
WAP e*Way Intelligent 
Adapter User’s Guide

Release 4.5.2
SeeBeyond Proprietary and Confidential



The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable 
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation 
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished 
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing, 
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents 
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be 
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for 
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBI, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are 
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their 
respective companies.

© 1999–2002 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the 
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20020215180239.
WAP e*Way Intelligent Adapter User’s Guide 2 SeeBeyond Proprietary and Confidential



Contents
Contents

Chapter 1

Introduction 5
Overview 5

Intended Reader 5
Components 5

System Requirements 6
External System Requirements 6

Chapter 2

Installation 7
Windows 7

Pre-installation 7
Installation Procedure 7

Files/Directories Created by the Installation 8

Chapter 3

Configuration 9
e*Way Configuration Parameters 9

General Settings 9
Journal File Name 9
Max Resends Per Message 10
Max Failed Messages 10
Forward External Errors 10

Communication Setup 11
Start Exchange Data Schedule 11
Stop Exchange Data Schedule 11
Exchange Data Interval 12
Down Timeout 12
Up Timeout 12
Resend Timeout 13
Zero Wait Between Successful Exchanges 13

Monk Configuration 13
Operational Details 15
How to Specify Function Names or File Names 21
Additional Path 22
WAP e*Way Intelligent Adapter User’s Guide 3 SeeBeyond Proprietary and Confidential



Contents
Auxiliary Library Directories 22
Monk Environment Initialization File 22
Startup Function 23
Process Outgoing Message Function 23
Exchange Data with External Function 24
External Connection Establishment Function 25
External Connection Verification Function 25
External Connection Shutdown Function 26
Positive Acknowledgment Function 26
Negative Acknowledgment Function 27
Shutdown Command Notification Function 27

Chapter 4

WAP e*Way Functions 29
Basic Functions 29

event-send-to-egate 29
get-logical-name 30
send-external-down 30
send-external-up 31
shutdown-request 31
start-schedule 32
stop-schedule 32

WAP Standard Functions 33
wap-ack 33
wap-exchange 34
wap-connect 34
wap-init 35
wap-nack 35
wap-notify 36
wap-outgoing 37
wap-shutdown 37
wap-startup 38
wap-verify 39

WAP Native Functions 40
wap-cancel-alert 40
wap-cancel-alert-with-params 40
wap-send-alert 41
wap-send-alert-with-params 42

Index 44
WAP e*Way Intelligent Adapter User’s Guide 4 SeeBeyond Proprietary and Confidential



Chapter 1

Introduction

This document describes how to install and configure the WAP e*Way Intelligent 
Adapter.

1.1 Overview
The WAP e*Way Intelligent Adapter enables the e*Gate system to exchange data with 
mobile devices that are WAP 1.1 enabled via Phone.com’s UP.browser. 

1.1.1 Intended Reader
The reader of this guide is presumed to be a developer or system administrator with 
responsibility for maintaining the e*Gate system; to have expert-level knowledge of 
Windows NT operations and administration; to be thoroughly familiar with WAP 1.1 
protocol; Phone.com UP.browser; and to be thoroughly familiar with Windows-style 
GUI operations. 

1.1.2 Components
The WAP e*Way comprises the following:

! stcewgenericmonk.exe, the executable component

! Configuration files, which the e*Way Editor uses to define configuration 
parameters

! Monk function scripts, discussed in Chapter 4.

! Library files.

A complete list of installed files appears in Table 1 on page 8.
WAP e*Way Intelligent Adapter User’s Guide 5 SeeBeyond Proprietary and Confidential



Chapter 1 Section 1.2
Introduction System Requirements
1.2 System Requirements
The WAP e*Way is supported on the following operating system:

! Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

To use the WAP e*Way, you need the following:

! An e*Gate Participating Host, version 4.5.1 or later.

! A TCP/IP network connection.

! 8 MB free disk space on both the Participating and Registry Hosts, for e*Way 
executable, configuration, library, and script files.

Note: Additional disk space will be required to process and queue the data that this e*Way 
processes; the amount necessary will vary based on the type and size of the data 
being processed, and any external applications performing the processing.

! Access to a Web Server to host the data to be requested and retrieved by the mobile 
device.

1.2.1 External System Requirements
To use the WAP e*Way, you need the following:

! Active registration/subscription to a WAP 1.1 enabled via Phone.com’s UP.browser. 
WAP e*Way Intelligent Adapter User’s Guide 6 SeeBeyond Proprietary and Confidential



Chapter 2

Installation

This chapter describes how to install the WAP e*Way.

2.1 Windows

2.1.1 Pre-installation
1 Exit all Windows programs before running the setup program, including any anti-

virus applications.

2 You must have Administrator privileges to install this e*Way.

2.1.2 Installation Procedure
To install the WAP e*Way on a Windows system:

1 Log in as an Administrator on the workstation on which you want to install the 
e*Way.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s “Autorun” feature is enabled, the setup application should 
launch automatically; skip ahead to step 4. Otherwise, use the Windows Explorer or 
the Control Panel’s Add/Remove Applications feature to launch the file setup.exe 
on the CD-ROM drive.

4 The InstallShield setup application will launch. Follow the on-screen instructions to 
install the e*Way.

Be sure to install the e*Way files in the suggested “client” installation directory. The 
installation utility detects and suggests the appropriate installation directory. Unless 
you are directed to do so by SeeBeyond support personnel, do not change the 
suggested “installation directory” setting.

Once you have installed and configured this e*Way, you must incorporate it into a 
schema by defining and associating the appropriate Collaborations, Collaboration 
Rules, IQs, and Event Types before this e*Way can perform its intended functions. For 
more information about any of these procedures, please see the online Help system.
WAP e*Way Intelligent Adapter User’s Guide 7 SeeBeyond Proprietary and Confidential



Chapter 2 Section 2.2
Installation Files/Directories Created by the Installation
2.2 Files/Directories Created by the Installation
The WAP e*Way installation process will install the following files within the e*Gate 
directory tree. Files will be installed within the “egate\client” tree on the Participating 
Host and committed to the “default” schema on the Registry Host. 

