
e*Way Intelligent Adapter for
WebLogic User’s Guide

Release 4.5.2
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBI, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 2001-2003 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20030207111550.
e*Way Intelligent Adapter for WebLogic User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents
Contents

Chapter 1

Introduction 7
Intended Reader 7

Overview 7

Using J2EE™ with e*Gate and the WebLogic e*Way 8
Java Naming and Directory Interface (JNDI) 8

The WebLogic T3 Naming Service 8
Sample Code 9
Viewing The WebLogic JNDI Tree 10

Java Messaging Service (JMS) 11
Enterprise JavaBeans (EJBs) 12

What is Enterprise JavaBean Architecture? 12
Message Driven Beans 13
Session Beans 13
Entity Beans 13

XA Transactions 13

WebLogic e*Way Component Overview 14
Synchronous Interaction, e*Gate to WebLogic Server 15

The EJB ETD 15
Asynchronous Interaction, WebLogic EJBs to e*Gate JMS and e*Gate JMS to WebLogic MDBs 16
SeeBeyond JMS 17

Message Flow from e*Gate to WebLogic 17
Message Flow from WebLogic to e*Gate 20
SeeBeyond WebLogic Startup Class 24
STCWLStartup.properties File 25

SeeBeyond Sample Message Driven Beans 29
Accessing Session Beans 31
Lazy Loading 35
Accessing Entity Beans 36

SeeBeyond Sample XA Message Driven Beans 36
SeeBeyond Sample XA Session Beans 38
Verifying XA At Work 41
examples-dataSource-demoXAPool 43

Supported Operating Systems 45

System Requirements 45
External System Requirements 45
e*Way Intelligent Adapter for WebLogic User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents
Chapter 2

Installation 46
Windows 46

Pre-installation 46
Installation Procedure 46

UNIX 47
Pre-installation 47
Installation Procedure 47

Files/Directories Created by the Installation 48

Chapter 3

Configuration 49
Configuring the Components for Synchronous Interaction Implementation using the
EJB ETD Builder 49

Multi-Mode e*Way Configuration Parameters (Synchronous Interaction) 49
EJB ETD e*Way Connection 50

Configuring the ETD e*Way Connection 51
General Settings 52
JNDI InitialContext Settings 52

Configuring Components for Asynchronous Interaction Implementation using
SeeBeyond JMS 59

JMS IQ Manager 59
Multi-Mode e*Way Configuration Parameters (asynchronous interaction) 59
e*Way Connection 60

Create the e*Way Connection 60
Configuring the JMS e*Way Connection parameters 61
General Settings 61
Message Service 63

Configuring the WebLogic Server Components 65
Configuration for WebLogic 6.1 65
Configuration for WebLogic 7.0 69

Append Classpaths for All Collaboration Rules 73

Chapter 4

Implementation 74
Implementation Process: Overview 74

Sample Implementations 75

Considerations 75

Synchronous Interaction, e*Gate to WebLogic Server 76
Step 1: Build the ETD from the interface classes 76
e*Way Intelligent Adapter for WebLogic User’s Guide 4 SeeBeyond Proprietary and Confidential

Contents
Step 2: Configure the e*Way Connection 81
Step 3: Build Collaboration Rules to instantiate the Remote Interfaces 82
Step 4: Bind the e*Way Connection to the Collaboration Rules 82

Asynchronous Interaction, WebLogic EJB to e*Gate JMS 82
Step 1: Configure WebLogic to create JNDI entries for SeeBeyond JMS on WebLogic Server
at startup 82
Step 2: Create a new Session Bean from the template 82
Step 3: Create a new Deployment Descriptor from the template 82
Step 4: Packaging and Deployment 83

Asynchronous Interaction, e*Gate JMS to WebLogic Message Driven Bean 83
Step 1: Configure WebLogic to create JNDI entries for SeeBeyond JMS on WebLogic Server
at startup 83
Step 2: Create a new message driven bean from the template. 83
Step 3: Create a new Deployment Descriptor from the template. 83
Step 4: Packaging and deployment. 83

Event Type Definitions 84

Creating the Sample Schemas 84
Installing a Sample Schema 85

The AddNumbers Sample Schema (Synchronous, EJB ETD) 85
Running the AddNumbers Sample Schema 86
Configuring the AddNumbersSchema Sample 87

Copy and Deploy the Sample EJB 87
Configure STCWLStartup.properties 87
Create and Configure the e*Ways 87
Create the ETD 88
Configure the Queue Manager 89
Create the e*Way Connections 89
Creating the AddNumbers Sample Collaboration Rules 89
Creating the Business Rules Using the Collaboration Rules Editor 90
Creating the Collaborations 92

The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS) 93
Running the JMSAsynchProducersConsumers Schema 93
The JMSQueueSend Sample 94

Configuring the JMSQueueSend Sample 95
The JMSQueueSend Collaboration Rules Script 96
JMSQueueSend Collaboration Rule Mapping 97
JMSQueueSend Collaboration Properties 97

The JMSQueueRequestor Sample 98
Configuring the JMSQueueRequestor Sample 99
JMSQueueRequestor Collaboration Rule 99
JMSQueueRequestor Collaboration Rule Mapping 100
JMSQueueRequestor Collaboration Properties 101

The JMSXAQueueSend Sample 102
Configuring the JMSXAQueueSend Sample 103
The JMSXAQueueSend Collaboration Rule 103
JMSXAQueueSend Collaboration Rule Mapping 103
JMSXAQueueSend Collaboration Properties 103

The JMSTopicPublish Sample 104
Configuring the JMSTopicPublish Sample 105
The crJMSTopicPublish Collaboration Rule 106
e*Way Intelligent Adapter for WebLogic User’s Guide 5 SeeBeyond Proprietary and Confidential

Contents
JMSTopicPublish Collaboration Rule Mapping 107
JMSTopicPublish Collaboration Properties 107

The JMSTopicSubscribe Sample 108
Configuring the JMSTopicSubscribe Sample 109
The JMSTopicSubscribe Collaboration Rule 110
JMSTopicSubscribe Collaboration Rule Mapping 111
JMSTopicSubscribe Collaboration Properties 111

The JMSXATopicSubscribe Sample 112
Configuring the JMSXATopicSubscribe Sample 113
The JMSXATopicSubscribe Collaboration Rule 114
JMSXATopicSubscribe Collaboration Rule Mapping 114
JMSXATopicSubscribe Collaboration Properties 114

Executing the Schema 115

Chapter 5

Java Methods 116
The EJBConfiguration Class 116

Methods of the EJBConfiguration Class 116

Index 120
e*Way Intelligent Adapter for WebLogic User’s Guide 6 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This document describes the integration between BEA WebLogic™ application Server
and SeeBeyond e*Gate using the e*Way Intelligent Adapter for WebLogic (the
WebLogic e*Way).

1.1 Intended Reader
The reader of this guide is presumed:

! to be a developer or system administrator with the responsibility of maintaining the
e*Gate system.

! to have high-level knowledge of Windows or UNIX operations and administration.

! to be familiar with WebLogic Server functions.

! to have high-level knowledge of Java™, JMS™, and Enterprise JavaBeans™.

! to be thoroughly familiar with Windows-style GUI operations.

1.2 Overview
WebLogic Server

BEA’s WebLogic Server is an application server used to build new applications with
graphical interfaces or screens. These may be accounting applications, HR applications,
shipping applications, and so forth.

The WebLogic application server is an architecture for building business logic in re-
usable components so that a Web server can access this data easily. The application
server talks (in the Java world) in terms of Enterprise JavaBeans. Enterprise JavaBeans
(EJBs) are the units of work that an application server is responsible for and exposes to
the external world. The interface between the presentation and real applications/real
data is the EJB.

The WebLogic application server allows the user to build EJBs and deploy them,
making them available to other applications on various machines. These EJBs are Java
programs written by the developer and deployed to the application server. The
application server offers services that users previously had to write themselves
e*Way Intelligent Adapter for WebLogic User’s Guide 7 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction Using J2EE™ with e*Gate and the WebLogic e*Way
including connectivity, business logic, re-usability, security, concurrency (access is
serialized), and transactionallity (uses XA to assure a successful transfer/update or
rollback).

The WebLogic application server performs pooling to conserve system resources.
Object pooling reduces the number of allocations by placing objects in a pool so that the
next request for the object does not require a re-allocation of memory. Thread pooling
and connection pooling work in much the same way to save memory and connection
resources. Clustering is another benefit of the EJB’s. Clustering means that the
applications are easily moved or distributed to other machines. The WebLogic
application server streamlines the process of building distributed, scalable, highly
available systems.

The Intelligent Adapter for WebLogic e*Way

The Intelligent Adapter for WebLogic e*Way (WebLogic e*Way) facilitates integration
between applications built on the WebLogic platform and e*Gate, using J2EE’s
component model (EJB).

1.3 Using J2EE™ with e*Gate and the WebLogic e*Way
The e*Way Intelligent Adapter for WebLogic employs Java 2 Platform, Enterprise
Edition™ (J2EE™) components and services. The following sections break down the
JNDI™, JMS and EJB subsystems, and XA Transactions, with respect to the WebLogic
integration strategy (as described in WebLogic e*Way Component Overview on
page 14).

1.3.1. Java Naming and Directory Interface (JNDI)
Java Naming and Directory Interface™ (JNDI) is an API published by Sun. In short, this
set of APIs allows a Java program to store objects and lookup objects using multiple
naming services in a standard manner. A naming service may be LDAP, a file system,
or an RMI registry. Each naming service has a corresponding provider implementation
that can be used with JNDI. The ability for JNDI to “plug in” any implementation for
any naming service (or span across naming services in a federated naming service)
easily provides another level of programming abstraction. This level of abstraction
allows Java code using JNDI to be portable against any naming service. For example, no
code changes should be needed by the Java client code to run against an RMI registry or
an LDAP server.

The WebLogic T3 Naming Service

Any J2EE compliant Application Server, such as WebLogic, has a JNDI subsystem. The
JNDI subsystem is used in an Application Server as a directory for such objects as
resource managers and Enterprise JavaBeans (EJBs). Objects managed by the WebLogic
container have default environments for getting the JNDI InitialContext loaded when
they use the default InitialContext() constructor. For a Collaboration using a WebLogic
EJB Event Type Definition (ETD) to find the home interface of an EJB, JNDI must be
e*Way Intelligent Adapter for WebLogic User’s Guide 8 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction Using J2EE™ with e*Gate and the WebLogic e*Way
configured in the connection .def file and associated with the ETD. However, for other
external clients, accessing the WebLogic naming service requires a Java client program
that sets up the appropriate JNDI environment when creating the JNDI Initial Context.

There are essentially two environments that have to be configured;
Context.PROVIDER_URL and Context.INITIAL_CONTEXT_FACTORY. For
WebLogic, the Context.PROVIDER_URL environment is

t3://wlserverhost:port/

where “wlserverhost” is the hostname on which the WebLogic Server instance is
running and “port” is the port at which the Webserver instance is listening for
connections. For example:

t3://localhost:7003/

The initial context factory class for the WebLogic JNDI is
weblogic.jndi.WLInitialContextFactory. This class should be supplied to the
Context.INITIAL_CONTEXT_FACTORY environment property when constructing
the initial context. The overloaded InitialContext(Map) constructor must be used in
this case.

Sample Code

Here's an example of code for creating an initial context to WebLogic JNDI from a
stand-alone client:

HashMap env = new HashMap();
env.put (Context.PROVIDER_URL, "t3://localhost:7003/");
env.put (Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory");
Context initContext = new InitialContext (env);
…

Once an initial context is created, sub-contexts can be created, objects can be bound,
and objects can be retrieved using the initial context. For example the following
segment of code retrieves a Topic object:

Topic topic
=(Topic)initContext.lookup("sbyn.inTopicToSeeBeyondTopic");
…

Here's an example of how to bind a SeeBeyond Queue object:

Queue queue = null;
try {

queue = new STCQueue("inQueueToSeeBeyondQueue");
initContext.bind ("sbyn.ToSeeBeyondQueue", queue);

}
catch (NameAlreadyBoundException ex)
{

try
{
if (queue != null)

initContext.rebind ("sbyn.ToSeeBeyondQueue", queue);
}
catch (Exception ex)
{
throw ex;

}
}

e*Way Intelligent Adapter for WebLogic User’s Guide 9 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction Using J2EE™ with e*Gate and the WebLogic e*Way
Viewing The WebLogic JNDI Tree

The WebLogic Administrative Console (Web Interface) allows a user to view the JNDI
Tree associated with the server instance. To view the JNDI Tree (see Figure 1), log onto
the Administrative console for the server you want to administer (for example, the
examplesServer), expand the Servers tab, right click on the server node, and select
View JNDI tree from the pop up menu.

Figure 1 Administrative Console - View JNDI Tree

In the following example, (see Figure 2 on page 11) the JNDI tree Web page shows that
the SeeBeyond subcontext was expanded in order to view the SeeBeyond JMS objects
that were bound to the WebLogic JNDI. These objects are bound when the
STCWLStartup class is loaded and run by the WebLogic Server. (See SeeBeyond
WebLogic Startup Class on page 24 for more details about this startup class.)

Additionally, when EJBs are deployed on the application server they are registered in
the JNDI. This JNDI name is used by the EJB ETD to look up the home interface of the
EJB.
e*Way Intelligent Adapter for WebLogic User’s Guide 10 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction Using J2EE™ with e*Gate and the WebLogic e*Way
Figure 2 Administrative Console - The JNDI Tree Web Page

1.3.2. Java Messaging Service (JMS)
The Java Messaging Service is a Messaging Oriented Middleware API designed by Sun.
The client makes use of these APIs, allowing portability with any JMS implementation.
JMS allows clients to be de-coupled from one another. The clients do not communicate
with each other directly, but rather send messages to each other via middleware. Each
client in a JMS environment connects to a messaging server. The messaging server
facilitates the flow of messages among all clients. The messaging server guarantees that
all messages arrive at the appropriate destinations. The messaging server also
guarantees such quality of services as transactions (local or XA), persistence, durability,
and others.

There are two possible destinations that a client sends messages to or receive messages
from. They are Topic and Queue (see Figure 3 and Figure 4). The difference between a
Topic and a Queue is that all subscribers to a Topic receive the same message when the
message is published and only one subscriber to a Queue receives a message when the
message is sent (see SeeBeyond JMS on page 17).
e*Way Intelligent Adapter for WebLogic User’s Guide 11 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction Using J2EE™ with e*Gate and the WebLogic e*Way
Figure 3 Topic - The Publish-Subscribe Model.

Figure 3 shows multiple subscribers receiving the same messages when the publisher
publishes the message to a Topic. This is the Publish-Subscribe model.

Figure 4 Queue - The Point-to-Point Model

The Point-to-Point model (Figure 4), on the other hand, allows for only one of the
receivers to get the message when a sender sends a message to a Queue.

1.3.3. Enterprise JavaBeans (EJBs)

What is Enterprise JavaBean Architecture?

Sun defines Enterprise JavaBean Architecture as follows: Enterprise JavaBean
architecture is a component architecture for the development and deployment of
component-based distributed business applications. Applications written using the
Enterprise JavaBean architecture are scalable, transactional, and multi-user secure.
These applications may be written once, and then deployed on any server platform that
supports the Enterprise JavaBean specification.

Essentially, if a user writes an EJB, such that the EJB adheres to the EJB specification, the
EJB can be deployed on any EJB container regardless of the software vendor that
provided the container (application server). The EJB developer does not need to write
any code relating to things such as transactions or threads. These services are provided
by the container in which an EJB was deployed. The only responsibility of the EJB

Topic fPublisher Subscriber

Subscriber

Subscriber

Msg
A

Msg
A

Msg
A

Msg
A

Queue fSender Receiver

Receiver

Receiver

Msg
A

Msg
A

e*Way Intelligent Adapter for WebLogic User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction Using J2EE™ with e*Gate and the WebLogic e*Way
developer (or EJB deployer) is to define the attributes of the EJB in its deployment
descriptor in order to take advantage of these services offered by the container.

Message Driven Beans

A Message Driven Bean (MDB) is a type of EJB defined by Sun (in the EJB 2.0
specification) in order to deal with asynchronous subscription/publication of JMS
messages in a different manner than Entity and Session Beans. An MDB is often
compared to a Stateless Session Bean in that it does not have any state context. An MDB
differs from Session and Entity Beans in that it has no local/remote or localhome/home
interfaces. An MDB is not exposed to a client at all. The MDB simply subscribes to a
Topic or a Queue, receives messages from the container via the Topic or Queue, and
then process the messages it receives from the container.

An MDB implementation needs to implement two interfaces: javax.ejb.MessageBean
and javax.jms.MessageListener. Minimally, the MDB must implement the
setMessageDrivenContext, ejbCreate, and ejbRemove methods from the
javax.ejb.MessageBean interface. In addition, the MDB must implement the onMessage
method of the javax.jms.MessageListener interface. The container calls the onMessage
method, passing in a javax.jms.Message, when a message is available for the MDB.

Session Beans

A Session Bean is another type of EJB. The Session Bean consists of the remote, home,
and bean classes. A client gets a reference to the Session Bean's home interface in order
to create the Session Bean remote object, which is essentially the bean's factory. The
Session Bean is exposed to the client with the remote interface. The client uses the
remote interface to invoke the bean's methods. The actual implementation of the
Session Bean is done with the bean class. (See Accessing Session Beans on page 31.)

Entity Beans

An Entity Bean, like a Session Bean, consists of the remote, home, and bean classes. The
client references the Entity Bean's home interface in order to create the Entity Bean
remote object (essentially the bean's factory). The Entity Bean is exposed to the client
with the remote interface which the client uses to invoke the bean's methods. The
implementation of the Entity Bean is done with the bean class. (See Accessing Entity
Beans on page 36.)

1.3.4. XA Transactions
The X/Open XA specification defines the interactions between the Transaction Manager
(TM) and the Resource Manager (RM). The Transaction Manager, also known as the XA
Coordinator, manages the XA or global transactions. The Resource Manager manages a
particular resource such as a database or a JMS system. In addition, an XA Resource
exposes a set of methods or functions for managing the resource.

In order to be involved in an XA transaction, the XA Resource of a particular resource
must make itself known to the Transaction Manager. This process is called enlistment.
Once an XA Resource is enlisted, the Transaction Manager ensures that the XA
e*Way Intelligent Adapter for WebLogic User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
Resource takes part in a transaction and makes the appropriate method calls on the XA
Resource during the lifetime of the transaction. For an XA transaction to complete, all
the RMs participate in a two-phase commit (2pc). A commit in an XA transaction is
called a two-phase commit because there are two passes made in the committing
process. In the first pass, the Transaction Manager asks each of the RMs (via the
enlisted XA Resource) whether they will encounter any problems committing the
transaction. If any Resource Manager objects to committing the transaction, then all
work done by any party on any resource involved in the XA transaction must all be
rolled back. The Transaction Manager calls the rollback() method on each of the
enlisted XA Resources. However, if no RMs object to committing, then the second pass
involves the Transaction Manager actually calling commit() on each of the enlisted XA
Resources. This process guarantees the ACID (atomicity, consistency, isolation, and
durability) properties of a transaction that can span multiple resources.

Both SeeBeyond JMS and BEA WebLogic Server implement the X/Open XA interface
specifications. Because both systems support XA, the EJBs running inside the WebLogic
container can subscribe or publish messages to SeeBeyond JMS in XA mode. When
running in XA mode, the EJBs, subscribing or publishing to SeeBeyond JMS can also
participate in a global transaction involving other EJBs. For the “example” EJBs
running in XA mode, Container Managed Transactions (CMTs) are used. In other
words, we define the transactional attributes of the EJBs through their deployment
descriptors and allow the container to transparently handle the XA transactions on
behalf of the EJBs. The WebLogic Transaction Manager coordinates the XA
transactions. The SeeBeyond JMS XA Resource is enlisted to a transaction so that the
WebLogic Transaction Manager is aware of the SeeBeyond JMS XA Resource involved
in the XA transaction. The WebLogic container interacts closely with the Transaction
Manager in CMT such that transactions are almost transparent to an EJB developer.
(See SeeBeyond Sample XA Message Driven Beans on page 36.)

1.4 WebLogic e*Way Component Overview
The e*Way Intelligent Adapter for WebLogic interacts with the WebLogic Application
Server using three modes.

1 Synchronous Interaction, e*Gate to WebLogic. Synchronous interaction means
that e*Gate makes a request to WebLogic and waits for a response. This can be
thought of as analogous to a phone call in which the caller makes the call and waits
for a response.

2 Asynchronous Interaction, WebLogic EJB to e*Gate (JMS). Asynchronous
interaction means that a request is sent but the sender does not wait for a response.
It can be thought of as analogous to a mail message in which mail is sent and
forgotten until sometime later when a response is received. The J2EE asynchronous
model is the Java Messaging Service (JMS), which dictates how a client application
talks to a Queue. The WebLogic EJBs publish to the e*Gate JMS IQ Manager.

3 Asynchronous Interaction, e*Gate (JMS) to WebLogic Message Driven Bean. The
e*Gate JMS publishes to a WebLogic Application Server Message Driven Bean. A
Message Driven Bean (MDB) is an specialized EJB that acts like a trigger which
e*Way Intelligent Adapter for WebLogic User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
executes whenever there is activity on a specific Queue. A message published to
e*Gate’s JMS causes an MDB stored in WebLogic to execute.

1.4.1. Synchronous Interaction, e*Gate to WebLogic Server
Synchronous interaction, in which a requester sends a request and waits while the
service is executed before proceeding with the next request, is carried out by the
WebLogic e*Way using two component parts, the EJB ETD Builder and the WebLogic
e*Way Connection def file.

The EJB ETD Builder is used to generate Event Type Definitions (ETDs) from
WebLogic’s Session and Entity Beans EJB interface classes (Session and Entity Beans,
not Message Driven Beans), that represent the methods of the EJB. These methods can
then be called from within a Collaboration, making them accessible to the user. The EJB
ETD queries the JNDI directory services and locates a home interface, uses the home
interface to acquire Remote interfaces, applies Iterator methods for managing multiple
remote interface instances, and provides access to the remote interface methods.
Collaborations can then be built between the EJB ETD and ETDs for other applications,
making the EJB methods available to that application.

The WebLogic e*Way Connection def file serves as the basis for configuration files
that store the parameters for connecting to the JNDI directory service.

The EJB ETD

The EJB ETD, generated from a WebLogic interface, represents the methods from the
EJB that can be called inside a Collaboration. The ETD can be divided into four portions
that provide information about the EJB.

Figure 5 EJB ETD nodes represent both Home and Remote Interface methods

Used to free remote
interfaces

Methods for manually
locating the JNDI

directory service and
the Home Interface

Home Interface
Methods (for acquiring
the Remote Interface)

Iterator Methods for
managing multiple
Remote Interface

Instances

Remote Interface
Methods
e*Way Intelligent Adapter for WebLogic User’s Guide 15 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
The first portion, the initial context and JNDI Name, is comprised of the methods for
manually locating the home interface which allows the ETD to communicate with the
directory service to connect to the EJBs Java objects. The defaults for the configuration
are provided by the correct configuration file. The user uses these nodes to override the
values in the configuration file. The JNDI Name is set to the default specified in the EJB
ETD Builder wizard.

The second portion consists of home interface methods for acquiring the remote
interface. The home interface allows the ETD to find and invoke EJB instances. For the
example in Figure 5, the home interface method, findBigAccounts(), called with the
argument balanceGreaterThan (100,000) finds all account EJBs with a balance over
100,000 and assign their remote interface to the Remote Instances ETD node.

The third portion contains the iterator methods hasNext() and next() for accessing the
returned remote interfaces. For the sample in Figure 5, an example of this would be if
findBigAccounts() returned ten accounts. This would be ten remote interfaces. The
iterator methods allow the user to write a while loop to loop over multiple remote
interfaces and access functionality based on the business logic.

The fourth portion contains remote interface methods that allow processes to be run on
the current remote interface.

Remove() should be used with care. Remove(), when called from a Session Bean, frees
resources on the server. The danger comes when calling Remove() from an Entity Bean,
in which case the Entity Bean is deleted from the database/storage.

1.4.2. Asynchronous Interaction, WebLogic EJBs to e*Gate JMS and
e*Gate JMS to WebLogic MDBs

Modes 2 and 3 incorporate asynchronous interaction between WebLogic Server and
e*Gate’s JMS.

The following sections describe in detail, the e*Way Intelligent Adapter for WebLogic’s
integration with WebLogic Server using the SeeBeyond implementation of JMS. The
e*Way incorporates the SeeBeyond JMS into the WebLogic environment. Essentially, it
incorporates the SeeBeyond JMS IQ Manager so that EJBs in the WebLogic container
can receive messages from or send messages to e*Gate. There are two schemes:
Message Driven Beans subscribing to SeeBeyond JMS and Session Beans
publishing/sending to SeeBeyond JMS.

In order to implement the solutions, two other subsystems are used: the T3 naming
service and the EJB container (for Session Beans and Message Driven Beans as defined
in EJB 2.0). The naming service allows us to “bind” the following SeeBeyond JMS
objects: TopicConnectionFactory, QueueConnectionFactory, Topic(s), and Queue(s).
By binding instances of these objects, any EJB can get a hold of the references to these
objects by looking them up in the naming service using JNDI. The Message Driven
Beans (MDBs) are used for asynchronous subscription of messages from a JMS Topic or
Queue. This scenario corresponds to the SeeBeyond JMS provider driving MDBs
running in WebLogic. Session Beans are used for publishing and sending Topic/Queue
messages through the SeeBeyond JMS provider as well.

The following architectural diagram (Figure 6) illustrates the components involved:
e*Way Intelligent Adapter for WebLogic User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
Figure 6 WebLogic Server and WebLogic e*Way Components

1.4.3. SeeBeyond JMS
As part of the WebLogic e*Way installation, SeeBeyond supplied startup classes install
JMS objects into the T3 naming service. Four JMS ConnectionFactory objects are bound
to the naming service, TopicConnectionFactory, XATopicConnectionFactory,
QueueConnectionFactory, and XAQueueConnectionFactory. Moreover, installing the
SeeBeyond supplied session and Message Driven Beans installs Topic and Queue
objects into the naming service.

