
e*Way Intelligent Adapter
for Siebel (Event Driven)
User’s Guide

Release 4.5.2
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 1999–2002 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20020927033551.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 2

SeeBeyond Proprietary and Confidential

Contents
Contents

Preface 8
Intended Reader 8

Organization 8

Nomenclature 9

Online Viewing 9

Writing Conventions 9

Chapter 1

Introduction 10
COM/DCOM Communications 10

The Siebel COM Data Server 11
Application Object 11
Business Component 11
Business Object 11
Object Types 12
Object Definitions 12
Object Layers 12

Data Objects Layer 13
Business Objects Layer 13
User Interface Objects Layer 13

e*Way Operation 14
e*Gate to Siebel 14
Siebel to e*Gate 16

e*Way Components 17

e*Way Availability 18

Chapter 2

Installation 19
System Requirements 19

Environment Configuration 19
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 3

SeeBeyond Proprietary and Confidential

Contents
External System Requirements 20
Siebel 20
RDBMS 20
External Configuration Requirements 20

Installing the e*Way 21
Installation Procedure 21
Subdirectories and Files 23

Registering the DCOM Server 25
Registering on the e*Gate Host 25

STC_Component.CSTC_DComSvr 25
Registering on the Client Host 26
Verifying the DCOM Server Registration 27

Optional Example Files 29
Installation Procedure 29
Subdirectories and Files 30

Chapter 3

System Implementation 32
Overview 32

Implementation Sequence 33
Viewing e*Gate Components 33

Creating a Schema 34

Creating Event Types 35

Generating Event Type Definitions 35
Using Siebel Tools 35
Using the ETD Builder 36
Assigning ETDs to Event Types 37

Defining Collaborations 39

Creating Intelligent Queues 40

Sample Schemas 41
e*Gate to Siebel Example 41

Process Flow 42
Collaborations 45

Siebel to e*Gate: Query-Reply Example 47
Process Flow 48
Collaborations 50

Siebel to e*Gate: COM Server Example 53
Process Flow 54
Collaborations 55
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 4

SeeBeyond Proprietary and Confidential

Contents
Chapter 4

Setup Procedures 56
Overview 56

Setting Up the e*Way 57
Creating the e*Way 57
Modifying e*Way Properties 58
Configuring the e*Way 59

Using the e*Way Editor 60
Section and Parameter Controls 61
Parameter Configuration Controls 61
Command-line Configuration 62
Getting Help 62

Changing the User Name 63
Setting Startup Options or Schedules 63
Activating or Modifying Logging Options 65
Activating or Modifying Monitoring Thresholds 66

Troubleshooting the e*Way 67
Configuration Problems 67
System-related Problems 68
Monk Errors 68

Chapter 5

Operational Overview 69
Interacting with Siebel 69

Object Layers 69
Business Objects Layer 69

e*Gate to Siebel 70
Process Flow 70
Transaction Management 71
Application Logic & Business Rules 73

Siebel to e*Gate 74
Process Flow 74
Data Extraction 75
Application Logic & Business Rules 75

e*Way Architecture 76

Basic e*Way Processes 78
Initialization Process 79
Connect to External Process 80
Data Exchange Process 81
Disconnect from External Process 84
Shutdown Process 84
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 5

SeeBeyond Proprietary and Confidential

Contents
Chapter 6

Configuration Parameters 85
Overview 85

General Settings 86
Journal File Name 86
Max Resends Per Message 86
Max Failed Messages 86
Forward External Errors 87

Communication Setup 88
Start Exchange Data Schedule 88
Stop Exchange Data Schedule 88
Exchange Data Interval 89
Down Timeout 89
Up Timeout 89
Resend Timeout 90
Zero Wait Between Successful Exchanges 90

Monk Configuration 91
Specifying Function or File Names 91
Specifying Multiple Directories 91
Load Path 91
Additional Path 91
Auxiliary Library Directories 92
Monk Environment Initialization File 92
Startup Function 92
Process Outgoing Message Function 93
Exchange Data with External Function 94
External Connection Establishment Function 95
External Connection Verification Function 95
External Connection Shutdown Function 96
Positive Acknowledgment Function 96
Negative Acknowledgment Function 97
Shutdown Command Notification Function 98

Siebel Setup 99
Communication Direction 99
Siebel Login Name 99
Siebel Login Password 99
Siebel Config File 99
Siebel Business Object 100

Chapter 7

API Functions 101
Overview 101

Siebel Transport Functions 102
sieb-associate 103
sieb-error 103
sieb-get-associate-bc 104
sieb-get-field-values 104
sieb-get-mvg-bc 105
sieb-get-picklist-bc 106
sieb-get-search-expr 106
sieb-query 107
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 6

SeeBeyond Proprietary and Confidential

Contents
sieb-query2 108
sieb-select-picklist-fields 108
sieb-select-mvg-fields 110
sieb-struct-delete 111
sieb-struct-delete2 111
sieb-struct-get-bc 112
sieb-struct-insert 113
sieb-struct-insert2 113
sieb-struct-insert-with-pick 114
sieb-struct-lookup 115
sieb-struct-lookup2 116
sieb-struct-set-field 117
sieb-struct-set-field2 118
sieb-struct-single-insert 118
sieb-struct-single-insert2 119
sieb-struct-update 119
sieb-struct-update2 120
sieb-struct-write 121
sieb-struct-write2 121
sieb-struct-write-pick-mvg 122

Siebel General Functions 124
siebel-eventdriven-init 124
siebel-eventdriven-startup 125
siebel-eventdriven-connect 125
siebel-eventdriven-dummy 126
siebel-eventdriven-verify-connect 126
siebel-eventdriven-ack 127
siebel-eventdriven-nack 127
siebel-eventdriven-exchange 127
siebel-eventdriven-exchange-data 128
siebel-eventdriven-return-empty-string 128
siebel-eventdriven-shutdown 129
siebel-debug-info 129
siebel-log-info 130

Example Functions 131
EnqueueSiebelReply 131
siebel-com-account-exchange 131
siebel-com-account-query 132
siebel-eventdriven-account-post 133

Generic e*Way Functions 134
event-commit-to-egate 134
event-rollback-to-egate 135
event-send-to-egate 135
event-send-to-egate-ignore-shutdown 136
event-send-to-egate-no-commit 136
get-logical-name 137
insert-exchange-data-event 137
send-external-up 138
send-external-down 138
shutdown-request 139
start-schedule 139
stop-schedule 140
waiting-to-shutdown 140

Index 141
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 7

SeeBeyond Proprietary and Confidential

Preface

This Preface contains information regarding the User’s Guide itself.

P.1 Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the SeeBeyond™ e*Gate™ Integrator system, and have a
working knowledge of:

� Operation and administration of Windows NT or Windows 2000 systems

� Windows-style GUI operations

� Siebel 99 or 2000, and COM/DCOM operations

P.2 Organization
This User’s Guide is organized into two parts. The first part, consisting of Chapters 1-4,
introduces the e*Way and describes the procedures for installing the e*Way and
implementing a working system incorporating the e*Way. Chapter 3 also contains
descriptions of the sample schemas provided with the product. These can be used to
test your system following installation and, if appropriate, as templates you can modify
to produce your own custom schemas. This part should be of particular interest to a
System Administrator or other user charged with the task of getting the system up and
running.

The second part, consisting of Chapters 5-7, describes the architecture and internal
functionality of the e*Way. This part should be of particular interest to a Developer
involved in customizing the e*Way for a specific purpose. Information contained in this
part that is necessary for the initial setup of the e*Way is cross-referenced in the first
part of the guide, at the appropriate points in the procedures.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 8 SeeBeyond Proprietary and Confidential

Section P.3
Preface Nomenclature
P.3 Nomenclature
Note that for purposes of brevity, the e*Way Intelligent Adapter for Siebel (Event-
Driven) is frequently referred to as the Siebel Event-Driven e*Way, or simply the e*Way.

P.4 Online Viewing
This User’s Guide is provided in Adobe Acrobat’s Portable Document Format (PDF).
As such, it can be printed out on any printer or viewed online. When viewing online,
you can take advantage of the extensive hyperlinking imbedded in the document to
navigate quickly throughout the Guide.

Hyperlinking is available in:

� The Table of Contents

� The Index

� Within the chapter text, indicated by blue print

Existence of a hyperlink hotspot is indicated when the hand cursor points to the text.
Note that the hotspots in the Index are the page numbers, not the topics themselves.
Returning to the spot you hyperlinked from is accomplished by right-clicking the
mouse and selecting Go To Previous View on the resulting menu.

P.5 Writing Conventions
The writing conventions listed in this section are observed throughout this document.

Monospaced (Courier) Font

Computer code and text to be typed at the command line are set in Courier as shown
below:

Configuration for BOB_Promotion

java -jar ValidationBuilder.jar

Variables within a command line, or attributes within a function signature, are set
within brackets <> as shown below:

stcregutil -rh <host-name> -un <user-name> -up <password> -sf

Bold Sans-serif Font

� User Input: Click Apply to save, or OK to save and close.

� File Names and Paths: In the Open field, type D:\setup\setup.exe.

� Parameter, Function, and Command Names: The default parameter localhost is
normally only used for testing; the Monk function iq-put places an Event into an IQ.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 9 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

The e*Way Intelligent Adapter for Siebel (Event-Driven) provides connectivity between
e*Gate and Siebel 99 Front Office using COM/DCOM connectivity. It provides an
inbound and outbound event-driven interface option to or from another system,
through e*Gate.

1.1 COM/DCOM Communications
The Microsoft Component Object Model (COM) is a component software architecture that
allows applications and systems to be built using separate components. COM is the
underlying architecture that forms the foundation for higher-level software services. By
using COM, software objects can be reused for a variety of applications. Because of its
binary standard, COM allows any two components to communicate regardless of the
language the components are written in.

The Microsoft Distributed Component Object Model (DCOM) is an extension of COM, and
supports communication among objects on different computers: LANs, WANs, and the
internet. With DCOM, these software objects can be reused over a distributed
environment.

Components, or COM objects, are individual modular software routines that can be
reused within applications. COM objects are reusable compiled binary objects, as
opposed to reusable sections of code. The COM objects create handles that provide
access to the COM-enabled applications.

The Siebel Event-Driven e*Way uses an internal DCOM interface to provide
connectivity to Siebel’s COM Object Manager.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 10 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction The Siebel COM Data Server
1.2 The Siebel COM Data Server
The Siebel Object Interface method used for implementing the Event-Driven interface is
the Siebel COM Data Server. This interfacing method has access to the following Siebel
object types:

� Application Object

� Business Component

� Business Object

and apply the Siebel business rules and validations when data is loaded. The following
descriptions are based on those given in the Siebel documentation.

1.2.1 Application Object
The Application object represents the Siebel application that is currently active, and is
an instance of the Application object type. An Application object is created when a
Siebel software application is started. This object contains the properties and events
that interact with Siebel software as a whole.

1.2.2 Business Component
A Business Component object is a logical abstraction of one or more database tables,
and defines the structure, behavior, and information displayed, of a particular subject
such as a product, contact, or account. The information stored in a Business Component
is usually specific to a particular subject, and typically is not dependent on other
Business Components.

Business Component objects have associated data structured as records, and contain
data units called fields. Business Components can be used in one or many Business
Objects.

1.2.3 Business Object
Business Objects are modifiable, object-oriented building blocks of Siebel Applications.
Business Objects define the relationships between different Business Components, and
contain semantic information about items such as sales, marketing, and service-related
entities. A Siebel Business Object groups one or more Business Components into a
logical unit of information.

Examples of Siebel Business Objects include Opportunity, Quote, Campaign, and
Forecast. An Opportunity business object may consist of Opportunity, Contact, and
Product Business components, with the Opportunity business component having a
parent-child relationship with the other business components.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 11 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction The Siebel COM Data Server
1.2.4 Object Types
An Object Type is a named structure, and acts as a template from which Object
Definitions of that type can be created. An Object Type has a predefined set of
properties—Object Definitions created from it have values for each of these properties

1.2.5 Object Definitions
An Object Definition in the Siebel Tools environment implements one piece of the
software, such as a user interface, abstract data representation, or direct database
representation construct. Items such as a database column, a dialog box, or a join
relationship between database tables are implemented as Object Definitions.

An Object Definition consists of properties, which are characteristics of the software
construct that is implemented by the Object Definition. For example, the properties of a
database column would include its name, data type, and length.

Note: Siebel Tools object model concepts are not the same as objects in an object-oriented
programming language.

1.2.6 Object Layers
The object definitions in Siebel Enterprise Applications fall into three separate
architectural layers (excluding the third-party DBMS), as shown in Figure 1.

Figure 1 Siebel Object Layers

These three architectural layers, beginning with the lowest layer, are defined as follows:

Siebel
Enterprise
Application

Siebel
Event-Driven

e*Way

User Interface
Objects Layer

Business
Objects Layer

Data
Objects Layer DBMS
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction The Siebel COM Data Server
Data Objects Layer

The Data Objects layer consists of Data Object Definitions, which directly map the data
structures from the underlying relational database into Siebel Enterprise Applications,
thereby providing access to those structures by Object Definitions in the Business
Objects layer. Data Object Definitions insulate both the application and the developer
from database administration and restructuring.

Business Objects Layer

The Business Object layer consists of Business Object Definitions, which are built on
Data Object Definitions, and selectively combine and associate Data Object Definitions
into logical data constructs that are useful for application design. Two of these logical
constructs, for example, are Business Components (record structures comprised of
Columns from multiple joined Tables) and one-to-many Links between record
structures. This is the layer with which theSiebel Event-Driven e*Way interacts.

User Interface Objects Layer

The User Interface Objects layer consists of User Interface Object Definitions, which
define the visual interface with which the user interacts.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction e*Way Operation
1.3 e*Way Operation

1.3.1 e*Gate to Siebel

Figure 2 e*Gate-to-Siebel Process Flow

The Siebel Event-Driven e*Way receives data corresponding to a business event in the
source application, in the form of message definitions within an ETD. It then invokes
the Siebel COM Object Manger to load the business event into the Siebel Base Tables,
one message definition at a time.

After the COM Object Manager successfully processes each message definition, a
commit to the Siebel database is issued. Once all the message definitions in the message
are successfully processed, an ACK is sent back to the e*Way, allowing the next message
to be submitted for processing.

If a single message definition is not successfully processed, the entire inbound message
is failed and be written to a general error file by a File-Handling e*Way. To prevent the
message from being resent to the Siebel Event-Driven e*Way, an ACK is sent to e*Gate to
remove the message from the queue. Also within the failed message, a pointer is saved
that identifies the exact message definition that failed.

Error
File

Files
e*Way

Siebel Environment

Siebel
Base Tables

COM
Object Manager

e*Gate
Integrator

Siebel
Event-Driven

e*Way

e*Gate Integrator
Environment

ACK

ACK
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction e*Way Operation
Figure 3 Error-Correction Process Flow

User intervention is required to edit the error file and correct the erroneous data. This
can be accomplished using a standard file editor.

Siebel
Event-Driven

e*Way

Siebel User

Error
File

File
e*Way

File
e*Way

e*Gate
Integrator

Siebel
Enterprise
Application

e*Gate Integrator
Environment
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 15 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction e*Way Operation
1.3.2 Siebel to e*Gate

Figure 4 Siebel-to-e*Gate Process Flow

When a business event occurs in Siebel, the transaction is posted to the Siebel Base
Tables. The Siebel Event Handler triggers the e*Way’s DCOM Interface and passes a
message string to it. The message string represents key values for the newly-created
record, and is well-defined to encode field name(s), value(s), and logical operator(s)—
for example, Name-LIKE-Account. (You can add a custom push button to the Siebel
Application GUI to initiate this action.)

The message string is passed to a lookup function, which interacts with the Siebel COM
interface. The Siebel COM Object Manager then extracts the requested data from the
Siebel Base Tables.

DCOM
Interface

Event Handler

Siebel Base
Tables

Siebel Server

e*Gate
Integrator

Siebel
Event-Driven

e*Way

COM
Object Manager

Siebel Client(s)

Export

Application

Error
File

Files
e*Way

e*Gate Integrator
Environment ACK/NAK
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction e*Way Components
The Object Manager then populates the e*Gate ETD for the Siebel business component
with the newly-created record. The data is passed to e*Gate for routing to the target
e*Way and translation to the target application’s ETD. Once an ACK is received from
e*Gate, the customized status field for the business component is switched to the
Completed state.

1.4 e*Way Components
The Siebel Event-Driven e*Way is based on SeeBeyond’s Generic e*Way Kernel and
incorporates the following components:

� The Generic e*Way executable, stcewgenericmonk.exe (installed with e*Gate)

� Dynamic load libraries, which provide COM/DCOM access and extend the Generic
e*Way Kernel to form the Siebel Event-Driven e*Way

� stc_monkcom.dll

� stc_monkdcom.dll

� An ancillary e*Way executable, stcewfile.exe (also installed with e*Gate), for error-
file handling—see the Standard e*Way Intelligent Adapter User’s Guide for information
on this e*Way

� The configuration definition file, stcewsiebeleventdriven.def

� Monk function scripts and library files, discussed in Chapter 7

� Example schema, discussed in Chapter 3

For a list of installed files, see Chapter 2.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.5
Introduction e*Way Availability
1.5 e*Way Availability
The e*Way Intelligent Adapter for Siebel Event-Driven currently supports the following
combinations of operating systems and Siebel versions.

Japanese

Korean

Table 1 English-language Version

Operating System
Siebel Server Siebel Front Office

5.0 6.0 99.5 99.6 2000

Windows 2000 SP1 X X X X X

Windows 2000 SP2 X X X X X

Windows NT 4.0 SP6a X X X X X

Table 2 Japanese-language Version

Operating System
Siebel Server Siebel Front Office

5.0 6.0 99.5 99.6 2000

Windows 2000 SP1 (Japanese) - X - - X

Windows 2000 SP2 (Japanese) - X - - X

Windows NT 4.0 SP6a (Japanese) - X - - X

Table 3 Korean-language Version

Operating System
Siebel Server Siebel Front Office

5.0 6.0 99.5 99.6 2000

Windows 2000 SP1 (Korean) - X - - X

Windows 2000 SP2 (Korean) - X - - X

Windows NT 4.0 SP6a (Korean) - X - - X
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 2

Installation

This chapter describes the requirements and procedures for installing the e*Way
Intelligent Adapter for Siebel (Event-Driven).

2.1 System Requirements
To use the e*Way Intelligent Adapter for Siebel (Event-Driven), you need the following:

1 An e*Gate Participating Host, version 4.5.1 or later.

2 A TCP/IP network connection to the Siebel system.

3 Approximately 1 MB of disk space to support e*Way files.

Note: Additional disk space is required to process and queue the data that this e*Way
processes; the amount necessary varies, based on the type and size of the data being
processed, and any external applications performing the processing.