Table 1   Files created by the installation

e*Gate Directory File(s)

bin\ stcewgenericmonk.exe

server\bin\ stc_monkwap.dll

configs\stcewgenericmonk\ stcewwap.def

monk_library\ ewwap.gui

monk_library\ewwap\ wap-ack.monk
wap-exchange.monk
wap-connect.monk
wap-init.monk
wap-nack.monk
wap-notifiy.monk
wap-outgoing.monk
wap-shutdown.monk
wap-startup.monk
wap-verify.monk
WAP e*Way Intelligent Adapter User’s Guide 8 SeeBeyond Proprietary and Confidential



Chapter 3

Configuration

This chapter describes how to configure the WAP e*Way.

3.1 e*Way Configuration Parameters
e*Way configuration parameters are set using the e*Way Editor.

To change e*Way configuration parameters:

1 In the Enterprise Manager’s Component editor, select the e*Way you want to 
configure and display its properties.

2 Under Configuration File, do one of three things:

" Click New to create a new file. Then, from the e*Way Template Selection list, 
select WAP e*Way and click OK.

" Click Find to select an existing configuration file.

" Click Edit to edit the currently selected file.

3 In the Additional Command Line Arguments box, type any additional command 
line arguments that the e*Way may require, taking care to insert them at the end of 
the existing command-line string. Be careful not to change any of the default 
arguments unless you have a specific need to do so.

The e*Way’s configuration parameters are organized into the following sections:

! General Settings

! Communication Setup

! Monk Configuration

3.1.1 General Settings 
The General Settings control basic operational parameters. 

Journal File Name

Description

Specifies the name of the journal file.
WAP e*Way Intelligent Adapter User’s Guide 9 SeeBeyond Proprietary and Confidential



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Required Values

A valid filename, optionally including an absolute path (for example, 
c:\temp\filename.txt). If an absolute path is not specified, the file will be stored in the 
e*Gate “SystemData” directory. See the e*Gate Integrator System Administration and 
Operations Guide for more information about file locations.

Additional Information

An Event will be journaled for the following conditions:

! When the number of resends is exceeded (see Max Resends Per Message below)

! When its receipt is due to an external error, but Forward External Errors is set to 
No. (See “Forward External Errors” on page 10 for more information.)

Max Resends Per Message

Description

Specifies the number of times the e*Way will attempt to resend a message (Event) to the 
external system after receiving an error. When this maximum is reached, the message is 
considered “Failed” and is written to the journal file.

Required Values

An integer between 1 and 1,024. The default is 5.

Max Failed Messages

Description

Specifies the maximum number of failed messages (Events) that the e*Way will allow.  
When the specified number of failed messages is reached, the e*Way will shut down 
and exit.

Required Values

An integer between 1 and 1,024. The default is 3.

Forward External Errors

Description

Selects whether error messages that begin with the string “DATAERR” that are received 
from the external system will be queued to the e*Way’s configured queue. See 
“Exchange Data with External Function” on page 24 for more information.

Required Values

Yes or No. The default value, No, specifies that error messages will not be forwarded. 

See “Schedule-driven Data Exchange Functions” on page 18 for information about 
how the e*Way uses this function.
WAP e*Way Intelligent Adapter User’s Guide 10 SeeBeyond Proprietary and Confidential



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
3.1.2 Communication Setup
The Communication Setup parameters control the schedule by which the e*Way 
obtains data from the external system. 

Note: The schedule you set using the e*Way’s properties in the Enterprise Manager 
controls when the e*Way executable will run. The schedule you set within the 
parameters discussed in this section (using the e*Way Editor) determines when data 
will be exchanged. Be sure you set the "exchange data" schedule to fall within the 
"run the executable" schedule.

Start Exchange Data Schedule

Description

Establishes the schedule to invoke the e*Way’s Exchange Data with External function. 

Required Values

One of the following:

! One or more specific dates/times 

! A single repeating interval (such as yearly, weekly, monthly, daily, or every n 
seconds). 

Also required: If you set a schedule using this parameter, you must also define all three 
of the following:

! Exchange Data With External Function

! Positive Acknowledgment Function

! Negative Acknowledgment Function

If you do not do so, the e*Way will terminate execution when the schedule attempts to 
start.

Additional Information

When the schedule starts, the e*Way determines whether it is waiting to send an ACK 
or NAK to the external system (using the Positive and Negative Acknowledgment 
functions) and whether the connection to the external system is active. If no ACK/NAK 
is pending and the connection is active, the e*Way immediately executes the Exchange 
Data with External function. Thereafter, the Exchange Data with External function 
will be called according to the Exchange Data Interval parameter until the Stop 
Exchange Data Schedule time is reached.

See “Exchange Data with External Function” on page 24, “Exchange Data Interval” 
on page 12, and “Stop Exchange Data Schedule” on page 11 for more information.

Stop Exchange Data Schedule

Description

Establishes the schedule to stop data exchange. 
WAP e*Way Intelligent Adapter User’s Guide 11 SeeBeyond Proprietary and Confidential



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Required Values

One of the following:

! One or more specific dates/times 

! A single repeating interval (such as yearly, weekly, monthly, daily, or every n 
seconds). 

Exchange Data Interval

Description

Specifies the number of seconds the e*Way waits between calls to the Exchange Data 
with External function during scheduled data exchanges.

Required Values

An integer between 0 and 86,400. The default is 120.

Additional Information

If Zero Wait Between Successful Exchanges is set to Yes and the Exchange Data with 
External Function returns data, The Exchange Data Interval setting will be ignored 
and the e*Way will invoke the Exchange Data with External Function immediately.

If this parameter is set to zero, there will be no exchange data schedule set and the 
Exchange Data with External Function will never be called.

See “Down Timeout” on page 12 and “Stop Exchange Data Schedule” on page 11 for 
more information about the data-exchange schedule.

Down Timeout

Description

Specifies the number of seconds that the e*Way will wait between calls to the External 
Connection Establishment function. See “External Connection Establishment 
Function” on page 25 for more information. 

Required Values

An integer between 1 and 86,400. The default is 15.

Up Timeout

Description

Specifies the number of seconds the e*Way will wait between calls to the External 
Connection Verification function. See “External Connection Verification Function” 
on page 25 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.
WAP e*Way Intelligent Adapter User’s Guide 12 SeeBeyond Proprietary and Confidential



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Resend Timeout

Description

Specifies the number of seconds the e*Way will wait between attempts to resend a 
message (Event) to the external system, after receiving an error message from the 
external system. 

Required Values

An integer between 1 and 86,400. The default is 10.

Zero Wait Between Successful Exchanges

Description

Selects whether to initiate data exchange after the Exchange Data Interval or 
immediately after a successful previous exchange.