Message Flow from e*Gate to WebLogic

For message flow from e*Gate to WebLogic, WebLogic uses the SeeBeyond
TopicConnectionFactory to create the necessary JMS TopicConnection(s) and
TopicSession(s) and uses the SeeBeyond QueueConnectionFactory to create the JMS
QueueConnection(s) and QueueSession(s). Likewise, XATopicConnectionFactory is
used to create the necessary JMS XATopicConnection(s) and XATopicSession(s) and
the SeeBeyond XAQueueConnectionFactory is used to create the JMS
XAQueueConnection(s) and XAQueueSession(s). The weblogic-ejb-jar.xml
deployment descriptor allows the configuration of SeeBeyond JMS as a foreign JMS to
which the MDBs subscribe. The diagram in Figure 7 shows the components involved in
e*Gate to WebLogic mode. The arrows represent message flow.

Startup
Properties
File

SBYN
EJBs

EJB Container

SeeBeyond
WebLogic
Startup Class

WebLogic Server

SeeBeyond
Queue/Topic
Connection
Factory

JMS

JMS
Connection

Java
Collaboration

Lookup &
Use

JNDI

e*Gate

SeeBeyond
Queues
Topics

SeeBeyond
Queues
Topics
e*Way Intelligent Adapter for WebLogic User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
Figure 7 Message Flow from e*Gate to WebLogic

Figure 8 displays an example of the ejb-jar.xml for the Topic MDB which receives
messages from a SeeBeyond JMS Topic.

Figure 8 ejb-jar.xml - Topic MDB

To External

 SBYN
 Queue
 Connection
 Factory

Port

Outbound
Topic
MDB

EJB Container

JMS

Queue
Session

To External

 SeeBeyond
 JMS Connection

 Queue
 MDB

e*Gate on some Host

JNDI

 SBYN
 Topic
 Connection
 Factory

SBYN
Topics

SBYN
Queues

 Topic
 MDB

Topic
Session

WebLogic on some Host
e*Way Intelligent Adapter for WebLogic User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
Figure 9 displays an example of the weblogic-ejb-jar.xml for the Topic MDB which
receives messages from a SeeBeyond JMS Topic.

Figure 9 weblogic-ejb-jar.xml - Topic MDB

The destination-jndi-name of the Topic is SeeBeyond.Topics.STCTopic1; this is a
SeeBeyond JMS Topic. Using the WebLogic T3 naming service, the two entries initial-
context-factory and provider-url are weblogic.jndi.WLInitialContextFactory and
t3://localhost:7003 respectively. Since the container needs to use the SeeBeyond JMS
TopicConnectionFactory, we specify the SeeBeyond TopicConnectionFactory with the
entry connection-factory-jndi-name as
SeeBeyond.TopicConnectionFactories.TopicConnectionFactory. The JNDI bound
objects SeeBeyond.Topics.STCTopic1 and
SeeBeyond.TopicConnectionFactories.TopicConnectionFactory must be created and
bound to the WebLogic JNDI for this server instance before the MDB can be deployed
and used. The WebLogic Administrative Console does NOT allow the user to create
any foreign JMS objects. This must be done outside of the Administrative Console. The
task of creating the SeeBeyond JMS objects is done by the SeeBeyond WebLogic startup
class called STCWLStartup. (See the section SeeBeyond WebLogic Startup Class on
page 24 to see how the startup class works and how to configure and deploy it.) The
three entries initial-context-factory, provider-url, and connection-factory-jndi-name are
necessary because SeeBeyond JMS is being used as a foreign JMS into WebLogic.

The same entries can be added for subscribing to a SeeBeyond Queue (using the
SeeBeyond QueueConnectionFactory as the connection factory and SeeBeyond Queue
as the destination).
e*Way Intelligent Adapter for WebLogic User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
Message Flow from WebLogic to e*Gate

For message flow from WebLogic to e*Gate, Session Beans can publish/send JMS
messages to SeeBeyond JMS Topics/Queues.

In addition to the connection factories, the Topic and Queue destinations are also
bound to the T3 naming service before they are referenced by the Session Beans.
Creating these SeeBeyond JMS objects and JNDI bindings is done through the
SeeBeyond WebLogic startup class, STCWLStartup. (See SeeBeyond WebLogic
Startup Class on page 24 for details.) With access to these JMS objects via JNDI, the
Session Beans utilize the JMS API's to send the JMS message to e*Gate.

How do the Session Beans know what the JNDI entries are for the connection factory
and destinations? Every bean automatically has access to a special naming system
called the Environment Naming Context (ENC). The ENC is managed by the container
and accessed by beans using JNDI. The JNDI ENC allows a bean to access resources like
JDBC connections, other enterprise beans, and properties specific to that bean. Each
Session Bean uses the ENC to specify the TopicConnectionFactory or
QueueConnectonFactory with the <resource-ref> element in the ejb-jar.xml file.
Additionally, the Session Bean uses the ENC to specify the destination via the
<resource-env-ref> element in the ejb-jar.xml. The weblogic-ejb-jar.xml also has these
corresponding elements defined with the <resource-description> and <resource-env-
description> elements.

Figure 10 displays the Session Bean ejb-jar.xml deployment descriptor.

Figure 10 Session Bean ejb-jar.xml deployment descriptor
e*Way Intelligent Adapter for WebLogic User’s Guide 20 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
Figure 11 displays the Session Bean weblogic-ejb-jar.xml deployment descriptor.

Figure 11 Session Bean weblogic-ejb-jar.xml deployment descriptor

Figure 12 displays a diagram of the components involved for the WebLogic to e*Gate
mode. The arrows represent the message flow.
e*Way Intelligent Adapter for WebLogic User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
Figure 12 Message Flow from WebLogic to e*Gate

How do the Session Beans know what the JNDI entries are for the connection factory
and destinations? Each Session Bean specifies the TopicConnectionFactory or
QueueConnectonFactory with the <resource-ref> element in the ejb-jar.xml file.
Moreover, the Session Bean specifies the destination via the <resource-env-ref>
element in the ejb-jar.xml. The weblogic-ejb-jar.xml also has these corresponding
elements defined with the <resource-description> and <resource-env-description>
elements.

Figure 13 displays an example of the ejb-jar.xml deployment descriptor for the Session
Bean publishing to a SeeBeyond JMS Topic:

e*Gate on some Host

Port

Outbound
Topic
MDB

EJB Container

JMS

 SeeBeyond
 JMS Connection

Session
Bean

Session
Bean

SBYN
Queue
Session

SBYN
Topic
Session

 SBYN
 Queue
 Connection
 Factory

 SBYN
 Topic
 Connection
 Factory

 SBYN
 Queue SBYN

 Topic

JNDI
sbyn subcontext

Client Client
e*Way Intelligent Adapter for WebLogic User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
Figure 13 ejbjar.xml deployment descriptor - Session Bean to SeeBeyond JMS Topic

The value for the res-ref-name tag is jms/TopicConnectionFactory and the value for the
resource-env-ref-name environment entry is jsm/Topic. They are specified as
javax.jms.TopicConnectionFactory and javax.jms.Topic for the resource type
respectively. These resource references are another level of JNDI indirection. They
don't specify the actual JNDI names of the JMS objects, but rather they are references to
the JNDI name. So the EJB can reference jms/TopicConnectionFactory but does not
really care what the actual JNDI name is. The actual JNDI names for these references
are defined in the weblogic-ejb-jar.xml file.

The weblogic-ejb-jar.xml defines the actual JNDI name of the resource references
defined in ejb-jar.xml for the Session Bean as seen in Figure 14.
e*Way Intelligent Adapter for WebLogic User’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
Figure 14 weblogic-ejb-jar.xml defines the actual JNDI name

The value for the jndi-name tag for the resource name jms/TopicConnectionFactory is
SeeBeyond.TopicConnectionFactories.TopicConnectionFactory and the value for the
jndi-name tag for the jms/Topic entry is SeeBeyond.Topics.STCTopic2. These define
the resource reference name to JNDI name mappings. As mentioned earlier, these JNDI
bound objects need to be created by the startup class.

SeeBeyond WebLogic Startup Class

To bind the SeeBeyond JMS objects into the WebLogic T3 naming service, a SeeBeyond
startup class is installed on the WebLogic Server. The startup class is loaded by the
WebLogic Server when the server is booted and the startup method of the class is
invoked. Upon invocation of the startup method, a SeeBeyond
TopicConnectionFactory, a QueueConnectionFactory, all the configured Topics, and
all the configured JMS Queues are instantiated and bound to WebLogic's naming
service. The configuration file for the startup class is in the form of a Java properties file.
Before describing the format of this file, let's look at the implementation of the startup
class.

The startup class is called STCWLStartup.class. It implements the
weblogic.common.T3StartupDef interface. STCWLStartup.class only needs to
implement two methods: setServices() and startup(). The setServices() method is
trivial; the server passes in an instance of T3ServicesDef which can be saved by the
startup class as an attribute. (See the WebLogic documentation on T3ServicesDef for
e*Way Intelligent Adapter for WebLogic User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
more information on this interface.) The startup() method is where the crux of the work
is done. This method is invoked by the server and this is where the SeeBeyond JMS
objects are created and bound to the naming service. The startup() method takes two
parameters: name which is of type java.lang.String and args which is of type
HashTable. These two arguments are provided by the server. The name is the name of
the startup class. The args argument contains name/value pairs that are passed to the
startup as program “arguments.” These program arguments are defined when the
startup class is deployed in the server using the WebLogic Administrative Console.

The startup properties file is read by the startup class when the startup() method is
invoked by the WebLogic Server. This file, STCWLStartup.properties, is used to
configure information about the SeeBeyond JMS specific information. This file consists
of name/value pairs. There are seven sections to this properties file. Each name and
value in the different sections have different meanings. The following sections describe
each section in detail. Comment lines in the properties file start with either a '#' or a '!'
character. The following section displays the default STCWLStartup.properties file.

Any changes to the startup configuration (properties) file does not take effect right
away. The WebLogic Server must be restarted in order for the startup class to get
reloaded and for the startup class to read the changes to the configuration file. For
example, if a new Topic or Queue is added, the WebLogic Server needs to be restarted.

STCWLStartup.properties File

SeeBeyond JNDI Sub-context

The first section allows the user to specify the JNDI sub-context for SeeBeyond.

#--

JNDI subcontext for SeeBeyond objects.
This section configures the JNDI subcontext to which all the
SeeBeyond
JMS objects will bind.
#
WARNING: Only the property value can be changed here.
#--

Subcontext.SeeBeyond=SeeBeyond

The user should not have to change this.

SeeBeyond JMS TopicConnectionFactory Sub-context

The next section allows the user to specify the JNDI sub-context where all instances of
SeeBeyond JMS TopicConnectionFactory are bound. This sub-context is under the
SeeBeyond sub-context.

#--

JNDI subcontext for SeeBeyond JMS Topic connection factories.
This section configures the JNDI subcontext to which all the
SeeBeyond
JMS TopicConnectionFactory objects will bind.
#
WARNING: Only the property value can be changed here.
#--

Subcontext.TopicConnectionFactory=TopicConnectionFactories
e*Way Intelligent Adapter for WebLogic User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
The user should not have to change this.

SeeBeyond JMS QueueConnectionFactory Sub-context

The next section allows the user to specify the JNDI sub-context where all instances of
SeeBeyond JMS QueueConnectionFactory are bound. This sub-context is under the
SeeBeyond sub-context configured.

#--

JNDI subcontext for SeeBeyond JMS Queue connection factories.
This section configures the JNDI subcontext to which all the
SeeBeyond
JMS QueueConnectionFactory objects will bind.
#
WARNING: Only the property value can be changed here.
#--

Subcontext.QueueConnectionFactory=QueueConnectionFactories

The user should not have to change this.

SeeBeyond JMS Topic Sub-context

The next section allows the user to specify the JNDI sub-context where all instances of
SeeBeyond JMS Topic destinations are bound. This sub-context is under the SeeBeyond
sub-context configured.

#--

JNDI subcontext for SeeBeyond JMS Topics.
This section configures the JNDI subcontext to which all the
SeeBeyond
JMS Topic objects will bind.
#
WARNING: Only the property value can be changed here.
#--

Subcontext.Topic=Topics

The user should not have to change this.

SeeBeyond JMS Queue Sub-context

The next section allows the user to specify the JNDI sub-context where all instances of
SeeBeyond JMS Queue destinations are bound. This sub-context is under the
SeeBeyond sub-context configured.

#--

JNDI subcontext for SeeBeyond JMS Queues.
This section configures the JNDI subcontext to which all the
SeeBeyond
JMS Queues objects will bind.
#
WARNING: Only the property value can be changed here.
#--

Subcontext.Queue=Queues

The user should not have to change this.
e*Way Intelligent Adapter for WebLogic User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
SeeBeyond JMS Server Names List

The next section allows the user to specify the logical names of each JMS server
instances to configure for registration to WebLogic JNDI:

#--

JMS Server Names
Define all the logical JMS Server Names in this section.
Each Server Name must be separated by a '&' character.

WARNING: Only the property value can be changed here.
Example: SeeBeyondJMS&MyJMS&JMSOnHostA
#--

JMSServerNames=SeeBeyondJMS&MyJMS

The server names are separated by the '&' character. The server names used here are
referenced in another section for configuring the JMS host, port, and the connection
factories.

SeeBeyond JMS Servers Configuration

For each server name listed in the JMSServerNames property value, the user is
required to specify the hostname and port of the JMS server. In addition, the user can
configure one or more of the types of JMS connection factories
(TopicConnectionFactory, QueueConnectionFactory, and so forth.).

#--

JMS Servers Configuration
For each of the Servers define in the JMS Server Names section,
define the JMS configurations in this section.
The following JMS information must be defined for each Server:
Host, Port
The following are used to configure JMS Connection Factories:
TopicConnectionFactory, QueueConnectionFactory
XATopicConnectionFactory, XAQueueConnectionFactory

#--

! SeeBeyondJMS Server configuration
! Notice that "SeeBeyondJMS" is in the JMS Server Names list.
SeeBeyondJMS.Host=localhost
SeeBeyondJMS.Port=24053
SeeBeyondJMS.TopicConnectionFactory=TopicConnectionFactory
SeeBeyondJMS.QueueConnectionFactory=QueueConnectionFactory
SeeBeyondJMS.XATopicConnectionFactory=XATopicConnectionFactory
SeeBeyondJMS.XAQueueConnectionFactory=XAQueueConnectionFactory

! MyJMS Server configuration
! Notice that "MyJMS" is in the JMS Server Names list.
MyJMS.Host=localhost
MyJMS.Port=9876

Note: The sample above demonstrates how two JMS server instances are configured on
two different ports.

There are four possible connection factories that can be configured:
TopicConnectionFactory, QueueConnectionFactory, XATopicConnectionFactory,
and XAQueueConnectionFactory. For the connection factories, the property value is
e*Way Intelligent Adapter for WebLogic User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
used as the JNDI name of the factory object created. In the example above, we are
telling the startup to create a TopicConnectionFactory with
SeeBeyond.TopicConnectionFactories.TopicConnectionFactory as the JNDI name for
the TopicConnectionFactory. Notice that the SeeBeyond sub-context and the
TopicConnectionFactories sub-context are pre-pended.

SeeBeyond JMS Topic Destinations

The next section allows the user to specify the Topics to create and bind to JNDI:

#--

SeeBeyond JMS Topics
This section configures the SeeBeyond JMS Topics.
The property name for each Topic entry must start with "Topic.".
For each Topic entry, the property name will be used as the JMS
Topic
name and the property value will be used as the JNDI name for the
Topic.
#
#--

! A sample JMS Topic with name "Topic.Sample1" and JNDI name
"STCTopic1"
Topic.Sample1=STCTopic1
! Another sample JMS Topic with name "Topic.Sample2" and JNDI name
"STCTopic2"
Topic.Sample2=STCTopic2
! Another sample JMS Topic with name "Topic.Sample3" and JNDI name
"STCTopic3"
Topic.Sample3=STCTopic3

For each Topic to configure, the property name must start with “Topic”. The startup
class uses the property name as the Topic name when creating the SeeBeyond Topic.
This Topic name is the name to be used in the e*Gate environment (the name of the
event created with the Enterprise Manager). The property value for the Topic is used as
the JNDI name for the Topic. The JNDI name is used by the EJB (via the EJB's
deployment descriptor). See the section Message Flow from e*Gate to WebLogic on
page 17 and Message Flow from WebLogic to e*Gate on page 20 for more information
on the EJB deployment descriptors.

SeeBeyond JMS Queue Destinations

The next section allows the user to specify the Queues to create and
bind to JNDI:
#--

SeeBeyond JMS Queues
This section configures the SeeBeyond JMS Queues.
The property name for each Queue entry must start with "Queue.".
For each Topic entry, the property name will be used as the JMS
Queue
name and the property value will be used as the JNDI name for the
Queue.
#
#--

! A sample JMS Queue with name "Queue.Sample1" and JNDI name
"STCQueue1"
Queue.Sample1=STCQueue1
! Another sample JMS Queue with name "Queue.Sample2" and JNDI name
"STCQueue2"
e*Way Intelligent Adapter for WebLogic User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
Queue.Sample2=STCQueue2

For each Queue to configure, the property name must start with “Queue”. The startup
class uses the property name as the Queue name when creating the SeeBeyond Queue.
This Queue name is the name to be used in the e*Gate environment (the name of the
event created with Enterprise Manager). The property value for the Queue is used as
the JNDI name for the Queue. The JNDI name is used by the EJB (via the EJB's
deployment descriptor). See the section Message Flow from e*Gate to WebLogic on
page 17 and Message Flow from WebLogic to e*Gate on page 20 for more information
on the EJB deployment descriptors.

1.4.4. SeeBeyond Sample Message Driven Beans
The previous sections, Java Naming and Directory Interface (JNDI) on page 8 and
Java Messaging Service (JMS) on page 11 describe the JNDI and JMS subsystems. This
section finally ties all the concepts that were previously discussed with those for the
SeeBeyond MDBs.

There are two MDBs that are deployed in WebLogic: MDB Subscribing to SeeBeyond
Topic and MDB Subscribing to SeeBeyond Queue.

In the following sections, there are references to two XML files. These files are used as
the MDB's deployment descriptor. These are ejb-jar.xml and weblogic-ejb-jar.xml. The
ejb-jar.xml deployment descriptor is specified by the EJB 2.0 specification. The
weblogic-ejb-jar.xml is proprietary to WebLogic. Both are defined in order to deploy
the MDB.

MDB Receiving from SeeBeyond Topic

This MDB subscribes to a SeeBeyond JMS Topic. It receives from ONLY ONE
SeeBeyond Topic. The MDB simply receives and displays the JMS messages.

The following is the deployment descriptor for this MDB (ejb-jar.xml):
<ejb-jar>

<enterprise-beans>
<message-driven>

<ejb-name>STCSubscriberMDBean</ejb-name>
<ejb-class>com.stc.eways.ejb.messagebean.STCSubscriberMDBean</ejb-class>
<transaction-type>Container</transaction-type>
<message-driven-destination>

<destination-type>javax.jms.Topic</destination-type>
<subscription-durability>Durable</subscription-durability>

</message-driven-destination>
</message-driven>

 …

</enterprise-beans>
<assembly-descriptor>

<container-transaction>
<method>

<ejb-name>STCSubscriberMDBean</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>NotSupported</trans-attribute>

</container-transaction>
…

</assembly-descriptor>
</ejb-jar>

The <ejb-name> defines the name of the MDB and is used to uniquely identify the MDB
by the container. This name is displayed in the WebLogic Administrative Console to
identify this MDB. The <ejb-class> tag defines the class that implements that MDB. The
class that implements the Topic subscribing MDB is
com.stc.eways.ejb.messagebean.STCSubscriberMDBean. Since this MDB is
e*Way Intelligent Adapter for WebLogic User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
subscribing to a SeeBeyond Topic, the <destination-type> is specified as
javax.jms.Topic. In order to create a durable subscriber MDB, the <subscription-
durability> is specified as Durable. Finally, in the <container-transaction> tag of the
<assembly-descriptor>, we define the transactional mode for the MDB. This MDB does
not use a transaction, so NotRequired in the <trans-attribute> tag is specified.

In addition to the ejb-jar.xml file, the MDB also needs to be included in the WebLogic-
ejb-jar.xml file.

<weblogic-ejb-jar>
<weblogic-enterprise-bean>

<ejb-name>STCSubscriberMDBean</ejb-name>
<message-driven-descriptor>

<pool>
<max-beans-in-free-pool>15</max-beans-in-free-pool>
<initial-beans-in-free-pool>5</initial-beans-in-free-pool>

</pool>
<destination-jndi-name>SeeBeyond.Topics.STCTopic1</destination-jndi-name>
<initial-context-factory>weblogic.jndi.WLInitialContextFactory</initial-context-

factory>
<provider-url>t3://localhost:7003</provider-url>
<connection-factory-jndi-

name>SeeBeyond.TopicConnectionFactories.TopicConnectionFactory</connection-factory-jndi-name>
</message-driven-descriptor>
<jndi-name>SeeBeyond.STCSubscriberMDBean</jndi-name>

</weblogic-enterprise-bean>
…

</weblogic-ejb-jar>

The value for <ejb-name> must match that defined in ejb-jar.xml.

The <pool> tag defines the maximum number of MDBs in the free pool and the initial
pool size by using the <max-beans-in-free-pool> and <initial-beans-in-free-pool> tags
respectively. The <destination-jndi-name> tells the container the JNDI name of the
SeeBeyond Topic that this MDB is to subscribe. Also, the <connection-factory-jndi-
name> specifies the TopicConnectionFactory to use. The Topic and
TopicConnectionFactory must have already been created and registered with JNDI by
the startup class. (See SeeBeyond WebLogic Startup Class on page 24 for details.) The
container locates these JNDI objects in its own JNDI as specified by the <initial-context-
factory> and <provider-url>.

MDB Subscribing to SeeBeyond Queue

This MDB subscribes to a SeeBeyond JMS Queue. It subscribes to ONLY ONE
SeeBeyond Queue and simply receives and displays the JMS Messages.

The following is the deployment descriptor for this MDB (ejb-jar.xml):
<ejb-jar>

<enterprise-beans>
…
<message-driven>

<ejb-name>STCReceiverMDBean</ejb-name>
<ejb-class>com.stc.eways.ejb.messagebean.STCReceiverMDBean</ejb-class>
<transaction-type>Container</transaction-type>
<message-driven-destination>

<destination-type>javax.jms.Queue</destination-type>
<subscription-durability>Durable</subscription-durability>

</message-driven-destination>
</message-driven>
…

<assembly-descriptor>
…

<container-transaction>
<method>

<ejb-name>STCReceiverMDBean</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>NotSupported</trans-attribute>

</container-transaction>

…

e*Way Intelligent Adapter for WebLogic User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
</assembly-descriptor>
</ejb-jar>

The <ejb-name> defines the name of the MDB and is used to uniquely identify the MDB
by the container. This name is displayed in the WebLogic Administrative Console to
identify this MDB. The <ejb-class> tag defines the class that implements that MDB. The
class that implements the Queue subscribing MDB is
com.stc.eways.ejb.messagebean.STCReceiverMDBean. Since this MDB is subscribing
to a SeeBeyond Queue, the user must specify the <destination-type> as
javax.jms.Queue. In order to create a durable subscriber MDB, the <subscription-
durability> is specified as Durable. Finally, in the <container-transaction> tag of the
<assembly-descriptor>, the transactional mode is defined for the MDB. This MDB does
not use a transaction, so NotRequired in the <trans-attribute> tag is specified.

In addition to the ejb-jar.xml file, the MDB also needs to be included in the weblogic-
ejb-jar.xml file:

<weblogic-ejb-jar>
<weblogic-enterprise-bean>

<ejb-name>STCReceiverMDBean</ejb-name>
<message-driven-descriptor>

<pool>
<max-beans-in-free-pool>15</max-beans-in-free-pool>
<initial-beans-in-free-pool>5</initial-beans-in-free-pool>

</pool>
<destination-jndi-name>SeeBeyond.Queues.STCQueue1</destination-jndi-name>
<initial-context-factory>weblogic.jndi.WLInitialContextFactory</initial-context-

factory>
<provider-url>t3://localhost:7003</provider-url>
<connection-factory-jndi-

name>SeeBeyond.QueueConnectionFactories.QueueConnectionFactory</connection-factory-jndi-name>
</message-driven-descriptor>
<jndi-name>SeeBeyond.STCReceiverMDBean</jndi-name>

</weblogic-enterprise-bean>
…

</weblogic-ejb-jar>

The value for <ejb-name> must match that defined in ejb-jar.xml.

The <pool> tag defines the maximum number of MDBs in the free pool and the initial
pool size by using the <max-beans-in-free-pool> and <initial-beans-in-free-pool> tags
respectively. The <destination-jndi-name> tells the container the JNDI name of the
SeeBeyond Queue that this MDB is to subscribe. Also, the <connection-factory-jndi-
name> specifies the QueueConnectionFactory to use. The Queue and
QueueConnectionFactory must have already been created and registered with JNDI by
the startup class. (See SeeBeyond WebLogic Startup Class on page 24 for details.) The
container locates these JNDI objects in its own JNDI as specified by the <initial-context-
factory> and <provider-url>.

Accessing Session Beans

Session Beans can be accessed from an e*Gate Collaboration by using the EJB ETD
Builder to create an ETD for the Session Bean. this is done by using create on the home
interface to create a remote instance, hasNext() and next() to access the instance, call
methods on the remote instance and then free resources by calling remove() when
finished.

SeeBeyond Sample Session Beans

There are two Stateless Session Beans available with the WebLogic e*Way: A Session
Bean that publishes to a SeeBeyond JMS Topic and another Session Bean that uses the
STCQueueRequestor to send and receive a message to and from SeeBeyond JMS.
e*Way Intelligent Adapter for WebLogic User’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
In the sections to follow, there are references to two XML files. These files are used as
the Session Bean's deployment descriptor; they are ejb-jar.xml and weblogic-ejb-
jar.xml. The ejb-jar.xml deployment descriptor is specified by the EJB 2.0 specification.
The weblogic-ejb-jar.xml is proprietary to WebLogic. Both need to define in order to
deploy the MDBs.

