

e*Index Global Identifier Product Suite
e*IndexTM Global Identifier
Technical Reference

Version 4.5.2

404 East Huntington Drive, Monrovia, CA 91066 (626) 471-6000 http://www.seebeyond.com

e*Index Global Identifier Technical Reference - Version Information

Date Purpose

June 2001 Current through version 4.5

December 2001 Current through version 4.5.1

April 2002 Current through version 4.5.2

Copyright

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is
furnished under a License Agreement and may be used or copied only in accordance with the terms of such License
Agreement. Printing, copying, or reproducing this document in any fashion is prohibited except in accordance with the License
Agreement. The contents of this document are designated as being confidential and proprietary; are considered to be trade
secrets of SeeBeyond; and may be used only in accordance with the License Agreement, as protected and enforceable by law.
SeeBeyond assumes no responsibility for the use or reliability of its software on equipment that is not supported by SeeBeyond.

e*Gate, e*Way, e*Xchange, EBI, eBusiness Web, iBridge, Intelligent Bridge, IQ, e*Index, SeeBeyond, the SeeBeyond logo, and
SeeBeyond Technology Corporation are trademarks and service marks of SeeBeyond Technology Corporation. All other brand
or product names are either trademarks or registered trademarks of their respective companies or organizations.

Copyright © 1999–2002 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished
work under the copyright laws.

INTEGRITY and INTEGRITY Data Re-Engineering Environment are trademarks of Vality Technology Incorporated. Vality is a
registered trademark of Vality Technology Incorporated.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 452.200204

All rights reserved.

Contents

Table of Contents

Chapter 1: Introduction ... 1-1
About this Chapter .. 1-1

Overview.. 1-1
What�s Inside ... 1-2

Welcome ... 1-3
What is e*Index?.. 1-3
To New Users.. 1-3
To Established Users .. 1-3

About this Guide ... 1-4
What is the Purpose of this Guide?... 1-4
What is the Scope of this Guide? .. 1-4
Who Should Use this Guide? .. 1-4
How Should this Guide be Used? ... 1-5
How is this Guide Organized?... 1-5
What Conventions are Used in this Guide? .. 1-6

Learning About e*Index .. 1-8
Overview.. 1-8
What is e*Index?.. 1-8
How is Data Processed? ... 1-8
What is Monk?... 1-9
What are e*Index Monk APIs? .. 1-9
What are e*Index Monk Functions? .. 1-9

Additional Resources.. 1-10
Chapter 2: Understanding Operational Processes .. 2-1

About this Chapter .. 2-1
Overview.. 2-1
What�s Inside ... 2-2

Learning About e*Index .. 2-3
Overview.. 2-3
About e*Index Components... 2-3
About e*Index Functionality... 2-5

Learning About Event Processing .. 2-7
Overview.. 2-7
About Inbound Events ... 2-8
About Outbound Events .. 2-9
About Inbound Event Processing Logic .. 2-10

Learning About the Default ETD... 2-16
Overview.. 2-16
Formatting Guidelines ... 2-16
Sample Inbound Event .. 2-22
About Outbound Events .. 2-22

Learning About the e*Index Database.. 2-23
Overview.. 2-23
Database Tables ... 2-23
e*Index 4.5.2 Oracle Database Model .. 2-34

Chapter 3: Customizing e*Index... 3-1
About this Chapter .. 3-1

Overview.. 3-1

e*Index Global Identifier Technical Reference iii SeeBeyond Proprietary and Confidential

Contents

What�s Inside ... 3-2
Learning About e*Index Schema Components .. 3-3

Overview.. 3-3
Schema Component Distribution... 3-3
About the Sample Schema.. 3-3
About the Collaboration Script... 3-4
What is the e*Index Monk Library? ... 3-4
About e*Ways .. 3-6
About Monk Configuration Functions .. 3-7

Learning About the e*Way Configuration Parameters ... 3-13
Overview.. 3-13
Modifying e*Way Configuration Parameters ... 3-13
General Settings.. 3-14
Communication Setup ... 3-16
Monk Configuration ... 3-19
Database Setup... 3-26

Chapter 4: e*Index Monk APIs .. 4-1
About this Chapter .. 4-1

Overview.. 4-1
What�s Inside ... 4-2

Learning About e*Index Monk APIs.. 4-4
Overview.. 4-4
What are e*Index Monk APIs? .. 4-4
What are Standard Monk APIs for e*Index? ... 4-4
What Monk Lists are Defined for e*Index?.. 4-4
How do Control Keys Affect APIs?.. 4-5
What Monk APIs are Available?.. 4-7
Which Monk API Should I Use? .. 4-12
For More Information ... 4-18

e*Index Monk API Descriptions .. 4-19
Overview.. 4-19
db-get-error-str .. 4-19
make-connection-handle ... 4-21
ui-address-search-close .. 4-22
ui-address-search-next.. 4-23
ui-address-search-open .. 4-24
ui-commit-transaction .. 4-25
ui-config ... 4-27
ui-deactivate-local-id.. 4-28
ui-delete-address... 4-29
ui-delete-aux-id .. 4-30
ui-delete-queue-msg.. 4-31
ui-delete-unresolved-duplicates .. 4-32
ui-dequeue... 4-34
ui-exists-aux-id... 4-36
ui-get-alias ... 4-38
ui-get-all-local-id .. 4-40
ui-get-assumed-match-enabled... 4-42
ui-get-aux-id... 4-44
ui-get-db-date-time .. 4-46
ui-get-demographic-changed .. 4-47
ui-get-dupchk-enabled... 4-49
ui-get-error-string... 4-50
ui-get-id-system ... 4-51
ui-get-local-id ... 4-53
ui-get-person.. 4-55

e*Index Global Identifier Technical Reference iv SeeBeyond Proprietary and Confidential

Contents

ui-get-transaction-date-time... 4-57
ui-get-uid.. 4-58
ui-get-vip .. 4-59
ui-insert-address.. 4-60
ui-insert-alias ... 4-61
ui-insert-assumed-match... 4-63
ui-insert-aux-id ... 4-64
ui-insert-local-id ... 4-65
ui-insert-person.. 4-66
ui-local-id-merge.. 4-67
ui-local-id-status .. 4-69
ui-lookup .. 4-70
ui-lookup-address-id .. 4-72
ui-lookup-local-id ... 4-73
ui-merge... 4-75
ui-process-address .. 4-77
ui-process-person.. 4-79
ui-process-phone... 4-81
ui-rollback-transaction ... 4-83
ui-search-close .. 4-84
ui-search-get-exact-match-score... 4-85
ui-search-get-exact-match-uid... 4-86
ui-search-insert-duplicate .. 4-87
ui-search-local-id ... 4-88
ui-search-open... 4-90
ui-set-dup-threshold... 4-91
ui-set-match-threshold... 4-92
ui-set-queue-id... 4-93
ui-start-transaction... 4-95
ui-update-address.. 4-96
ui-update-aux-id... 4-97
ui-update-person ... 4-98

Standard Monk API Descriptions.. 4-99
Overview.. 4-99
ui-stdver-init ... 4-99
ui-stdver-startup... 4-101
ui-stdver-conn-estab.. 4-102
ui-stdver-conn-ver.. 4-105
ui-stdver-conn-shutdown ... 4-107
ui-stdver-pos-ack ... 4-108
ui-stdver-neg-ack... 4-109
ui-stdver-shutdown .. 4-110
ui-stdver-proc-outgoing.. 4-111
ui-stdver-proc-outgoing-stub ... 4-113
ui-poll-startup... 4-115
ui-poll ... 4-116
ui-poll-pos-ack ... 4-118
ui-poll-neg-ack ... 4-120
ui-stdver-data-exchg-stub.. 4-122

Chapter 5: e*Index Monk Functions... 5-1
About this Chapter .. 5-1

Overview.. 5-1
What�s Inside ... 5-2

Learning About e*Index Monk Functions.. 5-3
Overview.. 5-3
What are e*Index Monk Functions? .. 5-3

e*Index Global Identifier Technical Reference v SeeBeyond Proprietary and Confidential

Contents

Can I Modify e*Index Monk Functions?... 5-3
What e*Index Monk Functions are Defined?... 5-3
For More Information ... 5-4

e*Index Monk Function Descriptions .. 5-5
Overview.. 5-5
strip-ssn ... 5-5
strip-phone... 5-7
filter-zip .. 5-8
filter-paren.. 5-10
string-all-char?... 5-11
convert-sp-nul-zero.. 5-12
convert-empty2quotes ... 5-14
trim-lead-space.. 5-16
ui-get-next-element.. 5-17
ui-has-next-element... 5-18

e*Index Global Identifier Technical Reference vi SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

About this Chapter

Overview
This Introduction welcomes new and experienced e*Index Global Identifier
(e*Index) users and explains how to use this guide. An overview of e*Index
APIs is also provided.

The following diagram illustrates the contents of each major topic in this
chapter. For the page numbers on which specific topics appear, see the next
page of this chapter.

Learn where to start in this guide if you are a
new or experienced user

Learn how to use this guide

Learn about e*Index and the API library for
e*Index

Learn about other e*Index publications you
may wish to review

Welcome

About this
Guide

About e*Index

Additional
Resources

e*Index Global Identifier Technical Reference 1-1 SeeBeyond Proprietary and Confidential

Chapter 1: Introduction About this Chapter

What’s Inside
This chapter provides information related to the topics listed below.

Welcome...1-3
About this Guide ...1-4
Learning About e*Index..1-8
Additional Resources ...1-10

e*Index Global Identifier Technical Reference 1-2 SeeBeyond Proprietary and Confidential

Chapter 1: Introduction Welcome

Welcome

What is e*Index?
e*Index is SeeBeyond's enterprise-wide master person index, designed to
help you maintain information about your members, and to ensure that the
information is the most current and accurate data available. e*Index works
together with SeeBeyond's e*Gate Integrator and a Database e*Way to
transfer information among various computer systems within your business.
Using the API functions provided with e*Index, you can create your own
Monk scripts to transfer information into and out of the e*Index database,
and to ensure that the data you transfer is the most up-to-date and accurate
information available.

To New Users
If you are new to e*Index, you should browse through this guide before you
begin to use the Monk APIs in your Collaboration scripts. Please pay
particular attention to the "Learning About" sections provided at the
beginning of each chapter. These sections are designed to provide
background and explanatory information you may need to understand.
After reading this overview information, you will be ready to work with the
standard set of e*Index APIs to create your own customized Collaboration
scripts.

To Established Users
If you are a more advanced e*Index user, you may prefer to use this guide as
a quick reference to find information about forgotten or unfamiliar Monk
APIs or functions. If you know what you need to do, but can’t remember
exactly how to do it, you can easily find what you need in the Table of
Contents. Or, you can browse through the guide and find the appropriate
background information or API description by scanning headings and titles.

e*Index Global Identifier Technical Reference 1-3 SeeBeyond Proprietary and Confidential

Chapter 1: Introduction About this Guide

About this Guide

What is the Purpose of this Guide?
This guide provides the information you need to include e*Index APIs in
your e*Gate Collaboration scripts so you can transfer information into and
out of the e*Index database. It also provides an overview of the data
processing flow for e*Index, the e*Index database, and the default data
structure. This guide describes each e*Index Monk API and provides
examples of usage.

What is the Scope of this Guide?
This guide includes:

!

!

!

!

!

!

!

!

!

!

!

A complete reference to each e*Index Monk API, including descriptions,
syntax, parameters, return values, and examples

An overview of how e*Index processes data

A description of the e*Index database tables

An overview of the e*Index sample schema, along with configuration tips

This guide does not explain how to perform any of the tasks listed below.
For a list of publications that contain this information, see "Additional
Resources" at the end of this chapter.

How to use the GUI front-end for e*Index applications

How to install and configure e*Index

How to implement e*Gate Schemas, Event Definitions, or Collaborations

How to create and implement Monk scripts

Who Should Use this Guide?
This guide should be read by any one who works with the e*Index schema,
or who writes or modified Monk scripts using e*Index Monk APIs. To
understand the information in this guide, a reasonably good understanding
of the following areas is recommended:

e*Gate 4.5.x

The Database e*Way specific to the database platform in use (Oracle,
Sybase, or ODBC for Microsoft SQL Server)

Data transfers using e*Gate

e*Index Global Identifier Technical Reference 1-4 SeeBeyond Proprietary and Confidential

Chapter 1: Introduction About this Guide

!

!

!

1

2

3

The data formats used by the systems you work with

The Monk scripting language

The database platform used by e*Index

How Should this Guide be Used?
Before you begin to use this guide:

You may want to review information presented in other e*Index guides.
See "Additional Resources" at the end of this chapter for a list of available
publications.

Familiarize yourself with the information presented in "About e*Index,"
provided later in this chapter.

Skim through this guide to familiarize yourself with the locations of
essential functions you need to use or API descriptions you need to
understand. Each chapter begins with a simple graphic that identifies the
information contained in the chapter. The second page of each chapter
contains a list of topics and corresponding page numbers.

How is this Guide Organized?
This guide is divided into three chapters that cover the topics shown below.

Chapter Topics

Chapter 1, Introduction !
!
!
!

Welcome

About this Guide

Learning About e*Index

Additional Resources

Chapter 2, Understanding
Operational Processes

!
!
!
!

Learning About e*Index

Learning About Event Processing

Learning About the Default ETD

Learning About e*Index Database Tables

Chapter 3, Customizing
e*Index

!

!

Learning About the e*Index Sample
Schema

Learning About e*Way Configuration
Parameters

Chapter 4, e*Index Monk
APIs

!
!
!

Learning About e*Index Monk APIs

e*Index Monk API Descriptions

Standard e*Index Monk API Descriptions

Chapter 5, e*Index Monk
Functions

!
!

Learning About e*Index Monk Functions

e*Index Monk Function Descriptions

e*Index Global Identifier Technical Reference 1-5 SeeBeyond Proprietary and Confidential

Chapter 1: Introduction About this Guide

What Conventions are Used in this Guide?
Before you read this guide, it’s important to understand the typographic,
icon, special notation, and other conventions used in this guide.

Typographic Conventions
The following typographic conventions are used in this and other e*Index
publications.

Item Convention Example

Book titles Title caps, italic See the e*Index Global
Identifier User's Guide

Chapter titles
(and section titles
within chapters)

Title caps, in
quotation marks

See Chapter 4, " e*Index
Monk Functions"

See "e*Index Monk API
Descriptions" later in this
chapter

New terms Italic A set of Monk lists is
predefined to help you
perform a variety of functions.

Typed command
syntax

Bold for constants

Bold-italic and lower
case for user-
specified values

Brackets denote
optional values

Type mkdir release

e*Index Global Identifier Technical Reference 1-6 SeeBeyond Proprietary and Confidential

Chapter 1: Introduction About this Guide

Icon and Special Notation Conventions
The following conventions are used in this and other e*Index publications to
identify special types of information.

Icon or
Notation

Type of information

Note Supplemental information that is helpful to know, but
not essential to completing a particular task.

Tip Information that helps you to apply techniques and
procedures described in the text to your specific needs.
May also suggest alternative methods.

Important! Information that is essential to the completion of a task.

Caution! Advises you to take specific action to avoid loss of data.

!
Indicates the beginning of a step-by-step instruction.

Specifies a task to perform before you begin a step-by-
step instruction.

Indicates a cross-reference to other sections of the guide
or to other publications.

e*Index Global Identifier Technical Reference 1-7 SeeBeyond Proprietary and Confidential

Chapter 1: Introduction Learning About e*Index

Learning About e*Index

Overview
This section of the chapter provides an overview of the information you need
to know in order to customize the way e*Index processes data.

What is e*Index?
e*Index is an enterprise-wide index that maintains data and enables accurate
identification of the members who participate throughout a business
enterprise. e*Index centralizes the identification and demographic
information for all members in one shared index, so that all individual look-
ups and data retrievals obtain the most recent information on each person.
e*Index uses a single data source regardless of the location or computer
system from which member information is received. e*Index is able to cross-
reference a member's records throughout several systems by assigning each
member a unique global identifier.

e*Index was designed specifically to support geographically dispersed sites
and disparate information systems across an enterprise, as well as various
applications from multiple vendors. Maintaining a centralized database for
multiple systems enables e*Index to integrate data in the enterprise while
allowing local systems to continue operating independently.

How is Data Processed?
e*Index works with two other SeeBeyond components, e*Gate and a
Database e*Way, to transfer data into and out of the e*Index database.
Through additional e*Ways, the information in the e*Index database can be
shared with external systems throughout your business enterprise. You can
customize the way data is processed by including specific commands in your
e*Way Collaboration scripts. These commands are written in the Monk
scripting language, specifically for use with e*Gate e*Ways. You can also
customize the format of the data by adding certain Monk functions to the file
ui-custom.monk.

Note: ui-custom.monk is located in the Monk library in your e*Gate environment.
This file contains the commands that pull the demographic, transaction, alias,
address, and telephone information that creates the Monk lists that are used as
parameters for e*Index APIs.

For more information about e*Gate, e*Ways, and Events, see your suite of
e*Gate user's guides. For more information about the Database e*Way, see
the user's guide for the e*Way Intelligent Adapter for Oracle, Sybase, or
ODBC, depending on the database platform of the e*Index database.

e*Index Global Identifier Technical Reference 1-8 SeeBeyond Proprietary and Confidential

Chapter 1: Introduction Learning About e*Index

What is Monk?
Monk is a special programming language developed by SeeBeyond that you
can use to define, identify, and process Events (data). Monk performs these
activities in relation to SeeBeyond’s e*Gate Integrator. Monk also provides
the ability to retain information on the actual structure of the Events that pass
through e*Gate so you can easily and quickly manipulate your Event Type
Definitions (ETDs). Adding Monk to your e*Ways lets you expand the basic
set of schema tools available to you through e*Gate and e*Index. The
architecture of Monk is based on the Scheme Programming language
developed by MIT.

For more information about the Monk scripting language, see your Monk
Developer's Reference.

What are e*Index Monk APIs?
SeeBeyond provides a set of e*Index Monk APIs, or Application Program
Interfaces, with the e*Index application. The e*Index APIs are provided in
the Monk scripting language to allow you greater flexibility when designing
your e*Ways for e*Index. These APIs are sets of routines that you can call in
a Monk script to perform functions specific to the e*Index database. The
APIs include routines to perform tasks such as finding a person based on
their UID or local ID, inserting demographic or alias information into a
person’s records, merging records, committing or rolling back database
transactions, and so on.

For more information about the features and functions of e*Index, see your
e*Index Global Identifier User Guide.

What are e*Index Monk Functions?
e*Index Monk functions are expressions that you can use to manipulate the
data in an Event so it is formatted in a way that the target application can
read. These functions allow you to perform specific operations on a
parameter or series of parameters in a Monk API. The available e*Index
Monk functions allow you to strip non-numeric characters from a telephone
number or social security number, filter out unwanted dates, remove
unwanted spaces from a field, and check a string for specific characters.

Monk functions are typically given names that reveal the function’s purpose.
For example, the strip-phone function strips a telephone number of any non-
numeric characters, such as dashes or parenthesis.

e*Index Global Identifier Technical Reference 1-9 SeeBeyond Proprietary and Confidential

Chapter 1: Introduction Additional Resources

Additional Resources
SeeBeyond has developed a suite of e*Index user's guides and related
publications that are distributed in an electronic library.

!

!

!

!

!

!

!

e*Index Global Identifier User's Guide
Helps e*Index quality workstation users to perform database
maintenance tasks, such as merging and unmerging records, finding and
resolving potential duplicates, adding and updating records, and viewing
the audit trail.

e*Index Administrator User's Guide
Helps system administrators configure the system parameters for e*Index
to meet your business requirements. This guide also describes how to
maintain the information in the database that is used to populate the
drop-down lists in the e*Index.

e*Index Security User's Guide
Helps system administrators add users and user groups to e*Index
applications, to grant security permissions to users and user groups, to
maintain user and user group information, and to configure certain
system parameters.

e*Index Global Identifier Installation Guide
Helps system and database administrators install a new e*Index
environment for the current release, including e*Index schema files, the
e*Index GUI, and database installation.

e*Index Global Identifier Upgrade Guide
Helps system and database administrators upgrade an existing e*Index
environment to the most current release, including e*Index schema files,
the e*Index GUI, and database upgrades.

e*Index Initial Load User's Guide
Provides the background information and instructions that system and
database administrators need in order to load legacy data into the e*Index
database, including a description of the expected data format and the
schema files included with the load program.

Working with Reports for e*Index Global Identifier
Provides background information about the GUI and standard reports
provided with e*Index, and explains how to modify and run the standard
reports (for an Oracle installation only).

e*Index Global Identifier Technical Reference 1-10 SeeBeyond Proprietary and Confidential

 Chapter 2

Understanding Operational
Processes

About this Chapter

Overview
This chapter describes and illustrates the processing flow of Events (data) to
and from e*Index, providing background information to help you work with
the e*Index Monk API library.

The following diagram illustrates the contents of each major topic in this
chapter. For the page numbers on which specific topics appear, see the next
page of this chapter.

Learn about the functions and components of
e*Index

Learn how events are transmitted into and out
of e*Index, and how inbound data is
transformed

About e*Index

About Event
Processing

Learn about the tables used in event processing
and view a physical data model

About the
Database

e*Index Global Identifier Technical Reference 2-1 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes About this Chapter

What’s Inside
This chapter provides information related to the topics listed below.

Learning About e*Index..2-3
About e*Index Components..2-3
About e*Index Functionality ..2-5

Learning About Event Processing..2-7
About Inbound Events ..2-8
About Outbound Events..2-9
About Inbound Event Processing Logic..2-10

Learning About the Default ETD ..2-16
Formatting Guidelines...2-16
Sample Inbound Event ...2-22

Learning About the e*Index Database ...2-23
Database Tables...2-23
Physical Data Model ...2-34

e*Index Global Identifier Technical Reference 2-2 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About e*Index

Learning About e*Index

Overview
This section of the chapter provides an overview of the processes and
functions of e*Index, and the components that comprise the e*Index system.

About e*Index Components
e*Index includes of several different components, each acting independently
of the others but working together to provide accurate data maintenance and
identification. These components interact with other SeeBeyond integration
products, such as the e*Gate Integrator and the Database e*Ways, and
through them with the external data processing products and systems used
throughout a business enterprise. When one local system transfers data to
another using e*Gate, e*Index consults the e*Index database and retrieves the
appropriate local identifier to identify the member. This is a transparent
process, allowing each computer system within this network to continue to
use its own local identifiers.

e*Gatee*Gate

Quality Workstation

Demographic and
transaction information

Database Data

Request
e*Index

Database
e*Index

Database

Sending
e*Way

e*Way

Inbound e*Way Outbound e*Way

e*Way

Polling
e*Way

Location A

Location B

e*Gatee*Gate

Quality Workstation

Demographic and
transaction information

Database Data

Request
e*Index

Database
e*Index

Database

Sending
e*Way

e*Way

Inbound e*Way Outbound e*Way

e*Way

Polling
e*Way

Location A

Location B

The components of the e*Index system include:

! e*Index Database
The e*Index database is a relational database used to store member data,
security information, code table values, and configuration information.
The database also stores all incoming and outgoing Events. You

e*Index Global Identifier Technical Reference 2-3 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About e*Index

configure the database using the e*Index Administrator GUI on the
quality workstation.

!

!

•

•

•

•

!

•

•

•

•

e*Index API
The Monk-wrapped C functions are designed to help you access and
modify the e*Index database. The Monk APIs use the capabilities of the
Database e*Way to connect with the database, and to manipulate and
transform the data that moves through the e*Index system. The Vality
INTEGRITY matching algorithm logic is called in the C code functions.

e*Index Sending e*Way
This e*Way is based on the Database e*Ways, and works with the
Database e*Ways' database connection capabilities. The e*Index sending
e*Way transmits the data received from external sources into the e*Index
database, and then transmits the information back out to e*Gate with a
unique global identifier (UID) attached. You may have several e*Ways
sending data to the database. The components of this e*Way include:

the executable file, stcewgenericmonk.exe

configuration files (the sample configuration file included with your
installation is uidb.cfg)

e*Way Monk functions and APIs

Monk external function scripts (provided in the file ui-stdver-eway-
funcs.monk)

e*Index Out-Queue Polling e*Way
This e*Way queries the ui_msg_detail table (the out queue) in the e*Index
database for outgoing Events. The polling e*Way then sends the events
to e*Gate to be routed to the appropriate external systems. Most of the
Events in the out queue originate in the e*Index GUI. The e*Way accesses
the e*Index database using e*Index APIs. The components of this e*Way
include:

the executable file, stcewgenericmonk.exe

configuration files (the sample configuration file included with your
installation is uipoll.cfg)

e*Way Monk functions and APIs

Monk external function scripts (provided in the file ui-stdver-eway-
funcs.monk)

Notes:

!

!

 The e*Way files included with the sample e*Index schema are listed in Chapter 3,
"Customizing e*Index". This chapter also includes information on configuring
your e*Ways for e*Index.

The e*Way files are provided in a sample schema. You can customize the sample
schema to create your production schema, or you can create a new schema for
your production environment.

e*Index Global Identifier Technical Reference 2-4 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About e*Index

!

!

!

!

!

!

Quality Workstation
The Quality Workstation is where the e*Index GUI resides. On the
Quality Workstation, you can monitor and maintain member data and
transactions, print reports, and perform manual changes to member
information. You can also add processing codes, create the data elements
that populate the drop-down lists for e*Index, and configure certain
e*Index processing attributes, such as data formatting rules, GUI window
appearance, search limits, and so on. Security for e*Index also resides on
the Quality Workstation.

About e*Index Functionality
This section describes the basic functions of e*Index. e*Index was designed
to uniquely identify, match, and maintain member information throughout
your business enterprise. The e*Index Monk APIs provide the following
functionality.

Unique Identifier
e*Index assigns a unique, enterprise-wide identifier to each member
added to the database. This identifier is known as the global identifier, or
UID. e*Index uses the UID to cross-reference a member's local IDs
throughout the system. See "About Inbound Event Processing" later in
this chapter for a description of the identification process.

Audit Trail
The system provides full audit capabilities. All changes to a member's
demographic data are recorded in the history table. This allows e*Index
to generate an audit trail that compares the demographic information
before and after each modification.

Data Maintenance
e*Index provides the ability to add, update, deactivate, and delete data
within the database tables. Data updates from external systems can occur
in real-time or as batch processes.

Search
You can look up demographic information from the ui_person table using
various search criteria. You can perform a search for a specific member
or a set of members. Each record that is returned as a possible match is
assigned a matching probability weight, which indicates how closely each
record matches the search criteria you specified.

Potential Duplicates
Using algorithm matching logic, e*Index can to identify potential
duplicate records, and provides the functionality to correct duplication.
A new record is considered a potential duplicate of an existing record
when the matching probability of the two records falls within a range that
you specify (for more information, see "Defining Control Key Values" in
chapter 5 of the e*Index Administrator User's Guide). You can resolve

e*Index Global Identifier Technical Reference 2-5 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About e*Index

potential duplicate records by either merging the records in question or
removing their potential duplicate flags.

! Merge Demographic Records
Member records can be merged if they are found to be actual duplicates
of one another. To merge two records, you need to specify the UIDs of
the records to be merged. The record that is not kept after a merge
transaction receives a status of Merged. The information from the old
record is retained in the database, providing the ability to unmerge the
two records if necessary.

Note: Each time a member record is updated, added, merged, or unmerged from the
GUI front-end, an Event is placed in the ui_msg_detail table so the e*Index polling
e*Way can retrieve the message, making the modified information available to
external systems. When these transactions occur through the backend, an Event is
returned through the e*Index sending e*Way with the member's UID attached. In
the case of merges, or other transactions that you specify, an Event is also placed in
the ui_msg_detail table. For more information, see "Learning About Event
Processing" next in this chapter.

e*Index Global Identifier Technical Reference 2-6 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About Event Processing

Learning About Event Processing

Overview
This section of the chapter provides a summary of how inbound and
outbound Events are processed in the e*Index environment. The diagram
below illustrates the flow of information through the e*Index system.

e*Index
Database When the database is updated, the

Event is sent back out through the
sending e*Way with the UID attached.
Depending on the type and source of
the transaction, an Event is placed in
ui_msg_detail for the e*Index Polling
e*WayManual queries and

updates to the database

Computer
System A

Computer
system B

Destination
e*WaySource e*Way

"I'm changing a
member's address and

telephone number."

"The new address and
telephone number are
now available to me."

e*Index
 GUI

original
Event

original
Event

original
Event

outbound
Event

outbound
Event

e*Index
Polling e*Way

e*Gate

e*Index
Sending
e*Way

translated
Event

outbound
Event

outbound
Event

e*Index Global Identifier Technical Reference 2-7 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About Event Processing

About Inbound Events
An inbound Event refers to the transmission of data from external systems to
e*Gate and then to the e*Index database. These Events may be sent into the
database via a number of e*Index sending e*Ways. The steps below describe
how inbound Events are processed.

!

!

!

!

!

!

Events are created in an external system, and the enveloped Event is
transmitted to e*Gate via that system's e*Way.

e*Gate identifies the Event and the appropriate e*Index e*Way to which
the Event should be sent. The Event is then routed to the appropriate
e*Index e*Way for processing.

The Event is modified into the appropriate format for the e*Index
database, and certain validations are performed against the data elements
of the Event to ensure accurate delivery. The Event is validated using the
Monk scripts in the e*Way's Collaboration file and other information
stored in the e*Index database.

If the Event was successfully transmitted to the e*Index database, the
appropriate changes to the database are processed and a positive
acknowledgement (ack) is returned to the sending system. If the Event
was not successfully transmitted, a negative acknowledgement (nack) is
returned, and the Event is resent.

Inbound Events are stored and tracked in the e*Gate log files. Inbound
merge Events generate merge messages, which are then placed in the
ui_msg_detail table for the e*Index polling e*Way.

If the inbound Event causes a member record to be added, updated,
deactivated, merged, or unmerged, the member's UID is attached to the
Event, and the Event is sent back out through the same e*Way, making
the new information available to external systems.

e*Gate (via
e*Way)

External
System

e*Index
Sending
e*Way

Inbound
Event

e*Way
Event Log

e*Index
Database

ui_msg_detail
table

e*Index Global Identifier Technical Reference 2-8 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About Event Processing

About Outbound Events
An outbound Event refers to the transmission of data from the e*Index
database to any external system. Outbound Events are generated when
updates are made to the database. These Events fall into two different
categories. Events received through the sending e*Ways are sent back out
through those e*Ways (as described earlier in "About Inbound Events").
Event updates made through the GUI are placed in the ui_msg_detail table
and made available for retrieval by the polling e*Way. This section describes
how Events placed in the ui_msg_detail table are processed.

Note: You should always configure the polling e*Way to retrieve messages from
ui_msg_detail, even if the messages are simply sent to an eater file. Otherwise the
ui_msg_detail table will continue to grow, slowing down transaction processing.

!

!

!

!

!

!

Outgoing Events are generated in the e*Index database, and are stored in
the ui_msg_detail table. The polling e*Way continually checks the table
for outgoing Events.

When the polling e*Way finds an Event to retrieve, it flags the Event in
ui_msg_detail using the value in the msg_id field to identify the Event.
The polling e*Way sends the Event to e*Gate for routing.

e*Gate identifies the Event and the external systems to which it should be
sent, and then routes the Event to the appropriate e*Ways for processing.

The receiving systems' e*Ways modify the Event into the appropriate
format, and perform certain validations against the data elements of the
Event to ensure accurate delivery. The e*Ways perform these validations
using the Monk scripts.

If the Event was successfully sent to the receiving systems, a positive
acknowledgement (ack) is returned, and the Event is removed from the
ui_msg_detail table. If the Event was not successfully sent, a negative
acknowledgement (nack) is returned, and the Event is resent until the
maximum number of resends is reached. The Event is flagged with an
error if it cannot be successfully sent. Both the ack and nack functions use
the msg_id field in the Event to identify the record. The msg_id
corresponds with the ui_msg_header_id column in ui_msg_detail.

Outbound Events are stored and tracked in the e*Gate log files.

e*Gate
External
System

(via e*Way)

e*Index
Polling
e*Way

Outbound
Event

e*Way
Event Log

e*Index
Database

e*Index Global Identifier Technical Reference 2-9 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About Event Processing

About Inbound Event Processing Logic
When demographic records are transmitted to e*Index, a series of processes
are performed to ensure that accurate and current data is maintained in the
database. In the default configuration, these processes are called by the
e*Index Monk function ui-process-person, which is defined in the file ui-
process-person.monk. The steps performed by e*Index using the default
configuration are outlined below, and the diagrams on the following pages
illustrate the Event processing flow. The processing steps performed in your
e*Index environment may vary from this depending on how you customize
ui-process-person.

1

2

When an Event containing member demographic data is received by
e*Index, a search is performed for any existing records in the ui_local_id
table with the same local ID and system as those contained in the Event
(by calling ui-get-uid). This search only includes records with a status of
A, meaning only active records are included. If a matching record is
found, an existing UID is returned.

If an existing record is found with the same system and local ID as the
incoming Event, it is assumed that the two records represent the same
person. Using the UID of the existing record, e*Index performs an update
of the member's demographic information in the ui_person table (by
calling ui-update-person).

Note: In the default setup provided for e*Index, the alias, address, telephone, and
non-unique ID information from the incoming Event is processed outside of the
call to ui-process-person (as demonstrated in the default configuration file
uidb.dsc).

•

•

•

3

•

•

•

If the update does not make any changes to the member's
information, no further processing is required and the existing UID is
returned.

If there are changes member information, the updated record is
inserted into the ui_person_history table to provide an audit trail of the
changes.

If there are changes to the member's last name, first name, middle
name, date of birth, gender, or SSN, then potential duplicates are re-
evaluated for the updated record.

If no records are found that match the member's system and local
identifier, a second search is performed using the matching algorithm. A
search is performed on each of the following combinations of criteria to
determine a matching probability.

Last name phonetic code and first name phonetic code

First name phonetic code and date of birth and gender

Last name phonetic code and mother's maiden name

e*Index Global Identifier Technical Reference 2-10 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About Event Processing

Social security number •

Each record that is returned from the search is weighted against the
demographic information in the inbound Event.

Important! The criteria combinations described above are configurable, so you
can modify the combinations of data used for the search. For more information,
see "Configuring Queries" in your e*Index Administrator User's Guide.

4

•

•

5

•

•

•

•

After the search is performed, the number of resulting records is
calculated.

If a record or records are returned from the search with a matching
probability weight above the matching threshold, e*Index performs
exact match processing (see Step 5).

If no matching records are found, the inbound Event is treated as a
new record and a new UID is generated. A new member record is
inserted into the ui_person table and the ui_person_history table. In
addition, the new UID is inserted into the ui_local_id table with the
new system and local ID.

If records were found within the required match probability range, exact
match processing is performed as follows:

If only one record is returned from this search with a matching
probability that is equal to or greater than the match threshold, then
additional checking is performed to verify whether the records
originated from the same system (see Step 6).

If more than one record is returned with a matching probability that is
equal to or greater than the match threshold and exact matching is
disabled, then the record with the highest matching probability is
checked against the incoming Event to see if they originated from the
same system (see Step 6).

If more than one record is returned with a matching probability that is
equal to or greater than the match threshold and exact matching is
enabled, then the member record is inserted as a new record and
potential duplicate processing is performed (see Step 7).

If no record is returned from the database search, or if none of the
matching records have a weight in the exact match range, then the
member record is inserted as a new record and potential duplicate
processing is performed (see Step 7).

Note: Exact matching is determined by the control key 1XACTMTCH. For
more information about exact match processing, see "Defining Control Key
Values" in your e*Index Administrator User's Guide.

6 When records are checked for same system entries (using a call to ui-get-
local-id), e*Index tries to retrieve an existing local ID from the ui_local_id

e*Index Global Identifier Technical Reference 2-11 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About Event Processing

table using the system of the new record and the UID of the record that
has the highest match weight.

If a local ID is found, the new information originated from the same
system but under a different local ID, indicating that the two records
are not the same person. A new record is inserted, and the two
records are considered to be potential duplicates and are inserted into
the ui_duplic table. These records are marked as same system
potential duplicates.

•

•

7

If no local ID is found, then it is assumed that the two records
represent the same person. The existing UID is inserted into the
ui_local_id table with the new system and local ID. The member's
demographic information is then updated using the same process as
in step 2 above. If the assumed match option is on, the assumed
match information is inserted into the ui_assumed_match table.

If a new record is inserted, all records that were returned from the search
are weighed against the new record using the matching algorithm. If the
matching probability weight of a record is greater than or equal to the
potential duplicate threshold and is less than the maximum threshold, the
record is flagged as a potential duplicate (for more information about
thresholds, see "Defining Control Key Values" in your e*Index
Administrator User's Guide). Records that are considered potential
duplicates are inserted into the ui_duplic table and these records are
tagged with a message stating the matching probability weight between
each potential duplicate pair.

Note: If a record has gone through same system checking as described in step 6,
potential duplicates are only processed if exact matching is disabled.

