
e*Gate API Kit Developer’s
Guide

Release 4.5.2
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBI, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 1999–2001 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20020507150805.
e*Gate API Kit Developer’s Guide 2 SeeBeyond Proprietary and Confidential

Contents
Contents

Chapter 1

Introduction 11
Overview 11

SeeBeyond Message Service Functionality 11
Publish-and-subscribe 12
Point-To-Point 12
Request-Reply 12
Message Selector 12
Java Naming and Directory Interface 13
Compensating Resource Manager 13

SeeBeyond Multiplexer e*Way Functionality 13
Request-Reply 14
Send-only 14
Receive 14

Intended Reader 14

Supported Operating Systems 15

System Requirements 16
For Using Java Message Service APIs 16
For Using Java Message Service COM+ APIs 16
For Using MUX e*Gate APIs 16

O/S 390 System Requirements 17

External System Requirements for OS/390 18
For Using CICS 18
For Using IMS 18
For Using Batch 19

Chapter 2

Installing the e*Gate API Kit 20
Supporting Documents 20

Windows NT and 2000 20
Pre-installation 20
Installing the e*Gate API Kit 21

Unix 22
Pre-installation 22
Installing the e*Gate API Kit 22
e*Gate API Kit Developer’s Guide 3 SeeBeyond Proprietary and Confidential

Contents
Directories Created by the Installation 22

OS/390 23
Copying the Tape Contents to Disk 24

Linking the COBOL API Load Models 24
Verifying the CICS Transaction Server Environment for e*Gate 24

Chapter 3

Configuring the Message Service 25
Configuring the Message Service Clients 25

Java Client 26
Setting up the Java Client 27

COM+ Client 27
Setting up the COM+ Client 27
Viewing the Message Service COM+ APIs Using Microsoft Visual Basic 6.0 27
Compensating Resource Manager (CRM) 28

Configuring the Message Server 38
Considerations 38
JMS IQ Manager Configuration Parameters 38

DB Settings 39
Message Settings 41
Server Settings 43
Topic Settings 43
Trace Settings 43

Configuring JMS e*Way Connection 45
JMS e*Way Connection Parameters 45

General Settings 46
Message Service 47

Chapter 4

Implementing the Message Service 49
Implementing Message Service Models 49

Considerations 49
Message Overview 49

Message Structure 49
Message Header Fields 50
Message Properties 51
Message Body 51

Sample Code 52
The Publish/Subscribe Model 52

Java Publish 53
Java Subscribe 54
COM VB Publish/Subscribe 56
ASP Publish 57

The Point-to-Point Model 58
Java Point-to-Point Sender 59
e*Gate API Kit Developer’s Guide 4 SeeBeyond Proprietary and Confidential

Contents
Java Point-to-Point Receiver 60
COM VB Point-to-Point 62

The Request-Reply Model 64
Java Request/Reply 64
Java TopicRequestor 65
Java QueueRequestor 66
COM VB TopicRequestor 69
COM VB QueueRequestor 69

JNDI 70
Initial Context 73
Naming Operations 73
JNDI Samples 73

The Message Selector 76
Message Selector Syntax 76
Java Message Selector Publisher 77
Java Message Selector Subscriber 79
COM VB Message Selector 80

XA Sample 81
Java XA Publisher 81
Java XA Subscriber 83
COM VB XA Sample 85

The Compensating Resource Manager 86

Sample Schema Implementation 94
e*Gate Sample JMS Schema Overview 95

SeeBeyond JMS IQ Manager 95
Event Type 95
Event Type Definition 96
JMS e*Way Connections 96
Java Collaboration Rules 96
Multi-mode e*Way 98
Java Collaboration 98

Executing the Schema 99

Chapter 5

Configuring the Multiplexer e*Way 101
Configuring the Multiplexer Client 101

Considerations 101
Setting up the Multiplexer 101
Setting up the Muxpooler 101

Configuring the Multiplexer Server 102
Multiplexer e*Way Configuration Parameters 102

General Settings 102

Chapter 6

Implementing the Multiplexer e*Way 105
Implementing the Multiplexer Models 105

Multiplexer Overview 105
e*Gate API Kit Developer’s Guide 5 SeeBeyond Proprietary and Confidential

Contents
Request Reply 105
Multiplexer Request/Reply Sample Schema 107
ETDs, Collaboration Rules, and the “Return Address” Header 109
Using the C APIs 110
Using the Java APIs 110
Using the ActiveX Control Within VBasic Applications 111
Using Perl APIs 111

Using the Cobol APIs 112

Sample Implementation 114

Chapter 7

Client Libraries for the e*Gate Message Service 115
The Java APIs 115

Supported Java Message Service (JMS) Classes 115
com.seebeyond.jms.client.STCTopicRequestor 115
com.seebeyond.jms.STCQueueRequestor 116

Methods of the STCQueueRequestor Object 116
class javax.jms.JMSException 117
class javax.jms.IllegalStateException 118
class.javax.jms.InvalidClientIDException 118
class javax.jms.InvalidDestinationException 119
class javax.jms.InvalidSelectorException 119
class javax.jms.JMSSecurityException 120
class javax.jms.MessageEOFException 120
class javax.jms.MessageFormatException 121
class javax.jms.MessageNotReadableException 121
class javax.jms.MessageNotWriteableException 122
class javax.jms.ResourceAllocationException 122
class javax.jms.TransactionInProgressException 123
class javax.jms.TransactionRolledBackException 124
Unsupported JMS Classes 124

Supported JMS Interfaces 124
interface javax.jms.Connection 124
interface javax.jms.QueueConnection 126
interface javax.jms.XAQueueConnection 126
interface javax.jms.TopicConnection 127
interface javax.jms.XATopicConnection 127
interface javax.jms.ConnectionFactory 128
interface javax.jms.QueueConnectionFactory 129
interface javax.jms.XAConnectionFactory 130
interface javax.jms.TopicConnectionFactory 130
interface javax.jms.XATopicConnectionFactory 130
interface javax.jms.ConnectionMetaData 131
interface javax.jms.DeliveryMode 133
interface javax.jms.Destination 133
interface javax.jms.Queue 133
interface javax.jms.TemporaryQueue 134
interface javax.jms.Topic 134
e*Gate API Kit Developer’s Guide 6 SeeBeyond Proprietary and Confidential

Contents
interface javax.jms.TemporaryTopic 135
interface javax.jms.ExceptionListener 135
interface javax.jms.Message 135
interface javax.jms.BytesMessage 152
interface javax.jms.MapMessage 159
interface javax.jms.ObjectMessage 166
interface javax.jms.StreamMessage 166
interface javax.jms.TextMessage 173
interface javax.jms.MessageConsumer 174
interface javax.jms.QueueReceiver 175
interface javax.jms.TopicSubscriber 176
interface javax.jms.MessageListener 177
interface javax.jms.MessageProducer 177
interface javax.jms.QueueSender 180
interface javax.jms.TopicPublisher 182
interface java.lang.Runnable 184
interface javax.jms.Session 184
interface javax.jms.QueueSession 188
interface javax.jms.TopicSession 190
interface javax.jms.XASession 193
interface javax.jms.XAQueueSession 195
interface javax.jms.XATopicSession 195
interface javax.jms.XAConnection 195
interface javax.jms.XAQueueConnection 195
interface javax.jms.XATopicConnection 196
interface javax.jms.XAConnectionFactory 196
interface javax.jms.XAQueueConnectionFactory 197
interface javax.jms.XATopicConnectionFactory 197

Unsupported Java JMS Classes 197

Unsupported Java JMS Interfaces 198

Unsupported JMS Methods 198

The Message Service COM+ APIs 198
Supported Java Message Service (JMS) Classes for COM+ 198
The BytesMessage Object 199

Methods of the BytesMessage Object 199
Properties of the BytesMessage Object 203

The Connection Object 204
Methods of the Connection Object 204
Properties of the Connection Object 205

The ConnectionFactory Object 205
Methods of the ConnectionFactory Object 205
Properties of the ConnectionFactory Object 205

The Connection MetaData Object 206
The MapMessage Object 206

Methods of the MapMessage Object 206
Properties of the MapMessage Object 211

The Message Object 212
Methods of the Message Object 212
Properties of the Message Object 213

The MessageConsumer Object 215
Methods of the MessageConsumer Object 215
e*Gate API Kit Developer’s Guide 7 SeeBeyond Proprietary and Confidential

Contents
Properties of the MessageConsumer Object 215
The MessageListener Object 216
The MessageProducer Object 216

Methods of the MessageProducer Object 216
Properties of the MessageProducer Object 216

The Queue Object 217
Methods of the Queue Object 217
Properties of the Queue Object 217

The QueueBrowser Object 217
The QueueConnection Object 217

Methods of the QueueConnection Object 217
Properties of QueueConnection Object 218

The QueueConnectionFactory Object 218
Methods of the QueueConnectionFactory Object 218
Properties of the QueueConnectionFactory Object 219

The QueueReceiver Object 219
Methods of the QueueReceiver Object 219
Properties of the QueueReceiver Object 220

The QueueRequestor Object 220
Methods of the QueueRequestor Object 220

The QueueSender Object 220
Methods of the QueueSender Object 220
Properties of the QueueSender Object 221

The QueueSession Object 222
Methods of the QueueSession Object 222
Properties of the QueueSender Object 224

The Session Object 224
Methods of the Session Object 224
Properties of the Session Object 225

The StreamMessage Object 225
Properties of the StreamMessage Object 229

The TemporaryQueue Object 231
Methods of the TemporaryQueue Object 231
Properties of the TemporaryQueue Object 231

The TemporaryTopic Object 231
Methods of the TemporaryTopic Object 231
Properties of the TemporaryTopic Object 232

The TextMessage Object 232
Methods of the TextMessage Object 232
Properties of the Message Object 233

The Topic Object 235
Methods of the Topic Object 235
Properties of the Topic Object 235

The TopicConnection Object 235
Methods of the TopicConnection Object 235
Properties of the TopicConnection 236

The TopicConnectionFactory Object 236
Methods of the TopicConnectionFactory Object 236
Properties of the TopicConnectionFactory 236

The TopicPublisher Object 237
Methods of the TopicPublisher Object 237
Properties of TopicPublisher 237

The TopicRequestor Object 238
The TopicSession Object 239
e*Gate API Kit Developer’s Guide 8 SeeBeyond Proprietary and Confidential

Contents
Methods of the TopicSession Object 239
Properties of the TopicSession Object 241

The TopicSubscriber Object 241
Methods of the TopicSubscriber Object 242
Properties of the TopicSubscriber Object 242

The XAQueueConnection Object 242
Methods of the XAQueueConnection Object 243
Properties of XAQueueConnection Object 243

The XAQueueConnectionFactory Object 244
Methods of the XAQueueConnectionFactory Object 244
Properties of the QueueConnectionFactory Object 244

The XAQueueSession Object 244
Methods of the QueueSession Object 244
Properties of the QueueSender Object 245

The XASession Object 246
Methods of the Session Object 246
Properties of the Session Object 247

The XATopicConnection Object 247
Methods of the TopicConnection Object 247
Properties of the TopicConnection 248

The XATopicConnectionFactory Object 248
Methods of the TopicConnectionFactory Object 248
Properties of the TopicConnectionFactory 249

The XATopicSession Object 249
Methods of the XATopicSession Object 249
Properties of the TopicSession Object 250

Chapter 8

Client Libraries for the Multiplexer e*Way 251
C API Function Prototypes 251

EWIPMP_Close 251
EWIPMP_Free 252
EWIPMP_Open 253
EWIPMP_Send 254
EWIPMP_Wait 254

COBOL APIs 256
Open 256
Send 257
Receive 258
Close 260

ActiveX APIs 260
Connect 261
Disconnect 261
LastErrorCode 262
LastErrorText 262
ReplyMessageAsArray 263
ReplyMessageAsString 263
ReplyMessageSize 263
Send 264
Wait 264

ActiveX Class ID 265

Java Methods 265
e*Gate API Kit Developer’s Guide 9 SeeBeyond Proprietary and Confidential

Contents
Defaults 266
connect 266
disconnect 266
getHost 267
getPort 267
getResponse 268
getResponseBytes 268
getSecondsToExpire 269
getSleepDuration 269
setSleepDuration 270
getTimeout 270
sendMessage 271
setDebug 272
setHost 272
setPort 273
setSecondsToExpire 273
setTimeout 274

com.stc.MUXPooler 275
Constructors 275
Methods 275

connect 276
disconnect 276
disconnect 276
getConnectionCount 277
getHost 277
getPort 277
getSecondsToExpire 278
getTimeout 278
resizeMUXPool 278
sendBytes 279
sendMessage 279
setConnectionCount 280
setHost 280
setPort 280
setSecondsToExpire 281
setTimeout 281

Perl Subroutines 282
Multiplexer_Close 282
Multiplexer_Free 283
Multiplexer_Init 283
Multiplexer_Open 284
Multiplexer_Send 284
Multiplexer_ToString 285
Multiplexer_Wait 286

Appendix A

Appendix 287
Cobol API Return Codes 287

Cobol Error Return Codes 287
TCP/IP for MVS Return Codes 288
Sockets Extended Return Codes 297

Index 301
e*Gate API Kit Developer’s Guide 10 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

The e*Gate API kit enables you to create custom applications or modify existing
external applications to interface with the e*Gate system. The API kit provides the
following interfaces:

SeeBeyond Java Message Service (JMS)

! Java

! COM +

SeeBeyond Multiplexer (MUX) e*Way

! ActiveX

! C/C++

! Java

! Perl

! COBOL

1.1 Overview
The e*Gate API Kit provides two distinct IQ delivery service mechanisms:

! The SeeBeyond Message Service

! The SeeBeyond Multiplexer e*Way

1.1.1 SeeBeyond Message Service Functionality
The SeeBeyond Message Service provides application with an API set for a common
and elegant programming model, that is portable across messaging systems. Enterprise
messaging systems are used to send notification of events and data between software
applications. There are several common programming models supported by the
SeeBeyond Message Service API: publish-and-subscribe, point-to-point, and request/
reply, to name a few.

The diagram below shows the basic Message Service Data Flow.
e*Gate API Kit Developer’s Guide 11 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.1
Introduction Overview
Figure 1 Basic SeeBeyond Message Service Data Flow

Publish-and-subscribe

In a publish-and-subscribe scenario, one producer can send a single message to
multiple consumers via a virtual channel called a topic. Consumers must subscribe to a
topic to be able to receive it. Any messages addressed to a specific topic are delivered to
all of that topic’s consumers (subscribers). The pub/sub model is predominantly a
push-based model, in that messages are automatically broadcast to consumers without
them having to request or poll the topic for new messages.

Point-To-Point

In point to point messaging systems, messages are routed to an individual consumer
which maintains a queue of "incoming" messages. Messaging applications send
messages to a specified queue, and clients retrieve messages from a queue. In a point-
to-point scenarios, each message is delivered to exactly one client. JMS uses the term
Queue for PTP MessageQueues.

Request-Reply

When the client sends a message and expects to receive a message in return, Request-
Reply Messaging can be used. This is a synchronous object-messaging format. Request-
reply uses either pub/sub or point-to-point to enable the functionality. JMS does not
explicitly support Request-Reply Messaging, though it allows it in the context of the
other methods.

Message Selector

Many messaging applications require the additional functionality of filtering and
categorization of the messages they produce. If a message is sent to a single receiver,
this can be done by including the criteria in the message, and the receiving client in
turn, discards the ones not required. On the other hand, when a message needs to be
distributed to many clients, including criteria into the message header, making it visible
to the JMS provider, allows the provider to handle much of the filtering and routing,
without impacting each client application.

COM+ Client

Java Client

eGate

M
essage ServiceC

ol
la

bo
ra

tio
ns
e*Gate API Kit Developer’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.1
Introduction Overview
Clients include application-specific selection criteria in messages via the message
properties. Clients specify message selection criteria via JMS message selector
expressions.

Java Naming and Directory Interface

The Java Naming and Directory Interface (JNDI) provides naming and directory
functionality to applications written using Java. JNDI consists of an API set along with
a service provider interface (SPI). The Java applications use the JNDI API to access
naming and directory services. The SPI allows the naming a directory services to be
accessed transparently, thus providing the JNDI API access to their services.

JNDI is included in the Java 2 SDK, v 1.3 and later releases. It is also available as a Java
Standard Extension for use with JDK 1.1 and Java 2 SDK, v1.2.

To use the JNDI functionality, the JNDI classes are required, along with one or more
service providers (such as, LDAP, CORBA, or RMI).

Compensating Resource Manager

The Compensating Resource Manager (CRM) provides support for distributed
transaction with multiple resource managers. These COM+ objects perform non-
database operations as part of a distributed transaction. Distributed transaction involve
multiple independent resource managers. If any part of the transactions fail, the whole
transaction fails.

Important: CRM is only supported on Windows 2000.

1.1.2 SeeBeyond Multiplexer e*Way Functionality
The multiplexer provides support for both synchronous and asynchronous data
transfer. The end-user also has the ability to perform real-time data queries and online
transactions via back-office applications. This backend connectivity extends
application, trading partner and business process integration to the worldwide web
environment.
e*Gate API Kit Developer’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction Intended Reader
Figure 2 Basic SeeBeyond Multiplexer Data Flow

The e*Gate API kit Multiplexer supports three basic architectures.

Request-Reply

Data is sent to the e*Gate system and a response is returned. A client submits data (a
request) to the e*Gate system. The e*Gate system processes the data as required. The
e*Gate system returns data (a reply/response) to the same external application that
submitted the request.

The e*Gate API kit uses a multiplexing e*Way that uses a proprietary IP-based protocol
to multi-thread Event exchange between the e*Way and external systems or other
e*Gate components.

Send-only

Using the same multiplexing e*Way component, data is sent to the e*Gate system but
no data is returned

Receive

Receive, also known as Push-Port, an external system connects to the e*Gate system
and allows for the delivery unsolicited Events from an external system, using the same
multiplexing e*Way component.

1.2 Intended Reader
The reader of this guide is presumed to have the following responsibilities and possess
these skill sets:

! Developer or System Administrator with responsibility for maintaining the e*Gate
system.

eG a te

M
ultiplexer eW

ayC
ol

la
bo

ra
tio

ns

P e rl C lien t

A c tiveX C lien t

Java C lien t

C /C + + C lien t

C O B O L C lien t
e*Gate API Kit Developer’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction Supported Operating Systems
! Have expert-level knowledge of Windows NT and UNIX operations and
administration.

! Be thoroughly familiar with the programming and/or scripting language (C/C++,
Java, Visual Basic, ASP, or Perl) in which the client component is written.

! Be thoroughly familiar with Windows-style GUI operations.

1.3 Supported Operating Systems
The Java Message Service is available on the following operating systems:

! Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

! Windows NT 4.0 SP6a

! Solaris 2.6, 7, and 8

! AIX 4.3.3

! OS/390 V2R10 client only

! HP-UX 11.0 and HP-UX 11i

! Compaq Tru64 V4.0F and V5.0A

! AS/400 client only

! Japanese Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

! Japanese Windows NT 4.0 SP6a

! Japanese Solaris 2.6, 7, and 8

! Japanese HP-UX 11.0

! Korean Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

! Korean Windows NT 4.0 SP6a

! Korean Solaris 8

! Korean AIX 4.3.3

! Korean HP-UX 11.0

The Java Message Service COM+ APIs are available on the following operating system:

! Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

! Japanese Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

! Korean Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

The MUX e*Gate API Kit is available on the following operating systems:

! Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

! Windows NT 4 SP6a

! Solaris 2.6, 7, and 8
e*Gate API Kit Developer’s Guide 15 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction System Requirements
! AIX 4.3.3

! OS/390 V2R10

! HP-UX 11 and HP-UX 11i

! Compaq Tru64 V4.0F and V5.0A

! Japanese Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

! Japanese Windows NT 4.0 SP6a

! Japanese Solaris 2.6, 7, and 8

! Japanese HP-UX 11.0

! Korean Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

! Korean Windows NT 4.0 SP6a

! Korean Solaris 8

1.4 System Requirements

1.4.1 For Using Java Message Service APIs
To use the Java Message Service Java APIs, you need the following:

! A TCP/IP network connection

! Java: Version 1.3.0 or higher

! A development environment with a compiler that is compatible with platforms
supported by e*Gate. For example:

" Sun Java Compiler 1.3.0 or higher

1.4.2 For Using Java Message Service COM+ APIs
To use the Java Message Service COM+ APIs, you need the following:

! A TCP/IP network connection

! A development environment with a compiler that is compatible with platforms
supported by e*Gate. For example:

" Windows NT or Windows 2000: Microsoft Visual Basic

1.4.3 For Using MUX e*Gate APIs
To use the MUX e*Gate API Kit, you need the following:

! A TCP/IP network connection

! Java: Version 1.2.2 or higher
e*Gate API Kit Developer’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.5
Introduction O/S 390 System Requirements
! A client system capable of executing an application that uses the e*Gate multiplexer
APIs. The requirements for the client applications are as follows:

" C/C++ software program with a compiler that is compatible with the platform
supported by e*Gate. For example:

Windows NT/Windows 2000: Microsoft Visual C++ 6.0

UNIX: C Compiler or Sun C++

! Visual Basic or other application capable of using ActiveX components: The e*Gate
libraries stdole32.tlb and stdole2.tlb must be installed on the client system. ActiveX
support is available under Windows operating systems only.

! Perl: The following Perl libraries are supported:

HPUX clients also require that the Perl executable must be linked against the p-
thread library (using the flag -lpthread) when it is built.

The above versions are the only versions that are officially supported and tested.

Note: With the many compilers available, it is possible that some will not be compatible
with the e*Gate environment.

1.5 O/S 390 System Requirements
OS/390 system requirements and installation procedures are covered in Chapter 6,
"Installation Instructions for OS/390" of the e*Gate Integrator Installation Guide.

OS/390 systems use the EBCDIC character set. As a consequence, ASCII-based systems
cannot directly transport data to an EBCDIC-based system. ASCII to EBCDIC data
conversion is necessary when data is sent from UNIX/Windows to OS/390. This data
conversion should take place within a Collaboration.

To transport any EBCDIC data to an ASCII-based system (UNIX or Windows), you
must first convert the data by using the ebcdic->ascii Monk function. Refer to the Monk
Developer’s Reference Guide for details about this function.

To use the COBOL portion of the e*Gate API Kit, you need the following:

1 An e*Gate Participating Host, version 4.5.1 or higher.

OS Perl

AIX 4.3.3 5.005_03 standard

HPUX 11.0, 11.i 5.005_03 HP-UX Developer Resource

Solaris 2.6, 7 download 5.005_03 from Sun Freeware

Solaris 2.8 5.005_03 standard

Linux Red Hat 6.2 5.005_03 standard

Compaq Tru64 5.0a 5.004_04

Windows NT/2000 5.6.1.629
e*Gate API Kit Developer’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.6
Introduction External System Requirements for OS/390
Server:

! IBM OS/390 or equivalent hardware

! Physical access CD-ROM

! TCP/IP connectivity

! Appropriate terminal for access to system

1.6 External System Requirements for OS/390

1.6.1 For Using CICS
To enable the e*Way to communicate properly with the Server system, the following are
required:

! Cobol for OS/390 compiler must be available for use in the OS/390 Language
Environment (LE), with the CICS TCP/IP socket elements available for inclusion in
the link step. A DD statement pointing to the socket library should be added to the
compile procedure (usually DFHYITVL).

See below for a link to the IP CICS Sockets manual, which describes setup
procedures:

http://www-1.ibm.com/servers/s390/os390/bkserv/r10pdf/secureway.html

Note: Select book #SC31-8518-01 to access the IP CICS Sockets Guide. This book explains
the setup of TCP/IP Sockets for CICS, which is a requirement for the Cobol
component of the e*Gate API Kit to function properly.

" OS/390 V2R10

" Security package - install script RACF - ready

" CICS 3.3 or higher or CICS TS 1.x

" CICS TCP/IP socket interface must be installed and configuration for each
region in which the Cobol API will be run.

" COBOL for OS/390

" Optional - Open Multiple Virtual System (OMVS) installed, configured, and
operational.

1.6.2 For Using IMS
To enable the e*Way to communicate properly with the Server system, the following
are required:

! Cobol for OS/390 compiler must be available for use in the OS/390 Language
Environment (LE), with the MVS TCP/IP socket elements available for inclusion in
e*Gate API Kit Developer’s Guide 18 SeeBeyond Proprietary and Confidential

http://www-1.ibm.com/servers/s390/os390/bkserv/r10pdf/commserv.html

Chapter 1 Section 1.6
Introduction External System Requirements for OS/390
the link step. A DD statement pointing to the socket library should be added to the
compile procedure.

For additional information, consult the IBM website, document number SG24-5229-01,
“OS/390 eNetwork Communications Server TCP/IP Implementation Guide, Volume 3: MVS
Applications”

Note: This book explains the setup of TCP/IP Sockets for MVS, which is a requirement for
the IMS and Batch Cobol components of the e*Gate API Kit to function properly.

" OS/390 V2R10

" Security package - install script RACF - ready

" IMS 6.1 or higher

" MVS TCP/IP socket interface must be installed, configured, and operational

" COBOL for OS/390

" Optional - Open Multiple Virtual System (OMVS) installed, configured, and
operational.

1.6.3 For Using Batch
To enable the e*Way to communicate properly with the Server system, the following
are required:

! Cobol for OS/390 compiler must be available for use in the OS/390 Language
Environment (LE), with the MVS TCP/IP socket elements available for inclusion in
the link step. A DD statement pointing to the socket library should be added to the
compile procedure.

For additional information, consult the IBM website, document number SG24-5229-01,
“OS/390 eNetwork Communications Server TCP/IP Implementation Guide, Volume 3: MVS
Applications”

Note: This book explains the setup of TCP/IP Sockets for MVS, which is a requirement for
the IMS and Batch Cobol components of the e*Gate API Kit to function properly.

" OS/390 V2R10

" Security package - install script RACF - ready

" MVS TCP/IP socket interface must be installed, configured, and operational

" COBOL for OS/390

" Optional - Open Multiple Virtual System (OMVS) installed, configured, and
operational.
e*Gate API Kit Developer’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 2

Installing the e*Gate API Kit

This chapter describes the procedures necessary to install the e*Gate API Kit from the
e*Gate installation CD-ROM.

After the product is installed, you must customize it to execute your site-specific
business logic and to interact with your other systems as required.

2.1 Supporting Documents
The following documents are designed to work in conjunction with the e*Gate API Kit
User’s Guide and to provide additional information that may prove useful to you.

! e*Gate Integrator Installation Guide.

! e*Gate Integrator System Administration and Operations Guide.

! e*Gate Integrator User’s Guide.

! SeeBeyond JMS Intelligent Queue User’s Guide

! SeeBeyond Master Index (SeeBeyond_Index.pdx; refer to e*Gate Integrator User’s Guide for
instructions on how to access.)

! README.txt file on the e*Gate installation CD ROM.

2.2 Windows NT and 2000
Before installing the e*Gate API Kit, please read the following sections to ensure a
smooth and error-free installation.

You must have Administrator privileges to successfully install e*Gate.

The installation of the e*Gate API Kit must be installed after successfully completing
the installation of the e*Gate Registry Host. For more information about installing the
Registry Host, see the e*Gate Integrator Installation Guide.

2.2.1 Pre-installation
1 Exit all Windows programs before running the setup program, including any anti-

virus applications.
e*Gate API Kit Developer’s Guide 20 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Installing the e*Gate API Kit Windows NT and 2000
2 You must have Administrator privileges to install this e*Way.

2.2.2 Installing the e*Gate API Kit
To install the e*Gate API Kit on a Windows system:

1 Log in as an Administrator on the workstation on which you want to install the
e*Way.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s “Autorun” feature is enabled, the setup application should
launch automatically; skip ahead to step 4. Otherwise, use the Windows NT
Explorer or the Control Panel’s Add/Remove Applications feature to launch the file
setup.exe on the CD-ROM drive.

4 The InstallShield setup application launches.

5 When the Select Components screen appears, click the Change button to select the
e*Gate API Kit.

Figure 3 Select Components

6 Follow the on-screen instructions to install the e*Way.

Be sure to install the e*Way files in the suggested “client” installation directory. The
installation utility detects and suggests the appropriate installation directory. Unless
you are directed to do so by SeeBeyond support personnel, do not change the
suggested “installation directory” setting.
e*Gate API Kit Developer’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Installing the e*Gate API Kit Unix
2.3 Unix

2.3.1 Pre-installation
Before installing the e*Way on your UNIX system, please read the following sections to
ensure a smooth and error-free installation.

You will need regular (non-root) user access to begin the e*Gate installation.

2.3.2 Installing the e*Gate API Kit
To install the e*Gate API Kit on a UNIX system:

1 Log in on the workstation containing the CD-ROM drive, and insert the CD-ROM
into the drive.

2 If necessary, mount the CD-ROM drive.

3 At the shell prompt, type

cd /cdrom

4 Start the installation script by typing:

setup.sh

5 Follow the prompts to accept user license information etc.

6 A menu of options opens. Enter the number corresponding to the “e*Gate Add-on
Applications” option (1). Then, follow any additional on-screen directions.

7 Enter the number corresponding to “eWays” (1)

8 Enter the number corresponding to the “e*Gate API Kit” (number may vary).

9 Be sure to install support for any additional platform support.

Be sure to install the e*Way files in the suggested “client” installation directory. The
installation utility detects and suggests the appropriate installation directory. Unless
you are directed to do so by SeeBeyond support personnel, do not change the
suggested “installation directory” setting.

2.4 Directories Created by the Installation
The e*Gate API Kit installation process installs the following files within the e*Gate
directory tree. Files are installed within the “egate\client” tree on the Participating Host
and committed to the “default” schema on the Registry Host.
e*Gate API Kit Developer’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installing the e*Gate API Kit OS/390
2.5 OS/390
The installation tape contains the data sets listed in Table 2.

Table 1 Files Required for External Application Support

Location File General Purpose

eGate/client/classes
eGate/client/classes/thirdparty/sun
eGate/client/classes/thirdparty/sun

stcjms.jar
jms.jar
jta.jar

JMS Java clients

XA support

eGate/client/bin
eGate/client/bin
eGate/client/bin
eGate/client/bin

stc_mscom.dll
stc_msclient.dll
stc_mscommon.dll
stc_msapi.dll

JMS COM+ clients and CRM

eGate/client/bin
eGate/client/bin
eGate/client/bin
eGate/client/bin

stc_msclient.dll
stc_mscommon.dll
stc_msapi.dll
stcms.exe

JMS Server

eGate/client/bin stc_ewipmpclnt.dll
stc_common.dll

MUX C and C++ clients

eGate/client/bin
eGate/client/bin
eGate/client/bin

stc_xipmpclnt.dll
stc_common.dll
stc_ewipmpclnt.dll

MUX ActiveX clients

eGate/client/perl
eGate/client/bin

stc_ewipmpclntperl.pm
stc_ewipmpclntperl.dll
stc_common.dll

MUX Perl clients

eGate/client/classes stcph.jar MUX Java clients

eGate/client/bin
eGate/client/configs/stcewipmp

stcewipmp.exe
stc_common.dll
stc_ewipmpclnt.dll
stcewipmp.def

Required for all MUX server.

Table 2 Installation Tape Data sets

Dataset Name Contents

STC.RESTORE.JCL Physical Sequential Datasets containing
the JCL for this tape.

STC.JCLLIB Partition Data set that contains installation
jobs and control cards.

STC.LOADLIB Load Library that contains the MUXAPI,
MUXIMS, MUXBAT load modules.

STC.MUX.OBJECT Object library containing the object
modules.

STC.MUX.UNLOAD Unload data set containing object.
e*Gate API Kit Developer’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installing the e*Gate API Kit OS/390
2.5.1 Copying the Tape Contents to Disk
Create and submit the following job to copy the load library to disk:

// JOB CARD
// TAPECOPY PROC PREFIX=custpref, <== CUSTOMER HIGH LEVEL QUALIFIER
// LOADBLK=TRK, <== BLOCKING FACTORY FOR LOAD LIBRARY
// LOADPRI=45, <== PRIMARY ALLOCATION FOR LOAD LIBRARY
// LOADSEC=15, <== SECONDARY ALLOCATION FOR LOAD LIBRARY
// LOADDIR=10, <== DIRECTORY BLOCKS FOR LOAD LIBRARY
// IEBCOPY EXEC PGM=IEBCOPY
// SYSPRINT DD SYSOUT=*
// *
// * COPY MUXAPI LOAD LIBRARY TO DISK
// *
// INDD1 DD DSN=STC.LOADLIB,DISP=OLD,UNIT=CART,
// VOL=(,RETAIN,SER=STC390),LABEL=(1,SL)
// OUTDD1 DD DSN=&PREFIX..STC.LOADLIB,DISP=(NEW,CATLG,DELETE),
// UNIT=SYSDA,
// SPACE=(&LOADBLK,(&LOADPRI,&LOADSEC,&LOADDIR))
// SYSIN DD DUMMY
//

Linking the COBOL API Load Models

To link the COBOL API in the link step of the compile for the calling program, do the
following:

//LKED.SYSINN DD *
// INCLUDE SYSLIB(MUXxxx)
// ...
// NAME ...
/*

Note: Where MUXxxx is MUXAPI for CICS, MUXIMS for IMS, and MUXBAT for
Batch.

2.5.2 Verifying the CICS Transaction Server Environment for e*Gate
For CICS only: To verify CICS Sockets Support and Language Environment is enabled,
look for the following messages at the CICS startup:

CICS Sockets Initialization:

DFHSO0100i applid Sockets domain initialization has started.
DFHSO0101I applid Sockets domain initialization has ended.

Language Environment Initialization:

DFHAP1203I applid Language Environment/370 is being initialized.

You should not see:

DFHAP1200 applid A CICS request to the Language Environment/370 has
failed. Reason code rc.
e*Gate API Kit Developer’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 3

Configuring the Message Service

This chapter explains how to configure the three separate components that constitute
SeeBeyond’s implementation of the Java Message Service:

! Message Service Client: the external application

! Message Server: the data container and router

! e*Way Connection: the link between e*Gate and the external system

The following diagram illustrates the communication between each component.

Figure 4 Message Service Communication Architecture

3.1 Configuring the Message Service Clients
The current SeeBeyond Message service supports both Java and COM+ clients. The
sections that follow provide the information necessary to configure both of these
clients.

In the diagram that follows all of the necessary components have been isolated onto a
separate machine. While this separation is not mandatory, the combinations of
components that reside together on various machines, change depending upon the
needs of the customer.

COM+ Client

Java Client

eGate

M
essage ServiceC
ol

la
bo

ra
tio

ns
e*Gate API Kit Developer’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuring the Message Service Configuring the Message Service Clients
Figure 5 Message Service Communication Architecture

In some form, the following components must exist:

! e*Gate Registry Host (e*Gate Server)

! e*Gate Participating Host (e*Gate Client)

! External System (SeeBeyond Message Service Client file)

! Database Server (Data Repository)

Important: From this point forward, when referring to a machine, the above naming
conventions are used. Remember that multiple components may reside on the same
machine. For example, the e*Gate Participating Host and the External System may
exist on one physical machine.

3.1.1 Java Client
Once the e*Gate API Kit has been installed successfully, additional steps are required to
run Java JMS client programs. Both the Java client, which represents the machine where
the external code resides, and the Java server, which represents the machine where the
Message Server (also referred to as the SeeBeyond JMS IQ Manager) resides requiring
handling. In this section, the setup steps are included for setting up the Message Service
to use Java.

Database Server

eGate Participating HostInternet

eGate Registry

External System

JM
Sclient
e*Gate API Kit Developer’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuring the Message Service Configuring the Message Service Clients
Setting up the Java Client

To begin using the Message Service for Java, do the following:

Copy the jms.jar and jta.jar files from eGate\client\ThirdParty\sun
directory to a directory on your external system. Copy the stcjms.jar file from
eGate\client\classes directory to the same directory on your external system
that you copied the jms.jar and jta.jar files to.

Modify the CLASSPATH on your external system to include the jms.jar and stcjms.jar
files. For XA support, you will also need to include the jta.jar in your path.

To use the Java APIs, you need the following import statements in your Java files.

import javax.jms.*;
import com.seebeyond.jms.*;

3.1.2 COM+ Client
Once the e*Gate API Kit has been installed successfully, additional steps are required to
finish the setup, before data exchange can begin. Both the COM+ client, which
represents the machine where the external code resides, and the Java server, which
represents the machine where the Message Server (also referred to as the SeeBeyond
JMS IQ Manager) resides requiring handling. In this section, the setup steps are
included for setting up the Message Service to use COM+.

Setting up the COM+ Client

For all COM+ implementations, to begin using the Message Service for COM+, do the
following:

Copy the stc_mscom.dll, stc_msclient.dll, stc_mscommon.dll, stc_msapi.dll files from
your egate\client\bin to a directory on your external system.

From the command prompt of the external system, register the file stc_mscom.dll into
the Windows 2000 registry by doing the following:

regsvr32 your_path_location\stc_mscom.dll

Viewing the Message Service COM+ APIs Using Microsoft Visual Basic
6.0

You may view the JMS COM+ APIs using any application that is capable of viewing
COM+ APIs.

To begin viewing the APIs:

1 Open Microsoft Visual Basic 6.0

2 From the New Project dialog box, click Standard EXE and click Open.

3 From the Project toolbar, click References...

4 From the References dialog box, select SeeBeyond Message Service 1.0.

5 Click OK.
e*Gate API Kit Developer’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuring the Message Service Configuring the Message Service Clients
6 From the View toolbar, click Object Browser.

7 From the <All Libraries> list box, select STC_MSCOM.

8 Press the F2 button, to open the Object Browser dialog box.

9 From the <All Libraries> drop down button, select STC_MSCOM to view the
supported classes and methods.

10 Highlight the class to view the member methods and properties.

Compensating Resource Manager (CRM)

A Compensating Resource Manager can be described as a COM+ object which uses a
set of tools (CRM facility), that enables the user to create resource managers. This
allows the user to perform non-database operations (such as generating a file) as part of
a transaction.

A distributed transaction, is a transaction that involves multiple independent resource
managers. For example, it might include an Oracle database at the corporate office, and
an SQL Server database at the partner’s warehouse. The involved resource managers
attempt to complete and commit their part of the transaction. If an part of the
transaction fails, all resource managers roll back their respective updates.

This is accomplished using the two-phase commit protocol. In this protocol, the activity
of one or more resource managers is controlled by a separate piece of software called a
transaction coordinator.

CRM Architecture

A minimum of two COM components must be implemented to create a CRM scenario.
At least one CRM Worker, and a CRM Compensator are required. The COM+ CRM
functionality provides the CRM clerk and a durable log file. The CRM Worker contains
the application-level code that directs the business logic employed by the
Compensating Resource Manager. If the CRM writes XML files, the CRM Worker is
likely to contain a WriteToFile method, along with a COM+ implementation of JMS
interfaces to the message service. The CRM Worker acts as a transacted COM+
component that is configured to require a transaction. When an application activates a
CRM Worker component, the CRM Worker instantiates the CRM clerk object, and uses
that CRM clerk to register a compensator component.

The functionality provided by SeeBeyond’s implementation of CRM is contained
within the COM+ library, stc_mscom.dll.

The CRM Worker is implemented via the following classes:

! XAConnection

! XAConnectionFactory

! XAQueueConnection

! XAQueueConnectionFactory

! XAQueueSession

! XARecord

! XASession
e*Gate API Kit Developer’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuring the Message Service Configuring the Message Service Clients
! XATopicConnection

! XATopicConnectionFactory

! XATopicSession

The CRM Compensator is implemented in the Compensator file.

When the transaction, in which the CRM Worker is participating, commits, the DTC
calls methods contained within the CRM Compensator interface, that the CRM
Compensator must implement. The DTC makes these calls at each step of a two-phase
commit protocol. If the prepare phase is successful, the updates are made permanent by
committing the changes. If any part of the complete transaction fails, the transaction
rolls back the information, aborting the transaction.

Two-phase Commit Protocol

Implementing distributed transactions is the key to the two-phase commit protocol.
The activity of one or more resource managers is controlled by the transaction
coordinator. There are five steps in the two-phase commit protocol.

1 An application invokes the commit method in the transaction coordinator.

2 The transaction coordinator contacts the various resource managers relevant to the
transaction, and directs them to prepare to commit the transaction. (Begin phase
one.)

3 The resource manager must be able to guarantee the ability to commit the
transaction, or perform a rollback. Most resource managers write a journal file,
containing the intended changes to durable storage. If unable to prepare the
transaction, a negative response is set to the transaction coordinator.

4 All responses from the involved resource managers are collected.

5 The transaction coordinator informs the involved resource managers. (Phase Two)
If any of resource managers responded negatively, the transaction coordinator
sends a rollback command. If all of the resource managers responded affirmatively,
the transaction coordinator directs all of the resource managers to commit the
transaction. The transaction cannot fail after this point.

Compensating Resource Manager (CRM) Setup

To enable SeeBeyond’s CRM functionality, the following steps are required.

1 Register stc_mscom.dll by performing the following:

From the command prompt of the external system, register the file stc_mscom.dll into
the Windows 2000 registry by doing the following:

regsvr32 your_path_location\stc_mscom.dll
e*Gate API Kit Developer’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuring the Message Service Configuring the Message Service Clients
2 From the following location:

Settings->Control Panel->Administrative Tools->Component Services

Expand the Component Services folder. Right click on Com+ Applications.

Figure 6 Component Services Folder

3 Select New\Application. The COM Application Install Wizard opens. Click Next to
continue.

Figure 7 COM Application Install Wizard
e*Gate API Kit Developer’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuring the Message Service Configuring the Message Service Clients
4 Select create an empty application.

Figure 8 COM Application Install Wizard

5 Enter stc_mscom for the name of the application, and select Server Application for
the Application Type.

Figure 9 COM Application Install Wizard: New Application
e*Gate API Kit Developer’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuring the Message Service Configuring the Message Service Clients
6 Set the Application Identity to Interactive User. Click Next.

Figure 10 COM Application Install Wizard: Set Application Identity

7 Click Finish.

8 Expand stc_mscom component, then, right click on the Components folder, select
New Component.

Figure 11 Component Services: stc_mscom Component
e*Gate API Kit Developer’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuring the Message Service Configuring the Message Service Clients
9 The COM Component Install Wizard opens. Select Install new components to
continue.

Figure 12 COM Component Install Wizard

10 Click Add to navigate to the location of the stc_mscom.dll. If you are running the
.dll on the same machine that e*Gate was installed, the file is located:

<eGate>\client\bin\

Figure 13 COM Component Install Wizard

If stc_mscom.dll has been copied to another system, the file is located in the
directory to which you pasted it previously.
e*Gate API Kit Developer’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuring the Message Service Configuring the Message Service Clients
Figure 14 COM Component Install Wizard: Add

The components appear in the Components found dialog box, ensure that the Show
Details box is selected. Click Next to continue. Click Finish.

11 Select the stc_mscom component, right click, select properties. From the Advanced
tab, enable the Compensating Resource Manager (CRM).

Figure 15 stc_mscom Properties: Advanced
e*Gate API Kit Developer’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuring the Message Service Configuring the Message Service Clients
12 Expand the stc_mscom component. Select the Components folder, right click. Right
click on STC_MSCOM.Compensator, select properties.

Figure 16 STC_MSCOM.Compenstator Properties

13 From the Transactions tab, disable Transaction support.

Figure 17 STC_MSCOM.Compenstator Properties:Transaction Support
e*Gate API Kit Developer’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuring the Message Service Configuring the Message Service Clients
14 From the Activation tab, disable Just In Time Activation.

Figure 18 STC_MSCOM.Compenstator Properties:Activation

15 From the Concurrency tab, disable synchronization support. Click OK.

Figure 19 STC_MSCOM.Compenstator Properties:Concurrency
e*Gate API Kit Developer’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuring the Message Service Configuring the Message Service Clients
16 From the components folder, right click on
STC_MSCOM.XAQueueConnectionFactory, and
STC_MSCOM.XATopicConnectionFactory, select properties.

Figure 20 STC_MSCOM.XAConnectionFactory Properties

17 From the Transactions tab, require Transaction support.

Figure 21 STC_MSCOM.XAConnectionFactory Properties:Transaction Support

18 From the Activation tab, enable Just In Time Activation.

19 From the Concurrency tab, require Synchronization support. Click OK.
e*Gate API Kit Developer’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Configuring the Message Service Configuring the Message Server
3.2 Configuring the Message Server
For information about the architecture and specific operation of the JMS IQ Manager
(Message Server), see the SeeBeyond JMS Intelligent Queue User’s Guide.

The SeeBeyond JMS IQ Manager is compliant with JMS version 1.0.2, and provides
persistent nonvolatile storage of messages (Events), along with the necessary routing.
The SeeBeyond JMS IQ Manager acts as a Message Server.

3.2.1 Considerations
The JMS Topic/Queue names and the e*Gate Event Types must coincide.

The individual writing any external JMS code must know the expected data format
(byte or text), the name of the Topic/Queue (which must coincide with the Event Type
name), the name of host and port number of the JMS client.

Segment size (in bytes: 512 bytes/page for Windows, 1024 bytes for UNIX) must always
be larger than the largest expected Event - preferably by an order of magnitude.

3.2.2 JMS IQ Manager Configuration Parameters
For more information about the JMS IQ Managers, see the SeeBeyond JMS Intelligent
Queue User’s Guide.

This section describes the configuration parameters and the external configuration
requirements for the SeeBeyond JMS IQ Manager.

Configuration parameters are set using the IQ Manager Editor.

To change IQ Manager configuration parameters:

1 In the Enterprise Manager’s Component editor, select the IQ Manager you want to
configure and display its properties.

2 Ensure that the IQ Manager type is set to SeeBeyond JMS on the drop-down menu.

3 Under Configuration File, click New to create a new file, Find to select an existing
configuration file, or Edit to edit the currently selected file.

4 In the Additional Command Line Arguments box, type any additional command
line arguments that the may be required, taking care to insert them at the end of the
existing command-line string. Be careful not to change any of the default arguments
unless you have a specific need to do so.

The configuration parameters are organized into the following sections:

! DB Settings on page 39

! Message Settings on page 41

! Server Settings on page 43

! Topic Settings on page 43

! Trace Settings on page 43
e*Gate API Kit Developer’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Configuring the Message Service Configuring the Message Server
Note: The JMS term “topic” is used interchangeably with the e*Gate term “Event Type”;
the JMS term “message” is used interchangeably with the e*Gate term “Event”;
and the term “Server” is used generically for “SeeBeyond JMS IQ Manager.”

DB Settings

The DB Settings parameters govern the persistent message store, transaction-log files,
and the disk write memory cache.

DBPath

Description
Specifies the directory in which the persistent message store and transaction-log
files reside.

Required Values
A string.

If specified as a fully qualified path to the Message Service data directory, a variable
is assigned to .egate.store MessageServiceData. If blank, the Message Service uses
the value of the .egate.store MessageServiceData variable, as the base data
directory. It then creates a subdirectory under that directory named with the UID of
the IQManager to store the data files. The format uses the forward slash (/) as a
path delimiter.

On Windows, .egate.store normally contains the line:

MessageServiceData=C:\EGATE\Client\stcms

If you keep all defaults, the persistent store files will reside in:

C:\EGATE\Client\stcms\IQManagerUID

(where IQManagerUID is replaced by the actual UID of the IQ Manager)

On UNIX, .egate.store normally contains the line:

MessageServiceData=/usr/egate/client/stcms

If you keep all defaults, the persistent store files will reside in:

/usr/egate/client/stcmsIQManagerUID

(where IQManagerUID is replaced by the actual UID of the IQ Manager)

If a relative path is specified, the Message Service overrides the .egate.store
MessageServiceData setting. The Message Service stores the data files in the
directory specified by DBPath relative to the directory containing the stcms.exe
executable (usually eGate/client/bin).

If specified as an absolute path, the Message Service overrides the .egate.store
MessageServiceData setting. The Message Service stores the data files in the
directory specified by DBPath.

DBSuffix

Description
Specifies the characters to use as a file extension for the file names of the persistent
message store and transaction-log files.
e*Gate API Kit Developer’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Configuring the Message Service Configuring the Message Server
Required Values
A string. The default is dbs

Note: If you keep all defaults, the persistent store files will have the form
C:\eGate\client\stcms\stcms#####.dbs.

DBCacheSize

Description
Specifies the total number of pages in the database system disk cache. A larger
cache means better performance for more active data files.

Required Values
An integer between 1 and 999999999. The default is 1024. (A page is 512 bytes on
Windows, 1024 bytes on UNIX.) Range: 1 - DBSegmentSize

DBSegmentSize

Description
Specifies the total number of pages in a single DB file. (A page is 512 bytes on
Windows, 1024 bytes on UNIX.)

Required Values
An integer between 1 and 999999999. The default is 16384.

Limits:
Set this to at least (2 * the total number of anticipated durable subscribers).

Note: DBSegmentSize must be set greater than the size of the largest anticipated
message. Allow a generous margin of error.

DBMinSegments

Description
Specifies the minimum number of files, of size DBSegmentSize, initially created
and maintained by the Server for its persistent message store and transaction log.
When the minimum is exceeded, the Server allocates additional segments on an as-
needed basis, up to the maximum set by DBMaxSegments.

Required Values
An integer between 1 and 99999. The default is 4.

Limits:
Must be >= 1, up to 99999.

DBMaxSegments

Description
Specifies the maximum total number of files that the Server will create and maintain
for its persistent message store and transaction log. This effectively limits the
amount of disk space that the Server will use. If the Server needs to write data that
would exceed this limit, it exits gracefully and outputs an appropriate error
message to the trace log.

The SeeBeyond JMS IQ Manager should not be used as a semi-permanent storage
medium without sufficient memory and disk resources. To control the memory and
e*Gate API Kit Developer’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Configuring the Message Service Configuring the Message Server
disk resources needed by the Server, use the publisher throttling feature, controlled
by the ServerMaxMessages, TopicMaxMessages, and TopicMaxMessagesPad
settings.

Required Values

An integer between 0 and 99999. The default value is 0. If set to 0, there is “no limit”;
this causes the Server to create new files as needed, limited only by available disk
space.

LockCacheIntoRAM

Description
The Windows VirtualLock API function locks the Server disk cache into physical
memory, ensuring that subsequent access to the region will not incur a page fault (a
swap-out to disk). This variable can be used in conjunction with DBCacheSize to
improve performance.

Required Values
Yes or No. The default is Yes.

Note: Only used in Windows, the administrator privilege is required.

DBSync

Description

Specifies whether the Server controls the cache synchronization to disk:

!Keeping it set to the default, True, is the best guarantee of data integrity and Server
reliability; for example, GEOD (Guaranteed Exactly Once Delivery) requires this
parameter to be set to True.

!Setting it to False allows the operating system to control the synchronization
schedule. Thus, if the operating system lazily flushes its disk write cache, the
committed data may not actually be written to the disk at the time the server
executes a commit operation.

Required Values
True or False. True specifies Message Service, while False specifies the operating
system.

Message Settings

The Message Settings parameters govern message data memory and expiration
settings on the SeeBeyond JMS IQ Manager (Server).

MaxPayloadMemory

Description
Specifies the maximum amount (in kilobytes) of message data payloads allowed to
be in physical memory at any moment while the Server is running. When message
data memory usage increases beyond the MaxPayloadMemory threshold, the
Server will begin memory garbage collection and recovery.
e*Gate API Kit Developer’s Guide 41 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Configuring the Message Service Configuring the Message Server
Required Values
An integer between 1 and 999999999. The default is 20000. The upper limit depends
on available memory resources.

PayloadMemoryPad

Description
When MaxPayloadMemory (see above—the threshold beyond which the server
begins memory recovery and cleanup) is exceeded, the Server attempts to recover
the exceeded memory plus a smallish amount more; the extra amount (in KB) is
specified by the parameter PayloadMemoryPad.

Required Values
An integer between 0 and 999999. The default is 100. The upper limit must be less
than MaxPayloadMemory.

MaxTimeToLive

Description
Specifies the maximum amount of time (in seconds) before a message expires. After
it expires, the message is permanently scratched.

Required Values
An integer between 0 and 999999999. The default is 2592000 (in other words,
30*24*60*60 seconds = 30 days). The special value 0 means “never expires”.

EnableEdit

Description
Turns on/off the ability to edit message contents.

Required Values
Yes or No.

EnableView

Description
Turns on/off the ability to view message contents.

Required Values
Yes or No.

EnableDelete

Description
Turns on/off the ability to delete messages.

Required Values
Yes or No.
e*Gate API Kit Developer’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Configuring the Message Service Configuring the Message Server
Server Settings

Note: The JMS term “topic” is used interchangeably with the e*Gate term “Event Type”;
the JMS term “message” is used interchangeably with the e*Gate term “Event”;
and the term “Server” is used generically for “SeeBeyond JMS IQ Manager.”

The Server Settings parameter sets the upper limit on the total number of messages
that the Server will track before throttling publishers.

ServerMaxMessages

Description
Specifies the maximum total number of messages allowed in the server message
queues. Used in conjunction with STCMS.Topic.MaxMessages. When the number
of messages in the server reaches this specified value, the server starts throttling
publishers based on the number of messages in their respective topic queues and
the value of STCMS.Topic.MaxMessages. For more information, see the SeeBeyond
JMS Intelligent Queue User’s Guide.

Required Values
An integer between 0 and 999999999. The default is 100000. When set to 0,
publishers are never throttled.

Topic Settings

The Topic Settings parameters set the upper limit on the total number of messages the
Server handles and govern per-topic traffic thresholds.

TopicMaxMessages

Description
Specifies the maximum number of messages permitted for any particular topic.
When the number of messages on a topic reaches this value, all publishers of the
topic are throttled. Once a publisher is throttled, the server stops reading messages
from it until the number of topics in the queue it publishes to has dropped to below
the threshold of (TopicMaxMessages – TopicMaxMessages Pad).

Required Values
An integer between 0 and 999999999. The default is 1000. If set to 0, the publishers
are never throttled.

TopicMaxMessagesPad

Description
Used in conjunction with TopicMaxMessages parameter. Specifies the number of
messages that must be dequeued before publishers to the topic are unthrottled.

Required Values
An integer between 0 and 99999999. The default is 100. The value must be set to less
than that of TopicMaxMessages.

Trace Settings

The Trace Settings parameters govern trace and debug logging behaviors.
e*Gate API Kit Developer’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Configuring the Message Service Configuring the Message Server
TraceToFile

Description
Specifies whether informational, warning, and error messages are written to the log
file.

Required Values
Yes or No. The default is Yes.

TraceLevel

Description
Specifies the trace print level.

Note: For maximum debugging, use the setting 0. To increase performance, you should set
this to 1 or greater in production.

Required Values
An integer between 0 and 3. See below.

TraceMemory

Description
Sets memory-level tracing on or off.

Required Values
off or on. The default is off.

TraceToStdout

Description
Specifies whether to (also) print debugging/trace information to standard output.

Required Values
Yes or No. The default is No.

TraceVerbose

Description
Specifies whether debugging/trace information will issue complete full-length
messages.

Required Values
Yes or No. The default is No.

TraceTimestamp

Description
Specifies whether to print timestamps in the debugging/trace log file.

0 Info (in addition to all three categories below)

1 Warn (in addition to both categories below)

2 Error (in addition to the category below)

3 Fatal (only)
e*Gate API Kit Developer’s Guide 44 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Configuring the Message Service Configuring JMS e*Way Connection
Required Values
Yes or No. The default is Yes.

3.3 Configuring JMS e*Way Connection
The e*Way Connection provides the means for e*Gate to facilitate the exchange of data
between the external system and e*Gate. The JMS e*Way Connection provides
communication connectivity between e*Gate and the Message Server.

When you create the New e*Way JMS e*Way Connection configuration file, the
following dialog box opens:

Figure 22 JMS e*Way Connection

Indicate whether the e*Way Connection is intended for:

! External: Connect to JMS IQ Manager which is not in the current schema

! Internal: Connect to JMS IQ Manager within this schema

If External is selected, the user must configure e*Way Connection, including
ServerName, Hostname and Port Number.

If Internal is selected, the user selects a JMS IQ Manager from the drop-down, and the
ServerName, Hostname and Port Number are read in from the Registry.