SLS Bean Publishing To SeeBeyond Topic

This Stateless Session Bean publishes to a SeeBeyond JMS Topic. It exposes the remote
method, publish(), which takes a String as an argument. The Session Bean gets the
message and publishes the message to a SeeBeyond JMS Topic.

The following is the deployment descriptor for this Session Bean (ejb-jar.xml):
<ejb-jar>

<enterprise-beans>
…

<session>
<ejb-name>STCPublisherSLSessionBean</ejb-name>
<home>com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSessionHome</home>
<remote>com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSession</remote>
<ejb-

class>com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSessionBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<resource-ref>

<res-ref-name>jms/TopicConnectionFactory</res-ref-name>
<res-type>javax.jms.TopicConnectionFactory</res-type>
<res-auth>Container</res-auth>

</resource-ref>
<resource-env-ref>

<resource-env-ref-name>jms/Topic</resource-env-ref-name>
<resource-env-ref-type>javax.jms.Topic</resource-env-ref-type>

</resource-env-ref>
</session>
…

</ejb-jar>

The <ejb-name> defines the name of the Stateless Session Bean and is used to uniquely
identify the Session Bean by the container. This name is displayed in the WebLogic
Administrative Console to identify this Bean. The <ejb-class> tag defines the class that
implements that Session Bean. The home interface for this bean is
com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSessionHome. The remote
interface for the bean is
com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSession. The class which
implements the home and remote interfaces as well as the bean itself is
com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSessionBean. The Session
Bean knows about the TopicConnectionFactory and Topic destinations via the
resource reference tags. Notice that the value for the res-ref-name tag is
jms/TopicConnectionFactory and the value for the resource-env-ref-name
environment entry is jsm/Topic. They are specified as
javax.jms.TopicConnectionFactory and javax.jms.Topic for the resource type
respectively. These resource references are another level of JNDI indirection. They
don't specify the actual JNDI names of the JMS objects, but rather they are references to
the JNDI name. So the EJB can reference jms/TopicConnectionFactory but does not
really care what the actual JNDI name is. The actual JNDI names for these references
are defined in the weblogic-ejb-jar.xml file.

In addition to the ejb-jar.xml file, the Session Bean also needs to be included in the
weblogic-ejb-jar.xml file:

<weblogic-ejb-jar>
<weblogic-enterprise-bean>

<ejb-name>STCPublisherSLSessionBean</ejb-name>
<stateless-session-descriptor>
e*Way Intelligent Adapter for WebLogic User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
<pool>
<max-beans-in-free-pool>15</max-beans-in-free-pool>
<initial-beans-in-free-pool>5</initial-beans-in-free-pool>

</pool>
</stateless-session-descriptor>
<reference-descriptor>

<resource-description>
<res-ref-name>jms/TopicConnectionFactory</res-ref-name>
<jndi-

name>SeeBeyond.TopicConnectionFactories.TopicConnectionFactory</jndi-name>
</resource-description>
<resource-env-description>

<res-env-ref-name>jms/Topic</res-env-ref-name>
<jndi-name>SeeBeyond.Topics.STCTopic2</jndi-name>

</resource-env-description>
</reference-descriptor>
<jndi-name>SeeBeyond.STCPublisherSLSessionBean</jndi-name>

</weblogic-enterprise-bean>
…

</weblogic-ejb-jar>

The value for <ejb-name> must match that defined in ejb-jar.xml.

Again, the <pool> tag defines the maximum number of Session Beans in the free pool
and the initial pool size by using the <max-beans-in-free-pool> and <initial-beans-in-
free-pool> tags respectively. The value for the jndi-name tag for the resource name
jms/TopicConnectionFactory is
SeeBeyond.TopicConnectionFactories.TopicConnectionFactory and the value for the
jndi-name tag for the jms/Topic entry is SeeBeyond.Topics.STCTopic2. These define
the resource reference name to JNDI name mappings. The Topic and
TopicConnectionFactory must have already been created and registered with JNDI by
the startup class. (See SeeBeyond WebLogic Startup Class on page 24 for details.) The
container locates these JNDI objects in its own JNDI as specified by the <initial-context-
factory> and <provider-url>.

SLS Bean Request/Reply To SeeBeyond Queue

This Stateless Session Bean sends to a SeeBeyond JMS Queue and get back a reply on
the request sent. It exposes the remote method, request(), which takes a String as an
argument. The Session Bean gets the message and sends it to a SeeBeyond JMS Queue.
The Session Bean then gets a reply from e*Gate.

The following is the deployment descriptor for this MDB (ejb-jar.xml):
<ejb-jar>

<enterprise-beans>
…

<session>
<ejb-name>STCQueueRequestorSLSessionBean</ejb-name>

<home>com.stc.eways.ejb.sessionbean.queuerequestor.STCQueueRequestorSLSessionHome</home>

<remote>com.stc.eways.ejb.sessionbean.queuerequestor.STCQueueRequestorSLSession</remote>
<ejb-

class>com.stc.eways.ejb.sessionbean.queuerequestor.STCQueueRequestorSLSessionBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<env-entry>

<env-entry-name>ReceiveTimeout</env-entry-name>
<env-entry-type>java.lang.Long</env-entry-type>
<env-entry-value>60000</env-entry-value>

</env-entry>
<resource-ref>

<res-ref-name>jms/QueueConnectionFactory</res-ref-name>
<res-type>javax.jms.QueueConnectionFactory</res-type>
<res-auth>Container</res-auth>

</resource-ref>
<resource-env-ref>

<resource-env-ref-name>jms/Queue</resource-env-ref-name>
<resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>

</resource-env-ref>
</session>
…

</ejb-jar>
e*Way Intelligent Adapter for WebLogic User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
The <ejb-name> defines the name of the Stateless Session Bean and is used to uniquely
identify the Session Bean by the container. This name is displayed in the WebLogic
Administrative Console to identify this Bean. The <ejb-class> tag defines the class that
implements that Session Bean. The home interface for this bean is
com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSessionHome. The remote interface
for the bean is com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSession. The class
which implements the home and remote interfaces as well as the bean itself is
com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSessionBean. The Session Bean
knows about the QueueConnectionFactory and Queue destinations via the resource
reference tags. Notice that the value for the res-ref-name tag is
jms/QueueConnectionFactory and the value for the resource-env-ref-name environment
entry is jsm/Queue. They are specified as javax.jms.QueueConnectionFactory and
javax.jms.Queue for the resource type respectively. These resource references are
another level of JNDI indirection. They don't specify the actual JNDI names of the JMS
objects, but rather they are references to the JNDI name. So the EJB can reference
jms/QueueConnectionFactory but does not really care what the actual JNDI name is.
The actual JNDI names for these references are defined in the weblogic-ejb-jar.xml file.

In addition to the ejb-jar.xml file, the Session Bean also needs to be included in the
weblogic-ejb-jar.xml file:

<weblogic-ejb-jar>
<weblogic-enterprise-bean>

<ejb-name>STCQueueRequestorSLSessionBean</ejb-name>
<stateless-session-descriptor>

<pool>
<max-beans-in-free-pool>15</max-beans-in-free-pool>
<initial-beans-in-free-pool>5</initial-beans-in-free-pool>

</pool>
</stateless-session-descriptor>
<reference-descriptor>

<resource-description>
<res-ref-name>jms/QueueConnectionFactory</res-ref-name>
<jndi-

name>SeeBeyond.QueueConnectionFactories.QueueConnectionFactory</jndi-name>
</resource-description>
<resource-env-description>

<res-env-ref-name>jms/Queue</res-env-ref-name>
<jndi-name>SeeBeyond.Queues.STCQueue2</jndi-name>

</resource-env-description>
</reference-descriptor>
<jndi-name>SeeBeyond.STCQueueRequestorSLSessionBean</jndi-name>

</weblogic-enterprise-bean>
…

</weblogic-ejb-jar>

The value for <ejb-name> must match that defined in ejb-jar.xml.

As before, the <pool> tag defines the maximum number of Session Beans in the free
pool and the initial pool size by using the <max-beans-in-free-pool> and <initial-beans-
in-free-pool> tags respectively. Notice that the value for the jndi-name tag for the
resource name jms/QueueConnectionFactory is
SeeBeyond.QueueConnectionFactories.QueueConnectionFactory and the value for
the jndi-name tag for the jms/Queue entry is SeeBeyond.Queues.STCQueue2. These
define the resource reference name to JNDI name mappings. The Queue and
QueueConnectionFactory must have already been created and registered with JNDI by
the startup class. (See SeeBeyond WebLogic Startup Class on page 24 for details.) The
container locates these JNDI objects in its own JNDI as specified by the <initial-context-
factory> and <provider-url>.
e*Way Intelligent Adapter for WebLogic User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
Lazy Loading

The following code is for the publish() method of the sample Topic Publisher Session
Bean. initialize() is called in order to create the necessary JMS connections to publish to
the JMS Topic. This process is known as “lazy loading.” Lazy loading is used because
JMS objects may not have been bound to the naming service during the deployment of
the EJB. This is because the SeeBeyond WebLogic startup class can not be deployed
prior to the EJB. Therefore, it may not be guaranteed that calling initalize() in
ejbCreate() creates the JMS Topic connection. WebLogic does not allow the user to
specify the deployment of a startup class prior to the deployment of an EJB.

/**
 * Send a text message to SeeBeyond JMS Topic.
 *
 * @param message The text message to send to a JMS Topic.
 *
 * @throws EJBException Upon error.
 *
 * @author SeeBeyond
 */
 public void publish (String message) throws EJBException
 {
 // If not initialized already then do it (lazy loading)
 initialize();

 if (message == null)
 throw new EJBException ("Can not publish a null message.");

 try
 {
 TextMessage textMsg = sbynJMSTopicObject.createTextMessage(message);
 sbynJMSTopicObject.publish(textMsg);
 }
 catch (Exception ex)
 {
 throw new EJBException ("Exception caught while publishing message; exception : " +
ex.toString());
 }
 }

The following code is for initialize(). Notice that the EJB's ENC is used for getting the
TopicConnectionFactory and Topic destination. See the sample Java source code for
details.

 protected void initialize () throws EJBException
 {
 if (!bInitialized)
 {
 Exception savedException = null;

 try
 {
 // Get the InitialContext
 jndiInitialContext = new InitialContext();

 // Get the TopicConnectionFactory using JNDI ENC
 TopicConnectionFactory tcf =
(TopicConnectionFactory)jndiInitialContext.lookup("java:comp/env/" +
ENV_TOPIC_CONNECTION_FACTORY);

 // Get the Topic using JNDI ENC
 Topic topic = (Topic)jndiInitialContext.lookup("java:comp/env/" +
ENV_TOPIC_DESTINATION);

 // Create our JMSTopic object
 sbynJMSTopicObject = new JMSTopicObject (tcf, topic);

 bInitialized = true;
 }
 catch (Exception ex1)
 {
 throw new EJBException(ex1);
 }
 }
 }
e*Way Intelligent Adapter for WebLogic User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
Accessing Entity Beans

Entity Beans can be accessed from an e*Gate Collaboration by using the EJB ETD
Builder to create an ETD for the Session Bean. this is done by using Creators or Finders
on the home interface to create remote instances, hasNext() and next() to access the
instance, call methods on the remote instance. By calling “remove”, the Entity Bean
instance is removed from the permanent storage, for example deleting an account from
a database (or databases).

1.4.5. SeeBeyond Sample XA Message Driven Beans
An MDB can subscribe to a SeeBeyond JMS Topic or Queue in an XA transaction. If the
transaction needs to roll back, the message received by the MDB is rolled back and re-
delivered to the MDB.

MDB Subscribing to SeeBeyond JMS Queue Transactionally

The MDB subscribes to a (ONE) SeeBeyond JMS Queue. This MDB uses Container
Managed Transaction. Because the WebLogic container optimizes to one-phase commit
(or rollback) if only one XA resource is used, the MDB must also be configured to use
another XA Resource in order to observe a two-phase commit (or rollback). Therefore,
in addition to the SeeBeyond JMS XAResource, the MDB is also deployed to use the
demo XA database resource pool. The “examples” WebLogic Server instance already
has a XA database resource pool configured. The pool's JNDI name is examples-
dataSource-demoXAPool. The MDB references this pool. (See examples-dataSource-
demoXAPool on page 43 for more information.) The MDB expects the JMS
TextMessage to contain, in its body content, a text string that looks like the following:

accountId|balance

where accountId is a String ID for the account to create in the database and balance is
the initial balance of the account to be created.

The MDB parses these values separated by the “|” (pipe) character. If XA commit
occurs successfully, both the JMS Message receive and the insert into the database get
committed. To simulate an XA rollback, create a JMS Message with an accountId of
rollback. The MDB throws an EJBException (or any EJB SystemException), if it sees
rollback as the accountId, after preparing to insert into the database table. Throwing
EJBException causes the XA rollback to happen on both the database and the
SeeBeyond JMS Queue. Upon rollback, the JMS Message is again delivered to the MDB.
The MDB can't keep any state; therefore, in order to determine whether the rollback
message has been sent again, it checks the JMSRedelivered flag on the JMS Message it
received. If the JMSRedelivered flag is set to true, the MDB does not open a connection
to the database or throw any exceptions. By not throwing an exception on a rollback
message that is being resent, a one-phase commit on the JMS Queue occurs. The MDB
must check the JMSRedelivered flag in order to prevent indefinite rollbacks.

The following is the deployment descriptor for this MDB (ejb-jar.xml):
<ejb-jar>

<enterprise-beans>
<message-driven>

<ejb-name>STCXAReceiverMDBean</ejb-name>
<ejb-class>com.stc.eways.ejb.messagebean.STCXAReceiverMDBean</ejb-class>
<transaction-type>Container</transaction-type>
<message-driven-destination>

<destination-type>javax.jms.Queue</destination-type>
e*Way Intelligent Adapter for WebLogic User’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
<subscription-durability>Durable</subscription-durability>
</message-driven-destination>
<resource-ref>

<res-ref-name>jdbc/demoXAPool</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>
</message-driven>

 …

</enterprise-beans>
<assembly-descriptor>

<container-transaction>
<method>

<ejb-name>STCXAReceiverMDBean</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
…

</assembly-descriptor>
</ejb-jar>

Notice that MDB references another resource by the reference name
jdbc/demoXAPool. This resource is of type javax.sql.DataSource. The actual JNDI
name of this resource is defined in the weblogic-ejb-jar.xml deployment descriptor.
Notice, also, that CMT (Container Managed Transaction) is specified in the
<transaction-type> for the MDB. It is also required that the <container-transaction> be
specified for the MDB in the <assembly-descriptor> tag. In <container-transaction>, it’s
specified that all methods (including the onMessage() method) are required to
participate in an XA transaction. This is done by setting <trans-attribute> to “Required”
and the <method> tag with <ejb-name> set to the name of the MDB and <method-
name> set to * (which means all methods).

In addition to the ejb-jar.xml file, the MDB also needs to be included in the weblogic-
ejb-jar.xml file:

<weblogic-ejb-jar>
<ejb-name>STCXAReceiverMDBean</ejb-name>
<message-driven-descriptor>

<pool>
<max-beans-in-free-pool>15</max-beans-in-free-pool>
<initial-beans-in-free-pool>5</initial-beans-in-free-pool>

</pool>
<destination-jndi-name>SeeBeyond.Queues.STCQueue3</destination-jndi-name>
<initial-context-factory>weblogic.jndi.WLInitialContextFactory</initial-

context-factory>
<provider-url>t3://localhost:7003</provider-url>
<connection-factory-jndi-

name>SeeBeyond.QueueConnectionFactories.XAQueueConnectionFactory</connection-factory-jndi-
name>

</message-driven-descriptor>
<reference-descriptor>

<resource-description>
<res-ref-name>jdbc/demoXAPool</res-ref-name>
<jndi-name>examples-dataSource-demoXAPool</jndi-name>

</resource-description>
</reference-descriptor>
<jndi-name>SeeBeyond.STCXAReceiverMDBean</jndi-name>

</weblogic-enterprise-bean>
…

</weblogic-ejb-jar>

The value for <ejb-name> must match the value defined in ejb-jar.xml.

The <pool> tag defines the maximum number of MDBs in the free pool and the initial
pool size by using the <max-beans-in-free-pool> and <initial-beans-in-free-pool> tags
respectively. The <destination-jndi-name> tells the container the JNDI name of the
SeeBeyond Queue to which this MDB is to subscribe. Also, the <connection-factory-
jndi-name> specifies the XAQueueConnectionFactory to use. The Queue and
XAQueueConnectionFactory must already be created and registered with JNDI by the
startup class. (See SeeBeyond WebLogic Startup Class on page 24 for details.) The
container locates these JNDI objects in its own JNDI as specified by the <initial-context-
e*Way Intelligent Adapter for WebLogic User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
factory> and <provider-url>. Notice also that the actual JNDI name for the
jdbc/demoXAPool resource is examples-dataSource-demoXAPool. This is the JNDI
name of the datasource XA pool that is already created and configured for the
“examples” WebLogic Server when WebLogic is installed.

SeeBeyond Sample XA Session Beans

A Session Bean (Stateless or Stateful) can publish a message to a SeeBeyond JMS Topic
or send a message to a SeeBeyond JMS Queue in an XA transaction. The Session Bean
accesses the SeeBeyond JMS XAConnectionFactory and Destination via the Bean's
Environment Naming Context (ENC). The XAConnectionFactory and Destination are
denoted using the <resource-ref>, <resource-env-ref>, <resource-ref-name>, and
<resource-env-ref-name> tags of the Bean's deployment descriptor.

The Session Bean must enlist the SeeBeyond JMS XA Resource to WebLogic
TransactionManager. The enlistment must be done to the current XA transaction
created by the WebLogic container.

How To Enlist SeeBeyond JMS XAResource

WebLogic provides a helper class, weblogic.transaction.TxHelper, which the EJB
developer can use to get a hold of the current transaction and to enlist the SeeBeyond
JMS XA Resource to the current transaction. The enlistment process can be done in the
Bean's ejbCreate method(s). The Session Bean relies on the SeeBeyond Startup Class
(see SeeBeyond WebLogic Startup Class) to create and bind the JMS
XAConnectionFactory and Destination prior to WebLogic deploying the EJBs. Because
WebLogic does not allow startup classes to be deployed prior to EJBs, the sample EJBs
to “lazy loading” of the JMS objects.

In the usual manner, use the XAConnectionFactory and Destination to create the
XAConnection and XASession. The Bean can get a hold of the XAConnectionFactory
and Destination via the Bean's ENC. Once the XASession has been created, get a
reference to the XAResource by calling XASession.getXAResource(); then enlist the
XAResource to the current transaction. Before you enlist, call the WebLogic static
method, TxHelper.getTransaction, to get a reference to the current transaction
allocated by the container. TxHelper.getTransaction returns a
javax.transaction.Transaction. You can then call
javax.transaction.Transaction.enlistResource passing in the XAResource retrieved for
the XASession that you had created.

SLS Bean Publishing to SeeBeyond JMS Topic Transactionally

This Stateless Session Bean publishes to a SeeBeyond JMS Topic transactionally. The
sample Session Bean uses CMT (Container Managed Transaction). As with the
transactional MDB, the Session Bean also utilizes two XA Resources in order to exhibit
a two-phase commit or rollback behavior. The sample Session Bean uses both the
SeeBeyond JMS XAResource and the demo XA database resource pool.(See examples-
dataSource-demoXAPool on page 43 for details.) This Session Bean exposes two
remote methods, createAccountAndPublish() and getBalance().
createAccountAndPublish() takes two parameters: accountId of type java.lang.String
and balance of type double. This method inserts a new record into a table of the demo
database and publishes a JMS Message to a SeeBeyond JMS Topic upon successfully
inserting the record into the table. Both the insert and the publish are treated as a single
e*Way Intelligent Adapter for WebLogic User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
XA transaction. The getBalance() method accesses the database and retrieves the
balance for the record specified by the account ID, passed to the method as argument.
This method can be used to verify that a particular record has been successfully
inserted into the database by the createAccountAndPublish() method. In fact, the
remote client tester for this Session Bean does invoke createAccountAndPublish() and
then invokes the getBalance() method immediately after the
createAccountAndPublish() method invocation returns. Upon successful commit of
the XA transaction, both the insert to the database table and the publish to the
SeeBeyond JMS Topic are committed. The getBalance() method returns the correct
balance and e*Gate receives the published message.

To simulate an XA rollback, the remote client can pass in an accountId of rollback in
the createAccountAndPublish() remote method call. The Session Bean prepares to
insert the record to the database and prepares to publish to the SeeBeyond JMS Topic.
Finally, it checks whether the accountId is “rollback.” If it is, the Session Bean throws
an EJBException (or any EJB SystemException) so that the container calls rollback on
both XA resources. When the client calls getBalance(), passing in an accountId of
rollback, the client should see that this record is not inserted. Moreover, e*Gate does not
receive the rollback message.

The following is the deployment descriptor for this Session Bean (ejb-jar.xml):
<ejb-jar>

<enterprise-beans>
…

<session>
<ejb-name>STCXAPublisherSLSessionBean</ejb-name>

<home>com.stc.eways.ejb.sessionbean.xapublisher.STCXAPublisherSLSessionHome</home>

<remote>com.stc.eways.ejb.sessionbean.xapublisher.STCXAPublisherSLSession</remote>
<ejb-

class>com.stc.eways.ejb.sessionbean.xapublisher.STCXAPublisherSLSessionBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<resource-ref>

<res-ref-name>jms/XATopicConnectionFactory</res-ref-name>
<res-type>javax.jms.XATopicConnectionFactory</res-type>
<res-auth>Container</res-auth>

</resource-ref>
<resource-ref>

<res-ref-name>jdbc/demoXAPool</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>
<resource-env-ref>

<resource-env-ref-name>jms/Topic</resource-env-ref-name>
<resource-env-ref-type>javax.jms.Topic</resource-env-ref-type>

</resource-env-ref>
</session>
…

</enterprise-beans>
<assembly-descriptor>

<container-transaction>
<method>

<ejb-name>STCXAPublisherSLSessionBean</ejb-name>
<method-name>createAccountAndPublish</method-name>

</method>
<method>

<ejb-name>STCXAPublisherSLSessionBean</ejb-name>
<method-name>getBalance</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
…

</assembly-descriptor>
</ejb-jar>

The <ejb-name> defines the name of the Stateless Session Bean and is used to uniquely
identify the Session Bean by the container. This name is displayed in the WebLogic
Administrative Console to identify this Bean. The <ejb-class> tag defines the class that
implements that Session Bean. The home interface for this bean is
e*Way Intelligent Adapter for WebLogic User’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
com.stc.eways.ejb.sessionbean.publisher.STCXAPublisherSLSessionHome. The
remote interface for the bean is
com.stc.eways.ejb.sessionbean.publisher.STCXAPublisherSLSession. The class
which implements the home and remote interfaces as well as the bean itself is
com.stc.eways.ejb.sessionbean.publisher.STCXAPublisherSLSessionBean. The
Session Bean is aware of the XATopicConnectionFactory and Topic destinations via
the resource reference tags. The value for the res-ref-name tag is
jms/XATopicConnectionFactory and the value for the resource-env-ref-name
environment entry is jsm/Topic. They are specified as
javax.jms.XATopicConnectionFactory and javax.jms.Topic for the resource type
respectively. These resource references are another level of JNDI indirection. They
don't specify the actual JNDI names of the JMS objects, but rather they are references to
the JNDI name. So, the EJB can reference jms/XATopicConnectionFactory but does not
really care what the actual JNDI name is. The actual JNDI names for these references
are defined in the weblogic-ejb-jar.xml file.

Notice also, that the SLS Bean references another resource by the reference name
jdbc/demoXAPool. This resource is of type javax.sql.DataSource. The actual JNDI
name of this resource is defined in the weblogic-ejb-jar.xml deployment descriptor.

CMT is specified in the <transaction-type> for the SLS Bean. It is also required that the
<container-transaction> be specified for the SLS Bean in the <assembly-descriptor> tag.
In <container-transaction>, it’s specified that the methods createAccountAndPublish
and getBalance are required to participate in an XA transaction. Although getBalance
is marked as required, the container optimizes for a one-phase commit or rollback
because it only accesses one XA Resource (the database XA Resource).

In addition to the ejb-jar.xml file, the Session Bean must also be included in the
weblogic-ejb-jar.xml file:

<weblogic-ejb-jar>
<ejb-name>STCXAPublisherSLSessionBean</ejb-name>
<stateless-session-descriptor>

<pool>
<max-beans-in-free-pool>15</max-beans-in-free-pool>
<initial-beans-in-free-pool>5</initial-beans-in-free-pool>

</pool>
</stateless-session-descriptor>
<reference-descriptor>

<resource-description>
<res-ref-name>jms/XATopicConnectionFactory</res-ref-name>
<jndi-

name>SeeBeyond.TopicConnectionFactories.XATopicConnectionFactory</jndi-name>
</resource-description>
<resource-description>

<res-ref-name>jdbc/demoXAPool</res-ref-name>
<jndi-name>examples-dataSource-demoXAPool</jndi-name>

</resource-description>
<resource-env-description>

<res-env-ref-name>jms/Topic</res-env-ref-name>
<jndi-name>SeeBeyond.Topics.STCTopic3</jndi-name>

</resource-env-description>
</reference-descriptor>
<jndi-name>SeeBeyond.STCXAPublisherSLSessionBean</jndi-name>

…
</weblogic-ejb-jar>

The value for <ejb-name> must match that defined in ejb-jar.xml.