The flow charts on the following pages provide a visual representation of the
processes performed by the e*Index Monk function ui-process-person.
Figures 1 and 2 represent the primary flow of information. Figures 3 and 4
expand upon the update procedures that are performed in Figures 1 and 2
respectively.

e*Index Global Identifier Technical Reference 2-12 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About Event Processing

Figure 1 – Inbound Message Processing

Note: The numbers next to certain objects in the diagrams indicate the number of
the step outlined in the previous section that corresponds with that portion of the
diagram. These diagrams represent the default configuration, in which address,
telephone, and alias information is processed outside of ui-process-person. You
may customize this process so it differs from the following representations.

Message
containing a

system and local
ID, plus

demographic
data, is received

Lookup system and
local ID in ui_local_id

table

Are the
system and local ID

pair found?

Perform a
demographic
update on the

existing record (see
Figure 3

expansion)

Yes

No

Are records
found with

matching weights equal to or
greater than the duplicate

threshold?
No

Perform a new
person insert

A

Yes

#

$%

&

Perform
matching

algorithm search

Processing
complete

e*Index Global Identifier Technical Reference 2-13 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About Event Processing

Figure 2 – Inbound Message Processing (cont'd)

 Were records
 found with matching

weights above or equal
to the match
threshold?

1 record found

A

Perform new
person
insert

0 records found

More than 1
record found

Is exact
match configuration

enabled?

No

Yes

&

'

Process potential
duplicates for
records above

and equal to the
duplicate
threshold

(

Processing
complete

Perform
demographic

update on
matching record

(see Figure 4
expansion)

Perform new
person
insert

 Did highest
matching record

originate from the
same system? NoYes

Perform 'same
system' potential

duplicate
processing on

matched record
Perform potential

duplicate
processing on

remaining
matching
records

&

)

)

)

'

Processing
complete

Processing
complete

Perform potential
duplicate

processing on
remaining
matching
records

'

Perform
demographic

update on
matching record

(see Figure 4
expansion)

Perform new
person
insert

 Did matching
 records originate

from the same
system? NoYes

Perform 'same
system' potential

duplicate
processing on

matched record

&
)

)
Processing
complete

Processing
complete

)

e*Index Global Identifier Technical Reference 2-14 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About Event Processing

Figure 3 – Demographic Update Expansion
This diagram illustrates the update process performed in Figure 1.

Find the existing
demographic

record using its
UID

Are there
changes

 in demographic
information?

Update
demographic
information

Yes
Insert updated
demographic

information into
history table

Is
DUPCHECK
enabled?

Yes

Perform
potential
duplicate

processing

No

Were
changes made
to significant*

fields?

Yes

No

* Significant fields for potential duplicate processing include: last name, first name,
 middle name/initial, date of birth, gender, and SSN

No

Figure 4 – Different System Demographic Update Expansion
This diagram illustrates the update process performed in Figure 2.

Insert Local ID
into ui_local_id

Demographic
Update

Processing
(see Figure 3
expansion)

Is assumed
match option

on?

Insert records
into

assumed_match
table

Yes
No

e*Index Global Identifier Technical Reference 2-15 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About the Default ETD

Learning About the Default ETD

Overview
This section describes the desired format of the data to be loaded into the
database. You can translate the data from external systems into this format
using the e*Ways of the external systems. You can also modify the default
ETD (in the file eiEvent.ssc).

Formatting Guidelines
On order to comply with the sample ETD, the format of the data being
transmitted into the e*Index database needs to be reformatted as follows:

!

!

Each record consists of two types of information: Transaction details and
identification details. These are delimited by a pair of angled brackets
(<>).

The records must be delimited. Each segment is separated by an
ampersand (&), each field is separated by a pipe (|), and each sub-field is
separated by a caret (^). When a field can repeat, each repetition is
separated by a tilde (~). There are four segments, which appear as
follows:

EVNT segment <> ID segment & DEMO Segment & AUX segment <>

For information about each field, see the Input ETD Structure table below.
Note that most fields in e*Index are configurable, so you are not restricted to
the fields listed in the table. Also, some of the required fields are required
because they are included in the configurable queries (sex, SSN, and dob). If
you modify the queries, the required fields may change.

If you perform any of the customizations available in e*Index Administrator,
make sure you perform an analysis of how those customizations affect the
data you process from the e*Index schema. The fields you display on the
e*Index GUI should be the same as the fields you process through the
e*Ways. Modify the ETD accordingly.

For more information about configuring the fields and queries for e*Index,
see Chapter 5, "Customizing e*Index", in your e*Index Administrator User's
Guide. The table below describes the default configuration for e*Index.

Note: This should be reviewed for each site to simplify where applicable. For
example, fields for which the sending systems do not collect data can be removed.

e*Index Global Identifier Technical Reference 2-16 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About the Default ETD

Table 3-1 – Input ETD Structure

Transaction Details
Field Description Repeating? Required?

segment_id "EVNT" No Yes

msg_id Always leave this field blank. It is
populated in Events in the out-queue,
which are created by GUI transactions.

No No

event_type_code Always leave this field blank. e*Index
automatically determines the transaction
type.

No No

user_id The user ID of the user who performed
the transaction.

No Yes

assigning_system The system code for the system on which
the transaction was performed.

No Yes

source The source code of the application on
which the transaction was performed.

No No

department The department code for the transaction. No No

terminal_id The ID of the terminal on which the
transaction was performed.

No No

date_of_event The date the transaction occurred in the
format YYYY-MM-DD.

No No

time_of_event The time the transaction occurred in the
format HH:MM:SS using a 24-hour clock
(for example, 23:59:59).

No No

Identification Details
Field Description Repeating? Required?

segment_id "ID" No Yes

eid_1 Always leave this field blank. It is
populated with the UID of the member
after e*Index processes the Event.

No No

local_id The person's local identifier at a specified
system. This field has two sub-fields: ID
and system. For example, if the local ID
12345 was assigned within the system
SeeBeyond, which has a code of SBYN,
this field should appear like this:

 |12345^SBYN|

Yes Yes

e*Index Global Identifier Technical Reference 2-17 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About the Default ETD

Field Description Repeating? Required?

non_unique_id The person's non-unique identifiers. This
field has two sub-fields: ID and type. For
example, if a person's account number is
003487, and the type code for account is
ACCT, this field should appear like this:

 |003487^ACCT|

Note: If non-unique ID information is
included, then both an ID and an ID type
must be included.

Yes No

segment_id "DEMO" No Yes

person_category The code for the person category to
which the person is assigned.

No No

person_name The name of the person. This field
consists of five sub-fields.

last_name: The person’s last name.
first_name: The person’s first name.
middle_name: The person’s middle
name.
title: The title code of the person's title.
suffix: The suffix code of the person's
suffix to their name.

No

Yes
Yes
No

No
No

person_alias The alias names for the person. This
consists of three sub-fields:

last_name: The alias last name.
first_name: The alias first name.
middle_name: The middle name of the
alias.

Yes No

alt_name Alternative names associated with this
person. This field consists of five sub-
fields:

maiden_name: The person’s maiden
name.
spouse_name: The name of the person’s
spouse.
mother_name: The name of the person’s
mother.
fathers_name: The name of the person’s
father.
mothers_maiden_name: The maiden
name of the person's mother.

No No

e*Index Global Identifier Technical Reference 2-18 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About the Default ETD

Field Description Repeating? Required?

date_of_birth The person's date of birth, in YYYY-MM-
DD format.

No Yes

time_of_birth The time the person was born, in
HH:MM:SS format on a 24-hour clock.

No No

sex The table code of the person's gender. No Yes

marital_status The table code of the person's marital
status.

No No

SSN_number The person's social security number in
###-##-#### format.

Note: If necessary, you can modify the
format and length of this field. For more
information, see "Configuring Country-
Specific Options" in your e*Index
Administrator User's Guide.

No Yes

driver_license The driver license details for the person.
This has two sub-fields:

state_country: The state or country that
issued the drivers license.
number: The driver license number.

No No

race The table code of the person's race. No No

ethnic_group The table code of the person's ethnic
group.

No No

nationality The table code of the person's
nationality.

No No

religion The table code of the person's religion. No No

language The table code of the language spoken
by the person.

No No

death Death information about the person.
This field consists of three sub-fields:

flag: An indicator of whether the person
is deceased. Should be Y if deceased.

date_of_death: If deceased, the date of
death.
death_certificate_number: The ID
number on the death certificate.

No No

e*Index Global Identifier Technical Reference 2-19 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About the Default ETD

Field Description Repeating? Required?

birth_place The location in which the person was
born. This field consists of three sub-
fields:

city: The city where the person was
born.
state: The state where the person was
born.
country: The country code where the
person was born.

No No

vip The table code of the person's VIP status. No No

veteran_status The table code of the person's veteran
status.

No No

military The military details for the person. This
field consists of three sub-fields:

status: The code of the person's military
status.
rank_grade: The person's military rank
or grade.
branch: The military branch in which the
person has served.

No No

citizenship Citizenship for the person No No

pension The pension details for the person. This
field consists of two sub-fields:

number: The person's pension card
number.
expiration_date: The expiration date of
the pension card.

No No

repatriation_number The person's repatriation number. No No

district_of_residence The code of the district of residence in
which the person resides.

No No

LGA_code The LGA code for the person. No No

address Address information for the person. This
field consists of eleven of sub-fields:

type: The table code for the type of
address.
street_1: The first line of the street
address.
street_2: The second line of the street
address.
street_3: The third line of the street
address.

Yes

No

e*Index Global Identifier Technical Reference 2-20 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About the Default ETD

Field Description Repeating? Required?

street_4: The fourth line of the street
address.
city: The city or suburb of the address.
state_or_province: State or province
zip: The zip code of the address.
zip_ext: The zip code extension of the
address.
county: The table code of the county in
which the address is located.
country: The table code of the address's
country.

Note: If address information is included
in an Event, the following fields must be
present for each address: type, street_1,
and city.

phone Telephone information for the person.
This field consists of three sub-fields:

type: The table code of the telephone
type.
phone_number: The telephone number,
with no punctuation characters.
phone_ext: The extension to the
telephone number.
Note: If telephone information is
included in an Event, the type and
phone_number fields must be present for
each telephone number.

Yes

No

segment_id "AUX" No Yes

class Five 20-character strings for site-specific
purposes.

Yes

maximum
of five

No

string Additional strings for site-specific
purposes. The first six are a maximum of
40 characters. Strings seven to nine are a
maximum of 100 characters. The tenth
string is a maximum of 255 characters

Yes

maximum
of ten

No

date Five miscellaneous date fields in YYYY-
MM-DD format.

Yes

maximum
of five

No

e*Index Global Identifier Technical Reference 2-21 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About the Default ETD

Sample Inbound Event
Below is a sample data record that follows the default format described in the
previous tables.

EVNT|||JJONES|SBYN|SBYN|||2001-06-15|10:20:24<>
ID||239487209^SC|23438742^ACC&DEMO|C|WARREN^ELIZABETH^JUNE^PHD^
|MILLER^ELIZABETH^J|MILLER^ANDREW^JULIE^MARK^MARTIN|1960-05-
14|15:01:08|F|M|555-44-4555|^|W|28||AG|ENGL|||^^|^^|N|N|^^|
USA|^||||H^2347 SHORELINE DRIVE^UNIT 3^^^SHEFFIELD^CT^09876^^
CAPE BURR^UNST~O^1490 WAYFIELD ROAD^FLOOR 5^SUITE 519^^CAPE
BURR^CT^09877^^^UNST|CH^9895557811^~CB^9895553214^1212&AUX|~~~~
|STANDARD MEMBERSHIP~~~~~~~~~|1999-09-12~2000-12-15~~~|<>

About Outbound Events
The Events that are placed in the outbound queue (the ui_msg_detail) table are
similar in structure to the inbound events described earlier. There are two
differences between the two structures. In the inbound Events, the local ID
field consists of two sub-fields, ID and system. In outbound Events, the local
ID field consists of three sub-fields, ID, system, and status. The status sub-
field is an indicator of whether the local ID is active (A) or inactive (D).

The second difference is the addition of the ZEN segment at the end of
outbound events. This segment includes the e-mail addresses of users who
should receive notification of the Event. The outbound event segments
appear as follows, with a carriage return at the end of the ZEN segment.

EVNT segment <> ID segment & DEMO Segment & AUX segment <>ZEN segment

The ZEN segment contains one repeating field, which is the e-mail address of
the notification recipients. Below is a sample illustrating the structure of an
outbound message. Notice that the local ID field has three sub-fields, and the
ZEN segment is appended to the end.

EVNT|153|ADD|JJONES|SBYN|SBYN|||2001-06-15|10:20:24<>
ID|1001300021|239487209^SC^A|23438742^ACC&DEMO|C|WARREN^
ELIZABETH^JUNE^PHD^|MILLER^ELIZABETH^J|MILLER^ANDREW^JULIE^MARK
^MARTIN|1960-05-14|15:01:08|F|M|555-44-4555|^|W|28||AG|ENGL||
|^^|^^|N|N|^^| USA|^||||H^2347 SHORELINE DRIVE^UNIT 3^^^
SHEFFIELD^CT^ 09876^^CAPE BURR^UNST~O^1490 WAYFIELD ROAD^FLOOR
5^SUITE 519^^CAPE BURR^CT^09877^^^UNST|CH^9895557811^~
CB^9895553214^1212&AUX|~~~~|STANDARD MEMBERSHIP~~~~~~~~~|1999-
09-12~2000-12-15~~~|<>ZEN|crazouli@here.org~gsmythe@here.org

e*Index Global Identifier Technical Reference 2-22 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About the e*Index Database

Learning About the e*Index Database

Overview
This section of the chapter describes the e*Index database tables, and
categorizes the tables by function. To view an illustration of the e*Index
database, see the e*Index Global Identifier Installation Guide. The Oracle
database model appears in chapter 3; the Sybase model appears in chapter 4;
and the Microsoft SQL Server model appears in chapter 5.

Database Tables
The e*Index database contains several types of tables. Some of the tables
store information for the e*Index Administrator, others store security
information, and others are used for processing, storing, and tracking
member information. Additional tables are used to configure the Vality
INTEGRITY matching algorithm.

Member Information Tables
!

!

!

ui_person
The primary table in the e*Index database is the ui_person table. This
table stores each member's demographic data, as well as their UID and
phonetic codes. The primary key in this table is the u_id column. The
ui_person table is linked to ui_assumed_match, ui_aux_id, ui_aux_id_history,
ui_address, ui_address_history, ui_mrg_trans, ui_phone, ui_phone_history,
ui_duplic, ui_local_id, ui_local_id_history, ui_alias, and ui_alias_history
through the u_id column. It is also linked to ui_transaction through the
transaction_no column.

ui_person_history
The ui_person_history table stores a history of transactions and
demographic information for each member in your database. Each time a
member record is updated, this table is populated with the new
information. The information in this table provides a complete audit trail
of each member, maintaining a complete before and after image of each
transaction that occurs. The ui_person_history_id column is the primary
key, and the table is linked to the ui_transaction table through the column
transaction_no.

ui_transaction
This table maintains a sequential transaction number for each event
processed through e*Index, and links all of the database tables used to
store member information. The transaction_no column links the
ui_transaction table to these database tables: ui_person, ui_person_history,
ui_assumed_match, ui_aux_id, ui_aux_id_history, ui_address,
ui_address_history, ui_mrg_trans, ui_phone, ui_phone-history, ui_duplic,

e*Index Global Identifier Technical Reference 2-23 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About the e*Index Database

ui_local_id, ui_local_id_history, ui_alias, and ui_alias_history. The
transaction number unites the information from all of the member
information tables for each transaction against each record.

!

!

!

!

!

!

!

ui_alias
The ui_alias table stores each member's alias information. The primary
key in this table is the ui_alias_id column. If extensive searching is
enabled through the configurable query, then alphanumeric searches
check for data in both the ui_person and ui_alias tables. This table is
linked to the ui_person table through the u_id column, and to the
ui_transaction table through the transaction_no column.

ui_alias_history
The ui_alias_history table stores a history of each member's alias
information. This table stores the information for the alias portion of each
member's audit trail. This table is linked to the ui_person table through
the u_id column, and to the ui_transaction table through the
transaction_no column.

ui_address
The ui_address table stores information about each member's addresses.
The address_id column is the primary key in this table. This table is
linked to the ui_person table through the u_id column, and to the
ui_transaction table through the transaction_no column.

ui_address_history
The ui_address_history table stores a history of each member's addresses.
This table stores the information for the address portion of each member's
audit trail. This table is linked to the ui_person table through the u_id
column, and to the ui_transaction table through the transaction_no
column.

ui_assumed_match
The ui_assumed_match table keeps a record of all member records that
were assumed by e*Index to be matches of one another. Information is
only written to this table if the control key ASSMTCH is set to Yes. The
primary key for this table is assumed_match_id. This table is linked to
the ui_person table through the u_id column, and to the ui_transaction
table through the transaction_no column.

ui_aux_id
This tables stores the non-unique IDs assigned to each member, along
with the ID type name. The aux_id_id is the primary key in this table.
ui_aux_id is linked to the ui_person table through the u_id column, and to
the ui_transaction table through the transaction_no and
prev_transaction_no columns.

ui_aux_id_history
This table stores a history of each member's non-unique ID and ID types.
This table stores the information for the non-unique ID portion of each
member's audit trail. ui_aux_id_history is linked to the ui_person table

e*Index Global Identifier Technical Reference 2-24 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About the e*Index Database

through the u_id column, and to the ui_transaction table through the
transaction_no column.

!

!

!

!

!

!

!

!

ui_comment
The ui_comment table stores user-entered and system-generated
comments to a member profile. The primary key in this table is the
ui_comment_id.

ui_duplic
The ui_duplic table stores a record of all potential duplicate pairs. This
table is linked to the u_id column in ui_person through the duplic_id and
existing_id columns. This table is also linked to the ui_transaction table
through the transaction_no column.

ui_local_id
The ui_local_id table stores each member's local ID and system pairs. The
ul_id column is the primary key. The ui_local_id table is used frequently
in data lookups. This table is linked to the ui_person table through the
u_id column, and to the ui_transaction table through the transaction_no
column.

ui_local_id_history
The ui_local_id_history table stores a history of each member's local ID and
system pairs. The ui_local_id_history table stores the information for the
local ID portion of each member's audit trail. This table is linked to the
ui_person table through the u_id column, and to the ui_transaction table
through the transaction_no column.

ui_mrg_trans
The ui_mrg_trans table stores information about each merge and unmerge
transaction that occurs in the database, including UIDs and transaction
numbers. The primary key is the ui_mrg_trans_id column. This table is
linked to the ui_person table through the u_id column, and to the
ui_transaction table through the transaction_no column.

ui_phone
The ui_phone table stores information about each member's telephone
numbers. The phone_id column is the primary key in this table. This
table is linked to the ui_person table through the u_id column, and to the
ui_transaction table through the transaction_no column.

ui_phone_history
The ui_phone_history table stores a history of each member's telephone
numbers. This table is used to form the telephone number portion of a
member's audit trail. This table is linked to the ui_person table through
the u_id column, and to the ui_transaction table through the
transaction_no column.

ui_person_x_name
The ui_person_x_name table stores the name information from each record
in ui_person in upper case only, and enables case-insensitive name
searching from the e*Index GUI. It is queried when an alphanumeric

e*Index Global Identifier Technical Reference 2-25 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About the e*Index Database

demographic search or a general search is performed in the e*Index GUI.
If matching records are found, the corresponding member records from
the ui_person table are retrieved. The primary key in ui_person_x_name is
u_id.

!

!

!

!

!

ui_alias_x_name
This table stores each alias name in ui_alias in upper case only, and
enables case-insensitive extensive searching (that is, searching on alias
names as well as common names). It is queried when an alphanumeric
demographic search or a general search is performed in the e*Index GUI.
If matching records are found, the corresponding member records from
the ui_person table are retrieved. The primary key in ui_alias_x_name is
ui_alias_id.

Configuration Tables
ui_control
The ui_control table contains the value of each control key in the e*Index
Administrator. This information determines how data is processed, and
is read each time the e*Index e*Ways start up. The primary key in this
table is ctrl_key. For more information about the instructions contained
in this table, see "Defining Control Key Values" in your e*Index
Administrator User's Guide.

Country Configuration Tables
ui_misc_opt_control
The ui_misc_opt_control table stores information about the areas of
e*Index that are affected by the data stored in ui_misc_option. It provides
descriptions for the codes entered in the control_type column of
ui_misc_option. The control_type column is also the primary key for this
table, and links ui_misc_opt_control with ui_misc_option.

ui_misc_opt_country
The ui_misc_opt_country table stores information about the country codes
used in ui_misc_option, describing which country corresponds with which
code. The country_code column is also the primary key for this table, and
links ui_misc_opt_country with ui_misc_option.

ui_misc_option
This table provides the ability to configure country-specific attributes of
e*Index by reformatting certain fields depending on which country you
select. This table also contains label information for the tabs that appear
on the e*Index GUI windows. Currently, available country formats
include the United Kingdom, Australia, Ireland, and the United States.
This table is controlled by the COUNTRY control key in e*Index
Administrator. For more information, see "Configuring Country-Specific
Options" in Chapter 5 of your e*Index Administrator User's Guide. The
primary key for this table is misc_option_id. The table is linked to

e*Index Global Identifier Technical Reference 2-26 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About the e*Index Database

ui_misc_opt_control by the control_type column, and to
ui_misc_opt_country by the country_code column.

Display Configuration Tables
!

!

!

!

!

ui_table
This table stores a list of all tables that contain columns whose field labels
on the e*Index GUI can be modified. These tables appear in the table list
on the Display Configuration window of e*Index Administrator. The
primary key is ui_table_id, and the table is linked to ui_table_column
through the primary key.

ui_table_column
The ui_table_column table stores information about the different database
columns whose field labels on the e*Index GUI can be modified. These
fields are listed on the Display Configuration window of e*Index
Administrator. The primary key is table_column_id, and the table is
linked to ui_table through the ui_table_id column.

Configurable Candidate Selection (CCS) Tables
The CSS tables stores information about the configurable queries. Each
portion of the SQL statement for the queries is stored in a separate database
table. For more information about configurable queries, see "Configuring
Queries" in Chapter 5 of the e*Index Administrator User's Guide.

ui_cand_from_table
This table stores the names of the tables used in the SQL statements
generated by the configurable queries. For example, if you created this
SQL statement

 select first_name, last_name from ui_person where u_id = '100'

this table stores the 'ui_person' portion of the statement. The primary key
for ui_cand_from_table is the from_table_id column. This table is linked to
ui_cand_where_clause by the where_clause_id column, and to
ui_cand_sql_table by the sql_table_id column.

ui_cand_select_column
This table stores the columns in the 'select' portion of the SQL statements
generated by the configurable queries. For example, in the above SQL
statement, this table stores the 'first_name, last_name' portion of the
statement. The select_column_id column is the primary key. This table is
linked to ui_cand_sql by the cand_sql_id column, and to
ui_cand_sql_column by the sql_column_id column.

ui_cand_where_column
This table stores the columns called in the 'where' portion of the SQL
statements generated by the configurable queries. For example, in the
above SQL statement, this table would store the 'u_id' portion of the

e*Index Global Identifier Technical Reference 2-27 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About the e*Index Database

statement. The primary key for this table is the where_column_id
column. It is linked to ui_cand_where_clause by the where_column_id
column, and to ui_cand_sql_column through the sql_column_id column.

!

!

!

!

!

!

!

ui_cand_sql
This table stores the descriptions and identification codes for the two
types of configurable queries. The primary key is the cand_sql_id
column. This table is linked to ui_object_type by the object_type column,
to ui_cand_select_column by the cand_sql_id column, and to
ui_cand_where_clause by the cand_sql_id column.

ui_cand_sql_column
This table stores information about the available and selected columns for
the configurable queries. The primary key is the sql_column_id column.
This table is linked to ui_cand_select_column and ui_cand_where_column by
the sql_column_id column, and to ui_cand_sql_table by the sql_table_id
column.

ui_cand_sql_table
This table stores information about the database tables that are available
for the configurable queries, and the tables that are selected. The primary
key for this table is the sql_table_id column. It is linked to ui_cand_from
table and ui_cand_sql_column by the sql_table_id column.

ui_cand_where_clause
This table stores information about the 'where' clauses for the
configurable queries, along with the criteria list description of each
clause. The primary key for this table is the where_clause_id column. It
is linked to ui_cand_from_table and ui_cand_where_column by the
where_clause_id column, and to ui_cand_sql by the cand_sql_id column.

ui_object_type
This table is reserved for future functionality and is not used in this
release.

Code Data Tables
stc_common_detail
This table stores detailed information about the data elements you add
using the Common Table maintenance functions of e*Index
Administrator. The common header ID associated with each data
element in this table specifies the table maintenance function with which
the data element is associated. The primary key in this table is
common_detail_id, and the table is linked to stc_common_header by the
common_header_id column.

stc_common_header
This table is the header file for the items in the stc_common_detail table. It
stores a list of the types of data elements you can add using the Common
Table maintenance functions of e*Index Administrator, such as races,
languages, driver's license issuers, and so on. The primary key of this

e*Index Global Identifier Technical Reference 2-28 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About the e*Index Database

table is common_header_id, which is also the column that links
stc_common_header with stc_common_detail.

!

!

!

!

!

!

!

!

!

ui_aux_id_def
This table stores the various non-unique ID types that you define in
e*Index Administrator. It's primary key is aux_id_def, and it is linked to
the ui_aux_id and ui_aux_id_history tables through the primary key.

ui_canned_msg
This table stores the predefined messages that you defined in the Table
Maintenance function of e*Index Administrator. Elements defined in this
table can be accessed from a drop-down list on the Predefined Comments
window. The primary key for this table is code.

ui_dept
This table is not in use at this time.

ui_facility
This table stores information about the systems (previously known as
facilities) that you defined in the Table Maintenance function of e*Index
Administrator. Each system assigns a local ID to member records, and
the local ID and system pairs are stored in ui_local_id. The primary key
for this table is facility_code, and ui_facility is linked to ui_local_id and
ui_local_id_history by the facility_code column.

ui_message
This table stores the application messages that appear on the e*Index
GUIs. For example, it contains error messages, confirmation messages,
and warnings. These data elements can be modified using the Message
Maintenance function of e*Index Administrator. The primary key for this
table is code.

ui_zip
This table stores city, state, and zip code information. The values stored
in this table validate the addresses entered in e*Index, and allow you to
automatically populate the city and state fields when you enter the zip
code of an address. The primary key in this table is zip_code.

Vality Integrity Matching Algorithm Tables
ui_ctrl_column
This table is reserved for possible future functionality, and is not
currently being used.

ui_ctrl_field
This table is reserved for possible future functionality, and is not
currently being used.

ui_ctrl_file
This table stores the information that is currently located in the Vality
rule set file. This information is used for member matching using the
Vality Integrity matching algorithm, and defines the fields and weights to

e*Index Global Identifier Technical Reference 2-29 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About the e*Index Database

be used for matching. The primary key for this table is ui_ctrl_file_id.
ui_ctrl_file is linked to the ui_ctrl_rule table by the ui_ctrl_rule_id column,
and to the ui_ctrl_file_hist table by the ui_ctrl_file_id column.

!

!

!

!

!

!

!

ui_ctrl_file_hist
The ui_ctrl_file_hist table stores a history of Vality information and tracks
changes made to the rule set files for the matching algorithm. This table
is linked to the ui_ctrl_file table by the ui_ctrl_file_id column.

ui_ctrl_rule
The ui_ctrl_rule table stores information about the rule sets that have been
defined for e*Index. This table describes the name of the rule set files and
indicates which rule sets are in use. This file is a header file to ui_ctrl_file,
and these tables are linked by the ui_ctrl_rule_id column (the primary
key).

ui_ctrl_table
This table is reserved for possible future functionality, and is not
currently being used.

ui_nickname
The ui_nickname table stores information about common nicknames of
your member's first names. This table is used when records are matched
using the Vality matching algorithm. The primary key for this table is
ui_nickname_id.

Security Tables
stc_acc_def
This table stores information about the access permissions that appear in
the access list on the Access List window of e*Index Security. The
primary key for this table is acc_def_id. stc_acc_def is linked to stc_module
by the module_id column, and to stc_group_acc and stc_user_acc by the
acc_def_id column. The module_id column indicates the primary
function in stc_module with which each access permission is associated.

stc_group
This table stores information about the user groups defined in e*Index
Security. The primary key for this table is group_id. It is linked to the
stc_user_group and stc_group_acc tables by the group_id column. This
table does not store information about the user profiles or access
permissions assigned to each user group.

stc_group_acc
The stc_group_acc table stores information about the access permissions
granted to each user group. The primary key for this table is
group_acc_id. It is linked to stc_acc_def by the acc_def_id column and to
stc_group by the group_id column. The group_id column indicates the
user groups to which access permissions are granted, and the acc_def_id
column indicates the access permissions granted to each user group.

e*Index Global Identifier Technical Reference 2-30 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About the e*Index Database

!

!

!

!

!

!

!

stc_module
The stc_module table stores information about the primary functions that
appear in the access list on the Access List window of e*Index Security.
The primary key for this table is module_id. stc_module is linked to
stc_appl by the appl_id column, and to stc_acc_def by the module_id
column. The appl_id column indicates the application in stc_appl with
which each function in stc_module is associated (currently only e*Index).

stc_user
This table stores information about the user profiles defined in e*Index
Security. The primary key for this table is usersl_id. It is linked to the
ui_login, ui_login_current, stc_user_region, ui_notify_user,
ui_user_passwd_hist, stc_user_acc, and stc_user_group tables by the
usersl_id column. This table does not store information about the access
permissions assigned to each user profile, or the user groups and regions
to which each profile is assigned.

stc_user_acc
The stc_user_acc table stores information about the access permissions
granted to each user profile. The primary key for this table is
user_acc_id. It is linked to stc_acc_def by the acc_def_id column and to
stc_user by the usersl_id column. The usersl_id column indicates the user
profiles to which access permissions are granted, and the acc_def_id
column indicates the access permissions granted to each user profile.

stc_user_region
This table stores information about the regions to which each user profile
is assigned. This table is only used if region-specific security is installed
(see your e*Index Security User's Guide for more information). The
primary key for this table is user_region_id, and the table is linked to
stc_user by the usersl_id column.

stc_user_group
This table stores information about the user groups to which each user
profile is assigned. The primary key for this table is usergp_id.
stc_user_group is linked to stc_user by the usersl_id column, and to
stc_group by the group_id column.

ui_control_sec
The ui_control_sec table stores the values assigned to each e*Index
Security control key. These values are specified in the Control Key
Maintenance function of e*Index Security. The primary key for this table
is ctrl_key.

ui_login
The ui_login table stores a log of all of the users who have logged on to
the e*Index system. This log includes the users' IDs, the time they logged
on, and the time they logged off. The primary key for this table is
ui_login_id. ui_login is linked to stc_user by the column usersl_id.

e*Index Global Identifier Technical Reference 2-31 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About the e*Index Database

!

!

!

!

!

!

!

ui_login_current
The ui_login-current table stores the user IDs, log on time, and log off time
of the users who are currently logged on to the e*Index system. It is
linked to stc_user by the column usersl_id. The primary key for this table
is ui_login_current_id.

ui_no_passwd
The ui_no_passwd table stores the passwords that cannot be used by the
users of any of the e*Index applications. You can add and delete
passwords in this table as required. This table is linked to stc_user by the
usersl_id column. The primary key for this table is no_passwd.

ui_notify_user
This table stores information about the event notifications to which each
user profile is assigned. You can assign event notifications to user
profiles on the Event Notify window in e*Index Security. When you
remove notification for an event from a user profile, the corresponding
row in this table is removed. The primary key for this table is
ui_notify_user_id, and ui_notify_user is linked to stc_user by the usersl_id
column.

ui_user_passwd_hist
This table stores a list of the most recent login passwords for each e*Index
user. The number of passwords retained in this table is determined by
the value you specify for the PASSHIST control key. A user cannot reuse
one of their passwords still in this table.

Outbound Event Tables
dequeue_lock
The dequeue_lock table is reserved for possible future functionality, and is
not currently being used.

ui_msg_detail
The ui_msg_detail table stores the Events that are in the outbound queue,
and are waiting to be picked up by the e*Index polling e*Way. This table
is associated with the ui_msg_header table through the ui_msg_header_id
column. The primary key for this table is the ui_msg_detail_id column.

ui_msg_header
This table is the header file for the items in the ui_msg_detail table. It
stores the queue ID number for each Event and any errors in processing
those Events. The polling e*Way continually checks this table to see if
any outgoing Events are ready to be processed. This table is linked to
ui_msg_detail by its primary key, ui_msg_header_id.

e*Index Global Identifier Technical Reference 2-32 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About the e*Index Database

Miscellaneous Tables
!

!

!

!

