throws

None.

setName

Description

setName sets the name of the current attachment. This name is used to generate the
Content-ID and must be unique across all attachments.

Syntax

public void setName(java.lang.String _name)

Parameters

Returns

Void.

Throws

NullPointerException if _name is null.

setTransferEncoding

Description

setTransferEncoding sets the content transfer encoding to _transferEncoding. The
possible values are defined by RFC.

Syntax

public void setTransferEncoding(java.lang.String _transferEncoding)

Name Type Description

_fileLocation String The name of the file.

Name Type Description

_name String The unique name for this
attachment; it cannot be null.

Chapter 6 Section 6.5
Java Methods SOAPBody Class

e*Way Intelligent Adapter for SOAP User’s Guide 100 SeeBeyond Proprietary and Confidential

Parameters

Returns

Void.

Throws

None.

setValue

Description

setValue sets the value of the current attachment. If a file location was previously
specified, it is set to the empty string.

Syntax

public void setValue(byte[] _value)

Parameters

Returns

Void.

Throws

None.

6.5 SOAPBody Class
The SOAPBody class represents the SOAPBody element of the SOAP ETD, and is used
to generate a body element in a SOAP message.

The SOAPBody class is defined as:

public class SOAPBody

The SOAPBody class extends java.lang.Object.

Name Type Description

_transferEncoding String The content transfer encoding for
this attachment.

Name Type Description

_value Byte array The value to set.

Chapter 6 Section 6.5
Java Methods SOAPBody Class

e*Way Intelligent Adapter for SOAP User’s Guide 101 SeeBeyond Proprietary and Confidential

The SOAPBody class methods include:

getAttribute

Description

getAttribute allows a user to access a specific attribute.

Syntax

public Attribute getAttribute(int _index)

Parameters

Returns

Attribute
The key-value pair that is the attribute.

Throws

None.

getBodyContents

Description

getBodyContents gets the contents of the specified SOAPBody object.

Syntax

public java.lang.String getBodyContents()

Parameters

None.

! getAttribute on page 101

! getBodyContents on page 101

! getNumberOfAttributes on page 102

! getSOAPFault on page 102

! setAttribute on page 102

! setBodyContents on page 103

! setSOAPFault on page 103

Name Type Description

_index Integer The location of the attribute.

Chapter 6 Section 6.5
Java Methods SOAPBody Class

e*Way Intelligent Adapter for SOAP User’s Guide 102 SeeBeyond Proprietary and Confidential

Returns

java.lang.String
A string representing the body contents of the SOAPBody. The contents must be
well-formed XML.

Throws

None.

getNumberOfAttributes

Description

getNumberOfAttributes returns the number of attributes for this element.

Syntax

public int getNumberOfAttributes()

Parameters

None

Returns

Integer
The number of attributes for this element.

Throws

None.

getSOAPFault

Description

getSOAPFault retrieves the SOAP fault if one is generated.

Syntax

public SOAPFault getSOAPFault()

Parameters

None.

Returns

Object
The SOAPFault object; can be null if no fault was set.

Throws

None.

setAttribute

setAttribute allows you to set the index to a specific attribute.

Chapter 6 Section 6.5
Java Methods SOAPBody Class

e*Way Intelligent Adapter for SOAP User’s Guide 103 SeeBeyond Proprietary and Confidential

Syntax

public void setAttribute(int _index, Attribute _attribute)

Parameters

Returns

Void.

Throws

None.

setBodyContents

Description

setBodyContents sets the contents of the SOAPBody object to the given string.

Syntax

public void setBodyContents(java.lang.String _bodyContents)

Parameters

Returns

Void.

Throws

java.lang.Exception when any generic error occurs.

setSOAPFault

Description

setSOAPFault sets the SOAP fault to the specified object.

Syntax

public void setSOAPFault(SOAPFault _soapFault)

Name Type Description

_index Integer The location of the attribute.

_attribute Attribute The key-value pair mapping.

Name Type Description

_bodyContents String A string representing the contents of
the body of a SOAP message; the
message must be well-formed XML.

Chapter 6 Section 6.6
Java Methods SOAPFault Class

e*Way Intelligent Adapter for SOAP User’s Guide 104 SeeBeyond Proprietary and Confidential

Parameters

Returns

Void.

Throws

None.

6.6 SOAPFault Class
The SOAPFault class represents the SOAPFault node in the SOAP ETD and is used to
generate fault elements of a SOAP message.

The SOAPFault class is defined as:

public class SOAPFault

The SOAPFault class extends java.lang.Object.

The SOAPFault class methods include:

getDetail

Description

getDetail gets the detail information for this fault if it exists.

Syntax

public java.lang.String getDetail()

Parameters

None.

Name Type Description

_soapFault Object An object representing a SOAP fault.

! getDetail on page 104

! getFaultActor on page 105

! getFaultCode on page 105

! getFaultString on page 106

! setDetail on page 106

! setFaultActor on page 106

! setFaultCode on page 107

! setFaultString on page 107

Chapter 6 Section 6.6
Java Methods SOAPFault Class

e*Way Intelligent Adapter for SOAP User’s Guide 105 SeeBeyond Proprietary and Confidential

Returns

java.lang.String
The detail string.

Throws

None.

getFaultActor

Description

getFaultActor gets the fault actor URI.

Syntax

public java.lang.String getFaultActor()

Parameters

None.

Returns

java.lang.String
The fault actor URI.

Throws

None.

getFaultCode

Description

getFaultcode gets the fault code.

Syntax

public java.lang.String getFaultCode()

Parameters

None.

Returns

java.lang.String
The fault code.

Throws

None.

Chapter 6 Section 6.6
Java Methods SOAPFault Class

e*Way Intelligent Adapter for SOAP User’s Guide 106 SeeBeyond Proprietary and Confidential

getFaultString

Description

getFaultString gets the fault string.

Syntax

public java.lang.String getFaultString()

Parameters

None.

Returns

java.lang.String
The fault string.

Throws

None.

setDetail

Description

getDetail sets the detail information for this fault if it exists.

Syntax

public void getDetail(java.lang.String _detail)

Parameters

Returns

Void.

Throws

java.lang.Exception when _detail is not well-formed XML.

setFaultActor

Description

setFaultActor sets the fault actor.

Syntax

public void setFaultActor(java.lang.String _actor)

Name Type Description

_detail String The detail information as well-
formed XML.

Chapter 6 Section 6.6
Java Methods SOAPFault Class

e*Way Intelligent Adapter for SOAP User’s Guide 107 SeeBeyond Proprietary and Confidential

Parameters

Returns

Void.

Throws

None.

setFaultCode

Description

setFaultCode sets the fault code.

Syntax

public void SetFaultCode(java.lang.String _code)

Parameters

Returns

Void.

Throws

None.

setFaultString

Description

setFaultString sets the fault string.

Syntax

public void setFaultString(java.lang.String _string)

Parameters

Name Type Description

_actor String The fault actor.

Name Type Description

_code String The fault code.

Name Type Description

_string String The fault string.

Chapter 6 Section 6.7
Java Methods SOAPHeader Class

e*Way Intelligent Adapter for SOAP User’s Guide 108 SeeBeyond Proprietary and Confidential

Returns

Void.

Throws

None.

6.7 SOAPHeader Class
The SOAPHeader class directly represents the SOAPHeader node of the SOAP ETD,
and is used to generate the header element of the SOAP message.

The SOAPHeader class is defined as:

public class SOAPHeader

The SOAPHeader class extends java.lang.Object.

The SOAPHeader class methods include:

getAttribute

Description

getAttribute allows a user to access a specific attribute.

Syntax

public Attribute getAttribute(int _index)

Parameters

Returns

Attribute
The key-value pair that is the attribute.

Throws

None.

! getAttribute on page 108

! getHeaderContents on page 109

! getNumberOfAttributes on page 109

! setAttribute on page 109

! setHeaderContents on page 110

Name Type Description

_index Integer The location of the attribute.

Chapter 6 Section 6.7
Java Methods SOAPHeader Class

e*Way Intelligent Adapter for SOAP User’s Guide 109 SeeBeyond Proprietary and Confidential

getHeaderContents

Description

getHeaderContents gets the contents of the SOAPHeader node to the specified string.

Syntax

public java.lang.String getHeaderContents()

Parameters

None.

Returns

java.lang.String
The contents of the header as a string. The contents must be well-formed XML.

Throws

None.

getNumberOfAttributes

Description

getNumberOfAttributes returns the number of attributes for this element.

Syntax

public int getNumberOfAttributes()

Parameters

None

Returns

Integer
The number of attributes for this element.

Throws

None.

setAttribute

Description

setAttribute allows a user to set the index to a specific attribute.

Syntax

public void setAttribute(int _index, Attribute _attribute)

Chapter 6 Section 6.8
Java Methods SOAPMessage Class

e*Way Intelligent Adapter for SOAP User’s Guide 110 SeeBeyond Proprietary and Confidential

Parameters

Returns

Void.

Throws

None.

setHeaderContents

Description

setHeaderContents sets the contents of the SOAPHeader node. The contents must be
well-formed XML.

Syntax

public void setHeaderContents(java.lang.String _headerContents)

Parameters

Returns

Void.

Throws

java.lang.Exception when any content error occurs.

6.8 SOAPMessage Class
The SOAPMessage class serves as a base class for all ETD nodes that are SOAP
messages. This class is used to generate a complete SOAP envelope with required body
and optional header and fault elements.

The SOAPMessage class is defined as:

public class SOAPMessage

The SOAPMessage class extends java.lang.Object.

Name Type Description

_index Integer The location of the attribute.

_attribute Attribute The key-value pair mapping.

Name Type Description

_headerContents String The contents of the header.

Chapter 6 Section 6.8
Java Methods SOAPMessage Class

e*Way Intelligent Adapter for SOAP User’s Guide 111 SeeBeyond Proprietary and Confidential

The SOAPMessage class methods include:

getAttribute

Description

getAttribute allows you to access a specific attribute.

Syntax

public Attribute getAttribute(int _index)

Parameters

Returns

Attribute
The key-value pair that makes up the attribute.