The <pool> tag defines the maximum number of Session Beans in the free pool and the
initial pool size by using the <max-beans-in-free-pool> and <initial-beans-in-free-pool>
tags respectively. The value for the jndi-name tag for the resource name
jms/XATopicConnectionFactory is
SeeBeyond.TopicConnectionFactories.XATopicConnectionFactory and the value for
the jndi-name tag for the jms/Topic entry is SeeBeyond.Topics.STCTopic3. These
e*Way Intelligent Adapter for WebLogic User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
define the resource reference name to JNDI name mappings. The Topic and
XATopicConnectionFactory must already be created and registered with JNDI by the
startup class. (See SeeBeyond WebLogic Startup Class on page 24 for details.) The
container locates these JNDI objects in its own JNDI as specified by the <initial-context-
factory> and <provider-url>. Notice also that the actual JNDI name for the
jdbc/demoXAPool resource is examples-dataSource-demoXAPool. This is the JNDI
name of the datasource XA pool that is already created and configured for the examples
WebLogic Server when WebLogic is installed.

Verifying XA At Work

XA works transparently when the EJBs are running. To observe XA working, look at
the SeeBeyond JMS server log. When XA works, the user sees the XA APIs being called.
To see the XA APIs being logged, write the trace messages to a file. Figure 15 displays
the configuration file created for the SeeBeyond JMS IQ Manager:

Figure 15 SeeBeyond JMS IQ Manager - Trace Settings

The JMS server log should appear something like this :
17:49:53.299 JMS I 2676 (Session.cpp:716): XA prepare for Session sessionid=63737404, transaction
txnid=63737405
17:49:53.299 JMS I 2676 (SessionManager.cpp:694): XAPrepare() :
xid:48801:0005fa80c71858e3d95b:636f6d2e7365656265796f6e642e6a6d732e636c69656e742e53544358415265736
f75726365
…

e*Way Intelligent Adapter for WebLogic User’s Guide 41 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
17:49:53.460 JMS I 2676 (Session.cpp:775): Session::XACommit() session sessionid=63737404,
transaction txnid=63737438
17:49:53.460 JMS I 2676 (SessionManager.cpp:710): XACommit() :
xid:48801:0005fa80c71858e3d95b:636f6d2e7365656265796f6e642e6a6d732e636c69656e742e53544358415265736
f75726365

In addition, WebLogic JTA and JMS XA tracing can be turned on by doing the
following:

For WebLogic 6.1, modify the server startup script (i.e., startExamplesServer.cmd)
to include the following Java properties in the command line:

-Dweblogic.Debug=weblogic.JTAXA -Dweblogic.Debug.DebugJMSXA=true

For WebLogic 7.0, modify startExamplesServer.cmd at <BEA-
HOME>\user_projects\<domain name> to set the JTA / JMS debug flag as
follows:

JAVA_VM=-Dweblogic.Debug=weblogic.JTAXA -Dweblogic.Debug.DebugJMSXA=true

or
JAVA_OPTIONS=-Dweblogic.Debug=weblogic.JTAXA -Dweblogic.Debug.DebugJMSXA=true

Once these properties are added, restart the server. JTA and JMS XA tracing is written
to the server log which is typically located in a subdirectory with the same name as the
server, under the current domain in use. For example, given a server named “serv” the
location would be:

BEA\WebLogic7\user_projects\mydomain\serv\serv.log

####<Apr 4, 2002 5:49:52 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <5:fa80c71858e3d95b:
XA.start(rm=com.seebeyond.jms.client.STCXAResource,
xar=com.seebeyond.jms.client.STCXAResource@82e1a, flags=TMNOFLAGS)>
####<Apr 4, 2002 5:49:52 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <> <>
<000000> <ResourceDescriptor[com.seebeyond.jms.client.STCXAResource]: startResourceUse, Number of
active requests:1, last alive time:0 ms ago.>
####<Apr 4, 2002 5:49:52 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <5:fa80c71858e3d95b: XA.start DONE
(rm=com.seebeyond.jms.client.STCXAResource, xar=com.seebeyond.jms.client.STCXAResource@82e1a>
####<Apr 4, 2002 5:49:52 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <ResourceDescriptor[com.seebeyond.jms.client.STCXAResource]:
endResourceUse, Number of active requests:0>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <ResourceDescriptor[demoXAPool]: getOrCreate gets rd: name =
demoXAPool
xar = demoXAPool
registered = true
enlistStatically = false
healthy = true
lastAliveTimeMillis = -1
numActiveRequests = 0
scUrls = examplesServer+10.1.50.134:7003+examples+
>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <5:fa80c71858e3d95b: XA.start(rm=demoXAPool, xar=demoXAPool,
flags=TMNOFLAGS)>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <> <>
<000000> <ResourceDescriptor[demoXAPool]: startResourceUse, Number of active requests:1, last alive
time:0 ms ago.>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <5:fa80c71858e3d95b: XA.start DONE (rm=demoXAPool, xar=demoXAPool>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <ResourceDescriptor[demoXAPool]: endResourceUse, Number of active
requests:0>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <> <>
<000000> <5:fa80c71858e3d95b: XA.end(rm=com.seebeyond.jms.client.STCXAResource,
xar=com.seebeyond.jms.client.STCXAResource@82e1a, flags=TMSUCCESS)>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <> <>
<000000> <ResourceDescriptor[com.seebeyond.jms.client.STCXAResource]: startResourceUse, Number of
active requests:1, last alive time:0 ms ago.>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <5:fa80c71858e3d95b: XA.end DONE
(rm=com.seebeyond.jms.client.STCXAResource, xar=com.seebeyond.jms.client.STCXAResource@82e1a>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <ResourceDescriptor[com.seebeyond.jms.client.STCXAResource]:
endResourceUse, Number of active requests:0>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <> <>
<000000> <5:fa80c71858e3d95b: XA.end(rm=demoXAPool, xar=demoXAPool, flags=TMSUCCESS)>
e*Way Intelligent Adapter for WebLogic User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <> <>
<000000> <ResourceDescriptor[demoXAPool]: startResourceUse, Number of active requests:1, last alive
time:0 ms ago.>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <5:fa80c71858e3d95b: XA.end DONE (rm=demoXAPool, xar=demoXAPool>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <ResourceDescriptor[demoXAPool]: endResourceUse, Number of active
requests:0>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <> <>
<000000> <5:fa80c71858e3d95b: XA.prepare(rm=com.seebeyond.jms.client.STCXAResource,
xar=com.seebeyond.jms.client.STCXAResource@82e1a>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <> <>
<000000> <ResourceDescriptor[com.seebeyond.jms.client.STCXAResource]: startResourceUse, Number of
active requests:1, last alive time:0 ms ago.>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <5:fa80c71858e3d95b: XA.prepare DONE:ok>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <ResourceDescriptor[com.seebeyond.jms.client.STCXAResource]:
endResourceUse, Number of active requests:0>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <> <>
<000000> <5:fa80c71858e3d95b: XA.prepare(rm=demoXAPool, xar=demoXAPool>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <> <>
<000000> <ResourceDescriptor[demoXAPool]: startResourceUse, Number of active requests:1, last alive
time:0 ms ago.>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <5:fa80c71858e3d95b: XA.prepare DONE:ok>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <ResourceDescriptor[demoXAPool]: endResourceUse, Number of active
requests:0>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <> <>
<000000>
<XAResource[com.seebeyond.jms.client.STCXAResource].commit(xid=5:fa80c71858e3d95b,onePhase=false)>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <> <>
<000000> <ResourceDescriptor[com.seebeyond.jms.client.STCXAResource]: startResourceUse, Number of
active requests:1, last alive time:0 ms ago.>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <5:fa80c71858e3d95b: XA.commit DONE
(rm=com.seebeyond.jms.client.STCXAResource, xar=com.seebeyond.jms.client.STCXAResource@82e1a>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <ResourceDescriptor[com.seebeyond.jms.client.STCXAResource]:
endResourceUse, Number of active requests:0>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <> <>
<000000> <XAResource[demoXAPool].commit(xid=5:fa80c71858e3d95b,onePhase=false)>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <> <>
<000000> <ResourceDescriptor[demoXAPool]: startResourceUse, Number of active requests:1, last alive
time:0 ms ago.>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <5:fa80c71858e3d95b: XA.commit DONE (rm=demoXAPool, xar=demoXAPool>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <localhost> <examplesServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <ResourceDescriptor[demoXAPool]: endResourceUse, Number of active
requests:0>

Additional Logging and Monitoring of JTA and JMS XA

Additional logging and monitoring of JTA and JMS XA can be configured for
WebLogic Server 7.0 through the Administrator Console. From the navigation pane on
the left, expand the Servers node and select the appropriate server. Configure
monitoring and logging in the following locations:

! Select the Monitoring tab and click on the JMS and JTA subtabs.

! Select the Logging tab and click on the JTA and Debugging subtabs.

examples-dataSource-demoXAPool

examples-dataSource-demoXAPool
As part of its examples server, WebLogic pre-installs a pre-configured datasource
named examples-dataSource-demoXAPool (see Figure 16 on page 44) and associates it
with the pre-installed connection pool named demoXAPool (see Figure 17 on page 44).
This datasource is intended for use with the sample WebLogic EJBs that are deployed
with the examples server, but it is also used by the EJBs supplied with the WebLogic
e*Way. Use the figures below to verify that the WebLogic examples server is properly
set up to work with the sample e*Gate schemas/EJBs discussed in this document.
e*Way Intelligent Adapter for WebLogic User’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
Figure 16 WebLogic (7.0) Administrative Console - demoXAPool

Figure 17 WebLogic (7.0) Administrative Console - demoXAPool
e*Way Intelligent Adapter for WebLogic User’s Guide 44 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.5
Introduction Supported Operating Systems
1.5 Supported Operating Systems
The WebLogic e*Way is available on the following operating systems:

! Windows XP

! Windows 2000, Windows 2000 SP1, Windows 2000 SP2, and Windows 2000 SP3

! Windows NT 4.0 SP6a

! Solaris 2.6, 7, and 8

! HP-UX 11.0 and HP-UX 11i

! AIX 4.3.3 and 5.1

! Korean Windows XP

! Korean Windows 2000, Windows 2000 SP1, Windows 2000 SP2, and Windows
2000 SP3

! Korean Windows NT 4.0 SP6a

! Korean HP-UX 11.0

Note: WebLogic Server 7.0 is not supported with Solaris 2.6 or the Korean operating
systems.

1.6 System Requirements
To use the WebLogic e*Way, you need the following:

! e*Gate version 4.5.1 or later. The Windows XP operating system is supported by
e*Gate version 4.5.3 or later.

! A TCP/IP network connection.

! Additional disk space for e*Way executable, configuration, library, and script files.
The disk space is required on both the Participating and the Registry Host.
Additional disk space is required to process and queue the data that this e*Way
processes; the amount necessary varies based on the type and size of the data being
processed, and any external applications performing the processing.

Note: Open and review the Readme.txt for the WebLogic e*Way for any additional
requirements prior to installation. The Readme.txt is located on the Installation
CD_ROM at setup\addons\ewweblogic.

1.6.1. External System Requirements
! BEA WebLogic Server 6.1 or 7.0

Note: WebLogic Server 7.0 is not supported with Solaris 2.6 or the Korean operating
systems.
e*Way Intelligent Adapter for WebLogic User’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 2

Installation

This chapter describes the procedures for installing the WebLogic e*Way.

! “Windows” on page 46

! “UNIX” on page 47

! “Files Created by the Installation” on page 48

2.1 Windows

2.1.1. Pre-installation
! Exit all Windows programs before running the setup program, including any

antivirus applications.

! You must have Administrator privileges to install this e*Way.

2.1.2. Installation Procedure
To install the WebLogic e*Way on a Windows system

1 Log in as an Administrator to the workstation on which you are installing the
e*Way.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s Autorun feature is enabled, the setup application launches
automatically; skip ahead to step 4. Otherwise, use the Windows Explorer or the
Control Panel’s Add/Remove Applications feature to launch the file setup.exe on
the CD-ROM drive.

4 The InstallShield setup application launches. Follow the installation instructions until you
come to the Please choose the product to install dialog box.

5 Select e*Gate Integrator, then click Next.

6 Follow the on-screen instructions until you come to the second Please choose the product
to install dialog box.

7 Clear the check boxes for all selections except Add-ons, and then click Next.
e*Way Intelligent Adapter for WebLogic User’s Guide 46 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Installation UNIX
8 Follow the on-screen instructions until you come to the Select Components dialog
box.

9 Highlight (but do not check) e*Ways, and then click the Change button. The
SelectSub-components dialog box appears.

10 Select the WebLogic e*Way. Click the continue button to return to the Select
Components dialog box, then click Next.

11 Follow the rest of the on-screen instructions to install the WebLogic e*Way. Be sure to
install the e*Way files in the suggested client installation directory. The installation utility
detects and suggests the appropriate installation directory. Unless you are directed to do so by
SeeBeyond support personnel, do not change the suggested installation directory setting.

Important: ebj.jar and weblogic.jar (with ejb.jar preceeding weblogic.jar) must be added to the
classpath prior to using the EJB ETD Builder.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, please see the online Help.

For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.

2.2 UNIX

2.2.1. Pre-installation
You do not require root privileges to install this e*Way. Log in under the user name
that you wish to own the e*Way files. Be sure that this user has sufficient privileges to
create files in the e*Gate directory tree.

2.2.2. Installation Procedure
To install the WebLogic e*Way on a UNIX system

1 Log in on the workstation containing the CD-ROM drive, and insert the CD-ROM
into the drive.

2 If necessary, mount the CD-ROM drive.

3 At the shell prompt, type:

cd /cdrom

4 Start the installation script by typing:

setup.sh
e*Way Intelligent Adapter for WebLogic User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation
5 A menu of options appears. Select the Install e*Way option. Then, follow the
additional on-screen directions.

Note: Be sure to install the e*Way files in the suggested client installation directory. The
installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not
change the suggested “installation directory” setting.

6 After installation is complete, exit the installation utility and launch the Enterprise
Manager.

Important: ebj.jar and weblogic.jar (with ejb.jar preceeding weblogic.jar) must be added to the
classpath prior to using the EJB ETD Builder.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, please see the online Help
system.

For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.

2.3 Files/Directories Created by the Installation
The WebLogic e*Way installation process installs the following files (see Table 1) within
the e*Gate directory tree. Files are installed within the egate\client tree on the
Participating Host and committed to the default schema on the Registry Host.

Table 1 Files Created by the Installation

e*Gate Directory File(s)

stcewweblogic.ctl

\external\ewweblogic\classes\ stcwlstartup.jar

\external\ewweblogic\configs\startup\ STCWLStartup.properties

\configs\ejbetd\ weblogic.def
e*Way Intelligent Adapter for WebLogic User’s Guide 48 SeeBeyond Proprietary and Confidential

Chapter 3

Configuration

This chapter describes how to configure the components of the WebLogic e*Way and
WebLogic Server. Configuration for the WebLogic e*Way differs for the Synchronous using the
EJB ETD Builder and the Asynchronous Implementations which use JMS.

! Configuring the Components for Synchronous Interaction Implementation using
the EJB ETD Builder on page 49

! Configuring Components for Asynchronous Interaction Implementation using
SeeBeyond JMS on page 59

! Configuring the WebLogic Server Components on page 65

! Append Classpaths for All Collaboration Rules on page 73

3.1 Configuring the Components for Synchronous
Interaction Implementation using the EJB ETD Builder

If you have not already done so, launch the Enterprise Manager, selecting a sample
schema for Synchronous Interaction using the EJB ETD Builder. The configuration for
this implementation differs from that of the Asynchronous Interaction implementations
in that JMS is not used.

3.1.1. Multi-Mode e*Way Configuration Parameters (Synchronous
Interaction)

e*Way configuration parameters are set using the e*Way Editor.

To change Multi-Mode e*Way configuration parameters

1 In the Enterprise Manager’s Component editor, select the e*Way you want to
configure and display its properties (see Figure 18). The Executable file for Multi-
Mode e*Ways is stceway.exe.
e*Way Intelligent Adapter for WebLogic User’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration Configuring the Components for Synchronous Interaction Implementation using the EJB ETD Builder
Figure 18 Multi-mode e*Way Properties

2 In the Additional Command Line Arguments box, type any additional command
line arguments that the e*Way may require, taking care to insert them at the end of
the existing command-line string. Be careful not to change any of the default
arguments unless you have specific need to do so.

3 Under Configuration File, click New to create a new file, Find to select an existing
configuration file, or Edit to edit the currently selected file. The Editor opens to edit
settings for the Multi-Mode e*Way. The Edit Settings dialog box opens.

4 Configure the e*Way as needed for your system. Any necessary settings for a
specific sample are provided in the Implementation Chapter.

For more information about how to use the e*Way Editor, see the e*Way Editor’s online
Help or the e*Gate Integrator User’s Guide.

For more information about the Multi-Mode e*Way, see the Standard e*Way Intelligent
Adapter User’s Guide.

3.1.2. EJB ETD e*Way Connection
The EJB ETD e*Way Connection Type provides the specific parameters necessary for
JNDI and EJB access. To create and configure an EJB ETD e*Way Connection do the
following:

To create the e*Way Connection

1 In the Enterprise Manager’s Component editor, select the e*Way Connections
folder and on the palette, click on the Create a New e*Way Connection button.

2 Enter a name (for this sample, EJBETD) and create the e*Way Connection.
e*Way Intelligent Adapter for WebLogic User’s Guide 50 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration Configuring the Components for Synchronous Interaction Implementation using the EJB ETD Builder
3 Double-click the new e*Way Connection. The e*Way Connection Properties dialog
box opens (seeFigure 19).

Figure 19 e*Way Connection Properties

4 From the e*Way Connection Type drop-down box, select EJB ETD. The Event
Type “get” interval is not used in this case. Use the default setting.

5 Click New under the e*Way Connection Configuration File field.

6 The Edit Settings dialog box opens. Enter the correct parameters for your e*Way
Connection as defined in the following pages. When all parameters have been
entered, from the File menu, click Save and Promote to Run Time.

Configuring the ETD e*Way Connection

The EJB ETD e*Way connection parameters provide information for locating EJBs using
JNDI, as well as security and connection functionality. At a minimum the parameters
java.naming.provider.url and java.naming.factory.initial must be set before the
e*Way can be used. For additional information regarding JNDI specific parameters go
to http://java.sun.com/products/jndi. For further information on WebLogic specific
parameters go to http://e-docs.bea.com/wls/docs61////jndi/jndi.html.

The EJB ETD WebLogic e*Way configuration parameters are organized into the
following sections.

! General Settings on page 52

! JNDI InitialContext Settings on page 52
e*Way Intelligent Adapter for WebLogic User’s Guide 51 SeeBeyond Proprietary and Confidential

http://java.sun.com/products/jndi
http://e-docs.bea.com/wls/docs61////jndi/jndi.html
http://e-docs.bea.com/wls/docs61////jndi/jndi.html

Chapter 3 Section 3.1
Configuration Configuring the Components for Synchronous Interaction Implementation using the EJB ETD Builder
3.1.3. General Settings
This section contains the following parameters:

! Type on page 52

! Class on page 52

! Property.Tag on page 52

Type

Description
Specifies the connector type. The default value should always be used.

Required Value
EJB ETD is always the configured default for EJB ETD connections.

Class

Description
Specifies the class name of the EJB ETD connector object. The default value should
always be used.

Required Value
com.stc.eways.ejbetd.EJBETDConnector is the configured default for EJB ETD
connections.

Property.Tag

Description
Specifies the data source identity. This parameter is required by the current
EBobConnectorFactory.

Required Value
A valid data source package name.

3.1.4. JNDI InitialContext Settings
This section contains the following parameters:

! java.naming.provider.url on page 53

! java.naming.dns.url on page 53

! java.naming.factory.initial on page 53

! java.naming.factory.object on page 53

! java.naming.factory.state on page 54

! java.naming.factory.control on page 54

! java.naming.factory.url.pkgs on page 54

! java.naming.security.protocol on page 54

! java.naming.security.authentication on page 54

! java.naming.security.principal on page 55

! java.naming.security.credentials on page 55
e*Way Intelligent Adapter for WebLogic User’s Guide 52 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration Configuring the Components for Synchronous Interaction Implementation using the EJB ETD Builder
! java.naming.authoritative on page 55

! java.naming.batchsize on page 55

! java.naming.referral on page 56

! java.naming.language on page 56

! weblogic.jndi.createIntermediateContexts on page 56

! weblogic.jndi.delegate.environment on page 56

! weblogic.jndi.pinToPrimaryServer on page 56

! weblogic.jndi.provider.rjvm on page 57

! weblogic.jndi.replicateBindings on page 57

! weblogic.jndi.ssl.client.certificate on page 57

! weblogic.jndi.ssl.client.key_password on page 57

! weblogic.jndi.ssl.root.ca.fingerprints on page 57

! weblogic.jndi.ssl.server.name on page 58

! weblogic.jndi.use.iiop.service.provider on page 58

java.naming.provider.url

Description
Specifies the PROVIDER_URL (Context.PROVIDER_URL).

Required Value
The URL of the participating host (for example, t3://localhost:7001 or
http:localhost:7003). If not specified it defaults to the service provider default.

java.naming.dns.url

Description
Specifies the DNS host and domain names (Context.DNS_URL).

Required Value
A valid DNS host. If not specified it defaults to the service provider default.

java.naming.factory.initial

Description
Specifies the class name of initial context factory. Defines the implementation of
JNDI to be used by the client (Context.INITIAL_CONTEXT_FACTORY). For most
cases use the configured default.

Required Value
The class name of the initial context factory to be used.
weblogic.jndi.WLInitialContextFactory is the configured default.

java.naming.factory.object

Description
Specifies a colon-separated list of class names of object factory classes to be used
(Context.OBJECT_FACTORIES). See NamingManager.getObjectInstance() and
DirectoryManager.getObjectInstance().
e*Way Intelligent Adapter for WebLogic User’s Guide 53 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration Configuring the Components for Synchronous Interaction Implementation using the EJB ETD Builder
Required Value
Class names of object factory classes, separated by a colon.

java.naming.factory.state

Description
Specifies a colon-separated list of class names of state factory classes to be used
(Context.STATE_FACTORIES). See NamingManager.getStateToBind() and
DirectoryManager.getStateToBind().

Required Value
Class names of state factory classes, separated by a colon.

java.naming.factory.control

Description
Specifies a colon-separated list of class names of response control factory classes to
be used. (LdapContext.CONTROL_FACTORIES) See
ControlFactory.getControlInstance().

Required Value
Class names of response control factory classes, separated by a colon.

java.naming.factory.url.pkgs

Description
Specifies a colon-separated list of package prefixes to use when loading in URL
context factories. (Context.URL_PKG_PREFIXES) See
NamingManager.getURLContext().

Required Value
Package prefixes used to load URL context factories, separated by a colon.
com.sun.jndi.url is always added to end of list.

java.naming.security.protocol

Description
Specifies the security protocol to use (for example, “ssl”).

Required Value
A security protocol. If not specified it defaults to the service provider default.

java.naming.security.authentication

Description
Specifies the security authentication scheme to use.
(Context.SECURITY_AUTHENTICATION) The values are as follows:

" simple: provides user password authentication. Values must also be provided
for java.naming.security.principal and java.naming.security.credentials
parameters.

" strong: provides certificate authentication (a file name). May require the use of
X.509 certificates for the java.naming.security.credentials property. Values must
also be provided for java.naming.security.principal and
java.naming.security.credentials parameters.

" none: no required authentication.
e*Way Intelligent Adapter for WebLogic User’s Guide 54 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration Configuring the Components for Synchronous Interaction Implementation using the EJB ETD Builder
" user defined: a user-defined key for authentication. Values must also be
provided for java.naming.security.principal and
java.naming.security.credentials parameters.

Required Value
A security authentication property. Values are “simple”, “strong”, “none”, or a
user-defined key. If not specified it defaults to the service provider default.

java.naming.security.principal

Description
Specifies the identity of the principal (user) for the authentication scheme when the
java.naming.security.authentication value is set as simple or strong.

Required Value
A user name or certificate depending on the value entered for
java.naming.security.authentication. If not specified it defaults to “guest”, the
service provider default.

java.naming.security.credentials

Description
Specifies the principal's (user’s) credentials for the authentication scheme
determined by the authentication scheme value specified for
java.naming.security.authentication. If the value is set as “simple” this would be a
password. If the value is “strong” this would be certificate (a file). If the value is
user-defined then it would be the user-specified key. If the authentication value is
“none” no value is set for credentials.

Required Value
A password, certificate (file), or user-defined key depending on the value set for
java.naming.security.authentication. If not specified it defaults to “guest”, the
service provider default.

java.naming.authoritative

Description
Specifies the authoritativeness of the service requested. If “true”, the most
authoritative source is to be used is specified (for example, bypass any caches, or
bypass replicas in some systems). Otherwise, the source need not be (but can be)
authoritative.

Required Value
“true” or “false”. False is the configured default.

java.naming.batchsize

Description
Specifies the preferred batch size to use when returning data using the WebLogic
Server protocol. This is a suggestion to the provider to return the results of
operations in batches of a specified size, so that the provider can optimize its
performance and resources. It does not affect number or size of the data returned.

Required Value
A preferred batch size. If not specified it defaults to the service provider default.
e*Way Intelligent Adapter for WebLogic User’s Guide 55 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration Configuring the Components for Synchronous Interaction Implementation using the EJB ETD Builder
java.naming.referral

Description
Specifies whether referrals encountered by the service provider are to be followed
automatically. (Context.REFERRAL) The value of the property is one of the
following:

" follow: follow referrals automatically.

" ignore: ignore any encountered referrals.

" throw: throw a ReferralException when a referral is encountered.

Required Value
“follow”, “ignore”, or “throw”. If not specified it defaults to the service provider
default.

java.naming.language

Description
Specifies a colon-separated list of preferred languages to use with this service.
Languages are specified using tags defined in RFC 1766. (Context.LANGUAGE)

Required Value
Language tags as specified by RFC1776 protocol, separated by a colon. (for
example, en-US:fr:fr-CH:ja-JP-kanji) If not specified it defaults to the service
provider default.

weblogic.jndi.createIntermediateContexts

Description
Specifies the how to handle non-existent intermediate contexts. If “true” then
performing a bind, rebind, or createSubcontext with a name that specifies non-
existent intermediate contexts creates those contexts.