2.1.1 Environment Configuration
No changes are required to the Participating Host’s operating environment to support
this e*Way.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Installation External System Requirements
2.2 External System Requirements

Note: This e*Way, the Siebel Client, and the database client should all be installed on the
same host computer.

2.2.1 Siebel
To use the e*Way Intelligent Adapter for Siebel Event-Driven, you need compatible
versions of the following (see also e*Way Availability on page 18):

� Siebel Server 5.0 or 6.0

� Siebel Front Office 99.5, 99.6, or 2000

� Siebel Enterprise Applications Toolkit

Japanese

� Siebel Server 6.0

� Siebel Front Office 2000

� Siebel Enterprise Applications Toolkit

Korean

� Siebel Server 6.0

� Siebel Front Office 2000

� Siebel Enterprise Applications Toolkit

Please see the Siebel System Requirements and Supported Platforms document for the
version of Siebel you are using.

2.2.2 RDBMS
To use the e*Way Intelligent Adapter for Siebel Event-Driven, you need one of the
following relational database management systems:

� Oracle

� Microsoft SQL Server

You also need Oracle/SQL Server client software appropriate for the Siebel installation.
Please see the Siebel System Requirements and Supported Platforms document for the
version of Siebel you are using.

2.2.3 External Configuration Requirements
There are no configuration changes required in the external system. All necessary
configuration changes can be made within e*Gate.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 20 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Installation Installing the e*Way
2.3 Installing the e*Way

Note: Do not edit any installation scripts or change the suggested “installation directory”
setting without instructions from SeeBeyond.

2.3.1 Installation Procedure

Note: The installation utility detects and suggests the appropriate installation directory.
Use this directory unless advised otherwise by SeeBeyond. You must have
Administrator privileges to install this e*Way.

To install the e*Way on a Windows NT or Windows 2000 system

1 Log in as an Administrator on the workstation on which you want to install the
e*Way.

2 Exit all Windows programs and disable any anti-virus applications before running
the setup program.

3 Insert the e*Way installation CD-ROM into the CD-ROM drive.

4 If the CD-ROM drive’s Autorun feature is enabled, the setup application should
launch automatically. Otherwise, use the Windows Explorer or the Control Panel’s
Add/Remove Applications feature to launch the file setup.exe on the CD-ROM
drive.

5 The InstallShield setup application launches. Follow the on-screen instructions until
you come to the Choose Product screen.

Figure 5 Choose Product Dialog

6 Check Add-ons, then click Next. Again follow the on-screen instructions.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Installation Installing the e*Way
7 When the Select Components dialog box appears, highlight—but do not check—
eWays and then click Change.

Figure 6 Select Components Dialog

8 When the Select Sub-components dialog box appears, check the Siebel Event-
Driven e*Way.

Figure 7 Select e*Way Dialog

9 Click Continue, and the Select Components dialog box reappears.

10 Click Next and continue with the installation.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Installation Installing the e*Way
2.3.2 Subdirectories and Files
By default, the InstallShield installer creates the following subdirectories and installs
the following files within the \eGate\client tree on the Participating Host, and the
\eGate\Server\registry\repository\default tree on the Registry Host.

Table 4 Participating Host & Registry Host

Subdirectories Files

\bin\ stcsif2ssc.exe
stc-monkcom.dll
stc-monkdcom.dll

\configs\stcewgenericmonk\ siebelEvent3.6To4.1Rule.txt
stcewsiebeleventdriven.def

\monk_library\ ewsiebel.gui

\monk_library\ewsiebeleventdriven\ dcomreg.init
sieb-associate.monk
sieb-error.monk
sieb-get-associate-bc.monk
sieb-get-field-values.monk
sieb-get-field-values.monk
sieb-get-mvg-bc.monk
sieb-get-picklist-bc.monk
sieb-get-search-expr.monk
sieb-query.monk
sieb-query2.monk
sieb-select-mvg-fields.monk
sieb-select-picklist-fields.monk
sieb-struct-delete.monk
sieb-struct-delete2.monk
sieb-struct-get-bc.monk
sieb-struct-insert-with-pick.monk
sieb-struct-insert.monk
sieb-struct-insert2.monk
sieb-struct-lookup.monk
sieb-struct-lookup2.monk
sieb-struct-set-field.monk
sieb-struct-set-field2.monk
sieb-struct-single-insert.monk
sieb-struct-single-insert2.monk
sieb-struct-update.monk
sieb-struct-update2.monk
sieb-struct-write-pick-mvg.monk
sieb-struct-write.monk
sieb-struct-write2.monk
siebel-eventdriven-connect.monk
siebel-eventdriven-exchange.monk
siebel-eventdriven-init.monk
siebel-eventdriven-utils.monk
siebel-eventdriven.monk
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Installation Installing the e*Way
By default, the InstallShield installer also installs the following file within the
\eGate\Server\registry\repository\default tree on the Registry Host.

Table 5 Registry Host Only

Subdirectories Files

\ stcewsiebelcom.ctl
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
Installation Registering the DCOM Server
2.4 Registering the DCOM Server

2.4.1 Registering on the e*Gate Host
On the e*Gate installation host, perform following steps once:

1 Locate the registering script in

eGate\Server\Registry\repository\default\monk_library\ewsiebeleven
tdriven\dcomreg.init

2 Invoke the scripts

stctrans dcomreg.init

STC_Component.CSTC_DComSvr

This is the interface class for the DCOM server. After a successful registration of DCOM
server following entries are made in the Windows registry:

HKEY_CLASSES_ROOT\CLSID\{02DF8330-3B18-11D3-8DCD-006008DFCB04}
 (Default) "STC DGW COM Server"
 (AppID) "{02DF8330-3B18-11D3-8DCD-006008DFCB04}"

HKEY_CLASSES_ROOT\CLSID\{02DF8330-3B18-11D3-8DCD-
006008DFCB04}\LocalServer32
 (Default) "stcewgenericmonk.exe"

HKEY_CLASSES_ROOT\CLSID\{02DF8330-3B18-11D3-8DCD-006008DFCB04}\ProgID
 (Default) "STC_Component.CSTC_DComSvr.1"

HKEY_CLASSES_ROOT\CLSID\{02DF8330-3B18-11D3-8DCD-
006008DFCB04}\VersionIndependentProgID
 (Default) "STC_Component.CSTC_DComSvr"

HKEY_CLASSES_ROOT\TypeLib\{02DF8332-3B18-11D3-8DCD-
006008DFCB04}\1.0\0\win32
 (Default) "E:\eGate\client\bin\stc_monkdcom.dll"

HKEY_CLASSES_ROOT\AppID\{02DF8330-3B18-11D3-8DCD-006008DFCB04}
 (Default) "STC DGW COM Server"

Through the interface, STCFuncInvoke is exposed.

STCFuncInvoke (Param1, Param2, Param3, Param4)

where Param1: Name of the monk function to invoke (String)

Param2: Message to be passed in the function (String)

Param3: Returned message (String)

Param4: return value (Long)
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
Installation Registering the DCOM Server
2.4.2 Registering on the Client Host
1 On the e*Gate distribution CD, locate the setup program at

setup\addons\ewsiebelcom\dcom\dcomclientsetup.zip

2 Unzip the compressed file

3 Run setup.exe

4 The setup program saves a sample Visual Basic program to the specified directory.
You need to supply the Siebel Event-Driven e*Way server host name when asked.

Note: The invoked Monk function is assumed to be loaded and made available by the
e*Way.

After a successful registration of DCOM server following entries are made in the
Windows registry:

HKEY_CLASSES_ROOT\CLSID\{02DF8330-3B18-11D3-8DCD-006008DFCB04}
 (Default) "STC DGW COM Server"
 (AppID) "{02DF8330-3B18-11D3-8DCD-006008DFCB04}"

HKEY_CLASSES_ROOT\CLSID\{02DF8330-3B18-11D3-8DCD-
006008DFCB04}\LocalServer32
 (Default) "stcewgenericmonk.exe"

HKEY_CLASSES_ROOT\CLSID\{02DF8330-3B18-11D3-8DCD-006008DFCB04}\ProgID
 (Default) "STC_Component.CSTC_DComSvr.1"

HKEY_CLASSES_ROOT\CLSID\{02DF8330-3B18-11D3-8DCD-
006008DFCB04}\VersionIndependentProgID
 (Default) "STC_Component.CSTC_DComSvr"

HKEY_CLASSES_ROOT\AppID\{02DF8330-3B18-11D3-8DCD-006008DFCB04}
 (Default) "STC DGW COM Server"
 RemoteServerName "hostname"
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
Installation Registering the DCOM Server
2.4.3 Verifying the DCOM Server Registration
1 To check that the SeeBeyond DCOM Server is registered, in the Run dialog type in

the command dcomcnfg and click OK.

Figure 8 Run Dialog

The Distributed COM Configuration Properties dialog lists the registered
applications. SeeBeyond (or STC DGW) DCOM Server should be in the list.

Figure 9 Distributed COM Configuration Properties

2 Click Properties.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
Installation Registering the DCOM Server
3 Select the Location tab.

4 Select the Run application on the following server check box and type in the name
of the system on which the Siebel Event-Driven e*Way is running.

Figure 10 COM Server Properties - Location tab.

5 Click OK.

The DCOM server is now registered on the client computer. Applications on this
computer can now send COM requests to the DCOM server.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation Optional Example Files
2.5 Optional Example Files
The installation CD-ROM contains three sample schemas, located in the
samples\ewsiebelcom directory. To use a schema, you must load it onto your system
using the following procedure. See Sample Schemas on page 41 for descriptions of the
sample schemas and instructions regarding their use.

The sample implementations are:

� SiebelComAccountPost (e*Gate-to-Siebel configuration)

� SiebelComAccountQueryReply (Siebel-to-e*Gate configuration)

� SiebelComAccTriggeredQuery (Siebel-driven, Siebel-to-e*Gate configuration)

Note: The Siebel Event-Driven e*Way must be properly installed on your system before
you can run the sample schema.

2.5.1 Installation Procedure
1 Invoke the Open Schema dialog box and select New (see Figure 11).

Figure 11 Open Schema Dialog

2 Type the name you want to give to the schema (for example, xxx.Sample)

3 Select Create from export and navigate to the directory containing the sample
schema by clicking the Find button (see Figure 12).
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation Optional Example Files
Figure 12 New Schema Dialog

4 Navigate to the desired archive file (*.zip) and click Open.

Note: The schema installs with the host name localhost and control broker name
localhost_cb. If you want to assign your own names, copy the file *.zip to a local
directory and extract the files. Using a text editor, edit the file *.exp, replacing all
instances of the name localhost with your desired name. Add the edited .exp file
back into the .zip file.

2.5.2 Subdirectories and Files
The preceding procedure creates the following subdirectories and installs the following
files within the \eGate\Server\registry\repository\<SchemaName> tree on the Registry
Host, where <SchemaName> is the name you have assigned to the schema in step 2.

Table 6 Subdirectories and Files - SiebelComAccountPost

Subdirectories Files

\ SiebelComAccountPost.ctl

\runtime\configs\stcewfile\ SiebelAccountFeeder.cfg
SiebelAccountFeeder.sc
SiebelComAccountError.cfg
SiebelComAccountError.sc

\runtime\configs\stcewgenericmonk\ SiebelComAccountPost.cfg
SiebelComAccountPost.sc

\runtime\monk_libiray\ewsiebeleventdriven\ siebel-eventdriven-account-post.monk

\runtime\monk_scripts\common\ AccountData.ssc
AccountError.ssc
collab_QToSiebel.tsc
sieb-account.ssc
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation Optional Example Files
Table 7 Subdirectories and Files - SiebelComAccountQueryReply

Subdirectories Files

\ SiebelComAccountQueryReply.ctl

\runtime\configs\stcewfile\ SiebelAccountQueryFeederEater.cfg
SiebelAccountQueryFeederEater.sc
SiebelComQueryErrorEater.cfg
SiebelComQueryErrorEater.sc

\runtime\configs\stcewgenericmonk\ SiebelComAccountQueryReply.cfg
SiebelComAccountQueryReply.sc

\runtime\monk_libiray\ewsiebeleventdriven\ siebel-com-account-exchange.monk
siebel-com-account-query.monk

\runtime\monk_scripts\common\ collab_QReplyToFile.tsc
EnqueueSiebelReply.monk
sieb-account.ssc
SiebelAccountQuery.ssc
SiebelAccountReply.ssc
SiebelError.ssc

Table 8 Subdirectories and Files - SiebelComAccountTriggeredQuery

Subdirectories Files

\ SiebelComAccountTriggeredQuery.ctl

\runtime\configs\stcewfile\ SiebelAccountEater.cfg
SiebelAccountEater.sc
SiebelComErrorEater.cfg
SiebelComErrorEater.sc

\runtime\configs\stcewgenericmonk\ SiebelComAccountServer.cfg
SiebelComAccountServer.sc

\runtime\monk_libiray\ewsiebeleventdriven\ siebel-com-account-exchange.monk
siebel-com-account-query.monk

\runtime\monk_scripts\common\ collab_QReplyToFile.tsc
EnqueueSiebelReply.monk
sieb-account.ssc
SiebelAccountQuery.ssc
SiebelAccountReply.ssc
SiebelError.ssc
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 3

System Implementation

In this chapter we summarize the procedures required for implementing a working
system incorporating the Siebel Event-Driven e*Way. Please refer to the e*Gate Integrator
User’s Guide.

3.1 Overview
This e*Way provides a specialized transport component for incorporation in an
operational schema. The schema also contains Collaborations, linking different data or
Event types, and Intelligent Queues. Typically, other e*Way types also are used as
components of the schema.

One or more sample schema, included in the software package, are described at the end
of this chapter. These can be used to test your system following installation and, if
appropriate, as a template that you can modify to produce your own schema.

This chapter includes the following topics:

Creating a Schema on page 34

Creating Event Types on page 35

Generating Event Type Definitions on page 35

Defining Collaborations on page 39

Creating Intelligent Queues on page 40

Sample Schemas on page 41
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
System Implementation Overview
3.1.1 Implementation Sequence

3.1.2 Viewing e*Gate Components
Use the Navigator and Editor panes of the e*Gate Enterprise Manager to view the
various e*Gate components. Note that you may only view components of a single
schema at one time, and that all operations apply only to the current schema. All
procedures in this chapter should be performed while displaying the Components
Navigator pane. See the e*Gate Integrator User’s Guide for a detailed description of the
features and use of the Enterprise Manager.

1 The first step is to create a new Schema—the
subsequent steps apply only to this Schema (see
Creating a Schema on page 34).

2 The second step is to define the Event Types you
are transporting and processing within the
Schema (see Creating Event Types on page 35).

3 Third, you need to associate the Event Types
created in the previous step with Event Type
Definitions (ETDs) derived from the applicable
Business Rules (see Generating Event Type
Definitions on page 35).

4 The fourth step is to create and configure the
required e*Ways (see Chapter 4).

5 Next is to define and configure the Collaborations
linking the Event Types from step 2 (see Defining
Collaborations on page 39).

6 Now you need to create Intelligent Queues to
hold published Events (see Creating Intelligent
Queues on page 40

7 Finally, you must test your Schema. Once you have
verified that it is working correctly, you may
deploy it to your production environment.

Define & Configure
Collaborations

Create & Configure
e*Ways

Create Schema

Generate Event Type
Definitions

Test & Deploy

Define Event Types

Create
Intelligent Queues
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
System Implementation Creating a Schema
3.2 Creating a Schema
A schema is the structure that defines e*Gate system parameters and the relationships
between components within the e*Gate system. Schemas can span multiple hosts.

Because all setup and configuration operations take place within an e*Gate schema, a
new schema must be created, or an existing one must be started before using the
system. Schemas store all their configuration parameters in the e*Gate Registry.

To select or create a schema

1 Invoke the Open Schema dialog box (Figure 13) and Open an existing schema, or
click New to create a new schema.

Figure 13 Open Schema Dialog

2 Clicking New invokes the New Schema dialog box (Figure 14).

Figure 14 New Schema Dialog

3 Enter a new schema name and click Open.

4 The e*Gate Enterprise Manager then opens under your new schema name.

5 From the Options menu, click on Default Editor and select Monk.

6 Select the Components tab, found at the bottom of the Navigator pane of the e*Gate
Enterprise Manager window.

7 You are now ready to begin creating the necessary components for this new schema.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
System Implementation Creating Event Types
3.3 Creating Event Types
Within e*Gate, messages and/or packages of data are defined as Events. Each Event
must be categorized into a specific Event Type within the schema.

To define the Event Types

1 In the e*Gate Enterprise Manager’s Navigator pane, select the Event Types folder.

2 On the Palette, click the New Event Type button .

3 In the New Event Type Component box, enter the name for the input Event Type
and click Apply. Use this method to create all required Event Types, for example:

� InboundEvent

� ValidEvent

� InvalidEvent

4 After you have created the final Event Type, click OK.

3.4 Generating Event Type Definitions
For the interface design, the Event structure inbound to Siebel is a superstructure
consisting of multiple substructures corresponding to Event Type Definitions. This is
necessary because a single Event from the source system may require multiple
definitions to load the data into Siebel.

To facilitate the mapping of Siebel message definitions, the Siebel e*Way Event Type
Definition Builder is used to build data structures based on Siebel Business
Components.

Generating an Event Type Definition is a two-step process:

1 Using Siebel Tools to archive specific business components in a .sif file.

2 Using the e*Way ETD Builder to create an ETD from the .sif file.

See the e*Gate Integrator User’s Guide for additional information about Event Type
Definitions and the e*Gate ETD Editor.

3.4.1 Using Siebel Tools
Before you can invoke the builder, archive the necessary Business Components that
make up one Event Type Definition using Siebel Tools. This manual step creates an
ASCII file with a*.sif extension. The *.sif file contains all attributes necessary for the
ETD Builder to create a ETD tree within e*Gate.

In Siebel Tools, first select Business Component, then Account. Select Repository from
the Menu Bar and, from the resulting pull-down menu, select Export to Archive File. For
more information, consult the appropriate Siebel documentation.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
System Implementation Generating Event Type Definitions
3.4.2 Using the ETD Builder
Place the *.sif file in a directory that is convenient to access from e*Gate. Use the
following procedure to create an Event Type Definition.

Note: Be sure to set the Default Editor to Monk, from the Options menu in the e*Gate
Enterprise Manager.

To create an Event Type Definition using the Build tool

1 Launch the ETD Editor by clicking in the e*Gate Enterprise Manager tool bar.

2 On the ETD Editor’s tool bar, click Build.

The Build an Event Type Definition dialog box opens.

Figure 15 Build Event Type Definition Dialog

3 In the File name box, type the name of the ETD file you want to build.

Note: The Editor automatically supplies the .ssc extension.

4 Click Next. A new dialog box appears, as shown in Figure 16.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
System Implementation Generating Event Type Definitions
Figure 16 Building the ETD

5 Under Input File, specify the *.sif file to be imported.

6 Under Build From, select Library Converter.

7 Under Select a Library Converter, select Siebel Event Driven Converter.

8 In the Additional Command Line Arguments box, type any additional arguments, if
desired.

9 Click Finish.

10 The Siebel Event-Driven Converter Wizard automatically builds the ETD file.

3.4.3 Assigning ETDs to Event Types
After you have created the e*Gate system’s ETD files, you can assign them to Event
Types you have already created.

To assign ETDs to Event Types

1 In the Enterprise Manager window, select the Event Types folder in the Navigator/
Components pane.

2 In the Editor pane, select one of the Event Types you created.

3 Right-click on the Event Type and select Properties (or click in the toolbar).

The Event Type Properties dialog box appears (see Figure 17).
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
System Implementation Generating Event Type Definitions
Figure 17 Event Type Properties Dialog Box

4 Under Event Type Definition, click Find, and the Event Type Definition Selection
dialog box appears (it is similar to the Windows Open dialog box).

5 Open the monk_scripts\common folder, then select the desired file name (*.ssc).

6 Click Select. The file populates the Event Type Definition field.

7 To save any work in the properties dialog box, click Apply to enter it into the
system.

8 When finished assigning ETDs to Event Types, click OK to close the properties
dialog box and apply all the properties.

Each Event Type is now associated with the specified Event Type Definition.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
System Implementation Defining Collaborations
3.5 Defining Collaborations
After you have created the required Event Type Definitions, you must define a
Collaboration to transform the incoming Event into the desired outgoing Event.

Collaborations are e*Way components that receive and process Event Types, then
forward the output to other e*Gate components. Collaborations consist of the
Subscriber, which “listens” for Events of a known type or from a given source, and the
Publisher, which distributes the transformed Event to a specified recipient. The same
Collaboration cannot be assigned to more than one e*Gate component.

Figure 18 Collaborations

The Collaboration is driven by a Collaboration Rule, which defines the relationship
between the incoming and outgoing ETDs. You can use an existing Collaboration Rule,
or use the Monk programming language to write a new Collaboration Rule script. Once
you have written and successfully tested a script, you can then add it to the system’s
run-time operation.

Collaborations are defined using the e*Gate Monk Collaboration Rules Editor. See the
e*Gate Integrator User’s Guide for instructions on using this Editor. The file extension for
Monk Collaboration Rules is .tsc.

Examples of Collaborations for the Siebel Event-Driven e*Way can be found in Sample
Schemas on page 41.

Siebel Event-Driven e*Way

CollaborationEvent
A

Event
B

Collaboration Rule

ETD
A

ETD
B

e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.6
System Implementation Creating Intelligent Queues
3.6 Creating Intelligent Queues
The final step is to create and associate an IQ for the Siebel Event-Driven e*Way. IQs
manage the exchange of information between components within the e*Gate system,
providing non-volatile storage for data as it passes from one component to another. IQs
use IQ Services to transport data. IQ Services provide the mechanism for moving
Events between IQs, handling the low-level implementation of data exchange (such as
system calls to initialize or reorganize a database). See the e*Gate Integrator User’s Guide
for complete information on queuing options and procedures for creating IQs.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.7
System Implementation Sample Schemas
3.7 Sample Schemas
This section refers to sample schemas that are supplied with the Siebel Event-Driven
e*Way. These are:

� SiebelComAccountPost: e*Gate-to-Siebel example

� SiebelComAccountQueryReply: Siebel-to-e*Gate, e*Gate-polling example

� SiebelComAccTriggeredQuery: Siebel-to-e*Gate, Siebel-driven example

See Optional Example Files on page 29 for information on importing these files.

3.7.1 e*Gate to Siebel Example
In this example, an e*Way reads records describing Siebel Account objects from a file
and passes them to an Intelligent Queue. A Siebel Event-Driven e*Way receives these
records in the form of Events and posts them to the Siebel environment. Any errors are
written back to the queue and are picked up by a third e*Way, which writes them to an
error file (Figure 19 and Figure 20 on page 42 illustrate the process).

Figure 19 SiebelComAccountPost Schema

Event Type Event Structure

FileData AccountData.ssc

QueuedData AccountData.ssc

SiebelData sieb-account.ssc

QueuedError AccountError.ssc

FileError AccountError.ssc

SiebelIQ

SiebelComAccountError

SiebelAccount Feeder

SiebelComAccountPost

FileError

SiebelData

FileToQ
(Pass-through)

QToSiebel
(collab_QToSiebel.tsc)

QErrorToFile
(Pass-through)

QueuedData

ErrorToQ
(Pass-through)

e*Way Name

Event Type

Data Type
(Transport Mechanism)

QueuedError

FileData

QueuedData
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 41 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.7
System Implementation Sample Schemas
Process Flow

Figure 20 e*Gate-to-Siebel Data Flow

SiebelAccount
Feeder

SiebelCom
AccountError

SiebelCom
AccountPost

COM Object
Manager

Siebel
Base

Tables

SiebelIQ

ErrorData

FileError

Data

FileData

Siebel

Error
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.7
System Implementation Sample Schemas
1 The information to be passed to the Siebel environment is stored in a flat file.

Each Event Type Definition in this file contains a repeating node; in this example,
accounts information. Therefore, one event can pass data about zero, one, or many
Siebel accounts. The ETD AccountSource.ssc, as built with the ETD Editor, is shown
Figure 21 on page 43.

2 A separate e*Way, SiebelAccountFeeder, passes the Events (of type FileData) to the
IQ. The collaboration used performs a byte-by-byte duplication; no processing is
done. Therefore, the resulting Event, of type QueuedData, is identical to the source
Event.

Figure 21 AccountData Event Definition

3 The Collaboration QToSiebel subscribes to Events of type QueuedData in the
Intelligent Queue and publishes them to the Siebel Event-Driven e*Way,
SiebelComAccountPost.

This collaboration maps the incoming Event Definition to a Siebel Event (type
SiebelData) in which the main node (~output%sieb-account.PROJECT.Account.
BUSINESS_COMPONENT.Account) may or may not be repeated.

A portion of the Event structure sieb-account is shown Figure 22. It is built
automatically by the ETD Builder from a sample Siebel object. For more information
about the ETD Builder, see Generating Event Type Definitions on page 35. The
Collaboration Rule is shown Figure 23 on page 44.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.7
System Implementation Sample Schemas
Figure 22 sieb-account Event Structure

Figure 23 Example Collaboration

4 The Event is processed via the Monk function, siebel-eventdriven-account-post,
which is specified as the Process Outgoing Message Function in the e*Way Editor.
The Monk function sieb-struct-insert is called to transfer the data to the Siebel
COM Object Manager.

5 If one or more of the Accounts objects fails, the remainder of the Event is still
processed by Siebel. Additionally, an error Event is produced containing only the
failed account object(s). The Collaboration ErrorToQ publishes the error Event (type
QueuedError) to the IQ. A separate File e*Way, SiebelComAccountError, subscribes
to these Events and writes them to a flat file using the Collaboration QErrorToFile.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 44 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.7
System Implementation Sample Schemas
Collaborations

Four Collaborations are used in this sample schema. The first two, FileToQ and
QToSiebel, propagate valid messages to Siebel. FileToQ, is a pass-through service,
described in step 2 of the Process Flow on page 42. It is diagrammed in Figure 24. The
second, QToSiebel, is described in step 3 of the Process Flow on page 42, and is
diagrammed in 25.

Figure 24 FileToQ Collaboration

Figure 25 QToSiebel Collaboration

The second two, ErrorToQ and QErrorToFile, deal with error handling. Both are pass-
through services, and are mentioned to in step 5 of the Process Flow on page 42. These
Collaborations are diagrammed in Figure 25 and Figure 26, respectively.

Source Event Destination EventCollaboration

FileToQ QueuedDataFileData

(pass-through)

Script

AccountData
.ssc

AccountData
.ssc

Source ETD Destination ETD

Source Event Destination EventCollaboration

QToSiebel SiebelDataQueuedData

collab_QToSiebel
.tsc

Script

AccountData
.ssc

sieb-account
.ssc

Source ETD Destination ETD
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.7
System Implementation Sample Schemas
Figure 26 ErrorToQ Collaboration

Figure 27 QErrorToFile Collaboration

Source Event Destination EventCollaboration

ErrorToQ QueuedErrorQueuedData

(pass-through)

Script

AccountData
.ssc

AccountError
.ssc

Source ETD Destination ETD

Source Event Destination EventCollaboration

QErrorToFile FileErrorQueuedError

(pass-through)

Script

SiebelError
.ssc

SiebelError
.ssc

Source ETD Destination ETD
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 46 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.7
System Implementation Sample Schemas
3.7.2 Siebel to e*Gate: Query-Reply Example
In this example, one or more queries are read from a file, query.fin, and the reply
returned to another file, reply%d.dat. (In a real-life environment, an application would
send the query and the result would be returned to it by e*Gate.) Figure 28 and Figure
29 illustrate the process.

Figure 28 SiebelComAccountQueryReply Schema

Event Type Event Structure

FileQuery SiebelAccountQuery.ssc

QueuedQuery SiebelAccountQuery.ssc

SiebelQuery SiebelAccountQuery.ssc

SiebelReply sieb-account.ssc

QueuedReply sieb-account.ssc

FileReply SiebelAccountReply.ssc

QueuedError SiebelError.ssc

FileError SiebelError.ssc

SiebelIQ

SiebelComQueryErrorEater

SiebelAccount
QueryFeederEater

SiebelCom AccountQueryReply

FileError

SiebelQueryFileQueryToQ
(Pass-through)

QQueryToSiebel
(Pass-through)

QErrorToFile
(Pass-through)

QueuedQuery

EnqueueSiebelReply
(Monk script)

e*Way Name

Event Type

Data Type
(Transport Mechanism)

QueuedReply / QueuedError

FileQuery / FileReply

SiebelReply

QReplyToFile
(collab_QReplyToFile.tsc)
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.7
System Implementation Sample Schemas
Process Flow

Figure 29 Siebel-to-e*Gate Query-Reply Example

SiebelAccount
Query

FeederEater

SiebelComQuery
ErrorEaterSiebelIQ

Query/Reply

FileError
(account%d.err)

Query

FileQuery
(query.fin)

FileReply
(reply0.dat)

COM Object
Manager

Siebel
Base

Tables

Siebel

SiebelCom
Account

QueryReply

Reply/Error

Reply

Error

Enqueue
SiebelReply

(Monk Script)
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 48 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.7
System Implementation Sample Schemas
1 Queries to be passed to the Siebel environment are stored in the flat file, query.fin,
which can contain one or more queries.

2 Queries are passed, one at a time, to the IQ by a bidirectional File e*Way,
SiebelAccountQueryFeederEater. The collaboration used, FileQueryToQ, performs
a byte-by-byte duplication; no processing is done to generate QueuedQuery
Events.

3 The Siebel Event-Driven e*Way, SiebelComQueryReply, subscribes to the
QueuedQuery Event Type in the IQ. Again, this Event is passed unprocessed into
the e*Way as SiebelQuery Events.

4 On receipt of a query Event, the e*Way calls a Monk function, siebel-com-account-
query, with the query as the argument. The query is then stored in a global Monk
variable (siebel-current-query) and the scheduler is invoked. In turn, this calls the
Monk function siebel-com-account-exchange, which first creates a sieb-account
structure internally.

In this example, we are only interested in a small selection of the fields within a
Siebel account object, and they are tagged. For example:

(insert "Y"
~sieb-account-msg%sieb-

account.PROJECT.Account.BUSINESS_COMPONENT.Account[0].FIELD.Main_P
hone_Number.DG-ForceActivate "")

indicates that we require the Main_Phone_Number field.

5 The query is passed to the Siebel COM Object Manager. The collaboration used,
QQueryToSiebel, performs a byte-by-byte duplication; no processing is performed
on the QueuedQuery Events.

6 A string is returned from the Monk function:

� If no error occurs, the reply from sieb-struct-lookup is mapped to a string and
returned.

� If an error is detected, a message string is constructed with the first 11 characters
being SIEBELERROR. This string is then returned from the Monk function.

7 The Monk Collaboration EnqueueSiebelReply tests the first 11 characters of the
message to see if they match SIEBELERROR:

� The the message starts with SIEBELERROR, the Monk function iq-put is called,
and the error is placed on the IQ as an event of type QueuedError.

� Valid replies are published to the IQ as the default Event Type for this
collaboration, QueuedReply.

8 The queued Events are then handled as follows:

� QueuedReply Events are picked up by the bidirectional File e*Way that initiated
the query, transformed into an acceptable format, and written to a flat file.

� QueuedError Events are subscribed to by another File e*Way, which simply takes
the error Events from the IQ and writes them to a flat file.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.7
System Implementation Sample Schemas
Collaborations

Two pass-through Collaborations are used in the query part of this sample schema:
FileQueryToQ and QQueryToSiebel. These are described in steps 2 and 5 of the Process
Flow on page 48, and are diagrammed below in Figure 30 and Figure 31, respectively.

Figure 30 FileQueryToQ Collaboration

Figure 31 QQueryToSiebel Collaboration

Three Collaborations are used in the data extraction part of this sample schema. The
first, EnqueueSiebelReply, is a “non-standard” Collaboration in that it contains a
conditional clause, and is defined by the Monk script EnqueueSiebelReply.monk.
Depending upon the outcome of the condition, it is followed by either of two
subsequent Collaborations, QReplyToFile, or QErrorToFile. These are described in
context in steps 7 and 8 of the Process Flow on page 48, and are diagrammed in Figure
32 on page 51, Figure 33 on page 51, and Figure 34 on page 52, respectively.

Source Event Destination EventCollaboration

FileQueryToQ QueuedQueryFileQuery

(pass-through)

Script

SiebelAccountQuery
.ssc

SiebelAccountQuery
.ssc

Source ETD Destination ETD

Source Event Destination EventCollaboration

QQueryToSiebel SiebelQueryQueuedQuery

(pass-through)

Script

SiebelAccountQuery
.ssc

SiebelAccountQuery
.ssc

Source ETD Destination ETD
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 50 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.7
System Implementation Sample Schemas
Figure 32 EnqueueSiebelReply Collaboration

Figure 33 QReplyToFile Collaboration

Source Event Collaboration

EnqueueSiebelReplySiebelReply

EnqueueSiebelReply
.Monk

Script

sieb-account
.ssc

Source ETD

SIEBELERROR
?

SiebelIQ
Y

N

QueuedError

QueuedReply

Source Event Destination EventCollaboration

QReplyToFile FileReplyQueuedReply

collab_QReplyToFile
.tsc.

Script

sieb-account
.ssc

SiebelAccountReply
.ssc

Source ETD Destination ETD
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 51 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.7
System Implementation Sample Schemas
Figure 34 QErrorToFile Collaboration

Source Event Destination EventCollaboration

QErrorToFile FileErrorQueuedError

(pass-through)

Script

SiebelError
.ssc

SiebelError
.ssc

Source ETD Destination ETD
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 52 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.7
System Implementation Sample Schemas
3.7.3 Siebel to e*Gate: COM Server Example
This example shares much of the functionality of the Query-Reply example (see Siebel
to e*Gate: Query-Reply Example on page 47). The main difference is that the source of
the query is not an e*Way, but Siebel VB code (or some other DCOM-compliant
application). See Registering the DCOM Server on page 25 for more details on DCOM
server setup and client setup. Figure 35 and Figure 36 on page 54 illustrate the process.

Figure 35 SiebelComAccTriggeredQuery Schema

Event Type Event Structure

FileQuery SiebelAccountQuery.ssc

QueuedQuery SiebelAccountQuery.ssc

SiebelQuery SiebelAccountQuery.ssc

SiebelReply sieb-account.ssc

QueuedReply sieb-account.ssc

FileReply SiebelAccountReply.ssc

QueuedError SiebelError.ssc

FileError SiebelError.ssc

SiebelIQ

SiebelComErrorEater

SiebelAccountEater

SiebelComAccountQueryReply

FileError

SiebelQuery

QReplyToFile
(collab_QReplyToFile.tsc)

QErrorToFile
(Pass-through)

QueuedReply

Enqueue
SiebelReply
(Monk script)

e*Way Name

Event Type

Data Type
(Transport Mechanism)

QueuedError

FileReply

SiebelReply

stc_monkdcom.dll
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 53 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.7
System Implementation Sample Schemas
Process Flow

Figure 36 Siebel-to-e*Gate COM Server Example

SiebelAccount
Eater

SiebelCom
ErrorEaterSiebelIQ

Query/Reply

FileError
(account%d.err)

FileReply
(account%d.dat)

COM Object
Manager

Siebel
Base

Tables

Siebel

SiebelCom
Account

QueryReply

Reply/Error

Reply

Application

Event
Handler

Export

stc_monkdcom.dll

SiebelQuery

Error

Enqueue
SiebelReply

(Monk Script)
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 54 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.7
System Implementation Sample Schemas
1 On startup, the Siebel Event-Driven e*Way loads the Monk extension DLL
containing the COM/DCOM server code, and creates a DCOM server instance.

2 A Siebel application sends a COM request to the server embedded in the e*Way.
Among the parameters for this request is the name of a Monk function to invoke,
and a string to be passed to it. The example relies on the Monk function being
siebel-com-account-query, and the query string is the argument.

3 Processing then continues as it would for the Query-Reply example (see Siebel to
e*Gate: Query-Reply Example on page 47.

Collaborations

In this sample schema, only the data-extraction Collaborations are used; see Figure 32
on page 51, Figure 33 on page 51, and Figure 34 on page 52.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 55 SeeBeyond Proprietary and Confidential

Chapter 4

Setup Procedures

This chapter describes the procedures for customizing the e*Way Intelligent Adapter
for Siebel (Event-Driven) to operate with your Siebel system.

4.1 Overview
After installing the Siebel Event-Driven e*Way, you must set it up to work with your
system. A wide range of setup options allow the e*Way to conform to your system’s
operational characteristics and your facility’s operating procedures.

The topics discussed in this chapter include the following:

Setting Up the e*Way

Creating the e*Way on page 57

Modifying e*Way Properties on page 58

Configuring the e*Way on page 59

Changing the User Name on page 63

Setting Startup Options or Schedules on page 63

Activating or Modifying Logging Options on page 65

Activating or Modifying Monitoring Thresholds on page 66

Troubleshooting the e*Way

Configuration Problems on page 67

System-related Problems on page 68

Monk Errors on page 68
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 56 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way
4.2 Setting Up the e*Way

4.2.1 Creating the e*Way
The first step in implementing an e*Way is to define the e*Way component using the
e*Gate Enterprise Manager.

To create an e*Way

1 Open the schema in which the e*Way is to operate.

2 Select the e*Gate Enterprise Manager Navigator's Components tab.

3 Open the host on which you want to create the e*Way.

4 Select the Control Broker you want to manage the new e*Way.

Figure 37 e*Gate Enterprise Manager Window (Components View)

5 On the Palette, click Create a New e*Way.

6 Enter the name of the new e*Way, then click OK.

7 All further actions are performed in the e*Gate Enterprise Manager Navigator's
Components tab.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 57 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way
4.2.2 Modifying e*Way Properties
To modify any e*Way properties

1 Right-click on the desired e*Way and select Properties to edit the e*Way’s
properties. The properties dialog opens to the General tab (shown in Figure 38).

Note: The executable and default configuration files used by this e*Way are listed in
e*Way Components on page 17.

Figure 38 e*Way Properties (General Tab)

2 Make the desired modifications, then click OK.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 58 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way
4.2.3 Configuring the e*Way
The e*Way’s default configuration parameters are stored in an ASCII text file with a
.def extension. The e*Way Editor provides a simple graphical interface for viewing and
changing those parameters to create a working configuration (.cfg) file.

To change e*Way configuration parameters

1 In the e*Gate Enterprise Manager’s Component editor, select the e*Way you want to
configure and display its properties.

Note: The executable and default configuration files used by this e*Way are listed in
e*Way Components on page 17.

Figure 39 e*Way Properties - General Tab

2 Under Configuration File, click New to create a new file or Find to select an existing
configuration file. If you select an existing file, an Edit button appears; click the
button to edit the currently selected file.

3 You are now in the e*Way Configuration Editor.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 59 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way
Using the e*Way Editor

Figure 40 The e*Way Configuration Editor

The e*Way Editor controls fall into one of six categories:

� The Menu bar allows access to basic operations (e.g., saving the configuration file,
viewing a summary of all parameter settings, and launching the Help system)

� The Section selector at the top of the Editor window enables you to select the
category of the parameters you wish to edit

� Section controls enable you to restore the default settings, restore the last saved
settings, display tips, or enter comments for the currently selected section

� The Parameter selector allows you to jump to a specific parameter within the
section, rather than scrolling

� Parameter controls enable you to restore the default settings, restore the last saved
settings, display tips, or enter comments for the currently selected parameter

� Parameter configuration controls enable you to set the e*Way’s various operating
parameters

Section
controls

Parameter
selector

Parameter
controls

Section
selector

Menu
Bar

Parameter
configuration
area
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 60 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way
Section and Parameter Controls

The section and parameter controls are shown in Table 9 below.

Table 9 Parameter and Section Controls

Note: The section controls affect all parameters in the selected section, whereas the
parameter controls affect only the selected parameter.

Parameter Configuration Controls

Parameter configuration controls fall into one of two categories:

� Option buttons

� Selection lists, which have controls as described in Table 10

Table 10 Selection List Controls

Button Name Function

Restore Default Restores default values

Restore Value Restores saved values

Tips Displays tips

User Notes Enters user notes

Button Name Function

Add to List Adds the value in the text box to the
list of available values.

Delete Items Displays a “delete items” dialog box,
used to delete items from the list.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 61 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way
Command-line Configuration

In the Additional Command Line Arguments box, type any additional command line
arguments that the e*Way may require, taking care to insert them at the end of the
existing command-line string. Be careful not to change any of the default arguments
unless you have a specific need to do so.

Getting Help

To launch the e*Way Editor’s Help system

From the Help menu, select Help topics.

To display tips regarding the general operation of the e*Way

From the File menu, select Tips.

To display tips regarding the selected Configuration Section

In the Section Control group, click .

To display tips regarding the selected Configuration Parameter

In the Parameter Control group, click .

Note: “Tips” are displayed and managed separately from the Help system that launches
from the Toolbar’s Help menu. You cannot search for Tips within the Help system,
or view Help system topics by requesting Tips.

For detailed descriptions and procedures for using the e*Way Configuration Editor, see
the e*Gate Integrator User’s Guide.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 62 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way
4.2.4 Changing the User Name
Like all e*Gate executable components, e*Ways run under an e*Gate user name. By
default, all e*Ways run under the Administrator user name. You can change this if your
site’s security procedures so require.

To change the user name

1 Display the e*Way’s properties dialog.

2 On the General tab, use the Run as user list to select the e*Gate user under whose
name this component is to run.

See the e*Gate Integrator System Administration and Operations Guide for more
information on the e*Gate security system.

4.2.5 Setting Startup Options or Schedules
SeeBeyond e*Ways can be started or stopped by any of the following methods:

� The Control Broker can start the e*Way automatically whenever the Control
Broker starts.

� The Control Broker can start the e*Way automatically whenever it detects that the
e*Way terminated execution abnormally.

� The Control Broker can start or stop the e*Way on a schedule that you specify.

� Users can start or stop the e*Way manually using an interactive monitor.

You determine how the Control Broker starts or shuts down an e*Way using options on
the e*Way properties Start Up tab (see Figure 41). See the e*Gate Integrator System
Administration and Operations Guide for more information about how interactive
monitors can start or shut down components.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 63 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way
Figure 41 e*Way Properties (Start-Up Tab)

To set the e*Way’s startup properties

1 Display the e*Way’s properties dialog.

2 Select the Start Up tab.

3 To have the e*Way start automatically when the Control Broker starts, select the
Start automatically check box.

4 To have the e*Way start manually, clear the Start automatically check box.

5 To have the e*Way restart automatically after an abnormal termination:

A Select Restart after abnormal termination.

B Set the desired number of retries and retry interval.

6 To prevent the e*Way from restarting automatically after an abnormal termination,
clear the Restart after abnormal termination check box.

7 Click OK.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 64 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way
4.2.6 Activating or Modifying Logging Options
Logging options enable you to troubleshoot problems with the e*Way and other e*Gate
components.

To set the e*Way debug level and flag

1 Display the e*Way’s Properties dialog.

2 Select the Advanced tab.

3 Click Log, and the dialog window appears (see Figure 42).

Figure 42 e*Way Properties (Advanced Tab - Log Option)

4 Select DEBUG for the Logging level.

5 Select either e*Way (EWY) or e*Way Verbose (EWYV) for the Debugging flag. Note
that the latter has a significant negative impact on system performance.

6 Click OK.

The other options apply to other e*Gate components and are activated in the same
manner. See the e*Gate Integrator Alert and Log File Reference for additional information
concerning log files, logging options, logging levels, and debug flags.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 65 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way
4.2.7 Activating or Modifying Monitoring Thresholds
Monitoring thresholds enable you to monitor the throughput of the e*Way. When the
monitoring thresholds are exceeded, the e*Way sends a Monitoring Event to the
Control Broker, which is routed to the e*Gate Monitor and any other configured
destinations.

1 Display the e*Way’s properties dialog.

2 Select the Advanced tab.

3 Click Thresholds.

4 Select the desired threshold options and click OK.

See the e*Gate Integrator Alert and Log File Reference for more information concerning
threshold monitoring, routing specific notifications to specific recipients, or for general
information about e*Gate’s monitoring and notification system.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 66 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Setup Procedures Troubleshooting the e*Way
4.3 Troubleshooting the e*Way
In the initial stages of developing your e*Gate Integrator system administration system,
most problems with e*Ways can be traced to configuration.

4.3.1 Configuration Problems
In the Enterprise Manager

� Does the e*Way have the correct Collaborations assigned?

� Do those Collaborations use the correct Collaboration Services?

� Is the logic correct within any Collaboration Rules script employed by this e*Way’s
Collaborations?

� Do those Collaborations subscribe to and publish Events appropriately?

� Are all the components that provide information to this e*Way properly configured,
and are they sending the appropriate Events correctly?

� Are all the components to which this e*Way sends information properly configured,
and are they subscribing to the appropriate Events correctly?

In the e*Way Editor

� Check that all configuration options are set appropriately.

� Check that all settings you changed are set correctly.

� Check all required changes to ensure they have not been overlooked.

� Check the defaults to ensure they are acceptable for your installation.

On the e*Way’s Participating Host

� Check that the Participating Host is operating properly, and that it has sufficient
disk space to hold the IQ data that this e*Way’s Collaborations publish.

� Check that the PATH environmental variable includes a path to the Siebel Event-
Driven dynamically-loaded libraries.

In the Siebel Application

� Check that the application is configured correctly, is operating properly, and is
sending or receiving the correct data appropriately.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 67 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Setup Procedures Troubleshooting the e*Way
4.3.2 System-related Problems
� Check that the connection between the external application and the e*Way is

functioning appropriately.

� Once the e*Way is up and running properly, operational problems can be due to:

� External influences (network or other connectivity problems).

� Problems in the operating environment (low disk space or system errors)

� Problems or changes in the data the e*Way is processing.

� Corrections required to Collaboration Rules scripts that become evident in the
course of normal operations.

One of the most important tools in the troubleshooter’s arsenal is the e*Way log file. See
the e*Gate Integrator Alert and Log File Reference Guide for an extensive explanation of log
files, debugging options, and using the e*Gate monitoring system to monitor
operations and performance.

4.3.3 Monk Errors
Monk errors such as the following have been reported when using COM/DCOM:

"MONKEXCEPT:0181: MONK_X_Arg_c_Get: desired element(2) `type' does not match”

Running the Microsoft utility Regclean.exe to clean up corrupted registry files appears
to correct this problem.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 68 SeeBeyond Proprietary and Confidential

Chapter 5

Operational Overview

This chapter contains an overview of Siebel-e*Way interface and the architecture and
basic internal processes of the Siebel Event-Driven e*Way.

5.1 Interacting with Siebel

5.1.1 Object Layers
The object definitions in Siebel Enterprise Applications fall into three separate
architectural layers (excluding the third-party DBMS), as shown in Figure 43.

Figure 43 Siebel Object Layers

Business Objects Layer

The Business Object layer is the layer with which the Siebel Event-Driven e*Way
interacts. It consists of Business Object Definitions, which are built on Data Object
Definitions, and selectively combine and associate Data Object Definitions into logical

Siebel
Enterprise
Application

Siebel
Event-Driven

e*Way

User Interface
Objects Layer

Business
Objects Layer

Data
Objects Layer DBMS
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 69 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Operational Overview Interacting with Siebel
data constructs that are useful for application design. Two of these logical constructs,
for example, are Business Components (record structures comprised of Columns from
multiple joined Tables) and one-to-many Links between record structures.

5.1.2 e*Gate to Siebel

Process Flow

Figure 44 e*Gate-to-Siebel Process Flow

1 The Siebel Event-Driven e*Way receives data corresponding to a business event in
the source application, in the form of message definitions within an ETD.

2 It then invokes the Siebel COM Object Manger.

3 The Siebel COM Object Manger loads the business event into the Siebel Base Tables,
one message definition at a time.

4 After the COM Object Manager successfully processes each message definition, a
commit to the Siebel database is issued. Once all the message definitions in the

Error
File

Files
e*Way

Siebel Environment

Siebel
Base Tables

COM
Object Manager

e*Gate
Integrator

Siebel
Event-Driven

e*Way

e*Gate Integrator
Environment

1

2

3 4 / 5

5 / 65

5

e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 70 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Operational Overview Interacting with Siebel
message are successfully processed, an ACK is sent back to the e*Way, allowing the
next message to be submitted for processing.

5 If a single message definition is not successfully processed, the entire inbound
message is failed and written to an error file by a Files e*Way. To prevent the
message from being resent to the Siebel Event-Driven e*Way, an ACK is sent to
e*Gate to remove the message from the queue. Also within the failed message, a
pointer is saved that identifies the exact message definition that failed.

6 User intervention is required to edit the error file and correct the offending data.
This can be accomplished using a standard file editor.

Figure 45 Error-Correction Process Flow

Figure 45 shows the process flow for error correction. The numbers indicate the order of
the processing flow, and do not correspond to the numbers associated with Figure 44.

Transaction Management

The interface allows the transactions to be managed down to the smallest logical unit of
work-a single message definition. When an error occurs loading the data with COM,
the entire message structure, which could contain multiple message definitions, is
written to a general error file along with a flag that indicates the nature of the failure.
This allows a user to correct the offending data and resubmit the entire message
structure. The flag prevents the reprocessing of message definitions that already have
been processed successfully.

Siebel
Event-Driven

e*Way

Siebel User

Error
File

File
e*Way

File
e*Way

e*Gate
Integrator

Siebel
Enterprise
Application

e*Gate Integrator
Environment

12

3

4

5

6

7

8 9
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 71 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Operational Overview Interacting with Siebel
Figure 46 e*Gate-to-Siebel Transaction Management

The processing of an Event Type Definition for a single business event by the Siebel
Event-Driven e*Way is shown in Figure 46. The processing steps are as follows.

1 When a business event occurs in the source system, the data from the transaction is
introduced to the Siebel Event-Driven e*Way through a Collaboration.

2 The result is an ETD that incorporates of one or more message definitions
containing the translated data for loading into Siebel.

3 Each message definition within the ETD is submitted to the e*Way, one at a time.

4 A separate commit is issued after the successful processing of each message
definition using the Siebel Event-Driven e*Way Process Outgoing Message
Function parameter.

5 These steps are repeated until all the message definitions in the ETD have been
successfully processed. Once the entire ETD is processed, an ACK is sent to the
e*Gate by the Siebel Event-Driven e*Way to signify that it is ready for the next
Event.

6 If a message definition fails, the entire ETD is failed and written to a general error
file by an error-handling Files e*Way. An ACK is sent to e*Gate to prevent the
message structure from being resent to the e*Way.

7 The failed message definition can be corrected manually by using a file editor.

8 Once the failed message definition is corrected, the error file is moved to the error-
handling directory where another Files e*Way automatically loads and reprocesses
the corrected error file or ETD.

All Message
Definitions
Processed?

NoEnd Processing

Begin Processing

Start
Error-Handling

e*Way

Yes

 Load Corrected ETD
from Error File

8

Correct Failed
Message Definition

7

Write ETD
 to Error File

6

Process Next
Message Definition

3

Message Definition
Processed and

Committed

4

Set Processed Flag
to <Y>

5

ETD with
Message

Definitions

2

Define Incoming
Collaboration

1

Success

Fail
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 72 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Operational Overview Interacting with Siebel
9 The processed flag indicates the message definitions that have not yet been
successfully committed to the database. This prevents any message definitions that
were successfully processed prior to the failure from being reprocessed by the Files
e*Way.

Application Logic & Business Rules

 As each message definition is being processed, the COM Data Server enforces the same
application logic and business rules as if the transaction were taking place online. This
includes all screen, views, edits, and security checks. Using one of the Siebel-supported
object models ensures that inserts, updates, and deletes are processed by the
transaction processor and that changes are propagated to Siebel remote users.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 73 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Operational Overview Interacting with Siebel
5.1.3 Siebel to e*Gate

Process Flow

Figure 47 Siebel-to-e*Gate Process Flow

1 When a business event occurs in Siebel, the transaction is posted to the Siebel Base
Tables.

2 The Siebel Event Handler triggers the e*Way’s DCOM Interface and passes a
message string to it. The message string represents key values for the newly-created
record, and is well-defined to encode field name(s), value(s), and logical
operator(s)—for example, Name-LIKE-Account. (A custom push button can be
added to the Siebel Application GUI to initiate this action.)

DCOM
Interface

Event Handler

Siebel Base
Tables

Siebel Server

e*Gate
Integrator

Siebel
Event-Driven

e*Way

COM
Object Manager

Siebel Client(s)

Export

Application

Error
File

Files
e*Way

e*Gate Integrator
Environment ACK/NAK

1

2 3

4

5

6

7

e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 74 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Operational Overview Interacting with Siebel
3 The message string is passed to a lookup function, which interacts with the Siebel
COM interface.

4 The Siebel COM Object Manager then extracts the requested data from the Siebel
Base Tables.

5 The Object Manager then populates the e*Gate ETD for the Siebel business
component with the newly-created record.

6 The data is passed to e*Gate for routing to the target e*Way and translation to the
target application’s ETD. Once an ACK is received from e*Gate, the customized
status field for the business component is switched to the Completed state.

7 Unsuccessfully-processed data is written to an error file by a Files e*Way, and
e*Gate sends a NAK to the Event-Driven e*Way.

Data Extraction

Triggered Mode

A user of a Siebel Client initiates the data extraction process by means of an export
feature (such as a push button) on the Siebel GUI. Siebel then instantiates the DCOM
server in the Siebel-outbound e*Way, which uses a lookup function to fetch data from
Siebel.

Scheduled Mode

The e*Way also has an optional, periodic lookup function registered to process any
possible unprocessed records in a pre-defined interval. Aside from an additional status-
field search capability, the implementation of this lookup function is very similar to the
invoked function. This alternative, active-polling, mode is provided by
SiebelComQueryResponse template.

Application Logic & Business Rules

 As each message definition is being processed, the COM Object Manager enforces the
same application logic and business rules as if the transaction were taking place online.
This includes all screen, views, edits, and security checks. The importance of using the
one of the Siebel-supported object models is to ensure inserts, updates, and deletes are
processed by the transaction processor and changes propagated to Siebel Remote Users.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 75 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Operational Overview e*Way Architecture
5.2 e*Way Architecture
Conceptually, the Siebel Event-Driven e*Way can be viewed as a three-layered structure
(see Figure 48). Each layer contains Monk scripts and/or functions, and makes use of
lower-level Monk functions residing in the layer beneath. You, as user, primarily use
the highest-level functions, which reside in the upper layer(s).

Figure 48 Siebel Event-Driven e*Way Architecture

The upper layers of the e*Way use Monk functions to perform Business Process
modeling and ETD mapping, package data as e*Gate Events, send those Events to
Collaborations, and manage interaction with the external system. These layers are built
upon an e*Way Kernel layer that manages the basic operations of the e*Way, data
processing, and communication with other e*Gate components.

The communication layers of the e*Way are single-threaded. Functions run serially, and
only one function can be executed at a time. Processing layers are multi-threaded, with
one executable thread for each Collaboration. Each thread maintains its own Monk
environment; therefore, information such as variables, functions, path information, and
so on cannot be shared between threads.

Siebel Transport Layer

COM/DCOM Interface

e*Way Kernel Layer

e*Gate
Integrator

Siebel 99/2000
Front Office

PUB/SUB

COM/DCOM

Siebel Event-Driven e*Way
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 76 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Operational Overview e*Way Architecture
Collaborations execute the business logic that enable the e*Way to do its intended work.
In turn, each Collaboration executes a Collaboration Rule, containing the actual
instructions to execute the business logic. Each Collaboration that publishes its
processed Events internally (within e*Gate Integrator) requires one or more IQs to
receive the Events, as shown in Figure 49. Any Collaboration that publishes its
processed Events only to an external system does not require any IQs.

Figure 49 Collaborations and IQs

Configuration options that control the Monk environment and define the Monk
functions used to perform various e*Way operations are discussed in Chapter 6. You
can create and modify these functions using the SeeBeyond Collaboration Rules Editor
or a text editor (such as Microsoft Word or Notepad). The available set of e*Way API
functions is described in Chapter 7. Generally, e*Way Kernel Monk functions should be
called directly only when there is a specific need not addressed by higher-level Monk
functions, and should be used only by experienced developers.

For more information on defining Collaborations, defining IQs, assigning
Collaborations to e*Ways, or configuring Collaborations to publish Events, see the
e*Gate Integrator User’s Guide.

e*Gate Integrator

Siebel
Front Office

Siebel Event-Driven e*Way
(Inbound)

CollaborationEvent
A

Event
B

Collaboration Rule

Intelligent
Queue

ETD
A

ETD
B

e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 77 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Operational Overview Basic e*Way Processes
5.3 Basic e*Way Processes

Note: This section describes the basic operation of a typical e*Way based on the Generic
e*Way Kernel. Not all functionality described in this section is used routinely by the
Siebel Event-Driven e*Way.

The most basic processes carried out by an e*Way are listed in the following diagram. In
e*Ways based on the Generic Monk e*Way Kernel (using stcewgenericmonk.exe), these
processes are controlled by the listed Monk functions. Configuration of these functions
is described in the referenced sections of this User’s Guide.

Table 11 Basic e*Way Processes

A series of diagrams on the next several pages illustrate the interaction and operation of
these functions during the specified processes. Configuring the parameters associated
with these functions is covered in Chapter 6, while the functions themselves are
described in Chapter 7.

Process Monk Configuration Sections

Startup Function on page 92 (also see
Monk Environment Initialization File on page 92)

External Connection Establishment Function on
page 95
External Connection Verification Function on
page 95

Event-driven Data Exchange
Process Outgoing Message Function on page 93

Schedule-driven Data Exchange
Exchange Data with External Function on page 94
Positive Acknowledgment Function on page 96
Negative Acknowledgment Function on page 97

External Connection Shutdown Function on
page 96

Shutdown Command Notification Function on
page 98

Connection to
External System

Data Exchange

Disconnection from
External System

e*Way Shutdown

e*Way Initialization
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 78 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Operational Overview Basic e*Way Processes
Initialization Process

Figure 50 illustrates the e*Way’s initialization process, using the Monk Environment
Initialization File and Startup Function.

Figure 50 Initialization Process

Start e*Way

Load
Monk Initialization

file

Execute any Monk function
having the same name as

the initialization file

Load Startup file

Execute any Monk function
having the same name as

the startup file
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 79 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Operational Overview Basic e*Way Processes
Connect to External Process

Figure 51 illustrates how the e*Way connects to the external system, using the External
Connection Establishment Function and External Connection Verification Function.

Figure 51 Connection Process

Note: The e*Way selects the connection function based on an internal up/down flag
rather than a poll to the external system. See Figure 53 on page 82 and Figure 52
on page 81 for examples of how different functions use this flag.

User functions can manually set this flag using Monk functions. See send-
external-up on page 138 and send-external-down on page 138 for more
information.

Connect e*Way to
external system

Is connection active?

Wait for Up Timeout
schedule

Call External Connection
Verification function

Wait for Down Timeout
schedule

Call External Connection
Establishment function

Yes

No
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 80 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Operational Overview Basic e*Way Processes
Data Exchange Process

Event-driven

Figure 52 illustrates how the e*Way’s event-driven data exchange process works, using
the Process Outgoing Message Function.

The e*Way periodically checks the Failed Message counter against the value specified by
the Max Failed Messages parameter. When the Failed Message counter exceeds the
specified maximum value, the e*Way logs an error and shuts down.

After the function exits, the e*Way waits for the next outgoing Event.

Figure 52 Event-Driven Data Exchange Process

Collaboration publishes
to External system

Call Process Outgoing
Message function

Set internal flag
Connection Down

Maximum
Resends per Message

exceeded?

Yes

Return

CONNERR DATAERR

Increment Failed
Message counter

Create journal
entry

Null
string

No
Journal

enabled?

No

Function exits

Wait for Resend
Timeout period

Roll back Event to
its publishing IQ

Yes

Wait for Resend
Timeout period

Increment
Resend counter

RESEND
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 81 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Operational Overview Basic e*Way Processes
Schedule-driven

Figure 53 illustrates how the e*Way’s schedule-driven data exchange process works for
incoming data, using the Exchange Data with External Function, Positive
Acknowledgment Function, and Negative Acknowledgment Function.

Figure 53 Schedule-Driven Data Exchange Process

Increment Failed
Message counter

DATAERR plus
additional data

Null
string

Data
(other than

error strings)

Forward
external
errors?

No

Yes

Set interval flag
Connection Down

CONNERR

Increment Failed
Message counter

DATAERR only

Journal
enabled?

Create journal
entry

Yes

No

Start

Function exits

Send Event to
e*Gate

All
subscribing

Collaborations return
TRUE

?

Call Positive
Acknowledgment

function

Zero
wait after successful

exchange?

Call Negative
Acknowledgment

function

Yes

No

YesNo

Call
Exchange Data with External

function

Return
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 82 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Operational Overview Basic e*Way Processes
Start can occur in any of the following ways:

� Start Data Exchange time occurs

� Periodically during data-exchange schedule (after Start Data Exchange time, but
before Stop Data Exchange time), as set by Exchange Data Interval

� The start-schedule Monk function is called

Send Events to e*Gate can be implemented using any of the following Monk functions:

� event-send-to-egate

� event-send-to-egate-ignore-shutdown

� event-send-to-egate-no-commit

The last of these is used when confirmation of correct transmission is required from the
external system. In this case, the e*Way sends information back to the external system
after receiving data. Depending upon whether the acknowledgment is positive or
negative, you subsequently use one of the following functions to complete the process
(see Figure 54):

� event-commit-to-egate

� event-rollback-to-egate

Figure 54 Send Event to e*Gate with Confirmation

After the function exits, the e*Way waits for the next Start time or command.

External
System

e*Way

REPLY FUNCTION

(event-commit-to-egate)

(event-rollback-to-egate)

e*Gate IQ
Manager

Results

Negative
Confirmation

Positive
Confirmation

Commit
Previously-
Sent Event

Roll Back
Previously-
Sent Event

(event-send-to-egate-no-
commit)DATA

Send Event
Without

Committing
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 83 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Operational Overview Basic e*Way Processes
Disconnect from External Process

Figure 55 illustrates how the e*Way disconnects from the external system, using the
External Connection Shutdown Function.

Figure 55 Disconnect Process

Shutdown Process

Figure 56 illustrates how the e*Way shuts itself down, using the Shutdown Command
Notification Function.

Figure 56 Shutdown Process

Control Broker issues
Suspend command

Call External Connection Shutdown function
with SUSPEND_NOTIFICATION parameter

e*Way closes connection

Return any value

Control Broker issues
Shutdown command

Call Shutdown Notification function
with SHUTDOWN_NOTIFICATION parameter

e*Way shuts down

Wait for
shutdown-request

function

Return

Null string or
"SUCCESS"

any other value

Call waiting-to-shutdown
function

Inform External system
that Shutdown command

has been issued

(Optional)
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 84 SeeBeyond Proprietary and Confidential

Chapter 6

Configuration Parameters

This chapter describes the configuration parameters for the Siebel Event-Driven e*Way.

6.1 Overview
The e*Way’s configuration parameters are set using the e*Way Editor; see Configuring
the e*Way on page 59 for procedural information. The default configuration is
provided in stcewsiebeleventdriven.def. The Siebel Event-Driven e*Way’s
configuration parameters are organized into the following sections:

General Settings on page 86

Communication Setup on page 88

Monk Configuration on page 91

Siebel Setup on page 99
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 85 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Configuration Parameters General Settings
6.2 General Settings

The General Settings control basic operational parameters.

Journal File Name

Description

Specifies the name of the journal file.

Required Values

A valid filename, optionally including an absolute path (for example,
c:\temp\filename.txt). If an absolute path is not specified, the file is stored in the e*Gate
SystemData directory. See the e*Gate Integrator System Administration and Operations
Guide for more information about file locations.

Additional Information

The Journal file is used for the following conditions:

� When the number of resends is exceeded (see Max Resends Per Message, below)

� When its receipt is due to an external error, but Forward External Errors is set to No

Max Resends Per Message

Description

Specifies the number of times the e*Way attempts to resend a message (Event) to the
external system after receiving an error. When this maximum is reached, the e*Way
waits for the number of seconds specified by the Resend Timeout parameter, and then
rolls back the Event to its publishing IQ.

Required Values

An integer between 1 and 1,024. The default is 5.

Max Failed Messages

Description

Specifies the maximum number of failed messages that the e*Way allows. When the
specified number of failed messages is reached, the e*Way shuts down and exits.

Required Values

An integer between 1 and 1,024. The default is 3.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 86 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Configuration Parameters General Settings
Forward External Errors

Description

Selects whether or not error messages received from the external system that begin with
the string “DATAERR” are queued to the e*Way’s configured queue.

Required Values

Yes or No. The default value, No, specifies that error messages are not to be forwarded.

See also

Exchange Data with External Function on page 94
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 87 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Configuration Parameters Communication Setup
6.3 Communication Setup
The Communication Setup parameters control the schedule by which the e*Way
obtains data from the external system

Note: The schedule parameters that are set within the e*Way Editor are independent of
those set within the e*Gate Enterprise Manager. If you choose to operate this e*Way
on a schedule, be sure that you define compatible schedules in both the e*Way Editor
and the e*Gate Enterprise Manager.

Start Exchange Data Schedule

Description

Establishes the schedule to invoke the e*Way’s Exchange Data with External Function.

Required Values

One of the following:

� One or more specific dates/times

� A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds)

Also required: If you set a schedule using this parameter, you must also define all three
of the following:

� Exchange Data with External Function

� Positive Acknowledgment Function

� Negative Acknowledgment Function

If you do not do so, the e*Way terminates execution when the schedule attempts to
start.

Additional Information

When the schedule starts, the e*Way determines whether or not it is waiting to send an
ACK or NAK to the external system (using the Positive and Negative Acknowledgment
functions) and whether or not the connection to the external system is active. If no ACK/
NAK is pending and the connection is active, the e*Way immediately executes the
Exchange Data with External Function. Thereafter, the Exchange Data with External
Function is called according to the Exchange Data Interval parameter until the Stop
Exchange Data Schedule time is reached.

Stop Exchange Data Schedule

Description

Establishes the schedule to stop data exchange.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 88 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Configuration Parameters Communication Setup
Required Values

One of the following:

� One or more specific dates/times

� A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

 Since months do not all contain equal numbers of days, be sure not to provide
boundaries that would cause an invalid date selection (i.e. the 30th of every month
would not include February).

Exchange Data Interval

Description

Specifies the number of seconds the e*Way waits between calls to the Exchange Data
with External function during scheduled data exchanges.

Required Values

An integer between 0 and 86,400. The default is 120.

Additional Information

If Zero Wait Between Successful Exchanges is set to Yes and the Exchange Data with
External Function returns data, The Exchange Data Interval setting is ignored and the
e*Way immediately invokes the Exchange Data with External Function.

If this parameter is set to zero, then no exchange data schedule is set and the Exchange
Data with External Function is never called.

See Down Timeout and Stop Exchange Data Schedule for additional information
about the data-exchange schedule.

Down Timeout

Description

Specifies the number of seconds that the e*Way waits between calls to the External
Connection Establishment Function.

Required Values

An integer between 1 and 86,400. The default is 15.

Up Timeout

Description

Specifies the number of seconds the e*Way waits between calls to the External
Connection Verification Function.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 89 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Configuration Parameters Communication Setup
Required Values

An integer between 1 and 86,400. The default is 15.

Resend Timeout

Description

Specifies the number of seconds the e*Way waits between attempts to resend an
message to the external system, after receiving an error message.

Required Values

An integer between 1 and 86,400. The default is 15.

Zero Wait Between Successful Exchanges

Description

Selects whether to initiate data exchange after the Exchange Data Interval, or
immediately after a successful previous exchange.

Required Values

Yes or No. The default is No.

If this parameter is set to Yes, the e*Way immediately invokes the Exchange Data with
External Function if the previous exchange function returned an Event.

If this parameter is set to No, the e*Way always waits the number of seconds specified
by Exchange Data Interval between invocations of the Exchange Data with External
Function.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 90 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Configuration Parameters Monk Configuration
6.4 Monk Configuration
The parameters in this section help you set up the information required by the e*Way to
utilize Monk for communication with the external system

Specifying Function or File Names

Parameters that require the name of a Monk function accept either a function name
(implied by the absence of a period <.>) or the name of a file (optionally including path
information) containing a Monk function. If a file name is specified, the function
invoked is given by the base name of the file (for example, for a file named
my-startup.monk, the e*Way would attempt to execute the function my-startup). If path
information is specified, that path is appended to the Load Path.

If you specify a file name, be sure that the file has one of the following extensions:

� .monk

� .tsc

� .dsc

Specifying Multiple Directories

To specify multiple directories, manually enter the directory names rather than
selecting them with the File Selection button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths. For example:

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

Load Path

The Monk load path is the path Monk uses to locate files and data (set internally within
Monk). The default load paths are determined by the SharedExe and SystemData
settings in the .egate.store file. See the e*Gate Integrator System Administration and
Operations Guide for more information about this file.

Additional Path

Description

Specifies a path to be appended to the Load Path. A directory specified here is searched
after searching the default load path.

Required Values

A pathname, or a series of paths separated by semicolons. There is no default value for
this parameter.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 91 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Configuration Parameters Monk Configuration
Note: This parameter is optional and may be left blank.

Additional information

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

Auxiliary Library Directories

Description

Specifies a path to auxiliary library directories. Any .monk files found within those
directories is automatically loaded into the e*Way’s Monk environment.

Required Values

A pathname, or a series of paths separated by semicolons. The default is monk_library/
ewsiebeleventdriven.

Note: This parameter is optional and may be left blank.

Additional information

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

Monk Environment Initialization File

Specifies a file that contains environment initialization functions, which is loaded after
the auxiliary library directories are loaded. Use this feature to initialize any Monk
variables that are used by the e*Way’s function scripts.

Required Values

A filename within the Load Path, or a filename plus path information (relative or
absolute). If path information is specified, that path is appended to the Load Path. The
default is siebel-eventdriven-init.

Note: This parameter is optional and may be left blank.

Additional information

Typically, it is a good practice to initialize any global Monk variables that may be used
by any other Monk Extension scripts.

Startup Function

Description

Specifies a Monk function that the e*Way loads and invokes upon startup or whenever
the e*Way’s configuration is reloaded. This function should be used to initialize the
external system before data exchange starts.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 92 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Configuration Parameters Monk Configuration
Required Values

The name of a Monk function or the name of a file containing a Monk function. There is
no default value for this parameter.

Note: This parameter is optional and may be left blank.

Returns

The string “FAILURE” indicates that the function failed, and the e*Way exits; any other
string (including a null string) indicates success.

Additional information

This function is called after the e*Way loads the specified Monk Environment
Initialization File and any files within the specified Auxiliary Library Directories.

Process Outgoing Message Function

Description

Specifies the Monk function responsible for processing outgoing messages information
from the e*Way to the external system. This function is event-driven (unlike the
Exchange Data with External Function, which is schedule-driven).

Required Values

The name of a Monk function, the name of a file containing a Monk function. There is
no default value for this parameter.

Note: This parameter is required, and must not be left blank.

Returns

� A null string (““) indicates that the Event was published successfully to the external
system

� A string beginning with RESEND indicates that the Event should be resent

� A string beginning with CONNERR indicates that there is a problem with the
connection to the external system, and causes a rollback of the Event

� A string beginning with DATAERR indicates that there is a problem with the
message (Event) data itself, and causes a rollback of the Event

� A string beginning with SHUTDOWN indicates that the e*Way must exit
immediately

� If any string other than one of the preceding is returned, the e*Way creates an entry
in the log file indicating that an attempt has been made to access an unsupported
function

Additional Information

� The e*Way invokes this function when one of its Collaborations publishes an Event
to an external destination (as specified within the e*Gate Enterprise Manager).
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 93 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Configuration Parameters Monk Configuration
� Once this function has been called with a non-null string, the e*Way does not process
another Event until the current Event has been completely processed.

Note: If you wish to use event-send-to-egate to enqueue failed Events in a separate IQ,
the e*Way must have an inbound Collaboration (with appropriate IQs) configured
to process those Events.

Exchange Data with External Function

Description

Specifies a Monk function that initiates the transmission of data from the external
system to the e*Gate system and forwards that data as an inbound Event to one or more
e*Gate Collaborations. This function is called according to a schedule (unlike the
Process Outgoing Message Function, which is event-driven).

Required Values

The name of a Monk function, the name of a file containing a Monk function. There is
no default value for this parameter.

Note: This parameter is optional and may be left blank.

Returns

� A null string (““) indicates that the data exchange was completed successfully, but
with no resultant data sent back to the e e*Gate system

� A string beginning with CONNERR indicates that there is a problem with the
connection to the external system

� A string beginning with DATAERR indicates that there is a problem with the
message (Event) data itself. If the error string contains data beyond the keyword,
the entire string is queued to e*Gate if an inbound Collaboration is so configured
and Forward External Errors is set to Yes. Queueing, however, is performed
without the subsequent sending of a ACK or NAK to the external system.

� Any other string indicates that the contents of the string are packaged as an
inbound Event

Additional Information

� Data can be queued directly to e*Gate by using the event-send-to-egate Monk
function or, if a two-phase approach is required, by using event-send-to-egate-no-
commit and then event-commit-to-egate or event-rollback-to-egate to commit or
rollback the enqueued events, as appropriate

Note: Until an Event is committed, it is not revealed to subscribers of that Event.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 94 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Configuration Parameters Monk Configuration
External Connection Establishment Function

Description

Specifies a Monk function that the e*Way calls to establish (or re-establish) a connection
to the external system. This function is executed according to the interval specified
within the Down Timeout parameter, and is only called according to this schedule. The
External Connection Verification Function (see below) is called when the e*Way has
determined that its connection to the external system is up.

Required Values

The name of a Monk function or the name of a file containing a Monk function.

� For Incoming e*Ways (Siebel-to-e*Gate), the default is siebel-eventdriven-dummy.

� For Outgoing e*Ways (e*Gate-to-Siebel), the default is siebel-eventdriven-connect.

Note: This parameter is required, and must not be left blank.

Returns

� A string beginning with SUCCESS or UP indicates that the connection was
established successfully

� A string beginning with DOWN indicates that the connection was not established
successfully

� Any other string, including a null string, indicates that the attempt to establish the
connection failed and the external state is unknown

External Connection Verification Function

Description

Specifies a Monk function that the e*Way calls to confirm that the external system is
operating and available. This function is executed according to the interval specified
within the Up Timeout parameter, and is only called according to this schedule. The
External Connection Establishment Function (see previous) is called when the e*Way
has determined that its connection to the external system is down.

Required Values

The name of a Monk function or the name of a file containing a Monk function. If
nothing is specified, the e*Way executes the External Connection Establishment
Function in its place. The default is siebel-eventdriven-verify-connect.

Note: This parameter is optional and may be left blank.

Returns

� “SUCCESS” or “UP” indicates that the connection was established successfully

� Any other string (including the null string) indicates that the attempt to establish
the connection failed
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 95 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Configuration Parameters Monk Configuration
Additional Information

External Connection Shutdown Function

Description

Specifies a Monk function that the e*Way calls to shut down the connection to the
e*Way. This function is invoked only when the e*Way receives a suspend command from
a Control Broker.

Required Values

The name of a Monk function or the name of a file containing a Monk function. There is
no default value for this parameter.

Note: This parameter is optional and may be left blank.

Input

A string indicating the purpose for shutting down the connection.

� “SUSPEND_NOTIFICATION” - the e*Way is being suspended or shut down

� “RELOAD_NOTIFICATION” - the e*Way is being reconfigured

Returns

A string, the value of which is ignored. Any return value indicates that the suspend
command can proceed and that the connection to the external system can be broken
immediately.

Note: Include in this function any required “clean up” operations that must be performed
as part of the shutdown procedure, but before the e*Way exits.

Positive Acknowledgment Function

Description

Specifies a Monk function that the e*Way calls when all the Collaborations to which the
e*Way sent data have processed and enqueued that data successfully.

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default is siebel-eventdriven-ack.

Note: This parameter is conditional, and must be specified only if the Exchange Data
with External Function is defined.

Input

A string, the inbound Event to e*Gate.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 96 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Configuration Parameters Monk Configuration
Returns

� The string beginning with CONNERR indicates a problem with the connection to
the external system; when the connection is re-established, the function is called
again, with the same input data

� Any other string, including a null string, indicates that the acknowledgement has
been sent to the external system successfully

Additional Information

� After the Exchange Data with External Function returns a string that is
transformed into an inbound Event, the Event is handed off to one or more
Collaborations for further processing. If the Event’s processing is completed
successfully by all the Collaborations to which it was sent, the e*Way executes the
Positive Acknowledgment Function (otherwise, the e*Way executes the Negative
Acknowledgment Function).

� This function can return data to be queued, but the e*Way will not acknowledge the
data with an ACK or NAK.

Note: If you configure the acknowledgment function to return a non-null string, you must
configure a Collaboration (with appropriate IQs) to process the returned Event.

Negative Acknowledgment Function

Description

Specifies a Monk function that the e*Way calls when the e*Way fails to process and
queue Events from the external system.

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default is siebel-eventdriven-nack.

Note: This parameter is conditional, and must be specified only if the Exchange Data
with External Function is defined.

Input

A string, the inbound Event to e*Gate.

Returns

� The string beginning with CONNERR indicates a problem with the connection to
the external system; when the connection is re-established, the function is called
again, using the same input data

� Any other string, including a null string, indicates that the acknowledgement has
been sent to the external system successfully

Additional Information

� This function is only called during the processing of inbound Events. After the
Exchange Data with External Function returns a string that is transformed into an
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 97 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Configuration Parameters Monk Configuration
inbound Event, the Event is handed off to one or more Collaborations for further
processing. If the Event’s processing is not completed successfully by all the
Collaborations to which it was sent, the e*Way executes the Negative
Acknowledgment Function (otherwise, the e*Way executes the Positive
Acknowledgment Function).

� This function can return data to be queued, but the e*Way will not acknowledge the
data with an ACK or NAK.

Note: If you configure the acknowledgment function to return a non-null string, you must
configure a Collaboration (with appropriate IQs) to process the returned Event.

Shutdown Command Notification Function

Description

Specifies a Monk function that is called when the e*Way receives a shut down command
from the Control Broker.

Required Values

The name of a Monk function or the name of a file containing a Monk function. There is
no default value for this parameter.

Note: This parameter is optional and may be left blank.

Input

When the Control Broker issues a shutdown command to the e*Way, the e*Way calls
this function with the string “SHUTDOWN_NOTIFICATION” passed as a parameter.

Returns

� A null string or “SUCCESS” indicates that the shutdown can occur immediately

� Any other string indicates that shutdown must be postponed; once postponed,
shutdown does not proceed until the Monk function shutdown-request is executed

Additional Information

If you postpone a shutdown using this function, be sure to use
the shutdown-request function to complete the process in a timely manner.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 98 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Configuration Parameters Siebel Setup
6.5 Siebel Setup
The parameters in this section help you set up the information required by the e*Way to
communicate with the Siebel Server.

Communication Direction

Description

The direction of data flow (e*Gate to Siebel, Siebel to e*Gate).

Required Values

One of the following options:

� Outbound Toward Siebel

� Inbound From Siebel

� Both

Siebel Login Name

Description

The user name for the Siebel server.

Required Values

A valid user name.

Siebel Login Password

Description

The password for the Siebel server.

Required Values

The password corresponding to the user name entered above.

Siebel Config File

Description

The location of the Siebel configuration file.

Required Values

Directory and file name.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 99 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Configuration Parameters Siebel Setup
Additional information

The Siebel configuration file specifies a default Siebel server to which to connect, in
addition to other servers. Make sure that the server you need to connect to is set as the
default. To connect to more than one server, you need multiple Siebel configuration
files.

Siebel Business Object

Description

The Siebel object type that is being created or queried on the remote Siebel system.

Required Values

The name of a valid Siebel Business Object.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 100 SeeBeyond Proprietary and Confidential

Chapter 7

API Functions

This chapter describes the various Monk functions used by the SeeBeyond e*Way
Intelligent Adapter for Siebel (Event-Driven).

7.1 Overview
The Siebel Event-Driven e*Way’s functions are categorized as follows:

� Siebel Transport Functions on page 102

� Siebel General Functions on page 124

� Example Functions on page 131

� Generic e*Way Functions on page 134
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 101 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions Siebel Transport Functions
7.2 Siebel Transport Functions
These Monk APIs are developed specifically to control interactions between the Siebel
Event-Driven e*Way and a Siebel application.

sieb-associate on page 103

sieb-error on page 103

sieb-get-associate-bc on page 104

sieb-get-mvg-bc on page 105

sieb-get-picklist-bc on page 106

sieb-get-search-expr on page 106

sieb-query on page 107

sieb-query2 on page 108

sieb-select-picklist-fields on page 108

sieb-select-mvg-fields on page 110

sieb-struct-delete on page 111

sieb-struct-delete2 on page 111

sieb-struct-get-bc on page 112

sieb-struct-insert on page 113

sieb-struct-insert2 on page 113

sieb-struct-insert-with-pick on page 114

sieb-struct-lookup on page 115

sieb-struct-lookup2 on page 116

sieb-struct-set-field on page 117

sieb-struct-set-field2 on page 118

sieb-struct-single-insert on page 118

sieb-struct-single-insert2 on page 119

sieb-struct-update on page 119

sieb-struct-update2 on page 120

sieb-struct-write on page 121

sieb-struct-write2 on page 121

sieb-struct-write-pick-mvg on page 122
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 102 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions Siebel Transport Functions
sieb-associate

Description

Creates a many-to-many relationship between parent and child business component.

Signature

(sieb-associate <bus-com-hdl> <query-cond>)

Parameters

Returns

If successful, a Boolean true (#t); otherwise, a Boolean false (#f).

Throws

None.

Location

sieb-associate.monk

Examples

(set! ret (sieb-associate <bus-com-hdl> <query-cond>))
(if ret

(display "OK")
(display "Failed")

)

sieb-error

Description

Tests param-vec for error messages and displays them to the current output port.

Signature

(sieb-error <param-vec>)

Parameters

Returns

If no error is found, a Boolean true (#t); otherwise, an error string.

Name Type Description

bus-com-hdl Monk object Business component handle.

query-cond Vector Query conditions.

Name Type Description

param-vec Vector Invoke parameter vector.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 103 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions Siebel Transport Functions
Throws

None.

Location

sieb-error.monk

Examples

(com-invoke <siebobj-handle> "LoadObjects" "FUNC" <param-vec>)
(if (sieb-error <param-vec>)

(display "OK")
(display "Failed"

)

sieb-get-associate-bc

Description

Obtains the association business component handle.

Signature

(sieb-get-associate-bc <bus-com-hdl>)

Parameters

Returns

If successful, the business component handle (bus-com-hdl) associated with sieb-get-
associate-bc. Upon failure, a Boolean false (#f).

Throws

None.

Location

sieb-get-assoc-bc.monk

Examples

(set! assoc-bus-com-hdl (sieb-get-associate-bc <bus-com-hdl>))

sieb-get-field-values

Description

This function returns a vector containing the value or values for a <bc-field> that
matches the query vector for the business component specified by <bc-name>.

Signature

(sieb-get-field-values <bc-name> <bc-field> <query-vec>)

Name Type Description

bus-com-hdl Monk object Business component handle.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 104 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions Siebel Transport Functions
Parameters

Returns

A vector containing the values for the bc-field from the record(s) returned from the
query condition(s).

Throws

None.

Location

sieb-get-field-values.monk

Examples

(set! assoc-bus-com-hdl (sieb-get-field-values <bc-name> <bc-field>
<query-vec>))

sieb-get-mvg-bc

Description

Replaces an association business component with a multiple value group business
component.

Signature

(sieb-get-mvg-bc <bus-com-hdl> <field-name>)

Parameters

Returns

If successful, the business component handle (bus-com-hdl) associated with sieb-get-
mvg-bc. Upon failure, a Boolean false (#f).

Name Type Description

bc-name Monk object The name of the business component
to get the values from. (This business
component must exist on the
Business Object selected in this
e*Way’s configuration file.)

bc-field Monk object The name of the field to retrieve
values for.

query-vec Vector Search vector of three strings in the
format: (vector <field-name>
<operator> <condition>).

Name Type Description

bus-com-hdl Monk object Business component handle.

field-name String The name of the field on the business
component that contains the MVG.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 105 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions Siebel Transport Functions
Throws

None.

Location

sieb-get-mvg-bc.monk

Examples

(set! assoc-bus-com-hdl (sieb-get-mvg-bc <bus-com-hdl> <field-name>))

sieb-get-picklist-bc

Description

Replaces an association business component with a picklist business component.

Signature

(sieb-get-picklist-bc <bus-com-hdl> <field-name>)

Parameters

Returns

If successful, the business component handle (bus-com-hdl) associated with sieb-get-
picklist-bc. Upon failure, a Boolean false (#f).

Throws

None.

Location

sieb-get-picklist-bc.monk

Examples

(set! assoc-bus-com-hdl (sieb-get-picklist-bc <bus-com-hdl> <field-
name>))

sieb-get-search-expr

Description

Generates a query condition vector from the message expr-msg.

Signature

(sieb-get-search-expr <expr-msg>)

Name Type Description

bus-com-hdl Monk object Business component handle.

field-name String The name of the field on the business
component that contains the Pick List.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 106 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions Siebel Transport Functions
Parameters

Returns

A search expression vector (see example below).

Throws

None.

Location

sieb-get-search-expr.monk

Examples

(sieb-get-search-expr "Product
Line~=~Toothpaste|Product~=~TeethSoBright|Price~>~4.99|")

 returns:

(vector (vector 'Product Line' '=' 'Toothpaste') (vector 'Product' '='
'TeethSoBright') (vector 'Price' '>' '4.99'))

sieb-query

Description

Invokes Siebel object methods to query against Siebel database. Note that the handle to
business component object has to be reset before calling sieb-query. SeeBeyond
recommends that the function sieb-get-search-expr be called to generate the query
condition from a simple string.

Signature

(sieb-query <query-cond>)

Parameters

Returns

If successful, a Boolean true (#t); otherwise, a Boolean false (#f).

Throws

None.

Location

sieb-query.monk

Name Type Description

expr-msg String sieb-query-expr structure message.

Name Type Description

query-cond Vector Query condition vector.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 107 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions Siebel Transport Functions
Examples

(sieb-query (sieb-get-search-expr "Name~LIKE~STC*|"))

sieb-query2

Description

Invokes Siebel object methods to query against Siebel database. Note that the handle to
business component object has to be reset before calling sieb-query2. SeeBeyond
recommends that the function sieb-get-search-expr be called to generate the query
condition from a simple string.

Signature

(sieb-query2 <bus-com-hdl> <query-cond>)

Parameters

Returns

If successful, a Boolean true (#t); otherwise, a Boolean false (#f).

Throws

None.

Location

sieb-query2.monk

Examples

(sieb-query2 bus-com-hdl
(sieb-get-search-expr "Name~LIKE~STC*|"))

sieb-select-picklist-fields

Description

Allows you to select values for a picklist on a business component specified by bc-
handle.

Signature

(sieb-select-picklist-fields <bc-handle> <picklist-vec>)

Name Type Description

query-cond Vector Query condition vector.

bus-com-hdl Monk object Business component handle.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 108 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions Siebel Transport Functions
Parameters

Returns

If successful, a Boolean true (#t); otherwise, a Boolean false (#f).

Throws

None.

Location

sieb-select-picklist-fields.monk

Additional Information

The Picklist and Multi-value group vectors have the following form:

(vector (vector <field-name> <search-expr>) (vector <field-name>
<search-expr>) ...)

where:

Examples

picklist-vec:

(set! picklist-vec (vector (vector "Unit of Measure" "Name~=~Each|")))

Name Type Description

bc-handle Monk object The handle of the business
component containing the picklist
fields. It must already have one record
selected. This means you must
perform a query using this bc-handle
and get the FirstRecord from the query
before the handle is passed to this
function.

picklist-vec Vector Picklist vector (see Additional
Information, below)

Name Type Description

field-name String The name of the field on the BC that
has either the pick list or multi value
group.

search-expr String The search condition for the picklist
or MVG business component. This
condition should return one record
only.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 109 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions Siebel Transport Functions
sieb-select-mvg-fields

Description

Checks whether or not the records matching the key values exist. If they do, then the
function conducts an update; otherwise, an insert. Keys-rec specifies a list of keys for
searching. Key values are obtained for the business component path node.

Signature

(sieb-select-mvg-fields <bc-handle> <mvg-vec>)

Parameters

Returns

If successful, a Boolean true (#t); otherwise, a Boolean false (#f).

Throws

None.

Location

sieb-select-mvg-fields.monk

Additional Information

The Picklist and Multi-value group vectors have the following form:

(vector (vector <field-name> <search-expr>) (vector <field-name>
<search-expr>) ...)

where:

Name Type Description

bc-handle Monk object The handle of the business
component containing the picklist
fields. It must already have one record
selected. This means you must
perform a query using this bc-handle
and get the FirstRecord from the query
before the handle is passed to this
function.

mvg-vec Vector Multi-value group vector (see
Additional Information, below)

Name Type Description

field-name String The name of the field on the BC that
has either the pick list or multi value
group.

search-expr String The search condition for the picklist
or MVG business component. This
condition should return one record
only.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 110 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions Siebel Transport Functions
Examples

mvg-vec:

(set! mvg-vec (vector (vector "Product" (string-append "Id~=~" siebel-
row-id "|"))))

sieb-struct-delete

Description

Searches for records which match the query condition and subsequently deletes them.

Signature

(sieb-struct-delete <sieb-obj-node> <query-cond>)

Parameters

Returns

If successful, returns the Boolean true (#t); otherwise, returns false (#f).

Throws

None.

Location

sieb-struct-delete.monk

sieb-struct-delete2

Description

Searches for records in the association business components matching the specified
business component handle which match the query condition, and subsequently
deletes them.

Signature

(sieb-struct-delete2 <bus-com-hdl> <sieb-obj-node> <query-cond>)

Name Type Description

sieb-obj-node Path Path to the repeating business
component object.

query-cond Vector Query conditions.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 111 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions Siebel Transport Functions
Parameters

Returns

If successful, a Boolean true (#t); otherwise, a Boolean false (#f).

Throws

None.

Location

sieb-struct-delete2.monk

sieb-struct-get-bc

Description

Obtains the business component handle from a Monk path.

Signature

(sieb-struct-get-bc <sieb-obj-node>)

Parameters

Returns

If successful, the business component handle (bus-com-hdl) associated with sieb-
struct-get-bc; upon failure, a Boolean false (#f).

Throws

None.

Location

sieb-struct-get-bc.monk

Examples

(define bus-com-hdl
(sieb-struct-get-bc ~input%sieb-
account.PROJECT.Account.BUSINESS_COMPONENT.Account)

)
where Account is a repeating field

Name Type Description

bus-com-hdl Monk object Business component handle.

sieb-obj-node Path Path to the repeating business
component object.

query-cond Vector Query condition.

Name Type Description

sieb-obj-node Path Path to the business component node
(single instance).
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 112 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions Siebel Transport Functions
sieb-struct-insert

Description

Calls sieb-struct-set-field for all repeating data found on the node.

Signature

(sieb-struct-insert <sieb-obj-node>)

Parameters

Returns

None.

Throws

None.

Location

sieb-struct-insert.monk

Examples

(sieb-struct-insert
~input%sieb-account.PROJECT.Account.BUSINESS_COMPONENT.Account)

where Account is a repeating field

sieb-struct-insert2

Description

Calls sieb-struct-set-field for all repeating data found on the specified node in the
association business components matching the specified business component handle.

Signature

(sieb-struct-insert2 <bus-com-hdl> <sieb-obj-node>)

Parameters

Returns

None.

Name Type Description

sieb-obj-node Path Path to the business component node.

Name Type Description

bus-com-hdl Monk object Business component handle.

sieb-obj-node Path Path to the business component node.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 113 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions Siebel Transport Functions
Throws

None.

Location

sieb-struct-insert2.monk

Examples

(sieb-struct-insert2 bus-com-hdl
~input%sieb-account.PROJECT.Account.BUSINESS_COMPONENT.Account)

where Account is a repeating field

sieb-struct-insert-with-pick

Description

Calls sieb-struct-set-field for repeating data found on the node. Unlike sieb-struct-
insert, this function obtains data in fields that must be picked through a picklist.

Signature

(sieb-struct-insert-with-pick <sieb-obj-node> <pick-vec>)

Parameters

Returns

None.

Throws

None.

Location

sieb-struct-insert-with-pick.monk

Name Type Description

sieb-obj-node Path Path to the business component node.

pick-vec Vector Vector having elements composed of
field name-search expression pairs
(see Additional Information, below).
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 114 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions Siebel Transport Functions
Additional Information

The pick-vec vector has the following form:

(vector (vector <field-name> <search-expr>) (vector <field-name>
<search-expr>) ...)

where:

Examples

(define (pick-vector (make-vector 1 (make-vector 2 ""))))
(vector-set! (vector-ref pick-vector 0) 0 "Product")
(vector-set! (vector-ref pick-vector 0) 1 (string-append "Id~=~" prod-

rowid "|"))
(if (sieb-struct-insert-with-pick

~output%Siebel_Quotes.PROJECT.Quote.BUSINESS_COMPONENT.Quote_Ite
m pick-vector)

 (begin
 (display (string-append "Processed quote item.")) (newline)
)
 (begin
 (display (string-append "ERROR: sieb-struct-insert failed for Siebel

Quote.")) (newline)
)
)

sieb-struct-lookup

Description

Searches the Siebel database according to the query condition, then populates the
results (multiple records) onto the passed-in object node.

Signature

(sieb-struct-lookup <sieb-obj-node> <query-cond>)

Parameters

Name Type Description

field-name String The name of the field on the BC that
has either the pick list or multi value
group.

search-expr String The search condition for the picklist
or MVG business component. This
condition should return one record
only.

Name Type Description

sieb-obj-node Path Path to the repeating business
component node.

query-cond Vector Query condition.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 115 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions Siebel Transport Functions
Returns

A successful search returns one of the following:

An unsuccessful search returns a Boolean false (#f).

Throws

None.

Location

sieb-struct-lookup.monk

Examples

(sieb-struct-lookup
~sieb-account%sieb-
account.PROJECT.Account.BUSINESS_COMPONENT.Account
(sieb-get-search-expr "Name~LIKE~STC*|")

sieb-struct-lookup2

Description

Searches the Siebel database according to the query condition in the association
business components matching the specified business component handle, then
populates the results (multiple records) onto the passed-in object node.

Signature

(sieb-struct-lookup2 <bus-com-hdl> <sieb-obj-node> <query-cond>)

Parameters

rec-num Number representing records found
and mapped onto the structure.

0 Integer 0 indicating no matching
record returned.

Name Type Description

bus-com-hdl Monk object Business component handle.

sieb-obj-node Path Path to the repeating business
component node.

query-cond Vector Query condition.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 116 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions Siebel Transport Functions
Returns

A successful search returns one of the following:

An unsuccessful search returns a Boolean false (#f).

Throws

None.

Location

sieb-struct-lookup2.monk

Examples

(sieb-struct-lookup bus-com-hdl
~sieb-account%sieb-
account.PROJECT.Account.BUSINESS_COMPONENT.Account
(sieb-get-search-expr "Name~LIKE~STC*|")

sieb-struct-set-field

Description

Gets data from sieb-obj-node and calls Siebel interface method Set Field Value.

Signature

(sieb-struct-set-field <sieb-obj-node>)

Parameters

Returns

If successful, a Boolean true (#t); otherwise, a Boolean false (#f).

Throws

None.

Location

sieb-struct-set-field.monk

rec-num Number representing records found
and mapped onto the structure.

0 Integer 0 indicating no matching
record returned.

Name Type Description

sieb-obj-node Path Path to the repeating business
component node.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 117 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions Siebel Transport Functions
sieb-struct-set-field2

Description

Gets data from sieb-obj-node in the association business components matching the
specified business component handle, and calls Siebel interface method Set Field Value.

Signature

(sieb-struct-set-field2 <bus-com-hdl> <sieb-obj-node>)

Parameters

Returns

If successful, a Boolean true (#t); otherwise, a Boolean false (#f).

Throws

None.

Location

sieb-struct-set-field2.monk

sieb-struct-single-insert

Description

Calls sieb-struct-set-field for the data found on the node. Unlike sieb-struct-insert, this
function is not designed to handle repeating nodes.

Signature

(sieb-struct-single-insert <sieb-obj-node>)

Parameters

Returns

If successful, a Boolean true (#t); otherwise, a Boolean false (#f).

Throws

None.

Name Type Description

bus-com-hdl Monk object Business component handle.

obj-node path Path to the repeating business
component node.

Name Type Description

sieb-obj-node Path Path to the business component node.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 118 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions Siebel Transport Functions
Location

sieb-struct-single-insert.monk

Examples

(sieb-struct-single-insert
~input%sieb-
account.PROJECT.Account.BUSINESS_COMPONENT.Account[0])

sieb-struct-single-insert2

Description

Calls sieb-struct-set-field for the data found on the specified node in the association
business components matching the specified business component handle. Unlike sieb-
struct-insert, this is not designed to handle repeating nodes.

Signature

(sieb-struct-single-insert2 <bus-com-hdl> <sieb-obj-node>)

Parameters

Returns

If successful, a Boolean true (#t); otherwise, a Boolean false (#f).

Throws

None.

Location

sieb-struct-single-insert2.monk

Examples

(sieb-struct-single-insert bus-com-hdl
~input%sieb-
account.PROJECT.Account.BUSINESS_COMPONENT.Account[0])

sieb-struct-update

Description

Searches for the record which matches the query condition and calls sieb-struct-set-
field to update the values.

Signature

(sieb-struct-update <sieb-obj-node> <query-cond>)

Name Type Description

bus-com-hdl Monk object Business component handle.

sieb-obj-node Path Path to the business component node.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 119 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions Siebel Transport Functions
Parameters

Returns

If successful, a Boolean true (#t); otherwise, a Boolean false (#f).

Throws

None.

Location

sieb-struct-update.monk

sieb-struct-update2

Description

Searches for the record which matches the query condition in the association business
components matching the specified business component handle and calls sieb-struct-
set-field to update the values.

Signature

(sieb-struct-update2 <bus-com-hdl> <sieb-obj-node> <query-cond>)

Parameters

Returns

If successful, a Boolean true (#t); otherwise, a Boolean false (#f).

Throws

None.

Location

sieb-struct-update2.monk

Name Type Description

sieb-obj-node Path Path to the repeating business
component node.

query-cond Vector Query condition.

Name Type Description

bus-com-hdl Monk object Business component handle.

sieb-obj-node Path Path to the repeating business
component node.

query-cond Vector Query condition.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 120 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions Siebel Transport Functions
sieb-struct-write

Description

Checks whether or not the records matching the key values exist. If they do, then the
function conducts an update; otherwise, an insert. Keys-rec specifies a list of keys for
searching. Key values are obtained for the business component path node.

Signature

(sieb-struct-write <sieb-obj-node> <keys-vec>)

Parameters

Returns

If successful, a Boolean true (#t); otherwise, a Boolean false (#f).

Throws

None.

Location

sieb-struct-write.monk

sieb-struct-write2

Description

Checks whether or not the records matching the key values exist in the associated
business components matching the specified business component handle. If they do,
then the function conducts an update; otherwise, an insert. Keys-rec specifies a list of
keys for searching. Key values are obtained for the business component path node.

Signature

(sieb-struct-write2 <bus-com-hdl> <sieb-obj-node> <keys-vec>)

Parameters

Name Type Description

sieb-obj-node Path Path to the business component node
(single instance).

keys-vec Vector Vector of Key Field names.

Name Type Description

bus-com-hdl Monk object Business component handle.

sieb-obj-node Path Path to the business component node
(single instance).

keys-vec Vector Vector of Key Field names.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 121 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions Siebel Transport Functions
Returns

If successful, a Boolean true (#t); otherwise, a Boolean false (#f).

Throws

None

Location

sieb-struct-write2.monk

sieb-struct-write-pick-mvg

Description

Allows you to insert or update a record and in addition specify values for both picklist
and multi-value group fields for the record's business component. If the value of the
picklist-vec or mvg-vec is NULL then that particular vector is ignored.

Signature

(sieb-struct-write-pick-mvg <sieb-obj-node> <bc-search-expr>
<picklist-vec> <mvg-vec>)

Parameters

Returns

If successful, a Boolean true (#t); otherwise, a Boolean false (#f).

Throws

None.

Location

sieb-struct-write-pick-mvg.monk

Name Type Description

sieb-obj-node Path Path to the business component node
(single instance).

bc-search-expr Vector The search expression for the
Business Component of the <sieb-
obj-node> used to query for an
existing record. If the query returns a
record, the first record found is
updated. If the query does not find a
matching record then a new Siebel
record is created. For accuracy this
query should return at most one
record.

picklist-vec Vector Picklist vector (see Additional
Information, below)

mvg-vec Vector Multi-value group vector (see
Additional Information, below)
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 122 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
API Functions Siebel Transport Functions
Additional Information

The Picklist and Multi-value group vectors have the following form:

(vector (vector <field-name> <search-expr>) (vector <field-name>
<search-expr>) ...)

where:

Examples

Search Expr:

(set! bc-search-expr (string-append "Id~=~" siebel-row-id "|"))

picklist-vec:

(set! picklist-vec (vector (vector "Unit of Measure" "Name~=~Each|")))

mvg-vec:

(set! mvg-vec (vector (vector "Product" (string-append "Id~=~" siebel-
row-id "|"))))

Name Type Description

field-name String The name of the field on the BC that
has either the pick list or multi value
group.

search-expr String The search condition for the picklist
or MVG business component. This
condition should return one record
only.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 123 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
API Functions Siebel General Functions
7.3 Siebel General Functions
These Monk APIs are developed specifically to control basic communications between
the Siebel Event-Driven e*Way and a Siebel application.

siebel-eventdriven-init on page 124

siebel-eventdriven-startup on page 125

siebel-eventdriven-connect on page 125

siebel-eventdriven-dummy on page 126

siebel-eventdriven-verify-connect on page 126

siebel-eventdriven-ack on page 127

siebel-eventdriven-nack on page 127

siebel-eventdriven-exchange on page 127

siebel-eventdriven-exchange-data on page 128

siebel-eventdriven-return-empty-string on page 128

siebel-eventdriven-shutdown on page 129

siebel-debug-info on page 129

siebel-log-info on page 130

siebel-eventdriven-init

Description

Begins the initialization process for the e*Way. The function loads stc_monkutils.dll and
any additional dynamic load libraries explicitly specified.

Signature

(siebel-eventdriven-init)

Parameters

None.

Returns

If successful, a Boolean true (#t); otherwise, a Boolean false (#f) and the e*Way shuts
down.

Throws

None

Location

siebel-eventdriven-init.monk
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 124 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
API Functions Siebel General Functions
siebel-eventdriven-startup

Description

A sample Monk function for e*Way startup.

Signature

(siebel-eventdriven-startup)

Parameters

None.

Return Values

If successful, the string “SUCCESS”; any other value indicates failure.

Throws

None.

Location

siebel-eventdriven.monk

siebel-eventdriven-connect

Description

Establishes a connection with the Siebel system, for Outgoing (e*Gate-to-Siebel) e*Ways
only.

Signature

(siebel-eventdriven-connect)

Parameters

None.

Returns

If connection is established successfully, the string “UP”; any other value indicates
failure to achieve a connection.

Throws

None.

Location

siebel-eventdriven-connect.monk

Additional Information

Incoming (Siebel-to-e*Gate) e*Ways use the function siebel-eventdriven-dummy in
place of siebel-eventdriven-connect.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 125 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
API Functions Siebel General Functions
siebel-eventdriven-dummy

Description

Establishes a connection with the Siebel system, for Incoming (Siebel-to-e*Gate) e*Ways
only.

Signature

(siebel-eventdriven-dummy)

Parameters

None.

Returns

An empty string (““) is provided for user modification.

Throws

None.

Location

siebel-eventdriven.monk

Additional Information

Outgoing (e*Gate-to-Siebel) e*Ways use the function siebel-eventdriven-connect in
place of siebel-eventdriven-dummy.

siebel-eventdriven-verify-connect

Description

A sample Monk function for connection verification.

Signature

(siebel-eventdriven-verify-connect)

Parameters

None.

Returns

If connection is found to be live, returns the string “UP”; any other value indicates a live
connection was not found.

Throws

None.

Location

siebel-eventdriven.monk

Notes

User should implement proper connection verification functions.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 126 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
API Functions Siebel General Functions
siebel-eventdriven-ack

Description

A sample Monk function for positive acknowledgement to the external system.

Signature

(siebel-eventdriven-ack)

Parameters

None.

Returns

An empty string (““) is provided for user modification.

Throws

None.

Location

siebel-eventdriven.monk

siebel-eventdriven-nack

Description

A sample Monk function for negative acknowledgement to the external system.

Signature

(siebel-eventdriven-nack)

Parameters

None.

Returns

An empty string (““) is provided for user modification.

Throws

None.

Location

siebel-eventdriven.monk

siebel-eventdriven-exchange

Description

A sample Monk function for message exchange.

Signature

(siebel-eventdriven-exchange)
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 127 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
API Functions Siebel General Functions
Parameters

None.

Returns

A string is provided for user modification.

Throws

None.

Definition

(define siebel-eventdriven-exchange
 (lambda ()
 (display "inside siebel-eventdriven-exchange - not used") (newline)
 ""
))

Location

siebel-eventdriven-exchange.monk

siebel-eventdriven-exchange-data

Description

A sample Monk function for data exchange.

Signature

(siebel-eventdriven-exchange-data)

Parameters

None.

Returns

An empty string (““) is provided for user modification.

Throws

None.

Location

siebel-eventdriven.monk

siebel-eventdriven-return-empty-string

Description

A sample Monk function for returning an empty string.

Signature

(siebel-eventdriven-return-empty-string)

Parameters

None.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 128 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
API Functions Siebel General Functions
Return Values

An empty string (““).

Throws

None.

Location

siebel-eventdriven.monk

siebel-eventdriven-shutdown

Description

A sample Monk function for shutting down the e*Way.

Signature

(siebel-eventdriven-shutdown)

Parameters

None.

Returns

If successful, returns the string “SUCCESS”, allowing an immediate shutdown to occur.

Throws

None.

Location

siebel-eventdriven.monk

siebel-debug-info

Description

Displays information resulting from any debug flags, using the Monk function current-
debug-port.

Signature

(siebel-debug-info)

Parameters

None.

Returns

None.

Throws

None.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 129 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
API Functions Siebel General Functions
Location

siebel-eventdriven.monk

siebel-log-info

Description

Displays output information using the Monk function current-output-port.

Signature

(siebel-log-info)

Parameters

None.

Returns

None.

Throws

None.

Location

siebel-eventdriven.monk
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 130 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
API Functions Example Functions
7.4 Example Functions
The following Monk script and Monk functions have been defined for the Sample
Schema included with the Siebel Event-Driven e*Way.

EnqueueSiebelReply

Description

Monk script that tests the first 11 characters of the specified message to see if they
match SIEBELERROR. If the message starts with SIEBELERROR, the Monk function iq-
put is called, and the error is placed on the IQ as an event of type QueuedError. Valid
replies are published to the IQ as the default Event Type for this collaboration,
QueuedReply.

Signature

(EnqueueSiebelReply <message-string>)

Parameters

Returns

None.

Throws

None.

Location

EnqueueSiebelReply.monk

See also

Siebel to e*Gate: Query-Reply Example on page 47

Siebel to e*Gate: COM Server Example on page 53

siebel-com-account-exchange

Description

Retrieves internally-tagged data fields from Siebel. It first creates a sieb-account
structure internally, then passes it to the Siebel COM Object Manager

Signature

(siebel-com-account-exchange)

Name Type Description

message-string String The message string returned by
Siebel.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 131 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
API Functions Example Functions
Parameters

None.

Returns

A string:

� Upon success, the reply from sieb-struct-lookup is mapped to a string and
returned.

� If an error is detected, a message string having SIEBELERROR as the first 11
characters is returned.

Throws

None.

Location

siebel-com-account-exchange.monk

See also

Siebel to e*Gate: Query-Reply Example on page 47

Siebel to e*Gate: COM Server Example on page 53

siebel-com-account-query

Description

Queries the Siebel application according to the specified query. The query is then stored
in a global Monk variable (siebel-current-query) and the scheduler is invoked.

Signature

(siebel-com-account-query <message-string>)

Parameters

Returns

An empty string (““).

Throws

None.

Location

siebel-com-account-query.monk

Name Type Description

message-string String The message string forming the basis
for the query.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 132 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
API Functions Example Functions
See also

Siebel to e*Gate: Query-Reply Example on page 47

Siebel to e*Gate: COM Server Example on page 53

siebel-eventdriven-account-post

Description

Attempts to post the specified message to Siebel; upon failure, returns the message.

Signature

(siebel-eventdriven-account-post <message-string>)

Parameters

Returns

Upon failure, the original message.

Throws

None.

Location

siebel-eventdriven-account-post.monk

See also

e*Gate to Siebel Example on page 41

Name Type Description

message-string String The message string to be posted.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 133 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.5
API Functions Generic e*Way Functions
7.5 Generic e*Way Functions
The functions described in this section are implemented in the e*Way Kernel layer and
control the e*Way’s most basic operations. They can be used only by the functions
defined within the e*Way’s configuration file. None of these functions is available to
Collaboration Rules scripts executed by the e*Way. These functions are located in
stcewgenericmonk.exe.

The current set of basic Monk functions is:

event-commit-to-egate on page 134

event-rollback-to-egate on page 135

event-send-to-egate on page 135

event-send-to-egate-ignore-shutdown on page 136

event-send-to-egate-no-commit on page 136

get-logical-name on page 137

insert-exchange-data-event on page 137

send-external-up on page 138

send-external-down on page 138

shutdown-request on page 139

start-schedule on page 139

stop-schedule on page 140

waiting-to-shutdown on page 140

event-commit-to-egate

Description

Commits the Event sent previously to the e*Gate system using event-send-to-egate-no-
commit.

Signature

(event-commit-to-egate <string>)

Parameters

Returns

Boolean true (#t) if the data is committed successfully; otherwise, false (#f).

Name Type Description

string string The data to be sent to the e*Gate system.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 134 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.5
API Functions Generic e*Way Functions
Throws

None.

event-rollback-to-egate

Description

Rolls back the Event sent previously to the e*Gate system using event-send-to-egate-
no-commit, following receipt of a rollback command from the external system.

Signature

(event-rollback-to-egate <string>)

Parameters

Returns

Boolean true (#t) if the data is rolled back successfully; otherwise, false (#f).

Throws

None.

event-send-to-egate

Description

Sends data that the e*Way has already received from the external system into the e*Gate
system as an Event.

Signature

(event-send-to-egate <string>)

Parameters

Returns

A Boolean true (#t) if the data is sent successfully; otherwise, a Boolean false (#f).

Throws

None.

Name Type Description

string string The data to be rolled back to the e*Gate
system.

Name Type Description

string string The data to be sent to the e*Gate system
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 135 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.5
API Functions Generic e*Way Functions
Additional information

This function can be called by any e*Way function when it is necessary to send data to
the e*Gate system in a blocking fashion.

See also

event-send-to-egate-ignore-shutdown on page 136

event-send-to-egate-no-commit on page 136

event-send-to-egate-ignore-shutdown

Description

Sends data that the e*Way has already received from the external system into the e*Gate
system as an Event—but ignores any pending shutdown issues.

Signature

(event-send-to-egate-ignore-shutdown <string>)

Parameters

Returns

Boolean true (#t) if the data is sent successfully; otherwise, false (#f).

Throws

None.

See also

event-send-to-egate on page 135

event-send-to-egate-no-commit on page 136

event-send-to-egate-no-commit

Description

Sends data that the e*Way has received from the external system to the e*Gate system
as an Event—but without Committing, pending confirmation from the external system
of correct transmission of the data.

Signature

(event-send-to-egate-no-commit <string>)

Name Type Description

string string The data to be sent to the e*Gate system.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 136 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.5
API Functions Generic e*Way Functions
Parameters

Returns

Boolean true (#t) if the data is sent successfully; otherwise, false (#f).

Throws

None.

See also

event-commit-to-egate on page 134

event-rollback-to-egate on page 135

event-send-to-egate on page 135

event-send-to-egate-ignore-shutdown on page 136

get-logical-name

Description

Returns the logical name of the e*Way.

Signature

(get-logical-name)

Parameters

None.

Returns

The name of the e*Way (as defined by the e*Gate Enterprise Manager).

Throws

None.

insert-exchange-data-event

Description

While the Exchange Data with External Function is still active, this function can be
called to initiate a repeat call to it—whether or not data was queued to e*Gate via the
function’s return mechanism following the initial call.

Signature

(insert-exchange-data-event)

Name Type Description

string string The data to be sent to the e*Gate system.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 137 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.5
API Functions Generic e*Way Functions
Parameters

None.

Returns

None.

Throws

None.

See also

Exchange Data Interval on page 89

Zero Wait Between Successful Exchanges on page 90

send-external-up

Description

Informs the e*Way that the connection to the external system is up.

Signature

(send-external-up)

Parameters

None.

Returns

None.

Throws

None.

send-external-down

Description

Informs the e*Way that the connection to the external system is down.

Signature

(send-external-down)

Parameters

None.

Returns

None.

Throws

None.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 138 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.5
API Functions Generic e*Way Functions
shutdown-request

Description

Completes the e*Gate shutdown procedure that was initiated by the Control Broker but
was interrupted by returning a non-null value within the Shutdown Command
Notification Function. Once this function is called, shutdown proceeds immediately.

Signature

(shutdown-request)

Parameters

None.

Returns

None.

Throws

None.

Additional Information

Once interrupted, the e*Way’s shutdown cannot proceed until this Monk function is
called. If you do interrupt an e*Way shutdown, we recommend that you complete the
process in a timely fashion.

start-schedule

Description

Requests that the e*Way execute the Exchange Data with External Function specified
within the e*Way’s configuration file. Does not affect any defined schedules.

Signature

(start-schedule)

Parameters

None.

Returns

None.

Throws

None.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 139 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.5
API Functions Generic e*Way Functions
stop-schedule

Description

Requests that the e*Way halt execution of the Exchange Data with External Function
specified within the e*Way’s configuration file. Execution is stopped when the e*Way
concludes any open transaction. Does not effect any defined schedules, and does not
halt the e*Way process itself.

Signature

(stop-schedule)

Parameters

None.

Returns

None.

Throws

None.

waiting-to-shutdown

Description

Informs the external application that a shutdown command has been issued.

Signature

(waiting-to-shutdown)

Parameters

None.

Returns

Boolean true (#t) if successful; otherwise, false (#f).

Throws

None.
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 140 SeeBeyond Proprietary and Confidential

Index
Index

A
Additional Path parameter 91
APIs - see Monk functions
Application Object (Siebel) 11
Assigning ETDs to Event Types 37
Autorun 21
Auxiliary Library Directories parameter 92

B
Business Component (Siebel) 11, 35
Business Object (Siebel) 11
Business Objects Layer (Siebel) 13, 69

C
Changing the User Name 63
Collaboration 39, 67, 68, 77

Rules 77
Communication Direction parameter 99
component

Business (Siebel) 11, 35
e*Way 17

Component Object Model (COM) 10
configuration

Communication Setup 88–90
General Settings 86–87
Monk Configuration 91–98
Siebel Setup 99–100

configuration parameters
Additional Path 91
Auxiliary Library Directories 92
Communication Direction 99
Down Timeout 89
Exchange Data Interval 89
Exchange Data with External Function 94
External Connection Establishment Function 95
External Connection Shutdown Function 96
External Connection Verification Function 95
Forward External Errors 87
Journal File Name 86
Max Failed Messages 86
Max Resends Per Message 86
Monk Environment Initialization File 92

Monk Startup Function 92
Negative Acknowledgment Function 97
Positive Acknowledgment Function 96
Process Outgoing Message Function 93
Resend Timeout 90
Shutdown Command Notification Function 98
Siebel Business Object 100
Siebel Config File 99
Siebel Login Name 99
Siebel Login Password 99
Start Exchange Data Schedule 88
Stop Exchange Data Schedule 88
Up Timeout 89
Zero Wait Between Successful Exchanges 90

configuration procedures 59
conventions, writing 9
Creating a Schema 34

D
Data Objects Layer (Siebel) 13
DCOM (Distributed Component Object Model) 10
definitions

Object (Siebel) 12
Distributed Component Object Model (DCOM) 10
Down Timeout parameter 89

E
e*Gate Participating Host 19
e*Way

Components 17
configuration 59
creating 57
Installation 21
Properties 58
Schedules 63
Startup Options 63
troubleshooting 67

EnqueueSiebelReply function 131
errors, Monk 68
Event Type 37
Event Type Definition (ETD) 37
Event Type Definition Builder Tool 35
event-commit-to-egate function 134
event-rollback-to-egate function 135
Events 76
event-send-to-egate function 135
event-send-to-egate-ignore-shutdown function 136
event-send-to-egate-no-commit function 136
Example Functions 131–133
Exchange Data Interval parameter 89
Exchange Data with External Function parameter 94
External Connection Establishment Function
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 141 SeeBeyond Proprietary and Confidential

Index
parameter 95
External Connection Shutdown Function parameter
96
External Connection Verification Function
parameter 95

F
Forward External Errors parameter 87
functions (see also Monk functions)

Example Functions 131–133
Generic 134–140
Siebel General Functions 124–130
Siebel Transport Functions 102–123

G
Generic e*Way Functions 134–140
get-logical-name function 137

I
insert-exchange-data-event function 137
Installation Procedure

e*Way 21
sample schema 29

InstallShield 21
Intelligent Queue (IQ) 40

J
Journal File Name parameter 86

L
Layers, Object (Siebel) 12, 69
Load Path, Monk 91
logging options 65

M
Max Failed Messages parameter 86
Max Resends Per Message parameter 86
monitoring thresholds 66
Monk Configuration

Load Path 91
Specifying Multiple Directories 91

Monk Environment Initialization File parameter 92
Monk functions

EnqueueSiebelReply 131
event-commit-to-egate 134
event-rollback-to-egate 135
event-send-to-egate 135

event-send-to-egate-ignore-shutdown 136
event-send-to-egate-no-commit 136
get-logical-name 137
insert-exchange-data-event 137
send-external down 138
send-external-up 138
shutdown-request 139
sieb-associate 103
siebel-com-account-exchange 131
siebel-com-account-query 132
siebel-debug-info 129
siebel-eventdriven-account-post 133
siebel-eventdriven-ack 127
siebel-eventdriven-connect 125
siebel-eventdriven-dummy 126
siebel-eventdriven-exchange 127
siebel-eventdriven-exchange-data 128
siebel-eventdriven-init 124
siebel-eventdriven-nack 127
siebel-eventdriven-return-empty-string 128
siebel-eventdriven-shutdown 129
siebel-eventdriven-startup 125
siebel-eventdriven-verify-connect 126
siebel-log-info 130
sieb-error 103
sieb-get-associate-bc 104
sieb-get-field-values 104
sieb-get-mvg-bc 105
sieb-get-picklist-bc 106
sieb-get-search-expr 106
sieb-query 107
sieb-query2 108
sieb-select-pcklist-fields 108
sieb-struct-delete 111
sieb-struct-delete2 111
sieb-struct-get-bc 112
sieb-struct-insert 113
sieb-struct-insert2 113
sieb-struct-insert-with-pick 114
sieb-struct-lookup 115
sieb-struct-lookup2 116
sieb-struct-set-field 117
sieb-struct-set-field2 118
sieb-struct-single-insert 118
sieb-struct-single-insert2 119
sieb-struct-update 119
sieb-struct-update2 120
sieb-struct-write 110, 121
sieb-struct-write2 121
sieb-struct-write-pick-mvg 122
start-schedule 139
stop-schedule 140
waiting-to-shutdown 140
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 142 SeeBeyond Proprietary and Confidential

Index
N
Negative Acknowledgment Function parameter 97

O
object

Application (Siebel) 11
Business (Siebel) 11
Definitions (Siebel) 12
Layers (Siebel) 12, 69
Types (Siebel) 12

P
Positive Acknowledgment Function parameter 96
problems

Monk errors 68
procedures

configuration 59
installation 21

Process Outgoing Message Function parameter 93
Properties, e*Way 58

Q
Queues 40

R
Resend Timeout parameter 90

S
sample schema

descriptions 41
installation 29

Schedules 63
Schema, creating 34
send-external down function 138
send-external-up function 138
Setting Startup Options or Schedules 63
Shutdown Command Notification Function
parameter 98
shutdown-request function 139
sieb-associate function 103
Siebel Business Object parameter 100
Siebel Config File parameter 99
Siebel General Functions 124–130
Siebel Login Name parameter 99
Siebel Login Password parameter 99
Siebel Transport Functions 102–123
siebel-com-account-exchange function 131
siebel-com-account-query function 132

siebel-debug-info function 129
siebel-eventdriven-account-post function 133
siebel-eventdriven-ack function 127
siebel-eventdriven-connect function 125
siebel-eventdriven-dummy function 126
siebel-eventdriven-exchange function 127
siebel-eventdriven-exchange-data function 128
siebel-eventdriven-init function 124
siebel-eventdriven-nack function 127
siebel-eventdriven-return-empty-string function
128
siebel-eventdriven-shutdown function 129
siebel-eventdriven-startup function 125
siebel-eventdriven-verify-connect function 126
siebel-log-info function 130
sieb-error function 103
sieb-get-associate-bc function 104
sieb-get-field-values function 104
sieb-get-mvg-bc function 105
sieb-get-picklist-bc function 106
sieb-get-search-expr function 106
sieb-query function 107
sieb-query2 function 108
sieb-select-pcklist-fields function 108
sieb-struct-delete function 111
sieb-struct-delete2 function 111
sieb-struct-get-bc function 112
sieb-struct-insert function 113
sieb-struct-insert2 function 113
sieb-struct-insert-with-pick function 114
sieb-struct-lookup function 115
sieb-struct-lookup2 function 116
sieb-struct-set-field function 117
sieb-struct-set-field2 function 118
sieb-struct-single-insert function 118
sieb-struct-single-insert2 function 119
sieb-struct-update function 119
sieb-struct-update2 function 120
sieb-struct-write function 110, 121
sieb-struct-write2 function 121
sieb-struct-write-pick-mvg function 122
Start Exchange Data Schedule parameter 88
start-schedule function 139
Startup Function parameter 92
Startup Options 63
Stop Exchange Data Schedule parameter 88
stop-schedule function 140
System Requirements 19

T
TCP/IP 19
troubleshooting 67
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 143 SeeBeyond Proprietary and Confidential

Index
U
Up Timeout parameter 89
User Interface Objects Layer (Siebel) 13
User name 63

W
waiting-to-shutdown function 140
writing conventions 9

Z
Zero Wait Between Successful Exchanges parameter
90
e*Way Intelligent Adapter for Siebel (Event Driven)
User’s Guide 144 SeeBeyond Proprietary and Confidential

	Contents
	Preface
	P.1 Intended Reader
	P.2 Organization
	P.3 Nomenclature
	P.4 Online Viewing
	P.5 Writing Conventions

	Introduction
	1.1 COM/DCOM Communications
	1.2 The Siebel COM Data Server
	1.2.1 Application Object
	1.2.2 Business Component
	1.2.3 Business Object
	1.2.4 Object Types
	1.2.5 Object Definitions
	1.2.6 Object Layers
	Data Objects Layer
	Business Objects Layer
	User Interface Objects Layer

	1.3 e*Way Operation
	1.3.1 e*Gate to Siebel
	1.3.2 Siebel to e*Gate

	1.4 e*Way Components
	1.5 e*Way Availability

	Installation
	2.1 System Requirements
	2.1.1 Environment Configuration

	2.2 External System Requirements
	2.2.1 Siebel
	2.2.2 RDBMS
	2.2.3 External Configuration Requirements

	2.3 Installing the e*Way
	2.3.1 Installation Procedure
	2.3.2 Subdirectories and Files

	2.4 Registering the DCOM Server
	2.4.1 Registering on the e*Gate Host
	STC_Component.CSTC_DComSvr

	2.4.2 Registering on the Client Host
	2.4.3 Verifying the DCOM Server Registration

	2.5 Optional Example Files
	2.5.1 Installation Procedure
	2.5.2 Subdirectories and Files

	System Implementation
	3.1 Overview
	3.1.1 Implementation Sequence
	3.1.2 Viewing e*Gate Components

	3.2 Creating a Schema
	3.3 Creating Event Types
	3.4 Generating Event Type Definitions
	3.4.1 Using Siebel Tools
	3.4.2 Using the ETD Builder
	3.4.3 Assigning ETDs to Event Types

	3.5 Defining Collaborations
	3.6 Creating Intelligent Queues
	3.7 Sample Schemas
	3.7.1 e*Gate to Siebel Example
	Process Flow
	Collaborations

	3.7.2 Siebel to e*Gate: Query-Reply Example
	Process Flow
	Collaborations

	3.7.3 Siebel to e*Gate: COM Server Example
	Process Flow
	Collaborations

	Setup Procedures
	4.1 Overview
	4.2 Setting Up the e*Way
	4.2.1 Creating the e*Way
	4.2.2 Modifying e*Way Properties
	4.2.3 Configuring the e*Way
	Using the e*Way Editor
	Section and Parameter Controls
	Parameter Configuration Controls
	Command-line Configuration
	Getting Help

	4.2.4 Changing the User Name
	4.2.5 Setting Startup Options or Schedules
	4.2.6 Activating or Modifying Logging Options
	4.2.7 Activating or Modifying Monitoring Thresholds

	4.3 Troubleshooting the e*Way
	4.3.1 Configuration Problems
	4.3.2 System-related Problems
	4.3.3 Monk Errors

	Operational Overview
	5.1 Interacting with Siebel
	5.1.1 Object Layers
	Business Objects Layer

	5.1.2 e*Gate to Siebel
	Process Flow
	Transaction Management
	Application Logic & Business Rules

	5.1.3 Siebel to e*Gate
	Process Flow
	Data Extraction
	Application Logic & Business Rules

	5.2 e*Way Architecture
	5.3 Basic e*Way Processes
	Initialization Process
	Connect to External Process
	Data Exchange Process
	Disconnect from External Process
	Shutdown Process

	Configuration Parameters
	6.1 Overview
	6.2 General Settings
	Journal File Name
	Max Resends Per Message
	Max Failed Messages
	Forward External Errors

	6.3 Communication Setup
	Start Exchange Data Schedule
	Stop Exchange Data Schedule
	Exchange Data Interval
	Down Timeout
	Up Timeout
	Resend Timeout
	Zero Wait Between Successful Exchanges

	6.4 Monk Configuration
	Specifying Function or File Names
	Specifying Multiple Directories
	Load Path
	Additional Path
	Auxiliary Library Directories
	Monk Environment Initialization File
	Startup Function
	Process Outgoing Message Function
	Exchange Data with External Function
	External Connection Establishment Function
	External Connection Verification Function
	External Connection Shutdown Function
	Positive Acknowledgment Function
	Negative Acknowledgment Function
	Shutdown Command Notification Function

	6.5 Siebel Setup
	Communication Direction
	Siebel Login Name
	Siebel Login Password
	Siebel Config File
	Siebel Business Object

	API Functions
	7.1 Overview
	7.2 Siebel Transport Functions
	sieb-associate
	sieb-error
	sieb-get-associate-bc
	sieb-get-field-values
	sieb-get-mvg-bc
	sieb-get-picklist-bc
	sieb-get-search-expr
	sieb-query
	sieb-query2
	sieb-select-picklist-fields
	sieb-select-mvg-fields
	sieb-struct-delete
	sieb-struct-delete2
	sieb-struct-get-bc
	sieb-struct-insert
	sieb-struct-insert2
	sieb-struct-insert-with-pick
	sieb-struct-lookup
	sieb-struct-lookup2
	sieb-struct-set-field
	sieb-struct-set-field2
	sieb-struct-single-insert
	sieb-struct-single-insert2
	sieb-struct-update
	sieb-struct-update2
	sieb-struct-write
	sieb-struct-write2
	sieb-struct-write-pick-mvg

	7.3 Siebel General Functions
	siebel-eventdriven-init
	siebel-eventdriven-startup
	siebel-eventdriven-connect
	siebel-eventdriven-dummy
	siebel-eventdriven-verify-connect
	siebel-eventdriven-ack
	siebel-eventdriven-nack
	siebel-eventdriven-exchange
	siebel-eventdriven-exchange-data
	siebel-eventdriven-return-empty-string
	siebel-eventdriven-shutdown
	siebel-debug-info
	siebel-log-info

	7.4 Example Functions
	EnqueueSiebelReply
	siebel-com-account-exchange
	siebel-com-account-query
	siebel-eventdriven-account-post

	7.5 Generic e*Way Functions
	event-commit-to-egate
	event-rollback-to-egate
	event-send-to-egate
	event-send-to-egate-ignore-shutdown
	event-send-to-egate-no-commit
	get-logical-name
	insert-exchange-data-event
	send-external-up
	send-external-down
	shutdown-request
	start-schedule
	stop-schedule
	waiting-to-shutdown

	Index