!

stc_appl
This table is linked to the stc_common_header and stc_module tables and
indicates the application with which each item in stc_common_header and
stc_module is associated. The primary key is appl_id, and is linked to
stc_common_header and stc_modules by this column. Currently the only
item in this table is e*Index.

ui_audit
The ui_audit table provides a log of the instances that users look up
member data in the ui_person table. ui_audit includes the user ID of the
person who updated the database, the date and time the database was
modified, and the type of transaction that occurred. The primary key is
the ui_audit_id column. This table can grow rapidly, depending on how
often the ui_person table is accessed from the GUI. Be sure to archive this
table regularly.

ui_config
The ui_config table stores information about the current version and
schema of e*Index. When you login into one of the GUIs, this table tells
the system the database schema that is required in order to access the
specified database. This table has two primary keys: interface and code.

ui_monthly_stat
The ui_monthly_stat table stores the information that appears in the
monthly reports.

ui_seq_no
This table defines the sequential codes that are used in other tables in the
e*Index database. The primary key for this table is the table_name
column.

e*Index Global Identifier Technical Reference 2-33 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About the e*Index Database

e*Index 4.5.2 Oracle Database Model
The diagrams on the following pages illustrate the table structure for e*Index
version 4.5.2 for Oracle. The ui_person and ui_transaction tables are displayed
on two different pages to better illustrate the connections to these two tables.
For illustrations of Sybase and Microsoft SQL Server databases, see chapters 4
and 5 of the e*Index Global Identifier Installation Guide.

where_clause_id = where_clause_id

sql_table_id = sql_table_id

sql_column_id = sql_column_id

where_clause_id = where_clause_id

cand_sql_id = cand_sql_id

sql_column_id = sql_column_id

cand_sql_id = cand_sql_id

object_type = object_type

dequeue_lock
sess_id NUMBER null
sess_activity DATE null
last_seq NUMBER(20) null
del_seq NUMBER(20) null

ui_audit
ui_audit_id <pk> NUMBER(10) not null
user_id VARCHAR2(20) not null
timestamp DATE not null
uid1 VARCHAR2(15) null
uid2 VARCHAR2(15) null
funct VARCHAR2(40) null
detail VARCHAR2(150) null
pat_acct_num VARCHAR2(20) null
terminal_id VARCHAR2(25) null
facility VARCHAR2(20) null
location VARCHAR2(15) null
order_num VARCHAR2(20) null
app VARCHAR2(10) null

ui_monthly_stat
be_new_u_id NUMBER null
fe_new_u_id NUMBER null
be_merge NUMBER null
fe_merge NUMBER null
be_unmerge NUMBER null
fe_unmerge NUMBER null
be_deact NUMBER null
fe_deact NUMBER null
pot_dup NUMBER null
pot_dup_res NUMBER null
month VARCHAR2(20) null
year NUMBER null

ui_object_type
object_type <pk> VARCHAR2(5) not null
description VARCHAR2(40) null

ui_cand_sql_table
sql_table_id <pk> NUMBER(10) not null
table_name VARCHAR2(30) not null
selected CHAR(1) not null
readonly CHAR(1) not null

ui_cand_sql_column
sql_column_id <pk> NUMBER(10) not null
sql_table_id <fk> NUMBER(10) not null
column_name VARCHAR2(30) not null
column_type VARCHAR2(5) not null
column_length NUMBER(10) not null
attr_name VARCHAR2(40) null
phonetic_source VARCHAR2(30) null
phonetic_type CHAR(1) null
match_column CHAR(1) null
selected CHAR(1) not null
readonly CHAR(1) not null

ui_cand_sql
cand_sql_id <pk> NUMBER(10) not null
object_type <fk> VARCHAR2(5) not null
use_type CHAR(1) not null
sql_name VARCHAR2(40) not null

ui_cand_select_column
select_column_id <pk> NUMBER(10) not null
cand_sql_id <fk> NUMBER(10) not null
sql_column_id <fk> NUMBER(10) not null
sequence NUMBER(10) not null
match_column CHAR(1) not null

ui_cand_where_clause
where_clause_id <pk> NUMBER(10) not null
cand_sql_id <fk> NUMBER(10) not null
where_clause_name VARCHAR2(40) not null
where_clause LONG null

ui_cand_where_column
where_column_id <pk> NUMBER(10) not null
where_clause_id <fk> NUMBER(10) not null
sql_column_id <fk> NUMBER(10) not null
sequence NUMBER(10) not null

ui_seq_no
table_name <pk> VARCHAR2(30) not null
seq_no NUMBER(15) not null

ui_cand_from_table
from_table_id <pk> NUMBER(10) not null
where_clause_id <fk> NUMBER(10) not null
sql_table_id <fk> NUMBER(10) not null
table_alias VARCHAR2(10) null
sequence NUMBER(10) not null

ui_cand_from_table_1

e*Index Global Identifier Technical Reference 2-34 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About the e*Index Database

e*Index Global Identifier Technical Reference 2-35

ui_msg_header_id = ui_msg_header_id

transaction_no = transaction_no

ui_canned_msg
code <pk> VARCHAR2(5) not null
description VARCHAR2(80) not null
create_date DATE null

pk_idx_canned

ui_comment
ui_comment_id <pk> NUMBER(10) not null
u_id VARCHAR2(15) not null
type VARCHAR2(8) not null
timestamp DATE not null
comment_text LONG null
ui_org VARCHAR2(15) null

ui_id_comment

ui_config
interface <pk> VARCHAR2(255) not null
code <pk> VARCHAR2(255) not null
value NUMBER not null

pk_idx_ui_config

ui_control
ctrl_key <pk> VARCHAR2(10) not null
description VARCHAR2(50) null
ctrl_value VARCHAR2(30) null
create_date DATE null

pk_idx_control

ui_dept
dept_code <pk> VARCHAR2(5) not null
description VARCHAR2(20) null
date_time DATE null

pk_idx_dept

ui_person_history
ui_person_history_id <pk> NUMBER(10) not null
u_id VARCHAR2(15) not null
person_cat_code VARCHAR2(8) null
last_name VARCHAR2(40) null
first_name VARCHAR2(40) null
middle_name VARCHAR2(30) null
suffix VARCHAR2(10) null
title VARCHAR2(8) null
dob DATE null
death VARCHAR2(1) null
sex VARCHAR2(8) null
mstatus VARCHAR2(8) null
ssn VARCHAR2(16) null
race VARCHAR2(8) null
ethnic VARCHAR2(8) null
religion VARCHAR2(8) null
language VARCHAR2(8) null
spouse_name VARCHAR2(100) null
mother_name VARCHAR2(100) null
mother_mn VARCHAR2(40) null
father_name VARCHAR2(100) null
maiden VARCHAR2(40) null
pob_city VARCHAR2(30) null
pob_state VARCHAR2(10) null
pob_country VARCHAR2(20) null
vip_flag VARCHAR2(8) null
vet_status VARCHAR2(8) null
status VARCHAR2(8) null
fname_phonetic_code VARCHAR2(8) null
lname_phonetic_code VARCHAR2(8) null
mname_phonetic_code VARCHAR2(8) null
mother_mn_phonetic_code VARCHAR2(8) null
maiden_phonetic_code VARCHAR2(8) null
spouse_phonetic_code VARCHAR2(8) null
mother_phonetic_code VARCHAR2(8) null
father_phonetic_code VARCHAR2(8) null
drivers_license VARCHAR2(20) null
drivers_license_st VARCHAR2(10) null
dod DATE null
death_certificate VARCHAR2(10) null
nationality VARCHAR2(8) null
citizenship VARCHAR2(8) null
pension_no VARCHAR2(15) null
pension_exp_date DATE null
repatriation_no VARCHAR2(16) null
district_of_residence VARCHAR2(8) null
lga_code VARCHAR2(4) null
military_branch VARCHAR2(4) null
military_rank VARCHAR2(4) null
military_status VARCHAR2(4) null
dummy_date DATE null
class1 VARCHAR2(20) null
class2 VARCHAR2(20) null
class3 VARCHAR2(20) null
class4 VARCHAR2(20) null
class5 VARCHAR2(20) null
string1 VARCHAR2(40) null
string2 VARCHAR2(40) null
string3 VARCHAR2(40) null
string4 VARCHAR2(40) null
string5 VARCHAR2(40) null
string6 VARCHAR2(40) null
string7 VARCHAR2(100) null
string8 VARCHAR2(100) null
string9 VARCHAR2(100) null
string10 VARCHAR2(255) null
date1 DATE null
date2 DATE null
date3 DATE null
date4 DATE null
date5 DATE null
transaction_no <fk> NUMBER(10) not null

ui_message
code <pk> VARCHAR2(5) not null
description LONG not null
message_box_header VARCHAR2(50) not null
icon VARCHAR2(15) null
button VARCHAR2(20) null
default_button NUMBER(1) null
message_type VARCHAR2(8) null
application VARCHAR2(10) null
date_time DATE null

pk_idx_ui_message

ui_zip
zip_code <pk> VARCHAR2(8) not null
zip4 VARCHAR2(4) null
city <pk> VARCHAR2(30) not null
state <pk> VARCHAR2(10) not null
county VARCHAR2(3) null
residence_code VARCHAR2(4) null
create_date DATE null

pk_idx_zip

ui_msg_header
ui_msg_header_id <pk> NUMBER(20) not null
queue_id CHAR(1) not null
errors NUMBER(10) not null
create_date DATE not null
create_userid VARCHAR2(20) not null

ui_msg_header_1

ui_msg_detail
ui_msg_detail_id <pk> NUMBER(20) not null
ui_msg_header_id <fk> NUMBER(20) null
msg VARCHAR2(512) not null

fk_ui_msg_detail

N
TO UI_TRANSACTIO
SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About the e*Index Database

e*Index Global Identifier Technical Reference 2-36 SeeBeyond Pro

Y

aux_id_def = aux_id_def

transaction_no = prev_transaction_no
transaction_no = transaction_no

u_id = u_id

transaction_no = transaction_no

u_id = u_id

transaction_no = transaction_no

u_id = u_id

transaction_no = unmrg_trans_no_from

transaction_no = unmrg_trans_no

transaction_no = trans_no_from

transaction_no = trans_no

transaction_no = transaction_no

transaction_no = transaction_no

u_id = u_id_from

u_id = u_id

aux_id_def = aux_id_def
u_id = u_id

u_id = u_id

ui_assumed_match
assumed_match_id <pk> NUMBER(10) not null
u_id <fk> VARCHAR2(15) not null
weight FLOAT not null
prev_transaction_no <fk> NUMBER(10) not null
transaction_no <fk> NUMBER(10) not null

ui_mrg_trans
ui_mrg_trans_id <pk> NUMBER(10) not null
u_id <fk> VARCHAR2(15) not null
u_id_from <fk> VARCHAR2(15) not null
trans_no <fk> NUMBER(10) not null
trans_no_from <fk> NUMBER(10) null
unmrg_trans_no <fk> NUMBER(10) null
unmrg_trans_no_from <fk> NUMBER(10) null

u_id
person_cat_code
last_name
first_name
middle_name
suffix
title
dob
death
sex
mstatus
ssn
race
ethnic
religion
language
spouse_name
mother_name
mother_mn
father_name
maiden
pob_city
pob_state
pob_country
vip_flag
vet_status
status
fname_phonetic_c
lname_phonetic_c
mname_phonetic_
mother_mn_phon
maiden_phonetic_
spouse_phonetic_
mother_phonetic_
father_phonetic_c
drivers_license
drivers_license_st
dod
death_certificate
nationality
citizenship
pension_no
pension_exp_date
repatriation_no
district_of_residen
lga_code
military_branch
military_rank
military_status
dummy_date
class1
class2
class3
class4
class5
string1
string2
string3
string4
string5
string6
string7
string8
string9
string10
date1
date2
date3
date4
date5
transaction_no

ui_address
address_id <pk> NUMBER(10) not null
u_id <fk> VARCHAR2(15) not null
address_type VARCHAR2(8) not null
address1 VARCHAR2(40) null
address2 VARCHAR2(40) null
address3 VARCHAR2(40) null
address4 VARCHAR2(40) null
city VARCHAR2(30) null
state_code VARCHAR2(10) null
postal_code VARCHAR2(8) null
postal_code_ext VARCHAR2(4) null
county VARCHAR2(20) null
country_code VARCHAR2(20) null
house_number VARCHAR2(10) null
street_dir VARCHAR2(5) null
street_name VARCHAR2(40) null
street_name_phonetic VARCHAR2(8) null
street_type VARCHAR2(5) null
transaction_no <fk> NUMBER(10) null

ui_aux_id
aux_id_id <pk> NUMBER(10) not null
u_id <fk> VARCHAR2(15) not null
aux_id_def <fk> NUMBER(10) not null
id VARCHAR2(40) not null
transaction_no <fk> NUMBER(10) null

ui_aux_id_def
aux_id_def <pk> NUMBER(10) not null
id_type VARCHAR2(8) not null
id_name VARCHAR2(30) not null
mask CHAR(1) not null
id_length NUMBER(10) not null
format VARCHAR2(40) not null
variable_length char(1) not null

transac
u_id
system
dept
termina
session
update
update
update
update

ui_address_history
address_id NUMBER(10) not null
u_id <fk> VARCHAR2(15) not null
address_type VARCHAR2(8) null
address1 VARCHAR2(40) null
address2 VARCHAR2(40) null
address3 VARCHAR2(40) null
address4 VARCHAR2(40) null
city VARCHAR2(30) null
state_code VARCHAR2(10) null
postal_code VARCHAR2(8) null
postal_code_ext VARCHAR2(4) null
county VARCHAR2(20) null
country_code VARCHAR2(20) null
house_number VARCHAR2(10) null
street_dir VARCHAR2(5) null
street_name VARCHAR2(40) null
street_name_phonetic VARCHAR2(8) null
street_type VARCHAR2(5) null
transaction_no <fk> NUMBER(10) not null

ui_aux_id_history
aux_id_id NUMBER(10) not null
u_id <fk> VARCHAR2(15) not null
aux_id_def <fk> NUMBER(10) null
id VARCHAR2(40) null
transaction_no <fk> NUMBER(10) not null
FROM UI_PERSON_HISTOR
prietary and Confidential

transaction_no = transaction_no

transaction_no = transaction_no

ui_person
<pk> VARCHAR2(15) not null

VARCHAR2(8) null
VARCHAR2(40) not null
VARCHAR2(40) not null
VARCHAR2(30) null
VARCHAR2(10) null
VARCHAR2(8) null
DATE null
VARCHAR2(1) null
VARCHAR2(8) null
VARCHAR2(8) null
VARCHAR2(16) null
VARCHAR2(8) null
VARCHAR2(8) null
VARCHAR2(8) null
VARCHAR2(8) null
VARCHAR2(100) null
VARCHAR2(100) null
VARCHAR2(40) null
VARCHAR2(100) null
VARCHAR2(40) null
VARCHAR2(30) null
VARCHAR2(10) null
VARCHAR2(20) null
VARCHAR2(8) null
VARCHAR2(8) null
VARCHAR2(8) null

ode VARCHAR2(8) null
ode VARCHAR2(8) null
code VARCHAR2(8) null

etic_code VARCHAR2(8) null
code VARCHAR2(8) null
code VARCHAR2(8) null
code VARCHAR2(8) null
ode VARCHAR2(8) null

VARCHAR2(20) null
VARCHAR2(10) null
DATE null
VARCHAR2(10) null
VARCHAR2(8) null
VARCHAR2(8) null
VARCHAR2(15) null
DATE null
VARCHAR2(16) null

ce VARCHAR2(8) null
VARCHAR2(4) null
VARCHAR2(4) null
VARCHAR2(4) null
VARCHAR2(4) null
DATE null
VARCHAR2(20) null
VARCHAR2(20) null
VARCHAR2(20) null
VARCHAR2(20) null
VARCHAR2(20) null
VARCHAR2(40) null
VARCHAR2(40) null
VARCHAR2(40) null
VARCHAR2(40) null
VARCHAR2(40) null
VARCHAR2(40) null
VARCHAR2(100) null
VARCHAR2(100) null
VARCHAR2(100) null
VARCHAR2(255) null
DATE null
DATE null
DATE null
DATE null
DATE null

<fk> NUMBER(10) null

ui_transaction
tion_no <pk> NUMBER(10) not null

VARCHAR2(15) not null
VARCHAR2(8) null
VARCHAR2(8) null

l_id VARCHAR2(25) null
_id VARCHAR2(15) null

_facility_id VARCHAR2(20) not null
_function VARCHAR2(8) not null
_date DATE not null
_userid VARCHAR2(20) not null

Chapter 2: Understanding Operational Processes Learning About the e*Index Database

e*Index Global Id

Y

u_id
person_cat_code
last_name
first_name
middle_name
suffix
title
dob
death
sex
mstatus
ssn
race
ethnic
religion
language
spouse_name
mother_name
mother_mn
father_name
maiden
pob_city
pob_state
pob_country
vip_flag
vet_status
status
fname_phonetic_c
lname_phonetic_c
mname_phonetic_
mother_mn_phon
maiden_phonetic_
spouse_phonetic_
mother_phonetic_
father_phonetic_c
drivers_license
drivers_license_st
dod
death_certificate
nationality
citizenship
pension_no
pension_exp_date
repatriation_no
district_of_residen
lga_code
military_branch
military_rank
military_status
dummy_date
class1
class2
class3
class4
class5
string1
string2
string3
string4
string5
string6
string7
string8
string9
string10
date1
date2
date3
date4
date5
transaction_no

transac
u_id
system
dept
termina
session
update
update
update
update
FROM UI_PERSON_HISTOR
entifier Technical Reference 2-37 SeeBeyond Proprietary and Confidential

facility_code = facility

facility_code = facility

transaction_no = transaction_no

transaction_no = transaction_no

u_id = u_id

u_id = u_id

u_id = u_id

transaction_no = transaction_no

transaction_no = transaction_no

transaction_no = transaction_no

transaction_no = transaction_no

transaction_no = transaction_no

transaction_no = transaction_no

transaction_no = transaction_no

u_id = u_id

u_id = existing_id

u_id = duplic_id

u_id = u_id

u_id = u_id

ui_facility
facility_code <pk> VARCHAR2(20) not null
description VARCHAR2(30) null
status VARCHAR2(8) null
addr1 VARCHAR2(30) null
addr2 VARCHAR2(30) null
city VARCHAR2(30) null
state VARCHAR2(10) null
zip VARCHAR2(8) null
zipext VARCHAR2(4) null
county VARCHAR2(20) null
country VARCHAR2(20) null
region_code VARCHAR2(8) null
date_time DATE null
id_length NUMBER null
mask CHAR(1) null
local_id_format VARCHAR2(35) null
facility_mask CHAR(1) null
next_local_id VARCHAR2(25) null
allow_less_id_length VARCHAR2(1) null

ui_person
<pk> VARCHAR2(15) not null

VARCHAR2(8) null
VARCHAR2(40) not null
VARCHAR2(40) not null
VARCHAR2(30) null
VARCHAR2(10) null
VARCHAR2(8) null
DATE null
VARCHAR2(1) null
VARCHAR2(8) null
VARCHAR2(8) null
VARCHAR2(16) null
VARCHAR2(8) null
VARCHAR2(8) null
VARCHAR2(8) null
VARCHAR2(8) null
VARCHAR2(100) null
VARCHAR2(100) null
VARCHAR2(40) null
VARCHAR2(100) null
VARCHAR2(40) null
VARCHAR2(30) null
VARCHAR2(10) null
VARCHAR2(20) null
VARCHAR2(8) null
VARCHAR2(8) null
VARCHAR2(8) null

ode VARCHAR2(8) null
ode VARCHAR2(8) null
code VARCHAR2(8) null

etic_code VARCHAR2(8) null
code VARCHAR2(8) null
code VARCHAR2(8) null
code VARCHAR2(8) null
ode VARCHAR2(8) null

VARCHAR2(20) null
VARCHAR2(10) null
DATE null
VARCHAR2(10) null
VARCHAR2(8) null
VARCHAR2(8) null
VARCHAR2(15) null
DATE null
VARCHAR2(16) null

ce VARCHAR2(8) null
VARCHAR2(4) null
VARCHAR2(4) null
VARCHAR2(4) null
VARCHAR2(4) null
DATE null
VARCHAR2(20) null
VARCHAR2(20) null
VARCHAR2(20) null
VARCHAR2(20) null
VARCHAR2(20) null
VARCHAR2(40) null
VARCHAR2(40) null
VARCHAR2(40) null
VARCHAR2(40) null
VARCHAR2(40) null
VARCHAR2(40) null
VARCHAR2(100) null
VARCHAR2(100) null
VARCHAR2(100) null
VARCHAR2(255) null
DATE null
DATE null
DATE null
DATE null
DATE null

<fk> NUMBER(10) null

ui_local_id
ul_id <pk> NUMBER(10) not null
u_id <fk> VARCHAR2(15) not null
facility <fk> VARCHAR2(20) not null
local_id VARCHAR2(25) not null
status VARCHAR2(8) null
transaction_no <fk> NUMBER(10) null

ui_alias
ui_alias_id <pk> NUMBER(10) not null
u_id <fk> VARCHAR2(15) not null
last_name VARCHAR2(40) not null
first_name VARCHAR2(40) not null
middle_name VARCHAR2(30) null
lname_phonetic_code VARCHAR2(8) null
fname_phonetic_code VARCHAR2(8) null
mname_phonetic_code VARCHAR2(8) null
transaction_no <fk> NUMBER(10) null

ui_duplic
ui_duplic_id <pk> NUMBER(10) not null
duplic_id <fk> VARCHAR2(15) not null
existing_id <fk> VARCHAR2(15) not null
weight FLOAT not null
description VARCHAR2(30) null
dummy_date DATE null
resolved VARCHAR2(8) null
transaction_no <fk> NUMBER(10) null

ui_phone
phone_id <pk> NUMBER(10) not null
u_id <fk> VARCHAR2(15) not null
phone_type VARCHAR2(8) not null
phone VARCHAR2(20) not null
phone_ext VARCHAR2(6) null
transaction_no <fk> NUMBER(10) null

ui_transaction
tion_no <pk> NUMBER(10) not null

VARCHAR2(15) not null
VARCHAR2(8) null
VARCHAR2(8) null

l_id VARCHAR2(25) null
_id VARCHAR2(15) null

_facility_id VARCHAR2(20) not null
_function VARCHAR2(8) not null
_date DATE not null
_userid VARCHAR2(20) not null

ui_alias_history
ui_alias_id NUMBER(10) not null
u_id <fk> VARCHAR2(15) not null
last_name VARCHAR2(40) null
first_name VARCHAR2(40) null
middle_name VARCHAR2(30) null
lname_phonetic_code VARCHAR2(8) null
fname_phonetic_code VARCHAR2(8) null
mname_phonetic_code VARCHAR2(8) null
transaction_no <fk> NUMBER(10) not null

ui_local_id_history
ul_id NUMBER(10) not null
u_id <fk> VARCHAR2(15) not null
facility <fk> VARCHAR2(20) null
local_id VARCHAR2(25) null
status VARCHAR2(8) null
transaction_no <fk> NUMBER(10) not null

ui_phone_history
phone_id NUMBER(10) not null
u_id <fk> VARCHAR2(15) not null
phone_type VARCHAR2(8) null
phone VARCHAR2(20) null
phone_ext VARCHAR2(6) null
transaction_no <fk> NUMBER(10) not null

Chapter 2: Understanding Operational Processes Learning About the e*Index Database

control_type = control_type

country_code = country_code

ui_table_id = ui_table_id

ui_ctrl_file_id = ui_ctrl_file_id

ui_ctrl_rule_id = ui_ctrl_rule_id

ui_ctrl_table_id = ui_ctrl_table_id

control_sec
ctrl_key <pk> VARCHAR2(10) not null
description VARCHAR2(50) null
ctrl_value VARCHAR2(10) null
create_date DATE null

ui_ctrl_field
ui_ctrl_field_id <pk> NUMBER(10) not null
field_name VARCHAR2(2) not null
field_type VARCHAR2(2) not null
field_length NUMBER(10) not null
field_missing VARCHAR2(2) not null
description VARCHAR2(48) null
ui_ctrl_column_id NUMBER(10) null
create_date DATE not null
create_userid VARCHAR2(20) not null
update_date DATE null
update_userid VARCHAR2(20) null

ui_nickname
ui_nickname_id <pk> NUMBER(10) not null
formal_name VARCHAR2(40) not null
nick_name VARCHAR2(40) not null
create_date DATE not null
create_userid VARCHAR2(20) not null
update_date DATE null
update_userid VARCHAR2(20) null

ui_no_passwd
no_passwd <pk> VARCHAR2(20) not null

pk_idx_ui_no_passwd

ui_ctrl_rule
ui_ctrl_rule_id <pk> NUMBER(10) not null
rule_name VARCHAR2(16) not null
root_file VARCHAR2(16) not null
read_only CHAR(1) not null
in_use CHAR(1) not null
create_date DATE not null
create_userid VARCHAR2(20) not null
update_date DATE null
update_userid VARCHAR2(20) null

ui_ctrl_file
ui_ctrl_file_id <pk> NUMBER(10) not null
ui_ctrl_rule_id <fk> NUMBER(10) not null
file_type VARCHAR2(3) not null
file_name VARCHAR2(18) not null
file_ext VARCHAR2(3) not null
file_content LONG null
content_date DATE not null
last_synch_date DATE null
create_date DATE not null
create_userid VARCHAR2(20) not null
update_date DATE null
update_userid VARCHAR2(20) null

ui_ctrl_file_hist
ui_ctrl_file_hist_id NUMBER(10) not null
ui_ctrl_file_id <fk> NUMBER(10) not null
file_type VARCHAR2(3) not null
file_name VARCHAR2(18) not null
file_ext VARCHAR2(3) not null
file_content LONG null
content_date DATE not null
save_date DATE not null
create_date DATE not null
create_userid VARCHAR2(20) not null
update_date DATE null
update_userid VARCHAR2(20) null

ui_ctrl_table
ui_ctrl_table_id <pk> NUMBER(10) not null
table_name VARCHAR2(30) not null
description VARCHAR2(48) null
read_only CHAR(1) not null
create_date DATE not null
create_userid VARCHAR2(20) not null
update_date DATE null
update_userid VARCHAR2(20) null

ui_ctrl_column
ui_ctrl_column_id <pk> NUMBER(10) not null
ui_ctrl_table_id <fk> NUMBER(10) not null
column_name VARCHAR2(30) not null
description VARCHAR2(48) null
read_only CHAR(1) not null
create_date DATE not null
create_userid VARCHAR2(20) not null
update_date DATE null
update_userid VARCHAR2(20) null

ui_table
ui_table_id <pk> NUMBER(10) not null
ui_table_name VARCHAR2(30) not null

ui_table_column
table_column_id <pk> NUMBER(10) not null
ui_table_id <fk> NUMBER(10) not null
column_name VARCHAR2(30) not null
default_label VARCHAR2(40) not null
label VARCHAR2(40) not null
visible CHAR(1) not null
required CHAR(1) not null
read_only CHAR(1) not nullui_misc_option

misc_option_id <pk> number(10) not null
country_code <fk> varchar2(8) not null
control_type <fk> varchar2(8) not null
option_name varchar2(40) not null
value varchar2(40) not null

ui_misc_opt_control
control_type <pk> varchar2(8) not null
description varchar2(40) not null

ui_misc_opt_country
country_code <pk> varchar2(8) not null
country_name varchar2(40) null

ui_person_x_name
u_id <pk> varchar2(15) not null
x_last_name varchar2(40) not null
x_first_name varchar2(40) not null
x_mother_mn varchar2(40) null
x_maiden varchar2(40) null
x_middle_name varchar2(30) null

ui_alias_x_name
ui_alias_id <pk> number(10) not null
u_id varchar2(15) not null
x_last_name varchar2(40) not null
x_first_name varchar2(40) not null
x_middle_name varchar2(30) null

e*Index Global Identifier Technical Reference 2-38 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About the e*Index Database

usersl_id = usersl_id

usersl_id = usersl_id

usersl_id = usersl_id

usersl_id = usersl_id

appl_id = appl_id

common_header_id = common_header_id

appl_id = appl_id

usersl_id = usersl_id

acc_def_id = acc_def_id

group_id = group_id

group_id = group_id

module_id = module_id

usersl_id = usersl_id

usersl_id = usersl_id

acc_def_id = acc_def_id

ui_login
ui_login_id <pk> NUMBER(10) not null
usersl_id <fk> NUMBER(10) not null
login_time DATE not null
logout_time DATE null
update_time DATE null
session_id VARCHAR2(15) null

ui_login_current
ui_login_current_id <pk> NUMBER(10) not null
usersl_id <fk> NUMBER(10) not null
login_time DATE not null
logout_time DATE null
update_time DATE null
session_id VARCHAR2(15) null

ui_user_passwd_hist
ui_passwd_hist_id <pk> NUMBER(10) not null
usersl_id <fk> NUMBER(10) not null
passwd VARCHAR2(20) not null
use_date DATE not null

ui_user_passwd_hist_1

stc_user_acc
user_acc_id <pk> NUMBER(10) not null
usersl_id <fk> NUMBER(10) not null
acc_def_id <fk> NUMBER(10) not null
eff_date DATE not null
exp_date DATE null
create_date DATE not null
create_userid VARCHAR2(20) not null

stc_acc_def
acc_def_id <pk> NUMBER(10) not null
module_id <fk> NUMBER(10) not null
code VARCHAR2(5) not null
descr VARCHAR2(50) null
create_date DATE null
create_userid VARCHAR2(15) null

stc_user
usersl_id <pk> NUMBER(10) not null
user_id VARCHAR2(20) not null
last_name VARCHAR2(30) not null
first_name VARCHAR2(30) not null
middle_initial VARCHAR2(1) null
user_desc VARCHAR2(100) null
email_address VARCHAR2(100) null
admin VARCHAR2(1) not null
eff_date DATE not null
exp_date DATE null
change_pass VARCHAR2(1) not null
login_attempts NUMBER(10) not null
create_date DATE not null
create_userid VARCHAR2(20) not null

pk_stc_user2

stc_user_group
usergp_id <pk> NUMBER(10) not null
group_id <fk> NUMBER(10) not null
usersl_id <fk> NUMBER(10) not null
eff_date DATE not null
exp_date DATE null
create_date DATE not null
create_userid VARCHAR2(20) not null

stc_module
module_id <pk> NUMBER(10) not null
appl_id <fk> NUMBER(10) not null
code VARCHAR2(5) not null
descr VARCHAR2(30) not null
read_only CHAR(1) not null
create_date DATE not null
create_userid VARCHAR2(20) not null

stc_group
group_id <pk> NUMBER(10) not null
group_name VARCHAR2(30) not null
group_desc VARCHAR2(100) null
eff_date DATE not null
exp_date DATE null
create_date DATE not null
create_userid VARCHAR2(20) not null

stc_group_acc
group_acc_id <pk> NUMBER(10) not null
group_id <fk> NUMBER(10) not null
acc_def_id <fk> NUMBER(10) not null
eff_date DATE not null
exp_date DATE null
create_date DATE not null
create_userid VARCHAR2(20) not null

ui_notify_user
ui_notify_user_id <pk> NUMBER(10) not null
event_code VARCHAR2(5) not null
usersl_id <fk> NUMBER(10) not null
create_date DATE not null
create_userid VARCHAR2(20) not null

stc_appl
appl_id <pk> NUMBER(10) not null
code VARCHAR2(8) not null
descr VARCHAR2(30) not null
read_only CHAR(1) not null
create_date DATE not null
create_userid VARCHAR2(20) not null

stc_common_header
common_header_id <pk> NUMBER(10) not null
appl_id <fk> NUMBER(10) not null
code VARCHAR2(8) not null
descr VARCHAR2(50) not null
read_only CHAR(1) not null
max_input_len NUMBER(10) not null
typ_table_code VARCHAR2(3) not null
create_date DATE not null
create_userid VARCHAR2(20) not null

stc_common_detail
common_detail_id <pk> NUMBER(10) not null
common_header_id <fk> NUMBER(10) not null
code VARCHAR2(20) not null
descr VARCHAR2(50) not null
read_only CHAR(1) not null
create_date DATE not null
create_userid VARCHAR2(20) not null

stc_user_region
user_region_id <pk> NUMBER(10) not null
usersl_id <fk> NUMBER(10) not null
region_code VARCHAR2(8) not null
create_date DATE not null
create_userid VARCHAR2(20) not null

e*Index Global Identifier Technical Reference 2-39 SeeBeyond Proprietary and Confidential

Chapter 2: Understanding Operational Processes Learning About the e*Index Database

e*Index Global Identifier Technical Reference 2-40 SeeBeyond Proprietary and Confidential

Chapter 3

Customizing e*Index

About this Chapter

Overview
This chapter describes the default Monk files and e*Index demo schema that
you can customize for your own processing environment. It also explains
how to configure your e*Ways for e*Index.

The following diagram illustrates the contents of each major topic in this
chapter. For the page numbers on which specific topics appear, see the next
page of this chapter.

Learn about the Monk files you can customize,
and the schema files provided with e*Index

Learn how to configure your e*Ways for
e*Index to process data according to your
business requirements

About the
e*Index Schema

Configure the
e*Ways

e*Index Global Identifier Technical Reference 3-1 SeeBeyond Proprietary and Confidential

Chapter 3: Customizing e*Index About this Chapter

What’s Inside
This chapter provides information related to the topics listed below.

Learning About e*Index Schema Components ..3-3
Learning About the e*Way Configuration Parameters3-13

Modifying e*Way Configuration Parameters3-13
General Settings ...3-14

Journal File Name...3-14
Max Resends Per Message..3-15
Max Failed Messages...3-15
Forward External Errors..3-15

Communication Setup ..3-16
Start Exchange Data Schedule...3-16
Stop Exchange Data Schedule...3-17
Exchange Data Interval...3-17
Down Timeout...3-18
Up Timeout ...3-18
Resend Timeout..3-19
Zero Wait Between Successful Exchanges............................3-19

Monk Configuration...3-19
Additional Path..3-20
Auxiliary Library Directories ..3-21
Monk Environment Initialization File3-21
Startup Function..3-22
Process Outgoing Message Function.....................................3-22
Exchange Data with External Function...................................3-23
External Connection Establishment Function.........................3-23
External Connection Verification Function..............................3-24
External Connection Shutdown Function3-24
Positive Acknowledgment Function ..3-24
Negative Acknowledgment Function3-25
Shutdown Command Notification Function3-25

Database Setup ..3-26
Database Type..3-26
Database Name..3-26
User Name..3-26
Encrypted Password...3-27

e*Index Global Identifier Technical Reference 3-2 SeeBeyond Proprietary and Confidential

Chapter 3: Customizing e*Index Learning About e*Index Schema Components

Learning About e*Index Schema Components

Overview
When you install e*Index, you install several files that you can customize in
order to make sure your data is translated and formatted appropriately. You
can install a sample schema on which you can base your production e*Ways.
This section of the chapter discusses the schema components you install, and
the files that you can modify to create your e*Index schemas.

Schema Component Distribution
When you install the e*Index schema, certain components are placed in the
default directory, and some are placed in the schema director of the registry.
The files in the default directory include the binary files that you cannot
modify, ui-fns.monk, and eiEvent.ssc. The remaining files are installed in
the demo schema directory in the registry. The files are distributed this way
so you can install e*Index upgrades without overwriting you customized
schema files.

About the Sample Schema
SeeBeyond provides a sample e*Gate schema to help you determine how to
set up your own schema for your e*Index environment. You can name the
sample schema when you install it. The sample schema includes an
executable file for your e*Ways, and sample Event Type Definition (ETD),
Collaboration, and configuration files.

!

!

The executable file is named stcewgenericmonk.exe, and is located in the
/default/bin/<os> directory on the registry.

The sample Event Type Definition file is named eiEvent.ssc, and is
located in the /default/monk_scripts/ui directory on the registry.

Tip: The ETD file is placed in the default directory of the registry. If you plan to
customize the ETD, you should rename the file, and copy and commit it to the
e*Index schema directory (in /<schema_name>/monk_scripts/ui). This
ensures that your customizations are not overwritten if eiEvent.ssc is modified
in future versions of e*Index.

!

!

The sample Collaboration file is named uidb.dsc, and is located in the
/<schema_name>/runtime/monk_scripts/ui directory on the registry.

The sample configuration file for the sending e*Way is named
ewUIDB.cfg, and the sample configuration file for the polling e*Way is
named ewUIPOLL.cfg. These files are located in the

e*Index Global Identifier Technical Reference 3-3 SeeBeyond Proprietary and Confidential

Chapter 3: Customizing e*Index Learning About e*Index Schema Components

/<schema_name>/runtime/configs/stcewgenericmonk directory on the
registry.

If you are new to e*Index, you should review the sample schema before
creating your production schema.

About the Collaboration Script
The sample Collaboration script, uidb.dsc, is referenced from the
configuration files in the e*Ways for e*Index. This file specifies the input and
output event type definitions, and calls the Monk function ui-process-
person, which is described in Chapter 4, "e*Index Monk APIs". The function
ui-process-person provides the basic data processing rules for incoming
data, and you can customize the function to process incoming records in a
way that best meets your processing requirements. You can insert additional
Monk APIs into uidb.dsc in order to further customize how incoming events
are processed. Currently, this file cannot be edited in the e*Gate
Collaboration Editor. Make sure to use the stcregutil command to commit
the files to the registry if you modify uidb.dsc. See "e*Index API
Descriptions" in Chapter 4 for complete information about the e*Index Monk
APIs you can use in this file.

What is the e*Index Monk Library?
The e*Gate environment includes a library of Monk functions. When you
install e*Index, three Monk files are loaded into the Monk library of the
e*Index schema, and one is loaded into the default schema on the registry.
You can customize these files as needed to meet your business requirements.

!

!

ui-fns.monk
This file is loaded into the /default/monk_library/ui directory in the
registry. It contains the Monk functions that allow you to reformat the
data contained in the Events that are passed through the e*Ways for
e*Index. These functions allow you to standardize the way data is
presented. For example, if your incoming data includes telephone
numbers in the format (xxx)yyy-zzzz or xxx-yyy-zzzz, you can use the
strip-phone function to reformat the data into the format xxxyyyzzzz,
which is the format used by the e*Index database. The available
functions are all described in Chapter 5, "e*Index Monk Functions".

ui-process-person.monk
This file is loaded into the /<schema_name>/monk_library/ui directory
in the registry. It contains a sample script that you can use to process
records through the e*Index database. It provides basic data processing
rules for data coming into the e*Index database. This file defines a Monk
function named ui-process-person, which you can call in the
collaboration scripts for your e*Ways. e*Index provides additional Monk
APIs that you can use to modify ui-process-person.monk and to

e*Index Global Identifier Technical Reference 3-4 SeeBeyond Proprietary and Confidential

Chapter 3: Customizing e*Index Learning About e*Index Schema Components

customize how incoming records are processed. The available Monk
functions are described in chapter 4 of this guide. Changes to ui-process-
person.monk can be made using any text editor. Remember to commit
the changed file to the e*Gate Registry or your changes will not be
implemented.

!

!

•

•

•

•

•

•

•

•

•

•

•

•

ui-custom.monk
This file is loaded into the /<schema_name>/runtime/monk_library/ui
directory in the registry. It contains the commands that create the Monk
lists used as parameters for the Monk APIs in Collaboration scripts.
These commands include get-demographics, get-transaction, get-alias,
get-address, and get-phone. Just as they sound, these commands retrieve
lists of demographic, transaction, alias, address, or telephone information
from an incoming Event. You can customize this file using the Monk
functions in ui-fns.monk to reformat the data in an Event. Examples of
how this file can be customized are included in the examples in Chapter
5, "e*Index Monk Functions". You can modify ui-custom.monk can be
made using any standard text editor, such as Microsoft WordPad or Unix
vi. Remember to commit the changed file to the e*Gate Registry or your
changes will not be implemented.

ui-stdver-eway-funcs.monk
This file is loaded into the /<schema_name/runtime/monk_library/ui
directory in the registry. The configuration files for your e*Index e*Ways
call ui-stdver-eway-funcs.monk to initialize files, connect to the database,
verify the connection, shut down the connection, process event handling,
and so on. This file contains commands for processing both inbound and
outbound events. The commands included in the ui-stdver-eway-
funcs.monk file are:

ui-stdver-init (Monk initialization file)

ui-stdver-startup (startup function for the sending e*Way)

ui-stdver-conn-estab (external connection establishment function)

ui-stdver-conn-ver (external connection verification function)

ui-stdver-conn-shutdown (external connection shutdown function)

ui-stdver-pos-ack (positive acknowledgment function for the sending
e*Way)

ui-stdver-pos-neg-ack (negative acknowledgment function for the
sending e*Way)

ui-stdver-shutdown (shutdown command notification function)

ui-stdver-proc-outgoing (process outgoing message function)

ui-stdver-proc-outgoing-stub (place holder for process outgoing
message function)

ui-poll (exchange data with external function)

ui-stdver-data-exchg (place holder for exchange data with external
function)

e*Index Global Identifier Technical Reference 3-5 SeeBeyond Proprietary and Confidential

Chapter 3: Customizing e*Index Learning About e*Index Schema Components

ui-stdver-data-exchg-stub (place holder for exchange data with
external function)

•

•

•

•

•

!