Required Value
“true” or “false”. If not specified it defaults to the service provider default.

weblogic.jndi.delegate.environment

Description
Specifies the JNDI environment to use for connecting to a third-party naming
service through the WebLogic Server. When specified WebLogic Server creates a
three-tier connection to a third-party naming service. Properties contained in the
Hashtable specified by this parameter are used to create an initial context for the
third-party naming service. The original initial context then delegates its work to
the third-party's initial context.

Required Value
A specified JNDI environment.

weblogic.jndi.pinToPrimaryServer

Description
Specifies whether the context stub only connects to the primary naming server.
Cluster-specific: If set as true, this parameter forces the context stub to connect to
only the server currently running at the host specified by
Context.PROVIDER_URL.
e*Way Intelligent Adapter for WebLogic User’s Guide 56 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration Configuring the Components for Synchronous Interaction Implementation using the EJB ETD Builder
Required Value
“true” or “false”. The configured default is false.

weblogic.jndi.provider.rjvm

Description
Specifies the RJVM to use as the naming server. This may be used as an alternative
to Context.PROVIDER_URL. It specifies an RJVM representing the desired server
rather than a URL.

Required Value
A specified RJVM.

weblogic.jndi.replicateBindings

Description
Cluster-specific: Specifies whether tree modifications are replicated. This only
applies when connecting to WebLogic Servers that are running in a cluster. If set to
“false”, modifications to the tree caused by bind, unbind, createSubcontext, and
destroySubcontext are not replicated. A “false” value should only be used with
extreme caution. The default setting for the parameter is “true” which grants that
any modification to the naming tree is replicated across the cluster, This ensures
that any server can act as a naming server for the entire cluster.

Required Value
“true” or “false”. The default value is true.

weblogic.jndi.ssl.client.certificate

Description
Specifies an RSA private key and a chain of certificates for client authentication.
This can be set to SERVER, a special string that refers to the server’s private key and
certificate chain. Generally, it is set to an array of InputStreams, the first element
being a DER-encoded RSA private key, followed DER_encoded X.509 certificates.
Other than first, all certificates must be an issuer certificate of the preceding
certificate.

Required Value
An RSA private key and a chain of certificates.

weblogic.jndi.ssl.client.key_password

Description
Specifies the password for an encrypted PKCS5/PKCS8 RSA private key.

Required Value
A password.

weblogic.jndi.ssl.root.ca.fingerprints

Description
Specifies valid certificate authorities using a set of fingerprints (MD5) of the
authorities' certificates encoded either as an array of byte arrays, or a comma-
separated string of hex values. When specified, the SSL connection can only be
established to a server that presents a certificate chain in which the fingerprint of
the root matches one of the fingerprints specified by the parameter value.
e*Way Intelligent Adapter for WebLogic User’s Guide 57 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration Configuring the Components for Synchronous Interaction Implementation using the EJB ETD Builder
Required Value
A set of fingerprints (MD5) of the authorities' certificates encoded either as an array
of byte arrays, or a comma-separated string of hex values.

weblogic.jndi.ssl.server.name

Description
Specifies an expected name of an SSL server as a String. The value must match the
common name field in the certificate provided by the server (typically the WebLogic
Server�s DNS name).

Required Value
A specific SSL server name.

weblogic.jndi.use.iiop.service.provider

Description
Specified when the caller intends to use the WebLogic IIOP service provider to
establish an IIOP connection to the naming server.

Required Value
USE_IIOP_SERVICE_PROVIDER to specify use.
e*Way Intelligent Adapter for WebLogic User’s Guide 58 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Configuration Configuring Components for Asynchronous Interaction Implementation using SeeBeyond JMS
3.2 Configuring Components for Asynchronous Interaction
Implementation using SeeBeyond JMS

If you have not already done so, launch the Enterprise Manager, selecting a sample
schema for Asynchronous Interaction using the SeeBeyond JMS. The configuration for
this implementation differs from that of the Synchronous Interaction implementations
in that JMS is used.

3.2.1. JMS IQ Manager
Verify that the IQ Manager Type is set to SeeBeyond JMS (see Figure 20).

Since the WebLogic e*Way publishes Events to JMS, the IQ Manager type in your
Participating Host must be set to SeeBeyond JMS.

Figure 20 SeeBeyond JMS IQ Manager

3.2.2. Multi-Mode e*Way Configuration Parameters (asynchronous
interaction)

e*Way configuration parameters are set using the e*Way Editor.

To change Multi-Mode e*Way configuration parameters

1 In the Enterprise Manager’s Component editor, select the e*Way you want to
configure and display its properties. The Executable file for Multi-mode e*Ways is
stceway.exe.

2 In the Additional Command Line Arguments box, type any additional command
line arguments that the e*Way may require, taking care to insert them at the end of
e*Way Intelligent Adapter for WebLogic User’s Guide 59 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Configuration Configuring Components for Asynchronous Interaction Implementation using SeeBeyond JMS
the existing command-line string. Be careful not to change any of the default
arguments unless you have specific need to do so.

3 Under Configuration File, click New to create a new file, Find to select an existing
configuration file, or Edit to edit the currently selected file. The Editor opens to edit
settings for the Multi-Mode e*Way. The Edit Settings dialog box opens.

4 Configure the e*Way as needed for your system. Any necessary settings for a
specific sample are provided in the Implementation Chapter.

For more information about how to use the e*Way Editor, see the e*Way Editor’s online
Help or the e*Gate Integrator User’s Guide.

For more information about the Multi-Mode e*Way, see the Standard e*Way Intelligent
Adapter User’s Guide.

3.2.3. e*Way Connection
Create and configure an e*Way Connection. The connection type should be set to
“SeeBeyond JMS”. (For the sample, the e*Way Connection is referred to as
“JMSQueueConsumer”.) Set the Event Type “get” interval to 5000.

To create and configure an SeeBeyond JMS e*Way Connection do the following:

Create the e*Way Connection

1 In the Enterprise Manager’s Component editor, select the e*Way Connections
folder and on the palette, click on the Create a New e*Way Connection button.

2 Enter a name (for this sample, conJMSQueueConsumer) and create the e*Way
Connection.

3 Double-click the new e*Way Connection. The e*Way Connection Properties dialog
box opens.

4 From the e*Way Connection Type drop-down box, select SeeBeyond JMS.Set the
Event Type “get” interval to 5000.

Click New under the e*Way Connection Configuration File field. The New JMS e*Way
Connect dialog box opens. Indicate whether the e*Way Connection is intended for:

! External: Connect to JMS IQ Manager which is not in the current schema

! Internal: Connect to JMS IQ Manager within this schema

If External is selected, the user must configure e*Way Connection, including
ServerNamer, Hostname, and Port Number.If Internal is selected, the user selects a
JMS IQ Manager from the drop-down, and the ServerName, Hostname, and Port
Number are read in from the Registry.(see Figure 21).
e*Way Intelligent Adapter for WebLogic User’s Guide 60 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Configuration Configuring Components for Asynchronous Interaction Implementation using SeeBeyond JMS
Figure 21 JMS e*Way Connection properties

5 Click Edit under the e*Way Connection Configuration File field. The Edit Settings
dialog box opens. Enter the correct parameters for your e*Way Connection as
defined in the following pages. When all parameters have been entered, from the
File menu, click Save and Promote to Run Time.

Configuring the JMS e*Way Connection parameters

For more information about the JMS e*Way Connections, see the SeeBeyond JMS IQ
Manager User’s Guide.

This section describes the JMS e*Way configuration parameters. For SeeBeyond JMS,
the e*Way Connection configuration parameters are organized into two sections:

! General Settings on page 61

! Message Service on page 63

General Settings

The General Settings control overall properties of the e*Way Connection. This section
contains the following parameters:

! Connection Type on page 62

! Transaction Type on page 62

! Delivery Mode on page 62

! Maximum Number of Bytes to read on page 63

! Default Outgoing Message Type on page 63
e*Way Intelligent Adapter for WebLogic User’s Guide 61 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Configuration Configuring Components for Asynchronous Interaction Implementation using SeeBeyond JMS
! Message Selector on page 63

! Factory Class Name on page 63

Connection Type

Description
Specifies the type of connection to be established.

For classic publication/subscription behavior, where each message is delivered to
all current subscribers to the Topic, select Topic.

For point-to-point behavior (equivalent to “subscriber pooling” for conventional
IQs), where each message is delivered to only one recipient in the pool, select
Queue.

Required Values
Topic or Queue.

Transaction Type

Description
Specifies the type of transaction to be instantiated.

Important: XA transactions for the WebLogic e*Way are managed by the WebLogic
TransactionManager, NOT the e*Gate TransactionManager. For XA
transactions make sure that the XAConnectionFactory(ies) are configured
for the startup class.

In Internal (one-phase transactional) style, a commit is necessary: The message is
not saved until the either a commit or a rollback is received.

In XA-compliant (two-phase transactional style) a two-phase commit is done: The
sender sends a prepare, and the commit occurs if and only if all receivers are
prepared. Collaborations that use Guaranteed Exactly Once Delivery (GEOD) of
Events require XA-compliant transaction types. Note: This does not affect XA
Transactions for the WebLogic e*Way. Read “Important” above.

In Non-Transactional mode, the message is automatically saved on the server; no
commit is necessary.

Required Values
Internal, non-transactional, or XA-compliant.

Delivery Mode

Description
Setting Delivery Mode to Persistent guarantees that the JMS IQ Manager stores
each message safely to disk. Setting it to Non-Persistent does not guarantee that the
message is stored safely to disk. Non-Persistent provides better performance but no
recovery.

Required Values
Non-Persistent or Persistent.

Important: If the JMS IQ Manager halts when in Non-Persistent mode, undelivered messages
are lost.
e*Way Intelligent Adapter for WebLogic User’s Guide 62 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Configuration Configuring Components for Asynchronous Interaction Implementation using SeeBeyond JMS
Maximum Number of Bytes to read

Description
Your setting for this parameter depends on the size of your messages. For example,
if you can anticipate that very large messages will be read, set this parameter
accordingly.

Required Values
1 to 200000000. The default is 5000.

Default Outgoing Message Type

Description
For messages that carry no payload, or carry only a simple TextMessage payload
(such as XML documents), you can set this option to Text.

For messages whose payload is known to be incompatible with other messaging
systems, or whose payload is unknown, keep this option set to Bytes.

Required Values
Bytes or Text.

Message Selector

Description
Specifies the Message Selector to be used for subscriptions.

Required Values
A string. The maximum length of query is set to 512 characters, including a null
terminator.

Note: This parameter does not check syntax. If the syntax is incorrect, the selector is
ignored and the subscriber is not created.

Factory Class Name

Description
For SeeBeyond e*Way Connections, keep the default setting:
com.stc.common.collabService.SBYNJMSFactory

Required Values
Default: com.stc.common.collabService.SBYNJMSFactory

Message Service

The parameters in this section specify the low-level information required to establish
the JMS. This section contains the following parameters:

! Server Name on page 64

! Host Name on page 64

! Port Number on page 64

! Maximum Message Cache Size on page 64
e*Way Intelligent Adapter for WebLogic User’s Guide 63 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Configuration Configuring Components for Asynchronous Interaction Implementation using SeeBeyond JMS
Server Name

Description
Specifies the name of the server (JMS IQ Manager) with which e*Gate
communicates.

Required Values
A valid server name.

Host Name

Description
Specifies the name of the host on which with which the server (JMS IQ Manager)
running.

Required Values
A valid host name.

Port Number

Description
Specifies the port number on which the JMS IQ Manager is running.

Required Values
A valid port number between 2000 and 1000000000.

Maximum Message Cache Size

Description
Specifies the maximum size of the message cache in bytes.

Required Values
An integer between 1 and 2147483647.

Configure the e*Way as needed for your system.
e*Way Intelligent Adapter for WebLogic User’s Guide 64 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Configuration Configuring the WebLogic Server Components
3.3 Configuring the WebLogic Server Components
The following section provides directions for configuring WebLogic Server for
asynchronous interaction (modes 2 and 3) with e*Gate (JMS). Setup directions are
provided for both WebLogic version 6.1 and 7.0.

! Configuration for WebLogic 6.1 on page 65

! Configuration for WebLogic 7.0 on page 69

3.3.1. Configuration for WebLogic 6.1
WebLogic Server 6.1 installation creates a home or root directory named “bea” by
default (this name may be changed during installation). Under the Home directory
open the wlserver6.1 directory, then open the config directory. Sample servers created
on WebLogic Server are located in the config directory (see Figure 22).

Figure 22 WebLogic Server 6.1 File Structure

1 Verify that the system classpath contains ebj.jar and weblogic.jar (with ejb.jar
preceeding weblogic.jar).

2 Copy the following files to WebLogic’s <BEA-HOME>wlserver6.1\lib directory.

stcejbweblogic.jar
stcwlstartup.jar
STCWLStartup.properties

! stcejbweblogic.jar can be found on the Installation CD-ROM in the sample folder at:

samples\ewweblogic

! stcwlstartup.jar can be found at:

eGate\Server\registry\repository\default\external\ewweblogic
\classes

! STCWLStartup.properties can be found at:

eGate\Server\registry\repository\default\external\ewweblogic
\configs\startup\

3 Modify startExamplesServer.cmd and setExamplesServer.cmd located at <WL-
HOME/config/examples. Append stcjms.jar and stcwlstartup.jar to the classpath
as follows:

For startExamplesServer.cmd
e*Way Intelligent Adapter for WebLogic User’s Guide 65 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Configuration Configuring the WebLogic Server Components
CLASSPATH=.;.\lib\weblogic_sp.jar;.\lib\weblogic.jar;.\samples\eva
l\cloudscape\lib\cloudscape.jar;.\config\examples\serverclasses;.\
lib\stcjms.jar;.\lib\stcwlstartup.jar

For setExampleEnv.cmd

setCLASSPATH=%CLASSPATH%;%WL_HOME%\lib\stcjms.jar;%WL_HOME%\lib\st
cwlstartup.jar

stcjms.jar is located in the ..\eGate\server\regestry\repository\default\classes
directory.

4 The sample EJBs have been configured to reference the T3 naming service that is
running on the localhost at port 7003. By default, each WebLogic Server instance is
installed to listen on port 7001. If your server instance is running, listening on port
7003, then you do not need to modify the deployment descriptors for the EJBs.
Otherwise, do the following to modify the deployment descriptors. Extract
stcejbweblogic.jar and edit META-INF\weblogic-ejb-jar.xml. For each Bean that is
run, find the Provider_URL tag of the deployment descriptor and change the port
number from 7003 to 7001. Then re-jar (zip) stcejbweblogic.jar.

5 Start an instance of the application server (in this case, Examples Server).

6 When the server has finished booting, start the Default Console. Go to
Deployments, Startup & Shutdown, and click on Configure a New Startup Class
(see WebLogic Server Console - Create a New StartupClass on page 67.) Enter the
following Values:

Name: Seebeyond_Startup

CLASSNAME: com.stc.eways.weblogic.startup.STCWLStartup

Deployment Order: 1000 (default)

Arguments: sbyn.wlstartup.propsfile=<WL
Home>\wlserver6.1\lib\STCWLStartup
.properties (where <WL Home> is the home directory of WebLogic
Server.)

Click Create.
e*Way Intelligent Adapter for WebLogic User’s Guide 66 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Configuration Configuring the WebLogic Server Components
Figure 23 WebLogic Server Console - Create a New StartupClass

7 Click on the Targets tab and move the new server instance from Available to
Chosen using the arrow button. Click Apply.

8 Stop and restart the server. If the startup class is successfully invoked, you should
see:

STCWLStartup - SeeBeyond startup class invoked - STCWLStartup
STCWLStartup - Successfully invoked SeeBeyond startup

9 Start the Default Console.

10 In the Console, go to Servers, examplesServer (or the new server instance). Right-
click exampleServer and select View JNDI Tree to open the JNDI Tree window.
Expand the SeeBeyond node to verify that all Seebeyond JMS objects are now
available (see Figure 24).
e*Way Intelligent Adapter for WebLogic User’s Guide 67 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Configuration Configuring the WebLogic Server Components
Figure 24 View the JNDI Tree

11 On the Console, click on Examples, Deployments, EJB. Click on Install a new EJB.
Browse to and select <WL-HOME>\wlserver6.1\lib\stcejbweblogic.jar. Click
Upload to install it on the WebLogic Administration Server.
e*Way Intelligent Adapter for WebLogic User’s Guide 68 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Configuration Configuring the WebLogic Server Components
3.3.2. Configuration for WebLogic 7.0
WebLogic Server 7.0 installation creates a home or root directory named “bea” by
default (this name may be changed during installation). Sample servers are located in
the <BEA-HOME>\weblogic700\samples\server\config directory. Servers created
by the user are located under <BEA-HOME>\user_projects\<domain name> (see
Figure 25).

Figure 25 WebLogic Server File Structure

1 Import the JMSAsynchProducersConsumers sample schema into e*Gate (see
Installing a Sample Schema on page 85).

2 Verify that the system classpath contains ejb.jar, weblogic.jar (with ejb.jar
preceeding weblogic.jar in order), stcejbweblogic.jar, and AddNumbersEJB.jar.

3 Copy the following files to the <BEA-HOME>\weblogic700\server\lib directory.

stcejbweblogic.jar
stcwlstartup.jar
STCWLStartup.properties
stcjms.jar

! stcejbweblogic.jar can be found on the Installation CD-ROM in the sample folder at:

samples\ewweblogic

! stcwlstartup.jar can be found at:

eGate\Server\registry\repository\default\external\ewweblogic
\classes

! STCWLStartup.properties can be found at:

eGate\Server\registry\repository\default\external\ewweblogic
\configs\startup

! stcjms.jar can be found at:

eGate\server\regestry\repository\default\classes
e*Way Intelligent Adapter for WebLogic User’s Guide 69 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Configuration Configuring the WebLogic Server Components
4 Modify startExamplesServer.cmd and setExamplesServer.cmd located at <BEA-
HOME>\user_projects\<domain name>, appending stcjms.jar and stcwlstartup.jar
to the classpath for each. For example:

For startExamplesServer.cmd

CLASSPATH=C:\bea\jdk131_03\lib\tools.jar;%POINTBASE_HOME%\lib\pbse
rver42ECF183.jar;%POINTBASE_HOME%\lib\pbclient42ECF183.jar;%CLIENT
_CLASSES%;%SERVER_CLASSES%;%COMMON_CLASSES%;%CLIENT_CLASSES%\utils
_common.jar;C:\bea\weblogic700\server\lib\stcjms.jar;C:\bea\weblog
ic700\server\lib\stcwlstartup.jar

For setExampleEnv.cmd

CLASSPATH=%CLIENT_CLASSES%;%SERVER_CLASSES%;%SAMPLES_HOME%\server\
eval\pointbase\lib\pbserver42ECF183.jar;%SAMPLES_HOME%\server\eval
\pointbase\lib\pbclient42ECF183.jar;%WL_HOME%\server\lib\classes12
.zip;%COMMON_CLASSES%;C:\bea\weblogic700\server\lib\stcjms.jar;C:\
bea\weblogic700\server\lib\stcwlstartup.jar

5 The sample EJBs have been configured to reference the T3 naming service that is
running on the localhost at port 7003. By default, each WebLogic Server instance is
installed to listen on port 7001. If your server instance is running, listening on port
7003, then you do not need to modify the deployment descriptors for the EJBs.
Otherwise, do the following to modify the deployment descriptors.

A Extract stcejbweblogic.jar to a temporary file and edit META-INF\weblogic-
ejb-jar.xml.

B For each Bean that is run, find the Provider_URL tag of the deployment
descriptor, change the port number from 7003 to 7001, and if necessary, change
localhost to the name of your specific computer.

C Save, re-jar (zip), and replace stcejbweblogic.jar.

6 Start an instance of the application server (in this case, the user defined
domain/server).

7 When the server has finished booting, start the Administration Console. Go to
Deployments, Startup & Shutdown, and click on Configure a New Startup Class
(see WebLogic Server Console - Create a New StartupClass on page 71.) Enter the
following Values:

Name: Seebeyond_Startup

CLASSNAME: com.stc.eways.weblogic.startup.STCWLStartup

Deployment Order: 1000 (default)

Arguments: sbyn.wlstartup.propsfile=<BEA-
HOME>\weblogic700\server\lib\STCWLStartup
.properties (where <BEA-HOME> is the home directory of the
WebLogic Server.)

Click Create and Apply.
e*Way Intelligent Adapter for WebLogic User’s Guide 70 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Configuration Configuring the WebLogic Server Components
Figure 26 WebLogic Server Console - Create a New StartupClass

8 Click on the Targets tab and move the new server instance from Available to
Chosen using the arrow button. Click Apply.

9 Stop and restart the server. To stop and restart the server do the following:

A From the navigator pane on the left, go to <mydomain>, Servers, and right-click
on <myserver> (or the new server instance). Click on Start/stop this server.

B In the pane on the right, under the Start/Stop tab, click on Shutdown this server
and Yes. The server shuts down.

C To restart the server, from the Windows Programs menu, select BEA WebLogic
Platform 7.0, User Projects, <mydomain>, Start Server.

D When prompted, enter user name and password.

If the startup class is successfully invoked, you should see the following text in the
Start Server command window:

STCWLStartup - SeeBeyond startup class invoked - STCWLStartup
STCWLStartup - Successfully invoked SeeBeyond startup

10 Start the Administration Console.

11 In the Console, go to Servers, <myserver> (or the new server instance). Right-click
exampleServer and select View JNDI Tree to open the JNDI Tree window. Expand
the SeeBeyond node to verify that all Seebeyond JMS objects are now available (see
Figure 24).
e*Way Intelligent Adapter for WebLogic User’s Guide 71 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Configuration Configuring the WebLogic Server Components
Figure 27 View the JNDI Tree

12 From the Navigator pane on the left, click on Examples, Deployments, EJB. Click on
Configure a new EJB.

Note: Before deploying the EJB, make sure that the JMS IQ Manager is running (see
Executing the Schema on page 115). It is only necessary to start the JMS IQ
Manager

A Under Step 1, click on upload it through your browser. Click Browse and select
<BEA-Home>\weblogic700\server\lib\stcejbweblogic.jar. With the file
selected, click Upload.

B Under Step 2, find stcejbweblogic.jar and click select (left of the name).

C Under Step 3, select the server instance under Available Servers. Click the
right-arrow to move the new server instance to Target Servers.

D Under Step 4, enter stcejbweblogic as the name for this application (EJB).

E Under Step 5, click the Configure and Deploy button. This installs the EJB on
the WebLogic Administration Server.

F Repeat steps 1-5 (A-E) for AddNumbersEJB.jar.
e*Way Intelligent Adapter for WebLogic User’s Guide 72 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Configuration Append Classpaths for All Collaboration Rules
3.4 Append Classpaths for All Collaboration Rules
This step applies to both Synchronous and Asynchronous implementations of the
WebLogic e*Way with e*Gate versions 4.5.2 and 4.5.3 (see note below for e*Gate 4.5.1
implementation). Before running a schema, open e*Gate Enterprise Manager to the
schema. Open the Collaboration Rules folder and open each of the Collaboration Rules
in the Collaboration Rules Editor. From the menu bar of the editor, select Tools,
Options, and in the Java Classpaths dialog box, select Append and click OK (see Figure
28). This must be done for each of the Collaboration Rules for each schema.

Figure 28 Appending the Classpath for each Collaboration Rule

Note: For e*Gate 4.5.1 the Java Classpaths dialog box does not include the option of adding
ejb.jar or weblogic.jar to the environmental classpath. In this case ejb.jar or
weblogic.jar should be added to the user classpath.
e*Way Intelligent Adapter for WebLogic User’s Guide 73 SeeBeyond Proprietary and Confidential

Chapter 4

Implementation

This chapter contains basic information for implementing the WebLogic e*Way in a
production environment. Examples are given for creating and configuring the
necessary components for the WebLogic e*Way sample schemas. For more information
on creating and configuring e*Way components see the e*Gate Integrator User’s Guide or
the e*Gate Enterprise Manager’s online Help system.

4.1 Implementation Process: Overview
The WebLogic e*Way is an application specific e*Way that allows e*Gate to connect with
WebLogic. When the e*Way Intelligent Adapter for WebLogic is installed with e*Gate
Integrator, schema’s can be created and configured using the e*Gate Enterprise
Manager. A schema is an organization scheme containing the parameters for the
components that control, route, and transform data as it moves through e*Gate in a
predefined system configuration.

The process overview presents the steps involved in creating an e*Way schema. For the
most part, these steps have already been implemented for the imported sample
schemas. To implement the WebLogic e*Way within an e*Gate system requires the
following:

! Install the WebLogic e*Way

! Create one or more e*Way components and configure their properties and
parameters.

! Define the necessary e*Way Connections and configure their properties and
parameters.

! Define Event Type Definitions (ETDs) to package the data being exchanged with
the WebLogic application server.

! Configure the IQ Manager (and/or IQs, for the EJB ETD implementations) to suit
the schemas specific needs.

! Define Collaboration Rules to extract selected information from a source Event and
process it according to the Collaboration Service associated with the Collaboration
Rules.

! Define Collaborations to receive and process Event Types and then forward the
output to other e*Gate components.
e*Way Intelligent Adapter for WebLogic User’s Guide 74 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation Sample Implementations
! Configure any other components necessary to complete the schema.

! Test the schema and make any necessary adjustments.

For additional information on creating or modifying any component within the e*Gate
Enterprise Manager, see the e*Gate Enterprise Manager’s online Help system.

4.2 Sample Implementations
The following pages contain sample implementations that serve to explain how the
components for the WebLogic e*Way are created for each mode.

! Mode 1: Synchronous Interaction, e*Gate to WebLogic Server on page 76.

! Mode 2: Asynchronous Interaction, WebLogic EJB to e*Gate JMS on page 82.

! Mode 3: Asynchronous Interaction, e*Gate JMS to WebLogic Message Driven
Bean on page 83.

The section, “Creating the Sample Schemas” on page 84 describes the various sample
schemas for the WebLogic e*Way available on the installation CD-ROM.