3.3.1 JMS e*Way Connection Parameters
For more information about the JMS e*Way Connections, see the SeeBeyond JMS IQ
Manager User’s Guide.

This section describes the e*Way configuration parameters.

To change e*Way configuration parameters:

1 In the Enterprise Manager’s Component editor, select the e*Way you want to
configure and display its properties.

2 Under Configuration File, click New to create a new file, Find to select an existing
configuration file, or Edit to edit the currently selected file.
e*Gate API Kit Developer’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Configuring the Message Service Configuring JMS e*Way Connection
3 In the Additional Command Line Arguments box, type any additional command
line arguments that the e*Way may require, taking care to insert them at the end of
the existing command-line string. Be careful not to change any of the default
arguments unless you have a specific need to do so.

For SeeBeyond JMS, the e*Way Connection configuration parameters are organized into
two sections:

! General Settings on page 46

! Message Service on page 47

General Settings

The General Settings control overall properties of the e*Way Connection.

Connection Type

Description
Specifies the type of connection to be established.

For classic publication/subscription behavior, where each message is delivered to
all current subscribers to the Topic, select Topic.

For point-to-point behavior (equivalent to “subscriber pooling” for conventional
IQs), where each message is delivered only one recipient in the pool, select Queue.

Required Values
Topic or Queue.

Transaction Type

Description
Specifies the type of transaction to be instantiated.

In Internal (one-phase transactional) style, a commit is necessary: The message is
not saved until the either a commit or a rollback is received.

In XA-compliant (two-phase transactional style) a two-phase commit is done: The
sender sends a prepare, and the commit occurs if and only if all receivers are
prepared. Collaborations that use Guaranteed Exactly Once Delivery (GEOD) of
Events require XA-compliant transaction types.

In Non-Transactional mode, the message is automatically saved on the server; no
commit is necessary.

Required Values
Internal, non-transactional or XA-compliant.

Delivery Mode

Description
Setting Delivery Mode to Persistent guarantees that the JMS IQ Manager stores
each message safely to disk. Setting it to Non-Persistent does not guarantee that the
message is stored safely to disk. Non-Persistent provides better performance but no
recovery.

Required Values
Non-Persistent or Persistent.
e*Gate API Kit Developer’s Guide 46 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Configuring the Message Service Configuring JMS e*Way Connection
Important: If the JMS IQ Manager halts when in Non-Persistent mode, undelivered messages
are lost.

Maximum Number of Bytes to read

Description
Your setting for this parameter depends on the size of your messages. For example,
if you can anticipate that very large messages will be read, set this parameter
accordingly.

Required Values
1 to 200000000. The default is 5000.

Default Outgoing Message Type

Description
For messages that carry no payload, or carry only a simple TextMessage payload
(such as XML documents), you can set this option to Text.

For messages whose payload is known to be incompatible with other messaging
systems, or whose payload is unknown, keep this option set to Bytes.

Required Values
Bytes or Text.

Message Selector

Description
Specifies the Message Selector to be used for subscriptions.

Required Values
A string. The maximum length of query is set to 512 characters, including a null
terminator. See “The Message Selector” on page 76 for more information.

Note: This parameter does not check syntax. If the syntax is incorrect, the selector will be
ignored and the subscriber will not be created.

SeeBeyond Message Service Factory Class Name

Description
For SeeBeyond e*Way Connections, keep the default setting:
com.stc.common.collabService.SBYNJMSFactory

Required Values
Default: com.stc.common.collabService.SBYNJMSFactory

Message Service

The parameters in this section specify the low-level information required to establish
the JMS.

Server Name

Description
Specifies the name of the server (JMS IQ Manager) with which e*Gate
communicates.
e*Gate API Kit Developer’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Configuring the Message Service Configuring JMS e*Way Connection
Required Values
A valid server name.

Host Name

Description
Specifies the name of the host on which with which the server (JMS IQ Manager)
running.

Required Values
A valid host name.

Port Number

Description
Specifies the port number on which the JMS IQ Manager is running.

Required Values
A valid port number between 2000 and 1000000000.

Maximum Message Cache Size

Description
Specifies the maximum size of the message cache in bytes.

Required Values
An integer between 1 and 2147483647.
e*Gate API Kit Developer’s Guide 48 SeeBeyond Proprietary and Confidential

Chapter 4

Implementing the Message Service

This chapter describes the implementation models, along with a sample
implementation for the SeeBeyond Message Service.

4.1 Implementing Message Service Models
This section discusses how to use the JMS APIs and the JMS COM+ APIs to exchange
data with an e*Gate system.

Considerations

To enable the client system to communicate with the e*Gate API Kit, you must do the
following:

1 The JMS Topic/Queue names and the e*Gate Event Types names must coincide.

2 The individual writing any external JMS code must know the expected data format,
the name of the Topic/Queue, the name of host and port number of the JMS server.

3 The methods used must correspond to the expected data format.

4 For a list of e*Gate supported Java/COM+ classes, interfaces and methods, please
see “Client Libraries for the e*Gate Message Service” on page 115.

5 The client code samples provided are intended to work directly with the sample
schema provided. These are only samples created as a demonstration of possible
behavior.

4.1.1 Message Overview
The message is defined by the message structure, the header and the properties. All of
the data and Events in a JMS application are expressed using messages, while the
additional components exist to facilitate the transferal of messages.

Message Structure

Message Service messages are composed of the following:
e*Gate API Kit Developer’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Implementing the Message Service Implementing Message Service Models
! Header - All messages support the same set of header fields. These header fields
contain values that are used by both clients and providers to identify and route
messages.

! Properties - Properties provide a means for adding optional header fields to
messages

" Application-specific

" Standard properties

" Provider-specific

! Body - JMS provides for supporting different types of message body contents,
however, the current e*Way Connection supports bytes, and text messaging.

Message Header Fields

When a message is received by the client, the message’s header is transmitted in its
entirety.

JMSDestination

The JMSDestination header field provides the destination to which the message is being
sent.

JMSDeliverMode

The JMSDeliveryMode header field provides the mode of delivery when the message
was sent. The two modes of delivery are non-persistent, and persistent. The non-
persistent mode causes the lowest overhead, because it does not require that the
message be logged to stable storage. A non-persistent message could be lost. The
persistent mode instructs the provide to ensure the message not be lost in transit due to
provider failure.

JMSMessageID

The JMSMessageID header field contains a value intended to uniquely identify each
message sent by a provider. The JMSMessageID is a String value, that should contain a
unique key for indentifying messages in a historical repository. The provider must
provide the scope of uniqueness.

The JMSMessageID must start with the ‘ID:’ prefix.

JMSTimestamp

The JMSTimestamp header field contains the specific time that a message is handed off
to a provider to be sent. It is not the actual transmission time, because the send may
occur later, due to pending transactions.

JMSExpiration

The JMSExpiration is the time that is calculated as the sum of the time-to-live value
specified on the send method and the current GMT value. After the send method is
returned, the message’s JMSExpiration header field contains this value. If the time-to-
live is specified as zero, expiration is also set to zero, the message does not expire.
e*Gate API Kit Developer’s Guide 50 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Implementing the Message Service Implementing Message Service Models
JMSRedelivered

The JMSRedelivered header filed contains the information that the message was re
delivered to the consumer. If the header is “true”, the message is re delivered, and false
if it’s not. The message may be marked as re delivered if a consumer fails to
acknowledge delivery of the message, or if the JMS provider is uncertain that the
consumer received the message.

boolean isRedelivered = message.getJMSRedelivered()

JMSPriority

The JMSPriority header field provides the message’s priority. There is a ten-level
priority value system, with 0 as the lowest priority and 9 as the highest. Priorities
between 0-4 are gradations of normal priority, while 5-9 are expedited priorities.

JMSReplyTo

To enable the consumer to reply to a message associated with a specific producer, the
JMSReplyTo header contains the javax.jms.Destination, indicating the address to which
to reply.

message.setJMSReplyTo(topic);
...
Topic topic = (Topic) message.getJMSReplyTo();

JMSCorrelationID

The JMSCorrelationID header field provides a header field used to associate the current
message with some previous message or application-specific ID. Usually the
JMSCorrelationID is used to tag a message as a reply to a previous message identified
by a JMSMessageID. The JMSCorrelationID can contain any value, it is not limited to
JMSMessageID.

message.setJMSCorrelationID(identifier)
...
String correlationid = message.getJMSCorrelationID();

JMSType

The JMSType header field is optionally set by the JMS client. The main purpose is to
identify the message structure and the payload type. Not all vendors support this
header.

Message Properties

Properties allow a client, via message selectors, to have the JMS provider select
messages based on application-specific criteria. The property values must be set prior
to sending a message.

Message Body

There are six types of message body or payload. Each form is defined by a message
interface. Currently the following interfaces are supported by e*Gate:

! TextMessage - A message in which the body contains a java.lang.String. The
inclusion of this message type is based on our presumption that String messages
e*Gate API Kit Developer’s Guide 51 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
will be used extensively. It can be used to exchange both simple text messages and
more complex data including XML documents.

! BytesMessage - A message in which a stream of uninterpreted bytes. This message
type is for literally encoding a body to match an existing message format. It can be
used for exchanging data in an application’s native format or when JMS is being
used purely as a transport between two systems.

4.2 Sample Code
The code samples that follow are available in the samples directory of the e*Gate CD-
ROM, they are designed to work directly with the schema contained in the
jmsdemo.zip in the directory:

samples\jmsapi

To download the samples, navigate to the following directory:

samples\jmsapi\com

samples\jmsapi\java

The external code provided must be compiled and run, making sure that the host name
and port number point to the Participating Host, on which the JMS IQ Manager is
running.

4.2.1 The Publish/Subscribe Model
The Publish/Subscribe model provides the means for a message producer or publisher,
to distribute a message to one or more consumers or subscribers. There are three
important points to the Publish/Subscribe model:

! Messages are delivered to consumers without having to request them. They ar
pushed via a channel referred to as a topic. This topic is considered a destination to
which producers publish and consumers subscribe. Messages are automatically
pushed to all qualified consumers.

! There is no coupling of the producers to the consumers. Both subscribers and
publishers can be dynamically added at runtime, allowing the system to change as
needed.

! Each client receives a copy of the messages that have been published to those topics
to which it subscribes. Multiple subscribers can receive messages published by one
producer.
e*Gate API Kit Developer’s Guide 52 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
Figure 23 below illustrates a basic Publish/Subscribe schema.

Figure 23 The Publish/Subscribe schema

The Producer publishes a TopicA, which is stored on the Message Server. The
Consumers subscribe to TopicA, which is then pushed to the consumers.

Java Publish

The code sample below illustrates the following steps:

1 Create the connection.

2 Create the session from connection (true indicates that the session is transacted).

3 Create the publisher and the byte or text message.

4 Send messages, varying the bytes or text if desired.

5 When all messages have been sent, close the connection.

The following code demonstrates a sample scenario using the “Publish” functionality.

import javax.jms.*;
import com.seebeyond.jms.client.STCTopicConnectionFactory;

class Publisher {

 public static void main(String args[])
 {
 String hostName = "localhost";
 int port = 7555;
 try
 {
 System.out.println("-h(ost) host-name -p(ort) port-number");
 for (int i = 0; i < args.length; i++)
 {
 if (args[i].startsWith("-h") || args[i].startsWith("-host"))
 hostName = args[++i];
 else if (args[i].startsWith("-p") || args[i].startsWith("-port"))
 port = Integer.parseInt(args[++i]);
 }
 }
 catch(Exception e)

Publisher Topic

Subscriber

Subscriber

Publish and Subscribe (One to Many)
e*Gate API Kit Developer’s Guide 53 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
 {
 System.out.println("Error in arguments");
 System.exit(1);
 }
 String topicName = "PubSubSample";
 TopicConnectionFactory tcf = null;
 TopicConnection topicConnection = null;
 TopicSession topicSession = null;
 Topic topic = null;
 TopicPublisher topicPublisher = null;
 TextMessage message = null;
 final int MAX_MESSAGE_SIZE = 60;

 System.out.println("pub topic name is " + topicName);
 /*
 * Create connection.
 * Create session from connection; true means session is
 * transacted.
 * Create publisher and text message.
 * Send messages, varying text slightly.
 * Finally, close connection.
 */
 try {
 tcf = new STCTopicConnectionFactory(hostName, port);
 topicConnection = tcf.createTopicConnection();
 topicConnection.start();
 topicSession = topicConnection.createTopicSession(true,
 Session.AUTO_ACKNOWLEDGE);
 topic = topicSession.createTopic(topicName);
 topicPublisher = topicSession.createPublisher(topic);

 message = topicSession.createTextMessage();
 String s = new String("This is message.");
 message.setText(s);
 try {
 System.out.println("... Publishing message: " +
 s);
 topicPublisher.publish(message);
 topicSession.commit();
 }
 catch (Exception exx) {
 exx.printStackTrace();
 }

 }
 catch (JMSException e) {
 System.out.println("Exception occurred: " + e.getMessage());
 }
 finally {
 if(topicConnection != null) {
 try {
 System.out.println("... Closing connection ...");
 topicConnection.close();
 }
 catch (JMSException e) {
 e.printStackTrace();
 }
 }
 }
 }
}

Java Subscribe

The code sample below illustrates the following steps:

1 Create the connection.

2 Create the session from connection (true indicates that the session is transacted).
e*Gate API Kit Developer’s Guide 54 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
3 Create the subscriber.

4 Register message listener (TextListener).

5 When all messages have been received, enter “Q” to quit.

6 Close the connection.

The following code sample demonstrates use of “subscribe” functionality.

import javax.jms.*;
import java.io.*;
import com.seebeyond.jms.client.*;
import com.seebeyond.jms.message.*;

public class Subscriber {

 public static void main(String args[]) {
 String hostName = "localhost";
 int port = 7555;
 try
 {
 System.out.println("-h(ost) host-name -p(ort) port-number");
 for (int i = 0; i < args.length; i++)
 {
 if (args[i].startsWith("-h") || args[i].startsWith("-host"))
 hostName = args[++i];
 else if (args[i].startsWith("-p") || args[i].startsWith("-port"))
 port = Integer.parseInt(args[++i]);
 }
 }
 catch(Exception e)
 {
 System.out.println("Error in arguments");
 System.exit(1);
 }
 String topicName = "eGatePubSubSample";
 TopicConnectionFactory tcf = null;
 TopicConnection topicConnection = null;
 TopicSession topicSession = null;
 Topic topic = null;
 TopicSubscriber topicSubscriber = null;
 STCBytesMessage message = null;
 InputStreamReader inputStreamReader = null;
 char answer = '\0';

 System.out.println("Topic name is " + topicName);

 /*
 * Create connection.
 * Create session from connection; true means session is
 * transacted.
 * Create subscriber.
 * Register message listener (TextListener).
 * Receive text messages from topic.
 * When all messages have been received, enter Q to quit.
 * Close connection.
 */
 try {
 tcf = new STCTopicConnectionFactory(hostName, port);
 topicConnection = tcf.createTopicConnection();
 topicConnection.start();
 topicSession = topicConnection.createTopicSession(true,
 Session.AUTO_ACKNOWLEDGE);
 topic = topicSession.createTopic(topicName);
 topicSubscriber = topicSession.createSubscriber(topic);

 /*
 * Inner anonymous class that implements onMessage method
 * of MessageListener interface.
 *
e*Gate API Kit Developer’s Guide 55 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
 */
 topicSubscriber.setMessageListener(new MessageListener(){
 public void onMessage(Message message) {
 STCTextMessage msg = null;
 final int MAX_MESSAGE_SIZE = 60;
 try {
 if (message instanceof TextMessage) {
 msg = (STCTextMessage) message;
 System.out.println("... Reading message: " +
 msg.getText());
 }
 else {
 System.out.println("Message of wrong type: " +
 message.getClass().getName());
 }
 }
 catch (Exception e) {
 System.out.println("JMSException in onMessage(): "
 + e.toString());
 }
 catch (Throwable te) {
 System.out.println("Exception in onMessage():" +
 te.getMessage());
 }
 }
 });
 topicSession.commit();
 System.out.println("To end program, enter Q or q, then <return>");
 inputStreamReader = new InputStreamReader(System.in);
 while (!((answer == 'q') || (answer == 'Q'))) {
 try {
 answer = (char)inputStreamReader.read();
 }
 catch (IOException e) {
 System.out.println("I/O exception: " + e.toString());
 }
 }
 }
 catch (JMSException e) {
 System.out.println("Exception occurred: " + e.toString());
 System.exit(1);
 }
 finally {
 if (topicConnection != null) {
 try {
 System.out.println("... Closing connection ...");
 topicSession.commit();
 topicConnection.close();
 }
 catch (JMSException e) {}
 }
 }
 }
}

COM VB Publish/Subscribe
Option Explicit

Dim topicConnectionFactory As New topicConnectionFactory
Dim topicConnection As topicConnection
Dim topicSession As topicSession
Dim topic, topic2 As topic
Dim publisher As TopicPublisher
Dim subscriber As TopicSubscriber
Dim MessagePublished As TextMessage
Dim MessageReceived As TextMessage

Private Sub Form_Load()
e*Gate API Kit Developer’s Guide 56 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
' You should replace the host name and port number with the actual values
 topicConnectionFactory.HostName = "localhost"
 topicConnectionFactory.Port = 24053
' Create a topic connection
 Set topicConnection = topicConnectionFactory.CreateTopicConnection()
' Create a session
 Set topicSession = topicConnection.CreateTopicSession(True,
msAutoAcknowledge)
' Start the session
 topicConnection.Start
' Create a topic
 Set topic = topicSession.CreateTopic(txtTopicName)
 Set topic2 = topicSession.CreateTopic("eGate" & txtTopicName)

' Create a publisher
 Set publisher = topicSession.CreatePublisher(topic)
' Create a subscriber
 Set subscriber = topicSession.CreateSubscriber(topic2)
End Sub

Private Sub cmdPublish_Click()
' Create a text message
 Set MessagePublished =
topicSession.CreateTextMessage(txtPublished.Text)
' Publish a message
 publisher.Publish MessagePublished
' Commit the message
 topicSession.Commit
End Sub

Private Sub cmdReceive_Click()
' Receive the message
 Set MessageReceived = subscriber.ReceiveNoWait
 If MessageReceived Is Nothing Then
 txtReceived = "No Message Received"
 Else
 ' Commit the message
 topicSession.Commit
 txtReceived = MessageReceived.Text
 End If
End Sub

ASP Publish
<%@ Language=VBScript %>

<%
'Ensure that this page is not cached.
Response.Expires = 0

%>

<HTML>
<HEAD>
<META NAME="GENERATOR" Content="Microsoft FrontPage 4.0">
</HEAD>
<BODY>
<%

set topicConnectionFactory =
server.CreateObject("STC_MSCOM.TopicConnectionFactory")

topicConnectionFactory.hostname = "JMS_Server_Machine"
e*Gate API Kit Developer’s Guide 57 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
'topicConnectionFactory.port = "JMS_Server_Port_Number"

Set topicConnection = topicConnectionFactory.CreateTopicConnection()

Set topicSession = topicConnection.CreateTopicSession(True,
AUTO_ACKNOWLEDGE)

topicConnection.Start

Set topic = topicSession.CreateTopic("test")

Set Publisher = topicSession.CreatePublisher(topic)

Set subscriber = topicSession.CreateSubscriber(topic)

Set MessagePublished = topicSession.CreateTextMessage("Hello World")

Publisher.Publish MessagePublished

topicSession.Commit

Set MessageReceived = subscriber.Receive()

topicSession.Commit

Response.write ("Answer : " & MessageReceived.Text)

%>

<P></P>

</BODY>
</HTML>

4.2.2 The Point-to-Point Model
Point-to-Point messaging is based on the sending of a message to a named destination
(as is the publish/subscribe model). There is no direct coupling of the producers to the
consumers. One main difference between point-to-point and publish/subscribe
messaging is that in the first, messages are delivered, without consideration of the
current connection status of the receiver.

In a point-to-point model, the producer is referred to as a sender, while the consumer is
referred to as a receiver. The following characteristics apply:

! Message exchange takes place via a queue. The queue acts as a destination to which
producers send messages, and a source from which receivers consume messages.

! Each message is delivered to only one receiver. Multiple receivers may connect to a
queue, but each message in the queue may only be consumed by one of the queue’s
receivers.

! The queue delivers messages to consumers in the order that they were placed in the
queue by the message server. As messages are consumed, they are removed form
the “front of the line”.
e*Gate API Kit Developer’s Guide 58 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
! Receivers and senders can be added dynamically at runtime, allowing the system to
grow as needed.

Figure 24 Point to Point

Java Point-to-Point Sender
import javax.jms.*;
import com.seebeyond.jms.client.STCQueueConnectionFactory;

class Sender {

 public static void main(String args[]) {
 String hostName = "localhost";
 int port = 24053;
 try
 {
System.out.println("-h(ost) host-name -p(ort) port-number");
 for (int i = 0; i < args.length; i++)
 {
 if (args[i].startsWith("-h") || args[i].startsWith("-host"))
 hostName = args[++i];
 else if (args[i].startsWith("-p") || args[i].startsWith("-
port"))
 port = Integer.parseInt(args[++i]);
 }
 }
 catch(Exception e)
 {
 System.out.println("Error in arguments");
 System.exit(1);
 }

 String queueName = "P2PSample";
 QueueConnectionFactory qcf = null;
 QueueConnection queueConnection = null;
 QueueSession queueSession = null;
 Queue queue = null;
 QueueSender queueSender = null;
 TextMessage message = null;
 final int MAX_MESSAGE_SIZE = 60;

Sender Queue

Potential Receiver

Potential Receiver

Point to Point (One to One)
e*Gate API Kit Developer’s Guide 59 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
 System.out.println("pub queue name is " + queueName);
 /*
 * Create connection.
 * Create session from connection; true means session is
 * transacted.
 * Create sender and text message.
 * Send messages, varying text slightly.
 * Finally, close connection.
 */
 try {
 qcf = new STCQueueConnectionFactory(hostName, port);
 queueConnection = qcf.createQueueConnection();
 queueConnection.start();
 queueSession = queueConnection.createQueueSession(true,
 Session.AUTO_ACKNOWLEDGE);
 queue = queueSession.createQueue(queueName);
 queueSender = queueSession.createSender(queue);

 message = queueSession.createTextMessage();
 String s = new String("This is message ");
 message.setText(s);
 try {
 System.out.println("... Sending message: " +
 s);
 queueSender.send(message);
 queueSession.commit();
 }
 catch (Exception exx) {
 exx.printStackTrace();
 }

 }
 catch (JMSException e) {
 System.out.println("Exception occurred: " + e.getMessage());
 }
 finally {
 if(queueConnection != null) {
 try {
 System.out.println("... Closing connection ...");
 queueConnection.close();
 }
 catch (JMSException e) {
 e.printStackTrace();
 }
 }
 }
 }
}

Java Point-to-Point Receiver
import javax.jms.*;
import java.io.InputStreamReader;
import java.io.IOException;
import com.seebeyond.jms.client.STCQueueConnectionFactory;

public class Receiver {

 public static void main(String args[]) {
 String hostName = "localhost";
 int port = 24053;
 try
 {
e*Gate API Kit Developer’s Guide 60 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
 System.out.println("-h(ost) host-name -p(ort) port-number");
 for (int i = 0; i < args.length; i++)
 {
 if (args[i].startsWith("-h") || args[i].startsWith("-host"))
 hostName = args[++i];
 else if (args[i].startsWith("-p") || args[i].startsWith("-
port"))
 port = Integer.parseInt(args[++i]);
 }
 }
 catch(Exception e)
 {
 System.out.println("Error in arguments");
 System.exit(1);
 }
 String queueName = "eGateP2PSample";
 QueueConnectionFactory qcf = null;
 QueueConnection queueConnection = null;
 QueueSession queueSession = null;
 Queue queue = null;
 QueueReceiver queueReceiver = null;
 TextMessage message = null;
 InputStreamReader inputStreamReader = null;
 final Object syncObject = new Object();
 char answer = '\0';

 System.out.println("Queue name is " + queueName);

 /*
 * Create connection.
 * Create session from connection; true means session is
 * transacted.
 * Create receiver.
 * Register message listener (TextListener).
 * Receive text messages from queue.
 * When all messages have been received, enter Q to quit.
 * Close connection.
 */
 try {
 qcf = new STCQueueConnectionFactory(hostName, port);
 queueConnection = qcf.createQueueConnection();
 queueConnection.start();
 queueSession = queueConnection.createQueueSession(true,
 Session.AUTO_ACKNOWLEDGE);
 queue = queueSession.createQueue(queueName);
 queueReceiver = queueSession.createReceiver(queue);

 /*
 * Inner anonymous class that implements onMessage method
 * of MessageListener interface.
 *
 */
 queueReceiver.setMessageListener(new MessageListener(){
 public void onMessage(Message message) {
 TextMessage msg = null;
 final int MAX_MESSAGE_SIZE = 60;
 try {
 if (message instanceof TextMessage) {
 msg = (TextMessage) message;
 System.out.println("... Reading message: " +
 msg.getText());
 }
 else {
 System.out.println("Message of wrong type: " +
e*Gate API Kit Developer’s Guide 61 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
 message.getClass().getName());
 }
 synchronized(syncObject)
 {
 syncObject.wait();
 }
 }
 catch (InterruptedException ie)
 {
 }
 catch (Exception e) {
 System.out.println("JMSException in onMessage(): "
 + e.toString());
 }
 catch (Throwable te) {
 System.out.println("Exception in onMessage():" +
 te.getMessage());
 }
 }
 });
 queueSession.commit();
 System.out.println("-----To receive again, enter R or r, then
<return>");
 System.out.println("-----To end program, enter Q or q, then
<return>");
 inputStreamReader = new InputStreamReader(System.in);
 while (!((answer == 'q') || (answer == 'Q'))) {
 try {
 answer = (char)inputStreamReader.read();
 if (answer == 'r' || answer == 'R')
 {
 synchronized(syncObject)
 {
 syncObject.notifyAll();
 }
 }
 }
 catch (IOException e) {
 System.out.println("I/O exception: " + e.toString());
 }
 }
 }
 catch (JMSException e) {
 System.out.println("Exception occurred: " + e.toString());
 System.exit(1);
 }
 finally {
 if (queueConnection != null) {
 try {
 System.out.println("... Closing connection ...");
 queueSession.commit();
 queueConnection.close();
 }
 catch (JMSException e) {}
 }
 }
 }
}

COM VB Point-to-Point
Option Explicit

Dim QueueConnectionFactory As New QueueConnectionFactory
e*Gate API Kit Developer’s Guide 62 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
Dim queueConnection As queueConnection
Dim queueSession As queueSession
Dim queue, queue2 As queue
Dim queuesender As queuesender
Dim queuereceiver, queuereceiver2 As queuereceiver
Dim MessagePublished As BytesMessage
Dim MessageReceived As TextMessage
Dim length As Integer

Private Sub Form_Load()
' You should replace the host name and port number with the actual values
 QueueConnectionFactory.HostName = "localhost"
 QueueConnectionFactory.Port = 24053
' Create a queue Connection
 Set queueConnection = QueueConnectionFactory.CreateQueueConnection()
' Create a queue session
 Set queueSession = queueConnection.CreateQueueSession(True,
msAutoAcknowledge)
' Start the session
 queueConnection.Start
' Create a queue
 Set queue = queueSession.CreateQueue(txtQueueName)
' Create a queue sender
 Set queuesender = queueSession.CreateSender(queue)

' This is for the reply
 Set queue2 = queueSession.CreateQueue("eGate" & txtQueueName)
' Create a queue receiver
 Set queuereceiver2 = queueSession.CreateReceiver(queue2)

End Sub

Private Sub cmdSend_Click()
' Create a bytes message
 Set MessagePublished = queueSession.CreateBytesMessage
 MessagePublished.ClearBody
 length = Len(txtPublished.Text)
 MessagePublished.WriteBytes txtPublished.Text
' Send this message
 queuesender.Send MessagePublished
' Commit this message
 queueSession.Commit
End Sub

Private Sub cmdReceive_Click()
' Receive the message
 Set MessageReceived = queuereceiver2.ReceiveNoWait
 If MessageReceived Is Nothing Then
 txtReceived = "No Message Received"
 Else
 ' Commit this message
 queueSession.Commit
 Dim data As Variant
 txtReceived.Text = MessageReceived.Text
 End If
End Sub
e*Gate API Kit Developer’s Guide 63 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
4.2.3 The Request-Reply Model
JMS provides the JMSReplyTo message header field for specifying the destination to
which the reply to a message is to be sent. The JMSCorrelationID header field of the
reply can be used to reference the original request. Temporary queues and topics can be
used as unique destinations for replies. It can be implemented so that one message
yields one reply, or one message yields many replies.

Figure 23 below illustrates a basic Request Reply schema.

Figure 25 The Request/Reply schema

1 A request is received by the JMS Connection, which is controlled by the JMS IQ
Manager, the JMSReplyTo property is read into the internally directed by the
Collaboration.

2 e*Gate reads in the request from SampleTopicRequestor, and appends a message to
the end of the message for verification’s sake.

3 The SeeBeyond JMS IQ Manager sends the message to a Temporary Topic via the
JMS Connection.

4 The reply subscriber receives the message.

5 When the Message Service users disconnect, the temporary topic is destroyed.

The scenario discussed above need not be configured exactly in this manner. This is just
an example that demonstrates a possible scenario.

Java Request/Reply

The code sample below illustrates the following steps:

1 Create the connection.

2 Create the session from connection (true indicates that the session is transacted).

3 Create the topic/queue and byte or text message.

Publisher Topic/Queue

Subscriber

Subscriber

Request Reply (One to Many)
e*Gate API Kit Developer’s Guide 64 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
4 Send messages, varying the bytes or text if desired.

5 When all messages have been sent, close the connection.

Java TopicRequestor
import javax.jms.*;
import com.seebeyond.jms.client.STCTopicRequestor;
import com.seebeyond.jms.client.STCTopicConnectionFactory;
import java.io.*;

class SampleTopicRequestor
implements ExceptionListener
{

/**
 * Main fuction create TopicRequestor and reply Subscriber.
 * Send reqeust message and wait for reply message.
 */

 public static void main(String args[])
 {

 SampleTopicRequestor listener = new SampleTopicRequestor();
 TopicConnectionFactory factory;
 TopicConnection requestConnection;
 String filename = null;
 File thisFile = null;
 String topicName = "TopicRequestorSample";
 String messageToSend = "SampleMessage";
 char[] myCharMessage = null;
 int fileLength = 0;
 BufferedReader stream = null;
 boolean output = true;
 String host = "localhost";
 int port = 24053;
 byte[] bytesFromEgate= new byte[64];
 String byteArrayStr = "";
 String usage = "Usage: java SampleTopicRequestor [-f/-m file/message] " +
 "[-topic topic] [-host host] [-port port] " +
 "[-help] [-output true/false]";

 String help = usage + "\n\n" +
 "-f <file name>\n" +

 "-m <message: default SampleMessage>\n" +
 "-topic <topic name: default TopicRequestor>\n" +
 "-host <host name where ms server is running: default
localhost>\n" +
 "-port <port where ms server is running: default 24053>\n" +
 "-output <display output message or not: default true>\n" +

"-help <this screen>\n";

 for(int i = 0; i < args.length; i++) {
 if(args[i].equals("-f")) {
 filename = args[++i];
 thisFile = new File(filename);
 if(thisFile.canRead()) {
 try {
 fileLength = (int) thisFile.length();
 myCharMessage = new char[fileLength + 1];
 stream = new BufferedReader(new InputStreamReader(new
FileInputStream(filename)));
 stream.read(myCharMessage, 0, fileLength);
 messageToSend = new String(myCharMessage);
 }
 catch(IOException e) {
 e.printStackTrace();
 }
 }
e*Gate API Kit Developer’s Guide 65 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
 }
 else if(args[i].equals("-m"))
 messageToSend = args[++i];
 else if (args[i].equals("-topic"))
 topicName = args[++i];
 else if (args[i].equals("-host"))
 host = args[++i];
 else if(args[i].equals("-port"))
 port = Integer.parseInt(args[++i]);
 else if(args[i].equals("-output"))
 output = Boolean.getBoolean(args[++i]);
 else if(args[i].equals("-help")) {
 System.out.println(help);
 System.exit(0);
 }
 else {
 System.out.println(usage);
 System.exit(1);
 }
 }

 try
 {
 // Create TopicConnection
 factory = new STCTopicConnectionFactory(host,port);
 requestConnection = factory.createTopicConnection();
 requestConnection.start();

 // Set the ExceptionListener
 requestConnection.setExceptionListener(listener);

 // Create TopicSession
 TopicSession topicSession = requestConnection.createTopicSession
(false,
 Session.AUTO_ACKNOWLEDGE);
 // Create Topic
 Topic topic = topicSession.createTopic(topicName);
 // Create TopicRequestor
 STCTopicRequestor requestor = new STCTopicRequestor
(topicSession,topic);

 // Create TextMessage
 TextMessage textMessage = topicSession.createTextMessage();
 textMessage.setText(messageToSend);
 TextMessage replyTextMessage = (TextMessage)
requestor.request(textMessage);
 if(output)
 System.out.println("... Got message: " + replyTextMessage.getText());

 System.out.println("... SampleTopicRequestor finished.");
 requestConnection.close();
 }
 catch(JMSException je)
 {
 je.printStackTrace();
 }
 }

 public void onException(JMSException e)
 {
 e.printStackTrace();
 }
}

Java QueueRequestor
import javax.jms.*;
e*Gate API Kit Developer’s Guide 66 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
import com.seebeyond.jms.client.STCQueueRequestor;
import com.seebeyond.jms.client.STCQueueConnectionFactory;
import java.io.*;

class SampleQueueRequestor
implements ExceptionListener
{

/**
 * Main fuction create QueueRequestor and reply Subscriber.
 * Send reqeust message and wait for reply message.
 */

 public static void main(String args[])
 {

 SampleQueueRequestor listener = new SampleQueueRequestor();
 QueueConnectionFactory factory;
 QueueConnection requestConnection;
 String filename = null;
 File thisFile = null;
 String queueName = "QueueRequestorSample";
 String messageToSend = "SampleMessage";
 char[] myCharMessage = null;
 int fileLength = 0;
 BufferedReader stream = null;
 boolean output = true;
 String host = "localhost";
 int port = 24053;
 byte[] bytesFromEgate= new byte[64];
 String byteArrayStr = "";
 String usage = "Usage: java SampleQueueRequestor [-f/-m file/
message] " +
 "[-queue queue] [-host host] [-port port]" +
 "[-help] [-output true/false]";

 String help = usage + "\n\n" +
 "-f <file name>\n" +

 "-m <message: default SampleMessage>\n" +
 "-queue <queue name: default QueueRequestor>\n" +
 "-host <host name where ms server is running: default
localhost>\n" +
 "-port <port where ms server is running: default
24053>\n" +
 "-output <display output message or not: default
true>\n" +

"-help <this screen>\n";

 for(int i = 0; i < args.length; i++) {
 if(args[i].equals("-f")) {
 filename = args[++i];
 thisFile = new File(filename);
 if(thisFile.canRead()) {
 try {
 fileLength = (int) thisFile.length();
 myCharMessage = new char[fileLength + 1];
 stream = new BufferedReader(new InputStreamReader(new
FileInputStream(filename)));
 stream.read(myCharMessage, 0, fileLength);
 messageToSend = new String(myCharMessage);
 }
 catch(IOException e) {
 e.printStackTrace();
e*Gate API Kit Developer’s Guide 67 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
 }
 }
 }
 else if(args[i].equals("-m"))
 messageToSend = args[++i];
 else if (args[i].equals("-queue"))
 queueName = args[++i];
 else if (args[i].equals("-host"))
 host = args[++i];
 else if(args[i].equals("-port"))
 port = Integer.parseInt(args[++i]);
 else if(args[i].equals("-output"))
 output = Boolean.getBoolean(args[++i]);
 else if(args[i].equals("-help")) {
 System.out.println(help);
 System.exit(0);
 }
 else {
 System.out.println(usage);
 System.exit(1);
 }
 }

 try
 {
 // Create QueueConnection
 factory = new STCQueueConnectionFactory(host,port);
 requestConnection = factory.createQueueConnection();
 requestConnection.start();

 // Set the ExceptionListener
 requestConnection.setExceptionListener(listener);

 // Create QueueSession
 QueueSession queueSession = requestConnection.createQueueSession
(false,
 Session.AUTO_ACKNOWLEDGE);
 // Create Queue
 Queue queue = queueSession.createQueue(queueName);
 // Create QueueRequestor
 STCQueueRequestor requestor = new STCQueueRequestor
(queueSession,queue);

 // Create TextMessage
 TextMessage textMessage = queueSession.createTextMessage();
 textMessage.setText(messageToSend);
 TextMessage replyTextMessage = (TextMessage)
requestor.request(textMessage);
 if(output)
 System.out.println("... Got message: " +
replyTextMessage.getText());

 System.out.println("... SampleQueueRequestor finished.");
 requestConnection.close();
 }
 catch(JMSException je)
 {
 je.printStackTrace();
 }
 }

 public void onException(JMSException e)
 {
e*Gate API Kit Developer’s Guide 68 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
 e.printStackTrace();
 System.exit(1);
 }
}

COM VB TopicRequestor
Option Explicit

Dim topicConnectionFactory As New topicConnectionFactory
Dim topicConnection As topicConnection
Dim topicSession As topicSession
Dim topic As topic
Dim topicRequestor As New topicRequestor
Dim MessagePublished As TextMessage
Dim MessageReceived As TextMessage

Private Sub Form_Load()
' You should replace the host name and port number with the actual values
 topicConnectionFactory.HostName = "localhost"
 topicConnectionFactory.Port = 24053
' Create a topic connection
 Set topicConnection = topicConnectionFactory.CreateTopicConnection()
' Create a topic session
 Set topicSession = topicConnection.CreateTopicSession(False,
msAutoAcknowledge)
' Start the session
 topicConnection.Start
End Sub

Private Sub cmdStart_Click()
 cmdStart.Enabled = False
' Create a topic
 Set topic = topicSession.CreateTopic(txtTopicName)
' Create a topic requestor
 topicRequestor.Create topicSession, topic
' Create a text message
 Set MessagePublished =
topicSession.CreateTextMessage(txtPublished.Text)
' Request a message
 Set MessageReceived = topicRequestor.Request(MessagePublished)
 txtReceived = MessageReceived.Text
 cmdStart.Enabled = True
End Sub

COM VB QueueRequestor
Option Explicit

Dim queueConnectionFactory As New queueConnectionFactory
Dim queueConnection As queueConnection
Dim queueSession As queueSession
Dim queue As queue
Dim queueRequestor As New queueRequestor
Dim MessagePublished As TextMessage
Dim MessageReceived As TextMessage

Private Sub Form_Load()
' You should replace the host name and port number with the actual
' values
 queueConnectionFactory.HostName = "localhost"
 queueConnectionFactory.Port = 24053
' Create a queue connection
e*Gate API Kit Developer’s Guide 69 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
 Set queueConnection =
queueConnectionFactory.CreateQueueConnection()
' Create a queue session
 Set queueSession = queueConnection.CreateQueueSession(False,
msAutoAcknowledge)
' Start the session
 queueConnection.Start
End Sub

Private Sub cmdStart_Click()
' Create a queue
 cmdStart.Enabled = False
 Set queue = queueSession.CreateQueue(txtQueueName)
' Create a text message
 Set MessagePublished =
queueSession.CreateTextMessage(txtPublished.Text)
' Create a queue requestor
 queueRequestor.Create queueSession, queue
' Request a message
 Set MessageReceived = queueRequestor.Request(MessagePublished)
 txtReceived = MessageReceived.Text
 cmdStart.Enabled = True
End Sub

4.2.4 JNDI
To use JNDI in your programs, you need to set up its compilation and execution
environments. The following are the JNDI packages:

! javax.naming: Provides the classes and interfaces for accessing naming services.

" Context: Represents a naming context, which consists of a set of name-to-
object bindings.

" Name: Represents a generic name for an ordered sequence of components.

" NameParser: Used for parsing names from a hierarchical namespace.

" NamingEnumeration: Used for enumerating lists returned by methods in the
javax.naming and javax.naming.directory packages.

" Referenceable: Implemented by an object that provides a Reference to itself.

BinaryRefAddr: Binary form of the address for a communications end-
point

Binding: Name/Object binding found as found in a context.

CompositeName: Composite name, as a sequence of names spanning
multiple name spaces.

CompoundName: Compound name, as a name contained in a name space.

InitialContext: Starting context for performing naming operations.

LinkRef: A reference whose contents is a link name, which is bound to the
atomic name in a context.

NameClassPair: Object name and class name pair as found in a context.

RefAddr: Address of a communications end-point.
e*Gate API Kit Developer’s Guide 70 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
Reference: Reference to an object as found in the naming/directory
system.

StringRefAddr: String for of the address for a communications end-point.

! javax.naming.directory: Extends the javax.naming package to provide
functionality for accessing directory services.

" Attribute:Represents an attribute associated with a named object.

" Attributes: Represents a collection of attributes.

" DirContext: Directory service interface, contains the methods for examining
and updating attributes associated with objects, and for searching the directory.

BasicAttribute: Class provides basic implementation of Attribute
interface.

BasicAttributes: Class provides a basic implementation of the
Attributes interface.

InitialDirContext: Class is the starting context for performing
directory operations.

ModificationItem: Class represents a modification item.

SearchControls: Class encapsulates factors that determine the scope of
the search, along with the returns from that search.

SearchResult: Class represents an item in the NamingEnumeration
returned as a result of the DirContext.search() methods.

! javax.naming.event: Provides support for event notification when accessing
naming and directory services.

" EventContext: Contains the methods for registering/de registering listeners
to be notified of events fired, when objects named in a context change.

" EventDirContext: Contains methods for registering listeners to be notified of
events fired when objects named in a directory context change.

" NamespaceChangeListener: The root of listener interfaces that handle
NamingEvents.

" NamingListener: The root of listener interfaces that handle NamingEvents.

" ObjectChangeListener: Specifies the method that a listener of a
NamingEvent with event type of OBJECT_CHANGED must implement.

NamingEvent: Class represents an event fired by a naming/directory
service.

NamingExceptionEvent: Class represents an event fired when the
procedures/processes are used to collect information from listeners of
NamingEvents that throw a NamingException.

! javax.naming.ldap:Provides support for LDAPv3 extended operations and
controls.

" Control: Represents an LDAPv3 control as defined in RFC2251
e*Gate API Kit Developer’s Guide 71 SeeBeyond Proprietary and Confidential

http://www.faqs.org/rfcs/rfc2251.html

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
" ExtendedRequest: Represents an LDAPv3 extended operation request as
defined in RFC2251

" HasControls: Used for returning controls with objects returned in
NamingEnumerations.

" LdapContext: Represents a context in which you can perform operations with
LDAPv3-style controls and perform LDAPv3-style extended operations.

" UnsolicitedNotification: Represents an unsolicited notification as
defined in RFC2251

" UnsolicitedNotificationListener: Handles
UnsolicitedNotificationEvent.

ControlFactory: An abstract class that represents a factory for creating
LDAPv3 controls.

InitialLdapContext: The class is the starting context for performing
LDAPv3 style extended operations and controls.

StartTlsRequest: The class implements the LDAPv3 Extended Request
for STartTLS as defined in Lightweight Directory Access Protocol (v3):
Extension for Transport Layer Security.

StartTlsResponse: The class implements the LDAPv3 Extended
Response for StartTLS as defined in Lightweight Directory Access Protocol (v3):
Extension for Transport Layer Security.

UnsolicitedNotificationEvent: This class represents an event fired
in response to an unsolicited notification sent by the LDAP server.

! javax.naming.spi:Provides the means for dynamic plug-in to naming and
directory services via javax.naming and related packages.

To compile programs that use JNDI, access to JNDI classes are required. If you are
using Java 2 SDK v1.3 or higher, the JNDI classes are already included, and no further
action is required. If you are using an older version of the Java SDK, then you need to
download the JNDI classes from the JNDI Web site
(http://java.sun.com/products/jndi/).

At runtime, you will also require access to the classes for any service providers that
your program uses. The Java 2 Runtime Environment (JRE) v1.3 already includes the
JNDI classes and service providers for LDAP, COS naming, and the RMI registry. If
you are using some other service Providers, then you need to download and install the
associated archive files in the classpath, JAVA_HOME/jre/lib/ext directory, where
JAVA_HOME is the directory containing the JRE (http://java.sun.com/j2se/1.3/).

If you are not using JNDI as an installed extension or are using the JRE v1.1, then copy
the JNDI and service provider archive files to their permanent location and add that
location to your classpath. You can do that by a setting the CLASSPATH variable to
include the absolute filenames of the archive files.
e*Gate API Kit Developer’s Guide 72 SeeBeyond Proprietary and Confidential

http://java.sun.com/products/jndi/#download
http://java.sun.com/j2se/1.3/
http://www.faqs.org/rfcs/rfc2251.html
http://www.faqs.org/rfcs/rfc2251.html

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
Initial Context

Before performing any operation on a naming or directory service, an initial context
must be acquired, providing a starting point into the name space. All methods used to
access naming and directory services are performed relative to some context. To obtain
an initial context, perform the following:

1 Select the service provider of the corresponding service to which to access.

Specify the service provider to use for the initial context by creating a set of
environment properties (a Hash table) and adding the name of the service
provider class to it.

2 Specify any configuration required by the initial context.

Different clients might require various information for contacting the desired
directory. For example, the machine upon which the server is running, and the user
identity, might be required. This information is passed to the service provider via
environment properties. Consult your service provider documentation for more
information.

3 Call the InitalContext constructor (http://java.sun.com/j2se/1.3/docs/api/javax/
naming/InitialContext.html#constructor_detail).

The environment properties, previously created are passed to the
InitialContext constructor. A reference to a Context object is now available to
access the naming service. To perform directory operations, InitialDirContext is
used.

Naming Operations

JNDI can be used to perform various naming operations. The most common operation
are:

! Looking up an object

! Listing the contents of a context

! Adding, overwriting, and removing a binding

! Renaming an object

! Creating and destroying subcontexts

Looking Up an Object

In the following JNDI sample code, the naming operation lookup(). The name of the
object to be “looked up” is passed in, relative to the current context, and the object is
retrieved. JMS provider implementations of administered objects should be both
javax.jndi.Referenceable and java.io.Serializable so that they can be
stored in all JNDI naming contexts.

JNDI Samples

This sample requires edits be made to generic information. See the code samples below
in bold type-set.
e*Gate API Kit Developer’s Guide 73 SeeBeyond Proprietary and Confidential

http://java.sun.com/j2se/1.3/docs/api/javax/naming/InitialContext.html#constructor_detail
http://java.sun.com/j2se/1.3/docs/api/javax/naming/InitialContext.html#constructor_detail
http://java.sun.com/j2se/1.3/docs/api/javax/naming/directory/InitialDirContext.html
http://java.sun.com/j2se/1.3/docs/api/javax/naming/Context.html

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
To run, you need to set up the classpath to include the file system service provider
classes (fscontext.jar and providerutil.jar). (Samples can be downloaded
from http://java.sun.com/products/jndi/tutorial/getStarted/examples/naming.html).
For this example the following was used, and should be modified to suit your needs:

C:\temp>set
CLASSPATH=%CLASSPATH%;C:\jndi\fscontext1_2beta3\lib\fscontext.jar;C:\jndi\f
scontext1_2beta3\lib\providerutil.jar

Each of the following samples requires the following imports:

import javax.jms.*;
import javax.naming.*;
import com.seebeyond.jms.client.*;
import java.util.Properties;

A sample class is declared:

public class queuereply
{
 public static void main(String[] args)
 {

try {

The definition of JNDI properties is made here, but could also be
made using jndi.properties file:

// JNDI parameters - you will probably use jndi.properties with values
//specific to your own JNDI provider.
//

 Properties env = new Properties();
 env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.sun.jndi.fscontext.RefFSContextFactory");
 env.put(Context.PROVIDER_URL, "file:/tmp/tutorial");
 Context jndi = new InitialContext(env);

QueueConnectionFactory Sample

In addition to the above, the following is included in the QueueConnectionFactory
sample:

// Instantiate a SeeBeyond QueueConnectionFactory object and bind to
// JNDI

 STCQueueConnectionFactory qcf = new
STCQueueConnectionFactory("myhostname", 24056);

 try {
jndi.bind("QueueConnectionFactory", (QueueConnectionFactory)

qcf);
 }
 catch (javax.naming.NameAlreadyBoundException e) {
 }

Once the bind has been established, a NameAlreadyBoundException will be
returned if bind is called again. rebind is used to overwrite the binding.

// Lookup the object in JNDI, and print some info for verification
 Object obj = jndi.lookup("QueueConnectionFactory");
 qcf = (STCQueueConnectionFactory) obj;
 System.out.println ("Looked up QueueConnectionFactory host:"

+ qcf.getHost());
 System.out.println ("Looked up QueueConnectionFactory port:"

+ qcf.getPort());
e*Gate API Kit Developer’s Guide 74 SeeBeyond Proprietary and Confidential

http://java.sun.com/products/jndi/tutorial/getStarted/examples/naming.html

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
Queue Sample

In addition to the above, the following is included in the Queue sample:

// Instantiate a SeeBeyond Queue object and bind to JNDI
 STCQueue que = new STCQueue("AccountsPayableQueue");
 try {

jndi.bind("APQueue", (Queue) que);
 }
 catch (javax.naming.NameAlreadyBoundException e) {
 }

// Lookup the object in JNDI, and print some info for verification
 obj = jndi.lookup("APQueue");
 String s = new String(obj.getClass().getName());
 System.out.println ("APQueue class:"+s);

TopicConnectionFactory Sample

In addition to the above, the following is included in the TopicConnectionFactory
sample:

// Instantiate a SeeBeyond TopicConnectionFactory object and bind to
// JNDI

 STCTopicConnectionFactory tcf = new
STCTopicConnectionFactory("anotherhost", 24053);

 try {
jndi.rebind("TopicConnectionFactory",

(TopicConnectionFactory) tcf);
 }
 catch (javax.naming.NameAlreadyBoundException e) {
 }

// Lookup the object in JNDI, and print some info for verification
 obj = jndi.lookup("TopicConnectionFactory");
 tcf = (STCTopicConnectionFactory) obj;
 System.out.println ("Looked up TopicConnectionFactory host:"

+ tcf.getHost());
 System.out.println ("Looked up TopicConnectionFactory port:"

+ tcf.getPort());

Topic Sample

In addition to the above, the following is included in the Topic sample:

// Instantiate a SeeBeyond Topic object and bind to JNDI
 STCTopic top = new STCTopic("AccountsPayableTopic");
 try {

jndi.bind("APTopic", (Topic) top);
 }
 catch (javax.naming.NameAlreadyBoundException e) {
 }

// Lookup the object in JNDI, and print some info for verification
 obj = jndi.lookup("APTopic");
 s = new String(obj.getClass().getName());
 System.out.println ("APTopic class:"+s);

} catch(Exception e) {
 e.printStackTrace();
}

 }
}

e*Gate API Kit Developer’s Guide 75 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
At this point the retrieved objects can now communicate with the SeeBeyond Message
Service and e*Gate.

4.2.5 The Message Selector
A message selector allows a client to specify, via the message header, those messages in
which the client is interested. Only messages for which the headers and properties
match the selector are delivered. The semantics of not delivered differ depending on the
MessageConsumer implemented. Message selectors cannot reference message body
values.

The message selector matches a message, provided the selector evaluates to “true”,
when the message’s header field and the property values are substituted for the
corresponding identifiers within the selector.

For more information about Message Selection, see chapter 3.8, Message Selection, of the
Java Message Service Version 1.0.2.b available at:

http://java.sun.com/products/jms/docs.html

Message Selector Syntax

A message selector is defined as a String, wherein the sytax is composed, according to a
subset of the SQL92* conditional expression syntax. If the value of a message selector is
provided as an empty string, the value is treated as “null” and indicates that there is no
message selector for the message consumer.

The order of evaluation for message selectors is from left to right within precedence
level. Parentheses can be used to change this order. Predefined selector literals and
operator names are written here in upper case; however, they are case insensitive.

Identifiers

An identifier is that part of the expression that provides the information by which to
make the comparison. For example, the identifiers in the following expression are Age,
Weight, and LName:

Age < 35 AND Weight >= 110.00 and LName = ‘Jones’

Identifiers can be any application-defined, JMS-defined, or provider-specific property,
or one of several JMS headers. Identifiers must match the property or JMS header name
exactly (they are also case sensitive).

The following JMS headers can be used as identifiers:

! JMSDeliveryMode

! JMSPriority

! JMSMessageID

! JMSTimestamp

! JMSCorrelationID

! JMSType
e*Gate API Kit Developer’s Guide 76 SeeBeyond Proprietary and Confidential

http://java.sun.com/products/jms/docs.html

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
The following JMS headers cannot be used as identifiers because their corresponding
values are Destination objects, whose underlying value is proprietary, and therefore
undefined:

! JMSDestination

! JMSReplyTo

The JMSRedelivered value may be changed during delivery. For example, if a consumer
users a message selector where “JMSRedelivered = FALSE”, and there was a failure
delivering a message, the JMSRedelivered flag might be set to TRUE. JMSExpiration is
not supported as an identifier, because JMS providers may choose to implement this
value in different manners. (Some may store it with the message, while others calculate
it as needed.)

Literals

Expression values that are hard-coded into the message selector are referred to as
literals. In the message selector shown here, 35, 110.00, and ‘Jones’ are all literals:

Age < 35 AND Weight >= 110.00 AND LName = ‘Jones’

String literals are enclosed in single quotes. An apostrophe or single quote can be
included in a String literal by using two single quotes. For example, ‘Jones’’s’

Numeric literals are expressed using exact numerical (+35, 30, -450), approximate
numerical with decimal (-22.33, 110.00, +8.0), or scientific (-7E4) notation.

Declaring a Message Selector

When a consumer is created to implement a message selector, the JMS provider must
validate that the selector statement is syntactically correct. If the selector is not correct,
the javax.jms.InvalidSelectorException is thrown.

protected void writeMessage(String text) throws JMSException{
TextMessage message = session.createTextMessage();
message.setText(text);
message.setStringProperty(“username”,username);
publisher.publish(message);

}

JMS clients would then use that property to filter messages. Message selectors are
declared when the message consumer is created:

TopicSubscriber subscriber =
session.createSubscriber(xTopic, “username <> ‘John’ “, false);

The message selector (“username <> ‘John’ “) tells the message server to deliver to the
consumer only those messages that do NOT have the username property equal to
‘John’.