Required Values

Yes or No. If this parameter is set to Yes, the e*Way will immediately invoke the 
Exchange Data with External function if the previous exchange function returned data. 
If this parameter is set to No, the e*Way will always wait the number of seconds 
specified by Exchange Data Interval between invocations of the Exchange Data with 
External function. The default is No.

See “Exchange Data with External Function” on page 24 for more information.

3.1.3 Monk Configuration
The parameters in this section help you set up the information required by the e*Way to 
utilize Monk for communication with the external system.

Conceptually, an e*Way is divided into two halves. One half of the e*Way (shown on 
the left in Figure 1 below) handles communication with the external system; the other 
half manages the Collaborations that process data and subscribe or publish to other 
e*Gate components.
WAP e*Way Intelligent Adapter User’s Guide 13 SeeBeyond Proprietary and Confidential



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 1   e*Way internal architecture

The “communications half” of the e*Way uses Monk functions to start and stop 
scheduled operations, exchange data with the external system, package data as e*Gate 
“Events” and send those Events to Collaborations, and manage the connection between 
the e*Way and the external system. The Monk Configuration options discussed in this 
section control the Monk environment and define the Monk functions used to perform 
these basic e*Way operations. You can create and modify these functions using the 
Collaboration Rules Editor or a text editor (such as Notepad or UNIX vi).

The “communications half” of the e*Way is single-threaded. Functions run serially, and 
only one function can be executed at a time. The “business logic” side of the e*Way is 
multi-threaded, with one executable thread for each Collaboration. Each thread 
maintains its own Monk environment; therefore, information such as variables, 
functions, path information, and so on cannot be shared between threads.

Communication 
with external 
system

Business logic and 
communication 
within e*Gate

External 
system

Other e*Gate 
components

e*Gate Events

Data
e*Way

Collaboration

Collaboration

Function

Function
WAP e*Way Intelligent Adapter User’s Guide 14 SeeBeyond Proprietary and Confidential



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Operational Details

The Monk functions in the “communications half” of the e*Way fall into the following 
groups:

A series of figures on the next several pages illustrates the interaction and operation of 
these functions.

Initialization Functions

Figure 2 illustrates how the e*Way executes its initialization functions.

Type of Operation Name

Initialization Startup Function on page 23 
(also see Monk Environment Initialization 
File on page 22)

Connection External Connection Establishment Function 
on page 25
External Connection Verification Function on 
page 25
External Connection Shutdown Function on 
page 26

Schedule-driven data 
exchange

Exchange Data with External Function on 
page 24
Positive Acknowledgment Function on 
page 26
Negative Acknowledgment Function on 
page 27

Shutdown Shutdown Command Notification Function 
on page 27

Event-driven data exchange Process Outgoing Message Function on 
page 23
WAP e*Way Intelligent Adapter User’s Guide 15 SeeBeyond Proprietary and Confidential



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 2   Initialization Functions

Connection Functions

Figure 3 illustrates how the e*Way executes the connection establishment and 
verification functions. 

Start e*Way

Load
"Monk Initialization"

file

Execute any Monk function
having the same name as the

initialization file

Load "Startup" file

Execute any Monk function
having the same name as the

startup file
WAP e*Way Intelligent Adapter User’s Guide 16 SeeBeyond Proprietary and Confidential



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 3   Connection establishment and verification functions

Note: The e*Way selects the connection function based on an internal “up/down” flag 
rather than a poll to the external system. See Figure 5 on page 19 and Figure 7 on 
page 21 for examples of how different functions use this flag.

User functions can manually set this flag using Monk functions. See send-
external-up on page 31 and send-external-down on page 30 for more 
information.

Figure 4 illustrates how the e*Way executes its “connection shutdown” function.

Figure 4   Connection shutdown function

Connect e*Way to
external system

Internal
flag shows connection

active?

Wait for "Up Timeout"
schedule

Call External Connection
Verification function

Wait for "Down Timeout"
schedule

Call External Connection
Establishment function

Yes

No

Control Broker issues
"Suspend" command

Call External Connection Shutdown
function with parameter

"SUSPEND_NOTIFICATION"

e*Way closes connection

Return any value
WAP e*Way Intelligent Adapter User’s Guide 17 SeeBeyond Proprietary and Confidential



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Schedule-driven Data Exchange Functions

Figure 5 (on the next page) illustrates how the e*Way performs schedule-driven data 
exchange using the Exchange Data with External Function. The Positive 
Acknowledgment Function and Negative Acknowledgment Function are also called 
during this process.

“Start” can occur in any of the following ways:

! The “Start Data Exchange” time occurs

! Periodically during the data-exchange schedule (after “Start Data Exchange” time, 
but before “Stop Data Exchange” time), as set by the Exchange Data Interval

! The start-schedule Monk function is called

After the function exits, the e*Way waits for the next “start schedule” time or 
command.
WAP e*Way Intelligent Adapter User’s Guide 18 SeeBeyond Proprietary and Confidential



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 5   Schedule-driven data exchange functions

Shutdown Functions

Figure 6 illustrates how the e*Way implements the shutdown request function.

Increment "Failed
Message" counter

DATAERR plus
additional data

Null
string

Data
(other than

error strings)

Forward
external
errors?

No

Yes

Set interval flag
"Connection

Down"

CONNERR

Wait for Resend
Timeout period

Roll back Event to
its publishing IQ

Increment "Failed
Message" counter

DATAERR only

Journal
enabled?

Create journal
entry

Yes

No

Start

Function exits

Send Event to
e*Gate

All
subscribing

Collaborations return
TRUE

?

Call Positive
Acknowledgment

function

Zero
wait after successful

exchange?

Call Negative
Acknowledgment

function

Yes

No

YesNo

Call Exchange Data with
External function

Return
WAP e*Way Intelligent Adapter User’s Guide 19 SeeBeyond Proprietary and Confidential



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 6   Shutdown functions

Event-driven Data Exchange Functions

Figure 7 on the next page illustrates event-driven data-exchange using the Process 
Outgoing Message Function. 

Every two minutes, the e*Way checks the “Failed Message” counter against the value 
specified by the Max Failed Messages parameter. When the “Failed Message” counter 
exceeds the specified maximum value, the e*Way logs an error and shuts down.

After the function exits, the e*Way waits for the next outgoing Event.