!

!

!

!

!

ui-poll-startup (startup function for the polling e*Way)

ui-poll (exchange data with external function)

ui-poll-pos-ack (positive acknowledgment function for the polling
e*Way)

ui-poll-neg-ack (negative acknowledgment function for the polling
e*Way)

For more information, see "Standard Monk API Descriptions" in Chapter 4 of
this guide.

About e*Ways
e*Ways provide the points of contact between the e*Gate system and external
applications. They handle the communication details necessary to send and
receive information including:

responding to or generating positive and negative acknowledgments

rules that govern resend and/or reconnect criteria

timeout logic

data envelope parsing and reformatting

buffer size

retrieval/transmission schedules

In addition to handling communications, e*Ways can also apply business
logic within Collaboration Rules to perform any of e*Gate’s data
identification, manipulation, and transformation operations. e*Ways are
tailored to meet the communication requirements of a specific application or
protocol. You can extend the capabilities of the e*Index e*Ways using the
Monk programming language to handle custom communications
requirements.

Note: For more a more thorough description about how to work with and configure
e*Ways, see "Working with e*Ways" in the e*Gate Integrator User's Guide.

e*Index Global Identifier Technical Reference 3-6 SeeBeyond Proprietary and Confidential

Chapter 3: Customizing e*Index Learning About e*Index Schema Components

About Monk Configuration Functions
e*Ways use Monk functions to start and stop scheduled operations, exchange
data with the external system, package data as e*Gate Events, send those
Events to Collaborations, and manage the connection between the e*Way and
the external systems. The Monk Configuration options, discussed later in
this chapter, control the Monk environment and define the functions used to
perform these basic e*Way operations. You can create and modify these
functions using the e*Gate Collaboration Rules Editor or a text editor (such as
Notepad or UNIX vi). Remember to commit the files to the registry so the
changes to be recognized.

The Monk functions you use for the Monk Configuration options fall into the
following groups:

Type of
Operation

Name

Initialization Startup Function

(also Monk Environment Initialization File)

Connection External Connection Establishment Function

Connection Verification Function

External Connection Shutdown Function

Schedule-driven
data exchange

Exchange Data with External Function

Positive Acknowledgment Function

Negative Acknowledgment Function

Shutdown Shutdown Command Notification Function

Event-driven data
exchange

Process Outgoing Message Function

The series of illustrations on the following pages illustrate how these
functions work together to perform startup, data exchange, and shutdown
functions within an e*Way.

e*Index Global Identifier Technical Reference 3-7 SeeBeyond Proprietary and Confidential

Chapter 3: Customizing e*Index Learning About e*Index Schema Components

Initialization and Startup Functions
Figure 3-1 below illustrates how an e*Way executes the initialization and
startup functions for e*Index.

Figure 3-1: Initialization Process

Start e*Way

Load
"Monk Initialization"

file

Execute any Monk
function having the
same name as the
initialization file

Load "Startup" file

Execute any Monk
function having the
same name as the

startup file

Load
"Auxiliary Library

Directories"
files

e*Index Global Identifier Technical Reference 3-8 SeeBeyond Proprietary and Confidential

Chapter 3: Customizing e*Index Learning About e*Index Schema Components

Connectivity Functions
Figure 3-2 below illustrates how the e*Ways execute the connectivity and
verification functions. You can schedule when these functions are called by
specifying schedules for re-establishing the connection when the connection
is inactive, and for rechecking the connection after it is found to be active.

Figure 3-2: Connection Processes

Connect e*Way to
external system

Internal
flag shows connection

active?

Wait for "Up Timeout"
schedule

Call External Connection
Verification function

Wait for "Down Timeout"
schedule

Call External Connection
Establishment function

Yes

No

e*Index Global Identifier Technical Reference 3-9 SeeBeyond Proprietary and Confidential

Chapter 3: Customizing e*Index Learning About e*Index Schema Components

Schedule-Driven Data Exchange Functions
Figure 3-3 below illustrates how the e*Way executes the data exchange Monk
functions when the e*Way is configured to be schedule-driven. For more
information about scheduling data exchanges, see "Start Exchange Data
Schedule" on page 3-16.

Figure 3-3: Schedule-driven Processes

Increment
"Failed Message"

counter

DATAERR plus
additional data

Null
string

Data
(other than

error strings)

Forward
external
errors?

No

Yes

Set interval flag
"Connection

Down"

CONNERR

Increment
"Failed Message"

counter

DATAERR only

Journal
enabled?

Create journal
entry

Yes

No

Start

Function exits

Send Event to
e*Gate

All
subscribing

Collaborations return
TRUE?

Call Positive
Acknowledgment

function

Zero
wait after successful

exchange?

Call Negative
Acknowledgment

function

Yes

No

No

Call Exchange Data with
External function

Return

Yes

e*Index Global Identifier Technical Reference 3-10 SeeBeyond Proprietary and Confidential

Chapter 3: Customizing e*Index Learning About e*Index Schema Components

Event-Driven Data Exchange Functions
Figure 3-4 below illustrates how the e*Way executes the data exchange Monk
functions when the e*Way is configured to be event-driven. For more
information about event-driven data exchanges, see "Process Outgoing
Message Function" on page 3-22.

Figure 3-4: Event-driven Processes

Collaboration
publishes

to <EXTERNAL>

Call Process
Outgoing Message

function

Set internal flag
"Connection

Down"

Maximum
Resends per

Message
exceeded?

Increment
"Failed Message"

counter

Create
journal entry

Null
string

No
Journal

enabled?

End

Roll back Event
to its

publishing IQ

Yes

Wait for Resend
Timeout period

Increment
"Resend"
counter

RESENDCONNERR DATAERR

Yes

No

e*Index Global Identifier Technical Reference 3-11 SeeBeyond Proprietary and Confidential

Chapter 3: Customizing e*Index Learning About e*Index Schema Components

Shutdown Functions
Figure 3-5 below illustrates how the e*Way executes the functions that
shutdown the e*Way when the Control Broker issues a shutdown command.

Figure 3-5: Shutdown Process

Control Broker issues
"Shutdown" command

Call Shutdown Notification function
with parameter

"SHUTDOWN_NOTIFICATION"

e*Way shuts down

Wait for
shutdown-request

function

Return

Null string or
"SUCCESS"

any other value

e*Index Global Identifier Technical Reference 3-12 SeeBeyond Proprietary and Confidential

Chapter 3: Customizing e*Index Learning About the e*Way Configuration Parameters

Learning About the e*Way Configuration Parameters

Overview
Before you can run e*Index, you must configure the e*Ways using the e*Way
Edit Settings window, which is accessed from the e*Gate Enterprise Manager
GUI. e*Index provides a default configuration file that you can modify using
this window. This chapter describes the procedure for configuring the
sample e*Ways. You can edit an existing e*Way and rename an e*Way in the
e*Gate Enterprise Manager. Procedures for creating and editing e*Gate
components are provided in the Enterprise Manager’s online help.

Modifying e*Way Configuration Parameters
You can change the settings for your e*Way configuration parameters using
the e*Way Editor.

Use the Edit
Settings window to

modify your
e*Way

configuration
parameters

e*Index Global Identifier Technical Reference 3-13 SeeBeyond Proprietary and Confidential

Chapter 3: Customizing e*Index Learning About the e*Way Configuration Parameters

!

1

2

3

4

•

•

•

•

To change e*Way configuration parameters:
Before you begin:

Obtain information about the e*Way you need to configure, such as
the names of the Monk functions you need to enter as parameters for
the configuration file

Open the e*Gate Enterprise Manager

In the Enterprise Manager’s Component editor, select the e*Way you
want to configure and display its properties.

Under Configuration File, click New to create a new file, Find to select
an existing configuration file, or Edit to edit the currently selected file.

In the Additional Command Line Arguments box, type any additional
command line arguments that the e*Way may require, taking care to
insert them at the end of the existing command-line string. Do not to
change any of the default arguments unless you have a specific need to
do so.

Modify the e*Ways configuration parameters. The parameters for the
sending and polling e*Ways are described on the following pages. The
parameters are organized into the following sections (corresponding to
the sections listed in the Goto Section: field at the top of the Edit Settings
window):

General Settings

Communication Setup

Monk Configuration

Database Setup

Note: For more information about how to use the e*Way Editor, see the e*Way
Editor’s online help or "Working with e*Ways" in the e*Gate Integrator User's
Guide.

General Settings
The General Settings section controls basic operational parameters, such as
error handling information and the name and path of the journal files.

Journal File Name

Description

In this parameter, you can specify the name and path of the journal files for
the displayed e*Way. The Journal file logs information in the following
conditions:

e*Index Global Identifier Technical Reference 3-14 SeeBeyond Proprietary and Confidential

Chapter 3: Customizing e*Index Learning About the e*Way Configuration Parameters

!

!

When the number of resends is exceeded (see "Max Resends Per
Message" on page 3-15).

When an external error occurs, but Forward External Errors is set to No
(for more information, see "Forward External Errors" on page 3-15).

Required Values

A valid filename, optionally including an absolute path (for example,
c:\temp\filename.txt). If the path you specify does not exist, the e*Way will
create it. If you do not specify an absolute path, the file is stored in e*Gate's
SystemData directory. See the e*Gate Integrator System Administration and
Operations Guide for more information about file locations. There is no
default for this field.

Max Resends Per Message

Description

The value you specify for the Max Resends Per Message parameter
determines the maximum number of times the e*Way attempts to resend an
Event to the external system after receiving an error. When this maximum
number is reached, the Event fails and is written to the journal file.

Required Values

An integer between 1 and 1,024. The default for the sending e*Way is 1; the
default for the polling e*Way is 5.

Max Failed Messages

Description

The value you specify for Max Failed Messages determines the maximum
number of failed Events the e*Way allows. When the e*Way reaches the
specified number of failed Events, the e*Way shuts down.

Required Values

An integer between 1 and 1,024. The default for the sending e*Way is 1,024;
the default for the polling e*Way is 3.

Forward External Errors

Description

The value specified for the Forward External Errors parameter determines
whether error messages that begin with the string DATAERR and are
received from the external system are queued to the e*Way’s configured

e*Index Global Identifier Technical Reference 3-15 SeeBeyond Proprietary and Confidential

Chapter 3: Customizing e*Index Learning About the e*Way Configuration Parameters

queue. See "Exchange Data with External Function" on page 3-23 for more
information.

Required Values

Yes or No. The default value, No, specifies that error messages are not
forwarded.

Communication Setup
The Communication Setup parameters control the schedule by which the
e*Way obtains data from the external system. Typically, in an e*Index
implementation, you want the e*Ways to continually check for data from
external systems or from the e*Index database.

Note: The schedule you set in the e*Way’s properties in the Enterprise Manager
determines when the e*Way executable runs. The schedule you set within the
parameters discussed in this section (using the e*Way Editor) determines when data
is exchanged. Be sure the schedule you set for the data exchange falls within the
schedule that was set up for the executable in the Enterprise Manager.

Start Exchange Data Schedule

Description

The Start Exchange Data Schedule parameter allows you to establish a
schedule to invoke the Exchange Data with External function (for more
information, see "Exchange Data with External Function" on page 3-23).

Required Values

One of the following:

!

!

!

!

!

One or more specific dates and times

A single repeating interval (such as yearly, weekly, monthly, daily, or
every n seconds).

There are no defaults for this parameter.

If you set a schedule using Start Exchange Data Schedule, you must also
define the following:

Exchange Data with External Function (described on page 3-23)

Positive Acknowledgment Function (described on page 3-24)

Negative Acknowledgment Function (described on page 3-25)

e*Index Global Identifier Technical Reference 3-16 SeeBeyond Proprietary and Confidential

Chapter 3: Customizing e*Index Learning About the e*Way Configuration Parameters

If you do not define these three parameters, the e*Way will terminate
execution when the schedule attempts to start.

Additional Information

When the schedule starts, the e*Way determines whether it is waiting to send
an ACK or NACK to the external system (using the Positive
Acknowledgment Function or Negative Acknowledgment Function). It
also determines whether the connection to the external system is active. If no
ACK/NACK is pending and the connection is active, the e*Way immediately
executes the function specified in the Exchange Data with External Function
parameter. The function will continue to be called according to the Exchange
Data Interval parameter until the Stop Exchange Data Schedule time is
reached.

See "Exchange Data with External Function" on page 3-23, "Exchange Data
Interval" on page 3-17, and "Stop Exchange Data Schedule" below for more
information.

Stop Exchange Data Schedule

Description

The Stop Exchange Data Schedule parameter establishes the schedule to
stop data exchanges. This field is optional, and if you leave it blank, the
e*Way will continually search for data to process. This parameter is not used
by the sending e*Way.

Required Values

One of the following:

!

!

One or more specific dates and times

A single repeating interval (such as yearly, weekly, monthly, daily, or
every n seconds).

There are no defaults for this parameter.

Exchange Data Interval

Description

The value you specify for the Exchange Data Interval parameter determines
the number of seconds the e*Way waits between calls to Exchange Data with
External Function during scheduled data exchanges. This parameter is not
used by the sending e*Way, which only uses a stub function for the Exchange
Data with External Function parameter. The interval can be used by the
polling e*Way.

e*Index Global Identifier Technical Reference 3-17 SeeBeyond Proprietary and Confidential

Chapter 3: Customizing e*Index Learning About the e*Way Configuration Parameters

Required Values

An integer between 0 and 86,400. The default for the sending e*Way is 120.
The default for the polling e*Way is 10.

Additional Information

If the Zero Wait Between Successful Exchanges parameter is set to Yes and
the Exchange Data with External function returns data, then the Exchange
Data Interval setting is ignored and the e*Way invokes the Exchange Data
with External function immediately. When Exchange Data with External
does not return data, then the Exchange Data Interval setting is used.

If the Exchange Data Interval parameter is set to zero, there is no exchange
data schedule set and the Exchange Data with External function is never
called.

See "Down Timeout" below and "Stop Exchange Data Schedule" on page 3-17
for more information about the data-exchange schedule.

Down Timeout

Description

The Down Timeout parameter specifies the number of seconds that the
e*Way waits between calls to External Connection Establishment Function
(for more information, see "External Connection Establishment Function" on
page 3-23).

Required Values

An integer between 1 and 86,400. The default is 15.

Up Timeout

Description

The value you specify for the Up Timeout parameter determines the number
of seconds that the e*Way waits between calls to External Connection
Verification Function to verify that the connection is still up (for more
information, see "External Connection Verification Function" on page 3-24).

Required Values

An integer between 1 and 86,400. The default is 15.

e*Index Global Identifier Technical Reference 3-18 SeeBeyond Proprietary and Confidential

Chapter 3: Customizing e*Index Learning About the e*Way Configuration Parameters

Resend Timeout

Description

Use this parameter to specify the number of seconds the e*Way should wait
between attempts to resend an Event to the external system after receiving an
error message from an external system.

Required Values

An integer between 1 and 86,400. The default is 10.

Zero Wait Between Successful Exchanges

Description

The Zero Wait Between Successful Exchanges parameter allows you to
select whether to initiate the exchange immediately after a successful
previous exchange or to initiate data exchange after the amount of time
specified in Exchange Data Interval has passed.

Required Values

Yes or No. If this parameter is set to Yes, the e*Way immediately invokes the
Exchange Data with External function if the previous exchange function
returned data. If this parameter is set to No, the e*Way always waits the
number of seconds specified by Exchange Data Interval before invoking
Exchange Data with External Function. The default is No, but you may
want to set it to Yes for the polling e*Way.

See "Exchange Data with External Function" on page 3-23 for more
information.

Monk Configuration
The Monk Configuration parameters discussed in this section control the
Monk environment and define the Monk functions that are used to perform
basic e*Way operations. These parameters help you set up the information
required by the e*Way to use Monk to communicate with external systems.
The e*Way uses Monk functions to start and stop scheduled operations,
exchange data with external systems, package and send Events to e*Gate,
send Events to Collaborations, and manage connections between the e*Way
and external systems. Figures 3-1 through 3-5 earlier in this chapter illustrate
how the Monk Configuration parameters are executed.

You can create and modify these functions using any standard text editor
(such as Microsoft WordPad, Notepad, or UNIX vi). For more information

e*Index Global Identifier Technical Reference 3-19 SeeBeyond Proprietary and Confidential

Chapter 3: Customizing e*Index Learning About the e*Way Configuration Parameters

about the Monk functions used for the Monk Configuration parameters, see
"Standard Monk API Descriptions" in Chapter 4 of this guide.

Parameters that require the name of a Monk function accept either a function
name or a file name. If you specify a file name, be sure that the file has one of
the following extensions:

.monk •

•

•

.tsc

.dsc

Additional Path

Description

The Additional Path parameter allows you to specify a path to append to the
load path, which is the path Monk uses to locate files and data. The directory
specified for Additional Path is searched before the default load path.

Required Values

A pathname, or a series of paths separated by semicolons. This parameter is
optional and you may leave it blank. The default for both e*Index e*Ways is
monk_scripts/ui.

Additional information

The default load paths are determined by the "bin" and "Shared Data"
settings in the .egate.store file. See the e*Gate Integrator System Administration
and Operations Guide for more information about this file.

To specify multiple directories, manually enter the directory names rather
than selecting them with the "file selection" button. Directory names must be
separated with semicolons, and you can mix absolute paths with relative
e*Gate paths. For example:

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only
once, when the e*Way starts up.

e*Index Global Identifier Technical Reference 3-20 SeeBeyond Proprietary and Confidential

Chapter 3: Customizing e*Index Learning About the e*Way Configuration Parameters

Auxiliary Library Directories

Description

The Auxiliary Library Directories parameter allows you to specify a path to
directories that contain additional libraries. Any .monk files found within
those directories are automatically loaded into the e*Way’s Monk
environment.

Required Values

A pathname, or a series of paths separated by semicolons. The default is
monk_library/dart;monk_library/ui.

Additional information

To specify multiple directories, manually enter the directory names rather
than selecting them with the "file selection" button. Directory names must be
separated with semicolons, and you can mix absolute paths with relative
e*Gate paths. For example:

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only
once, when the e*Way starts up.

This parameter is optional and you may leave it blank.

Monk Environment Initialization File
The Monk Environment Initialization File parameter allows you to specify a
file that contains environment initialization functions, which are loaded after
the auxiliary library directories are loaded. Use this feature to initialize the
e*Way’s Monk environment (for example, to define Monk variables that are
used by the e*Way’s function scripts).

Required Values

A filename or command within the load path, or filename plus path
information (relative or absolute). If you specify path information, the path
you specify is appended to the load path. The default is ui-stdver-init, which
is described in the API list in Chapter 4 of this guide. For more information
about the load path, see "Additional Path" on page 3-20.

e*Index Global Identifier Technical Reference 3-21 SeeBeyond Proprietary and Confidential

Chapter 3: Customizing e*Index Learning About the e*Way Configuration Parameters

Additional information

When you specify a Monk environment initialization file, the e*Way loads
the file and tries to invoke a function of the same base name as the file name
(for example, for a file named my-init.monk, the e*Way would attempt to
execute the function my-init).

Typically, it is a good practice to initialize any global Monk variables that
may be used by any other Monk Extension scripts. The internal function that
loads this file is called only once, when the e*Way starts up.

Startup Function

Description

Use the Startup Function parameter to specify a Monk function that the
e*Way loads and invokes upon startup or whenever the e*Way’s
configuration changes before it enters into its initial communication state.
This function allows the external system to be initialized before information
exchange starts.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. The default is ui-stdver-startup for
the sending e*Way, and ui-poll-startup for the polling e*Way. These
commands are described in the API list in Chapter 4 of this guide.

Additional information

This function is called after the e*Way loads the specified Monk environment
initialization file and any files within the specified auxiliary directories.

If you specify a file name instead of a command, the e*Way loads the file and
tries to invoke a function of the same base name as the file name. For
example, for a file named my-startup.monk, the e*Way would attempt to
execute the function my-startup.

Process Outgoing Message Function

Description

The function you specify as your Process Outgoing Message Function
indicates the Monk function responsible for sending outgoing messages
(Events) from the e*Way to the external system. This function is event-driven
(unlike the Exchange Data with External function, which is schedule-driven).

e*Index Global Identifier Technical Reference 3-22 SeeBeyond Proprietary and Confidential

Chapter 3: Customizing e*Index Learning About the e*Way Configuration Parameters

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. You may not leave this field blank.
The default function for the sending e*Way is uidb.dsc. The default function
for the polling e*Way is ui-stdver-proc-outgoing.

Exchange Data with External Function

Description

The function you specify for Exchange Data with External Function is the
function that initiates an exchange of data with an external system. This
function is called according to a schedule (unlike the Process Outgoing
Message Function, which is event-driven).

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. The default is ui-stdver-data-
exchg for the sending e*Way. ui-stdver-data-exchg is a placeholder for the
file that controls the exchange of data, since the e*Index sending e*Way is not
schedule-driven. For the polling e*Way, the default is ui-poll.

External Connection Establishment Function

Description

The External Connection Establishment Function parameter specifies the
Monk function that the e*Way calls when it has determined that the
connection to the external system is down.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This field is required. The default
is ui-stdver-conn-estab, which is described in the API list in Chapter 4 of this
guide.

Additional Information

This function is executed according to the interval specified within the Down
Timeout parameter, and is only called according to this schedule. The
External Connection Verification function (see below) is called when the
e*Way has determined that its connection to the external system is up.

e*Index Global Identifier Technical Reference 3-23 SeeBeyond Proprietary and Confidential

Chapter 3: Customizing e*Index Learning About the e*Way Configuration Parameters

External Connection Verification Function

Description

The External Connection Verification Function specifies the Monk function
that the e*Way calls to confirm that the external system is operating and
available.

Required Values

The name of a Monk function. This function is optional; if no function is
specified, the e*Way executes the External Connection Establishment
Function in its place. The default is ui-stdver-conn-ver, which is described in
the API list in Chapter 4 of this guide.

Additional Information

This function is executed according to the interval specified within the Up
Timeout parameter, and is only called according to this schedule. External
Connection Establishment Function (see previous page) is called when the
e*Way has determined that its connection to the external system is down.

External Connection Shutdown Function

Description

This parameter specifies the Monk function that the e*Way calls to shut down
the connection to the external system.

Required Values

The name of a Monk function. The default is ui-stdver-conn-shutdown,
which is described in the API list in Chapter 4 of this guide.

Additional Information

Include in this function any required "clean up" that must be performed as
part of the shutdown procedure before the e*Way exits.

Positive Acknowledgment Function

Description

The Positive Acknowledgment Function parameter specifies the Monk
function that the e*Way calls when all the Collaborations to which the e*Way
sent data have processed and enqueued that data successfully.

e*Index Global Identifier Technical Reference 3-24 SeeBeyond Proprietary and Confidential

Chapter 3: Customizing e*Index Learning About the e*Way Configuration Parameters

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if
Exchange Data with External Function is defined. The default for the
sending e*Way is ui-stdver-pos-ack. The default for the polling e*Way is ui-
poll-pos-ack. These commands are described in the API list in Chapter 4 of
this guide.

Negative Acknowledgment Function

Description

The Negative Acknowledgment Function parameter specifies a Monk
function that the e*Way calls when the e*Way fails to process and queue data
from the external system.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if
Exchange Data with External Function is defined. The default for the
sending e*Way is ui-stdver-neg-ack. The default for the polling e*Way is ui-
poll-neg-ack. These commands are described in the API list in Chapter 4 of
this guide.

Shutdown Command Notification Function

Description

The Shutdown Command Notification Function specifies the Monk function
that is called when the e*Way receives a "shut down" command from the
Control Broker. This parameter is optional.

Required Values

The name of a Monk function. The default is ui-stdver-shutdown, which is
described in the API list in Chapter 4 of this guide.

Additional Information

If you postpone a shutdown using this function, be sure to use the
shutdown-request function to complete the process in a timely manner.

e*Index Global Identifier Technical Reference 3-25 SeeBeyond Proprietary and Confidential

Chapter 3: Customizing e*Index Learning About the e*Way Configuration Parameters

Database Setup
The parameters in this section allow you to specify information about your
database, such as the name and type of database, and the user name and
password with which to log on to the database.

Database Type

Description

Specify the type of database to connect to in the Database Type parameter.

Required Values

SYBASE, ORACLE7, ORACLE8, ORACLE8i, or ODBC. Any other value is
effectively equal to ODBC. Select one of the following, depending on the
database platform you are using: SYBASE, ORACLE8i, or ODBC.

Database Name

Description

Specify the name of the database to connect to in the Database Name
parameter.

Required Values

You can enter any valid string for this parameter.

User Name

Description

In the User Name parameter, specify the user log on name with which the
database can be accessed.

Required Values

You can enter any valid string for this parameter. The default for this field is
ui.

e*Index Global Identifier Technical Reference 3-26 SeeBeyond Proprietary and Confidential

Chapter 3: Customizing e*Index Learning About the e*Way Configuration Parameters

Encrypted Password

Description

In the Encrypted Password parameter, enter the password that provides
access to the database for the User Name you entered.

Required Values

Any valid string.

Important! Changes to Monk files can be made using the Collaboration Rules Editor
(except to ui-custom.monk) or with a text editor. However, if you use a text editor
to edit Monk files directly, you must commit these changed files to the e*Gate
Registry or your changes will not be implemented.

For more information about committing files to the e*Gate Registry, see the
Enterprise Manager’s online Help system, or the stcregutil command-line utility in
the e*Gate Integrator System Administration and Operations Guide.

e*Index Global Identifier Technical Reference 3-27 SeeBeyond Proprietary and Confidential

Chapter 3: Customizing e*Index Learning About the e*Way Configuration Parameters

e*Index Global Identifier Technical Reference 3-28 SeeBeyond Proprietary and Confidential

Chapter 4

e*Index Monk APIs

About this Chapter

Overview
This chapter presents the background information you need to create Monk
scripts using the APIs provided in the e*Index Monk library.

The following diagram illustrates the contents of each major topic in this
chapter. For the page numbers on which specific topics appear, see the next
page of this chapter.

Learn about the standard Monk APIs and
Monk lists defined for e*Index

Learn about the usage, syntax, and parameters
of the Monk APIs in the e*Index Monk API
library

About e*Index
Monk APIs

e*Index
Monk APIs

Learn about the implementation, syntax, and
parameters of the external Monk APIs found in
ui-stdver-funcs-eways.monk

Standard e*Index
Monk APIs

e*Index Global Identifier Technical Reference 4-1 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs About this Chapter

What’s Inside
This chapter provides information related to the topics listed below.

Learning About e*Index Monk APIs ...4-4
e*Index Monk API Descriptions..4-19

db-get-error-str...4-19
make-connection-handle ...4-21
ui-address-search-close ..4-22
ui-address-search-next ..4-23
ui-address-search-open...4-24
ui-commit-transaction...4-25
ui-config..4-27
ui-deactivate-local-id ..4-28
ui-delete-address ...4-29
ui-delete-aux-id ..4-30
ui-delete-queue-msg..4-31
ui-delete-unresolved-duplicates...4-32
ui-dequeue ...4-34
ui-exists-aux-id...4-36
ui-get-alias..4-38
ui-get-all-local-id...4-40
ui-get-assumed-match-enabled ...4-42
ui-get-aux-id ...4-44
ui-get-db-date-time...4-46
ui-get-demographic-changed...4-47
ui-get-dupchk-enabled ...4-49
ui-get-error-string ...4-50
ui-get-id-system ...4-51
ui-get-local-id ...4-53
ui-get-person..4-55
ui-get-transaction-date-time...4-57
ui-get-uid ..4-58
ui-get-vip ..4-59
ui-insert-address ..4-60
ui-insert-alias..4-61
ui-insert-assumed-match ...4-63
ui-insert-aux-id ...4-64
ui-insert-local-id..4-65
ui-insert-person ..4-66
ui-local-id-merge ..4-67
ui-local-id-status...4-69
ui-lookup...4-70

e*Index Global Identifier Technical Reference 4-2 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs About this Chapter

ui-lookup-address-id ..4-72
ui-lookup-local-id..4-73
ui-merge ...4-75
ui-process-address ..4-77
ui-process-person ..4-79
ui-process-phone ...4-81
ui-rollback-transaction..4-83
ui-search-close...4-84
ui-search-get-exact-match-score...4-85
ui-search-get-exact-match-uid ...4-86
ui-search-insert-duplicate ..4-87
ui-search-local-id..4-88
ui-search-open ...4-90
ui-set-dup-threshold ...4-91
ui-set-match-threshold ...4-92
ui-set-queue-id ...4-93
ui-start-transaction ...4-95
ui-update-address ..4-96
ui-update-aux-id ...4-97
ui-update-person..4-98

Standard Monk API Descriptions ...4-99
ui-stdver-init..4-99
ui-stdver-startup ...4-101
ui-stdver-conn-estab ..4-102
ui-stdver-conn-ver ..4-105
ui-stdver-conn-shutdown ...4-107
ui-stdver-pos-ack ...4-108
ui-stdver-neg-ack ...4-109
ui-stdver-shutdown...4-110
ui-stdver-proc-outgoing..4-111
ui-stdver-proc-outgoing-stub..4-113
ui-poll-startup ...4-115
ui-poll..4-116
ui-poll-pos-ack..4-118
ui-poll-neg-ack ...4-120
ui-stdver-data-exchg-stub ..4-122

e*Index Global Identifier Technical Reference 4-3 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Learning About e*Index Monk APIs

Learning About e*Index Monk APIs

Overview
This section of the chapter provides the background information you should
know before using the e*Index Monk APIs.

What are e*Index Monk APIs?
e*Index Monk APIs are commands that you can call in your Collaboration
scripts for e*Index in order to perform functions specific to the e*Index
database. The Monk APIs include commands to perform tasks such as
finding a person based on their UID or local ID, inserting demographic or
alias information into a person’s records, merging and unmerging records,
queuing and dequeuing Events, and so on.

What are Standard Monk APIs for e*Index?
Standard Monk APIs are commands that you can call in your configuration file
to perform certain database activities. Using these functions you can
establish and verify a connection to a database, shutdown a database
connection, initialize Monk files, read the ui_control table of the e*Index
database, and so on. These functions are defined in the file ui-stdver-eway-
funcs.monk, and are described under "Standard Monk API Descriptions"
later in this chapter.

What Monk Lists are Defined for e*Index?
Monk lists contain specific information associated with a record that exists in
the e*Index database, or that is being converted into the e*Index database.
Monk lists are frequently used as parameters for e*Index Monk APIs. The
default Monk lists for e*Index are defined in ui-custom.monk (located in the
Monk library), and you can customize these lists for your business
requirements. Use any standard editor to modify this file, and make sure to
commit the file to the e*Gate registry using the stcregutil command. For
fields in Monk lists that have no value or are unknown, you can specify null
(""). The fields class1 through class5 are reserved and should not be used.
The defined lists include demographics-list, transaction-list, alias-list,
address-list, and phone-list.

e*Index Global Identifier Technical Reference 4-4 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Learning About e*Index Monk APIs

How do Control Keys Affect APIs?
The e*Index control keys, maintained in the e*Index Administrator GUI,
allow you to configure how e*Index processes data. Most of the control keys
affect the e*Index GUI, but some influence how data from external systems is
processed as well.

1XACTMTCH
The 1XACTMTCH control key allows you to specify whether all records that
match your search criteria and have weights above the match threshold
(MATCHTHRES) are treated as potential duplicates. Step 5 on page 2-11 of
this guide describes how exact matching affects the ui-process-person API.

BLNKONUPDT
Using the BLNKONUPDT control key, you can specify whether to treat a
blank field as null when performing an update from the e*Index e*Ways. For
records entered through the back-end, a blank field is indicated by double
quotes ("") and not by an empty string. The BLNKONUPDT control key
determines whether the API interprets double quotes literally as double
quotes (when the key is set to No) or whether it interprets double quotes as a
null field, thus updating existing information with a null field or populating
the database with an empty field instead of double quotes.

You can use double quotes to blank out any field in a record during an
update if BLNKONUPDT is set to Yes. If you are inserting a new record and
BLNKONUPDT is enabled, then any string consisting of double quotes is
automatically converted to an empty string. If BLNKONUPDT is not
enabled, and an incoming record has double quotes in any field, the APIs will
populate that field in the database with double-quotes for both updates and
inserts. If you pass in an empty string, the APIs ignore it during an update
regardless of the value of BLNKONUPDT.

The BLNKONUPDT functionality does not apply to address and telephone
number updates. When an empty string occurs in an address or telephone
field, the empty string nulls out the field in the database. For example, if the
original database in the record is:

 address1: 2505 Fifth St.
 address2: Apt. 102

And the address of the incoming record is:

address1: 2505 Fifth St. Apt.102
address2:

e*Index Global Identifier Technical Reference 4-5 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Learning About e*Index Monk APIs

The API updates the record in the database like this, regardless of the
BLNKONUPDT setting:

address1: 2505 Fifth St. Apt.102
address2:

Notes:

!

!

The ui-process-address API has an overwrite flag that determines whether
existing address is overwritten. For more information, see "ui-process-
address" on page 4-77.

 The address and telephone number updates only apply to the address or phone
type specified. For example, if an existing record contains a home address and a
business address, and is updated by an incoming record containing only a home
address, then only the home address is updated.

DUPTHRES
The DUPTHRES control key allows you to specify a minimum matching
weight for which a profile is considered a potential duplicate of the profile
being added. All profiles that have a higher matching probability weight
than this threshold are considered potential duplicates of the new profile.
Step 7 on page 2-12 of this guide discusses how the duplicate threshold
affects the ui-process-person API.

EXTNSVSRCH
The EXTNSVSRCH control key does not affect back-end searches, but does
enable extensive searching for the GUI. When extensive searching is enabled,
a demographic alphanumeric search for member profiles also searches
through alias names. To enable extensive searching for e*Way transactions,
you need to modify the configurable query by adding the ui_alias table to the
query.

MATCHTHRES
Use the MATCHTHRES control key to specify the matching probability
weight at which e*Index automatically merges a new profile with an existing
potential duplicate profile. Step 5 on page 2-11 of this guide describes how
exact matching affects the ui-process-person API.

UIDLENGTH
The UIDLNGTH control key allows you to specify the length of the UIDs that
e*Index assigns to each member profile. This only affects inbound Events in
that the UID is inserted into each Event as it is processed through the
database.

e*Index Global Identifier Technical Reference 4-6 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Learning About e*Index Monk APIs

What Monk APIs are Available?
Several Monk APIs are defined in the e*Index Monk library, including
functions to process demographic records, perform searches, create
date/time stamps, display error messages, and so on. If you know the name
of a Monk API, you can use Table 4-1 on the following pages to identify the
purpose of the API.