Java Message Selector Publisher
import javax.jms.*;
import com.seebeyond.jms.client.STCTopicConnectionFactory;
import com.seebeyond.jms.util.*;

public class SelectorPublisher
{

 private static final String HOST = "localhost";
e*Gate API Kit Developer’s Guide 77 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
 private static final int PORT = 24053;
 private static final String PROP_NAME = "property";
 private static final String TOPIC_NAME = "Selector";

 public static void main(String[] args)
 throws Exception
 {
 String hostName = HOST;
 int port = PORT;
 try
 {
 System.out.println("-h(ost) host-name -p(ort) port-number");
 for (int i = 0; i < args.length; i++)
 {
 if (args[i].startsWith("-h") || args[i].startsWith("-host"))
 hostName = args[++i];
 else if (args[i].startsWith("-p") || args[i].startsWith("-
port"))
 port = Integer.parseInt(args[++i]);
 }
 }
 catch(Exception e)
 {
 System.out.println("Error in arguments");
 System.exit(1);
 }

 try
 {
 TopicConnectionFactory factory = new
STCTopicConnectionFactory(hostName, port);
 TopicConnection conn = factory.createTopicConnection();
 conn.start();
 TopicSession topicSession = conn.createTopicSession(true,
Session.AUTO_ACKNOWLEDGE);

 // create temporary queue
 Topic topic = topicSession.createTopic(TOPIC_NAME);

 // create sender
 TopicPublisher publisher = topicSession.createPublisher(topic);
 publisher.setDeliveryMode(DeliveryMode.PERSISTENT);

 // put messages on queue
 for(int ii=0; ii<10 ;ii++)
 {
 TextMessage msg = topicSession.createTextMessage();
 int index = ii%10;
 msg.setStringProperty(PROP_NAME, ""+index);
 msg.setText("This is message body.");
 publisher.publish(msg);
 System.out.println("... Published 1 message with
"+PROP_NAME+" = "+ii);
 }
 topicSession.commit();
 conn.close();

 } catch(Exception ex)
 {
 ex.printStackTrace();
 System.exit(1);
 }
 }

e*Gate API Kit Developer’s Guide 78 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
}

Java Message Selector Subscriber
import javax.jms.*;
import com.seebeyond.jms.client.STCTopicConnectionFactory;
import com.seebeyond.jms.util.*;

public class SelectorSubscriber
{

 private static final String HOST = "localhost";
 private static final int PORT = 24053;
 private static final String PROP_NAME = "property";
 private static final String TOPIC_NAME = "eGateSelector";

 public static void main(String[] args)
 throws Exception
 {

 String hostName = HOST;
 int port = PORT;

 int selector = 7;
 try
 {
 System.out.println("-h(ost) host-name -p(ort) port-number -
s(elector) property-value-from-0-to-9");
 for (int i = 0; i < args.length; i++)
 {
 if (args[i].startsWith("-h") || args[i].startsWith("-host"))
 hostName = args[++i];
 else if (args[i].startsWith("-p") || args[i].startsWith("-
port"))
 port = Integer.parseInt(args[++i]);
 else if (args[i].startsWith("-s") || args[i].startsWith("-
selector"))
 selector = Integer.parseInt(args[++i]);
 }
 }
 catch(Exception e)
 {
 System.out.println("Error in arguments");
 System.exit(1);
 }
 try
 {
 TopicConnectionFactory factory = new
STCTopicConnectionFactory(hostName, port);
 TopicConnection conn = factory.createTopicConnection();
 conn.start();
 TopicSession topicSession = conn.createTopicSession(true,
Session.AUTO_ACKNOWLEDGE);

 // create temporary queue
 Topic topic = topicSession.createTopic(TOPIC_NAME);

 // create subscriber
 String selectorString = PROP_NAME+" = '"+selector+"'";
 TopicSubscriber subscriber =
topicSession.createDurableSubscriber(topic,
 "SelectorSubscriber"+selector, selectorString, false);
 System.out.println("selector: " +
subscriber.getMessageSelector());

e*Gate API Kit Developer’s Guide 79 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
 // receive message
 for (Message msg = subscriber.receive();
 msg != null;
 msg = subscriber.receive(1000))
 {
 System.out.println("... Received 1 message with "+ PROP_NAME
+ " = " + msg.getStringProperty(PROP_NAME));
 }
 topicSession.commit();
 subscriber.close();
 topicSession.unsubscribe("SelectorSubscriber"+selector);

 conn.close();
 }
 catch(Exception ex)
 {
 ex.printStackTrace();
 System.exit(1);
 }
 }

}

COM VB Message Selector
Option Explicit

Dim MessageSelector As String
Dim topicConnectionFactory As New topicConnectionFactory
Dim topicConnection As topicConnection
Dim topicSession As topicSession
Dim topic As topic
Dim Publisher As TopicPublisher
Dim subscriber As TopicSubscriber
Dim MessagePublished As TextMessage
Dim MessageReceived As TextMessage

Private Sub Form_Load()
' You should replace the host name and port number with the actual values
 topicConnectionFactory.HostName = "localhost"
 topicConnectionFactory.Port = 24053
' Create a topic connection
 Set topicConnection = topicConnectionFactory.CreateTopicConnection()
' Create a session
 Set topicSession = topicConnection.CreateTopicSession(True,
msAutoAcknowledge)
' Start the session
 topicConnection.Start
' Create a topic
 Set topic = topicSession.CreateTopic(txtTopicName)
' Create a publisher
 Set Publisher = topicSession.CreatePublisher(topic)
' Set message selector
 MessageSelector = "Name = 'John'"
' Create a subscriber with the message selector
 Set subscriber = topicSession.CreateSubscriber(topic, MessageSelector)
End Sub

Private Sub cmdPublish_Click()
' Create a text message
 Set MessagePublished =
topicSession.CreateTextMessage(txtPublished.Text)
 If chkMessageSelector Then
e*Gate API Kit Developer’s Guide 80 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
 ' Set the corresponding user property in the message, and subscriber
 ' should receive this message because it matches the message selector
 MessagePublished.SetProperty "Name", "John"
 End If
 ' Otherwise, don't set the user property in this message, and subscriber
 ' should not receive this message
' Publish this message
 Publisher.Publish MessagePublished
' Commit this message
 topicSession.Commit
End Sub

Private Sub cmdReceive_Click()
' Receive the message
 Set MessageReceived = subscriber.ReceiveNoWait
 If MessageReceived Is Nothing Then
 txtReceived = "No Message Received"
 Else
 ' Commit this message
 topicSession.Commit
 txtReceived = MessageReceived.Text
 End If

End Sub

4.2.6 XA Sample
XA compliance is achieved when cooperating software systems contain sufficient logic

to ensure that the transfer of a single unit of data between those systems is neither lost

nor duplicated because of a failure condition in one or more of the cooperating systems.

e*Gate 4.5 and later satisfies this requirement via utilization of the XA Protocol, from

the X/Open Consortium.

For more information on XA, see the e*Gate Integrator User’s Guide.

Java XA Publisher
import java.io.InputStreamReader;
import javax.jms.*;
import javax.transaction.xa.*;
import com.seebeyond.jms.client.STCXATopicConnectionFactory;
import com.seebeyond.jms.util.XidImpl;

class XAPublisher {

 public static void main(String args[]) {
 String hostName = "localhost";
 int port = 24053;
 try
 {
 System.out.println("-h(ost) host-name -p(ort) port-number");
 for (int i = 0; i < args.length; i++)
 {
 if (args[i].startsWith("-h") || args[i].startsWith("-host"))
 hostName = args[++i];
 else if (args[i].startsWith("-p") || args[i].startsWith("-
port"))
 port = Integer.parseInt(args[++i]);
e*Gate API Kit Developer’s Guide 81 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
 }
 }
 catch(Exception e)
 {
 System.out.println("Error in arguments");
 System.exit(1);
 }
 String topicName = "XAPubSubSample";
 XATopicConnectionFactory tcf = null;
 XATopicConnection topicConnection = null;
 XATopicSession xaTopicSession = null;
 XAResource resource = null;
 TopicSession topicSession = null;
 Topic topic = null;
 TopicPublisher topicPublisher = null;
 TextMessage message = null;
 final int MAX_MESSAGE_SIZE = 60;
 InputStreamReader inputStreamReader = null;
 char answer = '\0';

 System.out.println("pub topic name is " + topicName);
 /*
 * Create connection.
 * Create session from connection; true means session is
 * transacted.
 * Create publisher and text message.
 * Send messages, varying text slightly.
 * Finally, close connection.
 */
 try {
 tcf = new STCXATopicConnectionFactory(hostName, port);
 topicConnection = tcf.createXATopicConnection();
 topicConnection.start();
 xaTopicSession = topicConnection.createXATopicSession();
 resource = xaTopicSession.getXAResource();
 topicSession = xaTopicSession.getTopicSession();
 topic = topicSession.createTopic(topicName);
 topicPublisher = topicSession.createPublisher(topic);
 Xid xid = new XidImpl();

 byte[] mydata = new byte[MAX_MESSAGE_SIZE];

 message = topicSession.createTextMessage();
 String s = new String("This is message ");
 message.setText(s);
 inputStreamReader = new InputStreamReader(System.in);
 try {
 System.out.println("... XAResource start");
 resource.start(xid, XAResource.TMNOFLAGS);
 System.out.println("... Publishing message: " +
 s);
 topicPublisher.publish(message);
 System.out.println("... XAResource end");
 resource.end(xid, XAResource.TMSUCCESS);
 System.out.println("XAResource prepare");
 resource.prepare(xid);
 System.out.println("C or c to commit and R or r to
rollback");
 while (true)
 {
 answer = (char) inputStreamReader.read();
 if (answer == 'c' || answer == 'C')
 {
 System.out.println("... XAResource commit");
e*Gate API Kit Developer’s Guide 82 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
 resource.commit(xid, false);
 break;
 }
 else if (answer == 'r' || answer == 'R')
 {
 System.out.println("... XAResource rollback");
 resource.rollback(xid);
 break;
 }
 }
 }
 catch (Exception exx) {
 exx.printStackTrace();
 }

 }
 catch (JMSException e) {
 System.out.println("Exception occurred: " + e.getMessage());
 }
 finally {
 if(topicConnection != null) {
 try {
 System.out.println("... Closing connection");
 topicConnection.close();
 }
 catch (JMSException e) {
 e.printStackTrace();
 }
 }
 }
 }
}

Java XA Subscriber
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.BufferedReader;
import javax.jms.*;
import javax.transaction.xa.*;
import com.seebeyond.jms.client.STCXATopicConnectionFactory;
import com.seebeyond.jms.util.XidImpl;

public class XASubscriber {

 public static void main(String args[]) {
 String hostName = "localhost";
 int port = 24053;
 try
 {
 System.out.println("-h(ost) host-name -p(ort) port-number");
 for (int i = 0; i < args.length; i++)
 {
 if (args[i].startsWith("-h") || args[i].startsWith("-host"))
 hostName = args[++i];
 else if (args[i].startsWith("-p") || args[i].startsWith("-
port"))
 port = Integer.parseInt(args[++i]);
 }
 }
 catch(Exception e)
 {
 System.out.println("Error in arguments");
 System.exit(1);
e*Gate API Kit Developer’s Guide 83 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
 }
 String topicName = "eGateXAPubSubSample";
 XATopicConnectionFactory tcf = null;
 XATopicConnection topicConnection = null;
 XATopicSession xaTopicSession = null;
 XAResource resource = null;
 TopicSession topicSession = null;
 Topic topic = null;
 TopicSubscriber topicSubscriber = null;
 TextMessage message = null;
 Xid xid = null;
 InputStreamReader inputStreamReader = null;

 char answer = '\0';

 System.out.println("Topic name is " + topicName);

 /*
 * Create connection.
 * Create session from connection; true means session is
 * transacted.
 * Create subscriber.
 * Register message listener (TextListener).
 * Receive text messages from topic.
 * When all messages have been received, enter Q to quit.
 * Close connection.
 */
 try {
 tcf = new STCXATopicConnectionFactory(hostName, port);
 topicConnection = tcf.createXATopicConnection();
 topicConnection.start();
 xaTopicSession = topicConnection.createXATopicSession();
 resource = xaTopicSession.getXAResource();
 topicSession = xaTopicSession.getTopicSession();
 topic = topicSession.createTopic(topicName);
 xid = new XidImpl();
 System.out.println("... XAResource start");
 resource.start(xid, XAResource.TMNOFLAGS);
 topicSubscriber = topicSession.createSubscriber(topic);

 /*
 * Inner anonymous class that implements onMessage method
 * of MessageListener interface.
 *
 */
 topicSubscriber.setMessageListener(new MessageListener(){
 public void onMessage(Message message) {
 TextMessage msg = null;
 try {
 if (message instanceof TextMessage) {
 msg = (TextMessage) message;
 System.out.println("... Reading message: " +
 msg.getText());
 }
 else {
 System.out.println("Message of wrong type: " +
 message.getClass().getName());
 }
 }
 catch (Exception e) {
 System.out.println("JMSException in onMessage(): "
 + e.toString());
 }
 catch (Throwable te) {
e*Gate API Kit Developer’s Guide 84 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
 System.out.println("Exception in onMessage():" +
 te.getMessage());
 }
 }
 });

 BufferedReader reader = new BufferedReader(new
InputStreamReader(System.in));
 while (!((answer == 'q') || (answer == 'Q'))) {
 try {
 System.out.println("C or c to commit and R or r to
rollback after prepare");
 answer = (char)reader.readLine().charAt(0);
 System.out.println("... XAResource end");
 resource.end(xid, XAResource.TMSUCCESS);
 System.out.println("... XAResource prepare");
 resource.prepare(xid);
 if (answer == 'c' || answer == 'C')
 {
 System.out.println("... XAResource commit");
 resource.commit(xid, false);
 }
 else
 {
 System.out.println("... XAResource rollback");
 resource.rollback(xid);
 }
 System.out.println("... XAResource start");
 resource.start(xid, XAResource.TMNOFLAGS);
 System.out.println("To end program, enter Q or q, then
<return>. To continue receive, enter r or R");
 answer = (char)reader.readLine().charAt(0);
 }
 catch (IOException e) {
 System.out.println("I/O exception: " + e.toString());
 }
 }

 }
 catch (Exception e) {
 System.out.println("Exception occurred: " + e.toString());
 System.exit(1);
 }
 finally {
 if (topicConnection != null && resource != null && xid != null) {
 try {
 System.out.println("... XAResource end");
 resource.end(xid, XAResource.TMSUCCESS);
 System.out.println("... XAResource prepare");
 resource.prepare(xid);
 System.out.println("... XAResource commit");
 resource.commit(xid, false);
 System.out.println("... Closing connection");
 topicConnection.close();
 }
 catch (Exception e) {}
 }
 }
 }
}

COM VB XA Sample
Option Explicit
e*Gate API Kit Developer’s Guide 85 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
Dim TopicObj As TopicTask
Dim QueueObj As QueueTask

Private Sub cmdPublish_Click()
 If chkTopic Then
 PublishTopic
 Else
 SendQueue
 End If
End Sub

Private Sub cmdReceive_Click()
 If chkTopic Then
 ReceiveTopic
 Else
 ReceiveQueue
 End If
End Sub

Private Sub PublishTopic()
 Set TopicObj = New TopicTask
 TopicObj.Send txtDestination, txtPublished, chkCommit
End Sub

Private Sub ReceiveTopic()
 Dim msg As String
 Set TopicObj = New TopicTask
 TopicObj.Receive txtDestination, msg, chkCommit
 If chkCommit Then
 txtReceived = msg
 Else
 txtReceived = "Aborted"
 End If
End Sub

Private Sub SendQueue()
 Set QueueObj = New QueueTask
 QueueObj.Send txtDestination, txtPublished, chkCommit
End Sub

Private Sub ReceiveQueue()
 Dim msg As String
 Set QueueObj = New QueueTask
 QueueObj.Receive txtDestination, msg, chkCommit
 If chkCommit Then
 txtReceived = msg
 Else
 txtReceived = "Aborted"
 End If
End Sub

4.2.7 The Compensating Resource Manager
Creating an SQL Database

The samples provided are designed using an SQL Database.

1 Create an SQL database, using the name “CRM” for the purpose of testing the
samples.

2 Create a table, using the name “Messages”.
e*Gate API Kit Developer’s Guide 86 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
3 Create two columns in the table, “UID” and “Message”.

4 From Settings->ControlPanel->AdministrativeTools->DataSources, Add an SQL
Database source.

Figure 26 SQL Database Source

5 Provide the name of the data source, a description if desired, and the machine name
on which SQL Server is running.

Important: You will not be able to continue until a successful connection is made.

Figure 27 SQL Datasource
e*Gate API Kit Developer’s Guide 87 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
6 Ensure that the authentication and login settings correspond to the figure below.

Figure 28 Login Settings

7 Select the recently created database as the default from the drop-down as in the
figure below. Click Next to Continue.

Figure 29 Default SQL Database

8 Click Finish.

Configuring the Compensating Resource Manager (CRM)

When planning your CRM implementation, you cannot assume that the same instance
of the CRM Compensator that processes the set of method calls in the prepare phase
will process the method calls in the commit phase. If one of the clients attempts to
commit a transaction, and someone inadvertently disconnects the power source during
the commit phase, the prepare method calls will not be repeated during recovery, and
the Compensator receives a set of abort or commit method calls.

Both the CRM Worker and Compensator are COM+ components and they must be
configured using the Windows 2000 Component Services Explorer function properly.
The CRM Worker and CRM Compensator must be installed into the same COM+
application that was completed above. (See “Configuring the Compensating Resource
Manager (CRM)” on page 88 for more information.)
e*Gate API Kit Developer’s Guide 88 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
Note: You must create the “CRM” database before attempting to use any sample code. See
“Creating an SQL Database” on page 86 for more information.

For this section, two sample files will be used, the samples can be found on the
Installation CD under Samples\jmsapi\com

CRMTest.vdb

CRMTest.dll

1 Open CRMTest.vdp. Four files open in the project. Follow the comments in the code
to modify the sample to your system requirements. The comments appear in “bold”
in the code samples that follow.

InsertMessage.cls

Option Explicit

Sub Add(message As String, commit As Boolean)
 On Error GoTo errHandler
 Dim ObjCtx As ObjectContext
 Set ObjCtx = GetObjectContext()
 If ObjCtx Is Nothing Then
 MsgBox "Application is not running in COM+"
 Exit Sub
 End If

' Before start this CRM sample dll, you should create a database
' called "crm", and create a table named "Messages" with two
'columns, one column is "ID", and the other one is "Message"

' You can replace the following steps to use another resource manager
' i.e., the Oracle DBMS

 Dim adoPrimaryRS As Recordset
 Dim db As ADODB.Connection
 Set db = New ADODB.Connection
 db.CursorLocation = adUseClient
' Create a data source name
 db.Open "PROVIDER=MSDASQL;dsn=CRM;uid=sa;pwd=sa;"
 Set adoPrimaryRS = New ADODB.Recordset
 adoPrimaryRS.Open "select Message from Messages", db, adOpenStatic,

adLockOptimistic
 adoPrimaryRS.AddNew "Message", message
 db.Close
 Set db = Nothing
 Set adoPrimaryRS = Nothing
 If Not commit Then
 ObjCtx.SetAbort
 Err.Raise vbObjectError + 1024, , "Instruction to Abort the

Transaction"
 End If
 Exit Sub
errHandler:
 ObjCtx.SetAbort
 Err.Raise Err
End Sub

TwoTasks.cls

Option Explicit
' In this CRM sample, there are two tasks that must either both succeed
' or both abort
e*Gate API Kit Developer’s Guide 89 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
' The TopicTask is to send a message to the JMS server
Dim topicObj As TopicTask
' The InsertMessage task is to insert a message into a SQL table
Dim MessageObj As InsertMessage

Sub Send(topicName As String, msg As String, commit As Boolean)
 On Error GoTo errHandler
 Dim ObjCtx As ObjectContext
 Set ObjCtx = GetObjectContext()

 Set topicObj = New TopicTask
 Set MessageObj = New InsertMessage
' First task is to send a message to the JMS server
 topicObj.Send topicName, msg, True
' Second task is to add this message into the "Messages" table
 MessageObj.Add msg, True
 If Not commit Then
 ObjCtx.SetAbort
 Err.Raise vbObjectError + 1024, , "Instruction to Abort the
Transaction"
 End If
 Exit Sub
errHandler:
 ObjCtx.SetAbort
 Err.Raise Err
End Sub

Sub Receive(topicName As String, msg As String, commit As Boolean)
 On Error GoTo errHandler
 Dim ObjCtx As ObjectContext
 Set ObjCtx = GetObjectContext()
 If ObjCtx Is Nothing Then
 MsgBox "Application is not running in COM+"
 Exit Sub
 End If
 Set topicObj = New TopicTask
' Receive a message
 topicObj.Receive topicName, msg, True
 If Not commit Then
 ObjCtx.SetAbort
 Err.Raise vbObjectError + 1024, , "Instruction to Abort the
Transaction"
 End If
 Exit Sub
errHandler:
 ObjCtx.SetAbort
 Err.Raise Err
End Sub

TopicTask.cls

Option Explicit

Dim XATopicConnectionFactory As XATopicConnectionFactory
Dim XATopicConnection As XATopicConnection
Dim XATopicSession As XATopicSession
Dim TopicSession As TopicSession
Dim Topic As Topic
Dim subscriber As TopicSubscriber
Dim Publisher As TopicPublisher
Dim MessagePublished As TextMessage
Dim MessageReceived As TextMessage

Sub Send(topicName As String, msg As String, commit As Boolean)
e*Gate API Kit Developer’s Guide 90 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
 On Error GoTo errHandler
 Dim ObjCtx As ObjectContext
 Set ObjCtx = GetObjectContext()
 If ObjCtx Is Nothing Then
 MsgBox "Application is not running in COM+"
 Exit Sub
 End If
' Create a XA topic connection factory
 Set XATopicConnectionFactory = New XATopicConnectionFactory
' You should replace the host name and port number with the actual values
 XATopicConnectionFactory.HostName = "localhost"
 XATopicConnectionFactory.Port = 24053
' Create a XA topic connection
 Set XATopicConnection =
XATopicConnectionFactory.CreateXATopicConnection()
' Create a XA topic session
 Set XATopicSession = XATopicConnection.CreateXATopicSession()
 Set TopicSession = XATopicSession.TopicSession
' Create a topic
 Set Topic = TopicSession.CreateTopic(topicName)
' Start the XA topic session
 XATopicConnection.Start
' Create a publisher
 Set Publisher = TopicSession.CreatePublisher(Topic)
' Create a text message
 Set MessagePublished = TopicSession.CreateTextMessage(msg)
' Publish the message
 Publisher.Publish MessagePublished
 If Not commit Then
 ObjCtx.SetAbort
 Err.Raise vbObjectError + 1024, , "Instruction to Abort the
Transaction"
 End If
 Exit Sub
errHandler:
 ObjCtx.SetAbort
 Err.Raise Err
End Sub

Sub Receive(topicName As String, msg As String, commit As Boolean)
 On Error GoTo errHandler
 Dim ObjCtx As ObjectContext
 Set ObjCtx = GetObjectContext()
 If ObjCtx Is Nothing Then
 MsgBox "Application is not running in COM+"
 Exit Sub
 End If
' Create a XA topic connection factory
 Set XATopicConnectionFactory = New XATopicConnectionFactory
' You should replace the host name and port number with the actual values
 XATopicConnectionFactory.HostName = "localhost"
 XATopicConnectionFactory.Port = 24053
' Create a XA topic connection
 Set XATopicConnection =
XATopicConnectionFactory.CreateXATopicConnection()
' Create a XA topic session
 Set XATopicSession = XATopicConnection.CreateXATopicSession()
 Set TopicSession = XATopicSession.TopicSession
' Create a topic
 Set Topic = TopicSession.CreateTopic(topicName)
' Start the XA topic session
 XATopicConnection.Start
' Create a subscriber
e*Gate API Kit Developer’s Guide 91 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
 Set subscriber = TopicSession.CreateDurableSubscriber(Topic,
"TopicSubscriber")
' receive a message
 Set MessageReceived = subscriber.ReceiveNoWait
 If MessageReceived Is Nothing Then
 msg = "No Message Received"
 Else
 msg = MessageReceived.Text
 End If
 If Not commit Then
 ObjCtx.SetAbort
 Err.Raise vbObjectError + 1024, , "Instruction to Abort the
Transaction"
 End If
 Exit Sub
errHandler:
 ObjCtx.SetAbort
 Err.Raise Err
End Sub

QueueTasks.cls

Option Explicit

Dim XAQueueConnectionFactory As XAQueueConnectionFactory
Dim XAQueueConnection As XAQueueConnection
Dim XAQueueSession As XAQueueSession
Dim QueueSession As QueueSession
Dim Queue As Queue
Dim QueueReceiver As QueueReceiver
Dim QueueSender As QueueSender
Dim MessagePublished As TextMessage
Dim MessageReceived As TextMessage

Sub Send(QueueName As String, msg As String, commit As Boolean)
 On Error GoTo errHandler
 Dim ObjCtx As ObjectContext
 Set ObjCtx = GetObjectContext()
 If ObjCtx Is Nothing Then
 MsgBox "Application is not running in COM+"
 Exit Sub
 End If
' Create a XA queue connection factory
 Set XAQueueConnectionFactory = New XAQueueConnectionFactory
' You should replace the host name and port number with the actual values
 XAQueueConnectionFactory.HostName = "localhost"
 XAQueueConnectionFactory.Port = 24053
' Create a XA queue connection
 Set XAQueueConnection =
XAQueueConnectionFactory.CreateXAQueueConnection()
' Create a XA queue session
 Set XAQueueSession = XAQueueConnection.CreateXAQueueSession()
 Set QueueSession = XAQueueSession.QueueSession
' Create a queue
 Set Queue = QueueSession.CreateQueue(QueueName)
' Start the XA queue session
 XAQueueConnection.Start
' Create a queue sender
 Set QueueSender = QueueSession.CreateSender(Queue)
' Create a text message
 Set MessagePublished = QueueSession.CreateTextMessage(msg)
' Send a message
 QueueSender.Send MessagePublished
 If Not commit Then
e*Gate API Kit Developer’s Guide 92 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementing the Message Service Sample Code
 ObjCtx.SetAbort
 Err.Raise vbObjectError + 1024, , "Instruction to Abort the
Transaction"
 End If
 Exit Sub
errHandler:
 ObjCtx.SetAbort
 Err.Raise Err
End Sub

Sub Receive(QueueName As String, msg As String, commit As Boolean)
 On Error GoTo errHandler
 Dim ObjCtx As ObjectContext
 Set ObjCtx = GetObjectContext()
 If ObjCtx Is Nothing Then
 MsgBox "Application is not running in COM+"
 Exit Sub
 End If
' Create a XA Queue connection factory
 Set XAQueueConnectionFactory = New XAQueueConnectionFactory
' You should replace the host name and port number with the actual values
 XAQueueConnectionFactory.HostName = "localhost"
 XAQueueConnectionFactory.Port = 24053
' Create a XA queue connection
 Set XAQueueConnection =
XAQueueConnectionFactory.CreateXAQueueConnection()
' Create a XA queue session
 Set XAQueueSession = XAQueueConnection.CreateXAQueueSession()
 Set QueueSession = XAQueueSession.QueueSession
' Create a queue
 Set Queue = QueueSession.CreateQueue(QueueName)
' Start the XA queue session
 XAQueueConnection.Start
' Create a queue receiver
 Set QueueReceiver = QueueSession.CreateReceiver(Queue)
' Receive a message
 Set MessageReceived = QueueReceiver.ReceiveNoWait
 If MessageReceived Is Nothing Then
 msg = "No Message Received"
 Else
 msg = MessageReceived.Text
 End If
 If Not commit Then
 ObjCtx.SetAbort
 Err.Raise vbObjectError + 1024, , "Instruction to Abort the
Transaction"
 End If
 Exit Sub
errHandler:
 ObjCtx.SetAbort
 Err.Raise Err
End Sub

2 Copy client.exe (located in the CRM sample folder) to the machine upon which the
external code is to run.

3 Register CRMTest.dll by performing the following:

From the command prompt of the external system, register the file CRMTest.dll into
the Windows 2000 registry by doing the following:

regsvr32 your_path_location\stc_mscom.dll

4 From the following location:
e*Gate API Kit Developer’s Guide 93 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementing the Message Service Sample Schema Implementation
Settings->Control Panel->Administrative Tools->Component Services

Expand the Component Services folder. Right click on Com+ Applications.

Select New->Application. The COM Application Install Wizard opens. Click Next
to continue.

5 Enter a CRM_TEST as the name of the new application. (Any name could be used.)
Select Library application as the Application Type.

Figure 30 CRM_TEST Application

6 Click Next to continue, and then Finish.

7 Expand the CRM_TEST component, right click on the components folder, click New
Component. The COM Component Install Wizard opens. Click Next to continue.

8 Click Install New Component(s). Browse to the location of the recently compiled
CRMTest.dll. Click open. Accept the remainder of the default settings.

4.3 Sample Schema Implementation
The sample implementation is available in the samples directory of the e*Gate CD-
ROM. Navigate to the directory

samples/jmsapi:

and for further instructions, see the README.html in the directory to install.

You can import the schema at the startup of the e*Gate Enterprise Manager, or by
selecting “New Schema” from the File menu, once the e*Gate Enterprise manager has
opened. For either case, select “Create from export:” and navigate to the .zip file
containing the necessary sample.
e*Gate API Kit Developer’s Guide 94 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementing the Message Service Sample Schema Implementation
4.3.1 e*Gate Sample JMS Schema Overview
The schema is designed to be combined with the code samples provided to separate
paradigm behavior into individual e*Ways.

Figure 31 JMS Sample Schema Enterprise Manager View

The e*Gate schema created to perform with the above code sample contains the
following:

! SeeBeyond JMS IQ Manager

! 13 Event Types

! 1 Event Type Definition

! 2 JMS e*Way Connections

! 8 Java Collaboration Rules

! 2 Multi-mode e*Ways

! 7 File e*Ways

! 8 Java Collaborations

SeeBeyond JMS IQ Manager

The IQ Manager defaults to the SeeBeyond JMS IQ Manager. For more information see
the SeeBeyond JMS Intelligent Queue User’s Guide.

Event Type

When creating the Event Type, the name of the Event must correspond to the Topic or
Queue being used in the code sample. For the samples provided, a Topics or Queues are
e*Gate API Kit Developer’s Guide 95 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementing the Message Service Sample Schema Implementation
created for each of the demonstration. The number of Event Types created is dependant
on the number of desired Topics or Queues to be used.

Event Type Definition

For the sample, no specific ETDs have been created, a single node .xsc (root.xsc) has
been used. Whether or not you require a specific ETD will depend completely on the
parsing intended. For more information on creating ETDs, see the e*Gate Integrator
User’s Guide.

JMS e*Way Connections

In the sample schema provided, e*Way Connections are created to communicate with
the external system, and configured. It is important to set the Connection Type (Topic or
Queue), the expected Output Message Type (bytes or text), and ensure that both values
correspond in the code. The additional parameters values are left to default (in the
sample). For more information on configuring JMS e*Way Connections, see the “JMS
e*Way Connection Parameters” on page 45.

Java Collaboration Rules

In the sample schema, a Collaboration, and a separate Java Collaboration Rule are
created for each sample e*Way.

Note: The read and write method calls must correspond to the expected data types. For
example, if the Message Type is set for byte, the corresponding methods would be one
of the readByte and writeByte methods.

For jmsRequestReply, the Java Service is selected.

Figure 32 jmsRequestReply
e*Gate API Kit Developer’s Guide 96 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementing the Message Service Sample Schema Implementation
For the Collaboration Mapping, the Instance Names “In” and “Out” are designated
respectively. The root.xsc ETD is assigned to both. The trigger is set for the inbound
instance, while Manual Publish is set for the outbound. Return to the General Tab, and
select New for the Collaboration Rule. The Collaboration Editor opens showing the
Source Event as the created “In” instance, with the “Out” instance as the Destination
Event.

Create a rule below the retBoolean variable. To enable the “Reply” functionality, add
the following line in the Rule dialog box:

String topic = getin().readProperty("JMSReplyTo");

This line obtains the readProperty (“JMSReplyTo”) from the inbound TopicRequestor,
providing a “return address”.

The additional functionality was added:

getout().setField1(jCollabController.getModuleName()+":"+(++msgCounte
r)+":" + getin().getField1());

getoutFile().setField1(jCollabController.getModuleName()+":"+msgCount
er+":" + getin().getField1());

if(topic != null)
 getout().send(topic);

The sample provides one scenario. The Collaboration Rule appears below:
e*Gate API Kit Developer’s Guide 97 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementing the Message Service Sample Schema Implementation
Figure 33 ReplyCollab Rule

Compile, Save and Promote to runtime.

Multi-mode e*Way

The Multi-mode e*Way (replier and outEway), along with the e*Way Connection,
provides connectivity to the external system via the SeeBeyond JMS IQ Manager. The
executable required is stceway.exe. For more information about configuring the Multi-
mode e*Way, see the Standard e*Way Intelligent Adapter User’s Guide.

Java Collaboration

Associated with the e*Way, the Collaboration designates the functionality as defined in
the Collaboration Rule with the e*Way. The Collaboration displays the Event Type and
Source for both the Subscription(s) and Publication(s). It is very important that these
values be set according to the expected behavior. In the sample, the Collaboration,
TopicRepliereWay appears below:
e*Gate API Kit Developer’s Guide 98 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementing the Message Service Sample Schema Implementation
Figure 34 TopicRepliereWay Collaboration

By selecting the jmsRequestReply Collaboration Rule, the Instance Names, Event Types
the Source and the Destination for both the Subscription and Publication (as related to
the Collaboration), the schema is now ready to execute.

Figure 35 e*Way Connection

4.3.2 Executing the Schema
From the command line start the Control Broker.
e*Gate API Kit Developer’s Guide 99 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementing the Message Service Sample Schema Implementation
stccb.exe -rh <host> -rs <schema_name> -un Adminstrator -up STC -ln
localhost_cb

At this point the schema will auto-start all the components. The external code provided
must be compiled and run, making sure that the host name and port number points to
the Participating Host, on which the JMS IQ Manager is running.
e*Gate API Kit Developer’s Guide 100 SeeBeyond Proprietary and Confidential

Chapter 5

Configuring the Multiplexer e*Way

5.1 Configuring the Multiplexer Client
Once the e*Gate API Kit has been installed successfully, additional steps are required to
finish the setup, before data exchange can begin. Both the multiplexer client, which
represents the machine upon which the external application resides, and the
multiplexer server, which is the machine upon which the Participating Host resides,
require handling. In this section, the steps are included for setting up the Multiplexer.

5.1.1 Considerations
To enable the client system to communicate with the e*Gate API Kit, you must do the
following:

1 Install the required client files on the external system.

2 Configure the client components as necessary to use the TCP/IP port specified
above in “Push IP Port.”

5.1.2 Setting up the Multiplexer
To begin using the Multiplexer, do the following:

Copy the stc_xipmpclnt.dll, stc_common.dll, stc_ewipmpclnt.dll files from your
eGate\client\bin to a directory on your external system.

From the command prompt of the external system, register all three files
stc_xipmpclnt.dll, stc_common.dll, stc_ewipmpclnt.dll into the Windows NT or
Windows 2000 registry by doing the following:

regsvr32 your_path_location\<file_name>

5.1.3 Setting up the Muxpooler
To begin using the Muxpooler, do the following:

Copy the stc_common.dll and stcph.jar files from your eGate\client\bin to a directory
on your external system.

From the command prompt of the external system, register stc_common.dll in the
Windows NT or 2000 registry with the following command:
e*Gate API Kit Developer’s Guide 101 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Configuring the Multiplexer e*Way Configuring the Multiplexer Server
regsvr32 your_path_loaction\<file_name>

And include stcph.jar in your classpath.

This chapter describes the e*Way configuration parameters and the external
configuration requirements for the e*Gate API Kit.

Important: From the perspective of the e*Gate GUIs, the e*Gate API Kit e*Way is not a system
of components distributed between the web server and a Participating Host, but a
single component that runs an executable file (the multiplexer stcewipmp.exe).
When this manual discusses procedures within the context of any e*Gate GUI (such
this chapter, which deals in part with the e*Way Editor), the term “e*Way” refers
only to the Participating Host component of the e*Way system.

5.2 Configuring the Multiplexer Server

5.2.1 Multiplexer e*Way Configuration Parameters
e*Way configuration parameters are set using the e*Way Editor.

To change e*Way configuration parameters:

1 In the Enterprise Manager’s Component editor, select the e*Way you want to
configure and display its properties.

2 Under Configuration File, click New to create a new file, Find to select an existing
configuration file, or Edit to edit the currently selected file.

3 In the Additional Command Line Arguments box, type any additional command
line arguments that the e*Way may require, taking care to insert them at the end of
the existing command-line string. Be careful not to change any of the default
arguments unless you have a specific need to do so.

For more information about how to use the e*Way Editor, see the e*Way Editor’s online
Help or the e*Gate Integrator User’s Guide.

The e*Way’s configuration parameters are organized into a single section: General
Settings.

General Settings

The parameters in this section specify the name of the external client system and the IP
port through which e*Gate and the client system communicates.

Request Reply IP Port

Description
Specifies the IP port that the e*Way will listen (bind) for client connections. This
parameter is used for Request/Reply behavior.
e*Gate API Kit Developer’s Guide 102 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Configuring the Multiplexer e*Way Configuring the Multiplexer Server
Required Values
A valid TCP/IP port number between 1 and 65536. The default is 26051. Normally,
you only need to change the default number if the specified TCP/IP port is in use,
or you have other requirements for a specific port number.

Push IP Port

Description
Specifies the IP port through which this e*Way allows an external system to connect
and receive unsolicited (without submitting a request) Events.

Required Values
A valid TCP/IP port number between 0 and 65536. The default is 0.

Additional Information
Any Event that this e*Way receives that has zero values for all fields in the 24 byte
MUX header is sent to all callers of the WaitForUnsolicited. This parameter is
optional. If set to zero, the e*Way will follow the Request/Reply scenario and not
accept unsolicited Events.

Rollback if no Clients on Push Port

Description
Specifies whether the Event will continually roll back if there are no push clients
connected.

Required Values
Yes or No. If set to Yes, the Event will continually roll back if there are no push
clients connected.

Wait For IQ Ack

Description
Specifies whether the send client function does NOT return until the Event is
committed to the IQ.

Required Values
Yes or No. If set to Yes, the send client function does NOT return until the Event is
committed to the IQ.

Caution: This parameter should be set if the data must be committed to the IQ on every
transaction before the API returns to the client. Setting this parameter to Yes will
significantly impact performance. If normal request/reply type transactions are
being sent/received, and the data can be recreated at the client, this parameter should
not be set.

Send Empty MSG When External Disconnect

Description
Specifies whether the e*Way sends an empty incoming message (containing only
the multiplexer header) when an external client disconnects.

Required Values
Yes or No. If set to Yes, the e*Way sends an empty incoming message when an
external client disconnects.
e*Gate API Kit Developer’s Guide 103 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Configuring the Multiplexer e*Way Configuring the Multiplexer Server
MUX Instance ID

Description
Specifies whether the specified 8 (eight) bytes is prepended to the 24 (twenty-four)
byte session ID of the request received from the external connection before sending
to e*Gate.

Required Values

A string. If this value is other than “0”, the 8 bytes are prepended to the 24 byte session
ID. The default is 0.

Note: This is a string where “00” and “00000000” are valid MUX Instance IDs, while
“0” is to turn this option off. Only the first 8 bytes are used.

MUX Recovery ID

Description
Specifies whether the 8 bytes are prepended to the reply and republish back to
e*Gate provided the value is other than “0” and the multiplexer finds that the
session related to the MUX ID in the return message has been dropped.

Required Values
A string. If this value is other than “0”, the 8 bytes are
prepended to the 24 byte session ID. The default is 0.

Note: This is a string where “00” and “00000000” are valid MUX Recovery IDs, while
“0” is to turn this option off. Only the first 8 bytes are used.
e*Gate API Kit Developer’s Guide 104 SeeBeyond Proprietary and Confidential

Chapter 6

Implementing the Multiplexer e*Way

This chapter describes the e*Way configuration parameters, the external configuration
requirements, and the implementation for the e*Gate API Kit Multiplexer e*Way.

Important: From the perspective of the e*Gate GUIs, the e*Gate API Kit e*Way is not a system
of components distributed between the web server and a Participating Host, but a
single component that runs an executable file (the multiplexer stcewipmp.exe).
When this manual discusses procedures within the context of any e*Gate GUI (such
this chapter, which deals in part with the e*Way Editor), the term “e*Way” refers
only to the Participating Host component of the e*Way system.

6.1 Implementing the Multiplexer Models
The e*Gate API kit Multiplexer supports three basic architectures:

1 Request/Reply, where data is sent to the e*Gate system and a response is returned

2 Send-only, where data is sent to the e*Gate system but no data is returned

3 Receive, where an external system connects to the e*Gate system and allows for the
delivery unsolicited Events

This section discusses how to use the Multiplexer to exchange data with an e*Gate
system.

6.1.1 Multiplexer Overview

Request Reply

Figure 36 The Multiplexer concept

External
Application

e*Gate
Request

Reply

Processing
e*Gate API Kit Developer’s Guide 105 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Implementing the Multiplexer e*Way Implementing the Multiplexer Models
The external system uses API-kit client components to send the data to the multiplexing
e*Way using an SeeBeyond-proprietary IP-based protocol. Depending on the external
system’s requirements and capabilities, these client components can be single- or multi-
threaded.

Figure 37 illustrates how the multiplexing e*Way receives data from an external
application and returns processed data to the same application.

Figure 37 Data flow through the Multiplexing e*Way

Client threads within the e*Way package the data as e*Gate Events, adding a 24-byte
header. Among other functions, this header provides "return address" information that
can optionally be used to return data to the client thread that originated it.

T T T T

CC C C C

CT CT CT CT

External
System

External
System

Multiplexing
e*Way

Multiplexing
e*Way

Threads
Threads

Client
Threads

Client
Threads

Collabor-
ations

Collabor-
ations

Events
Events

Events with
24-byte
Headers

Events with
24-byte
Headers

To & From Other e*Gate Components
To & From Other e*Gate Components

1

2

3

4

5

e*Gate API Kit Developer’s Guide 106 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Implementing the Multiplexer e*Way Implementing the Multiplexer Models
Each e*Way can handle up to 1,000 client threads at once. If your requirements demand
more processing power, you can define more multiplexing e*Ways.

Collaborations within the e*Way perform any appropriate processing that may be
required, and route the processed Events to other destinations.

Note: The 24-byte header must be preserved as the Events are processed through the
e*Gate system.

The e*Way can also route information back to the thread on the external system that
sent the original data.

Processed data, still containing the original 24-byte header, is returned to the
multiplexing e*Way.

The e*Way uses the 24-byte "return address" to identify the destination of the data to be
returned to the external system.

The e*Way returns the data, minus the 24-byte header, to the external system.

6.1.2 Multiplexer Request/Reply Sample Schema
Request/Reply schemas have two classes of components:

1 “Front end” components that handle communications with the external application.
These components receive requests and route replies to the correct destination.

2 “Back end” components that process the requests and compose the replies. These
components also provide the bridge between the e*Gate system and your existing
systems.

The multiplexing e*Way and its related Collaborations comprise the front-end
components. Additional e*Ways and their related Collaborations comprise the back-
end components. The backend e*Way(s) can be of any type required to communicate
with the external system(s).
e*Gate API Kit Developer’s Guide 107 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Implementing the Multiplexer e*Way Implementing the Multiplexer Models
Figure 38 below illustrates a Request/Reply schema.

Figure 38 The Request/Reply schema

1 Data enters the e*Gate system through the multiplexing e*Way via the Request
Collaboration.

2 The Request Collaboration publishes the Request Event.

3 The BackendRequest Collaboration within the back-end e*Way subscribes to the
Request Event, and routes or processes the data as appropriate.

4 After the data has been processed, the back-end e*Way’s BackendReply
Collaboration publishes the data as the Reply Event.

Backend
External
System

Client Thread External
Application

BackendRequest
Collaboration

BackendReply
Collaboration

Backend
e*Way

AppRequest
Collaboration

AppReply
Collaboration

Multiplexing
e*Way

Request from
Application

Reply to
Application

Reply EventRequest Event

Data Formatted
for Processing by
External System

Processed Data
Returned to

e*Gate
e*Gate API Kit Developer’s Guide 108 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Implementing the Multiplexer e*Way Implementing the Multiplexer Models
5 The Reply Collaboration within the multiplexing e*Way subscribes to the Reply
Event.

6 The multiplexing e*Way returns the processed data to the requesting thread in the
external application.

6.1.3 ETDs, Collaboration Rules, and the “Return Address” Header
As discussed in “Request-Reply” on page 14, the multiplexing e*Way maintains
“return address” information in a 24-byte header that must be preserved as the data
flows through the e*Gate system.

The simplest Event Type Definition (ETD) that can be used within a Request/Reply
schema has two nodes: one for the header, the second for the remainder of the Event
data.

Figure 39 The simplest Request/Reply ETD

This ETD is sufficient if you wish to send data through the e*Gate system simply as a
blob. If your data has a more complex structure, add subnodes to the “data” node, then
describe the structure of the data within those subnodes. Figure 39 below illustrates an
ETD that describes delimited data (for example, as in the data “First name^Last
name”).

Figure 40 A Request/Reply ETD for delimited data

Collaboration Rules that manipulate data between ETDs must preserve the Request/
Reply header (in the figures above, “RRheader”). Be sure that each Collaboration Rule
that manipulates Request/Reply data copies the contents of the Request/Reply header
from the source ETD to the target ETD (as shown in Figure 41 below).
e*Gate API Kit Developer’s Guide 109 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Implementing the Multiplexer e*Way Implementing the Multiplexer Models
Figure 41 Copying the Request/Reply header

6.1.4 Using the C APIs
The C application must do the following:

1 Load the following header files (located on the installation CD in the SDK folder at
root)

gendefs.h, tracelog.h, ewipmpclnt.h

2 Link the stc_ewipmpclnt.dll and the stc_common.dll at compile time.

3 Use the EWIPMP_Open function to open a connection to the multiplexer e*way.

4 Get the data from the user.

5 Format the data as appropriate to be processed by e*Gate.

6 Use the EWIPMP_Send function to send data to the e*Gate system.

7 Use the EWIPMP_Wait function to cause execution to pause long enough for e*Gate
to process and return the data.

8 Use the EWIPMP_Free function to free the memory associated with the returned
data in the message buffer.

9 Close the connection using the EWIPMP_Close function

6.1.5 Using the Java APIs
The Java application must do the following:

1 Load the com.stc.ewip package

2 Create an instance of the IPMPReqReply “mux” object

3 Define the host name, TCP/IP port, expiration time, and timeout using the “set”
methods (described beginning with “setHost” on page 40)

4 Use the connect method (see “connect” on page 31) to open a connection to the
multiplexing e*Way

5 Get the data from the user

6 Assemble the data to be sent to e*Gate in an appropriate format
e*Gate API Kit Developer’s Guide 110 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Implementing the Multiplexer e*Way Implementing the Multiplexer Models
7 Use the sendMessage method (see “sendMessage” on page 39) to send the request
to the e*Gate system

8 Use one of the getResponse methods (such as “getResponse” on page 35) to
retrieve the response from the e*Gate system.

9 Close the connection using the disconnect method (see “disconnect” on page 32)

A commented sample.java file is available on the e*Gate installation CD-ROM; see
“Sample Implementation” on page 114 for more information.

6.1.6 Using the ActiveX Control Within VBasic Applications
The Visual Basic application must do the following:

1 Create an instance of the ActiveX “MUX” object

2 Define the host name and TCP/IP port numbers

3 Use the Connect method (see “Connect” on page 20) to open a connection to the
e*Gate system

4 Get the data from the user

5 Format the data as appropriate to be processed by e*Gate

6 Use the Send method (see “Send” on page 27) to send data to the e*Gate system

7 Use the Wait method (see “Wait” on page 28) to cause the executing thread to pause
long enough for e*Gate to process and return the data

8 Use one of the “ReplyMessageAs” methods (such as “ReplyMessageAsString” on
page 25) to display the returned data

9 Handle errors using one of the “LastError” methods (such as “LastErrorCode” on
page 22)

10 Close the connection using the Disconnect method (see “Disconnect” on page 21)

Additional information can be found in commented sample files (see “Sample
Implementation” on page 114 for more information).

6.1.7 Using Perl APIs
The Perl script must do the following:

1 Use the Multiplexer_Init subroutine (see “Multiplexer_Init” on page 67) to specify
the location of the stc_ewipmpclntperl.pm and stc_ewipmpclntjperl.so files

2 Define the host name and TCP/IP port numbers

3 Format the user data as appropriate for processing within e*Gate

4 Use the Multiplexer_Open subroutine (see “Multiplexer_Open” on page 68) to
open a connection to the e*Gate Participating Host

5 Use the Multiplexer_Send subroutine (see “Multiplexer_Send” on page 69) to send
data to the e*Gate Participating Host
e*Gate API Kit Developer’s Guide 111 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Implementing the Multiplexer e*Way Using the Cobol APIs
6 Use the Multiplexer_Wait subroutine (see “Multiplexer_Wait” on page 71) to cause
the Perl script to pause long enough for e*Gate to process and return the data

7 Use the Multiplexer_ToString subroutine (see “Multiplexer_ToString” on page 70)
to obtain the returned data and display it within the user’s browser

8 Use the Multiplexer_Free subroutine (see “Multiplexer_Free” on page 66) to free
the memory associated with the returned data

9 Close the connection using the Multiplexer_Close subroutine (see
“Multiplexer_Close” on page 65)

6.2 Using the Cobol APIs
The following code demonstrates a sample set of actions:

1 The MUXxxx load module must be included in the link step when the calling
program is compiled. For CICS only: the CICS IP socket routines should be
included in the same link step.

2 Call “MUXxxx” with the appropriate parameters to establish a connection to the
multiplexer e*Way.

3 Call “MUXxxxS” to SEND data to e*Gate, passing the data and its length as
specified in the parameter list.

4 Call “MUXxxxR” to RECEIVE data from e*Gate; the length of the data received is
returned by the API. Use the MUXAPI-hsecs-to-wait parameter to cause the
execution to pause long enough for e*Gate to process and return the data.

5 Repeat the SEND and RECEIVE as desired to continue passing and receiving data.

6 Call “MUXxxxC” to close the connection.

Note: Where MUXxxx is MUXAPI for CICS, MUXIMS for IMS, and MUXBAT for
Batch.

Note: Once the connection has been opened successfully, if any of the subsequent
functions fail, the connection must be closed before continuing.

The following Cobol “client” program illustrates a simple Open-Send-Receive-Close
scenario, in which a seventeen character text message (hard-coded in working storage
in this example), is sent to the e*Gate “server”, and waits one second to receive a
response.

Note: Where in the following program, MUXxxx is MUXAPI for CICS, MUXIMS for
IMS, and MUXBAT for Batch.

000011 Identification Division.
000012*==*
000013 Program-id. MUXCLI.
000014
000015*==*
000016 Environment Division.
e*Gate API Kit Developer’s Guide 112 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Implementing the Multiplexer e*Way Using the Cobol APIs
000017*==*
000018
000019*==*
000020 Data Division.
000021*==*
000022
000030 WORKING-STORAGE SECTION.
000031
000670*==*
000680* Variables used for the MUXAPI function calls *
000690*==*
000691
000693 01 MUXAPI-handle pic s9(8) binary value +0.
000694* move host name to this field:
000695 01 MUXAPI-remote-host pic x(24) value 'remote.host.name'.
000696* default port:
000697 01 MUXAPI-remote-port pic 9(8) binary value 26051.
000698 01 MUXAPI-message-len pic 9(8) binary.
000700 01 MUXAPI-secs-to-expire pic 9(8) binary.
000701 01 MUXAPI-returnmsg-len pic 9(8) binary.
000703 01 MUXAPI-hsecs-for-ack pic 9(8) binary value 100.
000710 01 MUXAPI-errno pic 9(8) binary value 0.
000711 01 MUXAPI-retcode pic s9(8) binary value +0.
000712
000713*==*
000714* misc
000720*==*
000730
000740 01 test-message pic x(17) value 'Hello From MUXCLI'.
000741 01 MUXAPI-message pic x(32727) value spaces.
000742 01 MUXAPI-returnmsg pic x(32727) value spaces.
000750
000760*==*
002002 PROCEDURE DIVISION.
002003*==*
002004
002005 Main.
002010 perform MUXAPI-open-connection
002011 if MUXAPI-retcode < 0
002012 go to exit-program
002013 end-if
002014
002015 move test-message to MUXAPI-message
002016 move 17 to MUXAPI-message-len
002017
002020 perform MUXAPI-send-message
002022 if MUXAPI-retcode >= 0
002030 perform MUXAPI-receive-response
002040 end-if
002041
002050 perform MUXAPI-close-connection.
002051
002052 exit-program.
002053 exec CICS return
002060 end-exec
002061 exit program.
002070
002090 MUXAPI-open-connection.
002102 call "MUXxxx" using
002105 MUXAPI-handle
002106 MUXAPI-remote-host
002107 MUXAPI-remote-port
002108 MUXAPI-errno
002109 MUXAPI-retcode.
002200
005200 MUXAPI-send-message.
005221 call "MUXxxxS" using
005223 MUXAPI-handle
005240 MUXAPI-message-len
005241 MUXAPI-message
005243 MUXAPI-hsecs-for-ack
005244 MUXAPI-errno
e*Gate API Kit Developer’s Guide 113 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Implementing the Multiplexer e*Way Sample Implementation
005250 MUXAPI-retcode.
005291
005300 MUXAPI-receive-response.
005311 call "MUXxxxR" using
005313 MUXAPI-handle
005314 MUXAPI-returnmsg-len
005315 MUXAPI-returnmsg
005318 MUXAPI-hsecs-to-wait
005319 MUXAPI-errno
005320 MUXAPI-retcode.
005330
005500 MUXAPI-close-connection.
005503 call "MUXxxxC" using
005505 MUXAPI-handle
005506 MUXAPI-errno
005509 MUXAPI-retcode

6.3 Sample Implementation
A sample implementation is available in the samples directory of the e*Gate CD-ROM.
Navigate to the directory

samples/ewmux

and follow the directions in the README file in that directory.

In the demonstration schema, the back end is provided by a TCP/IP e*Way that applies
data-manipulation Collaboration Rules and a Loopback e*Way that sends the TCP/IP
e*Way’s output back into the e*Gate system.

If you use the Enterprise Manager to examine the sample schema, note that the
Loopback e*Way has no Collaborations; the Loopback e*Way requires none to perform
its “loopback” function.

Note: The TCP/IP e*Way used in the demonstration schema was developed specifically for
this use. A general-purpose TCP/IP e*Way is also available for other uses; contact
SeeBeyond for more information.
e*Gate API Kit Developer’s Guide 114 SeeBeyond Proprietary and Confidential

Chapter 7

Client Libraries for the e*Gate Message
Service

7.1 The Java APIs
The JMS API Javadocs can be downloaded from:

http://java.sun.com/products/jms/docs.html

7.2 Supported Java Message Service (JMS) Classes
The e*Gate Message Service e*Way contains Java methods that are used to extend the
functionality of the e*Way. These methods are contained in the following classes:

The current implementation of JMS Java APIs within the e*Gate API Kit support the
following classes:

7.2.1 com.seebeyond.jms.client.STCTopicRequestor
Helper class to simplify making service requests.

Methods of the STCTopicRequestor Object

The STCTopicRequestor Method

Constructs the TopicRequestor.

STCTopicRequestor(Session session, Topic topic)

The Request Method

Send a request and wait for a reply

public com.seebeyond.jms.client.Message
request(com.seebeyond.jms.client.Message message)
throws com.seebeyond.jms.client.JMSException

Name Description

session The name of the topic session.

topic The name of the topic.
e*Gate API Kit Developer’s Guide 115 SeeBeyond Proprietary and Confidential

http://java.sun.com/products/jms/docs.html

Chapter 7 Section 7.2
Client Libraries for the e*Gate Message Service Supported Java Message Service (JMS) Classes
Throws
com.seebeyond.jms.client.JMSException

The Request Method

Send a request and wait for a reply

public com.seebeyond.jms.client.Message
request(com.seebeyond.jms.client.Message message long l)
throws com.seebeyond.jms.client.JMSException

The CloseMethod

Since a provide may allocate resources on behalf of an STCTopicRequestor outside of
the JMV, clients should close them, when they are not needed.

void close()
throws com.seebeyond.jms.client.JMSException

7.2.2 com.seebeyond.jms.STCQueueRequestor
Helper class to simplify making service requests.

Methods of the STCQueueRequestor Object

The STCQueueRequestor Method

Construct the QueueRequestor.

STCQueueRequestor(com.seebeyond.jms.client.QueueSession queuesession,
com.seebeyond.jms.client.Queue queue1)

The Request Method

The Request method sends a request and waits for a reply.

public com.seebeyond.jms.client.Message
request(com.seebeyond.jms.client.Message message)

throws com.seebeyond.jms.client.JMSException

Name Description

message The message text.

Name Description

message The message text.

l The amount of time to wait for a message in
milliseconds.

Name Description

queuesession The QueueSession.

queue1 Queue name.
e*Gate API Kit Developer’s Guide 116 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Client Libraries for the e*Gate Message Service Supported Java Message Service (JMS) Classes
The Request Method

The Request method sends a request and waits for a reply.

public com.seebeyond.jms.client.Message
request(com.seebeyond.jms.client Message message, long l)

7.2.3 class javax.jms.JMSException
public class JMSException

extends java.lang.Exception

This is the root class of all JMS API exceptions.