The Host and Control Broker are automatically created and configured during the
e*Gate installation. The default name for each is the name of the host on which the
e*Gate Enterprise Manager GUI is installed.

Note: For more information about creating or modifying any component within the e*Gate
Enterprise Manager, see the e*Gate Enterprise Manager’s online Help system.

4.3 Considerations
! Add ejb.jar and weblogic.jar to the system classpath. ejb.jar and weblogic.jar

(with ejb.jar preceeding weblogic.jar in order) must be added to the system
classpath prior to using the EJB ETD Builder for the ETD to be generated
successfully. The ejb.jar file can be found at http://java.sun.com/products/ejb/
docs.html and selecting Download Class Files.

! Classes in the default package cannot be used by the EJB ETD Builder. Users
cannot generate ETDs for EJBs in the unnamed default package. An error message
to this effect appears if this is attempted.

! XA transactions for the WebLogic e*Way are managed by the WebLogic
TransactionManager, NOT the e*Gate TransactionManager or in the e*Way
Connection parameters. For XA transactions make sure that the
XAConnectionFactory(ies) are configured for the startup class.

! weblogic.jar and the EJB interface classes must be located on the Participating
Host that runs the Collaborations using those EJBs, or can be mapped to as a remote
connection. For e*Gate 4.5.1, when using the absolute path to specify the jar files,
quotation marks are required before and after the absolute path (for example,
e*Way Intelligent Adapter for WebLogic User’s Guide 75 SeeBeyond Proprietary and Confidential

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html

Chapter 4 Section 4.4
Implementation Synchronous Interaction, e*Gate to WebLogic Server
''G:\temp\EJB\AddNumbersEJB.jar;G:\bea\wlserver6.1\lib\weblogic.jar'' for
WebLogic Server 6.1 or
''G:\temp\EJB\AddNumbersEJB.jar;G:\bea\weblogic700\server\lib
\weblogic.jar'' for WebLogic 7.0.

! Entries in the STCWLStartup.properties file must not include any spaces in the
values or property keys. Spaces are interpreted as unrecognizable characters.

! Generating ETDS for EJB local interfaces is not currently supported.

! A Readme.txt is available at ..\setup\addons\ewweblogic\readme.txt on the
installation CD-ROM, that provides the latest information on required ESRs and
recent changes to the e*Way. An additional Readme.html is available for the
WebLogic e*Way samples at ..\samples\ewweblogic\Readme.htm that contains
supplementary information on implementing the sample schemas.

4.4 Synchronous Interaction, e*Gate to WebLogic Server
Implementing the WebLogic e*Way schema in mode 1: Synchronous Interaction
requires the following four steps:

! Step 1: Build the ETD from the interface classes.

! Step 2: Configure the e*Way Connections.

! Step 3: Build Collaboration Rules to instantiate the remote interfaces.

! Step 4: Bind the e*Way Connection to the Collaboration Rules.

Step 1: Build the ETD from the interface classes

The following procedures describe how to create an Event Type Definition (ETD) using
the EJB ETD Builder.

Note: ejb.jar and weblogic.jar (with ejb.jar preceeding weblogic.jar in order) must be
placed in the system classpath for the ETD to be generated successfully.

Important: Classes in the default package cannot be used by the EJB ETD Builder.
Users cannot generate ETDs for EJBs in the unnamed default package. An
error message to this effect appears if this is attempted.

1 Select the Event Types folder on the Components tab of the e*Gate Navigator and
click the Create a New Event Type button on the palette.

2 Enter the name of the Event Type in the New Event Type Component window,
then click OK. (For this sample, the Event Type is defined as “AddNumbers”.)

3 Double-click the new Event Type to open the Event Type’s Properties dialog box.
Click the New button under the Event Type Definition field. The ETD Editor opens.
e*Way Intelligent Adapter for WebLogic User’s Guide 76 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Synchronous Interaction, e*Gate to WebLogic Server
4 From the ETD Editor File menu, click New. The New Event Type Definition
window opens displaying e*Gate’s ETD Wizards. Select the EJB Wizard and click
OK (see Figure 29).

Figure 29 New Event Type Definition - EJB ETD Wizard

5 The EJB ETD Builder Wizard opens. Click Next to continue.

6 In the Package Name field, enter the last segment of the Java package name. For
instance, the package name for com.stc.ejbetd.AddNumbers1 would be
AddNumbers1. (See Figure 30)

7 Enter the Root Node Name. This name appears as the root node of the new ETD.

Figure 30 New Event Type Definition - EJB ETD Wizard

8 Enter the Default JNDI Name. This is the default name in JNDI and can be
overridden in the Collaboration Rules. It is exposed as a node JNDI name in the
ETD. The JNDI name can usually be found in the application server specific
Deployment Descriptor of the EJB, for instance, weblogic_ejb_jar.xml.

9 The Home and Remote Interfaces page of the EJB ETD Wizard opens (see Figure
31). Enter the class file root, in the Class File Root field using the File and
Directories buttons to browse to and locate the correct file. This can be either a jar
e*Way Intelligent Adapter for WebLogic User’s Guide 77 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Synchronous Interaction, e*Gate to WebLogic Server
file or a root directory which contains class files. If the root directory is used, the
directory above the top-level java package should be entered into the Class File
Root field.

Figure 31 Home and Remote Interfaces - EJB ETD Wizard

10 Enter the home interface by clicking Browse to the right of the Home Interface
field. The Home Interface dialog box appears. Expand the root directory or jar file
and select the home interface file (see Figure 32). Click OK

Figure 32 Home Interfaces - EJB ETD Wizard

11 Enter the remote interface by clicking Browse to the right of the Remote Interface
field. The Remote Interface dialog box appears. Expand the root directory or jar file
and select the home interface file. Click OK

12 The Include method argument names checkbox is selected by default. Leave this
checked unless source code is unavailable. This allows the exact parameter names
to be displayed in the ETD (for example: “stockSymbols” and “shares”). If source
code is unavailable and the checkbox is not selected, parameters are displayed as
param1, param2, and so forth. Also, if the checkbox is not selected the Method
e*Way Intelligent Adapter for WebLogic User’s Guide 78 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Synchronous Interaction, e*Gate to WebLogic Server
Argument Names dialog box (the next page of the EJB ETD Wizard) will not be
displayed and the Recursive Expansion of Member Objects page opens. Click
Next to continue.

13 The Method Argument Names page of the EJB ETD Wizard opens. For the Source
File Root field, use the File and Directories buttons to locate and select the root
directory or jar file that contains the EJB source files. As in step 8, specify the
directory above the top-level Java package (see Figure 33). If the proper directory or
jar file is selected, the corresponding Java files are found and the home and remote
interfaces are displayed in the EJB Java Source Files field. Click Next to continue.

Figure 33 Method Argument Names - EJB ETD Wizard

14 The Recursive Expansion of Member Objects page of the EJB ETD Wizard opens.
Specify a parsing depth for the EJB ETD Builder. Select Expand to: and enter a
specific depth. For example, entering 4 would expand nodes to expose the fields of
classes referenced by the EJB to the forth level. Select Expand All to completely
expand nodes to expose all referenced classes, or Do Not Expand for no node
expansion. (See Figure 34)
e*Way Intelligent Adapter for WebLogic User’s Guide 79 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Synchronous Interaction, e*Gate to WebLogic Server
Figure 34 Recursive Expansion of Member Objects - EJB ETD Wizard

15 To exclude packages or classes from the generated ETD, such as a custom library
referenced by the EJB, enter the package or class in the Type package or class name:
field and click Add to list. The package or class is added to the Excluded packages
and classes list. To remove a package or class from exclusion, select the item in the
excluded list and click Remove. Click Next to continue

16 The Classpath page of the EJB ETD Builder Wizard opens. The Classpath dialog
box allows the user to add any additional files to the classpath. The source root or
jar file is added by default, but any additional classes referenced by the EJB can be
added to the classpath by using Add File to locate and select a file or Add Folder
and locating and selecting a folder. To remove an item from the classpath select the
item and click Remove (see Figure 35). Click Next to continue.

Figure 35 Classpath - EJB ETD Wizard
e*Way Intelligent Adapter for WebLogic User’s Guide 80 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Synchronous Interaction, e*Gate to WebLogic Server
17 The Completing the EJB Builder Wizard page opens. Review all entries. Click Back
to return to any fields that require changes. Click Finish to close the wizard and
create the ETD.

18 The new EJB ETD opens in the ETD Editor (see Figure 36). The ETD created by the
EJB ETD Builder has already been compiled. Save the ETD and promote to run
time.

Figure 36 ETD Editor - EJB ETD

Step 2: Configure the e*Way Connection

e*Way Connection configuration parameters, using the weblogic.def file, facilitate
communication between e*Gate and the JNDI directory service which connects e*Gate
applications with objects in Session/Entity Beans that actually do the work.

The connection configuration is used to locate and access the JNDI directory service
that contains the home interface of the EJB to be accessed. The EJB ETD then uses these
settings to create an Initial Context to JNDI and looks up the JNDI name in the ETD to
e*Way Intelligent Adapter for WebLogic User’s Guide 81 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.5
Implementation Asynchronous Interaction, WebLogic EJB to e*Gate JMS
find the home interface. One connection configuration can be used with multiple EJB
ETDs if they require the same settings for JNDI.

For directions on configuring the EJB ETD e*Way Connection see “EJB ETD e*Way
Connection” on page 50. For more information on e*Way Connections and parameters
see the e*Gate Integrator User’s Guide. For information about creating or modifying
any component within the e*Gate Enterprise Manager, see the e*Gate Enterprise
Manager’s online Help system.

Step 3: Build Collaboration Rules to instantiate the Remote Interfaces

The e*Gate user builds Collaborations between the EJB ETD and other ETDs, using the
tools available in the Collaboration Rules Editor to call methods and their parameters to
build query calls that return remote interfaces to carry out the required business logic
(see Creating the AddNumbers Sample Collaboration Rules on page 89).

Step 4: Bind the e*Way Connection to the Collaboration Rules

The e*Gate user enters the subscription and publication instance name, Event Type,
source and destination (specifying the e*Way Connection as either source or
destination) in the Collaboration to bind the e*Way connection to the Collaboration
Rule so that, at run time, the Collaboration knows how to find the JNDI directory
service.

4.5 Asynchronous Interaction, WebLogic EJB to e*Gate JMS

Step 1: Configure WebLogic to create JNDI entries for SeeBeyond JMS
on WebLogic Server at startup

Configure WebLogic to create JNDI entries in the directory service for SeeBeyond JMS
on WebLogic Server instance startup (see Configuring the WebLogic Server
Components on page 65).

Step 2: Create a new Session Bean from the template

Create an EJB that can publish to SeeBeyond JMS. Basic sample Session Beans,
STCPublisherSLSession and STCQueueRequestorSLSession, are provided that, when
instantiated, publish to the Queue name listed in their parameters. Users can use these
samples as a models to build their own Session Beans.

Step 3: Create a new Deployment Descriptor from the template

An EJB is a Java class that can be written following the protocols of the application
server. A deployment tool (an XML file similar to a configuration file for an e*Way) is
then used to make the EJBs available to other programs from the directory. An EJB in
itself does not have parameters. Parameters that direct the behavior of the EJB (port
e*Way Intelligent Adapter for WebLogic User’s Guide 82 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
Implementation Asynchronous Interaction, e*Gate JMS to WebLogic Message Driven Bean
number, class names for the JMS provider, and so on.) are provided and stored in the
Deployment Descriptor.

Step 4: Packaging and Deployment

Take the created Session Bean and the Deployment Descriptor and use the WebLogic
GUI to make the EJB available for external applications to call it and publish to the
SeeBeyond JMS.

4.6 Asynchronous Interaction, e*Gate JMS to WebLogic
Message Driven Bean

Step 1: Configure WebLogic to create JNDI entries for SeeBeyond JMS
on WebLogic Server at startup

Configure WebLogic to create JNDI entries for SeeBeyond JMS on WebLogic Server
instance startup. Responsibility for building the JNDI tree lies with the startup classes.
The user installs these classes in the startup area of the Console and specifies the name
of the properties file. (see Configuring the WebLogic Server Components on page 65).

Step 2: Create a new message driven bean from the template.

The user builds the EJB, implements business logic. Implementation uses JNDI to
lookup TopicConnectionFactory.

Step 3: Create a new Deployment Descriptor from the template.

An EJB is a Java class that can be written following the protocols of the application
server. A deployment tool is then used to make the EJBs available to other programs
from the directory. The Deployment Descriptor comes in two parts: General EJB
parameters (ejb-jar.xml) which defines the session type (stateless, stateful), registers the
Home and Remote classes with JNDI, and defines the JNDI name. The other side is the
Application Server vendor-specific parameters (weblogic-ejb-jar.xml) which defines
Pooling parameters and Reference Resource parameters.

Step 4: Packaging and deployment.

Take the Bean class files, Deployment Descriptors and place these in a Jar file. The Jar
files are uploaded using the WebLogic Console and the EJB is deployed, making the
class available to other applications.
e*Way Intelligent Adapter for WebLogic User’s Guide 83 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.7
Implementation Event Type Definitions
4.7 Event Type Definitions
The Event Type Definition supplied for use with the Asynchronous Interaction samples
is referred to as Blob.xsc. It resides in the JMSAsyncProducersConsumers, etd\.

Figure 37 Event Type Definition - Blob.xsc

4.8 Creating the Sample Schemas
Sample schemas for the WebLogic e*Way synchronous (EJB ETD) and asynchronous
(JMS) implementations are available in the ..\Samples\ewweblogic\ folder of the
installation CD-ROM. Import the zip files into e*Gate to create the following schemas:

! The AddNumbers Sample Schema (Synchronous, EJB ETD) on page 85
demonstrates synchronous interaction (mode 1) in which an ETD is generated from
a Session Bean’s interface classes, that represents the methods of the EJB. The e*Way
(feeder) triggers the EJB on WebLogic which runs the business logic (in this case,
adds to numbers). The reply is then published to the JMS Queue, where it is picked
up and published to a file.

! The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS) on
page 93 contains the following six samples that demonstrate the WebLogic e*Way’s
asynchronous interaction using the SeeBeyond JMS e*Way Connection. To install
e*Way Intelligent Adapter for WebLogic User’s Guide 84 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.9
Implementation The AddNumbers Sample Schema (Synchronous, EJB ETD)
the JMSAsynchProducersConsumers sample schema, import
JMSAsynchProducersConsumers.zip into the e*Gate Enterprise Manager.
" The JMSQueueSend Sample on page 94 demonstrates asynchronous

interaction (mode 3) from e*Gate to WebLogic via the SeeBeyond JMS Queue.
The e*Way picks up a message and publishes it to the SeeBeyond JMS Queue.
The message is then subscribed to by the WebLogic Message Driven Bean.
Sample input data, JMSQueueSendQFIN.qfin, is available in the WebLogic
samples directory on the Installation CD-ROM.

" The JMSQueueRequestor Sample on page 98 demonstrates asynchronous
interaction (modes 2 and 3) in which the e*Way receives a message from a
Queue and sends a reply back to the Session Bean which originated the
message.

" The JMSXAQueueSend Sample on page 102 demonstrates asynchronous
interaction (mode 3) similar to the JMSQueueSend Sample except with an XA
transaction. The e*Way picks up a message and publishes it to the SeeBeyond
JMS Queue. The message is then subscribed to by the WebLogic XA MDB.
Sample input data, JMSXAQueueSendXAQFIN.xaqfin, is available in the
WebLogic samples directory on the Installation CD-ROM.

" The JMSTopicPublish Sample on page 104 demonstrates asynchronous
interaction (mode 3) in which the e*Way picks up a message from a file and
publishes it to the SeeBeyond JMS Topic where the message is subscribed to by
the WebLogic MDB. Sample input data, JMSTopicPublishTFIN.tfin, is available
in the WebLogic samples directory on the Installation CD-ROM.

" The JMSTopicSubscribe Sample on page 108 demonstrates asynchronous
interaction (mode 2) in which the e*Way subscribes to a JMS Topic which is
published to by a WebLogic Session Bean.

" The JMSXATopicSubscribe Sample on page 112 demonstrates asynchronous
interaction (mode 3) similar to the JMSTopicSubscribe Sample except with an
XA transaction. The e*Way subscribes to an XA JMS Topic which is published to
by a WebLogic Session Bean.

4.8.1. Installing a Sample Schema
Import the schema at the startup of the e*Gate Enterprise Manager, or select “New
Schema” from the File menu of the e*Gate Enterprise. For either case, select “Create
from export:” and navigate to the zip file containing the necessary sample.

4.9 The AddNumbers Sample Schema (Synchronous, EJB
ETD)

For the most part, these components are created when the sample schema is imported
into e*Gate. The following describes how those components were created and
configured. The AddNumbers sample demonstrates synchronous interaction, taking
e*Way Intelligent Adapter for WebLogic User’s Guide 85 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.9
Implementation The AddNumbers Sample Schema (Synchronous, EJB ETD)
the Session Bean, AddNumbersEJB.jar, and creating an ETD that represents the
methods of the EJB. The sample takes two numbers, adds them, and returns the result.

The AddNumbersSchema sample is provided on the installation CD at
..\samples\ewweblogic\.

4.9.1. Running the AddNumbers Sample Schema
AddNumbersEJB is a Stateful Session EJB and must be deployed following the
standard WebLogic deployment procedures using the AddNumbersEJB.jar file.

1 Import the schema, AddNumbers.zip and setup the input directory relative to your
directory structure. The default is C:\indata

2 In the input directory create a file with the extension *.fin, and include any valid
number (integer) in it and save the file.

3 Ensure that the Properties file for the Multi-Mode e*Way refers to the location of the
weblogic.jar file and the AddNumbersEJB.jar file. Copy the AddNumbersEJB.jar
file into the bea\wlserver6.1\lib directory for WebLogic Server 6.1 or into the
bea\weblogic700\server\lib directory for WebLogic Server 7.0.

4 To recompile the Collaboration for this sample, make sure that the environmental
classpath, as set through the Collaboration Editor, refers to the location of the
weblogic.jar file.

5 Start the control broker and from the Monitor, start the Queue Manager first. Now
start all the Modules and let the schema process the EJB.

6 If the schema ran successfully, an output0.dat file appears in the default output
directory (C:\DATA) containing the sum of the input value plus 100.

Figure 38 AddNumbersSchema Sample Components

As seen in Figure 38, The Inbound e*Way reads the sample containing one number, and
publishes to the JMS Queue. The AddNumbers e*Way subscribes to the JMS Queue,
assigns the value from the sample to the input1 object, and triggers the EJB ETD
Connection, sending a request to the AddNumbers EJB Session Bean on WebLogic
Server. The EJB preforms the process, adding the values of input1 and input2 and
returns the result. The AddNumbers e*Way gets the result and publishes it to the JMS
Queue. The Outbound e*Way subscribes to the Queue and writes the result to file.

ew_Inbound
e*Way

AddNumbers EJB
Session Bean

 JMS Queue

ewAddNumbers
Multi-mode

e*Way

WebLogic Container

ew_Outbound
e*Way

AddNumbers e*Way

Inbound e*Way Outbound e*Way
GenericInEvent

GenericOutEvent

EJB ETD
Connection

AddNumbers
Connection
e*Way Intelligent Adapter for WebLogic User’s Guide 86 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.9
Implementation The AddNumbers Sample Schema (Synchronous, EJB ETD)
4.9.2. Configuring the AddNumbersSchema Sample
Once the sample has been successfully imported into e*Gate, the user must configure it
to correspond to the system as necessary.

Copy and Deploy the Sample EJB

Copy the sample EJB, AddNumbersEJB.jar to an available temporary directory (for
example C:\temp\EJB\AddNumbersEJB.jar). Open the WebLogic Console, go to
Deployments\EJB and select Install a new EJB. From the Install or Update an
Application page, use the Browse button to locate and select the Stateful Session Bean,
AddNumbersEJB.jar on your system. Click on Upload to upload the .jar.

Note: The e*Gate JMS server must be started before the deployment of EJBs using
SeeBeyond JMS to prevent the risk of message loss.

Configure STCWLStartup.properties

STCWLStartup.properties must be configured to match the localhost SeeBeyond JMS.
Go to <WL HOME>\lib and open STCWLStartup.properties to edit the JMS host and
port number to match that of the SeeBeyond JMS server.

Create and Configure the e*Ways

The AddNumbers sample schema contains three e*Ways, two of which are pass-
through (ew_Inbound and ew_Outbound) and one multi-mode (ewAddNumbers).

Configuring the Pass-Through e*Ways.

The pass-through e*Ways, ew_Inbound and ew_Outbound use the executable file
“stcewfile”, set in the e*Way’s properties (See Figure 39). For each of the e*Ways, go to
the Start Up tab of the properties file, and select Start automatically.

Configuration files for the e*Ways can be saved as default except for the following: For
ew_Outbound the General Settings must be set to AllowIncoming: NO,
AllowOutgoing: YES, and for the Outbound (send) settings, set OutputFileName to
Result%d.dat. When configuration is complete, save the Configuration files and
promote to run time.
e*Way Intelligent Adapter for WebLogic User’s Guide 87 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.9
Implementation The AddNumbers Sample Schema (Synchronous, EJB ETD)
Figure 39 e*Way Properties - Pass-through

Configuring the Multi-Mode e*Way

The Multi-mode e*Way, ewAddNumbers, uses the executable file “stceway”, set in the
e*Way’s properties. Also, go to the Start Up tab, and select Start automatically.

The Configuration file for the Multi-mode e*Way can be saved as default except for the
following setting:

The JVM Settings CLASSPATH Prepend parameter must include (append)
AddNumbers.jar and weblogic.jar.

Note: For e*Gate 4.5.1, when using the absolute path to specify the jar files, quotation
marks are required before and after the path (for example,
''G:\temp\EJB\AddNumbersEJB.jar;G:\bea\wlserver6.1\lib\weblogic.jar'' or
''G:\temp\EJB\AddNumbersEJB.jar;G:\bea\weblogic700\server\lib
\weblogic.jar'').

When configuration is complete, Save the file and select Promote to Run Time.

For more information on the Multi-Mode e*Way configuration settings see the e*Gate
Integrator User’s Guide.

Create the ETD

To create the ETD using the EJB ETD Builder follow the directions in Step 1: Build the
ETD from the interface classes on page 76.
e*Way Intelligent Adapter for WebLogic User’s Guide 88 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.9
Implementation The AddNumbers Sample Schema (Synchronous, EJB ETD)
Configure the Queue Manager

Open the IQ Manager Properties and select SeeBeyond JMS for the IQ Manager Type.
Click New for the Configuration file, save the default file and promote to run time.

Create the e*Way Connections

One e*Way Connection is created for the AddNumbers sample.

The AddNumbersConnection, e*Way Connection Type is EJB ETD. Click New under
the e*Way Connection Configuration File field. The e*Way Template Selection dialog
box opens. Select the e*Way template for WebLogic. The Configuration file for the
AddNumbersConnection e*Way Connection can be saved as default except for the
JNDI InitialContext Setting/java.naming.provider.url, for which the user must specify
the WebLogic .url, (for example: t3://localhost:7003). Save the file and promote to run
time.

For more information on the EJB ETD e*Way Connection configuration parameters see
Configuring the ETD e*Way Connection on page 51.

Creating the AddNumbers Sample Collaboration Rules

The cr_JavaPassThru Collaboration Rules Properties appear as follows when complete
(see Figure 40). The Figure displays both the General and the Collaboration Mapping
tabs.

Figure 40 Collaboration Rules Properties - Java_collabrule

The cr_AddNumbers Collaboration Rules Properties dialog box appear as follows (see
Figure 41):
e*Way Intelligent Adapter for WebLogic User’s Guide 89 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.9
Implementation The AddNumbers Sample Schema (Synchronous, EJB ETD)
Figure 41 Collaboration Rules Properties - cr_AddNumbers

From the General tab of the cr_AddNumbers Collaboration Rules Properties dialog
box, click Edit or New under the Collaboration Rules field. The Collaboration Rules
Editor opens.

Creating the Business Rules Using the Collaboration Rules Editor

Each rule is created by clicking the rule button on the Business Rules toolbar. For more
information on using the Java Collaboration Rules Editor, see the e*Gate Integrator
User’s Guide.

The cr_AddNumbers Collaboration Rules (see Figure 42) are created as follows:

1 First, on the Menu bar, select Tools, Options, and append the classpath.

2 The first rule, under retBoolean in the Business Rules window, is created by
“dragging and dropping” blobField under AddNumbersEJB, In [BlobRoot], on the
Source Events command node to input1 under AddNumbersEJB,
AddNumbersHome, create, on the Destination Events command node.

3 To create the second rule drag input2 under AddNumbersEJB,
AddNumbersHome, create, on the Destination Events command node to the Rule
Properties, Rule window and set the parameter for setinput2 as 1000.

4 For the third rule, drag the execute method under AddNumbersEJB,
AddNumbersHome, create on the Destination Events command node to the Rule
Properties, Rule window.

5 The if expression is created by clicking the if button on the Business Rules toolbar,
then dragging the hasNext method under AddNumbersEJB, AddNumbersHome,
RemoteInstances in the Source Events command node to the Rule Properties, Rule
window.
e*Way Intelligent Adapter for WebLogic User’s Guide 90 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.9
Implementation The AddNumbers Sample Schema (Synchronous, EJB ETD)
Figure 42 .Collaboration Rules Editor - AddNumbers

6 For the next rule, highlight (select) the then expression under if, and click on the
rule button. Drag the hasNext method under AddNumbersEJB,
AddNumbersHome, RemoteInstances on the Source Events command node to the
Rule Properties, Rule window.

7 The next rule is created by typing the following in the Rule Properties, Rule
window:

System.out.println("The Total amount after adding the input to a 1000 is:" +)

the drag Result under AddNumbersEJB, AddNumbersHome, RemoteInstances,
Current, on the Source Events command node into the parenthesis following the +.