Table 4-1: Standard e*Index Monk APIs

Use this Monk API … to perform this action …

db-get-error-str Display any database error messages after an
API has processed.

make-connection-handle Establish a connection handle to the database
server.

ui-address-search-close Close the address search cursor, and de-allocate
the memory.

ui-address-search-next Return the next address record from the
address search cursor, and increment the search
cursor position. You must call ui-address-
search-open before calling ui-address-search-
next.

ui-address-search-open Search for existing address records based on an
address list and open a cursor of weighted
records returned from the search. This function
returns the number of records in the result set.

ui-commit-transaction Commit a transaction to the database and reset
the transaction structure.

ui-config Read the parameters defined in the ui_control
table to configure certain system attributes,
such as local ID length, UID format, and so on.

ui-deactivate-local-id Deactivate an active local ID given the local ID
number, the associated system, and a UID.

ui-delete-address Delete an existing address record from the
database. A transaction must be started before
calling ui-delete-address.

ui-delete-aux-id Delete a non-unique ID given the ID type and
the ID code. Before calling ui-delete-aux-id, you
must call ui-start-transaction to designate which
UID record to modify.

ui-delete-queue-msg Remove a message from the outgoing queue
once it has been successfully dequeued and
sent.

e*Index Global Identifier Technical Reference 4-7 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Learning About e*Index Monk APIs

Use this Monk API … to perform this action …

ui-delete-unresolved-
duplicates

Remove a record's existing potential duplicate
entries from ui_duplic during a person update
so potential duplicates can re-evaluated for that
record.

ui-dequeue Retrieve and remove an active Event from the
msg_id_detail table so the polling e*Way can
send the Event to e*Gate.

ui-exists-aux-id Searches for a specific non-unique ID type for a
member given the member's UID, the ID type,
and the identification code.

ui-get-alias Retrieve a person’s alias records based on that
person’s UID.

ui-get-all-local-id Search for local IDs in a specific system (and
their status) based on a member's UID. The
status of the local IDs is ignored.

ui-get-assumed-match-
enabled

Check to see if the ASSMTCH control is enabled
in the Administrator. If ASSMTCH is enabled, all
assumed matches made by the application are
written to the ui_asssumed_match table.

ui-get-aux-id Retrieve non-unique IDs given the type of ID
and the member's UID.

ui-get-db-date-time Retrieve the date and time on the database
server in the following format: YYYY/MM/DD
hh:mm:ss.

ui-get-demographic-
changed

Check to see if a demographic record was
changed as a result of the previous actions
against the database.

ui-get-dupchk-enabled Check to see if the DUPCHK control key is
enabled in the Administrator. If DUPCHK is
enabled, potential duplicates for a specific
record are re-evaluated after that record is
updated.

ui-get-error-string Display e*Index error messages after an API has
been called.

ui-get-id-system Retrieve all local ID and system pairs associated
with an individual based on their UID.

ui-get-local-id Retrieve the member's local ID in a specific
system given the system code and UID.

ui-get-person Retrieve a person’s demographic record based
on that person’s UID.

ui-get-transaction-date-
time

Retrieve the time that the transaction that is
currently in progress began.

e*Index Global Identifier Technical Reference 4-8 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Learning About e*Index Monk APIs

Use this Monk API … to perform this action …

ui-get-uid Find a person’s UID using that person’s system
and local ID as search criteria.

ui-get-vip Retrieve a person’s VIP flag based on that
person’s local ID in the specified system.

ui-insert-address Insert a new address into the database. A
transaction must be started before calling ui-
insert-address.

ui-insert-alias Insert alias information into the ui_alias table
based on that person’s UID.

ui-insert-assumed-match Insert an assumed match record by assuming
the first record in the search cursor (the one
with the highest matching weight) is the
assumed match of the incoming record. You
can only call this function after ui-search-open.

ui-insert-aux-id Insert a non-unique ID and ID type. Before
calling ui-delete-aux-id, you must call ui-start-
transaction to designate which UID record is
being modified.

ui-insert-local-id Insert a record into the ui_local_id table, giving
the specified member a new local ID and system
record.

ui-insert-person Insert a new person record into the database
using a demographic list. You must call ui-start-
transaction before inserting a person record.

ui-local-id-merge Merge two member profiles based on local IDs
in a specific system.

ui-local-id-status Return the status of a local ID record.

ui-lookup Find a person’s local ID in a specified system
using that person’s local ID in another system as
search criteria.

ui-lookup-address-id Search for the address ID of an existing address
record based on the corresponding UID and
address type.

ui-lookup-local-id Look up a local ID associated with the specified
system based on a member's local ID in another
system. This API searches by local ID status.

ui-merge Merge two individuals' records together using
either their local IDs or their UIDs.

ui-poll Define the function that is called to process
messages being transmitted from the database
to external systems through e*Gate.

ui-poll-neg-ack Send a negative acknowledgment to the polling
e*Way to indicate that an Event was not received
successfully.

e*Index Global Identifier Technical Reference 4-9 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Learning About e*Index Monk APIs

Use this Monk API … to perform this action …

ui-poll-pos-ack Send a positive acknowledgment to the polling
e*Way to indicate that an Event was received
successfully.

ui-poll-startup Invoke setup and specify instance-specific
function loads.

ui-process-address Perform an address update or insert, depending
on whether an address record already exists for
the given address type and UID.

ui-process-person Process messages coming into the database.
This function is actually composed of several
Monk APIs. You can customize this function to
process records in the manner that best suits
your processing requirements.

ui-process-phone Perform a telephone number update or insert,
depending on whether a telephone record
already exists for the given address type and
UID.

ui-rollback-transaction Roll back the transaction in the database and
reset the transaction structure.

ui-search-close Close the search cursor, and de-allocate the
memory.

ui-search-get-exact-
match-score

Return the weight of an exact match to a new
record if one exists in the database. This
function checks to see if 1EXACTMTCH is
enabled before returning the weight. Before
calling ui-search-get-exact-match-score, you
need to call ui-search-open.

ui-search-get-exact-
match-uid

Return the UID of the record that is an exact
match of a new record if an exact match exists in
the database. Before calling ui-search-get-exact-
match-uid, you need to call ui-search-open.

ui-search-insert-duplicate Allow the records in the search cursor to be
added to the ui_duplic table.

ui-search-local-id Search for local IDs in a specific system based
on a member's UID and the status of the local
IDs.

ui-search-open Open a cursor of weighted records returned
from a search that is based on the demographic
query list. This function returns the number of
records in the result set.

ui-set-dup-threshold Specify the minimum matching probability
weight at which two records are considered
potential duplicates of each other.

e*Index Global Identifier Technical Reference 4-10 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Learning About e*Index Monk APIs

Use this Monk API … to perform this action …

ui-set-match-threshold Specify the minimum matching probability
weight at which two records will be
automatically merged.

ui-set-queue-id Change the status of a queued message if the
dequeued message is not sent successfully (as
determined by a nack event in the polling
e*Way).

ui-start-transaction Start a transaction for a specific UID (if the UID
is left blank, then the next available UID is
assigned). A transaction is only initiated if a
database insert, update, or delete is performed.

ui-stdver-conn-estab Establish a connection to external applications.

ui-stdver-conn-shutdown Request that the interface disconnect from the
external application in preparation for a
suspend/reload cycle.

ui-stdver-conn-ver Verify whether external application connection
has been established.

ui-stdver-data-exchg-stub Create a placeholder for the function entry
point for sending an Event from the external
application to e*Gate. When the interface is
configured as an outbound only connection,
this function should not be called.

ui-stdver-init Begin the initialization process for an e*Way
and load all of the monk extension library files
that are accessed by the other e*Way functions.

ui-stdver-neg-ack Send a negative acknowledgment to the
sending application to verify that an Event was
not received successfully.

ui-stdver-pos-ack Send a positive acknowledgment to the sending
application to verify that an Event was received
successfully.

ui-stdver-proc-outgoing Send a received message (Event) from e*Gate to
an external application.

ui-stdver-proc-outgoing-
stub

Create a place holder for the function entry
point for sending an Event received from e*Gate
to the external application. If an interface is
configured as an inbound only connection, this
function should not be used.

ui-stdver-shutdown Request that the connection to the external
application shutdown.

ui-stdver-startup Invoke setup and specify instance-specific
function loads.

e*Index Global Identifier Technical Reference 4-11 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Learning About e*Index Monk APIs

Use this Monk API … to perform this action …

ui-update-address Update an existing address in the database. A
transaction must be started before calling ui-
update-address.

ui-update-aux-id Update a non-unique ID given the ID type and
the new and old IDs. Before calling ui-update-
aux-id, you must call ui-start-transaction to
designate which UID record is being modified.

ui-update-person Update a record using a demographic list. You
must call ui-start-transaction before updating a
person record.

Which Monk API Should I Use?
If you know what you want to do, but you are not sure which e*Index Monk
API to use, refer to Table 4-2 on the following pages to look up a task that
falls into one of the following categories:

!

!

!

!

!

!

!

Connectivity and Configuration

Performing Searches

Displaying Error Messages

Processing Data

Processing Events

Creating Date/Time Stamps

e*Way Initialization

Table 4-2: e*Index Monk APIs by Functionality

To perform this action … use this API …

Connectivity and Configuration

Commit a transaction to the database and
reset the transaction structure.

ui-commit-transaction

Read the parameters defined in the
ui_control table to configure certain system
attributes, such as local ID length, UID
format, and so on.

ui-config

Establish a connection handle to the database
server.

make-connection-
handle

Roll back the transaction in the database and
reset the transaction structure.

ui-rollback-transaction

e*Index Global Identifier Technical Reference 4-12 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Learning About e*Index Monk APIs

To perform this action … use this API …

Start a transaction for a specific UID (if the
UID is left blank, then the next available UID
is assigned). A transaction is only initiated if
a database insert, update, or delete is
performed.

ui-start-transaction

Specify the minimum matching probability
weight at which two records are considered
potential duplicates of each other.

ui-set-dup-threshold

Specify the minimum matching probability
weight at which two records will be
automatically merged.

ui-set-match-threshold

Performing Searches

Close the address search cursor, and de-
allocate the memory.

ui-address-search-close

Return the next address record from the
address search cursor, and increment the
search cursor position. You must call ui-
address-search-open before calling ui-
address-search-next.

ui-address-search-next

Search for existing address records based on
an address list and open a cursor of weighted
records returned from the search. This
function returns the number of records in
the result set.

ui-address-search-open

Searches for a specific non-unique ID type
for a member given the member's UID, the
ID type, and the identification code.

ui-exists-aux-id

Retrieve a person’s alias records based on
that person’s UID.

ui-get-alias

Search for local IDs in a specific system (and
their status) based on a member's UID. The
status of the local IDs is ignored.

ui-get-all-local-id

Retrieve non-unique IDs given the type of ID
and the member's UID.

ui-get-aux-id

Retrieve all local ID and system pairs
associated with an individual based on their
UID.

ui-get-id-system

Retrieve the member's local ID in a specific
system given the system code and UID.

ui-get-local-id

Retrieve a person’s demographic record
based on that person’s UID.

ui-get-person

Find a person’s UID using that person’s
system and local ID as search criteria.

ui-get-uid

Retrieve a person’s VIP flag based on that
person’s local ID in the specified system.

ui-get-vip

e*Index Global Identifier Technical Reference 4-13 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Learning About e*Index Monk APIs

To perform this action … use this API …

Search for the address ID of an existing
address record based on the corresponding
UID and address type.

ui-lookup-address-id

Find a person’s local ID in a specified system
using that person’s local ID at another system
as search criteria.

ui-lookup

Look up a local ID associated with the
specified system based on a member's local
ID in another system. This API searches by
local ID status.

ui-lookup-local-id

Close the search cursor, and de-allocate the
memory.

ui-search-close

Return the weight of an exact match to a new
record if one exists in the database. This
function checks to see if 1EXACTMTCH is
enabled before returning the weight. Before
calling ui-search-get-exact-match-score, you
need to call ui-search-open.

ui-search-get-exact-
match-score

Return the UID of the record that is an exact
match of a new record if an exact match
exists in the database. Before calling ui-
search-get-exact-match-uid, you need to call
ui-search-open.

ui-search-get-exact-
match-uid

Allow the records in the search cursor to be
added to the ui_duplic table.

ui-search-insert-
duplicate

Search for local IDs in a specific system
based on a member's UID and the status of
the local IDs.

ui-search-local-id

Open a cursor of weighted records returned
from a search that is based on the
demographic query list. This function
returns the number of records in the result
set.

ui-search-open

Displaying Error Messages

Display any database error messages after an
API has processed.

db-get-error-str

Display e*Index error messages after an API
has been called.

ui-get-error-string

e*Index Global Identifier Technical Reference 4-14 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Learning About e*Index Monk APIs

To perform this action … use this API …

Processing Data

Deactivate an active local ID given the local
ID number, the associated system, and a UID.

ui-deactivate-local-id

Delete an existing address record from the
database. A transaction must be started
before calling ui-delete-address.

ui-delete-address

Delete a non-unique ID given the ID type
and the ID code. Before calling ui-delete-
aux-id, you must call ui-start-transaction to
designate which UID record is being
modified.

ui-delete-aux-id

Remove a record's existing potential
duplicate entries from ui_duplic during a
person update so potential duplicates can re-
evaluated for that record.

ui-delete-unresolved-
duplicates

Check to see if the ASSMTCH control is
enabled in the Administrator. If ASSMTCH is
enabled, all assumed matches made by the
application are written to the
ui_asssumed_match table.

ui-get-assumed-match-
enabled

Check to see if a demographic record was
changed as a result of the previous actions
against the database.

ui-get-demographic-
changed

Check to see if the DUPCHK control key is
enabled in the Administrator. If DUPCHK is
enabled, potential duplicates for a specific
record are re-evaluated after that record is
updated.

ui-get-dupchk-enabled

Insert a new address into the database. A
transaction must be started before calling ui-
insert-address.

ui-insert-address

Insert alias information into the ui_alias table
based on that person’s UID.

ui-insert-alias

Insert an assumed match record by assuming
the first record in the search cursor (the one
with the highest matching weight) is the
assumed match of the incoming record. You
can only call this function after ui-search-
open.

ui-insert-assumed-match

Insert a non-unique ID and specific ID type.
Before calling ui-delete-aux-id, you must call
ui-start-transaction to designate which UID
record is being modified.

ui-insert-aux-id

Insert a record into the ui_local_id table,
giving the specified person a new local ID
and system record.

ui-insert-local-id

e*Index Global Identifier Technical Reference 4-15 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Learning About e*Index Monk APIs

To perform this action … use this API …

Insert a new person record into the database
using a demographic list. You must call ui-
start-transaction before inserting a person
record.

ui-insert-person

Merge two member profiles based on local
IDs in a specific system.

ui-local-id-merge

Return the status of a local ID record ui-local-id-status

Merge two individuals' records together
using either their local IDs or their UIDs.

ui-merge

Perform an address update or insert,
depending on whether an address record
already exists for the given address type and
UID.

ui-process-address

Process messages coming into the database.
This function is actually composed of several
Monk APIs. You can customize this function
to process records in the manner that best
suits your processing requirements.

ui-process-person

Perform a telephone number update or
insert, depending on whether a telephone
record already exists for the given address
type and UID.

ui-process-phone

Update a record using a demographic list.
You must call ui-start-transaction before
updating a person record.

ui-update-person

Update an existing address in the database.
A transaction must be started before calling
ui-update-address.

ui-update-address

Update a non-unique ID given the ID type
and the new and old IDs. Before calling ui-
update-aux-id, you must call ui-start-
transaction to designate which UID record is
being modified.

ui-update-aux-id

Processing Outgoing Events

Retrieve and remove an active Event from the
ui_msg_detail table so the polling e*Way can
send the Event to e*Gate.

ui-dequeue

Remove a message from the outgoing queue
once it has been successfully dequeued and
sent.

ui-delete-queue-msg

Change the status of a queued message if the
dequeued message is not sent successfully
(as determined by a nack event in the polling
e*Way).

ui-set-queue-id

e*Index Global Identifier Technical Reference 4-16 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Learning About e*Index Monk APIs

To perform this action … use this API …

Creating Date/Time Stamps

Retrieve the date and time on the database
server in the following format: YYYY/MM/DD
hh:mm:ss.

ui-get-db-date-time

Retrieve the time that the transaction that is
currently in progress began.

ui-get-transaction-date-
time

e*Way Initialization

Define the function that is called to process
messages being transmitted from the
database to external systems through e*Gate.

ui-poll

Send a negative acknowledgment to the
polling e*Way to indicate that an Event was
not received successfully.

ui-poll-neg-ack

Send a positive acknowledgment to the
polling e*Way to indicate that an Event was
received successfully.

ui-poll-pos-ack

Invoke setup and specify instance-specific
function loads.

ui-poll-startup

Begin the initialization process for an e*Way
and load all of the monk extension library
files that are accessed by the other e*Way
functions.

ui-stdver-init

Invoke setup and specify instance-specific
function loads.

ui-stdver-startup

Establish a connection to external
applications.

ui-stdver-conn-estab

Verify whether external application
connection has been established.

ui-stdver-conn-ver

Request that the interface disconnect from
the external application in preparation for a
suspend/reload cycle.

ui-stdver-conn-
shutdown

Send a positive acknowledgment to the
sending application to verify that an Event
was received successfully.

ui-stdver-pos-ack

Send a negative acknowledgment to the
sending application to verify that an Event
was not received successfully.

ui-stdver-neg-ack

Request that the connection to the external
application shutdown.

ui-stdver-shutdown

Send a received message (Event) from e*Gate
to an external application.

ui-stdver-proc-outgoing

e*Index Global Identifier Technical Reference 4-17 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Learning About e*Index Monk APIs

To perform this action … use this API …

Create a place holder for the function entry
point for sending an Event received from
e*Gate to the external application. If an
interface is configured as an inbound only
connection, this function should not be used.

ui-stdver-proc-outgoing-
stub

Create a placeholder for the function entry
point for sending an Event from the external
application to e*Gate. When the interface is
configured as an outbound only connection,
this function should not be called.

ui-stdver-data-exchg-
stub

For More Information

Other SeeBeyond publications may help you to learn how to perform
tasks associated with creating Monk API scripts.

 To learn more about … See ...

The Monk programming language Your Monk Developer's Reference

e*Index Control Keys Your e*Index Administrator User's
Guide

e*Index Functions Your e*Index Global Identifier User's
Guide

Database e*Way APIs that you can
use in your Monk scripts for e*Index

Your user's guide for the database
e*Way you are using (Oracle, Sybase,
or ODBC)

Configuring e*Ways "Working with e*Ways" in your e*Gate
Integrator User's Guide

e*Index Global Identifier Technical Reference 4-18 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

e*Index Monk API Descriptions

Overview
This section of the chapter lists all of the Monk APIs that are included in the
e*Index Monk library. Descriptions, syntax, parameters, return values, and
examples for each API are provided.

db-get-error-str
The db-get-error-str function returns a database-related error message if a
Monk API returns a value of false or MONK_EXCEPTION. Call this function
after any API for which you want to view database error messages. This API
is defined in the Monk library for the Database e*Way. For more information
about this function, see the user's guide for the Database e*Way you are
using.

Syntax
(db-get-error-str connection-handle)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database

Return Value
The db-get-error-str API returns one of the following values:

This value is
returned ...

if this occurs ...

An error message The error message for the specified API is retrieved
successfully.

e*Index Global Identifier Technical Reference 4-19 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

Example
In the following example, database and e*Index-related error messages, if
any, are displayed for the previously called e*Index Monk API ui-process-
person, where connection-handle is the connection handle defined in ui-
stdver-eway-funcs.monk.

...
(set! demo (get-demographics ~input%eiEvent.REC[0]))
(set! trans (get-transact ~input%eiEvent))
(set! local-id (get ~input%eiEvent.REC[0].ID.local_id.LID.id))
(set! system (get ~input%eiEvent.REC[0].ID.local_id.LID.system))
(set! uid (ui-process-person connection-handle local-id system demo
 trans))
 (if uid
 (begin
 ...
)
 (begin
 (let ((err_msg (db-get-error-str connection-handle))
 (ui_err (ui-get-error-string)))
 (display (string-append "Rejecting!\n"))
 (display (string-append err_msg "\n" ui_err "\n"))
...

e*Index Global Identifier Technical Reference 4-20 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

make-connection-handle
The make-connection-handle function allocates memory space to hold the
connection handle. The connection handle must be defined before
connecting to a database. When you start your e*Ways, the file ui-stdver-
eway-funcs.monk, which defines the connection handle for you, is called. This
function is defined in the Database e*Way Monk library.

Syntax
(make-connection-handle)

Parameters
Parameter Type Description

None

Return Value
The make-connection-handle API returns one of the following values:

This value is
returned ...

if this occurs ...

A connection handle The connection handle was made successfully.

#f The connection handle was not made successfully.
Use the db-get-error-str API to retrieve the
corresponding error message.

Example
The following example creates a connection handle named connection-
handle that can now be passed through other statements. This is excerpted
from the file ui-stdver-eway-funcs.monk.

 (define connection-handle 0)
 (set! connection-handle (make-connection-handle))
 (if (connection-handle? connection-handle)
 (begin
)
 (begin
 (set! result "FAILURE")
 (display "Failed to create connection handle.")
 (event-send "ALERTCAT_OPERATIONAL" "ALERTSUBCAT_UNUSABLE"
 "ALERTINFO_FATAL" "0" "database connection handle creation error"
 "Failed to create database connection handle" 0 (list))
)
)

e*Index Global Identifier Technical Reference 4-21 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-address-search-close
The ui-address-search-close function closes the address search cursor, and
de-allocates the memory. Use this function at the end of each ui-address-
search-open function.

Syntax
(ui-address-search-close)

Parameters
Parameter Type Description

None

Return Value
The ui-address-search-close API returns one of the following values:

This value is
returned ...

if this occurs ...

MONK_UNINITIALIZED The address search cursor was closed and the memory
was de-allocated successfully.

MONK_EXCEPTION The address search cursor was not closed or the
memory was not de-allocated successfully. Use the db-
get-error-str or ui-get-error-string API to retrieve the
corresponding error message.

e*Index Global Identifier Technical Reference 4-22 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-address-search-next
The ui-address-search-next returns the next address record from the address
search cursor, and increments the search cursor position by one. You must
call ui-address-search-open to open the search cursor before calling ui-
address-search-next. The search cursor must not be at the end of its record
set or this function returns an exception.

Syntax
(ui-address-search-next)

Parameters
Parameter Type Description

None

Return Value
The ui-address-search-next API returns one of the following values:

This value is
returned ...

if this occurs ...

A Monk list of the
address information

The function retrieves the next address record in the
search cursor successfully.

MONK_EXCEPTION The function does not retrieve the next record in the
search cursor successfully. Use the db-get-error-str or
ui-get-error-string API to retrieve the corresponding
error message.

e*Index Global Identifier Technical Reference 4-23 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-address-search-open
The ui-address-search-open function opens a cursor of weighted address
records returned from a search that is based on the address information list.
This function returns the number of records in the result set. The search
cursor remains open until ui-address-search-close is called.

Syntax
(ui-address-search-open connection-handle address)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

address list A Monk list containing address
information about the addresses for
which you are searching.

Return Value
The ui-address-search-open API returns one of the following values:

This value is
returned ...

if this occurs ...

The number of
resulting records

The search is performed successfully, and the number
of matching records is counted.

#f The search is performed successfully, and there are no
matching records in the search cursor.

MONK_EXCEPTION The search is not performed successfully. Use the db-
get-error-str or ui-get-error-string API to retrieve the
corresponding error message.

e*Index Global Identifier Technical Reference 4-24 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-commit-transaction
The ui-commit-transaction function commits the current transaction to the
database, and resets the transaction structure. This API can only be called
after a transaction has been initiated by ui-start-transaction or by ui-merge.
In the default schema, ui-commit-transaction is called after each record is
processed.

Syntax
(ui-commit-transaction connection-handle)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

Return Value
The ui-commit-transaction API returns one of the following values:

This value is
returned ...

if this occurs ...

MONK_UNINITIALIZED The transaction was successfully committed to the
database.

MONK_EXCEPTION The transaction was not successfully committed to the
database. Use the db-get-error-str or ui-get-error-
string API to retrieve the corresponding error
message.

e*Index Global Identifier Technical Reference 4-25 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

Example
The following example calls ui-process-person to process an incoming Event,
and then commits the changes to the database after the Event is processed.
In the default configuration, ui-start-transaction is called in ui-process-
person. This example is excerpted from the file uidb.dsc.

...
(set! demo (get-demographics ~input%eiEvent.REC[0]))
(set! trans (get-transact ~input%eiEvent))
(set! local-id (get ~input%eiEvent.REC[0].ID.local_id.LID.id))
(set! system (get ~input%eiEvent.REC[0].ID.local_id.LID.system))
(set! uid (ui-process-person connection-handle local-id system demo
 trans))

 ... ;processing person record

(event-send-to-egate (message->string output))
(ui-commit-transaction connection-handle)
...

e*Index Global Identifier Technical Reference 4-26 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-config
The ui-config function reads the values defined in the ui_control table to
configure system parameters, such as local ID length, search parameters, UID
format, and so on. This function should be called after db-login.

For more information about the control keys that affect API processing, see "How
do Control Keys Affect APIs?" earlier in this chapter.

For more information on the parameters defined in the ui_control table, see
"Configuring e*Index" in your e*Index Administrator User's Guide.

Syntax
(ui-config connection-handle)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

Return Value
The ui-config API returns one of the following values:

This value is
returned ...

if this occurs ...

#t The configuration was completed successfully.

MONK_EXCEPTION The configuration was not completed successfully.
Use the db-get-error-str or ui-get-error-string API to
retrieve the corresponding error message.

Example
The following example attempts to read the configuration defined in the
ui_control table. ui-config is called within a try-catch block. Use the catch
statement to define error handling for instances when the call to ui-config
fails. This example is excerpted from ui-stdver-eway-funcs.monk.

...
 (display "The result of ui-config is ")
 (try (ui-config connection-handle)
 (begin
 (display "OK\n")
 (set! result "UP")
)
 (catch
 ...

e*Index Global Identifier Technical Reference 4-27 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-deactivate-local-id
The ui-deactivate-local-id function deactivates an active local ID in the
e*Index database by setting its status to D in the ui_local_id table. You must
call ui-start-transaction before you can call ui-deactivate-local-id.

Syntax
(ui-deactivate-local-id connection-handle uid system local-id)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

uid string The UID of the member associated
with the local ID and system pair
you want to deactivate.

system string The code of the system associated
with the local ID you want to
deactivate.

local-id string The identification number you want
to deactivate.

Return Value
The ui-deactivate-local-id API returns one of the following values:

This value is
returned ...

if this occurs ...

MONK_UNINITIALIZED The specified local ID was successfully deactivated.

MONK_EXCEPTION The specified local ID was not successfully
deactivated. Use the db-get-error-str or ui-get-error-
string API to retrieve the corresponding error
message.

e*Index Global Identifier Technical Reference 4-28 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-delete-address
The ui-delete-address function deletes a member address from the ui_address
table given the unique identification code of the address in the database. You
can obtain the unique ID of the address by calling ui-lookup-address-id.
Before calling ui-delete-address, you must call ui-start-transaction.

Syntax
(ui-delete-address connection-handle address-id)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

address-id string The unique ID code of the address
to be deleted. The unique ID is
assigned by e*Index.

Return Value
The ui-delete-address API returns one of the following values:

This value is
returned ...

if this occurs ...

MONK_UNINITIALIZED The specified address record was successfully
removed.

MONK_EXCEPTION The specified address record was not successfully
removed. Use the db-get-error-str or ui-get-error-
string API to retrieve the corresponding error
message.

e*Index Global Identifier Technical Reference 4-29 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-delete-aux-id
The ui-delete-aux-id function deletes a member's non-unique ID from the
ui_aux_def_id table given the ID type and the member's UID. If the non-
unique ID does not exist, this function does nothing. Before calling ui-delete-
aux-id, you must call ui-start-transaction to designate the UID of the record
being modified.

Syntax
(ui-delete-aux-id connection-handle id-type id)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

id-type string The type of non-unique ID to be
deleted from the member's record.

id string The non-unique ID number that
you want to delete.

Return Value
The ui-delete-aux-id API returns one of the following values:

This value is
returned ...

if this occurs ...

MONK_UNINITIALIZED The member's non-unique ID was successfully
removed.

MONK_EXCEPTION The non-unique ID was not successfully removed.
Use the db-get-error-str or ui-get-error-string API to
retrieve the corresponding error message.

e*Index Global Identifier Technical Reference 4-30 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-delete-queue-msg
Use the ui-delete-queue-msg function to remove a message from the
outgoing queue (the ui_msg_detail table) once it has been successfully
dequeued and sent. The sample schema for the polling e*Way places the call
to ui-delete-queue-msg in the ack event, ensuring that if a message is
successfully sent, it is removed from the queue.

Syntax
(ui-delete-queue-msg connection-handle msg-id)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

msg-id string The identification code of the
outgoing message.

Return Value
The ui-delete-queue-msg API returns one of the following values:

This value is
returned ...

if this occurs ...

MONK_UNINITIALIZED The message was successfully removed from the
outgoing queue.

MONK_EXCEPTION The message was not successfully removed from the
outgoing queue. Use the db-get-error-str or ui-get-
error-string API to retrieve the corresponding error
message.

Example
The following example from the ui-poll-pos-ack command in ui-stdver-eway-
funcs.monk defines the variable msg-id as a data element in the outgoing
message. It then deletes the specified message from the queue because the
message was successfully processed.

...
 (display "[++] Executing e*Way positive acknowledgement function.")
 (if ($event-parse input message-string)
 (begin
 (set! msg-id (get ~input%eiEvent.EVNT.EVN.msg_id))
 (display (format "Deleting message ID [%s] from the queue\n" msg-id))
 (ui-delete-queue-msg connection-handle msg-id)
)
)
...

e*Index Global Identifier Technical Reference 4-31 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-delete-unresolved-duplicates
Use the ui-delete-unresolved-duplicates function to remove a record's
existing potential duplicate entries from the ui_duplic database table during a
person update. You may want to do this in order to re-evaluate potential
duplicates for that record after the update. In order to re-evaluate a record's
potential duplicate after deleting its potential duplicate entries, you need to
call ui-search-insert-duplicate (see the example on the following page).

Syntax
(ui-delete-unresolved-duplicates connection-handle uid)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

uid string The unique global identifier
assigned to the member by
e*Index.

Return Value
The ui-delete-unresolved-duplicates API returns one of the following
values:

This value is
returned ...

if this occurs ...

MONK_UNINITIALIZED The duplicate record pairs were removed from
ui_duplic successfully.

MONK_EXCEPTION The duplicate record pairs were not successfully
removed from ui_duplic. Use the db-get-error-str or
ui-get-error-string API to retrieve the corresponding
error message.

e*Index Global Identifier Technical Reference 4-32 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

Example
The following example from the default file ui-process-person.monk, defines
the variable uid, which holds the UID of the member found by ui-get-uid. A
transaction is then started (by ui-start-transaction) using that UID and the
incoming transaction information, and the member's information is updated
(by the call to ui-update-person). It then checks to see if the DUPCHECK
control key is enabled and whether the member's demographic information
changed. If both of these are true, then the unresolved potential duplicate
pair entries associated with that member are removed from ui_duplic, and a
new set of potential duplicate records are evaluated and placed in ui_duplic.

Note: In the default configuration, the variables demo and trans are defined in
uidb.dsc.

...
 (begin
 (set! demo (get-demographics ~input%eiEvent))
 (set! trans (get-transact ~input%eiEvent))
 (set! local-id (get ~input%eiEvent.REC[0].ID.local_id.LID.id))
 (set! system (get ~input%eiEvent.REC[0].ID.local_id.LID.system))
 (set! uid (ui-get-uid connection-handle system local-id))
 (if uid
 (begin
 (ui-start-transaction connection-handle uid trans)
 (ui-update-person connection-handle demo)
 (if (ui-get-dupchk-enabled)
 (if (string=? (ui-get-demographic-changed) "keychanged")
 (begin
 (ui-delete-unresolved-duplicates connection-handle uid)
 (set! search-count (ui-search-open connection-handle demo))
 (if search-count
 (ui-search-insert-duplicate connection-handle
 "POTENTIAL DUPLICATE" 1 search-count)
 (ui-search-close)
)
)
)
)
)
...

e*Index Global Identifier Technical Reference 4-33 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-dequeue
The ui-dequeue function retrieves an active Event from the outbound queue
table (ui_msg_detail), enabling the polling e*Way to pick up the Event and
route it through e*Gate. This function removes active Events one at a time.
Use ui-dequeue in the Monk script for your polling e*Way.

Syntax
(ui-dequeue connection-handle)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

Return Value
The ui-dequeue API returns one of the following values:

This value is
returned ...

if this occurs ...

An Event The Event was removed from the queue successfully
and an active Event exists in the queue.

An empty Event The dequeue was successful, but an active Event
does not exist in the queue.

MONK_EXCEPTION The Event was not removed from the queue
successfully. Use the db-get-error-str or ui-get-error-
string API to retrieve the corresponding error
message.

e*Index Global Identifier Technical Reference 4-34 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

Example
The following example from the ui-poll command in ui-stdver-eway-
funcs.monk sets the variable pollmsg to be the result of the ui-dequeue call. If
ui-dequeue is successful, a message is retrieved and sent to e*Gate. Use the
catch statement for exception and error handling mechanisms.

...
 (let ((pollmsg ""))
 (try
 (display "[++] Executing e*Index poll function.\n")
 (set! pollmsg (ui-dequeue connection-handle))
)
 (catch
 ... ; error handling statements
)
 (display (format "Returning: [%s]\n" pollmsg))
 pollmsg
)
...

e*Index Global Identifier Technical Reference 4-35 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-exists-aux-id
The ui-exists-aux-id function searches for a member's non-unique ID from
the ui_aux_def_id table given the ID type, ID number, and the member's UID.
This function returns #t if the specified ID and type are found.

Syntax
(ui-exists-aux-id connection-handle uid id-type id)

Parameters
Parameter Type Description

connection-handle connection
handle

A handle to the database.

uid string The UID of the member associated
with the non-unique ID for which you
are searching.

id-type string The non-unique ID type associated
with the specified ID number.

id string The non-unique ID for which you are
searching.

Return Value
The ui-exists-aux-id API returns one of the following values:

This value is
returned ...

if this occurs ...

#t The specified non-unique ID was found in the
database.

#f The search was performed successfully but the
specified non-unique ID was not found.

MONK_EXCEPTION The non-unique ID was not successfully removed.
Use the db-get-error-str or ui-get-error-string API
to retrieve the corresponding error message.

e*Index Global Identifier Technical Reference 4-36 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

Example
In the example below, taken from the default file uidb.dsc, ui-process-person
(as defined by the default ui_process_person file) is called to begin processing
the demographic information of an incoming Event. It then calls ui-exists-
aux-id to check the database table ui_aux_def_id to see if the non-unique ID
type and number are already associated with the record being updated. If
the pair exists in the member record, no changes are made. If the pair does
not exist in the member record, then a new ID and type pair is inserted into
ui_aux_def_id.

...
(begin
 (set! demo (get-demographics ~input%eiEvent))
 (set! trans (get-transact ~input%eiEvent))
 (set! local-id (get ~input%eiEvent.REC[0].ID.local_id.LID.id))
 (set! system (get ~input%eiEvent.REC[0].ID.local_id.LID.system))
 (set! uid (ui-process-person connection-handle local-id system demo trans))
 ...; processing person information

 do ((j 0 (+ j 1))) ((>= j (count ~input%eiEvent.REC[0].ID.non_unique_id)))
 (display (string-append "AUX_ID" "[" (number->string j) "] "))
 (let ((id-type (get ~input%eiEvent.REC[0].ID.non_unique_id[<j>].NID.type))
 (id (get ~input%eiEvent.REC[0].ID.non_unique_id[<j>].NID.id))
 (id-orig #f)
)
 (begin
 (display (string-append id-type " " id)) (newline)
 (if (not (ui-exists-aux-id connection-handle uid id-type id))
 (begin
 (display "Inserting new aux-id...")(newline)
 (ui-insert-aux-id connection-handle id-type id)
)
)
)
)
)
...

e*Index Global Identifier Technical Reference 4-37 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-get-alias
The ui-get-alias function checks the ui_alias table and retrieves a person’s
alias records based on the person’s UID. Each field in the returned list is
delimited by ",", and each record is delimited by "|". Use this function to
check a member's alias names to determine whether an alias name needs to
be updated or inserted into the database.

Syntax
(ui-get-alias connection-handle uid)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

uid string The UID of the person whose alias
records you want to retrieve.

Return Value
The ui-get-alias API returns one of the following values:

This value is
returned ...

if this occurs ...

A list of alias records The alias information for the specified person was
retrieved successfully.

MONK_EXCEPTION The alias information for the specified person was not
retrieved successfully. Use the db-get-error-str or ui-get-
error-string API to retrieve the corresponding error
message.

e*Index Global Identifier Technical Reference 4-38 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

Example
The following example finds a member's UID using the ui-get-uid API, and
stores the UID in the Monk variable uid. It then searches for a member's alias
names using the Monk variable uid to identify the member. A list of alias
records for the member is returned, and is stored in the Monk variable alias.

...
(set! local-id (get ~input%eiEvent.REC[0].ID.local_id.LID.id))
(set! system (get ~input%eiEvent.REC[0].ID.local_id.LID.system))
(set! uid (ui-get-uid connection-handle system local-id))

(set! alias (ui-get-alias connection-handle uid))
(display alias)(newline)
...

e*Index Global Identifier Technical Reference 4-39 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-get-all-local-id
The ui-get-all-local-id function retrieves all of a member's local IDs in a
specific system given the system code and member's UID. This function
returns local IDs of any status (active, merged, or deactivated), along with the
status of each local ID.

Syntax
(ui-get-all-local-id connection-handle uid system)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

uid string The UID of the member for which
you want to retrieve the local ID.

system string The code for the system with which
the local ID you want to retrieve is
associated.

Return Value
The ui-get-all-local-id API returns one of the following values:

This value is
returned ...

if this occurs ...

A vector containing
local ID and status pairs

The member's local ID and status pairs for the
specified system were retrieved successfully.

#f No local IDs for the specified system exist for the
specified member (this indicates a flaw in data
integrity).

MONK_EXCEPTION The member's local IDs were not retrieved
successfully. Use the db-get-error-str or ui-get-error-
string API to retrieve the corresponding error message.

e*Index Global Identifier Technical Reference 4-40 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

Example
The example below searches for person records in the database that closely
match the incoming Event, and, if an exact match is found, retrieves the UID
of the exact match. It then calls ui-get-all-local-id to check the entries in the
ui_local_id table that are associated with the exact match record. If local ID
and system pairs are found where the system matches the system in the
incoming Event, the sample scrolls through the local IDs using the ui-get-
next-element and ui-has-next-element functions.

