
e*Way Intelligent Adapter
for SWIFT ADK
User’s Guide

Release 4.5.2
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 1999–2002 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20021106041702.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 2

SeeBeyond Proprietary and Confidential

Contents
Contents

Preface 8
Intended Reader 8

Organization 8

Nomenclature 9

Online Viewing 9

Writing Conventions 9

Additional Documentation 10

Chapter 1

Introduction 11
SWIFT Overview 11

The SWIFT ADK e*Way 12
Overview 12
Components 13
Availability 13

Chapter 2

Installation 14
System Requirements 14

Environment Configuration 14

External System Requirements 15
External Configuration Requirements 15

Installing the e*Way 16
Windows Systems 16

Installation Procedure 16
Subdirectories and Files 18

UNIX Systems 19
Installation Procedure 19
Subdirectories and Files 19

Installing SEWS 21
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 3

SeeBeyond Proprietary and Confidential

Contents
Windows Systems 21
UNIX Systems 23

Optional Example Files 25
Installation Procedure 25
Subdirectories and Files 26

Chapter 3

System Implementation 27
Overview 27

Implementation Sequence 28
Viewing e*Gate Components 28

Creating a Schema 29

Creating Event Types 30

Creating Event Type Definitions 30

Assigning ETDs to Event Types 30

Defining Collaborations 32

Creating Intelligent Queues 33

Troubleshooting 33
Environmental Variables 33
Error Codes 33

Sample Schema 36
adk_sample 36

e*Gate to SEWS 38
SEWS to e*Gate 39

Chapter 4

Setup Procedures 40
Overview 40

Setting Up the e*Way 41
Creating the e*Way 41
Modifying e*Way Properties 42
Configuring the e*Way 43
Using the e*Way Editor 44

Section and Parameter Controls 45
Parameter Configuration Controls 45
Command-line Configuration 46
Getting Help 46

Changing the User Name 47
Setting Startup Options or Schedules 47
Activating or Modifying Logging Options 49
Activating or Modifying Monitoring Thresholds 50

Troubleshooting the e*Way 51
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 4

SeeBeyond Proprietary and Confidential

Contents
Configuration Problems 51
System-related Problems 52
Operational Problems 52

Configuring SEWS 53
Windows Systems 53

Starting SEWS 56
UNIX Systems 56

Starting SEWS 60

Chapter 5

Operational Overview 61
Interacting with SWIFT 61

SWIFTAlliance, SEWS, and ADK 61
Communications Layers 62
Event Flow 63

Inbound e*Way 63
Outbound e*Way 64

Data Integrity Features 65
Inbound e*Way 65
Outbound e*Way 66

Diagnostics and Recovery 67
SWIFTAlliance Failure 67
SEWS Failure 67
e*Way Failure 67

SWIFT ADK e*Way Architecture 68

Basic e*Way Processes 70
Initialization Process 71
Connect to External Process 72
Data Exchange Process 73
Disconnect from External Process 76
Shutdown Process 76

Chapter 6

Configuration Parameters 77
Overview 77

General Settings 78
Journal File Name 78
Max Resends Per Message 78
Max Failed Messages 78
Forward External Errors 79

Communication Setup 80
Start Exchange Data Schedule 80
Stop Exchange Data Schedule 80
Exchange Data Interval 81
Down Timeout 81
Up Timeout 81
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 5

SeeBeyond Proprietary and Confidential

Contents
Resend Timeout 82
Zero Wait Between Successful Exchanges 82

Monk Configuration 83
Specifying Function or File Names 83
Specifying Multiple Directories 83
Load Path 83
Additional Path 83
Auxiliary Library Directories 84
Monk Environment Initialization File 84
Startup Function 84
Process Outgoing Message Function 85
Exchange Data with External Function 86
External Connection Establishment Function 87
External Connection Verification Function 87
External Connection Shutdown Function 88
Positive Acknowledgment Function 88
Negative Acknowledgment Function 89
Shutdown Command Notification Function 90

SWIFT Setup 91
Hostname 91
Port Number 91
Key 91
Secret 91

Chapter 7

API Functions 93
Overview 93

SEWS Component Protocol 94
ACK 94
AUTH 95
CHAL 96
COUNT 96
GET 97
JOURNAL 98
LIST 99
NAK 99
PUT 100
RECOVER 101

Monk Extension Methods 103
adkConnection class 103

constructor 103
connect 104
disconnect 104

adkRequest class 105
constructor 106
make 106
take 106
asString 107
keysValue 107
existsValue 107
getValue 108
setValue 108
getHeader 109
setHeader 109
getContent 110
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 6

SeeBeyond Proprietary and Confidential

Contents
setContent 110
adkResponse class 111

constructor 111
getOK 111
setOK 112

adkMD5 class 113
constructor 113
calculate 113
last 114
usage 114

Monk ADK Functions 115
adk-ack 115
adk-connect 117
adk-disconnect 118
adk-incoming 118
adk-init 118
adk-init-inbound 119
adk-init-outbound 119
adk-nak 120
adk-outgoing 121
adk-shutdown 121
adk-startup 122
adk-verify 122

Generic e*Way Functions 124
event-commit-to-egate 124
event-rollback-to-egate 125
event-send-to-egate 125
event-send-to-egate-ignore-shutdown 126
event-send-to-egate-no-commit 126
get-logical-name 127
insert-exchange-data-event 127
send-external-up 128
send-external-down 128
shutdown-request 129
start-schedule 129
stop-schedule 130
waiting-to-shutdown 130

Index 131
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 7

SeeBeyond Proprietary and Confidential

Preface

This Preface contains information regarding the User’s Guide itself.

P.1 Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the SeeBeyond™ e*Gate™ Integrator system, and have a
working knowledge of:

! Operation and administration of the appropriate operating systems (see
Availability on page 13)

! Windows-style GUI operations

! SWIFTAlliance and SWIFT ADK concepts and operations

P.2 Organization
This User’s Guide is organized into two parts. The first part, consisting of Chapters 1-4,
introduces the e*Way and describes the procedures for installing the e*Way and
implementing a working system incorporating the e*Way. Chapter 3 also contains
descriptions of the sample schemas provided with the product. These can be used to
test your system following installation and, if appropriate, as templates you can modify
to produce your own custom schemas.This part should be of particular interest to a
System Administrator or other user charged with the task of getting the system up and
running.

The second part, consisting of Chapters 5-7, describes the architecture and internal
functionality of the e*Way. This part should be of particular interest to a Developer
involved in customizing the e*Way for a specific purpose. Information contained in this
part that is necessary for the initial setup of the e*Way is cross-referenced in the first
part of the guide, at the appropriate points in the procedures.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 8 SeeBeyond Proprietary and Confidential

Section P.3
Preface Nomenclature
P.3 Nomenclature
Note that for purposes of brevity, the e*Way Intelligent Adapter for SWIFT is frequently
referred to as the SWIFT ADK e*Way, or simply the e*Way.

P.4 Online Viewing
This User’s Guide is provided in Adobe Acrobat’s Portable Document Format (PDF).
As such, it can be printed out on any printer or viewed online. When viewing online,
you can take advantage of the extensive hyperlinking imbedded in the document to
navigate quickly throughout the Guide.

Hyperlinking is available in:

! The Table of Contents

! The Index

! Within the chapter text, indicated by blue print

Existence of a hyperlink hotspot is indicated when the hand cursor points to the text.
Note that the hotspots in the Index are the page numbers, not the topics themselves.
Returning to the spot you hyperlinked from is accomplished by right-clicking the
mouse and selecting Go To Previous View on the resulting menu.

P.5 Writing Conventions
The writing conventions listed in this section are observed throughout this document.

Monospaced (Courier) Font

Computer code and text to be typed at the command line are set in Courier as shown
below.

Configuration for BOB_Promotion

java -jar ValidationBuilder.jar

Variables within a command line, or attributes within a function signature, are set in
italics as shown below:

stcregutil -rh host-name -un user-name -up password -sf

Bold Sans-serif Font

! User Input: Click Apply to save, or OK to save and close.

! File Names and Paths: In the Open field, type D:\setup\setup.exe.

! Parameter, Function, and Command Names: The default parameter localhost is
normally only used for testing; the Monk function iq-put places an Event into an IQ.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 9 SeeBeyond Proprietary and Confidential

Section P.6
Preface Additional Documentation
P.6 Additional Documentation
! Many of the procedures included in this User’s Guide are described in greater detail

in the e*Gate Integrator User’s Guide.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 10 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This chapter provides a brief introduction to SWIFT and the e*Way Intelligent Adapter
for SWIFT ADK.

1.1 SWIFT Overview
The Society for World-wide Interbank Financial Telecommunication (SWIFT) is a bank-
owned cooperative which supplies secure payment event transfer, matching, and other
services to owner/member banks and other financial organizations (including brokers,
securities deposit and clearing organizations, and stock exchanges) via its SWIFT
Transport Network (STN). The types of events processed by SWIFT include:

! Payments: Clearing and settlements between member banks.

! Securities: Clearing and settlements and cross border electronic trade confirmations.

! Forex, Money Markets and Derivatives: Confirmation of trades, marketing and
reporting facilities.

! Trade Finance: Documenting credits and collections.

The SWIFT ADK e*Way provides secure messaging services (both receiving and
transmitting) between SWIFT financial institutions. The SWIFT ADK e*Way is designed
specifically to interface with the SWIFTAlliance, and enables the SeeBeyond e*Gate
system to exchange data with SWIFTAlliance by providing:

! Automated integration of securities events in the new securities standards (events
MTxx) which is based on the ISO15022 Data Dictionary. Messages received can be in
SWIFT, Telex or Internal formats.

! Translation of incoming events received from SWIFT into the format required by
existing applications.

! Security, by being subject to the same authentication features as other
SWIFTAlliance components. Each session between the e*Way and SWIFTAlliance is
authenticated using MD5. See AUTH on page 95.

The SWIFT ADK e*Way uses the SWIFT Alliance Developer Toolkit (ADK), which is a
library of APIs that can call services provided by SWIFTAlliance servers. For more
information about ADK, see the SWIFT ADK Reference Guide.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 11 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction The SWIFT ADK e*Way
1.2 The SWIFT ADK e*Way

1.2.1 Overview
Within SWIFTAlliance, the SEWS (SWIFT ADK e*Way Service) component is linked to
the STN through two routing points, one for incoming Events and the other for
outgoing Events. These routing points are analogous to e*Gate Intelligent Queues (IQs).

Figure 1 SWIFT ADK e*Way Overview

Messages received from the SWIFT Network are stored in the routing point. In order to
retrieve an Event from the routing point, the ADK component must first reserve the
Event and then retrieve it. The Event remains in the routing point until the e*Way sends
an acknowledgment to say that it has safely placed the Event in the appropriate IQ. The
connection between e*Gate and SWIFT can be monitored in the SWIFTAlliance log.

SWIFTAlliance

STNSEWS Routing
Points

SWIFT ADK e*Way

IQ
Monk Extension

DLL Other e*Gate
Components

e*Gate Environment
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction The SWIFT ADK e*Way
1.2.2 Components
The SWIFT ADK e*Way includes the following components:

! An executable file (Generic e*Way Kernel), stcewgenericmonk.exe

! An accompanying dynamic load library, stc_swiftadk.dll, which extends the
executable file to form the SWIFT ADK e*Way

! A default configuration file, SwiftADK.def

! Monk function scripts and library files, discussed in Chapter 7.

! Example schema, discussed in Sample Schema on page 36.

For a list of installed files, see Chapter 2.

Note: The SEWS ADK component also is provided with the e*Way for installation on the
SWIFT Server.

1.2.3 Availability
The e*Way Intelligent Adapter for SWIFT ADK and the accompanying SEWS
Component are available on the following operating systems:

! Windows 2000 SP 1, and Windows 2000 SP 2

! Windows NT 4.0 SP 6a

! Solaris 2.6, Solaris 7, and Solaris 8

! AIX 4.3.3

Note: The e*Gate Enterprise Manager GUI runs only on the Windows operating system.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 2

Installation

This chapter describes the requirements and procedures for installing the e*Way
software. Procedures for implementing a working system, incorporating instances of
the e*Way, are described in Chapter 3.

Note: Please read the readme.txt file located in the addons\ewswiftadk directory on the
installation CD-ROM for important information regarding this installation.

2.1 System Requirements
To use the e*Way Intelligent Adapter for SWIFT ADK, you need the following:

1 An e*Gate Participating Host, version 4.5.1 or later.

2 A TCP/IP network connection to SWIFTAlliance.

3 Sufficient free disk space to accommodate e*Way files:

" Approximately 230 KB on Windows systems

" Approximately 820 KB on Solaris system

" Approximately 200 KB on AIX systems

4 Additional free disk space on the SWIFTAlliance host for the SEWS component (see
additional information under External System Requirements on page 15):

" Approximately 50 KB of disk space on Windows systems

" Approximately 1.75 MB of disk space on Solaris systems.

" Approximately 750 KB of disk space on AIX systems

Note: Additional disk space is required to process and queue the data that this e*Way
processes; the amount necessary varies, based on the type and size of the data being
processed, and any external applications performing the processing.

Environment Configuration

No changes are required to the Participating Host’s operating environment to support
this e*Way.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Installation External System Requirements
2.2 External System Requirements
! The SWIFT ADK e*Way requires a SWIFT ADK runtime license, and supports

SWIFTAlliance 4.1.

Note: The ADK (Alliance Developer Kit) API protocol is supported only by the
SWIFTAlliance Access product family. It is not supported by SWIFTAlliance
Entry. Customers using SWIFTAlliance Entry can send and receive SWIFT
messages through the SeeBeyond Batch e*Way, by appropriately configuring the
AFT (Automated File Transfer) interface in SWIFTAlliance Entry.

2.2.1 External Configuration Requirements
! The SEWS component must be installed and configured (see Installing SEWS on

page 21 and Configuring SEWS on page 53)

Note: The SEWS component must be installed on the same platform as the SWIFTAlliance
server.

! Before installing SEWS into SWIFTAlliance on UNIX:

" SWIFT Patch 4120 should be applied

" The root user must set up the correct environment (see installation step 2 under
UNIX Systems on page 23)

Two routing points, SEWS_to_egate and SEWS_from_egate are installed when the
SEWS ADK component is installed. The ways in which these routing points are used,
and messages are routed to and from them, are independent of SEWS and depend on
the application being used. For information on how to configure routing points, see the
SWIFT System Management Guide.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 15 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Installation Installing the e*Way
2.3 Installing the e*Way

2.3.1 Windows Systems

Installation Procedure

Note: The installation utility detects and suggests the appropriate installation directory.
Use this directory unless advised otherwise by SeeBeyond.

To Install the e*Way on a Microsoft Windows System

1 Log in as an Administrator on the workstation on which you want to install the
e*Way (you must have Administrator privileges to install this e*Way).

2 Exit all Windows programs and disable any anti-virus applications before running
the setup program.

3 Insert the e*Way installation CD-ROM into the CD-ROM drive.

4 Launch the setup program.

A If the CD-ROM drive’s Autorun feature is enabled, the setup program should
launch automatically. Follow the on-screen instructions until the Choose
Product dialog box appears (see Figure 2). Check Add-ons, then click Next.

Figure 2 Choose Product Dialog

B If the setup program does not launch automatically, use the Windows Explorer
or the Control Panel’s Add/Remove Applications feature to launch the
following file on the CD-ROM drive (bypassing the Choose Product dialog):

setup\addons\setup.exe
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Installation Installing the e*Way
5 Follow the on-screen instructions until the Select Components dialog box appears
(see Figure 3). Highlight—but do not check—eWays and then click Change.

Figure 3 Select Components Dialog

6 When the Select Sub-components dialog box appears (see Figure 4), check the
Swift ADK e*Way.

Figure 4 Select e*Way Dialog

7 Click Continue, and the Select Components dialog box reappears.

8 Click Next and continue with the installation.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Installation Installing the e*Way
Subdirectories and Files

By default, the InstallShield installer creates the following subdirectories and installs
the following files within the \eGate\client tree on the Participating Host, and the
\eGate\Server\registry\repository\default tree on the Registry Host.

By default, the InstallShield installer also installs the following file within the
\eGate\Server\registry\repository\default tree on the Registry Host.

Table 1 Participating Host & Registry Host

Subdirectories Files

\bin\ stc_swiftadk.dll

\configs\stcewgenericmonk\ SwiftADK.def

\monk_library\swiftadk\ adk-ack.monk
adk-connect.monk
adk-disconnect.monk
adk-incoming.monk
adk-init.monk
adk-nak.monk
adk-outgoing.monk
adk-shutdown.monk
adk-startup.monk
adk-verify.monk

\monk_library\swiftadk\init\ adk-init-inbond.monk
adk-init-outbound.monk

\monk_library\swiftadk_utils\ adk_util.monk
cmd-ack.monk
cmd-connect.monk
cmd-count.monk
cmd-disconnect.monk
cmd-get.monk
cmd-help.monk
cmd-list.monk
cmd-nak.monk
cmd-put.monk
cmd-quit.monk
cmd-set.monk
cmd-status.monk
common.monk

Table 2 Registry Host Only

Subdirectories Files

\ stcewswiftadk.ctl
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Installation Installing the e*Way
2.3.2 UNIX Systems

Note: The installation utility suggests the appropriate installation directory. Use this
directory unless advised otherwise by SeeBeyond. You must have root privileges to
install this e*Way.

Installation Procedure

1 Log in as root on the workstation containing the CD-ROM drive and, if necessary,
mount the CD-ROM drive.

2 Insert the CD-ROM into the drive.

3 At the shell prompt, type

cd /cdrom

4 Start the installation script by typing:

./setup.sh

5 A menu of options appears. Select the Install e*Way option. Then, follow any
additional on-screen directions.

Subdirectories and Files

The preceding installation procedure creates the following subdirectories and installs
the following files within the /eGate/client tree on the Participating Host, and the
/eGate/Server/registry/repository/default tree on the Registry Host.

Table 3 Participating Host & Registry Host

Subdirectories Files

/bin/ stcewgenericmonk
stc_swiftadk.dll

/configs/stcewgenericmonk/ SwiftADK.def

/monk_library/swiftadk/ adk-ack.monk
adk-connect.monk
adk-disconnect.monk
adk-incoming.monk
adk-init.monk
adk-nak.monk
adk-outgoing.monk
adk-shutdown.monk
adk-startup.monk
adk-verify.monk

/monk_library/swiftadk/init/ adk-init-inbond.monk
adk-init-outbound.monk
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Installation Installing the e*Way
The preceding installation procedure also installs the following file only within the
/eGate/Server/registry/repository/default tree on the Registry Host.

/monk_library/swiftadk_utils/ adk_util.monk
cmd-ack.monk
cmd-connect.monk
cmd-count.monk
cmd-disconnect.monk
cmd-get.monk
cmd-help.monk
cmd-list.monk
cmd-nak.monk
cmd-put.monk
cmd-quit.monk
cmd-set.monk
cmd-status.monk
common.monk

Table 4 Registry Host Only

Subdirectories Files

/ stcewswiftadk.ctl

Table 3 Participating Host & Registry Host

Subdirectories Files
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 20 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
Installation Installing SEWS
2.4 Installing SEWS
! The SEWS component must be installed on the same platform as the SWIFTAlliance

server.

! The SWIFTAlliance servers must not be running.

! Cancel out of Autostart if the Addons installer starts up automatically.

2.4.1 Windows Systems

To install SEWS on a Windows 2000 or NT system

1 Unzip the following file to a local directory:

<cd>:\SETUP\ADDONS\EWSWIFTADK\SEWS\WIN32\SEWS_MEDIUM.ZIP

2 Log in to SWIFTAlliance as the user account under which it was installed.

3 Start the SWIFTAlliance ADK setup program by locating and running the file
ADK_install.exe. The location of this file depends upon where SWIFTAlliance was
installed on your system. The SWIFTAlliance Set-up dialog is then displayed.

Figure 5 SWIFTAlliance Set-up (Install component)

4 In the Set-up dialog, install SEWS as follows:

A In the Component field, type SEWS.

B In the Software group, select the Install component option (or Upgrade
component, if a previous version of SEWS has been installed).
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
Installation Installing SEWS
C In the Input device field, type in the path to the folder extracted in step 1:

<drive>\<temp directory>\SEWS_medium

D In the Cipher field, type the password provided in:

<cd>:\SETUP\ADDONS\EWSWIFTADK\SEWS\README.TXT

E Click OK. Progress messages are displayed in the message area of the dialog.
When you see the following message, SEWS has been installed successfully:

ADKI session completed

Figure 6 SWIFTAlliance Set-up (Register)

5 If you are performing a first-time installation, register SEWS as follows:

A In the Set-up dialog Software group, clear the Install component option.

B In the Services group, select Register.

C Clear the Input device and Cipher fields.

D Click OK. Progress messages are displayed in the message area of the dialog.
When you see the following message, SEWS has been registered successfully:

ADKI session completed

E Click Quit to close the Set-up dialog.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
Installation Installing SEWS
2.4.2 UNIX Systems

Note: SWIFT Patch 4120 should be applied before attempting to install SEWS. Otherwise,
adk_install will not run correctly for a root user.

To install SEWS on a UNIX system

1 Log in as root, running under /bin/ksh.

2 Set up the correct environment by sourcing the following script (including the
period and space at the beginning):

. /usr/swa/alliance_init -s

3 Start the SWIFTAlliance ADK setup program by typing the following command:

$(ALLIANCE)/INA/bin/$(ARCH)/adk_install:

Note: On Solaris, $(ARCH) is set to 'SunOS'.

The SWIFTAlliance Set-up dialog is then displayed.

Figure 7 SWIFTAlliance Set-up (Install component)

4 In the Set-up dialog, install SEWS as follows:

A In the Component field, type SEWS.

B In the Software group, select the Install component option (or Upgrade
component, if a previous version of SEWS has been installed).
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
Installation Installing SEWS
C In the Input device field, type in the fully-qualified path on the installation CD-
ROM:

<cd>:\setup\addons\ewswiftadk\sews\sparc27\sews.medium

D In the Cipher field, type the password provided in:

<cd>:\setup\addons\ewswiftadk\sews\readme.txt

E Click OK. Progress messages are displayed in the message area of the dialog.
When you see the following message, SEWS has been installed successfully:

ADKI session completed

Figure 8 SWIFTAlliance Set-up (Register)

5 If you are performing a first-time installation, register SEWS as follows:

A In the Set-up dialog Software group, clear the Install component option.

B In the Services group, select Register.

C Clear the Input device and Cipher fields.

D Click OK. Progress messages are displayed in the message area of the dialog.
When you see the following message, SEWS has been registered successfully:

ADKI session completed

E Click Quit to close the Set-up dialog.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation Optional Example Files
2.5 Optional Example Files
The installation CD-ROM contains a sample schema, adk_sample, located in the
samples\ewswiftadk directory. To use a schema, you must load it onto your system
using the following procedure. See Sample Schema on page 36 for descriptions of the
sample schema and instructions regarding its use.

Note: The SWIFT ADK e*Way must be properly installed on your system before you can
run the sample schema.

2.5.1 Installation Procedure
1 Invoke the Open Schema dialog box and select New (see Figure 9).

Figure 9 Open Schema Dialog

2 Type the name you want to give to the schema (for example, adk.Sample)

3 Select Create from export and navigate to the directory containing the sample
schema by clicking the Find button (see Figure 10).

Figure 10 New Schema Dialog

4 Navigate to adk_sample.zip and click Open.

Note: The schema installs with the host name localhost and control broker name
localhost_cb. If you want to assign your own names, copy the file adk_sample.zip
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation Optional Example Files
to a local directory and extract the files. Using a text editor, edit the file
adk_sample.exp, replacing all instances of the name localhost with your desired
name. Add the edited .exp file back into the .zip file.

2.5.2 Subdirectories and Files
The preceding procedure creates the following subdirectories and installs the following
files within the \eGate\Server\registry\repository\<SchemaName> tree on the Registry
Host, where <SchemaName> is the name you have assigned to the schema in step 2.

Table 5 Subdirectories and Files Installed by Sample Schema Load

Subdirectories Files

\ adk_sample.ctl

\runtime\configs\stcewfile\ adk_sample_input.cfg
adk_sample_input.sc
adk_sample_output.cfg
adk_sample_output.sc

\runtime\configs\stcewgenericmonk\ adk_sample_eway.cfg
adk_sample_eway.sc
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 3

System Implementation

This chapter describes the procedure for implementing your system, incorporating the
SWIFTAlliance, SEWS, and the SWIFT ADK e*Way.

3.1 Overview
This e*Way provides a specialized transport component for incorporation into an
operational Schema. The schema also contains Collaborations, linking different data or
Event types, and Intelligent Queues. Typically, other e*Way types also are used as
components of the Schema.

The following topics are discussed in this chapter:

Creating a Schema on page 29

Creating Event Types on page 30

Creating Event Type Definitions on page 30

Assigning ETDs to Event Types on page 30

Defining Collaborations on page 32

Creating Intelligent Queues on page 33

Troubleshooting on page 33

Sample Schema on page 36
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
System Implementation Overview
3.1.1 Implementation Sequence

3.1.2 Viewing e*Gate Components
Use the Navigator and Editor panes of the e*Gate Enterprise Manager to view the
various e*Gate components. Note that you may only view components of a single
schema at one time, and that all operations apply only to the current schema. All
procedures in this chapter should be performed while displaying the Components
Navigator pane. See the e*Gate Integrator User’s Guide for a detailed description of the
features and use of the Enterprise Manager.

1 The first step is to create a new Schema—the
subsequent steps apply only to this Schema (see
Creating a Schema on page 29).

2 The second step is to define the Event Types you
are transporting and processing within the
Schema (see Creating Event Types on page 30).

3 Third, you need to associate the Event Types
created in the previous step with Event Type
Definitions (ETDs) derived from the applicable
Business Rules (see Creating Event Type
Definitions on page 30).

4 The fourth step is to create and configure the
required e*Ways (see Chapter 4).

5 Next is to define and configure the Collaborations
linking the Event Types from step 2 (see Defining
Collaborations on page 32).

6 Now you need to create Intelligent Queues to
hold published Events (see Creating Intelligent
Queues on page 33

7 Finally, you must test your Schema. Once you have
verified that it is working correctly, you may
deploy it to your production environment.

Define & Configure
Collaborations

Create & Configure
e*Ways

Create Schema

Generate Event Type
Definitions

Test & Deploy

Define Event Types

Create
Intelligent Queues
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
System Implementation Creating a Schema
3.2 Creating a Schema
A schema is the structure that defines e*Gate system parameters and the relationships
between components within the e*Gate system. Schemas can span multiple hosts.

Because all setup and configuration operations take place within an e*Gate schema, a
new schema must be created, or an existing one must be started before using the
system. Schemas store all their configuration parameters in the e*Gate Registry.

To select or create a schema

1 Invoke the Open Schema dialog box and Open an existing schema or click New to
create a new schema.

Figure 11 Open Schema Dialog

2 Clicking New invokes the New Schema dialog box (Figure 12).

Figure 12 New Schema Dialog

3 Enter a new schema name and click Open.

4 The e*Gate Enterprise Manager then opens under your new schema name.

5 From the Options menu, click on Default Editor and select Monk.

6 Select the Components tab, found at the bottom of the Navigator pane of the e*Gate
Enterprise Manager window.

7 You are now ready to begin creating the necessary components for this new schema.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
System Implementation Creating Event Types
3.3 Creating Event Types
Within e*Gate, messages and/or packages of data are defined as Events. Each Event
must be categorized into a specific Event Type within the schema.

To define the Event Types

1 In the e*Gate Enterprise Manager’s Navigator pane, select the Event Types folder.

2 On the Palette, click the New Event Type button .

3 In the New Event Type Component box, enter the name for the input Event Type
and click Apply. Use this method to create all required Event Types, for example:

" InboundEvent

" ValidEvent

" InvalidEvent

4 After you have created the final Event Type, click OK.

3.4 Creating Event Type Definitions
Before e*Gate can process any data, you must create an Event Type Definition to
package and route that data within the e*Gate system. In the case of SWIFT, the
SeeBeyond SWIFT ETD Library provides pre-defined templates for the full range of
SWIFT data types. See the SWIFT ETD Library User’s Guide for more information.

See the e*Gate Integrator User’s Guide for additional information about Event Type
Definitions and the e*Gate ETD Editor.

3.5 Assigning ETDs to Event Types
To assign ETDs to Event Types

1 In the Enterprise Manager window, select the Event Types folder in the Navigator/
Components pane.

2 In the Editor pane, select one of the Event Types you created.

3 Right-click on the Event Type and select Properties (or click in the toolbar).

The Event Type Properties dialog box appears. See Figure 13.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
System Implementation Assigning ETDs to Event Types
Figure 13 Event Type Properties Dialog Box

4 Under Event Type Definition, click Find, and the Event Type Definition Selection
dialog box appears (it is similar to the Windows Open dialog box).

5 Open the monk_scripts\templates\swift<yy>\<full or slim> folder, then select the
desired file name (mt<nnn>.ssc).

6 Click Select. The file populates the Event Type Definition field.

7 To save any work in the properties dialog box, click Apply to enter it into the
system.

8 When finished assigning ETDs to Event Types, click OK to close the properties
dialog box and apply all the properties.

Each Event Type is associated with the specified Event Type Definition.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.6
System Implementation Defining Collaborations
3.6 Defining Collaborations
After you have created the required Event Type Definitions, you must define a
Collaboration to transform the incoming Event into the desired outgoing Event.

Collaborations are e*Way components that receive and process Event Types, then
forward the output to other e*Gate components. Collaborations consist of the
Subscriber, which “listens” for Events of a known type or from a given source, and the
Publisher, which distributes the transformed Event to a specified recipient. The same
Collaboration cannot be assigned to more than one e*Gate component.

Figure 14 Collaborations

The Collaboration is driven by a Collaboration Rules script, which defines the
relationship between the incoming and outgoing ETDs. You can use an existing
Collaboration Rules script, or use the Monk programming language to write a new
Collaboration Rules script. Once you have written and successfully tested a script, you
can then add it to the system’s run-time operation.

Collaborations are defined using the e*Gate Monk Collaboration Rules Editor. See the
e*Gate Integrator User’s Guide for instructions on using this Editor. The file extension for
Monk Collaboration Rules is .ssc.

SWIFT ADK e*Way

CollaborationEvent
A

Event
B

Collaboration Rule

ETD
A

ETD
B

e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.7
System Implementation Creating Intelligent Queues
3.7 Creating Intelligent Queues
IQs are components that provide nonvolatile storage for Events within the e*Gate
system as they pass from one component to another. IQs are intelligent in that they are
more than just a “holding tank” for Events. They actively record information about the
current state of Events.

Each schema must have an IQ Manager before you can add any IQs to it. You must
create at least one IQ per schema for published Events within the e*Gate system. Note
that e*Ways that publish Events externally do not need IQs.

For more information on how to add and configure IQs and IQ Managers, see the e*Gate
Integrator System Administration and Operations Guide. See the e*Gate Integrator
Intelligent Queue Services Reference Guide and the SeeBeyond JMS Intelligent Queue
User’s Guide for complete information on working with IQs.

3.8 Troubleshooting
Startup information, shutdown conditions, and fatal errors can be examined in the
SWIFTAlliance journal log.

3.8.1 Environmental Variables
Occasionally '/usr/swa/alliance_init' does not set $ALLIANCE or $ARCH. If this occurs,
use '/usr/swa/alliance_init -S >init.out' and then run init.out with '. ./init.out'.

On Solaris, $ARCH is set to 'SunOS'.

3.8.2 Error Codes
The following error codes can be returned:

Code Content Meaning

201 “No messages to get” The requested message does not
exist.

501 “Unknown state” The state given in the request was
not recognized.

502 “No s_umid supplied” The ACK/NAK request cannot
succeed without a s_umid.

503 “No s_umid to ACK” There is no outstanding message
requiring acknowledgment.

504 “No s_umid to NAK” There is no outstanding message
requiring acknowledgment.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.8
System Implementation Troubleshooting
505 “Incorrect s_umid, pending s_umid
supplied”

The s_umid given in the request is
not the s_umid requiring
acknowledgment. This response
contains two additional arguments.
! s_umid: The s_umid of the

message that is pending
acknowledgment.

! instance: The instance number of
that message.

506 “Failed to route message: ...” After the message was added to the
routing point, it couldn't be “routed
on” in SWIFT terminology. The
reason for this failure is included in
the response Content.

507 “Failed to reserve message: ...“ The message specified could not be
reserved. This response contains
additional arguments on why the
request failed.
! s_umid: The s_umid of the

message that could not be
acknowledged.

! instance: The instance number of
the message that could not be
acknowledged.

509 “Failed to get message: ...“ SEWS was not able to retrieve the
message. The response content
provides text that explains the
reason for the error.

510 “Failed to get message, then failed to
unreserve it: ...“

SEWS reserved the message, but
could not retrieve it, and then could
not unreserve the same message
when recovering. Includes text
further detailing the problem in the
content.

511 “Failed to count/list instances ...“ SWIFTAlliance couldn't perform the
operation. The human readable text
- Content - includes the ADK error
string that details the problem.

Code Content Meaning
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.8
System Implementation Troubleshooting
513 “Failed to add message: ...“ The message could not be added to
the SWIFT routing point. The
response content provides
additional detail on why the
procedure failed.
When this error occurs, there are
two additional arguments in the
response.
! offset: The character offset into

the text message, that caused the
error.

! reason: Text giving further details
about the error.

514 “Unknown message type” The type argument contained an
unexpected value. The response also
contains a type argument:
! type: The type value given in the

initial request that was not
understood.

515 “Message type not supplied” No type argument was supplied with
the initial GET request.

516 “Pending ACK for another message” No more messages can be retrieved
until the last message is
acknowledged. Responses with this
code include another argument
“pending”, which lists the s_umid of
the pending message.

517 “Invalid routing point name
supplied”

The routing point name given in the
request was not recognized.

518 “No authorization” Authentication was not possible.

519 “Too many clients connected” SEWS cannot take more than one
client per direction.

550 “Cannot translate SWIFT message to
ADK”

The SWIFT message supplied in the
request cannot be understood by
SEWS. Perhaps there is a Signature
error in the message. More exact
details can be found in the
SWIFTAlliance logs.

551 “Cannot translate TELEX message to
ADK”

The Telex message supplied in the
request cannot be understood by
SEWS. Perhaps there is a Signature
error in the message. More exact
details can be found in the
SWIFTAlliance logs.

Code Content Meaning
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.9
System Implementation Sample Schema
3.9 Sample Schema
A bidirectional sample schema is included with the e*Way, which can be used to establish
connection and authentication using the SEWS component. To use the sample schema:

1 Install the sample schema using the e*Gate Schema Import facility (see Optional
Example Files on page 25.

3.9.1 adk_sample
This sample schema (see Figure 15 on page 37)sets up one SWIFT ADK e*Way and two
File e*Ways having the logical names shown in the following table.

It also sets up two Intelligent Queues (IQs), with the logical names IQ1 and IQ2. The
File e*Ways substitute for external applications that would exist in a production
environment.

Note that adk_sample_input requires the following configuration parameter values (see
the Standard e*Way Intelligent Adapter User’s Guide for additional information).

In this example, the SWIFT ADK e*Way, adk_sample_eway, establishes a connection
with the SWIFT server and authenticates itself using the SEWS component. It requests
messages from the configured e*Gate-inbound routing point on the SWIFT server and
passes them to the IQ. The File e*Way adk_sample_output receives these messages and
posts them to a file.

Messages to SWIFT are retrieved from a number of files by adk_sample_input and the
messages passed to the IQ. The SWIFT ADK e*Way retrieves the messages from the IQ
and passes them to the e*Gate-outbound routing point on the SWIFT server using
SEWS.

In the example monk scripts, error control has been implemented within the adk-
connect function. When a connection to the SWIFT server is established and
authorized, the e*Way checks for reserved messages on both routing points. If any
message is left in a reserved state on either of the routing points (SEWS_to_egate, or
SEWS_from_egate), then:

! The reserved message is routed automatically

! The next message is marked as being a potential duplicate

e*Way Type Logical Name

SWIFT ADK e*Way adk_sample_eway

File e*Way adk_sample_output
adk_sample_input

Poller (inbound) Settings Parameter Value

Remove EOL no

Multiple Records Per File no
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.9
System Implementation Sample Schema
Figure 15 adk_sample Schema
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.9
System Implementation Sample Schema
e*Gate to SEWS

1 Messages to be sent to SWIFT are contained in files having the extension .fin. These
are retrieved by adk_sample_input as Event Type GenericInEvent.

2 The messages are published to IQ1 as Event Type GenericInEvent. The pass-
through Collaboration used, input_collab performs a byte-by-byte duplication (see
Figure 16).

3 The Collaboration egate_to_SEWS subscribes to Events of type GenericInEvent in
the IQ and publishes Events of type GenericInEvent (see Figure 17).

4 The SWIFT ADK e*Way, adk_sample_eway, performs the Collaboration and routes
the messages to the e*Gate-outbound routing point, SEWS_from_egate, on the
SWIFT server.

Figure 16 input_collab Collaboration

Figure 17 SWIFT ADK e*Way Outbound Collaboration

Source Event Destination EventCollaboration

input_collab GenericInEventGenericInEvent

(pass-through)

Script

any_message
.ssc

any_message
.ssc

Source ETD Destination ETD

Source Event Destination EventCollaboration

egate_to_SEWS GenericInEventGenericInEvent

(pass-through)

Script

any_message
.ssc

any_message
.ssc

Source ETD Destination ETD
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.9
System Implementation Sample Schema
SEWS to e*Gate

1 Messages are retrieved one at a time from the e*Gate-inbound routing point,
SEWS_to_egate, by adk_sample_eway.

2 The incoming Event Type, GenericInEvent, is passed to IQ2 as Event Type
GenericInEvent. The pass-through Collaboration egate_from_SEWS performs a
byte-by-byte duplication (see Figure 18).

3 The Collaboration output_collab subscribes to Events of type GenericInEvent in the
IQ and writes them to the file swift%d.dat as Event Type GenericInEvent (see Figure
19).

Figure 18 SWIFT ADK e*Way Inbound Collaboration

Figure 19 outbound_collab Collaboration

Source Event Destination EventCollaboration

egate_from_SEWS GenericInEventGenericInEvent

(pass-through)

Script

any_message
.ssc

any_message
.ssc

Source ETD Destination ETD

Source Event Destination EventCollaboration

output_collab GenericInEventGenericInEvent

(pass-through)

Script

any_message
.ssc

any_message
.ssc

Source ETD Destination ETD
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 4

Setup Procedures

This chapter describes the procedures for customizing the SWIFT ADK e*Way and the
SEWS component to operate with your system.

4.1 Overview
After creating a schema, you must instantiate and configure the SWIFT ADK e*Way to
operate within the schema. A wide range of setup options allow the e*Way to conform
to your system’s operational characteristics and your facility’s operating procedures.

The topics discussed in this chapter include the following:

Setting Up the e*Way

Creating the e*Way on page 41

Modifying e*Way Properties on page 42

Configuring the e*Way on page 43

Changing the User Name on page 47

Setting Startup Options or Schedules on page 47

Activating or Modifying Logging Options on page 49

Activating or Modifying Monitoring Thresholds on page 50

Troubleshooting the e*Way

Configuration Problems on page 51

System-related Problems on page 52

Operational Problems on page 52

Configuring SEWS
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way
4.2 Setting Up the e*Way

Note: The e*Gate Enterprise Manager GUI runs only on the Windows operating system.

4.2.1 Creating the e*Way
The first step in implementing an e*Way is to define the e*Way component using the
e*Gate Enterprise Manager.

To create an e*Way

1 Open the schema in which the e*Way is to operate.

2 Select the e*Gate Enterprise Manager Navigator's Components tab.

3 Open the host on which you want to create the e*Way.

4 Select the Control Broker you want to manage the new e*Way.

Figure 20 e*Gate Enterprise Manager Window (Components View)

5 On the Palette, click Create a New e*Way.

6 Enter the name of the new e*Way, then click OK.

7 All further actions are performed in the e*Gate Enterprise Manager Navigator's
Components tab.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 41 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way
4.2.2 Modifying e*Way Properties
To modify any e*Way properties

1 Right-click on the desired e*Way and select Properties to edit the e*Way’s
properties. The properties dialog opens to the General tab (shown in Figure 21).

Note: The executable and default configuration files used by this e*Way are listed in
Components on page 13.

Figure 21 e*Way Properties (General Tab)

2 Make the desired modifications, then click OK.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way
4.2.3 Configuring the e*Way
The e*Way’s default configuration parameters are stored in an ASCII text file with a
.def extension. The e*Way Editor provides a simple graphical interface for viewing and
changing those parameters to create a working configuration (.cfg) file.

To change e*Way configuration parameters

1 In the e*Gate Enterprise Manager’s Component editor, select the e*Way you want to
configure and display its properties.

Note: The executable and default configuration files used by this e*Way are listed in
Components on page 13.

Figure 22 e*Way Properties - General Tab

2 Under Configuration File, click New to create a new file or Find to select an existing
configuration file. If you select an existing file, an Edit button appears; click the
button to edit the currently selected file.

3 You are now in the e*Way Configuration Editor.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way
4.2.4 Using the e*Way Editor

Figure 23 The e*Way Configuration Editor

The e*Way Editor controls fall into one of six categories:

! The Menu bar allows access to basic operations (e.g., saving the configuration file,
viewing a summary of all parameter settings, and launching the Help system)

! The Section selector at the top of the Editor window enables you to select the
category of the parameters you wish to edit

! Section controls enable you to restore the default settings, restore the last saved
settings, display tips, or enter comments for the currently selected section

! The Parameter selector allows you to jump to a specific parameter within the
section, rather than scrolling

! Parameter controls enable you to restore the default settings, restore the last saved
settings, display tips, or enter comments for the currently selected parameter

! Parameter configuration controls enable you to set the e*Way’s various operating
parameters

Section
controls

Parameter
selector

Parameter
controls

Section
selector

Menu
Bar

Parameter
configuration
area
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 44 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way
Section and Parameter Controls

The section and parameter controls are shown in Table 6 below.

Table 6 Parameter and Section Controls

Note: The section controls affect all parameters in the selected section, whereas the
parameter controls affect only the selected parameter.

Parameter Configuration Controls

Parameter configuration controls fall into one of two categories:

! Option buttons

! Selection lists, which have controls as described in Table 7

Table 7 Selection List Controls

Button Name Function

Restore Default Restores default values

Restore Value Restores saved values

Tips Displays tips

User Notes Enters user notes

Button Name Function

Add to List Adds the value in the text box to the
list of available values.

Delete Items Displays a “delete items” dialog box,
used to delete items from the list.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way
Command-line Configuration

In the Additional Command Line Arguments box, type any additional command line
arguments that the e*Way may require, taking care to insert them at the end of the
existing command-line string. Be careful not to change any of the default arguments
unless you have a specific need to do so.

Getting Help

To launch the e*Way Editor’s Help system

From the Help menu, select Help topics.

To display tips regarding the general operation of the e*Way

From the File menu, select Tips.

To display tips regarding the selected Configuration Section

In the Section Control group, click .

To display tips regarding the selected Configuration Parameter

In the Parameter Control group, click .

Note: “Tips” are displayed and managed separately from the Help system that launches
from the Toolbar’s Help menu. You cannot search for Tips within the Help system,
or view Help system topics by requesting Tips.

For detailed descriptions and procedures for using the e*Way Configuration Editor, see
the e*Gate Integrator User’s Guide.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 46 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way
4.2.5 Changing the User Name
Like all e*Gate executable components, e*Ways run under an e*Gate user name. By
default, all e*Ways run under the Administrator user name. You can change this if your
site’s security procedures so require.

To change the user name

1 Display the e*Way’s properties dialog.

2 On the General tab, use the Run as user list to select the e*Gate user under whose
name you want this component to run.

See the e*Gate Integrator System Administration and Operations Guide for more
information on the e*Gate security system.

4.2.6 Setting Startup Options or Schedules
SeeBeyond e*Ways can be started or stopped by any of the following methods:

! The Control Broker can start the e*Way automatically whenever the Control
Broker starts.

! The Control Broker can start the e*Way automatically whenever it detects that the
e*Way terminated execution abnormally.

! The Control Broker can start or stop the e*Way on a schedule that you specify.

! Users can start or stop the e*Way manually using an interactive monitor.

You determine how the Control Broker starts or shuts down an e*Way using options on
the e*Way properties Start Up tab (see Figure 24). See the e*Gate Integrator System
Administration and Operations Guide for more information about how interactive
monitors can start or shut down components.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way
Figure 24 e*Way Properties (Start-Up Tab)

To set the e*Way’s startup properties

1 Display the e*Way’s properties dialog.

2 Select the Start Up tab.

3 To have the e*Way start automatically when the Control Broker starts, select the
Start automatically check box.

4 To have the e*Way start manually, clear the Start automatically check box.

5 To have the e*Way restart automatically after an abnormal termination:

A Select Restart after abnormal termination.

B Set the desired number of retries and retry interval.

6 To prevent the e*Way from restarting automatically after an abnormal termination,
clear the Restart after abnormal termination check box.

7 Click OK.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 48 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way
4.2.7 Activating or Modifying Logging Options
Logging options enable you to troubleshoot problems with the e*Way and other e*Gate
components.

To set the e*Way debug level and flag

1 Display the e*Way’s Properties dialog.

2 Select the Advanced tab.

3 Click Log. The dialog window appears, as shown in Figure 25.

Figure 25 e*Way Properties (Advanced Tab - Log Option)

4 Select DEBUG for the Logging level.

5 Select either e*Way (EWY) or e*Way Verbose (EWYV) for the Debugging flag. Note
that the latter has a significant impact on system performance.

6 Click OK.

The other options apply to other e*Gate components and are activated in the same
manner. See the e*Gate Integrator Alert and Log File Reference for additional information
concerning log files, logging options, logging levels, and debug flags.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way
4.2.8 Activating or Modifying Monitoring Thresholds
Monitoring thresholds enable you to monitor the throughput of the e*Way. When the
monitoring thresholds are exceeded, the e*Way sends a Monitoring Event to the
Control Broker, which routes it to the e*Gate Monitor and any other configured
destinations.

1 Display the e*Way’s properties dialog.

2 Select the Advanced tab.

3 Click Thresholds.

4 Select the desired threshold options and click OK.

See the e*Gate Integrator Alert and Log File Reference for more information concerning
threshold monitoring, routing specific notifications to specific recipients, or for general
information about e*Gate’s monitoring and notification system.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 50 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Setup Procedures Troubleshooting the e*Way
4.3 Troubleshooting the e*Way
In the initial stages of developing your e*Gate Integrator system administration system,
most problems with e*Ways can be traced to configuration.

4.3.1 Configuration Problems
In the Enterprise Manager

! Does the e*Way have the correct Collaborations assigned?

! Do those Collaborations use the correct Collaboration Services?

! Is the logic correct within any Collaboration Rules script employed by this e*Way’s
Collaborations?

! Do those Collaborations subscribe to and publish Events appropriately?

! Are all the components that “feed” this e*Way properly configured, and are they
sending the appropriate Events correctly?

! Are all the components that this e*Way “feeds” properly configured, and are they
subscribing to the appropriate Events correctly?

In the e*Way Editor

! Check that all configuration options are set appropriately.

! Check that all settings you changed are set correctly.

! Check all required changes to ensure they have not been overlooked.

! Check the defaults to ensure they are acceptable for your installation.

On the e*Way’s Participating Host

! Check that the Participating Host is operating properly, and that it has sufficient
disk space to hold the IQ data that this e*Way’s Collaborations publish.

! Check that your path environment variable includes the location of the SWIFT ADK
dynamically-loaded libraries. The name of this variable on the different operating
systems is:

" PATH (Windows)

" LD_LIBRARY_PATH (Solaris)

" LIBPATH (AIX)

In the SWIFT Application

! Check that the application is configured correctly, is operating properly, and is
sending or receiving the correct data appropriately.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 51 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Setup Procedures Troubleshooting the e*Way
4.3.2 System-related Problems
! Check that the connection between the external application and the e*Way is

functioning appropriately.

! Once the e*Way is up and running properly, operational problems can be due to:

" External influences (network or other connectivity problems).

" Problems in the operating environment (low disk space or system errors)

" Problems or changes in the data the e*Way is processing.

" Corrections required to Collaboration Rules scripts that become evident in the
course of normal operations.

One of the most important tools in the troubleshooter’s arsenal is the e*Way log file. See
the e*Gate Integrator Alert and Log File Reference Guide for an extensive explanation of log
files, debugging options, and using the e*Gate monitoring system to monitor
operations and performance.

4.3.3 Operational Problems
Startup information, shutdown conditions, and fatal errors can be examined in the
SWIFTAlliance journal log.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 52 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Setup Procedures Configuring SEWS
4.4 Configuring SEWS

4.4.1 Windows Systems
Before SEWS can be used, it must be configured. Note that the values entered for the
SEWS parameters must match the corresponding e*Way parameters.

Systems Management

The Systems Management window of SWIFTAlliance allows you to configure the two
'non secret' parameters of the SEWS component: the IP Address and TCP Port Number,
both highlighted in Figure 26.

Figure 26 Systems Management Window

Double-clicking the IP Address line presents the dialog box, shown in Figure 27.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 53 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Setup Procedures Configuring SEWS
Figure 27 Systems Management—IP Address Window

In this example the value is set to 10.1.191.133—dots are replaced with slashes to be
compatible with a current bug in ADK (see Note below). Note that the default value of
127.0.0.1 does not work—it is only an example, and must be replaced with the IP
address of the host running SWIFT Alliance. The value you enter for the IP Address
parameter must match the value you enter later for the Hostname parameter in the
e*Way configuration. See SWIFT Setup on page 91.

Note: Currently, dot characters are not reliably stored because of a bug in ADK. To store
an IP address, you must substitute slashes (/) for dots (.) in the entry. For example,
the default IP address 127.0.0.1 is entered as 127/0/0/1.

Double-clicking the TCP Port Window line in the Systems Management window
presents the dialog box shown in Figure 28.

Figure 28 Systems Management—TCP Port Window
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 54 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Setup Procedures Configuring SEWS
The TCP Port Number defaults to 14000, which is reasonably safe to leave as-is. The
value you enter for this parameter must match the value you enter later for the Port
Number parameter in the e*Way configuration. See SWIFT Setup on page 91.

Security Definition

The Security Definitions window of SWIFTAlliance can be run only by security
officers LSO and RSO (which stand for Left and Right Security Office, respectively).
Any changes made by any security officer to any of the security definitions must be
approved by both security officers before they can become effective.

Figure 29 Security Definition Window

In Figure 29, the Secret parameter of SEWS is highlighted. The Secret parameter is used
to authenticate a connection from the e*Way, in the same way that a password is used.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 55 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Setup Procedures Configuring SEWS
Figure 30 Security Definition—Secret Window

In Figure 30 we see the Secret value, which, in this example, is rhubarb. Once the same
value is entered into the configuration for e*Way it should be able to connect and
authenticate itself. Note that the default is NOT SET—unless this parameter is changed
from the default value, the SEWS component will not start. The value you enter for the
Secret parameter must match the value you enter later for the Secret parameter in the
e*Way configuration. See SWIFT Setup on page 91.

Starting SEWS

From the File menu in the System Management window, select Start Component and
then SEWS.

4.4.2 UNIX Systems
Before SEWS can be used, it must be configured. Note that the values entered for the
SEWS parameters must match the corresponding e*Way parameters.

Systems Management

The Systems Management window of SWIFTAlliance allows you to configure the two
'non secret' parameters of the SEWS component: the IP Address and TCP Port Number,
both highlighted in Figure 31.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 56 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Setup Procedures Configuring SEWS
Figure 31 Systems Management Window

Double-clicking the IP Address line presents the dialog box shown in Figure 32.

Figure 32 Systems Management—IP Address Window
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 57 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Setup Procedures Configuring SEWS
In this example the value is set to 172.24.50.70—dots are replaced with slashes to be
compatible with a current bug in ADK (see Note below). Note also that the default value
of 127.0.0.1 does not work—it is only an example, and must be replaced with the IP
address of the host running SWIFTAlliance. The value you enter for the IP Address
parameter must match the value you enter later for the Hostname parameter in the
e*Way configuration. See SWIFT Setup on page 91

Note: Currently, dot characters are not reliably stored because of a bug in ADK. To store
an IP address, you must substitute slashes (/) for dots (.) in the entry. For example,
the default IP address 127.0.0.1 is entered as 127/0/0/1.

Double-clicking the TCP Port Window line in the Systems Management window
presents the dialog box shown in Figure 33.

Figure 33 Systems Management—TCP Port Number Window

The TCP Port Number defaults to 14000, which is reasonably safe to leave as-is. The
value you enter for this parameter must match the value you enter later for the Port
Number parameter in the e*Way configuration. See SWIFT Setup on page 91.

Security Definition

The Security Definitions window of SWIFTAlliance can be run only by security
officers LSO and RSO (which stand for Left and Right Security Office, respectively).
Any changes made by any security officer to any of the security definitions must be
approved by both security officers before they can become effective.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 58 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Setup Procedures Configuring SEWS
Figure 34 Security Definition Window

In Figure 34, the Secret parameter of SEWS is highlighted. The Secret parameter is used
to authenticate a connection from the e*Way, in the same way that a password is used.

Figure 35 Security Definition—Secret Window

In Figure 35 we see the Secret value, which, in this example, is rhubarb. Once the
same value is entered into the configuration for e*Way it should be able to connect
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 59 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Setup Procedures Configuring SEWS
and authenticate itself. Note that the default is NOT SET—unless this parameter is
changed from the default value, the SEWS component will not start. The value you
enter for the Secret parameter must match the value you enter later for the Secret
parameter in the e*Way configuration. See SWIFT Setup on page 91.

Starting SEWS

From the File menu in the System Management window, select Start Component and
then SEWS.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 60 SeeBeyond Proprietary and Confidential

Chapter 5

Operational Overview

This chapter describes the basic operation of the SWIFT ADK e*Way and the way in
which it interacts with SEWS.

5.1 Interacting with SWIFT

5.1.1 SWIFTAlliance, SEWS, and ADK
The SWIFT ADK e*Way uses the SWIFT client/server architecture by integrating the
Alliance Developer Toolkit (ADK) into the e*Way environment. The ADK is a library of
APIs that can call services provided by SWIFTAlliance servers.

Figure 36 SEWS and the SWIFT ADK e*Way

SWIFTAlliance

Routing
Point

Routing
Point

SWIFT ADK e*Way

Monk Extension
DLL

Protocol libraries

SEWS
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 61 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Operational Overview Interacting with SWIFT
Within SWIFTAlliance, the SEWS component is linked to two routing points; one
(SEWS_to_egate) receives Events from the SWIFT network and queues them for input
to the SWIFT ADK e*Way; the other (SEWS_from_egate) is used for outgoing Events.
These routing points are analogous to e*Gate Intelligent Queues (IQs).

SWIFT Events are identified by a unique identifier, composed of the s_umid and an
instance number. The instance number distinguishes between separate Events having
the same s_umid and content.

5.1.2 Communications Layers
Communication between SEWS and the SWIFT ADK e*Way can be viewed as having
three layers, as depicted in Figure 37.

Figure 37 Communication Layers

Starting at the bottom, the lowest layer represents the TCP/IP network, and across it a
TCP socket connection. At one end is the SEWS component acting as a server, at the
other end the SWIFT ADK e*Way behaving as a client.

The middle layer represents the communication protocol used between the SEWS and
the e*Way, which is a request/response protocol. The e*Way sends requests and
receives responses from the SEWS via functionality provided by the adkRequest and
adkResponse Monk objects. These objects can be thought of as containers for

Server ClientTCP/IP

Request

Response

adkRequest

adkResponse

PUT/GET

CHAL

Monk Objects

Monk Scripts

(Request)

(Response)

Connection

Command

SEWS SWIFT ADK e*Way

do-auth

adk-outgoing/
adk-incoming
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 62 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Operational Overview Interacting with SWIFT
messages—they are constructed and manipulated in Monk, and unless they are
populated by Monk code they are empty (and therefore meaningless).

The highest layer represents the protocol implemented on top of those adkRequest and
adkResponse objects. These are Monk scripts used by the e*Way to create, populate and
send requests and receive responses. The requests understood by the SEWS component
have names, or request-types, like PUT (to upload a new message into SWIFT) and GET
(to retrieve a message from SWIFT).

5.1.3 Event Flow
All communication is initiated by the SWIFT ADK e*Way; SWIFTAlliance does not
send Events unless prompted to do so.

Inbound e*Way

Messages received from the SWIFT Network are stored in a routing point. In order to
retrieve an Event from the routing point, the ADK component must first reserve it and
then retrieve it. The Event remains in the routing point until the e*Way sends an
acknowledgment to say that it has safely placed the Event in the appropriate IQ.

As an example, the following diagram shows the basic process flow involved in
retrieving one Event from the e*Gate-inbound routing point. Note that GET and ACK
are described in “Monk ADK Functions” on page 115.

Figure 38 SWIFT-to-e*Gate Basic Process Flow

Send GET

Send ACK

Receive OK

Collaboration

SWIFT ADK e*Way

Receive OK
and Event

3

1

4

2

SEWS

Routing Point

SWIFTAlliance

Reserve

Remove

Retrieve
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 63 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Operational Overview Interacting with SWIFT
1 The SWIFT ADK e*Way sends a GET message asking for the next available Event.

2 SEWS reserves the Event and retrieves it from the routing point.

3 The e*Way receives an OK reply to the GET with the Event in the content of the
reply. It stores the Event in the appropriate IQ.

4 The e*Way ACKs SEWS to say that it has received and stored the Event.

5 The Event is removed from the routing point.

6 The e*Way receives an OK reply to the ACK.

Outbound e*Way

An outgoing Event experiences a similar, but simpler, process:

Figure 39 e*Gate-to-SWIFT Basic Process Flow

1 The SWIFT ADK e*Way retrieves an Event from the IQ.

2 The e*Way sends the Event to SEWS, which routes it to the outgoing routing point.

3 SEWS sends an ACK to the e*Way, indicating success.

Retrieve Event
from IQ

Receive ACK

Collaboration

SWIFT ADK e*Way

Send Event

3

1

2

SEWS

Routing Point

SWIFTAlliance

Route
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 64 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Operational Overview Interacting with SWIFT
5.1.4 Data Integrity Features
When the e*Way starts up, it checks for indications of incomplete processing during a
previous interchange.

Inbound e*Way

The process flow during initialization of an inbound e*Way is shown in Figure 40.

Figure 40 SWIFT-to-e*Gate Initial Process Flow

The SWIFT ADK e*Way creates a transaction log file, which is deleted when the e*Way
shuts down. If a transaction log file already exists, the e*Way marks the next Event
received from SEWS as a possible duplicate Event. The location of the log file is:

eGate/client/logs/ewIn.log

The e*Way also checks for reserved messages on the routing point. If the next Event on
the routing point is reserved, the e*Way unreserves it and marks the next Event as a
possible duplicate.

The remainder of the processing is handled normally (see Figure 38), as are all
subsequent Events during the session.

Send GET

Send ACK

Receive OK

Collaboration

SWIFT ADK
e*Way

Receive OK, Event
and Mark Event

4

2

5

3

SEWS

Routing Point

SWIFTAlliance

Remove

Retrieve

Create
Transaction Log

Delete
Transaction Log6

1

Reserve
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 65 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Operational Overview Interacting with SWIFT
Outbound e*Way

The procedure followed during initialization of an outbound e*Way is similar (see
Figure 41).

Figure 41 e*Gate-to-SWIFT Initial Process Flow

The SWIFT ADK e*Way creates a transaction log file, which is deleted when the e*Way
shuts down. If a transaction log file already exists, the e*Way marks the next Event
received from the IQ as a possible duplicate Event. The location of the log file is:

eGate/client/logs/ewOut.log

The e*Way also checks for reserved Events on the routing point. If the next Event on the
routing point is reserved, the e*Way unreserves it and routes it on to SWIFTAlliance.
The e*Way then marks the next Event received from the IQ as a possible duplicate
Event and sends the Event to SEWS.

The remainder of the processing is handled normally (see Figure 39), as are all
subsequent Events during the session.

Check
Routing Point

Mark and
Send Event

Receive ACK

Collaboration

SWIFT ADK
e*Way

Retrieve Event
from IQ

4

2

5

3

SEWS

Routing Point

SWIFTAlliance

Route

Create
Transaction Log

Delete
Transaction Log6

1

Unreserve
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 66 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Operational Overview Interacting with SWIFT
5.1.5 Diagnostics and Recovery

SWIFTAlliance Failure

In case of a SWIFTAlliance failure, the ACK/NAK protocol recovers automatically, and
no messages are lost.

SEWS Failure

In case of a SEWS failure, the e*Way automatically detects the lost connection, and
SWIFTAlliance also provides an alert. If desired, SWIFTAlliance can be configured to
automatically restart SEWS; otherwise, you need to restart SEWS manually by means of
the system management facility.

The status of the SEWS component can be checked via the e*Gate Monitor (connection
up or down), and using the standard SWIFTAlliance facilities (system monitor and the
system management GUI).

e*Way Failure

If the SWIFT ADK e*Way fails, the TCP/IP connection is broken and SEWS enters a
waiting for connection state. The e*Way is then restarted manually or automatically,
depending upon its configuration. Resolution of unsent or unacknowledged messages
occurs automatically (see previous section).
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 67 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Operational Overview SWIFT ADK e*Way Architecture
5.2 SWIFT ADK e*Way Architecture
Conceptually, an e*Way can be viewed as a multi-layered structure, consisting of one or
more layers (see Figure 42). Each layer contains Monk scripts and/or functions, and
makes use of lower-level Monk functions residing in the layer beneath. You, as user,
primarily use the highest-level functions, which reside in the upper layer(s).

Figure 42 SWIFT ADK e*Way Architecture

The upper layers of the e*Way use Monk functions to perform Business Process
modeling and ETD mapping, package data as e*Gate Events, send those Events to
Collaborations, and manage interaction with the external system. These layers are built
upon an e*Way Kernel layer that manages the basic operations of the e*Way, data
processing, and communication with other e*Gate components.

The communication layers of the e*Way are single-threaded. Functions run serially, and
only one function can be executed at a time. Processing layers are multi-threaded, with
one executable thread for each Collaboration. Each thread maintains its own Monk
environment; therefore, information such as variables, functions, path information, and
so on cannot be shared between threads.

SWIFT ADK e*Way

Monk Script
Layer

Monk Object
Layer

Network
Transport

e*Way Kernel

e*Gate
IntegratorSEWS

PUB/SUB

TCP/IP

CHAL

adkResponse adkRequest

PUT
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 68 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Operational Overview SWIFT ADK e*Way Architecture
Collaborations execute the business logic that enable the e*Way to do its intended work.
In turn, each Collaboration executes a Collaboration Rule, containing the actual
instructions to execute the business logic. Each Collaboration that publishes its
processed Events internally (within e*Gate Integrator) requires one or more IQs to
receive the Events, as shown in Figure 43. Any Collaboration that publishes its
processed Events only to an external system does not require any IQs.

Figure 43 Collaborations and IQs

Configuration options that control the Monk environment and define the Monk
functions used to perform these basic e*Way operations are discussed in Chapter 6. You
can create and modify these functions using the SeeBeyond Collaboration Rules Editor
or a text editor (such as Microsoft Word, Notepad, or UNIX vi). The available set of e*Way
API functions is described in Chapter 7. Generally, e*Way Kernel Monk functions
should be called directly only when there is a specific need not addressed by higher-
level Monk functions, and should be used only by experienced developers.

For more information on defining Collaborations, defining IQs, assigning
Collaborations to e*Ways, or configuring Collaborations to publish Events, see the
e*Gate Integrator User’s Guide.

e*Gate Integrator

SWIFT
Alliance

SWIFT ADK e*Way
(Inbound)

CollaborationEvent
A

Event
B

Collaboration Rule

Intelligent
Queue

ETD
A

ETD
B

e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 69 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Operational Overview Basic e*Way Processes
5.3 Basic e*Way Processes

Note: This section describes the basic operation of a typical e*Way based on the Generic
e*Way Kernel. Not all functionality described in this section is used routinely by the
SWIFT ADK e*Way.

The most basic processes carried out by an e*Way are listed in Figure 44. In e*Ways
based on the Generic Monk e*Way Kernel (using stcewgenericmonk.exe), these
processes are controlled by the listed Monk functions. Configuration of these functions
is described in the referenced sections of this User’s Guide.

Figure 44 Basic e*Way Processes

A series of diagrams on the next several pages illustrate the interaction and operation of
these functions during the specified processes. Configuring the parameters associated
with these functions is covered in Chapter 6, while the functions themselves are
described in Chapter 7.

Process Monk Configuration Sections

Startup Function on page 84 (also see
Monk Environment Initialization File on page 84)

External Connection Establishment Function on
page 87
External Connection Verification Function on
page 87

Event-driven Data Exchange
Process Outgoing Message Function on page 85

Schedule-driven Data Exchange
Exchange Data with External Function on page 86
Positive Acknowledgment Function on page 88
Negative Acknowledgment Function on page 89

External Connection Shutdown Function on
page 88

Shutdown Command Notification Function on
page 90

Connection to
External System

Data Exchange

Disconnection from
External System

e*Way Shutdown

e*Way Initialization
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 70 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Operational Overview Basic e*Way Processes
Initialization Process

Figure 45 illustrates the e*Way’s initialization process, using the Monk Environment
Initialization File and Startup Function.

Figure 45 Initialization Process

Start e*Way

Load
Monk Initialization

file

Execute any Monk function
having the same name as

the initialization file

Load Startup file

Execute any Monk function
having the same name as

the startup file
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 71 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Operational Overview Basic e*Way Processes
Connect to External Process

Figure 46 illustrates how the e*Way connects to the external system, using the External
Connection Establishment Function and External Connection Verification Function.

Figure 46 Connection Process

Note: The e*Way selects the connection function based on an internal up/down flag
rather than a poll to the external system. See Figure 48 on page 74 and Figure 47
on page 73 for examples of how different functions use this flag.

User functions can manually set this flag using Monk functions. See send-
external-up on page 128 and send-external-down on page 128 for more
information.

Connect e*Way to
external system

Is connection active?

Wait for Up Timeout
schedule

Call External Connection
Verification function

Wait for Down Timeout
schedule

Call External Connection
Establishment function

Yes

No
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 72 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Operational Overview Basic e*Way Processes
Data Exchange Process

Event-driven

Figure 47 illustrates how the e*Way’s event-driven data exchange process works, using
the Process Outgoing Message Function.

The e*Way periodically checks the Failed Message counter against the value specified by
the Max Failed Messages parameter. When the Failed Message counter exceeds the
specified maximum value, the e*Way logs an error and shuts down.

After the function exits, the e*Way waits for the next outgoing Event.

Figure 47 Event-Driven Data Exchange Process

Collaboration publishes
to External system

Call Process Outgoing
Message function

Set internal flag
Connection Down

Maximum
Resends per Message

exceeded?

Yes

Return

CONNERR DATAERR

Increment Failed
Message counter

Create journal
entry

Null
string

No
Journal

enabled?

No

Function exits

Wait for Resend
Timeout period

Roll back Event to
its publishing IQ

Yes

Wait for Resend
Timeout period

Increment
Resend counter

RESEND
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 73 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Operational Overview Basic e*Way Processes
Schedule-driven

Figure 48 illustrates how the e*Way’s schedule-driven data exchange process works for
incoming data, using the Exchange Data with External Function, Process Outgoing
Message Function, and Negative Acknowledgment Function.

Figure 48 Schedule-Driven Data Exchange Process

Increment Failed
Message counter

DATAERR plus
additional data

Null
string

Data
(other than

error strings)

Forward
external
errors?

No

Yes

Set interval flag
Connection Down

CONNERR

Increment Failed
Message counter

DATAERR only

Journal
enabled?

Create journal
entry

Yes

No

Start

Function exits

Send Event to
e*Gate

All
subscribing

Collaborations return
TRUE

?

Call Positive
Acknowledgment

function

Zero
wait after successful

exchange?

Call Negative
Acknowledgment

function

Yes

No

YesNo

Call
Exchange Data with External

function

Return
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 74 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Operational Overview Basic e*Way Processes
Start can occur in any of the following ways:

! Start Data Exchange time occurs

! Periodically during data-exchange schedule (after Start Data Exchange time, but
before Stop Data Exchange time), as set by Exchange Data Interval

! The start-schedule Monk function is called

Send Events to e*Gate can be implemented using any of the following Monk functions:

! event-send-to-egate

! event-send-to-egate-ignore-shutdown

! event-send-to-egate-no-commit

The last of these is used when confirmation of correct transmission is required from the
external system. In this case, the e*Way sends information back to the external system
after receiving data. Depending upon whether the acknowledgment is positive or
negative, you subsequently use one of the following functions to complete the process
(see Figure 49):

! event-commit-to-egate

! event-rollback-to-egate

Figure 49 Send Event to e*Gate with Confirmation

After the function exits, the e*Way waits for the next Start time or command.

External
System

e*Way

REPLY FUNCTION

(event-commit-to-egate)

(event-rollback-to-egate)

e*Gate IQ
Manager

Results

Negative
Confirmation

Positive
Confirmation

Commit
Previously-
Sent Event

Roll Back
Previously-
Sent Event

(event-send-to-egate-no-
commit)DATA

Send Event
Without

Committing
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 75 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Operational Overview Basic e*Way Processes
Disconnect from External Process

Figure 50 illustrates how the e*Way disconnects from the external system, using the
External Connection Shutdown Function.

Figure 50 Disconnect Process

Shutdown Process

Figure 51 illustrates how the e*Way shuts itself down, using the Shutdown Command
Notification Function.

Figure 51 Shutdown Process

Control Broker issues
Suspend command

Call External Connection Shutdown function
with SUSPEND_NOTIFICATION parameter

e*Way closes connection

Return any value

Control Broker issues
Shutdown command

Call Shutdown Notification function
with SHUTDOWN_NOTIFICATION parameter

e*Way shuts down

Wait for
shutdown-request

function

Return

Null string or
"SUCCESS"

any other value

Call waiting-to-shutdown
function

Inform External system
that Shutdown command

has been issued

(Optional)
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 76 SeeBeyond Proprietary and Confidential

Chapter 6

Configuration Parameters

This chapter describes the configuration parameters for the SWIFT ADK e*Way.

6.1 Overview
The e*Way’s configuration parameters are set using the e*Way Editor; see Configuring
the e*Way on page 43 for procedural information. The default configuration is
provided in SwiftADK.def. The SWIFT ADK e*Way’s configuration parameters are
organized into the following sections:

General Settings on page 78

Communication Setup on page 80

Monk Configuration on page 83

SWIFT Setup on page 91
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 77 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Configuration Parameters General Settings
6.2 General Settings
The General Settings control basic operational parameters.

Journal File Name

Description

Specifies the name of the journal file.

Required Values

A valid filename, optionally including an absolute path (e.g., c:\temp\filename.txt).

If an absolute path is not specified, the file is stored in the e*Gate \SystemData\
directory. See the e*Gate Integrator System Administration and Operations Guide for more
information about file locations.

Additional Information

An Event is written to the journal file for the following conditions:

! When the number of resends is exceeded (see Max Resends Per Message below)

! When its receipt is due to an external error, but Forward External Errors is set to
No.

Max Resends Per Message

Description

Specifies the number of times the e*Way attempts to resend a message (Event) to the
external system after receiving an error. When this maximum is reached, the e*Way
waits for the number of seconds specified by the Resend Timeout parameter, and then
rolls back the Event to its publishing IQ.

Required Values

An integer between 1 and 1,024. The default is 5.

Max Failed Messages

Description

Specifies the maximum number of failed messages (Events) that the e*Way allows.
When the specified number of failed messages is reached, the e*Way shuts down and
exits.

Required Values

An integer between 1 and 1,024. The default is 3.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 78 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Configuration Parameters General Settings
Forward External Errors

Description

Specifies whether or not error messages that begin with the string “DATAERR” that are
received from the external system is queued to the e*Way’s configured queue. See
Exchange Data with External Function on page 86 for more information.

Required Values

Yes or No. The default value, No, specifies that error messages are not to be forwarded.
See Data Exchange Process on page 73 for more information about how the e*Way uses
this function.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 79 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Configuration Parameters Communication Setup
6.3 Communication Setup
The Communication Setup parameters control the schedule by which the e*Way
obtains data from the external system.

Note: The schedule you set using the e*Way’s properties in the Enterprise Manager
controls when the e*Way executable runs. The schedule that you set within the
parameters discussed in this section (using the e*Way Editor) determines when data
is exchanged. Be sure you set the “exchange data” schedule to fall within the “run
the executable” schedule.

Start Exchange Data Schedule

Description

Establishes the schedule to invoke the e*Way’s Exchange Data with External Function.

Required Values

One of the following:

! One or more specific dates/times

! A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Additionally, if you set a schedule using this parameter, you must define all three of the
following parameters. If you do not, the e*Way terminates execution when the schedule
attempts to start.

! Exchange Data with External Function

! Positive Acknowledgment Function

! Negative Acknowledgment Function

Additional Information

When the schedule starts, the e*Way determines whether it is waiting to send an ACK or
a NAK to the external system (using the Positive Acknowledgment Function or
Negative Acknowledgment Function, respectively) and whether or not the connection
to the external system is active. If no ACK or NAK is pending and the connection is
active, the e*Way immediately executes the Exchange Data with External Function.
Thereafter, the Exchange Data with External Function is called according to the
Exchange Data Interval parameter until the Stop Exchange Data Schedule time is
reached.

Stop Exchange Data Schedule

Description

Establishes the schedule to stop data exchange.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 80 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Configuration Parameters Communication Setup
Required Values

One of the following:

! One or more specific dates/times

! A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds)

Exchange Data Interval

Description

Specifies the number of seconds the e*Way waits between calls to the Exchange Data
with External Function during scheduled data exchanges.

Required Values

An integer between 0 and 86,400. The default is 120.

Additional Information

If Zero Wait Between Successful Exchanges is set to Yes, and the Exchange Data with
External Function returns data, the setting of this parameter is ignored and the e*Way
immediately invokes the Exchange Data with External Function.

If this parameter is set to zero, then no schedule is set and the Exchange Data with
External Function is never called.

See also

Down Timeout on page 81

Stop Exchange Data Schedule on page 80

Down Timeout

Description

Specifies the number of seconds that the e*Way waits between calls to the External
Connection Establishment Function.

Required Values

An integer between 1 and 86,400. The default is 15.

Up Timeout

Description

Specifies the number of seconds the e*Way waits between calls to the External
Connection Verification Function.

Required Values

An integer between 1 and 86,400. The default is 15.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 81 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Configuration Parameters Communication Setup
Resend Timeout

Description

Specifies the number of seconds the e*Way waits between attempts to resend a message
(Event) to the external system, after receiving an error message from the external
system.

Required Values

An integer between 1 and 86,400. The default is 10.

Zero Wait Between Successful Exchanges

Description

Selects whether to initiate data exchange after the Exchange Data Interval, or
immediately after a successful previous exchange.

Required Values

Yes or No. The default is No.

If this parameter is set to Yes, the e*Way immediately invokes the Exchange Data with
External Function if the previous exchange function returned data.

If this parameter is set to No, the e*Way always waits the number of seconds specified
by Exchange Data Interval between invocations of the Exchange Data with External
Function.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 82 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Configuration Parameters Monk Configuration
6.4 Monk Configuration
The parameters in this section help you set up the information required by the e*Way to
utilize Monk for communication with the external system.

Specifying Function or File Names

Parameters that require the name of a Monk function accept either a function name
(implied by the absence of a period <.>) or the name of a file (optionally including path
information) containing a Monk function. If a file name is specified, the function
invoked is given by the base name of the file (for example, for a file named
my-startup.monk, the e*Way would attempt to execute the function my-startup). If path
information is specified, that path is appended to the Load Path.

If you specify a file name, be sure that the file has one of the following extensions:

! .monk

! .tsc

! .dsc

Specifying Multiple Directories

To specify multiple directories, manually enter the directory names rather than
selecting them with the File Selection button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths. For example:

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

Load Path

The Monk load path is the path Monk uses to locate files and data (set internally within
Monk). The default load paths are determined by the SharedExe and SystemData
settings in the .egate.store file. See the e*Gate Integrator System Administration and
Operations Guide for more information about this file.

Additional Path

Description

Specifies a path to be appended to the Load Path. A directory specified here is searched
after searching the default load path.

Required Values

A pathname, or a series of paths separated by semicolons. There is no default value for
this parameter.

Note: This parameter is optional and may be left blank.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 83 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Configuration Parameters Monk Configuration
Additional information

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

Auxiliary Library Directories

Description

Specifies a path to auxiliary library directories. Any .monk files found within those
directories is automatically loaded into the e*Way’s Monk environment. The default
value is monk_library/swiftadk.

Required Values

A pathname, or a series of paths separated by semicolons.

Note: This parameter is optional and may be left blank.

Monk Environment Initialization File

Description

Specifies a file that contains environment initialization functions, which is loaded after
the Auxiliary Library Directories are loaded.

Required Values

A filename within the Load Path, or filename plus path information (relative or
absolute). If path information is specified, that path is appended to the load path. The
default value is adk-init.

Returns

The string “FAILURE” indicates that the function failed, and the e*Way exits; any other
string, including a null string, indicates success.

Additional information

! Use this feature to initialize the e*Way’s Monk environment (for example, to define
Monk variables that are used by the e*Way’s function scripts); it is good practice to
initialize any global Monk variables that may be used by any other Monk Extension
scripts

! The internal function that loads this file is called once when the e*Way first starts up

! The e*Way loads this file and try to invoke a function of the same base name as the
file name

Startup Function

Description

Specifies a Monk function that the e*Way loads and invokes upon startup or whenever
the e*Way’s configuration is reloaded. It is called after the e*Way loads the specified
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 84 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Configuration Parameters Monk Configuration
Monk Environment Initialization File and any files within the specified Auxiliary
Library Directories. This function accepts no input, and must return a string.

This function should be used to initialize the external system before data exchange
starts.

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default value is adk-startup.

Note: This parameter is optional and may be left blank.

Returns

The string “FAILURE” indicates that the function failed, and the e*Way exits; any other
string (including a null string) indicates success.

Process Outgoing Message Function

Description

Specifies the Monk function responsible for sending outgoing messages (Events) from
the e*Way to the external system. This function is event-driven, rather than schedule-
driven). The function requires a non-null string as input (i.e., the outgoing Event to be
sent), and must return a string.

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default value is adk-outgoing.

Note: This parameter is required, and must not be left blank.

Returns

! A null string (““) indicates that the Event was published successfully to the external
system

! A string beginning with RESEND indicates that the Event should be resent

! A string beginning with CONNERR indicates that there is a problem with the
connection to the external system, and causes a rollback of the Event

! A string beginning with DATAERR indicates that there is a problem with the
message (Event) data itself, and causes a rollback of the Event

! A string beginning with SHUTDOWN indicates that the e*Way must exit
immediately

! If any string other than one of the preceding is returned, the e*Way creates an entry
in the log file indicating that an attempt has been made to access an unsupported
function
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 85 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Configuration Parameters Monk Configuration
Additional Information

! The e*Way invokes this function when one of its Collaborations publishes an Event
to an external destination (as specified within the e*Gate Enterprise Manager).

! Once this function has been called with a non-null string, the e*Way does not process
another Event until the current Event has been completely processed.

Note: If you wish to use event-send-to-egate to enqueue failed Events in a separate IQ,
the e*Way must have an inbound Collaboration (with appropriate IQs) configured
to process those Events.

Exchange Data with External Function

Description

Specifies a Monk function that initiates the transmission of data from the external
system to the e*Gate system and forwards that data as an inbound Event to one or more
e*Gate Collaborations. This function is invoked automatically by the Down Timeout or
manually by the start-schedule Monk function, and is responsible for either sending
data to or receiving data from the external system. If this function returns data, it is
queued to e*Gate in an inbound Collaboration. The e*Way must have at least one
Collaboration configured suitably to process the inbound Event, as well as any required
IQs.

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default value is adk-incoming.

Returns

! A null string (““) indicates that the data exchange was completed successfully, but
with no resultant data sent back to the e e*Gate system

! A string beginning with CONNERR indicates that there is a problem with the
connection to the external system

! A string beginning with DATAERR indicates that there is a problem with the
message (Event) data itself. If the error string contains data beyond the keyword,
the entire string is queued to e*Gate if an inbound Collaboration is so configured
and Forward External Errors is set to Yes. Queueing, however, is performed
without the subsequent sending of a ACK or NAK to the external system.

! Any other string indicates that the contents of the string are packaged as an
inbound Event

Additional Information

! Data can be queued directly to e*Gate by using the event-send-to-egate Monk
function or, if a two-phase approach is required, by using event-send-to-egate-no-
commit and then event-commit-to-egate or event-rollback-to-egate to commit or
rollback the enqueued events, as appropriate

Note: Until an Event is committed, it is not revealed to subscribers of that Event.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 86 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Configuration Parameters Monk Configuration
External Connection Establishment Function

Description

Specifies a Monk function that the e*Way calls (repeatedly) when it has determined that
the connection to the external system is down. The function accepts no input and must
return a string.

This function is executed according to the interval specified within the Down Timeout
parameter, and is called only according to this schedule. Once the e*Way has
determined that its connection to the external system is up, it calls the External
Connection Verification Function (see next).

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default value is adk-connect.

Returns

! A string beginning with SUCCESS or UP indicates that the connection was
established successfully

! A string beginning with DOWN indicates that the connection was not established
successfully

! Any other string, including a null string, indicates that the attempt to establish the
connection failed and the external state is unknown

External Connection Verification Function

Description

Specifies a Monk function that the e*Way calls when its internal variables show that the
connection to the external system is up. It is executed according to the interval specified
within the Up Timeout parameter, and is called only according to this schedule.

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default value is adk-verify.

Returns

! “SUCCESS” or “UP” indicates that the connection was established successfully

! Any other string (including the null string) indicates that the attempt to establish
the connection failed

Additional Information

If this function is not specified, the e*Way executes the External Connection
Establishment Function in its place. This latter function also is called when the e*Way
has determined that its connection to the external system is down.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 87 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Configuration Parameters Monk Configuration
External Connection Shutdown Function

Description

Specifies a Monk function that the e*Way calls to shut down the connection to the
external system. This function is invoked only when the e*Way receives a suspend
command from a Control Broker.

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default value is adk-disconnect.

Input

A string indicating the purpose for shutting down the connection.

! “SUSPEND_NOTIFICATION” - the e*Way is being suspended or shut down

! “RELOAD_NOTIFICATION” - the e*Way is being reconfigured

Returns

A string, the value of which is ignored. Any return value indicates that the suspend
command can proceed and that the connection to the external system can be broken
immediately.

Note: Include in this function any required “clean up” operations that must be performed
as part of the shutdown procedure, but before the e*Way exits.

Positive Acknowledgment Function

Description

This function is loaded during the initialization process and is called when all data
received from the external system has been processed and enqueued successfully.

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default value is adk-ack.

Required Input

A string, the inbound Event to e*Gate.

Returns

! The string beginning with CONNERR indicates a problem with the connection to
the external system; when the connection is re-established, the function is called
again, with the same input data

! Any other string, including a null string, indicates that the acknowledgement has
been sent to the external system successfully
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 88 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Configuration Parameters Monk Configuration
Additional Information

! After the Exchange Data with External Function returns a string that is
transformed into an inbound Event, the Event is handed off to one or more
Collaborations for further processing. The e*Way executes this function only if the
Event’s processing is completed successfully by all the Collaborations to which it
was sent; otherwise, the e*Way executes the Negative Acknowledgment Function.

! This function can return data to be queued, but the e*Way will not acknowledge the
data with an ACK or NAK.

Note: If you configure the acknowledgment function to return a non-null string, you must
configure a Collaboration (with appropriate IQs) to process the returned Event.

Negative Acknowledgment Function

Description

This function is loaded during the initialization process and is called when the e*Way
fails to process or enqueue data received from the external system successfully.

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default value is adk-nak.

Required Input

A string, the inbound Event to e*Gate.

Returns

! The string beginning with CONNERR indicates a problem with the connection to
the external system; when the connection is re-established, the function is called
again, using the same input data

! Any other string, including a null string, indicates that the acknowledgement has
been sent to the external system successfully

Additional Information

! This function is called only during the processing of inbound Events. After the
Exchange Data with External Function returns a string that is transformed into an
inbound Event, the Event is handed off to one or more Collaborations for further
processing. The e*Way executes this function if the Event’s processing is not
completed successfully by all the Collaborations to which it was sent; otherwise, the
e*Way executes the Positive Acknowledgment Function.

! This function can return data to be queued, but the e*Way will not acknowledge the
data with an ACK or NAK.

Note: If you configure the acknowledgment function to return a non-null string, you must
configure a Collaboration (with appropriate IQs) to process the returned Event.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 89 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Configuration Parameters Monk Configuration
Shutdown Command Notification Function

Description

The e*Way calls this Monk function automatically to notify the external system that it is
about to shut down. This function also can be used to shut down the connection with
the external. The function accepts a string as input and must return a string.

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default value is adk-shutdown.

Input

When the Control Broker issues a shutdown command to the e*Way, the e*Way calls
this function with the string “SHUTDOWN_NOTIFICATION” passed as a parameter.

Returns

! A null string or “SUCCESS” indicates that the shutdown can occur immediately

! Any other string indicates that shutdown must be postponed; once postponed,
shutdown does not proceed until the Monk function shutdown-request is executed

Additional Information

If you postpone a shutdown using this function, be sure to use the
shutdown-request function to complete the process in a timely manner.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 90 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Configuration Parameters SWIFT Setup
6.5 SWIFT Setup
The parameters in this section specify the information required by the e*Way to connect
to SEWS on the SWIFTAlliance system.

Hostname

Description

The Name or IP Address of the host on which the SEWS component is running.

Required Values

A string.

Note: This value must match the IP Address value entered for SWIFTAlliance/SEWS.

Port Number

Description

The TCP Port Number on which the SEWS component is listening for new connections

Required Values

Select a Port Number 1 through 65535. The default is 14000.

Note: This value must match the TCP Port Number value entered for SWIFTAlliance/
SEWS.

Key

Description

The value of this parameter is used to encrypt the Secret (see next configuration
parameter). If this value is changed, then you must also change the value of the Secret.

Required Values

A string.

Secret

Description

This parameter is used for authentication of connecting clients.

Required Values

A string. The value must match the Secret value in the SWIFT Alliance Security
Definition configuration for the SEWS component.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 91 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Configuration Parameters SWIFT Setup
Note: This value must match the Secret value entered for SWIFTAlliance/SEWS.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 92 SeeBeyond Proprietary and Confidential

Chapter 7

API Functions

7.1 Overview
Most of the SWIFT ADK e*Way API functions are used in the various communication
layers that link the e*Way with ‘SEWS (see Figure 52).

Figure 52 Communication Layers

These functions are categorized as follows (refer to Figure 52):

SEWS Component Protocol on page 94, corresponding to the SEWS Command set.

Monk Extension Methods on page 103, corresponding to the Monk objects.

Monk ADK Functions on page 115, corresponding to the Monk scripts.

Generic e*Way Functions on page 124, contained in the Generic e*Way kernel.

Server ClientTCP/IP

Request

Response

adkRequest

adkResponse

PUT/GET

CHAL

Monk Objects

Monk Scripts

(Request)

(Response)

Connection

Command

SEWS SWIFT ADK e*Way

do-auth

adk-outgoing/
adk-incoming
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 93 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions SEWS Component Protocol
7.2 SEWS Component Protocol
This section describes the SEWS component protocol contained within the SWIFT
Monk extension dynamic load library, stc_swiftadk.dll.

ACK on page 94

AUTH on page 95

CHAL on page 96

COUNT on page 96

GET on page 97

JOURNAL on page 98

LIST on page 99

NAK on page 99

PUT on page 100

RECOVER on page 101

ACK

Description

Acknowledges that the last message received from a GET request has been successfully
committed to disk.

ACK messages do not contain a Content.

Request Properties

Name Usage Description

s_umid Mandatory The unique identifier of the message being
acknowledged.

instance Optional The instance identifier of the message being
acknowledged. The default is the instance
number of the last message to be received.

rp_name Optional The routing point to acknowledge on:
! SEWS_to_egate
! SEWS_from_egate
The default depends on the direction at
authentication: SEWS_to_egate if the direction is
"to_egate", and SEWS_from_egate otherwise.

force Optional
(value = y)

Use this parameter, a value of y, to acknowledge
a message that was not the last one received
with a GET request.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 94 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions SEWS Component Protocol
Returns

Success:

Failure:

AUTH

Description

Allows the Monk client to authenticate itself to SEWS (SEWS does not process any
requests from an unauthorized client).

The authentication procedure avoids sending readable passwords over the network via
a challenge-authentication mechanism. Both sides (client and SEWS) hold a password,
(referred to as the secret). When the client connects to SEWS, it receives a CHAL
response with a challenge argument, containing a random number.To correctly
authenticate itself, the client needs to make an AUTH request containing the MD5 hash
of the concatenation of the secret and the challenge.

Functions to perform the MD5 hash calculation are available in stc_monkadk.dll. See
adkMD5 class on page 113.

AUTH messages do not contain a Content.

Request Properties

Value Description

s_umid The unique identifier of the message that has been
acknowledged.

instance The instance identifier of the message that has been
acknowledged.

Value Type Description

code number
(nnn)

The following codes can be returned: 502, 504,
505, 507, and 517. Content contains a description
of the error. See Error Codes on page 33.

Name Usage Description

direction Optional Specifies the direction in which data flows for
this connection:
! to_egate
! from_egate (default)
Single clients can be bidirectional, by
implementing 2 connections.

response Mandatory The MD5 hash of the concatenation of the secret
and the challenge.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 95 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions SEWS Component Protocol
Returns

Success:

String containing the Content “Authorization OK”.

Failure:

CHAL

Description

Response sent to the client when the connection is first established. It is always positive.

CHAL messages do not contain a Content.

Request Properties

COUNT

Description

Counts the number of messages on the SWIFTAlliance routing point. All messages, not
only those available for processing can be included in the count.

COUNT messages do not contain a Content.

Request Properties

Value Type Description

code number
(nnn)

The following codes can be returned: 519 and
581. Content contains a description of the error.
See Error Codes on page 33.

Name Usage Description

s_umid Mandatory A unique identifier (a random number)
contained in the challenge value, used in the
authentication procedure. See AUTH on
page 95.

Name Usage Description

state Optional Controls which type of messages are to be
counted:
! reserved (default)
! unreserved
! all
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 96 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions SEWS Component Protocol
Returns

Success:

A vector containing the number of matching messages found.

Failure:

GET

Description

Reserves and retrieves a message from SWIFTAlliance.

GET messages do not contain a Content.

Note: Before a message is retrieved, all previously retrieved messages must be
acknowledged with an ACK request. Additionally, only un-reserved messages can
be retrieved; therefore, it is advisable to use a LIST request before a GET. See
setHeader on page 109.

Request Properties

A message is identified in SWIFTAlliance with a s_umid and an instance number. The
s_umid identifies an unique message, where there are one or more instances of that
message inside SWIFTAlliance, all with the same content, but at different locations
within SWIFTAlliance.

rp_name Optional This parameter defines the routing point to
count.
By default, the two routing points associated
with SEWS are “SEWS_to_egate” and
“SEWS_from_egate”, but these may be different
if a non-standard installation has been
performed.
The two routing points are automatically passed
to the SEWS executable on startup by the -i and -
o flags.
If this option is not supplied, the default of
“SEWS_to_egate” (or the value of the -i startup
argument) is used.

Value Type Description

code number
(nnn)

The following codes can be returned: 501, 511,
and 517. Content contains a description of the
error. See Error Codes on page 33.

Name Usage Description
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 97 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions SEWS Component Protocol
Returns

Success:

(Content contains the text of the retrieved message.)

Failure:

JOURNAL

Description

Enables a message to be passed to SWIFTAlliance, to be logged as human-readable log
events.

The Content is the actual message to be logged in SWIFTAlliance.

Request Properties

Name Usage Description

s_umid Optional The unique identifier of the message to be
retrieved. If not specified, GET defaults to the
next unreserved message.

instance Optional The instance number of the given s_umid. If not
specified, the instance defaults to zero (0).

Value Description

s_umid The unique identifier of the message just received.

type The message type of the retrieved message: Swift or Telex.

Value Description

s_umid The unique identifier of the message requested.

instance The instance number of the request s_umid.

code The following codes can be returned: 201, 507, 509, 510, and 516.
Content contains a description of the error. See Error Codes on
page 33.

Name Usage Description

level Mandatory The level of event log. The allowed values for
this property are: info, warning, and error.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 98 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions SEWS Component Protocol
LIST

Description

Returns a list of s_umids on a routing point. The message listing is given as a list of
SWIFT (s_umid instance number) pairs, joined with a space and with one pair per line.

LIST messages do not contain a Content.

Request Properties

Returns

Success:

A vector containing a list of s_umid instance pairs, one pair per line.

Failure:

NAK

Description

Sends a negative acknowledgment to SWIFTAlliance, indicating that the last message
received from a GET request could not be processed successfully.

NAK messages do not contain a Content.

Name Usage Description

state Optional Controls which type of messages are to be listed:
! reserved (default)
! unreserved
! all

rp_name Optional This parameter defines the routing point to
listed.
By default, the two routing points associated
with SEWS are “SEWS_to_egate” and
“SEWS_from_egate”, but may be different if a
non-standard installation has been performed.
The two routing points are automatically passed
to the SEWS executable on startup by the -i and -
o flags.
If this option is not supplied, the default of
“SEWS_to_egate” (or the value of the -i startup
argument) is used.

Value Type Description

code number
(nnn)

The following codes can be returned: 501, 511,
and 517. Content contains a description of the
error. See Error Codes on page 33.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 99 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions SEWS Component Protocol
Request Properties

Returns

Success:

Failure:

PUT

Description

 Inserts messages into SWIFTAlliance via SEWS.

Request Properties

Name Usage Description

s_umid Mandatory The unique identifier of the message being
negatively acknowledged.

instance Optional The instance identifier of the message being
negatively acknowledged. The default is the
instance number of the last message to be
received.

rp_name Optional The routing point to acknowledge on:
! SEWS_to_egate (default)
! SEWS_from_egate

force Optional (y) Use this parameter, a value of y, to acknowledge
a message that was not the last one received
with a GET request.

Value Description

s_umid The unique identifier of the message that was negatively
acknowledged.

instance The s_umid instance of the message that was negatively
acknowledged.

Value Type Description

code number
(nnn)

The following codes can be returned: 502, 504,
505, 507, and 517. Content contains a description
of the error. See Error Codes on page 33.

Name Usage Description

type Mandatory The message type for the new message: Swift or
Telex. The content contains the text of the
message to be sent.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 100 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions SEWS Component Protocol
Returns

Success:

Failure:

RECOVER

Description

Recovers reserved messages on the SEWS routing point.

! For inbound messages, it unreserves any previously-reserved message on the
SEWS_to_egate routing point and marks the next incoming message as a potential
duplicate.

! For outbound messages, it unreserves any previously-reserved message on the
SEWS_from_egate routing point, routes it on to SWIFTAlliance, and marks the next
outgoing message as a potential duplicate.

RECOVER messages do not contain a Content.

Request Properties

Name Description

s_umid The unique identifier of the inserted message.

Name Description

offset Contains the string offset where the validation failed.

reason Contains a string identifying the error.

code The following codes can be returned: 506, 513, 514, 515, 550, and
551. Content contains a description of the error. See Error
Codes on page 33.

Name Usage Description

s_umid Mandatory The unique identifier of the message to be
recovered.

instance Optional The instance identifier of the message to be
recovered. The default is 0.

rp_name Optional The routing point to recover on:
! SEWS_to_egate
! SEWS_from_egate
The default depends upon the direction at the
time of authentication:
! SEWS_to_egate, if direction is “to_egate”
! SEWS_from_egate, if otherwise
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 101 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions SEWS Component Protocol
Returns

Success:

Failure:

Name Description

s_umid The unique identifier of the recovered message.

instance The instance identifier of the recovered message.

Value Type Description

code number
(nnn)

The following codes can be returned: 502, 506,
508, 509, and 517. Content contains a description
of the error. See Error Codes on page 33.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 102 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
API Functions Monk Extension Methods
7.3 Monk Extension Methods
This section describes the object methods contained in the Monk extension dynamic
load library, stc_monkext.dll. The Monk Extension is a “wrapper” for the Protocol
library that implements the communication between the Monk extension library and
SEWS.

The methods are organized according to the following object classes:

adkConnection class on page 103

adkRequest class on page 105

adkResponse class on page 111

adkMD5 class on page 113

7.3.1 adkConnection class
This class models the connection to SEWS within the SWIFTAlliance server. It provides
a way to connect to the SWIFTAlliance server and pass the connection object as an
argument to the adkRequest and adkResponse make and take functions.

The methods in this class are:

constructor on page 103

connect on page 104

disconnect on page 104

Example of adkConnection Methods

(display "creating adkConnection object ...")
(define cnx (load-interface "stc_swiftadk.dll" "adkConnection_init")

)
(display " done.\n")

(define host "localhost")
(define port 16600)
(display "connecting to ") (display host) (display ":") (display

port) (display "... ")
(invoke cnx "connect" host port)
(display "Connected\n")

constructor

As with all object classes accessed via the Monk load-interface function, the constructor
takes a fixed set of arguments.

Signature

(define your-object (load-interface "stc_swiftadk.dll"
"adkConnection_init"))
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 103 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
API Functions Monk Extension Methods
connect

Description

Joins the e*Way to SEWS on the host named host using the port number port. The host
and post number can be set in the e*Way Editor.

Signature

(object “connect” _host, port)

Parameters

Returns

None.

Throws

If the connection is not successful, the method throws a Monk exception.

disconnect

Description

Severs the connection from SEWS.

Signature

(object “disconnect”)

Parameters

None.

Returns

None.

Throws

If the disconnection is not successful, the method throws a Monk exception.

Name Type Description

_host String The name of the host to which to connect.

port Integer The port number to use for the connection.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 104 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
API Functions Monk Extension Methods
7.3.2 adkRequest class
The adkRequest object class allows the Monk developer to compose and send requests
to SEWS within the SWIFTAlliance installation.

Each adkRequest object has several salient features:

! Header

A single line of text without carriage-return or line-feed characters. The header
is used for words such as GET, PUT or EXECUTE.

! Dictionary

The adkRequest object contains a string-to-string association, also known as a
dictionary. The left side of the association is the key part while the right side is
the value part. Neither the key nor the value string can contain carriage-return
or line-feed characters, and the key cannot contain the colon character (:). There
is no practical limit on the length of the key or value.

The dictionary is optional and is used to store optional arguments for the
header.

Note: The key content-length is reserved for use in transmission. We recommend that
you avoid using it.

! Content

A free-form string that can contain any character, including null characters. It
is restricted to a maximum length of 4 Gigabytes.

The methods in this class are:

Example of adkRequest Methods

(display "creating adkRequest object ...")
(define req (load-interface "stc_swiftadk.dll" "adkRequest_init"))
(display " done.\n")

(req "setHeader" "random header data")
(req "setValue" "foo" "12")
(req "setContent" "some content data ...\n... split over two lines")
(req "make" cnx)

constructor on page 106 getValue on page 108

make on page 106 setValue on page 108

take on page 106 getHeader on page 109

asString on page 107 setHeader on page 109

keysValue on page 107 getContent on page 110

existsValue on page 107 setContent on page 110
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 105 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
API Functions Monk Extension Methods
constructor

As with all object classes accessed via the Monk load-interface function, the constructor
takes a fixed set of arguments.

Signature

(define your-object (load-interface "stc_swiftadk.dll"
"adkRequest_init"))

make

Description

Sends the request to SEWS, using the connection argument.

Signature

(obj “make” connection)

Parameters

Returns

 None.

Throws

If the transmission is not successful, the method throws a Monk exception.

take

Description

Allows the Monk developer to receive an adkRequest object from the specified
adkConnection connection.

Signature

(obj “take” connection)

Parameters

Returns

None.

Name Type Description

connection Monk object Must be an adkConnection object.
See disconnect on page 104.

Name Type Description

connection Monk object Must be an adkConnection object.
See disconnect on page 104.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 106 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
API Functions Monk Extension Methods
Throws

If an error occurs, the method throws a Monk exception.

Additional Information

This method is included for completeness only, and may not be included in later
releases.

asString

Description

Expresses the adkRequest object as a string.

Signature

(obj “asString”)

Parameters

None.

Returns

A vector containing a string representation of the adkRequest object.

Throws

None.

keysValue

Description

Provides a listing of the key strings in the dictionary component.

Signature

(obj “keysValue”)

Parameters

None.

Returns

A vector containing a list of strings.

Throws

None.

existsValue

Description

Tests for the existence of a value associated with the specified key in the adkRequest
dictionary.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 107 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
API Functions Monk Extension Methods
Signature

(obj “existsValue” key)

Parameters

Returns

A vector containing a Boolean true (#t) if the key exists in the dictionary, and has a value
associated with it; otherwise, a Boolean false (#f)

Throws

None.

getValue

Description

Retrieves the value associated with the specified key in the adkRequest dictionary.

Signature

(obj “getValue” key)

Parameters

Returns

A vector containing the value associated with key from the dictionary; if no value exists
for the given key, then a vector containing an empty string is returned.

Throws

None.

setValue

Description

Sets key to the specified value in the adkRequest dictionary, overwriting any existing
value.

Signature

(objt “setValue” key, value)

Name Type Description

key String Name of the dictionary entry to be tested.

Name Type Description

key String Name of the dictionary entry to retrieve.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 108 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
API Functions Monk Extension Methods
Parameters

Returns

None.

Throws

None.

getHeader

Description

Retrieves the value of the adkRequest header component.

Signature

(obj “getHeader”)

Parameters

None.

Returns

A vector containing a string representation of the header value.

Throws

None.

setHeader

Description

Sets the value of the adkRequest header component.

Signature

(obj “setHeader” header)

Parameters

Returns

None.

Name Type Description

key String Name of an entry in the dictionary.

value String Value to associate with the given key.

Name Type Description

header String The new header string.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 109 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
API Functions Monk Extension Methods
Throws

None.

getContent

Description

Retrieves the value of the adkRequest content.

Signature

(obj “getContent”)

Parameters

None.

Returns

A vector containing a string representation of the adkRequest content.

Throws

None.

setContent

Description

Sets the value of the content component of the adkRequest to content.

Signature

(obj “setContent” content)

Parameters

Returns

None.

Throws

None.

Name Type Description

content String The new content value.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 110 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
API Functions Monk Extension Methods
7.3.3 adkResponse class
This object class models responses to adkRequest objects sent to SEWS. Conceptually, it
is very similar to the adkRequst class, because the underlying C++ object derives from
it. The key difference is a success/fail value, which can be manipulated via the setOK
and getOK methods.

The methods in this class are:

constructor on page 111

getOK on page 111

setOK on page 112

Example of adkResponse Methods

(display "creating adkResponse object ...")
(define resp (load-interface "stc_swiftadk.dll" "adkResponse_init"))
(display " done.\n")

(resp "take" cnx)
(display (resp "asString"))(newline)
(display "content is \"") (resp "getContent") (display "\"\n")

constructor

As with all object classes accessed via the Monk load-interface function, the constructor
takes a fixed set of arguments.

Signature

(define your-object (load-interface "stc_swiftadk.dll"
"adkResponse_init"))

getOK

Description

Retrieves a representation of the success or failure value of the adkResponse object.

Signature

(obj “getOK”)

Parameters

None.

Returns

A vector containing a Boolean true (#t) for success, or a Boolean false (#f) for failure.

Throws

None.

Additional Information

The function isOk can be used synonymously.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 111 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
API Functions Monk Extension Methods
setOK

Description

Sets the success or failure value of the adkResponse object.

Signature

(obj “setOK” ok-value)

Parameters

Returns

None.

Throws

None.

Name Type Description

ok-value Boolean Boolean true (#t) or false (#f).
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 112 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
API Functions Monk Extension Methods
7.3.4 adkMD5 class
These methods are used for calculating MD5 hash values.

The methods in this class are:

constructor on page 113

calculate on page 113

last on page 114

usage on page 114

Example of Using adkMD5 Methods

(monk-flag-set 'all)
(define input "Finbar Saunders & His Double Entendres")

(define obj (load-interface "stc_swiftadk.dll" "adkMD5_init"))
(newline)
(display input) (display "\n... becomes ...\n")
(display (vector-ref (obj "calculate" input) 0))
(newline)

constructor

As with all object classes accessed via the Monk load-interface function, the constructor
takes a fixed set of arguments.

Signature

(define your-object (load-interface "stc_swiftadk.dll"
"adkMD5_init"))

calculate

Description

Computes the hash value from the input string.

Signature

(obj “calculate” input)

Parameters

Returns

A vector containing the hash value of the input string.

Throws

If an error occurs, a Monk exception is thrown.

Name Type Description

input String Input string to be used to calculate the hash
value.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 113 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
API Functions Monk Extension Methods
last

Description

Retrieves the last MD5 hash value calculated.

Signature

(obj “last”)

Parameters

None.

Returns

A vector containing the last hash value calculated.

Throws

None.

usage

Description

Obtains the number of times this object has been used.

Signature

(obj “usage”)

Parameters

None.

Returns

A vector containing an integer representing the number of times the object has been
used.

Throws

None.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 114 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
API Functions Monk ADK Functions
7.4 Monk ADK Functions
This section describes the functions available in Monk scripts within the highest
communications layer. They contain references to, and make use of, the SEWS
component protocols residing within the SWIFT Monk extension DLL.

The commands are:

adk-ack on page 115

adk-connect on page 117

adk-disconnect on page 118

adk-incoming on page 118

adk-init on page 118

adk-init-inbound on page 119

adk-init-outbound on page 119

adk-nak on page 120

adk-outgoing on page 121

adk-shutdown on page 121

adk-startup on page 122

adk-verify on page 122

adk-ack

Description

Sends a positive acknowledgment to SEWS that the last message received from a GET
request has been successfully committed to disk.

Signature

(adk-ack s_umid instance rp_name force)

Parameters

Name Usage Description

s_umid Mandatory The unique identifier of the message being
acknowledged

instance Optional The instance identifier of the message being
acknowledged. The default is the instance
number of the last message to be received.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 115 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
API Functions Monk ADK Functions
Returns

Success:

Failure:

Location

\monk_library\swiftadk\adk-ack.monk

rp_name Optional The routing point to acknowledge on:
! SEWS_to_egate
! SEWS_from_egate
The default depends on the direction at
authentication: SEWS_to_egate if the direction is
"to_egate", and SEWS_from_egate otherwise

force Optional
(value = y)

Use this parameter, a value of y, to acknowledge
a message that was not the last one received
with a GET request.

Value Description

s_umid The unique identifier of the message that has been
acknowledged.

instance The instance identifier of the message that has been
acknowledged.

Value Type Description

code number
(nnn)

The following codes can be returned: 502, 504,
505, 507, and 517. Content contains a description
of the error. See Error Codes on page 33.

Name Usage Description
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 116 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
API Functions Monk ADK Functions
adk-connect

Description

Once connected to the remote system, call this routine to connect to SEWS. The routine
performs the following:

1 Creates inbound and outbound connections to SEWS.

2 Creates a transaction log file for each direction.

3 Initiates Event recovery if existing log file is found.

4 Reads the challenge supplied by the SEWS CHAL.

5 Calculates and sends the appropriate response.

6 Checks the reply to make sure the AUTH has been successful.

7 Get a list of reserved messages on the routing point for this connection.

8 If a reserved message is found, the function starts an Event recovery routine. An
error during this procedure causes the e*Way to abort and wait for manual recovery.

Signature

(adk-connect)

Parameters

None.

Returns

Returns true (#t) upon success or false (#f) upon failure.

Throws

Additional Information

! Each connection is either SEWS_to_egate or SEWS_from_egate. The LIST operation
gets a list of s_umids only for the associated SWIFTAlliance routing point.

! Event recovery results are entered into the SWIFTAlliance journal log.

Location

\monk_library\swiftadk\adk-connect.monk

Exception Content

adk-exception-auth “Unable to authenticate from_egate”

“Unable to authenticate to_egate”

adk-exception-journal “Journal failed: “

adk-exception-recover “Messages outstanding on routing point”

“Recovery failed (from egate)”

“Recovery failed (to egate)”
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 117 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
API Functions Monk ADK Functions
adk-disconnect

Description

Disconnects the e*Way from SEWS.

Signature

(adk-disconnect)

Parameters

None.

Returns

None.

Throws

None.

Location

\monk_library\swiftadk\adk-disconnect.monk

adk-incoming

Description

This function asks for an available (unreserved) message from the SWIFT routing point.
If there is one, adk-incoming writes it to the queue and sends an ACK to SWIFT.

Signature

(adk-incoming)

Parameters

None.

Returns

None.

Throws

None.

Location

\monk_library\swiftadk\adk-incoming.monk

adk-init

Description

Initializes system by:

1 Loading Monk extensions.

2 Setting up global variables.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 118 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
API Functions Monk ADK Functions
3 Defining internal exceptions:

" adk-exception-auth

" adk-exception-recover

Signature

(adk-init)

Parameters

None.

Returns

None.

Throws

None.

Location

\monk_library\swiftadk\adk-init.monk

adk-init-inbound

Description

Initialization function for inbound (SWIFT to e*Gate) operation. Identical to adk-init
except that definition for inbound direction included in global variables.

Signature

(adk-init-inbound)

Parameters

None.

Returns

None.

Throws

None.

Location

\monk_library\swiftadk\adk-init-inbound.monk

adk-init-outbound

Description

Initialization function for outbound (e*Gate to SWIFT) operation. Identical to adk-init
except that definition for outbound direction included in global variables.

Signature

(adk-init-outbound)
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 119 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
API Functions Monk ADK Functions
Parameters

None.

Returns

None.

Throws

None.

Location

\monk_library\swiftadk\adk-init-outbound.monk

adk-nak

Description

Sends a negative acknowledgment to SEWS that the last message received from a GET
request could not be successfully committed to disk.

Signature

(adk-nak s_umid instance rp_name force)

Parameters

Returns

The value returned depends on the success or failure of the NAK.

Success:

Name Usage Description

s_umid Mandatory The unique identifier of the message being
acknowledged

instance Optional The instance identifier of the message being
acknowledged. The default is the instance
number of the last message to be received.

rp_name Optional The routing point to acknowledge on:
! SEWS_to_egate
! SEWS_from_egate
The default depends on the direction at
authentication: SEWS_to_egate if the direction is
"to_egate", and SEWS_from_egate otherwise

force Optional
(value = y)

Use this parameter, a value of y, to acknowledge
a message that was not the last one received
with a GET request.

Value Description

s_umid The unique identifier of the message that has been
acknowledged.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 120 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
API Functions Monk ADK Functions
Failure:

Throws

None.

Location

\monk_library\swiftadk\adk-nak.monk

adk-outgoing

Description

This function takes a SWIFT message as a string, and sends it to SEWS.

Signature

(adk-outgoing)

Parameters

None.

Returns

None.

Throws

None.

Location

\monk_library\swiftadk\adk-outgoing.monk

adk-shutdown

Description

Default shutdown function; deletes transaction log file, sends Journal shutdown
request to SWIFT.

Signature

(adk-shutdown)

instance The instance identifier of the message that has been
acknowledged.

Value Type Description

code number
(nnn)

The following codes can be returned: 502, 504,
505, 507, and 517. Content contains a description
of the error. See Error Codes on page 33.

Value Description
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 121 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
API Functions Monk ADK Functions
Parameters

None.

Returns

None.

Throws

Location

\monk_library\swiftadk\adk-shutdown.monk

adk-startup

Description

Default startup function.

Signature

(adk-startup)

Parameters

None.

Returns

None.

Throws

None.

Location

\monk_library\swiftadk\adk-startup.monk

adk-verify

Description

Default verification function.

Signature

(adk-verify)

Parameters

None.

Returns

None.

Exception Content

adk-exception-journal “Journal failed: “
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 122 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
API Functions Monk ADK Functions
Throws

None.

Location

\monk_library\swiftadk\adk-verify.monk
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 123 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.5
API Functions Generic e*Way Functions
7.5 Generic e*Way Functions
The functions described in this section are implemented in the e*Way Kernel layer and
control the e*Way’s most basic operations. They can be used only by the functions
defined within the e*Way’s configuration file. None of these functions is available to
Collaboration Rules scripts executed by the e*Way. These functions are located in
stcewgenericmonk.exe.

The current set of basic Monk functions is:

event-commit-to-egate on page 124

event-rollback-to-egate on page 125

event-send-to-egate on page 125

event-send-to-egate-ignore-shutdown on page 126

event-send-to-egate-no-commit on page 126

get-logical-name on page 127

insert-exchange-data-event on page 127

send-external-up on page 128

send-external-down on page 128

shutdown-request on page 129

start-schedule on page 129

stop-schedule on page 130

waiting-to-shutdown on page 130

event-commit-to-egate

Description

Commits the Event sent previously to the e*Gate system using event-send-to-egate-no-
commit.

Signature

(event-commit-to-egate string)

Parameters

Returns

Boolean true (#t) if the data is committed successfully; otherwise, false (#f).

Name Type Description

string string The data to be sent to the e*Gate system.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 124 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.5
API Functions Generic e*Way Functions
Throws

None.

event-rollback-to-egate

Description

Rolls back the Event sent previously to the e*Gate system using event-send-to-egate-
no-commit, following receipt of a rollback command from the external system.

Signature

(event-rollback-to-egate string)

Parameters

Returns

Boolean true (#t) if the data is rolled back successfully; otherwise, false (#f).

Throws

None.

event-send-to-egate

Description

Sends data that the e*Way has already received from the external system into the e*Gate
system as an Event.

Signature

(event-send-to-egate string)

Parameters

Returns

A Boolean true (#t) if the data is sent successfully; otherwise, a Boolean false (#f).

Throws

None.

Name Type Description

string string The data to be rolled back to the e*Gate
system.

Name Type Description

string string The data to be sent to the e*Gate system
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 125 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.5
API Functions Generic e*Way Functions
Additional information

This function can be called by any e*Way function when it is necessary to send data to
the e*Gate system in a blocking fashion.

See also

event-send-to-egate-ignore-shutdown on page 126

event-send-to-egate-no-commit on page 126

event-send-to-egate-ignore-shutdown

Description

Sends data that the e*Way has already received from the external system into the e*Gate
system as an Event—but ignores any pending shutdown issues.

Signature

(event-send-to-egate-ignore-shutdown string)

Parameters

Returns

Boolean true (#t) if the data is sent successfully; otherwise, false (#f).

Throws

None.

See also

event-send-to-egate on page 125

event-send-to-egate-no-commit on page 126

event-send-to-egate-no-commit

Description

Sends data that the e*Way has received from the external system to the e*Gate system
as an Event—but without Committing, pending confirmation from the external system
of correct transmission of the data.

Signature

(event-send-to-egate-no-commit string)

Name Type Description

string string The data to be sent to the e*Gate system.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 126 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.5
API Functions Generic e*Way Functions
Parameters

Returns

Boolean true (#t) if the data is sent successfully; otherwise, false (#f).

Throws

None.

See also

event-commit-to-egate on page 124

event-rollback-to-egate on page 125

event-send-to-egate on page 125

event-send-to-egate-ignore-shutdown on page 126

get-logical-name

Description

Returns the logical name of the e*Way.

Signature

(get-logical-name)

Parameters

None.

Returns

The name of the e*Way (as defined by the e*Gate Enterprise Manager).

Throws

None.

insert-exchange-data-event

Description

While the Exchange Data with External Function is still active, this function can be
called to initiate a repeat call to it—whether or not data was queued to e*Gate via the
function’s return mechanism following the initial call.

Signature

(insert-exchange-data-event)

Name Type Description

string string The data to be sent to the e*Gate system.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 127 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.5
API Functions Generic e*Way Functions
Parameters

None.

Returns

None.

Throws

None.

See also

Exchange Data Interval on page 81

Zero Wait Between Successful Exchanges on page 82

send-external-up

Description

Informs the e*Way that the connection to the external system is up.

Signature

(send-external-up)

Parameters

None.

Returns

None.

Throws

None.

send-external-down

Description

Informs the e*Way that the connection to the external system is down.

Signature

(send-external-down)

Parameters

None.

Returns

None.

Throws

None.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 128 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.5
API Functions Generic e*Way Functions
shutdown-request

Description

Completes the e*Gate shutdown procedure that was initiated by the Control Broker but
was interrupted by returning a non-null value within the Shutdown Command
Notification Function. Once this function is called, shutdown proceeds immediately.

Signature

(shutdown-request)

Parameters

None.

Returns

None.

Throws

None.

Additional Information

Once interrupted, the e*Way’s shutdown cannot proceed until this Monk function is
called. If you do interrupt an e*Way shutdown, we recommend that you complete the
process in a timely fashion.

start-schedule

Description

Requests that the e*Way execute the Exchange Data with External Function specified
within the e*Way’s configuration file. Does not affect any defined schedules.

Signature

(start-schedule)

Parameters

None.

Returns

None.

Throws

None.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 129 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.5
API Functions Generic e*Way Functions
stop-schedule

Description

Requests that the e*Way halt execution of the Exchange Data with External Function
specified within the e*Way’s configuration file. Execution is stopped when the e*Way
concludes any open transaction. Does not effect any defined schedules, and does not
halt the e*Way process itself.

Signature

(stop-schedule)

Parameters

None.

Returns

None.

Throws

None.

waiting-to-shutdown

Description

Informs the external application that a shutdown command has been issued.

Signature

(waiting-to-shutdown)

Parameters

None.

Returns

Boolean true (#t) if successful; otherwise, false (#f).