This class provides the following information:

! A provider-specific string describing the error. This string is the standard exception
message and is available via the getMessage method.

! A provider-specific string error code

! A reference to another exception. Often a JMS API exception will be the result of a
lower-level problem. If appropriate, this lower-level exception can be linked to the
JMS API exception.

The JMSException Method

Construct a JMSException with reason and errorCode for the exception.

public JMSException(java.lang.String reason,
java.lang.String errorCode)

The JMSException Method

Construct a JMSException with a reason and with error code defaulting to null.

public JMSException(java.lang.String reason)

Name Description

message The message.

Name Description

message The message.

l The amount of time to wait for a message in
milliseconds.

Name Description

reason A description of the exception

errorCode A string specifying the vendor specific error code.

Name Description

reason A description of the exception
e*Gate API Kit Developer’s Guide 117 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Client Libraries for the e*Gate Message Service Supported Java Message Service (JMS) Classes
The getErrorCode Method

Gets the vendor specific error code.

public java.lang.String getErrorCode()

The getLinkedException

Gets the exception linked to this exception.

public java.lang.Exception getLinkedException()

The setLinkedException

Adds a linked exception.

public void setLinkedException(java.lang.Exception ex)

7.2.4 class javax.jms.IllegalStateException
public class IllegalStateException

extends JMSException.

This exception is thrown when a method is invoked at an illegal or inappropriate time
or if the JMS IQ server is not in an appropriate state for the requested operation.

The IllegalStateException Method

Constructs an IllegalStateException with reason and errorCode for excpetion.

public IllegalStateException(java.lang.String reason,
java.lang.String errorCode)

The IllegalStateException Method

Constructs an IllegalStateException with reason. Error code defaults to null.

public IllegalStateException(java.lang.String reason)

7.2.5 class.javax.jms.InvalidClientIDException
public class InvalidClientIDException

extends JMSException.

This exception is thrown when a client attempts to set a connection's client ID to a value
that is rejected by JMS IQ server.

The InvalidClientIDException

Constructs an InvalidClientIDException with reason and errorCode for excpetion.

public InvalidClientIDExceptin(java.lang.String reason,
java.lang.String errorCode)

Name Description

ex The linked exception.

Name Description

reason A description of the exception

errorCode A string specifying the vendor specific error code.
e*Gate API Kit Developer’s Guide 118 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Client Libraries for the e*Gate Message Service Supported Java Message Service (JMS) Classes
The InvalidClientIDException

Constructs an InvalidClientIDException with reason. The error code defaults to null.

public InvalidClientIDException(java.lang.String reason)

7.2.6 class javax.jms.InvalidDestinationException
public class InvalidDestinationException

extends JMSException.

This exception is thrown when a destination either is not understood by the JMS IQ
server or is no longer valid.

The InvalidDestinationException Method

Constructs an InvalidDestinationException with reason and errorCode for excpetion.

public InvalidDestinationException(java.lang.String reason,
java.lang.String errorCode)

The InvalidDestinationException Method

Constructs an InvalidDestinationException with reason. The error code defaults to null.

public InvalidDestinationException(java.lang.String reason)

7.2.7 class javax.jms.InvalidSelectorException
public class InvalidSelectorException

extends JMSException.

This exception is thrown when a JMS client attempts to give the JMS IQ server a
message selector with invalid syntax.

The InvalidSelectorException Method

Constructs an InvalidSelectorException with reason and errorCode for exception.

public InvalidSelectorException(java.lang.String reason,
java.lang.String errorCode)

Name Description

reason A description of the exception

errorCode A string specifying the vendor specific error code.

Name Description

reason A description of the exception

Name Description

reason A description of the exception

errorCode A string specifying the vendor specific error code.

Name Description

reason A description of the exception
e*Gate API Kit Developer’s Guide 119 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Client Libraries for the e*Gate Message Service Supported Java Message Service (JMS) Classes
The InvalidSelectorException Method

Constructs an InvalidSelectorException with reason. The error code defaults to null.

public InvalidSelectorException(java.lang.String reason)

7.2.8 class javax.jms.JMSSecurityException
public class JMSSecurityException

extends JMSException

This exception is thrown when JMS IQ server rejects a user name/password submitted
by a client. It is also thrown when any case of a security restriction prevents a method
from completing.

The JMSSecurityException Method

Constructs a JMSSecurityException with reason.

public JMSSecurityExcpetion(java.lang.String reason,
java.lang.String errorCode)

The JMSSecurityException Method

Constructs a JMSSecurityException with reason. Error code default to null.

7.2.9 class javax.jms.MessageEOFException
public class MessageEOFException

extends JMSException

This exception is thrown when an unexpected end of stream has been reached when a
StreamMessage or BytesMessage is being read.

The MessageEOFException Method

Constructs a MessageEOFException with reason and errorCode for exception.

public MessageEOFExceptin(java.lang.String reason,
java.lang.String errorCode)

Name Description

reason A description of the exception

errorCode A string specifying the vendor specific error code.

Name Description

reason A description of the exception

Name Description

reason A description of the exception

errorCode A string specifying the vendor specific error code.

Name Description

reason A description of the exception
e*Gate API Kit Developer’s Guide 120 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Client Libraries for the e*Gate Message Service Supported Java Message Service (JMS) Classes
The MessageEOFException

Constructs a MessageEOFException with reason. The error code defauls to null.

public MessageEOFExcpetion(java.lang.String reason)

7.2.10 class javax.jms.MessageFormatException
public class MessageFormatException

extends JMSException

This exception is thrown when a JMS client attempts to use a data type not supported by
a message or attempts to read data in a message as the wrong type. It is also thrown
when equivalent type errors are made with message property values. For example, this
exception is thrown if StreamMessage.writeObject is given an unsupported class or if
StreamMessage.readShort is used to read a boolean value. Note that the special case
of a failure caused by an attempt to read improperly formatted String data as numeric
values throw a java.lang.NumberFormatException.

The MessageFormatException Method

Constructs a MessageFormatException with reason and errorCode for exception.

public MessageFormatException(java.lang.String reason,
java.lang.String errorCode)

The MessageFormatExceptin

Constructs a MessageFormatExcecption with reason. The error code defauls to null.

public MessageFormatException(java.lang.String reason)

7.2.11 class javax.jms.MessageNotReadableException
public class MessageNotReadableException

extends JMSException.

This exception is thrown when a JMS client attempts to read a write-only message.

Name Description

reason A description of the exception

errorCode A string specifying the vendor specific error code.

Name Description

reason A description of the exception

Name Description

reason A description of the exception

errorCode A string specifying the vendor specific error code.

Name Description

reason A description of the exception
e*Gate API Kit Developer’s Guide 121 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Client Libraries for the e*Gate Message Service Supported Java Message Service (JMS) Classes
The MessageNotReadableException Method

Constructs a MessageNotReadable with reason and errorCode for exception.

public MessageNotReadable(java.lang.String reason,
java.lang.String errorCode)

The MessageNotReadable Method

Constructs a MessageNotReadable with reason. The error code defauls to null.

public MessageNotReadable(java.lang.String reason)

7.2.12 class javax.jms.MessageNotWriteableException
public class MessageNotWriteableException

extends JMSException

This exception is thrown when a JMS client attempts to write to a read-only message.

The MessageNotWriteableException Method

Constructs a MessageNotWriteableException with reason and errorCode for exception.

public MessageNotWriteableException(java.lang.String reason,
java.lang.String errorCode)

The MessageNotWriteableException Method

Constructs a MessageNotWriteableException with reason. The error code defauls to
null.

public MessageNotWriteableException(java.lang.String reason)

7.2.13 class javax.jms.ResourceAllocationException
public class ResourceAllocationException

extends JMSException

This exception is thrown when the JMS IQ server is unable to allocate the resources
required by a method. For example, this exception is thrown when a call to

Name Description

reason A description of the exception

errorCode A string specifying the vendor specific error code.

Name Description

reason A description of the exception

Name Description

reason A description of the exception

errorCode A string specifying the vendor specific error code.

Name Description

reason A description of the exception
e*Gate API Kit Developer’s Guide 122 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Client Libraries for the e*Gate Message Service Supported Java Message Service (JMS) Classes
TopicConnectionFactory.createTopicConnection fails due to a lack of JMS provider
resources.

The ResourceAllocationException Method

Constructs a ResourceAllocationException with reason and errorCode for exception.

public ResourceAllocationException(java.lang.String reason,
java.lang.String errorCode)

The ResourceAllocationException Method

Constructs a ResourceAllocationException with reason. The error code defauls to null.

public ResourceAllocationException(java.lang.String reason)

7.2.14 class javax.jms.TransactionInProgressException
public class TransactionInProgressException

extends JMSException

This exception is thrown when an operation is invalid because a transaction is in
progress. For instance, an attempt to call Session.commit when a session is part of a
distributed transaction will throw a TransactionInProgressException.

The TransactionInProgressException Method

Constructs a TransactionInProgressException with reason and errorCode for exception.

public TransactionInProgressException(java.lang.String reason,
java.lang.String errorCode)

The TransactionInProgressException Method

Constructs a TransactionInProgressException with reason. The error code defauls to
null.

public TransactionInProgressException(java.lang.String reason)

Name Description

reason A description of the exception

errorCode A string specifying the vendor specific error code.

Name Description

reason A description of the exception

Name Description

reason A description of the exception

errorCode A string specifying the vendor specific error code.

Name Description

reason A description of the exception
e*Gate API Kit Developer’s Guide 123 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
7.2.15 class javax.jms.TransactionRolledBackException
public class TransactionRolledBackException

extends JMSException

This exception is thrown when a call to Session.commit results in a rollback of the
current transaction.

The TransactionRolledBackException Method

Constructs a TransactionRolledBackExcxeption with reason and errorCode for
exception.

public TransactionRolledBackException(java.lang.String reason,
java.lang.String errorCode)

The TransactionRolledBackException Method

Constructs a TransactionRolledBackException with reason. The error code defauls to
null.

public TransactionRolledBackException(java.lang.String reason)

7.2.16 Unsupported JMS Classes
The current implementation of JMS Java APIs within the e*Gate API Kit DO NOT
support the following classes:

! class javax.jms.QueueRequestor

! class javax.jms.TopicRequestor

7.3 Supported JMS Interfaces
The current implementation of JMS APIs within the e*Gate API Kit support the
following interfaces:

7.3.1 interface javax.jms.Connection
public interface Connection

A Connection object is a client's active connection to the JMS IQ manager. It typically
allocates JMS IQ manager resources outside the Java virtual machine (JVM).

A Connection serves several purposes:

Name Description

reason A description of the exception

errorCode A string specifying the vendor specific error code.

Name Description

reason A description of the exception
e*Gate API Kit Developer’s Guide 124 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
! It encapsulates an open connection with a JMS provider. It typically represents an
open TCP/IP socket between a client and a provider service daemon.

! Client authenticating takes place at it’s creation.

! It can specify an unique client identifier.

! It provides ConnectionMetaData.

! It supports an optional ExceptionListener.

The close Method

Closes the connection.

close()

The getClientID Method

Gets the client identifier for this connection.

public java.lang.String getClientID()
throwsJMSException

The getExceptionListener Method

Gets the ExceptionListener object for this connection.
public ExceptionListener getExceptionListener()

throws JMSException

The getMetaData Method

Gets the metadata for this connection.

public ConnectionMetaData getMetaData()
throws JMSException

The setClientID Method

Sets the client identifier for this connection.

public void setClientID(java.lang.String clientID)
throws JMSException

The setExceptionListener Method

Sets an exception listener for this connection.
public void setExceptionListener(ExceptionListener listener)

throws JMSException

The Start Method

Starts (or restarts) a connection's delivery of incoming messages. A call to start a
connection that has already been started is ignored.

Name Description

clientID The unique client identifier.

Name Description

listener The exception listener.
e*Gate API Kit Developer’s Guide 125 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
public void start()
throws JMSException

The Stop Method

Temporarily stops a connection's delivery of incoming messages. Delivery can be
restarted using the connection's start method.
public void stop()

throws JMSException

7.3.2 interface javax.jms.QueueConnection
public interface QueueConnection
extends Connection

A QueueConnection is an active connection to a JMS PTP provider. A client uses a
QueueConnection to create one or more QueueSessions for producing and consuming
messages.

The createQueueSession Method

Creates a QueueSession.

public QueueSession createQueueSession(boolean transacted,int
acknowledgeMode)

throws JMSException

Throws JMSException if JMS Connection fails to create a session due to some internal
error or lack of support for specific transaction and acknowledgement mode.

7.3.3 interface javax.jms.XAQueueConnection
public interface XAQueueConnection
extends XAConnection, QueueConnection

XAQueueConnection provides the same create options as QueueConnection (optional).
The only difference is that an XAConnection is by definition transacted.

createXAQueueSession

public XAQueueSession createXAQueueSession()
throws JMSException

Create an XAQueueSession.

Throws JMSException if JMS Connection fails to create a XA queue session due to some
internal error.

Name Description

transacted If true, the session is transacted.

acknowledeMode Indicates whether the consumer or the client will
acknowledge any any messages that it receives.
This parameter is ignored if the session is
transacted. Legal valuees are:
Session.AUTO_ACKNOWLEDGE,
Session.CLIENT_ACKNOWLEDGE and
Session.DUPS_OK_ACKNOWLEDGE.
e*Gate API Kit Developer’s Guide 126 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
createQueueSession

public QueueSession createQueueSession(boolean transacted, int
acknowledgeMode)

throws JMSException

Create an XAQueueSession.

Specified by

createQueueSession in interface QueueConnection

Throws JMSException if JMS Connection fails to create a XA queue session due to some
internal error.

7.3.4 interface javax.jms.TopicConnection
public interface TopicConnection

extends Connection

A TopicConnection object is an active connection to the JMS IQ server, used in the Pub/
Sub mode. A client uses a TopicConnection object to create one or more TopicSession
objects for producing and consuming messages.

The createTopicSession Method

Creates a TopicSession object.
public TopicSession createTopicSession(boolean transacted, int
acknowledgeMode)

throws JMSException

Throws JMSException if JMS Connection fails to create a session due to some internal
error or lack of support for specific transaction and acknowledgement mode.

7.3.5 interface javax.jms.XATopicConnection
public interface XATopicConnection

extends XAConnection, TopicConneciton

An XATopicConnection provides the same create options as TopicConnection
(optional). The only difference is that an XAConnection is by definition transacted.

Name Description

transacted ignored

acknowledgeMode ignored.

Name Description

transacted Indicates whether the session is transacted.

acknowledgeMode Indicates whether the consumer or the client will acknowledge
any messages it receives; ignored if the session is transacted.
Legal values are Session.AUTO_ACKNOWLEDGE,
Session.CLIENT_ACKNOWLEDGE, and
Session.DUPS_OK_ACKNOWLEDGE.
e*Gate API Kit Developer’s Guide 127 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
The createTopicSession Method

Creates an XATopicSession object.

public TopicSession createTopicSession(boolean transacted, int
acknowledgeMode)

throws JMSException

Throws JMSException if JMS Connection fails to create a XA topic session due to some
internal error.

createXATopicSession

Creates an XATopicSession.

public XATopicSession createXATopicSession()
throws JMSException

Throws JMSException if JMS Connection fails to create a XA topic session due to some
internal error.

Throws JMSException if JMS Connection fails to create a XA topic session due to some
internal error.

7.3.6 interface javax.jms.ConnectionFactory
public interface ConnectionFactory

A ConnectionFactory encapsulates a set of connection configuration parameters that
has been defined by an administrator. A client uses it to create a Connection with a JMS
provider. ConnectionFactory objects support concurrent use. A ConnectionFactory is a
JMS administered object.

JMS administered objects are objects containing JMS configuration information that are
created by a JMS administrator and later used by JMS clients. They make it practical to
administer JMS in the enterprise. Although the interfaces for administered objects do
not explicitly depend on JNDI, JMS establishes the convention that JMS clients find
them by looking them up in a JNDI namespace.

An administrator can place an administered object anywhere in a namespace. JMS does
not define a naming policy. It is expected that JMS providers will provide the tools that
the administrator needs to create and configure administered objects in a JNDI
namespace. JMS provider implementations of administered objects should be both
javax.jndi.Referenceable and java.io.Serializable so that they can be
stored in all JNDI naming contexts. In addition, it is recommended that these
implementations follow the JavaBeans(TM) design patterns.

This strategy provides several benefits:

Name Description

transacted Indicates whether the session is transacted. Ignored

acknowledgeMode Indicates whether the consumer or the client will acknowledge any
messages it receives; ignored if the session is transacted. Legal
values are Session.AUTO_ACKNOWLEDGE,
Session.CLIENT_ACKNOWLEDGE, and
Session.DUPS_OK_ACKNOWLEDGE. Ignored
e*Gate API Kit Developer’s Guide 128 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
! It hides provider-specific details from JMS clients.

! It abstracts JMS administrative information into Java objects that are easily
organized and administrated from a common management console.

! Since there will be JNDI providers for all popular naming services, this means JMS
providers can deliver one implementation of administered objects that will run
everywhere.

An administered object should not hold on to any remote resources. Its lookup should
not use remote resources other than those used by JNDI itself. Clients should think of
administered objects as local Java objects. Looking them up should not have any
hidden side affects or use surprising amounts of local resources.

7.3.7 interface javax.jms.QueueConnectionFactory
public interface QueueConnectionFactory
extends ConnectionFactory

A client uses a QueueConnectionFactory to create QueueConnections with a JMS PTP
provider.

The createQueueConnection Method

public QueueConnection createQueueConnection()
throws JMSException

Create a queue connection with default user identity. The connection is created in
stopped mode. No messages will be delivered until Connection.start method is
explicitly called.

Throws JMSException if JMS Provider fails to create Queue Connection due to some
internal error. required resources for a Queue Connection.

Throws JMSSecurityException if client authentication fails due to invalid user name or
password.

The createQueueConnection Method

public QueueConnection createQueueConnection(java.lang.String
userName, java.lang.String password)

throws JMSException

Create a queue connection with specified user identity. The connection is created in
stopped mode. No messages will be delivered until Connection.start method is
explicitly called.

Throws JMSException if JMS Provider fails to create Queue Connection due to some
internal error.

Throws JMSSecurityException if client authentication fails due to invalid user name or
password.

Name Description

userName The caller’s user name.

password The caller’s password.
e*Gate API Kit Developer’s Guide 129 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
7.3.8 interface javax.jms.XAConnectionFactory
public interface XAConnectionFactory

To include JMS transactions in a JTS transaction, an application server requires a JTS
aware JMS provider. A JMS provider exposes its JTS support using a JMS
XAConnectionFactory which an application server uses to create XASessions.

XAConnectionFactory's are JMS administered objects just like ConnectionFactory
objects. It is expected that application servers will find them using JNDI.

7.3.9 interface javax.jms.TopicConnectionFactory
public interface TopicConnectionFactory

extends ConnectionFactory

A client uses a TopicConnectionFactory object to create TopicConnection objects with
the JMS IQ manager, while implementing Pub/Sub mode.

The createTopicConnection Method

Creates a topic connection with the default user identity. The connection is created in
stopped mode. No messages will be delivered until the Connection.start method is
explicitly called.

public TopicConnection createTopicConnection()
throws JMSException

Throws JMSException if JMS Provider fails to create a Topic Connection due to some
internal error.

Throws JMSSecurityException if client authentication fails due to invalid user name or
password.

The createTopicConnection Method

Creates a topic connection with the specified user identity. The connection is created in
stopped mode. No messages will be delivered until the Connection.start method is
explicitly called.

public TopicConnection createTopicConnection(java.lang.String
userName, java.lang.String password)

throws JMSException

Throws JMSException if JMS Provider fails to create a Topic Connection due to some
internal error.

Throws JMSSecurityException if client authentication fails due to invalid user name or
password.

7.3.10 interface javax.jms.XATopicConnectionFactory
public interface XATopicConnectionFactory

extends XAConnectionFactory, TopicConnecitonFactory

Name Description

userName The caller's user name.

password The caller's password
e*Gate API Kit Developer’s Guide 130 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
An XATopicConnectionFactory provides the same create options as a
TopicConnectionFactory (optional).

The createXATopicConnection Method

Creates a XA topic connection with the default user identity. The connection is created
in stopped mode. No messages will be delivered until the Connection.start method
is explicitly called.

public XATopicConnection createXATopicConnection()
throws JMSException

Throws JMSException if JMS Provider fails to create XA topic Connection due to some
internal error.

Throws JMSSecurityException if client authentication fails due to invalid user name or
password.

The createXATopicConneciton Method

Creates a XA topic connection with the specified user identity. The connection is created
in stopped mode. No messages will be delivered until the Connection.start method is
explicitly called.

public XATopicConnection createXATopicConnection(java.lang.String
userName, java.lang.String password)

throws JMSException

Throws JMSException if JMS Provider fails to create XA topi connection due to some
internal error.

Throws JMSSecurityException if client authentication fails due to invalid user name or
password.

7.3.11 interface javax.jms.ConnectionMetaData
public interface ConnectionMetaData

A ConnectionMetaData object provides information describing the Connection object.

The getJMSVersion Method

public java.lang.String getJMSVersion()
throws JMSException

Get the JMS version.

Throws JMSException if some internal error occurs in JMS implementation during the
meta-data retrieval.

The getJMSMajorVersion Method

Gets the JMS major version number.

public int getJMSMajorVersion()
throws JMSException

Name Description

userName The caller's user name.

password The caller's password
e*Gate API Kit Developer’s Guide 131 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
Throws JMSException if some internal error occurs in JMS implementation during the
meta-data retrieval.

The getJMSMinorVersion Method

Gets the JMS minor version number.

public int getJMSMinorVersion()
throws JMSException

Throws JMSException if some internal error occurs in JMS implementation during the
meta-data retrieval.

The getJMSProviderName Method

Gets the JMS provider name.

public java.lang.String getJMSProviderName()
throws JMSException

Throws JMSException if some internal error occurs in JMS implementation during the
meta-data retrieval.

The getProviderVersion Method

Gets the JMS provider version.

public java.lang.String getProviderVersion()
throws JMSException

Throws JMSException if some internal error occurs in JMS implementation during the
meta-data retrieval.

The getProviderMajorVersion Method

Gets the JMS provider major version number.

public int getProviderMajorVersion()
throws JMSException

Throws JMSException if some internal error occurs in JMS implementation during the
meta-data retrieval.

The getProviderMinorVersion Method

Gets the JMS provider minor version number.

public int getProviderMinorVersion()
throws JMSException

Throws JMSException if some internal error occurs in JMS implementation during the
meta-data retrieval.

The getJMSXPropertyNames Method

Gets an enumeration of the JMSX property names.

public java.util.Enumeration getJMSXPropertyNames()
throws JMSException

Throws JMSException if some internal error occurs in JMS implementation during the
property names retrieval.
e*Gate API Kit Developer’s Guide 132 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
7.3.12 interface javax.jms.DeliveryMode
public interface DeliveryMode

The delivery modes supported by the JMS API are PERSISTENT and
NON_PERSISTENT.

A client marks a message as persistent if it feels that the application will have problems
if the message is lost in transit. A client marks a message as non-persistent if an
occasional lost message is tolerable. Clients use delivery mode to tell the JMS IQ
manager how to balance message transport reliability throughput.

Delivery mode only covers the trasport of the message to its destination. Retention of a
message at the destination until its receipt is acknowledged is not guaranteed by a
PERSISTENT delivery mode. Clients should assume that message retention policies are
set administratively. Message retention policy governs the reliability of message
delivery from destination to message consumer. For example, if a client’s message
storage space is exhausted, some messages as defined by a site specific message
retention policy may be dropped.

A message is guaranteed to be delivered once-and-only-once by a JMS Provider if the
delivery mode of the message is persistent and if the destination has a sufficient
message retention policy.

NON_PERSISTENT Field

This is the lowest overhead delivery mode because it does not require that the message
be logged to stable storage. The level of JMS provider failure that causes a
NON_PERSISTENT message to be lost is not defined.

A JMS provider must deliver a NON_PERSISTENT message with an at-most-once
guarantee. This means it may lose the message but it must not deliver it twice.

public static final int NON_PERSISTENT

PERSISTENT Field

This mode instructs the JMS provider to log the message to stable storage as part of the
client’s send operation. Only a hard media failure should cause a PERSISTENT
message to be lost.

7.3.13 interface javax.jms.Destination
public interface Destination

A Destination object encapsulates a JMS IQ manager-specific address. public interface.

7.3.14 interface javax.jms.Queue
public interface Queue

extends Destination

A Queue object encapsulates a provider-specific queue name. In this manner, a client
specifies the identity of queue to JMS methods. The actual length of time messages are
held by a queue and the consequences of resource overflow are not defined by JMS.

The getQueueName Method

public java.lang.String getQueueName()
e*Gate API Kit Developer’s Guide 133 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
throws JMSException

Get the name of this queue. Clients that depend upon the name, are not portable.

Throws JMSException if JMS implementation for Queue fails to to return queue name
due to some internal error.

The toString Method

public java.lang.String toString()

Return a pretty printed version of the queue name

Overrides:

toString in class java.lang.Object

7.3.15 interface javax.jms.TemporaryQueue
public interface TemporaryQueue

extends Queue

A TemporaryQueue is a unique Queue object created for the duration of a
QueueConnection. It is a system defined queue that can only be consumed by the
QueueConnection that created it.

The delete Method

public void delete()
throws JMSException

Delete this temporary queue. If there are still existing senders or receivers still using it,
then a JMSException will be thrown.

Throws JMSException if JMS implementation fails to delete a Temporary topic due to
some internal error.

7.3.16 interface javax.jms.Topic
public interface Topic

extends Destination

A Topic object encapsulates a provider-specific topic name. The topic object provides
the means for a client to specify the identity of a topic to JMS methods.

Many Pub/Sub implementations group topics into hierarchies and provide various
options for subscribing to parts of the hierarchy. JMS places no restriction on what a
Topic object represents.

The getTopicName Method

Gets the name of this topic.

public java.lang.String getTopicName()
throws JMSException

Throws JMSException if JMS implementation for Topic fails to to return topic name due
to some internal error.

The toString Method

Returns a string representation of this object.
e*Gate API Kit Developer’s Guide 134 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
public java.lang.String toString()

Overrides:

toString in class java.lang.Object

7.3.17 interface javax.jms.TemporaryTopic
public interface TemporaryTopic

extends Topic

A TemporaryTopic object is a unique Topic object created for the duration of a
TopicConnection. It is a system-defined topic that can be consumed only by the
TopicConnection that created it.

The delete Method

Deletes this temporary topic. If there are existing subscribers still using it, a JMSException
will be thrown.

public void delete()
throws JMSException

Throws JMSException if JMS implementation fails to delete a Temporary queue due to
some internal error.

7.3.18 interface javax.jms.ExceptionListener
public interface ExceptionListener

If the JMS IQ manager detects a serious problem with a Connection object, it informs
the Connection object's ExceptionListener, if one has been registered. It does this by
calling the listener's onException method, passing it a JMSException argument
describing the problem.

This allows a client to be asynchronously notified of a problem. Some Connections only
consume messages so they would have no other way to learn their Connection has
failed.

A JMS provider should attempt to resolve connection problems themselves prior to
notifying the client of them.

The onException Method

Notifies user of a JMS exception.

public void onException(JMSException exception)

7.3.19 interface javax.jms.Message
public interface Message

getJMSMessageID

The Message interface is the base interface of all JMS messages. It defines the message
header and the acknowledge method used for all messages.

JMS Messages are composed of the following parts:

Name Description

exception The JMS exception.
e*Gate API Kit Developer’s Guide 135 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
! Header - All messages support the same set of header fields. Header fields contain
values used by both clients and providers to identify and route messages.

! Properties - Each message contains a built-in facility for supporting application
defined property values. Properties provide an efficient mechanism for supporting
application defined message filtering.

! Body - JMS defines several types of message body which cover the majority of
messaging styles currently in use.

JMS defines five types of message body:

! Stream - a stream of Java primitive values. It is filled and read sequentially.

! Map - a set of name-value pairs where names are Strings and values are Java
primitive types. The entries can be accessed sequentially or randomly by name. The
order of the entries is undefined.

! Text - a message containing a java.util.String. The inclusion of this message type is
based on our presumption that XML will likely become a popular mechanism for
representing content of all kinds including the content of JMS messages.

! Object - a message that contains a Serializable java object

! Bytes - a stream of uninterpreted bytes. This message type is for literally encoding a
body to match an existing message format. In many cases, it will be possible to use
one of the other, easier to use, body types instead. Although JMS allows the use of
message properties with byte messages it is typically not done since the inclusion of
properties may affect the format.

The JMSCorrelationID header field is used for linking one message with another. It
typically links a reply message with its requesting message. JMSCorrelationID can hold
either a provider-specific message ID, an application-specific String or a provider-
native byte[] value.

A Message contains a built-in facility for supporting application defined property
values. In effect, this provides a mechanism for adding application specific header
fields to a message. Properties allow an application, via message selectors, to have a
JMS provider select/filter messages on its behalf using application-specific criteria.
Property names must obey the rules for a message selector identifier. Property values
can be boolean, byte, short, int, long, float, double, and String.

Property values are set prior to sending a message. When a client receives a message, its
properties are in read-only mode. If a client attempts to set properties at this point, a
MessageNotWriteableException is thrown. If clearProperties is called, the properties
can now be both read from and written to. Note that header fields are distinct from
properties. Header fields are never in a read-only mode.

A property value may duplicate a value in a message's body or it may not. Although
JMS does not define a policy for what should or should not be made a property,
application developers should note that JMS providers will likely handle data in a
message's body more efficiently than data in a message's properties. For best
performance, applications should only use message properties when they need to
customize a message's header. The primary reason for doing this is to support
customized message selection.
e*Gate API Kit Developer’s Guide 136 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
In addition to the type-specific set/get methods for properties, JMS provides the
setObjectProperty and getObjectProperty methods. These support the same set of
property types using the objectified primitive values. Their purpose is to allow the
decision of property type to made at execution time rather than at compile time. They
support the same property value conversions.

The setObjectProperty method accepts values of class Boolean, Byte, Short, Integer,
Long, Float, Double and String. An attempt to use any other class must throw a
JMSException.

The getObjectProperty method only returns values of class Boolean, Byte, Short,
Integer, Long, Float, Double and String.

The order of property values is not defined. To iterate through a message's property
values, use getPropertyNames to retrieve a property name enumeration and then use
the various property get methods to retrieve their values.

A message's properties are deleted by the clearProperties method. This leaves the
message with an empty set of properties.

Getting a property value for a name which has not been set returns a null value. Only
the getStringProperty and getObjectProperty methods can return a null value. The
other property get methods must throw a java.lang.NullPointerException if they are
used to get a non-existent property.

JMS reserves the `JMSX' property name prefix for JMS defined properties. The full set of
these properties is defined in the Java Message Service specification. New JMS defined
properties may be added in later versions of JMS. Support for these properties is
optional. The String[] ConnectionMetaData.getJMSXPropertyNames method returns
the names of the JMSX properties supported by a connection.

JMSX properties may be referenced in message selectors whether or not they are
supported by a connection. If they are not present in a message, they are treated like
any other absent property. property.

JSMX properties `set by provider on send' are available to both the producer and the
consumers of the message. JSMX properties `set by provider on receive' are only
available to the consumers.

JMSXGroupID and JMSXGroupSeq are simply standard properties clients should use if
they want to group messages. All providers must support them. Unless specifically
noted, the values and semantics of the JMSX properties are undefined.

JMS reserves the `JMS_' property name prefix for provider-specific properties. Each
provider defines there own value of . This is the mechanism a JMS provider uses to
make its special per message services available to a JMS client.

The purpose of provider-specific properties is to provide special features needed to
support JMS use with provider-native clients. They should not be used for JMS to JMS
messaging.

JMS provides a set of message interfaces that define the JMS message model. It does not
provide implementations of these interfaces.

Each JMS provider supplies a set of message factories with its Session object for
creating instances of these messages. This allows a provider to use implementations
tailored to their specific needs.
e*Gate API Kit Developer’s Guide 137 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
A provider must be prepared to accept message implementations that are not its own.
They may not be handled as efficiently as their own implementations; however, they
must be handled.

A JMS message selector allows a client to specify by message header the messages it's
interested in. Only messages whose headers match the selector are delivered. The
semantics of not delivered differ a bit depending on the MessageConsumer being used
(see QueueReceiver and TopicSubscriber).

Message selectors cannot reference message body values.

A message selector matches a message when the selector evaluates to true when the
message's header field and property values are substituted for their corresponding
identifiers in the selector.

A message selector is a String, whose syntax is based on a subset of the SQL92
conditional expression syntax.

The order of evaluation of a message selector is from left to right within precedence
level. Parenthesis can be used to change this order.

Predefined selector literals and operator names are written here in upper case; however,
they are case insensitive.

A selector can contain:

! Literals:

" A string literal is enclosed in single quotes with single quote represented by
doubled single quote such as `literal' and `literal''s'; like Java string literals these
use the unicode character encoding.

" An exact numeric literal is a numeric value without a decimal point such as 57, -
957, +62; numbers in the range of Java long are supported. Exact numeric
literals use the Java integer literal syntax.

" An approximate numeric literal is a numeric value in scientific notation such as
7E3, -57.9E2 or a numeric value with a decimal such as 7., -95.7, +6.2; numbers
in the range of Java double are supported. Approximate literals use the Java
floating point literal syntax.

" The boolean literals TRUE, true, FALSE and false.

! Identifiers:

" An identifier is an unlimited length sequence of Java letters and Java digits, the
first of which must be a Java letter. A letter is any character for which the
method Character.isJavaLetter returns true. This includes `_' and `$'. A letter or
digit is any character for which the method Character.isJavaLetterOrDigit
returns true.

" Identifiers cannot be the names NULL, TRUE, or FALSE.

" Identifiers cannot be NOT, AND, OR, BETWEEN, LIKE, IN, and IS.

" Identifiers are either header field references or property references.

" Identifiers are case sensitive.
e*Gate API Kit Developer’s Guide 138 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
" Message header field references are restricted to JMSDeliveryMode, MSPriority,
JMSMessageID, JMSTimestamp, JMSCorrelationID, and JMSType.
JMSMessageID, JMSCorrelationID, and JMSType values may be null and if so
are treated as a NULL value.

" Any name beginning with `JMSX' is a JMS defined property name.

" Any name beginning with `JMS_' is a provider-specific property name.

" Any name that does not begin with `JMS' is an application-specific property
name. If a property is referenced that does not exist in a message its value is
NULL. If it does exist, its value is the corresponding property value.

! Whitespace is the same as that defined for Java: space, horizontal tab, form feed and
line terminator.

! Expressions:

" A selector is a conditional expression; a selector that evaluates to true matches; a
selector that evaluates to false or unknown does not match.

" Arithmetic expressions are composed of themselves, arithmetic operations,
identifiers (whose value is treated as a numeric literal) and numeric literals.

" Conditional expressions are composed of themselves, comparison operations
and logical operations.

! Standard bracketing () for ordering expression evaluation is supported.

! Logical operators in precedence order: NOT, AND, OR

! Comparison operators: =, >, >=, <, <=, <> (not equal)

" Only like type values can be compared. One exception is that it is valid to
compare exact numeric values and approximate numeric values (the type
conversion required is defined by the rules of Java numeric promotion). If the
comparison of non-like type values is attempted, the selector is always false.

" String and boolean comparison is restricted to = and <>. Two strings are equal if
and only if they contain the same sequence of characters.

! Arithmetic operators in precedence order:

" +, - unary

" *, / multiplication and division

" +, - addition and subtraction

" Arithmetic operations on a NULL value are not supported; if they are
attempted, the complete selector is always false.

" Arithmetic operations must use Java numeric promotion.

! arithmetic-expr1 [NOT] BETWEEN arithmetic-expr2 and arithmetic-expr3
comparison operator

" age BETWEEN 15 and 19 is equivalent to age >= 15 AND age <= 19

" age NOT BETWEEN 15 and 19 is equivalent to age < 15 OR age > 19
e*Gate API Kit Developer’s Guide 139 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
" If any of the exprs of a BETWEEN operation are NULL the value of the
operation is false; if any of the exprs of a NOT BETWEEN operation are NULL
the value of the operation is true.

! identifier [NOT] IN (string-literal1, string-literal2,...) comparison operator where
identifer has a String or NULL value.

" Country IN (' UK', 'US', 'France') is true for `UK' and false for `Peru' it is
equivalent to the expression (Country = ' UK') OR (Country = ' US') OR
(Country = ' France')

" Country NOT IN (' UK', 'US', 'France') is false for `UK' and true for `Peru' it is
equivalent to the expression NOT ((Country = ' UK') OR (Country = ' US') OR
(Country = ' France'))

" If identifier of an IN or NOT IN operation is NULL the value of the operation is
unknown.

! identifier [NOT] LIKE pattern-value [ESCAPE escape-character] comparison
operator, where identifier has a String value; pattern-value is a string literal where
`_' stands for any single character; `%' stands for any sequence of characters
(including the empty sequence); and all other characters stand for themselves. The
optional escape-character is a single character string literal whose character is used
to escape the special meaning of the `_' and `%' in pattern-value.

" phone LIKE `12%3' is true for `123' `12993' and false for `1234'

" word LIKE `l_se' is true for `lose' and false for `loose'

" underscored LIKE `_%' ESCAPE `\' is true for `_foo' and false for `bar'

" phone NOT LIKE `12%3' is false for `123' `12993' and true for `1234'

" If identifier of a LIKE or NOT LIKE operation is NULL the value of the
operation is unknown.

! identifier IS NULL comparison operator tests for a null header field value, or a
missing property value.

" prop_name IS NULL

! identifier IS NOT NULL comparison operator tests for the existence of a non null
header field value or a property value.

" prop_name IS NOT NULL

JMS providers are required to verify the syntactic correctness of a message selector at
the time it is presented. A method providing a syntactically incorrect selector must
result in a JMSException.

The following message selector selects messages with a message type of car and color
of blue and weight greater than 2500 lbs:

"JMSType = `car' AND color = `blue' AND weight > 2500"

As noted above, property values may be NULL. The evaluation of selector expressions
containing NULL values is defined by SQL 92 NULL semantics. A brief description of
these semantics is provided here.
e*Gate API Kit Developer’s Guide 140 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
SQL treats a NULL value as unknown. Comparison or arithmetic with an unknown
value always yields an unknown value.

The IS NULL and IS NOT NULL operators convert an unknown value into the
respective TRUE and FALSE values.

When used in a message selector JMSDeliveryMode is treated as having the values
`PERSISTENT' and `NON_PERSISTENT'.

Although SQL supports fixed decimal comparison and arithmetic, JMS message
selectors do not. This is the reason for restricting exact numeric literals to those without
a decimal (and the addition of numerics with a decimal as an alternate representation
for an approximate numeric values). SQL comments are not supported.

DEFAULT_DELIVERY_MODE

The message producer’s default delivery mode is persistent.

public static final int DEFAULT_DELIVERY_MODE

DEFAULT_PRIORITY

The message producer’s default priority is 4.

public static final int DEFAULT_PRIORITY

DEFAULT_TIME_TO_LIVE

The message producer’s default time to live is unlimited, the message never expires.

public static final long DEFAULT_TIME_TO_LIVE

The getJMSMessageID Method

Gets the message ID. The messageID header field contains a value that uniquely
identifies each message sent by a provider. When a message is sent, messageID can be
ignored. When the send method returns it contains a provider-assigned value.

A JMSMessageID is a String value which should function as a unique key for
identifying messages in a historical repository. The exact scope of uniqueness is
provider defined. It should at least cover all messages for a specific installation of a
provider where an installation is some connected set of message routers.

All JMSMessageID values must start with the prefix `ID:'. Uniqueness of message ID
values across different providers is not required.

Since message IDs take some effort to create and increase the message size, some JMS
providers may be able to optimize message overhead if they are given a hint that
message ID is not used by an application. JMS message Producers provide a hint to
disable message ID. When a client sets a Producer to disable message ID they are saying
that they do not depend on the value of message ID for the messages it produces. These
messages must either have message ID set to null or, if the hint is ignored, messageID
must be set to its normal unique value.

public java.lang.String getJMSMessageID()
throws JMSException

Throws JMSException if JMS fails to get the message Id due to internal JMS error.
e*Gate API Kit Developer’s Guide 141 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
The setJMSMessageID Method

Sets this message’s ID. Providers set this field when a message is sent. This operation
can be used to change the value of a message that's been received.

public void setJMSMessageID(java.lang.String id)
throws JMSException

Throws JMSException if JMS fails to set the message Id due to internal JMS error.

The getJMSTimestamp Method

Gets this message’s timestamp. The JMSTimestamp header field contains the time a
message was handed off to a provider to be sent. It is not the time the message was
actually transmitted because the actual send may occur later due to transactions or
other client side queueing of messages.

public long getJMSTimestamp()
throws JMSException

Throws JMSException if JMS fails to get the Timestamp due to internal JMS error.

The setJMSTimestamp Method

Sets this message’s timestamp.

public void setJMSTimestamp(long timestamp)
throws JMSException

Throws JMSException if JMS fails to set the Timestamp due to internal JMS error.

The getJMSCorrelationIDAsBytes Method

Gets the correlation ID as an array of bytes for this message.

public byte[] getJMSCorrelationIDAsBytes()
throws JMSException

Throws JMSException if JMS fails to get correlationId due to some internal JMS error.

The setJMSCorrelationIDAsBytes Method

Sets the correlation ID as an array of bytes for this message. The array is copied before
the method returns, so future modifications to the array will not alter this message
header.

public void setJMSCorrelationIDAsBytes(byte[] correlationID)
throws JMSException

Throws JMSException if JMS fails to set correlationId due to some internal JMS error.

Name Description

id The identifier of the message.

Name Description

long timestamp Returns the messages timestamp.

Name Description

correlationID The correlation identifier value as an array of bytes.
e*Gate API Kit Developer’s Guide 142 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
The setJMSCorrelationID Method

Sets the correlation ID for the message.

public void setJMSCorrelationID(java.lang.String correlationID)
throws JMSException

JMSCorrelationID can hold one of the following:

! A provider-specific message ID

! An application-specific String

! A provider-native byte[] value

Since each message sent by the JMS IQ manager is assigned a message ID value, it is
convenient to link messages via message ID. All message ID values must start with the
'ID:' prefix.

Throws JMSException if JMS fails to set correlationId due to some internal JMS error.

The getJMSCorrelationID Method

Gets the correlation ID for the message.

public java.lang.String getJMSCorrelationID()
throws JMSException

Throws JMSException if JMS fails to get correlationId due to some internal JMS error.

The getJMSReplyTo Method

Gets the Destination object to which a reply to this message should be sent.

public Destination getJMSReplyTo()
throws JMSException

Throws JMSException if JMS fails to get ReplyTo Destination due to some internal JMS
error.

The setJMSReplyTo Method

Sets the Destination object to which a reply to this message should be sent. The replyTo
header field contains the destination where a reply to the current message should be
sent. If it is null no reply is expected. The destination may be either a Queue or a Topic.

public void setJMSReplyTo(Destination replyTo)
throws JMSException

Throws JMSException if JMS fails to set ReplyTo Destination due to some internal JMS
error.

Name Description

correlationID The message identifier of the message being referred to.

Name Description

replyTo The destination to send the response to for this message.
e*Gate API Kit Developer’s Guide 143 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
The getJMSDestination Method

Gets the Destination object for this message. The destination field contains the
destination to which the message is being sent. When a message is sent this value is
ignored. After completion of the send method it holds the destination specified by the
send. When a message is received, its destination value must be equivalent to the value
assigned when it was sent.

public Destination getJMSDestination()
throws JMSException

Throws JMSException if JMS fails to get JMS Destination due to some internal JMS
error.

The setJMSDestination Method

The JMS IQ manager sets this field when a message is sent. This method can be used to
change the value for a message that has been received.

public void setJMSDestination(Destination destination)
throws JMSException

Throws JMSException if JMS fails to set JMS Destination due to some internal JMS
error.

The getJMSDeliveryMode Method

Gets the DeliveryMode value specified for this message.

public int getJMSDeliveryMode()
throws JMSException

Throws JMSException if JMS fails to get JMS DeliveryMode due to some internal JMS
error.

The setJMSDeliveryMode Method

Sets the DeliveryMode value for this message.

public void setJMSDeliveryMode(int deliveryMode)
throws JMSException

Throws JMSException if JMS fails to set JMS DeliveryMode due to some internal JMS
error.

The getJMSRedelivered Method

Gets an indication of whether this message is being redelivered. If a client receives a
message with the redelivered indicator set, it is likely, but not guaranteed, that this
message was delivered to the client earlier but the client did not acknowledge its
receipt at that earlier time.

public boolean getJMSRedelivered()

Name Description

destination The destination for this message.

Name Description

deliveryMode The delivery mode for this message.
e*Gate API Kit Developer’s Guide 144 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
throws JMSException

Throws JMSException if JMS fails to get JMS Redelivered flag due to some internal JMS
error.

The setJMSRedelivered Method

Specifies whether this message is being redelivered. This field is set at the time the
message is delivered. This operation can be used to change the value of a message that's
been received.

public void setJMSRedelivered(boolean redelivered)
throws JMSException

Throws JMSException if JMS fails to set JMS Redelivered flag due to some internal JMS
error.

The getJMSType Method

Gets the message type identifier supplied by the client when the message was sent.

public java.lang.String getJMSType()
throws JMSException

The setJMSType Method

Sets the message type.

public void setJMSType(java.lang.String type)
throws JMSException

Throws JMSException if JMS fails to get JMS message type due to some internal JMS
error.

The setJMSType Method

Set the message type.

public void setJMSType(java.lang.String type)
throws JMSException

Throws JMSException if JMS fails to set JMS message type due to some internal JMS
error.

The getJMSExpiration Method

Gets the message's expiration value. When a message is sent, expiration is left
unassigned. After completion of the send method, it holds the expiration time of the

Name Description

redelivered An indication of whether this message is being redelivered.

Name Description

type The message type.

Name Description

type The class of the message.
e*Gate API Kit Developer’s Guide 145 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
message. This is the sum of the time-to-live value specified by the client and the GMT at
the time of the send.

If the time-to-live is specified as zero, expiration is set to zero which indicates the
message does not expire. When a message's expiration time is reached, a provider
should discard it. JMS does not define any form of notification of message expiration.

public long getJMSExpiration()
throws JMSException

Throws JMSException if JMS fails to get JMS message expiration due to some internal
JMS error.

The setJMSExpiration Method

Sets the message's expiration value.

public void setJMSExpiration(long expiration)
throws JMSException

Throws JMSException if JMS fails to set JMS message expiration due to some internal
JMS error.

The getJMSPriority Method

Gets the message's priority value. JMS defines a ten level priority value with 0 as the
lowest priority and 9 as the highest. In addition, clients should consider priorities 0-4 as
gradations of normal priority and priorities 5-9 as gradations of expedited priority.

public long getJMSPriority()
throws JMSException

Throws JMSException if JMS fails to get JMS message priority due to some internal JMS
error.

The setJMSPriority Method

Sets the priority level for this message.

public void setJMSPriority(int priority)
throws JMSException

Throws JMSException if JMS fails to set JMS message priority due to some internal JMS
error.

The clearProperties Method

Clears a message's properties. The message header fields and body are not cleared.

public void clearProperties()
throws JMSException

Throws JMSException if JMS fails to clear JMS message properties due to some internal
JMS error.

Name Description

expiration The messages expiration time.

Name Description

priority The default priority of this message.
e*Gate API Kit Developer’s Guide 146 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
The propertyExists Method

Queries whether a property value exists.

public boolean propertyExists(java.lang.String name)
throws JMSException

Throws JMSException if JMS fails to check if property exists due to some internal JMS
error.

The getBooleanProperty Method

Returns the value of the boolean property with the specified name.

public boolean getBooleanProperty(java.lang.String name)
throws JMSException

Throws JMSException if JMS fails to get Property due to some internal JMS error.

Throws MessageFormatException - if this type conversion is invalid.

The getByteProperty Method

Returns the value of the byte property with the specified name.

public byte getByteProperty(java.lang.String name)
throws JMSException

Throws JMSException if JMS fails to get Property due to some internal JMS error.

Throws MessageFormatException - if this type conversion is invalid.

The getShortProperty Method

Returns the value of the short property with the specified name.

public short getShortProperty(java.lang.String name)
throws JMSException

Throws JMSException if JMS fails to get Property due to some internal JMS error.

Throws MessageFormatException if this type conversion is invalid.

The getIntProperty Method

Returns the value of the int property with the specified name.

Name Description

name The name of the property to test.

Name Description

name The name of the boolean property.

Name Description

name The name of the byte property.

Name Description

name The name of the short property.
e*Gate API Kit Developer’s Guide 147 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
public int getIntProperty(java.lang.String name)
throws JMSException

Throws JMSException if JMS fails to get Property due to some internal JMS error.

Throw MessageFormatException if this type conversion is invalid.

The getLongProperty Method

Returns the value of the long property with the specified name.

public long getLongProperty(java.lang.String name)
throws JMSException

Throws JMSException if JMS fails to get Property due to some internal JMS error.

Throws MessageFormatException- if this type conversion is invalid.

The getFloatProperty Method

Returns the value of the float property with the specified name.

public float getFloatProperty(java.lang.String name)
throws JMSException

Throws JMSException if JMS fails to get Property due to some internal JMS error.

Throw MessageFormatException if this type conversion is invalid.

The getDoubleProperty Method

Returns the value of the double property with the specified name.

public double getDoubleProperty(java.lang.String name)
throws JMSException

Throws JMSException if JMS fails to get Property due to some internal JMS error.

Throws MessageFormatException if this type conversion is invalid.

The getStringProperty Method

Returns the value of the String property with the specified name.

public java.lang.String getStringProperty(java.lang.String name)
throws JMSException

Name Description

name The name of the int property.

Name Description

name The name of the long property.

Name Description

name The name of the float property.

Name Description

name The name of the double property.
e*Gate API Kit Developer’s Guide 148 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
Throws JMSException if JMS fails to get Property due to some internal JMS error.

Throws MessageFormatException if this type conversion is invalid.

The getObjectProperty Method

Returns the value of the Java object property with the specified name.

This method can be used to return, in objectified format, an object that has been stored
as a property in the message with the equivalent setObjectProperty method call, or its
equivalent primitive settypeProperty method.

public java.lang.Object getObjectProperty(java.lang.String name)
throws JMSException

Throws JMSException if JMS fails to get Property due to some internal JMS error.

The getPropertyNames Method

Returns an Enumeration of all the property names.

Note: The JMS standard header fields are not considered properties and are not returned in
this enumeration.

public java.util.Enumeration getPropertyNames()
throws JMSException

Throws JMSException if JMS fails to get Property names due to some internal JMS error.

The setBooleanProperty Method

Sets a boolean property value with the specified name into the message.

public void setBooleanProperty(java.lang.String name,boolean value)
throws JMSException

Throws JMSException if JMS fails to set Property due to some internal JMS error.

Throws MessageNotWriteableException - if properties are read-only

The setByteProperty Method

Sets a byte property value with the specified name into the message.

public void setByteProperty(java.lang.String name, byte value)
throws JMSException

Name Description

name The name of the String property.

Name Description

name The name of the Java object property.

Name Description

name The name of the boolean property.

value The boolean property value to set.
e*Gate API Kit Developer’s Guide 149 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
Throws JMSException if JMS fails to set Property due to some internal JMS error.

Throws MessageNotWriteableException if properties are read-only

The setShortProperty Method

Sets a short property value with the specified name into the message.

public void setShortProperty(java.lang.String name, short value)
throws JMSException

Throws JMSException if JMS fails to set Property due to some internal JMS error.

Throws MessageNotWriteableException if properties are read-only

The setIntProperty Method

Sets an int property value with the specified name into the message.

public void setIntProperty(java.lang.String name, int value)throws
JMSException

Throws JMSException if JMS fails to set Property due to some internal JMS error.

Throws MessageNotWriteableException if properties are read-only

The setLongProperty Method

Sets a long property value with the specified name into the message.

public void setLongProperty(java.lang.String name, long value)
throws JMSException

Throws JMSException if JMS fails to set Property due to some internal JMS error.

Throws MessageNotWriteableException if properties are read-only

Name Description

name The name of the byte property.

value The byte property value to set.

Name Description

name The name of the short property.

value The short property value to set.

Name Description

name The name of the int property.

value The int property value to set.

Name Description

name The name of the long property.

value The long property value to set.
e*Gate API Kit Developer’s Guide 150 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
The setFloatProperty Method

Sets a float property value with the specified name into the message.

public void setFloatProperty(java.lang.String name, float value)
throws JMSException

Throws JMSException if JMS fails to set Property due to some internal JMS error.

Throws MessageNotWriteableException if properties are read-only

The setDoubleProperty Method

Sets a double property value with the specified name into the message.

public void setDoubleProperty(java.lang.String name, double value)
throws JMSException

Throws JMSException if JMS fails to set Property due to some internal JMS error.

Throws MessageNotWriteableException if properties are read-only

The setStringProperty Method

Sets a String property value with the specified name into the message.

public void setStringProperty(java.lang.String name, java.lang.String
value)

throws JMSException

Throws JMSException if JMS fails to set Property due to some internal JMS error.

Throws MessageNotWriteableException if properties are read-only

The setObjectProperty Method

Sets a Java object property value with the specified name into the message.

Note: This method only works for the objectified primitive object types (Integer, Double,
Long ...) and Strings.

public void setObjectProperty(java.lang.String name, java.lang.Object
value)

throws JMSException

Name Description

name The name of the float property.

value The float property value to set.

Name Description

name The name of the double property.

value The double property value to set.

Name Description

name The name of the String property.

value The String property value to set.
e*Gate API Kit Developer’s Guide 151 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
Throws JMSException if JMS fails to set Property due to some internal JMS error.

Throws MessageFormatException if object is invalid

Throws MessageNotWriteableException if properties are read-only

The acknowledge Method

Acknowledges all consumed messages of the session of this consumed message. All
JMS messages support the acknowledge() method for use when a client has specified
that a JMS consumers messages are to be explicitly acknowledged.

JMS defaults to implicit message acknowledgement. In this mode, calls to
acknowledge() are ignored.

Acknowledgment of a message automatically acknowledges all messages previously
received by the session. Clients may individually acknowledge messages or they may
choose to acknowledge messages in application defined groups (which is done by
acknowledging the last received message in the group).

Messages that have been received but not acknowledged may be redelivered to the
consumer.

public void acknowledge()
throws JMSException

Throws JMSException if JMS fails to acknowledge due to some internal JMS error.

Throws IllegalStateException if this method is called on a closed session.

The clearBody Method

Clears out the message body. Clearing a message's body does not clear its header values
or property entries.

If this message body was read-only, calling this method leaves the message body in the
same state as an empty body in a newly created message.

public void clearBody()
throws JMSException

Throws JMSException if JMS fails to due to some internal JMS error.

7.3.20 interface javax.jms.BytesMessage
public interface BytesMessage
extends Message

A BytesMessage is used to send a message containing a stream of uninterpreted bytes.
It inherits Message and adds a bytes message body. The receiver of the message
supplies the interpretation of the bytes.

The readBoolean Method

Reads a boolean from the bytes message stream.

Name Description

name The name of the Java object property.

value The Java object property value to set.
e*Gate API Kit Developer’s Guide 152 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
public boolean readBoolean()
throws JMSException

Throws MessageNotReadableException if message in write-only mode.

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageEOFException if end of bytes stream

The readByte Method

Reads a signed 8-bit value from the bytes message stream.

public byte readByte()
throws JMSException

Throws MessageNotReadableException if message in write-only mode.

Throws MessageEOFException if end of message stream

Throws JMSException if JMS fails to read message due to some internal JMS error.

The readUnsignedByte Method

Reads an unsigned 8-bit number from the bytes message stream.
public int readUnsignedByte()

throws JMSException

Throws MessageNotReadableException if message in write-only mode.

Throws MessageEOFException if end of message stream

Throws JMSException if JMS fails to read message due to some internal JMS error.

The readShort Method

Reads a signed 16-bit number from the bytes message stream.

public short readShort()
throws JMSException

Throws MessageNotReadableException if message in write-only mode.