Throws

None.

getNumberOfAttributes

Description

getNumberOfAttributes returns the number of attributes for this element.

Syntax

public int getNumberOfAttributes()

Parameters

None

! getAttribute on page 111

! getNumberOfAttributes on page 111

! getSOAPBody on page 112

! getSOAPHeader on page 112

! marshal on page 113

! setAttribute on page 113

! setSOAPBody on page 113

! setSOAPHeader on page 114

! unmarshal on page 114

Name Type Description

_index Integer The location of the attribute.

Chapter 6 Section 6.8
Java Methods SOAPMessage Class

e*Way Intelligent Adapter for SOAP User’s Guide 112 SeeBeyond Proprietary and Confidential

Returns

Integer
The number of attributes for this element.

Throws

None.

getSOAPBody

Description

getSOAPBody returns an ETD-specific SOAPBody object.

Syntax

public SOAPBody getSOAPBody()

Parameters

None.

Returns

Object
The body of this SOAPMessage.

Throws

None.

getSOAPHeader

Description

getSOAPHeader returns an ETD-specific SOAPHeader object.

Syntax

public SOAPHeader getSOAPHeader()

Parameters

None.

Returns

Object
The header of the SOAPMessage.

Throws

java.lang.Exception when any generic error occurs.

Chapter 6 Section 6.8
Java Methods SOAPMessage Class

e*Way Intelligent Adapter for SOAP User’s Guide 113 SeeBeyond Proprietary and Confidential

marshal

Description

marshal marshals the contents of the SOAPMessage class into a byte array.

Syntax

public byte[] marshal()

Parameters

None.

Returns

byte[]
Byte array representation of this message.

Throws

com.stc.jcsre.MarshalException if it is unable to marshal the contents of this object into
a byte array.

setAttribute

Description

setAttribute allows you to set the index to a specific attribute.

Syntax

public void setAttribute(int _index, Attribute _attribute)

Parameters

Returns

Void.

Throws

None.

setSOAPBody

Description

setSOAPBody sets the ETD-specific SOAP body.

Syntax

public void setSOAPBody(SOAPBody _soapbody)

Name Type Description

_index Integer The location of the attribute.

_attribute Attribute The key-value pair mapping.

Chapter 6 Section 6.8
Java Methods SOAPMessage Class

e*Way Intelligent Adapter for SOAP User’s Guide 114 SeeBeyond Proprietary and Confidential

Parameters

Returns

Void.

Throws

None.

setSOAPHeader

Description

setSOAPHeader sets the ETD-specific SOAP header.

Syntax

public void setSOAPHeader(SOAPHeader _soapHeader)

Parameters

Returns

Void.

Throws

None.

unmarshal

Description

unmarshal unmarshals the byte array _blob into the internal structure of this
SOAPMessage class. It is assumed that _blob is a valid, well-formed XML document
conforming to the SOAP specification.

Syntax

public void unmarshal(byte[] _blob)

Name Type Description

_soapBody SOAPBody A new SOAPBody.

Name Type Description

_soapHeader SOAPHeader A new SOAP header.

Chapter 6 Section 6.9
Java Methods SOAPNode Class

e*Way Intelligent Adapter for SOAP User’s Guide 115 SeeBeyond Proprietary and Confidential

Parameters

Returns

Void.

Throws

com.stc.jcsre.UnmarshalException if it is unable to interpret _blob into the internal
class attributes.

6.9 SOAPNode Class
The SOAPNode class is a base class for all SOAP-specific nodes in an ETD. This class
implements the ETD interface and extends XMLETDImpl. This class represents a
generic, SOAP element from a SOAP XML document. For example, the SOAPBody
class that extends from SOAPNode represents the element SOAP-ENV:Body.

SOAPNode is responsible for dealing with attributes and namespaces.

The SOAPNode class is defined as:

public class SOAPNode

The SOAPNode class extends com.stc.jcsre.XMLETDImpl.

The SOAPNode class methods include:

Name Type Description

_blob Byte array The byte array representing a SOAP
message.

SOAPAction URI String The identifier from which the server
is told what action to take.

Transport Type String The transport mechanism, for
example, HTTP, SMTP, or HTTP(S).
Currently, HTTP is the only transport
mechanism supported.

! countAttribute on page 116

! getAttribute on page 116

! getLocalName on page 116

! setAttribute on page 117

! unmarshal on page 117

Chapter 6 Section 6.9
Java Methods SOAPNode Class

e*Way Intelligent Adapter for SOAP User’s Guide 116 SeeBeyond Proprietary and Confidential

countAttribute

Description

countAttribute retrieves the number of attributes for this element.

Syntax

public int countAttribute()

Parameters

None.

Returns

Integer
The number of attributes for this element.

Throws

None.

getAttribute

Description

getAttribute allows a user to access a specific attribute. If no attribute exists at the given
location, an empty attribute is created and returned.

Syntax

public Attribute getAttribute(int _index)

Parameters

Returns

Attribute
The key-value pair that is the attribute.

Throws

None.

getLocalName

Description

getLocalName retrieves the local name associated with the current XML element.

Note: Every SOAPNode class in a SOAP ETD represents an XML element.

Name Type Description

_index Integer The location of the attribute.

Chapter 6 Section 6.9
Java Methods SOAPNode Class

e*Way Intelligent Adapter for SOAP User’s Guide 117 SeeBeyond Proprietary and Confidential

Syntax

public abstract java.lang.String getLocalName()

Parameters

None.

Returns

java.lang.String
The local name of the current ETD node.

Throws

None.

setAttribute

Description

setAttribute allows you to set the index to a specific attribute.

Syntax

public void setAttribute(int _index,Attribute _attribute)

Parameters

Returns

Void.

Throws

None.

unmarshal

Description

unmarshal unmarshals the byte array _blob into the current object. It overrides
unmarshal in the class com.stc.jcsre.XMLETDImpl.

Syntax

public void unmarshal(byte[] _blob)

Parameters

Name Type Description

_index Integer The location of the attribute.

_attribute Attribute The key-value pair mapping.

Name Type Description

_blob Byte array The byte array to unmarshal.

Chapter 6 Section 6.10
Java Methods SOAPRequest Class

e*Way Intelligent Adapter for SOAP User’s Guide 118 SeeBeyond Proprietary and Confidential

Returns

Void.

Throws

com.stc.jcsre.UnmarshalException if an error occurs in interpreting the bytes.

6.10 SOAPRequest Class
The SOAPRequest class represents a SOAPMessage that is sent to a SOAP Server.
Fundamentally, a SOAPRequest is a simple wrapper around a SOAPMessage object.
This class represents the SOAP request of a SOAP ETD.

The SOAPRequest class is defined as:

public class SOAPRequest

The SOAPRequest class extends SOAPMessage.

The following SOAPRequest class methods were inherited from the SOAPMessage
class, and are described under SOAPMessage Class on page 110:

6.11 SOAPResponse Class
The SOAPResponse class represents a SOAPMessage that has been received from a
SOAP server. A SOAP response has the responsibility of dealing with possible SOAP
exceptions and faults in addition to its regular responsibilities as a SOAPMessage.

The SOAPResponse class is defined as:

public class SOAPResponse

The SOAPResponse class extends SOAPMessage.

! getAttribute on page 111

! getSOAPBody on page 112

! getSOAPHeader on page 112

! marshal on page 113

! setAttribute on page 113

! setSOAPBody on page 113

! setSOAPHeader on page 114

! unmarshal on page 114

Chapter 6 Section 6.12
Java Methods SOAPSignature Class

e*Way Intelligent Adapter for SOAP User’s Guide 119 SeeBeyond Proprietary and Confidential

The following SOAPResponse class methods were inherited from the SOAPMessage
class, and are described under that section (SOAPMessage Class on page 110):

The rest of this section explains the SOAPResponse class method not inherited from
the SOAPMessage class.

unmarshal

Description

unmarshal behaves like a normal SOAP message, but be sure to check whether there
are any faults. If any fault exists, it marshals that data to the fault node. It overrides
unmarshal in the class SOAPMessage.

Syntax

public void unmarshal(byte[] blob)

Parameters

Returns

Void.

Throws

com.stc.jcsre.UnmarshalException if there is a fault.

6.12 SOAPSignature Class
The SOAPSignature class represents a SOAP-SEC:Signature element. This element
encapsulates an XML signature element and is part of the header of the SOAP
envelope.

! getAttribute on page 111

! getSOAPBody on page 112

! getSOAPHeader on page 112

! marshal on page 113

! setAttribute on page 113

! setSOAPBody on page 113

! setSOAPHeader on page 114

! unmarshal on page 119

Name Type Description

blob Byte array The array that holds the XML
document.

Chapter 6 Section 6.12
Java Methods SOAPSignature Class

e*Way Intelligent Adapter for SOAP User’s Guide 120 SeeBeyond Proprietary and Confidential

Users of the SOAP ETD do not have to interact directly with this class. Through the use
of the sign-and-verify method calls in SOAPSigner and SOAPVerification,
respectively, objects of this class are generated automatically.

The SOAPSignature class is defined as:

public class SOAPSignature

The SOAPSignature class extends SOAPNode.

The SOAPSignature class methods include:

getLocalName

Description

getLocalName allows you to retrieve the local name of the current EDT node. It
overrides getLocalName in the class SOAPNode (see “SOAPNode Class” on
page 115).

Syntax

public java.lang.String getLocalName()

Parameters

None.

Returns

java.lang.String
The local name of the current node.

Throws

None.

getXMLSignature

Description

getXMLSignature retrieves the XML signature as a string. The XML signature must be
well-formed XML and conform to the official XML Digital Signature Specification.

Syntax

public java.lang.String getXMLSignature()

Parameters

None.

! getLocalName on page 120

! getXMLSignature on page 120

! setXMLSignature on page 121

Chapter 6 Section 6.13
Java Methods SOAPSigner Class

e*Way Intelligent Adapter for SOAP User’s Guide 121 SeeBeyond Proprietary and Confidential

Returns

java.lang.String
The XML signature as a string.

Throws

None.

setXMLSignature

Description

setXMLSignature sets the XML signature. The XML Signature must be well-formed
XML and conform to the official XML Digital Signature Specification.

Syntax

public void setXMLSignature(java.lang.String _digitalSignature)

Parameters

Returns

Void.

Throws

None.

6.13 SOAPSigner Class
The SOAPSigner class is a utility node in the SOAP ETD. This class signs key parts of
the SOAP message, generating SOAPSignature objects.

The SOAPSigner class is defined as:

public class SOAPSigner

The SOAPSigner class extends java.lang.Object.

The SOAPSigner class methods include:

Name Type Description

_digitalSignature String The XML signature as a string.

! getSignatureResults on page 122

! getSignatures on page 122

! setSignatureResults on page 122

! setSignatures on page 123

! sign on page 123

Chapter 6 Section 6.13
Java Methods SOAPSigner Class

e*Way Intelligent Adapter for SOAP User’s Guide 122 SeeBeyond Proprietary and Confidential

getSignatureResults

Description

getSignatureResults retrieves the results of the last call to sign. Its values can be:

! Empty string indicating success.

! Exception stack trace indicating failure

Syntax

public java.lang.String getSignatureResults()

Parameters

None.

Returns

java.lang.String
The signature results.

Throws

None.

getSignatures

Description

getSignatures retrieves the list of signatures.

Syntax

public java.util.List getSignatures()

Parameters

None.

Returns

List
The list of signatures.

Throws

None.

setSignatureResults

Description

setSignatureResults sets the signature results to _signatureResults.

Syntax

public void setSignatureResults(java.lang.String _signatureResults)

Chapter 6 Section 6.13
Java Methods SOAPSigner Class

e*Way Intelligent Adapter for SOAP User’s Guide 123 SeeBeyond Proprietary and Confidential

Parameters

Returns

Void.

Throws

None.

setSignatures

Description

setSignatures sets the list of signatures.

Syntax

public void setSignatures(java.util.List _signatures)

Parameters

Returns

Void.

Throws

None.

sign

Description

sign signs the given _etd object. The _etd object must be an XML-based node.
Moreover, the ETD object must have an identification (ID) attribute or be able to
generically set attributes. For example, all SOAP-based nodes allow for generic
attributes. After signing a SOAP-based node (for example, SOAPRequest,
SOAPResponse, or SOAPBody) a new ID attribute is added.

If the _etd object is generated from a DTD, then the element represented by _etd must
have an ID attribute. This element has a corresponding setID that is used to create the
proper references.

Syntax

public void sign(com.stc.jcsre.ETD _etd)

Name Type Description

_signatureResults String The signature results.

Name Type Description

_signatures List The data structure used to hold
signatures; it cannot be null.

Chapter 6 Section 6.14
Java Methods SOAPTransport Class

e*Way Intelligent Adapter for SOAP User’s Guide 124 SeeBeyond Proprietary and Confidential

Parameters

Returns

Void.

Throws

None.

6.14 SOAPTransport Class
The SOAPTransport class encompasses all the information and methods needed to
send or transport a SOAP request to a SOAP server.

The SOAPTransport class is defined as:

public class SOAPTransport

The SOAPTransport class extends java.lang.Object.

The SOAPTransport class methods include:

getStatusCode

Description

getStatusCode retrieves the result of an HTTP post to the SOAP server.

Syntax

public int getStatusCode()

Parameters

None.

Returns

Integer
The status code for the last call to SendToSOAPServer.

Name Type Description

_etd Object The ETD object to be signed.

! getStatusCode on page 124

! getStatusMessage on page 125

! sendToSOAPServer on page 125

! setStatusCode on page 126

! setStatusMessage on page 126

Chapter 6 Section 6.14
Java Methods SOAPTransport Class

e*Way Intelligent Adapter for SOAP User’s Guide 125 SeeBeyond Proprietary and Confidential

Throws

java.lang.Exception when it is unable to retrieve the code.

getStatusMessage

Description

getStatusMessage retrieves any error messages from the last call to
SendToSOAPServer.

Syntax

public java.lang.String getStatusMessage()

Parameters

None.

Returns

java.lang.String
The error message, if it exists.

Throws

java.lang.Exception when it is unable to retrieve the error message.

sendToSOAPServer

Description

sendToSOAPServer sends the SOAP message represented by the SOAPRequest node.

Syntax

public void sendToSOAPServer()

Parameters

The configuration parameters are derived from the SOAP Connection Point.

Name Type Description

URL String The location to send the message or
the identifier into which the SOAP
message is posted.

SOAPAction URI String The identifier from which the server
is told what action to take.

Transport Type String The transport mechanism, for
example, HTTP, SMTP, or HTTP(S).
Currently, HTTP is the only transport
mechanism supported.

Chapter 6 Section 6.14
Java Methods SOAPTransport Class

e*Way Intelligent Adapter for SOAP User’s Guide 126 SeeBeyond Proprietary and Confidential

Returns

Void.

Throws

java.lang.Exception when any generic error occurs.

setStatusCode

Description

setStatusCode sets the status code for this SOAP Transport object.

Syntax

public void setStatusCode(int_statusCode)

Parameters

Returns

Void.

Throws

None.

setStatusMessage

Description

getStatusMessage sets the status message for this SOAPTransport object.

Syntax

public void setStatusMessage(java.lang.String _statusMessage)

Parameters

Returns

Void.

Throws

None.

Name Type Description

_statusCode Integer The new status code.

Name Type Description

_statusMessage String The new status message.

Chapter 6 Section 6.15
Java Methods SOAPVerification Class

e*Way Intelligent Adapter for SOAP User’s Guide 127 SeeBeyond Proprietary and Confidential

6.15 SOAPVerification Class
The SOAPVerification class is a utility class used to verify the SOAP message. This
class examines all SOAP signature elements in the SOAP header and verifies that they
match, based on the digest and signature algorithms.

The XML signatures must have the KeyInfo element. This element gives a
representation of the key needed to validate the current document.

By default, verification is not done upon unmarshaling of the SOAP message. You must
call the verify method within the Collaboration. You must then check the call’s status to
see whether to accept the message.

The SOAPVerification class is defined as:

public class SOAPVerification

The SOAPVerification class extends java.lang.Object.

The SOAPVerification class methods include:

getVerificationResults

Description

getVerificationResults retrieves the verification results as a string. The verification
results can be one of the following values:

! 0: Both the signature and reference validation were successful.

! 1: Signature validation failed but the reference validation was successful.

! 2: Signature validation was successful but the reference validation failed.

If you receive any other value, both the signature and reference validation failed.

Note: See the official XML Digital Signature Specification for details on signature and
reference validation.

Syntax

public java.lang.String getVerificationResults()

Parameters

None.

Returns

java.lang.String
The results of the last call to verify.

! getVerificationResults on page 127

! setVerificationResults on page 128

! verify on page 128

Chapter 6 Section 6.15
Java Methods SOAPVerification Class

e*Way Intelligent Adapter for SOAP User’s Guide 128 SeeBeyond Proprietary and Confidential

Throws

None.

setVerificationResults

Description

setVerificationResults sets the verification results to the given string.

Syntax

public void setVerificationResults(java.lang.String
_verificationResults)

Parameters

Returns

Void.

Throws

None.

verify

Description

verify verifies the signatures in the SOAP header.

Syntax

public void verify()

Parameters

None.

Returns

Void.

Throws

java.lang.Exception if any error occurs.

Name Type Description

_verificationResults String The new results from a call to
verify.

e*Way Intelligent Adapter for SOAP User’s Guide 129 SeeBeyond Proprietary and Confidential

Chapter 7

Additional Features

This chapter explains additional features available with the e*Way Intelligent Adapter
for SOAP, including:

! Secured Sockets Layer (SSL)

! SOAP message attachments

! Digital signature support

7.1 Using Secured Sockets Layer
SSL is supported through the use of JSSE version 1.0.2. Currently, the JSSE reference
implementation is used. JSSE is a provider-based architecture. Essentially, this means
that there is a set of standard interfaces for cryptographic algorithms, hashing
algorithms, secured-socket-layered URL stream handlers, and so on.

Because the user is interfacing with JSSE through these interfaces, the different
components can be mixed and matched as long as the implementation is programmed
under the published interfaces. However, some implementation cannot support a
particular algorithm.

Note: See the JSSE documentation provided by Sun Microsystems for further details.

7.1.1 KeyStores and TrustStores
JSSE makes use of files called KeyStores and TrustStores. A KeyStore is a database
consisting of a private key and an associated certificate, or an associated certificate
chain. The certificate chain consists of the client certificate and one or more certificate
authority (CA) certificates.

A KeyStore contains a private key, in addition to the certificate, while TrustStore only
contains the certificates trusted by the client (a “trust” store). The installation of the Java
HTTP(S) e*Way installs a TrustStore file named trustedcacertsjks. This file can be used
as the TrustStore for the e*Way.

A KeyStore is used by the e*Way for client authentication, while a TrustStore is used to
authenticate a server in SSL authentication. Both KeyStore and TrustStores are managed
via a utility called keytool, which is a part of the Java JDK installation.

Chapter 7 Section 7.1
Additional Features Using Secured Sockets Layer

e*Way Intelligent Adapter for SOAP User’s Guide 130 SeeBeyond Proprietary and Confidential

Note: To use keytool, you must set your CLASSPATH to jcert.jar, jnet.jar, and
jsse.jar.

The following line must also be added to the jre\lib\security\java.security:

security.provider.3=com.sun.net.ssl.internal.ssl.Provider

See the installation manual for the JSSE version 1.0.2 for more information.

7.1.2 Methods for generating a KeyStore and TrustStore
This section explains steps on how to create a KeyStore and a TrustStore (or import a
certificate into an existing TrustStore such as trustedcacertsjks). The primary tool used
is keytool, but openssl is also used as a reference for generating pkcs12 KeyStores. For
more information on openssl, and available downloads, see the following Web site:

http://www.openssl.org.

Creating a TrustStore

For demonstration purposes, suppose you have the following CAs that you trust:
firstCA.cert, secondCA.cert, thirdCA.cert, located in the directory C:\cascerts. You
can create a new TrustStore consisting of these three trusted certificates.