Throws

None.
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 130 SeeBeyond Proprietary and Confidential

Index
Index

A
ACK command 63, 94
Additional Path parameter 83
ADK - see Alliance Developer Toolkit
adk-ack function 115
adk-connect function 117
adkConnection class 103–104

constructor 103
adk-disconnect function 118
adk-incoming function 118
adk-init-inbound function 119
adk-init-outbound function 119
adkMD5 class 113–114

constructor 113
adk-nak function 120
adk-outgoing function 121
adkRequest class 105–110

constructor 106
Content 105
Dictionary 105
Header 105

adkResponse class 111–112
constructor 111

adk-shutdown function 121
adk-startup function 122
adk-verify function 122
Alliance Developer Toolkit (ADK) 11, 61
APIs - see functions
Assigning ETDs to Event Types 30
asString method 107
AUTH command 95
Autorun 16
Auxiliary Library Directories parameter 84

C
calculate method 113
CHAL command 96
Changing the User Name 47
Collaboration 32, 38, 39, 51, 69

Rules 69
Collaboration Rules 52
commands, SEWS Protocol

ACK 94

AUTH 95
CHAL 96
COUNT 96
GET 97
JOURNAL 98
LIST 99
NAK 99
PUT 100
RECOVER 101

configuration
Communication Setup 80–82
General Settings 78–79
Monk Configuration 83–90
SWIFT Setup 91–92

configuration parameters 77
Additional Path 83
Auxiliary Library Directories 84
Down Timeout 81
Exchange Data Interval 81
Exchange Data With External Function 86
External Connection Establishment Function 87
External Connection Shutdown Function 88
External Connection Verification Function 87
Forward External Errors 79
Hostname 91
Journal File Name 78
Key 91
Max Failed Messages 78
Max Resends Per Message 78
Monk Environment Initialization File 84
Negative Acknowledgment Function 89
Port Number 91
Positive Acknowledgement Function 88
Process Outgoing Message Function 85
Resend Timeout 82
Secret 91
Shutdown Command Notification Function 90
Start Exchange Data Schedule 81
Startup Function 84
Stop Exchange Data Schedule 80
Up Timeout 81
Zero Wait Between Successful Exchanges 82

configuration procedures 43
connect method 104
constructor

adkConnection class 103
adkMD5 class 113
adkRequest class 106
adkResponse class 111

Content
adkRequest object 105

conventions, writing in document 9
COUNT command 96
Creating an e*Way 41
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 131 SeeBeyond Proprietary and Confidential

Index
D
Dictionary

adkRequest object 105
disconnect method 104
Down Timeout parameter 81

E
e*Way

configuration 43
creating 41
Installation 16
Properties 42
Schedules 47
Startup Options 47
troubleshooting 51

Event Type 30
Event Type Definition (ETD) 30
event-commit-to-egate function 124
event-rollback-to-egate function 125
Events 68
event-send-to-egate function 125
event-send-to-egate-ignore-shutdown function 126
event-send-to-egate-no-commit function 126
Exchange Data Interval parameter 81
Exchange Data with External Function parameter 86
existsValue method 107
External Connection Establishment Function
parameter 87
External Connection Shutdown Function parameter
88
External Connection Verification Function
parameter 87

F
Forward External Errors parameter 79
functions (see also Monk functions)

Generic 124–130
Monk ADK 115–123

G
Generic e*Way Functions 124–130
GET command 63, 97
getContent method 110
getHeader method 109
get-logical-name function 127
getOK method 111
getValue method 108

H
Header

adkRequest object 105
Hostname parameter 91

I
implementation 27, 40
insert-exchange-data-event function 127
Installation procedure

e*Way (UNIX) 19
sample schema 25
SEWS (UNIX) 23
SEWS (Windows) 21

InstallShield 16
instance number 62
Intelligent Queue (IQ) 33, 51

J
JOURNAL command 98
Journal File Name parameter 78

K
Key parameter 91
keysValue method 107

L
last method 114
LIST command 99
Load Path, Monk 83
logging options 49

M
make method 106
Max Failed Messages parameter 78
Max Resends Per Message parameter 78
methods, adkConnect class

connect 104
disconnect 104

methods, adkMD5 class
calculate 113
last 114
usage 114

methods, adkRequest class
asString 107
existsValue 107
getContent 110
getHeader 109
getValue 108
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 132 SeeBeyond Proprietary and Confidential

Index
keysValue 107
make 106
setContent 110
setHeader 109
setValue 108
take 106

methods, adkResponse class
getOK 111
setOK 112

monitoring thresholds 50
Monk ADK Functions 115–123
Monk Configuration

Load Path 83
Specifying File Names 83
Specifying Function Names 83
Specifying Multiple Directories 83

Monk Environment Initialization File parameter 84
Monk Extension methods 103–114

see also methods
Monk functions

adk-ack 115
adk-connect 117
adk-disconnect 118
adk-incoming 118
adk-init-inbound 119
adk-init-outbound 119
adk-nak 120
adk-outgoing 121
adk-shutdown 121
adk-startup 122
adk-verify 122
event-commit-to-egate 124
event-rollback-to-egate 125
event-send-to-egate 125
event-send-to-egate-ignore-shutdown 126
event-send-to-egate-no-commit 126
get-logical-name 127
insert-exchange-data-event 127
see also functions
send-external down 128
send-external-up 128
shutdown-request 129
start-schedule 129
stop-schedule 130
waiting-to-shutdown 130

N
NAK command 99
Negative Acknowledgment Function parameter 89

O
object classes

adkConnection 103–104
adkMD5 113–114
adkRequest 105–110
adkResponse 111–112

P
Participating Host 51
Port Number parameter 91
Positive Acknowledgment Function parameter 88
procedures

configuration 43
installation 16

Process Outgoing Message Function parameter 85
Properties, e*Way 42
PUT command 63, 100

Q
Queue - see Intelligent Queue (IQ)

R
RECOVER command 101
Resend Timeout parameter 82
routing points 12, 62

S
s_umid 62
sample schema

descriptions 36
installation 25

Schedules 47
Secret parameter 91
send-external down function 128
send-external-up function 128
setContent method 110
setHeader method 109
setOK method 112
Setting Startup Options or Schedules 47
setValue method 108
SEWS

installation 21
SEWS Component Protocol 94–102
SEWS Protocol commands

ACK 63, 94
AUTH 95
CHAL 96
COUNT 96
GET 63, 97
JOURNAL 98
LIST 99
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 133 SeeBeyond Proprietary and Confidential

Index
NAK 99
PUT 63, 100
RECOVER 101

Shutdown Command Notification Function
parameter 90
shutdown-request function 129
Start Exchange Data Schedule parameter 81
start-schedule function 129
Startup Function parameter 84
Startup Options 47
Stop Exchange Data Schedule parameter 80
stop-schedule function 130
SWIFT Setup 91
SWIFTAlliance 11

T
take method 106
troubleshooting the e*Way 51

U
Up Timeout parameter 81
usage method 114
User name 47

W
waiting-to-shutdown function 130

Z
Zero Wait Between Successful Exchanges parameter
82
e*Way Intelligent Adapter for SWIFT ADK
User’s Guide 134 SeeBeyond Proprietary and Confidential

	e*Way Intelligent Adapter for SWIFT ADK User’s Guide
	Contents
	Preface
	P.1 Intended Reader
	P.2 Organization
	P.3 Nomenclature
	P.4 Online Viewing
	P.5 Writing Conventions
	Monospaced (Courier) Font
	Bold Sans-serif Font

	P.6 Additional Documentation

	Introduction
	1.1 SWIFT Overview
	1.2 The SWIFT ADK e*Way
	1.2.1 Overview
	1.2.2 Components
	1.2.3 Availability

	Installation
	2.1 System Requirements
	Environment Configuration

	2.2 External System Requirements
	2.2.1 External Configuration Requirements

	2.3 Installing the e*Way
	2.3.1 Windows Systems
	Installation Procedure
	To Install the e*Way on a Microsoft Windows System

	Subdirectories and Files

	2.3.2 UNIX Systems
	Installation Procedure
	Subdirectories and Files

	2.4 Installing SEWS
	2.4.1 Windows Systems
	To install SEWS on a Windows 2000 or NT system

	2.4.2 UNIX Systems
	To install SEWS on a UNIX system

	2.5 Optional Example Files
	2.5.1 Installation Procedure
	2.5.2 Subdirectories and Files

	System Implementation
	3.1 Overview
	3.1.1 Implementation Sequence
	3.1.2 Viewing e*Gate Components

	3.2 Creating a Schema
	To select or create a schema

	3.3 Creating Event Types
	To define the Event Types

	3.4 Creating Event Type Definitions
	3.5 Assigning ETDs to Event Types
	To assign ETDs to Event Types

	3.6 Defining Collaborations
	3.7 Creating Intelligent Queues
	3.8 Troubleshooting
	3.8.1 Environmental Variables
	3.8.2 Error Codes

	3.9 Sample Schema
	3.9.1 adk_sample
	e*Gate to SEWS
	SEWS to e*Gate

	Setup Procedures
	4.1 Overview
	Setting Up the e*Way
	Troubleshooting the e*Way
	Configuring SEWS

	4.2 Setting Up the e*Way
	4.2.1 Creating the e*Way
	To create an e*Way

	4.2.2 Modifying e*Way Properties
	To modify any e*Way properties

	4.2.3 Configuring the e*Way
	To change e*Way configuration parameters

	4.2.4 Using the e*Way Editor
	Section and Parameter Controls
	Parameter Configuration Controls
	Command-line Configuration
	Getting Help
	To launch the e*Way Editor’s Help system
	To display tips regarding the general operation of the e*Way
	To display tips regarding the selected Configuration Section
	To display tips regarding the selected Configuration Parameter

	4.2.5 Changing the User Name
	To change the user name

	4.2.6 Setting Startup Options or Schedules
	To set the e*Way’s startup properties

	4.2.7 Activating or Modifying Logging Options
	To set the e*Way debug level and flag

	4.2.8 Activating or Modifying Monitoring Thresholds

	4.3 Troubleshooting the e*Way
	4.3.1 Configuration Problems
	In the Enterprise Manager
	In the e*Way Editor
	On the e*Way’s Participating Host
	In the SWIFT Application

	4.3.2 System-related Problems
	4.3.3 Operational Problems

	4.4 Configuring SEWS
	4.4.1 Windows Systems
	Systems Management
	Security Definition
	Starting SEWS

	4.4.2 UNIX Systems
	Systems Management
	Security Definition
	Starting SEWS

	Operational Overview
	5.1 Interacting with SWIFT
	5.1.1 SWIFTAlliance, SEWS, and ADK
	5.1.2 Communications Layers
	5.1.3 Event Flow
	Inbound e*Way
	Outbound e*Way

	5.1.4 Data Integrity Features
	Inbound e*Way
	Outbound e*Way

	5.1.5 Diagnostics and Recovery
	SWIFTAlliance Failure
	SEWS Failure
	e*Way Failure

	5.2 SWIFT ADK e*Way Architecture
	5.3 Basic e*Way Processes
	Initialization Process
	Connect to External Process
	Data Exchange Process
	Event-driven
	Schedule-driven

	Disconnect from External Process
	Shutdown Process

	Configuration Parameters
	6.1 Overview
	6.2 General Settings
	Journal File Name
	Description
	Required Values
	Additional Information

	Max Resends Per Message
	Description
	Required Values

	Max Failed Messages
	Description
	Required Values

	Forward External Errors
	Description
	Required Values

	6.3 Communication Setup
	Start Exchange Data Schedule
	Description
	Required Values
	Additional Information

	Stop Exchange Data Schedule
	Description
	Required Values

	Exchange Data Interval
	Description
	Required Values
	Additional Information
	See also

	Down Timeout
	Description
	Required Values

	Up Timeout
	Description
	Required Values

	Resend Timeout
	Description
	Required Values

	Zero Wait Between Successful Exchanges
	Description
	Required Values

	6.4 Monk Configuration
	Specifying Function or File Names
	Specifying Multiple Directories
	Load Path
	Additional Path
	Description
	Required Values
	Additional information

	Auxiliary Library Directories
	Description
	Required Values

	Monk Environment Initialization File
	Description
	Required Values
	Returns
	Additional information

	Startup Function
	Description
	Required Values
	Returns

	Process Outgoing Message Function
	Description
	Required Values
	Returns
	Additional Information

	Exchange Data with External Function
	Description
	Required Values
	Returns
	Additional Information

	External Connection Establishment Function
	Description
	Required Values
	Returns

	External Connection Verification Function
	Description
	Required Values
	Returns
	Additional Information

	External Connection Shutdown Function
	Description
	Required Values
	Input
	Returns

	Positive Acknowledgment Function
	Description
	Required Values
	Required Input
	Returns
	Additional Information

	Negative Acknowledgment Function
	Description
	Required Values
	Required Input
	Returns
	Additional Information

	Shutdown Command Notification Function
	Description
	Required Values
	Input
	Returns
	Additional Information

	6.5 SWIFT Setup
	Hostname
	Description
	Required Values

	Port Number
	Description
	Required Values

	Key
	Description
	Required Values

	Secret
	Description
	Required Values

	API Functions
	7.1 Overview
	7.2 SEWS Component Protocol
	ACK
	Description
	Request Properties
	Returns

	AUTH
	Description
	Request Properties
	Returns

	CHAL
	Description
	Request Properties

	COUNT
	Description
	Request Properties
	Returns

	GET
	Description
	Request Properties
	Returns

	JOURNAL
	Description
	Request Properties

	LIST
	Description
	Request Properties
	Returns

	NAK
	Description
	Request Properties
	Returns

	PUT
	Description
	Request Properties
	Returns

	RECOVER
	Description
	Request Properties
	Returns

	7.3 Monk Extension Methods
	7.3.1 adkConnection class
	Example of adkConnection Methods
	constructor
	Signature

	connect
	Description
	Signature
	Parameters
	Returns
	Throws

	disconnect
	Description
	Signature
	Parameters
	Returns
	Throws

	7.3.2 adkRequest class
	Example of adkRequest Methods
	constructor
	Signature

	make
	Description
	Signature
	Parameters
	Returns
	Throws

	take
	Description
	Signature
	Parameters
	Returns
	Throws
	Additional Information

	asString
	Description
	Signature
	Parameters
	Returns
	Throws

	keysValue
	Description
	Signature
	Parameters
	Returns
	Throws

	existsValue
	Description
	Signature
	Parameters
	Returns
	Throws

	getValue
	Description
	Signature
	Parameters
	Returns
	Throws

	setValue
	Description
	Signature
	Parameters
	Returns
	Throws

	getHeader
	Description
	Signature
	Parameters
	Returns
	Throws

	setHeader
	Description
	Signature
	Parameters
	Returns
	Throws

	getContent
	Description
	Signature
	Parameters
	Returns
	Throws

	setContent
	Description
	Signature
	Parameters
	Returns
	Throws

	7.3.3 adkResponse class
	Example of adkResponse Methods
	constructor
	Signature

	getOK
	Description
	Signature
	Parameters
	Returns
	Throws
	Additional Information

	setOK
	Description
	Signature
	Parameters
	Returns
	Throws

	7.3.4 adkMD5 class
	Example of Using adkMD5 Methods
	constructor
	Signature

	calculate
	Description
	Signature
	Parameters
	Returns
	Throws

	last
	Description
	Signature
	Parameters
	Returns
	Throws

	usage
	Description
	Signature
	Parameters
	Returns
	Throws

	7.4 Monk ADK Functions
	adk-ack
	Description
	Signature
	Parameters
	Returns
	Location

	adk-connect
	Description
	Signature
	Parameters
	Returns
	Throws
	Additional Information
	Location

	adk-disconnect
	Description
	Signature
	Parameters
	Returns
	Throws
	Location

	adk-incoming
	Description
	Signature
	Parameters
	Returns
	Throws
	Location

	adk-init
	Description
	Signature
	Parameters
	Returns
	Throws
	Location

	adk-init-inbound
	Description
	Signature
	Parameters
	Returns
	Throws
	Location

	adk-init-outbound
	Description
	Signature
	Parameters
	Returns
	Throws
	Location

	adk-nak
	Description
	Signature
	Parameters
	Returns
	Throws
	Location

	adk-outgoing
	Description
	Signature
	Parameters
	Returns
	Throws
	Location

	adk-shutdown
	Description
	Signature
	Parameters
	Returns
	Throws
	Location

	adk-startup
	Description
	Signature
	Parameters
	Returns
	Throws
	Location

	adk-verify
	Description
	Signature
	Parameters
	Returns
	Throws
	Location

	7.5 Generic e*Way Functions
	event-commit-to-egate
	Description
	Signature
	Parameters
	Returns
	Throws

	event-rollback-to-egate
	Description
	Signature
	Parameters
	Returns
	Throws

	event-send-to-egate
	Description
	Signature
	Parameters
	Returns
	Throws
	Additional information
	See also

	event-send-to-egate-ignore-shutdown
	Description
	Signature
	Parameters
	Returns
	Throws
	See also

	event-send-to-egate-no-commit
	Description
	Signature
	Parameters
	Returns
	Throws
	See also

	get-logical-name
	Description
	Signature
	Parameters
	Returns
	Throws

	insert-exchange-data-event
	Description
	Signature
	Parameters
	Returns
	Throws
	See also

	send-external-up
	Description
	Signature
	Parameters
	Returns
	Throws

	send-external-down
	Description
	Signature
	Parameters
	Returns
	Throws

	shutdown-request
	Description
	Signature
	Parameters
	Returns
	Throws
	Additional Information

	start-schedule
	Description
	Signature
	Parameters
	Returns
	Throws

	stop-schedule
	Description
	Signature
	Parameters
	Returns
	Throws

	waiting-to-shutdown
	Description
	Signature
	Parameters
	Returns
	Throws

	Index
	A
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	Z