Throws MessageEOFException if end of message stream

Throws JMSException if JMS fails to read message due to some internal JMS error.

The readUnsignedShort Method

Reads an unsigned 16-bit number from the bytes message stream.
public int readUnsignedShort()

throws JMSException

Throws MessageNotReadableException if message in write-only mode.

Throws MessageEOFException if end of message stream

Throws JMSException if JMS fails to read message due to some internal JMS error.

The readChar Method

Reads a Unicode character value from the bytes message stream.

public char readChar()
throws JMSException

Throws MessageNotReadableException if message in write-only mode.
e*Gate API Kit Developer’s Guide 153 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
Throws MessageEOFException if end of message stream .

Throws JMSException if JMS fails to read message due to some internal JMS error.

The readInt Method

Reads a signed 32-bit integer from the bytes message stream.

public int readInt()
throws JMSException

Throws MessageNotReadableException if message in write-only mode.

Throws MessageEOFException if end of message stream

Throws JMSException if JMS fails to read message due to some internal JMS error.

The readLong Method

Reads a signed 64-bit integer from the bytes message stream.

public long readLong()
throws JMSException

Throws MessageNotReadableException if message in write-only mode.

Throws MessageEOFException if end of message stream

Throws JMSException if JMS fails to read message due to some internal JMS error.

The readFloat Method

Reads a float from the bytes message stream.

public float readFloat()
throws JMSException

Throws MessageNotReadableException if message in write-only mode.

Throws MessageEOFException if end of message stream

Throws JMSException if JMS fails to read message due to some internal JMS error.

The readDouble Method

Reads a double from the bytes message stream.

public double readDouble()
throws JMSException

Throws MessageNotReadableException if message in write-only mode.

Throws MessageEOFException if end of message stream .

Throws JMSException if JMS fails to read message due to some internal JMS error.

The readUTF Method

Reads a string that has been encoded using a modified UTF-8 format from the bytes
message stream.

public java.lang.String readUTF()
throws JMSException

Throws MessageNotReadableException if message in write-only mode.

Throws MessageEOFException if end of message stream .

Throws JMSException if JMS fails to read message due to some internal JMS error.
e*Gate API Kit Developer’s Guide 154 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
The readBytes Method

Reads a byte array from the bytes message stream. If the length of array value is less
than the bytes remaining to be read from the stream, the array should be filled. A
subsequent call reads the next increment, and so on.

If the bytes remaining in the stream is less than the length of array value, the bytes
should be read into the array. The return value of the total number of bytes read will be
less than the length of the array, indicating that there are no more bytes left to be read
from the stream. The next read of the stream returns -1.

public int readBytes(byte[] value)
throws JMSException

Throws MessageNotReadableException if message in write-only mode.

Throws JMSException if JMS fails to read message due to some internal JMS error.

The readBytes Method

Reads a portion of the bytes message stream. If the length of array value is less than the
bytes remaining to be read from the stream, the array should be filled. A subsequent
call reads the next increment, etc.

If the bytes remaining in the stream is less than the length of array value, the bytes
should be read into the array. The return value of the total number of bytes read will be
less than the length of the array, indicating that there are no more bytes left to be read
from the stream. The next read of the stream returns -1.

If length is negative, or length is greater than the length of the array value, then an
IndexOutOfBoundsException is thrown. No bytes will be read from the stream for this
exception case.

public int readBytes(byte[] value, int length)
throws JMSException

Throws MessageNotReadableException if message in write-only mode.

Throws JMSException if JMS fails to read message due to some internal JMS error.

The writeBoolean Method

Writes a boolean to the bytes message stream as a 1-byte value. The value true is written
as the value (byte)1; the value false is written as the value (byte)0.

public void writeBoolean(boolean value)
throws JMSException

Name Description

value The buffer into which the data is read.

Name Description

value The buffer into which the data is read.

length The number of bytes to read; must be less than or equal to
value.length
e*Gate API Kit Developer’s Guide 155 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
Throws MessageNotWriteableException if message in read-only mode.

Throws JMSException if JMS fails to write message due to some internal JMS error.

The writeByte Method

Writes a byte to the bytes message stream as a 1-byte value.

public void writeByte(byte value)
throws JMSException

Throws MessageNotWriteableException if message in read-only mode.

Throws JMSException if JMS fails to write message due to some internal JMS error.

The writeShort Method

Writes a short to the bytes message stream as two bytes, high byte first.

public void writeShort(short value)
throws JMSException

Throws MessageNotWriteableException if message in read-only mode.

Throws JMSException if JMS fails to write message due to some internal JMS error.

The writeChar Method

Writes a char to the bytes message stream as a 2-byte value, high byte first.

public void writeChar(char value)
throws JMSException

Throws MessageNotWriteableException if message in read-only mode.

Throws JMSException if JMS fails to write message due to some internal JMS error.

The writeInt Method

Writes an int to the bytes message stream as four bytes, high byte first.

public void writeInt(int value)
throws JMSException

Name Description

value The boolean value to be written.

Name Description

value The byte value to be written.

Name Description

value The short to be written.

Name Description

value The char value to be written.
e*Gate API Kit Developer’s Guide 156 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
Throws MessageNotWriteableException if message in read-only mode.

Throws JMSException if JMS fails to write message due to some internal JMS error.

The writeLong Method

Writes a long to the bytes message stream as eight bytes, high byte first.

public void writeLong(long value)
throws JMSException

Throws MessageNotWriteableException if message in read-only mode.

Throws JMSException if JMS fails to write message due to some internal JMS error.

The writeFloat Method

Converts the float argument to an int using the floatToIntBits method in class Float, and
then writes that int value to the bytes message stream as a 4-byte quantity, high byte
first.

public void writeFloat(float value)
throws JMSException

Throws MessageNotWriteableException if message in read-only mode.

Throws JMSException if JMS fails to write message due to some internal JMS error.

The writeDouble Method

Converts the double argument to a long using the doubleToLongBits method in class
Double, and then writes that long value to the bytes message stream as an 8-byte
quantity, high byte first.

public void writeDouble(double value)
throws JMSException

Throws MessageNotWriteableException if message in read-only mode.

Throws JMSException if JMS fails to write message due to some internal JMS error.

Name Description

value The int to be written.

Name Description

value The long to be written.

Name Description

value The float value to be written.

Name Description

value The double value to be written.
e*Gate API Kit Developer’s Guide 157 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
The writeUTF Method

Writes a string to the bytes message stream using UTF-8 encoding in a machine-
independent manner.

public void writeUTF(java.lang.String value)
throws JMSException

Throws MessageNotWriteableException if message in read-only mode.

Throws JMSException if JMS fails to write message due to some internal JMS error.

The writeBytes Method

Writes a byte array to the bytes message stream.

public void writeBytes(byte[] value)
throws JMSException

Throws MessageNotWriteableException if message in read-only mode.

Throws JMSException if JMS fails to write message due to some internal JMS error.

The writeBytes Method

Writes a portion of a byte array to the bytes message stream.

public void writeBytes(byte[] value, int offset, int length)
throws JMSException

Throws MessageNotWriteableException if message in read-only mode.

Throws JMSException if JMS fails to write message due to some internal JMS error.

The writeObject Method

Writes an object to the bytes message stream.

Note: This method only works for the objectified primitive object types (Integer, Double,
Long ...), Strings and byte arrays.

public void writeObject(java.lang.Object value)
throws JMSException

Name Description

value The String value to be written.

Name Description

value The byte array to be written.

Name Description

value The byte array value to be written.

offset The initial offset within the byte array.

length The number of bytes to use.
e*Gate API Kit Developer’s Guide 158 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
Throws NullPointerException if parameter value is null.

Throws MessageNotWriteableException if message in read-only mode.

Throws MessageFormatException if object is invalid type.

Throws JMSException if JMS fails to write message due to some internal JMS error.

The reset Method

Puts the message body in read-only mode and repositions the stream of bytes to the
beginning.

public void reset()
throws JMSException

Throws JMSException if JMS fails to reset the message due to some internal JMS error.

Throws MessageFormatException if message has an invalid format

7.3.21 interface javax.jms.MapMessage
public interface MapMessage
extends Message.

A MapMessage is used to send a set of name-value pairs, where names are Strings, and
values are Java primitive types. The entries are accessed sequentially or randomly by
name. The order of the entries is undefined. It inherits from Message, and adds a map
message body.

The primitive types can be read or written explicitly using methods for each type. They
may also be read or written generically as objects. For instance, a call to
MapMessage.setInt("foo", 6) is equivalent to MapMessage.setObject("foo", new
Integer(6)). Both forms are provided because the explicit form is convenient for static
programming and the object form is needed when types are not known at compile time.

When a client receives a MapMessage, it is in read-only mode. At this time, if the client
attempts to write to the message, a MessageNotWriteableException is thrown. If
clearBody is called, the message can now be both read from and written to.

The getBoolean Method

Returns the boolean value with the specified name.

public boolean getBoolean(java.lang.String name)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageFormatException if this type conversion is invalid.

Name Description

value The object in the Java programming language ("Java object") to be
written; it must not be null.

Name Description

name The name of the boolean.
e*Gate API Kit Developer’s Guide 159 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
The getByte Method

Returns the byte value with the specified name.

public byte getByte(java.lang.String name)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageFormatException if this type conversion is invalid.

The getShort Method

Returns the short value with the specified name.

public short getShort(java.lang.String name)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageFormatException if this type conversion is invalid.

The getChar Method

Returns the Unicode character value with the specified name.

public char getChar(java.lang.String name)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageFormatException if this type conversion is invalid.

The getInt Method

Returns the int value with the specified name.

public int getInt(java.lang.String name)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageFormatException if this type conversion is invalid.

The getLong Method

Returns the long value with the specified name.

Name Description

name The name of the byte.

Name Description

name The name of the short.

Name Description

name The name of the Unicode character.

Name Description

name The name of the int.
e*Gate API Kit Developer’s Guide 160 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
public long getLong(java.lang.String name)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageFormatException if this type conversion is invalid.

The getFloat Method

Returns the float value with the specified name.

public float getFloat(java.lang.String name)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageFormatException if this type conversion is invalid.

The getDouble Method

Returns the double value with the specified name.

public double getDouble(java.lang.String name)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageFormatException if this type conversion is invalid.

The getString Method

Returns the String value with the specified name.

public java.lang.String getString(java.lang.String name)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageFormatException if this type conversion is invalid.

The getBytes Method

Returns the byte array value with the specified name.

public byte[] getBytes(java.lang.String name)
throws JMSException

Name Description

name The name of the long.

Name Description

name The name of the float.

Name Description

name The double value with the specified name..

Name Description

name The name of the String.
e*Gate API Kit Developer’s Guide 161 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageFormatException if this type conversion is invalid.

The getObject Method

Returns the Java object value with the specified name.

public java.lang.Object getObject(java.lang.String name)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

The getMapNames Method

Returns an Enumeration of all the names in the MapMessage object.

public java.util.Enumeration getMapNames()
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

The setBoolean Method

Sets a boolean value with the specified name into the Map.

public void setBoolean(java.lang.String name, boolean value)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageFormatException if this type conversion is invalid.

The setByte Method

Sets a byte value with the specified name into the Map.

public void setByte(java.lang.String name, byte value)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageNotWriteableException if the message is in read-only mode.

Name Description

name The name of the byte array.

Name Description

name The name of the Java object.

Name Description

name The name of the boolean.

value The boolean value to set in the Map.

Name Description

name The name of the byte.

value The byte value to set in the Map.
e*Gate API Kit Developer’s Guide 162 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
The setShort Method

Sets a short value with the specified name into the Map.

public void setShort(java.lang.String name, short value)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageNotWriteableException if the message is in read-only mode.

The setChar Method

Sets a Unicode character value with the specified name into the Map.

public void setChar(java.lang.String name, char value)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageNotWriteableException if the message is in read-only mode.

The setInt Method

Sets an int value with the specified name into the Map.

public void setInt(java.lang.String name, int value)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageNotWriteableException if the message is in read-only mode.

The setLong Method

Sets a long value with the specified name into the Map.
public void setLong(java.lang.String name, long value)

throws JMSException

Name Description

name The name of the short.

value The short value to set in the Map.

Name Description

name The name of the Unicode character.

value The Unicode character value to set in the Map.

Name Description

name The name of the int.

value The int value to set in the Map.

Name Description

name The name of the long.

value The long value to set in the Map.
e*Gate API Kit Developer’s Guide 163 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageNotWriteableException if the message is in read-only mode.

The setFloat Method

Sets a float value with the specified name into the Map.

public void setFloat(java.lang.String name, float value)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageNotWriteableException if the message is in read-only mode.

The setDouble Method

Sets a double value with the specified name into the Map.

public void setDouble(java.lang.String name, double value)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageNotWriteableException if the message is in read-only mode.

The setString Method

Sets a String value with the specified name into the Map.

public void setString(java.lang.String name, java.lang.String value)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageNotWriteableException if the message is in read-only mode.

The setBytes Method

Sets a byte array value with the specified name into the Map.

public void setBytes(java.lang.String name, byte[] value)
throws JMSException

Name Description

name The name of the float.

value The float value to set in the Map.

Name Description

name The name of the double.

value The double value to set in the Map.

Name Description

name The name of the String.

value The String value to set in the Map.
e*Gate API Kit Developer’s Guide 164 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageNotWriteableException if the message is in read-only mode.

The setBytes Method

Sets a portion of the byte array value with the specified name into the Map.

public void setBytes(java.lang.String name, byte[] value, int offset,
int length)

throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageNotWriteableException if the message is in read-only mode.

The setObject Method

Sets a Java object value with the specified name into the Map.

public void setObject(java.lang.String name, java.lang.Object value)
throws JMSException

Note: This method only works for the obejectified primitive object types (Integer, Double,
Long...) Strings and byte arrarys.

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageFormatException if the object is invalid.

Throws MessageNotWriteableException if the message is in read-only mode.

The itemExists Method

Queries whether an item exists in this MapMessage object.

public boolean itemExists(java.lang.String name)
throws JMSException

Name Description

name The name of the byte array.

value The byte array value to set in the Map. The array is copied so that
the value for name will not be altered by future modifications.

Name Description

name The name of the byte array.

value The byte array value to set in the Map.

offset The initial offset within the byte array

length The number of bytes to use

Name Description

name The name of the Java object.

value The Java object value to set in the Map.
e*Gate API Kit Developer’s Guide 165 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
Throws JMSException if JMS fails to read message due to some internal JMS error.

7.3.22 interface javax.jms.ObjectMessage
public interface ObjectMessage

extends Message

An ObjectMessage is used to send a message that contains a serializable Java object. It
inherits from Message and adds a body containing a single Java reference. Only
Serializable Java objects can be used.

When a client receives an ObjectMessage, the object isin read-only mode. If an attemp is
made to write to the message, a MessageNotWriteableException is thrown. If clearBody
is called, the message can be both read from and written to.

The setObject Method

Sets the serializable object containing this message's data.

Important: An ObjectMessage contains a snapshot of the object at the time setObject is called.
Subsequent modifications of the object have no affect on the ObjectMessage body.

public void setObject(java.io.Serializable object)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MesssageFormatException if the object serialization fails.

Throws MessageNotWriteableException if the message is in read-only mode.

The getObject Method

Gets the serializable object containing this message's data. The default value is null.

public java.io.Serializable getObject()
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MesssageFormatException if the object serialization fails.

7.3.23 interface javax.jms.StreamMessage
public interface StreamMessage

extends Message

Name Description

name The name of the item to test.

Name Description

object The message data.
e*Gate API Kit Developer’s Guide 166 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
A StreamMessage is used to send a stream of Java primitives. It is populated and read
sequentially. It inherits from Message and adds a stream message body.

The primitive types can be read or written explicitly using methods for each type. They
may also be read or written generically as objects. For instance, a call to
StreamMessage.writeInt(6) is equivalent to StreamMessage.writeObject(new
Integer(6)). Both forms are provided because the explicit form is convenient for static
programming and the object form is needed when types are not known at compile time.

When the message is created, and also when clearBody is called, the body of the
message is in write-only mode. After the first call to reset has been made, the message
body is in read-only mode. When a message has been sent, by definition, the provider
calls reset in order to read the content. When a message has been received, the provider
calls reset, and sets the message body is in read-only mode for the client.

If clearBody is called on a message in read-only mode, the message body is cleared and
the message body is in write-only mode. If a client attempts to read a message in write-
only mode, a MessageNotReadableException is thrown. If a client attemps to write a
message in read-only mode, a MessageNotWriteableException is thrown.

The readBoolean Method

Reads a boolean from the stream message.

public boolean readBoolean()
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageEOFException if an end of message stream.

Throws MesssageFormatException if the object serialization fails.

Throws MessageNotWriteableException if the message is in read-only mode.

The readByte Method

Reads a byte value from the stream message.

public byte readByte()
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageEOFException if an end of message stream.

Throws MesssageFormatException if the object serialization fails.

Throws MessageNotWriteableException if the message is in read-only mode.

The readShort Method

Reads a 16-bit integer from the stream message.

public short readShort()
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageEOFException if an end of message stream.

Throws MesssageFormatException if the object serialization fails.

Throws MessageNotWriteableException if the message is in read-only mode.
e*Gate API Kit Developer’s Guide 167 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
The readChar Method

Reads a Unicode character value from the stream message.

public char readChar()
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageEOFException if an end of message stream.

Throws MesssageFormatException if the object serialization fails.

Throws MessageNotWriteableException if the message is in read-only mode.

The readInt Method

Reads a 32-bit integer from the stream message.

public int readInt()
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageEOFException if an end of message stream.

Throws MesssageFormatException if the object serialization fails.

Throws MessageNotWriteableException if the message is in read-only mode.

The readLong Method

Reads a 64-bit integer from the stream message.

public long readLong()
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageEOFException if an end of message stream.

Throws MesssageFormatException if the object serialization fails.

Throws MessageNotWriteableException if the message is in read-only mode.

The readFloat Method

Reads a float from the stream message.

public float readFloat()
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageEOFException if an end of message stream.

Throws MesssageFormatException if the object serialization fails.

Throws MessageNotWriteableException if the message is in read-only mode.

The readDouble Method

Reads a double from the stream message.

public double readDouble()
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.
e*Gate API Kit Developer’s Guide 168 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
Throws MessageEOFException if an end of message stream.

Throws MesssageFormatException if the object serialization fails.

Throws MessageNotWriteableException if the message is in read-only mode.

The readString Method

Reads a String from the stream message.

public java.lang.String readString()
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageEOFException if an end of message stream.

Throws MesssageFormatException if the object serialization fails.

Throws MessageNotWriteableException if the message is in read-only mode.

The readBytes Method

Reads a byte array field from the stream message into the specified byte[] object (the
read buffer).

To read the field value, readBytes should be successively called until it returns a value
less than the length of the read buffer. The value of the bytes in the buffer following the
last byte read is undefined.

If readBytes returns a value equal to the length of the buffer, a subsequent readBytes
call must be made. If there are no more bytes to be read, this call returns -1.

If the byte array field value is null, readBytes returns -1.

If the byte array field value is empty, readBytes returns 0.

Once the first readBytes call on a byte[] field value has been made, the full value of the
field must be read before it is valid to read the next field. An attempt to read the next
field before that has been done will throw a MessageFormatException.

To read the byte field value into a new byte[] object, use the readObject method.

public int readBytes(byte[] value)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageEOFException if an end of message stream.

Throws MesssageFormatException if the object serialization fails.

Throws MessageNotWriteableException if the message is in read-only mode.

The readObject Method

Reads an object from the stream message. This method can be used to return in
objectified format, an object that had been written to the Stream with the equivalent
writeObject method call, or the equivalent primitive write method.

Name Description

value The buffer into which the data is read.
e*Gate API Kit Developer’s Guide 169 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
public java.lang.Object readObject()
throws JMSException

Note: Byte vlaues are returned as byte[], not Byte[].

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageEOFException if an end of message stream.

Throws MessageNotWriteableException if the message is in read-only mode.

The writeBoolean Method

Writes a boolean to the stream message. The value true is written as the value (byte)1;
the value false is written as the value (byte)0.

public void writeBoolean(boolean value)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageNotWriteableException if the message is in read-only mode.

The writeByte Method

Writes a byte to the stream message.

public void writeByte(byte value)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageNotWriteableException if the message is in read-only mode.

The writeShort Method

Writes a short to the stream message.

public void writeShort(short value)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageNotWriteableException if the message is in read-only mode.

The writeChar Method

Writes a char to the stream message.

public void writeChar(char value)
throws JMSException

Name Description

value The byte value to be written.

Name Description

value The short value to be written.

Name Description

value The char value to be written.
e*Gate API Kit Developer’s Guide 170 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageNotWriteableException if the message is in read-only mode.

The writeInt Method

Writes an int to the stream message.

public void writeInt(int value)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageNotWriteableException if the message is in read-only mode.

The writeLong Method

Writes a long to the stream message.

public void writeLong(long value)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageNotWriteableException if the message is in read-only mode.

The writeFloat Method

Writes a float to the stream message.

public void writeFloat(float value)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageNotWriteableException if the message is in read-only mode.

The writeDouble Method

Writes a double to the stream message.

public void writeDouble(double value)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageNotWriteableException if the message is in read-only mode.

Name Description

value The int value to be written.

Name Description

value The long value to be written.

Name Description

value The float value to be written.

Name Description

value The double value to be written.
e*Gate API Kit Developer’s Guide 171 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
The writeString Method

Writes a string to the stream message.

public void writeString(java.lang.String value)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageNotWriteableException if the message is in read-only mode.

The writeBytes Method

Writes a byte array field to the stream message. The byte array value is written as a byte
array field into the StreamMessage. Consecutively written byte array fields are treated
as two distinct fields when reading byte array fields.

public void writeByte(byte[] value)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageNotWriteableException if the message is in read-only mode.

The writeBytes Method

Writes a portion of a byte array as a byte array field to the stream message. The
portionof the byte array value is written as a byte array field into the StreamMessage.
Consecutively written byte array fields are treated as two distinct fields when reading
byte array fields.

public void writeBytes(byte[] value, int offset, int length)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageNotWriteableException if the message is in read-only mode.

The writeObject Method

Writes a Java object to the stream message. This method only works for the objectified
primitive object types (Integer, Double, Long..), Strings and byte arrays.

public void writeObject(java.lang.Object value)
throws JMSException

Name Description

value The String value to be written.

Name Description

value The byte array to be written.

Name Description

value The byte array value to be written.

offset The initial offset within the byte array.

length The number of bytes to use.
e*Gate API Kit Developer’s Guide 172 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageNotWriteableException if the message is in read-only mode.

Throws MessageFormatException if the object is invalid.

The reset Method

Puts the message body in read-only mode, and repositions the stream to the beginning..

public void reset()
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageFormatException if the message has an invalid format.

7.3.24 interface javax.jms.TextMessage
public interface TextMessage

extends Message

A TextMessage is used to send a message containing a java.lang.String. It inherits from
Message and adds a text message body.

When a client receives a TextMessage, it is in read-only mode. If an attempt is made to
write to the message, while in read-only mode, a MessageNotWriteableException is
thrown. If clearBody is called, the messae can be then read from and written to.

Refer to interface javax.jms.Message on page 135

The getText Method

Gets the string containing the data associated with the message. The default value is
null.

public java.lang.String getText()
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

The setText Method

Sets the string containing the data associated with the message.

public void setText(java.lang.String string)
throws JMSException

Throws JMSException if JMS fails to read message due to some internal JMS error.

Throws MessageNotWriteableException if the message is in read-only mode.

Name Description

value The Java object to be written.

Name Description

string The String containing the message data.
e*Gate API Kit Developer’s Guide 173 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
7.3.25 interface javax.jms.MessageConsumer
public interface MessageConsumer

A client uses a MessageConsumer object to receive messages from a destination. A
MessageConsumer object is created by passing a Destination object to a message-
consumer creation method supplied by a session.

MessageConsumer is the parent interface for all message consumers.

A message consumer can be created with a message selector. This allows the client to
restrict the messges delivered to the message consumer to those that match the selector
criteria.

A client may either synchronously receive a message consumer’s messages, or have the
consumer asynchronously deliver them as they arrive. A client can request the next
message from a message consumer using one of the associated receive methods. There
are several variations of receive that allow a client to poll, or wait for the next message.

A client can register a messageListener object with a message consumer. As messages
arrive at the message consumer, it delivers them by calling the MessageListener’s
onMessage method.

It is a client programming error for a MessageListener to throw and exception.

The getMessageSelector Method

Gets this message consumer's message selector expression.

public java.lang.String getMessageSelector()
throws JMSException

Throws JMSException if JMS fails to get the message selector due to some JMS error.

The getMessageListener Method

Gets the message consumer's MessageListener.

public MessageListener getMessageListener()
throws JMSException

Throws JMSException if JMS fails to get the message listener due to some JMS error.

The setMessageListener Method

Sets the message consumer's MessageListener. Setting the message listener to null is the
equivalent of unsetting the message listener for the message consumer.

Calling the setMessageListener method of MessageConsumer while messages are being
consumed by an existing listener, or the consumer is being used to synchronously
consume messages is undefined.

public void setMessageListener(MessageListener listener)
throws JMSException

Throws JMSException if the JMS fails to set the message listener due to some JMS error.

Name Description

listener The listener that the messages are to be delivered to.
e*Gate API Kit Developer’s Guide 174 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
The receive Method

Receives the next message produced for this message consumer. This call blocks
indefinitely until a message is produced or until this message consumer is close. If this
receive os dpme wotjom a transaction, the message remains on the consumer until the
trasaction commits.

public Message receive()
throws JMSException

Throws JMSException if JMS fails to receive the next message due to some error.

The receive Method

Receives the next message that arrives within the specified timeout interval. This call
blocks until a message arrives, the timeout expires, or this message consumer is closed.
A timeout of zero never expires and the call blocks indefinitely.

public Message receive(long timeout)
throws JMSException

The receiveNoWait Method

Receives the next message if one is immediately available.

public Message receiveNoWait()
throws JMSException

Throws JMSExceptio if JMS fails to receive the next message due to some error.

The close Method

Closes the message consumer. Since a provider may allocate some resources on behalf
of a MessageConsumer outside the JVM, clients should close them when they are not
needed. Relying on garbage collection to eventually reclaim these resources may not be
effective enough.

This call blocks until a receive or message listener in progress has completed. A blocked
message consumer receive call returns null when this message consumer is close.

public void close()
throws JMSException

Throws JMSException if JMS fails to close the consumer due to some error.

7.3.26 interface javax.jms.QueueReceiver
public interface QueueReceiver

extends MessageConsumer

A client uses a QueueReceiver for receiving messages that have been delivered to a
queue. Although it is possible to have multiple QueueReceivers for the same queue,
JMS does not define how messages are distributed between the QueueReceivers.

Name Description

timeout The timeout value (in milliseconds).
e*Gate API Kit Developer’s Guide 175 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
The getQueue Method

Get the queue associated with this queue receiver.

public Queue getQueue()
 throws JMSException

Throws JMSException if JMS fails to get queue for this queue receiver due to some
internal error.

7.3.27 interface javax.jms.TopicSubscriber
public interface TopicSubscriber

extends MessageConsumer.

A client uses a TopicSubscriber for receiving messages that have been published to a
topic. TopicSubscriber is the Pub/Sub variant of a JMS message consumer.

A topic session allows for the creation of multiple topic subscribers per Destination. It
delivers each message for a destionation to each topic subscriber that is eligible to
receive it. Each copy of the message is treated as a completely separate message. Work
performed on one copy has no affect on another, acknowledging one does not
acknowledge the other, one message may be delivered immediately, while another
waits for the consumer to process messages ahead of it.

Regular TopicSubscribers are not durable. They only receive messages that are
published while they are active. Messages filtered out by a subscriber’s message
selector, will never be delivered to the subscriber. From the subscriber’s perspective,
they do not exist.

In some cases, a connection both publishes and subscribes to a topic. The subscriber
NoLocal attribute allows a subscriber to inhibit the delivery of messages published by
its own connection.

If a client needs to receive all of the messages published on a topic, including those
published while the subscriber is inactive, a durable TopicSubscriber is used. JMS
retains a record of this durable subscription and insures that all messages from the
topic’s associated publishers are retained until they are either acknowledged by the
durable subscriber, or they have expired.

Sessions with durable subscribers must always provide the same client identifier. In
addition, each client must specify a name that uniquely identifies (within the client
identifier) each durable subscription it creates. Only one session at a time can have a
TopicSubscriber for particular durable subscription.

A client can change an exiting durable subscription, by creating a durable
TopicSubscriber with the same name, and a new topic and/or message selector.
Changing a durable subscription is equivalent to delting and recreating it.

TopicSessions provide the unsubscribe method for deleting a durable subscription
created by their client. This deletes the state being maintained on behalf of the
subscriber by its provider.

Refer to interface javax.jms.MessageConsumer on page 174
e*Gate API Kit Developer’s Guide 176 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
The getTopic Method

public Topic getTopic()
 throws JMSException

Get the topic associated with this subscriber.

Throws JMSException if JMS fails to get topic for this topic subscriber due to some
internal error.

The getNoLocal Method

public boolean getNoLocal()
 throws JMSException

Get the NoLocal attribute for this TopicSubscriber. The default value for this attribute is
false.

Throws JMSException if JMS fails to get noLocal attribute for this topic subscriber due
to some internal error.

7.3.28 interface javax.jms.MessageListener
public interface MessageListener

A MessageListener is used to receive asynchronously delivered messages. Each session
must insure that it passes messages serially to the listener. This means that a listener
assigned to one or more consumers of the same session, can assume that the onMessage
method is not called with the next message until the session has completed the last call.

The onMessage Method

Passes a message to the listener.

public void onMessage(Message message)

7.3.29 interface javax.jms.MessageProducer
public interface MessageProducer

A client uses a message producer to send messages to a Destination. The message is
created by passing a Destination to a create message producer method, supplied by a
Session.

A client also can optionally create a message producer, without supplying a
Destination. In this case, a Destination must be input on every send operation. A typical
use for this style of message producer, is to send replies to requests, using the request’s
replyToDestination.

A client can specify a time-to-live value, in milliseconds, for each message sent. This
value defines a message expiration time, which is the sum of the message’s time-to-live,
and the GMT at which it is sent (for trasacted sends, this is the time the client sends the
message, not the time the transaction is committed).

A JMS provider should attempt to accurately expire message, as the means to acquire
this accuracy is not pre-defined.

Name Description

message The message passed to the listener.
e*Gate API Kit Developer’s Guide 177 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
The setDisableMessageID Method

Sets whether message IDs are disabled. Since message IDs take some effort to create,
and increase the size of a message, some JMS providers may choose to optimize
message overhead, if they suspect that the message ID is not going to be used by an
application. JMS message Producers provide a hint to disable message ID. When a
client sets a Producer to disable message ID, they are saying that they do not depend on
the value of the message ID for the messages it then produces. These messages must
either have the message ID set to null, or if the hint is ignored, the message ID must be
set to the normal unique value. Message IDs are enabled by default.

public void setDisableMessageID(boolean value)
throws JMSException

Throws JMSException if JMS fails to set the disabled message ID due to some internal
error.

The getDisableMessageID Method

Gets an indication of whether message IDs are disabled.

public boolean getDisableMessageID()
throws JMSException

Throws JMSException if JMS fails to get the disabled message ID due to some internal
error.

The setDisableMessageTimestamp Method

Sets whether message timestamps are disabled. Since timestamps require effort to
create and increase a message’s size, some JMS providers may optimize overhead by
not enabling the timestamp, if they suspect that it is not going to be used by an
application. JMS message Producers provide a hint to disable timestamps. When a
client sets a producer to disable timestamps, they are not depending on the value of the
timestamp, for the messages produced. These messages must either have timestamp set
to null, or if the hint is ignored, the timestamp must be set to its normal value. Message
timestamps are enabled by default.

public void setDisableMessageTimestamp(boolean value)
throws JMSException

Throws JMSException if JMS fails to set the disabled message timestamp due to some
internal error.

The getDisableMessageTimestamp Method

Gets an indication of whether message timestamps are disabled.

public boolean getDisableMessageTimestamp()
throws JMSException

Name Description

value Indicates if this messages identifiers are disabled.

Name Description

value Indicates if this messages timestamps are disabled.
e*Gate API Kit Developer’s Guide 178 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
Throws JMSException if JMS fails to get and inciation of whether the message
timestamp is disabled due to some internal error.

The setDeliveryMode Method

Sets the producer's default delivery mode. Delivery mode is set to PERSISTENT by
default.

public void setDeliveryMode(int deliveryMode)
throws JMSException

Throws JMSException if JMS fails to set delivery mode due to some internal error.

The getDeliveryMode Method

Gets the producer's default delivery mode.

public int getDeliveryMode()
throws JMSException

Throws JMSException if JMS fails to get the delivery mode due to some internal error.

The setPriority Method

Sets the producer's default priority. The JMS API defines ten levels of priority value,
with 0 as the lowest priority and 9 as the highest. Clients should consider priorities 0-4
as gradations of normal priority, and priorities 5-9 as gradations of expedited priority.
Priority is set to 4 by default.

public void setPriority(int defaultPriority)
throws JMSException

Throws JMSException if JMS fails to set the priority due to some internal error.

The getPriority Method

Gets the producer's default priority.

public int getPriority()
throws JMSException

Throws JMSException if JMS fails to get the priority due to some internal error.

The setTimeToLive Method

Sets the default length of time, in milliseconds, from its dispatch, time that a produced
message should be retained by the message system. Time-to-live is set to zero by
default.

public void setTimeToLive(long timeToLive)
throws JMSException

Name Description

deliveryMode The message delivery mode for this message producer; acceptable
values are DeliveryMode.NON_PERSISTENT and
DeliveryMode.PERSISTENT.

Name Description

defaultPriority The message priority for this message producer; must be a value
between 0 and 9.
e*Gate API Kit Developer’s Guide 179 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
Throws JMSException if JMS fails to set Time to Live due to some internal error.

The getTimeToLive Method

Gets the default length of time, in milliseconds, from its dispatch, time that a produced
message should be retained by the message system.

public void getTimeToLive()
throws JMSException

Throws JMSException if JMS fails to get Time to Live due to some internal error.

The close Method

public void close()
throws JMSException

Since a provider may allocate some resources on behalf of a MessageProducer outside
the JVM, clients should close them when they are not needed. Relying on garbage
collection to eventually reclaim these resources may not be timely enough.

Throws JMSException if JMS fails to close the producer due to some error.

7.3.30 interface javax.jms.QueueSender
public interface QueueSender
extends MessageProducer

A client uses a QueueSender to send messages to a queue. Normally the Queue is
specified when a QueueSender is created and in this case, attempting to use the
methods for an unidentified QueueSender will throws an
UnsupportedOperationException. In the case that the QueueSender with an
unidentified Queue is created, the methods that assume the Queue has been identified
throw an UnsupportedOperationException.

The getQueue Method

Get the queue associated with this queue sender.

public Queue getQueue()
 throws JMSException

Throws JMSException if JMS fails to get queue for this queue sender due to some
internal error.

The send Method

Send a message to the queue. Use the QueueSender's default delivery mode,
timeToLive and priority.

public void send(Message message)
 throws JMSException

Name Description

timeToLive The message time to live in milliseconds; zero is unlimited.

Name Description

message The message to be sent
e*Gate API Kit Developer’s Guide 180 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
Throws JMSException if JMS fails to send the message due to some internal error.

Throws MessageFormatException if invalid message specified

Throws InvalidDestinationException if a client uses this method with a Queue sender
with an invalid queue.

Thre send Method

Send a message specifying delivery mode, priority and time to live to the queue.

public void send(Message message, int deliveryMode, int priority,
long timeToLive)

throws JMSException

Throws JMSException if JMS fails to send the message due to some internal error.

Throws MessageFormatException if invalid message specified

Throws InvalidDestinationException if a client uses this method with a Queue sender
with an invalid queue.

The send Method

Send a message to a queue for an unidentified message producer. Use the
QueueSender's default delivery mode, timeToLive and priority.

Typically a JMS message producer is assigned a queue at creation time; however, JMS
also supports unidentified message producers which require that the queue be
supplied on every message send.

public void send(Queue queue, Message message)
throws JMSException

Throws JMSException if JMS fails to send the message due to some internal error.

Throws MessageFormatException if invalid message specified

Throws InvalidDestinationException if a client uses this method with an invalid queue.

The send Method

Send a message to a queue for an unidentified message producer, specifying delivery
mode, priority and time to live.

Name Description

message The message to be sent

deliveryMode The delivery mode to use.

priority The priority for this message.

timeToLive The message’s lifetime (in milliseconds)

Name Description

queue The queue to which this message should be sent.

message The message to be sent.
e*Gate API Kit Developer’s Guide 181 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
Typically a JMS message producer is assigned a queue at creation time; however, JMS
also supports unidentified message producers which require that the queue be
supplied on every message send.

public void send(Queue queue, Message message, int deliveryMode, int
priority, long timeToLive)

throws JMSException

Throws JMSException if JMS fails to send the message due to some internal error.

Throws MessageFormatException if invalid message specified

Throws InvalidDestinationException if a client uses this method with an invalid queue.

7.3.31 interface javax.jms.TopicPublisher
public interface TopicPublisher
extends MessageProducer

A client uses a TopicPublisher for publishing messages on a topic. TopicPublisher is the
Pub/Sub variant of a JMS message producer. Normally the Topic is specified when a
TopicPublisher is created and in this case, attempting to use the methods for an
unidentified TopicPublisher will throws an UnsupportedOperationException.

In the case that the TopicPublisher with an unidentified Topic is created, the methods
that assume the Topic has been identified throw an UnsupportedOperationException.

The getTopic Method

Get the topic associated with this publisher.

public Topic getTopic()
throws JMSException

Throws JMSException if JMS fails to get topic for this topic publisher due to some
internal error.

The publish Method

Publish a Message to the topic Use the topics default delivery mode, timeToLive and
priority.

public void publish(Message message)
throws JMSException

Throws JMSException if JMS fails to publish the message due to some internal error.

Name Description

queue The queue to which this message should be sent.

message The message to be sent.

deliveryMode The delivery mode to use.

priority The priority for this message.

timeToLive The message’s lifetime (in milliseconds).

Name Description

message The message to publish.
e*Gate API Kit Developer’s Guide 182 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
Throws MessageFormatException if invalid message specified.

Throws InvalidDestinationException if a client uses this method with a Topic Publisher
with an invalid topic.

The publish Method

Publish a Message to the topic specifying delivery mode, priority and time to live to the
topic.

public void publish(Message message, int deliveryMode, int priority,
long timeToLive)

throws JMSException

Throws JMSException if JMS fails to publish the message due to some internal error.

Throws MessageFormatException if invalid message specified

Throws InvalidDestinationException if a client uses this method with a Topic Publisher
with an invalid topic.

The publish Method

Publish a Message to a topic for an unidentified message producer. Use the topics
default delivery mode, timeToLive and priority.

Typically a JMS message producer is assigned a topic at creation time; however, JMS
also supports unidentified message producers which require that the topic be supplied
on every message publish.

public void publish(Topic topic, Message message)
throws JMSException

Throws JMSException if JMS fails to publish the message due to some internal error.

Throws MessageFormatException if invalid message specified.

Throws InvalidDestinationException if a client uses this method with an invalid topic.

The publish Method

Publishes a Message to a topic for an unidentified message producer, specifying
delivery mode, priority and time to live. Typically a JMS message producer is assigned
a topic at creation time; however, JMS also supports unidentified message producers
which require that the topic be supplied on every message publish.

Name Description

message The message to publish.

deliveryMode The delivery mode to use.

priority The priority for this message.

timeToLive The message’s lifetime (in milliseconds).

Name Description

topic The topic to which to publish the message.

message The message to publish.
e*Gate API Kit Developer’s Guide 183 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
public void publish(Topic topic, Message message,int deliveryMode,
int priority, long timeToLive)

throws JMSException

Throws JMSException if JMS fails to publish the message due to some internal error.

Throws MessageFormatException if invalid message specified

Throws InvalidDestinationException if a client uses this method with an invalid topic.

7.3.32 interface java.lang.Runnable

7.3.33 interface javax.jms.Session
public interface Session

extends java.lang.Runnable

A Session object is a single-threaded context for producing and consuming messages.
Although it may allocate provider resources outside the Java Virtual Machine (JVM), it
is considered a lightweight JMS object.

A session serves several purposes:

! It is a factory for its message producers and consumers.

! It supplies provider-optimized message factories.

! It supports a single series of transactions that combine work spanning its producers
and consumers into atomic units.

! It defines a serial order for the messages it consumes and the messages it produces.

! It retains messages it consumes until they have been acknowledged.

! It serializes execution of message listeners registered with its message consumers.

A session can create and service multiple message producers and consumers.

One typical use is to have a thread block on a synchronous MessageConsumer, until a
message arrives. The thread may then use one or more of the Session’s Message
Producers.

For a client to have one thread producing messages, while others consume them, the
client should use a separate Session for the producing thread.

Once a connection has been established, any session with a registered lisener(s) is
dedicated to the thread of control that delivers messages to it. It is erroneous for the
client code to use this session, or any of it’s constituent objects from another thread of
control. The only exception to this, is the use of the session or connection close method.

Name Description

topic The topic to which to publish this message.

message The message to be sent.

deliveryMode The delivery mode to use.

priority The priority for this message.

timeToLive The message’s lifetime (in milliseconds).
e*Gate API Kit Developer’s Guide 184 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
Most clients can partition their work naturally into Sessions. This model allows clients
to start simply, and incrementally, adding message processing complexity as the need
for concurrency grows.

The close method is the only session method, that can be called while some other
session method is being executed in another thread.

A session may be optionally specified as transacted. Each transacted session supports a
single series of transactions. Each transaction groups a set of message sends, and a set
of message receives, into an atomic unit of work. In effect, transactions organize a
session’s input message stream, and output message stream, into a series of atomic
units. When a transaction commits, the atomic unit of input is acknowledged, and the
associated atomic unit of output is sent. If a transaction rollback is performed, the
associated sent messages are destroyed, and the session’s input is automatically
recovered.

The content of a transaction’s input and output units, is that of the messages that have
been produced and consumed within the session’s current transaction. A transaction is
completed by using either the session’s commit or rollback method. The completion of
a session’s current transaction automatically begins the next. In this manner, a
transacted session always has a current transaction within which the work is done.

The createBytesMessage Method

Creates a BytesMessage object. A BytesMessage object is used to send a message
containing a stream of uninterpreted bytes.

public BytesMessage createBytesMessage()
throws JMSException

Throws JMSException if JMS fails to create this message due to some internal error.

The createMapMessage Method

Creates a MapMessage object. A MapMessage object is used to send a self-defining set
of name-value pairs, where names are String objects and values are primitive values in
the Java programming language.

public MapMessage createMapMessage()
throws JMSException

Throws JMSException if JMS fails to create this message due to some internal error.

The createMessage Method

Creates a Message object. The Message interface is the root interface of all JMS
messages. A Message object holds all the standard message header information. It can
be sent when a message containing only header information is sufficient.

public Message createMessage()
throws JMSException

Throws JMSException if JMS fails to create this message due to some internal error.

The createObjectMessage Method

Creates an ObjectMessage object. An ObjectMessage object is used to send a message
that contains a serializable Java object.

public ObjectMessage createObjectMessage()
throws JMSException
e*Gate API Kit Developer’s Guide 185 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
Throws JMSException if JMS fails to create this message due to some internal error.

The createObjectMessage Method

Creates an initialized ObjectMessage object. An ObjectMessage object is used to send a
message that contains a serializable Java object.

public ObjectMessage createObjectMessage(java.io.Serializable object)
throws JMSException

Throws JMSException if JMS fails to create this message due to some internal error.

The createStreamMessage Method

Creates a StreamMessage object. A StreamMessage object is used to send a self-defining
stream of primitive values in the Java programming language.

public StreamMessage createStreamMessage()
throws JMSException

Throws JMSException if JMS fails to create this message due to some internal error.

The createTextMessage Method

Creates a TextMessage object. A TextMessage object is used to send a message
containing a String object.

public TextMessage createTextMessage()
throws JMSException

Throws JMSException if JMS fails to create this message due to some internal error.

The createTextMessage Method

Creates an initialized TextMessage object. A TextMessage object is used to send a
message containing a String.

public TextMessage createTextMessage(java.lang.String text)
throws JMSException

Throws JMSException if JMS fails to create this message due to some internal error.

The getTransacted Method

Queries whether the session is in transacted mode.

public boolean getTransacted()
throws JMSException

Throws JMSException if JMS fails to return the transaction mode due to internal error
in JMS Provider.

The commit Method

Commits all messages done in this transaction and releases any locks currently held.

Name Description

object The object to use to initialize this message.

Name Description

text The string used to initialize this message.
e*Gate API Kit Developer’s Guide 186 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
public void commit()
throws JMSException

Throws JMSException if the JMS implementation fails to commit the the transaction
due to some internal error.

Throws TransactionRolledBackException if the transaction gets rolled back due to some
internal error during commit.

Throws IllegalStateException if the method is not called by a transacted session.

The rollback Method

Rolls back any messages done in this transaction and releases any locks currently held.

public void rollback()
throws JMSException

Throws JMSException if the JMS implementation fails to rollback the the transaction
due to some internal error.

Throws IllegalStateException if the method is not called by a transacted session.

The close Method

Closes the session. A provider may allocate some resources on behalf of a Session
outside the JVM, clients therefore, should close them when they are not needed.
Relying on garbage collection to eventually reclaim these resources may not be timely
enough.

There is no need to close the producers and consumers of a closed session. This call will
block until a receive or message listener in progress has completed. A blocked message
consumer receive call returns null when this session is closed. Closing a transacted
session must rollback the in-progress transaction. This method is the only session
method that can be concurrently called.

Invoking any other session method on a closed session must throw
JMSException.IllegalStateException. Closing a closed session must NOT throw an
exception.

public void close()
throws JMSException

Throws JMSException if JMS implementation fails to close a Session due to some
internal error.

The recover Method

Stops message delivery in this session, and restarts sending messages with the oldest
unacknowledged message. All consumers deliver messages in a serial order.
Acknowledging a received message automatically acknowledges all messages that
have been delivered to the client.

Restarting a session causes it to take the following actions:

! Stops message delivery

! Marks all messages that might have been delivered but not acknowledged as
`redelivered'

! Restart the delivery sequence including all unacknowledged messages that had
been previously delivered.
e*Gate API Kit Developer’s Guide 187 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
Redelivered messages do not have to be delivered in exactly their original delivery
order.

Throws JMSException if JMS implementation fails to stop message delivery and restart
message send due to due to some internal error.

Throws IllegalStateException if method is called by a transacted session.

public void recover()
throws JMSException

getMessageListener

Return the session's distinguished message listener (optional).

Throws JMSException if JMS fails to get the message listener due to an internal error in
JMS Provider.

public MessageListener getMessageListener()
throws JMSException

Throws JMSException if JMS fails to get the message listener due to an internal error in
JMS Provider.

The setMessageListener Method

Sets the session's distinguished message listener (optional). When it is set, no other
form of message receipt in the session can be used; however, all forms of sending
messages are still supported. This is an expert facility not used by regular JMS clients.

public void setMessageListener(MessageListener listener)
throws JMSException

Throws JMSException if JMS fails to set the message listener due to an internal error in
JMS Provider.

run

Only intended to be used by Application Servers (optional operation).

public void run()

Specified by

run in interface java.lang.Runnable

7.3.34 interface javax.jms.QueueSession
public interface QueueSession
extends Session

A QueueSession provides methods for creating QueueReceiver's, QueueSender's,
QueueBrowser's and TemporaryQueues. If there are messages that have been received
but not acknowledged when a QueueSession terminates, these messages will be
retained and redelivered when a consumer next accesses the queue.

Name Description

listener The message listener to associate with this session.
e*Gate API Kit Developer’s Guide 188 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
The createQueue Method

Creates a queue identity given a Queue name. This facility is provided for the rare cases
where clients need to dynamically manipulate queue identity. This allows the creation
of a queue identity with a provider specific name. Clients that depend on this ability are
not portable.

Note: This method is not for creating the physical topic. The physical creation of topics is
an administration task and not to be initiated by the JMS interface. The one
exception is the creation of temporary topics is done using the createTemporaryTopic
method.

public Queue createQueue(java.lang.String queueName)
throws JMSException

Throws JMSException if a session fails to create a queue due to some JMS error.

The createReceiver Method

Creates a QueueReceiver to receive messages from the specified queue.

public QueueReceiver createReceiver(Queue queue)
throws JMSException

Throws JMSException - if a session fails to create a receiver due to some JMS error.

Throws InvalidDestinationException if invalid Queue specified.

The createReceiver Method

Creates a QueueReceiver to receive messages from the specified queue.

public QueueReceiver createReceiver(Queue queue, java.lang.String
messageSelector)

throws JMSException

Throws JMSException if a session fails to create a receiver due to some JMS error.

Throws InvalidDestinationException if invalid Queue specified.

Throws InvalidSelectorException if the message selector is invalid.

The createSender Method

Creates a QueueSender to send messages to the specified queue.

Name Description

queueName The name of this queue.

Name Description

queue The name of the queue to access.

Name Description

queue The name of the queue to access.

messageSelector Only messages with properties matching the message selector
expression are delivered.
e*Gate API Kit Developer’s Guide 189 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
public QueueSender createSender(Queue queue)
throws JMSException

Throws JMSException if a session fails to create a sender due to some JMS error.

Throws InvalidDestinationException if invalid Queue specified.

The createTemporaryQueue Method

Creates a temporary queue. It's lifetime will be that of the QueueConnection unless
deleted earlier.

public TemporaryQueue createTemporaryQueue()
throws JMSException

Throws JMSException if a session fails to create a Temporary Queue due to some JMS
error.

7.3.35 interface javax.jms.TopicSession
public interface TopicSession
extends Session

A TopicSession provides methods for creating TopicPublishers, TopicSubscribers and
TemporaryTopics. Also provided are methods for deleting the associated client’s
durable subscribers.

The createTopic Method

Create a topic identity given a Topic name. This facility is provided for the rare cases
where clients need to dynamically manipulate topic identity. This allows the creation of
a topic identity with a provider specific name. Clients that depend on this ability are
not portable.

Note: This method is not for creating the physical topic. The physical creation of topics is
an administration task and not to be initiated by the JMS interface. The one
exception is the creation of temporary topics is done using the createTemporaryTopic
method.

public Topic createTopic(java.lang.String topicName)
throws JMSException

Throws JMSException if a session fails to create a topic due to some JMS error.

The createSubscriber Method

Creates a non-durable Subscriber to the specified topic. A client uses a TopicSubscriber
for receiving messages that have been published to a topic. Regular TopicSubscriber's
are not durable. They only receive messages that are published while they are active.

Name Description

queue The name of the queue to access, or null if this is anunidentified
producer.

Name Description

topicName The name of this topic.
e*Gate API Kit Developer’s Guide 190 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
In some cases, a connection may both publish and subscribe to a topic. The subscriber
NoLocal attribute allows a subscriber to inhibit the delivery of messages published by
its own connection. The default value for this attribute is false.

public TopicSubscriber createSubscriber(Topic topic)
throws JMSException

Throws JMSException if a session fails to create a subscriber due to some JMS error.

Throws InvalidDestinationException if invalid Topic specified.

The createSubscriber Method

Create a non-durable Subscriber to the specified topic. A client uses a TopicSubscriber
for receiving messages that have been published to a topic. Regular TopicSubscriber's
are not durable. They only receive messages that are published while they are active.

Messages filtered out by a subscriber's message selector will never be delivered to the
subscriber. From the subscriber's perspective they simply don't exist. In some cases, a
connection may both publish and subscribe to a topic. The subscriber NoLocal attribute
allows a subscriber to inhibit the delivery of messages published by its own connection.

public TopicSubscriber createSubscriber(Topic topic,java.lang.String
messageSelector, boolean noLocal)

throws JMSException

Throws JMSException if a session fails to create a subscriber due to some JMS error or
invalid selector.

Throws InvalidDestinationException if invalid Topic specified.

Throws InvalidSelectorException if the message selector is invalid.

The createDurableSubscriber Method

Create a durable Subscriber to the specified topic. If a client needs to receive all the
messages published on a topic including the ones published while the subscriber is
inactive, it uses a durable TopicSubscriber. JMS retains a record of this durable
subscription and insures that all messages from the topic's publishers are retained until
they are either acknowledged by this durable subscriber or they have expired.

Sessions with durable subscribers must always provide the same client identifier. In
addition, each client must specify a name which uniquely identifies (within client
identifier) each durable subscription it creates. Only one session at a time can have a
TopicSubscriber for a particular durable subscription.

Name Description

topic The topic to which to subscribe.

Name Description

topic The topic to which to subscribe.
messageSelector Only messages with properties matching the message selector

expression are delivered. This value may be null.

noLocal If set, inhibits the delivery of messages published by it’s own
connection.
e*Gate API Kit Developer’s Guide 191 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
A client can change an existing durable subscription by creating a durable
TopicSubscriber with the same name and a new topic and/or message selector.
Changing a durable subscriber is equivalent to unsubscribing(deleting) the old one and
creating a new one.

public TopicSubscriber createDurableSubscriber(Topic topic,
java.lang.String name)

throws JMSException

Throws JMSException if a session fails to create a subscriber due to some JMS error.

Throws InvalidDestinationException if invalid Topic specified.

The createDurableSubscriber Method

Create a durable Subscriber to the specified topic.

If a client needs to receive all the messages published on a topic including the ones
published while the subscriber is inactive, it uses a durable TopicSubscriber. JMS
retains a record of this durable subscription and insures that all messages from the
topic's publishers are retained until they are either acknowledged by this durable
subscriber or they have expired.

Sessions with durable subscribers must always provide the same client identifier. In
addition, each client must specify a name which uniquely identifies (within client
identifier) each durable subscription it creates. Only one session at a time can have a
TopicSubscriber for a particular durable subscription. An inactive durable subscriber is
one that exists but does not currently have a message consumer associated with it.

A client can change an existing durable subscription by creating a durable
TopicSubscriber with the same name and a new topic and/or message selector.
Changing a durable subscriber is equivalent to unsubscribing(deleting) the old one and
creating a new one.

public TopicSubscriber createDurableSubscriber(Topic topic,
java.lang.String name, java.lang.String messageSelector, boolean
noLocal)

throws JMSException

Throws JMSException if a session fails to create a subscriber due to some JMS error or
invalid selector.

Name Description

topic The non-temporary topic to which to subscribe.
name The name used to identify this subscription.

Name Description

topic Then name of the non-temporary topic to which to subscribe.
name The name used to identify this subscription.

messageSelector Only messages with properties matching the message selector
expression are delivered. This value may be null.

noLocal If set, inhibits the delivery of messages published by it’s own
connection.
e*Gate API Kit Developer’s Guide 192 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
Throws InvalidDestinationException if invalid Topic specified.

Throws InvalidSelectorException if the message selector is invalid.

The createPublisherMethod

Create a Publisher for the specified topic. A client uses a TopicPublisher for publishing
messages on a topic. Each time a client creates a TopicPublisher on a topic, it defines a
new sequence of messages that have no ordering relationship with the messages it has
previously sent.

public TopicPublisher createPublisher(Topic topic)
throws JMSException

Throws JMSException if a session fails to create a publisher due to some JMS error.

Throws InvalidDestinationException if invalid Topic specified.

The createTemporaryTopic Method

Create a temporary topic. It's lifetime will be that of the TopicConnection unless deleted
earlier.

Throws JMSException if a session fails to create a temporary topic due to some JMS
error.

public TemporaryTopic createTemporaryTopic()
throws JMSException

The unsubscribe Method

Unsubscribe a durable subscription that has been created by a client. This deletes the
state being maintained on behalf of the subscriber by its provider. It is erroneous for a
client to delete a durable subscription while it has an active TopicSubscriber for it, or
while a message received by it is part of a transaction or has not been acknowledged in
the session.

public void unsubscribe(java.lang.String name)
throws JMSException

Throws JMSException if JMS fails to unsubscribe to durable subscription due to some
JMS error.

Throws InvalidDestinationException if an invalid subscription name is specified.