(set! demo (get-demographics ~input%eiEvent))
(set! trans (get-transact ~input%eiEvent))
(set! system (get ~input%eiEvent.REC[0].ID.local_id.LID.system))
(begin
 (set! search-count (ui-search-open connection-handle demo))
 (if search-count
 (set! uid (ui-search-get-exact-match-uid))
)
 (if uid
 (begin

 (set! lids (ui-get-all-local-id connection-handle uid system))

 (if lids
 (begin
 (do
 ((i 0 (+ i 1)))
 ((not (ui-has-next-element lids)))
 (display (format "%d: %a\n" i (ui-get-next-element lids)))
)
)
)
 (display "No LIDs\n")

e*Index Global Identifier Technical Reference 4-41 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-get-assumed-match-enabled
The ui-get-assumed-match-enabled function checks the ui_control table to
see if the ASSMTCH control key is enabled in e*Index Administrator. In the
default file ui-process-person.monk, if ASSMTCH is enabled all assumed
matches made by the application are written to the ui_asssumed_match table.
Use this function to check the control key prior to inserting a record into
ui_assumed_match.

Syntax
(ui-get-assumed-match-enabled)

Parameters
Parameter Type Description

None

Return Value
The ui-get-assumed-match-enabled API returns one of the following values:

This value is
returned ...

if this occurs ...

#t The assumed match control key was checked
successfully and the control key is enabled.

#f The assumed match control key was checked
successfully and it is not enabled

MONK_EXCEPTION The control key was not checked successfully. Use
the db-get-error-str or ui-get-error-string API to
retrieve the corresponding error message.

e*Index Global Identifier Technical Reference 4-42 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

Example
This sample, taken from the default ui-process-person.monk file, finds a set of
records in the database that could potentially match the incoming record. If
an exact match record is found, then the record is updated and an entry is
written to the ui_assumed_match table to let you know that an automatic
merge occurred.

Note: In the default configuration, the variables demo and trans are defined in
uidb.dsc.

...
(set! demo (get-demographics ~input%eiEvent))
(set! trans (get-transact ~input%eiEvent))
...
(set! search-count (ui-search-open connection-handle demo))
(if search-count
 (set! uid (ui-search-get-exact-match-uid))
)
 (if uid
 (begin
 ... ;checking for same facility match
)
 (begin
 (ui-start-transaction connection-handle uid trans)
 (ui-update-person connection-handle demo)
 (ui-insert-local-id connection-handle local-id system)
 (if (ui-get-assumed-match-enabled)
 (ui-insert-assumed-match connection-handle)
)
 (if (> search-count 1)
 ... ;processing potential duplicates
)
)
)
...

e*Index Global Identifier Technical Reference 4-43 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-get-aux-id
The ui-get-aux-id function checks the ui_aux_id_def table and retrieves any
matching non-unique IDs for a member given the type of ID to retrieve and
the member's UID. Use this function to check an existing member record in
the database for non-unique IDs of a specific type. The return value of ui-
get-aux-id can determine whether a non-unique ID record should be updated
or unchanged, or if a new non-unique ID record should be inserted.

Syntax
(ui-get-aux-id connection-handle uid id-type)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

uid string The UID of the member for which
you want to retrieve the non-unique
ID.

id-type string The type of non-unique ID to be
retrieved from the member's record.

Return Value
The ui-get-aux-id API returns one of the following values:

This value is
returned ...

if this occurs ...

The non-unique IDs,
delimited by commas

The member's non-unique IDs for the specified ID
type were retrieved successfully.

#f The member's non-unique ID for the specified ID type
does not exist.

MONK_EXCEPTION The control key was not checked successfully. Use
the db-get-error-str or ui-get-error-string API to
retrieve the corresponding error message.

e*Index Global Identifier Technical Reference 4-44 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

Example
The following example shows one way that non-unique IDs can be processed
differently from the default Collaboration script, uidb.dsc (for more
information about how non-unique IDs are processed by default, see the
example for ui-exists-aux-id on page 4-37). In this example, we assume that
a person record should not have more than one non-unique ID of a given
type.

In this example, ui-process-person (as defined by the default
ui_process_person file) is called to begin processing the demographic
information of an incoming Event. ui-get-aux-id checks the database table
ui_aux_def_id to see if the non-unique ID type exists in the person record
being updated. If the ID type exists in the record and the existing ID and
incoming ID do not match, the existing ID is updated; if the IDs match, no
changes are made. If the ID type does not exist in the record, then a new ID
and type are inserted into ui_aux_def_id.

...
(begin
 (set! demo (get-demographics ~input%eiEvent))
 (set! trans (get-transact ~input%eiEvent))
 (set! local-id (get ~input%eiEvent.REC[0].ID.local_id.LID.id))
 (set! system (get ~input%eiEvent.REC[0].ID.local_id.LID.system))
 (set! uid (ui-process-person connection-handle local-id system demo
 trans))
 ...; processing person information

 do ((j 0 (+ j 1))) ((>= j (count ~input%eiEvent.REC[0].ID.non_unique_id)))
 (display (string-append "AUX_ID" "[" (number->string j) "] "))
 (let ((id-type (get ~input%eiEvent.REC[0].ID.non_unique_id[<j>].NID.type))
 (id (get ~input%eiEvent.REC[0].ID.non_unique_id[<j>].NID.id))
 (id-orig #f)
)
 (begin
 (display (string-append id-type " " id)) (newline)
 (set! id-orig (ui-get-aux-id connection-handle uid id-type))
 (if id-orig
 (begin
 (if (not (string=? id id-orig))
 (begin
 (display "Updating existing aux-id...")(newline)
 (ui-update-aux-id connection-handle id-type old-id new-id)
)
 (begin
 (display "Existing aux-id does not require update...")(newline)
)
)
)
 (begin
 (display "Inserting new aux-id...")(newline)
 (ui-insert-aux-id connection-handle id-type id)
...

e*Index Global Identifier Technical Reference 4-45 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-get-db-date-time
The ui-get-db-date-time function retrieves the date and time on the database
server in the following format: YYYY/MM/DD hh:mm:ss.

Syntax
(ui-get-db-date-time connection-handle)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

Return Value
The ui-get-db-date-time API returns one of the following values:

This value is
returned ...

if this occurs ...

A date/time stamp The date and time were retrieved from the database
server successfully.

MONK_EXCEPTION The date and time were not retrieved from the
database server successfully. Use the db-get-error-str
or ui-get-error-string API to retrieve the corresponding
error message.

Example
The following example from ui-custom.monk uses the date and time of the
server where the e*Index database resides to get the date and time of the
Event in the Monk list transaction_info (for more information, see "What
Monk Lists are Defined?" earlier in this chapter).

(define get-transact
 (lambda (msg)
 (list (get ~<msg>.EVNT.EVN.event_type_code) ;function
 (get ~<msg>.EVNT.EVN.assigning_system) ;system
 (get ~<msg>.EVNT.EVN.department) ; dept
 (get ~<msg>.EVNT.EVN.source) ; source
 (get ~<msg>.EVNT.EVN.terminal_id) ; term id
 (if (empty-string? ~<msg>.EVNT.EVN.user_id)
 (string-upcase DATABASE_SETUP_USER_NAME) ; default user id
 (get ~<msg>.EVNT.EVN.user_id) ; user id
)
 (ui-get-db-date-time connection-handle)
 ; use database server date/time stamp
)
)
)

e*Index Global Identifier Technical Reference 4-46 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-get-demographic-changed
The ui-get-demographic-changed function checks the ui_person table to
determine if there were any changes made to a person’s demographic
information after ui-update-person was called. The result of ui-get-
demographic-changed can be used to determine how the information will be
processed.

Syntax
(ui-get-demographic-changed)

Parameters
Parameter Type Description

None

Return Value
The ui-get-demographic-changed API returns one of the following values:

This value is
returned ...

if this occurs ...

A value of
"unchanged"

The demographic information was verified successfully
and there were no changes to an existing member
record.

A value of "changed" The demographic information was verified successfully
and there were changes to an existing member record,
but not to the key fields.

A value of
"keychanged"

The demographic information was verified successfully
and key demographic fields were changed. Key fields
include last name, first name, middle name, date of birth,
gender, and SSN.

A value of "new" The demographic information was verified successfully
and the Event was inserted as a new member record.

MONK_EXCEPTION The demographic information was not verified
successfully. Use the db-get-error-str or ui-get-error-
string API to retrieve the corresponding error message.

e*Index Global Identifier Technical Reference 4-47 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

Example
The following example searches the ui_local_id table of the database for a
record matching the local ID and system pair in the incoming Event. If a
record is found, the associated member record is updated with the new
demographic information from the incoming event. If the DUPCHECK
control key is enabled, the record is checked for specific demographic
changes resulting from the call to ui-update-person. If ui-get-demographic-
changed returns a value of "keychanged" potential duplicates for the record
are re-evaluated.

 (set! demo (get-demographics ~input%eiEvent))
 (set! trans (get-transact ~input%eiEvent))
...
 (begin
 (set! local-id (get ~input%eiEvent.REC[0].ID.local_id.LID.id))
 (set! system (get ~input%eiEvent.REC[0].ID.local_id.LID.system))
 (set! uid (ui-get-uid connection-handle system local-id))
 (if uid
 (begin
 (ui-start-transaction connection-handle uid trans)
 (ui-update-person connection-handle demo)
 (if (ui-get-dupchk-enabled)
 (if (string=? (ui-get-demographic-changed) "keychanged")
 (begin
 ...; processing potential duplicates

e*Index Global Identifier Technical Reference 4-48 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-get-dupchk-enabled
The ui-get-dupchk-enabled function checks the ui-control table to see if the
DUPCHK control key is enabled in e*Index Administrator. DUPCHK should
be enabled if you want to re-evaluate potential duplicates for a specific
record after that record is updated. This function would normally be called
after a call to ui-update-person and before deleting or re-inserting potential
duplicates.

Syntax
(ui-get-dupchk-enabled)

Parameters
Parameter Type Description

None

Return Value
The ui-get-dupchk-enabled API returns one of the following values:

This value is
returned ...

if this occurs ...

#t The duplicate checking control key was read
successfully, and the control key is enabled.

#f The duplicate checking control key was read
successfully and it is not enabled.

MONK_EXCEPTION The control key was not read successfully. Use the db-
get-error-str or ui-get-error-string API to retrieve the
corresponding error message.

Example
For an example of how ui-get-dupchk-enabled can be used, see the example
for ui-get-demographic-changed on page 4-48.

e*Index Global Identifier Technical Reference 4-49 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-get-error-string
The ui-get-error-string function returns an e*Index-related error message if
an e*Index Monk API returns a value of false or MONK_EXCEPTION. Call
this function after any API for which you want to view e*Index error
messages.

Syntax
(ui-get-error-string)

Parameters
Parameter Type Description

None

Return Value
The ui-get-error-string API returns one of the following values:

This value is
returned ...

if this occurs ...

An error message The error message is successfully called when the
specified Monk API returns a value of #f.

Example
In the following example, database and e*Index-related error messages, if
any, are displayed for the previously called e*index Monk API ui-process-
person, where connection-handle is the connection handle defined in ui-
stdver-eway-funcs.monk.

...
(set! demo (get-demographics ~input%eiEvent.REC[0]))
(set! trans (get-transact ~input%eiEvent))
(set! local-id (get ~input%eiEvent.REC[0].ID.local_id.LID.id))
(set! system (get ~input%eiEvent.REC[0].ID.local_id.LID.system))
(set! uid (ui-process-person connection-handle local-id system demo
 trans))
 (if uid
 (begin
 ...
)
 (begin
 (let ((err_msg (db-get-error-str connection-handle))
 (ui_err (ui-get-error-string)))
 (display (string-append "Rejecting!\n"))
 (display (string-append err_msg "\n" ui_err "\n"))
...

e*Index Global Identifier Technical Reference 4-50 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-get-id-system
The ui-get-id-system function checks the ui_local_id table and retrieves all
local ID and system pairs that are associated with the specified UID. The
local ID and system in each pair are delimited by a comma, and each pair is
also delimited by a comma. Use this function to check a member's local ID
and facility pairs to determine whether a new local ID needs to be inserted
into the database.

Syntax
(ui-get-id-system connection-handle u-id)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

u-id string The UID of the person whose local
ID and system information you want
to retrieve.

Return Value
The ui-get-id-system API returns one of the following values:

This value is
returned ...

if this occurs ...

A list of local IDs and
system pairs

The local ID and system information was retrieved
successfully.

MONK_EXCEPTION The local ID and system information for the specified
person was not retrieved successfully. Use the db-get-
error-str or ui-get-error-string API to retrieve the
corresponding error message.

e*Index Global Identifier Technical Reference 4-51 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

Example
The following example finds a member's UID using the ui-get-uid API, and
stores the UID in the Monk variable uid. It then searches for a member's
local ID and system pairs using the Monk variable uid to identify the
member. A list of local ID and system pairs for the member is returned, and
is stored in the Monk variable system.

...
(set! local-id (get ~input%eiEvent.REC[0].ID.local_id.LID.id))
(set! system (get ~input%eiEvent.REC[0].ID.local_id.LID.system))
(set! uid (ui-get-uid connection-handle system local-id))
 (if uid
 (begin
 (set! id-system (ui-get-id-system connection-handle uid))
 (display system)(newline)
)
 ...

e*Index Global Identifier Technical Reference 4-52 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-get-local-id
The ui-get-local-id function retrieves a member's local ID in a specific system
given the system code and member's UID. This function only returns local
IDs with a status of A (active).

Note: This API only returns the first matching local ID. To retrieve a complete list
of local IDs matching the criteria, use ui-search-local-id or ui-get-all-local-id.

Syntax
(ui-get-local-id connection-handle uid system)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

uid string The UID of the member for which
you want to retrieve the local ID.

system string The code for the system with which
the local ID you want to retrieve is
associated.

Return Value
The ui-get-local-id API returns one of the following values:

This value is
returned ...

if this occurs ...

A local ID number The member's local ID for the specified system was
retrieved successfully.

#f A local ID for the specified system does not exist for
the specified member.

MONK_EXCEPTION The member's local ID was not retrieved successfully.
Use the db-get-error-str or ui-get-error-string API to
retrieve the corresponding error message.

e*Index Global Identifier Technical Reference 4-53 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

Example
The example below searches for person records in the database that closely
match the incoming Event, and, if an exact match is found, retrieves the UID
of the exact match. It then calls ui-get-local-id to check for entries in the
ui_local_id table that are associated with the exact match record. Depending
on whether a local ID and system pair is found, either a new person record is
inserted into the database (by ui-insert-person) or an existing record is
updated (by ui-update-person).

(set! demo (get-demographics ~input%eiEvent))
(set! trans (get-transact ~input%eiEvent))
(set! system (get ~input%eiEvent.REC[0].ID.local_id.LID.system))
(begin
 (set! search-count (ui-search-open connection-handle demo))
 (if search-count
 (set! uid (ui-search-get-exact-match-uid))
)
 (if uid
 (begin
 (if (ui-get-local-id connection-handle uid system)
 (begin
 (ui-start-transaction connection-handle "" trans)
 (set! uid (ui-insert-person connection-handle demo))
 (ui-insert-local-id connection-handle local-id system)
 (ui-search-insert-duplicate connection-handle "SAME SYSTEM MATCH" 1 1)
 (if (> search-count 1)
 (ui-search-insert-duplicate connection-handle "POTENTIAL DUPLICATE" 2
 search-count)
)
)
 (begin
 (ui-start-transaction connection-handle uid trans)
 (ui-update-person connection-handle demo)
 (ui-insert-local-id connection-handle local-id system)
 (if (ui-get-assumed-match-enabled)
 (ui-insert-assumed-match connection-handle)
)
 ...

e*Index Global Identifier Technical Reference 4-54 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-get-person
The ui-get-person function retrieves a person’s current demographic record
based on the specified UID. The fields in the record are delimited by "|".

Syntax
(ui-get-person connection-handle uid)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

uid string The UID of the person whose
demographic information you want
to retrieve.

Return Value
The ui-get-person API returns one of the following values:

This value is
returned ...

if this occurs ...

A demographic
record

The demographic information for the specified person
was retrieved successfully.

MONK_EXCEPTION The demographic information for the specified person
was not retrieved successfully. Use the db-get-error-str or
ui-get-error-string API to retrieve the corresponding error
message.

Note: The demographic record that is returned by ui-get-person is delimited by a
pipe ("|").

e*Index Global Identifier Technical Reference 4-55 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

Example
The following example finds a member's UID using the ui-get-uid API, and
stores the UID in the Monk variable uid. It then searches for the current
demographic record of the member identified by the Monk variable uid. A
demographic record for the member is returned, and is stored in the Monk
variable demo. The output would be similar to

Smith|Joe|M|11234 Mission Way||Tarzana|CA| …

with all fields delimited by "|".

...
(set! local-id (get ~input%eiEvent.REC[0].ID.local_id.LID.id))
(set! system (get ~input%eiEvent.REC[0].ID.local_id.LID.system))
(set! uid (ui-get-uid connection-handle system local-id))
 (if uid
 (begin
 (set! demo (ui-get-person connection-handle uid))
 (display demo)(newline)
)
 ...

e*Index Global Identifier Technical Reference 4-56 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-get-transaction-date-time
The ui-get-transaction-date-time function retrieves the time that the
transaction that is currently in progress began. This API can only be called
after ui-start-transaction.

Syntax
(ui-get-transaction-date-time)

Parameters
Parameter Type Description

None

Return Value
The ui-get-transaction-date-time API returns one of the following values:

This value is
returned ...

if this occurs ...

A date/time stamp The time that the transaction began was retrieved
successfully.

MONK_EXCEPTION The time that the transaction began was not retrieved
successfully. Use the db-get-error-str or ui-get-error-
string API to retrieve the corresponding error message.

Example
The following example from ui-custom.monk uses the date and time that the
current open transaction began to get the date and time of the Event in the
Monk list trans_info (for more information, see "What Monk Lists are
Defined?" earlier in this chapter).

(define get-transact
 (lambda (msg)
 (list (get ~<msg>.EVNT.EVN.event_type_code) ;function
 (get ~<msg>.EVNT.EVN.assigning_system) ;system
 (get ~<msg>.EVNT.EVN.department) ; dept
 (get ~<msg>.EVNT.EVN.source) ; source
 (get ~<msg>.EVNT.EVN.terminal_id) ; term id
 (if (empty-string? ~<msg>.EVNT.EVN.user_id)
 (string-upcase DATABASE_SETUP_USER_NAME) ; default user id
 (get ~<msg>.EVNT.EVN.user_id) ; user id
)
 (ui-get-transaction-date-time)
)
)
)

e*Index Global Identifier Technical Reference 4-57 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-get-uid
The ui-get-uid function looks up a person’s UID by cross-referencing the
person's local ID from a specific system (source-system) in the ui_local_id
table. This API only retrieves records with a status of A, meaning only active
records are returned.

Syntax
(get-uid connection-handle system local-id)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

system string A system for which the person’s local
ID is known.

local-id string The local ID of the person in the
source system.

Return Value
The get-uid API returns one of the following values:

This value is
returned ...

if this occurs ...

A UID The person's UID was found in the ui_local_id table.

#f There is no corresponding UID for the specified
system and local ID pair in the e*Index database.

MONK_EXCEPTION

The person's UID was not found in the ui_local_id
table. Use the db-get-error-str or ui-get-error-string
API to retrieve the corresponding error message.

Example
Use the ui-get-uid function to find a member's UID and store the UID in a
variable for use with other Monk APIs. To see how ui-get-uid can be used
with other APIs, see the example for ui-delete-unresolved-duplicates on
page 4-33.

...
(set! local-id (get ~input%eiEvent.REC[0].ID.local_id.LID.id))
(set! system (get ~input%eiEvent.REC[0].ID.local_id.LID.system))
(set! uid (ui-get-uid connection-handle system local-id)
 (if uid
 (begin
 ...

e*Index Global Identifier Technical Reference 4-58 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-get-vip
The ui-get-vip function retrieves a person’s VIP flag using a person’s local ID
in a specific system.

Syntax
(ui-get-vip connection-handle system local-id)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

system string The system associated with the local
ID you specified.

local-id string The local ID of the person whose
VIP flag you want to retrieve.

Return Value
The ui-get-vip API returns one of the following values:

This value is
returned ...

if this occurs ...

The value in the VIP
field

The VIP information for the specified person was
retrieved successfully.

MONK_EXEPTION The VIP information for the specified person was not
retrieved successfully. Use the db-get-error-str or ui-get-
error-string API to retrieve the corresponding error
message.

Example
The following example returns the VIP flag for the person whose local ID and
system are specified in the incoming Event. The value of the VIP flag is
saved in the Monk variable vip.

...
(set! local-id (get ~input%eiEvent.REC[0].ID.local_id.LID.id))
(set! system (get ~input%eiEvent.REC[0].ID.local_id.LID.system))
(set! vip (ui-get-vip connection-handle system local-id))
 (display vip)(newline)
...

e*Index Global Identifier Technical Reference 4-59 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-insert-address
The ui-insert-address function inserts address information into the ui_alias
table for the specified person. The person whose information you are
inserting is specified by their UID. A transaction must be started before
calling ui-insert-address.

Syntax
(ui-insert-address connection-handle address)

Parameters
Parameters Type Description

connection-handle connection
handle

A handle to the database.

address list A Monk list containing the address
information to insert into the
ui_address table.

Return Value
The ui-insert-address API returns one of the following values:

This value is
returned ...

if this occurs ...

MONK_UNINITIALIZED The address information was successfully inserted into
the ui_address table.

MONK_EXCEPTION The address information was not successfully inserted
into the ui_address table. Use the db-get-error-str or
ui-get-error-string API to retrieve the corresponding
error message.

e*Index Global Identifier Technical Reference 4-60 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-insert-alias
The ui-insert-alias function inserts alias information into the ui_alias table for
the specified person. The person whose information you are inserting is
specified by their UID.

Syntax
(ui-insert-alias connection-handle alias)

Parameters
Parameters Type Description

connection-handle connection handle A handle to the database.

alias list A Monk list containing the alias
information to insert into the
ui_alias table.

Return Value
The ui-insert-alias API returns one of the following values:

This value is
returned ...

if this occurs ...

MONK_UNINITIALIZED The alias information was successfully inserted into the
ui_alias table.

MONK_EXCEPTION The alias information was not successfully inserted into
the ui_alias table. Use the db-get-error-str or ui-get-
error-string API to retrieve the corresponding error
message.

e*Index Global Identifier Technical Reference 4-61 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

Example
The following example uses the connection handle connection-handle as
defined in ui-stdver-eway-funcs.monk. It calls ui-process-person to process the
demographic information from the incoming message. It then retrieves a list
of alias information for the record and inserts the new alias information into
the ui_alias table. The alias information is associated with the UID specified
in ui-process-person.

...
(set! demo (get-demographics ~input%eiEvent.REC[0]))
(set! trans (get-transact ~input%eiEvent))
(set! local-id (get ~input%eiEvent.REC[0].ID.local_id.LID.id))
(set! system (get ~input%eiEvent.REC[0].ID.local_id.LID.system))
(set! uid (ui-process-person connection-handle local-id system demo trans))

...

(do ((j 0 (+ j 1)))
 ((>= j (count ~input%eiEvent.REC[0].DEMO.person_alias)))
 (set! alias (get-alias ~input%eiEvent.REC[0] j))
 (display (string-append "ALIAS" "[" (number->string j) "]"))
 (display alias) (newline)
 (display "PROCESS ALIAS RESULT: ")
 (display (ui-insert-alias connection-handle alias))(newline)
...

e*Index Global Identifier Technical Reference 4-62 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-insert-assumed-match
The ui-insert-assumed-match function inserts an assumed match record into
ui_assumed_match by assuming that the first record in the search cursor (that
is, the record with the highest matching weight) was used to perform an
assumed match. You can only call this function after ui-update-person. You
should also call ui-get-assumed-match-enabled before ui-insert-assumed-
match to ensure that records are only being written to the ui_assumed_match
table if the ASSMTCH control key is enabled.

Syntax
(ui-insert-assumed-match connection-handle)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

Return Value
The ui-insert-assumed-match API returns one of the following values:

This value is
returned ...

if this occurs ...

MONK_UNINITIALIZED The assumed match record was successfully inserted
into ui_assumed_match.

MONK_EXCEPTION The assumed match record was not successfully
inserted into ui_assumed_match. Use the db-get-
error-str or ui-get-error-string API to retrieve the
corresponding error message.

Example
See the example for ui-get-assumed-match-enabled, on page 4-43.

e*Index Global Identifier Technical Reference 4-63 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-insert-aux-id
The ui-insert-aux-id function adds a non-unique ID to a member's record
given a specific ID type and the member's UID. Before calling ui-insert-aux-
id, you must call ui-start-transaction to designate the UID of the record that
is being modified.

Syntax
(ui-insert-aux-id connection-handle id-type id)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

id-type string The type of non-unique ID you want
to add to the specified member's
record.

id string The non-unique ID number to be
added to the specified member's
record.

Return Value
The ui-insert-aux-id API returns one of the following values:

This value is
returned ...

if this occurs ...

MONK_UNINITIALIZED The new non-unique ID and ID type were successfully
added to the member record.

MONK_EXCEPTION The new non-unique ID and ID type were not
successfully added to the member record. Use the db-
get-error-str or ui-get-error-string API to retrieve the
corresponding error message.

Example
See the example for ui-exists-aux-id on page 4-37 and for ui-get-aux-id on
page 4-45.

e*Index Global Identifier Technical Reference 4-64 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-insert-local-id
The ui-insert-local-id function inserts a local ID for the system defined by the
current transaction. Before calling ui-insert-local-id, you must call ui-start-
transaction to designate the UID of the record that is being modified.

Syntax
(ui-insert-local-id connection-handle local-id system)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

local-id string The local ID number you want to
add to the member record.

system string The code of the system that is
associated with the specified local
ID.

Return Value
The ui-insert-local-id API returns one of the following values:

This value is
returned ...

if this occurs ...

MONK_UNINITIALIZED The local ID and system pair was inserted into the
member record successfully.

MONK_EXCEPTION The local ID and system pair was not inserted into the
member record successfully. Use the db-get-error-str
or ui-get-error-string API to retrieve the corresponding
error message.

Example
See the example for ui-get-local-id on page 4-54.

e*Index Global Identifier Technical Reference 4-65 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-insert-person
The ui-insert-person function inserts a new person record into the database
using a demographic list. You must call ui-start-transaction before inserting
a person record.

Syntax
(ui-insert-person connection-handle demo)

Parameters
Parameter Type Description

connection-handle connection
handle

A handle to the database.

demo list A Monk list containing the
demographic information to be
inserted into the new member record.

Return Value
The ui-insert-person API returns one of the following values:

This value is
returned ...

if this occurs ...

A UID The new person record was successfully inserted into
the database.

MONK_EXCEPTION The new person record was not successfully inserted
into the database. Use the db-get-error-str or ui-get-
error-string API to retrieve the corresponding error
message, if any.

Example
See the example for ui-get-local-id on page 4-54.

e*Index Global Identifier Technical Reference 4-66 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

e*Index Global Identifier Technical Reference 4-67 SeeBeyond Proprietary and Confidential

ui-local-id-merge
The ui-local-id-merge function merges two member records based on their
local IDs in a specific system. The record associated with the source local ID
(kept-lid) is merged into the record associated with the destination local ID
(merged-lid), retaining only the information from the destination local ID. If
two UID records are merge, the ui-local-id-merge API initiates two
application transactions, one for each record. If either application transaction
fails, the database transaction is rolled back. If only a local ID merge occurs,
then a single transaction is initiated and the status of the merged local ID
changes to M. You do not need to call ui-local-id-merge within a ui-start-
transaction and ui-commit-transaction pair. After you call ui-local-id-
merge, be sure to call db-commit to commit the transaction.

Syntax
(ui-local-id-merge connection-handle merged-lid kept-lid system
source dept term-id user-id)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

merged-lid string The local identifier associated with
the record whose information will
not be retained in the final merge
result record.

kept-lid string The local identifier associated with
the record whose information will
be retained in the final merge result
record.

system string The system code of the system
associated with the local IDs you
want to merge.

source string The source code of the application
from which the merge information
originated.

dept string The department code for the
department in which the merge
transaction occurred.

term-id string The terminal ID for the terminal at
which the merge transaction
occurred.

user-id string The login ID of the user who
performed the merge transaction.

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

Return Value
The ui-local-id-merge API returns one of the following values:

This value is
returned ...

if this occurs ...

MONK_UNINITIALIZED The merge is performed using the member's local IDs,
and is completed successfully.

MONK_EXCEPTION The merge is not performed successfully. Use the db-
get-error-str or ui-get-error-string API to retrieve the
corresponding error message.

Example
This example specifies two local IDs in one system in order to merge the
records. First it finds the local IDs to be merged in the incoming message,
and then calls the ui-local-id-merge API to merge the two records together.
The information in the record specified by kept-lid is retained in the new
record, and the information in the record specified by merged-lid is retained
for history information only.

...
 (begin
 (if (empty-string? ~input%eiEvent.REC[0].ID.prior_local_id.LID.id)
 (begin
 (copy-strip ~input%eiEvent ~output%eiEvent.out "")
)
 (begin
 (let ((kept-lid (get ~input%eiEvent.REC[0].ID.local_id.LID.id))
 (merged-lid (get ~input%eiEvent.REC[0].ID.prior_local_id.LID.id))
 (system (get ~input%eiEvent.REC[0].ID.local_id.LID.system))
 (source (get ~input%ieEvent.REC[0].EVN.source))
 (dept (get ~input%ieEvent.REC[0].EVN.department))
 (term-id (get ~input%ieEvent.REC[0].EVN.terminal_id))
 (user-id (get ~input%ieEvent.REC[0].EVN.user_id))
)
)

 (if (ui-local-id-merge connection-handle merged-lid kept-lid system
 source dept term-id user-id)
 (begin
 (begin (newline))
 (begin (db-commit connection-handle))
...

e*Index Global Identifier Technical Reference 4-68 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-local-id-status
The ui-local-id-status function retrieves the status code of the specified local
ID and system pair.

Syntax
(ui-local-id-status connection-handle system lid)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

system string The system code of the system
associated with the local identifier
whose status you want to retrieve.

lid string The local identifier whose status you
want to retrieve.

Return Value
The ui-local-id-status API returns one of the following values:

This value is
returned ...

if this occurs ...

Status code The status of the local ID was retrieved successfully.
The possible status codes are:

•

•

•

A for active

D for deactivated

M for merged

MONK_EXCEPTION The status of the specified local ID was not retrieved
successfully. Use the db-get-error-str or ui-get-error-
string API to retrieve the corresponding error message.

Example
The example below sets the variables system and lid as the system and local
ID of an incoming Event. It calls ui-local-id-status to check the status of the
system and local ID pair.

(set! system (get ~input%eiEvent.REC[0].ID.local_id.LID.system))
(set! lid (get ~input%eiEvent.REC[0].ID.local_id.LID.id))
(begin
 (set! status (ui-local-id-status connection-handle system lid))
 ...

e*Index Global Identifier Technical Reference 4-69 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-lookup
The ui-lookup function searches for a person’s local ID in a specific system
(dest-system) by using that person’s local ID from another system (source-
system). This information is stored in the ui_local_id table.

Note: This API only returns the first matching local ID. To retrieve a complete list
of local IDs matching the criteria, use ui-lookup-local-id.

Syntax
(ui-lookup connection-handle source-system source-local-id
dest-system)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

source-system string The system code of the system for
which the person’s local ID is known.

source-local-id string The local ID of the person in the
source system.

dest-system string The system code of the system for
which the person’s local ID is not
known.

Return Value
The ui-lookup API returns one of the following values:

This value is
returned ...

if this occurs ...

A local ID A local ID associated with the specified system was
found in the ui_local_id table.

#f The member record does not have a local ID in the
specified destination system.

MONK_EXCEPTION The lookup was not successfully processed. Use the db-
get-error-str or ui-get-error-string API to retrieve the
corresponding error message.

e*Index Global Identifier Technical Reference 4-70 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

Example
The following example uses the connection handle connection-handle as
defined in ui-stdver-eway-funcs.monk. It searches for a person’s local ID for
system BDG by looking up the local ID and system pair from the incoming
Event. If a local ID for system BDG is found, it is saved in the Monk variable
local_id.

...
(set! source-id (get ~input%eiEvent.REC[0].ID.local_id.LID.id))
(set! dest-system (get ~input%eiEvent.REC[0].ID.local_id.LID.system))
(set! local_id (lookup connection-handle BDG source-id dest-system)
 (if local_id
 (begin
 ...

e*Index Global Identifier Technical Reference 4-71 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-lookup-address-id
The ui-lookup-address-id function searches for the identification code of a
person’s address of a specific type using that person’s UID. This information
is stored in the ui_address table.

Syntax
(ui-lookup-address-id connection-handle uid addr-type)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

uid string The UID of the person associated with
the address ID you want to retrieve.

addr-type string The address type code of the address
whose ID you want to retrieve.

Return Value
The ui-lookup-address-id API returns one of the following values:

This value is
returned ...

if this occurs ...

Address ID An identification code associated with the specified
address type and UID was found in the ui_address table.

#f There is not an address of the specified address type
associated with the specified UID.

MONK_EXCEPTION The lookup was not successfully processed. Use the db-
get-error-str or ui-get-error-string API to retrieve the
corresponding error message.

e*Index Global Identifier Technical Reference 4-72 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-lookup-local-id
The ui-lookup-local-id function retrieves all of a member's local IDs in a
specific system (the destination system) given a local ID and system pair
from a different system (the source system). This function only returns local
IDs with the status specified (active, merged, or deactivated).

Syntax
(ui-lookup-local-id connection-handle src-system src-lid
dest-system status)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

src-system string The system code of the system
associated with the known local
identifier.

src-lid string The member's local identifier in the
source system.

dest-system string The system code of the system
associated with the local ID you
want to find.

status string The status code of the status of the
local IDs you want to retrieve. This
value can be A, D, or M, for active,
deactivated, and merged,
respectively.

Return Value
The ui-lookup-local-id API returns one of the following values:

This value is
returned ...

if this occurs ...

A vector containing
local IDs

The member's local IDs for the specified system were
retrieved successfully.

#f No local IDs for the specified system exist for the
member associated with the source local ID and
system.

MONK_EXCEPTION The member's local IDs were not retrieved
successfully. Use the db-get-error-str or ui-get-error-
string API to retrieve the corresponding error message.

e*Index Global Identifier Technical Reference 4-73 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

Example
The example below calls ui-lookup-local-id to check the local IDs for the
member associated with the local ID and system pair represented by
src-system and src-lid. ui-lookup-local-id looks for a local ID associated
with the system RDW with a status of A (active). If local ID and system pairs
are found where the system is RDW, the sample scrolls through the local IDs
using the ui-get-next-element and ui-has-next-element functions.

(set! src-system (get ~input%eiEvent.REC[0].ID.local_id.LID.system))
(set! src-lid (get ~input%eiEvent.REC[0].ID.local_id.LID.id))
(begin
 (set! lids (ui-lookup-local-id connection-handle src-system src-lid "RDW" "A"))
 (if lids
 (begin
 (do
 ((i 0 (+ i 1)))
 ((not (ui-has-next-element lids)))
 (display (format "%d: %a\n" i (ui-get-next-element lids)))
)
)
)
 (display "No LIDs\n")
)

e*Index Global Identifier Technical Reference 4-74 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

e*Index Global Identifier Technical Reference 4-75 SeeBeyond Proprietary and Confidential

ui-merge
The ui-merge function merges two records, specified by their UID numbers.
The record associated with the source UID (source-uid) is merged into the
record associated with the destination UID (dest-uid), retaining only the
information associated with the destination UID and the local identifiers and
aliases from both UIDs. The ui-merge API initiates two application
transactions, one for each UID record, so you do not need to call ui-merge
within a ui-start-transaction and ui-commit-transaction pair. If either
application transaction fails, the database transaction is rolled back. After
you call ui-merge, be sure to call db-commit to commit the transaction.

Syntax
(ui-merge connection-handle source-uid dest-uid system source
dept terminal-id user-id)

Parameters
Parameter Type Description

connection- handle connection handle A handle to the database.

source-uid string The UID of the person whose
records will not be retained after the
merge.

dest-uid string The UID of the person whose
records will be retained after the
merge.

system string The system from which the
incoming record was sent.

source string The application from which the
merge information originated.

dept string The department code of the
department from which the merge
information originated.

terminal-id string The ID of the terminal on which the
merge transaction was performed.

user-id string The login ID of the user who
performed the merge transaction.

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

Return Value
The ui-merge API returns one of the following values:

This value is
returned ...

if this occurs ...

MONK_UNINITIALIZED The merge is performed using the member's UIDs,
and is completed successfully.

MONK_EXCEPTION The merge is not performed successfully. Use the db-
get-error-str or ui-get-error-string API to retrieve the
corresponding error message.

Example
This example uses the UIDs from two member profiles to merge the records.
First it finds the members' local IDs from the incoming message, and then
uses the ui-get-uid API to find the UIDs of the member records being
merged. The information from the record specified by dest-local-id and
dest-uid is retained in the new record.