To create a new TrustStore

Use the following command:

keytool -import -file C:\cascerts\firstCA.cert -alias firstCA
-keystore myTrustStore

You must enter this command two more times, but for the second and third entries,
substitute secondCA and thirdCA for firstCA. Each of these command entries has the
following purposes:

1 The first entry creates a KeyStore file name myTrustStore in the current working
directory and imports the firstCA certificate into the TrustStore with an alias of
firstCA. The format of myTrustStore is JKS.

2 For the second entry, substitute secondCA to import the secondCA certificate into
the TrustStore, myTrustStore.

3 For the third entry, substitute thirdCA to import the thirdCA certificate into the
TrustStore.

Once completed, myTrustStore is available to be used as the TrustStore for the e*Way.
See “TrustStore” on page 37 for more information.

Using an Existing TrustStore

This section explains how to use an existing TrustStore such as trustedcacertsjks. Notice
that in the previous section, steps 2 and 3 were used to import two CAs into the
TrustStore created in step 1.

For example, suppose you have a trusted certificate file named:
C:\trustedcerts\foo.cert and want to import it to the trustedcacertsjks TrustStore.

http://www.openssl.org

Chapter 7 Section 7.1
Additional Features Using Secured Sockets Layer

e*Way Intelligent Adapter for SOAP User’s Guide 131 SeeBeyond Proprietary and Confidential

If you are importing certificates into an existing TrustStore, use:

keytool -import -file C:\cacerts\secondCA.cert -alias secondCA
-keystore trustedcacertsjks

Once you are finished, trustedcacertsjks can be used as the TrustStore for the e*Way.
See “TrustStore” on page 37 for more information.

7.1.3 Creating a KeyStore in JKS Format
This section explains how to create a KeyStore using the JKS format as the database
format for both the private key, and the associated certificate or certificate chain. By
default, as specified in the java.security file, keytool uses JKS as the format of the key
and certificate databases (KeyStore and TrustStores). A CA must sign the certificate
signing request (CSR). The CA is therefore trusted by the server-side application to
which the e*Way is connected.

To generate a KeyStore

Use the following command:

keytool -keystore clientkeystore -genkey -alias client

You are prompted for several pieces of information required to generate a CSR. A
sample key generation section follows:

Enter keystore password: seebyond
What is your first and last name?
[Unknown]: development.seebeyond.com
What is the name of your organizational unit?
[Unknown]: Development
what is the name of your organization?
[Unknown]: SeeBeyond
What is the name of your City of Locality?
[Unknown]: Monrovia
What is the name of your State or Province?
[Unknown]: California
What is the two-letter country code for this unit?
[Unknown]: US
Is<CN=Foo Bar, OU=Development, O=SeeBeyond, L=Monrovia,
ST=California, C=US> correct?
[no]: yes

Enter key password for <client>
(RETURN if same as keystore password):

If the KeyStore password is specified, then the password must be provided for the
e*Way. Press RETURN when prompted for the key password (this action makes the key
password the same as the KeyStore password).

This operation creates a KeyStore file clientkeystore in the current working directory.
You must specify a fully-qualified domain for the “first and last name” question. The
sample uses development.seebeyond.com. The reason for this use is that some CAs
such as Verisign expect this parameter to be a fully qualified domain name.

There are CAs that do not require the fully qualified domain, but it is recommended to
use the fully-qualified domain name for the sake of portability. All the other
information given must be valid. If the information can not be validated, Certificate
Authority such as Verisign does not sign a generated CSR for this entry.

Chapter 7 Section 7.1
Additional Features Using Secured Sockets Layer

e*Way Intelligent Adapter for SOAP User’s Guide 132 SeeBeyond Proprietary and Confidential

This KeyStore contains an entry with an alias of client. This entry consists of the
Generated private key and information needed for generating a CSR as follows:

keytool -keystore clientkeystore -certreq alias client -keyalg rsa
-file client.csr

This command generates a certificate signing request which can be provided to a CA
for a certificate request. The file client.csr contains the CSR in PEM format.

Some CA (one trusted by the Web server to which the e*Way is connecting) must sign
the CSR. The CA generates a certificate for the corresponding CSR and signs the
certificate with its private key. For more information, visit:

http://www.thawte.com

or

http://www.verisign.com

If the certificate is chained with the CA’s certificate, perform step A; otherwise, perform
step B in the following list:

A The following command assumes the client certificate is in the file client.cer and
the CA’s certificate is in the file CARoot.cer:

keytool -import -keystore clientstore -file client.cer -alias
client

This command imports the certificate (which can include more than one CA in
addition to the Client’s certificate).

B The following command imports the CA’s certificate into the KeyStore for
chaining with the client’s certificate:

keytool -import -keystore clientkeystore -file CARootcer -alias
theCARoot

C The following command imports the client’s certificate signed by the CA whose
certificate was imported in the preceding step:

keytool -import -keystore clientkeystore -file client.cer -alias
client

The generated file clientkeystore contains the client’s private key and the associated
certificate chain used for client authentication and signing. The KeyStore and/or
clientkeystore, can then be used as the e*Way’s KeyStore. See the “KeyStore” on
page 36 for more information.

7.1.4 Creating a KeyStore in PKCS12 Format
This section explains how to create a PKCS12 KeyStore to work with JSSE. In a real
working environment, a customer could already have an existing private key and
certificate (signed by a known CA). In this case, JKS format can not be used, because it
does not allow the user to import/export the private key through keytool. It is
necessary to generate a PKCS12 database consisting of the private key and its
certificate.

The generated PKCS12 database can then be used as the e*Way’s KeyStore. The keytool
utility is currently lacking the ability to write to a PKCS12 database. However, it can
read from a PKCS12 database.

http://www.thawte.com
http://www.verisign.com

Chapter 7 Section 7.1
Additional Features Using Secured Sockets Layer

e*Way Intelligent Adapter for SOAP User’s Guide 133 SeeBeyond Proprietary and Confidential

Note: There are additional third-party tools available for generating PKCS12 certificates,
if you want to use a different tool.

For the following example, openssl is used to generate the PKCS12 KeyStore:

cat.mykey.pem.txt mycertificate.pem.txt>mykeycertificate.pem.txt

The existing key is in the file mykey.pem.txt in PEM format. The certificate is in
mycertificate.pem.txt, which is also in PEM format. A text file must be created which
contains the key followed by the certificate as follows:

openssl pkcs12 -export -in mykeycertificate.pem.txt -out
mykeystore.pkcs12 -name myAlias -noiter -nomaciter

This command prompts the user for a password. The password is required. The
KeyStore fails to work with JSSE without a password. This password must also be
supplied as the password for the e*Way’s KeyStore password (see
“KeyStorePassword” on page 37).

This command also uses the openssl pkcs12 command to generate a PKCS12 KeyStore
with the private key and certificate. The generated KeyStore is mykeystore.pkcs12 with
an entry specified by the myAlias alias. This entry contains the private key and the
certificate provided by the -in argument. The noiter and nomaciter options must be
specified to allow the generated KeyStore to be recognized properly by JSSE.

7.1.5 SSL Handshaking
There are two options available for setting up SSL connectivity with a Web server:

! Server-side authentication: The majority of eCommerce Web sites on the Internet
are configured for server-side authentication. The e*Way requests a certificate from
the Web server and authenticates the Web server by verifying that the certificate can
be trusted. Essentially, the e*Way does this operation by looking into its TrustStore
for a CA certificate with a public key that can validate the signature on the
certificate received from the Web server.

! Dual authentication: This option requires authentication from both the e*Way and
Web server. The server side (Web server) of the authentication process is the same as
that described previously. However, in addition, the Web server requests a
certificate from the e*Way. The e*Way then sends its certificate to the Web server.
The server, in turn, authenticates the e*Way by looking into its TrustStore for a
matching trusted CA certificate. The communication channel is established by the
process of both parties’ requesting certificate information.

For illustrations of both these types of authentication, see the following figures:

! Figure 24 on page 134 shows a diagram of the SSL handshake dialog for server-side
authentication.

! Figure 25 on page 135 shows a diagram of the SSL handshake dialog for dual
authentication.

Chapter 7 Section 7.1
Additional Features Using Secured Sockets Layer

e*Way Intelligent Adapter for SOAP User’s Guide 134 SeeBeyond Proprietary and Confidential

Figure 24 Server-side Authentication

Client Server

Handshake: Finished

ChangeCipherSpec

Handshake: ServerHelloDone

Handshake: Certificate

Handshake: ServerHello

Handshake: Client Hello

Handshake: ClientKeyExchange

ChangeCipherSpec

Handshake: Finished

Chapter 7 Section 7.1
Additional Features Using Secured Sockets Layer

e*Way Intelligent Adapter for SOAP User’s Guide 135 SeeBeyond Proprietary and Confidential

Figure 25 Dual Authentication

Client Server

Handshake: Finished

ChangeCipherSpec

Handshake: ServerHelloDone

Handshake: Certificate

Handshake: ServerHello

Handshake: Client Hello

Handshake: ClientKeyExchange

ChangeCipherSpec

Handshake: Finished

Handshake: Certificate

Handshake: CertificateVerify

Handshake: CertificateRequest

Chapter 7 Section 7.2
Additional Features Using SOAP Attachments

e*Way Intelligent Adapter for SOAP User’s Guide 136 SeeBeyond Proprietary and Confidential

Figure 26 shows a diagram of general SSL operation with the HTTP(S) e*Way.

Figure 26 General SSL Operation: HTTP(S) e*Way

Note: See the HTTP(S) e*Way Intelligent Adapter User’s Guide for details on how to
use this e*Way.

7.2 Using SOAP Attachments
You can send a SOAP message together with attachments of various sorts, ranging
from fax images to art drawings or images. These attachments are usually transmitted
in some type of binary format. For example, most images on the Internet are
transmitted using either the .gif or .jpg file data formats.