Control Broker issues
"Shutdown" command

Call Shutdown Notification function
with parameter

"SHUTDOWN_NOTIFICATION"

e*Way shuts down

Wait for
shutdown-request

function

Return

Null string or
"SUCCESS"

any other value
WAP e*Way Intelligent Adapter User’s Guide 20 SeeBeyond Proprietary and Confidential



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 7   Event-driven data-exchange functions

How to Specify Function Names or File Names

Parameters that require the name of a Monk function will accept either a function name 
or a file name. If you specify a file name, be sure that the file has one of the following 
extensions:

! .monk

! .tsc

! .dsc

Collaboration publishes
to <EXTERNAL>

Call Process Outgoing
Message function

Set internal flag
"Connection Down"

Maximum
Resends per Message

exceeded?

Yes

Return

CONNERR DATAERR

Increment "Failed
Message" counter

Create journal
entry

Null
string

No
Journal

enabled?

No

Function exits

Wait for Resend
Timeout period

Roll back Event to
its publishing IQ

Yes

Wait for Resend
Timeout period

Increment
"Resend" counter

RESEND
WAP e*Way Intelligent Adapter User’s Guide 21 SeeBeyond Proprietary and Confidential



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Additional Path

Description

Specifies a path to be appended to the “load path,” the path Monk uses to locate files 
and data (set internally within Monk). The directory specified in Additional Path will 
be searched after the default load paths.

Required Values

A pathname, or a series of paths separated by semicolons. This parameter is optional 
and may be left blank.

Additional information

The default load paths are determined by the “bin” and “Shared Data” settings in the 
.egate.store file. See the e*Gate Integrator System Administration and Operations Guide for 
more information about this file.

To specify multiple directories, manually enter the directory names rather than 
selecting them with the “file selection” button. Directory names must be separated with 
semicolons, and you can mix absolute paths with relative e*Gate paths. For example:

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when 
the e*Way first starts up.

Auxiliary Library Directories

Description

Specifies a path to auxiliary library directories. Any .monk files found within those 
directories will automatically be loaded into the e*Way’s Monk environment. This 
parameter is optional and may be left blank.

Required Values

A pathname, or a series of paths separated by semicolons. This parameter is optional 
and may be left blank. The default is monk_library/ewwap.

Additional information

To specify multiple directories, manually enter the directory names rather than 
selecting them with the “file selection” button. Directory names must be separated with 
semicolons, and you can mix absolute paths with relative e*Gate paths. For example:

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when 
the e*Way first starts up.

Monk Environment Initialization File

Specifies a file that contains environment initialization functions, which will be loaded 
after the auxiliary library directories are loaded. Use this feature to initialize the 
e*Way’s Monk environment (for example, to define Monk variables that are used by the 
e*Way’s function scripts). 
WAP e*Way Intelligent Adapter User’s Guide 22 SeeBeyond Proprietary and Confidential



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Required Values

A filename within the “load path”, or filename plus path information (relative or 
absolute). If path information is specified, that path will be appended to the “load 
path.” See “Additional Path” on page 22 for more information about the “load 
path.”The default is wap-init.monk. See wap-init on page 35 for more information.

Additional information

Any environment-initialization functions called by this file accept no input, and must 
return a string. The e*Way will load this file and try to invoke a function of the same 
base name as the file name (for example, for a file named my-init.monk, the e*Way 
would attempt to execute the function my-init). 

Typically, it is a good practice to initialize any global Monk variables that may be used 
by any other Monk Extension scripts. 

The internal function that loads this file is called once when the e*Way first starts up 
(see Figure 2 on page 16).

Startup Function

Description

Specifies a Monk function that the e*Way will load and invoke upon startup or 
whenever the e*Way’s configuration is reloaded. This function should be used to 
initialize the external system before data exchange starts.

Required Values

The name of a Monk function, or the name of a file (optionally including path 
information) containing a Monk function. This parameter is optional and may be left 
blank. The default is wap-startup. See wap-startup on page 38 for more information.

Additional information

The function accepts no input, and must return a string. 

The string “FAILURE” indicates that the function failed; any other string (including a 
null string) indicates success. 

This function will be called after the e*Way loads the specified “Monk Environment 
Initialization file” and any files within the specified Auxiliary Directories.

The e*Way will load this file and try to invoke a function of the same base name as the 
file name (see Figure 2 on page 16). For example, for a file named my-startup.monk, 
the e*Way would attempt to execute the function my-startup. 

Process Outgoing Message Function

Description

Specifies the Monk function responsible for sending outgoing messages (Events) from 
the e*Way to the external system. This function is event-driven (unlike the Exchange 
Data with External Function, which is schedule-driven).
WAP e*Way Intelligent Adapter User’s Guide 23 SeeBeyond Proprietary and Confidential



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Required Values

The name of a Monk function, or the name of a file (optionally including path 
information) containing a Monk function. You may not leave this field blank. The 
default is wap-outgoing. See wap-outgoing on page 37 for more information.

Additional Information

The function requires a non-null string as input (the outgoing Event to be sent) and 
must return a string.

The e*Way invokes this function when one of its Collaborations publishes an Event to 
an <EXTERNAL> destination (as specified within the Enterprise Manager). The 
function returns one of the following (see Figure 7 on page 21 for more details):

! Null string: Indicates that the Event was published successfully to the external 
system.

! “RESEND”: Indicates that the Event should be resent.

! “CONNERR”: Indicates that there is a problem communicating with the external 
system. 

! “DATAERR”: Indicates that there is a problem with the message (Event) data itself. 

If a string other than the above is returned, the e*Way will create an entry in the log file 
indicating that an attempt has been made to access an unsupported function.

Note: If you wish to use event-send-to-egate to enqueue failed Events in a separate IQ, 
the e*Way must have an inbound Collaboration (with appropriate IQs) configured 
to process those Events. See event-send-to-egate on page 29 for more information.

Exchange Data with External Function

Description

Specifies a Monk function that initiates the transmission of data from the external 
system to the e*Gate system and forwards that data as an inbound Event to one or more 
e*Gate Collaborations. This function is called according to a schedule (unlike the 
Process Outgoing Message Function, which is event-driven).

Required Values

The name of a Monk function, or the name of a file (optionally including path 
information) containing a Monk function. This parameter is optional and may be left 
blank. The default is wap-exchange. See wap-exchange on page 34 for more 
information.

Additional Information

The function accepts no input and must return a string (see Figure 5 on page 19 for 
more details):

! Null string: Indicates that the data exchange was completed successfully. No 
information will be sent into the e*Gate system.