7.3.36 interface javax.jms.XASession
public interface XASession
extends Session

Name Description

topic The topic to which to publish, or null if this is an unidentified
producer.

Name Description

name The name used to identify this subscription
e*Gate API Kit Developer’s Guide 193 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
The XASession interface extends the capability of Session by adding access to a JMS
provider's support for the Java Transaction API (JTA) (optional). This support takes the
form of a javax.transaction.xa.XAResource object. The functionality of this object
closely resembles that defined by the standard X/Open XA Resource interface.

An application server controls the transactional assignment of an XASession by
obtaining its XAResource. It uses the XAResource to assign the session to a transaction;
prepare and commit work on the transaction; etc.

An XAResource provides some fairly sophisticated facilities for interleaving work on
multiple transactions; recovering a list of transactions in progress; etc. A JTA aware JMS
provider must fully implement this functionality. This could be done by using the
services of a database that supports XA or a JMS provider may choose to implement
this functionality from scratch.

A client of the application server is given what it thinks is a regular JMS Session. Behind
the scenes, the application server controls the transaction management of the
underlying XASession.

The getXAResource Method

Returns an XA resource to the caller.

public javax.transaction.xa.XAResource getXAResource()

The getTransacted Method

Queries whether the session is in transacted mode.

public boolean getTransacted()
throws JMSException

Throws JMSException if JMS fails to return the transaction mode due to internal error
in JMS Provider.

Specified by getTransacted in interface Session

Throws JMSException if JMS fails to return the transaction mode due to internal error
in JMS Provider.

The commit Method

Throws a TransactionInProgressException, since it should not be called for an
XASession object.

public void commit()
throws JMSException

Throws TransactionInProgressException if method is called on a XASession.

Specified by commit in interface Session

Throws TransactionInProgressException if method is called on a XASession.

The rollback Method

Throws a TransactionInProgressException, since it should not be called for an
XASession object.

public void rollback()
throws JMSException

Specified by rollback in interface Session
e*Gate API Kit Developer’s Guide 194 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
Throws TransactionInProgressException if method is called on a XASession.

7.3.37 interface javax.jms.XAQueueSession
public interface XAQueueSession
extends XASession

An XAQueueSession provides a regular QueueSession which can be used to create
QueueReceivers, QueueSenders and QueueBrowsers (optional).

The getQueueSession Method

Gets the queue session associated with this XAQueueSession.

public QueueSession getQueueSession()
throws JMSException

Throws JMSException if a JMS error occurs.

7.3.38 interface javax.jms.XATopicSession
public interface XATopicSession
extends XASession

An XATopicSession provides a regular TopicSession. which can be used to create
TopicSubscriber and TopicPublisher objects (optional).

getTopicSession

public TopicSession getTopicSession()
throws JMSException

Gets the topic session associated with this XATopicSession.

Throws JMSException - if a JMS error occurs.

7.3.39 interface javax.jms.XAConnection
public interface XAConnection

XAConnection extends the capability of Connection by providing an XASession
(optional).

7.3.40 interface javax.jms.XAQueueConnection
public interface XAQueueConnection
extends XAConnection, QueueConnection

XAQueueConnection provides the same create options as QueueConnection (optional).
The only difference is that an XAConnection is by definition transacted.

The createXAQueueSession Method

Creates an XAQueueSession.

public XAQueueSession createXAQueueSession()
throws JMSException

Throws JMSException if JMS Connection fails to create a XA queue session due to some
internal error.
e*Gate API Kit Developer’s Guide 195 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Client Libraries for the e*Gate Message Service Supported JMS Interfaces
The createQueueSession Method

Creates an XAQueueSession.

public QueueSession createQueueSession(boolean transacted, int
acknowledgeMode)
throws JMSException

Specified by createQueueSession in interface QueueConnection

Throws JMSException if JMS Connection fails to create a XA queue session due to some
internal error.

7.3.41 interface javax.jms.XATopicConnection
An XATopicConnection provides the same create options as TopicConnection
(optional). The only difference is that an XAConnection is by definition transacted.

The createXATopicSession Method

Creates an XATopicSession.

public XATopicSession createXATopicSession()
throws JMSException

Throws JMSException if JMS Connection fails to create a XA topic session due to some
internal error.

The createTopicSession Method

Creates an XATopicSession

public TopicSession createTopicSession(boolean transacted, int
acknowledgeMode)

throws JMSException

Specified by createTopicSession in interface TopicConnection

Throws JMSException if JMS Connection fails to create a XA topic session due to some
internal error.

7.3.42 interface javax.jms.XAConnectionFactory
public interface XAConnectionFactory

The XAConnectionFactory interface is a base interface for the
XAQueueConnectionFactory and XATopicConnectionFactory interfaces.

Name Description

transacted ignored.
acknowledgeMode ingnored.

Name Description

transacted ignored.
acknowledgeMode ingnored.
e*Gate API Kit Developer’s Guide 196 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Client Libraries for the e*Gate Message Service Unsupported Java JMS Classes
7.3.43 interface javax.jms.XAQueueConnectionFactory
public interface XAQueueConnectionFactory
extends XAConnectionFactory, QueueConnectionFactory

An XAQueueConnectionFactory provides the same create options as a
QueueConnectionFactory (optional).

The createXAQueueConnection Method

Creates an XA queue connection with default user identity. The connection is created in
stopped mode. No messages will be delivered until Connection.start method is
explicitly called.

public XAQueueConnection createXAQueueConnection()
throws JMSException

Throws JMSException if JMS Provider fails to create XA queue Connection due to some
internal error.

Throws JMSSecurityException if client authentication fails due to invalid user name or
password.

The createXAQueueConnection Method

Creates an XA queue connection with specific user identity. The connection is created in stopped
mode. No messages will be delivered until Connection.start method is explicitly called.

public XAQueueConnection createXAQueueConnection(java.lang.String
userName, java.lang.String password)

throws JMSException

Throws JMSException if JMS Provider fails to create XA queue Connection due to some
internal error.

Throws JMSSecurityException if client authentication fails due to invalid user name or
password.

7.3.44 interface javax.jms.XATopicConnectionFactory
public interface XATopicConnectionFactory

An XATopicConnectionFactory provides the same create options as a
TopicConnectionFactory (optional).

7.4 Unsupported Java JMS Classes
! class javax.jms.QueueRequestor

! class javax.jms.TopicRequestor

Name Description

userName The caller’s username
password The caller’s password.
e*Gate API Kit Developer’s Guide 197 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.5
Client Libraries for the e*Gate Message Service Unsupported Java JMS Interfaces
7.5 Unsupported Java JMS Interfaces
! interface javax.jms.ConnectionConsumer

! interface javax.jms.QueueBrowser

! interface javax.jms.ServerSession

! interface javax.jms.ServerSessionPool

7.6 Unsupported JMS Methods
Of the classes that are currently supported, the following methods are NOT supported:

! Interface QueueConnection

" createConnectionConsumer(Queue queue, java.lang.String messageSelector,
ServerSessionPool sessionPool, int maxMessages

! Interface TopicConnection

" createConnectionConsumer(Topic topic, java.lang.String messageSelector,
ServerSessionPool sessionPool, int maxMessages)

" createDurableConnectionConsumer(Topic topic, java.lang.String
subscriptionName, java.lang.String messageSelector, ServerSessionPool
sessionPool, int maxMessages)

! Interface TopicSubscriber

" createBrowser(Queue queue)

" createBrowser(Queue queue, java.lang.String messageSelector)

! Interface TopicSubscriber

" getNoLocal()

! Interface XAResource

" forget(Xid xid)

7.7 The Message Service COM+ APIs

7.7.1 Supported Java Message Service (JMS) Classes for COM+
e*Gate supports the following list of the Java Message Service (JMS) COM+ APIs. If you
need additional information for each of the classes and methods, please refer to Sun
Microsystems web site at:
e*Gate API Kit Developer’s Guide 198 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
http://java.sun.com/products/jms/javadoc-102a/javax/jms/package-summary.html

You may also find useful the following books:

! Java Message Service, O’Reilly, December 2000, ISBN: 0596000685

! Professional JMS, Wrox Press, March 2001, ISBN: 1861004931

! Professional Java Server Programming - J2EE Edition, Wrox Press, September 2000,
ISBN: 1861004656

7.7.2 The BytesMessage Object
A BytesMessage is used to send a message containing a stream of uninterrupted bytes. It
inherits Message and adds a bytes message body. The receiver of the message supplies the
interpretation of the bytes. Member of the Message Object.

Methods of the BytesMessage Object

The Acknowledge Method

Acknowledges the receipt of current and previous messages.

BytesMessage.acknowledge

The ClearBody Method

Clears the body of a message, leaving the message header values and property entries
intact.

BytesMessage.ClearBody

The ClearProperties Method

Clears the properties from a message, leaving the message header fields and body
intact.

BytesMessage.ClearProperties

The GetProperty Method

Returns the Visual Basic data type property value with the given name, into the
Message.

BytesMessage.GetProperty(name As String)

The PropertyExists Method

Checks whether a value for a specific property exists.

BytesMessage.PropertyExists(name as String)

Name Description

name The name of the property.

Name Description

name The name of the property to check.
e*Gate API Kit Developer’s Guide 199 SeeBeyond Proprietary and Confidential

http://java.sun.com/products/jms/javadoc-102a/javax/jms/package-summary.html
http://java.sun.com/products/jms/javadoc-102a/javax/jms/package-summary.html

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The ReadBoolean Method

Reads a Boolean value from the bytes message stream.

BytesMessage.ReadBoolean() As Boolean

The ReadByte Method

Reads a signed 8-bit value from the bytes message stream.

BytesMessage.ReadByte()As Byte

The ReadBytes Method

Reads a portion of the bytes message stream.

BytesMessage.ReadBytes(value, [length])As Long

The ReadChar Method

Reads a Unicode character value from the bytes message stream.

BytesMessage.ReadChar() As Integer

The ReadDouble Method

Reads a double from the bytes message stream.

BytesMessage.ReadDouble() As Double

The ReadFloat Method

Reads a float from the bytes message stream.

BytesMessage.ReadFloat() As Single

The ReadInt Method

Reads a signed 32-bit integer from the bytes message stream.

BytesMessage.ReadInt() As Long

The ReadLong Method

Reads a signed 64-bit integer from the bytes message stream.

BytesMessage.ReadLong() As Currency

The ReadShort Method

Reads a signed 16-bit number from the bytes message stream.

BytesMessage.ReadShort() As Integer

The ReadUnsignedByte Method

Reads an unsigned 8-bit number from the bytes message stream.

BytesMessage.ReadUnsignedByte() As Long

The ReadUnsignedShort Method

Reads an unsigned 16-bit number from the bytes message stream

Name Description

value The buffer the data is read into.

length The number of bytes read.
e*Gate API Kit Developer’s Guide 200 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
BytesMessage.ReadUnsignedShort() As Long

The ReadUTF Method

ReadUTF reads the string that was encoded using a modified UTF-8 format from the
bytes message stream.

BytesMessage.ReadUTF() As String

The Reset Method

The Reset method puts the message body in read-only mode, and repositions the
stream of bytes to the beginning.

BytesMessage.Reset

The SetProperty Method

The SetProperty method sets a Visual Basic data type property value with the given
name, into the Message.

BytesMessage.SetProperty(name As String, value)

The WriteBoolean Method

WriteBoolean writes to the bytes message stream as a 1-byte value.

BytesMessage.WriteBoolean(value as Boolean)

The WriteByte Method

WriteByte writes to the bytes message stream as a 1-byte value

BytesMessage.WriteByte(value As Byte)

The WriteBytes Method

WriteBytes writes a byte array, or a portion of the byte array, to the bytes message
stream

BytesMessage.WriteBytes(value, [offset], [length])

Name Description

name Name of the property.
value Value to set.

Name Description

value Write a boolean to the bytes message stream as a
1 byte value. The value true is written out as the
value (byte)1; the value false is written out as the
value (byte)0.

Name Description

value The byte value to be written

Name Description

value The byte array value to be written.
e*Gate API Kit Developer’s Guide 201 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The WriteChar Method

WriteChar writes a char to the bytes message stream as a 2-byte value, high byte first

BytesMessage.WriteChar(value As integer)

The WriteDouble Method

Convert the double parameter value to a long, and then writes an 8-byte long value to
the bytes message stream (high byte is written first).

BytesMessage.WriteDouble(value As Double)

The WriteFloat Method

Convert the float argument to an long, and then writes that long value to the bytes
message stream as a 4-byte quantity, high byte first

BytesMessage.WriteFloat(Value As Single)

The WriteInt Method

Write an int to the bytes message stream as four bytes, high byte first.

BytesMessage.WriteInt(value As Long)

The WriteLong Method

WriteLong writes a long to the bytes message stream as eight bytes, high byte first

BytesMessage.WriteLong(value As Currency)

offset The initial offset within the byte array.

length The number of bytes to use.

Name Description

value The Char value to be written.

Name Description

value The double value to write to the message stream.

Name Description

value The float value to be written.

Name Description

value The float value to be written.

Name Description

value The WriteLong is written as a currency.

Name Description
e*Gate API Kit Developer’s Guide 202 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The WriteObject Method

Currently not supported

The WriteShort Method

WriteShort writes a short to the bytes message stream as two bytes, high byte first

BytesMessage.WriteShort(value As Integer)

The WriteUTF Method

WriteUTF writes a string to the bytes message stream using UTF-8 encoding in a
machine-independent manner

BytesMessage.WriteUTF(value As String)

Properties of the BytesMessage Object

The CorrelationID Property

The CorrelationID property sets or returns correlation id values that are either JMS IQ
Manager specific message ID's or application-specific strings.

BytesMessage.CorrelationID = String
String = BytesMessage.CorrelationID

The CorrelationIDAsBytes Property

Currently not supported.

The DeliveryMode Property

The DeliveryMode property sets or returns the delivery mode for this message as either
msNonPersistent, or msPersistent. The default value is msDefaultDeliveryMode
(msPersistent).

DeliveryMode = BytesMessageConstant
BytesMessageConstant = DeliveryMode

Name Description

value The short that is written.

Name Description

value The String value that is written.

Name Description

msPersistent This mode instructs the JMS IQ Manager to
log the message to storage as part of the
client’s send operation.

msNon_Persistent This is the lowest overhead delivery mode
because it does not require the message to
be logged to storage. the JMS IQ Manager
delivers a Non_Persistent message with a
one-time-only delivery. If the JMS IQ
Manager goes down, the message will be
lost.
e*Gate API Kit Developer’s Guide 203 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The Destination Property

Currently not supported.

The Expiration Property

The Expiration property sets or returns the message expiration time in milliseconds.

BytesMessage.Expiration = Currency
Currency = BytesMessage.Expiration

The MessageID Property

The MessageID property sets or returns the value of the uniquely assigned identifier in
the message header.

BytesMessage.MessageID = String
String = BytesMessage.MessageID

The Priority Property

Currently not supported.

The Redelivered Property

The Redelivered property sets or returns an indication as to whether this message is
redelivered.

BytesMessage.Redelivered = Boolean
Boolean = BytesMessage.Redelivered

The ReplyTo Property

The ReplyTo property sets or returns were a reply to this message will be sent.
Destination can be a Topic, Queue, Temporary Topic, or a Temporary Queue.

BytesMessage.ReplyTo = Destination
Destination = BytesMessage.ReplyTo

The Timestamp Property

The TimeStamp property sets or returns the message timestamp.

BytesMessage.Timestamp = Currency
Currency = BytesMessage.Timestamp

The Type Property

The Type property sets or returns the message type.

BytesMessage.Type = String
String = BytesMessage.Type

7.7.3 The Connection Object
A Connection is a client’s active connection to its provider. This is an abstract interface.

Methods of the Connection Object

The Start Method

The Start method starts or restarts the delivery of a transaction connection's incoming
messages.

Connection.Start
e*Gate API Kit Developer’s Guide 204 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The Stop Method

The Stop methods temporarily stops the delivery of incoming messages from a
transaction connection.

Connection.Stop

Properties of the Connection Object

The ClientID Property

ClientID sets or returns the client identifier for this connection. This value is JMS IQ
Manager specific.

Connection.ClientID = String
String = Connection.ClientID

The MetaData Property

This property is not currently supported.

7.7.4 The ConnectionFactory Object
A ConnectionFactory encapsulates a set of connection configuration parameters that
has been defined by your administrator. This is an abstract interface.

Methods of the ConnectionFactory Object

There are no methods currently associated with this object.

Properties of the ConnectionFactory Object

The HostName Property

HostName is a property that sets or returns the name of the host where Message server
is running.

ConnectionFactory.HostName = String
String = ConnectionFactory.HostName

The Port Property

The Port property sets or returns the port number at which the Message Server is
listening, default value is 24053

ConnectionFactory.Port = Long
Long = ConnectionFactory.Port

The PortOffset Property

The PortOffset property sets or returns the port offset number of the Message Server if
more then one Message Server is running on the same host machine and using the same
port number

ConnectionFactory.PortOffset = Long
Long = ConnectionFactory.PortOffset
e*Gate API Kit Developer’s Guide 205 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
7.7.5 The Connection MetaData Object
This Object is currently not supported.

7.7.6 The MapMessage Object
The MapMessage is used to send a set of name-value pairs where names are Strings
and values are primitive data types. Member of the Message Object.

Methods of the MapMessage Object

The Acknowledge Method

Acknowledges the receipt of current and previous messages.

MapMessage.Acknowledge

The ClearBody Method

Clears the body of a message, leaving the message header values and property entries
intact.

MapMessage.ClearBody

The ClearProperties Method

Clears the properties from a message, leaving the message header fields and body
intact.

MapMessage.ClearProperties

The GetBoolean Method

The GetBoolean method returns the boolean value with the given name

MapMessage.GetBoolean() As Boolean

The GetByte Method

The GetByte method returns the byte value with the given name.

MapMessage.GetByte(name as a String) As Byte

The GetBytes Methods

The GetBytes method returns the byte array value with the given name as a variable.

MapMessage.GetBytes(name As String, length As Long)

Name Description

name The name of the Boolean property.

Name Description

name The name of the byte.

Name Description

name The name of the byte property.
e*Gate API Kit Developer’s Guide 206 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The GetChar Method

The GetChar property returns the Unicode character value with the given name.

MapMessage.GetChar(name As String) As Integer

The GetDouble Method

The GetDouble method returns the double value with the given name.

MapMessage.GetDouble(name As String) As Double

The GetFloat Method

The GetFloat method returns the float value with the given name.

MapMessage.GetFloat(name As String)

The GetInt Method

The GetInt method returns the long value with the given name

MapMessage.GetInt(name as a String) As Long

The GetLong Method

The GetLong method returns the currency value with the given name.

MapMessage.GetLong(name As String)As Currency

The GetObject Method

The GetObject method is currently not supported.

length The length of the property

Name Description

name The name of the Unicode character.

Name Description

name The name of the double property.

Name Description

name The name of the float property.

Name Description

name The name of the integer.

Name Description

name The name of the currency property.

Name Description
e*Gate API Kit Developer’s Guide 207 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The GetProperty Method

The GetProperty method returns the Visual Basic data type property value with the
given name, into the Message.

MapMessage.GetProperty(name As String)

The GetShort Method

The GetShort method returns the short value with the given name.

MapMessage.GetShort (name As String) As Integer

The GetString Method

Return the String value with the given name

MapMessage.GetString(name As String) As String

The ItemExists Method

The ItemExists method checks to verify if an item exists in the MapMessage.

MapMessage.ItemExists(name As String) As Boolean

The PropertyExists Method

The PropertyExists method checks if a property value exists.

MapMessage.PropertyExists (name As String) As Boolean

The SetBoolean Method

The SetBoolean method sets a boolean property value with the given name, into the
Message.

MapMessage.SetBoolean (name As String, value As Boolean)

Name Description

name Name of the currency property.

Name Description

name The name of the short currency property.

Name Description

name The name of the String property.

Name Description

name The name of the item to check.

Name Description

name The name of the property value.
e*Gate API Kit Developer’s Guide 208 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The SetByte Method

The SetByte method sets a byte value with the given name, into the Map.

MapMessage.SetByte(name As String, value As Byte)

The SetBytes Method

The SetBytes method sets a byte array or a portion of value with the given name, into
the Map.

MapMessage.SetBytes(name As String, value, [offset], [length])

The SetChar Method

The SetChar method sets a Unicode character value with the given name, into the Map.

MapMessage.SetChar(name As String, value As Integer)

The SetDouble Method

The SetDouble method sets a double value with the given name, into the Map.

MapMessage.SetDouble(name As String, value As Double)

Name Description

name The name of the property value.

value The value to set in the message.

Name Description

name The name of the byte property.

value The byte property value to set in the
message.

Name Description

name The name of the Bytes property.

value The byte array value to set in the Map.

offset The initial offset within the byte array.

length The number of bytes to use.

Name Description

name The name of the Unicode character.

value The Unicode character value to set in the
Map.

Name Description

name The name of the double property.

value The double property value to set in the map.
e*Gate API Kit Developer’s Guide 209 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The SetFloat Methods

The SetFloat method sets a float value with the given name, into the Map.

MapMessage.SetFloat(name As String, value As Single)

The SetInt Method

Set an long value with the given name, into the Map

MapMessage.SetInt(name As String, value As Long)

The SetLong Method

The SetLong method sets a currency value with the given name, into the Map.

MapMessage.SetLong(name As String, value As Currency)

The SetObject Method

This method is currently not supported.

The SetProperty Method

Sets a Visual Basic data type property value with the given name, into the Message.

MapMessage.SetProperty(name As String, value)

The SetShort Method

The SetShort method sets a short value with the given name, into the Map.

MapMessage.SetShort(name As String, value As Integer)

Name Description

name The name of the float property.

value The the float value to set in the map.

Name Description

name The name of the long property.

value The long property value to set in the
message.

Name Description

name The name of the currency property.

value The currency property value to set in the
message.

Name Description

name The name of the property.

value The value to set.

Name Description

name The name of the short property.
e*Gate API Kit Developer’s Guide 210 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The SetString Method

The SetString method sets a String value with the given name, into the Map.

MapMessage.SetString(name As String, value As String)

Properties of the MapMessage Object

The CorrelationID Property

The CorrelationID property sets or returns correlation id values that are either JMS IQ
Manager specific message ID's or application-specific strings.

Mapessage.CorrelationID = String
String = MapMessage.CorrelationID

The CorrelationIDAsBytes Property

Currently not supported.

The DeliveryMode Property

The DeliveryMode property sets or returns the delivery mode for this message as either
msNonPersistent, or msPersistent. The default value is msDefaultDeliveryMode
(msPersistent).

DeliveryMode= DeliveryModeConstant
DeliveryModeConstant = DeliveryMode

The Destination Property

Currently not supported.

The Expiration Property

The Expiration property sets or returns the message expiration time in milliseconds.

value The integer property value to set in the map.

Name Description

name The name of the string property.

value The string value to set into the map.

Name Description

msPersistent This mode instructs the JMS IQ Manager to
log the message to storage as part of the
client’s send operation.

msNon_Persistent This is the lowest overhead delivery mode
because it does not require the message to
be logged to storage. the JMS IQ Manager
delivers a Non_Persistent message with a
one-time-only delivery. If the JMS IQ
Manager goes down, the message will be
lost.

Name Description
e*Gate API Kit Developer’s Guide 211 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
MapMessage.Expiration = Currency
Currency = MapMessage.Expiration

The MapNames Property

The MapNames property returns the Map message’s names as an array of String. (read-
only)

MapMessage.MapNames = Variant
Variant = MapMessage.MapNames

The MessageID Property

The MessageID property sets or returns the value of the uniquely assigned identifier in
the message header.

MapMessage.MessageID = String
String = MapMessage.MessageID

The Priority Property

Currently not supported.

The Redelivered Property

The Redelivered property sets or returns an indication as to whether this message is
redelivered.

MapMessage.Redelivered = Boolean
Boolean = MapMessage.Redelivered

The ReplyTo Property

The ReplyTo property sets or returns were a reply to this message will be sent.
Destination object could be a Topic, Queue, TemporaryTopic, or a TemporaryQueue.

MapMessage.ReplyTo = Destination
Destination = MapMessage.ReplyTo

The Timestamp Property

The TimeStamp property sets or returns the message timestamp.

MapMessage.Timestamp = Currency
Currency = MapMessage.Timestamp

The Type Property

The Type property sets or returns the message type.

MapMessage.Type = String
String = MapMessage.Type

7.7.7 The Message Object
The Message interface is the root interface of all JMS messages. It defines the JMS
header and the acknowledge method used for all messages.

Methods of the Message Object

Subclasses of the Message Object include: BytesMessage, MapMessage, TextMessage,
and StreamMessage.
e*Gate API Kit Developer’s Guide 212 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The Acknowledge Method

Acknowledges the receipt of current and previous messages.

Message.acknowledge

The ClearBody Method

Clears the body of a message, leaving the message header values and property entries
intact.

Message.ClearBody

The ClearProperties Method

Clears the properties from a message, leaving the message header fields and body
intact.

Message.ClearProperties

The GetProperty Method

Returns the Visual Basic data type property value with the given name, into the
Message.

Message.GetProperty(name As String)

The PropertyExists Method

Checks whether a value for a specific property exists.

Message.PropertyExists(name) As Boolean

The SetProperty Method

The SetProperty method sets a Visual Basic data type property value with the given
name, into the Message.

Message.SetProperty(name As String, value)

Properties of the Message Object

The CorrelationID Property

The CorrelationID property sets or returns correlation id values that are either JMS IQ
Manager specific message ID's or application-specific strings.

Message.CorrelationID = String

Name Description

name The name of the property.

Name Description

name The name of the property to check.

Name Description

name The name of the byte property.

value The value to set.
e*Gate API Kit Developer’s Guide 213 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
String = Message.CorrelationID

The CorrelationIDAsBytes Property

The CorrelationIDAsBytes is not currently supported.

The DeliveryMode Property

The DeliveryMode property sets or returns the delivery mode for this message as either
msNonPersistent, or msPersistent. The default value is msDefaultDeliveryMode
(msPersistent).

DeliveryMode = MessageConstant
MessageConstant = DeliveryMode

The Destination Property

Currently not supported.

The Expiration Property

The Expiration property sets or returns the message expiration time in milliseconds.

Message.Expiration = Currency
Currency = Message.Expiration

The MessageID Property

The MessageID property sets or returns the value of the uniquely assigned identifier in
the message header.

Message.MessageID = String
String = Message.MessageID

The Priority Property

Currently not supported.

The Redelivered Property

The Redelivered property sets or returns an indication as to whether this message is
redelivered.

Message.Redelivered = Boolean
Boolean = Message.Redelivered

The ReplyTo Property

The ReplyTo property sets or returns were a reply to this message will be sent.
Destination could be a Topic, Queue, TemporaryTopic, or a TemporaryQueue.

Name Description

msPersistent This mode instructs the JMS IQ Manager to
log the message to storage as part of the
client’s send operation.

msNon_Persistent This is the lowest overhead delivery mode
because it does not require the message to
be logged to storage. the JMS IQ Manager
delivers a Non_Persistent message with a
one-time-only delivery. If the JMS IQ
Manager goes down, the message will be
lost.
e*Gate API Kit Developer’s Guide 214 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
Message.ReplyTo = Destination
Destination = Message.ReplyTo

The Timestamp Property

The TimeStamp property sets or returns the message timestamp.

Message.Timestamp = Currency
Currency = Message.Timestamp

The Type Property

The Type property sets or returns the message type.

Message.Type = String
String = Message.Type

7.7.8 The MessageConsumer Object
The MessageConsumer receives messages from a destination. This is an abstract
interface.

Methods of the MessageConsumer Object

The Close Method

The Close method closes resources on behalf of a MessageConsumer. A Message Server
may allocate resources on behalf of a MessageConsumer, it is recommended that you
close any unused resources.

MessageConsumer.Close

The Receive Message Method

The ReceiveMessage method receives the next message produced or that arrives within
the specified timeout interval for this message consumer.

MessageConsumer.Receive([timeOut]) As message

The ReceiveNoWait Method

The ReceiveNoWait method receives the next message if one is immediately available.

MessageConsumer.ReceiveNoWait() As message

Properties of the MessageConsumer Object

The MessageListener Property

This property is currently not supported.

The MessageSelector Property

The MessageSelector propert returns this message consumer’s message selector
expression.

Name Description

timeout The timeout value (in milliseconds) of the
MessageConsumer.
e*Gate API Kit Developer’s Guide 215 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
MessageConsumer.MessageSelector = String
String = MessageConsumer.MessageSelector

7.7.9 The MessageListener Object
This object is currently not supported.

The OnMessage Property

This function is currently not supported.

7.7.10 The MessageProducer Object
The MessageProducer sends messages to a destination. Sub interfaces of the
MessageProducer Object include QueueSender and TopicPublisher. This is an abstract
interface.

Methods of the MessageProducer Object

There are no methods associated with this object.

Properties of the MessageProducer Object

The DeliveryMode Property

The DeliveryMode property sets or returns the delivery mode for this message as either
msNonPersistent, or msPersistent. The default value is msDefaultDeliveryMode
(msPersistent).

DeliveryMode = MessageProducerConstant
MessageProducerConstant = DeliveryMode

The DisableMessageID Property

The DisableMessageID property sets or returns whether message IDs are disabled.

MessageProducer.DisableMessageID = Boolean
Boolean = MessageProducer.DisableMessageID

Name Description

msPersistent This mode instructs the JMS IQ Manager to
log the message to storage as part of the
client’s send operation.

msNon_Persistent This is the lowest overhead delivery mode
because it does not require the message to
be logged to storage. the JMS IQ Manager
delivers a Non_Persistent message with a
one-time-only delivery. If the JMS IQ
Manager goes down, the message will be
lost.
e*Gate API Kit Developer’s Guide 216 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The DisableMessageTimestamp Property

The DisableMessageTimestamp property sets or returns whether a messages
timestamps are disabled.

MessageProducer.DisableMessageTimestamp = Boolean
Boolean = MessageProducer.DisableMessageTimestamp

The Priority Method

Currently not supported.

The TimeToLive Method

Returns or sets the default length of time in milliseconds from its dispatch time that a
produced message should be retained by the message system, default value is
msDefaultTimeToLive i.e. zero which is unlimited.

MessageProducer.TimeToLive = Currency
Currency = MessageProducer.TimeToLive

7.7.11 The Queue Object
A Queue object encapsulates a Message Server specific queue name.

Methods of the Queue Object

The ToString Method

The ToString method returns a printed version of the queue name.

Queue.ToString() As String

Properties of the Queue Object

The QueueName Property

Returns the name of this queue. Read-only.

7.7.12 The QueueBrowser Object
This object is currently not supported.

7.7.13 The QueueConnection Object
A QueueConnection is an active connection to a PTP Message Server.

Methods of the QueueConnection Object

The CreateQueueSession Method

Create a QueueSession, where the possible values of acknowledgeMode are:
msAutoAcknowledge, msClientAcknowledge and msDupsOkAcknowledge.

QueueConnection.CreateQueueSession(Transacted As Boolean,
acknowledgeMode As AcknowledgeModeConstants) As QueueSession
e*Gate API Kit Developer’s Guide 217 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The Start Method

Start (or restart) a Connection's delivery of incoming messages.

QueueConnection.Start

The Stop Method

Used to temporarily stop a Connection's delivery of incoming messages.

QueueConnection.Stop

Properties of QueueConnection Object

The ClientID Property

Returns or sets client identifier for this connection.

QueueConnection.ClientID = String
String = QueueConnection.ClientID

The MetaData Property

Not currently supported.

7.7.14 The QueueConnectionFactory Object
A client uses a QueueConnectionFactory to create QueueConnections with a PTP
Message Server.

Methods of the QueueConnectionFactory Object

The CreateQueueConnection Method

Create a queue connection with a default user identity.

Name Description

Transacted If true, session is transacted.

acknowledgeMode msAutoAcknowledge = 1 : The sessionautomatically
acknowledges a client’s receipt of a message when it has either
successfully returned froma call to receive or the
MessageListener it has called to process the message
successfully returns.
msClientAcknowledge = 2 : A client acknowledges a message by
calling the message’s cknowledge method. Acknowledging a
consumed message automatically acknowledges the receipt of
all messages that have been delivered by its session.
msDupsOkAcknowledge = 3 : Instructs the session to lazily
acknowledge the delivery of messages. This is likely to result in
the delivery of some duplicate messagges if the Message
Service fails. It should only be used by consumers that are
tolerant of duplicate messages. The benefit is the reduction of
session overhead, achieved by minimizing the work done to
prevent duplicates.
e*Gate API Kit Developer’s Guide 218 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
QueueConnectionFactory.CreateQueueConnection() As QueueConnection

Properties of the QueueConnectionFactory Object

The HostName Property

Returns or sets host name of the machine where Message Server is running.

QueueConnectionFactory.HostName = String
String = QueueConnectionFactory.HostName

The Port Property

Returns or sets port number at which Message Server is listening, default value is
24053.

QueueConnectionFactory.Port = Long
Long = QueueConnecitonFactory

The PortOffset Property

Returns or sets port offset number of Message Server if more then one Message Server
is running on same host machine and using same port number.

QueueConnectionFactory.PortOffset = Long
Long = QueueConnectionFactory.PortOffset

7.7.15 The QueueReceiver Object
A client uses a QueueReceiver for receiving messages that have been delivered to a
queue.

Methods of the QueueReceiver Object

The Close Method

Since a Message Server may allocate some resources on behalf of a MessageConsumer,
you should close them when they are not needed.

QueueReceiver.Close

The Receive Method

Receive the next message produced or that arrives within the specified timeout interval
for this message consumer

QueueReceiver.Receive([timeOut]) As message

The ReceiveNoWait Method

Receive the next message if one is immediately available.

QueueReceiver.ReceiveNoWait As message

Name Description

timeout The timeout value (in milliseconds) of the
MessageConsumer.
e*Gate API Kit Developer’s Guide 219 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
Properties of the QueueReceiver Object

The MessageListener Property

This property is not currently supported.

The MessageSelector Property

Returns this message consumer’s message selector expression.

QueueReceiver.MessageSelector = String
String = QueueReceiver.MessageSelector

The Queue Property

Returns the queue associated with this queue receiver.

QueueReceiver.Queue = Queue read only
Queue read only = QueueReceiver.Queue

7.7.16 The QueueRequestor Object
The QueueRequestor object provides a helper class to simplify making service requests.

Methods of the QueueRequestor Object

The Create Method

Constructs the QueueRequestor.

QueueRequestor.Create(session As QueueSession, Queue As Queue)

The Request Method

The Request method sends a request and waits for a reply.

QueueRequestor.Request(message As message) As message

7.7.17 The QueueSender Object
A client uses a QueueSender to send messages to a queue.

Methods of the QueueSender Object

The Send Method

Sends a message to a queue for an unidentified message producer, specifying delivery
mode, priority and time to live.

Name Description

session The QueueSession.

queue Queue name.

Name Description

message The message.
e*Gate API Kit Developer’s Guide 220 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
QueueSender.Send(message As message, [DeliveryMode], [Priority],
[TimeToLive], [Queue])

Properties of the QueueSender Object

The DeliveryMode Property

The DeliveryMode property sets or returns the delivery mode for this message as either
msNonPersistent, or msPersistent. The default value is msDefaultDeliveryMode
(msPersistent).

DeliveryMode= DeliveryModeConstant
DeliveryModeConstant = DeliveryMode

The DisableMessageID Property

Returns or sets an indication of whether message IDs are disabled

QueueSender.DisableMessageID = Boolean
Boolean = QueueSender.DisableMessageID

The DisableMessageTimestamp Property

Returns or sets an indication of whether message timestamps are disabled.

QueueSender.DisableMessageTimestamp = Boolean
Boolean = QueueSender.DisableMessageTimestamp

The Priority Property

Currently not supported. It is recommended that you pass in the parameter as if
supported, to prevent the need to modify code at a later date.

Name Description

message The message to be sent.

deliveryMode The delivery mode to use.

priority The priority for this message. Although not
currently supported, it is suggested that you
include the priority so as not to have to modify the
code at a later date.

timeToLive The message’s lifetime (in milliseconds).

queue The queue that this message should be sent to.

Name Description

msPersistent This mode instructs the JMS IQ Manager to
log the message to storage as part of the
client’s send operation.

msNon_Persistent This is the lowest overhead delivery mode
because it does not require the message to
be logged to storage. the JMS IQ Manager
delivers a Non_Persistent message with a
one-time-only delivery. If the JMS IQ
Manager goes down, the message will be
lost.
e*Gate API Kit Developer’s Guide 221 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The Queue Property

Returns the queue associated with this queue sender (read-only).

QueueSender.Queue = read only
read only = QueueSender.Queue

The TimeToLive Property

Returns or sets the default length of time in milliseconds, from its dispatch time that a
produced message should be retained by the message system. The default value is
msDefaultTimeToLive, zero, which is unlimited.

QueueSender.TimeToLive = Currency
Currency = QueueSender.TimeToLive

7.7.18 The QueueSession Object
A QueueSession provides methods for creating QueueReceivers, QueueSenders,
QueueBrowsers, and TemporaryQueues.

Methods of the QueueSession Object

The Commit Method

Commit all messages done in this transaction and releases any locks currently held.

QueueSession.Commit

The CreateBrowser Method

Create a QueueBrowser to peek at the messages on the specified queue

QueueSession.CreateBrowser.(Queue As Queue, [MessageSelector]) As
QueueBrowser

The CreateBytesMessage Method

Create a BytesMessage.

QueueSession.CreateBytesMessage() As BytesMessage

The CreateMapMessage Method

Create a MapMessage.

QueueSession.CreateMapMessage() As MapMessage

The CreateMessage Method

Create a Message.

QueueSession.CreateMessage() As message

The CreateQueue Method

Create a queue identity given a Queue name.

Name Description

queue The queue to access.

messageSelector Only messages with properties matching the
message selector expression are delivered.
e*Gate API Kit Developer’s Guide 222 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
QueueSession.CreateQueue(QueueName As String) As Queue

The CreateReceiver Method

Create a QueueReceiver to receive messages for the specified queue.

QueueSession.CreateReceiver(Queue As Queue, [MessageSelector]) As
QueueReceiver

The CreateSender Method

Create a QueueSender to send messages to the specified queue..

QueueSession.CreateSender(Queue As Queue) As QueueSender

The CreateStreamMessage Method

Create a StreamMessage.

QueueSession.StreamMessage() As StreamMessage

The CreateTemporaryQueue Method

Create a temporary queue.

QueueSession.CreateTemporaryQueue() As TemporaryQueue

The CreateTextMessage Method

Create aTextMessage.

QueueSession.CreateTextMessage([Text]) As TextMessage

The Recover Method

Stops message delivery int his session, and restart sending messages with the oldest
unacknowledged message.

QueueSession.Recover()

The Rollback Method

Rolls back any messages done in this transaction and releases any lock currently held.

QueueSession.Rollback()

Name Description

QueueName The name of the queue.

Name Description

Queue The queue to access.

MessageSelector Only messages with properties matching the
message selector expression are delivered.

Name Description

Queue The name of the queue.

Name Description

Text The string used to initialize this message.
e*Gate API Kit Developer’s Guide 223 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The Run Method

Only inteded to be used by Application Servers (optional operation).

QueueSession.Run()

Properties of the QueueSender Object

The MessageListener Property

This property is not currently supported.

The Transacted Property

Returns an indication that the session is in transacted mode.

QueueSession.Transacted = Boolean
Boolean = QueueSession.Transacted

7.7.19 The Session Object
The Session object is a single threaded context for producing and consuming messages

Methods of the Session Object

The Commit Method

Commit all messages done in this transaction and releases any locks currently held.

Session.Commit

The CreateBytesMessage Method

The CreateBytesMessage method creates a BytesMessage.

Session.CreateBytesMessage() As BytesMessage

The CreateMapMessage Method

The CreateMapMessage method creates a MapMessage.

Session.CreateMapMessage() As MapMessage

The CreateMessage Method

Create a Message.

Session.CreateMessage() As message

The CreateStreamMessage Method

Create a StreamMessage.

Session.CreateStreamMessage() As StreamMessage

The CreateTextMessage Method

Create a TextMessage.

Session.CreateTextMessage([Text])
e*Gate API Kit Developer’s Guide 224 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The Recover Method

The Recover method stops message delivery in this session, and restarts sending
messages beginning with the oldest unacknowledged message.

Session.Recover

The Rollback Method

The Rollback method rollbacks any messages done in this transaction and releases any
locks currently held.

Session.Rollback

The Run Method

The Run method is an optional operation that is only intended to be used by the JMS IQ
Manager.

Session.Run

Properties of the Session Object

The MessageListener Property

This property is currently not supported.

The Transacted Property

The Transacted property returns an indication that the session is in transacted mode.

Session.Transacted = Boolean
Boolean = Session.Transacted

7.7.20 The StreamMessage Object
The StreamMessage object is used to send a stream of primitive data types.

The Acknowledge Method

Acknowledges the receipt of current and previous messages.

StreamMessage.acknowledge

The ClearBody Method

Clears the body of a message, leaving the message header values and property entries
intact.

StreamMessage.ClearBody

The ClearProperties Method

Clears the properties from a message, leaving the message header fields and body
intact.

StreamMessage.ClearProperties

Name Description

Text The string used to initialize this message.
e*Gate API Kit Developer’s Guide 225 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The GetProperty Method

Returns the Visual Basic data type property value with the given name, into the
Message.

StreamMessage.GetProperty(name As String)

The PropertyExists Method

Checks whether a value for a specific property exists.

StreamMessage.PropertyExists(name As String) As Boolean

The ReadBoolean Method

Reads a Boolean value from the bytes message stream.

StreamMessage.ReadBoolean() As Boolean

The ReadByte Method

Reads a signed 8-bit value from the bytes message stream.

StreamMessage.ReadByte() As Byte

The ReadBytes Method

Reads a portion of the bytes message stream.

StreamMessage.ReadBytes(value, [length As Long]) As Long

The ReadChar Method

Reads a Unicode character value from the bytes message stream.

StreamMessage.ReadChar() As Integer

The ReadDouble Method

Reads a double from the bytes message stream.

StreamMessage.ReadDouble() As Double

The ReadFloat Method

Reads a float from the bytes message stream.

StreamMessage.ReadFloat() As Single

Name Description

name The name of the property.

Name Description

name The name of the property to check.

Name Description

value The buffer the data is read into.

length The number of bytes array read. This number must be less than or
equal to value.length.
e*Gate API Kit Developer’s Guide 226 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The ReadInt Method

Reads a signed 32-bit integer from the bytes message stream.

StreamMessage.ReadInt() As Long

The ReadLong Method

Reads a signed 64-bit integer from the bytes message stream.

SteamMessage.ReadLong() As Currency

The ReadObject Method

Currently not supported.

The ReadShort Method

Reads a signed 16-bit number from the bytes message stream.

StreamMessage.ReadShort() As Integer

The ReadString Method

The ReadString method reads in a string from the stream message.

StreamMessage.ReadString() As String

The Reset Method

The Reset method puts the message body in read-only mode, and repositions the
stream of bytes to the beginning.

StreamMessage.Reset

The SetProperty Method

Set a Visual Basic data type property value with the given name, into the Message.

StreamMessage.SetProperty(name As String, value)

The WriteBoolean Method

WriteBoolean writes to the bytes message stream as a 1-byte value.

StreamMessage.WriteBoolean(value as Boolean)

The WriteByte Method

WriteByte writes to the bytes message stream as a 1-byte value

StreamMessage.WriteByte(value As Byte)

Name Description

name The name of the property.

value The value to set.

Name Description

value The boolean value to be written.

Name Description

value The byte value to be written.
e*Gate API Kit Developer’s Guide 227 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The WriteBytes Method

WriteBytes writes a byte array or string to the bytes message stream

StreamMessage.WriteBytes(value, [offset], [length])

The WriteChar Method

WriteChar writes a char to the bytes message stream as a 2-byte value, high byte first

StreamMessage.WriteChar(value As Integer)

The WriteDouble Method

Uses the doubleToLongBits method (class Double) to convert the double parameter
value to a long, and then writes an 8-byte long value to the bytes message stream (high
byte is written first).

StreamMessage.WriteDouble(value As Double)

The WriteFloat Method

Convert the float argument to an long, and then writes that long value to the bytes
message stream as a 4-byte quantity, high byte first

StreamMessage.WriteFloat(value As Single)

The WriteInt Method

Write an int to the bytes message stream as four bytes, high byte first.

StreamMessage.WriteInt(value As Long)

The WriteLong Method

WriteLong writes a long to the bytes message stream as eight bytes, high byte first

StreamMessage.WriteLong(value As Currency)

Name Description

value The byte array value to be written.

offset The initial offset within the byte array.

length The number of bytes to use.

Name Description

value The char value to be written.

Name Description

value The double value to write to the message stream.

Name Description

value The float value to be written.

Name Description

value The int value to be written.
e*Gate API Kit Developer’s Guide 228 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The WriteObject Method

Currently not supported

The WriteShort Method

WriteShort writes a short to the bytes message stream as two bytes, high byte first

StreamMessage.WriteShort(value As Integer)

The WriteString Method

Write a string to the message stream.

StreamMessage.WriteString(value as String)

Properties of the StreamMessage Object

The CorrelationID Property

The CorrelationID property sets or returns correlation id values that are either JMS IQ
Manager specific message ID's or application-specific strings.

StreamMessage.CorrelationID = String
String = StreamMessage.CorrelationID

The CorrelationIDAsBytes Property

The CorrelationIDAsBytes property sets or returns the correlation ID as an array of
bytes for the message.

StreamMessage.CorrelationIDAsBytes = Variant
Variant = StreamMessage.CorrelationIDAsBytes

The DeliveryMode Property

The DeliveryMode property sets or returns the delivery mode for this message as either
msNonPersistent, or msPersistent. The default value is msDefaultDeliveryMode
(msPersistent).

DeliveryMode = StreamMessageConstant
StreamMessageConstant = DeliveryMode

Name Description

value The long value to be written as currency.

Name Description

value The short that is written.

Name Description

value The String value that is written.

Name Description

msDefaultDeliveryMode Default DeliveryMode delivery mode.
e*Gate API Kit Developer’s Guide 229 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The Destination Property

The Destination property sets or returns the destination for this message.

StreamMessage.Destination = Destination
Destination = StreamMessage.Destination

The Expiration Property

The Expiration property sets or returns the message expiration time in milliseconds.

StreamMessage.Expiration = Currency
Currency = StreamMessage.Expiration

The MessageID Property

The MessageID property sets or returns the value of the uniquely assigned identifier in
the message header.

StreamMessage.MessageID = String
String = StreamMessage.MessageID

The Priority Property

The Priority property sets or returns the priority that is assigned to this message.
Possible numbers are 1 - 9.

StreamMessage.Priority = PriorityConstant
PriorityConstant = StreamMessage.Priority

The Redelivered Property

The Redelivered property sets or returns an indication as to whether this message is
redelivered.

StreamMessage.Redelivered = Boolean
Boolean = StreamMessage.Redelivered

The ReplyTo Property

The ReplyTo property sets or returns were a reply to this message will be sent.

msPersistent This mode instructs the JMS IQ Manager to
log the message to storage as part of the
client’s send operation.

msNon_Persistent This is the lowest overhead delivery mode
because it does not require the message to
be logged to storage. the JMS IQ Manager
delivers a Non_Persistent message with a
one-time-only delivery. If the JMS IQ
Manager goes down, the message will be
lost.

Name Description

msPriorityZero through msPriorityNine Level of a messages priority. Values are 0-9
with 0 being the lowest priority and 9 the
highest. Four is the message priority default
value.

Name Description
e*Gate API Kit Developer’s Guide 230 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
StreamMessage.ReplyTo = Destination
Destination = StreamMessage.ReplyTo

The Timestamp Property

The TimeStamp property sets or returns the message timestamp.

StreamMessage.Timestamp = Currency
Currency = StreamMessage.Timestamp

The Type Property

The Type property sets or returns the message type.

StreamMessage.Type = String
String = StreamMessage.Type

7.7.21 The TemporaryQueue Object
A TemporaryQueue is a unique Queue object created for the duration of a
QueueConneciton.

Methods of the TemporaryQueue Object

The Delete Method

The Delete method deletes the temporary queue.

TemporaryQueue.Delete

The ToString Method

The ToString method returns a printed version of the queue name

TemporaryQueue.ToString() As String

Properties of the TemporaryQueue Object

The QueueName Property

The QueueName property returns the name of this queue.

TemporaryQueue.QueueName = String
String = TemporaryQueue.QueueName

7.7.22 The TemporaryTopic Object
A TemporaryTopic is a unique Topic object created for the duration of a
TopicConnection.

Methods of the TemporaryTopic Object

The Delete Method

The Delete method deletes the temporary topic.

TemporaryTopic.Delete
e*Gate API Kit Developer’s Guide 231 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The ToString Method

The ToString method returns a printed version of the topic name

TemporaryTopic.ToString

Properties of the TemporaryTopic Object

The TopicName Property

The TopicName property returns the name of this topic.

TemporaryTopic.TopicName = String
String = TemporaryTopic.TopicName

7.7.23 The TextMessage Object
A TextMessage is used to send a message containing a String.

Methods of the TextMessage Object

The Acknowledge Method

Acknowledges the receipt of current and previous messages.

TextMessage.acknowledge

The ClearBody Method

Clears the body of a message, leaving the message header values and property entries
intact.

TextMessage.ClearBody

The ClearProperties Method

Clears the properties from a message, leaving the message header fields and body
intact.

TextMessage.ClearProperties

The GetProperty Method

Returns the Visual Basic data type property value with the given name, into the
Message.

TextMessage.GetProperty(name As String)

The PropertyExists Method

Checks whether a value for a specific property exists.

TextMessage.PropertyExists(name As String) As Boolean

Name Description

name The name of the property.

Name Description

name The name of the property to check.
e*Gate API Kit Developer’s Guide 232 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The SetProperty Method

Set a Visual Basic data type property value with the given name, into the Message.

TextMessage.SetProperty(name As String, value)

Properties of the Message Object

The CorrelationID Property

The CorrelationID property sets or returns correlation id values that are either JMS IQ
Manager specific message ID's or application-specific strings.

TextMessage.CorrelationID = String
String = TextMessage.CorrelationID

The CorrelationIDAsBytes Property

The CorrelationIDAsBytes property sets or returns the correlation ID as an array of
bytes for the message.

Message.CorrelationIDAsBytes = Variant
Variant = Message.CorrelationIDAsBytes

The DeliveryMode Property

The DeliveryMode property sets or returns the delivery mode for this message as either
msNonPersistent, or msPersistent. The default value is msDefaultDeliveryMode
(msPersistent).

DeliveryMode = BytesMessageConstant
BytesMessageConstant = DeliveryMode

The Destination Property

The Destination property sets or returns the destination for this message.

TextMessage.Destination = Destination
Destination = TextMessage.Destination

Name Description

name The name of the byte property.

value The value to set.

Name Description

msDefaultBytesMessage Default BytesMessage delivery mode.

msPersistent This mode instructs the JMS IQ Manager to
log the message to storage as part of the
client’s send operation.

msNon_Persistent This is the lowest overhead delivery mode
because it does not require the message to
be logged to storage. the JMS IQ Manager
delivers a Non_Persistent message with a
one-time-only delivery. If the JMS IQ
Manager goes down, the message will be
lost.
e*Gate API Kit Developer’s Guide 233 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The Expiration Property

The Expiration property sets or returns the message expiration time in milliseconds.

Message.Expiration = Currency
Currency = Message.Expiration

The MessageID Property

The MessageID property sets or returns the value of the uniquely assigned identifier in
the message header.

TextMessage.MessageID = String
String = TextMessage.MessageID

The Priority Property

The Priority property sets or returns the priority that is assigned to this message.
Possible numbers are 1 - 9. (Not currently supported, but suggested that the value be
entered, to prevent code changes later.)

TextMessage.Priority = PriorityConstant
PriorityConstant = TextMessage.Priority

The Redelivered Property

The Redelivered property sets or returns an indication as to whether this message is
redelivered.

TextMessage.Redelivered = Boolean
Boolean = TextMessage.Redelivered

The ReplyTo Property

The ReplyTo property sets or returns were a reply to this message will be sent.

TextMessage.ReplyTo = Destination
Destination = TextMessage.ReplyTo

The Text Property

The Text property sets or returns the string containing the message’s data.

TextMessage.Text = String
String = TextMessage.Text

The Timestamp Property

The TimeStamp property sets or returns the message timestamp.

TextMessage.Timestamp = Currency
Currency = TextMessage.Timestamp

The Type Property

The Type property sets or returns the message type.

TextMessage.Type = String
String = TextMessage.Type

Name Description

msPriorityZero through msPriorityNine Level of a messages priority. Values are 0-9
with 0 being the lowest priority and 9 the
highest. Four is the message priority default
value.
e*Gate API Kit Developer’s Guide 234 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
7.7.24 The Topic Object
A Topic object encapsulates a Message Server specific topic name.

Methods of the Topic Object

The ToString Method

The ToString method returns a printed version of the topic name

Topic.ToString() As String

Properties of the Topic Object

The TopicName Property

The TopicName property returns the name of this topic.

Topic.TopicName = String
String = Topic.TopicName

7.7.25 The TopicConnection Object
A TopicConnection is an active connection to a Pub/Sub Message Server.

Methods of the TopicConnection Object

The CreateTopicSession Method

Create a TopicSession

TopicConnection.CreateTopicSession(Transacted As Boolean,
acknowledgeMode As AcknowledgeModeConstants) As TopicSession

Name Description

Transacted If true, session is transacted.

acknowledgeMode msAutoAcknowledge = 1 : The sessionautomatically
acknowledges a client’s receipt of a message when it has either
successfully returned froma call to receive or the
MessageListener it has called to process the message
successfully returns.
msClientAcknowledge = 2 : A client acknowledges a message by
calling the message’s cknowledge method. Acknowledging a
consumed message automatically acknowledges the receipt of
all messages that have been delivered by its session.
msDupsOkAcknowledge = 3 : Instructs the session to lazily
acknowledge the delivery of messages. This is likely to result in
the delivery of some duplicate messagges if the Message
Service fails. It should only be used by consumers that are
tolerant of duplicate messages. The benefit is the reduction of
session overhead, achieved by minimizing the work done to
prevent duplicates.
e*Gate API Kit Developer’s Guide 235 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The Start Method

The Start method starts or restarts a connection's delivery of incoming messages.

TopicConnection.Start

The Stop Method

The Stop method temporarily stops a Connection's delivery of incoming messages.

TopicConnection.Stop

Properties of the TopicConnection

The ClientID Property

The ClientID property sets or returns a client identifier for this connection.

TopicConnection.ClientID = String
String = TopicConnection.ClientID

The MetaData Property

This property is currently not supported.

7.7.26 The TopicConnectionFactory Object
A client uses a TopicconnectionFactory to create TopicConnections with a Pub/Sub
Message Server.

Methods of the TopicConnectionFactory Object

The CreateTopicConnection Method

Create a topic connection with default user identity.

TopicConnectionFactory.CreateTopicConnection() As TopicConnection

Properties of the TopicConnectionFactory

The HostName Property

The HostName property sets or returns the host name of the machine that the JMS IQ
Server is running on.

TopicConnectionFactory.HostName = String
String = TopicConnecitonFactory.HostName

The Port Property

The Port property sets or returns the port number that the JMS IQ Server is listening on,
default value is 7555

TopicConnectionFactory = Long
Long = TopicConnectionFactory

The PortOffset Property

The PortOffset sets or returns the port offset number of the JMS IQ Server if more then
one Message Server is running on same host machine and using same port number.
e*Gate API Kit Developer’s Guide 236 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
TopicConnectionFactory.PortOffset = Long
Long = TopicConnectionFactory

7.7.27 The TopicPublisher Object
A Client uses a TopicPublisher for publishing messages on a topic.

Methods of the TopicPublisher Object

The Publish Method

The Publish method publishes a Message to a topic for an unidentified message
producer, specifying delivery mode, priority and time to live.

TopicPublisher.Publish(message As message, [DeliveryMode],
[Priority], [TimeToLive], [Topic])

Properties of TopicPublisher

The DeliveryMode Property

The DeliveryMode property sets or returns the delivery mode for this message as either
msNonPersistent, or msPersistent. The default value is msDefaultDeliveryMode
(msPersistent).

DeliveryMode = BytesMessageConstant
BytesMessageConstant = DeliveryMode

Name Description

message The message to publish.

deliveryMode The delivery mode to use.

priority The priority for this message. While not
currectly supported, it is recommended to
implement now, to prevent code changes
later.

timeToLive The message's lifetime (in milliseconds).

topic The topic to publish this message to.

Name Description

msPersistent This mode instructs the JMS IQ Manager to
log the message to storage as part of the
client’s send operation.

msNon_Persistent This is the lowest overhead delivery mode
because it does not require the message to
be logged to storage. the JMS IQ Manager
delivers a Non_Persistent message with a
one-time-only delivery. If the JMS IQ
Manager goes down, the message will be
lost.
e*Gate API Kit Developer’s Guide 237 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The DisableMessageID Property

The DisableMessageID property sets or returns whether message IDs are disabled.

TopicPublisher.DisableMessageID = Boolean
Boolean = TopicPublisher.DisableMessageID

The DisableMessageTimestamp Property

The DisableMessageTimestamp sets or returns an indication of whether message
timestamps are disabled.

TopicPublisher.DisableMessageTimestamp = Boolean
Boolean = TopicPublisher.DisableMessageTimestamp

The Priority Property

The Priority property sets or returns the priority that is assigned to this message.
Possible numbers are 1 - 9. While not currently supported, it is suggested that the
desired value be entered now, to prevent code changes later.

TopicPublisher.Priority = PriorityConstant
PriorityConstant = TopicPublisher.Priority

The TimeToLive Property

The TimeToLive property sets and returns the default length of time in milliseconds
from its dispatch time that a produced message should be retained by the message
system.

TopicPublisher.TimeToLive = MessageConstant
MessageConstant = TopicPublisher.TimeToLive

The Topic Property

The Topic property returns the topic associated with this publisher.

TopicPublisher.Topic = read-only
read-only = TopicPublisher.Topic

7.7.28 The TopicRequestor Object
The TopicRequestor object provides a helper class to simplify making service requests.

Methods of the TopicRequestor Object

The Create Method

Constructs the TopicRequestor.

Name Description

msPriorityZero through msPriorityNine Level of a messages priority. Values are 0-9
with 0 being the lowest priority and 9 the
highest. Four is the message priority default
value.

Name Description

msDefaultTimeToLive The default value of 0 = Unlimited
e*Gate API Kit Developer’s Guide 238 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
TopicRequestor.Create(session As TopicSession, Topic As Topic)

The Request Method

Send a request and wait for a reply

TopicRequestor.Request(message As message) As message

7.7.29 The TopicSession Object
A TopicSession proves methods for creating TopicPublishers, TopicSubscribers, and
TemporaryTopics.

Methods of the TopicSession Object

The Commit Method

The Commit method commits all messages done in this transaction and releases any
resources, currently held.

TopicSession.Commit

The CreateBytesMessage Method

The CreateBytesMessage method creates a BytesMessage.

TopicSession.CreateBytesMessage() As BytesMessage

The CreateDurableSubscriber Method

The CreateDurableSubscriber method creates a durable Subscriber to the specified
topic.

TopicSession.CreateDurableSubscriber(Topic As Topic, name As String,
[MessageSelector], [NoLocal] As TopicSubscriber

Name Description

session The name of the topic session.

topic The name of the topic.

Name Description

message The message text.

Name Description

topic The non-temporary topic to subscribe to.

name The name used to identify this subscription.

messageSelector Only messages with properties matching the
message selector expression are delivered.
You may use a null.

noLocal If set, noLocal inhibits the delivery of
messages published by its own connection.
e*Gate API Kit Developer’s Guide 239 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The CreateMapMessage Method

The CreateMapMessage method creates a MapMessage.

TopicSession.CreateMapMessage() As MapMessage

The CreateMessage Method

Create a Message.

TopicSession.CreateMessage() As message

The CreatePublisher Method

Create a Publisher for the specified topic.

TopicSession.CreatePublisher(Topic As Topic) As TopicPublisher

The CreateStreamMessage Method

Create a StreamMessage.

TopicSession.CreateStreamMessage() As StreamMessage

The CreateSubscriber Method

Create a non-durable Subscriber to the specified topic

TopicSession.CreateSubscriber(Topic As Topic, [MessageSelector],
[NoLocal]) As TopicSubscriber

The CreateTemporaryTopic Method

The CreateTemporaryTopic method creates a temporary topic.

TopicSession.CreateTemporaryTopic() As TemporaryTopic

The CreateTextMessage Method

The CreateTextMessage method creates TextMessage.

TopicSession.CreateTextMessage([Text]) As TextMessage

Name Description

topic The topic to which to publish, or null, if this
is an unidentified producer.

Name Description

topic The topic to subscribe to.

messageSelector Only messages with properties matching the
message selector expression are delivered.
This value may be null.

noLocal If set, inhibits the delivery of messages
published by its own connection.

Name Description

text The string used to initialize this message.
e*Gate API Kit Developer’s Guide 240 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The CreateTopic Method

Create a topic identity given a Topic name.

TopicSession.CreateTopic(TopicName As String) As Topic

The Recover Method

The Recover method creates a topic identity given a Topic name.

TopicSession.Recover

The Rollback Method

The Rollback method rolls back any messages done in this transaction and releases any
locks currently held.

TopicSession.Rollback

The Run Method

The Run method is an optional method

TopicSession.Run

The Unsubscribe Method

The Unsubscribe method unsubscribes a durable subscription that has been created by
a client.

TopicSession.Unsubscribe(name As String)

Properties of the TopicSession Object

The MessageListener Property

This property is currently not supported.

The Transacted Property

The Transacted property returns an indication that the session is in transacted mode.

TopicSession.Transacted = Boolean
Boolean = TopicSession.Transacted

7.7.30 The TopicSubscriber Object
A client uses a TopicSubscriber for receiving messages that have been published to a
topic.

Name Description

topicName The name of this topic.

Name Description

name The name used to identify this subscription.
e*Gate API Kit Developer’s Guide 241 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
Methods of the TopicSubscriber Object

The Close Method

Since a Message Server may allocate resources on behalf of a MessageConsumer, clients
should close any unrequired resources.

TopicSubscriber.Close

The Receive Method

The Receive method receives the next message produced or that arrives within the
specified timeout interval for this message consumer

TopicSubscriber.Receive([timeOut]) As message

The ReceiveNoWait Method

The ReceiveNoWait method receives the next message if one is immediately available.

TopicSubscriber.ReceiveNoWait() As message

Properties of the TopicSubscriber Object

The MessageListener Property

This property is currently not supported.

The MessageSelector Property

The MessageSelector propert returns this message consumer’s message selector
expression.

TopicSubscriber.MessageSelector = String
String = TopicSubscriber.MessageSelector

The NoLocal Property

The NoLocal property returns the NoLocal attribute for this TopicSubscriber.

TopicSubscriber.NoLocal = Boolean
Boolean = TopicSubscriber.NoLocal

The Topic Property

The Topic property returns the topic associated with this subscriber.

TopicSubscriber.Topic = Topic (read-only)
Topic (read-only) = TopicSubscriber.Topic

7.7.31 The XAQueueConnection Object
An XAQueueConnection provides the same create options as QueueConnection. The
only difference is that an XAQueueConnection is by definition transacted.

Name Description

timeout The timeout value (in milliseconds).
e*Gate API Kit Developer’s Guide 242 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
Methods of the XAQueueConnection Object

The CreateQueueSession Method

Create a QueueSession, where the possible values of acknowledgeMode are:
msAutoAcknowledge, msClientAcknowledge and msDupsOkAcknowledge.

XAQueueConnection.CreateQueueSession(Transacted As Boolean,
acknowledgeMode As AcknowledgeModeConstants) As QueueSession

The CreateXAQueueSession Method

Create an XAQueueSession.

XAQueueConnection.CreateXAQueueSession() As XAQueueSession

The Start Method

Start (or restart) a Connection's delivery of incoming messages.

XAQueueConnection.Start

The Stop Method

Used to temporarily stop a Connection's delivery of incoming messages.

XAQueueConnection.Stop

Properties of XAQueueConnection Object

The ClientID Property

Returns or sets client identifier for this connection.

XAQueueConnection.ClientID = String
String = XAQueueConnection.ClientID

The MetaData Property

Not currently supported.

Name Description

Transacted If true, session is transacted.

acknowledgeMode msAutoAcknowledge = 1 : The sessionautomatically
acknowledges a client’s receipt of a message when it has either
successfully returned froma call to receive or the
MessageListener it has called to process the message
successfully returns.
msClientAcknowledge = 2 : A client acknowledges a message by
calling the message’s cknowledge method. Acknowledging a
consumed message automatically acknowledges the receipt of
all messages that have been delivered by its session.
msDupsOkAcknowledge = 3 : Instructs the session to lazily
acknowledge the delivery of messages. This is likely to result in
the delivery of some duplicate messagges if the Message
Service fails. It should only be used by consumers that are
tolerant of duplicate messages. The benefit is the reduction of
session overhead, achieved by minimizing the work done to
prevent duplicates.
e*Gate API Kit Developer’s Guide 243 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
7.7.32 The XAQueueConnectionFactory Object
An XAQueueConnectionFactory provides the same create options as a
QueueConnectionFactory, by definition, it is transacted.

Methods of the XAQueueConnectionFactory Object

The CreateQueueConnection Method

Create a queue connection with a default user identity.

XAQueueConnectionFactory.CreateQueueConnection() As QueueConnection

The CreateXAQueueConnection Method

Create an XA queue connection with a default user identity.

XAQueueConnectionFactory.CreateXAQueueConnection() As
XAQueueConnection

Properties of the QueueConnectionFactory Object

The HostName Property

Returns or sets host name of the machine where Message Server is running.

XAQueueConnectionFactory.HostName = String
String = XAQueueConnectionFactory.HostName

The Port Property

Returns or sets port number at which Message Server is listening, default value is
24053.

XAQueueConnectionFactory.Port = Long
Long = XAQueueConnecitonFactory

The PortOffset Property

Returns or sets port offset number of Message Server if more then one Message Server
is running on same host machine and using same port number.

XAQueueConnectionFactory.PortOffset = Long
Long = XAQueueConnectionFactory.PortOffset

7.7.33 The XAQueueSession Object
An XAQueueSession provides a regular QueueSession, which can be used to create
QueueReceivers, QueueSenders, and QueueBrowsers.

Methods of the QueueSession Object

The Commit Method

Commit all messages done in this transaction and releases any locks currently held.

XAQueueSession.Commit
e*Gate API Kit Developer’s Guide 244 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The CreateBytesMessage Method

Create a BytesMessage.

XAQueueSession.CreateBytesMessage() As BytesMessage

The CreateMapMessage Method

Create a MapMessage.

XAQueueSession.CreateMapMessage() As MapMessage

The CreateMessage Method

Create a Message.

XAQueueSession.CreateMessage() As message

The CreateStreamMessage Method

Create a StreamMessage.

XAQueueSession.StreamMessage() As StreamMessage

The CreateTextMessage Method

Create aTextMessage.

XAQueueSession.CreateTextMessage([Text]) As TextMessage

The Recover Method

Stops message delivery int his session, and restart sending messages with the oldest
unacknowledged message.

XAQueueSession.Recover()

The Rollback Method

Rolls back any messages done in this transaction and releases any lock currently held.

XAQueueSession.Rollback()

The Run Method

Only inteded to be used by Application Servers (optional operation).

XAQueueSession.Run()

Properties of the QueueSender Object

The MessageListener Property

This property is not currently supported.

The QueueSession Property

Returns the queue session associated with this XAQueueSession.

XAQueueSession.QueueSession = QueueSession (read-only)
QueueSession (read-only)= XAQueueSession.QueueSession

Name Description

Text The string used to initialize this message.
e*Gate API Kit Developer’s Guide 245 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The Transacted Property

Returns an indication that the session is in transacted mode.

XAQueueSession.Transacted = Boolean
Boolean = XAQueueSession.Transacted

7.7.34 The XASession Object
The XASession extends the capability of Session by adding access to a Message Server’s
support for Transaction, using the Compensating Resource Manager (CRM), handled
under the Distributed Transaction Coordinator (DTC).

Methods of the Session Object

The Commit Method

Commit all messages done in this transaction and releases any locks currently held.

XASession.Commit

The CreateBytesMessage Method

The CreateBytesMessage method creates a BytesMessage.

XASession.CreateBytesMessage() As BytesMessage

The CreateMapMessage Method

The CreateMapMessage method creates a MapMessage.

XASession.CreateMapMessage() As MapMessage

The CreateMessage Method

Create a Message.

XASession.CreateMessage() As message

The CreateStreamMessage Method

Create a StreamMessage.

XASession.CreateStreamMessage() As StreamMessage

The CreateTextMessage Method

Create a TextMessage.

XASession.CreateTextMessage([Text])

The Recover Method

The Recover method stops message delivery in this session, and restarts sending
messages beginning with the oldest unacknowledged message.

XASession.Recover

Name Description

Text The string used to initialize this message.
e*Gate API Kit Developer’s Guide 246 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The Rollback Method

The Rollback method rollbacks any messages done in this transaction and releases any
locks currently held.

XASession.Rollback

The Run Method

The Run method is an optional operation that is only intended to be used by the JMS IQ
Manager.

XASession.Run

Properties of the Session Object

The MessageListener Property

This property is currently not supported.

The Transacted Property

The Transacted property returns an indication that the session is in transacted mode.

XASession.Transacted = Boolean
Boolean = XASession.Transacted

7.7.35 The XATopicConnection Object
An XATopicConnection provides the same create options as TopicConnection, but by
definition is transacted.

Methods of the TopicConnection Object

The CreateTopicSession Method

Create a TopicSession

XATopicConnection.CreateTopicSession(Transacted As Boolean,
acknowledgeMode As AcknowledgeModeConstants) As TopicSession

Name Description

Transacted If true, session is transacted.
e*Gate API Kit Developer’s Guide 247 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The Start Method

The Start method starts or restarts a connection's delivery of incoming messages.

XATopicConnection.Start

The Stop Method

The Stop method temporarily stops a Connection's delivery of incoming messages.

XATopicConnection.Stop

Properties of the TopicConnection

The ClientID Property

The ClientID property sets or returns a client identifier for this connection.

XATopicConnection.ClientID = String
String = XATopicConnection.ClientID

The MetaData Property

This property is currently not supported.

7.7.36 The XATopicConnectionFactory Object
An XATopicConnectionFactory provides the same create options as
TopicConnectionFactory, but by definition is transacted.

Methods of the TopicConnectionFactory Object

The CreateTopicConnection Method

Create a topic connection with default user identity.

XATopicConnectionFactory.CreateTopicConnection() As TopicConnection

acknowledgeMode msAutoAcknowledge = 1 : The sessionautomatically
acknowledges a client’s receipt of a message when it has either
successfully returned froma call to receive or the
MessageListener it has called to process the message
successfully returns.
msClientAcknowledge = 2 : A client acknowledges a message by
calling the message’s cknowledge method. Acknowledging a
consumed message automatically acknowledges the receipt of
all messages that have been delivered by its session.
msDupsOkAcknowledge = 3 : Instructs the session to lazily
acknowledge the delivery of messages. This is likely to result in
the delivery of some duplicate messagges if the Message
Service fails. It should only be used by consumers that are
tolerant of duplicate messages. The benefit is the reduction of
session overhead, achieved by minimizing the work done to
prevent duplicates.

Name Description
e*Gate API Kit Developer’s Guide 248 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The CreateXATopicConnection Method

Create an XA topic connection with default user identity.

XATopicConnectionFactory.CreateTopicConnection() As TopicConnection

Properties of the TopicConnectionFactory

The HostName Property

The HostName property sets or returns the host name of the machine that the JMS IQ
Server is running on.

XATopicConnectionFactory.HostName = String
String = XATopicConnecitonFactory.HostName

The Port Property

The Port property sets or returns the port number that the JMS IQ Server is listening on,
default value is 7555

XATopicConnectionFactory = Long
Long = XATopicConnectionFactory

The PortOffset Property

The PortOffset sets or returns the port offset number of the JMS IQ Server if more then
one Message Server is running on same host machine and using same port number.

XATopicConnectionFactory.PortOffset = Long
Long = XATopicConnectionFactory

7.7.37 The XATopicSession Object
An XA TopicSession provides a regular TopicSession which can be used to create
TopicSubscribers and TopicPublishers.

Methods of the XATopicSession Object

The Commit Method

The Commit method commits all messages done in this transaction and releases any
resources, currently held.

XATopicSession.Commit

The CreateBytesMessage Method

The CreateBytesMessage method creates a BytesMessage.

XATopicSession.CreateBytesMessage() As BytesMessage

The CreateMapMessage Method

The CreateMapMessage method creates a MapMessage.

XATopicSession.CreateMapMessage() As MapMessage

The CreateMessage Method

Create a Message.

XATopicSession.CreateMessage() As message
e*Gate API Kit Developer’s Guide 249 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.7
Client Libraries for the e*Gate Message Service The Message Service COM+ APIs
The CreateStreamMessage Method

Create a StreamMessage.

XATopicSession.CreateStreamMessage() As StreamMessage

The CreateTextMessage Method

The CreateTextMessage method creates TextMessage.

XATopicSession.CreateTextMessage([Text]) As TextMessage

The Recover Method

The Recover method creates a topic identity given a Topic name.

XATopicSession.Recover

The Rollback Method

The Rollback method rolls back any messages done in this transaction and releases any
locks currently held.

TopicSession.Rollback

The Run Method

The Run method is an optional method

TopicSession.Run

Properties of the TopicSession Object

The MessageListener Property

This property is currently not supported.

The TopicSession Property

Returns the topic session associated with this XATopicSession.

XATopicSession.TopicSession = TopicSession (read-only)
TopicSession (read-only) = TopicSession.TopicSession

The Transacted Property

The Transacted property returns an indication that the session is in transacted mode.

TopicSession.Transacted = Boolean
Boolean = TopicSession.Transacted

Name Description

text The string used to initialize this message.
e*Gate API Kit Developer’s Guide 250 SeeBeyond Proprietary and Confidential

Chapter 8

Client Libraries for the Multiplexer e*Way

The e*Gate API Kit Multiplexer e*Way contains the following types of function sets:

! C API Function Prototypes on page 251

! ActiveX APIs on page 260

! Java Methods on page 265

" com.stc.MUXPooler on page 275

! Perl Subroutines on page 282

8.1 C API Function Prototypes
The file ewipmpclnt.h defines the following function prototypes:

! EWIPMP_Close on page 251

! EWIPMP_Free on page 252

! EWIPMP_Open on page 253

! EWIPMP_Send on page 254

! EWIPMP_Wait on page 254

Note: The comments within the ewipmpclnt.h header file contain the same information as
this chapter.

EWIPMP_Close

Syntax

EWIPMP_Close(hIPMP)

Description

EWIPMP_Close closes an IPMP connection and frees all resources associated with the
HEWIPMP handle.

Parameters
e*Gate API Kit Developer’s Guide 251 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
Client Libraries for the Multiplexer e*Way C API Function Prototypes
Return Values

Boolean
Returns true if the connection was successfully closed; otherwise, returns false. Use
getlasterror() to obtain any error codes.

Examples

//close connection handle
if(hIPMP)
{

EWIPMP_Close(hIPMP)
}

EWIPMP_Free

Syntax

EWIPMP_Free(hIPMP,pbReturnMessage)

Description

EWIPMP_Free frees the memory associated with the pbReturnMessage in the
EWIMP_Wait call.

Parameters

Return Values

Returns true if the operation was performed successfully; otherwise, returns false. Use
getlasterror() to obtain any error codes.

Examples

// free message buffer
 //
 if (!EWIPMP_Free(hIPMP, (BYTE*)pBuffer))
 {
 pBuffer = NULL;
 goto FreeFailed;
 }

Name Type Description

hIPMP HEWIPMP An IPMP connection handle.

Name Type Description

hIPMP HEWIPMP An IPMP connection handle.

pbReturnMessage byte * A message, as a blob.
e*Gate API Kit Developer’s Guide 252 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
Client Libraries for the Multiplexer e*Way C API Function Prototypes
EWIPMP_Open

Syntax

EWIPMP_Open(phIPMP,pcszServerHost,dwServerPort,dwflags,
pvReserved)

Description

EWIPMP_Open creates and initializes an IPMP connection with a remote host.

Parameters

Return Values

Boolean
Returns true and creates an IPMP connection handle if the connection was successfully
established; otherwise, returns false. Use getlasterror() to obtain any error messages.

Additional Notes

The caller must call the EWIMP_Close method (See EWIPMP_Close on page 251) to
release the connection and any resources associated with the handle.

Examples

// open connection to the multiplexer e*way
 //

 if (pszServerHost == NULL)
 {
 if (!EWIPMP_Open(&hIPMP, "localhost", dwServerPort, 0, NULL))
 {
 goto OpenConnectionFailed;
 }
 }
 else
 {
 if (!EWIPMP_Open(&hIPMP, pszServerHost, dwServerPort, 0, NULL))
 {
 goto OpenConnectionFailed;
 }
 }

Name Type Optional Description

phIPMP pointer A pointer to the connection handle. Pass this
function an address of an empty handle, and the
function returns the handle for use by other
IPMP functions.

pcszServerHost char yes The name of the remote host. If this parameter is
null, “localhost” is used.

dwServerPort dword yes The TCP/IP port number. If this parameter is
zero, the default 26051 is used.

dwflags dword Reserved for future use and must be set to zero.

pvReserved void Reserved for future use and must be set to null.
e*Gate API Kit Developer’s Guide 253 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
Client Libraries for the Multiplexer e*Way C API Function Prototypes
EWIPMP_Send

Syntax

EWIPMP_Send(hIPMP,cbMessage,pbMessage,cSecondsToExpire,dwflags,
pvReserved)

Description

EWIPMP_Send sends the specified message, optionally with the specified expiration
time.

Parameters

Return Values

Returns true if the message was successfully sent; otherwise, returns false. Use
getlasterror() to obtain any error code.

Examples

// send the message to multiplexer e*way
 //

 dwMessageLength = dwCurrentBuffLen;

 if (!EWIPMP_Send(hIPMP, dwMessageLength, (BYTE*)pBuffer,
 cSecondsToExpire, 0, NULL))
 {
 goto SendFailed;

EWIPMP_Wait

Syntax

EWIPMP_Wait(hIPMP,pcbReturnMessage,ppbReturnMessage,
cMillisecondToExpire,dwflags,pvReserved)

Name Type Optional Description

hIPMP handle An open IPMP connection handle

cbMessage dword The count, in bytes, of the message pointed to by
pbMessage

pbMessage byte The message content to send into e*Gate

cSecondsToExpire dword yes The number of seconds this request “lives”
within the e*Gate system before being dropped
as an “expired” Event. If it is set to
EWIPMP_NOEXPIRE, the message never expires.

dwflags dword Bit flags reserved for future use. This field must
be set to zero.

pvReserved void Reserved for future use and must be set to null.
e*Gate API Kit Developer’s Guide 254 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
Client Libraries for the Multiplexer e*Way C API Function Prototypes
Description

EWIPMP_Wait causes the application to wait the specified number of milliseconds for
a response to be received via the specified message handle. A message must have been
sent on the same HEWIPMP handle for which EWIPMP_Wait is invoked.

Parameters

Return Values

Returns true if the message was received properly; returns false if an error occurred or
if the timeout expired. Use getlasterror() to obtain any error codes.

If the timeout expires, the error code is set to GENERROR_TIMEOUT. Other
uncommon error codes that it might return from GETLASTERROR are:

Examples

// wait for reply
 //

 if (!EWIPMP_Wait(hIPMP, &dwMessageLength, (BYTE**)&pBuffer,
 cMillisecondsToWait, 0, NULL))
 {
 goto WaitFailed;
 }

Name Type Description

hIPMP HEWIPMP An IPMP connection handle.

pcbReturnMessage dword A pointer to a DWORD that receives the count, in
bytes, of the returned message pointed to by
ppbReturnMessage.

ppbReturnMessage dword The address of a byte pointer that is allocated and
filled out by this API of the message content received.
The caller must free the returned pointer using
EWIPMP_Free (see EWIPMP_Free on page 252).

cMillisecondToExpire dword The number of milliseconds to wait to receive a
message from the remote host. If the caller sets this
parameter to EWIPMP_BLOCKWAIT, this API is not
returned until a message is received or the connection
is closed.

dwflags dword Bit flags reserved for future use. This must be set to
zero.

pvReserved void Reserved for future use. This must be set to null.

GENERROR_TIMEOUT 0x20000040

GENERROR_INVALID_PARAM 0x20000002

GENERROR_BADFORMAT 0x20000050

GENERROR_MEMORY_ALLOCATION 0x20001000
e*Gate API Kit Developer’s Guide 255 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.2
Client Libraries for the Multiplexer e*Way COBOL APIs
8.2 COBOL APIs
! Open on page 256

! Send on page 257

! Receive on page 258

! Close on page 260

Open

Syntax

call "MUXAPI" using
MUXAPI-handle
MUXAPI-remote-host
MUXAPI-remote-port
MUXAPI-errno
MUXAPI-retcode.

Description

This function creates a socket connection to the MUX server e*Way running on the
specified remote host and TCP/IP port. This socket connection is defined by a unique
identifier, or “handle,” that is returned by the OPEN. Note this allows multiple
connections to be opened and maintained by a single CICS application to a single or
multiple MUX server e*Ways.

Sample

Sample working storage definitions:

Parameters set by the application:

MUXAPI - handle

A 4-byte binary number, initialized to zero.

Returns

TCP/IP socket number for the established connection.

MUXAPI - remote-host

A 24-byte character field, containing the DNS name of the remote host on which the
MUX server e*Way is listening.

Returns

Unchanged.

01 MUXAPI-handle pic s9(8) binary value +0.

01 MUXAPI-remote-host pic x(24) value ‘remote.host.name’.

01 MUXAPI-remote-port pic 9(8) binary value 26051.

01 MUXAPI-errno pic 9(8) binary value 0.

01 MUXAPI-retcode pic s9(8) binary value +0.
e*Gate API Kit Developer’s Guide 256 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.2
Client Libraries for the Multiplexer e*Way COBOL APIs
MUXAPI - remote-port

A 4-byte binary number, containing the TCP/IP port number to which the MUX server
e*Way is listening.

Returns

Unchanged

MUXAPI - errno

A 4-byte binary number, initialized to zero.

Returns

If MUXAPI - retcode is negative, this contains an error number.

MUXAPI - retcode

A 4-byte signed binary number, initialized to zero.

Returns

Negative value signifies an error.

Send

Syntax

call "MUXAPIS" using
MUXAPI-handle
MUXAPI-message-len
MUXAPI-message
MUXAPI-hsecs-for-ack
MUXAPI-errno
MUXAPI-retcode.

Description

This function sends a message or block of data to the MUX server e*Way. The function
will then wait a specified time (expressed in hundredths of seconds) for an
acknowledgment to arrive on the socket connection identified by the passed handle.

Sample

Sample working storage definitions:

Parameters set by the application:

MUXAPI - handle

A 4-byte binary number containing the socket number returned by the OPEN.

01 MUXAPI-handle pic s9(8) binary.

01 MUXAPI-message-len pic 9(8) binary.

01 MUXAPI-message pic x(32703) value spaces.

01 MUXAPI-hsecs-for-ack pic 9(8) binary.

01 MUXAPI-errno pic 9(8) binary value 0.

01 MUXAPI-retcode pic s9(8) binary value +0.
e*Gate API Kit Developer’s Guide 257 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.2
Client Libraries for the Multiplexer e*Way COBOL APIs
Returns

Unchanged.

MUXAPI - message-len

A 4-byte binary number containing the length, in bytes, of the message to be sent to the
MUX server e*Way. The maximum size is 32K - 40 bytes, or 32727 bytes.

Returns

Unchanged.

MUXAPI - message

A 32727-byte character field containing the actual data to be sent to the MUX server
e*Way. The contents of this field will be transmitted without conversion of any kind.

Returns

Unchanged.

MUXAPI - hsecs-for-ack

A 4-byte binary number, initialized to zero. Hundredths of seconds to wait for an
acknowledgement (ACK) from e*Gate after a SEND.

Returns

Unchanged.

MUXAPI - errno

A 4-byte binary number, initialized to zero.

Returns

If MUXAPI - retcode is negative, this contains an error number.

MUXAPI - retcode

A 4-byte signed binary number, initialized to zero.

Returns

Negative value signifies an error.

Receive

Syntax

call "MUXAPIR" using
MUXAPI-handle
MUXAPI-returnmsg-len
MUXAPI-returnmsg
MUXAPI-hsecs-to-wait
MUXAPI-errno
MUXAPI-retcode.

Description

This function receives a message or block of data from the MUX server e*Way. The
function will wait a specified time (expressed in hundredths of seconds) for a message
to arrive on the socket connection identified by the passed handle.
e*Gate API Kit Developer’s Guide 258 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.2
Client Libraries for the Multiplexer e*Way COBOL APIs
Sample

Sample working storage definitions:

Parameters set by the application:

MUXAPI - handle

A 4-byte binary number, containing the socket number returned by the OPEN.

Returns

Unchanged.

MUXAPI - returnmsg-len

A 4-byte binary number, initialized to zero.

Returns

The length, in bytes, of the data received from the MUX server e*Way.

MUX API - returnmsg

A 32727-byte character field.

Returns

The data received from the MUX server e*Way.

MUXAPI - hsecs-to-wait

A 4-byte binary number, representing the hundredths of seconds to wait for a response
from e*Gate.

Returns

Unchanged.

MUXAPI - errno

A 4-byte binary number, initialized to zero.

Returns

If MUXAPI - retcode is negative, this contains an error number.

MUXAPI - retcode

A 4-byte signed binary number, initialized to zero.

Returns

Negative value signifies an error.

01 MUXAPI-handle pic s9(8) binary.

01 MUXAPI-returnmsg-len pic 9(8) binary.

01 MUXAPI-returnmsg pic x(32727) value spaces.

01 MUXAPI-hsecs-to-wait pic 9(8) binary value 100.

01 MUXAPI-errno pic 9(8) binary value 0.

01 MUXAPI-retcode pic s9(8) binary value +0.
e*Gate API Kit Developer’s Guide 259 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Client Libraries for the Multiplexer e*Way ActiveX APIs
Close

Syntax

call "MUXAPIC" using
MUXAPI-handle
MUXAPI-errno
MUXAPI-retcode.

Description

The close function shuts down the socket connection with the MUX server e*Way and
frees any resources associated with it.

Sample

Sample working storage definitions:

MUXAPI - handle

A 4-byte binary number, containing the socket number returned by the OPEN.

Returns

Unchanged.

MUXAPI - errno

A 4-byte binary number, initialized to zero.

Returns

If MUXAPI - retcode is negative, this contains an error number.

MUXAPI - retcode

A 4-byte signed binary number, initialized to zero.

Returns

Negative value signifies an error.

8.3 ActiveX APIs
The e*Gate API Kit ActiveX control supports the following methods:

! Connect on page 261

! Disconnect on page 261

! LastErrorCode on page 262

! LastErrorText on page 262

! ReplyMessageAsArray on page 263

01 MUXAPI-handle pic s9(8) binary.

01 MUXAPI-errno pic 9(8) binary value 0.

01 MUXAPI-retcode pic s9(8) binary value +0.
e*Gate API Kit Developer’s Guide 260 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Client Libraries for the Multiplexer e*Way ActiveX APIs
! ReplyMessageAsString on page 263

! ReplyMessageSize on page 263

! Send on page 264

! Wait on page 264

Connect

Syntax

Connect bstrMUXHost, lMUXListenPort

Description

Connect opens a connection to the specified host using the specified port.

Parameters

Return Values

None.

Examples

rr.Connect strHost, dwPort

Disconnect

Syntax

Disonnect

Description

Disconnect closes an open connection.

Parameters

None.

Return Values

None.

Examples

rr.Disconnect()

Name Type Description

bstrMUXHost BSTR The name of a network host.

lMUXListenPort long The TCP/IP port number over which to establish the
connection.
e*Gate API Kit Developer’s Guide 261 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Client Libraries for the Multiplexer e*Way ActiveX APIs
LastErrorCode

Syntax

LastErrorCode

Description

LastErrorCode returns the last error code.

Parameters

None.

Return Values

Returns an error code.

Examples

rr.Send strSend, 1000

if rr.LastErrorCode() > 0 then
ShowError(rr)
else
rr.Wait 10000

if rr.LastErrorCode() > 0 then
ShowError(rr)
else
Response.Write "<H1 align=center>MUX e*Way Response string</H1>"
Response.Write "<P>"

LastErrorText

Syntax

LastErrorText

Description

LastErrorText returns the text of the last error code.

Parameters

None.

Return Values

Returns an error message.

Examples

rr.Send strSend, 1000

if rr.LastErrorCode() > 0 then
ShowError(rr)
else
rr.Wait 10000

if rr.LastErrorCode() > 0 then
ShowError(rr)
e*Gate API Kit Developer’s Guide 262 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Client Libraries for the Multiplexer e*Way ActiveX APIs
else
Response.Write "<H1 align=center>MUX e*Way Response string</H1>"
Response.Write "<P>"

ReplyMessageAsArray

Syntax

ReplyMessageAsArray

Description

ReplyMessageAsArray returns the outbound data as an array.

Parameters

None.

Return Values

Returns an array.

ReplyMessageAsString

Syntax

ReplyMessageAsString

Description

ReplyMessageAsString returns the outbound data as a string.

Parameters

None.

Return Values

Returns a string.

Examples

rr.Wait 10000

if rr.LastErrorCode() > 0 then
ShowError(rr)
else
Response.Write "<H1 align=center>MUX e*Way Response string</H1>"
Response.Write "<P>"
Response.Write(rr.ReplyMessageAsString)
Response.Write "</P>"

ReplyMessageSize

Syntax

ReplyMessageSize
e*Gate API Kit Developer’s Guide 263 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Client Libraries for the Multiplexer e*Way ActiveX APIs
Description

ReplyMessageSize returns the length in bytes of the outbound data.

Parameters

None.

Return Values

Returns a long integer.

Send

Syntax

Send bstrRequestMessage, cSecondsAlive

Description

Send sends data into the e*Gate system.

Parameters

Return Values

None.

Examples

rr.Send strSend, 1000

Wait

Syntax

Wait cBlockMilliseconds

Description

Wait causes the application to wait the specified number of milliseconds for a message
to be received.

Parameters

Name Type Description

bstruRequestMessage BSTR The message to send into the e*Gate system.

cSecondsAlive long The number of seconds this request “lives” within the
e*Gate system before being dropped as an “expired”
Event.

Name Type Description

cBlockMilliseconds BSTR The number of milliseconds to wait to receive a
message from the remote host.
e*Gate API Kit Developer’s Guide 264 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.4
Client Libraries for the Multiplexer e*Way Java Methods
Return Values

None.

Examples

rr.Wait 10000

8.3.1 ActiveX Class ID
The ID for the IP Multiplexing ActiveX control is

xipmpclnt.MUX

8.4 Java Methods
The Java class file IPMPReqReply.java defines the following classes:

getResponse on page 268 setHost on page 272

getResponseBytes on page 268 setPort on page 273

getSecondsToExpire on page 269 setSecondsToExpire on page 273

getTimeout on page 270 setTimeout on page 274

sendMessage on page 271
e*Gate API Kit Developer’s Guide 265 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.4
Client Libraries for the Multiplexer e*Way Java Methods
Defaults

The IPMPReqReply class establishes the following default variables and values:

connect

Syntax

connect()

Description

connect establishes an IPMP connection with a remote host.

Type

Boolean

Parameters

None.

Return Values

Boolean
Returns true if the connection was established properly; otherwise, returns false.

Examples

// attempt to connect
 result = mux.connect();
 if (result == false)

 System.out.println("Unable to connect");

disconnect

Syntax

disconnect()

Variable Type Value Meaning

port long 26051 The TCP/IP port over which the connection to
the remote host is established.

host String ""
(null
string)

The name of the remote host.

timeOut long 10000 The number of milliseconds the application
waits to receive a message from the remote
host.

connectionHandle long 0 A connection handle to the remote host.

secondsToExpire long 10 The number of seconds that the message may
travel within the e*Gate system before e*Gate
marks it as “expired.”
e*Gate API Kit Developer’s Guide 266 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.4
Client Libraries for the Multiplexer e*Way Java Methods
Description

disconnect closes an IPMP connection.

Type

Boolean

Parameters

None.

Return Values

Boolean
Returns true if the connection was broken properly; otherwise, returns false.

Examples

// close our connection
 result = mux.disconnect();

 if (result == false)
 System.out.println("Unable to close");

 System.exit(0);

getHost

Syntax

getHost()

Description

getHost returns the name of the current host as defined by the class file’s global
variable host. If no host name is defined, getHost returns a null string.

Type

String

Parameters

None.

Return Values

java.lang.String
Returns a host name if one is defined; otherwise, returns a null string.

Examples

host = mux.getHost();

getPort

Syntax

getPort()
e*Gate API Kit Developer’s Guide 267 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.4
Client Libraries for the Multiplexer e*Way Java Methods
Description

getPort returns the TCP/IP port number defined by the class file’s global variable port.

Type

long

Parameters

None.

Return Values

long
Returns a port number.

Examples

port = mux.getPort();

getResponse

Syntax

getResponse()

Description

getResponse polls the remote system and returns that system’s response.

Type

String

Parameters

None.

Return Values

java.lang.String
Returns the remote system’s response. If no response is received or there is no
connection handle, returns a null string.

Examples

// retrieve our response
 message = mux.getResponse();

getResponseBytes

Syntax

getResponseBytes()
e*Gate API Kit Developer’s Guide 268 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.4
Client Libraries for the Multiplexer e*Way Java Methods
Description

getResponseBytes polls the remote system and returns that system’s response. The
response is returned as a blob (unlike getResponse on page 268, which packages the
response as a string).

Type

byte

Parameters

None.

Return Values

byte array
Returns the remote system’s response as a byte array. If no response is received or there
is no connection handle, returns a null string.

Examples

byte[] returnBytest = mux.getResponseByte();

getSecondsToExpire

Syntax

getSecondsToExpire()

Description

getSecondsToExpire returns the expiration time (in seconds) as defined by the class
file’s global variable secondsToExpire. See “Defaults” on page 266 for more
information.

Type

long

Parameters

None.

Return Values

long
Returns the expiration time (in seconds).

Examples

secondsToExpire = mux.getSecondsToExpire();

getSleepDuration

Syntax

getSleepDuration()
e*Gate API Kit Developer’s Guide 269 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.4
Client Libraries for the Multiplexer e*Way Java Methods
Description

getSleepDuration obtains the current internal sleep interval for MUX reply waiting.

Type

long

Parameters

None.

Return Values

long
Returns the sleep interval(in milliseconds).

Examples

long sleepduration = mux.getSleepDuration();

setSleepDuration

Syntax

getSleepDuration(long sleep)

Description

getSleepDuration obtains the current internal sleep interval for MUX reply waiting.

Type

long

Parameters

Return Values

long
Returns the sleep interval(in milliseconds).

Examples

long sleepduration = mux.getSleepDuration();

getTimeout

Syntax

getTimeout()

Name Type Description

sleep long The time in milliseconds to set the duration.
e*Gate API Kit Developer’s Guide 270 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.4
Client Libraries for the Multiplexer e*Way Java Methods
Description

getTimeout returns the timeout period (in milliseconds) as defined by the class file’s
global variable timeOut. See “Defaults” on page 266 for more information.

Type

long

Parameters

None.

Return Values

long
Returns the timeout period (in milliseconds).

Examples

timeOut = mux.getTimeout();

sendMessage

Syntax

sendMessage(byte[] message_bytes)

Description

sendMessage sends the specified message to the remote host.

Type

Boolean

Parameters

Return Values

Boolean
Returns true if a non-null message was sent successfully; otherwise, returns false.

Examples

// send our request
message = new String("Hello");
result = mux.sendMessage(message);
if (result == false)
System.out.println("Message was not sent successfully");
else
System.out.println("Message was sent successfully");

Name Type Description

message_bytes byte[] or String The message to send.
e*Gate API Kit Developer’s Guide 271 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.4
Client Libraries for the Multiplexer e*Way Java Methods
setDebug

Syntax

setDebug(boolean mode)

Description

setDebug controls the print capability for debugging messages to System.out. By
default, it is not enabled.

Type

void

Parameters

Return Values

None.

Examples

mux.setDebug(true);

setHost

Syntax

setHost(host_name)

Description

setHost sets the name of the remote host to the specified value.

Type

void

Parameters

Return Values

None.

Examples

mux.setHost("localhost");

Name Type Description

mode boolean true to enable debugging method, false to
surpress.

Name Type Description

host_name String The new host name.
e*Gate API Kit Developer’s Guide 272 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.4
Client Libraries for the Multiplexer e*Way Java Methods
setPort

Syntax

setPort(port_number)

Description

setPort sets the TCP/IP port number to the specified value.

Type

void

Parameters

Return Values

None.

Examples

mux.setPort(26051);

setSecondsToExpire

Syntax

setSecondsToExpire(seconds)

Description

setSecondsToExpire sets the expiration time to the specified value. See “Defaults” on
page 266 for more information.

Type

void

Parameters

Return Values

None.

Examples

mux.setSecondsToExpire(10);

Name Type Description

port_number long The new port number.

Name Type Description

seconds long The new expiration time.
e*Gate API Kit Developer’s Guide 273 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.4
Client Libraries for the Multiplexer e*Way Java Methods
setTimeout

Syntax

setTimeout(milliseconds)

Description

setTimeout sets the timeout to the specified value. See “Defaults” on page 266 for more
information.

Type

void

Parameters

Return Values

None.

Examples

mux.setTimeout(10000); // this is in milliseconds

Name Type Description

milliseconds long The new timeout.
e*Gate API Kit Developer’s Guide 274 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
Client Libraries for the Multiplexer e*Way com.stc.MUXPooler
8.5 com.stc.MUXPooler
The MUXPooler class operates between the multi-plexing e*Way and the external
application. The MUXPooler is opened with the configured number of connections
regardless of the number of connected applications. These connections are maintained
by the e*Way to improve performance (connection/disconnection overhead is
removed). The applications connected to the MUXPooler share these connections. If all
of the connections are occupied, when another application tries to connect to the
MUXPooler, a “Waiting for a free MUX” or “No MUX Available” message is produced.

8.5.1 Constructors
There are three Constructors associated with the Muxpooler class that are used to
instantiate an object:

! public MUXPooler():Instantiates the object only. Each of the additional
attributes must be called individually.

" setHost on page 280

" setPort on page 280

" setTimeout on page 281

" setSecondsToExpire on page 281

! public MUXPooler(String host, int port, int
connectionCount,int timeout, int secondsToExpire): Instantiates
the object and sets the values of the specified attributes.

! public MUXPooler(String host, int port, int
connectionCount,int timeout, int secondsToExpire, boolean
debug):Instantiates the object and sets the values of the specified attributes.
Included in these attributes is the ability to print debugging code to System.out. By
default it is not enabled.

8.5.2 Methods
This class will create a user defined number of MUX (multiplexer) connections to
e*Gate and send/receive Events to e*Gate:

connect on page 276 resizeMUXPool on page 278

disconnect on page 276 sendBytes on page 279

disconnect on page 276 sendMessage on page 279

getConnectionCount on page 277 setConnectionCount on page 280

getHost on page 277 setHost on page 280

getPort on page 277 setPort on page 280

getSecondsToExpire on page 278 setSecondsToExpire on page 281
e*Gate API Kit Developer’s Guide 275 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
Client Libraries for the Multiplexer e*Way com.stc.MUXPooler
connect

Syntax

connect()

Description

connect opens a connection to the Participating Host that is running the MUX e*Way.

Parameters

None.

Return Values

Boolean
Returns true if the command executed successfully; otherwise, returns false.

disconnect

Syntax

disconnect()

Description

disconnect closes the connection to the Participating Host that is running the MUX
e*Way and waits for each connection to finish the associated transaction.

Parameters

None.

Return Values

Boolean
Returns true if the command executed successfully; otherwise, returns false.

disconnect

Syntax

disconnect(WaitOnMux)

Description

disconnect disconnects all connections to the MUX e*Way.

getTimeout on page 278 setTimeout on page 281

connect on page 276 resizeMUXPool on page 278
e*Gate API Kit Developer’s Guide 276 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
Client Libraries for the Multiplexer e*Way com.stc.MUXPooler
Parameters

Return Values

Boolean
Returns true if the command executed successfully; otherwise, returns false.

getConnectionCount

Syntax

getConnectionCount()

Description

getConnectionCount returns the number of MUX connections currently available.

Parameters

None.

Return Values

integer
Returns the total number of connections available within the MUXPooler. This includes
free, non-used connections as well as the occupied connections.

getHost

Syntax

getHost()

Description

getHost returns the host name.

Parameters

None.

Return Values

string
Returns the host name.

getPort

Syntax

getPort()

Name Type Description

WaitOnMux Boolean Determines whether to wait for current transactions to
complete before disconnecting.
e*Gate API Kit Developer’s Guide 277 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
Client Libraries for the Multiplexer e*Way com.stc.MUXPooler
Description

getPort returns the port number of the host machine.

Parameters

None.

Return Values

integer
Returns the port number.

getSecondsToExpire

Syntax

getSecondsToExpire()

Description

getSecondsToExpire returns the expiration time in seconds.

Parameters

None.

Return Values

integer
Returns the number of milli-seconds.

getTimeout

Syntax

getTimeout()

Description

getTimeout returns the number of milli-seconds to wait for a response before timeout.

Parameters

None.

Return Values

integer
Returns the number of milli-seconds.

resizeMUXPool

Syntax

resizeMUXPool(newSize)

Description

resizeMUXPool resizes the muxPool to the specified size.
e*Gate API Kit Developer’s Guide 278 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
Client Libraries for the Multiplexer e*Way com.stc.MUXPooler
Parameters

Return Values

Boolean
Returns true if the command executed successfully; otherwise, returns false.

Additional Information

resizeMUXPool is used to change the pool size at runtime (as necessary).

sendBytes

Syntax

sendBytes(bytes_array)

Description

sendBytes takes the message (Event) that is to be delivered into e*Gate, and returns
e*Gate’s response. A null string is returned if there is no response.

Parameters

Return Values

byte array
Returns a byte array containing e*Gate’s response if available; otherwise, returns null.

sendMessage

Syntax

sendMessage(message)

Description

sendMessage takes the message (Event) that is to be delivered into e*Gate, and returns
e*Gate’s response. A null string is returned if there is no response.

Parameters

Name Type Description

newSize integer The number of connections of the muxPool

Name Type Description

bytes_array byte array The message (Event) as a byte array

Name Type Description

message string The message (Event) to send
e*Gate API Kit Developer’s Guide 279 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
Client Libraries for the Multiplexer e*Way com.stc.MUXPooler
Return Values

string
Returns string containing e*Gate’s response; otherwise, returns null if there was no
response.

setConnectionCount

Syntax

setConnectionCount(count)

Description

setConnectionCount sets the number of MUX connections created.

Parameters

Return Values

void

Additional Information

setConnectionCount is used to initialize the Class.

setHost

Syntax

setHost(host)

Description

setHost specifies the host name with which to establish connection.

Parameters

Return Values

void

setPort

Syntax

setPort(integer)

Name Type Description

count integer The number of MUX connections

Name Type Description

host string The host name.
e*Gate API Kit Developer’s Guide 280 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
Client Libraries for the Multiplexer e*Way com.stc.MUXPooler
Description

setPort specifies the port number with which to establish connection.

Parameters

Return Values

void

setSecondsToExpire

Syntax

setSecondsToExpire(seconds)

Description

setSecondsToExpire sets the expiration time to the specified value.

Parameters

Return Values

void

setTimeout

Syntax

setTimeout(timeout)

Description

setTimeout sets the timeout to the specified value.

Parameters

Name Type Description

port integer The port name.

Name Type Description

seconds integer The number of seconds

Name Type Description

timeout integer The number of seconds
e*Gate API Kit Developer’s Guide 281 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.6
Client Libraries for the Multiplexer e*Way Perl Subroutines
Return Values

void

8.6 Perl Subroutines
The e*Gate API Kit supports the following Perl extension subroutines:

! LastErrorText on page 262

! LastErrorCode on page 262

! Connect on page 261

! Send on page 264

! Multiplexer_Send on page 284

! ReplyMessageAsArray on page 263

! Wait on page 264

Multiplexer_Close

Syntax

Multiplexer_Close(handle)

Description

Multiplexer_Close closes the connection on the specified handle.

Parameters

Return Values

integer
Returns 1 if the command executed successfully; otherwise, returns 0.

Example

$result = Multiplexer_Close($handle);
if(!$result)
{

print "Multiplexer_Close failed.\n";
}

Name Type Description

handle handle The handle returned by Multiplexer_Open
e*Gate API Kit Developer’s Guide 282 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.6
Client Libraries for the Multiplexer e*Way Perl Subroutines
Multiplexer_Free

Syntax

Multiplexer_Free(handle, message-pointer)

Description

Multiplexer_Free frees the memory associated with the message pointer.

Parameters

Return Values

integer
Returns 1 if the command executed successfully; otherwise, returns 0.

Examples

$message_ptr = Multiplexer_Wait($handle,$message_length,3000, 0, 0);

$result = Multiplexer_Free($handle, $message_ptr);

if(!$result)
{

print "Multiplexer_Free failed.\n";
}

Multiplexer_Init

Syntax

Multiplexer_Init(dll-path)

Description

Multiplexer_Init specifies the path that contains the e*Way’s library files. This function
is required in every Perl script that communicates with the Participating Host.

Parameters

Return Values

integer
Returns 1 if the command executed successfully; otherwise, returns 0.

Name Type Description

handle handle The handle returned by Multiplexer_Open

message-pointer pointer The message pointer

Name Type Description

dll-path string The path that contains the e*Way’s.dll files. The path
can be a relative or absolute path to the script that
calls the function.
e*Gate API Kit Developer’s Guide 283 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.6
Client Libraries for the Multiplexer e*Way Perl Subroutines
Examples

this is where stc_ewipmpclntperl.dll is located.
use lib ("egate/client/bin");

use CGI qw/:standard/;
use stc_ewipmpclntperl.dll;

call Multiplexer_Init to define the dll path
Multiplexer_Init("egate/client/bin");

Multiplexer_Open

Syntax

Multiplexer_Open(server-name, server-port, flags, reserved)

Description

Multiplexer_Open opens a connection to the Participating Host that is running the
IPMP e*Way.

Parameters

Return Values

Returns a connection handle.

Examples

$handle = Multiplexer_Open(“server.mycompany.com”,26051, 0, 0);
 if(!$handle)
 { print "Multiplexer_Open failed.\n"; }

Multiplexer_Send

Syntax

Multiplexer_Send(handle, message-length, message,seconds-to-expire,
flags, reserved)

Description

Multiplexer_Send sends the specified message to the e*Gate Participating Host.

Name Type Description

server-name string The name of the e*Gate Participating Host

server-port integer The port through which to communicate with the
multi-plexing e*Way. If this value is zero, the default
port 26051 is used.

flags integer Command flags. always set to “0” (zero) unless
directed otherwise by SeeBeyond support personnel.

reserved integer Reserved for future SeeBeyond use. always set to “0”
(zero) unless directed otherwise by SeeBeyond
support personnel.
e*Gate API Kit Developer’s Guide 284 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.6
Client Libraries for the Multiplexer e*Way Perl Subroutines
Parameters

Return Values

integer
Returns 1 if the command executed successfully; otherwise, returns 0.

Examples

$result = Multiplexer_Send($handle, $message_length,$message,0,0,0);
if(!$result)
{

print "STC_MUX::Multiplexer_Send failed.\n";
}

Multiplexer_ToString

Syntax

Multiplexer_ToString(message-pointer)

Description

Multiplexer_ToString returns the data associated with the specified message pointer
as a string.

Parameters

Return Values

integer
Returns 1 if the command executed successfully; otherwise, returns 0.

Name Type Description

handle handle The handle returned by Multiplexer_Open.

message-length integer The length of the message, in bytes.

message string The data to send to the e*Gate Participating Host.

seconds-to-expire integer The number of seconds after which the data within the
e*Gate system expires.

flags integer Command flags. always set to “0” (zero) unless
directed otherwise by SeeBeyond support personnel.

reserved integer Reserved for future SeeBeyond use. always set to “0”
(zero) unless directed otherwise by SeeBeyond
support personnel.

Name Type Description

message-pointer pointer The pointer returned by Multiplexer_Wait
e*Gate API Kit Developer’s Guide 285 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.6
Client Libraries for the Multiplexer e*Way Perl Subroutines
Additional Notes

In the current implementation, the null character (“\0”) terminates a response message,
and any information that follows a null character is discarded when you use
Multiplexer_ToString to convert the response message to a string.

Examples

$message_received = Multiplexer_ToString($message_ptr);
$result = Multiplexer_Free($handle, $message_ptr);
if(!$result)
{

print "Multiplexer_Free failed.\n";
}

See LastErrorCode on page 262 for more information.

Multiplexer_Wait

Syntax

Multiplexer_Wait(handle, message-length,millsecond-timeout, flags,
reserved)

Description

Multiplexer_Wait causes the application to wait up to the specified number of
milliseconds for a message to be received.

Parameters

Return Values

Returns a message pointer.

Examples

$message_ptr = Multiplexer_Wait($handle,$message_length,3000, 0, 0);
if(!$message_ptr)
{

print "Multiplexer_Wait failed.\n";
}

Name Type Description

handle handle The handle returned by Multiplexer_Open

message-length integer The length of the message received, in bytes (assigned
as an output parameter).

millisecond-timeout integer The number of milliseconds to wait

flags integer Command flags. always set to “0” (zero) unless
directed otherwise by SeeBeyond support personnel.

reserved integer Reserved for future SeeBeyond use. always set to “0”
(zero) unless directed otherwise by SeeBeyond
support personnel.
e*Gate API Kit Developer’s Guide 286 SeeBeyond Proprietary and Confidential

Appendix A

Appendix

A.1 Cobol API Return Codes
The following error codes have been created for the e*Gate API Kit’s Cobol support.

A.2 Cobol Error Return Codes
The following return codes can be found in the IP CICS Sockets Guide Version 2 Release 8
and 9, OS/390 SecureWay Communications Server. As of the date of the creation of this
document, it can be downloaded from:

http://www-1.ibm.com/servers/s390/os390/bkserv/r10pdf/commserv.html

Error Code Description Programmer Response

3001 Get Host Name Error. Be sure that the host name and
port number are correct.

3002 Error on Return from ezacic08. Internal error. Call your system
administrator.

3003 No Data Received - Socket
Closed

Restart connection.

3004 Partial Header Received. Retry. If problem persists, call
your system administrator.

3005 Timed out waiting for a
received.

Increase the timeout interval
and retry.
Note: Remember that the
timeout value is in hundredths
of a second. One second
would be passed as a value of
100.
e*Gate API Kit Developer’s Guide 287 SeeBeyond Proprietary and Confidential

http://www-1.ibm.com/servers/s390/os390/bkserv/r10pdf/commserv.html

Appendix A Section A.2
Appendix Cobol Error Return Codes
A.2.1 TCP/IP for MVS Return Codes

Error
Number

Message Name Socket Type Error Description
Programmer’s

Response

1 EPERM All Permission is denied. No
owner exists.

Check that TCP/IP is still
active; Check the
protocol value of the
socket call.

1 EDOM All Argument is too large. Check parameter values
of the function call.

2 ENOENT All The data set or directory was
not found.

Check files used by the
function call.

2 ERANGE All The result is too large. Check parameter values
of the function call.

3 ESRCH All The process was not found. A
table entry was not located.

Check parameter values
and structures pointed
to by the function
parameters.

4 EINTR All A system call was
interrupted.

Check that the socket
connection and TCP/IP
are still active.

5 EIO All An I/O error occurred. Check status and
contents of source
database if this occurred
during a file access.

6 ENXIO All The device or driver was not
found.

Check status of the
device attempting to
access.

7 E2BIG All The argument list is too long. Check the number of
function parameters.

8 ENOEXEC All An EXEC format error
occurred.

Check that the target
module on an exec call is
a valid executable
module.

9 EBADF All An incorrect socket
descriptor was specified.

Check socket descriptor
value. It might be
currently not in use or
incorrect.

9 EBADF Givesocket The socket has already been
given. The socket domain is
not AF_INET.

Check the validity of
function parameters.

9 EBADF Select One of the specified
descriptor sets is an incorrect
socket descriptor.

Check the validity of
function parameters.

9 EBADF Takesocket The socket has already been
taken.

Check the validity of
function parameters.

10 ECHILD All There are no children. Check if created
subtasks still exist.

11 EAGAIN All There are no more processes. Retry the operation. Data
or condition might not
be available at this time.

12 ENOMEM All There is not enough storage. Check validity of
function parameters.
e*Gate API Kit Developer’s Guide 288 SeeBeyond Proprietary and Confidential

Appendix A Section A.2
Appendix Cobol Error Return Codes
13 EACCES All Permission denied, caller not
authorized.

Check access authority
of file.

13 EACCES Takesocket The other application
(listener) did not give the
socket to your application.
Permission denied, caller not
authorized.

Check access authority
of file.

14 EFAULT All An incorrect storage address
or length was specified.

Check validity of
function parameters.

15 ENOTBLK All A block device is required. Check device status and
characteristics.

16 EBUSY All Listen has already been
called for this socket. Device
or file to be accessed is busy.

Check if the device or
file is in use.

17 EEXIST All The data set exists. Remove or rename
existing file.

18 EXDEV All This is a cross-device link. A
link to a file on another file
system was attempted.

Check file permissions.

19 ENODEV All The specified device does
not exist.

Check file name and if it
exists.

20 ENOTDIR All The specified device does
not exist.

Use a valid file that is a
directory.

21 EISDIR All The specified directory is a
directory.

Use a valid file that is not
a directory.

22 EINVAL All types An incorrect argument was
specified.

Check validity of
function parameters.

23 ENFILE All Data set table overflow
occurred.

Reduce the number of
open files.

24 EMFILE All The socket descriptor table is
full.

Check the maximum
sockets specified in
MAXDESC().

25 ENOTTY All An incorrect device call was
specified.

Check specified IOCTL()
values.

26 ETXTBSY All A text data set is busy. Check the current use of
the file.

27 EFBIG All The specified data set is too
large.

Check size of accessed
dataset.

28 ENOSPC All There is no space left on the
device.

Increase the size of
accessed file.

29 ESPIPE All An incorrect seek was
attempted.

Check the offset
parameter for seek
operation.

30 EROFS All The data set system is Read
only.

Access data set for read
only operation.

31 EMLINK All There are too many links. Reduce the number of
links to the accessed file.

32 EPIPE All The connection is broken.
For socket write/send, peer
has shutdown one or both
directions.

Reconnect with the peer.

Error
Number

Message Name Socket Type Error Description
Programmer’s

Response
e*Gate API Kit Developer’s Guide 289 SeeBeyond Proprietary and Confidential

Appendix A Section A.2
Appendix Cobol Error Return Codes
33 EDOM All The specified argument is too
large.

Check and correct
function parameters.

34 ERANGE All The result is too large. Check parameter values.

35 EWOULDBLOCK Accept The socket is in nonblocking
mode and connections are
not queued. This is not an
error condition.

Reissue Accept().

35 EWOULDBLOCK Read
Recvfrom

The socket is in nonblocking
mode and read data is not
available. This is not an error
condition.

Issue a select on the
socket to determine
when data is available to
be read or reissue the
Read()/Recvfrom().

35 EWOULDBLOCK Send
Sendto
Write

The socket is in nonblocking
mode and buffers are not
available.

Issue a select on the
socket to determine
when data is available to
be written or reissue the
Send(), Sendto(), or
Write().

36 EINPROGRESS Connect The socket is marked
nonblocking and the
connection cannot be
completed immediately. This
is not an error condition.

See the Connect()
description for possible
responses.

37 EALREADY Connect The socket is marked
nonblocking and the
previous connection has not
been completed.

Reissue Connect().

37 EALREADY Maxdesc A socket has already been
created calling Maxdesc() or
multiple calls to Maxdesc().

Issue Getablesize() to
query it.

37 EALREADY Setibmopt A connection already exists
to a TCP/IP image. A call to
SETIBMOPT
(IBMTCP_IMAGE), has
already been made.

Only call Setibmopt()
once.

38 ENOTSOCK All A socket operation was
requested on a nonsocket
connection. The value for
socket descriptor was not
valid.

Correct the socket
descriptor value and
reissue the function call.

39 EDESTADDRREQ All A destination address is
required.

Fill in the destination
field in the correct
parameter and reissue
the function call.

40 EMSGSIZE Sendto
Sendmsg
Send
Write

The message is too long. It
exceeds the IP limit of 64K or
the limit set by the
setsockopt() call.

Either correct the length
parameter, or send the
message in smaller
pieces.

41 EPROTOTYPE All The specified protocol type is
incorrect for this socket.

Correct the protocol
type parameter.

Error
Number

Message Name Socket Type Error Description
Programmer’s

Response
e*Gate API Kit Developer’s Guide 290 SeeBeyond Proprietary and Confidential

Appendix A Section A.2
Appendix Cobol Error Return Codes
42 ENOPROTOOPT Getsockopt
Setsockopt

The socket option specified
is incorrect or the level is not
SOL_SOCKET. Either the
level or the specified
optname is not supported.

Correct the level or
optname.

42 ENOPROTOOPT Getibmsocket
opt
Setibmsocket
opt

Either the level or the
specified optname is not
supported.

Correct the level or
optname.

43 EPROTONOSUPPORT Socket The specified protocol is not
supported.

Correct the protocol
parameter.

44 ESOCKTNOSUPPORT All The specified socket type is
not supported.

Correct the socket type
parameter.

45 EOPNOTSUPP Accept
Givesocket

The selected socket is not a
stream socket.

Use a valid socket.

45 EOPNOTSUPP Listen The socket does not support
the Listen call.

Change the type on the
Socket() call when the
socket was created.
Listen() only supports a
socket type of
SOCK_STREAM.

45 EOPNOTSUPP Getibmopt
Setibmopt

The socket does not support
this function call. This
command is not supported
for this function.

Correct the command
parameter. See
Getibmopt() for valid
commands. Correct by
ensuing a Listen() was
not issued before the
Connect().

46 EPFNOSUPPORT All The specified protocol family
is not supported or the
specified domain for the
client identifier is not
AF_INET=2.

Correct the protocol
family.

47 EAFNOSUPPORT Bind Connect
Socket

The specified address family
is not supported by this
protocol family.

For Socket(), set the
domain parameter to
AF_INET. For Bind(), and
Connect(), set
Sin_Family in the socket
address structure to
AF_INET.

47 EAFNOSUPPORT Getclient
Givesocket

The socket specified by the
socket descriptor parameter
was not created in the
AF_INET domain.

The Socket() call used to
create the socket should
be changed to use
AF_INET for the domain
parameter.

48 EADDRINUSE Bind The address is in a timed wait
because a LINGER delay from
a previous close or another
process is using the address.

If you want to reuse the
same address, use
Setsocketopt() with
SO_REUSEADDR. See
Setsockopt().
Otherwise, use a
different address or port
in the socket address
structure.

Error
Number

Message Name Socket Type Error Description
Programmer’s

Response
e*Gate API Kit Developer’s Guide 291 SeeBeyond Proprietary and Confidential

Appendix A Section A.2
Appendix Cobol Error Return Codes
49 EADDRNOTAVAIL Bind The specified address is
incorrect for this host.

Correct the function
address parameter.

49 EADDRNOTAVAIL Connect The calling host cannot reach
the specified destination.

Correct the function
address parameter.

50 ENETDOWN All The network is down. Retry when the
connection path is up.

51 ENETUNREACH Connect The network cannot be
reached.

Ensure that the target
application is active.

52 ENETRESET All The network dropped a
connection on a reset.

Reestablish the
connection between the
applications.

53 ECONNABORTED All The software caused a
connection abend.

Reestablish the
connection between the
applications.

54 ECONNRESET All The connection to the
destination host is not
available.

54 ECONNRESET Send Write The connection to the
destination host is not
available.

The socket is closing.
Issue Send() or Write()
before closing the
socket.

55 ENOBUFS All No buffer space is available. Check the application
for massive storage
allocation call.

55 ENOBUFS Accept Not enough buffer space is
available to create the new
socket.

Call your system
administrator.

55 ENOBUFS Send Sendto
Write

Not enough buffer space is
available to send the new
message.

Call your system
administrator.

56 EISCONN Connect The socket is already
connected.

Correct the socket
descriptor on Connect()
or do not issue a
Connect() twice for the
socket.

57 ENOTCONN All The socket is not connected. Connect the socket
before communicating.

58 ESHUTDOWN All A Send cannot be processed
after socket shutdown.

Issue read/receive
before shutting down
the read side of the
socket.

59 ETOOMANYREFS All There are too many
references. A splice cannot
be completed.

Call your system
administrator.

60 ETIMEDOUT Connect The connection timed out
before it was completed.

Ensure the server
application is available.

61 ECONNREFUSED Connect The requested connection
was refused.

Ensure server application
is available and at
specified port.

62 ELOOP All There are too many symbolic
loop levels.

Reduce symbolic links to
specified file.

Error
Number

Message Name Socket Type Error Description
Programmer’s

Response
e*Gate API Kit Developer’s Guide 292 SeeBeyond Proprietary and Confidential

Appendix A Section A.2
Appendix Cobol Error Return Codes
63 ENAMETOOLONG All The file name is too long. Reduce size of specified
file name.

64 EHOSTDOWN All The host is down. Restart specified host.

65 EHOSTUNREACH All There is no route to the host. Set up network path to
specified host and verify
that host name is valid.

66 ENOTEMPTY All The directory is not empty. Clear out specified
directory and reissue
call.

67 EPROCLIM All There are too many
processes in the system.

Decrease the number of
processes or increase
the process limit.

68 EUSERS All There are to many users on
the system.

Decrease the number of
users or increase the
user limit.

69 EDQUOT All The disk quota has been
exceeded.

Call your system
administrator.

70 ESTALE All An old NFS** data set handle
was found.

Call your system
administrator.

71 EREMOTE All There are too many levels of
remote in the path.

Call your system
administrator.

72 ENOSTR All The device is not a stream
device.

Call your system
administrator.

73 ETIME All The timer has expired. Increase timer values or
reissue function.

74 ENOSR All There are no more stream
resources.

Call your system
administrator.

75 ENOMSG All There is no message of the
desired type.

Call your system
administrator.

76 EBADMSG All The system cannot read the
file message.

Verify that CS for OS/390
installation was
successful and that
message files were
properly loaded.

77 EIDRM All The identifier has been
removed.

Call your system
administrator.

78 EDEADLK All A deadlock condition has
occurred.

Call your system
administrator.

78 EDEADLK Select
Selectex

None of the sockets in the
socket descriptor sets is
either AF_NET or AF_IUCV
sockets, and there is no
timeout or no ECB specified.
The select/selectex would
never complete.

Correct the socket
descriptor sets so that an
AF_NET or AF_IUCV
socket is specified. A
timeout of ECB value can
also be added to avoid
the select/selectex from
waiting indefinitely.

79 ENOLCK All No record locks are available. Call your system
administrator.

80 ENONET All The requested machine is not
on the network.

Call your system
administrator.

Error
Number

Message Name Socket Type Error Description
Programmer’s

Response
e*Gate API Kit Developer’s Guide 293 SeeBeyond Proprietary and Confidential

Appendix A Section A.2
Appendix Cobol Error Return Codes
81 ERREMOTE All The object is remote. Call your system
administrator.

82 ENOLINK all The link has been severed. Release the sockets and
re initialize the client-
server connection.

83 EADV All An ADVERTISE error has
occurred.

Call your system
administrator.

84 ESRMNT All AnSRMOUNT error has
occurred.

Call your system
administrator.

85 ECOMM All A communication error has
occurred on a Send call.

Call your system
administrator.

86 EPROTO All A protocol error has
occurred.

Call your system
administrator.

87 EMULTIHOP All A multi hop address link was
attempted.

Call your system
administrator.

88 EDOTDOT All A cross-mount point was
detected. This is not an error.

Call your system
administrator.

89 EREMCHG all The remote address has
changed.

Call your system
administrator.

90 ECONNCLOSED All The connection was closed
by a peer.

Check that the peer is
running.

113 EBADF All Socket descriptor is not in
correct range. The maximum
number of socket descriptors
is set by MAXDESC(). The
default range is 0 - 49.

Reissue function with
corrected socket
descriptor.

113 EBADF Bind socket The socket descriptor is
already being used.

Correct the socket
descriptor.

113 EBADF Givesocket The socket has already been
given. The socket domain is
not AF_INET.

Correct the socket
descriptor.

113 EBADF Select One of the specified
descriptor sets is an incorrect
socket descriptor.

Correct the socket
descriptor. Set on
Select() or Selectex().

113 EBADF Takesocket The socket has already been
taken.

Correct the socket
descriptor.

113 EBADF Accept A Listen() has not been
issued before the Accept()

Issue Listen() before
Accept().

121 EINVAL All An incorrect argument was
specified.

Check and correct all
function parameters.

145 E2BIG All The argument list is too long. Eliminate excessive
number of arguments.

156 EMVSINITIAL All Process initialization error. Attempt to initialize
again.

1002 EIBMSOCKOUTOFRANGE Socket A socket number assigned by
the client interface code is
out of range.

check the socket
descriptor parameter.

1003 EIBMSOCKINUSE Socket A socket number assigned by
the client interface code is
already in use.

Use a different socket
descriptor.

Error
Number

Message Name Socket Type Error Description
Programmer’s

Response
e*Gate API Kit Developer’s Guide 294 SeeBeyond Proprietary and Confidential

Appendix A Section A.2
Appendix Cobol Error Return Codes
1004 EIBMIUCVERR All The request failed because of
an IUCV error. This error is
generated by the client stub
code.

Ensure IUCV/VMCF is
functional.

1008 EIBMCONFLICT All This request conflicts with a
request already queued on
the same socket.

Cancel the existing call
or wait for its completion
before reissuing this call.

1009 EIMBCANCELLED All The request was cancelled by
the CANCEL call.

Informational, no action
needed.

1011 EIBMBADTCPNAME All A TCP/IP name that is not
valid was detected.

Correct the name
specified in the
IBM_TCPIMAGE
structure.

1011 EIBMBADTCPNAME Setibmopt A TCP/IP name that is not
valid was detected.

Correct the name
specified in the
IBM_TCPIMAGE.

1011 EIBMBADTCPNAME INITAPI A TCP/IP name that is not
valid was detected.

Correct the name
specification the IDENT
option TCPNAME field.

1012 EIBMBADREQUESTCODE All A request code that is not
valid was detected.

Contact your system
administrator.

1013 EIBMBADCONNECTIONSTATE All A connection token that is
not valid was detected; bad
state.

Verify TCP/IP is active.

1014 EIBMUNAUTHORIZED CALLER All An unauthorized caller
specified an authorized
keyword.

Ensure user ID has
authority for the
specified operation.

1015 EIBMBADCONNECTIONMATCH All A connection token that is
not valid was detected. There
is no such connection.

Verify TCP/IP is active.

1016 EIBMTCPABEND All An abend occurred when
TCP/IP was processing this
request.

Verify that TCP/IP has
restarted.

1026 EIBMINVDELETE All Delete requestor did not
create the connection.

Delete the request from
the process that created
it.

1027 EIBMINVSOCKET All A connection token that is
not valid was detected. No
such socket exists.

Call your system
programmer.

1028 EIBMINVTCPCONNECTION All Connection terminated by
TCP/IP. The token was
invalidated by TCP/IP.

Reestablish the
connection to TCP/IP.

1032 EIBMCALLINPROGRESS All Another call was already in
progress.

Reissue after previous
call has completed.

1036 EIBMNOACTIVETCP Getibmopt No TCP/IP image was found. Ensure TCP/IP is active.

1037 EIBMINVTSRBUSERDATA All The request control block
contained data that is not
valid.

check your function
parameters and call your
system programmer.

1038 EIBMINVUSERDATA All The request control block
contained user data that is
not valid.

Check your function
parameters and call your
system programmer.

Error
Number

Message Name Socket Type Error Description
Programmer’s

Response
e*Gate API Kit Developer’s Guide 295 SeeBeyond Proprietary and Confidential

Appendix A Section A.2
Appendix Cobol Error Return Codes
1040 EIBMSELECTEXPOST SELECTEX SELECTEX passed an ECB that
was already posted.

Check whether the
user’s ECB was already
posted.

2001 EINVALIDRXSOCKETCALL REXX A syntax error occurred in
the RXSOCKET parameter
list.

Correct the parameter
list passed to the REXX
socket call.

2002 ECONSOLEINTERRUPT REXX A console interrupt occurred. Retry the task.

2003 ESUBTASKINVALID REXX The subtask ID is incorrect. Correct the subtask ID
on the INITIALIZE call.

2004 ESUBTASKALREADYACTIVE REXX The subtask is already active. Only issue the
INITIALIZE call once in
your program.

2005 ESUBTASKALNOTACTIVE REXX The subtask is not active. Issue the INITALIZE call
before any other socket
call.

2006 ESOCKETNOTALLOCATED REXX The specified socket could
not be allocated.

Increase the user storage
allocation for this job.

2007 EMAXSOCKETSREACHED REXX The maximum number of
sockets has been reached.

Increase the number of
allocate sockets, or
decrease the number of
sockets used by your
program.

2009 ESOCKETNOTDEFINED REXX The socket is not defined. Issue the SOCKET call
before the call that fails.

2011 EDOMAINSERVERFAILURE REXX A Domain Name Server
failure occurred.

Call your MVS system
programmer.

2012 EINVALIDNAME REXX An incorrect name was
received from the TCP/IP
server.

Call your MVS system
programmer.

2013 EINVALIDCLIENTID REXX An incorrect clientid was
received from the TCP/IP
server.

Call your MVS server.

2014 EINVALIDFILENAME REXX An error occurred during
NUCEXT processing.

Specify the correct
translation table file
name, or verify that the
translation table is valid.

2016 EHOSTNOTFOUND REXX The host is not found. Call your MVS system
programmer.

2017 EIPADDRNOTFOUND REXX Address not found. Call your MVS system
programmer.

Error
Number

Message Name Socket Type Error Description
Programmer’s

Response
e*Gate API Kit Developer’s Guide 296 SeeBeyond Proprietary and Confidential

Appendix A Section A.2
Appendix Cobol Error Return Codes
A.2.2 Sockets Extended Return Codes

Error Code Problem Description System Action Programmer’s Response

10100 An ESTATE macro did not
complete normally.

End the call. Call your MVS system
programmer.

10101 A STORAGE OBTAIN failed. End the call. Increase MVS storage in the
application’s address space.

10108 The first call from TCP/IP was
not INITAPI or TAKESOCKET.

End the call. Change the first TCP/IP call
to INITAPI or TAKESOCKET.

10110 LOAD of EZBSOH03 (alias
EZASOH03) failed.

End the call. Call the IBM Software
Support Center.

10154 Errors were found in the
parameter list for an IOCTL
call.

Disable the subtask for
interrupts. Return an error
code to the caller.

Correct the IOCTL call. You
might have incorrect
sequencing of socket calls.

10155 The length parameter for an
IOCTL call is 3200 (32 x 100).

Disable the subtask for
interrupts. Return an error
code to the caller.

Correct the IOCTL call. You
might have incorrect
sequencing of socket calls.

10159 A zero or negative data
length was specified for a
READ or READV call.

Disable the subtask for
interrupts. Return an error
code to the caller.

Correct the length in the
READ call.

10161 The REQARG parameter in
the IOCTL parameter list is
zero.

End the call. Correct the program.

10163 A 0 or negative data length
was found for a RECV,
RECVFROM, or RECVMSG
call.

Disable the subtask for
interrupts. Sever the DLC
path. Return an error code to
the caller.

Correct the data length.

10167 The descriptor set size for
SELECT or SELECTEX call is
less than or equal to zero.

Disable the subtask for
interrupts. Return an error
code to the caller.

Correct the SELECT or
SELECTEX call. You might
have incorrect sequencing
of socket calls.

10168 The descriptor set size in
bytes for a SELECT or
SELECTEX call is greater than
252. A number greater than
the maximum number of
allowed sockets (2000 is
maximum) has been
specified.

Disable the subtask for
interrupts. Return an error
code to the caller.

Correct the descriptor set
size.

10170 A zero or negative data
length was found for a SEND
or SENDMSG call.

Disable the subtask for
interrupts. Return an error
code to the caller.

Correct the data length in
the SEND call.

10174 A zero or negative data
length was found for a
SENDTO call.

Disable the subtask for
interrupts. Return an error
code to the caller.

correct the data length in the
SENDTO call.

10178 The SETSOCKOPT option
length is less than the
minimum length.

Disable the subtask for
interrupts. Return an error
code to the caller.

Correct the OPTLEN
parameter.

10179 The SETSOCKOPT option
length is greater than the
maximum length.

Disable the subtask for
interrupts. Return an error
code to the caller.

Correct the OPTLEN
parameter.
e*Gate API Kit Developer’s Guide 297 SeeBeyond Proprietary and Confidential

Appendix A Section A.2
Appendix Cobol Error Return Codes
10184 A data length of zero was
specified for a WRITE call.

Disable the subtask for
interrupts. Return an error
code to the caller.

Correct the data length in
the WRITE call.

10186 A negative data length was
specified for a WRITE or
WRITEV call.

Disable the subtask for
interrupts. Return an error
code to the caller.

Correct the data length in
the WRITE call.

10190 The GETHOSTNAME option
length is less than 24 or
greater than the maximum
length.

Disable the subtask for
interrupts. Return an error
code to the caller.

Correct the length
parameter.

10193 The GETSOCKOPT option
length is less than the
minimum or greater than the
maximum length.

End the call. Correct the length
parameter.

10197 The application issued an
INITAPI call after the
connection was already
established.

Bypass the call. Correct the logic that
produces the INITAPI call
that is not valid.

10198 The maximum number of
sockets specified for an
INITAPI exceeds 2000.

Return to the user. Correct the INITAPI call.

10200 The first call issued was not a
valid first call.

End the call. For a list of valid first calls,
refer to the section on
special considerations in the
chapter on general
programming.

10202 The RETARG parameter in
the IOCTL call is zero.

End the call. Correct the parameter list.
You might have incorrect
sequencing of socket calls.

10203 The requested socket
number is a negative value.

End the call. Correct the requested
socket number.

10205 The requested socket
number is a negative value.

End the call. Correct the requested
socket number.

10208 the NAMELEN parameter for
a GETHOSTYNAME call was
not specified.

End the call. Correct the NAMELEN
parameter. You might have
incorrect sequencing of
socket calls.

10209 The NAME parameter on a
GETHOSTBYNAME call was
not specified.

End the call. Correct the NAME
parameter. You might have
incorrect sequencing of
socket calls.

10210 The HOSTENT parameter on
a GETHOSTBYNAME call was
not specified.

End the call. Correct the HOSTENT
parameter. You might have
incorrect sequencing of
socket calls.

10211 The HOSTADDR parameter
on a GETHOSTBYNAME or
GETHOSTBYADDR call is
incorrect.

End the call. Correct the HOSTENT
parameter. You might have
incorrect sequencing of
socket calls.

10212 The resolver program failed
to load correctly for
GETHOSTBYNAME or
GETHOSTBYADDR call.

End the call. Check the JOBLIB, STEPLIB,
and link lib datasets and
rerun the program.

Error Code Problem Description System Action Programmer’s Response
e*Gate API Kit Developer’s Guide 298 SeeBeyond Proprietary and Confidential

Appendix A Section A.2
Appendix Cobol Error Return Codes
10213 Not enough storage is
available to allocate the
HOSTENT structure.

End the call. Increase the use storage
allocation for this job.

10214 The HOSTENT structure was
not returned by the resolver
program.

End the call. Ensure that the domain
name server is available. This
can be a non error condition
indicating that the name or
address specified in a
GETHOSTBYADDR or
GETHOSTBYNAME call
could not be matched.

10215 The APITYPE parameter on
an INITAPI call instruction
was not 2 or 3.

End the call. Correct the APITYPE
parameter.

10218 The application
programming interface (API)
cannot locate the specified
TCP/IP.

End the call. Ensure that an API that
supports the performance
improvements related to
CPU conservation is
installed on the system and
verify that a valid TCP/IP
name was specified on the
INITAPI call. This error call
might also mean that
EZASOKIN could not be
loaded.

10219 The NS parameter is greater
than the maximum socket
for this connection.

End the call. Correct the NS parameter on
the ACCEPT, SOCKET or
TAKESOCKET call.

10221 The AF parameter of a
SOCKET call is not AF_INET.

End the call. Set the AF parameter equal
of AF_INET.

10222 the SOCTYPE parameter of a
SOCKET call must be stream,
datagram, or raw (1, 2, or 3).

End the call. Correct the SOCTYPE
parameter.

10223 No ASYNC parameter
specified for INITAPI with
APITYPE=3 call.

End the call. Add the ASYNC parameter
to the INITAPI call.

10224 The IOVCNT parameter is
less than or equal to zero,
for a READV, RECVMSG,
SENDMSG, or WRITEV call.

End the call. correct the IOVCNT
parameter.

10225 The IOVCNT parameter is
greater than 120, for a
READV, RECVMSG,
SENDMSG, or WRITEV call.

End the call. Correct the IOVCNT
parameter.

10226 Invalid COMMAND
parameter specified for a
GETIBMOPT call.

End the call. Correct the IOVCNT
parameter.

10229 A call was issued on an
APITYPE=3 connection
without an ECB or REQAREA
parameter.

End the call. Add an ECB or REQAREA
parameter to the call.

10300 Termination is in progress
for either the CICS
transaction or the sockets
interface.

End the call. None.

Error Code Problem Description System Action Programmer’s Response
e*Gate API Kit Developer’s Guide 299 SeeBeyond Proprietary and Confidential

Appendix A Section A.2
Appendix Cobol Error Return Codes
10331 A call that is not valid was
issued while in SRB mode.

End the call. Get out of SRB mode and
reissue the call.

10332 A SELECT call is invoked with
a MAXSOC value greater
than that which was
returned in the INITAPI
function (MAXSNO field).

End the call. Correct the MAXSOC
parameter and reissue the
call.

10999 An abend has occurred in
the subtask.

Write message EZY1282E to
the system console. End the
subtask and post the TRUE
ECB.

If the call is correct, call your
system programmer.

20000 An unknown function code
was found in the call.

End the call. Correct the SOC-
FUNCTION parameter.

20001 The call passed an incorrect
number of parameters.

End the call. Correct the parameter list.

20002 The CICS Sockets Interface
is not in operation.

End the call. Start the CICS Sockets
Interface before executing
this call.

Error Code Problem Description System Action Programmer’s Response
e*Gate API Kit Developer’s Guide 300 SeeBeyond Proprietary and Confidential

Index
Index

Symbols
.dbs

default suffix for segments 40

A
Acknowledge Method 199, 206, 213, 225, 232
ActiveX control

Class ID 265
in VBasic applications 111

B
BytesMessage Object 199
BytesMessage Property 214, 233

C
C APIs

EWIPMP_Close 251
EWIPMP_Free 252
EWIPMP_Open 253
EWIPMP_Send 254
EWIPMP_Wait 254

Class ID, ActiveX control 265
ClearBody Method 199, 206, 213, 225, 232
ClearProperties Method 199, 206, 213, 225, 232
ClientID Property 236, 248
Close Method 215, 242
Commit Method 224, 239, 246, 249
Configuration parameters

Push IP Port 103
Request Reply IP Port 102

configuration parameters
DB Settings

DBCacheSize 40
DBMaxSegments 40
DBMinSegments 40
DBPath 39
DBSegmentSize 40
DBSuffix 39
LockCacheIntoRAM 41

General Settings 46
Connection Type 46

Default Outgoing Message Type 47
Delivery Mode 46
Maximum Number of Bytes to read 47
Message Selector 47
SeeBeyond Message Service Factory Class

Name 47
Transaction Type 46

Message Service
 47
Host Name 48
Maximum Message Cache Size 48
Port Number 48
Server Name 47

Message Settings 41
MaxTimeToLive 42

Trace Settings
TraceFile 44
TraceLevel 44
TraceMemory 44
TraceTimestamp 44
TraceToStdout 44
TraceVerbose 44

connection handle, subroutine to return 284
Connection MetaData Object 206
ConnectionFactory Object 205
CorrelationID Property 203, 211, 213, 229, 233
CorrelationIDAsBytes Property 203, 211, 214, 229,
233
Create 115, 116, 220, 238
CreateBytesMessage Method 224, 239, 246, 249
CreateDurableSubscriber Method 239
CreateMapMessage Method 224, 240, 246, 249
CreateMessage Method 222, 224, 240, 245, 246, 249
CreatePublisher Method 240
CreateStreamMessage 224
CreateStreamMessage Method 240, 246, 250
CreateSubscriber Method 240
CreateTemporaryTopic Method 240
CreateTextMessage Method 224, 240, 246, 250
CreateTopic Method 241
CreateTopicConnection Method 236, 248
CreateTopicSession Method 235, 247
CreateXATopicConnection Method 249

D
DBCacheSize 40
DBMaxSegments 40
DBMinSegments 40
dbs

default suffix for segments 40
DBSuffix 39
Delete Method 231
delimited data, handling in ETDs 109
e*Gate API Kit Developer’s Guide 301 SeeBeyond Proprietary and Confidential

Index
DeliveryMode Property 203, 211, 216, 229, 237
Destination Property 204, 211, 214, 230, 233
DisableMessageID Property 216, 238
DisableMessageTimes Property 217
DisableMessageTimestamp Property 238
disconnect method (Java) 266

E
EnableDelete 42
EnableEdit 42
EnableView 42
ETDs, sample 109
Event Type Definitions, sample 109
EWIPMP_Close function 251
EWIPMP_Free function 252
EWIPMP_Open function 253
EWIPMP_Send function 254
EWIPMP_Wait function 254
Expiration Property 204, 211, 214, 230, 234

F
files created by installation procedure 22

G
GetBoolean Method 206
GetByte Method 206
GetBytes Methods 206
GetChar Property 207
GetDouble Method 207
GetFloat Method 207
getHost method (Java) 267
GetInt Method 207
GetLong Method 207
GetObject Method 207
getPort method (Java) 267
GetProperty 208
GetProperty Method 199, 213
GetProperty Methods 232
getResponse method (Java) 268
getResponseBytes method (Java) 268
getSecondsToExpire method (Java) 269
GetShort Method 208
getSleepDuration method (Java) 269
getTimeout method (Java) 270

H
handle, subroutine to return 284
header, in Collaboration Rules 109
HostName Property 236, 249

I
installation

files/directories created 22
Windows NT 20

ItemExists Method 208

J
Java method

disconnect 266
getHost 267
getPort 267
getResponse 268
getResponseBytes 268
getSecondsToExpire 269
getSleepDuration 269
getTimeout 270
sendMessage 271
setDebug 272
setHost 272
setPort 273
setSecondsToExpire 273
setTimeout 274

Java methods
setSleepDuration 270

JMS COM APIs
Session Object Properties

MessageListener 225, 247
JMS COM+ APIs

BytesMessage Object
ReadUnsignedShort Method 200

BytesMessage Object Methods
Acknowledge 199
ClearBody 199
ClearProperties 199
GetProperty 199
PropertyExists 199, 226
ReadBoolean 200
ReadByte 200
ReadBytes 200
ReadChar 200
ReadDouble 200
ReadFloat 200
ReadInt 200
ReadLong 200
ReadShort 200
ReadUnsignedByte 200
ReadUTF 201
Reset 201
SetBooleanProperty 201
WriteBoolean 201
WriteByte 201, 227
WriteBytes 201
e*Gate API Kit Developer’s Guide 302 SeeBeyond Proprietary and Confidential

Index
WriteChar 202
WriteDouble 202
WriteFloat 202
WriteInt 202
WriteLong 202
WriteObject 203
WriteShort 203
WriteUTF 203

BytesMessage Object Properties
CorrelationID 203, 211
CorrelationIDAsBytes 203, 211
DeliveryMode 203, 229
Destination 204
Expiration 204, 211
MessageID 204, 230, 234
Priority 204, 234
Redelivered 204
ReplyTo 204, 212
Timestamp 204, 212
Type 204, 212

ClearMessage Object Methods
ClearProperties 206

Connection Object Methods
Start 204
Stop 205

ConnectionFactory Object Properties
Port 205

MapMessage Object Methods
Acknowledge 206
ClearBody 206
GetBoolean 206
GetByte 206
GetBytes 206
GetChar 207
GetDouble 207
GetFloat 207
GetInt 207
GetLong 207
GetObject 207
GetProperty 208
GetShort 208
ItemExists 208
PropertyExists 208
SetBoolean 208
SetByte 209
SetBytes 209
SetChar 209
SetDouble 209
SetFloat 210
SetInt 210
SetLong 210
SetObject 210
SetProperty 210
SetShort 210

SetString 211
MapMessage Object Properties

DeliveryMode 211
Destination 211
MapNames 212
MessageID 212
Priority 212
Redelivered 212

Message Consumer Object Methods
Close 215

Message Object Methods
Acknowledge 213
ClearBody 213
ClearProperties 213
GetProperty 213
PropertyExists 213
SetProperty 213

Message Object Properties
CorrelationID 213
CorrelationIDAsBytes 214
DeliveryMode 214
Destination 214
Expiration 214
MessageID 214
Priority 214
Redelivered 214
ReplyTo 214
Timestamp 215
Type 215

MessageConsumer Object Method
ReceiveNoWait 215

MessageConsumer Object Methods
ReceiveMessage 215

MessageConsumer Object Properties
MessageListener 215
MessageSelector 215

MessageProducer Object Properties
DeliveryMode 216
DisableMessageID 216
DisableMessageTimes 217

Queue Object Methods
ToString 217

Queue Object Properties
QueueName 217

QueueRequestor Object Methods
Create 220
Request 116, 117, 220

Session Object Methods
Commit 224
CreateBytesMessage 224
CreateMapMessage 224, 240
CreateMessage 222, 224, 245
CreateTextMessage 224
Recover 225
e*Gate API Kit Developer’s Guide 303 SeeBeyond Proprietary and Confidential

Index
Rollback 225
Run 225

Session Object Properties
Transacted 225

SteamMessage Object Methods
Reset 227

StreamMessage Object Methods
Acknowledge 225
ClearBody 225
ClearProperties 225
ReadBoolean 226
ReadByte 226
ReadBytes 226
ReadChar 226
ReadDouble 226
ReadFloat 226
ReadInt 227
ReadLong 227
ReadObject 227
ReadShort 227
ReadString 227
SetProperty 227
WriteBoolean 227
WriteBytes 228
WriteChar 228
WriteDouble 228
WriteFloat 228
WriteInt 228
WriteLong 228
WriteObject 229
WriteShort 229
WriteString 229

StreamMessage Object Properties
CorrelationID 229
CorrelationIDAsBytes 229
Destination 230
Expiration 230
Priority 230
Redelivered 230
ReplyTo 230
Timestamp 231
Type 231

TemporaryTopic Object Methods
Delete 231
ToString 231, 232

TemporaryTopic Object Properties
TopicName 232

TextMessage Object Methods
Acknowledge 232
ClearBody 232
ClearProperties 232
GetProperty 232
PropertyExists 232
SetProperty 233

TextMessage Object Properties
CorrelationID 233
CorrelationIDAsBytes 233
DeliveryMode 233
Destination 233
Expiration 234
Redelivered 234
ReplyTo 234
Timestamp 234
Type 234

Topic Object Methods
ToString 235

Topic Object Properties
TopicName 235

TopicConneciton Object Properties
MetaData 236

TopicConnection Object Methods
CreateTopicSession 235
Start 236
Stop 236

TopicConnection Object Properties
ClientID 236

TopicConnectionFactory Object Methods
CreateTopic 241
CreateTopicConnection 236

TopicConnectionFactory Object Properties
HostName 236, 249
Port 236, 249
PortOffset 236

TopicPublisher Object Methods
Publish 237

TopicPublisher Object Properties
DeliveryMode 237
DisableMessageID 238
DisableMessageTimestamp 238
Priority 238
TimeToLive 238
Topic 238

TopicRequestor Object Methods
Close 116
Create 238
Request 115, 116, 239
STCQueueRequestor 116
STCTopicRequestor 115

TopicSession Object Method
CreateTemporaryTopic 240

TopicSession Object Methods
Commit 239
CreateBytesMessage 239
CreateDurableSubscriber 239
CreateMessage 240
CreatePublisher 240
CreateStreamMessage 240
CreateSubscriber 240
e*Gate API Kit Developer’s Guide 304 SeeBeyond Proprietary and Confidential

Index
CreateTextMessage 240, 250
Unsubscribe 241

TopicSession Object Properties
MessageListener 241
Transacted 241

TopicSubscriber Object Methods
Close 242
Receive 242
ReceiveNoWait 242

TopicSubscriber Object Properties
MessageListener 242
MessageSelector 242
NoLocal 242
Topic 242

XASession Object Methods
Commit 246
CreateBytesMessage 246
CreateMapMessage 246
CreateMessage 246
CreateStreamMessage 246
CreateTextMessage 246
Recover 246
Rollback 247
Run 247

XASession Object Properties
Transacted 247

XATopicConneciton Object Properties
MetaData 248

XATopicConnection Object Methods
CreateTopicSession 247
Start 248
Stop 248

XATopicConnection Object Properties
ClientID 248

XATopicConnectionFactory Object Methods
CreateTopicConnection 248
CreateXATopicConnection 249

XATopicConnectionFactory Object Properties
PortOffset 249

XATopicSession Object Methods
Commit 249
CreateBytesMessage 249
CreateMapMessage 249
CreateMessage 249
CreateStreamMessage 250
Recover 250
Rollback 250

XATopicSession Object Properties
MessageListener 250
TopicSession 250
Transacted 250

M
MapMessage Object 206
MapNames Property 212
maximum client threads per e*Way 107
Message Object 212
MessageConsumer Object 215
MessageID Property 204, 212, 214, 230, 234
MessageListener Object 216
MessageListener Property 215, 225, 241, 242, 247,
250
MessageProducer Object 216
MessageSelector Property 215, 242
MetaData Property 236, 248
Multiplexer_Close subroutine 282
Multiplexer_Free subroutine 283
Multiplexer_Init subroutine 283
Multiplexer_Open subroutine 284
Multiplexer_send subroutine 284
Multiplexer_ToString subroutine 285
Multiplexer_Wait subroutine 286
MUX Instance ID 104
MUX Recovery ID 104

N
NoLocal Property 242

O
OnMessage 216
OS/390 17

P
Port Property 205, 236, 249
PortOffset Property 236, 249
Priority Property 204, 212, 214, 230, 234, 238
PropertyExists 208
PropertyExists Method 199, 213, 226, 232
Publish Method 237
Push IP Port 103

Q
Queue Object 217
QueueBrowser Object 217
QueueConnection Object 217
QueueConnectionFactory Objec 218
QueueName Property 217
QueueReceiver Object 219
QueueRequestor Object 220
QueueSender Object 220
QueueSession Object 222
e*Gate API Kit Developer’s Guide 305 SeeBeyond Proprietary and Confidential

Index
R
ReadBoolean Method 200, 226
ReadByte Method 200, 226
ReadBytes Message 200, 226
ReadChar Method 200, 226
ReadDouble Method 200, 226
ReadFloat Method 200, 226
ReadInt Method 200, 227
ReadLong Method 200, 227
ReadObject Method 227
ReadShort Method 200, 227
ReadString Method 227
ReadUnsignedByte Method 200
ReadUnsignedShort Method 200
ReadUTF Method 201
Receive Message Method 215
Receive Method 242
ReceiveNoWait Method 215, 242
Recover Method 225, 246, 250
Redelivered Property 204, 212, 214, 230, 234
ReplyTo Property 204, 212, 214, 230, 234
Request 115, 116, 117, 220, 239
Request Reply IP Port 102
request/reply

header, in Collaboration Rules 109
request/reply header

header for request/reply Events 106
Reset Method 201, 227
Rollback if no Clients on Push Port 103
Rollback Method 225, 247, 250
Run Method 225, 247

S
send data to e*Gate, Perl subroutine 284
Send Empty MSG When External Disconnect 103
sendMessage method (Java) 271
Session Object 224
SetBoolean Method 208
SetBooleanProperty Method 201
SetByte 209
SetBytes Method 209
SetChar Method 209
setDebug method (Java) 272
SetDouble Method 209
SetFloat Methods 210
setHost method (Java) 272
SetInt Method 210
SetLong Method 210
SetObject Method 210
setPort method (Java) 273
SetProperty Method 210, 213, 227, 233
setSecondsToExpire method (Java) 273

SetShort Method 210
setSleepDuration (Java) 270
SetString Method 211
setTimeout method (Java) 274
Start Method 204, 236, 248
stcms*.dbs

default file names for segments 40
Stop Method 205, 236, 248
StreamMessage Object 225
subroutines

Multiplexer_Close 282
Multiplexer_Free 283
Multiplexer_Init 283
Multiplexer_Open 284
Multiplexer_Send 284
Multiplexer_ToString 285
Multiplexer_Wait 286

Supporting Documents 20

T
TemporaryQueue Object 231
TemporaryTopic 231
Text Property 234
TextMessage 232
Timestamp Property 204, 212, 215, 231, 234
TimeToLive Property 238
Topic Object 235
Topic Property 238, 242
TopicConnection Object 235
TopicConnectionFactory Object 236
TopicName Property 232, 235
TopicRequestor Property 238
TopicSession Object 237, 239
TopicSession Property 250
ToString 217
ToString Method 231, 232, 235
TraceLevel 44
TraceMemory 44
TraceTimeStamp 44
TraceToFile 44
TraceToStdout 44
TraceVerbose 44
Transacted Property 225, 241, 247, 250
Type Property 204, 212, 215, 231, 234

U
Unsubscribe Method 241

W
Wait For IQ Ack 103
e*Gate API Kit Developer’s Guide 306 SeeBeyond Proprietary and Confidential

Index
WriteBoolean Method 201, 227
WriteByte Method 201, 227
WriteBytes Method 201, 228
WriteChar Method 202, 228
WriteDouble Method 202, 228
WriteFloat Method 202, 228
WriteInt Method 202, 228
WriteLong Method 202, 228
WriteObject Method 203, 229
WriteShort Method 203, 229
WriteString Method 229
WriteUTF Method 203

X
XATopicSession Object 249
e*Gate API Kit Developer’s Guide 307 SeeBeyond Proprietary and Confidential

	e*Gate API Kit Developer’s Guide
	Contents
	Introduction
	1.1 Overview
	1.1.1 SeeBeyond Message Service Functionality
	Publish-and-subscribe
	Point-To-Point
	Request-Reply
	Message Selector
	Java Naming and Directory Interface
	Compensating Resource Manager

	1.1.2 SeeBeyond Multiplexer e*Way Functionality
	Request-Reply
	Send-only
	Receive

	1.2 Intended Reader
	1.3 Supported Operating Systems
	1.4 System Requirements
	1.4.1 For Using Java Message Service APIs
	1.4.2 For Using Java Message Service COM+ APIs
	1.4.3 For Using MUX e*Gate APIs

	1.5 O/S 390 System Requirements
	1.6 External System Requirements for OS/390
	1.6.1 For Using CICS
	1.6.2 For Using IMS
	1.6.3 For Using Batch

	Installing the e*Gate API Kit
	2.1 Supporting Documents
	2.2 Windows NT and 2000
	2.2.1 Pre-installation
	2.2.2 Installing the e*Gate API Kit

	2.3 Unix
	2.3.1 Pre-installation
	2.3.2 Installing the e*Gate API Kit

	2.4 Directories Created by the Installation
	2.5 OS/390
	2.5.1 Copying the Tape Contents to Disk
	Linking the COBOL API Load Models

	2.5.2 Verifying the CICS Transaction Server Environment for e*Gate

	Configuring the Message Service
	3.1 Configuring the Message Service Clients
	3.1.1 Java Client
	Setting up the Java Client

	3.1.2 COM+ Client
	Setting up the COM+ Client
	Viewing the Message Service COM+ APIs Using Microsoft Visual Basic 6.0
	Compensating Resource Manager (CRM)

	3.2 Configuring the Message Server
	3.2.1 Considerations
	3.2.2 JMS IQ Manager Configuration Parameters
	DB Settings
	Message Settings
	Server Settings
	Topic Settings
	Trace Settings

	3.3 Configuring JMS e*Way Connection
	3.3.1 JMS e*Way Connection Parameters
	General Settings
	Message Service

	Implementing the Message Service
	4.1 Implementing Message Service Models
	Considerations
	4.1.1 Message Overview
	Message Structure
	Message Header Fields
	Message Properties
	Message Body

	4.2 Sample Code
	4.2.1 The Publish/Subscribe Model
	Java Publish
	Java Subscribe
	COM VB Publish/Subscribe
	ASP Publish

	4.2.2 The Point-to-Point Model
	Java Point-to-Point Sender
	Java Point-to-Point Receiver
	COM VB Point-to-Point

	4.2.3 The Request-Reply Model
	Java Request/Reply
	Java TopicRequestor
	Java QueueRequestor
	COM VB TopicRequestor
	COM VB QueueRequestor

	4.2.4 JNDI
	Initial Context
	Naming Operations
	JNDI Samples

	4.2.5 The Message Selector
	Message Selector Syntax
	Java Message Selector Publisher
	Java Message Selector Subscriber
	COM VB Message Selector

	4.2.6 XA Sample
	Java XA Publisher
	Java XA Subscriber
	COM VB XA Sample

	4.2.7 The Compensating Resource Manager

	4.3 Sample Schema Implementation
	4.3.1 e*Gate Sample JMS Schema Overview
	SeeBeyond JMS IQ Manager
	Event Type
	Event Type Definition
	JMS e*Way Connections
	Java Collaboration Rules
	Multi-mode e*Way
	Java Collaboration

	4.3.2 Executing the Schema

	Configuring the Multiplexer e*Way
	5.1 Configuring the Multiplexer Client
	5.1.1 Considerations
	5.1.2 Setting up the Multiplexer
	5.1.3 Setting up the Muxpooler

	5.2 Configuring the Multiplexer Server
	5.2.1 Multiplexer e*Way Configuration Parameters
	General Settings

	Implementing the Multiplexer e*Way
	6.1 Implementing the Multiplexer Models
	6.1.1 Multiplexer Overview
	Request Reply

	6.1.2 Multiplexer Request/Reply Sample Schema
	6.1.3 ETDs, Collaboration Rules, and the “Return Address” Header
	6.1.4 Using the C APIs
	6.1.5 Using the Java APIs
	6.1.6 Using the ActiveX Control Within VBasic Applications
	6.1.7 Using Perl APIs

	6.2 Using the Cobol APIs
	6.3 Sample Implementation

	Client Libraries for the e*Gate Message Service
	7.1 The Java APIs
	7.2 Supported Java Message Service (JMS) Classes
	7.2.1 com.seebeyond.jms.client.STCTopicRequestor
	7.2.2 com.seebeyond.jms.STCQueueRequestor
	Methods of the STCQueueRequestor Object

	7.2.3 class javax.jms.JMSException
	7.2.4 class javax.jms.IllegalStateException
	7.2.5 class.javax.jms.InvalidClientIDException
	7.2.6 class javax.jms.InvalidDestinationException
	7.2.7 class javax.jms.InvalidSelectorException
	7.2.8 class javax.jms.JMSSecurityException
	7.2.9 class javax.jms.MessageEOFException
	7.2.10 class javax.jms.MessageFormatException
	7.2.11 class javax.jms.MessageNotReadableException
	7.2.12 class javax.jms.MessageNotWriteableException
	7.2.13 class javax.jms.ResourceAllocationException
	7.2.14 class javax.jms.TransactionInProgressException
	7.2.15 class javax.jms.TransactionRolledBackException
	7.2.16 Unsupported JMS Classes

	7.3 Supported JMS Interfaces
	7.3.1 interface javax.jms.Connection
	7.3.2 interface javax.jms.QueueConnection
	7.3.3 interface javax.jms.XAQueueConnection
	7.3.4 interface javax.jms.TopicConnection
	7.3.5 interface javax.jms.XATopicConnection
	7.3.6 interface javax.jms.ConnectionFactory
	7.3.7 interface javax.jms.QueueConnectionFactory
	7.3.8 interface javax.jms.XAConnectionFactory
	7.3.9 interface javax.jms.TopicConnectionFactory
	7.3.10 interface javax.jms.XATopicConnectionFactory
	7.3.11 interface javax.jms.ConnectionMetaData
	7.3.12 interface javax.jms.DeliveryMode
	7.3.13 interface javax.jms.Destination
	7.3.14 interface javax.jms.Queue
	7.3.15 interface javax.jms.TemporaryQueue
	7.3.16 interface javax.jms.Topic
	7.3.17 interface javax.jms.TemporaryTopic
	7.3.18 interface javax.jms.ExceptionListener
	7.3.19 interface javax.jms.Message
	7.3.20 interface javax.jms.BytesMessage
	7.3.21 interface javax.jms.MapMessage
	7.3.22 interface javax.jms.ObjectMessage
	7.3.23 interface javax.jms.StreamMessage
	7.3.24 interface javax.jms.TextMessage
	7.3.25 interface javax.jms.MessageConsumer
	7.3.26 interface javax.jms.QueueReceiver
	7.3.27 interface javax.jms.TopicSubscriber
	7.3.28 interface javax.jms.MessageListener
	7.3.29 interface javax.jms.MessageProducer
	7.3.30 interface javax.jms.QueueSender
	7.3.31 interface javax.jms.TopicPublisher
	7.3.32 interface java.lang.Runnable
	7.3.33 interface javax.jms.Session
	7.3.34 interface javax.jms.QueueSession
	7.3.35 interface javax.jms.TopicSession
	7.3.36 interface javax.jms.XASession
	7.3.37 interface javax.jms.XAQueueSession
	7.3.38 interface javax.jms.XATopicSession
	7.3.39 interface javax.jms.XAConnection
	7.3.40 interface javax.jms.XAQueueConnection
	7.3.41 interface javax.jms.XATopicConnection
	7.3.42 interface javax.jms.XAConnectionFactory
	7.3.43 interface javax.jms.XAQueueConnectionFactory
	7.3.44 interface javax.jms.XATopicConnectionFactory

	7.4 Unsupported Java JMS Classes
	7.5 Unsupported Java JMS Interfaces
	7.6 Unsupported JMS Methods
	7.7 The Message Service COM+ APIs
	7.7.1 Supported Java Message Service (JMS) Classes for COM+
	7.7.2 The BytesMessage Object
	Methods of the BytesMessage Object
	Properties of the BytesMessage Object

	7.7.3 The Connection Object
	Methods of the Connection Object
	Properties of the Connection Object

	7.7.4 The ConnectionFactory Object
	Methods of the ConnectionFactory Object
	Properties of the ConnectionFactory Object

	7.7.5 The Connection MetaData Object
	7.7.6 The MapMessage Object
	Methods of the MapMessage Object
	Properties of the MapMessage Object

	7.7.7 The Message Object
	Methods of the Message Object
	Properties of the Message Object

	7.7.8 The MessageConsumer Object
	Methods of the MessageConsumer Object
	Properties of the MessageConsumer Object

	7.7.9 The MessageListener Object
	7.7.10 The MessageProducer Object
	Methods of the MessageProducer Object
	Properties of the MessageProducer Object

	7.7.11 The Queue Object
	Methods of the Queue Object
	Properties of the Queue Object

	7.7.12 The QueueBrowser Object
	7.7.13 The QueueConnection Object
	Methods of the QueueConnection Object
	Properties of QueueConnection Object

	7.7.14 The QueueConnectionFactory Object
	Methods of the QueueConnectionFactory Object
	Properties of the QueueConnectionFactory Object

	7.7.15 The QueueReceiver Object
	Methods of the QueueReceiver Object
	Properties of the QueueReceiver Object

	7.7.16 The QueueRequestor Object
	Methods of the QueueRequestor Object

	7.7.17 The QueueSender Object
	Methods of the QueueSender Object
	Properties of the QueueSender Object

	7.7.18 The QueueSession Object
	Methods of the QueueSession Object
	Properties of the QueueSender Object

	7.7.19 The Session Object
	Methods of the Session Object
	Properties of the Session Object

	7.7.20 The StreamMessage Object
	Properties of the StreamMessage Object

	7.7.21 The TemporaryQueue Object
	Methods of the TemporaryQueue Object
	Properties of the TemporaryQueue Object

	7.7.22 The TemporaryTopic Object
	Methods of the TemporaryTopic Object
	Properties of the TemporaryTopic Object

	7.7.23 The TextMessage Object
	Methods of the TextMessage Object
	Properties of the Message Object

	7.7.24 The Topic Object
	Methods of the Topic Object
	Properties of the Topic Object

	7.7.25 The TopicConnection Object
	Methods of the TopicConnection Object
	Properties of the TopicConnection

	7.7.26 The TopicConnectionFactory Object
	Methods of the TopicConnectionFactory Object
	Properties of the TopicConnectionFactory

	7.7.27 The TopicPublisher Object
	Methods of the TopicPublisher Object
	Properties of TopicPublisher

	7.7.28 The TopicRequestor Object
	7.7.29 The TopicSession Object
	Methods of the TopicSession Object
	Properties of the TopicSession Object

	7.7.30 The TopicSubscriber Object
	Methods of the TopicSubscriber Object
	Properties of the TopicSubscriber Object

	7.7.31 The XAQueueConnection Object
	Methods of the XAQueueConnection Object
	Properties of XAQueueConnection Object

	7.7.32 The XAQueueConnectionFactory Object
	Methods of the XAQueueConnectionFactory Object
	Properties of the QueueConnectionFactory Object

	7.7.33 The XAQueueSession Object
	Methods of the QueueSession Object
	Properties of the QueueSender Object

	7.7.34 The XASession Object
	Methods of the Session Object
	Properties of the Session Object

	7.7.35 The XATopicConnection Object
	Methods of the TopicConnection Object
	Properties of the TopicConnection

	7.7.36 The XATopicConnectionFactory Object
	Methods of the TopicConnectionFactory Object
	Properties of the TopicConnectionFactory

	7.7.37 The XATopicSession Object
	Methods of the XATopicSession Object
	Properties of the TopicSession Object

	Client Libraries for the Multiplexer e*Way
	8.1 C API Function Prototypes
	EWIPMP_Close
	EWIPMP_Free
	EWIPMP_Open
	EWIPMP_Send
	EWIPMP_Wait

	8.2 COBOL APIs
	Open
	Send
	Receive
	Close

	8.3 ActiveX APIs
	Connect
	Disconnect
	LastErrorCode
	LastErrorText
	ReplyMessageAsArray
	ReplyMessageAsString
	ReplyMessageSize
	Send
	Wait
	8.3.1 ActiveX Class ID

	8.4 Java Methods
	Defaults
	connect
	disconnect
	getHost
	getPort
	getResponse
	getResponseBytes
	getSecondsToExpire
	getSleepDuration
	setSleepDuration
	getTimeout
	sendMessage
	setDebug
	setHost
	setPort
	setSecondsToExpire
	setTimeout

	8.5 com.stc.MUXPooler
	8.5.1 Constructors
	8.5.2 Methods
	connect
	disconnect
	disconnect
	getConnectionCount
	getHost
	getPort
	getSecondsToExpire
	getTimeout
	resizeMUXPool
	sendBytes
	sendMessage
	setConnectionCount
	setHost
	setPort
	setSecondsToExpire
	setTimeout

	8.6 Perl Subroutines
	Multiplexer_Close
	Multiplexer_Free
	Multiplexer_Init
	Multiplexer_Open
	Multiplexer_Send
	Multiplexer_ToString
	Multiplexer_Wait

	Appendix
	A.1 Cobol API Return Codes
	A.2 Cobol Error Return Codes
	A.2.1 TCP/IP for MVS Return Codes
	A.2.2 Sockets Extended Return Codes

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	X