8 The next rule is created by dragging Result under AddNumbersEJB,
AddNumbersHome, RemoteInstances, Current, on the Source Events command
node to the Rule Properties, Rule window.
e*Way Intelligent Adapter for WebLogic User’s Guide 91 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.9
Implementation The AddNumbers Sample Schema (Synchronous, EJB ETD)
9 The next rule is created by dragging and dropping Result, under AddNumbersEJB,
AddNumbersHome, RemoteInstances, Current, on the Source Events command
node to the blobField under AddNumbersEJB, Out [BlobRoot], on the Destination
Events command node.

10 The next rule is created by dragging and dropping the execute method, under
AddNumbersEJB, AddNumbersHome, RemoteInstances, Current, remove, on the
Source Events command node to the Rule Properties, Rule window.

11 The last rule is created by selecting else, clicking the rule button, and typing the
following in the Rule Properties, Rule window:

System.err.println("There are no more records to process")

12 When the business logic is complete, save and compile.

Creating the Collaborations

The Collaborations for the ew_Inbound and ew_Outbound e*Ways named collab_in
and collab_out appear as follows when complete (see Figure 43):

Figure 43 Collaboration Properties - ew_Inbound and ew_Outbound

The AddNumbers Collaboration named collab_AddNumbers appears as follow when
complete (see Figure 44):
e*Way Intelligent Adapter for WebLogic User’s Guide 92 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)
Figure 44 Collaboration Properties - collab_AddNumbers

4.10 The JMSAsynchProducersConsumers Sample Schema
(Asynchronous, JMS)

The JMSAsynchProducersConsumers sample schema contains six e*Ways configured
to utilize the SeeBeyond JMS e*Way Connection to deliver and receive message to and
from the Enterprise JavaBeans running inside the WebLogic container. The schema also
configures the IQ Manager as a SeeBeyond JMS IQ Manager. Sample EJBs, included in
stcejbweblogic.jar, are deployed using the configured SeeBeyond JMS IQ Manager.
There are essentially two modes of operations: e*Ways sending or publishing messages
to a Queue or Topic, and e*Ways which receive or subscribe to a Queue or a Topic.

4.10.1.Running the JMSAsynchProducersConsumers Schema
When running the JMSAsynchProducersConsumers Schema containing the six
asynchronous JMS samples do the following:

1 For directions on importing the sample see Installing a Sample Schema on page 85.
The default STCWLStartup.properties file as shipped for the e*Way do not need to
be modified for the samples to work. ejb.jar and weblogic.jar (with ejb.jar
preceeding weblogic.jar in order) must be added to the system classpath for the
ETD to be generated successfully.

2 Make sure that the sample schema is running first prior to deploying the EJBs. This
ensures that the SeeBeyond IQ Manager (SeeBeyond JMS Server) is available so that
the WebLogic container can create the connections on behalf of the MDBs during
deployment.
e*Way Intelligent Adapter for WebLogic User’s Guide 93 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)
3 Do NOT feed messages into the feeder e*Ways UNTIL the sample EJBs are
deployed. This guarantees that there are subscriber or receiver MDBs running
before messages are sent to Topics or Queues.

4 Start the WebLogic "examples" server in a console using the startup script.

5 Deploy the sample EJBs (stcejbweblogic.jar).

6 For message flow from e*Gate to WebLogic, feed messages to the feeder e*Ways.
Messages are seen on the WebLogic console. For message flow from WebLogic to
e*Gate, use the EJB sample clients to feed messages to the EJBs. Messages from the
eater e*Ways are written to files.

Note: For the STCQueueRequestorSLSessionBean sample, messages are displayed on the
sample remote client console. See The JMSQueueRequestor Sample on page 98
for details.

4.10.2.The JMSQueueSend Sample
In this sample, the JMSQueueSend e*Way (stcewfile.exe) acts as a feeder of messages to
the Queue.Sample1 Queue. The JMSQueueSend e*Way looks for files with extension
“.qfin” as input files (the input directory configured is c:\InputData). The
colJMSQueueSend Collaboration subscribes to external (for an event from a file) and
publishes to the conJMSQueueProducer JMS e*Way Connection. The
conJMSQueueProducer JMS e*Way Connection is configured to use the internal
SeeBeyond JMS IQ Manager as the JMS “server.” The colJMSQueueSend Collaboration
uses the crJMSQueueSend Collaboration Rule which copies data from the source event
to the output event. The STCReceiverMDBean MDB receives messages from the
Queue.Sample1 Queue and display the message it receives to the WebLogic console.

Figure 45 JMSQueueSend Sample Components

As seen in Figure 45, the File Feeder reads a file containing the input message event. A
feeder Collaboration subscribes from external and publishes the input message, as a
Queue.Sample1 event, to the JMS e*Way Connection. The JMS e*Way Connection is
configured to use a JMS Queue and acts as a QueueSender. Both the JMS e*Way
Connection and the MDB are configured to connect to the JMS IQ Manager as the JMS
server. (For more information on how to configure/deploy the MDB to use the
SeeBeyond JMS IQ Manager to drive the MDB, see SeeBeyond JMS on page 17.) The
STCRecieverMDBean MDB receives the method that is passed from the container, and
displays the message in standard out (the WebLogic console).

JMSQueueSend

File Feeder
JMS

Connection
Point

STCReceiver
MDB JMS Queue

JMS IQ Manager

ConnectionConnection

ConJMSQueueProducer Queue.Sample1
WebLogic Container
e*Way Intelligent Adapter for WebLogic User’s Guide 94 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)
Configuring the JMSQueueSend Sample

Once the sample has been successfully imported into e*Gate, the user must configure it
to correspond to the system as necessary. The following items should be examined.

! Each of the configuration files associated with the e*Way must be configured as
needed, saved, and promoted to run time. Specifically, the following parameters
must be addressed as shown in Table 2:

! The conJMSQueueProducer e*Way Connection parameters associated with the
JMSQueueSend sample appear as shown in Table 3:

Table 2 e*Way Configuration Parameters - JMSQueueSend

e*Way Configuration Parameters

General Settings - Set as directed, otherwise leave as default.

AllowIncoming YES

AllowOutgoing NO

PerformanceTesting NO

Outbound (send) settings - Set as directed, otherwise leave as default.

OutputDirectory C:\DATA

OutputFileName output%d.dat

MultipleRecordsPerFile YES

MaxRecordsPerFile 10000

AddEOL Yes

Poller (inbound) settings - Set as directed, otherwise leave as default.

PollDirectory C:\INDATA

InputFileMask *.qfin

PollMilliseconds 1000

RemoveEOL YES

MultipleRecordsPerFile NO

MaxBytesPerLine 4096

BytesPerLineIsFixed NO

File Records Per eGate Event 1

Performance Testing - Set as directed, otherwise leave as default.

Performance Testing 100

InboundDuplicates 1

Table 3 e*Way Connection Parameters - JMSQueueSend

e*Way Connection Parameters

General Settings - Set as directed, otherwise leave as default.

Connection Type Queue

Transaction Type Internal

SDelivery Mode Persistent
e*Way Intelligent Adapter for WebLogic User’s Guide 95 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)
For more information on e*Way Connection Configuration Parameters for JMS see
Configuring the JMS e*Way Connection parameters on page 61

The JMSQueueSend Collaboration Rules Script

The crJMSQueueSend Collaboration Rules Script appears as follows (see Figure 46):

Figure 46 Collaboration Rules Script - crJMSQueueSend

Maximum Number of Bytes to read 10000000

Default Outgoing Message Type Text

Message Selector

Factory Class Name com.stc.common.collabService.SBYNJMSFactory

Message Service - Set as directed, otherwise leave as default.

Server Name localhost_iqmgr

Host Name localhost

Port Number 24053

Maximum Message Cache Size 100

Table 3 e*Way Connection Parameters - JMSQueueSend

e*Way Connection Parameters
e*Way Intelligent Adapter for WebLogic User’s Guide 96 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)
Each new rule is created by clicking the rule button on the Business Rules toolbar. For
additional information on using the Java Collaboration Rules Editor, see the e*Gate
Integrator User’s Guide. The crJMSQueueSend business rules are created as follows:

1 “Copy blob data to Send” is created by dragging Data located under Source Events
command node and dropping it on Data located under the Destination Events.

2 “Display message to send” is created by dragging Data located under Source
Events command node into the Rule Properties, Rules window and entering code
before and after to create the following code:

System.out.println("\nSending Message:\n*****Start of Message*****\n" + getinBlob().get_Data()
+ "\n*****End of Message*****\n")

JMSQueueSend Collaboration Rule Mapping

The Collaboration Mapping associated with the crJMSQueueSend Collaboration Rule
appears as follows (see Figure 47):

Figure 47 crJMSQueueSend - Collaboration Mapping

JMSQueueSend Collaboration Properties

The colJMSQueueSend Collaboration Properties for the JMSQueueSend sample
appears as follows (see Figure 48):
e*Way Intelligent Adapter for WebLogic User’s Guide 97 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)
Figure 48 colJMSQueueSend - Collaboration Properties

4.10.3.The JMSQueueRequestor Sample
In this sample, the JMSQueueRequestor e*Way (stceway.exe) acts as a receiver of
messages to the Queue.Sample2 Queue. The colJMSQueueRequestor Collaboration
subscribes to the conJMSQueueRequestor JMS e*Way Connection on the
Queue.Sample2 Queue and manually publishes back to the conJMSQueueRequestor
JMS e*Way Connection. The conJMSQueueRequestor JMS e*Way Connection is
configured to use the internal SeeBeyond JMS IQ Manager as the JMS “server.” The
colJMSQueueSend uses the crJMSQueueRequestor Collaboration Rule which simply
constructs a reply string, by prepending the String “e*Gate got message:” to the
message it received from the Queue and manually publishing the reply back to the
Session Bean. In this case, the STCQueueRequestorSLSessionBean Session Bean acts as
the sender to the Queue.Sample2 Queue and waits for the reply from e*Gate.
Essentially, this demonstrates a request/reply usage of the QueueRequestor JMS object
by the STCQueueRequestorSLSessionBean.
e*Way Intelligent Adapter for WebLogic User’s Guide 98 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)
Figure 49 JMSQueueRequestor Sample Components

As seen in Figure 49, The stand-alone remote client,
com.stc.eways.ejb.sessionbean.queuerequestor.STCQueueRequestorSLSessionClient, is
used to invoke the request() method of the STCQueueRequestorSLSessionBean and
wait for a reply from the Session Bean. As parameters, the client takes the provider
URL of the WebLogic JNDI where the Session Bean is bound, the JNDI name of the
Session Bean (SeeBeyond.STCQueueRequestorSLSessionBean), a text message or a file
name, and the option specifying whether the third parameter is a file (file) or a text
message (msg). For example, the following command sends the message “This is a text
message”:

java com.stc.eways.ejb.sessionbean.queuerequestor.STCQueueRequestorSLSessionClient t3://
localhost:7003 SeeBeyond.STCQueueRequestorSLSessionBean "This is a text message." msg

Whereas, the following command sends the message contained in the file
c:\temp\testfile.txt:

java com.stc.eways.ejb.sessionbean.queuerequestor.STCQueueRequestorSLSessionClient t3://
localhost:7003 SeeBeyond.STCQueueRequestorSLSessionBean c:\temp\testfile.txt file

Configuring the JMSQueueRequestor Sample

Once the sample has been successfully imported into e*Gate, the user must configure it
to correspond to the information as necessary. Each of the configuration files associated
with the e*Way must be configured as needed, saved, and promoted to runtime.

! The conJMSQueueRequestor e*Way Connection Configuration settings are the
same as those in Table 3 on page 95.

! The JMSQueueRequestor Multi-mode e*Way uses the default configuration
parameters.

For more information on e*Way Connection Configuration Parameters for JMS see
Configuring the JMS e*Way Connection parameters on page 61.

JMSQueueRequestor Collaboration Rule

The crJMSQueueRequestor Collaboration Rule appears as follows (see Figure 50). For
this example, “Display Code” under View on the menubar has been enabled so that the
Java code is displayed in the Business Rules window.

JMS
Connection

Point

QueueRequestor
SLSessionBean JMS Queue

JMS IQ Manager

ConnectionConnection

ConJMSQueueRequestor Queue.Sample2
WebLogic Container

Remote
Clientreply

request request

STCQueueRequestorSLSessionClient
e*Way Intelligent Adapter for WebLogic User’s Guide 99 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)
Figure 50 Collaboration Rules - crJMSQueueRequestor

Each new rule is created by clicking the rule button on the Business Rules toolbar. For
additional information on using the Java Collaboration Rules Editor, see the e*Gate
Integrator User’s Guide. The crJMSQueueRequestor business rules are created as follows:

1 “Display request” is created by dragging Data located under Source Events
command node and dropping it on Data located under the Destination Events.

2 “Create reply message” is created dragging Data located under Source Events
command node into the Rule Properties, Rules window and entering code before
and after to create the following code:

System.out.println ("\nGot request:\n*****Start of Message*****\n" + getRequest().get_Data() +
"\n*****End of Message*****\n")

3 “Send reply” is created by Dragging send under Reply located under the
Destination Events command node into the Rule Properties, Rules window. Drag
propName located under Reply, readProperty under the Destination Events
command node into the properties for send (the last set of parenthesis) in the Rules
window. Enter JMSReplyTo as the parameter for the readProperty() propName.

JMSQueueRequestor Collaboration Rule Mapping

The Collaboration Mapping associated with the crJMSQueueRequestor Collaboration
Rule appears as follows (see Figure 51):
e*Way Intelligent Adapter for WebLogic User’s Guide 100 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)
Figure 51 crJMSQueueRequestor - Collaboration Mapping

JMSQueueRequestor Collaboration Properties

The colJMSQueueRequestor Collaboration for the JMSQueueSend sample appears as
follows (see Figure 52):

Figure 52 colJMSQueueRequestor - Collaboration Properties
e*Way Intelligent Adapter for WebLogic User’s Guide 101 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)
4.10.4.The JMSXAQueueSend Sample
In this sample, the JMSXAQueueSend e*Way (stcewfile.exe) acts as a feeder of
messages to the Queue.Sample3 Queue. The JMSXAQueueSend e*Way looks for files
with the extension .xaqfin as input files (the input directory configured is
c:\InputData). The colJMSXAQueueSend Collaboration subscribes to external (for an
event from a file) and publishes to the conJMSXAQueueProducer JMS e*Way
Connection. The conJMSXAQueueProducer JMS e*Way Connection is configured to
use the internal SeeBeyond JMS IQ Manager as the JMS server. The
colJMSXAQueueSend Collaboration uses the crJMSQueueSend Collaboration Rule
which copies data from the source event to the output event.

Figure 53 JMSXAQueueSend Sample Components

As seen in Figure 53, the File Feeder reads a file containing the input message event. A
feeder Collaboration subscribes from external and publishes the input message to the
JMS e*Way Connection as a Queue.Sample3 event. The JMS e*Way Connection is
configured to use a JMS Queue and therefore acts as a QueueSender. Both the JMS
e*Way Connection and the MDB are configured to connect to the JMS IQ Manager as
the JMS server. (For more information on how to configure/deploy the MDB to use the
SeeBeyond JMS IQ Manager to drive the MDB, see SeeBeyond JMS on page 17.) The
STCXARecieverMDBean MDB receives the message in the format
“accountID|balance,” where accountID is a String account ID and balance is a
numerical balance amount. The STCXAReceiverMDBean is configured to use the
SeeBeyond JMS XAResource and the Cloudscape sample demoXAPool to receive
messages from SeeBeyond JMS and write database records into the sample Cloudscape
database table. Checking the database to see that the record is there does not
necessarily confirm that a two phase commit has occurred.

Verify XA functionality by looking into the weblogic.log file for the examples domain,
and also the SeeBeyond IQ Manager log. For more information on how to effect proper
logging, to see XA at work, see Verifying XA At Work on page 41. XA prepares and
commits should be called on both database and SeeBeyond JMS XA Resource. To
simulate a rollback, pass an account ID of “rollback.” For more details on the
demoXAPool resource see examples-dataSource-demoXAPool on page 43. For details
on the format of the input message for the feeder e*Way see SeeBeyond Sample XA
Message Driven Beans on page 36.

Note: Before running this client, be sure that the system classpath includes ejb.jar,
weblogic.jar (with ejb.jar preceeding weblogic.jar in order), and stcejbweblogic.jar.

JMSQueueSend

File Feeder
JMS

Connection
Point

Receiver MDB
STCXAReceiverMDBean JMS Queue

JMS IQ Manager

ConnectionConnection

ConJMSQueueProducer Queue.Sample3

WebLogic Container

Demo
Database

Cloudscape

insert
e*Way Intelligent Adapter for WebLogic User’s Guide 102 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)
The result of the test is that e*Gate sees the message that the remote client sent to the
STCQueueRequestorSLSessionBean and the remote client sees the reply message
constructed by the Java Collaboration from e*Gate.

Important: XA transactions for the WebLogic e*Way are managed by the WebLogic
TransactionManager, NOT the e*Gate TransactionManager or in the e*Way
Connection parameters. For XA transactions make sure that the
XAConnectionFactory(ies) are configured for the startup class.

Configuring the JMSXAQueueSend Sample

Once the sample has been successfully imported into e*Gate, the user must configure it
to correspond to the information as necessary. The following items should be examined

! The JMSXAQueueSend e*Way Connection Configuration settings are the same as
those in Table 3 on page 95.

! Configuration parameters for the JMSXAQueueProducer e*Way Connection used
with the JMSXAQueueSend sample are the same as those in Table 2 on page 95
with the exception of the following:

! For more information on e*Way Connection Configuration Parameters for JMS see
Configuring the JMS e*Way Connection parameters on page 61.

The JMSXAQueueSend Collaboration Rule

The JMSXAQueueSend sample uses the JMSQueueSend Collaboration Rule (see
Collaboration Rules Script - crJMSQueueSend on page 96).

JMSXAQueueSend Collaboration Rule Mapping

The JMSXAQueueSend sample uses the crJMSQueueSend Collaboration Rule Mapping
(see crJMSQueueSend - Collaboration Mapping on page 97).

JMSXAQueueSend Collaboration Properties

The colJMSXAQueueSend Collaboration for the JMSXAQueueSend sample appears as
follows (see Figure 54):

Table 4 e*Way Configuration Parameters - JMSXAQueueProducer

e*Way Configuration Parameters

General Settings - See Table 2 on page 95.

Outbound (send) settings - See Table 2 on page 95.

Poller (inbound) settings - Set parameters as directed, otherwise see Table 2 on page 95.

InputFileMask *.xaqfin

Performance Testing - See Table 2 on page 95.
e*Way Intelligent Adapter for WebLogic User’s Guide 103 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)
Figure 54 colJMSXAQueueSend - Collaboration Properties

4.10.5.The JMSTopicPublish Sample
In this sample, the JMSTopicPublish e*Way (stcewfile.exe) acts as a feeder of messages
to the Topic.Sample1 Topic. The JMSTopicPublish e*Way looks for files with the
extension .tfin as input files (the configured input directory is c:\InputData). The
colJMSTopicPublish Collaboration subscribes to external (for an event from a file) and
publishes to the conJMSTopicProducer JMS e*Way Connection. The
conJMSTopicProducer JMS e*Way Connection is configured to use the internal
SeeBeyond JMS IQ Manager as the JMS server. The colJMSTopicPublish Collaboration
uses the crJMSTopicPublish Collaboration Rule which simply copies data from the
source event to the output event. The STCSubscriberMDBean MDB receives messages
from the Topic.Sample1 Topic and displays the message it receives to the WebLogic
console.

Figure 55 JMSTopicPublish Sample Components

JMSTopicPublish

File Feeder
JMS

Connection
Point

Subscriber
MDB JMS Topic

JMS IQ Manager

ConnectionConnection

conJMSTopicPublisher Topic.Sample1
WebLogic Container
e*Way Intelligent Adapter for WebLogic User’s Guide 104 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)
As seen in Figure 55, the File Feeder reads a file containing the input message event. A
feeder Collaboration subscribes from external and publishes the input message, as a
Topic.Sample1 event, to the JMS e*Way Connection. The JMS e*Way Connection is
configured to use a JMS Topic, acting as a TopicPublisher. Both the JMS e*Way
Connection and the MDB are configured to connect to the JMS IQ Manager as the JMS
server. For more information on how to configure/deploy the MDB to use the
SeeBeyond JMS IQ Manager to drive the MDB, seeSeeBeyond JMS on page 17. The
STCSubscriberMDBean MDB receives the message, passed to it by the container, and
displays the message in standard out (the WebLogic console).

Configuring the JMSTopicPublish Sample

Once the sample has been successfully imported into e*Gate, the user must configure it
to correspond to the information as necessary. The following items should be examined

! Configuration parameters for the conJMSTopicProducer e*Way Connection used
with the JMSTopicPublish sample are the same as those in Table 2 on page 95 with
the exception of the following:

! The conJMSTopicProducer e*Way Connection Parameters associated with the
JMSTopicPublish sample appear as shown in Table 6:

Table 5 e*Way Configuration Parameters - JMSTopicPublish

e*Way Configuration Parameters

General Settings - See Table 2 on page 95.

Outbound (send) settings - See Table 2 on page 95.

Poller (inbound) settings - Set as directed, otherwise see Table 2 on page 95.

InputFileMask *.tfin

Performance Testing - See Table 2 on page 95.

Table 6 e*Way Connection Parameters - conJMSTopicProducer

e*Way Connection Parameters

General Settings - Set as directed, otherwise leave as default.

Connection Type Topic

Transaction Type Internal

SDelivery Mode Persistent

Maximum Number of Bytes to read 5000

Default Outgoing Message Type Text

Message Selector

Factory Class Name com.stc.common.collabService.SBYNJMSFactory

Message Service - Set as directed, otherwise leave as default.

Server Name localhost_iqmgr

Host Name localhost

Port Number 24053

Maximum Message Cache Size 100
e*Way Intelligent Adapter for WebLogic User’s Guide 105 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)
For more information on e*Way Connection Configuration Parameters for JMS see
Configuring the JMS e*Way Connection parameters on page 61

The crJMSTopicPublish Collaboration Rule

The crJMSTopicPublish Collaboration Rule appears as follows (see Figure 56):

Figure 56 Collaboration Rules - crJMSTopicPublish

Each new rule is created by clicking the rule button on the Business Rules toolbar. For
additional information on using the Java Collaboration Rules Editor, see the e*Gate
Integrator User’s Guide. The crJMSTopic Publish business rules are created as follows:

1 “Copy blob data to Publish” is created by dragging Data located under Source
Events command node and dropping it on Data located under the Destination
Events.

2 “Display message to Publish” is created by dragging Data located under Source
Events command node into the Rule Properties, Rules window and entering code
before and after to create the following code:

System.out.println("\nMessage to Publish:\n*****Start of Message*****\n" +
getinBlob().get_Data() + "\n*****End of Message*****\n")
e*Way Intelligent Adapter for WebLogic User’s Guide 106 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)
JMSTopicPublish Collaboration Rule Mapping

The Collaboration Mapping associated with the crJMSTopicPublish Collaboration Rule
appears as follows (see Figure 57):

Figure 57 crJMSTopicPublish - Collaboration Map

JMSTopicPublish Collaboration Properties

The colJMSTopicPublish Collaboration for the JMSQueueSend sample appears as
follows (see Figure 58):

Figure 58 colJMSTopicPublish - Collaboration Properties
e*Way Intelligent Adapter for WebLogic User’s Guide 107 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)
4.10.6.The JMSTopicSubscribe Sample
In this sample, the JMSTopicSubscriber e*Way (stcewfile.exe) acts as a eater of
messages coming from the Topic.Sample2 Topic. The colJMSTopicSubscribe
Collaboration subscribes to the conJMSTopicConsumer JMS e*Way Connection on the
Topic.Sample2 Topic. The conJMSTopicConsumer JMS e*Way Connection is
configured to use the internal SeeBeyond JMS IQ Manager as the JMS server. The
colJMSTopicSubscribe uses the crJMSTopicSubscribe Collaboration Rule, which
displays the message received to standard output, and publishes the message to the
external (writes the message received to a file).

In this case, the STCPublisherSLSessionBean Session Bean acts as publisher to the
Topic.Sample2 Topic. Essentially, this demonstrates publishing messages
asynchronously from an EJB running in WebLogic to a SeeBeyond JMS Topic.

Figure 59 JMSTopicSubscribe Sample Components

The stand-alone remote client,
com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSessionClient, can be used to
invoke the publish() method of the STCPublisherSLSessionBean to send a message to
e*Gate asynchronously. The parameters taken by the client are: the provider URL of the
WebLogic JNDI where the Session Bean is bound, the JNDI name of the Session Bean
(SeeBeyond.STCPublisherSLSessionBean), a text message or a file name, and the option
specifying whether the third parameter is a file (file) or a text message (msg). For
example, the following command sends the message “This is a text message”:

java com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSessionClient t3://localhost:7003
SeeBeyond.STCPublisherSLSessionBean "This is a text message." msg

Whereas the following command sends the message contained in the file
c:\temp\testfile.txt:

java com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSessionClient t3://localhost:7003
SeeBeyond.STCPublisherSLSessionBean c:\temp\testfile.txt file

Note: Before running this client, make sure that the system classpath includes ejb.jar,
weblogic.jar (with ejb.jar preceeding weblogic.jar in order), and stcejbweblogic.jar.

The result of the test is that e*Gate sees the message that the remote client sent to the
STCPublisherSLSessionBean. The message is written to an output file.

JMSTopicSubscriber

File Eater
JMS

Connection
Point

Publisher
SLSessionBean JMS Topic

JMS IQ Manager

ConnectionConnection

conJMSTopicConsumer Topic.Sample2
WebLogic Container

Remote
Client

publishpublish

STCPublisherSLSessionClient
e*Way Intelligent Adapter for WebLogic User’s Guide 108 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)
Configuring the JMSTopicSubscribe Sample

Once the sample has been successfully imported into e*Gate, the user must configure it
to correspond to the information as necessary. The following items should be examined

! Parameters for the JMSTopicSubscribe e*Way configuration used with the
JMSTopicSubscribe sample appear as shown in Table 7:

! Configuration parameters for the conJMSTopicConsumer e*Way Connection used
with the JMSTopicSubscribe sample appear as shown in Table 8:

Table 7 e*Way Configuration Parameters - ewJMSTopicSubscribe

e*Way Configuration Parameters

General Settings - Set as directed, otherwise leave as default.

AllowIncoming NO

AllowOutgoing YES

PerformanceTesting NO

Outbound (send) settings - Set as directed, otherwise leave as default.

OutputDirectory C:\DATA

OutputFileName topicrecv%d.dat

MultipleRecordsPerFile NO

MaxRecordsPerFile 10000

AddEOL Yes

Poller (inbound) settings - Set as directed, otherwise leave as default.

PollDirectory C:\INDATA

InputFileMask *.fin

PollMilliseconds 1000

RemoveEOL YES

MultipleRecordsPerFile YES

MaxBytesPerLine 4096

BytesPerLineIsFixed NO

File Records Per eGate Event 1

Performance Testing - Set as directed, otherwise leave as default.

Performance Testing 100

InboundDuplicates 1

Table 8 e*Way Connection Parameters - conJMSTopicConsumer

e*Way Connection Parameters

General Settings - Set as directed, otherwise leave as default.

Connection Type Topic

Transaction Type Internal

SDelivery Mode Persistent

Maximum Number of Bytes to read 10000000
e*Way Intelligent Adapter for WebLogic User’s Guide 109 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)
For more information on e*Way Connection Configuration Parameters for JMS see
Configuring the JMS e*Way Connection parameters on page 61

The JMSTopicSubscribe Collaboration Rule

The crJMSTopicSubscribe Collaboration Rule appears as follows (see Figure 60):

Figure 60 Collaboration Rules - crJMSTopicSubscribe

Each new rule is created by clicking the rule button on the Business Rules toolbar. For
additional information on using the Java Collaboration Rules Editor, see the e*Gate
Integrator User’s Guide.

Default Outgoing Message Type Bytes

Message Selector

Factory Class Name com.stc.common.collabService.SBYNJMSFactory

Message Service - Set as directed, otherwise leave as default.

Server Name localhost_iqmgr

Host Name localhost

Port Number 24053

Maximum Message Cache Size 100

Table 8 e*Way Connection Parameters - conJMSTopicConsumer

e*Way Connection Parameters
e*Way Intelligent Adapter for WebLogic User’s Guide 110 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)
The crJMSTopicSubscribe business rules are created as follows:

1 “Display received JMS message” is created by dragging Data located under
Source Events command node into the Rule Properties, Rules window and entering
code before and after to create the following code:

System.out.println ("\nGot JMS Message:\n*****Start of
Message*****\n" + getinJMSTopic().get_Data() + "\n*****End of
Message*****\n")

2 “Set blob output results” is created by dragging Data located under Source Events
command node and dropping it on Data located under the Destination Events.

JMSTopicSubscribe Collaboration Rule Mapping

The Collaboration Mapping associated with the crJMSTopicSubscribe Collaboration
Rule appears as follows (see Figure 61):

Figure 61 crJMSTopicSubscribe - Collaboration Map

JMSTopicSubscribe Collaboration Properties

The colJMSTopicSubscribe Collaboration for the JMSTopicSubscribe sample appears as
follows (see Figure 62):
e*Way Intelligent Adapter for WebLogic User’s Guide 111 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)
Figure 62 colJMSTopicSubscribe - Collaboration Properties

4.10.7.The JMSXATopicSubscribe Sample
In this sample, the JMSXATopicSubscriber e*Way (stcewfile.exe) acts as an eater of
messages coming from the Topic.Sample3 Topic. The colJMSXATopicSubscribe
Collaboration subscribes to the conJMSXATopicConsumer JMS e*Way Connection on
the Topic.Sample3 Topic. The conJMSXATopicConsumer JMS e*Way Connection is
configured to use the internal SeeBeyond JMS IQ Manager as the JMS server. The
colJMSXATopicSubscribe uses the crJMSTopicSubscribe Collaboration rule which
displays the message received to standard output, and publishes the message to the
external (writes the message received to a file).

In this case, the STCXAPublisherSLSessionBean Session Bean acts as publisher to the
Topic.Sample3 Topic. Essentially, this demonstrates publishing messages
asynchronously from an EJB running in WebLogic to a SeeBeyond JMS Topic
transactionally.

Figure 63 JMSXATopicSubscribe Sample Components

The stand-alone remote client,
com.stc.eways.ejb.sessionbean.xapublisher.STCPublisherSLSessionClient, can be used

JMSXATopicSubscriber

File Eater
JMS

Connection
Point

XA Publisher
SLSessionBean JMS Topic

JMS IQ Manager

ConnectionConnection

conJMSXATopicConsumer Topic.Sample3
WebLogic Container

Remote
Client

createAccountAndPublishpublish

getBalance

Demo Database
Cloudspace

insert/select

STCPublisherSLSessionClient
e*Way Intelligent Adapter for WebLogic User’s Guide 112 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)
to invoke the createAccountAndPublish() method of the
STCXAPublisherSLSessionBean. This method takes two parameters: an account ID of
type java.lang.String and a balance of type double. The XA Session Bean inserts a
record into the demo database and publishes to the Topic with a message indicating
that the record has successfully been inserted into the database.

The parameters taken by the client are: the provider URL of the WebLogic JNDI where
the Session Bean is bound, the JNDI name of the Session Bean
(SeeBeyond.STCXAPublisherSLSessionBean), an account ID, and a balance for the
account to create in the database.

For example, the following command inserts a record into the database with the ID
“JohnDoe” and a balance of 8888.99:

java com.stc.eways.ejb.sessionbean.xapublisher.STCXAPublisherSLSessionClient t3://localhost:7003
SeeBeyond.STCXAPublisherSLSessionBean JohnDoe 8888.99

Note: Before running this client, make sure that the system classpath includes ejb.jar,
weblogic.jar (with ejb.jar preceeding weblogic.jar in order), and stcejbweblogic.jar.

After successfully inserting the record into the database and publishing to the Topic,
the remote client invokes the getBalance() method of the Session Bean to confirm that
the record has indeed been inserted successfully. Note that getBalance does NOT
confirm that a two phase commit has occurred. To see that both the database and
SeeBeyond JMS XA Resources have been used, look at the weblogic.log and SeeBeyond
JMS IQ Manager log. In addition, upon successfully publishing to the Topic, the file
eater e*Way writes a confirmation message to the file. To simulate a rollback, pass an
account ID of “rollback” in the command line for the remote client. For more details on
the demoXAPool resource see examples-dataSource-demoXAPool on page 43. For
details on the format of the input message for the feeder e*Way see SeeBeyond Sample
XA Message Driven Beans on page 36.

Important: XA transactions for the WebLogic e*Way are managed by the WebLogic
TransactionManager, NOT the e*Gate TransactionManager or in the e*Way
Connection parameters. For XA transactions make sure that the
XAConnectionFactory(ies) are configured for the startup class.

Configuring the JMSXATopicSubscribe Sample

Once the sample has been successfully imported into e*Gate, the user must configure it
to correspond to the information as necessary. The following items should be examined

! Parameters for ewJMSXATopicSubscribe e*Way configuration used with the
JMSXATopicSubscribe are the same as those in Table 7 on page 109 with the
exception of the following parameters:

Table 9 e*Way Configuration Parameters - ewJMSXATopicSubscribe

e*Way Configuration Parameters

General Settings - See Table 7 on page 109.

Outbound (send) settings - Set as directed, otherwise see Table 7 on page 109.

OutputFileName topicrecv%d.dat
e*Way Intelligent Adapter for WebLogic User’s Guide 113 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)
! Configuration parameters for the conJMSXATopicConsumer e*Way Connection
used with the JMSXATopicSubscribe sample Are the same as those that appear in
Table 7 on page 109.

For more information on e*Way Connection Configuration Parameters for JMS see
Configuring the JMS e*Way Connection parameters on page 61.

The JMSXATopicSubscribe Collaboration Rule

The JMSXATopicSubscribe Sample uses the crJMSTopicSubscribe Collaboration Rule
(see Table 60 on page 110).

JMSXATopicSubscribe Collaboration Rule Mapping

The JMSXATopicSubscribe sample uses the crJMSTopicSubscribe Collaboration
Mapping (see Table 61 on page 111).

JMSXATopicSubscribe Collaboration Properties

The colJMSTopicSubscribe Collaboration for the JMSXATopicSubscribe sample
appears as follows (see Figure 64):

Figure 64 colJMSXATopicSubscribe - Collaboration Properties

Poller (inbound) settings - See Table 7 on page 109.

Performance Testing - See Table 7 on page 109.

Table 9 e*Way Configuration Parameters - ewJMSXATopicSubscribe

e*Way Configuration Parameters
e*Way Intelligent Adapter for WebLogic User’s Guide 114 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.11
Implementation Executing the Schema
4.11 Executing the Schema
To execute a schema, do the following:

1 Go to the command line prompt, and enter the following:

stccb -rh hostname -rs schemaname -un username -up user password
-ln hostname_cb

Substitute hostname, schemaname, username, and user password as appropriate.

2 Start the e*Gate Monitor. Specify the server that contains the Control Broker you
started in Step 1 above.

3 Select the schema.

4 Verify that the Control Broker is connected. To do this, select and right-click the
Control Broker in the e*Gate Monitor, and select Status. (The message in the
Control tab of the console will indicate command succeeded and status as up.)

5 Select the IQ Manager, hostname_igmgr, then right-click and select Start. (This will
already be started if Start automatically is selected in the IQ Manager properties.)

6 Select each of the e*Ways, right-click select Start. (These will already be started if
Start automatically is selected in the e*Way’s properties.)

7 To view the output, copy the output file (specified in the Outbound e*Way
configuration file). Save to a convenient location and open.
e*Way Intelligent Adapter for WebLogic User’s Guide 115 SeeBeyond Proprietary and Confidential

Chapter 5

Java Methods

The WebLogic e*Way’s available Java methods fall into the following class.

5.1 The EJBConfiguration Class
The EJBConfiguration class provides implementation for the functionality exposed in
the EJB ETD e*Way configuration node, such as settings configured in the e*Way
Connection.

java.lang.Object
com.stc.ejbetd.EJBConfiguration

public final class EJBConfiguration

Extends java.lang.Object.

Methods of the EJBConfiguration Class

These methods are described in detail on the following pages:

getInitialContext

Description

Gets the JNDI Initial Context. Looks up the initial context 'on demand' if there is no
initial context set yet.

Syntax

public javax.naming.InitialContext getInitialContext()

Parameters

None

getInitialContext on page 116 setInitialContext on page 118

getInitialContextProperties on page 117 setInitialContextProperties on page 118

lookupInitialContext on page 117
e*Way Intelligent Adapter for WebLogic User’s Guide 116 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Java Methods The EJBConfiguration Class
Return Values

javax.naming.InitialContext
The JNDI initial context.

Throws

javax.naming.NamingException

getInitialContextProperties

Description

Gets the JNDI Initial Context Properties. These are used in to look up the initial context
with the configured JNDI provider. The default properties are read in from the
connection configuration. They can be overridden/added to in the Collaboration.

Syntax

public java.util.Hashtable getInitialContextProperties()
Parameters

None.

Return Values

java.util.Hashtable

Throws

None.

lookupInitialContext

Description

Perform a lookup of the JNDI initial context, using the properties set in the Connection
Configuration or overridden/set in the InitialContextProperties node. Assigns the
resulting initial context to the initial context field. This method is executed
automatically 'on demand' upon the first EJB Home interface method call. If the
InitialContextProperties are changed sub- sequently, lookupInitialContext has to be
called manually to make use of the new configuration.

Syntax

public void lookupInitialContext()

Parameters

None.

Return Values

None.
e*Way Intelligent Adapter for WebLogic User’s Guide 117 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Java Methods The EJBConfiguration Class
Throws

javax.naming.NamingException

setInitialContext

Description

Set the Initial Context to a user obtained instance of it.

Syntax

public void setInitialContext(javax.naming.InitialContext
anInitialContext)

Parameters

Return Values

None.

Throws

None.

setInitialContextProperties

Description

Set the Initial Context Properties used with lookupInitialContext.

Syntax

public void setInitialContextProperties(java.util.Hashtable
initialContextProperties)

Parameters

Return Values

None.

Throws

None.

Name Type Description

 anInitialContext javax.naming.Init
ialContext

the user obtained instance of an
initialContext

Name Type Description

initialContextProperties java.util.Hashtable The new properties to use with the
next call of lookupInitialContext.
e*Way Intelligent Adapter for WebLogic User’s Guide 118 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Java Methods The EJBConfiguration Class
Overriding the JNDI Name

The JNDIName node, for which the default is specified in the Wizard, is generated into
the ETD. This setting can be overridden in the Collaboration. If no default is set by the
user, it must be set in the Collaboration before accessing any of the methods in the EJB
Home interface.

The default JNDI name generated by the wizard can be overridden by setting the
JNDIName node in the Collaboration Rule. Similarly, the settings to contact the JNDI
provider are read in from the connection configuration and made available in the
Configuration/InitialContextProperties node so that further details can be added to
this Hashtable programatically (for example,
...getInitialContextProperties().put("myproperty", "myvalue")). The
lookupinitialcontext() method only has to be called explicitly if a valid initialcontext is
already in place and the user wants to switch to another JNDI provider dynamically in
the middle of a Collaboration Rule. Otherwise, upon first access to the home interface
or InitialContext node, the initial context is automatically created with all the details
provided in the InitialContextProperties at that time. The InitialContext node is a
context to the JNDI provider and can be used to access other entries or functionality in
JNDI.
e*Way Intelligent Adapter for WebLogic User’s Guide 119 SeeBeyond Proprietary and Confidential

Index
Index

A
asynchronous interaction 14, 16

C
configuration parameters

General Settings 61
Connection Type 62
Default Outgoing Message Type 63
Delivery Mode 62
Maximum Number of Bytes to read 63
Message Selector 63
SeeBeyond Message Service Factory Class

Name 63
Transaction Type 62

Message Service
 63
Host Name 64
Maximum Message Cache Size 64
Port Number 64
Server Name 64

considerations 75

D
directories

created by installation 48

E
e*Way Connection

JMS parameters 61
SeeBeyond JMS configuration 60

EJB ETD Builder 76
wizard 77

EJB ETD components
configuring 49

EJBConfiguration Class 116
methods

getInitialContext 116
getInitialContextProperties 117
lookupInitialContext 117
setInitialContext 118
setInitialContextProperties 118

EJBs 12
architecture 12
Entity Beans 13
Message Driven Beans 13

SeeBeyond 29
subscribing toSeeBeyond queue 30

Session Beans 13
SeeBeyond 31

ENC 20
Enterprise JavaBeans 12

architecture 12
Entity Beans 13
Message Driven Beans 13

SeeBeyond 29
subscribing to SeeBeyond queue 30

Session Beans 13
SeeBeyond 31

Environment Naming Context 20
examples-dataSource-demoXAPool 43

F
files

created by installation 48

H
home interface 77

I
implementation 74

process overview 74
samples 75

asynchronous (JMS) overview 82, 83
synchronous (ETD) overview 76

installation
directories created by 48
files created by 48

J
Java Messaging Service 11

SeeBeyond JMS 17
JMS 11

SeeBeyond JMS 17
JMS e*Way Connection

parameters 61
JMS IQ Manager 59
JMSAsynchProducersConsumers sample schema 93
JNDI

sample code 9
SeeBeyond JMS Queue sub-context 26
e*Way Intelligent Adapter for WebLogic User’s Guide 120 SeeBeyond Proprietary and Confidential

Index
SeeBeyond JMS QueueConnectionFactory sub-
context 26

SeeBeyond JMS server names list 27
SeeBeyond JMS Topic sub-context 26
SeeBeyond JMS TopicConnectionFactory sub-

context 25
sub-context 25
viewing the JNDI tree 10

JNDI InitialContext parameters 52
java.naming.authoritative 55
java.naming.batchsize 55
java.naming.dns.url 53
java.naming.factory.control 54
java.naming.factory.initial 53
java.naming.factory.object 53
java.naming.factory.state 54
java.naming.factory.url.pkgs 54
java.naming.language 56
java.naming.provider.url 53
java.naming.referral 56
java.naming.security.authentication 54
java.naming.security.credentials 55
java.naming.security.principal 55
java.naming.security.protocol 54
weblogic.jndi.createIntermediateContexts 56
weblogic.jndi.delegate.environment 56
weblogic.jndi.pinToPrimaryServer 56
weblogic.jndi.provider.rjvm 57
weblogic.jndi.replicateBindings 57
weblogic.jndi.ssl.client.certificate 57
weblogic.jndi.ssl.client.key_password 57
weblogic.jndi.ssl.root.ca.fingerprints 57
weblogic.jndi.ssl.server.name 58
weblogic.jndi.use.iiop.service.provider 58

JNDI name 77
overriding 119

JTA and JMS XA
logging 42
monitoring 42, 43
tracing 41, 42

L
logging 43

JTA and JMS XA 41, 43

M
MDBs 16
message flow

e*Gate to WebLogic 17
WebLogic to e*Gate 20

methods
getInitialContext 116

getInitialContextProperties 117
lookupInitialContext 117
setInitialContext 118
setInitialContextProperties 118

monitoring
JTA and JMS XA 41, 43

Multi-Mode e*Way configuration parameters
asynchronous interaction 59
synchronous interaction 49

O
operating systems

supported 45
Overview 74

P
pre-installation

UNIX 47
Windows NT 46

Q
Queue 12

R
remote interface 77
root node name 77

S
sample schema

executing the schema 115
sample schemas

installing 85
samples

AddNumbersSchema 87
Business Rules 90
Collaboration Rules 89
Collaborations 92
create the ETD 88
Queue Manager 89

JMSQueueRequestor 98
Collaboration properties 101
Collaboration Rules 99
parameters 99

JMSQueueSend 94
Collaboration properties 97
Collaboration Rules 96
parameters 95
sample input data 85
e*Way Intelligent Adapter for WebLogic User’s Guide 121 SeeBeyond Proprietary and Confidential

Index
JMSTopicPublish 104
Collaboration properties 107
Collaboration Rules 106
parameters 105
sample input data 85

JMSTopicSubscribe 108
Collaboration properties 111
Collaboration Rules 110
parameters 109

JMSXAQueueSend 102
Collaboration properties 103
Collaboration Rules 103
parameters 103
sample input data 85

JMSXATopicSubscribe 112
Collaboration properties 114
Collaboration Rules 114
parameters 113

SeeBeyond JMS 17
configuring servers on different ports 27
configuring two JMS server instances 27
queue destinations 28
Queue sub-context 26
QueueConnectionFactory sub-context 26
server names list 27
servers configuration 27
topic destinations 28
Topic sub-context 26
TopicConnectionFactory sub-context 25

SeeBeyond JMS components
configuring 59

startup class 24
STCWLStartup.class 24

STCWLStartup.properties file 25
synchronous interaction 14, 15
system requirements 45

external 45

T
topic 12

U
UNIX

e*Way installation 47
pre-installation 47

W
WebLogic Server

components 65
JNDI tree 68, 72

startup class 66, 70
file structure 65, 69

WebLogic T3 naming service 8
Windows

e*Way installation 46
Windows NT 4.0

pre-installation 46

X
XA

confirming succeed or fail 102, 113
verifying XA at work 41

XA transactions
overview 13
SeeBeyond JMS XAResource 38
SeeBeyond XA MDBs 36

subscribing to SeeBeyond JMS queue 36
SeeBeyond XA Session Beans 38
verifying XA 41
e*Way Intelligent Adapter for WebLogic User’s Guide 122 SeeBeyond Proprietary and Confidential

	e*Way Intelligent Adapter for WebLogic User’s Guide
	Contents
	Introduction
	1.1 Intended Reader
	1.2 Overview
	1.3 Using J2EE™ with e*Gate and the WebLogic e*Way
	1.3.1. Java Naming and Directory Interface (JNDI)
	The WebLogic T3 Naming Service
	Sample Code
	Viewing The WebLogic JNDI Tree

	1.3.2. Java Messaging Service (JMS)
	1.3.3. Enterprise JavaBeans (EJBs)
	What is Enterprise JavaBean Architecture?
	Message Driven Beans
	Session Beans
	Entity Beans

	1.3.4. XA Transactions

	1.4 WebLogic e*Way Component Overview
	1.4.1. Synchronous Interaction, e*Gate to WebLogic Server
	The EJB ETD

	1.4.2. Asynchronous Interaction, WebLogic EJBs to e*Gate JMS and e*Gate JMS to WebLogic MDBs
	1.4.3. SeeBeyond JMS
	Message Flow from e*Gate to WebLogic
	Message Flow from WebLogic to e*Gate
	SeeBeyond WebLogic Startup Class
	STCWLStartup.properties File

	1.4.4. SeeBeyond Sample Message Driven Beans
	Accessing Session Beans
	Lazy Loading
	Accessing Entity Beans

	1.4.5. SeeBeyond Sample XA Message Driven Beans
	SeeBeyond Sample XA Session Beans
	Verifying XA At Work
	examples-dataSource-demoXAPool

	1.5 Supported Operating Systems
	1.6 System Requirements
	1.6.1. External System Requirements

	Installation
	2.1 Windows
	2.1.1. Pre-installation
	2.1.2. Installation Procedure

	2.2 UNIX
	2.2.1. Pre-installation
	2.2.2. Installation Procedure

	2.3 Files/Directories Created by the Installation

	Configuration
	3.1 Configuring the Components for Synchronous Interaction Implementation using the EJB ETD Builder
	3.1.1. Multi-Mode e*Way Configuration Parameters (Synchronous Interaction)
	3.1.2. EJB ETD e*Way Connection
	Configuring the ETD e*Way Connection

	3.1.3. General Settings
	3.1.4. JNDI InitialContext Settings

	3.2 Configuring Components for Asynchronous Interaction Implementation using SeeBeyond JMS
	3.2.1. JMS IQ Manager
	3.2.2. Multi-Mode e*Way Configuration Parameters (asynchronous interaction)
	3.2.3. e*Way Connection
	Create the e*Way Connection
	Configuring the JMS e*Way Connection parameters
	General Settings
	Message Service

	3.3 Configuring the WebLogic Server Components
	3.3.1. Configuration for WebLogic 6.1
	3.3.2. Configuration for WebLogic 7.0

	3.4 Append Classpaths for All Collaboration Rules

	Implementation
	4.1 Implementation Process: Overview
	4.2 Sample Implementations
	4.3 Considerations
	4.4 Synchronous Interaction, e*Gate to WebLogic Server
	Step 1: Build the ETD from the interface classes
	Step 2: Configure the e*Way Connection
	Step 3: Build Collaboration Rules to instantiate the Remote Interfaces
	Step 4: Bind the e*Way Connection to the Collaboration Rules

	4.5 Asynchronous Interaction, WebLogic EJB to e*Gate JMS
	Step 1: Configure WebLogic to create JNDI entries for SeeBeyond JMS on WebLogic Server at startup
	Step 2: Create a new Session Bean from the template
	Step 3: Create a new Deployment Descriptor from the template
	Step 4: Packaging and Deployment

	4.6 Asynchronous Interaction, e*Gate JMS to WebLogic Message Driven Bean
	Step 1: Configure WebLogic to create JNDI entries for SeeBeyond JMS on WebLogic Server at startup
	Step 2: Create a new message driven bean from the template.
	Step 3: Create a new Deployment Descriptor from the template.
	Step 4: Packaging and deployment.

	4.7 Event Type Definitions
	4.8 Creating the Sample Schemas
	4.8.1. Installing a Sample Schema

	4.9 The AddNumbers Sample Schema (Synchronous, EJB ETD)
	4.9.1. Running the AddNumbers Sample Schema
	4.9.2. Configuring the AddNumbersSchema Sample
	Copy and Deploy the Sample EJB
	Configure STCWLStartup.properties
	Create and Configure the e*Ways
	Create the ETD
	Configure the Queue Manager
	Create the e*Way Connections
	Creating the AddNumbers Sample Collaboration Rules
	Creating the Business Rules Using the Collaboration Rules Editor
	Creating the Collaborations

	4.10 The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)
	4.10.1. Running the JMSAsynchProducersConsumers Schema
	4.10.2. The JMSQueueSend Sample
	Configuring the JMSQueueSend Sample
	The JMSQueueSend Collaboration Rules Script
	JMSQueueSend Collaboration Rule Mapping
	JMSQueueSend Collaboration Properties

	4.10.3. The JMSQueueRequestor Sample
	Configuring the JMSQueueRequestor Sample
	JMSQueueRequestor Collaboration Rule
	JMSQueueRequestor Collaboration Rule Mapping
	JMSQueueRequestor Collaboration Properties

	4.10.4. The JMSXAQueueSend Sample
	Configuring the JMSXAQueueSend Sample
	The JMSXAQueueSend Collaboration Rule
	JMSXAQueueSend Collaboration Rule Mapping
	JMSXAQueueSend Collaboration Properties

	4.10.5. The JMSTopicPublish Sample
	Configuring the JMSTopicPublish Sample
	The crJMSTopicPublish Collaboration Rule
	JMSTopicPublish Collaboration Rule Mapping
	JMSTopicPublish Collaboration Properties

	4.10.6. The JMSTopicSubscribe Sample
	Configuring the JMSTopicSubscribe Sample
	The JMSTopicSubscribe Collaboration Rule
	JMSTopicSubscribe Collaboration Rule Mapping
	JMSTopicSubscribe Collaboration Properties

	4.10.7. The JMSXATopicSubscribe Sample
	Configuring the JMSXATopicSubscribe Sample
	The JMSXATopicSubscribe Collaboration Rule
	JMSXATopicSubscribe Collaboration Rule Mapping
	JMSXATopicSubscribe Collaboration Properties

	4.11 Executing the Schema

	Java Methods
	5.1 The EJBConfiguration Class
	Methods of the EJBConfiguration Class
	getInitialContext
	getInitialContextProperties
	lookupInitialContext
	setInitialContext
	setInitialContextProperties
	Overriding the JNDI Name

	Index
	A
	C
	D
	E
	F
	H
	I
	J
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	W
	X