...
 (begin
 (if (empty-string? ~input%eiEvent.REC[0].ID.prior_local_id.LID.id)
 (begin
 (copy-strip ~input%eiEvent ~output%eiEvent.out "")
)
 (begin
 (let ((dest-lid (get ~input%eiEvent.REC[0].ID.local_id.LID.id))
 (source-lid (get ~input%eiEvent.REC[0].ID.prior_local_id.LID.id))
 (system (get ~input%eiEvent.REC[0].ID.local_id.LID.system))
 (source (get ~input%ieEvent.REC[0].EVN.source))
 (dept (get ~input%ieEvent.REC[0].EVN.department))
 (term-id (get ~input%ieEvent.REC[0].EVN.terminal_id))
 (user-id (get ~input%ieEvent.REC[0].EVN.user_id))
)
)
 (set! source-uid (ui-get-uid connection-handle system source-lid))
 (set! dest-uid (ui-get-uid connection-handle system dest-lid))

 (comment "Now merge the records" "")

 (if (ui-merge connection-handle source-uid dest-uid system source
dept term-id user-id)
 (begin
 (begin (newline))
 (begin (db-commit connection-handle))
...

e*Index Global Identifier Technical Reference 4-76 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-process-address
The ui-process-address function uses an address list to perform an address
update or insert, depending on whether an address record already exists in
the person record for the given address type and UID. This function contains
an overwrite flag to indicate whether the function should update an existing
record. If the flag is turned off and there is an existing address record of the
specified type in the person record, then this function will not update the
address information. However, if the flag is turned off and the address type
does not exist, the function will still insert a new address. This function must
be used inside a loop in order to process all addresses in the message.

Syntax
(ui-process-address connection-handle address overwrite)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

address list A Monk list containing the address
information to be updated or
inserted into the person record.
This list contains the address type of
each address.

overwrite Boolean An indicator of whether or not to
update existing address records. If
this flag is set to #t, then new
address information overwrites
existing information. If this set to #f,
then no existing information is
overwritten.

Return Value
The ui-process-address API returns one of the following values:

This value is
returned ...

if this occurs ...

The string 'NEW' The new address information was successfully inserted
in the person record.

The string 'UPDATE' The new address information successfully updated
existing address information in the person record.

#f The new information was not inserted or updated in
the person record because the record already exists
and no changes were required. This value is also
returned if the overwrite flag is set to #f and an address
of the specified type already exists in the person
record (even if the address content is different).

e*Index Global Identifier Technical Reference 4-77 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

This value is
returned ...

if this occurs ...

MONK_EXCEPTION The address record was not successfully processed.
Use the db-get-error-str or ui-get-error-string API to
retrieve the corresponding error message.

Example
The following example is taken from the default file uidb.dsc. It first calls ui-
process-person to process the demographic information in the incoming
message. After processing the demographic data, it then retrieves the
address list from the incoming Event, and compares it with the addresses in
the record processed by ui-process-person. Depending on whether the
overwrite flag for ui-process-address is set to true or false, the address
information from the incoming Event is updated to the record in the
database.

...
(set! demo (get-demographics ~input%eiEvent))
(set! trans (get-transact ~input%eiEvent))
(set! local-id (get ~input%eiEvent.REC[0].ID.local_id.LID.id))
(set! system (get ~input%eiEvent.REC[0].ID.local_id.LID.system))
(set! uid (ui-process-person connection-handle local-id system demo trans))
(duplicate-strip ~input%eiEvent ~output%eiEvent "")
(insert-hard uid ~output%eiEvent.REC[0].ID.eid_1)
 (display (string-append "PROCESS PERSON RESULT: "))
 (display (string-append uid " " (ui-get-demographic-changed)))(newline)

... ;processing alias records

(do ((j 0 (+ j 1))) ((>= j (count ~input%eiEvent.REC[0].DEMO.address)))
 (set! address (get-address ~input%eiEvent.REC[0] j))
 (display (string-append "ADDRESS" "[" (number->string j) "]"))
 (display address) (newline)
 (display "PROCESS ADDRESS RESULT: ")
 (display (ui-process-address connection-handle address overwrite))
 (newline)
)
...

e*Index Global Identifier Technical Reference 4-78 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-process-person
The ui-process-person function is used to add, update, or delete member
information in the e*Index database. A sample function is defined in the file
ui-process-person.monk, and you can customize this file with additional APIs
as required. In the default configuration, this function initiates a search
through the database, using the search algorithm to determine if a person
already exists in the database. If the person does not exist, then a new UID is
returned. If the person does exist, then the UID of the existing record is
returned. The processing logic that is used for the default function is
described in "About Inbound Event Processing Logic" in Chapter 2 of this
guide.

Note: The syntax, parameters, return values, and example in this section describe
ui-process-person as it is defined in your standard installation. This command can
be customized for your processing needs.

Syntax
(ui-process-person connection-handle local-id system demo
trans)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

local-id string The local ID of the person you are
processing.

system string The identification code for the
system associated with the specified
local ID.

demo list A Monk list that contains the
demographic information of the
person identified by the local ID.

trans list A Monk list that contains the
transaction information of the
person identified by the local ID.

e*Index Global Identifier Technical Reference 4-79 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

Return Value
The ui-process-person API returns one of the following values:

This value is
returned ...

if this occurs ...

A new or existing UID The member information was processed successfully.

MONK_EXCEPTION The member information was not processed
successfully. This would occur if a UID was not found
and a new UID could not be assigned, or if the
database server is down. Use the db-get-error-str or
ui-get-error-string API to retrieve the corresponding
error message.

Example
The example below calls ui-process-person to process the demographic data
in the incoming record. If a matching record is found in the database or a
new record is inserted, then a UID is returned and processing continues. To
see how ui-process-person is used in the default Collaboration script,
uidb.dsc, see the example for ui-process-address on page 4-78.

...
(set! demo (get-demographics ~input%eiEvent))
(set! trans (get-transact ~input%eiEvent))
(set! local-id (get ~input%eiEvent.REC[0].ID.local_id.LID.id))
(set! system (get ~input%eiEvent.REC[0].ID.local_id.LID.system))
(set! uid (ui-process-person connection-handle local-id system demo
trans))

(if uid
 (begin
 ...

e*Index Global Identifier Technical Reference 4-80 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-process-phone
The ui-process-phone function uses a telephone number list to perform a
telephone number update or insert, depending on whether a record already
exists in the person record for the given telephone number type and UID.
This function contains an overwrite flag to indicate whether the function
should update an existing record. If the flag is turned off and a telephone
record of the same type exists in the person record, then this function will not
update the existing record. However, if the flag is turned off and the
telephone type does not exist, the function will still insert a new telephone
record. This function must be used inside a loop in order to process all
telephone numbers in the message.

Syntax
(ui-process-address connection-handle phone overwrite)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

phone list A Monk list containing the
telephone information to be
updated or inserted into the person
record. This list includes the
telephone number type.

overwrite string An indicator of whether or not to
update existing telephone records.
If this flag is set to #t, then the new
telephone information overwrites
existing information. If this set to #f,
then no existing information is
overwritten.

Return Value
The ui-process-phone API returns one of the following values:

This value is
returned ...

if this occurs ...

The string 'ADD' The new telephone information was successfully
inserted in the person record.

The string 'UPDATE' The new telephone information successfully updated
existing telephone information in the person record.

#f The new information was not inserted or updated in
the person record because the record already exists
and no changes were required. This value is also
returned if the overwrite flag is set to #f and a
telephone number of the specified type already exists
in the person record (even if the content is different).

e*Index Global Identifier Technical Reference 4-81 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

This value is
returned ...

if this occurs ...

MONK_EXCEPTION The address record was not successfully processed.
Use the db-get-error-str or ui-get-error-string API to
retrieve the corresponding error message.

Example
The following example is taken from the default file uidb.dsc. It first calls ui-
process-person to process the demographic information in the incoming
message. After processing the demographic data, it then retrieves the
telephone number list from the incoming Event, and compares it with the
numbers in the record processed by ui-process-person. Depending on
whether the overwrite flag for ui-process-phone is set to true or false, the
address information from the incoming Event is updated to the record in the
database.

...
(set! demo (get-demographics ~input%eiEvent))
(set! trans (get-transact ~input%eiEvent))
(set! local-id (get ~input%eiEvent.REC[0].ID.local_id.LID.id))
(set! system (get ~input%eiEvent.REC[0].ID.local_id.LID.system))
(set! uid (ui-process-person connection-handle local-id system demo trans))
(duplicate-strip ~input%eiEvent ~output%eiEvent "")
(insert-hard uid ~output%eiEvent.REC[0].ID.eid_1)
 (display (string-append "PROCESS PERSON RESULT: "))
 (display (string-append uid " " (ui-get-demographic-changed)))(newline)

... ; processing alias records
... ; processing address records

(do ((j 0 (+ j 1))) ((>= j (count ~input%eiEvent.REC[0].DEMO.phone)))
 (set! phone (get-phone ~input%eiEvent.REC[0] j))
 (display (string-append "PHONE" "[" (number->string j) "]"))
 (display phone) (newline)
 (display "PROCESS PHONE RESULT: ")
 (display (ui-process-phone connection-handle phone overwrite))(newline)
)
...

e*Index Global Identifier Technical Reference 4-82 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-rollback-transaction
The ui-rollback-transaction function rolls back the current transaction in the
database and resets the transaction structure. You can use this function to
undo any changes made to a record in the database in the case that an error
occurs during processing.

Syntax
(ui-rollback-transaction connection-handle)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

Return Value
The ui-rollback-transaction API returns one of the following values:

This value is
returned ...

if this occurs ...

MONK_UNINITIALIZED The transaction was successfully rolled back.

MONK_EXCEPTION The transaction was not successfully rolled back. Use
the db-get-error-str or ui-get-error-string API to
retrieve the corresponding error message.

Example
The following example, excerpted from the default uidb.dsc file, displays the
"catch" section of a try-catch block. The catch command is called when an
error occurs during processing and defines how to handle the error. It then
rolls back the transaction during which the error occurred.

 (catch
 (otherwise
 (display (exception-string-all))(newline)
 (display (ui-get-error-string))(newline)
 (display (db-get-error-str connection-handle))(newline)
 (if (db-alive connection-handle)
 (begin
 (set! result "")
)
 (begin
 (set! result "CONNERR")
)
)
 (ui-rollback-transaction connection-handle)
))

e*Index Global Identifier Technical Reference 4-83 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-search-close
The ui-search-close function closes the search cursor, and de-allocates the
memory. Use this function at the end of each ui-search-open function. Note
that you only need to call ui-search-close in cases where records are returned
from a search (that is, ui-search-open does not return #f). If ui-search-open
returns #f, no records were found and there is no cursor to close.

Syntax
(ui-search-close)

Parameters
Parameter Type Description

None

Return Value
The ui-search-close API returns one of the following values:

This value is
returned ...

if this occurs ...

MONK_UNINITIALIZED The search cursor was closed and the memory was de-
allocated successfully.

MONK_EXCEPTION The search cursor was not closed successfully. Use the
db-get-error-str or ui-get-error-string API to retrieve
the corresponding error message.

Example
The following example, taken from the default ui-process-person.monk file,
opens a search cursor and looks for possible matches to the incoming record
based on the demographic information from the incoming record. If records
are found, it inserts all the records in the search cursor into ui-duplic and flags
them as potential duplicates of the incoming record. After inserting the
records into ui_duplic, the search cursor is closed and the resources allocated
by ui-search-open are de-allocated.

(set! demo (get-demographics ~input%eiEvent))
...
(set! search-count (ui-search-open connection-handle demo))
 (if search-count
 (ui-search-insert-duplicate connection-handle "POTENTIAL DUPLICATE"
 1 search-count)
 (ui-search-close)
)
)
...

e*Index Global Identifier Technical Reference 4-84 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-search-get-exact-match-score
The ui-search-get-exact-match-score function retrieves the weight of an exact
match to a new record if one exists in the database. This function checks to
see if 1EXACTMTCH is enabled before returning the weight. If this control
key is set to Yes and there are two records above the match threshold in the
result set, then neither record is considered an exact match of the new record.
This function can only be called within a ui-search-open function.

Syntax
(ui-search-get-exact-match-score)

Parameters
Parameter Type Description

None

Return Value
The ui-search-get-exact-match-score API returns one of the following:

This value is
returned ...

if this occurs ...

A matching weight One exact match exists in the search results set, and
the matching weight of that record is returned.

#f An exact match does not exist in the search results set,
or more than one record in the results set is above the
match threshold and 1EXACTMTCH is enabled.

MONK_EXCEPTION The search cursor is not open. Use the db-get-error-
str or ui-get-error-string API to retrieve the
corresponding error message.

Example
The following example opens a search cursor and looks for any records in the
database that are possible matches of the incoming Event based on the
Event's demographic information. If possible matches are found and one of
those matches is above the match threshold, the UID and the matching
probability weight of that record is returned.

(set! demo (get-demographics ~input%eiEvent))
...
(begin
 (set! search-count (ui-search-open connection-handle demo))
 (if search-count
 (set! uid (ui-search-get-exact-match-uid))
 (set! weight (ui-search-get-exact-match-score))
)
...

e*Index Global Identifier Technical Reference 4-85 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-search-get-exact-match-uid
The ui-search-get-exact-match-uid function retrieves the UID of a person
record that is an exact match of a new record (if an exact match exists in the
database). This function can only be called within a ui-search-open function.

Syntax
(ui-search-get-exact-match-uid)

Parameters
Parameter Type Description

None

Return Value
The ui-search-get-exact-match-uid API returns one of the following values:

This value is
returned ...

if this occurs ...

A UID An exact match of the new record exists in the database, and
the UID was retrieved successfully.

#f An exact match does not exist in the search results set, or more
than one record in the results set is above the match threshold
and 1EXACTMTCH is enabled.

MONK_EXCEPTION The search cursor is not open. Use the db-get-error-str or ui-
get-error-string API to retrieve the corresponding error
message.

Example
The following example opens a search cursor and looks for any records in the
database that are possible matches of the incoming Event based on the
Event's demographic information. If possible matches are found and one of
those matches is above the match threshold, the UID of that record is
returned. This record is known as the exact match.

(set! demo (get-demographics ~input%eiEvent))
...
(begin
 (set! search-count (ui-search-open connection-handle demo))
 (if search-count
 (set! uid (ui-search-get-exact-match-uid))
)
...

e*Index Global Identifier Technical Reference 4-86 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-search-insert-duplicate
The ui-search-insert-duplicate function allows the records in the search
cursor to be added to the ui_duplic table along with their matching
probability weights. The start and end indexes determine the records in the
search cursor that are sent to the duplicate table. This function can only be
called within a ui-search-open function.

Syntax
(ui-search-insert-duplicate dup-msg start-index end-index)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

dup-msg string The text to be inserted into the
description column of the ui_duplic
table (e.g., SAME SYSTEM:). The
description is typically "Same
System" or "Potential Duplicate."

start-index integer The index of the search cursor to
begin inserting duplicate records.
The first record in the search cursor
has an index of 1.

end-index integer The index of the search cursor to
stop inserting duplicate records.
The last record in the search cursor
has an index equal to the search
count.

Return Value
The ui-search-insert-duplicate API returns one of the following values:

This value is
returned ...

if this occurs ...

MONK_UNINITIALIZED The duplicate records were successfully inserted into
the ui_duplic table.

MONK_EXCEPTION The duplicate records were not successfully inserted
into the ui_duplic table. Use the db-get-error-str or ui-
get-error-string API to retrieve the corresponding error
message.

Example
See the example for ui-search-close on page 4-84.

e*Index Global Identifier Technical Reference 4-87 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-search-local-id
The ui-search-local-id function retrieves all of a member's local IDs in a
specific system given the system code and member's UID. This function only
returns local IDs with the status specified (active, merged, or deactivated).

Syntax
(ui-search-local-id connection-handle uid system status)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

uid string The UID of the member for which
you want to retrieve the local ID.

system string The code for the system with which
the local ID you want to retrieve is
associated.

status string The status code of the status of the
local IDs you want to retrieve. This
value can be A, D, or M, for active,
deactivated, and merged,
respectively.

Return Value
The ui-search-local-id API returns one of the following values:

This value is
returned ...

if this occurs ...

A vector containing
local IDs

The member's local IDs for the specified system were
retrieved successfully.

#f No local IDs for the specified system exist for the
specified member (this indicates a flaw in data
integrity).

MONK_EXCEPTION The member's local IDs were not retrieved
successfully. Use the db-get-error-str or ui-get-error-
string API to retrieve the corresponding error message.

e*Index Global Identifier Technical Reference 4-88 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

Example
The example below searches for person records in the database that closely
match the incoming Event, and, if an exact match is found, retrieves the UID
of the exact match. It then calls ui-search-local-id to check the entries in the
ui_local_id table that are associated with the exact match record that have a
status of A (active). If local ID and system pairs are found where the system
matches the system in the incoming Event, the sample scrolls through the
local IDs using the ui-get-next-element and ui-has-next-element functions.

(set! demo (get-demographics ~input%eiEvent))
(set! trans (get-transact ~input%eiEvent))
(set! system (get ~input%eiEvent.REC[0].ID.local_id.LID.system))
(begin
 (set! search-count (ui-search-open connection-handle demo))
 (if search-count
 (set! uid (ui-search-get-exact-match-uid))
)
 (if uid
 (begin
 (set! lids (ui-search-local-id connection-handle uid system "A"))
 (if lids
 (begin
 (do
 ((i 0 (+ i 1)))
 ((not (ui-has-next-element lids)))
 (display (format "%d: %a\n" i (ui-get-next-element lids)))
)
)
)
 (display "No LIDs\n")
))

e*Index Global Identifier Technical Reference 4-89 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-search-open
The ui-search-open function opens a cursor of weighted records returned
from a search based on a demographic information query list. This function
returns the number of records in the result set. If records are returned from
the search, the search cursor remains open until ui-search-close is called. If
no records are returned, ui-search-open returns #f and no search cursor is
opened (so ui-search-close is not required).

Syntax
(ui-search-open connection-handle demo)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

demo list A Monk list containing demographic
information about the person for
whom you are searching.

Return Value
The ui-search-open API returns one of the following values:

This value is
returned ...

if this occurs ...

The number of
resulting records

The search is performed successfully, and the number
of matching records is counted.

#f The search is performed successfully, and there are no
matching records in the search cursor.

MONK_EXCEPTION The search is not performed successfully. Use the db-
get-error-str or ui-get-error-string API to retrieve the
corresponding error message.

Example
See the example for ui-search-close on page 4-84.

e*Index Global Identifier Technical Reference 4-90 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-set-dup-threshold
Use the ui-set-dup-threshold function to specify the minimum matching
probability weight at which two records are considered potential duplicates
of one another. If you specify a duplicate threshold, it overrides the value
read by ui-config for the control key DUPTHRES. If you do not call ui-set-
dup-threshold, then the control key value is used.

Syntax
(ui-set-dup-threshold threshold)

Parameters
Parameter Type Description

threshold real A number indicating the
duplicate threshold.

Return Value
The ui-set-dup-threshold API returns one of the following values:

This value is
returned ...

if this occurs ...

MONK_UNINITIALIZED The threshold was created successfully.

MONK_EXCEPTION The threshold was not created successfully. Use the db-
get-error-str or ui-get-error-string API to retrieve the
corresponding error message.

Example
The following example sets the duplicate threshold to 8.5 and the match
threshold to 13.0. You can then call ui-process-person, which uses those
thresholds to process member records.

(ui-set-dup-threshold 8.5)
(ui-set-match-threshold 13.0)

e*Index Global Identifier Technical Reference 4-91 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-set-match-threshold
Use the ui-set-match-threshold function to specify the minimum matching
probability weight at which two records are considered to represent the same
person, and are automatically merged. If you specify a match threshold, it
overrides the value read by ui-config for the control key MATCHTHRES. If
you do not call ui-set-match-threshold, then the control key value is used.

Syntax
(ui-set-match-threshold threshold)

Parameters
Parameter Type Description

Threshold real A number indicating the match
threshold.

Return Value
The ui-set-match-threshold API returns one of the following values:

This value is
returned ...

if this occurs ...

MONK_UNINITIALIZED The threshold was created successfully.

MONK_EXCEPTION The threshold was not created successfully. Use the
db-get-error-str or ui-get-error-string API to retrieve
the corresponding error message.

Example
The following example sets the duplicate threshold to 8.5 and the match
threshold to 13.0. You can then call ui-process-person, which uses those
thresholds to process member records.

(ui-set-dup-threshold 8.5)
(ui-set-match-threshold 13.0)

e*Index Global Identifier Technical Reference 4-92 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-set-queue-id
Use the ui-set-queue-id function to change the status of a queued message if
the dequeued message is not sent successfully (as determined by a nack
event in the polling e*Way). In the sample poll schema, this command is
executed within ui-poll-neg-ack.

Syntax
(ui-set-queue-id connection-handle msg-id queue-id)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

msg-id string The identification code of the
outgoing message (from the table
ui_msg_detail).

queue-id string The current status of the message in
ui_msg_detail. The possible
statuses are:

O – This stands for "output" and
means the message is ready to
be sent

E – This means there was an error
when sending the message (in
the sample schema).

B – This stands for "buffer" and
means the message has been
dequeued and is being sent.

Return Value
The ui-set-queue-id API returns one of the following values:

This value is
returned ...

if this occurs ...

MONK_UNINITIALIZED The status of the message was changed successfully.

MONK_EXCEPTION The status of the message was not changed
successfully. Use the db-get-error-str or ui-get-error-
string API to retrieve the corresponding error
message.

e*Index Global Identifier Technical Reference 4-93 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

Example
This sample from ui-poll-neg-ack in ui-stdver-eway-funcs.monk defines the
variable msg-id as the msg_id field in the outgoing event, and then changes
the status of the message to E to indicate there was a negative
acknowledgement when the record was sent.

...
 (begin
 (set! msg-id (get ~input%eiEvent.EVNT.EVN.msg_id))
 (display (format "Setting error status of message ID [%s]\n" msg-id))
 (ui-set-queue-id connection-handle msg-id "E")
)
...

e*Index Global Identifier Technical Reference 4-94 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-start-transaction
The ui-start-transaction function begins a transaction for a new Event. If the
UID parameter is left blank, the incoming Event is a new record and the next
available UID is assigned. If the UID parameter is not blank, then a
transaction is started for the specified UID. An actual transaction is only
initiated if a database insert, update, or delete is performed during the call to
ui-start-transaction.

Syntax
(ui-start-transaction connection-handle uid trans)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

uid string The UID number of the person
record for which you want to start a
transaction. If this parameter is left
blank, the next available UID is
used.

trans list A Monk list containing information
about the transaction currently
being processed.

Return Value
The ui-start-transaction API returns one of the following values:

This value is
returned ...

if this occurs ...

MONK_UNINITIALIZED The transaction was started successfully.

MONK_EXCEPTION The transaction was not started successfully. Use the
db-get-error-str or ui-get-error-string API to retrieve
the corresponding error message.

Example
See the example for ui-delete-unresolved-duplicates on page 4-33.

e*Index Global Identifier Technical Reference 4-95 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-update-address
The ui-update-address function updates an address given the unique
address ID. You can call ui-exists-address-id to obtain the address ID.
Before calling ui-update-address, you must call ui-start-transaction.

Syntax
(ui-update-address connection-handle address-id address)

Parameters
Parameter Type Description

connection-handle connection
handle

A handle to the database.

address-type string The address ID of the existing address
you want to update.

address list A Monk list containing the new address
information with which to update the
existing address.

Return Value
The ui-update-address API returns one of the following values:

This value is
returned ...

if this occurs ...

MONK_UNINITIALIZED The address information for the specified address
record was successfully updated.

MONK_EXCEPTION The address information for the specified address ID
was not successfully updated. Use the db-get-error-str
or ui-get-error-string API to retrieve the corresponding
error message.

e*Index Global Identifier Technical Reference 4-96 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-update-aux-id
The ui-update-aux-id function updates a non-unique ID given the ID type,
the old ID, and the new ID. Before calling ui-update-aux-id, you must call
ui-start-transaction to designate the UID of the record that is being modified.

Syntax
(ui-update-aux-id connection-handle id-type old-id new-id)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

id-type string The type of non-unique ID you want
to update in the specified person
record.

old-id string The existing non-unique ID that you
want to update.

new-id string The new non-unique ID to replace
the existing ID.

Return Value
The ui-update-aux-id API returns one of the following values:

This value is
returned ...

if this occurs ...

MONK_UNINITIALIZED The non-unique ID in the specified person record was
successfully updated.

MONK_EXCEPTION The non-unique ID in the specified person record was
not successfully updated. Use the db-get-error-str or
ui-get-error-string API to retrieve the corresponding
error message.

Example
See the example for ui-get-aux-id on page 4-45.

e*Index Global Identifier Technical Reference 4-97 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs e*Index Monk API Descriptions

ui-update-person
The ui-update-person function updates a person record using the specified
demographic list. Before calling ui-update-person, you must call ui-start-
transaction to designate the UID of the record that is being modified.

Syntax
(ui-update-person connection-handle demo)

Parameters
Parameter Type Description

connection-handle connection handle A handle to the database.

demo list A Monk list containing demographic
information about the person whose
record you want to update.

Return Value
The ui-update-person API returns one of the following values:

This value is
returned ...

if this occurs ...

MONK_UNINITIALIZED The person record was successfully updated with the
new demographic information.

MONK_EXCEPTION The person record was not successfully updated with
the new demographic information. Use the db-get-
error-str or ui-get-error-string API to retrieve the
corresponding error message.

Example
See the example for ui-delete-unresolved-duplicates on page 4-33.

e*Index Global Identifier Technical Reference 4-98 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Standard Monk API Descriptions

Standard Monk API Descriptions

Overview
This section of the chapter lists all of the Monk APIs that are included in the
file ui-stdver-eway-funcs.monk. These functions are called by the configuration
file when the e*Way starts up.

ui-stdver-init
The ui-stdver-init function begins the initialization process for an e*Way.
The function loads all of the monk extension library files that are accessed by
the other e*Way functions and defines a connection handle for the database.
In the default configuration, this function calls the Monk script ui-set-vticfg,
which sets the Vality environment variable to /<eGate>/client/bin (the
location of the Vality rule set files for the e*Way).

Syntax
(ui-stdver-init)

Parameters
Parameter Type Description

None

Return Values
The ui-stdver-init API returns one of the following values:

This value is returned ... if this occurs ...

A string (other than
"FAILURE")

The initialization occurred successfully.

A "FAILURE" string The initialization did not occur successfully.

Note: In this instance, the e*Way will shut down.

Standard Implementation
The example below illustrates how ui-stdver-init is defined in ui-stdver-eway-
funcs.monk.

(define ui-stdver-init
 (lambda ()
 (let ((result "SUCCESS"))
 (display "[++] Executing dart e*Way external init function.")
 (display "[++] Loading dart-eWay-stdver-funcs.monk ")
 (display "DATABASE TYPE = ")
 (display DATABASE_SETUP_DATABASE_TYPE)

e*Index Global Identifier Technical Reference 4-99 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Standard Monk API Descriptions

 (newline)
 (define STCDB DATABASE_SETUP_DATABASE_TYPE)
 (define DART_NULL "_NULL_")
 (define DART_NULL_MODE "INOUT")
 (define STCDATADIR (get-data-dir))
 (define dg-shutdown #f)
 (ui-set-vticfg)
 (if (not (load-extension "stc_monkutils.dll"))
 (begin
 (set! result "FAILURE")
 (display "Failed to load stc_monkutils.dll.")
)
 (begin
 (display " Loaded stc_monkutils.dll ")
))
(if (not (load-extension "stc_dbmonkext.dll"))
 (begin
 (set! result "FAILURE")
 (display "Failed to load stc_dbmonkext.dll.")
 (event-send "ALERTCAT_OPERATIONAL" "ALERTSUBCAT_UNUSABLE"
 "ALERTINFO_FATAL" "0" "stc_dbmonkext.dll load error" "Failed to load
 stc_dbmonkext.dll" 0 (list))
)
 (begin
 (display "Loaded stc_dbmonkext.dll")
))
(if (not (load-extension "stc_uimonkext.dll"))
 (begin
 (set! result "FAILURE")
 (display "Failed to load stc_uimonkext.dll.")
 (event-send "ALERTCAT_OPERATIONAL" "ALERTSUBCAT_UNUSABLE"
 "ALERTINFO_FATAL" "0" "stc_uimonkext.dll load error" "Failed to load
 stc_uimonkext.dll" 0 (list))
)
 (begin
 (display "Loaded stc_uimonkext.dll")
))
 (define connection-handle 0)
 (set! connection-handle (make-connection-handle))
 (if (connection-handle? connection-handle)
 (begin
)
 (begin
 (set! result "FAILURE")
 (display "Failed to create connection handle.")
 (event-send "ALERTCAT_OPERATIONAL" "ALERTSUBCAT_UNUSABLE"
"ALERTINFO_FATAL" "0" "database connection handle creation error" "Failed
to create database connection handle" 0 (list))
))
result
)
))

e*Index Global Identifier Technical Reference 4-100 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Standard Monk API Descriptions

ui-stdver-startup
The ui-stdver-startup function is used for instance-specific function loads,
and invokes setup.

Syntax
(ui-stdver-startup)

Parameters
Parameter Type Description

None

Return Values
The ui-stdver-startup API returns one of the following values:

This value is
returned ...

if this occurs ...

A string (other than
FAILURE)

The function load and setup occurred successfully.

A FAILURE string The function load and setup did not occur successfully.

Note: In this instance, the e*Way will shut down.

Standard Implementation
The example below illustrates how ui-stdver-startup is defined in ui-stdver-
eway-funcs.monk.

(define ui-stdver-startup
 (lambda ()
 (let ((result "SUCCESS"))
 (display "[++] Executing e*Way external startup function.")
 result
)
))

e*Index Global Identifier Technical Reference 4-101 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Standard Monk API Descriptions

ui-stdver-conn-estab
The ui-stdver-conn-estab function establishes a connection to external
systems.

Syntax
(ui-stdver-conn-estab)

Parameters
Parameter Type Description

None

Return Values
The ui-stdver-conn-estab API returns one of the following values:

This value is
returned ...

if this occurs ...

An "UP" string The connection is established successfully.

A "SUCCESS" string The connection is established successfully.

Any other string The connection is not established successfully.

Additional Information
To use standard database time format, add the following function call to this
function after the (db-bind) call:

(db-std-timestamp-format connection-handle)

e*Index Global Identifier Technical Reference 4-102 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Standard Monk API Descriptions

Standard Implementation
The example below illustrates how ui-stdver-conn-estab is defined in ui-
stdver-eway-funcs.monk.

(define ui-stdver-conn-estab
 (lambda ()
 (let ((result "DOWN")(last-dberr ""))
 (display "[++] Executing e*Way external connection establishment
 function.")
 (display "db-retry-conn: logging into the database with:\n")
 (display "DATABASE NAME = ")
 (display DATABASE_SETUP_DATABASE_NAME)
 (newline)
 (display "USER NAME = ")
 (display DATABASE_SETUP_USER_NAME)
 (newline)
 (if (db-login connection-handle DATABASE_SETUP_DATABASE_NAME
 DATABASE_SETUP_USER_NAME DATABASE_SETUP_ENCRYPTED_PASSWORD)
 (begin
 (display "The result of ui-config is ")
 (try (ui-config connection-handle)
 (begin
 (display "OK\n")
 (set! result "UP")
)
 (catch
 (otherwise
 (display "FAILED")
 (newline)
 (display (exception-string-all))
 (newline)
 (display (ui-get-error-string))
 (newline)
 (display (db-get-error-str connection-handle))
 (db-logout connection-handle)
 (set! connection-handle (make-connection-handle))
 "DOWN"
)
)
)
)
 (begin
 (set! last_dberr (db-get-error-str connection-handle))
 (display last_dberr)
 (event-send "ALERTCAT_OPERATIONAL" "ALERTSUBCAT_CANTCONN"
 "ALERTINFO_FATAL" "0" "Cannot connect to database" (string-append

e*Index Global Identifier Technical Reference 4-103 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Standard Monk API Descriptions

 "Failed to connect to database: " DATABASE_SETUP_DATABASE_NAME "with
 error" last_dberr) 0 (list))
 (newline)
 (db-logout connection-handle)
 (set! connection-handle (make-connection-handle))
 (set! result "DOWN")
)
)
 result
)))

e*Index Global Identifier Technical Reference 4-104 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Standard Monk API Descriptions

ui-stdver-conn-ver
The ui-stdver-conn-ver function is used to verify whether external system
connection has been established.

Syntax
(ui-stdver-conn-ver)

Parameters
Parameter Type Description

None

Return Values
The ui-stdver-conn-ver API returns one of the following values:

This value is
returned ...

if this occurs ...

An "UP" string The connection is established successfully.

A "SUCCESS" string The connection is established successfully.

Any other string The connection is not established successfully.

Additional Information
To use standard database time format, add the following function call to this
function after the (db-bind) call:

(db-std-timestamp-format connection-handle)

e*Index Global Identifier Technical Reference 4-105 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Standard Monk API Descriptions

Standard Implementation
The example below illustrates how ui-stdver-conn-ver is defined in ui-stdver-
eway-funcs.monk.

(define ui-stdver-conn-ver
 (lambda ()
 (let ((result "DOWN")(last_dberr ""))
 (display "[++] Executing e*Way external connection verification
 function.")
 (display "ui-stdver-conn-ver: checking connection status...\n")
 (cond ((string=? STCDB "SYBASE")
 (db-sql-select connection-handle "verify" "select
 getdate()")) ((string=? STCDB "ORACLE8i")
 (db-sql-select connection-handle "verify" "select
 getdate()")) ((string=? STCDB "ORACLE8")
 (db-sql-select connection-handle "verify" "select sysdate
 from dual")) ((string=? STCDB "ORACLE7")
 (db-sql-select connection-handle "verify" "select sysdate
 from dual"))
 (else (db-sql-select connection-handle "verify" "select {fn
 NOW()}")))
 (if (db-alive connection-handle)
 (begin
 (db-sql-fetch-cancel connection-handle "verify")
 (set! result "UP")
)
 (begin
 (set! last_dberr (db-get-error-str connection-handle))
 (display last_dberr)
 (event-send "ALERTCAT_OPERATIONAL" "ALERTSUBCAT_LOSTCONN"
 "ALERTINFO_FATAL" "0" "Lost connection to database" (string-
 append "Lost connection to database: "
 DATABASE_SETUP_DATABASE_NAME "with error" last_dberr) 0
 (list))
 (set! connection-handle (make-connection-handle))
 (set! result "DOWN")
)
)
 result
)
))

e*Index Global Identifier Technical Reference 4-106 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Standard Monk API Descriptions

ui-stdver-conn-shutdown
The ui-stdver-conn-shutdown function is called by the system to request that
the interface disconnect from the external system in preparation for a
suspend/reload cycle. Any return value indicates that the suspend can occur
immediately, and the interface will be placed in the down state.

Syntax
(ui-stdver-conn-shutdown suspend-string)

Parameters
Parameter Type Description

suspend-string string When the Control Broker issues a
shutdown command to the e*Way, the
e*Way calls this function and passes
the string "SUSPEND_NOTIFICATION"
as the parameter.

Return Values
The ui-stdver-conn-shutdown API returns one of the following values:

This value is
returned ...

if this occurs ...

A "SUCCESS" string The interface is ready to suspend.

Any other string The connection is not established successfully.

Standard Implementation
The example below illustrates how ui-stdver-conn-shutdown is defined in
ui-stdver-eway-funcs.monk.

(define ui-stdver-conn-shutdown
 (lambda (message-string)
 (let ((result "SUCCESS"))
 (display "[++] Executing e*Way external connection shutdown
 function.")
 (display message-string)
 (db-logout connection-handle)
 result
)
))

e*Index Global Identifier Technical Reference 4-107 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Standard Monk API Descriptions

ui-stdver-pos-ack
The ui-stdver-pos-ack function sends a positive acknowledgment to the
sending system to verify that an Event was received successfully. This
function is also used for post processing after data is successfully sent to
e*Gate.

Syntax
(ui-stdver-pos-ack message-string)

Parameters
Parameter Type Description

message-string string The Event for which an
acknowledgment is sent.

Return Values
The ui-stdver-pos-ack API returns one of the following values:

This value is
returned ...

if this occurs ...

empty string The positive acknowledgment is sent successfully. The
e*Way is then able to proceed with the next request.

CONNERR Connection with the external is lost.

Note: In this instance, the e*Way changes to a down
state and attempts to reconnect. Upon reconnecting,
the pos-ack function is re-executed.

Standard Implementation
The example below illustrates how ui-stdver-pos-ack is defined in ui-stdver-
eway-funcs.monk.

(define ui-stdver-pos-ack
 (lambda (message-string)
 (let ((result ""))
 (display "[++] Executing e*Way external positive
 acknowledgement function.")
 (display message-string)
 result
)
))

e*Index Global Identifier Technical Reference 4-108 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Standard Monk API Descriptions

ui-stdver-neg-ack
The ui-stdver-neg-ack function sends a negative acknowledgment to the
sending system to verify that an Event was not received successfully. This
function is also used for post processing after failing to send data to e*Gate.

Syntax
(ui-stdver-neg-ack message-string)

Parameters
Parameter Type Description

message-string string The Event for which a negative
acknowledgment is sent.