! “CONNERR”: Indicates that a problem with the connection to the external system 
has occurred. 
WAP e*Way Intelligent Adapter User’s Guide 24 SeeBeyond Proprietary and Confidential



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
! “DATAERR”: Indicates that a problem with the data itself has occurred. The e*Way 
handles the string “DATAERR” and “DATAERR” plus additional data differently; 
see Figure 5 on page 19 for more details. 

! Any other string: The contents of the string are packaged as an inbound Event. The 
e*Way must have at least one Collaboration configured suitably to process the 
inbound Event, as well as any required IQs. 

This function is initially triggered by the Start Data Exchange schedule or manually by 
the Monk function start-schedule. After the function has returned true and the data 
received by this function has been ACKed or NAKed (by the Positive 
Acknowledgment Function or Negative Acknowledgment Function, respectively), 
the e*Way checks the Zero Wait Between Successful Exchanges parameter. If this 
parameter is set to Yes, the e*Way will immediately call the Exchange Data with 
External function again; otherwise, the e*Way will not call the function until the next 
scheduled “start exchange” time or the schedule is manually invoked using the Monk 
function start-schedule (see start-schedule on page 32 for more information).

External Connection Establishment Function

Description

Specifies a Monk function that the e*Way will call when it has determined that the 
connection to the external system is down.

Required Values

The name of a Monk function, or the name of a file (optionally including path 
information) containing a Monk function. This field cannot be left blank. The default is 
wap-connect. See wap-connect on page 34 for more information.

Additional Information

The function accepts no input and must return a string:

! “SUCCESS” or “UP”: Indicates that the connection was established successfully.

! Any other string (including the null string): Indicates that the attempt to establish 
the connection failed.

This function is executed according to the interval specified within the Down Timeout 
parameter, and is only called according to this schedule.

The External Connection Verification function (see below) is called when the e*Way 
has determined that its connection to the external system is up.

External Connection Verification Function

Description

Specifies a Monk function that the e*Way will call when its internal variables show that 
the connection to the external system is up. 

Required Values

The name of a Monk function. This function is optional; if no External Connection 
Verification function is specified, the e*Way will execute the External Connection 
WAP e*Way Intelligent Adapter User’s Guide 25 SeeBeyond Proprietary and Confidential



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Establishment function in its place. The default is wap-verify. See wap-verify on 
page 39 for more information.

Additional Information

The function accepts no input and must return a string:

! “SUCCESS” or “UP”: Indicates that the connection was established successfully.

! Any other string (including the null string): Indicates that the attempt to establish 
the connection failed.

This function is executed according to the interval specified within the Up Timeout 
parameter, and is only called according to this schedule.

The External Connection Establishment function (see above) is called when the e*Way 
has determined that its connection to the external system is down.

External Connection Shutdown Function

Description

Specifies a Monk function that the e*Way will call to shut down the connection to the 
external system. 

Required Values

The name of a Monk function. This parameter is optional. The default is 
wap-shutdown. See wap-shutdown on page 37 for more information.

Additional Information

This function requires a string as input, and may return a string.

This function will only be invoked when the e*Way receives a “suspend” command 
from a Control Broker. When the “suspend” command is received, the e*Way will 
invoke this function, passing the string “SUSPEND_NOTIFICATION” as an argument.

Any return value indicates that the “suspend” command can proceed and that the 
connection to the external system can be broken immediately.

Positive Acknowledgment Function

Description

Specifies a Monk function that the e*Way will call when all the Collaborations to which 
the e*Way sent data have processed and enqueued that data successfully. 

Required Values

The name of a Monk function, or the name of a file (optionally including path 
information) containing a Monk function. This parameter is required if the Exchange 
Data with External function is defined. The default is wap-ack. See wap-ack on page 33 
for more information.

Additional Information

The function requires a non-null string as input (the Event to be sent to the external 
system) and must return a string:
WAP e*Way Intelligent Adapter User’s Guide 26 SeeBeyond Proprietary and Confidential



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
! “CONNERR”: Indicates a problem with the connection to the external system. 
When the connection is re-established, the Positive Acknowledgment function will 
be called again, with the same input data.

! Null string: The function completed execution successfully.

After the Exchange Data with External function returns a string that is transformed 
into an inbound Event, the Event is handed off to one or more Collaborations for 
further processing. If the Event’s processing is completed successfully by all the 
Collaborations to which it was sent, the e*Way executes the Positive Acknowledgment 
function (otherwise, the e*Way executes the Negative Acknowledgment function). 

Negative Acknowledgment Function

Description

Specifies a Monk function that the e*Way will call when the e*Way fails to process and 
queue Events from the external system. 

Required Values

The name of a Monk function, or the name of a file (optionally including path 
information) containing a Monk function. This parameter is required if the Exchange 
Data with External function is defined. The default is wap-nack. See wap-nack on 
page 35 for more information.

Additional Information

The function requires a non-null string as input (the Event to be sent to the external 
system) and must return a string:

! “CONNERR”: Indicates a problem with the connection to the external system. 
When the connection is re-established, the function will be called again.

! Null string: The function completed execution successfully.

This function is only called during the processing of inbound Events. After the 
Exchange Data with External function returns a string that is transformed into an 
inbound Event, the Event is handed off to one or more Collaborations for further 
processing. If the Event’s processing is not completed successfully by all the 
Collaborations to which it was sent, the e*Way executes the Negative Acknowledgment 
function (otherwise, the e*Way executes the Positive Acknowledgment function).

Shutdown Command Notification Function

Description

Specifies a Monk function that will be called when the e*Way receives a “shut down” 
command from the Control Broker. This parameter is optional.

Required Values

The name of a Monk function. See wap-notify on page 36 for more information.
WAP e*Way Intelligent Adapter User’s Guide 27 SeeBeyond Proprietary and Confidential



Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Additional Information

When the Control Broker issues a shutdown command to the e*Way, the e*Way will 
call this function with the string “SHUTDOWN_NOTIFICATION” passed as a 
parameter. 

The function accepts a string as input and must return a string:

! A null string or “SUCCESS”: Indicates that the shutdown can occur immediately.

! Any other string: Indicates that shutdown must be postponed. Once postponed, 
shutdown will not proceed until the Monk function shutdown-request is executed 
(see shutdown-request on page 31).