HTTP(S) e*Way Web Server

POST / GET

Response

SSL Communication Channel

truststore keystore

Trusted CA
Certificates

Certificate &
CA Certificate

Chain

Private

Key

HackerMan-in-Middle Attack:
Cannot break secured channel

Chapter 7 Section 7.2
Additional Features Using SOAP Attachments

e*Way Intelligent Adapter for SOAP User’s Guide 137 SeeBeyond Proprietary and Confidential

7.2.1 SOAP Attachments: Overview
Web service developers can specify that a Web service's methods are to use SOAP
attachments to transport binary data or large Extensible Markup Language (XML)
documents.

One typical use of SOAP attachments is for transporting intact, binary data such as
image files. For another example, your system may need to transport XML documents
to other parts of the system without the overhead of validating them. These XML
documents that do not need to conform to your particular schema or Document Type
Definition (DTD) can be passed as attachments.

By using SOAP attachments, the SOAP message body is much smaller because it
contains only a reference to the data and not the data itself. Using attachments can be
more efficient because smaller SOAP messages are processed more quickly than
extremely large messages, and the translation of the data to Java objects is reduced for
attachments.

SOAP Attachment Implementation

SOAP attachments are implemented by wrapping the SOAP message and one or more
attachments in an envelope of Multipurpose Internet Mail Extensions (MIME). The
developer uses, for example, the Web Service Builder (or an equivalent) to map method
parameters or return value data types to MIME types.

Table 6 shows the Java data types that can be set to use SOAP attachments. The table
also shows the MIME type that each Java type can be mapped to.

To make a Web service use SOAP attachments

1 From the Web Service Builder (for example), select the method parameter or return
value for which you want to use attachments.

2 Place a check next to Part is Attachment, if it is available.

3 Select from the list of Available Types an appropriate MIME type you want the
application to use as an attachment.

4 Click Add Type.

5 If you want more than one type of attachment for your application, Repeat steps 2
and 3 for more types, as necessary. For example, you can allow attachments of both
image/gif and image/jpeg MIME types.

Table 6 Appropriate Mappings for Java Types to MIME Types

Java Data Type MIME Type Mapping

java.lang.String text/plain, text/xml

org.w3c.dom.Document text/xml

byte[] image/gif, image/jpeg, application/octet-stream

java.io.Serializable application/x-java-serialized-object

Chapter 7 Section 7.2
Additional Features Using SOAP Attachments

e*Way Intelligent Adapter for SOAP User’s Guide 138 SeeBeyond Proprietary and Confidential

After the Web service is deployed and the method that uses attachments is invoked, the
MIME attachment is translated to a Java object by an appropriate data content handler,
depending on the MIME data type. For example, the text/xml MIME type is translated
to a w3c.dom.Document object.

7.2.2 Associating SOAP Messages and Attachments
This section explains a standard way to associate a SOAP message with one or more
attachments in their native format in a multipart MIME structure for transport. The
specification combines a specific usage of Multipart/Related MIME media type and the
URI schemes explained on the World Wide Web Consortium (W3C) Web site, for
referencing MIME parts.

For additional details, see the SOAP-related pages of the W3C Web site at the following
URL:

http://www.w3c.org

The processes explained in this section treat the multipart MIME structure as
essentially a part of the transfer protocol binding, that is, on par with the transfer
protocol headers, as far as the SOAP message is concerned. This multipart structure is
called the SOAP message package.

The purpose of this section is to show how to use existing facilities in SOAP, as well as
standard MIME mechanisms, to carry and reference attachments, using existing
standards and without inventing ways on your own. Most Internet communication
protocols can transport MIME-encoded content, although some special considerations
are required for the Hyper-text Transfer Protocol (HTTP).

Note: For more information, see “HTTP Binding” on page 144.

SOAP Message Packages

A SOAP message package contains a primary SOAP 1.1 message. It can also contain
additional elements not contained within the SOAP message but related in some way.
These elements can contain data in formats other than XML.

The primary SOAP 1.1 message in a message package can reference these additional
elements, called attachments. This section explains how to construct SOAP message
packages and how SOAP processors handle them.

SOAP Message Package Construction

A SOAP message package is constructed using the Multipart/Related media type. The
basic rules for constructing SOAP message packages are:

! The primary SOAP 1.1 message must be carried in the root body part of the
Multipart/Related structure. Consequently, the type parameter of the Multipart/
Related media header is always the same as the Content-Type header for the
primary SOAP 1.1 message, that is, text/xml.

! Referenced MIME parts must contain either a Content-ID MIME header or a
Content-Location MIME header.

http://www.w3c.org

Chapter 7 Section 7.2
Additional Features Using SOAP Attachments

e*Way Intelligent Adapter for SOAP User’s Guide 139 SeeBeyond Proprietary and Confidential

Be sure that the root part contains a Content-ID MIME header. In addition to the
required parameters for the Multipart/Related media type, the start parameter must
always be present. This construction permits more robust error detection.

For example, a SOAP processor compliant with this specification receives a SOAP 1.1
message (carried in the root body part of a Multipart/Related MIME message). The
processor must therefore handle the SOAP message according to the rules for
processing SOAP 1.1 messages as defined by SOAP 1.1. Also, a SOAP processor that
receives an invalid message must generate a client fault code compliant with SOAP 1.1.

Attaching to SOAP Messages

The MIME Multipart/Related encapsulation of a SOAP message is semantically
equivalent to a SOAP protocol binding. The SOAP message is not aware that it is being
encapsulated. There is nothing in the primary SOAP message itself to indicate the
message is encapsulated.

SOAP 1.1 Message and Attachment Example

This example shows a SOAP 1.1 message with an attached fax image of a signed form
in .tiff file format:

MIME-Version: 1.0
Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/
xml;

start="<claim061400a.xml@claiming-it.com>"
Content-Description: This is the optional message description.

--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <claim061400a.xml@claiming-it.com>

<?xml version='1.0' ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
..
<theSignedForm href="cid:claim061400a.tiff@claiming-it.com"/>
..
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

--MIME_boundary
Content-Type: image/tiff
Content-Transfer-Encoding: binary
Content-ID: <claim061400a.tiff@claiming-it.com>

...binary TIFF image...
--MIME_boundary--

Note: In these examples the Content-Type header line has been continued across two
lines so the example fits easily on a page. SOAP message senders must transmit
headers on a single line.

Chapter 7 Section 7.2
Additional Features Using SOAP Attachments

e*Way Intelligent Adapter for SOAP User’s Guide 140 SeeBeyond Proprietary and Confidential

SOAP References to Attachments

Both the header entries and body of the primary SOAP 1.1 message can be required to
refer to other elements in the message package. This section explains how to
accomplish this process using existing mechanisms in SOAP and MIME.

The data-encoding rules given in SOAP 1.1 allow the value of an accessor to be given
by reference. In other words, it can be given as a resource referenced by a URI provided
as the value of an href attribute. The SOAP encoding schema allows the value of an
href attribute to be any URI reference. The attribute can therefore be used to reference
not just XML fragments within a SOAP 1.1 message, but any resource.

Resolution Process

This specification describes a usage pattern of the SOAP href attribute in SOAP 1.1 to
allow attribute values to be references to attachments carried as MIME parts in the
SOAP message package. The resolution process for URI references (including
references used in href attributes) in the primary SOAP 1.1 message happens under the
following conditions:

! It occurs within a SOAP message package.

! It is based on the rules for multipart MIME messages with text/html root
documents.

These rules are adapted from the HTML and rendering context and applied to the
SOAP 1.1 messaging context.

The resolution process operates as follows:

! Conversion of all URI references to absolute references

! Resolution of the absolute references

The W3C SOAP 1.1 specifications provide rules for both steps (see the W3C Web site
for additional information; also see “Conventions and Specifications” on page 9).

Note: This process does not apply to same-document references.

The semantics of the SOAP 1.1 pattern that involves using an href attribute with a
fragment identifier remains unchanged if the following conditions are present:

! The fragment identifier references an XML element in the same SOAP 1.1 message.

! That SOAP message is based on a label defined by an ID attribute.

Converting Relative URI References to Absolute

The authoritative process for converting relative URI references to absolute references
is defined in the W3C SOAP 1.1 specifications (see the W3C Web site). Before this
process can happen, the base URI must be established.

The specifications for establishing a base URI follow these essential rules:

1 Base URI within Document Content: The mechanism for explicit specification of a
base URI within a SOAP 1.1 message is the XML base mechanism.

Chapter 7 Section 7.2
Additional Features Using SOAP Attachments

e*Way Intelligent Adapter for SOAP User’s Guide 141 SeeBeyond Proprietary and Confidential

2 Base URI from an Encapsulating Entity:

" If there is a Content-Location header containing an absolute URI in any MIME
element enclosing the primary SOAP 1.1 message,

" The URI from the closest such Content-Location header is the base URI for the
element.

3 Base URI from the Retrieval URI: The retrieval URI for a SOAP message package is
never allowed to be used as a base URI.

4 Default Base URI: The default base URI is thismessage:/ in accordance with W3C
SOAP 1.1 specifications.

Note: The previous rules are shown in order of precedence.

Every MIME part in the Multipart/Related structure that constitutes a SOAP message
package has at least one absolute URI label. The following list shows the types of URI
labeling:

! If a Content-Location header is present with an absolute URI value, that URI is a
label for the part.

! If a Content-Location header is present with a relative URI value, you must apply
rules 2 and 4 in the previous list, to establish the base URI. Use this URI for the
process of converting the relative URI to an absolute one. The resulting absolute
URI is a label for the part.

! If a Content-ID header is present, an absolute URI label for the part is formed using
the CID URI scheme (see the W3C Web site).

The resolution of absolute URI references operates as follows:

1 For each referencing URI in the primary SOAP 1.1 message, compare:

" The value of the referencing URI, after conversion to the absolute form as
described previously

" With the URI labels derived from Content-ID and Content-Location headers
for other body parts in the surrounding Multipart/Related structure

Note: The rules for URI comparison are given in the W3C SOAP 1.1 specifications (see
the W3C Web site).

2 If a match is found, the element contained in the MIME part is the referant. If no
match is found, use normal resolution rules based on the URI scheme.

3 In case of conflicting labels based on Content-ID and Content-Location headers,
use the rules given in the W3C SOAP 1.1 specifications to resolve the conflict.

Chapter 7 Section 7.2
Additional Features Using SOAP Attachments

e*Way Intelligent Adapter for SOAP User’s Guide 142 SeeBeyond Proprietary and Confidential

Example of SOAP Message with Absolute URI Referencing

The example shown under “SOAP 1.1 Message and Attachment Example” on
page 139 illustrates the use of the CID reference in the body of the SOAP 1.1 message.
Here is the same example now rewritten using absolute URIs referencing elements
labeled using Content-Location headers:

MIME-Version: 1.0
Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/
xml;

start="<http://claiming-it.com/claim061400a.xml>"
Content-Description: This is the optional message description.

--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <http://claiming-it.com/claim061400a.xml>
Content-Location: http://claiming-it.com/claim061400a.xml

<?xml version='1.0' ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
..
<theSignedForm href="http://claiming-it.com/claim061400a.tiff"/>
..
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

--MIME_boundary
Content-Type: image/tiff
Content-Transfer-Encoding: binary
Content-ID: <http://claiming-it.com/claim061400a.tiff>
Content-Location: http://claiming-it.com/claim061400a.tiff

...binary TIFF image...
--MIME_boundary--

Examples of SOAP Message with Relative URI Referencing

Here is the same example, this time using relative URIs that use the Content-Location
header at the base of the MIME Multipart/Related structure for their base URI:

MIME-Version: 1.0
Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/
xml;

start="<http://claiming-it.com/claim061400a.xml>"
Content-Description: This is the optional message description.
Content-Location: http://claiming-it.com/

--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <http://claiming-it.com/claim061400a.xml>
Content-Location: claim061400a.xml

<?xml version='1.0' ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
..
<theSignedForm href="claim061400a.tiff"/>
..

Chapter 7 Section 7.2
Additional Features Using SOAP Attachments

e*Way Intelligent Adapter for SOAP User’s Guide 143 SeeBeyond Proprietary and Confidential

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

--MIME_boundary
Content-Type: image/tiff
Content-Transfer-Encoding: binary
Content-Location: claim061400a.tiff

...binary TIFF image...
--MIME_boundary--

In addition, here is an example that uses relative URIs but no explicit base URI, so
rule 4 under “Converting Relative URI References to Absolute” on page 140, for
establishing a base URI applies. Using this rule causes relative URIs in the SOAP
message and Content-Location labels to use the base URI of thismessage:/ as follows:

MIME-Version: 1.0
Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/
xml;

start="<b6f4ccrt@15.4.9.92/s445>"
Content-Description: This is the optional message description.

--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <b6f4ccrt@15.4.9.92/s445>
Content-Location: claim061400a.xml

<?xml version='1.0' ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
..
<theSignedForm href="the_signed_form.tiff"/>
..
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

--MIME_boundary
Content-Type: image/tiff
Content-Transfer-Encoding: binary
Content-ID: <a34ccrt@15.4.9.92/s445>
Content-Location: the_signed_form.tiff

...binary TIFF image...
--MIME_boundary-

Determining URI Resolution

Within a SOAP message, the fact that a URI reference occurs as the value of a SOAP
href attribute does not by itself imply that the receiving SOAP processor must resolve
the URI. It is up to the SOAP processor to determine whether resolution of the URI is
required. This determination is based on the processing semantics of the message.

The receiving SOAP processor can choose to ignore the URI even if it is referencing a
MIME attachment. Conversely, all attachments that appear in the SOAP message
package cannot be referenced in the root SOAP message.

Chapter 7 Section 7.2
Additional Features Using SOAP Attachments

e*Way Intelligent Adapter for SOAP User’s Guide 144 SeeBeyond Proprietary and Confidential

Note: This section does not provide a means, within a SOAP message, to explicitly mark it
as the root of a SOAP message package. For example, this marking could be with a
distinguished header entry that enumerates message package contents. This
specification defines an extension to the transport binding mechanisms defined in
the SOAP 1.1 specifications. See the W3C Web site for details.

Relationship to SOAP 1.1

The packaging of a SOAP 1.1 message in the root part of a Multipart/Related MIME
structure (along with other content) can be viewed as a specific method for carrying
SOAP 1.1 messages in any protocol capable of transferring MIME-encoded content.

A SOAP processor capable of supporting both the MIME-based encoding described
here and the base transport over which it is carried, must:

! Treat the SOAP 1.1 message in the root part as the message to be processed

! Follow all the rules of SOAP 1.1 for the SOAP 1.1 message and for the base
transport binding used (see the example of HTTP binding described in section 6 of
the SOAP 1.1 specifications).

See “HTTP Binding” (next section) for more information on that subject.

HTTP Binding

This section explains the rules for carrying a compound SOAP message in an HTTP
message. As in the case of the base SOAP 1.1 specification, this specification does not
prescribe either an asynchronous messaging or a synchronous request/response
interaction pattern.

Instead, this description of the HTTP binding explains the relationship between HTTP
headers and the MIME headers used in constructing a SOAP message package, without
restricting the interaction pattern in any way.

Rules for Using SOAP with HTTP

The basic approach to carrying multipart MIME structure in an HTTP message, in this
specification, is:

! To confine MIME-encoded content to the MIME parts and

! Use the multipart media type header at the HTTP level as a native HTTP header

Chapter 7 Section 7.2
Additional Features Using SOAP Attachments

e*Way Intelligent Adapter for SOAP User’s Guide 145 SeeBeyond Proprietary and Confidential

The rules for forming an HTTP message containing a SOAP message package are:

! The Content-Type: Multipart/Related MIME header must appear as an HTTP
header. The rules for parameters of this header specified under “SOAP Message
Packages” on page 138 also apply here.

! No other headers with semantics defined by MIME specifications (such as Content-
Transfer-Encoding) are permitted to appear as HTTP headers. Specifically, the
“MIME-Version: 1.0” header must not appear as an HTTP header. Note that HTTP
itself uses many MIME-like headers with semantics defined by HTTP 1.1. These
headers are allowed.

! The MIME parts containing the SOAP message and the attachments constitute the
HTTP message’s body and must appear as described under “SOAP Message
Packages” on page 138, including appropriate MIME headers.

Unlike within HTTP, MIME semantics apply at the SMTP message level. Therefore for
SMTP transport, the multipart MIME headers can simply merge with the SMTP
headers.

Example of HTTP Message with SOAP Message/Attachments

This example shows an HTTP message containing a SOAP message package including
two attachments. The SOAP 1.1 message contains relevant information and is sent with
a fax image of a signed form (.tiff file) and a digital photo (.jpeg file). The example
follows:

POST /insuranceClaims HTTP/1.1
Host: www.risky-stuff.com
Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/
xml;

start="<claim061400a.xml@claiming-it.com>"
Content-Length: XXXX
SOAPAction: http://schemas.risky-stuff.com/Auto-Claim
Content-Description: This is the optional message description.

--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <claim061400a.xml@claiming-it.com>

<?xml version='1.0' ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<claim:insurance_claim_auto id="insurance_claim_document_id"
xmlns:claim="http://schemas.risky-stuff.com/Auto-Claim">
<theSignedForm href="cid:claim061400a.tiff@claiming-it.com"/>
<theCrashPhoto href="cid:claim061400a.jpeg@claiming-it.com"/>
<!-- ... more claim details go here... -->
</claim:insurance_claim_auto>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

--MIME_boundary
Content-Type: image/tiff
Content-Transfer-Encoding: base64
Content-ID: <claim061400a.tiff@claiming-it.com>

Chapter 7 Section 7.3
Additional Features Using Digital Signatures

e*Way Intelligent Adapter for SOAP User’s Guide 146 SeeBeyond Proprietary and Confidential

...Base64 encoded TIFF image...
--MIME_boundary
Content-Type: image/jpeg
Content-Transfer-Encoding: binary
Content-ID: <claim061400a.jpeg@claiming-it.com>

...Raw JPEG image..
--MIME_boundary--

Note: As in the previous examples, the Content-Type header line has been continued
across two lines to fit easily on a page. Again, SOAP message senders must
transmit headers on a single line.

7.3 Using Digital Signatures
The purpose of digital signatures is to allow the recipient of a data object, usually a
message, to verify the data’s authenticity. Digital signatures are a value computed with
a cryptographic algorithm and appended to a data object in such a way that any
recipient of the data can use the signature to verify the data's origin and integrity.

This section explains the syntax and processing rules of a SOAP header entry to carry
digital signature information within a SOAP 1.1 envelope.

7.3.1 Header Entry Syntax
This section explains the syntax for SOAP header entry.

Namespace

The XML namespace [XML-ns] URI that must be used by implementations of this
specification and can be found at the following URI:

http://schemas.xmlsoap.org/soap/security/2000-12

The namespace prefix SOAP-SEC used in this specification is associated with this URI.

Signature Header Entry

The header entry <SOAP-SEC:Signature> is defined by the following schema:

[XML-Schema1], [XML-Schema2]

The <SOAP-SEC:Signature> element contains a single digital signature conforming to
the XML-signature specification [XML-Signature] as follows:

<schema
xmlns="http://www.w3.org/1999/XMLSchema"
xmlns:SOAP-SEC="http://schemas.xmlsoap.org/soap/security/2000-12"
targetNamespace="http://schemas.xmlsoap.org/soap/security/2000-12"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

http://schemas.xmlsoap.org/soap/security/2000-12

Chapter 7 Section 7.3
Additional Features Using Digital Signatures

e*Way Intelligent Adapter for SOAP User’s Guide 147 SeeBeyond Proprietary and Confidential

<import namespace="http://www.w3.org/2000/09/xmldsig#"/>
<import namespace="http://schemas.xmlsoap.org/soap/envelope/"/>

<element name="Signature" final="restriction">
<complexType>

<sequence>
<element ref="ds:Signature" minOccurs="1" maxOccurs="1"/>

</sequence>
<attribute name="id" type="ID" use="optional"/>
<attribute ref="SOAP-ENV:actor" use="optional"/>
<attribute ref="SOAP-ENV:mustUnderstand" use="optional"/>

</complexType>
</element>

<attribute name="id" type="ID"/>

</schema>

SOAP-SEC:id Attribute

The <ds:Reference> element must refer to the signed part of the SOAP envelope. This
reference can be achieved through the use of XML identifiers. Applications are
responsible for determining which attributes are of the type ID.

To help applications identify attributes of the type ID, this specification defines the
SOAP-SEC:id global attribute. This attribute can be used for referencing the signed
part of the SOAP envelope.

Example of SOAP Message with Signature Header

Here is an example of a SOAP message with a signature header entry, where the SOAP
body is signed and the resulting signature <ds:Signature> is added to the
<SOAP-SEC:Signature> header entry. Note that the URI attribute of the
<ds:Reference> element refers to the <SOAP-ENV:SOAP-Body> element. The
example follows:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header>

<SOAP-SEC:Signature
xmlns:SOAP-SEC="http://schemas.xmlsoap.org/soap/security/2000-

12"
SOAP-ENV:actor="some-URI"
SOAP-ENV:mustUnderstand="1">
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:SignedInfo>

<ds:CanonicalizationMethod
Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-

20001026">
</ds:CanonicalizationMethod>
<ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/

xmldsig#dsa-sha1"/>
<ds:Reference URI="#Body">

<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.org/TR/2000/CR-

xml-c14n-20001026"/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/

xmldsig#sha1"/>

Chapter 7 Section 7.3
Additional Features Using Digital Signatures

e*Way Intelligent Adapter for SOAP User’s Guide 148 SeeBeyond Proprietary and Confidential

<ds:DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</
ds:DigestValue>

</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>MC0CFFrVLtRlk=...</ds:SignatureValue>

</ds:Signature>
</SOAP-SEC:Signature>

</SOAP-ENV:Header>
<SOAP-ENV:Body

xmlns:SOAP-SEC="http://schemas.xmlsoap.org/soap/security/2000-12"
SOAP-SEC:id="Body">
<m:GetLastTradePrice xmlns:m="some-URI">

<m:symbol>IBM</m:symbol>
</m:GetLastTradePrice>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

7.3.2 Processing Rules
The Signature header entry is used to carry a signature compliant with the XML-
signature specification [XML-Signature] within a SOAP envelope. It can be used for
signing one or more elements in the SOAP envelope. Multiple signature header entries
may be added into a single SOAP envelope with either disjoint or overlapping signed
elements.

Note: A future version of this specification may allow signature syntax other than using
[XML-Signature], through extension [XML-Schema1] of the content model of
<SOAP-SEC:Signature>.

SOAP applications conforming to this specification must satisfy the following
conditions:

! The application must be capable of processing an XML signature as defined in the
XML-signature specification [XML-Signature].

! If a conforming SOAP application is to add a <SOAP-SEC:Signature> header entry
in the SOAP Header, the header entry must have a <ds:Signature> element
conforming to [XML-Signature]. All the <ds:Reference> elements contained in the
signature must refer to a resource within the enclosing SOAP envelope or to a
resource in the enclosing SOAP message package [SOAP-attachment] if the
envelope is the primary SOAP 1.1 message [SOAP-attachment] of the package.

! When a conforming SOAP application receives a SOAP message containing one or
more <SOAP-SEC:Signature> header entries intended for the application (either it
is explicitly specified by the SOAP actor attribute, or the application is the ultimate
destination), for each such header entry, the application must perform the
following steps:

" Decide whether to process the header entry (either forced by the
mustUnderstand="1" attribute or voluntarily).

" If it is to be processed, the application must try to validate the signature using
the processing model of [XML-Signature].

Chapter 7 Section 7.3
Additional Features Using Digital Signatures

e*Way Intelligent Adapter for SOAP User’s Guide 149 SeeBeyond Proprietary and Confidential

The XML canonicalization [XML-C14N] of <ds:SignedInfo> and other signed
resources must each be done within its own context. In other words, the canonical form
[XML-C14N] of <ds:SigndInfo> always inherits the namespace declarations for
SOAP-ENV and SOAP-SEC.

Signature Header Entry Generation

This section explains the operations you must perform for the signature header entry.

To create a <SOAP-SEC:Signature> header

1 Prepare the target SOAP envelope with the body and necessary headers.

2 Create a template of a <ds:Signature> element. The template is assumed to contain
empty contents for <ds:DigestValue> or <ds:SignatureValue> elements, but
contains appropriate values for the elements such as <ds:SignatureMethod> and
<ds:Reference> required to calculate them.

3 Create a new header entry <SOAP-SEC:Signature> and add the template to this
entry.

4 Add the header entry <SOAP-SEC:Signature> to the SOAP header.

5 Add the SOAP actor and mustUnderstand attributes to the entry, if necessary.

6 Calculate the <ds:DigestValue> and <ds:SignatureValue> elements according to
the core generation of the XML-signature specification [XML-Signature].

XPath filtering can be used to specify objects to be signed, as described in
[XML-Signature]. However, since the SOAP message exchange model allows
intermediate applications to modify the envelope (add or delete a header entry, for
example), XPath filtering does not always result in the same objects after message
delivery.

Take care in using XPath filtering so there is no subsequent validation failure because
of such modifications. To do so, use the following transform:

http://www.w3.org/2000/09/xmldsig#enveloped-signature

It is defined in [XML-Signature] and is useful when signing the entire envelope,
including other header entries (if any).

Signature Header Entry Validation

The validation of a <SOAP-SEC:Signature> header entry fails under the following
conditions:

! The syntax of the content of the header entry does not conform to this specification.

! The validation of the signature contained in the header entry fails according to the
core validation of the XML-signature specification [XML-Signature].

! The receiving application program rejects the signature for one of its own reasons
(for example, the signature is created by an untrusted key).

http://www.w3.org/2000/09/xmldsig#enveloped-signature

Chapter 7 Section 7.3
Additional Features Using Digital Signatures

e*Way Intelligent Adapter for SOAP User’s Guide 150 SeeBeyond Proprietary and Confidential

Note: If the validation of the signature header entry fails, applications usually report the
failure to the sender. See the W3C SOAP 1.1 specifications for information on how
to deal with validation failures.

Security Considerations

The specifications provided in this section define the use of [XML-Signature] in
SOAP 1.1 headers. As one of the building blocks for securing SOAP messages,
[XML-Signature] is intended to be used in conjunction with other security techniques.
Digital signatures must be understood in the context of other security mechanisms and
possible security threats, then used accordingly.

For example, digital signatures alone do not provide message authentication. You can
record a signed message and resend it (replay attack). To prevent this type of attack,
digital signatures must be combined with an appropriate means to ensure the
uniqueness of the message, for example, nonces or time stamps. One way to add this
information is to place an extra <ds:Object> element as a child of the <ds:Signature>.

When digital signatures are used for verifying the identity of the sending party, the
sender must prove the possession of the private key. One way to achieve this proof is to
use a challenge-response type of protocol.

Implementers must also be aware of all the security implications resulting from the use
of digital signatures in general and [XML Signature] in particular. In building trust into
an application based on a digital signature, the following additional pieces of
technology must be identified in relation to the signature:

! Well-defined certificate trust model, whether hierarchical or peer-to-peer

! Generation and maintenance of trusted key pairs and certificates

! Validation that a certificate has not been revoked

Index

e*Way Intelligent Adapter for SOAP User’s Guide 151 SeeBeyond Proprietary and Confidential

Index

A
Accept-type 29
addReference 95
architectural overview, SOAP e*Way 36
attachments, SOAP 136

B
base64Encode 95

C
classes, Java

Attribute 82
SOAP 84
SOAPAttachment 94
SOAPBody 100
SOAPFault 104
SOAPHeader 108
SOAPMessage 110
SOAPNode 115
SOAPRequest 118
SOAPResponse 118
SOAPSigner 121
SOAPTransport 124
SOAPVerification 127

CLASSPATH Append From Environment Variable
20
Classpath Override 20
Classpath Prepend 19
Collaboration 57, 58
Collaboration .class files (Java) 58
Collaboration Rule 57
Collaboration Rules script 57
Collaboration Rules scripts (Monk) 58
Collaboration script 57
components 11
countAttribute 116
creating Collaboration Rules and scripts

overview 57

D
Disable JIT 22

E
e*Gate API Kit 37
ETD Editor feature

function in setup 56
Event Type Definition (ETD) Editor 56

G
getAttribute 101, 108, 111, 116
getBodyContents 101
getContentType 96
getDetail 104, 106
getFaultActor 105
getFaultString 106
getFileLocation 96
getHeaderContents 109
getKey 82
getLocalName 116, 120
getName 96
getNumberOfAttributes 102, 109, 111
getSignatureResults 122
getSignatures 122
getSOAPActionURI 85
getSOAPBody 112
getSOAPFault 102
getSOAPHeader 112
getSOAPRequest 85
getSOAPResponse 86
getSOAPTransport 86
getStatusCode 124
getStatusMessage 125, 126
getTransferEncoding 97
getURL 86
getValue 82, 97
getVerificationResults 127
getXMLSignature 120

H
HTTP configurations

Accept-type 29
HTTP Proxy Configuration

User Name 30
HTTP Proxy configuration

Use Proxy Server 29

I
Initial Heap Size 20
intended reader 12

Index

e*Way Intelligent Adapter for SOAP User’s Guide 152 SeeBeyond Proprietary and Confidential

J
Java Event Type Definition (ETD)

creation of 55, 57
saving 55, 57

Java Event Type Definition (ETD) Editor 56
Java Event Type Definition wizard

using 56
Java Methods 81–??
Java methods and classes, overview 81

L
logical steps

e*Gate system 39
Web server 38

M
marshal 87, 113
marshalRequest 87
marshalResponse 88
Maximum Heap Size 21
methods, Java

addReference 95
base64Encode 95
countAttribute 116
getAttribute 101, 108, 111, 116
getBodyContents 101
getContentType 96
getDetail 104, 106
getFaultActor 105
getFaultString 106
getFileLocation 96
getHeaderContents 109
getKey 82
getLocalName 116, 120
getName 96
getNumberOfAttributes 102, 109, 111
getSignatureResults 122
getSignatures 122
getSOAPActionURI 85
getSOAPBody 112
getSOAPFault 102
getSOAPHeader 112
getSOAPRequest 85
getSOAPResponse 86
getSOAPTransport 86
getStatusCode 124
getStatusMessage 125, 126
getTransferEncoding 97
getURL 86
getValue 82, 97
getVerificationResults 127

getXMLSignature 120
marshal 87, 113
marshalRequest 87
marshalResponse 88
receiveRequest 88
receiveResponse 89
reset 89
sendRequest 90
sendResponse 90
sendToSOAPServer 125
setAttribute 109, 113, 117
setBodyContents 103
setContentType 98
setFaultActor 106
setFaultCode 107
setFaultString 107
setFileLocation 98
setHeaderContents 110
setKey 83
setName 99
setSignatureResults 122
setSignatures 123
setSOAPActionURI 90
setSOAPBody 113
setSOAPFault 103
setSOAPHeader 114
setSOAPRequest 91
setSOAPResponse 91
setSOAPTransport 92
setStatusCode 126
setTransferEncoding 99
setURL 92
setValue 83, 100
setVerificationResults 128
setXMLSignature 121
sign 123
unmarshal 93, 114, 117, 119
unmarshalRequest 93
unmarshalResponse 94
verify 128

O
operating systems, supported 12

P
panes

in Java ETD Editor 56

R
receiveRequest 88

Index

e*Way Intelligent Adapter for SOAP User’s Guide 153 SeeBeyond Proprietary and Confidential

receiveResponse 89
reset 89

S
sample receiver schema, automatic 75
sample receiver schema, manual 77
sample sender schema, automatic 42
sample sender schema, manual 44
sendRequest 90
sendResponse 90
sendToSOAPServer 125
setAttribute 109, 113, 117
setBodyContents 103
setContentType 98
setFaultActor 106
setFaultCode 107
setFaultString 107
setFileLocation 98
setHeaderContents 110
setKey 83
setName 99
setSignatureResults 122
setSignatures 123
setSOAPActionURI 90
setSOAPBody 113
setSOAPFault 103
setSOAPHeader 114
setSOAPRequest 91
setSOAPResponse 91
setSOAPTransport 92
setStatusCode 126
setTransferEncoding 99
setURL 92
setValue 83, 100
setVerificationResults 128
setXMLSignature 121
sign 123
SOAP e*Way, overview 9
SOAP messages, examples 10
SOAP receiver architecture 37
SOAP receiver schema, overview 72
SOAP sender architecture 36
SOAP sender schema, overview 40
SOAP services 39
SOAP, general description 9
SSL support 129
Suspend Option for Debugging 22
system requirements

basic 13
external 13

U
unmarshal 93, 114, 117, 119
unmarshalRequest 93
unmarshalResponse 94
Use Proxy Server 29
User Name 30

V
verify 128

W
wizards

for building Java-enabled ETDs 56
for building Standard ETDs 56

	e*Way Intelligent Adapter for SOAP User’s Guide
	Contents
	Introduction
	1.1 SOAP e*Way: Overview
	1.1.1 Introduction to SOAP
	Conventions and Specifications
	SOAP Messaging

	1.1.2 e*Way Components and Features
	Basic Components
	Supported Features

	1.2 Intended Reader
	1.3 Supported Operating Systems
	1.4 System Requirements
	1.5 External System Requirements

	Installation
	2.1 Windows NT or Windows 2000
	2.1.1 Pre-installation
	2.1.2 e*Way Installation Procedure

	2.2 UNIX
	2.2.1 Pre-installation
	2.2.2 Installation Procedure

	2.3 After Installation
	2.4 Files/Directories Created by the Installation

	Multi-Mode e*Way Configuration
	3.1 Multi-Mode e*Way Properties
	3.2 JVM Settings
	JNI DLL Absolute Pathname
	CLASSPATH Prepend
	CLASSPATH Override
	CLASSPATH Append From Environment Variable
	Initial Heap Size
	Maximum Heap Size
	Maximum Stack Size for Native Threads
	Maximum Stack Size for JVM Threads
	Class Garbage Collection
	Garbage Collection Activity Reporting
	Asynchronous Garbage Collection
	Report JVM Info and all Class Loads
	Disable JIT
	Remote debugging port number
	Suspend Option for Debugging

	e*Way Connection Configuration
	4.1 Configuring e*Way Connections
	4.2 Configuration Parameters
	4.2.1 Connector
	Type
	Class
	Property.Tag

	4.2.2 Transport Binding
	Transport Type
	SOAPAction URI
	SOAP Style

	4.2.3 Security
	KeyStore
	KeyStore Type
	KeyStore Password
	Default Alias
	Signature Algorithm

	4.2.4 Transport Level Retry
	Timeout in Seconds
	Retry Condition
	Number of Seconds to Wait Before Retry
	Maximum Retries

	4.2.5 HTTP
	DefaultUrl
	AllowCookies
	ContentType
	AcceptType

	4.2.6 Proxies
	UseProxy
	HttpProxyHost
	HttpProxyPort
	HttpsProxyHost
	HttpsProxyPort
	UserName
	PassWord

	4.2.7 HttpAuthentication
	UseHttpAuthentication
	UserName
	PassWord

	4.2.8 SSL
	UseSSL
	HttpsProtocolImpl
	Provider
	X509CertificateImpl
	SSLSocketFactoryImpl
	SSLServerSocketFactoryImpl
	KeyStore
	KeyStoreType
	KeyStorePassword
	TrustStore
	TrustStoreType
	TrustStorePassword
	KeyManagerAlgorithm
	TrustManagerAlgorithm

	4.2.9 Server Information
	server name
	port number
	user name
	password

	Implementation
	5.1 SOAP e*Way: Architecture Overview
	5.1.1 SOAP Sender
	5.1.2 SOAP Receiver
	Web Server Logical Steps
	e*Gate System Logical Steps
	SOAP Services

	5.2 SOAP Sender Implementation
	5.2.1 SOAP Sender Schema: Overview
	Schema Operation
	Schema Components
	Location of Schema Files
	Schema Implementation

	5.2.2 Sample Sender Schema: Automatic Implementation
	Installing and Configuring the Schema
	Running the Schema

	5.2.3 Sample Sender Schema: Manual Configuration
	Step�1: Determine the SOAP Endpoint URL
	Step�2: Determine the Format of the SOAP Message
	Step�3: Create a Schema
	Step�4: Create Event Types and Event Type Definitions
	Step�5: Create Collaboration Rules
	Step�6: Create the e*Way Connection
	Step�7: Create Intelligent Queues
	Step�8: Add and Configure e*Ways
	Step�9: Create and Configure Collaborations
	Step�10: Test the Schema

	5.3 SOAP Receiver Implementation
	5.3.1 SOAP Receiver Schema: Overview
	Schema Operation
	Schema Components
	Location of Schema Files
	Schema Implementation

	5.3.2 Sample Receiver Schema: Automatic Implementation
	5.3.3 Sample Receiver Schema: Manual Configuration

	Java Methods
	6.1 SOAP e*Way Methods and Classes: Overview
	6.2 Attribute Class
	getKey
	getValue
	setKey
	setValue

	6.3 SOAP Class
	getSOAPActionURI
	getSOAPRequest
	getSOAPResponse
	getSOAPTransport
	getURL
	marshal
	marshalRequest
	marshalResponse
	receiveRequest
	receiveResponse
	reset
	sendRequest
	sendResponse
	setSOAPActionURI
	setSOAPRequest
	setSOAPResponse
	setSOAPTransport
	setURL
	unmarshal
	unmarshalRequest
	unmarshalResponse

	6.4 SOAPAttachment Class
	addReference
	base64Encode
	getContentType
	getFileLocation
	getName
	getTransferEncoding
	getValue
	setContentType
	setFileLocation
	setName
	setTransferEncoding
	setValue

	6.5 SOAPBody Class
	getAttribute
	getBodyContents
	getNumberOfAttributes
	getSOAPFault
	setAttribute
	setBodyContents
	setSOAPFault

	6.6 SOAPFault Class
	getDetail
	getFaultActor
	getFaultCode
	getFaultString
	setDetail
	setFaultActor
	setFaultCode
	setFaultString

	6.7 SOAPHeader Class
	getAttribute
	getHeaderContents
	getNumberOfAttributes
	setAttribute
	setHeaderContents

	6.8 SOAPMessage Class
	getAttribute
	getNumberOfAttributes
	getSOAPBody
	getSOAPHeader
	marshal
	setAttribute
	setSOAPBody
	setSOAPHeader
	unmarshal

	6.9 SOAPNode Class
	countAttribute
	getAttribute
	getLocalName
	setAttribute
	unmarshal

	6.10 SOAPRequest Class
	6.11 SOAPResponse Class
	unmarshal

	6.12 SOAPSignature Class
	getLocalName
	getXMLSignature
	setXMLSignature

	6.13 SOAPSigner Class
	getSignatureResults
	getSignatures
	setSignatureResults
	setSignatures
	sign

	6.14 SOAPTransport Class
	getStatusCode
	getStatusMessage
	sendToSOAPServer
	setStatusCode
	setStatusMessage

	6.15 SOAPVerification Class
	getVerificationResults
	setVerificationResults
	verify

	Additional Features
	7.1 Using Secured Sockets Layer
	7.1.1 KeyStores and TrustStores
	7.1.2 Methods for generating a KeyStore and TrustStore
	Creating a TrustStore
	Using an Existing TrustStore

	7.1.3 Creating a KeyStore in JKS Format
	7.1.4 Creating a KeyStore in PKCS12 Format
	7.1.5 SSL Handshaking

	7.2 Using SOAP Attachments
	7.2.1 SOAP Attachments: Overview
	7.2.2 Associating SOAP Messages and Attachments
	SOAP Message Packages
	SOAP References to Attachments
	Relationship to SOAP�1.1
	HTTP Binding

	7.3 Using Digital Signatures
	7.3.1 Header Entry Syntax
	Namespace
	Signature Header Entry
	SOAP�SEC:id Attribute

	7.3.2 Processing Rules
	Signature Header Entry Generation
	Signature Header Entry Validation
	Security Considerations

	Index
	A
	B
	C
	D
	E
	G
	H
	I
	J
	L
	M
	O
	P
	R
	S
	U
	V
	W