Return Values
The ui-stdver-neg-ack API returns one of the following values:

This value is
returned ...

if this occurs ...

empty string The negative acknowledgment is sent successfully.

CONNERR Connection with the external is lost.

Note: In this instance, the e*Way changes to a down
state and attempts to reconnect. Upon reconnecting,
the neg-ack function is re-executed.

Standard Implementation
The example below illustrates how ui-stdver-neg-ack is defined in ui-stdver-
eway-funcs.monk.

(define ui-stdver-neg-ack
 (lambda (message-string)
 (let ((result ""))
 (display "[++] Executing e*Way external negative
 acknowledgement function.")
 (display message-string)
 result
)
))

e*Index Global Identifier Technical Reference 4-109 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Standard Monk API Descriptions

ui-stdver-shutdown
The ui-stdver-shutdown function is called by the system to request that the
connection to the external system shutdown. After calling this function, you
need to execute a shutdown-request call from within a Monk function to
allow the requested shutdown process to continue.

Syntax
(ui-stdver-shutdown shutdown-notification)

Parameters
Parameter Type Description

shutdown-notification string When the Control Broker issues a
shutdown command to the e*Way , the
e*Way will call this function and pass the
string "SHUTDOWN_NOTIFICATION"
as the parameter.

Return Values
The ui-stdver-shutdown API returns one of the following values:

This value is
returned ...

if this occurs ...

SUCCESS The shutdown request is received successfully, and
shutdown can occur immediately.

Any other string The shutdown request is not received successfully, and
shutdown is delayed until the request is executed
successfully.

Standard Implementation
The example below illustrates how ui-stdver-shutdown is defined in ui-
stdver-eway-funcs.monk.

(define ui-stdver-shutdown
 (lambda (message-string)
 (let ((result ""))
 (display "[++] Executing e*Way external shutdown command notification
 function.")
 result
)
))

e*Index Global Identifier Technical Reference 4-110 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Standard Monk API Descriptions

ui-stdver-proc-outgoing
The function ui-stdver-proc-outgoing is used for sending a received
message (Event) from e*Gate to an external system.

Syntax
(ui-stdver-proc-outgoing message-string)

Parameters
Parameter Type Description

message-string string The Event to be processed.

Return Values
The ui-stdver-proc-outgoing API returns one of the following values:

This value is
returned ...

if this occurs ...

empty string The Event is sent successfully.

RESEND The Event is not sent successfully, and is immediately
resent. The e*Way compares the number of retry
attempts to the parameter Max Resends per Message,
and does one of the following:

•

•

•

•

If the number of attempts does not exceed the
maximum, the e*Way pauses the number of
seconds specified by the Resend Timeout
parameter, increments the "resend attempts"
counter for that message, then repeats the
attempt to send the message.

If the number of attempts exceeds the maximum,
the function returns false and rolls back the
message to the e*Gate IQ from which it was
obtained.

CONNERR There is a problem communicating with the external
system. In this case, the following occurs:

The e*Way pauses the number of seconds
specified by the Resend Timeout parameter.

The e*Way then calls the External Connection
Establishment function according to the Down
Timeout schedule, and rolls back the Event to the
IQ from which it was obtained.

e*Index Global Identifier Technical Reference 4-111 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Standard Monk API Descriptions

This value is
returned ...

if this occurs ...

DATAERR There is a problem with the Event data itself. In this
case, the following occurs:

•

•

The e*Way pauses the number of seconds
specified by the Resend Timeout parameter.

The e*Way then increments its "failed message"
counter, and rolls back the Event to the IQ from
which it was obtained. If the e*Way’s journal is
enabled, the Event is journaled.

A string other than
the above

The function is unsupported. The e*Way creates an
entry in the log file indicating that an attempt has
been made to access an unsupported function.

Standard Implementation
The example below illustrates how ui-stdver-proc-outgoing is defined in ui-
stdver-eway-funcs.monk.

(define ui-stdver-proc-outgoing
 (lambda (message-string)
 (let ((result ""))
 (display "[++] Executing e*Way external process outgoing
 message function.")
 (display message-string)
 result
)
))

e*Index Global Identifier Technical Reference 4-112 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Standard Monk API Descriptions

ui-stdver-proc-outgoing-stub
The ui-stdver-proc-outgoing-stub function is used as a place holder for the
function entry point for sending an Event received from e*Gate to the
external system. If an interface is configured as an inbound only connection,
this function should not be used. This function is used to catch configuration
problems.

Syntax
(ui-stdver-proc-outgoing-stub message-string)

Parameters
Parameter Type Description

message-string string The Event to be processed.

Return Values
The ui-stdver-proc-outgoing-stub API returns one of the following values:

This value is
returned ...

if this occurs ...

empty string The Event is sent successfully.

RESEND The Event is not sent successfully, and is immediately
resent. The e*Way compares the number of retry
attempts to the parameter Max Resends per Message,
and does one of the following:

•

•

•

•

If the number of attempts does not exceed the
maximum, the e*Way pauses the number of seconds
specified by the Resend Timeout parameter,
increments the "resend attempts" counter for that
message, then repeats the attempt to send the
message.

If the number of attempts exceeds the maximum, the
function returns false and rolls back the message to
the e*Gate IQ from which it was obtained.

CONNERR There is a problem communicating with the external
system. In this case, the following occurs:

The e*Way pauses the number of seconds specified
by the Resend Timeout parameter.

The e*Way then calls the External Connection
Establishment function according to the Down
Timeout schedule, and rolls back the Event to the IQ
from which it was obtained.

e*Index Global Identifier Technical Reference 4-113 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Standard Monk API Descriptions

This value is
returned ...

if this occurs ...

DATAERR There is a problem with the Event data itself. In this case,
the following occurs:

•

•

The e*Way pauses the number of seconds specified
by the Resend Timeout parameter.

The e*Way then increments its "failed message"
counter, and rolls back the Event to the IQ from
which it was obtained. If the e*Way’s journal is
enabled, the Event is journaled.

A string other than
the above

The function is unsupported. The e*Way creates an
entry in the log file indicating that an attempt has been
made to access an unsupported function.

Standard Implementation
The example below illustrates how ui-stdver-proc-outgoing-stub is defined
in ui-stdver-eway-funcs.monk.

(define ui-stdver-proc-outgoing-stub
 (lambda (message-string)
 (let ((result ""))
 (display "[++] Executing e*Way external process outgoing
 message function stub.")
 (display message-string)
 (event-send "ALERTCAT_OPERATIONAL" "ALERTSUBCAT_INTEREST"
 "ALERTINFO_NONE" "0" "Possible configuration error."
 (string-append "Default eway process outgoing msg
 function passed following message: " msg) 0 (list))
 result
)
))

e*Index Global Identifier Technical Reference 4-114 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Standard Monk API Descriptions

ui-poll-startup
The ui-poll-startup function is used for instance-specific function loads for
the polling e*Way, and for invoking setup.

Syntax
(ui-poll-startup)

Parameters
Parameter Type Description

None

Return Values
This value is
returned ...

if this occurs ...

A string (other than
FAILURE)

The function load and setup occurred successfully.

A FAILURE string The function load and setup did not occur successfully.

Note: In this instance, the e*Way will shut down.

Standard Implementation
The example below illustrates how ui-poll-startup is defined in ui-stdver-
eway-funcs.monk.

(define ui-poll-startup
 (lambda ()
 (let ((result "SUCCESS"))
 (display "[++] Executing e*Way external startup function.")
 (load "eiEvent.ssc")
 result
)
)
)

e*Index Global Identifier Technical Reference 4-115 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Standard Monk API Descriptions

ui-poll
The ui-poll function is used for retrieving Events from the ui_msg_detail table
in the e*Index database, and then transmitting those Events to external
systems through e*Gate.

Note: By default, ui-poll is configured to return a DATAERR when there is no
data in ui_msg_detail. This causes the polling e*Way to shut down after a number
of retries. You may need to modify this function so it returns NULL when there is
no data in the outbound table.

Syntax
(ui-poll)

Parameters
Parameter Type Description

None

Return Values
This value is
returned ...

if this occurs ...

empty string The send occurs successfully, and the Event is sent to
e*Gate.

CONNERR Connection with the external is lost. In this case, the
e*Way moves to a down state, and attempts to connect.
Upon reconnection, this function is re-executed with the
same Event.

DATAERR There is a problem with the Event data itself. In this case,
the e*Way pauses the number of seconds specified by the
Resend Timeout parameter. The e*Way then increments
its "failed message" counter, and rolls back the Event.

e*Index Global Identifier Technical Reference 4-116 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Standard Monk API Descriptions

Standard Implementation
The example below illustrates how ui-poll is defined in ui-stdver-eway-
funcs.monk. You may want to customize this function to suit the specific
processing requirements for the data in the ui_msg_detail table of your
database.

(define ui-poll
 (lambda ()
 (let ((pollmsg ""))
 (try
 (display "[++] Executing e*Index poll function.\n")
 (set! pollmsg (ui-dequeue connection-handle))
)
 (catch
 (otherwise
 (begin
 (if (db-alive connection-handle)
 (begin
 (set! pollmsg "DATAERR")
)
 (begin
 (set! pollmsg "CONNERR")
)
)
)
)
)
 (display (format "Returning: [%s]\n" pollmsg))
 pollmsg
)
)
)

e*Index Global Identifier Technical Reference 4-117 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Standard Monk API Descriptions

ui-poll-pos-ack
The ui-poll-pos-ack function sends a positive acknowledgment to the polling
e*Way to indicate that an Event was received successfully by an external
system. This function is also used for post processing after data is
successfully sent to e*Gate. The default configuration for ui-poll-pos-ack
includes a call to ui-delete-queue-msg to ensure than any Events that were
successfully received by the external systems are removed from the
outbound queue. Events to be removed are identified by their msg_id field,
which corresponds to the ui_msg_header_id column of the ui_msg_detail
table.

Syntax
(ui-poll-pos-ack message-string)

Parameters
Parameter Type Description

message-string string The Event for which an
acknowledgment is sent.

Return Values
The ui-poll-pos-ack API returns one of the following values:

This value is
returned ...

if this occurs ...

empty string The positive acknowledgment is sent successfully. The
e*Way is then able to proceed with the next request.

CONNERR Connection with the external is lost.

Note: In this instance, the e*Way changes to a down
state and attempts to reconnect. Upon reconnecting,
the pos-ack function is re-executed.

e*Index Global Identifier Technical Reference 4-118 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Standard Monk API Descriptions

Standard Implementation
The example below illustrates how ui-poll-pos-ack is defined in ui-stdver-
eway-funcs.monk.

(define ui-poll-pos-ack
 (lambda (message-string)
 (let ((result "")(msg-id "")

 (input ($make-event-map eiEvent-delm eiEvent-struct)))
 (display "[++] Executing e*Way external positive acknowledgement
 function.")
 (if ($event-parse input message-string)
 (begin
 (set! msg-id (get ~input%eiEvent.EVNT.EVN.msg_id))
 (display (format "Deleting message ID [%s] from the queue\n" msg-id))
 (ui-delete-queue-msg connection-handle msg-id)
)
)
 result
)
))

e*Index Global Identifier Technical Reference 4-119 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Standard Monk API Descriptions

ui-poll-neg-ack
The ui-poll-neg-ack function sends a negative acknowledgment to the
sending system to indicate that an Event was not received successfully. This
function is also used for post processing after an Event transmission fails.
This function flags the failed Events in the ui_msg_detail table. Failed events
are identified by their msg_id field, which corresponds to the
ui_msg_header_id column of the ui_msg_detail table.

Syntax
(ui-poll-neg-ack message-string)

Parameters
Parameter Type Description

message-string string The Event for which a negative
acknowledgment is sent.

Return Values
The ui-poll-neg-ack API returns one of the following values:

This value is
returned ...

if this occurs ...

empty string The negative acknowledgment is sent successfully.

CONNERR Connection with the external is lost.

Note: In this instance, the e*Way changes to a down
state and attempts to reconnect. Upon reconnecting,
the neg-ack function is re-executed.

e*Index Global Identifier Technical Reference 4-120 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Standard Monk API Descriptions

Standard Implementation
The example below illustrates how ui-poll-neg-ack is defined in ui-stdver-
eway-funcs.monk.

(define ui-poll-neg-ack
 (lambda (message-string)
 (let ((result "")(msg-id "")
 (input ($make-event-map eiEvent-delm eiEvent-struct)))
 (display "[++] Executing e*Way external negative acknowledgement
 function.")
 (if ($event-parse input message-string)
 (begin
 (set! msg-id (get ~input%eiEvent.EVNT.EVN.msg_id))
 (display (format "Setting error status of message ID [%s]\n" msg-id))
 (ui-set-queue-id connection-handle msg-id "E")
))
 result
)))

e*Index Global Identifier Technical Reference 4-121 SeeBeyond Proprietary and Confidential

Chapter 4: e*Index Monk APIs Standard Monk API Descriptions

ui-stdver-data-exchg-stub
The ui-stdver-data-exchg-stub function is used as a placeholder for the
function entry point for sending an Event from the external system to e*Gate.
When the interface is configured as an outbound only connection, this
function should not be called.

Syntax
(ui-stdver-data-exchg-stub)

Parameters
Parameter Type Description

None

Return Values
A string

This value is
returned ...

if this occurs ...

empty string The send occurs successfully, and nothing is sent to
e*Gate.

message string The send occurs successfully, and the Event is sent to
e*Gate.

CONNERR Connection with the external is lost. In this case, the
e*Way moves to a down state, and attempts to connect.
Upon reconnection, this function is re-executed with the
same Event.

Standard Implementation
The example below illustrates how ui-stdver-data-exchg-stub is defined in
ui-stdver-eway-funcs.monk.

(define ui-stdver-data-exchg-stub
 (lambda ()
 (let ((result ""))
 (display "[++] Executing e*Way external data exchange
 function stub.")
 (event-send "ALERTCAT_OPERATIONAL" "ALERTSUBCAT_INTEREST"
 "ALERTINFO_NONE" "0" "Possible configuration error." "Default eway
 data exchange function called." 0 (list))
 result
)))

e*Index Global Identifier Technical Reference 4-122 SeeBeyond Proprietary and Confidential

Chapter 5

e*Index Monk Functions

About this Chapter

Overview
This chapter presents background information you need to use the e*Index
Monk functions in ui-fns.monk to reformat your data.

The following diagram illustrates the contents of each major topic in this
chapter. For the page numbers on which specific topics appear, see the next
page of this chapter.

Learn about the standard e*Index Monk
functions provided by SeeBeyond

Learn about each function provided in the
standard e*Index Monk library

About e*Index
Monk Functions

Monk Function
Descriptions

e*Index Global Identifier Technical Reference 5-1 SeeBeyond Proprietary and Confidential

Chapter 5: e*Index Monk Functions About this Chapter

What’s Inside
This chapter provides background information and instructions related to the
topics listed below.

Learning About Monk Functions...5-3
e*Index Monk Function Descriptions ...5-5

Overview...5-5
strip-ssn ..5-5
strip-phone..5-7
filter-zip ...5-8
filter-paren...5-10
string-all-char? ..5-11
convert-sp-nul-zero...5-12
convert-empty2quotes ..5-14
trim-lead-space? ...5-16
ui-get-next-element...5-17
ui-has-next-element ..5-18

e*Index Global Identifier Technical Reference 5-2 SeeBeyond Proprietary and Confidential

Chapter 5: e*Index Monk Functions Learning About e*Index Monk Functions

Learning About e*Index Monk Functions

Overview
This section of the chapter provides background information about the
e*Index Monk functions that you can use to reformat your data. The
functions are located in the files ui-fns.monk.

What are e*Index Monk Functions?
e*Index Monk functions are specialized commands that allow you to transform
your data into a useable format through a Monk script. For example, if you
are transferring data from a system that stores telephone numbers with any
non-numeric characters, you can use a function named strip-phone to remove
the unwanted characters before transferring the data. Use these functions to
modify ui-custom.monk, which contains the commands that define the fields
in your Monk lists such as get-demographics, get-alias, get-transaction, get-
phone, and get-address. The Monk lists created by ui_custom.monk are
passed through Monk APIs as parameters, so the list data must be in the
correct format in order for Events to be processed correctly.

The Monk functions are defined in your ui_fns.monk file. Descriptions of
these functions begin on page 5-5.

Can I Modify e*Index Monk Functions?
You can customize the Monk functions in ui-fns.monk to match the data
requirements of your business. If necessary, you can also add new functions
to ui-fns.monk to perform additional modifications to the data in the Monk
lists. These commands are written in the Monk scripting language. For more
information about Monk, see your Monk Developer's Reference.

What e*Index Monk Functions are Defined?
Several e*Index Monk functions are defined in the Monk library to help you
tailor demographic data into the format required by your business systems.
Use the table on the following page to identify each function and its purpose.

e*Index Global Identifier Technical Reference 5-3 SeeBeyond Proprietary and Confidential

Chapter 5: e*Index Monk Functions Learning About e*Index Monk Functions

Table 4-1: Standard e*Index Monk Functions

Use this Monk
function …

to perform this action …

strip-ssn Remove any non-numeric characters from a
social security number.

strip-phone Remove any non-numeric characters from a
telephone number.

filter-dob Remove non-numeric characters from a date.
This function does not remove dashes ("-") from
a date.

filter-paren Remove the parenthesis from the specified data
string.

string-all-char? Verify that a string consists only of a specified
character. Use this function to determine if a
data string consists solely of spaces.

convert-sp-nul-zero Convert a string that contains spaces, or null or
zero values into double quotes. This function
does not alter an empty string.

convert-empty2quotes Convert a string that contains spaces, or null or
zero values into double quotes. This function
converts an empty string to double quotes.

trim-lead-space Remove any spaces at the beginning of a string.

ui-get-next-element Returns the next element in a vector.

ui-has-next-element Checks if there is a next element in a vector, and
returns #t if a next element is found.

For More Information

Other e*Index publications may help you to learn how to perform tasks
associated with using Monk functions.

 To learn more about … See ...

The Monk programming language Your Monk Developer's Reference

e*Index Monk APIs and Lists Chapter 4 of this guide

e*Index Features and Functions Your e*Index Global Identifier User's
Guide

e*Index Global Identifier Technical Reference 5-4 SeeBeyond Proprietary and Confidential

Chapter 5: e*Index Monk Functions e*Index Monk Function Descriptions

e*Index Monk Function Descriptions

Overview
This section of the chapter describes the Monk functions that are defined in
ui_fns.monk. Use these functions to alter the data you are working with into a
useable format.

strip-ssn
The strip-ssn function removes the non-numeric characters from a given
social security number, and changes the format from xxx-yy-zzzz to
xxxyyzzzz. This function also checks for invalid SSNs, such as 111-11-1111,
222-22-2222, 999-99-9999, and so on.

Syntax
(strip-ssn <ssn_no>)

Parameter
Parameter Type Description
ssn_no string The social security number to be stripped.

Return Value
The strip-ssn function returns one of the following values:

This value is
returned ...

if this occurs ...

<empty string> The SSN field is empty.

" " The original SSN is non-numeric or is " " , or the SSN
is less than 9 digits in length.

An SSN in the format
xxxyyzzzz

The original SSN is in xxx-yy-zzzz or xxxyyzzzz
format.

e*Index Global Identifier Technical Reference 5-5 SeeBeyond Proprietary and Confidential

Chapter 5: e*Index Monk Functions e*Index Monk Function Descriptions

Example
The following example modifies the social security number in a demographic
list by removing the dashes. If DEMO.SSN_number equals 948-88-8884, the
return value is 948888884.

(define get-demographics
 (lambda (msg)
 (begin
 (list (get ~<msg>.DEMO.person_name.NM.last_name)
 (get �
)
 (strip-ssn (get ~<msg>.DEMO.SSN_number))
 (�
)

e*Index Global Identifier Technical Reference 5-6 SeeBeyond Proprietary and Confidential

Chapter 5: e*Index Monk Functions e*Index Monk Function Descriptions

strip-phone
The strip-phone function removes the non-numeric characters from a phone
number, and verifies that the number is valid. Invalid numbers include
numbers such as (000)000-0000, (111)111-1111, 999-999-9999, and so on. Strip
phone also verifies the length of the phone number.

Syntax
(strip-phone <phone_no>)

Parameters
Parameter Type Description

phone_no string The telephone number to be stripped.

Return Value
The strip-phone function returns one of the following values:

This value is
returned ...

if this occurs ...

<empty string> The telephone number field is empty.

An telephone number
in the format
xxxyyyzzzz

The original telephone number is in xxxyyyzzzz, xxx-
yyy-zzzz, or (xxx)yyy-zzzz format.

Example
The following example removes any parenthesis or dashes from the
telephone numbers included in the telephone list. If PH.phone_number
equals (050)551-5551, then the return value is 0505515551.

(define get-phone
 (lambda (msg index)
 (list (get ~<msg>.DEMO.phone[<index>].PH.type)
 (strip_phone
 (get ~<msg>.DEMO.phone[<index>].PH.phone_number)
)
 (get ~<msg>.DEMO.phone[<index>].PH.phone_ext)
)
)
)

e*Index Global Identifier Technical Reference 5-7 SeeBeyond Proprietary and Confidential

Chapter 5: e*Index Monk Functions e*Index Monk Function Descriptions

filter-zip
The filter-zip function separates a zip code and zip extension when the
original data includes both in the same field.

Syntax
(filter-zip <arg1> <arg2>)

Parameters
Parameter Type Description

arg1 string The zip code or zip code plus extension.

arg2 string The value to be returned. Enter zip to
return the zip code, or enter ext to return
the zip code extension.

Return Value
The filter-zip function returns one of the following values:

This value is
returned ...

if this occurs ...

" " The zip code field does not contain a zip code, and the
value you enter for <arg2> is zip.

" " The zip code field does not contain a zip extension, and
the value you enter for <arg2> is ext.

A zip code without
the zip extension

The zip code field contains a zip code, and the value
you enter for <arg2> is zip.

A zip extension
without the zip
code

The zip code field contains a zip extension, and the
value you enter for <arg2> is ext.

e*Index Global Identifier Technical Reference 5-8 SeeBeyond Proprietary and Confidential

Chapter 5: e*Index Monk Functions e*Index Monk Function Descriptions

Example
The following example separates the zip code and zip extension into two
separate fields. In the original data, the zip code and extension were
included together in one field. If the original zip code and extension is 58623-
1825, the return value for the first filter-zip function is 58623, and the return
value for the second filter-zip function is 1825.

(define get-address
 (lambda (msg index)
 (list (get ~<msg>.DEMO.address[<index>].AD.type)
 (get...
)
 (filter-zip (get ~<msg>.DEMO.address[<index>].AD.zip)
)
 (filter-zip (get ~<msg>.DEMO.address[<index>].AD.zip_ext)
)
 (get...
)
)
)
)

e*Index Global Identifier Technical Reference 5-9 SeeBeyond Proprietary and Confidential

Chapter 5: e*Index Monk Functions e*Index Monk Function Descriptions

filter-paren
The filter-paren function removes any parentheses contained in the given
input string.

Syntax
(filter-paren <arg1>)

Parameters
Parameter Type Description

arg1 string The data from which you want to remove
the parenthesis.

Return Value
The filter-paren function returns one of the following values:

This value is
returned ...

if this occurs ...

The original input
string without the
parenthesis

The original input string contains parenthesis.

The original input
string

The original input string does not contain any
parenthesis.

Example
The following example checks for and removes parenthesis in the last name
field of the demographic list. For example, if the value of
DEMO.person_name.NM.last_name is (Thorenson), the return value is
Thorenson.

(define get-demographics
 (lambda (msg)
 (begin
 (list (filter_paren
 (get ~<msg>.DEMO.person_name.NM.last_name)
)
 (get �
)
)
)
)
)

e*Index Global Identifier Technical Reference 5-10 SeeBeyond Proprietary and Confidential

Chapter 5: e*Index Monk Functions e*Index Monk Function Descriptions

string-all-char?
The string-all-char? function tests a string to see if it consists only of the
input character. Typical usage of this function is to test if a string is all
spaces.

Syntax
(string-all-char #\<arg1> <arg2>)

Parameters
Parameter Type Description

arg1 character The character that you want the function to
check for in the given string. You are
verifying that the string consists only of this
character. To check if the given string is all
spaces, use the text space for arg1.

arg2 string The data you want to verify.

Return Value
The string-all-char? function returns one of the following values:

This value is
returned ...

if this occurs ...

#t The input string consists only of the character you
specify in <arg1>.

#f The input string includes characters other than the
character you specify in <arg1>.

Example
In the example below, string-all-char? is used to determine whether the
phone number field is all spaces. If the field is all spaces, then string-all-
char? returns #t. If the field is not all spaces, then string-all-char? returns #f.

(define get-phone
 (lambda (msg index)
 (list (get ~<msg>.DEMO.phone[<index>].PH.type)
 (string-all-char? #\space
 (get ~<msg>.DEMO.phone[<index>].PH.phone_number)
)
 (get ~<msg>.DEMO.phone[<index>].PH.phone_ext)
)
)
)

e*Index Global Identifier Technical Reference 5-11 SeeBeyond Proprietary and Confidential

Chapter 5: e*Index Monk Functions e*Index Monk Function Descriptions

convert-sp-nul-zero
The convert-sp-nul-zero function interprets spaces, null values, or zero
characters within a field by translating the string into double quotes. Usage
of this function is coordinated with the e*Index rule that double quotes
passed into a field cause the field to be nullified.

Syntax
(convert-sp-nul-zero <arg1> <#t if check for spaces> <#t if
check for nulls> <#t if check for zeros>)

Parameters
Parameter Type Description

arg1 string The data you want to check for spaces, and
null or zero characters.

if check for
spaces

Boolean An indicator that specifies whether to check
for spaces in the string. Enter #t to check for
spaces; enter #f if you do not want to check
for spaces.

if check for nulls Boolean An indicator that specifies whether to check
for null values in the string. Enter #t to
check for nulls; enter #f if you do not want
to check for nulls.

if check for
zeros

Boolean An indicator that specifies whether to check
for zero values in the string. Enter #t to
check for zero values; enter #f if you do not
want to check for zero values.

Return Value
The convert-sp-nul-zero function returns one of the following values:

This value is
returned ...

if this occurs ...

The original input
string

The input string does not contain the values you
specify (space, null, or zero).

" " The input string contains any of the values you specify
(space, null, or zero).

<empty string> The input string is an empty string.

e*Index Global Identifier Technical Reference 5-12 SeeBeyond Proprietary and Confidential

Chapter 5: e*Index Monk Functions e*Index Monk Function Descriptions

Example
The following example checks the VIP field for any spaces, and if any are
found, returns double quotes. If no spaces are found, then the return value
is the original value of the field.

(define get-demographics
 (lambda (msg)
 (begin
 (list (get ~<msg>.DEMO.person_name.NM.last_name)
 (get �
)
 (convert-sp-nul-zero (get ~<msg>.DEMO.vip) #t #f #f)
 (get �
)
)
)
)
)

e*Index Global Identifier Technical Reference 5-13 SeeBeyond Proprietary and Confidential

Chapter 5: e*Index Monk Functions e*Index Monk Function Descriptions

convert-empty2quotes
The convert-empty2quotes function is identical to convert-sp-nul-zero
(described above) except that it returns double quotes rather than an empty
string when the input is an empty string.

Syntax
(convert-empty2quotes <arg1> <#t if check for spaces> <#t if
check for nulls> <#t if check for zeros>)

Parameters
Parameter Type Description

arg1 string The data you want to check for spaces, null,
or zero characters.

if check for
spaces

Boolean An indicator that specifies whether to check
for spaces in the string. Enter #t to check
for spaces; enter #f if you do not want to
check for spaces.

if check for nulls Boolean An indicator that specifies whether to check
for null values in the string. Enter #t to
check for nulls; enter #f if you do not want
to check for nulls.

if check for
zeros

Boolean An indicator that specifies whether to check
for zero values in the string. Enter #t to
check for zero values; enter #f if you do not
want to check for zero values.

Return Value
The convert-empty2quotes function returns one of the following values:

This value is
returned ...

if this occurs ...

The original input
string

The input string does not contain the values you
specify (space, null, or zero).

" " The input string contains any of the values you specify
(space, null, or zero).

" " The input string is an empty string.

e*Index Global Identifier Technical Reference 5-14 SeeBeyond Proprietary and Confidential

Chapter 5: e*Index Monk Functions e*Index Monk Function Descriptions

Example
The following example checks the VIP field to see if it is an empty string, or
contains null characters. If it is an empty string or if there are any null values
in the string, then the output is double quotes. If the string is VIP, then the
output is VIP.

(define get-demographics
 (lambda (msg)
 (begin
 (list (get ~<msg>.DEMO.person_name.NM.last_name)
 (get �
)
 (convert-empty2quotes (get ~<msg>.DEMO.vip) #f #t #f)
 (get �
)

)
)
)
)

e*Index Global Identifier Technical Reference 5-15 SeeBeyond Proprietary and Confidential

Chapter 5: e*Index Monk Functions e*Index Monk Function Descriptions

trim-lead-space
The trim-lead-space function returns the input string with any leading
spaces removed. All other spaces are untouched.

Syntax
(trim-lead-space <arg1>)

Parameters
Parameter Type Description

arg1 string The string from which you want to remove
any spaces that exist before the text.

Return Value
The trim-lead-space function returns one of the following values:

This value is
returned ...

if this occurs ...

The original input
string

The input string does not contain any spaces at the
beginning of the text.

The original string with
no leading spaces

The input string contains spaces at the beginning of
the text.

Example
In the example below, any leading spaces that exist before the last name in
the demographic list are removed. If DEMO.person_name.NM.last_name is
" Johnson", then the return value is "Johnson".

(define get-demographics
 (lambda (msg)
 (begin
 (list (trim-lead-space
 (get ~<msg>.DEMO.person_name.NM.last_name)
 (get �
)
 (convert-empty2quotes (get ~<msg>.DEMO.vip) #f #t #f)
 (get �
)
)
)
)
)

e*Index Global Identifier Technical Reference 5-16 SeeBeyond Proprietary and Confidential

Chapter 5: e*Index Monk Functions e*Index Monk Function Descriptions

ui-get-next-element
The ui-get-next-element function retrieves the next element in a vector. Use
this function in conjunction with ui-has-next-element to scroll through the
local IDs returned by the APIs ui-lookup-local-id, ui-search-local-id, and ui-
get-all-local-id.

Syntax
(ui-get-next-element vector-obj)

Parameter
Parameter Type Description
vector-obj vector A vector containing the elements through

which you want to scroll.

Return Value
The ui-get-next-element function returns one of the following values:

This value is
returned ...

if this occurs ...

The next element in
the vector

The next element exists in the vector.

Exception There is no next element to retrieve. This also causes
an abort.

Example
The following example searches for active local ID records associated with
the UID represented by the variable uid. If local ID records are returned, it
calls ui-has-next-element and ui-get-next-element to scroll through the
records.

 ...
 (set! lids (ui-search-local-id uid system "A"))
 (if lids
 (begin
 (do
 ((i 0 (+ i 1)))
 ((not (ui-has-next-element lids)))
 (display (format "%d: %a\n" i (ui-get-next-element lids)))
)
)
)
 (display "No LIDs\n")
 ...

e*Index Global Identifier Technical Reference 5-17 SeeBeyond Proprietary and Confidential

Chapter 5: e*Index Monk Functions e*Index Monk Function Descriptions

ui-has-next-element
The ui-has-next-element function checks whether there is a next element in a
vector, and returns Boolean true if a next element is found. Use this function
in conjunction with ui-get-next-element to scroll through the local IDs
returned by the APIs ui-lookup-local-id, ui-search-local-id, and ui-get-all-
local-id.

Syntax
(ui-has-next-element vector-obj)

Parameter
Parameter Type Description
vector-obj vector A vector containing the elements through

which you want to scroll.

Return Value
The ui-has-next-element function returns one of the following values:

This value is
returned ...

if this occurs ...

#t The vector list contains another element.

f The vector list does not contain any more elements.

Example
The following example searches for active local ID records associated with
the UID represented by the variable uid. If local ID records are returned, it
calls ui-has-next-element and ui-get-next-element to scroll through the
records.

 ...
 (set! lids (ui-search-local-id uid system "A"))
 (if lids
 (begin
 (do
 ((i 0 (+ i 1)))
 ((not (ui-has-next-element lids)))
 (display (format "%d: %a\n" i (ui-get-next-element lids)))
)
)
)
 (display "No LIDs\n")
 ...

e*Index Global Identifier Technical Reference 5-18 SeeBeyond Proprietary and Confidential

	Table of Contents
	Introduction
	About this Chapter
	Overview
	What’s Inside

	Welcome
	What is e*Index?
	To New Users
	To Established Users

	About this Guide
	What is the Purpose of this Guide?
	What is the Scope of this Guide?
	Who Should Use this Guide?
	How Should this Guide be Used?
	How is this Guide Organized?
	What Conventions are Used in this Guide?

	Learning About e*Index
	Overview
	What is e*Index?
	How is Data Processed?
	What is Monk?
	What are e*Index Monk APIs?
	What are e*Index Monk Functions?

	Additional Resources

	Understanding Operational Processes
	About this Chapter
	Overview
	What’s Inside

	Learning About e*Index
	Overview
	About e*Index Components
	About e*Index Functionality

	Learning About Event Processing
	Overview
	About Inbound Events
	About Outbound Events
	About Inbound Event Processing Logic

	Learning About the Default ETD
	Overview
	Formatting Guidelines
	Sample Inbound Event
	About Outbound Events

	Learning About the e*Index Database
	Overview
	Database Tables
	e*Index 4.5.1 Oracle Database Model

	Customizing e*Index
	About this Chapter
	Overview
	What’s Inside

	Learning About e*Index Schema Components
	Overview
	Schema Component Distribution
	About the Sample Schema
	About the Collaboration Script
	What is the e*Index Monk Library?
	About e*Ways
	About Monk Configuration Functions

	Learning About the e*Way Configuration Parameters
	Overview
	Modifying e*Way Configuration Parameters
	General Settings
	Communication Setup
	Monk Configuration
	Database Setup

	e*Index Monk APIs
	About this Chapter
	Overview
	What’s Inside

	Learning About e*Index Monk APIs
	Overview
	What are e*Index Monk APIs?
	What are Standard Monk APIs for e*Index?
	What Monk Lists are Defined for e*Index?
	How do Control Keys Affect APIs?
	What Monk APIs are Available?
	Which Monk API Should I Use?
	For More Information

	e*Index Monk API Descriptions
	Overview
	db-get-error-str
	make-connection-handle
	ui-address-search-close
	ui-address-search-next
	ui-address-search-open
	ui-commit-transaction
	ui-config
	ui-deactivate-local-id
	ui-delete-address
	ui-delete-aux-id
	ui-delete-queue-msg
	ui-delete-unresolved-duplicates
	ui-dequeue
	ui-exists-aux-id
	ui-get-alias
	ui-get-all-local-id
	ui-get-assumed-match-enabled
	ui-get-aux-id
	ui-get-db-date-time
	ui-get-demographic-changed
	ui-get-dupchk-enabled
	ui-get-error-string
	ui-get-id-system
	ui-get-local-id
	ui-get-person
	ui-get-transaction-date-time
	ui-get-uid
	ui-get-vip
	ui-insert-address
	ui-insert-alias
	ui-insert-assumed-match
	ui-insert-aux-id
	ui-insert-local-id
	ui-insert-person
	ui-local-id-merge
	ui-local-id-status
	ui-lookup
	ui-lookup-address-id
	ui-lookup-local-id
	ui-merge
	ui-process-address
	ui-process-person
	ui-process-phone
	ui-rollback-transaction
	ui-search-close
	ui-search-get-exact-match-score
	ui-search-get-exact-match-uid
	ui-search-insert-duplicate
	ui-search-local-id
	ui-search-open
	ui-set-dup-threshold
	ui-set-match-threshold
	ui-set-queue-id
	ui-start-transaction
	ui-update-address
	ui-update-aux-id
	ui-update-person

	Standard Monk API Descriptions
	Overview
	ui-stdver-init
	ui-stdver-startup
	ui-stdver-conn-estab
	ui-stdver-conn-ver
	ui-stdver-conn-shutdown
	ui-stdver-pos-ack
	ui-stdver-neg-ack
	ui-stdver-shutdown
	ui-stdver-proc-outgoing
	ui-stdver-proc-outgoing-stub
	ui-poll-startup
	ui-poll
	ui-poll-pos-ack
	ui-poll-neg-ack
	ui-stdver-data-exchg-stub

	e*Index Monk Functions
	About this Chapter
	Overview
	What’s Inside

	Learning About e*Index Monk Functions
	Overview
	What are e*Index Monk Functions?
	Can I Modify e*Index Monk Functions?
	What e*Index Monk Functions are Defined?
	For More Information

	e*Index Monk Function Descriptions
	Overview
	strip-ssn
	strip-phone
	filter-zip
	filter-paren
	string-all-char?
	convert-sp-nul-zero
	convert-empty2quotes
	trim-lead-space
	ui-get-next-element
	ui-has-next-element

	Home Text: Click here to view additional e*Index publications.
	Home:

