SeeBeyond™ eBusiness Integration Suite

e*Way Intelligent Adapter for
WebLogic User’s Guide

Release 4.5.2

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBl, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 2001-2003 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20030207111550.

e*Way Intelligent Adapter for WebLogic User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents

Contents

Chapter 1

Introduction 7
Intended Reader 7
Overview 7
Using J2EE™ with e*Gate and the WebLogic e*Way 8
Java Naming and Directory Interface (JNDI) 8
The WebLogic T3 Naming Service 8
Sample Code 9
Viewing The WebLogic JNDI Tree 10

Java Messaging Service (JMS) 11
Enterprise JavaBeans (E)Bs) 12
What is Enterprise JavaBean Architecture? 12
Message Driven Beans 13
Session Beans 13

Entity Beans 13

XA Transactions 13
WebLogic e*Way Component Overview 14
Synchronous Interaction, e*Gate to WebLogic Server 15
The EJB ETD 15
Asynchronous Interaction, WebLogic EJBs to e*Gate JMS and e*Gate JMS to WebLogic MDBs 16
SeeBeyond JMS 17
Message Flow from e*Gate to WebLogic 17
Message Flow from WebLogic to e*Gate 20
SeeBeyond Weblogic Startup Class 24
STCW.LStartup.properties File 25
SeeBeyond Sample Message Driven Beans 29
Accessing Session Beans 31

Lazy Loading 35
Accessing Entity Beans 36
SeeBeyond Sample XA Message Driven Beans 36
SeeBeyond Sample XA Session Beans 38
Verifying XA At Work 41
examples-dataSource-demoXAPool 43
Supported Operating Systems 45
System Requirements 45
External System Requirements 45

e*Way Intelligent Adapter for Weblogic User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents

Chapter 2
Installation 46
Windows 46
Pre-installation 46
Installation Procedure 46
UNIX 47
Pre-installation 47
Installation Procedure 47
Files/Directories Created by the Installation 48
Chapter 3
Configuration 49
Configuring the Components for Synchronous Interaction Implementation using the
EJB ETD Builder 49
Multi-Mode e*Way Configuration Parameters (Synchronous Interaction) 49
EJB ETD e*Way Connection 50
Configuring the ETD e*Way Connection 51
General Settings 52
JNDI InitialContext Settings 52
Configuring Components for Asynchronous Interaction Implementation using
SeeBeyond JMS 59
JMS 1Q Manager 59
Multi-Mode e*Way Configuration Parameters (asynchronous interaction) 59
e*Way Connection 60
Create the e*Way Connection 60
Configuring the JMS e*Way Connection parameters 61
General Settings 61
Message Service 63
Configuring the WebLogic Server Components 65
Configuration for WebLogic 6.1 65
Configuration for WebLogic 7.0 69
Append Classpaths for All Collaboration Rules 73
Chapter 4
Implementation 74
Implementation Process: Overview 74
Sample Implementations 75
Considerations 75
Synchronous Interaction, e*Gate to WebLogic Server 76
Step 1: Build the ETD from the interface classes 76

e*Way Intelligent Adapter for WebLogic User’s Guide 4 SeeBeyond Proprietary and Confidential

Contents

Step 2: Configure the e*Way Connection 81
Step 3: Build Collaboration Rules to instantiate the Remote Interfaces 82
Step 4: Bind the e*Way Connection to the Collaboration Rules 82
Asynchronous Interaction, WebLogic EJB to e*Gate JMS 82

Step 1: Configure Weblogic to create JNDI entries for SeeBeyond JMS on WebLogic Server

at startup 82

Step 2: Create a new Session Bean from the template 82

Step 3: Create a new Deployment Descriptor from the template 82

Step 4: Packaging and Deployment 83

Asynchronous Interaction, e*Gate JMS to WebLogic Message Driven Bean 83
Step 1: Configure Weblogic to create JNDI entries for SeeBeyond JMS on WebLogic Server

at startup 83

Step 2: Create a new message driven bean from the template. 83

Step 3: Create a new Deployment Descriptor from the template. 83

Step 4: Packaging and deployment. 83

Event Type Definitions 84

Creating the Sample Schemas 84

Installing a Sample Schema 85

The AddNumbers Sample Schema (Synchronous, EJB ETD) 85

Running the AddNumbers Sample Schema 86

Configuring the AddNumbersSchema Sample 87

Copy and Deploy the Sample EJB 87

Configure STCWLStartup.properties 87

Create and Configure the e*Ways 87

Create the ETD 88

Configure the Queue Manager 89

Create the e*Way Connections 89

Creating the AddNumbers Sample Collaboration Rules 89

Creating the Business Rules Using the Collaboration Rules Editor 90

Creating the Collaborations 92

The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS) 93

Running the JMSAsynchProducersConsumers Schema 93

The JMSQueueSend Sample 94

Configuring the JMSQueueSend Sample 95

The JMSQueueSend Collaboration Rules Script 96

JMSQueueSend Collaboration Rule Mapping 97

JMSQueueSend Collaboration Properties 97

The JMSQueueRequestor Sample 98

Configuring the JMSQueueRequestor Sample 99

JMSQueueRequestor Collaboration Rule 99

JMSQueueRequestor Collaboration Rule Mapping 100
JMSQueueRequestor Collaboration Properties 101

The JMSXAQueueSend Sample 102

Configuring the JMSXAQueueSend Sample 103

The JMSXAQueueSend Collaboration Rule 103

JMSXAQueueSend Collaboration Rule Mapping 103

JMSXAQueueSend Collaboration Properties 103

The JMSTopicPublish Sample 104
Configuring the JMSTopicPublish Sample 105

The crJMSTopicPublish Collaboration Rule 106

e*Way Intelligent Adapter for Weblogic User’s Guide 5

SeeBeyond Proprietary and Confidential

Contents

JMSTopicPublish Collaboration Rule Mapping 107
JMSTopicPublish Collaboration Properties 107

The JMSTopicSubscribe Sample 108
Configuring the JMSTopicSubscribe Sample 109

The JMSTopicSubscribe Collaboration Rule 110
JMSTopicSubscribe Collaboration Rule Mapping 111
JMSTopicSubscribe Collaboration Properties 111

The JMSXATopicSubscribe Sample 112
Configuring the JMSXATopicSubscribe Sample 113

The JMSXATopicSubscribe Collaboration Rule 114
JMSXATopicSubscribe Collaboration Rule Mapping 114
JMSXATopicSubscribe Collaboration Properties 114
Executing the Schema 115

Chapter 5

Java Methods 116
The EJBConfiguration Class 116
Methods of the EJBConfiguration Class 116
Index 120

e*Way Intelligent Adapter for WebLogic User’s Guide 6

SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This document describes the integration between BEA WebLogic™ application Server
and SeeBeyond e*Gate using the e*Way Intelligent Adapter for WebLogic (the
WebLogic e*Way).

11 Intended Reader

The reader of this guide is presumed:

= to be a developer or system administrator with the responsibility of maintaining the
e*Gate system.

= to have high-level knowledge of Windows or UNIX operations and administration.
= to be familiar with WebLogic Server functions.
= to have high-level knowledge of Java™, JMS™, and Enterprise JavaBeans™.

= to be thoroughly familiar with Windows-style GUI operations.

12 Overview

WeblLogic Server

BEA’s WebLogic Server is an application server used to build new applications with
graphical interfaces or screens. These may be accounting applications, HR applications,
shipping applications, and so forth.

The WebLogic application server is an architecture for building business logic in re-
usable components so that a Web server can access this data easily. The application
server talks (in the Java world) in terms of Enterprise JavaBeans. Enterprise JavaBeans
(EJBs) are the units of work that an application server is responsible for and exposes to
the external world. The interface between the presentation and real applications/real
data is the EJB.

The WebLogic application server allows the user to build EJBs and deploy them,
making them available to other applications on various machines. These E]Bs are Java
programs written by the developer and deployed to the application server. The
application server offers services that users previously had to write themselves

e*Way Intelligent Adapter for WebLogic User’s Guide 7 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction Using J2EE™ with e*Gate and the WebLogic e*Way

including connectivity, business logic, re-usability, security, concurrency (access is
serialized), and transactionallity (uses XA to assure a successful transfer/update or
rollback).

The WebLogic application server performs pooling to conserve system resources.
Object pooling reduces the number of allocations by placing objects in a pool so that the
next request for the object does not require a re-allocation of memory. Thread pooling
and connection pooling work in much the same way to save memory and connection
resources. Clustering is another benefit of the EJB’s. Clustering means that the
applications are easily moved or distributed to other machines. The WebLogic
application server streamlines the process of building distributed, scalable, highly
available systems.

The Intelligent Adapter for WebLogic e*Way

The Intelligent Adapter for WebLogic e*Way (WebLogic e*Way) facilitates integration
between applications built on the WebLogic platform and e*Gate, using J2EE’s
component model (EJB).

13 Using J2EE™ with e*Gate and the WebLogic e*Way

The e*Way Intelligent Adapter for WebLogic employs Java 2 Platform, Enterprise
Edition™ (J2EE™) components and services. The following sections break down the
JNDI™, JMS and E]JB subsystems, and XA Transactions, with respect to the WebLogic
integration strategy (as described in WebLogic e*Way Component Overview on

page 14).

131. Java Naming and Directory Interface (JNDI)

Java Naming and Directory Interface™ (JNDI) is an API published by Sun. In short, this
set of APIs allows a Java program to store objects and lookup objects using multiple
naming services in a standard manner. A naming service may be LDAP, a file system,
or an RMI registry. Each naming service has a corresponding provider implementation
that can be used with JNDI. The ability for JNDI to “plug in” any implementation for
any naming service (or span across naming services in a federated naming service)
easily provides another level of programming abstraction. This level of abstraction
allows Java code using JNDI to be portable against any naming service. For example, no
code changes should be needed by the Java client code to run against an RMI registry or
an LDAP server.

The WebLogic T3 Naming Service

Any J2EE compliant Application Server, such as WebLogic, has a JNDI subsystem. The
JNDI subsystem is used in an Application Server as a directory for such objects as
resource managers and Enterprise JavaBeans (E]JBs). Objects managed by the WebLogic
container have default environments for getting the JNDI InitialContext loaded when
they use the default Initial Context() constructor. For a Collaboration using a WebLogic
EJB Event Type Definition (ETD) to find the home interface of an EJB, JNDI must be

e*Way Intelligent Adapter for WebLogic User’s Guide 8 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction Using J2EE™ with e*Gate and the WebLogic e*Way

configured in the connection .def file and associated with the ETD. However, for other
external clients, accessing the WebLogic naming service requires a Java client program
that sets up the appropriate JNDI environment when creating the JNDI Initial Context.

There are essentially two environments that have to be configured;
Context. PROVIDER_URL and Context.INITIAL_CONTEXT_FACTORY. For
WebLogic, the Context PROVIDER_URL environment is

t3://w serverhost: port/

where “wlserverhost” is the hostname on which the WebLogic Server instance is
running and “port” is the port at which the Webserver instance is listening for
connections. For example:

t3://1 ocal host: 7003/

The initial context factory class for the WebLogic JNDI is
weblogic.jndi.WLInitialContextFactory. This class should be supplied to the
Context.INITIAL_CONTEXT_FACTORY environment property when constructing
the initial context. The overloaded InitialContext(Map) constructor must be used in
this case.

Sample Code

Here's an example of code for creating an initial context to WebLogic JNDI from a
stand-alone client:

HashMap env = new HashMap();

env. put (Context.PROVIDER URL, "t3://1ocal host: 7003/ ");
env. put (Context.| N TI AL_CONTEXT_FACTORY,

"webl ogi c.jndi.W.Initial ContextFactory");

Context initContext = new Initial Context (env);

Once an initial context is created, sub-contexts can be created, objects can be bound,
and objects can be retrieved using the initial context. For example the following
segment of code retrieves a Topic object:

Topi c topic
=(Topic)initContext.|lookup("sbyn.inTopi cToSeeBeyondTopic");

Here's an example of how to bind a SeeBeyond Queue object:
Queue queue = null;

try {
gueue = new STCQueue("i nQueueToSeeBeyondQueue") ;

i nitContext.bind ("sbyn. ToSeeBeyondQueue", queue);

}
cat ch (NaneAl r eadyBoundExcepti on ex)

{
try
if (queue !'= null)
i nitContext.rebind ("sbyn. ToSeeBeyondQueue", queue);
catch (Exception ex)
t hrow ex;
}
}

e*Way Intelligent Adapter for WebLogic User’s Guide 9 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction Using J2EE™ with e*Gate and the WebLogic e*Way

Viewing The WeblLogic JNDI Tree

The WebLogic Administrative Console (Web Interface) allows a user to view the JNDI
Tree associated with the server instance. To view the JNDI Tree (see Figure 1), log onto
the Administrative console for the server you want to administer (for example, the
examplesServer), expand the Servers tab, right click on the server node, and select
View JNDI tree from the pop up menu.

Figure 1 Administrative Console - View JNDI Tree

2} WeblLogic Server Console - Microsoft Internet Explorer 100 x|
File Edit Wew Favorites Tools Help ﬁ
sHBack + = - @ 43 | @Search [5] Favorites @Med\a @ | %v = - E
Address I@j CType%30DomainibodyFrameld=wl_console_frame_1040348737423 j PGD Lirks @Customlze Links @Frea Hotmail @Wlndows Media @W\ndows
@ Console = s = o0 =
8 @ mydomain \Welcome to BEA WebLogic Server Home y=j Ky hlfil'
cd
8 &seners Connected to rjacobust ;7001 Active Domain: mydomain Dec 19, 2002 5:45:37 PM PST
P Qpen .
@jCIL e) e sy Information and Resources
Ma -
[F—— Helpful Tools . . General Infoermation .
B 50e| pelete mysemer Convert weblogic properties Eead the documentation
& Configure applicationsg Setyour console preferences
& View Senverlog
=5 Domain Configurations
£ view Connections Your Application's Securi
View Sockets Network Configuration Your Deployed Resources Settingr;p L
g View Execute Gueues Domains Applications Realms
SI'E Yiew Execute Threads Servors EJE
C Starystop this server... Clusters Web Applications
E Define Policy ... Machines Web Senvice Components
Define Rale Metwork Channels Connectors
@re Startup & Shutdown
Elsnmp - : —
Services Configurations
&wiec
ElywabLogic Tukedo Connect JDBC SNMP Other Services
Eljoit Connection Pools Agent HML Reqistries
g“"”“a‘ Hosts MultiPools Proxies JTA Configuration
E]:T!Ta Data Sources Wlaonitars Virtual Hosts
Asecurity Tx Data Sources Log Filters Domair-wide Logaging
FDomain Log Filters S Altribute Changes tail |
|@ Applet navapplet started ’_’_’_ E Local intranet 4

In the following example, (see Figure 2 on page 11) the JNDI tree Web page shows that
the SeeBeyond subcontext was expanded in order to view the SeeBeyond JMS objects
that were bound to the WebLogic JNDI. These objects are bound when the
STCWLStartup class is loaded and run by the WebLogic Server. (See SeeBeyond
WebLogic Startup Class on page 24 for more details about this startup class.)

Additionally, when E]Bs are deployed on the application server they are registered in
the JNDI. This JNDI name is used by the EJB ETD to look up the home interface of the
EJB.

e*Way Intelligent Adapter for WebLogic User’s Guide 10 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction Using J2EE™ with e*Gate and the WebLogic e*Way

Figure 2 Administrative Console - The JNDI Tree Web Page

-} WebLogic Server Console - Microsoft Internet Explorer i =]]

File Edit View Favorites Todls Help |
d=Back - = -) it ‘ Qisearch [F]Favorites Media ®| B S -

Address Iﬂj chion?server=mydomain®. 3AName % 30myserver %2 Type3DSer ver j Go | Links @Customize Lirks @Free Hotmail »

= meser\rer 1=
rj_appsd\r_eijD_basic_statele
rj_appsd\r_idbc_uracle_e;d_ear
@ _appsdir_ita_ejb_jmsidbc_jar
B _appsdir_webservices_trader, | Use the tree on the left to browse the naming tree for this server. This can be
E_appsdir_smi_xsit_content_sa | useful in developing and debugging your applications
@ rddNumbers
@ gjbz0-heanManaged-Accountt o ElNaming Context
@ gjhz0-containermanaged-Acca « @ Bound Object
@ cjh20-statefulSession-Traderk
@ cjh20-statelessSession-Trade
@ examples-dataSource-demoP
@ examples-dataSource-demoi?
Hlhomemethods
ljjavax
@ jdhc-oracleExtensions-Extensi
Hljms
@ jta-imsjdbe-ReceivelnTxHome
@ yuotes
=] ereeEeyund
EqueueConnectionF actories
Haueues
@ STCPublisherSLSessionB
@ sTCQueueRequestorSLSE
@ sSTCHAPUblisherSLSessiol
=] r—r‘TupicConnectionFactones
] MyTopicConnectionFac
[] TopicConnectionF actor
@ xaATopicConnectionFac
= IjTopics
@ s5TCTopict
@ STCTopic?

@ STCTopic3
L] steejhweblogicstecejbwehlogic

@ steejbweblogicsteejbweblogic

mydomain> Servers> myserver> JNDI Tree

@ :teejbweblogicsteejbweblogics -] 4] | o
|@j Applet navapplet started l_ ’_ l_ E Lacal intranet A

13.2. Java Messaging Service (JMS)

The Java Messaging Service is a Messaging Oriented Middleware API designed by Sun.
The client makes use of these APIs, allowing portability with any JMS implementation.
JMS allows clients to be de-coupled from one another. The clients do not communicate
with each other directly, but rather send messages to each other via middleware. Each
client in a JMS environment connects to a messaging server. The messaging server
facilitates the flow of messages among all clients. The messaging server guarantees that
all messages arrive at the appropriate destinations. The messaging server also
guarantees such quality of services as transactions (local or XA), persistence, durability,
and others.

There are two possible destinations that a client sends messages to or receive messages
from. They are Topic and Queue (see Figure 3 and Figure 4). The difference between a
Topic and a Queue is that all subscribers to a Topic receive the same message when the
message is published and only one subscriber to a Queue receives a message when the
message is sent (see SeeBeyond JMS on page 17).

e*Way Intelligent Adapter for WebLogic User’s Guide 1 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction Using J2EE™ with e*Gate and the WebLogic e*Way

Figure 3 Topic - The Publish-Subscribe Model.

Msg
A/(

Topic R —
Isg

]
;
]

>§

@

F

>

Figure 3 shows multiple subscribers receiving the same messages when the publisher
publishes the message to a Topic. This is the Publish-Subscribe model.

Figure 4 Queue - The Point-to-Point Model

z

Receiver
II

m -
Receiver

The Point-to-Point model (Figure 4), on the other hand, allows for only one of the
receivers to get the message when a sender sends a message to a Queue.

133. Enterprise JavaBeans (E]Bs)

What is Enterprise JavaBean Architecture?

Sun defines Enterprise JavaBean Architecture as follows: Enterprise JavaBean
architecture is a component architecture for the development and deployment of
component-based distributed business applications. Applications written using the
Enterprise JavaBean architecture are scalable, transactional, and multi-user secure.
These applications may be written once, and then deployed on any server platform that
supports the Enterprise JavaBean specification.

Essentially, if a user writes an EJB, such that the EJB adheres to the E]B specification, the
EJB can be deployed on any EJB container regardless of the software vendor that
provided the container (application server). The EJB developer does not need to write
any code relating to things such as transactions or threads. These services are provided
by the container in which an EJB was deployed. The only responsibility of the EJB

e*Way Intelligent Adapter for WebLogic User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction Using J2EE™ with e*Gate and the WebLogic e*Way

developer (or EJB deployer) is to define the attributes of the E]B in its deployment
descriptor in order to take advantage of these services offered by the container.

Message Driven Beans

A Message Driven Bean (MDB) is a type of E]B defined by Sun (in the E]JB 2.0
specification) in order to deal with asynchronous subscription/publication of JMS
messages in a different manner than Entity and Session Beans. An MDB is often
compared to a Stateless Session Bean in that it does not have any state context. An MDB
differs from Session and Entity Beans in that it has no local /remote or localhome /home
interfaces. An MDB is not exposed to a client at all. The MDB simply subscribes to a
Topic or a Queue, receives messages from the container via the Topic or Queue, and
then process the messages it receives from the container.

An MDB implementation needs to implement two interfaces: javax.ejb.MessageBean
and javax.jms.MessageListener. Minimally, the MDB must implement the
setMessageDrivenContext, ejbCreate, and ejpRemove methods from the
javax.ejb.MessageBean interface. In addition, the MDB must implement the onMessage
method of the javax.jms.MessageListener interface. The container calls the onMessage
method, passing in a javax.jms.Message, when a message is available for the MDB.

Session Beans

A Session Bean is another type of EJB. The Session Bean consists of the remote, home,
and bean classes. A client gets a reference to the Session Bean's home interface in order
to create the Session Bean remote object, which is essentially the bean's factory. The
Session Bean is exposed to the client with the remote interface. The client uses the
remote interface to invoke the bean's methods. The actual implementation of the
Session Bean is done with the bean class. (See Accessing Session Beans on page 31.)

Entity Beans

An Entity Bean, like a Session Bean, consists of the remote, home, and bean classes. The
client references the Entity Bean's home interface in order to create the Entity Bean
remote object (essentially the bean's factory). The Entity Bean is exposed to the client
with the remote interface which the client uses to invoke the bean's methods. The
implementation of the Entity Bean is done with the bean class. (See Accessing Entity
Beans on page 36.)

13.4. XA Transactions

The X/Open XA specification defines the interactions between the Transaction Manager
(TM) and the Resource Manager (RM). The Transaction Manager, also known as the XA
Coordinator, manages the XA or global transactions. The Resource Manager manages a
particular resource such as a database or a JMS system. In addition, an XA Resource
exposes a set of methods or functions for managing the resource.

In order to be involved in an XA transaction, the XA Resource of a particular resource
must make itself known to the Transaction Manager. This process is called enlistment.
Once an XA Resource is enlisted, the Transaction Manager ensures that the XA

e*Way Intelligent Adapter for WebLogic User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview

Resource takes part in a transaction and makes the appropriate method calls on the XA
Resource during the lifetime of the transaction. For an XA transaction to complete, all
the RMs participate in a two-phase commit (2pc). A commit in an XA transaction is
called a two-phase commit because there are two passes made in the committing
process. In the first pass, the Transaction Manager asks each of the RMs (via the
enlisted XA Resource) whether they will encounter any problems committing the
transaction. If any Resource Manager objects to committing the transaction, then all
work done by any party on any resource involved in the XA transaction must all be
rolled back. The Transaction Manager calls the rollback() method on each of the
enlisted XA Resources. However, if no RMs object to committing, then the second pass
involves the Transaction Manager actually calling commit() on each of the enlisted XA
Resources. This process guarantees the ACID (atomicity, consistency, isolation, and
durability) properties of a transaction that can span multiple resources.

Both SeeBeyond JMS and BEA WebLogic Server implement the X/Open XA interface
specifications. Because both systems support XA, the E]Bs running inside the WebLogic
container can subscribe or publish messages to SeeBeyond JMS in XA mode. When
running in XA mode, the E]Bs, subscribing or publishing to SeeBeyond JMS can also
participate in a global transaction involving other E]Bs. For the “example” E]Bs
running in XA mode, Container Managed Transactions (CMTs) are used. In other
words, we define the transactional attributes of the EJBs through their deployment
descriptors and allow the container to transparently handle the XA transactions on
behalf of the EJBs. The WebLogic Transaction Manager coordinates the XA
transactions. The SeeBeyond JMS XA Resource is enlisted to a transaction so that the
WebLogic Transaction Manager is aware of the SeeBeyond JMS XA Resource involved
in the XA transaction. The WebLogic container interacts closely with the Transaction
Manager in CMT such that transactions are almost transparent to an EJB developer.
(See SeeBeyond Sample XA Message Driven Beans on page 36.)

14 WebLogic e¥*Way Component Overview

The e*Way Intelligent Adapter for WebLogic interacts with the WebLogic Application
Server using three modes.

1 Synchronous Interaction, e*Gate to WebLogic. Synchronous interaction means
that e*Gate makes a request to WebLogic and waits for a response. This can be
thought of as analogous to a phone call in which the caller makes the call and waits
for a response.

2 Asynchronous Interaction, WebLogic EJB to e*Gate (JMS). Asynchronous
interaction means that a request is sent but the sender does not wait for a response.
It can be thought of as analogous to a mail message in which mail is sent and
forgotten until sometime later when a response is received. The J2EE asynchronous
model is the Java Messaging Service (JMS), which dictates how a client application
talks to a Queue. The WebLogic EJBs publish to the e*Gate JMS IQ Manager.

3 Asynchronous Interaction, e*Gate (JMS) to WebLogic Message Driven Bean. The
e*Gate JMS publishes to a WebLogic Application Server Message Driven Bean. A
Message Driven Bean (MDB) is an specialized EJB that acts like a trigger which

e*Way Intelligent Adapter for WebLogic User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview

executes whenever there is activity on a specific Queue. A message published to
e*Gate’s JMS causes an MDB stored in WebLogic to execute.

141. Synchronous Interaction, e*Gate to WebLogic Server

Synchronous interaction, in which a requester sends a request and waits while the
service is executed before proceeding with the next request, is carried out by the
WebLogic e*Way using two component parts, the EJB ETD Builder and the WebLogic
e*Way Connection def file.

The EJB ETD Builder is used to generate Event Type Definitions (ETDs) from
WebLogic’s Session and Entity Beans EJB interface classes (Session and Entity Beans,
not Message Driven Beans), that represent the methods of the EJB. These methods can
then be called from within a Collaboration, making them accessible to the user. The EJB
ETD queries the JNDI directory services and locates a home interface, uses the home
interface to acquire Remote interfaces, applies Iterator methods for managing multiple
remote interface instances, and provides access to the remote interface methods.
Collaborations can then be built between the EJB ETD and ETDs for other applications,
making the EJB methods available to that application.

The WebLogic e*Way Connection def file serves as the basis for configuration files
that store the parameters for connecting to the JNDI directory service.

The EJB ETD

The EJB ETD, generated from a WebLogic interface, represents the methods from the
EJB that can be called inside a Collaboration. The ETD can be divided into four portions
that provide information about the EJB.

Figure 5 EJB ETD nodes represent both Home and Remote Interface methods

=" AccountRootETD
B "= Configuration
L E-T InitialContestPropertics
=% lookuplnitialContest
InitialComtest
- INDIMame
= [E AccountHome
- create
-3 findByPrimaryey -
- findBighcoounts
P balanceGreaterThan
: = exnecute
E-*I3 Rematelnstances
bz hasMext —
& next
EI@ Current
Primaryk.ey
#-"3 depost
[®T2 withdraw
"[: balance

-3 remove L] Used to free remote
ﬁ'\‘ interfaces

e*Way Intelligent Adapter for WebLogic User’s Guide 15 SeeBeyond Proprietary and Confidential

Methods for manually
locating the JNDI
directory service and
the Home Interface

Home Interface
Methods (for acquiring
the Remote Interface)

Iterator Methods for
managing multiple
Remote Interface

Instances

Remote Interface
Methods

O O !

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview

The first portion, the initial context and JNDI Name, is comprised of the methods for
manually locating the home interface which allows the ETD to communicate with the
directory service to connect to the EJBs Java objects. The defaults for the configuration
are provided by the correct configuration file. The user uses these nodes to override the
values in the configuration file. The JNDI Name is set to the default specified in the EJB
ETD Builder wizard.

The second portion consists of home interface methods for acquiring the remote
interface. The home interface allows the ETD to find and invoke E]B instances. For the
example in Figure 5, the home interface method, findBigAccounts(), called with the
argument balanceGreaterThan (100,000) finds all account EJBs with a balance over
100,000 and assign their remote interface to the Remote Instances ETD node.

The third portion contains the iterator methods hasNext() and next() for accessing the
returned remote interfaces. For the sample in Figure 5, an example of this would be if
findBigAccounts() returned ten accounts. This would be ten remote interfaces. The
iterator methods allow the user to write a while loop to loop over multiple remote
interfaces and access functionality based on the business logic.

The fourth portion contains remote interface methods that allow processes to be run on
the current remote interface.

Remove() should be used with care. Remove(), when called from a Session Bean, frees
resources on the server. The danger comes when calling Remove() from an Entity Bean,
in which case the Entity Bean is deleted from the database/storage.

142. Asynchronous Interaction, WebLogic E)Bs to e*Gate JMS and
e*Gate JMS to WebLogic MDBs

Modes 2 and 3 incorporate asynchronous interaction between WebLogic Server and
e*Gate’s JMS.

The following sections describe in detail, the e*Way Intelligent Adapter for WebLogic’s
integration with WebLogic Server using the SeeBeyond implementation of JMS. The
e*Way incorporates the SeeBeyond JMS into the WebLogic environment. Essentially, it
incorporates the SeeBeyond JMS IQ Manager so that E]Bs in the WebLogic container
can receive messages from or send messages to e*Gate. There are two schemes:
Message Driven Beans subscribing to SeeBeyond JMS and Session Beans
publishing/sending to SeeBeyond JMS.

In order to implement the solutions, two other subsystems are used: the T3 naming
service and the EJB container (for Session Beans and Message Driven Beans as defined
in EJB 2.0). The naming service allows us to “bind” the following SeeBeyond JMS
objects: TopicConnectionFactory, QueueConnectionFactory, Topic(s), and Queue(s).
By binding instances of these objects, any EJB can get a hold of the references to these
objects by looking them up in the naming service using JNDI. The Message Driven
Beans (MDBs) are used for asynchronous subscription of messages from a JMS Topic or
Queue. This scenario corresponds to the SeeBeyond JMS provider driving MDBs
running in WebLogic. Session Beans are used for publishing and sending Topic/Queue
messages through the SeeBeyond JMS provider as well.

The following architectural diagram (Figure 6) illustrates the components involved:

e*Way Intelligent Adapter for WebLogic User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview

Figure 6 WebLogic Server and WebLogic e*Way Components

WebLogic Server

/JNDI \

EJB Container

SeeBeyond Lookup &
Queue/Topic Use
Connection

Factory

SeeBeyond \;-------
WebLogic
Startup Class

[
r‘
SeeBeyond
Queues

Topics

Startup
Properties
File

JMS
Connection

Java
Collaboration

143. SeeBeyond JMS

As part of the WebLogic e*Way installation, SeeBeyond supplied startup classes install
JMS objects into the T3 naming service. Four JMS ConnectionFactory objects are bound
to the naming service, TopicConnectionFactory, XATopicConnectionFactory,
QueueConnectionFactory, and XAQueueConnectionFactory. Moreover, installing the
SeeBeyond supplied session and Message Driven Beans installs Topic and Queue
objects into the naming service.

Message Flow from e*Gate to WebLogic

For message flow from e*Gate to WebLogic, WebLogic uses the SeeBeyond
TopicConnectionFactory to create the necessary JMS TopicConnection(s) and
TopicSession(s) and uses the SeeBeyond QueueConnectionFactory to create the JMS
QueueConnection(s) and QueueSession(s). Likewise, XATopicConnectionFactory is
used to create the necessary JMS XATopicConnection(s) and XATopicSession(s) and
the SeeBeyond XAQueueConnectionFactory is used to create the JMS
XAQueueConnection(s) and XAQueueSession(s). The weblogic-ejb-jar.xml
deployment descriptor allows the configuration of SeeBeyond JMS as a foreign JMS to
which the MDBs subscribe. The diagram in Figure 7 shows the components involved in
e*Gate to WebLogic mode. The arrows represent message flow.

e*Way Intelligent Adapter for WebLogic User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview

Figure 7 Message Flow from e*Gate to WebLogic

e*Gate on some Host WebLogic on some Host
JMS JNDI
SBYN
SBYN Topic
Queue Connection
Connection Factory
Factory : 1
I
L
> b
"\ [seN o
Queues | !
n ! [SBYN
v i ! Topics
f K \ i ! /
T T
EJB Container Vo L/
SeeBeyond :_C‘)?Je_u; o '_‘II'_oEicJ =
JMS Connection Quete | Session | 1 Session | Topic
M?ﬁ//) K\\??B
v \4
To External To External

Figure 8 displays an example of the ejb-jar.xml for the Topic MDB which receives
messages from a SeeBeyond JMS Topic.

Figure 8 ejb-jar.xml - Topic MDB

3 C:%Java',com'stch eways' weblogich, deployment, META-INF\ejb-jar.kml - Microsoft Inte; - |E||5|

File Edt View Favorites Tools Help ﬁ

GBack » = - (D) | iQisearch [EfFavorites Media ¢4 | B S B D

Address I@ CihJavalcomtstchewaysiweblogicideployment\META-INFieib-jar xml j E‘J‘> o

-

<l-- edited with ML Spy v3.5 WNT (http://uww. xmlspy.com) by SeeBeyond (3TC) -
<IDOCTYPE ejb-jar {Wiew Source for full Goctype...)=
- <ejb-jar=

- <enterprise-beans:

- <message-driven
<ejh-name=8TCSubscriberMDBean</ejb-namex
<ejb-class=com.stc.eways.ejb.messagebean.STCSubscriberMDBean</ejb-class=
<transaction-typexContainer</transaction-typex=

- <message-driven-destinationz
<destination-typex>javax.jms.Topic</destination-typex
<subscription-durability=Durable</subscription-durability

</message-driven-destination:

</message-drivens

+ <message-drivenz

+ <5Ession=

+ «session:

+ <5Ession=

</enterprise-heansz

+ <assembly-descriptors
</ejb-jar=

|E:| l_ ’_ l_ |E.g]l My Computer i

e*Way Intelligent Adapter for WebLogic User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview

Figure 9 displays an example of the weblogic-ejb-jar.xml for the Topic MDB which
receives messages from a SeeBeyond JMS Topic.

Figure 9 weblogic-ejb-jar.xml - Topic MDB

“ Java'comhstc eways' weblogich deployment', META-INF'\weblogic-ejb-jar.xml - Micros =10l x]
Fil= Edit View Favorites Tools Help ﬁ

S Back - = - @ ot | @Search (3] Favoarites @Media @ | %' = E
Address I. 4 davaicomistclewaysiweblogicdeploymentiMET A-INF weblogic-eib-jar cml j @Go | Links
=l

<?uml version="1.0" 7=
<l-- edited with XML S3py v3.5 NT (htcop://wuw.xmlspy.com] hy SeeBeyond ([(3TC) -—=
<IDOCTYPE weblogic-ejb-jar (Wew Source for full doctype...)=
<weblogic-gjb-jar=
- <weblogic-enterprise-beanx
<gjb-name=8TCSubscribervMDBean</ejb-name>
- =message-driven-descriptor=
- <pool>
<max-beans-in-free-pool>15</max-beans-in-free-pool=
<initial-beans-in-free-pool=5</initial-beans-in-free-poal=
</pool>
<destination-jndi-name=>=SeeBeyond.Topics . 8TCTopicl«</destination-jndi-namex
<initial-context-factory=weblogic.jndi.WLInitialContextFactory</initial-context-factory=
<provider-url=t3:/ flocalhost:7001</provider-url=
<connection-factory-jndi-
name>SeeBeyond.TopicConnectionFactories.TopicConnectionFactory</connection-
factory-jndi-name:=
</message-driven-descriptors>
<jndi-name>=SeeBeyond.STCSubscriberMDBean</jndi-namez>
</ weblogic-enterprise-bean=
+ <weblogic-enterprise-beanz
+ <weblogic-enterprise-beanz
+ <weblogic-enterprise-beanz
+ <weblogic-enterprise-beanz
</weblogic-ejb-jar=

(5] l_ l_ l_ K= my Computer

-
4

The destination-jndi-name of the Topic is SeeBeyond.Topics.STCTopicl; this is a
SeeBeyond JMS Topic. Using the WebLogic T3 naming service, the two entries initial-
context-factory and provider-url are weblogic.jndi.WLInitialContextFactory and
t3://localhost:7003 respectively. Since the container needs to use the SeeBeyond JMS
TopicConnectionFactory, we specify the SeeBeyond TopicConnectionFactory with the
entry connection-factory-jndi-name as
SeeBeyond.TopicConnectionFactories.TopicConnectionFactory. The JNDI bound
objects SeeBeyond.Topics.STCTopicl and
SeeBeyond.TopicConnectionFactories.TopicConnectionFactory must be created and
bound to the WebLogic JNDI for this server instance before the MDB can be deployed
and used. The WebLogic Administrative Console does NOT allow the user to create
any foreign JMS objects. This must be done outside of the Administrative Console. The
task of creating the SeeBeyond JMS objects is done by the SeeBeyond WebLogic startup
class called STCWLStartup. (See the section SeeBeyond WebLogic Startup Class on
page 24 to see how the startup class works and how to configure and deploy it.) The
three entries initial-context-factory, provider-url, and connection-factory-jndi-name are
necessary because SeeBeyond JMS is being used as a foreign JMS into WebLogic.

The same entries can be added for subscribing to a SeeBeyond Queue (using the
SeeBeyond QueueConnectionFactory as the connection factory and SeeBeyond Queue
as the destination).

e*Way Intelligent Adapter for WebLogic User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 1

Section 1.4

Introduction WebLogic e*Way Component Overview

Message Flow from WebLogic to e*Gate

For message flow from WebLogic to e*Gate, Session Beans can publish/send J]MS
messages to SeeBeyond JMS Topics/Queues.

In addition to the connection factories, the Topic and Queue destinations are also
bound to the T3 naming service before they are referenced by the Session Beans.
Creating these SeeBeyond JMS objects and JNDI bindings is done through the
SeeBeyond WebLogic startup class, STCWLStartup. (See SeeBeyond WebLogic
Startup Class on page 24 for details.) With access to these JMS objects via JNDI, the
Session Beans utilize the JMS API's to send the JMS message to e*Gate.

How do the Session Beans know what the JNDI entries are for the connection factory
and destinations? Every bean automatically has access to a special naming system
called the Environment Naming Context (ENC). The ENC is managed by the container
and accessed by beans using JNDI. The JNDI ENC allows a bean to access resources like
JDBC connections, other enterprise beans, and properties specific to that bean. Each
Session Bean uses the ENC to specify the TopicConnectionFactory or
QueueConnectonFactory with the <resource-ref> element in the ejb-jar.xml file.
Additionally, the Session Bean uses the ENC to specify the destination via the
<resource-env-ref> element in the ejb-jar.xml. The weblogic-ejb-jar.xml also has these
corresponding elements defined with the <resource-description> and <resource-env-
description> elements.

Figure 10 displays the Session Bean ejb-jar.xml deployment descriptor.

Figure 10 Session Bean ejb-jar.xml deployment descriptor

:% Java',com\stch eways'weblogic', deployment'MET A-INF' ejb-jar.xml - Microsoft Internet Exp - |EI ﬂ

File Edit VYiew Favorites Tools Help ﬁ

¢aBack + = - @ it | @Search [Ge] Favorites @Media ® | %v == g

Address I@ C:\Javalcomstclewaysiweblagicldeployment\MET A-IMFiejb-jar <l j @Go
=
<l-- edited with ZML Spy v3.5 NT (http://wwv.xmlspy.com) by SeeBeyond (3TC) =
<IDOCTYPE ejb-jar {\Wiew Source for full doctype...)=
- =ejb-jar=

- <enterprise-beans=>
+ <message-drivens
+ <message-drivens
- <session®
<gjb-name=8TCPublisherSLSessionBean</sjb-name:
<home>com.stc.eways.ejb.sessionbean.publisher.8TCPublisherSLSessionHome</home:=
<remote>com.stc.eways.ejb.sessionbean.publisher.STCGPublisherSLSession</remotes
<gjb-class=com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSessionBean</ejb-class>
<session-type>Stateless</session-types
<transaction-typexContainer</transaction-type>
- «<resource-ref>
<res-ref-namex=jms/TopicConnectionFactory</res-ref-name:
<res-typexjavax.jms.TopicConnectionFactory</res-type>
<res-auth=Container</res-auth=
</resource-refs
- «<resource-env-refs
<resource-env-ref-name=jms/Topic</resource-env-ref-name:
<resource-env-ref-typexjavax.jms. Topic</resource-env-ref-types
</resource-env-refs
< /sessions
+ <SESSion®
+ «sessions
</enterprise-beans:>
+ =assembly-descriptor=

=/ejb-jar=
=
|@ ’_ ’_ ’_ @ My Computer v

e*Way Intelligent Adapter for WebLogic User’s Guide 20 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview

Figure 11 displays the Session Bean weblogic-ejb-jar.xml deployment descriptor.

Figure 11 Session Bean weblogic-ejb-jar.xml deployment descriptor

4 Jawa',com' stch eways'weblogic'deployment',META-INFweblogic-ejb-jar.xml - Microsoft Internet - | Dlll

File Edit V“iew Favaorites Tools Help ﬁ
P Back - = - @ at | @Search [l Favorites @Media @ | I%- =h g

Address I 24 Javahcomistoewaysiweblogicideployment\META-INFweblogic-ejb-jar , xml j 6>G0

|»

<7xml version="1.0" 7=
<l-- edited with ZML Spy 3.5 NT (http://www.xmlspy.com) by JeeBeyond (3TC) ==
<!DOCTYPE weblogic-gjb-jar (\Wiew Sowrce for full doctype...)=
- <wehlogic-ejb-jar=
+ <wehblogic-enterprise-beans
+ «weblogic-enterprise-beans
- <wehlogic-enterprise-beanz
<ejb-name=8TCPublisherSLSessionBean</ejb-namex>
- «stateless-session-descriptor>
- =poal>
<max-beans-in-free-pool=15</max-beans-in-free-pool=
<initial-beans-in-free-pool=5</nitial-beans-in-free-pool=
</pool=
</stateless-session-descriptors
- «reference-descriptors
- <resource-descriptions
zres-ref-namexjms/TopicGonnectionFactory</res-ref-name>
zjndi-name=SeeBeyond.TopicConnectionFactories.TopicConnectionFactory</jndi-name=
</resource-description
- <resource-env-description:
zres-env-ref-name:=jms/Topic</res-env-ref-name:
<jndi-name=SeeBeyond.Topics . STCTopic2</jndi-name:=
</resource-env-descriptions
</reference-descriptors
<jndi-name=5eeBeyond.STCPublisherSLSessionBean</jndi-namez=
</ wehblogic-enterprise-beanz
+ «weblogic-enterprise-bean:
+ =weblogic-enterprise-bean:
=/weblogic-ejb-jar=

|€| ’_ ’_ ’_ |@, My Computer

N[

Figure 12 displays a diagram of the components involved for the WebLogic to e*Gate
mode. The arrows represent the message flow.

e*Way Intelligent Adapter for WebLogic User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview

Figure 12 Message Flow from WebLogic to e*Gate

Client
EJB Container
e*Gate on some Host
Sessi(h Session
Bean ———-_ Bean
SeeBeyond ety |
JMS Connection A gﬁme : : ?5;2‘ N
| Session : | Session |
e ysgupet
A JNDI Do
JMS sbynsubcontext /| ! '
(\ RN N
P { sBYN i > Loy
Queue b SBYN
< : | Topic
[} [}
i I
I
I

Queue
Connection
Factory

SBYN
Topic
Connection
Factory

- / N

How do the Session Beans know what the JNDI entries are for the connection factory
and destinations? Each Session Bean specifies the TopicConnectionFactory or
QueueConnectonFactory with the <resource-ref> element in the ejb-jar.xml file.
Moreover, the Session Bean specifies the destination via the <resource-env-ref>
element in the ejb-jar.xml. The weblogic-ejb-jar.xml also has these corresponding
elements defined with the <resource-description> and <resource-env-description>
elements.

Figure 13 displays an example of the ejb-jar.xml deployment descriptor for the Session
Bean publishing to a SeeBeyond JMS Topic:

e*Way Intelligent Adapter for WebLogic User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 1
Introduction

Section 1.4
WebLogic e*Way Component Overview

Figure 13 ejbjar.xml deployment descriptor - Session Bean to SeeBeyond JMS Topic

; C Java',com'stc' eways' weblogic'\.deployment',META-INF' ejb-jar.#xml - Microsoft Internet Exploi

File Edit Yiew Favorites Tools Help

&GBack - = - @) a | Qhsearch [GFavorites Media ¢4 | By S =t D

Address I@ Y Javalcom!stc\ewaysiweblogicideplovment\META-INFiejb-jar xml j @GU
«l-- edited with XML 3py 3.5 NT (http://wuv.xmlspy.com) by SeeBeyond (3TC) -
<IDOCTYPE ejb-jar (Wew Source for full doctype...)=

- <ejb-jar=

- «enterprise-beansx»
+ <message-driven:
+ <message-driven:
- <5ession:
<gjb-name>8TCPublisherSLSessionBean</gjb-name:>
<home>com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSessionHome</home:=
<remotexcom.stc.eways.ejb.sessionbean.publisher.8STCPublisherSLSession</remotex
<ejb-class>com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSessionBean</ejb-classx>
zsession-type>Stateless</session-typex
«<transaction-type>Container</transaction-typex»
- «<resource-ref>
<res-ref-name=jms/TopicConnectionFactory</res-ref-namez
<res-typexjavax.jms.TopicConnectionFactory </res-type>
<res-auth=Container</res-auth=
</resource-refs
- «resource-env-ref>
zresource-env-ref-name=jms /Topic</resource-env-ref-names=
<resource-env-ref-typezjavax.jms. Topic</resource-env-ref-type:>
< /resource-eny-refs
</sessions
+ <sessions
+ <session:
</enterprise-beans=>
+ =assembly-descriptors

</ejb-jar=
Il
|§'| l_l_ ’_ @ Iy Computer 4

The value for the res-ref-name tag is jms/TopicConnectionFactory and the value for the

resource-env-ref-name environment entry is jsm/Topic. They are specified as
javax.jms.TopicConnectionFactory and javax.jms.Topic for the resource type
respectively. These resource references are another level of JNDI indirection. They

don't specify the actual JNDI names of the JMS objects, but rather they are references to
the JNDI name. So the EJB can reference jms/TopicConnectionFactory but does not
really care what the actual JNDI name is. The actual JNDI names for these references

e*Way Intelligent Adapter for WebLogic User’s Guide 23

are defined in the weblogic-ejb-jar.xml file.

The weblogic-ejb-jar.xml defines the actual JNDI name of the resource references
defined in ejb-jar.xml for the Session Bean as seen in Figure 14.

SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
Figure 14 weblogic-ejb-jar.xml defines the actual JNDI name

3 [Java'.com',stcheways'weblogich deployment'META-INFiweblogic-ejb-jar.xml - Microsoft 1 - |E||L|

File Edit View Favorites Tools Help ﬁ
d=Fack - = - @ ot | @Search [Ge] Favarites @Media ® | %v S = 8

Address I C:YJavalcomistclewaysiweblogicideploymentyMETA-INFiweblogic-ejb-jar . xml j @GD

«7Teml wersion="1.0" 7>
«!-- edited with EML 3py v3.5 NT (http://www.xwlspy.com) by SeeBeyond (STC) ==
<IDOCTYPE weblogic-ejb-jar (Wiew Souwrce for full doctype,.)=
- <weblogic-ejb-jar=
+ <weblogic-enterprise-beanz=
+ <weblogic-enterprise-beanz=
- =wehlogic-enterprise-beans>
<gjb-name=8TCPublisherSLSessionBean=/ajb-name>
- «stateless-session-descriptor=
- =poal>
<max-beans-in-free-pool=15</max-beans-in-free-poal=
<initial-beans-in-free-pool>5</initial-beans-in-free-pool=
</poal=
</stateless-session-descriptors
- «reference-descriptors=
- =resource-description=
«<res-ref-name=jms/TopicConnectionFactory</res-ref-namez=
<jndi-name=SeeBeyond.TopicConnectionFactories. TopicConnectionFactory</jndi-name>
</resource-description
- <resource-env-description
<res-env-ref-namexjmsfTopic</res-env-ref-name=
<jndi-name>8eeBeyond.Topics .STCTopic2</jndi-name=
</resource-env-description
< /reference-descriptor>
<jndi-name=SeeBeyond.STCPublisherSLSessionBean</jndi-name:=
</wehlogic-enterprise-beanz
+ <weblogic-enterprise-bean
+ <weblogic-enterprise-bean
</weblogic-ejb-jar=

i€l I_ ’_ l_ [vy Computer

-
4

The value for the jndi-name tag for the resource name jms/TopicConnectionFactory is
SeeBeyond.TopicConnectionFactories. TopicConnectionFactory and the value for the
jndi-name tag for the jms/Topic entry is SeeBeyond.Topics.STCTopic2. These define
the resource reference name to JNDI name mappings. As mentioned earlier, these JNDI
bound objects need to be created by the startup class.

SeeBeyond WebLogic Startup Class

To bind the SeeBeyond JMS objects into the WebLogic T3 naming service, a SeeBeyond
startup class is installed on the WebLogic Server. The startup class is loaded by the
WebLogic Server when the server is booted and the startup method of the class is
invoked. Upon invocation of the startup method, a SeeBeyond
TopicConnectionFactory, a QueueConnectionFactory, all the configured Topics, and
all the configured JMS Queues are instantiated and bound to WebLogic's naming
service. The configuration file for the startup class is in the form of a Java properties file.
Before describing the format of this file, let's look at the implementation of the startup
class.

The startup class is called STCWLStartup.class. It implements the
weblogic.common.T3StartupDef interface. STCWLStartup.class only needs to
implement two methods: setServices() and startup(). The setServices() method is
trivial; the server passes in an instance of T3ServicesDef which can be saved by the
startup class as an attribute. (See the WebLogic documentation on T3ServicesDef for

e*Way Intelligent Adapter for WebLogic User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview

more information on this interface.) The startup() method is where the crux of the work
is done. This method is invoked by the server and this is where the SeeBeyond JMS
objects are created and bound to the naming service. The startup() method takes two
parameters: name which is of type java.lang.String and args which is of type
HashTable. These two arguments are provided by the server. The name is the name of
the startup class. The args argument contains name/value pairs that are passed to the
startup as program “arguments.” These program arguments are defined when the
startup class is deployed in the server using the WebLogic Administrative Console.

The startup properties file is read by the startup class when the startup() method is
invoked by the WebLogic Server. This file, STCWLStartup.properties, is used to
configure information about the SeeBeyond JMS specific information. This file consists
of name/value pairs. There are seven sections to this properties file. Each name and
value in the different sections have different meanings. The following sections describe
each section in detail. Comment lines in the properties file start with either a '# ora "'
character. The following section displays the default STCWLStartup.properties file.

Any changes to the startup configuration (properties) file does not take effect right
away. The WebLogic Server must be restarted in order for the startup class to get
reloaded and for the startup class to read the changes to the configuration file. For
example, if a new Topic or Queue is added, the WebLogic Server needs to be restarted.

STCWLStartup.properties File

SeeBeyond JNDI Sub-context
The first section allows the user to specify the JNDI sub-context for SeeBeyond.

JNDI subcontext for SeeBeyond objects.

This section configures the JNDI subcontext to which all the
SeeBeyond

JVMS objects will bind.

#
WARNING. Only the property val ue can be changed here.

Subcont ext . SeeBeyond=SeeBeyond
The user should not have to change this.

SeeBeyond JMS TopicConnectionFactory Sub-context

The next section allows the user to specify the JNDI sub-context where all instances of
SeeBeyond JMS TopicConnectionFactory are bound. This sub-context is under the
SeeBeyond sub-context.

JNDI subcontext for SeeBeyond JMS Topi c connection factories.
This section configures the JNDI subcontext to which all the
SeeBeyond

JMS Topi cConnectionFactory objects will bind.

#

WARNING Only the property val ue can be changed here.

Subcont ext . Topi cConnecti onFact or y=Topi cConnecti onFactori es

e*Way Intelligent Adapter for WebLogic User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview
The user should not have to change this.
SeeBeyond JMS QueueConnectionFactory Sub-context

The next section allows the user to specify the JNDI sub-context where all instances of
SeeBeyond JMS QueueConnectionFactory are bound. This sub-context is under the
SeeBeyond sub-context configured.

JNDI subcontext for SeeBeyond JMS Queue connection factories.
This section configures the JNDI subcontext to which all the

SeeBeyond

JM5 QueueConnectionFactory objects will bind.

#

WARNING. Only the property val ue can be changed here.
o

Subcont ext . QueueConnect i onFact or y=QueueConnecti onFactori es
The user should not have to change this.

SeeBeyond JMS Topic Sub-context

The next section allows the user to specify the JNDI sub-context where all instances of
SeeBeyond JMS Topic destinations are bound. This sub-context is under the SeeBeyond
sub-context configured.

JNDI subcontext for SeeBeyond JMS Topics.

This section configures the JNDI subcontext to which all the
SeeBeyond

JVMS Topic objects will bind.

#

WARNING. Only the property val ue can be changed here.

Subcont ext . Topi c=Topi cs
The user should not have to change this.

SeeBeyond JMS Queue Sub-context

The next section allows the user to specify the JNDI sub-context where all instances of
SeeBeyond JMS Queue destinations are bound. This sub-context is under the
SeeBeyond sub-context configured.

JNDI subcontext for SeeBeyond JMS Queues.
This section configures the JNDI subcontext to which all the

SeeBeyond

JM5 Queues objects will bind.

#

WARNING Only the property val ue can be changed here.
3

Subcont ext . Queue=Queues
The user should not have to change this.

e*Way Intelligent Adapter for WebLogic User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview

SeeBeyond JMS Server Names List

The next section allows the user to specify the logical names of each JMS server
instances to configure for registration to WebLogic JNDI:

#
#
JMS Server Nanes

Define all the logical JM5 Server Nanes in this section.
Each Server Nane nust be separated by a '& character.
#
#
#

WARNI NG Only the property val ue can be changed here.
Exanpl e: SeeBeyondJMs&W JMS&INMSOnHost A

JMSSer ver Names=SeeBeyondJVs&W JMS

The server names are separated by the '&' character. The server names used here are
referenced in another section for configuring the JMS host, port, and the connection
factories.

SeeBeyond JMS Servers Configuration

For each server name listed in the JMSServerNames property value, the user is
required to specify the hostname and port of the JMS server. In addition, the user can
configure one or more of the types of JMS connection factories
(TopicConnectionFactory, QueueConnectionFactory, and so forth.).

JMS Servers Configuration

For each of the Servers define in the JM5 Server Names section,
define the JMs configurations in this section.
The following JMS informati on nust be defined for each Server:
Host, Port
The following are used to configure JMs Connection Factories:
Topi cConnecti onFact ory, QueueConnecti onFactory

XATopi cConnecti onFact ory, XAQueueConnecti onFactory

HHIFHFFHHHFHFHERR

I SeeBeyondJMS Server configuration

I Notice that "SeeBeyondJM5S" is in the JM5 Server Nanes |ist.
SeeBeyondJMS. Host =I ocal host

SeeBeyondJMS. Port =24053

SeeBeyondJMS. Topi cConnecti onFact or y=Topi cConnect i onFact ory
SeeBeyondJMs. QueueConnect i onFact or y=QueueConnect i onFact ory
SeeBeyondJMs. XATopi cConnect i onFact or y=XATopi cConnecti onFact ory
SeeBeyondJMs. XAQueueConnect i onFact or y=XAQueueConnect i onFact ory

I MyJM5 Server configuration

I Notice that "MyJM5" is in the JMS Server Nanes |ist.
MyJMS. Host =I ocal host

MyJMB. Port =9876

Note: The sample above demonstrates how two [MS server instances are configured on
two different ports.

There are four possible connection factories that can be configured:

TopicConnectionFactory, QueueConnectionFactory, XATopicConnectionFactory,
and XAQueueConnectionFactory. For the connection factories, the property value is

e*Way Intelligent Adapter for WebLogic User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview

used as the JNDI name of the factory object created. In the example above, we are
telling the startup to create a TopicConnectionFactory with
SeeBeyond.TopicConnectionFactories. TopicConnectionFactory as the JNDI name for
the TopicConnectionFactory. Notice that the SeeBeyond sub-context and the
TopicConnectionFactories sub-context are pre-pended.

SeeBeyond JMS Topic Destinations

The next section allows the user to specify the Topics to create and bind to JNDI:

SeeBeyond JMsS Topi cs

This section configures the SeeBeyond JMS Topi cs.

The property name for each Topic entry nust start with "Topic.".
For each Topic entry, the property name will be used as the JM5
Topi c

nanme and the property value will be used as the JNDI nane for the
Topi c.

I A sanple JMS Topic with nanme "Topic. Sanpl el" and JNDI nane

" STCTopi c1"

Topi c. Sanpl e1=STCTopi cl

I Anot her sanple JMS Topic with name "Topic. Sanpl e2" and JNDI nane
" STCTopi c2"

Topi c. Sanpl e2=STCTopi c2

I Anot her sanple JMS Topic with name "Topic. Sanpl e3" and JNDI nane
" STCTopi c3"

Topi c. Sanpl e3=STCTopi c3

For each Topic to configure, the property name must start with “Topic”. The startup
class uses the property name as the Topic name when creating the SeeBeyond Topic.
This Topic name is the name to be used in the e*Gate environment (the name of the
event created with the Enterprise Manager). The property value for the Topic is used as
the JNDI name for the Topic. The JNDI name is used by the E]B (via the E]B's
deployment descriptor). See the section Message Flow from e*Gate to WebLogic on
page 17 and Message Flow from WebLogic to e*Gate on page 20 for more information
on the EJB deployment descriptors.

SeeBeyond JMS Queue Destinations

The next section allows the user to specify the Queues to create and
bind to JNDI:

SeeBeyond JM5 Queues

This section configures the SeeBeyond JMS Queues.

The property name for each Queue entry nust start with "Queue.".
For each Topic entry, the property name will be used as the JM5
Queue

nanme and the property value will be used as the JNDI nane for the
Queue.

#

I A sanple JM5 Queue with nanme "Queue. Sanpl el" and JNDI nane

" STCQueuel"

Queue. Sanpl e1l=STCQueuel

I Anot her sanmple JM5 Queue with name "Queue. Sanpl e2" and JNDI nane
" STCQueue?2"

e*Way Intelligent Adapter for WebLogic User’s Guide 28 SeeBeyond Proprietary and Confidential

Section 1.4

Introduction WebLogic e*Way Component Overview

Queue. Sanpl e2=STCQueue?2

For each Queue to configure, the property name must start with “Queue”. The startup
class uses the property name as the Queue name when creating the SeeBeyond Queue.
This Queue name is the name to be used in the e*Gate environment (the name of the
event created with Enterprise Manager). The property value for the Queue is used as
the JNDI name for the Queue. The JNDI name is used by the EJB (via the E]B's
deployment descriptor). See the section Message Flow from e*Gate to WebLogic on
page 17 and Message Flow from WebLogic to e*Gate on page 20 for more information
on the EJB deployment descriptors.

144. SeeBeyond Sample Message Driven Beans

The previous sections, Java Naming and Directory Interface (JNDI) on page 8 and
Java Messaging Service (JMS) on page 11 describe the JNDI and JMS subsystems. This
section finally ties all the concepts that were previously discussed with those for the
SeeBeyond MDBs.

There are two MDBs that are deployed in WebLogic: MDB Subscribing to SeeBeyond
Topic and MDB Subscribing to SeeBeyond Queue.

In the following sections, there are references to two XML files. These files are used as
the MDB's deployment descriptor. These are ejb-jar.xml and weblogic-ejb-jar.xml. The
ejb-jar.xml deployment descriptor is specified by the EJB 2.0 specification. The
weblogic-ejb-jar.xml is proprietary to WebLogic. Both are defined in order to deploy
the MDB.

MDB Receiving from SeeBeyond Topic

This MDB subscribes to a SeeBeyond JMS Topic. It receives from ONLY ONE
SeeBeyond Topic. The MDB simply receives and displays the JMS messages.

The following is the deployment descriptor for this MDB (ejb-jar.xml):

<ej b-jar>
<enterpri se-beans>
<message-driven>
<ej b- name>STCSubscr i ber MDBean</ ej b- nane>
<ej b-cl ass>com st c. eways. ej b. messagebean. STCSubscr i ber MDBean</ ej b- cl ass>
<transaction-type>Contai ner</transaction-type>
<message-dri ven-destinati on>
<desti nation-type>j avax.j ns. Topi c</ desti nati on-type>
<subscri ption-durability>Durabl e</subscription-durability>
</ message-driven-destinati on>
</ message-driven>

</ enterprise-beans>
<assenbl y- descri pt or >
<cont ai ner-transacti on>
<met hod>
<ej b- name>STCSubscri ber MDBean</ ej b- nane>
<net hod- nane>* </ net hod- nane>
</ met hod>
<trans-attribute>Not Supported</trans-attribute>
</ cont ai ner-transacti on>

</ assenbl y-descri ptor>
</ ejb-jar>

The <ejb-name> defines the name of the MDB and is used to uniquely identify the MDB
by the container. This name is displayed in the WebLogic Administrative Console to
identify this MDB. The <ejb-class> tag defines the class that implements that MDB. The
class that implements the Topic subscribing MDB is
com.stc.eways.ejb.messagebean.STCSubscriberMDBean. Since this MDB is

e*Way Intelligent Adapter for WebLogic User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview

subscribing to a SeeBeyond Topic, the <destination-type> is specified as
javax.jms.Topic. In order to create a durable subscriber MDB, the <subscription-
durability> is specified as Durable. Finally, in the <container-transaction> tag of the
<assembly-descriptor>, we define the transactional mode for the MDB. This MDB does
not use a transaction, so NotRequired in the <trans-attribute> tag is specified.

In addition to the ejb-jar.xml file, the MDB also needs to be included in the WebLogic-
ejb-jar.xml file.

<webl ogi c-ej b-jar>
<webl ogi c- enter pri se- bean>
<ej b- name>STCSubscr i ber MDBean</ ej b- nane>
<message-driven-descri ptor>
<pool >
<max- beans-i n-free- pool >15</ max- beans-i n-f r ee- pool >
<initial-beans-in-free-pool >5</initial-beans-in-free-pool >
</ pool >
<desti nati on-j ndi - name>SeeBeyond. Topi ¢s. STCTopi c1</ desti nati on-j ndi - nane>
<initial-context-factory>weblogic.jndi.WIlnitial ContextFactory</initial-context-
factory>
<provider-url>t3://1ocal host: 7003</ provi der-url >
<connection-factory-jndi-
name>SeeBeyond. Topi cConnect i onFact ori es. Topi cConnect i onFact or y</ connecti on-factory-j ndi - name>
</ message-driven-descri ptor>
<j ndi - nane>SeeBeyond. STCSubscr i ber MDBean</ j ndi - name>

</ webl ogi c- enterprise-bean>
</ webl ogi c-ej b-j ar>

The value for <ejb-name> must match that defined in ejb-jar.xml.

The <pool> tag defines the maximum number of MDBs in the free pool and the initial
pool size by using the <max-beans-in-free-pool> and <initial-beans-in-free-pool> tags
respectively. The <destination-jndi-name> tells the container the JNDI name of the
SeeBeyond Topic that this MDB is to subscribe. Also, the <connection-factory-jndi-
name> specifies the TopicConnectionFactory to use. The Topic and
TopicConnectionFactory must have already been created and registered with JNDI by
the startup class. (See SeeBeyond WebLogic Startup Class on page 24 for details.) The
container locates these JNDI objects in its own JNDI as specified by the <initial-context-
factory> and <provider-url>.

MDB Subscribing to SeeBeyond Queue

This MDB subscribes to a SeeBeyond JMS Queue. It subscribes to ONLY ONE
SeeBeyond Queue and simply receives and displays the JMS Messages.

The following is the deployment descriptor for this MDB (ejb-jar.xml):

<ej b-jar>
<enterpri se-beans>

<message- driven>
<ej b- name>STCRecei ver MDBean</ ej b- name>
<ej b-cl ass>com st c. eways. ej b. messagebean. STCRecei ver MDBean</ ej b-cl ass>
<transaction-type>Contai ner</transaction-type>
<message-driven-destinati on>
<destination-type>j avax.j nms. Queue</ destination-type>
<subscri ption-durability>Durabl e</subscription-durability>
</ message-driven-destinati on>
</ message-driven>

<assenbl y- descri pt or >

<cont ai ner-transaction>
<met hod>
<ej b- name>STCRecei ver MDBean</ ej b- name>
<met hod- name>* </ et hod- nanme>
</ met hod>
<trans-attribute>Not Supported</trans-attribute>
</ cont ai ner-transaction>

e*Way Intelligent Adapter for WebLogic User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview

</ assenbl y- descri ptor>
</ ejb-jar>

The <ejb-name> defines the name of the MDB and is used to uniquely identify the MDB
by the container. This name is displayed in the WebLogic Administrative Console to
identify this MDB. The <ejb-class> tag defines the class that implements that MDB. The
class that implements the Queue subscribing MDB is
com.stc.eways.ejb.messagebean.STCReceiverMDBean. Since this MDB is subscribing
to a SeeBeyond Queue, the user must specify the <destination-type> as
javax.jms.Queue. In order to create a durable subscriber MDB, the <subscription-
durability> is specified as Durable. Finally, in the <container-transaction> tag of the
<assembly-descriptor>, the transactional mode is defined for the MDB. This MDB does
not use a transaction, so NotRequired in the <trans-attribute> tag is specified.

In addition to the ejb-jar.xml file, the MDB also needs to be included in the weblogic-
ejb-jar.xml file:
<webl ogi c-ej b-j ar>
<webl ogi c- ent er pri se- bean>
<ej b- name>STCRecei ver MDBean</ ej b- name>
<message-driven-descriptor>
<pool >
<max- beans-i n-free- pool >15</ max- beans-i n-f r ee- pool >
<initial-beans-in-free-pool >5</initial-beans-in-free-pool >
</ pool >
<desti nati on-j ndi - name>SeeBeyond. Queues. STCQueuel</ desti nati on-j ndi - nane>
<initial-context-factory>webl ogic.jndi.WInitial ContextFactory</initial-context-
factory>
<provider-url>t3://1ocal host: 7003</ provi der-url >
<connection-factory-jndi-
nanme>SeeBeyond. QueueConnect i onFact ori es. QueueConnect i onFact or y</ connecti on-fact ory-j ndi - name>
</ message-driven-descri ptor>
<j ndi - name>SeeBeyond. STCRecei ver MDBean</ j ndi - nane>
</ webl ogi c- enterprise-bean>
</ webl ogi c-ej b-j ar>

The value for <ejb-name> must match that defined in ejb-jar.xml.

The <pool> tag defines the maximum number of MDBs in the free pool and the initial
pool size by using the <max-beans-in-free-pool> and <initial-beans-in-free-pool> tags
respectively. The <destination-jndi-name> tells the container the JNDI name of the
SeeBeyond Queue that this MDB is to subscribe. Also, the <connection-factory-jndi-
name> specifies the QueueConnectionFactory to use. The Queue and
QueueConnectionFactory must have already been created and registered with JNDI by
the startup class. (See SeeBeyond WebLogic Startup Class on page 24 for details.) The
container locates these JNDI objects in its own JNDI as specified by the <initial-context-
factory> and <provider-url>.

Accessing Session Beans

Session Beans can be accessed from an e*Gate Collaboration by using the EJB ETD
Builder to create an ETD for the Session Bean. this is done by using create on the home
interface to create a remote instance, hasNext() and next() to access the instance, call
methods on the remote instance and then free resources by calling remove() when
finished.

SeeBeyond Sample Session Beans

There are two Stateless Session Beans available with the WebLogic e*Way: A Session
Bean that publishes to a SeeBeyond JMS Topic and another Session Bean that uses the
STCQueueRequestor to send and receive a message to and from SeeBeyond JMS.

e*Way Intelligent Adapter for WebLogic User’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview

In the sections to follow, there are references to two XML files. These files are used as
the Session Bean's deployment descriptor; they are ejb-jar.xml and weblogic-ejb-
jar.xml. The ejb-jar.xml deployment descriptor is specified by the EJB 2.0 specification.
The weblogic-ejb-jar.xml is proprietary to WebLogic. Both need to define in order to
deploy the MDBs.

SLS Bean Publishing To SeeBeyond Topic

This Stateless Session Bean publishes to a SeeBeyond JMS Topic. It exposes the remote
method, publish(), which takes a String as an argument. The Session Bean gets the
message and publishes the message to a SeeBeyond JMS Topic.

The following is the deployment descriptor for this Session Bean (ejb-jar.xml):

<ej b-jar>
<enterpri se-beans>

<sessi on>
<ej b- name>STCPubl i sher SLSessi onBean</ ej b- nane>
<home>com st c. eways. ej b. sessi onbean. publ i sher. STCPubl i sher SLSessi onHone</ hone>
<r egot e>com st c. eways. ej b. sessi onbean. publ i sher. STCPubl i sher SLSessi on</r enot e>
<eJ -
cl ass>com st c. eways. ej b. sessi onbean. publ i sher. STCPubl i sher SLSessi onBean</ ej b-cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transacti on-type>Contai ner</transaction-type>
<resource-ref>
<res-ref - name>j ns/ Topi cConnect i onFact ory</res-ref - nane>
<res-type>j avax. j ms. Topi cConnecti onFact ory</res-type>
<r es- aut h>Cont ai ner </ res- aut h>
</resource-ref>
<resource-env-ref>
<resour ce- env-ref - nanme>j ns/ Topi c</ r esour ce- env-r ef - nane>
<resour ce-env-ref-type>j avax.] ns. Topi c</resource-env-ref-type>
</ resource-env-ref>
</ sessi on>

</ejb-jar>
The <ejb-name> defines the name of the Stateless Session Bean and is used to uniquely
identify the Session Bean by the container. This name is displayed in the WebLogic
Administrative Console to identify this Bean. The <ejb-class> tag defines the class that
implements that Session Bean. The home interface for this bean is
com.stc.eways.ejb.sessionbean.publisher. STCPublisherSLSessionHome. The remote
interface for the bean is
com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSession. The class which
implements the home and remote interfaces as well as the bean itself is
com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSessionBean. The Session
Bean knows about the TopicConnectionFactory and Topic destinations via the
resource reference tags. Notice that the value for the res-ref-name tag is
jms/TopicConnectionFactory and the value for the resource-env-ref-name
environment entry is jsm/Topic. They are specified as
javax.jms.TopicConnectionFactory and javax.jms.Topic for the resource type
respectively. These resource references are another level of JNDI indirection. They
don't specify the actual JNDI names of the JMS objects, but rather they are references to
the JNDI name. So the E]B can reference jms/TopicConnectionFactory but does not
really care what the actual JNDI name is. The actual JNDI names for these references
are defined in the weblogic-ejb-jar.xml file.

In addition to the ejb-jar.xml file, the Session Bean also needs to be included in the
weblogic-ejb-jar.xml file:
<webl ogi c-ej b-j ar>
<webl ogi c- enter pri se- bean>

<ej b- name>STCPubl i sher SLSessi onBean</ ej b- nane>
<st at el ess- sessi on-descri ptor>

e*Way Intelligent Adapter for WebLogic User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview

<pool >
<max- beans-i n-free- pool >15</ max- beans-i n-free- pool >
<initial-beans-in-free-pool >5</initial-beans-in-free-pool >
</ pool >
</ st at el ess-sessi on-descri ptor>
<ref erence-descri ptor>
<resour ce-descri ption>
<res-ref - name>j ns/ Topi cConnect i onFact ory</res-ref-name>
<j ndi -
nane>SeeBeyond. Topi cConnect i onFact ori es. Topi cConnecti onFact or y</j ndi - name>
</resource-description>
<resour ce- env-descripti on>
<res- env-ref - nane>j ns/ Topi c</ r es- env-r ef - nane>
<j ndi - nane>SeeBeyond. Topi cs. STCTopi ¢2</j ndi - name>
</ resource-env-description>
</reference-descriptor>
<j ndi - name>SeeBeyond. STCPubl i sher SLSessi onBean</ j ndi - nane>
</ webl ogi c- enterprise-bean>

</ webl ogi c-ej b-j ar>

The value for <ejb-name> must match that defined in ejb-jar.xml.

Again, the <pool> tag defines the maximum number of Session Beans in the free pool
and the initial pool size by using the <max-beans-in-free-pool> and <initial-beans-in-
free-pool> tags respectively. The value for the jndi-name tag for the resource name
jms/TopicConnectionFactory is
SeeBeyond.TopicConnectionFactories.TopicConnectionFactory and the value for the
jndi-name tag for the jms/Topic entry is SeeBeyond.Topics.STCTopic2. These define
the resource reference name to JNDI name mappings. The Topic and
TopicConnectionFactory must have already been created and registered with JNDI by
the startup class. (See SeeBeyond WebLogic Startup Class on page 24 for details.) The
container locates these JNDI objects in its own JNDI as specified by the <initial-context-
factory> and <provider-url>.

SLS Bean Request/Reply To SeeBeyond Queue

This Stateless Session Bean sends to a SeeBeyond JMS Queue and get back a reply on
the request sent. It exposes the remote method, request(), which takes a String as an
argument. The Session Bean gets the message and sends it to a SeeBeyond JMS Queue.
The Session Bean then gets a reply from e*Gate.

The following is the deployment descriptor for this MDB (ejb-jar.xml):

<ej b-j ar>
<enterpri se-beans>

<sessi on>
<ej b- name>STCQueueRequest or SLSessi onBean</ ej b- name>

<home>com st c. eways. ej b. sessi onbean. queuer equest or . STCQueueRequest or SLSessi onHone</ honme>

<renDte>conlstc.emay§bejb.sessionbean.queuerequestor.STCﬁpeueRequestorSLSessi0n</renvte>
<ej b-
cl ass>com st c. eways. ej b. sessi onbean. queuer equest or . STCQueueRequest or SLSessi onBean</ ej b-cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transaction-type>Contai ner</transaction-type>
<env-entry>
<env-entry-nane>Recei veTi neout </ env- ent ry- name>
<env-entry-type>j ava. | ang. Long</ env-entry-type>
<env-entry-val ue>60000</ env-entry-val ue>
</ env-entry>
<resource-ref>
<res-ref - name>j ns/ QueueConnect i onFact ory</res-r ef - nane>
<res-type>j avax.j ns. QueueConnecti onFact ory</res-type>
<r es- aut h>Cont ai ner </res- aut h>
</resource-ref>
<resource-env-ref>
<resour ce- env-ref - nanme>j ns/ Queue</ r esour ce- env-r ef - nane>
<resour ce-env-ref-type>j avax. j ns. Queue</resource-env-ref-type>
</ resource-env-ref>
</ sessi on>

</ejb-jar>

e*Way Intelligent Adapter for WebLogic User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview

The <ejb-name> defines the name of the Stateless Session Bean and is used to uniquely
identify the Session Bean by the container. This name is displayed in the WebLogic
Administrative Console to identify this Bean. The <ejb-class> tag defines the class that
implements that Session Bean. The home interface for this bean is
com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSessionHome. The remote interface
for the bean is com.stc.eways.ejb.sessionbean.publisher. STCPublisherSLSession. The class
which implements the home and remote interfaces as well as the bean itself is
com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSessionBean. The Session Bean
knows about the QueueConnectionFactory and Queue destinations via the resource
reference tags. Notice that the value for the res-ref-name tag is
jms/QueueConnectionFactory and the value for the resource-env-ref-name environment
entry is jsm/Queue. They are specified as javax.jms.QueueConnectionFactory and
javax.jms.Queue for the resource type respectively. These resource references are
another level of JNDI indirection. They don't specify the actual JNDI names of the J]MS
objects, but rather they are references to the JNDI name. So the EJB can reference
jms/QueueConnectionFactory but does not really care what the actual JNDI name is.
The actual JNDI names for these references are defined in the weblogic-ejb-jar.xml file.

In addition to the ejb-jar.xml file, the Session Bean also needs to be included in the
weblogic-ejb-jar.xml file:

<webl ogi c-ej b-jar>
<webl ogi c- ent er pri se- bean>
<ej b- name>STCQueueRequest or SLSessi onBean</ ej b- nane>
<st at el ess-sessi on-descri ptor>
<pool >
<max- beans-i n-free- pool >15</ max- beans-i n-free- pool >
<initial-beans-in-free-pool >5</initial-beans-in-free-pool >
</ pool >
</ st at el ess-sessi on-descri ptor>
<reference-descriptor>
<resour ce-description>
<re3;ref—nane>jns/CpeuernnectionFactory</res—ref—nanE>
<j ndi -
name>SeeBeyond. QueueConnect i onFact ori es. QueueConnect i onFact or y</j ndi - name>
</resource-description>
<resour ce-env-description>
<res-env-ref - name>j ns/ Queue</res-env-ref - nane>
<j ndi - nane>SeeBeyond. Queues. STCQueue2</j ndi - name>
</ resource-env-description>
</reference-descriptor>
<j ndi - name>SeeBeyond. STCQueueRequest or SLSessi onBean</ j ndi - nane>
</ webl ogi c-ent er pri se-bean>

</ webl ogi c-ej b-j ar>

The value for <ejb-name> must match that defined in ejb-jar.xml.

As before, the <pool> tag defines the maximum number of Session Beans in the free
pool and the initial pool size by using the <max-beans-in-free-pool> and <initial-beans-
in-free-pool> tags respectively. Notice that the value for the jndi-name tag for the
resource name jms/QueueConnectionFactory is
SeeBeyond.QueueConnectionFactories.QueueConnectionFactory and the value for
the jndi-name tag for the jms/Queue entry is SeeBeyond.Queues.STCQueue2. These
define the resource reference name to JNDI name mappings. The Queue and
QueueConnectionFactory must have already been created and registered with JNDI by
the startup class. (See SeeBeyond WebLogic Startup Class on page 24 for details.) The
container locates these JNDI objects in its own JNDI as specified by the <initial-context-
factory> and <provider-url>.

e*Way Intelligent Adapter for WebLogic User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview

Lazy Loading

The following code is for the publish() method of the sample Topic Publisher Session
Bean. initialize() is called in order to create the necessary JMS connections to publish to
the JMS Topic. This process is known as “lazy loading.” Lazy loading is used because
JMS objects may not have been bound to the naming service during the deployment of
the EJB. This is because the SeeBeyond WebLogic startup class can not be deployed
prior to the E]JB. Therefore, it may not be guaranteed that calling initalize() in
ejbCreate() creates the JMS Topic connection. WebLogic does not allow the user to
specify the deployment of a startup class prior to the deployment of an EJB.

*
/* : Send a text nmessage to SeeBeyond JMS Topic.
: @ar am nmessage The text nessage to send to a JMS Topic.
: @ hr ows EJBException Upon error.
: @ut hor SeeBeyond
?ui)l ic void publish (String nessage) throws EJBException

/1 1f not initialized already then do it (lazy |oading)
initialize();

if (nmessage == null)
t hrow new EJBException ("Can not publish a null nessage.");

try

Text Message text Msg = shynJMSTopi cbj ect. cr eat eText Message(message) ;
sbynJMSTopi cObj ect . publ i sh(text Msg);

}
catch (Exception ex)

throw new EJBException ("Exception caught while publishing nmessage; exception : " +
ex.tosString());

}

The following code is for initialize(). Notice that the EJB's ENC is used for getting the

TopicConnectionFactory and Topic destination. See the sample Java source code for
details.

protected void initialize () throws EJBException
if (!'blnitialized)
Exception savedException = null;
try
{ .
/1 Get the Initial Context
jndilnitial Context = new Initial Context();
/1 CGet the Topi cConnectionFactory using JNDI ENC
Topi cConnecti onFactory tcf =
(Topi cConnecti onFact ory)j ndi I nitial Context.| ookup("java: conp/ env/" +
ENV_TOPI C_CONNECTI ON_FACTORY) ;
/1 Cet the Topic using JNDI ENC

Topic topic = (Topic)jndilnitial Context.|ookup("java:conp/env/" +
ENV_TOPI C_DESTI NATI ON) ;

/| Create our JMSTopic object
sbynJMSTopi cQbj ect = new JMSTopi cObj ect (tcf, topic);

blnitialized = true;
}
catch (Exception exl)

t hrow new EJBException(ex1);

e*Way Intelligent Adapter for WebLogic User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview

Accessing Entity Beans

Entity Beans can be accessed from an e*Gate Collaboration by using the EJB ETD
Builder to create an ETD for the Session Bean. this is done by using Creators or Finders
on the home interface to create remote instances, hasNext() and next() to access the
instance, call methods on the remote instance. By calling “remove”, the Entity Bean
instance is removed from the permanent storage, for example deleting an account from
a database (or databases).

145. SeeBeyond Sample XA Message Driven Beans

An MDB can subscribe to a SeeBeyond JMS Topic or Queue in an XA transaction. If the
transaction needs to roll back, the message received by the MDB is rolled back and re-
delivered to the MDB.

MDB Subscribing to SeeBeyond JMS Queue Transactionally

The MDB subscribes to a (ONE) SeeBeyond JMS Queue. This MDB uses Container
Managed Transaction. Because the WebLogic container optimizes to one-phase commit
(or rollback) if only one XA resource is used, the MDB must also be configured to use
another XA Resource in order to observe a two-phase commit (or rollback). Therefore,
in addition to the SeeBeyond JMS XAResource, the MDB is also deployed to use the
demo XA database resource pool. The “examples” WebLogic Server instance already
has a XA database resource pool configured. The pool's JNDI name is examples-
dataSource-demoXAPool. The MDB references this pool. (See examples-dataSource-
demoXAPool on page 43 for more information.) The MDB expects the J]MS
TextMessage to contain, in its body content, a text string that looks like the following;:

accountld | balance

where accountld is a String ID for the account to create in the database and balance is
the initial balance of the account to be created.

l/|

The MDB parses these values separated by the “|” (pipe) character. If XA commit
occurs successfully, both the JMS Message receive and the insert into the database get
committed. To simulate an XA rollback, create a JMS Message with an accountld of
rollback. The MDB throws an EJBException (or any E]JB SystemException), if it sees
rollback as the accountld, after preparing to insert into the database table. Throwing
EJBException causes the XA rollback to happen on both the database and the
SeeBeyond JMS Queue. Upon rollback, the JMS Message is again delivered to the MDB.
The MDB can't keep any state; therefore, in order to determine whether the rollback
message has been sent again, it checks the JMSRedelivered flag on the JMS Message it
received. If the JMSRedelivered flag is set to true, the MDB does not open a connection
to the database or throw any exceptions. By not throwing an exception on a rollback
message that is being resent, a one-phase commit on the J]MS Queue occurs. The MDB
must check the JMSRedelivered flag in order to prevent indefinite rollbacks.

The following is the deployment descriptor for this MDB (ejb-jar.xml):

<ej b-j ar>
<enterpri se-beans>
<message- driven>
<ej b- name>STCXARecei ver MDBean</ ej b- nane>
<ej b-cl ass>com st c. eways. ej b. messagebean. STCXARecei ver MDBean</ ej b- cl ass>
<transacti on-type>Contai ner</transaction-type>
<message- driven-destination>
<destination-type>j avax.j ms. Queue</ desti nation-type>

e*Way Intelligent Adapter for WebLogic User’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview

<subscri ption-durability>Durabl e</subscription-durability>
</ nessage-driven-destination>
<resource-ref>
<res-ref - name>j dbc/ denbXAPool </ r es-r ef - nane>
<res-type>j avax. sql . Dat aSour ce</res-type>
<r es- aut h>Cont ai ner </res- aut h>
</resource-ref>
</ nmessage-driven>

</ enterprise-beans>
<assenbl y-descri ptor>
<cont ai ner-transaction>
<met hod>
<ej b- name>STCXARecei ver MDBean</ ej b- nane>
<met hod- nane>* </ net hod- name>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transaction>

</ assenbl y-descri ptor>

</ejb-jar>
Notice that MDB references another resource by the reference name
jdbc/demoXAPool. This resource is of type javax.sql.DataSource. The actual JNDI
name of this resource is defined in the weblogic-ejb-jar.xml deployment descriptor.
Notice, also, that CMT (Container Managed Transaction) is specified in the
<transaction-type> for the MDB. It is also required that the <container-transaction> be
specified for the MDB in the <assembly-descriptor> tag. In <container-transaction>, it’s
specified that all methods (including the onMessage() method) are required to
participate in an XA transaction. This is done by setting <trans-attribute> to “Required”
and the <method> tag with <ejb-name> set to the name of the MDB and <method-
name> set to * (which means all methods).

In addition to the ejb-jar.xml file, the MDB also needs to be included in the weblogic-
ejb-jar.xml file:

<webl ogi c-ej b-j ar>
<ej b- name>STCXARecei ver MDBean</ ej b- nane>
<message- driven-descri ptor>
<pool >
<max- beans-in-free-pool >15</ max- beans-i n-free- pool >
<initial-beans-in-free-pool >5</initial-beans-in-free-pool >
</ pool >
<desti nati on-j ndi - nane>SeeBeyond. Queues. STCQueue3</ dest i nati on-j ndi - nane>
<initial-context-factory>webl ogic.jndi.WInitial ContextFactory</initial-
context-factory>
<provider-url>t3://1ocal host: 7003</ provi der-url >
<connection-factory-jndi-
nanme>SeeBeyond. QueueConnect i onFact ori es. XAQueueConnect i onFact ory</ connecti on-factory-jndi -
name>
</ message-driven-descri ptor>
<reference-descriptor>
<resour ce-description>
<res-ref - nanme>j dbc/ denbXAPool </ r es-r ef - nane>
<j ndi - name>exanpl es- dat aSour ce- denbXAPool </ j ndi - nane>
</ resource-description>
</reference-descriptor>
<j ndi - name>SeeBeyond. STCXARecei ver MDBean</ j ndi - nane>
</ webl ogi c- ent er pri se-bean>

</ webl ogi c- ej b-j ar>

The value for <ejb-name> must match the value defined in ejb-jar.xml.

The <pool> tag defines the maximum number of MDBs in the free pool and the initial
pool size by using the <max-beans-in-free-pool> and <initial-beans-in-free-pool> tags
respectively. The <destination-jndi-name> tells the container the JNDI name of the
SeeBeyond Queue to which this MDB is to subscribe. Also, the <connection-factory-
jndi-name> specifies the XAQueueConnectionFactory to use. The Queue and
XAQueueConnectionFactory must already be created and registered with JNDI by the
startup class. (See SeeBeyond WebLogic Startup Class on page 24 for details.) The
container locates these JNDI objects in its own JNDI as specified by the <initial-context-

e*Way Intelligent Adapter for WebLogic User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview

factory> and <provider-url>. Notice also that the actual JNDI name for the
jdbc/demoXAPool resource is examples-dataSource-demoXAPool. This is the JNDI
name of the datasource XA pool that is already created and configured for the
“examples” WebLogic Server when WebLogic is installed.

SeeBeyond Sample XA Session Beans

A Session Bean (Stateless or Stateful) can publish a message to a SeeBeyond JMS Topic
or send a message to a SeeBeyond JMS Queue in an XA transaction. The Session Bean
accesses the SeeBeyond JMS XA ConnectionFactory and Destination via the Bean's
Environment Naming Context (ENC). The XAConnectionFactory and Destination are
denoted using the <resource-ref>, <resource-env-ref>, <resource-ref-name>, and
<resource-env-ref-name> tags of the Bean's deployment descriptor.

The Session Bean must enlist the SeeBeyond JMS XA Resource to WebLogic
TransactionManager. The enlistment must be done to the current XA transaction
created by the WebLogic container.

How To Enlist SeeBeyond JMS XAResource

WebLogic provides a helper class, weblogic.transaction. TxHelper, which the EJB
developer can use to get a hold of the current transaction and to enlist the SeeBeyond
JMS XA Resource to the current transaction. The enlistment process can be done in the
Bean's ejpCreate method(s). The Session Bean relies on the SeeBeyond Startup Class
(see SeeBeyond WebLogic Startup Class) to create and bind the JMS
XAConnectionFactory and Destination prior to WebLogic deploying the EJBs. Because
WebLogic does not allow startup classes to be deployed prior to E]Bs, the sample E]Bs
to “lazy loading” of the JMS objects.

In the usual manner, use the XAConnectionFactory and Destination to create the
XAConnection and XASession. The Bean can get a hold of the XAConnectionFactory
and Destination via the Bean's ENC. Once the XASession has been created, get a
reference to the XAResource by calling XASession.getXAResource(); then enlist the
XAResource to the current transaction. Before you enlist, call the WebLogic static
method, TxHelper.getTransaction, to get a reference to the current transaction
allocated by the container. TxHelper.getTransaction returns a
javax.transaction.Transaction. You can then call
javax.transaction.Transaction.enlistResource passing in the XAResource retrieved for
the XASession that you had created.

SLS Bean Publishing to SeeBeyond JMS Topic Transactionally

This Stateless Session Bean publishes to a SeeBeyond JMS Topic transactionally. The
sample Session Bean uses CMT (Container Managed Transaction). As with the
transactional MDB, the Session Bean also utilizes two XA Resources in order to exhibit
a two-phase commit or rollback behavior. The sample Session Bean uses both the
SeeBeyond JMS XAResource and the demo XA database resource pool.(See examples-
dataSource-demoXAPool on page 43 for details.) This Session Bean exposes two
remote methods, createAccountAndPublish() and getBalance().
createAccountAndPublish() takes two parameters: accountld of type java.lang.String
and balance of type double. This method inserts a new record into a table of the demo
database and publishes a JMS Message to a SeeBeyond JMS Topic upon successfully
inserting the record into the table. Both the insert and the publish are treated as a single

e*Way Intelligent Adapter for WebLogic User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview

XA transaction. The getBalance() method accesses the database and retrieves the
balance for the record specified by the account ID, passed to the method as argument.
This method can be used to verify that a particular record has been successfully
inserted into the database by the createAccountAndPublish() method. In fact, the
remote client tester for this Session Bean does invoke createAccountAndPublish() and
then invokes the getBalance() method immediately after the
createAccountAndPublish() method invocation returns. Upon successful commit of
the XA transaction, both the insert to the database table and the publish to the
SeeBeyond JMS Topic are committed. The getBalance() method returns the correct
balance and e*Gate receives the published message.

To simulate an XA rollback, the remote client can pass in an accountld of rollback in
the createAccountAndPublish() remote method call. The Session Bean prepares to
insert the record to the database and prepares to publish to the SeeBeyond JMS Topic.
Finally, it checks whether the accountld is “rollback.” If it is, the Session Bean throws
an E]BException (or any EJB SystemException) so that the container calls rollback on
both XA resources. When the client calls getBalance(), passing in an accountId of
rollback, the client should see that this record is not inserted. Moreover, e*Gate does not
receive the rollback message.

The following is the deployment descriptor for this Session Bean (ejb-jar.xml):

<ej b-jar>)
<enterpri se- beans>

<sessi on>
<ej b- name>STCXAPubl i sher SLSessi onBean</ ej b- name>

<home>com st c. eways. ej b. sessi onbean. xapubl i sher. STCXAPubl i sher SLSessi onHone</ hone>

<r enot e>com st c. eways. ej b. sessi onbean. xapubl i sher. STCXAPubl i sher SLSessi on</r enot e>
<ej b-
cl ass>com st c. eways. ej b. sessi onbean. xapubl i sher. STCXAPubl i sher SLSessi onBean</ ej b- cl ass>

<sessi on-type>St at el ess</ sessi on-type>

<transaction-type>Contai ner</transaction-type>

<resource-ref>
<res-ref - name>j ns/ XATopi cConnect i onFact ory</res-ref - nane>
<res-type>j avax.j ms. XATopi cConnecti onFact ory</res-type>
<r es- aut h>Cont ai ner </ r es- aut h>

</resource-ref>

<resource-ref>
<res-ref - name>j dbc/ denbXAPool </ r es-r ef - nane>
<res-type>j avax. sql . Dat aSour ce</res-type>
<r es- aut h>Cont ai ner </res- aut h>

</resource-ref>

<resource-env-ref>
<resour ce- env-ref - name>j ms/ Topi c</ r esour ce- env-r ef - nane>
<resource-env-ref-type>j avax.] ns. Topi c</resource-env-ref-type>

</ resource-env-ref>

</ sessi on>

</ enterprise-beans>
<assenbl y- descri pt or >
<cont ai ner-transacti on>
<met hod>
<ej b- name>STCXAPubl i sher SLSessi onBean</ ej b- nane>
<net hod- name>cr eat eAccount AndPubl i sh</ net hod- nane>
</ met hod>
<met hod>
<ej b- name>STCXAPubl i sher SLSessi onBean</ ej b- name>
<net hod- nane>get Bal ance</ net hod- name>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>

</ assenbl y-descri ptor>
</ ejb-jar>

The <ejb-name> defines the name of the Stateless Session Bean and is used to uniquely
identify the Session Bean by the container. This name is displayed in the WebLogic
Administrative Console to identify this Bean. The <ejb-class> tag defines the class that
implements that Session Bean. The home interface for this bean is

e*Way Intelligent Adapter for WebLogic User’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview

com.stc.eways.ejb.sessionbean.publisher. STCXAPublisherSLSessionHome. The
remote interface for the bean is
com.stc.eways.ejb.sessionbean.publisher.STCXAPublisherSLSession. The class
which implements the home and remote interfaces as well as the bean itself is
com.stc.eways.ejb.sessionbean.publisher.STCXAPublisherSLSessionBean. The
Session Bean is aware of the XATopicConnectionFactory and Topic destinations via
the resource reference tags. The value for the res-ref-name tag is
jms/XATopicConnectionFactory and the value for the resource-env-ref-name
environment entry is jsm/Topic. They are specified as
javax.jms.XATopicConnectionFactory and javax.jms.Topic for the resource type
respectively. These resource references are another level of JNDI indirection. They
don't specify the actual JNDI names of the JMS objects, but rather they are references to
the JNDI name. So, the EJB can reference jms/XATopicConnectionFactory but does not
really care what the actual JNDI name is. The actual JNDI names for these references
are defined in the weblogic-ejb-jar.xml file.

Notice also, that the SLS Bean references another resource by the reference name
jdbc/demoXAPool. This resource is of type javax.sql.DataSource. The actual JNDI
name of this resource is defined in the weblogic-ejb-jar.xml deployment descriptor.

CMT is specified in the <transaction-type> for the SLS Bean. It is also required that the
<container-transaction> be specified for the SLS Bean in the <assembly-descriptor> tag.
In <container-transaction>, it’s specified that the methods createAccountAndPublish
and getBalance are required to participate in an XA transaction. Although getBalance
is marked as required, the container optimizes for a one-phase commit or rollback
because it only accesses one XA Resource (the database XA Resource).

In addition to the ejb-jar.xml file, the Session Bean must also be included in the
weblogic-ejb-jar.xml file:

<webl ogi c-ej b-j ar>
<e] b- name>STCXAPubl i sher SLSessi onBean</ ej b- name>
<st at el ess- sessi on-descri ptor>
<pool >
<max- beans-i n-free- pool >15</ max- beans-i n-f ree- pool >
<initial-beans-in-free-pool >5</initial-beans-in-free-pool >
</ pool >
</ st at el ess-sessi on-descri ptor>
<reference-descri ptor>
<resour ce-description>
<res-ref - name>j ns/ XATopi cConnect i onFact ory</res-ref - nane>
<j ndi -
name>SeeBeyond. Topi cConnect i onFact ori es. XATopi cConnecti onFact ory</j ndi - name>
</resource-description>
<resour ce-description>
<res-ref - name>j dbc/ denbXAPool </ r es-r ef - nane>
<j ndi - nane>exanpl es- dat aSour ce- denpXAPool </ j ndi - name>
</resource-description>
<resour ce-env-description>
<res-env-ref-name>j ms/ Topi c</res-env-ref - nane>
<j ndi - name>SeeBeyond. Topi ¢s. STCTopi ¢3</j ndi - name>
</ resource-env-description>
</ reference-descriptor>
<j ndi - name>SeeBeyond. STCXAPubl i sher SLSessi onBean</ j ndi - nane>

</ webl ogi c- ej b-j ar >

The value for <ejb-name> must match that defined in ejb-jar.xml.

The <pool> tag defines the maximum number of Session Beans in the free pool and the
initial pool size by using the <max-beans-in-free-pool> and <initial-beans-in-free-pool>
tags respectively. The value for the jndi-name tag for the resource name
jms/XATopicConnectionFactory is
SeeBeyond.TopicConnectionFactories.XATopicConnectionFactory and the value for
the jndi-name tag for the jms/Topic entry is SeeBeyond.Topics.STCTopic3. These

e*Way Intelligent Adapter for WebLogic User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview

define the resource reference name to JNDI name mappings. The Topic and
XATopicConnectionFactory must already be created and registered with JNDI by the
startup class. (See SeeBeyond WebLogic Startup Class on page 24 for details.) The
container locates these JNDI objects in its own JNDI as specified by the <initial-context-
factory> and <provider-url>. Notice also that the actual JNDI name for the
jdbc/demoXAPool resource is examples-dataSource-demoXAPool. This is the JNDI
name of the datasource XA pool that is already created and configured for the examples
WebLogic Server when WebLogic is installed.

Verifying XA At Work

XA works transparently when the E]Bs are running. To observe XA working, look at
the SeeBeyond JMS server log. When XA works, the user sees the XA APIs being called.
To see the XA APlIs being logged, write the trace messages to a file. Figure 15 displays
the configuration file created for the SeeBeyond JMS IQ Manager:

Figure 15 SeeBeyond JMS IQ Manager - Trace Settings

/Edit Settings for C:/EGATE/Client/configs/.../localhost_igmag ;|g|5|
File “iew Options Tools Help
Goto Section; ITrace Settings j DE|%| ||§§||

Goto Parameter: |TraceTOFiIe j

TraceToFile DE'%"E%”

|t" Mo ® es |

Tracelevel DE'%"E%”

® 0 [2 3 ‘

TraceMemary DE'%"E%”

® of on |

TraceToStdout DE'%' | |§§I|

& no " Yes |

TraceVerbose DE'%"E%”

‘(‘ Mo ® ves ‘

TraceTimestamp DE'%"E%”

™ No res |
e

The JMS server log should appear something like this :

17:49:53.299 JM5 | 2676 (Session.cpp:716): XA prepare for Session sessioni d=63737404, transaction
t xni d=63737405

17:49:53.299 JMS | 2676 (SessionManager.cpp: 694): XAPrepare() :

xi d: 48801: 0005f a80c71858e3d95b: 636f 6d2e7365656265796f 6e642e6a6d732e636c69656e742e53544358415265736
f 75726365

e*Way Intelligent Adapter for WebLogic User’s Guide 4 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview

17:49:53.460 JMS | 2676 (Session.cpp:775): Session:: XAConmit() session sessioni d=63737404,
transaction txni d=63737438

17:49:53.460 JM5 | 2676 (SessionManager.cpp: 710): XACommt() :

xi d: 48801: 0005f a80c71858e3d95b: 636f 6d2e7365656265796f 6e642e6a6d732e636c69656e742e53544358415265736
f 75726365

In addition, WebLogic JTA and JMS XA tracing can be turned on by doing the
following;:

For WebLogic 6.1, modify the server startup script (i.e., startExamplesServer.cmd)
to include the following Java properties in the command line:

- Dwebl ogi c. Debug=webl ogi c. JTAXA - Dwebl ogi c. Debug. DebugJMSXA=t r ue

For WebLogic 7.0, modify startExamplesServer.cmd at <BEA-
HOME>\user_projects\ <domain name> to set the JTA / JMS debug flag as
follows:

JAVA VM=- Dnebl ogi ¢. Debug=webl ogi c. JTAXA - Dwebl ogi c. Debug. DebugJMSXA=t r ue
or
JAVA_OPTI ONS=- Dwebl ogi c. Debug=webl ogi c. JTAXA - Dnebl ogi c. Debug. DebugJMSXA=t r ue

Once these properties are added, restart the server. JTA and JMS XA tracing is written
to the server log which is typically located in a subdirectory with the same name as the
server, under the current domain in use. For example, given a server named “serv” the
location would be:

BEA\ WebLogi c7\ user _proj ect s\ mydonai n\ serv\serv. | og

####<Apr 4, 2002 5:49:52 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer > <Thr ead- 3> <>

<5: fa80c71858e3d95b> <000000> <5: fa80c71858e3d95b:

XA. start (rmrcom seebeyond. j ns. cl i ent. STCXAResour ce,

xar =com seebeyond. j nms. cl i ent . STCXAResour ce@2ela, fl ags=TMNOFLAGS)>

#it##<Apr 4, 2002 5:49:52 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer> <Thread-3> <> <>
<000000> <Resour ceDescri ptor[com seebeyond. j ms. cl i ent. STCXAResour ce]: startResourceUse, Number of
active requests:1, last alive time:0 nms ago. >

####<Apr 4, 2002 5:49:52 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer > <Thr ead- 3> <>

<5: f a80c71858e3d95b> <000000> <5: fa80c71858e3d95b: XA.start DONE

(rmrcom seebeyond. j ns. ¢l i ent. STCXAResour ce, xar =com seebeyond. j ns. cl i ent. STCXAResour ce@2ela>
#it##<Apr 4, 2002 5:49:52 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer> <Thread- 3> <>
<5:fa80c71858e3d95b> <000000> <ResourceDescri ptor[com seebeyond.] ns. cl i ent. STCXAResour ce] :
endResour ceUse, Nunber of active requests: 0>

####<Apr 4, 2002 5:49: 53 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer > <Thr ead- 3> <>

<5: fa80c71858e3d95b> <000000> <Resour ceDescri ptor[denpXAPool]: getOrCreate gets rd: nanme =
denpXAPool

xar = denmpXAPool

regi stered = true

enlistStatically = fal se

healthy = true

lastAliveTineMIlis = -1

numAct i veRequests = 0

scUrls = exanpl esServer +10. 1. 50. 134: 7003+exanpl es+

>

####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer > <Thread-3> <>

<5: fa80c71858e3d95b> <000000> <5: fa80c71858e3d95bh: XA. start (rnrdenpXAPool , xar =denpXAPool ,

f | ags=TMNOFLAGS) >

#it##<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer> <Thread-3> <> <>
<000000> <Resour ceDescri ptor[denbXAPool]: startResourceUse, Nunber of active requests:1, |ast alive
tine:0 ns ago. >

####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer > <Thr ead- 3> <>

<5: fa80c71858e3d95b> <000000> <5:fa80c71858e3d95b: XA.start DONE (rnrdenpXAPool, xar=denpXAPool >
#it##<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <Resour ceDescri pt or [denbXAPool] : endResour ceUse, Nunber of active
requests: 0>

####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer > <Thread- 3> <> <>
<000000> <5:fa80c71858e3d95h: XA. end(r mrcom seebeyond. j ns. cl i ent. STCXAResour ce,

xar =com seebeyond. j nms. cl i ent . STCXAResour ce@2ela, fl ags=TMSUCCESS) >

#it##<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer> <Thread-3> <> <>
<000000> <Resour ceDescri ptor[com seebeyond. j ns. cl i ent. STCXAResour ce]: startResourceUse, Nunmber of
active requests:1, last alive tine:0 ns ago. >

####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <| ocal host > <exanpl esServer > <Thr ead- 3> <>
<5:fa80c71858e3d95b> <000000> <5: f a80c71858e3d95b: XA. end DONE

(rmrcom seebeyond. j ns. cl i ent. STCXAResour ce, xar=com seebeyond. j ms. cl i ent. STCXAResour ce@2ela>
#it##<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer> <Thread-3> <>

<5: fa80c71858e3d95b> <000000> <Resour ceDescri ptor[com seebeyond. | ns. cl i ent. STCXAResour ce] :
endResour ceUse, Nunber of active requests: 0>

####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer > <Thread- 3> <> <>
<000000> <5:fa80c71858e3d95hb: XA. end(r mrdenpXAPool , xar =denpXAPool , flags=TMSUCCESS) >

e*Way Intelligent Adapter for WebLogic User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction WebLogic e*Way Component Overview

#it##<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer> <Thread-3> <> <>
<000000> <Resour ceDescri ptor[denbXAPool]: startResourceUse, Nunber of active requests:1, |ast alive
tine:0 ns ago. >

####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer > <Thr ead- 3> <>

<5: fa80c71858e3d95b> <000000> <5: fa80c71858e3d95bh: XA. end DONE (rnrdenpXAPool , xar=denpXAPool >
#it##<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer> <Thread- 3> <>
<5:fa80c71858e3d95b> <000000> <ResourceDescri ptor[denbXAPool]: endResourceUse, Nunber of active
requests: 0>

####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer > <Thread- 3> <> <>
<000000> <5:fa80c71858e3d95hb: XA. prepare(rnmcom seebeyond. j ns. cl i ent. STCXAResour ce,

xar =com seebeyond. j nms. cl i ent . STCXAResour ce@2ela>

#H###<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer > <Thread- 3> <> <>
<000000> <Resour ceDescri ptor[com seebeyond. j ms. cl i ent. STCXAResour ce]: startResourceUse, Number of
active requests:1, last alive tinme:0 ns ago. >

####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer > <Thr ead- 3> <>

<5: fa80c71858e3d95b> <000000> <5: fa80c71858e3d95b: XA. prepare DONE: ok>

####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer > <Thr ead- 3> <>

<5: fa80c71858e3d95b> <000000> <Resour ceDescri ptor[com seebeyond. | ns. cl i ent. STCXAResour ce] :
endResour ceUse, Nunber of active requests: 0>

#it##<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer> <Thread-3> <> <>
<000000> <5:fa80c71858e3d95hb: XA. prepare(rmrdenpXAPool , xar =denpXAPool >

####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer > <Thread- 3> <> <>
<000000> <Resour ceDescri pt or[denoXAPool | : startResourceUse, Nunber of active requests:1, last alive
time:0 ms ago. >

#it##<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <| ocal host > <exanpl esServer> <Thread- 3> <>
<5:fa80c71858e3d95b> <000000> <5: f a80c71858e3d95b: XA. prepare DONE: ok>

####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer > <Thr ead- 3> <>

<5: fa80c71858e3d95b> <000000> <Resour ceDescri pt or [denbXAPool] : endResour ceUse, Nunber of active
requests: 0>

#it##<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer> <Thread-3> <> <>
<000000>

<XAResour ce[com seebeyond. j ms. cl i ent. STCXAResour ce] . conmi t (xi d=5: f a80c71858e3d95b, onePhase=f al se) >
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <| ocal host > <exanpl esServer> <Thread- 3> <> <>
<000000> <Resour ceDescri ptor[com seebeyond. j ns. cl i ent. STCXAResour ce]: startResourceUse, Nunber of
active requests:1, last alive time:0 ns ago. >

#it##<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer> <Thread-3> <>

<5: f a80c71858e3d95b> <000000> <5: f a80c71858e3d95b: XA. commit DONE

(rmrcom seebeyond. j ns. cl i ent. STCXAResour ce, xar=com seebeyond. j ns. cl i ent. STCXAResour ce@2ela>
####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer > <Thr ead- 3> <>

<5: fa80c71858e3d95b> <000000> <Resour ceDescri ptor[com seebeyond. | ns. cl i ent. STCXAResour ce] :
endResour ceUse, Nunber of active requests: 0>

#it##<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer> <Thread-3> <> <>
<000000> <XAResour ce[dempXAPool] . commi t (xi d=5: f aB0c71858e3d95b, onePhase=f al se) >

#it##<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer> <Thread-3> <> <>
<000000> <Resour ceDescri pt or[demoXAPool] : startResourceUse, Nunmber of active requests:1, last alive
tine:0 ns ago. >

####<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer > <Thr ead- 3> <>
<5:fa80c71858e3d95b> <000000> <5:fa80c71858e3d95h: XA.commit DONE (rnrdenpXAPool , xar=denpXAPool >
#it##<Apr 4, 2002 5:49:53 PM PST> <Debug> <JTA> <l ocal host > <exanpl esServer> <Thread-3> <>
<5:fa80c71858e3d95b> <000000> <ResourceDescri ptor[denbXAPool]: endResourceUse, Nunber of active
requests: 0>

Additional Logging and Monitoring of JTA and JMS XA

Additional logging and monitoring of JTA and JMS XA can be configured for
WebLogic Server 7.0 through the Administrator Console. From the navigation pane on
the left, expand the Servers node and select the appropriate server. Configure
monitoring and logging in the following locations:

= Select the Monitoring tab and click on the JMS and JTA subtabs.
= Select the Logging tab and click on the JTA and Debugging subtabs.

examples-dataSource-demoXAPool

examples-dataSource-demoXAPool

As part of its examples server, WebLogic pre-installs a pre-configured datasource
named examples-dataSource-demoXAPool (see Figure 16 on page 44) and associates it
with the pre-installed connection pool named demoXAPool (see Figure 17 on page 44).
This datasource is intended for use with the sample WebLogic E]Bs that are deployed
with the examples server, but it is also used by the E]Bs supplied with the WebLogic
e*Way. Use the figures below to verify that the WebLogic examples server is properly
set up to work with the sample e*Gate schemas/E]Bs discussed in this document.

e*Way Intelligent Adapter for WebLogic User’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 1
Introduction

e*Way Intelligent Adapter for WebLogic User’s Guide

Section 1.4
WebLogic e*Way Component Overview

Figure 16 WeblLogic (7.0) Administrative Console - demoXAPool

File Edit View Favorites Tools Hel

Ip

/3 WebLogic Server Console - Microsoft Internet Explorer

=10l x|

WHBack -~ = - @ ot | @Search (3] Favorites @Med\a Qs ‘ %- =

@ conzole
riydomain
&lzemers
Bl ciusters
Machines
Metwork Channels
=] EDeplnyments
@App\ications
EJE
Slwen Applications
Elyyeh Senvice Components
Connectars
Elstartup & Shutdown
B Bserices
Elucom
8 Bupec
2 @Jconnection Pools
demaPoal
@ demoxapool
mssalserverPoal
@ craciepaal
Eluuirools
Data Sources
B @12 Data Sources
examples-dataSou
C] examples-dataSou
examples-dataSou
@ exarnples-dataSou

8

L

mydomain> JDBC Connection ...> demoXAPool

General
A%
A%
FiYd

Address I@ CType%30omaingbodyFrameld=wl_console_frame_1040348737423 j @G0 |Links @Customiza Links @Frea Hatmail @Windows Media @Windows

Connections || Testing
MName
URL:
Driver Classname

Properties
(key=value)
ACLName
Password

Open String Password

demoX AP ool

I]dbl: pointbase:serverflocalhost

|mm pointhase xa.xaDataSource

user=examples ;I
DatsbhazeName=jdbc:pointhase: e
rver:// localhost/ demo

H

|
Change...
Change

Apply

|@ Applet navapplet started

’7 ’7 ’7 E Laocal intranet 4

Figure 17 Weblogic (7.0) Administrative Console - demoXAPool

File Edt VWiew Favorites Tooks

Help

/g webLogic Server Console - Microsoft Internet Explorer

P Back v = - @ 24 | @Search (] Favorites @Madla @ | %- = - @

@ conzole
rmydamain
&lsarers
ﬁCIusterS
machines
Elnetwark Channels
=] EDepIUymems
@Apphcatmns
HHew
Swen applications
Elyeh sernice Compaonents
& connectars
B startup & Shutdown
B Hlgerices
Eljcom
= Elipec
& & Connection Paols
demoPool
@ gemoxapool
mssylsenerPool
@ oraciepool
Elwuttiroals
Diata Sources
= .ﬂTx Data Sources
] examples-dataSoure
[exarmples-dataSourc
examples-dataSourc
[examples-dataSourc

=)

-

mydomain> JOBC Tx Data Sou...> examples-dataSou...

dto

Address I@CType%aDDomain&budyFramaId=w|_conso|e_frame_1040348737423j G | links &]Customize Links (& Free Hotmail & windows Media &]Windows

101

oLyt e | Targets | | Notes |

22
a2
a2
22
A2
a2
a2

Name

examples-dataSource-demoXAFool

JNDI Mame:

|examples—dataSDurce—demDXAP

Pool Name:

" Emulate Two-Phase Commit for non-XA Driver

[T Row Prefetch Enabled

Rows Prefetch Size. |45

Stream Chunk Size. |z56 bytes

|dem0XA.Poo\

Apply

‘@ Applet navapplet started

l_ ’_ ’_ E Local intranek 4

SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.5
Introduction Supported Operating Systems

15 Supported Operating Systems

The WebLogic e*Way is available on the following operating systems:
= Windows XP
= Windows 2000, Windows 2000 SP1, Windows 2000 SP2, and Windows 2000 SP3
= Windows NT 4.0 SP6a
= Solaris 2.6, 7, and 8
= HP-UX 11.0 and HP-UX 11i
= AIX4.3.3and 5.1
= Korean Windows XP

= Korean Windows 2000, Windows 2000 SP1, Windows 2000 SP2, and Windows
2000 SP3

= Korean Windows NT 4.0 SP6a
= Korean HP-UX 11.0

Note: WebLogic Server 7.0 is not supported with Solaris 2.6 or the Korean operating
systems.

16 System Requirements

To use the WebLogic e*Way, you need the following;:

= e*Gate version 4.5.1 or later. The Windows XP operating system is supported by
e*Gate version 4.5.3 or later.

= A TCP/IP network connection.

= Additional disk space for e*Way executable, configuration, library, and script files.
The disk space is required on both the Participating and the Registry Host.
Additional disk space is required to process and queue the data that this e*Way
processes; the amount necessary varies based on the type and size of the data being
processed, and any external applications performing the processing.

Note: Open and review the Readme.txt for the WebLogic e*Way for any additional

requirements prior to installation. The Readme.txt is located on the Installation
CD_ROM at setup\addons\ewweblogic.

16.1. External System Requirements
= BEA WebLogic Server 6.1 or 7.0

Note: WebLogic Server 7.0 is not supported with Solaris 2.6 or the Korean operating
systems.

e*Way Intelligent Adapter for WebLogic User’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 2
Installation

This chapter describes the procedures for installing the WebLogic e*Way.
= “Windows” on page 46
= “UNIX” on page 47
= “Files Created by the Installation” on page 48

2.1 WindOWS

211. Pre-installation

= Exit all Windows programs before running the setup program, including any
antivirus applications.

= You must have Administrator privileges to install this e*Way.

21.2. Installation Procedure

To install the WebLogic e*Way on a Windows system

1 Log in as an Administrator to the workstation on which you are installing the
e*Way.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s Autorun feature is enabled, the setup application launches
automatically; skip ahead to step 4. Otherwise, use the Windows Explorer or the
Control Panel’s Add/Remove Applications feature to launch the file setup.exe on
the CD-ROM drive.

4 ThelInstallShield setup application launches. Follow the installation instructions until you
come to the Please choose the product to install dialog box.

5 Select e*Gate Integrator, then click Next.

6 Follow the on-screen instructions until you come to the second Please choose the product
toinstall dialog box.

7 Clear the check boxes for all selections except Add-ons, and then click Next.

e*Way Intelligent Adapter for WebLogic User’s Guide 46 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Installation UNIX

8 Follow the on-screen instructions until you come to the Select Components dialog
box.

9 Highlight (but do not check) e*Ways, and then click the Change button. The
SelectSub-components dialog box appears.

10 Select the WebLogic e*Way. Click the continue button to return to the Select
Components dialog box, then click Next.

11 Follow the rest of the on-screen instructions to install the WebL ogic e* Way. Be sure to
install the e*Way filesin the suggested client installation directory. The installation utility
detects and suggests the appropriate installation directory. Unless you are directed to do so by
SeeBeyond support personnel, do not change the suggested installation directory setting.

Important: ebj.jar and weblogic.jar (with ejb.jar preceeding weblogic.jar) must be added to the
classpath prior to using the EJB ETD Builder.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, please see the online Help.

For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.

22 UNIX

221. Pre-installation

You do not require root privileges to install this e*Way. Log in under the user name
that you wish to own the e*Way files. Be sure that this user has sufficient privileges to
create files in the e*Gate directory tree.

222. Installation Procedure

To install the WebLogic e*Way on a UNIX system

1 Log in on the workstation containing the CD-ROM drive, and insert the CD-ROM
into the drive.

2 If necessary, mount the CD-ROM drive.
3 At the shell prompt, type:
cd /cdrom
4 Start the installation script by typing:
setup.sh

e*Way Intelligent Adapter for WebLogic User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 2
Installation

Note:

Important:

Note:

Section 2.3
Files/Directories Created by the Installation

A menu of options appears. Select the Install e*Way option. Then, follow the
additional on-screen directions.

Be sure to install the e*Way files in the suggested client installation directory. The
installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not
change the suggested “installation directory” setting.

After installation is complete, exit the installation utility and launch the Enterprise
Manager.

ebj.jar and weblogic.jar (with ejb.jar preceeding weblogic.jar) must be added to the
classpath prior to using the EJB ETD Builder.

Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, please see the online Help
system.

For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.

23 Files/Directories Created by the Installation

The WebLogic e*Way installation process installs the following files (see Table 1) within
the e*Gate directory tree. Files are installed within the egate\client tree on the
Participating Host and committed to the default schema on the Registry Host.

Table 1 Files Created by the Installation

e*Gate Directory File(s)

stcewweblogic.ctl

\external\ewweblogic\classes\ stcwlstartup.jar

\external\ewweblogic\configs\startup\ | STCWLStartup.properties

\configs\ejbetd\ weblogic.def

e*Way Intelligent Adapter for WebLogic User’s Guide 48 SeeBeyond Proprietary and Confidential

Chapter 3
Configuration

This chapter describes how to configure the components of the WebLogic e*Way and
WebL ogic Server. Configuration for the WebL ogic e Way differs for the Synchronous using the
EJB ETD Builder and the Asynchronous Implementations which use IMS.

= Configuring the Components for Synchronous Interaction Implementation using
the EJB ETD Builder on page 49

= Configuring Components for Asynchronous Interaction Implementation using
SeeBeyond JMS on page 59

= Configuring the WebLogic Server Components on page 65
= Append Classpaths for All Collaboration Rules on page 73

31 Configuring the Components for Synchronous
Interaction Implementation using the EJB ETD Builder

If you have not already done so, launch the Enterprise Manager, selecting a sample
schema for Synchronous Interaction using the EJB ETD Builder. The configuration for
this implementation differs from that of the Asynchronous Interaction implementations
in that JMS is not used.

311. Multi-Mode e*Way Configuration Parameters (Synchronous
Interaction)

e*Way configuration parameters are set using the e*Way Editor.
To change Multi-Mode e*Way configuration parameters

1 In the Enterprise Manager’s Component editor, select the e*Way you want to
configure and display its properties (see Figure 18). The Executable file for Multi-
Mode e*Ways is stceway.exe.

e*Way Intelligent Adapter for WebLogic User’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration Configuring the Components for Synchronous Interaction Implementation using the EJB ETD Builder

Figure 18 Multi-mode e*Way Properties

=loix

General | Start Upl Advancedl Securi‘tyl

Executable file

}:ninls‘tcewa\,f.exe

Clear | Find |

Additional command line arguments:

|% -un % _UISERMAMES -Lp %_PASSWORD -rp %_REGPORT

Run as user

|Adminis1rator ~|

[v U=ze Default Configuration

Configuration file

| Find | = |

Ok I Cancel | Apply | Help |

2 Inthe Additional Command Line Arguments box, type any additional command
line arguments that the e*Way may require, taking care to insert them at the end of
the existing command-line string. Be careful not to change any of the default
arguments unless you have specific need to do so.

3 Under Configuration File, click New to create a new file, Find to select an existing
configuration file, or Edit to edit the currently selected file. The Editor opens to edit
settings for the Multi-Mode e*Way. The Edit Settings dialog box opens.

4 Configure the e*Way as needed for your system. Any necessary settings for a
specific sample are provided in the Implementation Chapter.

For more information about how to use the e*Way Editor, see the e*Way Editor’s online
Help or the e*Gate Integrator User’s Guide.

For more information about the Multi-Mode e*Way, see the Standard e*Way Intelligent
Adapter User’s Guide.

31.2. EJB ETD e*Way Connection

The EJB ETD e*Way Connection Type provides the specific parameters necessary for
JNDI and EJB access. To create and configure an EJB ETD e*Way Connection do the
following:

To create the e*Way Connection

1 In the Enterprise Manager’s Component editor, select the e*Way Connections
folder and on the palette, click on the Create a New e*Way Connection button.

2 Enter a name (for this sample, EJBETD) and create the e*Way Connection.

e*Way Intelligent Adapter for WebLogic User’s Guide 50 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration Configuring the Components for Synchronous Interaction Implementation using the EJB ETD Builder

3 Double-click the new e*Way Connection. The e*Way Connection Properties dialog
box opens (seeFigure 19).

Figure 19 e*Way Connection Properties

@ e*Way Connection - EJBETD Proper - |EI|1|
General |
H:HH EJBETD
efay Connection Type: [SUSES)H] H

Event Type "get" interal

Time {in milliseconds) after a retrieval
returns "no event available" hefore
atternpting anather retrieval.

I 10000

e*Way Connection Configuration File

| Fincl | Ilgwe |

Ok I Cancel | Apply | Help |

4 From the e*Way Connection Type drop-down box, select EJB ETD. The Event
Type “get” interval is not used in this case. Use the default setting.

5 Click New under the e*Way Connection Configuration File field.

6 The Edit Settings dialog box opens. Enter the correct parameters for your e*Way
Connection as defined in the following pages. When all parameters have been
entered, from the File menu, click Save and Promote to Run Time.

Configuring the ETD e*Way Connection

The EJB ETD e*Way connection parameters provide information for locating EJBs using
JNDI, as well as security and connection functionality. At a minimum the parameters
java.naming.provider.url and java.naming.factory.initial must be set before the
e*Way can be used. For additional information regarding JNDI specific parameters go
to http://java.sun.com/products/jndi. For further information on WebLogic specific
parameters go to http://e-docs.bea.com/wls/docs61////jndi/jndi.html.

The EJB ETD WebLogic e*Way configuration parameters are organized into the
following sections.

= General Settings on page 52
= JNDI InitialContext Settings on page 52

e*Way Intelligent Adapter for WebLogic User’s Guide 51 SeeBeyond Proprietary and Confidential

http://java.sun.com/products/jndi
http://e-docs.bea.com/wls/docs61////jndi/jndi.html
http://e-docs.bea.com/wls/docs61////jndi/jndi.html

Chapter 3 Section 3.1
Configuration Configuring the Components for Synchronous Interaction Implementation using the EJB ETD Builder

313. General Settings

This section contains the following parameters:
= Type on page 52
= Class on page 52
= Property.Tag on page 52
Type

Description
Specifies the connector type. The default value should always be used.

Required Value
EJB ETD is always the configured default for EJB ETD connections.

Class

Description
Specifies the class name of the EJB ETD connector object. The default value should
always be used.

Required Value
com.stc.eways.ejbetd. EJBETDConnector is the configured default for EJB ETD
connections.

Property.Tag

Description
Specifies the data source identity. This parameter is required by the current
EBobConnectorFactory.

Required Value
A valid data source package name.

314. JNDI InitialContext Settings

This section contains the following parameters:
= java.naming.provider.url on page 53
= java.naming.dns.url on page 53
= java.naming.factory.initial on page 53
= java.naming.factory.object on page 53
= java.naming.factory.state on page 54
= java.naming.factory.control on page 54
= java.naming.factory.url.pkgs on page 54
= java.naming.security.protocol on page 54
= java.naming.security.authentication on page 54
= java.naming.security.principal on page 55

= java.naming.security.credentials on page 55

e*Way Intelligent Adapter for WebLogic User’s Guide 52 SeeBeyond Proprietary and Confidential

gg?u?itgel:rition Configuring the Components for Synchronous Interaction Implementation using the EJB ETD Bulder
= java.naming.authoritative on page 55
= java.naming.batchsize on page 55
= java.naming.referral on page 56
= java.naming.language on page 56
= weblogic.jndi.createIntermediateContexts on page 56
= weblogic.jndi.delegate.environment on page 56
= weblogic.jndi.pinToPrimaryServer on page 56
= weblogic.jndi.provider.rjvm on page 57
= weblogic.jndi.replicateBindings on page 57
= weblogic.jndi.ssl.client.certificate on page 57
= weblogic.jndi.ssl.client.key_password on page 57
= weblogic.jndi.ssl.root.ca.fingerprints on page 57
= weblogic.jndi.ssl.server.name on page 58
= weblogic.jndi.use.iiop.service.provider on page 58
java.naming.provider.url

Description
Specifies the PROVIDER_URL (Context. PROVIDER_URL).

Required Value
The URL of the participating host (for example, t3:/ /localhost:7001 or
http:localhost:7003). If not specified it defaults to the service provider default.

java.naming.dns.url

Description
Specifies the DNS host and domain names (Context. DNS_URL).

Required Value
A valid DNS host. If not specified it defaults to the service provider default.

java.naming.factory.initial

Description
Specifies the class name of initial context factory. Defines the implementation of
JNDI to be used by the client (Context.INITTAL_CONTEXT_FACTORY). For most
cases use the configured default.

Required Value
The class name of the initial context factory to be used.
weblogic.jndi.WLInitialContextFactory is the configured default.

java.naming.factory.object

Description
Specifies a colon-separated list of class names of object factory classes to be used
(Context.OBJECT_FACTORIES). See NamingManager.getObjectInstance() and
DirectoryManager.getObjectInstance().

e*Way Intelligent Adapter for WebLogic User’s Guide 53 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration Configuring the Components for Synchronous Interaction Implementation using the EJB ETD Builder

Required Value
Class names of object factory classes, separated by a colon.

java.naming.factory.state

Description
Specifies a colon-separated list of class names of state factory classes to be used
(Context.STATE_FACTORIES). See NamingManager.getStateToBind() and

DirectoryManager.getStateToBind().

Required Value
Class names of state factory classes, separated by a colon.

java.naming.factory.control

Description
Specifies a colon-separated list of class names of response control factory classes to
be used. (LdapContext. CONTROL_FACTORIES) See
ControlFactory.getControllnstance().

Required Value
Class names of response control factory classes, separated by a colon.

java.naming.factory.url.pkgs

Description
Specifies a colon-separated list of package prefixes to use when loading in URL
context factories. (Context. URL_PKG_PREFIXES) See
NamingManager.getURLContext().

Required Value
Package prefixes used to load URL context factories, separated by a colon.
com.sun.jndi.url is always added to end of list.

java.naming.security.protocol

Description
Specifies the security protocol to use (for example, “ssl”).

Required Value
A security protocol. If not specified it defaults to the service provider default.

java.naming.security.authentication

Description
Specifies the security authentication scheme to use.
(Context.SECURITY_AUTHENTICATION) The values are as follows:

+ simple: provides user password authentication. Values must also be provided
for java.naming.security.principal and java.naming.security.credentials
parameters.

+ strong: provides certificate authentication (a file name). May require the use of
X.509 certificates for the java.naming.security.credentials property. Values must
also be provided for java.naming.security.principal and
java.naming.security.credentials parameters.

+ none: no required authentication.

e*Way Intelligent Adapter for WebLogic User’s Guide 54 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration Configuring the Components for Synchronous Interaction Implementation using the EJB ETD Builder

+ user defined: a user-defined key for authentication. Values must also be
provided for java.naming.security.principal and
java.naming.security.credentials parameters.

Required Value
A security authentication property. Values are “simple”, “strong”, “none”, or a
user-defined key. If not specified it defaults to the service provider default.

java.naming.security.principal

Description
Specifies the identity of the principal (user) for the authentication scheme when the
java.naming.security.authentication value is set as simple or strong.

Required Value
A user name or certificate depending on the value entered for
java.naming.security.authentication. If not specified it defaults to “guest”, the
service provider default.

java.naming.security.credentials

Description
Specifies the principal's (user’s) credentials for the authentication scheme
determined by the authentication scheme value specified for
java.naming.security.authentication. If the value is set as “simple” this would be a
password. If the value is “strong” this would be certificate (a file). If the value is
user-defined then it would be the user-specified key. If the authentication value is
“none” no value is set for credentials.

Required Value
A password, certificate (file), or user-defined key depending on the value set for
java.naming.security.authentication. If not specified it defaults to “guest”, the
service provider default.

java.naming.authoritative

Description
Specifies the authoritativeness of the service requested. If “true”, the most
authoritative source is to be used is specified (for example, bypass any caches, or
bypass replicas in some systems). Otherwise, the source need not be (but can be)
authoritative.

Required Value
“true” or “false”. False is the configured default.

java.naming.batchsize

Description
Specifies the preferred batch size to use when returning data using the WebLogic
Server protocol. This is a suggestion to the provider to return the results of
operations in batches of a specified size, so that the provider can optimize its
performance and resources. It does not affect number or size of the data returned.

Required Value
A preferred batch size. If not specified it defaults to the service provider default.

e*Way Intelligent Adapter for WebLogic User’s Guide 55 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration Configuring the Components for Synchronous Interaction Implementation using the EJB ETD Builder

java.naming.referral

Description
Specifies whether referrals encountered by the service provider are to be followed
automatically. (Context. REFERRAL) The value of the property is one of the
following;:

+ follow: follow referrals automatically.
+ ignore: ignore any encountered referrals.
+ throw: throw a ReferralException when a referral is encountered.

Required Value

“follow”, “ignore”, or “throw”. If not specified it defaults to the service provider
default.

java.naming.language

Description
Specifies a colon-separated list of preferred languages to use with this service.
Languages are specified using tags defined in RFC 1766. (Context. LANGUAGE)

Required Value
Language tags as specified by RFC1776 protocol, separated by a colon. (for
example, en-US:fr:fr-CH:ja-JP-kanji) If not specified it defaults to the service
provider default.

weblogic.jndi.createlntermediateContexts

Description
Specifies the how to handle non-existent intermediate contexts. If “true” then
performing a bind, rebind, or createSubcontext with a name that specifies non-
existent intermediate contexts creates those contexts.

Required Value
“true” or “false”. If not specified it defaults to the service provider default.

weblogic.jndi.delegate.environment

Description
Specifies the JNDI environment to use for connecting to a third-party naming
service through the WebLogic Server. When specified WebLogic Server creates a
three-tier connection to a third-party naming service. Properties contained in the
Hashtable specified by this parameter are used to create an initial context for the
third-party naming service. The original initial context then delegates its work to
the third-party's initial context.

Required Value
A specified JNDI environment.

weblogic.jndi.pinToPrimaryServer

Description
Specifies whether the context stub only connects to the primary naming server.
Cluster-specific: If set as true, this parameter forces the context stub to connect to
only the server currently running at the host specified by
Context. PROVIDER_URL.

e*Way Intelligent Adapter for WebLogic User’s Guide 56 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration Configuring the Components for Synchronous Interaction Implementation using the EJB ETD Builder

Required Value
“true” or “false”. The configured default is false.

weblogic.jndi.provider.rjym

Description
Specifies the RJVM to use as the naming server. This may be used as an alternative
to Context. PROVIDER_URL. It specifies an RJVM representing the desired server
rather than a URL.

Required Value
A specified RIVM.

weblogic.jndi.replicateBindings

Description
Cluster-specific: Specifies whether tree modifications are replicated. This only
applies when connecting to WebLogic Servers that are running in a cluster. If set to
“false”, modifications to the tree caused by bind, unbind, createSubcontext, and
destroySubcontext are not replicated. A “false” value should only be used with
extreme caution. The default setting for the parameter is “true” which grants that
any modification to the naming tree is replicated across the cluster, This ensures
that any server can act as a naming server for the entire cluster.

Required Value
“true” or “false”. The default value is true.

weblogic.jndi.ssl.client.certificate

Description
Specifies an RSA private key and a chain of certificates for client authentication.
This can be set to SERVER, a special string that refers to the server’s private key and
certificate chain. Generally, it is set to an array of InputStreams, the first element
being a DER-encoded RSA private key, followed DER_encoded X.509 certificates.
Other than first, all certificates must be an issuer certificate of the preceding
certificate.

Required Value
An RSA private key and a chain of certificates.

weblogic.jndi.ssl.client.key_password

Description
Specifies the password for an encrypted PKCS5/PKCS8 RSA private key.

Required Value
A password.

weblogic.jndi.ssl.root.ca.fingerprints

Description
Specifies valid certificate authorities using a set of fingerprints (MD5) of the
authorities' certificates encoded either as an array of byte arrays, or a comma-
separated string of hex values. When specified, the SSL connection can only be
established to a server that presents a certificate chain in which the fingerprint of
the root matches one of the fingerprints specified by the parameter value.

e*Way Intelligent Adapter for WebLogic User’s Guide 57 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration Configuring the Components for Synchronous Interaction Implementation using the EJB ETD Builder

Required Value
A set of fingerprints (MD5) of the authorities' certificates encoded either as an array
of byte arrays, or a comma-separated string of hex values.

weblogic.jndi.ssl.server.name

Description
Specifies an expected name of an SSL server as a String. The value must match the
common name field in the certificate provided by the server (typically the WebLogic
Server’s DNS name).

Required Value
A specific SSL server name.

weblogic.jndi.use.iiop.service.provider

Description
Specified when the caller intends to use the WebLogic IIOP service provider to
establish an IIOP connection to the naming server.

Required Value
USE_IIOP_SERVICE_PROVIDER to specify use.

e*Way Intelligent Adapter for WebLogic User’s Guide 58 SeeBeyond Proprietary and Confidential

Section 3.2

Chapter 3
Configuring Components for Asynchronous Interaction Implementation using SeeBeyond JMS

Configuration

32 Configuring Components for Asynchronous Interaction
Implementation using SeeBeyond JMS

If you have not already done so, launch the Enterprise Manager, selecting a sample
schema for Asynchronous Interaction using the SeeBeyond JMS. The configuration for
this implementation differs from that of the Synchronous Interaction implementations

in that JMS is used.

321. JMS 1Q Manager

Verify that the IQ Manager Type is set to SeeBeyond JMS (see Figure 20).

Since the WebLogic e*Way publishes Events to JMS, the IQ Manager type in your
Participating Host must be set to SeeBeyond JMS.

Figure 20 SeeBeyond JMS IQ Manager
I [Y

General | Start UpI Advancedl Secur'rtyl

o

] .
E%j localhost_igmor

G Manager Type
ISeeEleyond JME LI

Additional command line arguments:

IE% -un %_ISERMAMESS -up %_PASSWORD% -rp %_REGPORT%

Run as user
[saministretor |

[Use Default Configuration

Configuration file

l:onfigs\s‘tcmSagenﬂlocalhost_iqmgr.c:fg

Clear | Fincl | Edit |

Ok | Cancel | Apply | Help |

322. Multi-Mode e*Way Configuration Parameters (asynchronous
interaction)
e*Way configuration parameters are set using the e*Way Editor.

To change Multi-Mode e*Way configuration parameters

1 In the Enterprise Manager’s Component editor, select the e*Way you want to
configure and display its properties. The Executable file for Multi-mode e*Ways is
stceway.exe.

2 Inthe Additional Command Line Arguments box, type any additional command
line arguments that the e*Way may require, taking care to insert them at the end of

e*Way Intelligent Adapter for WebLogic User’s Guide 59 SeeBeyond Proprietary and Confidential

Chapter 3

Section 3.2

Configuration Configuring Components for Asynchronous Interaction Implementation using SeeBeyond JMS

the existing command-line string. Be careful not to change any of the default
arguments unless you have specific need to do so.

3 Under Configuration File, click New to create a new file, Find to select an existing
configuration file, or Edit to edit the currently selected file. The Editor opens to edit
settings for the Multi-Mode e*Way. The Edit Settings dialog box opens.

4 Configure the e*Way as needed for your system. Any necessary settings for a
specific sample are provided in the Implementation Chapter.

For more information about how to use the e*Way Editor, see the e*Way Editor’s online
Help or the e*Gate Integrator User’s Guide.

For more information about the Multi-Mode e*Way, see the Standard e*Way Intelligent
Adapter User’s Guide.

323. €*Way Connection

Create and configure an e*Way Connection. The connection type should be set to
“SeeBeyond JMS”. (For the sample, the e*Way Connection is referred to as
“IMSQueueConsumer”.) Set the Event Type “get” interval to 5000.

To create and configure an SeeBeyond JMS e*Way Connection do the following;:

Create the e*Way Connection

1 In the Enterprise Manager’s Component editor, select the e*Way Connections
folder and on the palette, click on the Create a New e*Way Connection button.

2 Enter a name (for this sample, conJMSQueueConsumer) and create the e*Way
Connection.

3 Double-click the new e*Way Connection. The e*Way Connection Properties dialog
box opens.

4 From the e*Way Connection Type drop-down box, select SeeBeyond JMS.Set the
Event Type “get” interval to 5000.

Click New under the e*Way Connection Configuration File field. The New JMS e*Way
Connect dialog box opens. Indicate whether the e*Way Connection is intended for:

= External: Connect to JMS IQ Manager which is not in the current schema
= Internal: Connect to JMS IQ Manager within this schema

If External is selected, the user must configure e*Way Connection, including
ServerNamer, Hostname, and Port Number.If Internal is selected, the user selects a
JMS IQ Manager from the drop-down, and the ServerName, Hostname, and Port
Number are read in from the Registry.(see Figure 21).

e*Way Intelligent Adapter for WebLogic User’s Guide 60 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Configuration Configuring Components for Asynchronous Interaction Implementation using SeeBeyond JMS

Figure 21 JMS e*Way Connection properties

@ e*Way Connection - conJMSQueuel =10 x|
General |
H:HH condMSQueueConsumer
ey Connection Type: ISeeEleyond JriS ;I

Event Type "get’ interval

Time {in milliseconds) after a retrieval
returns “no event available” hefore

atternpting anather retrieval.
I 5000
New JMS e*Way Connection x|

{~ External: Connect to JMS IG Mgr which is not in this schema

* Internal: Connect to JMS 1@ Mar within this schema

JMS 12 Manager: localhost _icmogr LI

Server Mame: localhost_igmar
Hostname: lacalhost

= Port Mumber. 24053

0K I Cancell Help |

5 Click Edit under the e¥*Way Connection Configuration File field. The Edit Settings
dialog box opens. Enter the correct parameters for your e*Way Connection as
defined in the following pages. When all parameters have been entered, from the
File menu, click Save and Promote to Run Time.

Configuring the JMS e*Way Connection parameters

For more information about the JMS e*Way Connections, see the SeeBeyond [MS IQ
Manager User’s Guide.

This section describes the JMS e*Way configuration parameters. For SeeBeyond JMS,
the e*Way Connection configuration parameters are organized into two sections:

= General Settings on page 61

= Message Service on page 63

General Settings

The General Settings control overall properties of the e*Way Connection. This section
contains the following parameters:

= Connection Type on page 62

= Transaction Type on page 62

= Delivery Mode on page 62

= Maximum Number of Bytes to read on page 63

= Default Outgoing Message Type on page 63

e*Way Intelligent Adapter for WebLogic User’s Guide 61 SeeBeyond Proprietary and Confidential

Chapter 3
Configuration

Section 3.2
Configuring Components for Asynchronous Interaction Implementation using SeeBeyond JMS

= Message Selector on page 63

= Factory Class Name on page 63

Connection Type

Description

Specifies the type of connection to be established.

For classic publication/subscription behavior, where each message is delivered to
all current subscribers to the Topic, select Topic.

For point-to-point behavior (equivalent to “subscriber pooling” for conventional
IQs), where each message is delivered to only one recipient in the pool, select
Queue.

Required Values

Topic or Queue.

Transaction Type

Description

Important:

Specifies the type of transaction to be instantiated.

XA transactions for the WebLogic e*Way are managed by the WebLogic
TransactionManager, NOT the e*Gate TransactionManager. For XA
transactions make sure that the XAConnectionFactory(ies) are configured
for the startup class.

In Internal (one-phase transactional) style, a commit is necessary: The message is
not saved until the either a commit or a rollback is received.

In XA-compliant (two-phase transactional style) a two-phase commit is done: The
sender sends a prepare, and the commit occurs if and only if all receivers are
prepared. Collaborations that use Guaranteed Exactly Once Delivery (GEOD) of
Events require XA-compliant transaction types. Note: This does not affect XA
Transactions for the WebLogic e*Way. Read “Important” above.

In Non-Transactional mode, the message is automatically saved on the server; no
commit is necessary.

Required Values

Internal, non-transactional, or XA-compliant.

Delivery Mode

Description

Setting Delivery Mode to Persistent guarantees that the JMS IQ Manager stores
each message safely to disk. Setting it to Non-Persistent does not guarantee that the
message is stored safely to disk. Non-Persistent provides better performance but no
recovery.

Required Values

Important:

Non-Persistent or Persistent.

If the JMS IQ Manager halts when in Non-Persistent mode, undelivered messages
are lost.

e*Way Intelligent Adapter for WebLogic User’s Guide 62 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Configuration Configuring Components for Asynchronous Interaction Implementation using SeeBeyond JMS
Maximum Number of Bytes to read

Description
Your setting for this parameter depends on the size of your messages. For example,
if you can anticipate that very large messages will be read, set this parameter
accordingly.

Required Values
1 to 200000000. The default is 5000.

Default Outgoing Message Type

Description
For messages that carry no payload, or carry only a simple TextMessage payload
(such as XML documents), you can set this option to Text.

For messages whose payload is known to be incompatible with other messaging
systems, or whose payload is unknown, keep this option set to Bytes.

Required Values
Bytes or Text.

Message Selector

Description
Specifies the Message Selector to be used for subscriptions.

Required Values
A string. The maximum length of query is set to 512 characters, including a null
terminator.

Note: This parameter does not check syntax. If the syntax is incorrect, the selector is
ignored and the subscriber is not created.
Factory Class Name

Description
For SeeBeyond e*Way Connections, keep the default setting:
com.stc.common.collabService. SBYNJMSFactory

Required Values
Default: com.stc.common.collabService.SBYNJMSFactory

Message Service

The parameters in this section specify the low-level information required to establish
the JMS. This section contains the following parameters:

= Server Name on page 64
= Host Name on page 64
= Port Number on page 64

= Maximum Message Cache Size on page 64

e*Way Intelligent Adapter for WebLogic User’s Guide 63 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Configuration Configuring Components for Asynchronous Interaction Implementation using SeeBeyond JMS
Server Name

Description
Specifies the name of the server (JMS IQ Manager) with which e*Gate
communicates.

Required Values
A valid server name.

Host Name

Description
Specifies the name of the host on which with which the server (JMS IQ Manager)
running.

Required Values
A valid host name.

Port Number

Description
Specifies the port number on which the JMS IQ Manager is running.

Required Values
A valid port number between 2000 and 1000000000.

Maximum Message Cache Size

Description
Specifies the maximum size of the message cache in bytes.

Required Values
An integer between 1 and 2147483647.

Configure the e*Way as needed for your system.

e*Way Intelligent Adapter for WebLogic User’s Guide 64 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Configuration Configuring the WebLogic Server Components

33 Configuring the WebLogic Server Components

The following section provides directions for configuring WebLogic Server for
asynchronous interaction (modes 2 and 3) with e*Gate (JMS). Setup directions are
provided for both WebLogic version 6.1 and 7.0.

= Configuration for WebLogic 6.1 on page 65
= Configuration for WebLogic 7.0 on page 69

33.1. Configuration for WebLogic 6.1

WebLogic Server 6.1 installation creates a home or root directory named “bea” by
default (this name may be changed during installation). Under the Home directory
open the wlserver6.1 directory, then open the config directory. Sample servers created
on WebLogic Server are located in the config directory (see Figure 22).

Figure 22 Weblogic Server 6.1 File Structure

EI{:I bea
= ER

E|{:I wlservers, 1
{:I bin
=0 config
D examples
{:I mydamain
{:I petstare

1 Verify that the system classpath contains ebj.jar and weblogic.jar (with ejb.jar
preceeding weblogic.jar).

2 Copy the following files to WebLogic’s <BEA-HOME>wlserver6.1\lib directory.

stcejpweblogic.jar
stcwlstartup.jar
STCWLStartup.properties

= stcejpweblogic.jar can be found on the Installation CD-ROM in the sample folder at:
sanpl es\ ewwebl ogi c
= stcwlstartup.jar can be found at:

eCGat e\ Server\regi stry\reposi tory\defaul t\external \ ewwebl ogi c
\cl asses

= STCWLStartup.properties can be found at:

eGat e\ Server\regi stry\repository\defaul t\external\ewebl ogic
\configs\startup\

3 Modify startExamplesServer.cmd and setExamplesServer.cmd located at <WL-
HOME/ config/examples. Append stcjms.jar and stcwlstartup.jar to the classpath
as follows:

For startExamplesServer.cmd

e*Way Intelligent Adapter for WebLogic User’s Guide 65 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Configuration Configuring the WebLogic Server Components

CLASSPATH=. ; .\l i b\webl ogi c_sp.jar;.\lib\weblogic.jar;.\sanpl es\eva
I\ cl oudscape\li b\ cl oudscape.] ar;.\config\exanpl es\servercl asses; .\
l[ib\stcjns.jar;.\lib\stcw startup.jar

For setExampleEnv.cmd

set CLASSPATH=%CLASSPATHY) 9N._HOVE% | i b\ st cj s. j ar; 9%\._HOVE% | i b\ st
cw startup.jar
stcjms.jar is located in the ..\eGate\server\regestry \repository \default\classes
directory.

4 The sample E]Bs have been configured to reference the T3 naming service that is
running on the localhost at port 7003. By default, each WebLogic Server instance is
installed to listen on port 7001. If your server instance is running, listening on port
7003, then you do not need to modify the deployment descriptors for the E]Bs.
Otherwise, do the following to modify the deployment descriptors. Extract
stcejpweblogic.jar and edit META-INF\weblogic-ejb-jar.xml. For each Bean that is
run, find the Provider_URL tag of the deployment descriptor and change the port
number from 7003 to 7001. Then re-jar (zip) stcejpweblogic jar.

5 Start an instance of the application server (in this case, Examples Server).

6 When the server has finished booting, start the Default Console. Go to
Deployments, Startup & Shutdown, and click on Configure a New Startup Class
(see WebLogic Server Console - Create a New StartupClass on page 67.) Enter the
following Values:

Name: Seebeyond_Startup
CLASSNAME: com.stc.eways.weblogic.startup.STCWLStartup
Deployment Order: 1000 (default)

Arguments: sbyn.wlstartup.propsfile=<WL
Home>\wlserver6.1\1ib\STCWLStartup
.properties (where <WL Home> is the home directory of WebLogic
Server.)

Click Create.

e*Way Intelligent Adapter for WebLogic User’s Guide 66 SeeBeyond Proprietary and Confidential

Chapter 3
Configuration

Section 3.3
Configuring the WebLogic Server Components

Figure 23 WebLogic Server Console - Create a New StartupClass

3 Weblogic Server Console - Microsoft Internet Explorer

Fle Edit Wiew Favorites Tools Help

=101]

Back - = - @) i | Qisearch [GFavorites fMedia ®| S H - o

Address I@:l 80570588 frameld=wl_console_frame_101915230871 1&MBean=examples%3AName%3Dexamples%ZCType%SDDomain&b0dyFrameId=wI_c0nsoIe_Frame_l019152808?10j @GD

@ Console
= examplas
2 & servers
QexamplesServer
Clusters
Machines
= ereponments
Applications
e
QWeb Applications
& Connectars 3
B &l startup & Shutdown g
Efrah
TEFrahimpl
Ehello
B hello_cluster
Ehello_iiop
Emultihello
TEpoolReceive
CEgeeBevond_Statup
EsenverReceive

Connected to 127.0.0.1:7001

Configuration

Name:

ClassName:

Arguments:

7| examples> Startup Classes> Create a new StartupClass... ﬂ = ? ;'i]ea
y

Deployment Order: |1DDD

[Abort startup on failure

ctive Domain: examples

|My8tartup Class

Is.weblDgic.startup.STCWLStartup

shyn.wlstartup.propsfile=C: \beah wlserver;l
6.1% Lib\ 3TCULStartup
.properties

[

Eatnck
= ﬂSeNices
s WTofs Tl
Elums
Ela

@ =

‘Ej Applet navapplet starked

[T e

7 Click on the Targets tab and move the new server instance from Available to
Chosen using the arrow button. Click Apply.

8 Stop and restart the server. If the startup class is successfully invoked, you should

see:

STCW.Startup -
STCWL.Startup -

9 Start the Default Console.

SeeBeyond startup class invoked -
Successful ly i nvoked SeeBeyond startup

STOWLSt art up

In the Console, go to Servers, examplesServer (or the new server instance). Right-

click exampleServer and select View JNDI Tree to open the JNDI Tree window.
Expand the SeeBeyond node to verify that all Seebeyond JMS objects are now

available (see Figure 24).

e*Way Intelligent Adapter for WebLogic User’s Guide

67

SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Configuration Configuring the WebLogic Server Components

Figure 24 View the INDI Tree

3 Weblogic Server Console - Microsoft Internet Explorer I [=]
File Edit Wiew Favortes Tools Help ﬁ

g=Eack - = - B 7t | Qisearch [Favortes Meda (% | S = - B

Address Iﬁ:]:HIZ?.D.D.1:7001;’cansoIE,iact\ons,ijnd\,iJndh.am Action?server=examples¥s 3ahan 3DExamplEsSErvar%zcType%3DServerj @60 ‘Liﬂks >

= Qexamp\esSeNer —
examples> Servers> examplesServer> JNDI Tree ﬂ = ?

BsubClass
Ijexamples
DWEDIDQIC
Hleis se the tree on the left to browse the naming tree for this server. This can be

@ jta-jmsjdbe-ReceivelnTxHome, | | seful in developing and debugging your applications.
@ ymibysit ContentHome_ED

Active Domain:

Connected to

S“’”S o ENarming Context
& i5eeBeyond « @ Bound Object
8 E7opics
@ STCTopic
@ STCTopic
@ STCTopic2

@ STCPUnlishersLEessiong
@ sTCOueueReguestorSLSe
B Baueues
@ sToousue2
@ sTCOUBLET
B ElaueueconnectionFactories
@ QueueConnectionFact
® myaueuaConnectionFa
@ ya0ueueConnectionFa
@ STCHAPublisherSLSessio
@ sTCQueueReguUestorSLS
@ STCHAPUBIisherSLEessia
=] ﬂTopicCDnnectionFactor\es
@ :aTopicConnectionFac
@ TopicCannectionFacto
@ WyTopicConnectionFac
@ STCPublisherSLSessionk

Elveadmasty =lAl | |
|§'| Applet navapplet started ’_’_’_ & Internet S

11 On the Console, click on Examples, Deployments, EJB. Click on Install a new EJB.
Browse to and select <WL-HOME>\wlserver6.1\lib\stcejbweblogic.jar. Click
Upload to install it on the WebLogic Administration Server.

e*Way Intelligent Adapter for WebLogic User’s Guide 68 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Configuration Configuring the WebLogic Server Components

332. Configuration for WebLogic 7.0

WebLogic Server 7.0 installation creates a home or root directory named “bea” by
default (this name may be changed during installation). Sample servers are located in
the <BEA-HOME>\weblogic700\samples\server\config directory. Servers created
by the user are located under <BEA-HOME>\user_projects\<domain name> (see
Figure 25).

Figure 25 WeblLogic Server File Structure

E-_1 bea

B0 jdk131_03
D lags

= | user_projecks
E{:I mydomain

{:I Ty server
{:I userConfig
D utils
-2 weblogic700
-1 comman
EI{:I samples
B server
E{:I config
{:I examples
{:I petstore

B2 waorkshop
-] server

{1 uninstal
e waorkshop

1 Import the JMSAsynchProducersConsumers sample schema into e*Gate (see
Installing a Sample Schema on page 85).

2 Verify that the system classpath contains ejb.jar, weblogic.jar (with ejb.jar
preceeding weblogic.jar in order), stcejpweblogic.jar, and AddNumbersE]B jar.

3 Copy the following files to the <BEA-HOME>\weblogic700\server\lib directory.

stcejpweblogic.jar
stcwlstartup.jar
STCWLStartup.properties
stgjms.jar
= stcejpweblogic.jar can be found on the Installation CD-ROM in the sample folder at:
sanpl es\ ewwebl ogi ¢

= stcwlstartup.jar can be found at:

eGat e\ Server\regi stry\reposi tory\defaul t\external \ ewwebl ogi c
\ cl asses

STCWLStartup.properties can be found at:

eCGat e\ Server\regi stry\repository\defaul t\external \ ewebl ogi c
\configs\startup

= stcjms.jar can be found at:

eGate\server\regestry \repository\default\classes

e*Way Intelligent Adapter for WebLogic User’s Guide 69 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Configuration Configuring the WebLogic Server Components

4 Modify startExamplesServer.cmd and setExamplesServer.cmd located at <BEA-
HOME>\user_projects\ <domain name>, appending stcjms.jar and stcwlstartup.jar
to the classpath for each. For example:

For startExamplesServer.cmd

CLASSPATH=C: \ bea\ j dk131_03\li b\tools.jar; %0 NTBASE_HOVE% | i b\ pbse
rver 42ECF183. j ar ; %°0 NTBASE_HOVE% | i b\ pbcl i ent 42ECF183. j ar; UCLI ENT

_CLASSES% ¥SERVER) CLASSES% %COMMON_CLASSESY% %CLI ENT CLASSES% ut i | s
“comon. j ar; C:\ bea\ webl ogi c700\ server\lib\stcjms.jar;C \bea\ webl og
i c700\server\lib\stcw startup.jar

For setExampleEnv.cmd

CLASSPATH=9CLI ENT_CLASSES% %SERVER CLASSES% %GAVPLES_HOVE% ser ver \
eval \ poi nt base\ | i b\ pbserver 42ECF183. j ar ; “SAMPLES_HOVE% ser ver \ eval
\p0| nt base\ | i b\ pbcl | ent 42ECF183. j ar ; 9\._HOVE% server\ i b\ cl asses12
i p; YCOMMON_CLASSESY% C: \ bea\ webl ogi c700\ server\lib\stcjms.jar;C:\
bea\webl 0gi c700\ server\lib\stcw startup.jar
5 The sample E]Bs have been configured to reference the T3 naming service that is
running on the localhost at port 7003. By default, each WebLogic Server instance is
installed to listen on port 7001. If your server instance is running, listening on port
7003, then you do not need to modify the deployment descriptors for the EJBs.
Otherwise, do the following to modify the deployment descriptors.

A Extract stcejpweblogic.jar to a temporary file and edit META-INF\weblogic-
ejb-jar.xml.

B For each Bean that is run, find the Provider_URL tag of the deployment
descriptor, change the port number from 7003 to 7001, and if necessary, change
localhost to the name of your specific computer.

C Save, re-jar (zip), and replace stcejpbweblogic jar.

6 Start an instance of the application server (in this case, the user defined
domain/server).

7 When the server has finished booting, start the Administration Console. Go to
Deployments, Startup & Shutdown, and click on Configure a New Startup Class
(see WebLogic Server Console - Create a New StartupClass on page 71.) Enter the
following Values:

Name: Seebeyond_Startup
CLASSNAME: com.stc.eways.weblogic.startup.STCWLStartup
Deployment Order: 1000 (default)

Arguments: sbyn.wlstartup.propsfile=<BEA-
HOME>\weblogic700\server\libA\STCWLStartup
.properties (where <BEA-HOME> is the home directory of the
WebLogic Server.)

Click Create and Apply.

e*Way Intelligent Adapter for WebLogic User’s Guide 70 SeeBeyond Proprietary and Confidential

Chapter 3
Configuration

Section 3.3
Configuring the WebLogic Server Components

Figure 26 WebLogic Server Console - Create a New StartupClass

/) WebLogic Server Console - Microsoft Internet Explorer

Filz Edit

Wigw Favorites Tools

Help

GBack ~ = - @) 7} | @search [GEFavortes fMedia ¢ | Bh- Sb S E|

Elnetwork Channels
2 Hlpepioyments

@Applicatiuns

&Elew

@Web Applications

Elywish Service Components
Connectors

B &l startup & Shutdown
Ehello

TE startBrowser
B stopPointBaseServer
B Eserices
Hlicom
Elipec
Elums
Elmessaging Eridge
ElaL
..IT&

Address I@ CTypee3DDomainbodyFrameld=wl_console_frame_1040243434916 j G0 | Links @Customize Links @Free Hokrmail @Windows Media @Windows

@c | —
o @e;anri;zs examples> Startup & Shutdown> Seebeyond_Startup
Hlsenvers - dto loc 1 Active Domair
Clusters
Machines Configuration BERECHRNCEEN|

&2 Name: Seebeyond_Startup
&2 ClassName: |com.sto.ewsys weblogic.startup.S
@

&2 Arguments:

Ehello_cluster g
SEmultihelio =
o=)

poolReceive S))
= 5eeheyond_Startup & T Failure is fatal
= ; o

semerReceive &2 T Run before application deployments

Deployment Order: |1DDD

sbyn.wlatartup.propstile=C:ibea’ web logic;l
7004 2erver' liby STCWLStartup. properties

Apply |

| ol

|§| Applet navapplet skarted

[| |EELocalintranet V

8 Click on the Targets tab and move the new server instance from Available to
Chosen using the arrow button. Click Apply.

9 Stop and restart the server. To stop and restart the server do the following:

A From the navigator pane on the left, go to <mydomain>, Servers, and right-click
on <myserver> (or the new server instance). Click on Start/stop this server.

B In the pane on the right, under the Start/Stop tab, click on Shutdown this server
and Yes. The server shuts down.

C To restart the server, from the Windows Programs menu, select BEA WebLogic
Platform 7.0, User Projects, <mydomain>, Start Server.

D When prompted, enter user name and password.

10
11

e*Way Intelligent Adapter for WebLogic User’s Guide 71

If the startup class is successfully invoked, you should see the following text in the
Start Server command window:

STCW.Startup -
STCW.Startup -

Start the Administration Console.

SeeBeyond startup class invoked - STCOALStartup
Successful ly i nvoked SeeBeyond startup

In the Console, go to Servers, <myserver> (or the new server instance). Right-click
exampleServer and select View JNDI Tree to open the JNDI Tree window. Expand
the SeeBeyond node to verify that all Seebeyond JMS objects are now available (see
Figure 24).

SeeBeyond Proprietary and Confidential

Chapter 3
Configuration

File

<} WeblLogic Server Console - Microsoft Internet Explorer (=] S

Section 3.3
Configuring the WebLogic Server Components

Figure 27 View the JNDI Tree

Edit Wiew Favorites Tools Help |

dmEack - = - (£ 7at | ‘fisearch [GFavorites Media OF | - S -

Address I@ ction?server=mydomain%:3AName%:30myserver % 2C Type¥e305ervar ﬂ @G0 | Links @Customize Lirks @Free Hotmail @Windows Media 2

=

=] mesenrer = o
|j_appsdir_ejb2D_basic_statelessSession_earejb2D_k mydomam> Servers> myserver> JNDI Tree
D_appsdir_xdbc_oracle_ex‘t_earjdbc_oracle_ext nected to rjacobus ' A Jormain: mydomain
@ _appsdir_jta_ejb_jmsjdbc_jarjta_ejb_jmsjdbcreceiel
El_appsdir_wehsenices_trader_sartrader Use the tree on the left to browse the naming tree for this server. This
E3_appsdir_xml_xsit_content_sanim|_xsit_content can be useful in developing and debugging vour applications.
@ sddMumbers
@ gjh20-beanManaged-AccountHome « E MNaming Context
@ cib20-containerManaged-AccountHorme s« @ Bound ObJect

@ gjh20-statefulSession-TraderHome
@ jb20-statelessSession-TraderHome
@ cvamples-dataSource-demoPoal
@ camples-dataSource-demoXAP ool
ElhomeMethads
Hjavax
@ jdhc-oracleExtansions-ExtensionsHome
jms
@ jta-jmsjdbe-ReceivelnTxHome
@ yuotes
ﬂSeeBeyond
B EqueueConnectionFactaties
@ pyoueueConnectionF actary
@ QueueConnectionFactory
@ yaQueueConnectionFactory
B Haueues
@ sTCoueued
@ sTCousue?
® sTCQueues
@ sSTCPublisherSLSessionBean
@ sTCOueueRequestorSLSessionBean
@ sTCHAPublisherSLSessionBean
= |jTUpicCUnnectiUnFactUries
@ MyTopicConnectionFactory
@ TopicConnectionFactary
@ :aTopicConnectionFactory

= anpics
@ STCTopict
@ 5TCTopic: ElE | i
|@ Applet navapplet started ’7 lili
12 From the Navigator pane on the left, click on Examples, Deployments, EJB. Click on
Configure a new EJB.
Note: Before deploying the EJB, make sure that the JMS IQ Manager is running (see

Executing the Schema on page 115). It is only necessary to start the JMS IQ
Manager

A Under Step 1, click on upload it through your browser. Click Browse and select
<BEA-Home>\weblogic700\server\lib\stcejpbweblogic.jar. With the file
selected, click Upload.

B Under Step 2, find stcejbweblogic.jar and click select (left of the name).

C Under Step 3, select the server instance under Available Servers. Click the
right-arrow to move the new server instance to Target Servers.

D Under Step 4, enter stcejbweblogic as the name for this application (E]B).

E Under Step 5, click the Configure and Deploy button. This installs the EJB on
the WebLogic Administration Server.

F Repeat steps 1-5 (A-E) for AddNumbersEJB.jar.

e*Way Intelligent Adapter for WebLogic User’s Guide 72 SeeBeyond Proprietary and Confidential

Chapter 3
Configuration

Section 3.4

Append Classpaths for All Collaboration Rules

34 Append Classpaths for All Collaboration Rules

This step applies to both Synchronous and Asynchronous implementations of the
WebLogic e*Way with e*Gate versions 4.5.2 and 4.5.3 (see note below for e*Gate 4.5.1
implementation). Before running a schema, open e*Gate Enterprise Manager to the
schema. Open the Collaboration Rules folder and open each of the Collaboration Rules
in the Collaboration Rules Editor. From the menu bar of the editor, select Tools,
Options, and in the Java Classpaths dialog box, select Append and click OK (see Figure
28). This must be done for each of the Collaboration Rules for each schema.

Figure 28 Appending the Classpath for each Collaboration Rule

=% Collaboration Rules Editor - crIMSQueueReceive {Sandbox - Modified)
File Edit Yew Tools Help

=131

a4

™1 Source Events
(=] ®2 inJMSGQueue [Blob]
=Breset

|»

LI L] = raadDranarku
1} block| =% method| &

<% Java Classpaths

®2 bin'ljavaljinteara.jar
"2 hintjaval

=20 jdk,3.0_02Yibitools, jar
"2 etdiBlob. jar

"2 hintjavaljcscomp, jar
™12 bin'javastojinteara, jar
™12 hin'javalxerces. jar

"2 classesistrics, jar

™12 classes\steims, jar

™= ThirdPartyisunijms. jar
®2 ThirdPartylsunijta. jar

"= \skeutil, jar

[0} catch| {F

Business Rules

[=1-®18 crIMSQueusReceive

B crIMSQueueReceive

B executeBusinessRules

@ retBoolean

+ Set blob output with data rece
+ Display M3 message received
= reburn

B userlnitialize

B userTerminate

byl ! COpY)

™12 bin'javalgru-regexp-1.1.1.jar

Add Directary .., | Add File ... (o]

Reset |

—Environmental Classpath

" Prepend
{+ Append
" Do not use

CAEGATEVClient; CAEGATE Clienticlasses; CEGATE
ient’classesiegate. jar; C:leGatelclientiJRELL. 3ilibirt. ja
r;CileGatelclient! JREY L, 3iblil8n, jar; CAEGATE W lient
iclasses|stcims. jar; CAEGATEVClient) ThirdPartysunijm
5. jar; CEGATE | Clienthclassesistoqviewer jar; CEGAT
E\Clienticlassesistcjcs. jar; CieGateiclient) JREL 1, 3k,
tools, jar; C:\Documents and Settingsiriacabus iy

DocumentsiWweblogiciSamplesteib, jar;C:eGatelclienty

Cancel Help

"1f Destination Everts

ouisicb [eich| RIEIEPY
reset
available
next
receive
receive
send
send
rawInpuk
kbopic
publications
subscriptions
mmarshal

unmarshal -
vaadDramarky G 11

| whilel [ha | dol L5

returnl ! throwl

I -

=]
=]
vl Browse. .. |
Y
(& protected “ private [{none)
=
o

Note: Fore*Gate4.5.1 the Java Classpaths dialog box does not include the option of adding
ejb.jar or weblogic.jar to the environmental classpath. In this case ejb.jar or
weblogic.jar should be added to the user classpath.

e*Way Intelligent Adapter for WebLogic User’s Guide

73

SeeBeyond Proprietary and Confidential

Chapter 4

Implementation

This chapter contains basic information for implementing the WebLogic e*Way in a
production environment. Examples are given for creating and configuring the
necessary components for the WebLogic e*Way sample schemas. For more information
on creating and configuring e*Way components see the e*Gate Integrator User’s Guide or
the e*Gate Enterprise Manager's online Help system.

41 Implementation Process: Overview

The WebLogic e*Way is an application specific e*Way that allows e*Gate to connect with
WebLogic. When the e*Way Intelligent Adapter for WebLogic is installed with e*Gate
Integrator, schema’s can be created and configured using the e*Gate Enterprise
Manager. A schema is an organization scheme containing the parameters for the
components that control, route, and transform data as it moves through e*Gate in a
predefined system configuration.

The process overview presents the steps involved in creating an e*Way schema. For the
most part, these steps have already been implemented for the imported sample
schemas. To implement the WebLogic e*Way within an e*Gate system requires the
following;:

= Install the WebLogic e*Way

= Create one or more e*Way components and configure their properties and
parameters.

= Define the necessary e*Way Connections and configure their properties and
parameters.

= Define Event Type Definitions (ETDs) to package the data being exchanged with
the WebLogic application server.

= Configure the IQ Manager (and/or IQs, for the EJB ETD implementations) to suit
the schemas specific needs.

= Define Collaboration Rules to extract selected information from a source Event and
process it according to the Collaboration Service associated with the Collaboration
Rules.

= Define Collaborations to receive and process Event Types and then forward the
output to other e*Gate components.

e*Way Intelligent Adapter for WebLogic User’s Guide 74 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation Sample Implementations
= Configure any other components necessary to complete the schema.
= Test the schema and make any necessary adjustments.

For additional information on creating or modifying any component within the e*Gate
Enterprise Manager, see the e*Gate Enterprise Manager's online Help system.

+2 Sample Implementations

The following pages contain sample implementations that serve to explain how the
components for the WebLogic e*Way are created for each mode.
= Mode 1: Synchronous Interaction, e*Gate to WebLogic Server on page 76.

= Mode 2: Asynchronous Interaction, WebLogic EJB to e*Gate JMS on page 82.

= Mode 3: Asynchronous Interaction, e*Gate JMS to WebLogic Message Driven
Bean on page 83.

The section, “Creating the Sample Schemas” on page 84 describes the various sample
schemas for the WebLogic e*Way available on the installation CD-ROM.

The Host and Control Broker are automatically created and configured during the
e*Gate installation. The default name for each is the name of the host on which the
e*Gate Enterprise Manager GUI is installed.

Note: For more information about creating or modifying any component within the e*Gate
Enterprise Manager, see the e*Gate Enterprise Manager’s online Help system.

43 Considerations

= Add ejb.jar and weblogic.jar to the system classpath. ejb.jar and weblogic.jar
(with ejb.jar preceeding weblogic.jar in order) must be added to the system
classpath prior to using the EJB ETD Builder for the ETD to be generated
successfully. The ejb jar file can be found at http://java.sun.com/products/ejb/
docs.html and selecting Download Class Files.

= Classes in the default package cannot be used by the EJB ETD Builder. Users
cannot generate ETDs for E]Bs in the unnamed default package. An error message
to this effect appears if this is attempted.

= XA transactions for the WebLogic e*Way are managed by the WebLogic
TransactionManager, NOT the e*Gate TransactionManager or in the e*Way
Connection parameters. For XA transactions make sure that the
XAConnectionFactory(ies) are configured for the startup class.

= weblogic.jar and the EJB interface classes must be located on the Participating
Host that runs the Collaborations using those EJBs, or can be mapped to as a remote
connection. For e*Gate 4.5.1, when using the absolute path to specify the jar files,
quotation marks are required before and after the absolute path (for example,

e*Way Intelligent Adapter for WebLogic User’s Guide 75 SeeBeyond Proprietary and Confidential

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html

Chapter 4 Section 4.4
Implementation Synchronous Interaction, e*Gate to WebLogic Server

"G:\temp \EJB\AddNumbersE]B.jar;G:\bea\wlserver6.1\lib\weblogic.jar" for
WebLogic Server 6.1 or

"G:\temp\EJB\ AddNumbersE]B jar;G:\bea\weblogic700\server\lib
\weblogic.jar" for WebLogic 7.0.

= Entries in the STCWLStartup.properties file must not include any spaces in the
values or property keys. Spaces are interpreted as unrecognizable characters.

= Generating ETDS for E]B local interfaces is not currently supported.

= A Readme.txt is available at ..\setup \addons\ewweblogic\readme.txt on the
installation CD-ROM, that provides the latest information on required ESRs and
recent changes to the e*Way. An additional Readme.html is available for the
WebLogic e*Way samples at ..\samples\ewweblogic\Readme.htm that contains
supplementary information on implementing the sample schemas.

+4 Synchronous Interaction, e*Gate to WebLogic Server

Implementing the WebLogic e*Way schema in mode 1: Synchronous Interaction
requires the following four steps:

= Step 1: Build the ETD from the interface classes.
= Step 2: Configure the e*Way Connections.
= Step 3: Build Collaboration Rules to instantiate the remote interfaces.

= Step 4: Bind the e*Way Connection to the Collaboration Rules.

Step 1: Build the ETD from the interface classes

The following procedures describe how to create an Event Type Definition (ETD) using
the EJB ETD Builder.

Note: ejb.jar and weblogic.jar (with ejb.jar preceeding weblogic.jar in order) must be
placed in the system classpath for the ETD to be generated successfully.

Important: Classes in the default package cannot be used by the EJB ETD Builder.
Users cannot generate ETDs for EJBs in the unnamed default package. An
error message to this effect appears if this is attempted.

1 Select the Event Types folder on the Components tab of the e*Gate Navigator and
click the Create a New Event Type button on the palette.

2 Enter the name of the Event Type in the New Event Type Component window,
then click OK. (For this sample, the Event Type is defined as “AddNumbers”.)

3 Double-click the new Event Type to open the Event Type’s Properties dialog box.
Click the New button under the Event Type Definition field. The ETD Editor opens.

e*Way Intelligent Adapter for WebLogic User’s Guide 76 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Synchronous Interaction, e*Gate to WebLogic Server

4 From the ETD Editor File menu, click New. The New Event Type Definition
window opens displaying e*Gate’s ETD Wizards. Select the EJB Wizard and click
OK (see Figure 29).

Figure 29 New Event Type Definition - EJB ETD Wizard

Tz New Event Type Definition 10l =l

- =

DTDWizard EJEWizard % SEFWizard S50Wizard

4

Custom ETD #5Dwizard
Wizard

Ok | Cancel | Help |

5 The EJB ETD Builder Wizard opens. Click Next to continue.

6 In the Package Name field, enter the last segment of the Java package name. For
instance, the package name for com.stc.ejpetd. AddNumbers1 would be
AddNumbersl. (See Figure 30)

7 Enter the Root Node Name. This name appears as the root node of the new ETD.

Figure 30 New Event Type Definition - E]B ETD Wizard
x

Package and Root Node Names

Type a name For the package that contain all of the Java classes
generated by the wizard.

Package Mame: I.ﬂddl‘\lumbersl

Type a name For the root node of the new ETD.

Root MNode Marne: ITest."-\ddNumbersl

Type a default name of the EJ& home interface in JMDI,

m Default IMDI Marne: Addiumbers
SEEBEYOND-

< Back I Mext = I Cancel |

8 Enter the Default JNDI Name. This is the default name in JNDI and can be
overridden in the Collaboration Rules. It is exposed as a node JNDI name in the
ETD. The JNDI name can usually be found in the application server specific
Deployment Descriptor of the E]B, for instance, weblogic_ejb_jar.xml.

9 The Home and Remote Interfaces page of the EJB ETD Wizard opens (see Figure
31). Enter the class file root, in the Class File Root field using the File and
Directories buttons to browse to and locate the correct file. This can be either a jar

e*Way Intelligent Adapter for WebLogic User’s Guide 77 SeeBeyond Proprietary and Confidential

Chapter 4
Implementation

Section 4.4

Synchronous Interaction, e*Gate to WebLogic Server

file or a root directory which contains class files. If the root directory is used, the
directory above the top-level java package should be entered into the Class File

Root field.

Figure 31 Home and Remote Interfaces - EJB ETD Wizard

Home and Remote Interfaces

Select the root directory or jar File that contains the EJB class files.
{Maote: for a rook directory, select the directory above the top-level java

x|

package)

Class Filz Roat:

|C s\ templE B\ AddNuribersEJB. jar

Select Java classes for
Home Interface:

Filz...

Directaries...

Remote Interface:

Browse. .. |

Browse. ., |

SEEBEYOND-

v Include method argument names (source files required)

I Mext = I

< Back Cancel |

10 Enter the home interface by clicking Browse to the right of the Home Interface
field. The Home Interface dialog box appears. Expand the root directory or jar file
and select the home interface file (see Figure 32). Click OK

Figure 32 Home Interfaces - EJB ETD Wizard

EJB ETD Wizard - Home Interface x|

Select a Java classes for the Home Interface

B5-addnumbers

- AddMumbers.class

- AddMumbersBiean. class

- AddMumnbersBeanCtx. class

- AddhumbersBeanChx_Skel.class

- BddhumbersBeanCtx_Stub.class
- AddMumbersBeanImpl.class

= AddMumbers 55
- AddMumbersHomeCk:, class

- AddhumbersHomeCkx_Skel.class

- AddhumbersHomeCkx_Stub, class
- Bddhurnber sHomeImpl, dass

[o]4 | Cancel |

11 Enter the remote interface by clicking Browse to the right of the Remote Interface
field. The Remote Interface dialog box appears. Expand the root directory or jar file
and select the home interface file. Click OK

12

The Include method argument names checkbox is selected by default. Leave this

checked unless source code is unavailable. This allows the exact parameter names
to be displayed in the ETD (for example: “stockSymbols” and “shares”). If source

code is unavailable and the checkbox is not selected, parameters are displayed as

paraml, param?2, and so forth. Also, if the checkbox is not selected the Method

e*Way Intelligent Adapter for WebLogic User’s Guide

78 SeeBeyond Proprietary and Confidential

Chapter 4
Implementation

13

14

Section 4.4
Synchronous Interaction, e*Gate to WebLogic Server

Argument Names dialog box (the next page of the EJB ETD Wizard) will not be
displayed and the Recursive Expansion of Member Objects page opens. Click
Next to continue.

The Method Argument Names page of the EJB ETD Wizard opens. For the Source
File Root field, use the File and Directories buttons to locate and select the root
directory or jar file that contains the EJB source files. As in step 8, specify the
directory above the top-level Java package (see Figure 33). If the proper directory or
jar file is selected, the corresponding Java files are found and the home and remote
interfaces are displayed in the EJB Java Source Files field. Click Next to continue.

Figure 33 Method Argument Names - EJB ETD Wizard
l,-’fE.IB ETD Builder Wizard

ethod Argument Names

Select the root directory that contains the EJE Java source files, The
sources must be located in the appropriate directory corresponding ko
their lava package (Mote: specify the directory above the top-level Java
package)

Source File Rook:

IC:'l,temp'l,EJB'l,.C\ddNumbersEJB.jar File, ..

Directories, ..

Home Interface: addnumbersiaddrumbersHome. java
Remate Interface: addnumbersiaddilumbers.java

EJB Jawa source files.,

SEeBEvyoOMD-

< Back I Mext = I Cancel |

The Recursive Expansion of Member Objects page of the EJB ETD Wizard opens.
Specify a parsing depth for the EJB ETD Builder. Select Expand to: and enter a
specific depth. For example, entering 4 would expand nodes to expose the fields of
classes referenced by the EJB to the forth level. Select Expand All to completely
expand nodes to expose all referenced classes, or Do Not Expand for no node
expansion. (See Figure 34)

e*Way Intelligent Adapter for WebLogic User’s Guide 79 SeeBeyond Proprietary and Confidential

Chapter 4
Implementation

15

16

Section 4.4
Synchronous Interaction, e*Gate to WebLogic Server

Figure 34 Recursive Expansion of Member Obijects - EJB ETD Wizard
x

Recursive Expansion of Member Dbjects
—Parsing Depth:
+ Expanded ko I 3 j levels
¢~ Expand all

" Do Mok Expand

—Excluded packages and classes:
Tvpe package or class name:

Add to lisk |

java.lang Remove

Excluded packages and classes:

L

SEeBEYOND

< Back I Mext = I Cancel |

To exclude packages or classes from the generated ETD, such as a custom library
referenced by the EJB, enter the package or class in the Type package or class name:
field and click Add to list. The package or class is added to the Excluded packages
and classes list. To remove a package or class from exclusion, select the item in the
excluded list and click Remove. Click Next to continue

The Classpath page of the E]JB ETD Builder Wizard opens. The Classpath dialog
box allows the user to add any additional files to the classpath. The source root or
jar file is added by default, but any additional classes referenced by the EJB can be
added to the classpath by using Add File to locate and select a file or Add Folder
and locating and selecting a folder. To remove an item from the classpath select the
item and click Remove (see Figure 35). Click Next to continue.

Figure 35 Classpath - EJB ETD Wizard
x

Classpath

Identify the root path and jar files of every dass referenced by the EJB
interfaces to show their details in the generated ETD. The classpath is
also used ko compile the generated ETD,

Syskem Classpath:

o '|,hea'l,webIUglc?DD'l,samples'|,server'l,stage'l,examples'l,serverclasses -
C 'l,I:uea'l,weblnglc?EID'l,sam|:|Ies'l,server'l,stage'l,examples'l,cllentclasse_I_I

1]

Additional classpath entries:

CEGATE \Clienticlasses) steejbetdbuilder . jar _I
CAEGATEVClienthclassesistocewoommanbuilder jar
CEGATE \Clienticlasses)shoics, jar j
m CHEGATE Clientibintjavalstoiinkegra. jar
Add File... | Add Folder, .. | Remove

SEeBEYOND

< Back I Mext = I Cancel |

e*Way Intelligent Adapter for WebLogic User’s Guide 80 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Synchronous Interaction, e*Gate to WebLogic Server

17 The Completing the EJB Builder Wizard page opens. Review all entries. Click Back
to return to any fields that require changes. Click Finish to close the wizard and
create the ETD.

18 The new EJB ETD opens in the ETD Editor (see Figure 36). The ETD created by the
EJB ETD Builder has already been compiled. Save the ETD and promote to run

time.
Figure 36 ETD Editor - EJB ETD
~iix
File Edit Help
D || ? \
e Tiee
[+ testaddMumbersTETD b
5 Configuration (Name) testaddrumbers1ET
Bl InitialContextProperties avoidiateh felse
: childMaz undsfined
childMin undefined
~ Internal Templates o @ key comment
[F| [template]addnumbers.& e g valug defaultialue
[[temnplate]addnumbers.& El-=% get defaultBvtes
o i ke defaultEncading | A5CIT
=3 remove encoding
lockuplnitialContext enurnType
InitialContext exack False
JWDIM ame fixedyalue
= [AddMurmbersHome Faormat
£-*T create aroup False
- input] inputiatch
input?]:avatl_.lame testaddrumbers 1ET
& javaTvpe
P I I ﬂ ::eucltute length undefined
E1-*2 Rematelnstances IengthF_rom undeﬁned
— External Templates ey bt lenagthsize undefined
- MaxCoours 1
; =& nest member
E‘@ l:unen.t minQccurs 1
5 Primarykey affset undefined
Inputl optional False
Input2 arder SEqUEnCE
Fiesult overtide False
- "3 remove precedence child
readonly false
reference
scavoubput False
sCavenger
struckure
by e CLASS
local delimiters
| Loading Local Template(3]): [templateladdnumbers AddNumbersHome [44182002 [2:43PM .

Step 2: Configure the e*Way Connection

e*Way Connection configuration parameters, using the weblogic.def file, facilitate
communication between e*Gate and the JNDI directory service which connects e*Gate
applications with objects in Session/Entity Beans that actually do the work.

The connection configuration is used to locate and access the JNDI directory service
that contains the home interface of the EJB to be accessed. The EJB ETD then uses these
settings to create an Initial Context to JNDI and looks up the JNDI name in the ETD to

e*Way Intelligent Adapter for WebLogic User’s Guide 81 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.5
Implementation Asynchronous Interaction, WebLogic EJB to e*Gate JMS

find the home interface. One connection configuration can be used with multiple EJB
ETDs if they require the same settings for JNDI.

For directions on configuring the EJB ETD e*Way Connection see “EJB ETD e*Way
Connection” on page 50. For more information on e*Way Connections and parameters
see the e*Gate Integrator User’s Guide. For information about creating or modifying
any component within the e*Gate Enterprise Manager, see the e*Gate Enterprise
Manager’s online Help system.

Step 3: Build Collaboration Rules to instantiate the Remote Interfaces

The e*Gate user builds Collaborations between the EJB ETD and other ETDs, using the
tools available in the Collaboration Rules Editor to call methods and their parameters to
build query calls that return remote interfaces to carry out the required business logic
(see Creating the AddNumbers Sample Collaboration Rules on page 89).

Step 4: Bind the e*Way Connection to the Collaboration Rules

The e*Gate user enters the subscription and publication instance name, Event Type,
source and destination (specifying the e*Way Connection as either source or
destination) in the Collaboration to bind the e*Way connection to the Collaboration
Rule so that, at run time, the Collaboration knows how to find the JNDI directory
service.

45 Asynchronous Interaction, WebLogic EJB to e*Gate JMS

Step 1: Configure WebLogic to create JNDI entries for SeeBeyond JMS
on WeblLogic Server at startup

Configure WebLogic to create JNDI entries in the directory service for SeeBeyond JMS
on WebLogic Server instance startup (see Configuring the WebLogic Server
Components on page 65).

Step 2: Create a new Session Bean from the template

Create an E]B that can publish to SeeBeyond JMS. Basic sample Session Beans,
STCPublisherSLSession and STCQueueRequestorSLSession, are provided that, when
instantiated, publish to the Queue name listed in their parameters. Users can use these
samples as a models to build their own Session Beans.

Step 3: Create a new Deployment Descriptor from the template

An E]B is a Java class that can be written following the protocols of the application
server. A deployment tool (an XML file similar to a configuration file for an e*Way) is
then used to make the EJBs available to other programs from the directory. An EJB in
itself does not have parameters. Parameters that direct the behavior of the EJB (port

e*Way Intelligent Adapter for WebLogic User’s Guide 82 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
Implementation Asynchronous Interaction, e*Gate JMS to WebLogic Message Driven Bean

number, class names for the JMS provider, and so on.) are provided and stored in the
Deployment Descriptor.

Step 4: Packaging and Deployment

Take the created Session Bean and the Deployment Descriptor and use the WebLogic
GUI to make the EJB available for external applications to call it and publish to the
SeeBeyond JMS.

+6 Asynchronous Interaction, e*Gate JMS to WebLogic
Message Driven Bean

Step 1: Configure WebLogic to create JNDI entries for SeeBeyond JMS
on WeblLogic Server at startup

Configure WebLogic to create JNDI entries for SeeBeyond JMS on WebLogic Server
instance startup. Responsibility for building the JNDI tree lies with the startup classes.
The user installs these classes in the startup area of the Console and specifies the name
of the properties file. (see Configuring the WebLogic Server Components on page 65).

Step 2: Create a new message driven bean from the template.

The user builds the EJB, implements business logic. Implementation uses JNDI to
lookup TopicConnectionFactory.

Step 3: Create a new Deployment Descriptor from the template.

An E]B is a Java class that can be written following the protocols of the application
server. A deployment tool is then used to make the E]Bs available to other programs
from the directory. The Deployment Descriptor comes in two parts: General EJB
parameters (ejb-jar.xml) which defines the session type (stateless, stateful), registers the
Home and Remote classes with JNDI, and defines the JNDI name. The other side is the
Application Server vendor-specific parameters (weblogic-ejb-jar.xml) which defines
Pooling parameters and Reference Resource parameters.

Step 4: Packaging and deployment.

Take the Bean class files, Deployment Descriptors and place these in a Jar file. The Jar
files are uploaded using the WebLogic Console and the EJB is deployed, making the
class available to other applications.

e*Way Intelligent Adapter for WebLogic User’s Guide 83 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.7
Implementation Event Type Definitions

+7 Event Type Definitions

The Event Type Definition supplied for use with the Asynchronous Interaction samples
is referred to as Blob.xsc. It resides in the JMSAsyncProducersConsumers, etd\.

Figure 37 Event Type Definition - Blob.xsc

_ioix
Fle Edit Help
DMl 2] |
—Ewent Typpg————— —Exent T_l,lDefinitiDru
=2 blob = {allalu
- {Mame) blob
avalable childrazx undefined
childrin undefined
Intemal Templates next. commenk rook node
rece?ve defaulth'alue
[receive defaultBiytes
send defaultEncading | ASCIT
send encoding
rawlnput fixedvalue
topic format
publications inpukiatch
subzcriptions javatlarne Bk
marzhal javaType
- unmarshal length undefined
[readProperty lengthFrom undefined
— External Templates - wiiteProperty :;EE';CSCIE?S :lndeﬁned
Data
member
minJoours 1
order sequUence
precedence child
public false
readOnly false
reference
scavOutput false
sCEvenger
skructure fixed
bype CLASS
local delimiters
| Loading Local Templates | 44152002 [2:29PM v

+s Creating the Sample Schemas

Sample schemas for the WebLogic e*Way synchronous (EJB ETD) and asynchronous
(JMS) implementations are available in the ..\Samples\ewweblogic\ folder of the
installation CD-ROM. Import the zip files into e*Gate to create the following schemas:

= The AddNumbers Sample Schema (Synchronous, EJB ETD) on page 85
demonstrates synchronous interaction (mode 1) in which an ETD is generated from
a Session Bean's interface classes, that represents the methods of the EJB. The e*Way
(feeder) triggers the EJB on WebLogic which runs the business logic (in this case,
adds to numbers). The reply is then published to the JMS Queue, where it is picked
up and published to a file.

= The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS) on
page 93 contains the following six samples that demonstrate the WebLogic e*Way’s
asynchronous interaction using the SeeBeyond JMS e*Way Connection. To install

e*Way Intelligent Adapter for WebLogic User’s Guide 84 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.9
Implementation The AddNumbers Sample Schema (Synchronous, EJB ETD)

the JIMSAsynchProducersConsumers sample schema, import
JMSAsynchProducersConsumers.zip into the e*Gate Enterprise Manager.

¢ The JMSQueueSend Sample on page 94 demonstrates asynchronous
interaction (mode 3) from e*Gate to WebLogic via the SeeBeyond JMS Queue.
The e*Way picks up a message and publishes it to the SeeBeyond JMS Queue.
The message is then subscribed to by the WebLogic Message Driven Bean.
Sample input data, JMSQueueSendQFIN.qfin, is available in the WebLogic
samples directory on the Installation CD-ROM.

¢ The JMSQueueRequestor Sample on page 98 demonstrates asynchronous
interaction (modes 2 and 3) in which the e*Way receives a message from a
Queue and sends a reply back to the Session Bean which originated the
message.

+ The JMSXAQueueSend Sample on page 102 demonstrates asynchronous
interaction (mode 3) similar to the JMSQueueSend Sample except with an XA
transaction. The e*Way picks up a message and publishes it to the SeeBeyond
JMS Queue. The message is then subscribed to by the WebLogic XA MDB.
Sample input data, JMSXAQueueSendXAQFIN.xaqfin, is available in the
WebLogic samples directory on the Installation CD-ROM.

¢ The JMSTopicPublish Sample on page 104 demonstrates asynchronous
interaction (mode 3) in which the e*Way picks up a message from a file and
publishes it to the SeeBeyond JMS Topic where the message is subscribed to by
the WebLogic MDB. Sample input data, JMSTopicPublishTFIN.tfin, is available
in the WebLogic samples directory on the Installation CD-ROM.

+ The JMSTopicSubscribe Sample on page 108 demonstrates asynchronous
interaction (mode 2) in which the e*Way subscribes to a JMS Topic which is
published to by a WebLogic Session Bean.

+ The JMSXATopicSubscribe Sample on page 112 demonstrates asynchronous
interaction (mode 3) similar to the JMSTopicSubscribe Sample except with an
XA transaction. The e*Way subscribes to an XA JMS Topic which is published to
by a WebLogic Session Bean.

281. Installing a Sample Schema

Import the schema at the startup of the e*Gate Enterprise Manager, or select “New
Schema” from the File menu of the e*Gate Enterprise. For either case, select “Create
from export:” and navigate to the zip file containing the necessary sample.

19 The AddNumbers Sample Schema (Synchronous, EJB
ETD)

For the most part, these components are created when the sample schema is imported
into e*Gate. The following describes how those components were created and
configured. The AddNumbers sample demonstrates synchronous interaction, taking

e*Way Intelligent Adapter for WebLogic User’s Guide 85 SeeBeyond Proprietary and Confidential

Chapter 4
Implementation

Section 4.9
The AddNumbers Sample Schema (Synchronous, EJB ETD)

the Session Bean, AddNumbersE]B.jar, and creating an ETD that represents the
methods of the EJB. The sample takes two numbers, adds them, and returns the result.

The AddNumbersSchema sample is provided on the installation CD at
..\samples\ewweblogic\.

49.1. Running the AddNumbers Sample Schema

AddNumbersE]B is a Stateful Session EJB and must be deployed following the
standard WebLogic deployment procedures using the AddNumbersE]B jar file.

1

Import the schema, AddNumbers.zip and setup the input directory relative to your
directory structure. The default is C:\indata

In the input directory create a file with the extension *.fin, and include any valid
number (integer) in it and save the file.

Ensure that the Properties file for the Multi-Mode e*Way refers to the location of the
weblogic.jar file and the AddNumbersE]B.jar file. Copy the AddNumbersEJB.jar
file into the bea\wlserver6.1\1lib directory for WebLogic Server 6.1 or into the
bea\weblogic700\server\lib directory for WebLogic Server 7.0.

To recompile the Collaboration for this sample, make sure that the environmental
classpath, as set through the Collaboration Editor, refers to the location of the
weblogic jar file.

Start the control broker and from the Monitor, start the Queue Manager first. Now
start all the Modules and let the schema process the E]B.

If the schema ran successfully, an output0.dat file appears in the default output
directory (C:\DATA) containing the sum of the input value plus 100.

Figure 38 AddNumbersSchema Sample Components

AddNumbers WebLogic Container
AddNumbers e*Way [COHHGCtIOH

~ R
ewAddNumbers >
: EJBETD AddNumbers EJB
Multi-mode . .
. < Connection Session Bean
e*Way

J —

Outbound e

Inbound e*Way

*Way

GenericlnEvent
JMS Queue ew_Outbound
v e*Way

ew_Inbound
e*Way

As seen in Figure 38, The Inbound e*Way reads the sample containing one number, and
publishes to the JMS Queue. The AddNumbers e*Way subscribes to the JMS Queue,
assigns the value from the sample to the inputl object, and triggers the EJB ETD
Connection, sending a request to the AddNumbers EJB Session Bean on WebLogic
Server. The EJB preforms the process, adding the values of inputl and input2 and
returns the result. The AddNumbers e*Way gets the result and publishes it to the J]MS
Queue. The Outbound e*Way subscribes to the Queue and writes the result to file.

e*Way Intelligent Adapter for WebLogic User’s Guide 86 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.9
Implementation The AddNumbers Sample Schema (Synchronous, EJB ETD)

492. Configuring the AddNumbersSchema Sample

Once the sample has been successfully imported into e*Gate, the user must configure it
to correspond to the system as necessary.

Copy and Deploy the Sample EJB

Copy the sample E]B, AddNumbersE]B.jar to an available temporary directory (for
example C:\temp\EJB\ AddNumbersE]B jar). Open the WebLogic Console, go to
Deployments\E]B and select Install a new EJB. From the Install or Update an
Application page, use the Browse button to locate and select the Stateful Session Bean,
AddNumbersEJB.jar on your system. Click on Upload to upload the jar.

Note: The e*Gate JMS server must be started before the deployment of EJBs using
SeeBeyond JMS to prevent the risk of message loss.

Configure STCWLStartup.properties

STCWLStartup.properties must be configured to match the localhost SeeBeyond JMS.
Go to <WL HOME>\Ilib and open STCWLStartup.properties to edit the JMS host and
port number to match that of the SeeBeyond JMS server.

Create and Configure the e*Ways

The AddNumbers sample schema contains three e*Ways, two of which are pass-
through (ew_Inbound and ew_Outbound) and one multi-mode (ewAddNumbers).

Configuring the Pass-Through e*Ways.

The pass-through e*Ways, ew_Inbound and ew_Outbound use the executable file
“stcewfile”, set in the e*Way’s properties (See Figure 39). For each of the e*Ways, go to
the Start Up tab of the properties file, and select Start automatically.

Configuration files for the e*Ways can be saved as default except for the following: For
ew_Outbound the General Settings must be set to AllowIncoming: NO,
AllowOutgoing: YES, and for the Outbound (send) settings, set OutputFileName to
Result%d.dat. When configuration is complete, save the Configuration files and
promote to run time.

e*Way Intelligent Adapter for WebLogic User’s Guide 87 SeeBeyond Proprietary and Confidential

Chapter 4

Section 4.9
Implementation

The AddNumbers Sample Schema (Synchronous, EJB ETD)

Figure 39 e*Way Properties - Pass-through
RIS

| Start Up | Advanced | Security |

ew_Outbound

Executable file

}uin‘s‘tcewfile.exe

Clear | Fired |

Acditional command line arguments:

|% -un % _USERNAMES: -Up %_PASSWORDY -rp %_REGPORT%

Run &5 user

I.ﬂ.dminis:tratnr |

~Configuration file

I:nnfigs'lstc:ewfile‘.ew_@uthnund.u:fg

Clear | Fird | Eciit |

Ok I Cancel | Apply | Help |

Configuring the Multi-Mode e*Way

The Multi-mode e*Way, ewAddNumbers, uses the executable file “stceway”, set in the
e*Way’s properties. Also, go to the Start Up tab, and select Start automatically.

The Configuration file for the Multi-mode e*Way can be saved as default except for the
following setting;:

The JVM Settings CLASSPATH Prepend parameter must include (append)
AddNumbers.jar and weblogic.jar.

Note: Fore*Gate 4.5.1, when using the absolute path to specify the jar files, quotation
marks are required before and after the path (for example,
"'G:\temp\EJB\AddNumbersE|B.jar;G:\bea\wlserver6.1\lib\weblogic.jar'" or

"'G:\temp\EJB\ AddNumbersE|B.jar;G:\bea\weblogic700\server\lib
\weblogic.jar’’).

When configuration is complete, Save the file and select Promote to Run Time.

For more information on the Multi-Mode e*Way configuration settings see the e*Gate
Integrator User’s Guide.

Create the ETD

To create the ETD using the EJB ETD Builder follow the directions in Step 1: Build the
ETD from the interface classes on page 76.

e*Way Intelligent Adapter for WebLogic User’s Guide 88 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.9
Implementation The AddNumbers Sample Schema (Synchronous, EJB ETD)

Configure the Queue Manager

Open the IQ Manager Properties and select SeeBeyond JMS for the IQ Manager Type.
Click New for the Configuration file, save the default file and promote to run time.

Create the e*Way Connections

One e*Way Connection is created for the AddNumbers sample.

The AddNumbersConnection, e*Way Connection Type is EJB ETD. Click New under
the e*Way Connection Configuration File field. The e*Way Template Selection dialog
box opens. Select the e*Way template for WebLogic. The Configuration file for the
AddNumbersConnection e*Way Connection can be saved as default except for the
JNDI InitialContext Setting /java.naming.provider.url, for which the user must specify
the WebLogic .url, (for example: t3:/ /localhost:7003). Save the file and promote to run
time.

For more information on the EJB ETD e*Way Connection configuration parameters see
Configuring the ETD e*Way Connection on page 51.

Creating the AddNumbers Sample Collaboration Rules

The cr_JavaPassThru Collaboration Rules Properties appear as follows when complete

(see Figure 40). The Figure displays both the General and the Collaboration Mapping
tabs.

Figure 40 Collaboration Rules Properties - Java_collabrule
=10 x] =101

[Beneral] | | Callahoration Mapping | eneral | | Callahoration Mapping |
Ea)
{E@ cr_lavaPassThiu Instance Mame | ETD Mode | Trigger | Manual Publ...
GenericOut GenericOut.xsc Find ...|Cut i, [
Genericin Genericin.xsc Find .. JIn v [R12:8
Service: IJava LI

Initialization string: I

Collaboration Rules

I:D\Iaboration_rules\cr_JavaPassThru.class

Clear | Fincl | Ediit | |
Initialization file
}:ol\ab0ratianrules\crfJaVaPassThru.ctl
Clear | Fincl

Add Instance | Remove Instance |

(sI’3 I Cancell Apply | Help |

Cancel | Apply | Help |

The cr_AddNumbers Collaboration Rules Properties dialog box appear as follows (see
Figure 41):

e*Way Intelligent Adapter for WebLogic User’s Guide 89 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.9
Implementation The AddNumbers Sample Schema (Synchronous, EJB ETD)

Figure 41 Collaboration Rules Properties - cr_AddNumbers

@ Collaboration Rules - cr_AddNumbers Properties B] 5|
Genersl I | Collabaoration Mapping |
Instance Name ETL Mode | Trigger | Manual Publish
AddrumbersEJB AddrumbersEJB w2 Find . |iniut H -
In hlob xsc Find .. {in [w| s,
out hlob xsc Find ..|Out Pi, o
Add Instance | Remaove Instance |
Cancel | Apply | Help |

From the General tab of the cr_AddNumbers Collaboration Rules Properties dialog
box, click Edit or New under the Collaboration Rules field. The Collaboration Rules
Editor opens.

Creating the Business Rules Using the Collaboration Rules Editor

Each rule is created by clicking the rule button on the Business Rules toolbar. For more
information on using the Java Collaboration Rules Editor, see the e*Gate Integrator
User’s Guide.

The cr_AddNumbers Collaboration Rules (see Figure 42) are created as follows:
1 First, on the Menu bar, select Tools, Options, and append the classpath.

2 The first rule, under retBoolean in the Business Rules window, is created by
“dragging and dropping” blobField under AddNumbersE]B, In [BlobRoot], on the
Source Events command node to inputl under AddNumbersE]B,
AddNumbersHome, create, on the Destination Events command node.

3 To create the second rule drag input2 under AddNumbersE]B,
AddNumbersHome, create, on the Destination Events command node to the Rule
Properties, Rule window and set the parameter for setinput2 as 1000.

4 For the third rule, drag the execute method under AddNumbersE]B,
AddNumbersHome, create on the Destination Events command node to the Rule
Properties, Rule window.

5 The if expression is created by clicking the if button on the Business Rules toolbar,
then dragging the hasNext method under AddNumbersE]B, AddNumbersHome,
Remotelnstances in the Source Events command node to the Rule Properties, Rule
window.

e*Way Intelligent Adapter for WebLogic User’s Guide 90 SeeBeyond Proprietary and Confidential

Chapter 4
Implementation

Section 4.9

The AddNumbers Sample Schema (Synchronous, EJB ETD)

Figure 42 .Collaboration Rules Editor - AddNumbers

File Edit Wiew Tools Help

=11

ih

™% Source Events

S o dclrumbier sE B [addiurnber sRooEETD
= Configuration

2 InitialContextProperties

Dremove
lookupInitialContesxt

"™1% Destination Events

InitialContextProperties
put =
get

remve
lookupInitialContext
InitialContext

inpuEl
input2
result
execute
Rematelnstances
hashet

nesk

Currel
Primarykey
Inputl
Input2

AddiumbersEJE [addiumbersRootETD] ™ 'E|;
Corfiguration ™8]

Result
remove remave "8
B execute execute =S
5 [BlobRoot] out [BlobRoot] =5
blobField blobField E&*.
reset reset
available available
ek Mt
receive receive
receive receive
LI send send =
i} block| & break| =% method| @ var| |9 For| Wy if| ¥ rle| B switchl = casel (E5) whi\el L dol & returnl ! throwl
try| | cateh| 1% copy| {1t datamap| 1} list laokup|l £+ Hmestamp] {3 unigueid

Business Rules

|»

cr_addrumbers @ public cr_addrumbers()

- @ retBoolean @ boolean retBoolean = true;

executeBusinessRules : public boolean executeBusinessRules) throws java.lang.Exception

=™ cr_aAddMumbers @ public class cr_Addhlumbers extends cr_AddNumbersBase implements JCollaboratorExt

-1} rule : getAddMumbersEJB(). getAddMumbersHome(). getereate(). setinput 1{STC TypeConverter tboInkegerPrimitive] Rule:
- A} rule 1 getAddiumbersEJBC). getAddiumbersHome). getcreatel), setinput2(1000); (g)e::g:ESS?SE;SCE'I?%:;Icgoeliﬁ:rdtr\eltln;‘ojle;::goer?;r(\?w;igt?\f;EZ:EIBn ;I
- A} rule ; getAddMumbersEJB), getAddMumbersHome!), getcreatel). executed); ():getBIobFieId())) !
= iF ¢ F {getAddiumbersEJE(). getaddhumbersHome(). getRematelnstances(). hashext())
E| {}then:
s : getaddMurnbersEJE(). getAddiumbersHome(), getRemoteInstances). next();
» System.out.printind"The Total amaount after adding the input ko a 1000 is:" + getaddMumbersE B, o
: getout(), setBlobField{STC TypeConverter boString{ getAddMumber sE JB{). getAddMurnbersHome). getl
r -1} rule : getaddMumbersEJE(). getaddiumbersHome(), getRemoteInstances(). getCurrent(). getremover), exe LI
B {:} else : else Documentation:
;I Lo} rule : System.err.printin{"There are no more recards ta process"); I =
<| | 0 = =

Rule Properties =

Description: Irule

6 For the next rule, highlight (select) the then expression under if, and click on the
rule button. Drag the hasNext method under AddNumbersE]B,
AddNumbersHome, Remotelnstances on the Source Events command node to the
Rule Properties, Rule window.

7 The next rule is created by typing the following in the Rule Properties, Rule

window:

System out. println("The Total

anount

after adding the input to a 1000 is:" +)

the drag Result under AddNumbersE]B, AddNumbersHome, Remotelnstances,
Current, on the Source Events command node into the parenthesis following the +.

8 The next rule is created by dragging Result under AddNumbersE]B,
AddNumbersHome, Remotelnstances, Current, on the Source Events command

node to the Rule Properties, Rule window.

e*Way Intelligent Adapter for WebLogic User’s Guide

91

SeeBeyond Proprietary and Confidential

Chapter 4
Implementation

Section 4.9
The AddNumbers Sample Schema (Synchronous, EJB ETD)

9 The next rule is created by dragging and dropping Result, under AddNumbersE]B,
AddNumbersHome, Remotelnstances, Current, on the Source Events command
node to the blobField under AddNumbersE]B, Out [BlobRoot], on the Destination

Events command node.

10

The next rule is created by dragging and dropping the execute method, under

AddNumbersE]B, AddNumbersHome, Remotelnstances, Current, remove, on the
Source Events command node to the Rule Properties, Rule window.

11

The last rule is created by selecting else, clicking the rule button, and typing the

following in the Rule Properties, Rule window:

Systemerr.println("There are no nore records to process")

12 When the business logic is complete, save and compile.

Creating the Collaborations

The Collaborations for the ew_Inbound and ew_Outbound e*Ways named collab_in
and collab_out appear as follows when complete (see Figure 43):

Figure 43 Collaboration Properties - ew_Inbound and ew_Outbound

@ Collaboration - collab_in Properties B [=] [E3| Bl @ Collaboration - collab_out Properties 131 x|
General | General |
G G
&& caollab_in &g collab_out
Callsboration Rules: Callaboretion Rules:
Mew | ot v | hew | Ecit |
Subscriptions: Subscriptions:
Instance Mame I Ewvert Type I Source I Addd | Instance Mame I Evert Type | Source | Add |
Genericin o€ GenericinEvert (BT <EXTERNAL= | Genericin o GenericinEvert |&# AddMumbers_cal |
[LiElete [IE|Ete |
Publications: Publications:
Instance Mame I Evert Type Destination | Priority I Addd | Instance Mame I Evert Type I Destination I Priority | Add |
GenericOut B GenericOutEvert in_2 | 5| Genericout W GenericOUEvert | =] <EXTERNAL= | 5|
[LiElete [IE|Ete |
Adyanced Advancedl
oK I Cancel | Apply | Help | OK I Cancel | Apply | Help |

The AddNumbers Collaboration named collab_AddNumbers appears as follow when

complete (see Figure 44):

e*Way Intelligent Adapter for WebLogic User’s Guide 92

SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)

Figure 44 Collaboration Properties - collab_AddNumbers
=151

i
&g collab_addMumbers

Collaboration Rules:

IcrAddNumbers1 LI M ﬂl

Subscriptions:

Instance Mame Event Type aurce | A |

S
in DE GeneticinEvent JME _connection |

Publications:

Instance Mame Event Type Destination Friarity A |
ot GenericCutEvent JME _connection 5
Addiumbers etd_sample Addiumbers1_c... 5 |

4 |21

QK I Cancel | Anply | Help |

410 The JMSAsynchProducersConsumers Sample Schema
(Asynchronous, JMS)

The JMSAsynchProducersConsumers sample schema contains six e*Ways configured
to utilize the SeeBeyond JMS e*Way Connection to deliver and receive message to and
from the Enterprise JavaBeans running inside the WebLogic container. The schema also
configures the IQ Manager as a SeeBeyond JMS IQ Manager. Sample E]Bs, included in
stcejbweblogic.jar, are deployed using the configured SeeBeyond JMS IQ Manager.
There are essentially two modes of operations: e*Ways sending or publishing messages
to a Queue or Topic, and e*Ways which receive or subscribe to a Queue or a Topic.

4101.Running the JMSAsynchProducersConsumers Schema

When running the JMSAsynchProducersConsumers Schema containing the six
asynchronous JMS samples do the following:

1 For directions on importing the sample see Installing a Sample Schema on page 85.
The default STCWLStartup.properties file as shipped for the e*Way do not need to
be modified for the samples to work. ejb.jar and weblogic.jar (with ejb jar
preceeding weblogic.jar in order) must be added to the system classpath for the
ETD to be generated successfully.

2 Make sure that the sample schema is running first prior to deploying the EJBs. This
ensures that the SeeBeyond IQ Manager (SeeBeyond JMS Server) is available so that
the WebLogic container can create the connections on behalf of the MDBs during
deployment.

e*Way Intelligent Adapter for WebLogic User’s Guide 93 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)

3 Do NOT feed messages into the feeder e*Ways UNTIL the sample E]Bs are
deployed. This guarantees that there are subscriber or receiver MDBs running
before messages are sent to Topics or Queues.

4 Start the WebLogic "examples" server in a console using the startup script.
5 Deploy the sample E]Bs (stcejbweblogic.jar).

6 For message flow from e*Gate to WebLogic, feed messages to the feeder e*Ways.
Messages are seen on the WebLogic console. For message flow from WebLogic to
e*Gate, use the EJB sample clients to feed messages to the E]Bs. Messages from the
eater e*Ways are written to files.

Note: For the STCQueueRequestorSLSessionBean sample, messages are displayed on the
sample remote client console. See The JMSQueueRequestor Sample on page 98
for details.

4102.The JMSQueueSend Sample

In this sample, the JIMSQueueSend e*Way (stcewfile.exe) acts as a feeder of messages to
the Queue.Samplel Queue. The JMSQueueSend e*Way looks for files with extension
“.qfin” as input files (the input directory configured is c:\InputData). The
colJMSQueueSend Collaboration subscribes to external (for an event from a file) and
publishes to the conJMSQueueProducer JMS e*Way Connection. The
conJMSQueueProducer JMS e*Way Connection is configured to use the internal
SeeBeyond JMS IQ Manager as the JMS “server.” The colJ]MSQueueSend Collaboration
uses the crJMSQueueSend Collaboration Rule which copies data from the source event
to the output event. The STCReceiverMDBean MDB receives messages from the
Queue.Samplel Queue and display the message it receives to the WebLogic console.

Figure 45 JMSQueueSend Sample Components
WebLogic Container

JMSQueueSend ConJMSQueueProducer Queue.Sample1

JMS _
File Feeder Connection STCReceiver
i MDB
Point

’
N ,
N ’

< .
Connection Connection
~ 7z

JMS 1Q Manager

As seen in Figure 45, the File Feeder reads a file containing the input message event. A
feeder Collaboration subscribes from external and publishes the input message, as a
Queue.Samplel event, to the JMS e*Way Connection. The JMS e*Way Connection is
configured to use a JMS Queue and acts as a QueueSender. Both the JMS e*Way
Connection and the MDB are configured to connect to the JMS IQ Manager as the JMS
server. (For more information on how to configure/deploy the MDB to use the
SeeBeyond JMS IQ Manager to drive the MDB, see SeeBeyond JMS on page 17.) The
STCRecieverMDBean MDB receives the method that is passed from the container, and
displays the message in standard out (the WebLogic console).

e*Way Intelligent Adapter for WebLogic User’s Guide 94 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)

Configuring the JMSQueueSend Sample

Once the sample has been successfully imported into e*Gate, the user must configure it
to correspond to the system as necessary. The following items should be examined.

= Each of the configuration files associated with the e*Way must be configured as
needed, saved, and promoted to run time. Specifically, the following parameters
must be addressed as shown in Table 2:

Table 2 e*Way Configuration Parameters - JMSQueueSend

e*Way Configuration Parameters

General Settings - Set as directed, otherwise leave as default.

Allowlncoming YES

AllowOutgoing NO

PerformanceTesting NO

Outbound (send) settings - Set as directed, otherwise leave as default.
OutputDirectory CA\DATA
OutputFileName output%d.dat
MultipleRecordsPerFile YES

MaxRecordsPerFile 10000

AddEOL Yes

Poller (inbound) settings - Set as directed, otherwise leave as default.
PollDirectory CAINDATA
InputFileMask *.gfin

PollMilliseconds 1000

RemoveEOL YES
MultipleRecordsPerFile NO

MaxBytesPerLine 4096

BytesPerLinelsFixed NO

File Records Per eGate Event 1

Performance Testing - Set as directed, otherwise leave as default.
Performance Testing 100

InboundDuplicates 1

= The conJMSQueueProducer e*Way Connection parameters associated with the
JMSQueueSend sample appear as shown in Table 3:

Table 3 e*Way Connection Parameters - JMSQueueSend

e*Way Connection Parameters

General Settings - Set as directed, otherwise leave as default.

Connection Type Queue
Transaction Type Internal
SDelivery Mode Persistent

e*Way Intelligent Adapter for WebLogic User’s Guide 95 SeeBeyond Proprietary and Confidential

Chapter 4
Implementation

Section 4.10

The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)

Table 3 e*Way Connection Parameters - JMSQueueSend

e*Way Connection Parameters

Maximum Number of Bytes to read

10000000

Default Outgoing Message Type

Text

Message Selector

Factory Class Name

com.stc.common.collabService.SBYNJMSFactory

Message Service - Set as directed, otherwise leave as default.

Server Name

localhost_igmgr

Host Name localhost
Port Number 24053
Maximum Message Cache Size 100

For more information on e*Way Connection Configuration Parameters for JMS see
Configuring the JMS e*Way Connection parameters on page 61

The JMSQueueSend Collaboration Rules Script
The crJMSQueueSend Collaboration Rules Script appears as follows (see Figure 46):

Figure 46 Collaboration Rules Script - cryMSQueueSend

=% Collaboration Rules Editor - crJMSQueueSend

File Edit Yiew Tools Help

g [=[3]

dh

"% Source Events
™ =inBlob [Blob]
=B racet
available
nexk

receive

1% Destination Events
outIMSQueus [Blob] 52

reset =

available

nesxk =2

receive =

receive

send send
send seng =]
rawInput rawlnput =
topic topic
publications publications
subscriptions subscriptions
marshal marshal =...
unmarshal unmarshal =
readProperty readProperty =]
= writeProperty writeProperty
E&'Data Data
{} block| =% method| @ var| 1 For| A if| 1} rule| E switch| — case| 19 while| [£1 doI
&= return| | throw| (T try| | cateh| {} copy| 1} datamap| {F listlookup) {} bmestamp| 4 unigueid
Business Rules
e =
=& cr IMSQueneSend
At rule Description: ICopy blob data ko Send
executeBusinessRules
Rule:
- i@ retBoolean
8% - biok data to Send getoutIMSQueue(), set_DatalgetinBlob(), get_Dataf)) ;I
-1} Display message ta send
B peturn
userlnitialize LI
userTerminate Documentation:
I =
-

e*Way Intelligent Adapter for WebLogic User’s Guide

96

SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)

Each new rule is created by clicking the rule button on the Business Rules toolbar. For
additional information on using the Java Collaboration Rules Editor, see the e*Gate
Integrator User’s Guide. The crJMSQueueSend business rules are created as follows:

1 “Copy blob data to Send” is created by dragging Data located under Source Events
command node and dropping it on Data located under the Destination Events.

2 “Display message to send” is created by dragging Data located under Source
Events command node into the Rule Properties, Rules window and entering code
before and after to create the following code:

System out. println("\nSendi ng Message:\n*****Start of Message*****\n" + getinBl ob().get_Data()
+ "\ n*****End of Message*****\n")

JMSQueueSend Collaboration Rule Mapping

The Collaboration Mapping associated with the crJMSQueueSend Collaboration Rule
appears as follows (see Figure 47):

Figure 47 crJMSQueueSend - Collaboration Mapping

@ Collaboration Rules - ceJMSQueueSend Properties o] 5|
Generall | Collaharation Mapping |
Instance Mame | ETD mode | Trigger | Manual Publ...
oLt MSGueus Blob xsc Find .. JCOut i, [
inBlak Blok xsc Find ...jIn [v] A
Add Instance | Remove Instance |
cancel | Apply | Help |

JMSQueueSend Collaboration Properties

The colJMSQueueSend Collaboration Properties for the JMSQueueSend sample
appears as follows (see Figure 48):

e*Way Intelligent Adapter for WebLogic User’s Guide 97 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)

Figure 48 colJMSQueueSend - Collaboration Properties
e

General |

o
&é colMSGueusSend

Collshoration Rulss:

IchMSQueueSend LI ety | Edit |

Subscriptions:

Instance Mame Event Type Source Addd |

inBlok i@ Blab B =EXTERNAL> |

Publications:
Instance Mame | Event Type Diestination Priarity Add |
bt MSGueue ol Queus Sample

condMSEueueProducer 3 |

[o]%¢ I Cancell Anply | Help |

4103.The JMSQueueRequestor Sample

In this sample, the J]MSQueueRequestor e*Way (stceway.exe) acts as a receiver of
messages to the Queue.Sample2 Queue. The col]MSQueueRequestor Collaboration
subscribes to the con]MSQueueRequestor JMS e*Way Connection on the
Queue.Sample2 Queue and manually publishes back to the con]MSQueueRequestor
JMS e*Way Connection. The con]MSQueueRequestor JMS e*Way Connection is
configured to use the internal SeeBeyond JMS IQ Manager as the JMS “server.” The
colJMSQueueSend uses the crfJMSQueueRequestor Collaboration Rule which simply
constructs a reply string, by prepending the String “e*Gate got message:” to the
message it received from the Queue and manually publishing the reply back to the
Session Bean. In this case, the STCQueueRequestorSLSessionBean Session Bean acts as
the sender to the Queue.Sample2 Queue and waits for the reply from e*Gate.
Essentially, this demonstrates a request/reply usage of the QueueRequestor JMS object
by the STCQueueRequestorSLSessionBean.

e*Way Intelligent Adapter for WebLogic User’s Guide 98 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)

Figure 49 JMSQueueRequestor Sample Components

WebLogic Container
ConJMSQueueRequestor Queue.Sample2 STCQueueRequestorSLSessionClient

JMS . _request

on | QueueRequestor Remote
Cor';ngctlon 4@8 Quece reply SLSessionBean Client
oin >

’

AN -,
’
N L,

Connection Connection
AN N . ’

’
AN ,

A

JMS 1Q Manager

As seen in Figure 49, The stand-alone remote client,
com.stc.eways.ejb.sessionbean.queuerequestor.STCQueueRequestorSLSessionClient, is
used to invoke the request() method of the STCQueueRequestorSLSessionBean and
wait for a reply from the Session Bean. As parameters, the client takes the provider
URL of the WebLogic JNDI where the Session Bean is bound, the JNDI name of the
Session Bean (SeeBeyond.STCQueueRequestorSLSessionBean), a text message or a file
name, and the option specifying whether the third parameter is a file (file) or a text
message (msg). For example, the following command sends the message “This is a text
message”:

java com stc. eways. ej b. sessi onbean. queuer equest or . STCQueueRequest or SLSessi onClient t3://
| ocal host: 7003 SeeBeyond. STCQueueRequest or SLSessi onBean "This is a text nessage." nsg

Whereas, the following command sends the message contained in the file
c:\temp \testfile.txt:

java com stc. eways. ej b. sessi onbean. queuer equest or . STCQueueRequest or SLSessi onClient t3://
| ocal host: 7003 SeeBeyond. STCQueueRequest or SLSessi onBean c:\tenp\testfile.txt file

Configuring the JMSQueueRequestor Sample

Once the sample has been successfully imported into e*Gate, the user must configure it
to correspond to the information as necessary. Each of the configuration files associated
with the e*Way must be configured as needed, saved, and promoted to runtime.

= The conJ]MSQueueRequestor e*Way Connection Configuration settings are the
same as those in Table 3 on page 95.

= The J]MSQueueRequestor Multi-mode e*Way uses the default configuration
parameters.

For more information on e*Way Connection Configuration Parameters for JMS see
Configuring the JMS e*Way Connection parameters on page 61.
JMSQueueRequestor Collaboration Rule

The crJMSQueueRequestor Collaboration Rule appears as follows (see Figure 50). For
this example, “Display Code” under View on the menubar has been enabled so that the
Java code is displayed in the Business Rules window.

e*Way Intelligent Adapter for WebLogic User’s Guide 99 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)

Figure 50 Collaboration Rules - crJlMSQueueRequestor

2% Collaboration Rules Editor - crJIMSQueueRequestor - |EI|1|
File Edit WYiew Tools Help

dh

1% Source Events 1% Destination Events

Reply [Blob] * 251
reset =
available
next

receive
receive
send

send
rawInput
bopic
publications
subscriptions
marshal
unmarshal unmarshal =%
readProperty =%
writeProperty
Data

E2]

i} block| =% methad| & var| 9 for| M if| 1} rule| B switch| —+ casel [ha} whilel [ha} dol & returnl ! throwl

@ try| 1 catch] % copy| 1t datamap| {0+ list leckup| £+ tmestamp| {1 unigueid

Business Rules
E-':' crIMSQueueRequestor @ public class crIMSQueueRequestor extends crIMSQueueRequestorBase implements JCollaboratorE ;I

crIMSQueueRequestor ¢ public cr MSQueusRequestor)
-} rule : super(); Description:
executeBusinessRules ; public boolean executeBusinessRules() throws Exception
- @ retBoolean : boolean retBoolean = true;
-1} Display request : System,out. println {"inGot request:in*****Start of Message*****\n" + getRequest().get_Data()
A } Create reply message : getReply().set_Datal"ine*Gate got message:\n" + getRequest().get_Datal) + "in"); Stestemn.out.,printin ("\nGot request:int*EE*SEarL ;I
-1} Send reply : getReply().send{getRequest().readProperty" IMSReply To")); DFI!\ﬂessage*****'l,n" + getRequest(").get_Data()

+ "in#*HFEERER of Message®*+Hin"

=return ; return retBoolean;
userInitialize : public void userInitialized)
userTerminate : public void userTerminate() LI

|Disp|ay request

Rule:

Documentation:
I =l
=l

-

4 [4

Each new rule is created by clicking the rule button on the Business Rules toolbar. For
additional information on using the Java Collaboration Rules Editor, see the e*Gate
Integrator User’s Guide. The crJMSQueueRequestor business rules are created as follows:

1 “Display request” is created by dragging Data located under Source Events
command node and dropping it on Data located under the Destination Events.

2 “Create reply message” is created dragging Data located under Source Events
command node into the Rule Properties, Rules window and entering code before
and after to create the following code:

Systemout.println ("\nGot request:\n*****Start of Message*****\n" + getRequest().get_Data() +
"\n*****End of Message*****\n")

3 “Send reply” is created by Dragging send under Reply located under the
Destination Events command node into the Rule Properties, Rules window. Drag
propName located under Reply, readProperty under the Destination Events
command node into the properties for send (the last set of parenthesis) in the Rules
window. Enter JMSReplyTo as the parameter for the readProperty() propName.

JMSQueueRequestor Collaboration Rule Mapping

The Collaboration Mapping associated with the crJMSQueueRequestor Collaboration
Rule appears as follows (see Figure 51):

e*Way Intelligent Adapter for WebLogic User’s Guide 100 SeeBeyond Proprietary and Confidential

Chapter 4
Implementation

Section 4.10

The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)

Figure 51 crJMSQueueRequestor - Collaboration Mapping

@8 Collaboration Rules - crJMSQueueR equestor Properties o] 24 |
General' Subscriptiuns' Fublications Collaboration Mapping |
Instance Mame ETD | Mode | Trigger | Manual Publ...
Fenuest Blok .z Fird ...Iln [wl i,
Reply Blob x=sc Find .. JCut i, |7

Add Instance

| Femaove Instance |

Cancel |

Apply |

Help |

JMSQueueRequestor Collaboration Properties

The colJMSQueueRequestor Collaboration for the JMSQueueSend sample appears as

follows (see Figure 52):

@ Collaboration - colJMSQueueRequestor Properties

Figure 52 colJMSQueueRequestor - Collaboration Properties

=10l

g
&é colMESQueueRequestor
Collaboration Fules:
IchMSQueueRequestor LI ey | Edit |
Subscriptions:
Instance Name Event Type | Source | Acldl |
Fequest DE Queue Sample? Mﬂ] condMSGueueReques P——
Efete |
Publications:
Instance Mame Event Type h[%]estinatiun Priarity Add |
Frepl Gueue Sample2 conmSEueueRe. . 5
Y DE P [ElEte |
Advanced |
4 121
QK | Cancel | Apply | Help |

e*Way Intelligent Adapter for WebLogic User’s Guide 101

SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)

4104 The JMSXAQueueSend Sample

In this sample, the JIMSXAQueueSend e*Way (stcewfile.exe) acts as a feeder of
messages to the Queue.Sample3 Queue. The JIMSXAQueueSend e*Way looks for files
with the extension .xaqfin as input files (the input directory configured is
c:\InputData). The col]MSXAQueueSend Collaboration subscribes to external (for an
event from a file) and publishes to the conJMSXAQueueProducer JMS e*Way
Connection. The conJMSXAQueueProducer JMS e*Way Connection is configured to
use the internal SeeBeyond JMS IQ Manager as the JMS server. The
colJMSXAQueueSend Collaboration uses the crJMSQueueSend Collaboration Rule
which copies data from the source event to the output event.

Figure 53 JMSXAQueueSend Sample Components

WebLogic Container
JMSQueueSend ConJMSQueueProducer Queue.Sample3 Cloudscape
JMS .
File Feeder Connection Receiver MDB
’ STCXAReceiverMDBean Database
Point
Connection Connec:fion

JMS 1Q Manager

As seen in Figure 53, the File Feeder reads a file containing the input message event. A
feeder Collaboration subscribes from external and publishes the input message to the
JMS e*Way Connection as a Queue.Sample3 event. The JMS e*Way Connection is
configured to use a JMS Queue and therefore acts as a QueueSender. Both the JMS
e*Way Connection and the MDB are configured to connect to the JMS IQ Manager as
the JMS server. (For more information on how to configure/deploy the MDB to use the
SeeBeyond JMS IQ Manager to drive the MDB, see SeeBeyond JMS on page 17.) The
STCXARecieverMDBean MDB receives the message in the format

“accountID | balance,” where accountID is a String account ID and balance is a
numerical balance amount. The STCXAReceiverMDBean is configured to use the
SeeBeyond JMS XAResource and the Cloudscape sample demoXAPool to receive
messages from SeeBeyond JMS and write database records into the sample Cloudscape
database table. Checking the database to see that the record is there does not
necessarily confirm that a two phase commit has occurred.

Verify XA functionality by looking into the weblogic.log file for the examples domain,
and also the SeeBeyond IQ Manager log. For more information on how to effect proper
logging, to see XA at work, see Verifying XA At Work on page 41. XA prepares and
commits should be called on both database and SeeBeyond JMS XA Resource. To
simulate a rollback, pass an account ID of “rollback.” For more details on the
demoXAPool resource see examples-dataSource-demoXAPool on page 43. For details
on the format of the input message for the feeder e*Way see SeeBeyond Sample XA
Message Driven Beans on page 36.

Note: Before running this client, be sure that the system classpath includes ejb.jar,
weblogic.jar (with ejb.jar preceeding weblogic.jar in order), and stcejbweblogic.jar.

e*Way Intelligent Adapter for WebLogic User’s Guide 102 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)

The result of the test is that e*Gate sees the message that the remote client sent to the
STCQueueRequestorSLSessionBean and the remote client sees the reply message
constructed by the Java Collaboration from e*Gate.

Important: XA transactions for the WebLogic e*Way are managed by the WebLogic
TransactionManager, NOT the e*Gate TransactionManager or in the e*Way
Connection parameters. For XA transactions make sure that the
XAConnectionFactory(ies) are configured for the startup class.

Configuring the JMSXAQueueSend Sample

Once the sample has been successfully imported into e*Gate, the user must configure it
to correspond to the information as necessary. The following items should be examined

= The JMSXAQueueSend e*Way Connection Configuration settings are the same as
those in Table 3 on page 95.

= Configuration parameters for the JMSXAQueueProducer e*Way Connection used
with the JMSXAQueueSend sample are the same as those in Table 2 on page 95
with the exception of the following:

Table 4 e*Way Configuration Parameters - JMSXAQueueProducer

e*Way Configuration Parameters

General Settings - See Table 2 on page 95.
Outbound (send) settings - See Table 2 on page 95.

Poller (inbound) settings - Set parameters as directed, otherwise see Table 2 on page 95.
InputFileMask *xagfin

Performance Testing - See Table 2 on page 95.

= For more information on e*Way Connection Configuration Parameters for JMS see
Configuring the JMS e*Way Connection parameters on page 61.

The JMSXAQueueSend Collaboration Rule

The JMSXAQueueSend sample uses the]MSQueueSend Collaboration Rule (see
Collaboration Rules Script - crJMSQueueSend on page 96).

JMSXAQueueSend Collaboration Rule Mapping

The JMSXAQueueSend sample uses the crJMSQueueSend Collaboration Rule Mapping
(see cxJMSQueueSend - Collaboration Mapping on page 97).

JMSXAQueueSend Collaboration Properties

The col]MSXAQueueSend Collaboration for the JIMSXAQueueSend sample appears as
follows (see Figure 54):

e*Way Intelligent Adapter for WebLogic User’s Guide 103 SeeBeyond Proprietary and Confidential

Chapter 4
Implementation

Section 4.10

The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)

Figure 54 colJMSXAQueueSend - Collaboration Properties

General |

)

caldMSHAGueueSend

=101

Collsbaration Rules:

IchMSQueueSend Ll ey
Subscriptions:;
Instance Mame Event Type Source Add |
inBlak Blak Bl <EXTERMAL=

EEE Q [Delste |
Publications:
Instance Mame Event Type | Destination Add |

ot S Gueue

DE Gueue Samples [M:nﬂ conMSXAGueLeProducer

| i

[elete

Aolvancen

Hd

QK | Cancel |

Apply

| Help |

4105.The JMSTopicPublish Sample

In this sample, the JMSTopicPublish e*Way (stcewfile.exe) acts as a feeder of messages
to the Topic.Samplel Topic. The JMSTopicPublish e*Way looks for files with the
extension .tfin as input files (the configured input directory is c:\InputData). The
colJMSTopicPublish Collaboration subscribes to external (for an event from a file) and
publishes to the conJMSTopicProducer JMS e*Way Connection. The
conJMSTopicProducer JMS e*Way Connection is configured to use the internal
SeeBeyond JMS IQ Manager as the JMS server. The colJMSTopicPublish Collaboration
uses the crJMSTopicPublish Collaboration Rule which simply copies data from the
source event to the output event. The STCSubscriberMDBean MDB receives messages
from the Topic.Samplel Topic and displays the message it receives to the WebLogic

console.

Figure 55 JMSTopicPublish Sample Components

JMSTopicPublish

File Feeder

e*Way Intelligent Adapter for WebLogic User’s Guide

conJMSTopicPublisher Topic.Sample1

JMS
Connection
Point

~
~

Connection
N

~
N
N

JMS 1Q Manager

104

WebLogic Container

Subscriber
MDB

’
’
’
s

Connection
4

’
’

SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)

As seen in Figure 55, the File Feeder reads a file containing the input message event. A
feeder Collaboration subscribes from external and publishes the input message, as a
Topic.Samplel event, to the JMS e*Way Connection. The JMS e*Way Connection is
configured to use a JMS Topic, acting as a TopicPublisher. Both the JMS e*Way
Connection and the MDB are configured to connect to the JMS IQ Manager as the JMS
server. For more information on how to configure/deploy the MDB to use the
SeeBeyond JMS IQ Manager to drive the MDB, seeSeeBeyond JMS on page 17. The
STCSubscriberMDBean MDB receives the message, passed to it by the container, and
displays the message in standard out (the WebLogic console).

Configuring the JMSTopicPublish Sample

Once the sample has been successfully imported into e*Gate, the user must configure it
to correspond to the information as necessary. The following items should be examined

= Configuration parameters for the conJMSTopicProducer e*Way Connection used
with the J]MSTopicPublish sample are the same as those in Table 2 on page 95 with
the exception of the following:

Table 5 e*Way Configuration Parameters - JMSTopicPublish

e*Way Configuration Parameters

General Settings - See Table 2 on page 95.

Outbound (send) settings - See Table 2 on page 95.

Poller (inbound) settings - Set as directed, otherwise see Table 2 on page 95.
InputFileMask *.tfin

Performance Testing - See Table 2 on page 95.

= The conJMSTopicProducer e*Way Connection Parameters associated with the
JMSTopicPublish sample appear as shown in Table 6:

Table 6 e*Way Connection Parameters - conJMSTopicProducer

e*Way Connection Parameters

General Settings - Set as directed, otherwise leave as default.

Connection Type Topic
Transaction Type Internal
SDelivery Mode Persistent

Maximum Number of Bytes to read 5000

Default Outgoing Message Type Text

Message Selector

Factory Class Name com.stc.common.collabService.SBYNJMSFactory

Message Service - Set as directed, otherwise leave as default.

Server Name localhost_igmgr
Host Name localhost

Port Number 24053

Maximum Message Cache Size 100

e*Way Intelligent Adapter for WebLogic User’s Guide 105 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)

For more information on e*Way Connection Configuration Parameters for JMS see
Configuring the JMS e*Way Connection parameters on page 61

The crJMSTopicPublish Collaboration Rule
The crJMSTopicPublish Collaboration Rule appears as follows (see Figure 56):

Figure 56 Collaboration Rules - crJMSTopicPublish

<% Collaboration Rules Editor - crJMSTopicPublish o] 24
File Edit Wiew Tools Help

dh

™12 Source Events ™12 Destination Everts

=1 ™= inBlab [Elob] outIMSTopic [Blab] ™ ==
-2 breset reset =S,
available
nieck
receive
receive =

send =
send =]
rawInput
topic
publications =%
subscriptions =%
marshal
unmarshal =
BreadProperty readProperty =S
B riteProperty wiriteProperty
[rata B
i} Block| <% method| @ var| 9 for| v iFl L} rule| B swikch| — case| 9 while| 13 dol
&= return| | thra | (T ke 1 catchl 1k copy| 1} datamap| {F list lackup| {F bGmestamp| {F unigueid
Business Rules
E| = crIMSTopicPublish
LA brule Description: |Copy Blob data to publish
[==executebusinessRules
T Rule:
i @ retBoolean
1} Copy Blob data to publish getout M3 Topic() . set_DatagetinBlob{).get_Datal)) ;I
A Display message to publish
E=return
B userlnitialize
B userTerminate Ll
Documentation:
| =
i

Each new rule is created by clicking the rule button on the Business Rules toolbar. For
additional information on using the Java Collaboration Rules Editor, see the e*Gate
Integrator User’s Guide. The crJMSTopic Publish business rules are created as follows:

1 “Copy blob data to Publish” is created by dragging Data located under Source
Events command node and dropping it on Data located under the Destination
Events.

2 “Display message to Publish” is created by dragging Data located under Source
Events command node into the Rule Properties, Rules window and entering code
before and after to create the following code:

Systemout. println("\nMessage to Publish:\n*****Start of Message*****\n" +
getinBlob().get_Data() + "\n*****End of Message*****\n")

e*Way Intelligent Adapter for WebLogic User’s Guide 106 SeeBeyond Proprietary and Confidential

Chapter 4
Implementation

JMSTopicPublish Collaboration Rule Mapping

Section 4.10

The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)

The Collaboration Mapping associated with the crJMSTopicPublish Collaboration Rule

appears as follows (see Figure 57):

Figure 57 crJMSTopicPublish - Collaboration Map

@ cCollaboration Rules - crJMSTopicPublish Propetties =] =1
General' Suhbecriptions | Fublications Collaboration Mapping |
Instance Mame ETD hMode | Trigger | Manual Fubl...
inBlok Blok xzc Find ..{in [l i,
outJMETopic Bloh x=c Find .. Cut iR, [}
Add Instance | Remove Instance |
Cancel | Anply | Help |

JMSTopicPublish Collaboration Properties

The colJMSTopicPublish Collaboration for the JMSQueueSend sample appears as

follows (see Figure 58):

Figure 58 colJMSTopicPublish - Collaboration Properties

@ Collaboration - colIMSTopicPublish Properties
G
&é colMSTopicPublish

=0l x]

Callaboration Rules:
IchMSTopicPublish

Subzcriptions:

=] _vow | o= |

Instance Mame Event Type Source | Add |
inBlak Blok B =EXTERMAL=
DE ‘E! [Delete |
Publications:
Instance Name Event Type Destination Pri... Add |
oLt S Topic "’E Topic. Samplet condMSTopicProducer 5
[Delete |
Advanced |
QK I Cancel Anply | Help |

e*Way Intelligent Adapter for WebLogic User’s Guide 107

SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)

4106.The JMSTopicSubscribe Sample

In this sample, the JMSTopicSubscriber e*Way (stcewfile.exe) acts as a eater of
messages coming from the Topic.Sample2 Topic. The col]MSTopicSubscribe
Collaboration subscribes to the conJMSTopicConsumer JMS e*Way Connection on the
Topic.Sample2 Topic. The con]MSTopicConsumer JMS e*Way Connection is
configured to use the internal SeeBeyond JMS IQ Manager as the JMS server. The
colJMSTopicSubscribe uses the crJMSTopicSubscribe Collaboration Rule, which
displays the message received to standard output, and publishes the message to the
external (writes the message received to a file).

In this case, the STCPublisherSLSessionBean Session Bean acts as publisher to the
Topic.Sample2 Topic. Essentially, this demonstrates publishing messages
asynchronously from an EJB running in WebLogic to a SeeBeyond JMS Topic.

Figure 59 JMSTopicSubscribe Sample Components

WebLogic Container
JMSTopicSubscriber conJMSTopicConsumer Topic.Sample2 STCPublisherSLSessionClient
JMS . i)
blish blish
File Eater Connection 4& Publ!sher panis Remote
Point SLSessionBean Client

Connection Connection
1 !

JMS 1Q Manager

The stand-alone remote client,
com.stc.eways.ejb.sessionbean.publisher.STCPublisherSLSessionClient, can be used to
invoke the publish() method of the STCPublisherSLSessionBean to send a message to
e*Gate asynchronously. The parameters taken by the client are: the provider URL of the
WebLogic JNDI where the Session Bean is bound, the JNDI name of the Session Bean
(SeeBeyond.STCPublisherSLSessionBean), a text message or a file name, and the option
specifying whether the third parameter is a file (file) or a text message (msg). For
example, the following command sends the message “This is a text message”:

java com stc. eways. ej b. sessi onbean. publ i sher. STCPubl i sher SLSessi onClient t3://1ocal host: 7003
SeeBeyond. STCPubl i sher SLSessi onBean "This is a text nessage." nsg

Whereas the following command sends the message contained in the file
c:\temp \testfile.txt:

java com stc. eways. ej b. sessi onbean. publ i sher. STCPubl i sher SLSessi onClient t3://1ocal host: 7003
SeeBeyond. STCPubl i sher SLSessi onBean c:\tenp\testfile.txt file

Note: Before running this client, make sure that the system classpath includes ejb.jar,
weblogic.jar (with ejb.jar preceeding weblogic.jar in order), and stcejbweblogic.jar.

The result of the test is that e*Gate sees the message that the remote client sent to the
STCPublisherSLSessionBean. The message is written to an output file.

e*Way Intelligent Adapter for WebLogic User’s Guide 108 SeeBeyond Proprietary and Confidential

Chapter 4

Section 4.10

Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)

Configuring the JMSTopicSubscribe Sample

Once the sample has been successfully imported into e*Gate, the user must configure it
to correspond to the information as necessary. The following items should be examined

= Parameters for the JMSTopicSubscribe e*Way configuration used with the
JMSTopicSubscribe sample appear as shown in Table 7:

Table 7 e*Way Configuration Parameters - ewJMSTopicSubscribe

e*Way Configuration Parameters

General Settings - Set as directed, otherwise leave as default.

Allowlncoming NO
AllowOutgoing YES
PerformanceTesting NO

Outbound (send) settings - Set as dire

cted, otherwise leave as default.

OutputDirectory

C:A\DATA

OutputFileName

topicrecv%d.dat

MultipleRecordsPerFile

NO

MaxRecordsPerFile 10000
AddEOL Yes

Poller (inbound) settings - Set as directed, otherwise leave as default.
PollDirectory C:AINDATA
InputFileMask *fin
PolIMilliseconds 1000
RemoveEOL YES
MultipleRecordsPerFile YES
MaxBytesPerLine 4096
BytesPerLinelsFixed NO

File Records Per eGate Event 1

Performance Testing - Set as directed,

otherwise leave as default.

Performance Testing

100

InboundDuplicates

1

= Configuration parameters for the conJMSTopicConsumer e*Way Connection used
with the JMSTopicSubscribe sample appear as shown in Table 8:

Table 8 e*Way Connection Parameters - conJMSTopicConsumer

e*Way Connection Parameters

General Settings - Set as directed, otherwise leave as default.

Connection Type Topic
Transaction Type Internal
SDelivery Mode Persistent
Maximum Number of Bytes to read 10000000

e*Way Intelligent Adapter for WebLogic User’s Guide

109

SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)

Table 8 e*Way Connection Parameters - conJMSTopicConsumer

e*Way Connection Parameters

Default Outgoing Message Type Bytes

Message Selector

Factory Class Name com.stc.common.collabService.SBYNJMSFactory
Message Service - Set as directed, otherwise leave as default.

Server Name localhost_igmgr

Host Name localhost

Port Number 24053

Maximum Message Cache Size 100

For more information on e*Way Connection Configuration Parameters for JMS see
Configuring the JMS e*Way Connection parameters on page 61

The JMSTopicSubscribe Collaboration Rule
The crJMSTopicSubscribe Collaboration Rule appears as follows (see Figure 60):

Figure 60 Collaboration Rules - crJMSTopicSubscribe

=% Collaboration Rules Editor - crJMSTopicSubscribe - |EI|5|
File Edit View Tools Help

]

™% Source Events 1% Destination Events

outBlob [Blob] ™2
reset =
available =%
nexk

receive
receive
send =S

send =,
rawInput
bopic
publications
subscriptions
marshal =...
unmarshal =
readProperty =5
writeProperty

i} block| =% method] & var| 19 For| s if| {F rule| F switch| — case| 9 whilel [a dol Lo returnl
! throw @ try| 1 catch| {F copy) {1t datamap] {F list loakup] {F bmestamp) {F unigueid

Business Rules
Ié-'.' crIMSTopicSubscribe @ public class crMSTapicSubscribe extends cr M5 TopicSubscribeBase ;I
crIMSTopicSubscribe : public crIM3TopicSubscribed)
1} rule ; super(); Description:
executeBusinessRules : public boolean executeBusinessRules() throws Exception
@ retBoolean @ boolean retBoolean = krue;

IDispIay received JMS message

{ } Display received M5 message : System.out.println ("inGot M5 Massage:|pitstsds Rule:
1} Set blob output results : getoutBlob().set_DatafgetinMsTopic().get_Data()); System,out. println ("inGot JMS Message:\n****spart of =
<refurn @ return retBoolean; Message*****in" + getinIM3Topic(). get_Datal) + "in**+**+End -
)) ! F & Aok o1 —
userTnitialize : public void userInitialize() or Message in")
userTerminate ¢ public void userTerminated) Documentation:
== |
o o =

Each new rule is created by clicking the rule button on the Business Rules toolbar. For
additional information on using the Java Collaboration Rules Editor, see the e*Gate
Integrator User’s Guide.

e*Way Intelligent Adapter for WebLogic User’s Guide 110 SeeBeyond Proprietary and Confidential

Section 4.10

Chapter 4
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)

The crJMSTopicSubscribe business rules are created as follows:

1 “Display received JMS message” is created by dragging Data located under
Source Events command node into the Rule Properties, Rules window and entering

code before and after to create the following code:

Systemout.println ("\nGot JM5 Message:\n*****Start of
Message*****\ n" + geti nJMSTopic().get_Data() + "\n*****End of

Message*****\ n")
2 “Set blob output results” is created by dragging Data located under Source Events
command node and dropping it on Data located under the Destination Events.

JMSTopicSubscribe Collaboration Rule Mapping

The Collaboration Mapping associated with the crJMSTopicSubscribe Collaboration
Rule appears as follows (see Figure 61):

Figure 61 crJMSTopicSubscribe - Collaboration Map

0 Collaboration Rules - crJMSTopicSubscribe Properties o] 5
Generall | Collaboration Mapping |
Instance Mame | ETD Mode | Trigger | Manual Publ...
in S Topic Blok.xsc Fird ...JIn = [ty
outBlok Blob . xsc Fird ... |t M2 [
Add Instance | Remaove Instance |
Cancel | Apply | Help |

JMSTopicSubscribe Collaboration Properties
The colJMSTopicSubscribe Collaboration for the JMSTopicSubscribe sample appears as

follows (see Figure 62):

e*Way Intelligent Adapter for WebLogic User’s Guide 111 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)

Figure 62 colJMSTopicSubscribe - Collaboration Properties

@ Collaboration - colIMSTopicSubscribe Properties o] [
General |
G
&é colMSTopicSubscribe
Cuollakorstion Rules:
n [leray | Edit |
Subscriptions:
Instance Mame Event Type Source A |
inJSTopic “’E Topic. Sample2 conMETopicConsumer |
Publications:
Instance Mame Event Type Destination Al |
outBlah ket Biloks B <EXTERMAL= |
4 | |

Ok I Cancel | Anply | Help |

4107.The JMSXATopicSubscribe Sample

In this sample, the JMSXATopicSubscriber e*Way (stcewfile.exe) acts as an eater of
messages coming from the Topic.Sample3 Topic. The col]MSXATopicSubscribe
Collaboration subscribes to the conJMSXATopicConsumer JMS e*Way Connection on
the Topic.Sample3 Topic. The conJMSXATopicConsumer JMS e*Way Connection is
configured to use the internal SeeBeyond JMS IQ Manager as the JMS server. The
colJMSXATopicSubscribe uses the crJMSTopicSubscribe Collaboration rule which
displays the message received to standard output, and publishes the message to the
external (writes the message received to a file).

In this case, the STCXAPublisherSLSessionBean Session Bean acts as publisher to the
Topic.Sample3 Topic. Essentially, this demonstrates publishing messages
asynchronously from an EJB running in WebLogic to a SeeBeyond JMS Topic
transactionally.

Figure 63 JMSXATopicSubscribe Sample Components

WebLogic Container
JMSXATopicSubscriber conJMSXATopicConsumer ~ Topic.Sample3 STCPublisherSLSessionClient

createAccountAndPublish
. JMS. XA Publisher [~ | Remote
File Eater Connection) R :
; SLSessionBean Client
Point getBalance
C5hneption annéction insert/select

N

JMS 1Q Manager Demo Database

Cloudspace

The stand-alone remote client,
com.stc.eways.ejb.sessionbean.xapublisher.STCPublisherSLSessionClient, can be used

e*Way Intelligent Adapter for WebLogic User’s Guide 112 SeeBeyond Proprietary and Confidential

Chapter 4

Section 4.10

Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)

to invoke the createAccountAndPublish() method of the
STCXAPublisherSLSessionBean. This method takes two parameters: an account ID of
type java.lang.String and a balance of type double. The XA Session Bean inserts a
record into the demo database and publishes to the Topic with a message indicating
that the record has successfully been inserted into the database.

The parameters taken by the client are: the provider URL of the WebLogic JNDI where
the Session Bean is bound, the JNDI name of the Session Bean
(SeeBeyond.STCXAPublisherSLSessionBean), an account ID, and a balance for the
account to create in the database.

For example, the following command inserts a record into the database with the ID
“JohnDoe” and a balance of 8888.99:

java com stc. eways. ej b. sessi onbean. xapubl i sher. STCXAPubl i sher SLSessi onClient t3://1ocal host: 7003
SeeBeyond. STCXAPubl i sher SLSessi onBean JohnDoe 8888. 99

Note: Before running this client, make sure that the system classpath includes ejb.jar,

weblogic.jar (with ejb.jar preceeding weblogic.jar in order), and stcejbweblogic.jar.

After successfully inserting the record into the database and publishing to the Topic,
the remote client invokes the getBalance() method of the Session Bean to confirm that
the record has indeed been inserted successfully. Note that getBalance does NOT
confirm that a two phase commit has occurred. To see that both the database and
SeeBeyond JMS XA Resources have been used, look at the weblogic.log and SeeBeyond
JMS IQ Manager log. In addition, upon successfully publishing to the Topic, the file
eater e*Way writes a confirmation message to the file. To simulate a rollback, pass an
account ID of “rollback” in the command line for the remote client. For more details on
the demoXAPool resource see examples-dataSource-demoXAPool on page 43. For
details on the format of the input message for the feeder e*Way see SeeBeyond Sample
XA Message Driven Beans on page 36.

Important: XA transactions for the WebLogic e*Way are managed by the WebLogic

TransactionManager, NOT the e*Gate TransactionManager or in the e*Way
Connection parameters. For XA transactions make sure that the
XAConnectionFactory(ies) are configured for the startup class.

Configuring the JMSXATopicSubscribe Sample

Once the sample has been successfully imported into e*Gate, the user must configure it
to correspond to the information as necessary. The following items should be examined

= Parameters for ewJMSXATopicSubscribe e*Way configuration used with the
JMSXATopicSubscribe are the same as those in Table 7 on page 109 with the
exception of the following parameters:

Table 9 e*Way Configuration Parameters - ewJMSXATopicSubscribe

e*Way Configuration Parameters

General Settings - See Table 7 on page 109.

Outbound (send) settings - Set as directed, otherwise see Table 7 on page 109.

OutputFileName topicrecv%d.dat

e*Way Intelligent Adapter for WebLogic User’s Guide 113 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.10
Implementation The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)

Table 9 e*Way Configuration Parameters - ewJMSXATopicSubscribe

e*Way Configuration Parameters

Poller (inbound) settings - See Table 7 on page 109.

Performance Testing - See Table 7 on page 109.

= Configuration parameters for the conJMSXATopicConsumer e*Way Connection
used with the JMSXATopicSubscribe sample Are the same as those that appear in
Table 7 on page 109.

For more information on e*Way Connection Configuration Parameters for JMS see
Configuring the JMS e*Way Connection parameters on page 61.

The JMSXATopicSubscribe Collaboration Rule

The JMSXATopicSubscribe Sample uses the crJMSTopicSubscribe Collaboration Rule
(see Table 60 on page 110).

JMSXATopicSubscribe Collaboration Rule Mapping

The JMSXATopicSubscribe sample uses the crJMSTopicSubscribe Collaboration
Mapping (see Table 61 on page 111).

JMSXATopicSubscribe Collaboration Properties

The colJMSTopicSubscribe Collaboration for the JMSXATopicSubscribe sample
appears as follows (see Figure 64):

Figure 64 colJMSXATopicSubscribe - Collaboration Properties
=101]

Feneral |

@
&g colMSHATopicSubscribe

Collaboration Rules:

IchMSTopicSubscribe LI ey |

Subscriptions:
Instance Mame Evert Type | Source | Al |
inJM=Topic m[E Topic Sampled Mﬂ] conMEHATopicConsu
[elete |
Puhlications:
Instance Mame Event Type Destination Priarity | Al |
oLtBlak Blok B <EXTERMAL= B
EE g Delete |
Advancedl

QK Cancel Apply | Help |

e*Way Intelligent Adapter for WebLogic User’s Guide 114 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.11
Implementation Executing the Schema

+1 Executing the Schema

To execute a schema, do the following:
1 Go to the command line prompt, and enter the following:

stccbh -rh hostnane -rs schemanane -un usernanme -up user password
-l n host narme_chb

Substitute hostname, schemaname, username, and user password as appropriate.

2 Start the e*Gate Monitor. Specify the server that contains the Control Broker you
started in Step 1 above.

3 Select the schema.

4 Verify that the Control Broker is connected. To do this, select and right-click the
Control Broker in the e*Gate Monitor, and select Status. (The message in the
Control tab of the console will indicate command succeeded and status as up.)

5 Select the IQ Manager, hostname_igmgr, then right-click and select Start. (This will
already be started if Start automatically is selected in the IQ Manager properties.)

6 Select each of the e*Ways, right-click select Start. (These will already be started if
Start automatically is selected in the e*Way’s properties.)

7 To view the output, copy the output file (specified in the Outbound e*Way
configuration file). Save to a convenient location and open.

e*Way Intelligent Adapter for WebLogic User’s Guide 115 SeeBeyond Proprietary and Confidential

Chapter 5
Java Methods

The WebLogic e*Way’s available Java methods fall into the following class.

1 The EJBConfiguration Class

The EJBConfiguration class provides implementation for the functionality exposed in
the EJB ETD e*Way configuration node, such as settings configured in the e*Way
Connection.

j ava. | ang. Obj ect
com st c. ej bet d. EJBConfi gurati on

public final class EJBConfiguration
Extends java.lang.Object.

Methods of the EJBConfiguration Class

These methods are described in detail on the following pages:

getInitialContext on page 116 setInitialContext on page 118
getInitialContextProperties on page 117 setInitial ContextProperties on page 118

lookuplInitialContext on page 117

getlnitial Context
Description

Gets the JNDI Initial Context. Looks up the initial context 'on demand' if there is no
initial context set yet.

Syntax

public javax.nam ng.Initial Context getlnitial Context()
Parameters

None

e*Way Intelligent Adapter for WebLogic User’s Guide 116 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Java Methods The EJBConfiguration Class
Return Values

javax.naming.InitialContext
The JNDI initial context.

Throws

javax.naming.NamingException

getlnitial ContextProperties
Description

Gets the JNDI Initial Context Properties. These are used in to look up the initial context
with the configured JNDI provider. The default properties are read in from the
connection configuration. They can be overridden/added to in the Collaboration.

Syntax

public java.util.Hashtable getInitialContextProperties ()
Parameters

None.
Return Values
java.util. Hashtable
Throws

None.

lookuplnitial Context

Description

Perform a lookup of the JNDI initial context, using the properties set in the Connection
Configuration or overridden/set in the InitialContextProperties node. Assigns the
resulting initial context to the initial context field. This method is executed
automatically 'on demand' upon the first EJB Home interface method call. If the
InitialContextProperties are changed sub- sequently, lookupInitialContext has to be
called manually to make use of the new configuration.

Syntax
public void | ookuplnitial Context()

Parameters
None.
Return Values

None.

e*Way Intelligent Adapter for WebLogic User’s Guide 117 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Java Methods The EJBConfiguration Class

Throws

javax.naming.NamingException

setlnitial Context

Description
Set the Initial Context to a user obtained instance of it.
Syntax

public void setlnitial Context(javax.nam ng.|nitial Context
anl ni tial Cont ext)

Parameters
Name Type Description
anlnitialContext javax.namng. I nit the user obtained instance of an
i al Cont ext initial Context

Return Values
None.
Throws

None.

setlnitialContextProperties

Description
Set the Initial Context Properties used with lookupInitial Context.
Syntax

public void setlnitial ContextProperties(java.util.Hashtable
i nitial ContextProperties)

Parameters
Name Type Description
initialContextProperties | j ava. util . Hashtabl e The new properties to use with the
next call of lookuplnitialContext.

Return Values
None.
Throws

None.

e*Way Intelligent Adapter for WebLogic User’s Guide 118 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Java Methods The EJBConfiguration Class

Overriding the JNDI Name

The JNDIName node, for which the default is specified in the Wizard, is generated into
the ETD. This setting can be overridden in the Collaboration. If no default is set by the
user, it must be set in the Collaboration before accessing any of the methods in the EJB
Home interface.

The default JNDI name generated by the wizard can be overridden by setting the
JNDIName node in the Collaboration Rule. Similarly, the settings to contact the JNDI
provider are read in from the connection configuration and made available in the
Configuration/InitialContextProperties node so that further details can be added to
this Hashtable programatically (for example,
...getInitialContextProperties().put("myproperty"”, "myvalue")). The
lookupinitialcontext() method only has to be called explicitly if a valid initialcontext is
already in place and the user wants to switch to another JNDI provider dynamically in
the middle of a Collaboration Rule. Otherwise, upon first access to the home interface
or InitialContext node, the initial context is automatically created with all the details
provided in the InitialContextProperties at that time. The Initial Context node is a
context to the JNDI provider and can be used to access other entries or functionality in
JNDIL

e*Way Intelligent Adapter for WebLogic User’s Guide 119 SeeBeyond Proprietary and Confidential

Index

Index

A

asynchronous interaction 14, 16

C

configuration parameters
General Settings 61
Connection Type 62
Default Outgoing Message Type 63
Delivery Mode 62
Maximum Number of Bytes to read 63
Message Selector 63
SeeBeyond Message Service Factory Class
Name 63
Transaction Type 62
Message Service
63
Host Name 64
Maximum Message Cache Size 64
Port Number 64
Server Name 64
considerations 75

D

directories
created by installation 48

E

e*Way Connection
JMS parameters 61
SeeBeyond JMS configuration 60
EJB ETD Builder 76
wizard 77
EJB ETD components
configuring 49
EJBConfiguration Class 116
methods
getInitialContext 116
getInitialContextProperties 117
lookuplInitialContext 117
setInitialContext 118
setInitialContextProperties 118

e*Way Intelligent Adapter for WebLogic User’s Guide

120

EJBs 12
architecture 12
Entity Beans 13
Message Driven Beans 13
SeeBeyond 29
subscribing toSeeBeyond queue 30
Session Beans 13
SeeBeyond 31
ENC 20
Enterprise JavaBeans 12
architecture 12
Entity Beans 13
Message Driven Beans 13
SeeBeyond 29
subscribing to SeeBeyond queue 30
Session Beans 13
SeeBeyond 31
Environment Naming Context 20
examples-dataSource-demoXAPool 43

F

files
created by installation 48

H

home interface 77

implementation 74
process overview 74
samples 75
asynchronous (JMS) overview 82, 83
synchronous (ETD) overview 76
installation
directories created by 48
files created by 48

J

Java Messaging Service 11

SeeBeyond JMS 17
JMS 11

SeeBeyond JMS 17
JMS e*Way Connection

parameters 61
JMS IQ Manager 59
JMSAsynchProducersConsumers sample schema 93
JNDI

sample code 9

SeeBeyond JMS Queue sub-context 26

SeeBeyond Proprietary and Confidential

Index

SeeBeyond JMS QueueConnectionFactory sub-

context 26
SeeBeyond JMS server names list 27
SeeBeyond JMS Topic sub-context 26

SeeBeyond JMS TopicConnectionFactory sub-

context 25

sub-context 25
viewing the JNDI tree 10

JNDI InitialContext parameters 52
javanaming.authoritative 55
java.naming.batchsize 55
javanaming.dns.url 53
java.naming.factory.control 54
java.naming.factory.initial 53
java.naming.factory.object 53
java.naming.factory.state 54
java.naming.factory.url.pkgs 54
java.naming.language 56
java.naming.provider.url 53
java.naming.referral 56
java.naming.security.authentication 54
java.naming.security.credentials 55
java.naming.security.principal 55
java.naming.security.protocol 54

weblogic.jndi.createIntermediateContexts 56

weblogic.jndi.delegate.environment 56
weblogic.jndi.pinToPrimaryServer 56
weblogic.jndi.provider.rjvm 57
weblogic.jndi.replicateBindings 57
weblogic.jndi.ssl.client.certificate 57
weblogic.jndi.ssl.client.key_password 57
weblogic.jndi.ssl.root.ca.fingerprints 57
weblogic.jndi.ssl.server.name 58
weblogic.jndi.use.iiop.service.provider 58
JNDI name 77
overriding 119
JTA and JMS XA
logging 42
monitoring 42, 43
tracing 41, 42

L

logging 43
JTA and JMS XA 41, 43

M

MDBs 16

message flow
e*Gate to WebLogic 17
WebLogic to e*Gate 20

methods
getInitialContext 116

e*Way Intelligent Adapter for WebLogic User’s Guide

121

getInitialContextProperties 117
lookuplInitialContext 117
setInitial Context 118
setInitial ContextProperties 118
monitoring
JTA and JMS XA 41, 43
Multi-Mode e*Way configuration parameters
asynchronous interaction 59
synchronous interaction 49

O

operating systems
supported 45
Overview 74

P

pre-installation
UNIX 47
Windows NT 46

Q

Queue 12

R

remote interface 77
root node name 77

S

sample schema
executing the schema 115
sample schemas
installing 85
samples
AddNumbersSchema 87
Business Rules 90
Collaboration Rules 89
Collaborations 92
create the ETD 88
Queue Manager 89
JMSQueueRequestor 98
Collaboration properties 101
Collaboration Rules 99
parameters 99
JMSQueueSend 94
Collaboration properties 97
Collaboration Rules 96
parameters 95
sample input data 85

SeeBeyond Proprietary and Confidential

Index

JMSTopicPublish 104
Collaboration properties 107
Collaboration Rules 106
parameters 105
sample input data 85
JMSTopicSubscribe 108
Collaboration properties 111
Collaboration Rules 110
parameters 109
JMSXAQueueSend 102
Collaboration properties 103
Collaboration Rules 103
parameters 103
sample input data 85
JMSXATopicSubscribe 112
Collaboration properties 114
Collaboration Rules 114
parameters 113
SeeBeyond JMS 17
configuring servers on different ports 27
configuring two JMS server instances 27
queue destinations 28
Queue sub-context 26
QueueConnectionFactory sub-context 26
server names list 27
servers configuration 27
topic destinations 28
Topic sub-context 26
TopicConnectionFactory sub-context 25
SeeBeyond JMS components
configuring 59
startup class 24
STCWLStartup.class 24
STCWLStartup.properties file 25
synchronous interaction 14, 15
system requirements 45
external 45

T
topic 12

U

UNIX
e*Way installation 47
pre-installation 47

\%Y%

WebLogic Server
components 65
JNDI tree 68, 72

e*Way Intelligent Adapter for WebLogic User’s Guide 122

startup class 66, 70
file structure 65, 69
WebLogic T3 naming service 8
Windows
e*Way installation 46
Windows NT 4.0
pre-installation 46

X

XA
confirming succeed or fail 102, 113
verifying XA at work 41

XA transactions
overview 13
SeeBeyond JMS XAResource 38
SeeBeyond XA MDBs 36

subscribing to SeeBeyond JMS queue 36

SeeBeyond XA Session Beans 38
verifying XA 41

SeeBeyond Proprietary and Confidential

	e*Way Intelligent Adapter for WebLogic User’s Guide
	Contents
	Introduction
	1.1 Intended Reader
	1.2 Overview
	1.3 Using J2EE™ with e*Gate and the WebLogic e*Way
	1.3.1. Java Naming and Directory Interface (JNDI)
	The WebLogic T3 Naming Service
	Sample Code
	Viewing The WebLogic JNDI Tree

	1.3.2. Java Messaging Service (JMS)
	1.3.3. Enterprise JavaBeans (EJBs)
	What is Enterprise JavaBean Architecture?
	Message Driven Beans
	Session Beans
	Entity Beans

	1.3.4. XA Transactions

	1.4 WebLogic e*Way Component Overview
	1.4.1. Synchronous Interaction, e*Gate to WebLogic Server
	The EJB ETD

	1.4.2. Asynchronous Interaction, WebLogic EJBs to e*Gate JMS and e*Gate JMS to WebLogic MDBs
	1.4.3. SeeBeyond JMS
	Message Flow from e*Gate to WebLogic
	Message Flow from WebLogic to e*Gate
	SeeBeyond WebLogic Startup Class
	STCWLStartup.properties File

	1.4.4. SeeBeyond Sample Message Driven Beans
	Accessing Session Beans
	Lazy Loading
	Accessing Entity Beans

	1.4.5. SeeBeyond Sample XA Message Driven Beans
	SeeBeyond Sample XA Session Beans
	Verifying XA At Work
	examples-dataSource-demoXAPool

	1.5 Supported Operating Systems
	1.6 System Requirements
	1.6.1. External System Requirements

	Installation
	2.1 Windows
	2.1.1. Pre-installation
	2.1.2. Installation Procedure

	2.2 UNIX
	2.2.1. Pre-installation
	2.2.2. Installation Procedure

	2.3 Files/Directories Created by the Installation

	Configuration
	3.1 Configuring the Components for Synchronous Interaction Implementation using the EJB ETD Builder
	3.1.1. Multi-Mode e*Way Configuration Parameters (Synchronous Interaction)
	3.1.2. EJB ETD e*Way Connection
	Configuring the ETD e*Way Connection

	3.1.3. General Settings
	3.1.4. JNDI InitialContext Settings

	3.2 Configuring Components for Asynchronous Interaction Implementation using SeeBeyond JMS
	3.2.1. JMS IQ Manager
	3.2.2. Multi-Mode e*Way Configuration Parameters (asynchronous interaction)
	3.2.3. e*Way Connection
	Create the e*Way Connection
	Configuring the JMS e*Way Connection parameters
	General Settings
	Message Service

	3.3 Configuring the WebLogic Server Components
	3.3.1. Configuration for WebLogic 6.1
	3.3.2. Configuration for WebLogic 7.0

	3.4 Append Classpaths for All Collaboration Rules

	Implementation
	4.1 Implementation Process: Overview
	4.2 Sample Implementations
	4.3 Considerations
	4.4 Synchronous Interaction, e*Gate to WebLogic Server
	Step 1: Build the ETD from the interface classes
	Step 2: Configure the e*Way Connection
	Step 3: Build Collaboration Rules to instantiate the Remote Interfaces
	Step 4: Bind the e*Way Connection to the Collaboration Rules

	4.5 Asynchronous Interaction, WebLogic EJB to e*Gate JMS
	Step 1: Configure WebLogic to create JNDI entries for SeeBeyond JMS on WebLogic Server at startup
	Step 2: Create a new Session Bean from the template
	Step 3: Create a new Deployment Descriptor from the template
	Step 4: Packaging and Deployment

	4.6 Asynchronous Interaction, e*Gate JMS to WebLogic Message Driven Bean
	Step 1: Configure WebLogic to create JNDI entries for SeeBeyond JMS on WebLogic Server at startup
	Step 2: Create a new message driven bean from the template.
	Step 3: Create a new Deployment Descriptor from the template.
	Step 4: Packaging and deployment.

	4.7 Event Type Definitions
	4.8 Creating the Sample Schemas
	4.8.1. Installing a Sample Schema

	4.9 The AddNumbers Sample Schema (Synchronous, EJB ETD)
	4.9.1. Running the AddNumbers Sample Schema
	4.9.2. Configuring the AddNumbersSchema Sample
	Copy and Deploy the Sample EJB
	Configure STCWLStartup.properties
	Create and Configure the e*Ways
	Create the ETD
	Configure the Queue Manager
	Create the e*Way Connections
	Creating the AddNumbers Sample Collaboration Rules
	Creating the Business Rules Using the Collaboration Rules Editor
	Creating the Collaborations

	4.10 The JMSAsynchProducersConsumers Sample Schema (Asynchronous, JMS)
	4.10.1. Running the JMSAsynchProducersConsumers Schema
	4.10.2. The JMSQueueSend Sample
	Configuring the JMSQueueSend Sample
	The JMSQueueSend Collaboration Rules Script
	JMSQueueSend Collaboration Rule Mapping
	JMSQueueSend Collaboration Properties

	4.10.3. The JMSQueueRequestor Sample
	Configuring the JMSQueueRequestor Sample
	JMSQueueRequestor Collaboration Rule
	JMSQueueRequestor Collaboration Rule Mapping
	JMSQueueRequestor Collaboration Properties

	4.10.4. The JMSXAQueueSend Sample
	Configuring the JMSXAQueueSend Sample
	The JMSXAQueueSend Collaboration Rule
	JMSXAQueueSend Collaboration Rule Mapping
	JMSXAQueueSend Collaboration Properties

	4.10.5. The JMSTopicPublish Sample
	Configuring the JMSTopicPublish Sample
	The crJMSTopicPublish Collaboration Rule
	JMSTopicPublish Collaboration Rule Mapping
	JMSTopicPublish Collaboration Properties

	4.10.6. The JMSTopicSubscribe Sample
	Configuring the JMSTopicSubscribe Sample
	The JMSTopicSubscribe Collaboration Rule
	JMSTopicSubscribe Collaboration Rule Mapping
	JMSTopicSubscribe Collaboration Properties

	4.10.7. The JMSXATopicSubscribe Sample
	Configuring the JMSXATopicSubscribe Sample
	The JMSXATopicSubscribe Collaboration Rule
	JMSXATopicSubscribe Collaboration Rule Mapping
	JMSXATopicSubscribe Collaboration Properties

	4.11 Executing the Schema

	Java Methods
	5.1 The EJBConfiguration Class
	Methods of the EJBConfiguration Class
	getInitialContext
	getInitialContextProperties
	lookupInitialContext
	setInitialContext
	setInitialContextProperties
	Overriding the JNDI Name

	Index
	A
	C
	D
	E
	F
	H
	I
	J
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	W
	X