Note: If you postpone a shutdown using this function, be sure to use 
the (shutdown-request) function to complete the process in a timely manner.
WAP e*Way Intelligent Adapter User’s Guide 28 SeeBeyond Proprietary and Confidential



Chapter 4

WAP e*Way Functions

The WAP e*Way’s functions fall into the following categories:

! Basic Functions on page 29

! WAP Standard Functions on page 33

! WAP Native Functions on page 40

4.1 Basic Functions
The functions in this category control the e*Way’s most basic operations.

The basic functions are

event-send-to-egate on page 29

get-logical-name on page 30

send-external-down on page 30

send-external-up on page 31

shutdown-request on page 31

start-schedule on page 32

stop-schedule on page 32

event-send-to-egate

Syntax

(event-send-to-egate string)

Description

event-send-to-egate sends data that the e*Way has already received from the external 
system into the e*Gate system as an Event.
WAP e*Way Intelligent Adapter User’s Guide 29 SeeBeyond Proprietary and Confidential



Chapter 4 Section 4.1
WAP e*Way Functions Basic Functions
Parameters

Return Values

Boolean
Returns true (#t) if the data is sent successfully; otherwise, returns false (#f).

Throws

None.

Additional information

This function can be called by any e*Way function when it is necessary to send data to 
the e*Gate system in a blocking fashion.

get-logical-name

Syntax

(get-logical-name)

Description

get-logical-name returns the logical name of the e*Way.

Parameters

None.

Return Values

string 
Returns the name of the e*Way (as defined by the Enterprise Manager).

Throws

None.

send-external-down

Syntax

(send-external-down)

Description

send-external-down instructs the e*Way that the connection to the external system is 
down. 

Name Type Description

string string The data to be sent to the e*Gate 
system.
WAP e*Way Intelligent Adapter User’s Guide 30 SeeBeyond Proprietary and Confidential



Chapter 4 Section 4.1
WAP e*Way Functions Basic Functions
Parameters

None.

Return Values

None.

Throws

None.

send-external-up

Syntax

(send-external-up)

Description

send-external-up instructs the e*Way that the connection to the external system is up. 

Parameters

None.

Return Values

None.

Throws

None.

shutdown-request

Syntax

(shutdown-request)

Description

shutdown-request completes the e*Gate shutdown procedure that was initiated by the 
Control Broker but was interrupted by returning a non-null value within the Shutdown 
Command Notification Function (see “Shutdown Command Notification Function” 
on page 27). Once this function is called, shutdown proceeds immediately.

Once interrupted, the e*Way’s shutdown cannot proceed until this Monk function is 
called. If you do interrupt an e*Way shutdown, we recommend that you complete the 
process in a timely fashion.

Parameters

None.

Return Values

None.
WAP e*Way Intelligent Adapter User’s Guide 31 SeeBeyond Proprietary and Confidential



Chapter 4 Section 4.1
WAP e*Way Functions Basic Functions
Throws

None.

start-schedule

Syntax

(start-schedule)

Description

start-schedule requests that the e*Way execute the “Exchange Data with External” 
function specified within the e*Way’s configuration file. Does not affect any defined 
schedules.

Parameters

None.

Return Values

None.

Throws

None.

stop-schedule

Syntax

(stop-schedule)

Description

stop-schedule requests that the e*Way halt execution of the “Exchange Data with 
External” function specified within the e*Way’s configuration file. Execution will be 
stopped when the e*Way concludes any open transaction. Does not affect any defined 
schedules, and does not halt the e*Way process itself.

Parameters

None.

Return Values

None.

Throws

None.
WAP e*Way Intelligent Adapter User’s Guide 32 SeeBeyond Proprietary and Confidential



Chapter 4 Section 4.2
WAP e*Way Functions WAP Standard Functions
4.2 WAP Standard Functions
The functions in this section control the e*Way’s communications center and are 
defined within the configuration file.

The current suite of Standard functions are:

wap-ack on page 33

wap-exchange on page 34

wap-connect on page 34

wap-init on page 35

wap-nack on page 35

wap-notify on page 36

wap-outgoing on page 37

wap-shutdown on page 37

wap-startup on page 38

wap-verify on page 39

wap-ack

Syntax

(wap-ack arg)

Description

wap-ack sends a positive acknowledgment to the external system after all 
Collaborations to which the e*Way sent data have processed and enqueued that data 
successfully.

Parameters

Return Values

string
An empty string indicates a successful operation. The e*Way will then be able to 
proceed with the next request.

“CONNERR” indicates a problem with the connection to the external system. When the 
connection is re-established, the function will be called again.

Name Type Description

arg string The Event for which an 
acknowledgment is sent.
WAP e*Way Intelligent Adapter User’s Guide 33 SeeBeyond Proprietary and Confidential



Chapter 4 Section 4.2
WAP e*Way Functions WAP Standard Functions
Additional Information

See “Positive Acknowledgment Function” on page 26 for more information.

wap-exchange

Syntax

(wap-exchange)

Description

wap-exchange sends a received event from the external system to e*Gate. The function 
expects no input.

Parameters

None.

Return Values

string
An empty string indicates a successful operation. Nothing is sent to e*Gate.

A string, containing Event data, indicates successful operation, and the returned Event 
is sent to e*Gate.

“CONNERR” indicates a problem with the connection to the external system. When the 
connection is re-established this function will be reexecuted with the same input Event.

Throws

None.

Additional Information

See “Exchange Data with External Function” on page 24 for more information.

wap-connect

Syntax

(wap-connect)

Description

wap-connect establishes a connection to the external system.

Parameters

None.

Return Values

string
“UP” indicates the connection is established. Anything else indicates no connection.
WAP e*Way Intelligent Adapter User’s Guide 34 SeeBeyond Proprietary and Confidential



Chapter 4 Section 4.2
WAP e*Way Functions WAP Standard Functions
Throws

None.

Additional Information

See “External Connection Establishment Function” on page 25 for more information.

wap-init

Syntax

(wap-init)

Description

wap-init begins the initialization process for the e*Way. This function loads the 
stc_monkwap.dll file and the initialization file, thereby making the function scripts 
available for future use.

Parameters

None.

Return Values

string
If a “FAILURE” string is returned, the e*Way will shutdown. Any other return 
indicates success.

Throws

None.

Additional Information

Within this function, any necessary global variables to be used by the function scripts 
could be defined. The internal function that loads this file is called once when the 
e*Way first starts up.

See “Monk Environment Initialization File” on page 22 for more information.

wap-nack

Syntax

(wap-nack arg)

Description

wap-nack sends a negative acknowledgment to the external system when the e*Way 
fails to process and queue Events from the external system. 
WAP e*Way Intelligent Adapter User’s Guide 35 SeeBeyond Proprietary and Confidential



Chapter 4 Section 4.2
WAP e*Way Functions WAP Standard Functions
Parameters

Return Values

string
An empty string indicates a successful operation.

“CONNERR” indicates a problem with the connection to the external system. When the 
connection is re-established, the function will be called again.

Throws

None.

Additional Information

See “Negative Acknowledgment Function” on page 27 for more information.

wap-notify

Syntax

(wap-notify command)

Description

wap-notify notifies the external system that the e*Way is shutting down.

Parameters

Return Values

string
Returns a null string.

Throws

None.

Name Type Description

arg string The Event for which a 
negative acknowledgment is 
sent.

Name Type Description

command string When the e*Way calls this function, 
it will pass the string 
"SHUTDOWN_NOTIFICATION" as 
the parameter.
WAP e*Way Intelligent Adapter User’s Guide 36 SeeBeyond Proprietary and Confidential



Chapter 4 Section 4.2
WAP e*Way Functions WAP Standard Functions
Additional Information

See “Shutdown Command Notification Function” on page 27 for more information.

wap-outgoing

Syntax

(wap-outgoing event-string)

Description

wap-outgoing is used for sending a received message from e*Gate to the external 
system.

Parameters

Return Values

string
An empty string indicates a successful operation.

“RESEND” causes the Event to be immediately resent.

“CONNERR” indicates a problem with the connection to the external system. When the 
connection is re-established this function will be reexecuted with the same input Event.

“DATAERR” indicates the function had a problem processing data. If the e*Gate 
journal is enabled, the Event is journaled and the failed Event count is increased. (The 
input Event is essentially skipped in this process.) Use the event-send-to-egate function 
to place bad events in a bad event queue. See event-send-to-egate on page 29 for more 
information on this function.

Throws 

None.

Additional Information

See “Process Outgoing Message Function” on page 23 for more information.

wap-shutdown

Syntax

(wap-shutdown shutdown)

Description

wap-shutdown requests that the external connection shut down. A return value of 
“SUCCESS” indicates that the shutdown can occur immediately. Any other return 

Name Type Description

event-string string The Event to be processed.
WAP e*Way Intelligent Adapter User’s Guide 37 SeeBeyond Proprietary and Confidential



Chapter 4 Section 4.2
WAP e*Way Functions WAP Standard Functions
value indicates that the shutdown Event must be delayed. The user is then required to 
execute a (shutdown-request on page 31) call from within a Monk function to allow the 
requested shutdown to process to continue.

Parameters

Return Values

string
“SUCCESS” allows an immediate shutdown to occur. Anything else delays shutdown 
until the shutdown-request is executed successfully.

Throws

None.

Additional Information

See “External Connection Shutdown Function” on page 26 for more information.

wap-startup

Syntax

(wap-startup)

Description

wap-startup is used for function loads that are specific to this e*Way and invokes 
startup. 

Parameters

None.

Return Values

string
“FAILURE” causes shutdown of the e*Way. Any other return indicates success.

Throws

None.

Additional Information

This function should be used to initialize the external system before data exchange 
starts. Any additional variables may be defined here.

See “Startup Function” on page 23 for more information.

Name Type Description

shutdown string When the e*Way calls this 
function, it will pass the string 
"SUSPEND_NOTIFICATION" as 
the parameter.
WAP e*Way Intelligent Adapter User’s Guide 38 SeeBeyond Proprietary and Confidential



Chapter 4 Section 4.2
WAP e*Way Functions WAP Standard Functions
wap-verify

Syntax

(wap-verify)

Description

wap-verify is used to verify whether the connection to the external system is 
established.

Parameters 

None.

Return Values

string
“UP” if connection established. Any other value indicates the connection is not 
established.

Throws

None.

Additional Information

See “External Connection Verification Function” on page 25 for more information.
WAP e*Way Intelligent Adapter User’s Guide 39 SeeBeyond Proprietary and Confidential



Chapter 4 Section 4.3
WAP e*Way Functions WAP Native Functions
4.3 WAP Native Functions
The native WAP functions control the flow of information to and from the WAP 
application.

The functions described in this section can only be called from within a Collaboration 
Rules script.

The WAP native functions are

wap-cancel-alert-with-params on page 40

wap-cancel-alert on page 40

wap-send-alert on page 41

wap-send-alert-with-params on page 42

wap-cancel-alert

Syntax

(wap-cancel-alert subscriberID URL)

Description

wap-cancel-alert cancels the alert sent out by wap-send-alert.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

Throws

None.

wap-cancel-alert-with-params

Syntax

(wap-cancel-alert-with-params subscriberID URL timeOut port)

Name Type Description

subscriberID string The full subscriber ID of the 
mobile device to which to send 
the alert.

URL string The URL of the page that is to be 
accessed by the mobile device.
WAP e*Way Intelligent Adapter User’s Guide 40 SeeBeyond Proprietary and Confidential



Chapter 4 Section 4.3
WAP e*Way Functions WAP Native Functions
Description

wap-cancel-alert-with-params cancels the alert sent out by wap-send-alert-with-
params.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Additional Information

To use the default for the timeOut, and port parameters, the value should be set to 0 
(zero).

This function can be used to can an alert sent by wap-send-alert, but the port parameter 
must be set to the correct port number.

wap-send-alert

Syntax

(wap-send-alert subscriberID URL AlertTitle)

Description

wap-send-alert sends an alert message to the specified subscriber.

Parameters

Name Type Description

subscriberID string The full subscriber ID of the 
mobile device to which to send 
the alert.

URL string The URL of the page that is to be 
access by the mobile device.

timeOut integer The number of seconds the 
function will wait for a response 
from the server.

port integer The port number on which the 
server is listening.

Name Type Description

subscriberID string The full subscriber ID of the 
mobile device to which to send 
the alert.
WAP e*Way Intelligent Adapter User’s Guide 41 SeeBeyond Proprietary and Confidential



Chapter 4 Section 4.3
WAP e*Way Functions WAP Native Functions
Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

Throws

None.

wap-send-alert-with-params

Syntax

(wap-send-alert-with-params subscriberID URL AlertTitle TTL timeOut 
port)

Description

wap-send-alert-with-params sends an alert message to the specified subscriber with 
additional parameter limitations.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

Throws

None.

URL string The URL of the page that is to be 
accessed by the mobile device.

AlertTitle string The description of the alert.

Name Type Description

subscriberID string The full subscriber ID of the mobile 
device to which to send the alert.

URL string The URL of the page that is to be 
accessed by the mobile device.

AlertTitle string The description of the alert.

TTL integer The time-to-live for the alert, in 
seconds. If the alert has not been 
delivered before the TTL has expired 
the server will cancel the delivery.

timeOut integer The number of seconds the function 
will wait for a response from the server.

port integer The port number on which the server is 
listening.

Name Type Description
WAP e*Way Intelligent Adapter User’s Guide 42 SeeBeyond Proprietary and Confidential



Chapter 4 Section 4.3
WAP e*Way Functions WAP Native Functions
Additional Information

To use the default for the TTL, timeOut, and port parameters, the value should be set 
to 0 (zero).
WAP e*Way Intelligent Adapter User’s Guide 43 SeeBeyond Proprietary and Confidential



Index
Index

A
Additional Path parameter 22
Auxiliary Library Directories parameter 22

B
basic functions

event-send-to-egate 29
get-logical-name 30
send-external-down 30
send-external-up 31
shutdown-request 31
start-schedule 32
stop-schedule 32

C
configuration parameters

Additional Path 22
Auxiliary Library Directories 22
Down Timeout 12
Exchange Data Interval 12
Exchange Data With External Function 24
External Connection Establishment Function 25
External Connection Shutdown Function 26
External Connection Verification Function 25
Forward External Errors 10
Journal File Name 9
Max Failed Messages 10
Max Resends Per Message 10
Monk Environment Initialization File 22
Negative Acknowledgment Function 27
Positive Acknowledgement Function 26
Process Outgoing Message Function 23
Resend Timeout 13
Shutdown Command Notification Function 27
Start Exchange Data Schedule 12
Startup Function 23
Stop Exchange Data Schedule 11
Up Timeout 12
Zero Wait Between Successful Exchanges 13

D
Down Timeout parameter 12

E
event-send-to-egate 29
Exchange Data Interval parameter 12
Exchange Data with External Function parameter 24
External Connection Establishment Function 
parameter 25
External Connection Shutdown Function parameter 
26
External Connection Verification Function 
parameter 25

F
Forward External Errors parameter 10
functions

event-send-to-egate 29
get-logical-name 30
send-external-down 30
send-external-up 31
shutdown-request 31
start-schedule 32
stop-schedule 32
wap-ack 33
wap-cancel-alert 40
wap-cancel-alert-with-params 40
wap-connect 34
wap-exchange 34
wap-init 35
wap-nack 35
wap-notify 36
wap-outgoing 37
wap-send-alert 41
wap-send-alert-with-params 42
wap-shutdown 37
wap-startup 38
wap-verify 39

G
get-logical-name function 30

J
Journal File Name parameter 9

M
Max Failed Messages parameter 10
Max Resends Per Message parameter 10
WAP e*Way Intelligent Adapter User’s Guide 44 SeeBeyond Proprietary and Confidential



Index
Monk Environment Initialization File parameter 22

N
native functions

wap-cancel 40
wap-cancel-alert-with-params 40
wap-send-alert 41
wap-send-alert-with-params 42

Negative Acknowledgment Function parameter 27

P
Positive Acknowledgment Function parameter 26
Process Outgoing Message Function parameter 23

R
Resend Timeout parameter 13

S
send-external-down function 30
send-external-up function 31
Shutdown Command Notification Function 
parameter 27
shutdown-request 31
standard functions

wap-ack 33
wap-connect 34
wap-exchange 34
wap-init 35
wap-nack 35
wap-notify 36
wap-outgoing 37
wap-shutdown 37
wap-startup 38
wap-verify 39

Start Exchange Data Schedule parameter 12
start-schedule function 32
Startup Function parameter 23
Stop Exchange Data Schedule parameter 11
stop-schedule function 32

U
Up Timeout parameter 12

W
WAP standard functions 33
wap-ack 33
wap-cancel 40

wap-cancel-alert-with-params 40
wap-connect 34
wap-exchange 34
wap-init 35
wap-nack 35
wap-notify 36
wap-outgoing 37
wap-send-alert 41
wap-send-alert-with-params 42
wap-shutdown 37
wap-startup 38
wap-verify 39

Z
Zero Wait Between Successful Exchanges parameter 
13
WAP e*Way Intelligent Adapter User’s Guide 45 SeeBeyond Proprietary and Confidential


	WAP e*Way Intelligent Adapter User’s Guide
	Contents
	Introduction
	1.1 Overview
	1.1.1 Intended Reader
	1.1.2 Components

	1.2 System Requirements
	1.2.1 External System Requirements


	Installation
	2.1 Windows
	2.1.1 Pre-installation
	2.1.2 Installation Procedure

	2.2 Files/Directories Created by the Installation

	Configuration
	3.1 e*Way Configuration Parameters
	3.1.1 General Settings
	Journal File Name
	Max Resends Per Message
	Max Failed Messages
	Forward External Errors

	3.1.2 Communication Setup
	Start Exchange Data Schedule
	Stop Exchange Data Schedule
	Exchange Data Interval
	Down Timeout
	Up Timeout
	Resend Timeout
	Zero Wait Between Successful Exchanges

	3.1.3 Monk Configuration
	Operational Details
	How to Specify Function Names or File Names
	Additional Path
	Auxiliary Library Directories
	Monk Environment Initialization File
	Startup Function
	Process Outgoing Message Function
	Exchange Data with External Function
	External Connection Establishment Function
	External Connection Verification Function
	External Connection Shutdown Function
	Positive Acknowledgment Function
	Negative Acknowledgment Function
	Shutdown Command Notification Function



	WAP e*Way Functions
	4.1 Basic Functions
	event-send-to-egate
	get-logical-name
	send-external-down
	send-external-up
	shutdown-request
	start-schedule
	stop-schedule

	4.2 WAP Standard Functions
	wap-ack
	wap-exchange
	wap-connect
	wap-init
	wap-nack
	wap-notify
	wap-outgoing
	wap-shutdown
	wap-startup
	wap-verify

	4.3 WAP Native Functions
	wap-cancel-alert
	wap-cancel-alert-with-params
	wap-send-alert
	wap-send-alert-with-params


	Index
	A
	B
	C
	D
	E
	F
	G
	J
	M
	N
	P
	R
	S
	U
	W
	Z


