
e*Insight Business Process
Manager Implementation
Guide

Release 4.5.2
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBI, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 1999–2002 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20020220105939.
e*Insight Business Process Manager Implementation Guide 2 SeeBeyond Proprietary and Confidential

Contents
Contents

Chapter 1

Introduction 17
Document Purpose and Scope 17

Intended Audience 17

Writing Conventions 18

Supporting Documents 19

SeeBeyond Web Site 19

Chapter 2

Introduction to the SeeBeyond eBI Suite 20
SeeBeyond eBusiness Integration Suite 20

SeeBeyond eBusiness Integration Suite Components 21
e*Gate Integrator Components 22

Introducing e*Insight Business Process Manager (e*Insight) 23

Building an eApplication 24

Basic Information 24

Chapter 3

Implementation Overview 25
Basic Information 25

Implementation Road Map 25
Step 1: Create a Business Process 26
Step 2: Copy the e*Insight Schema 26
Step 3: Configure the e*Insight Schema Based on the Business Process 26
Step 4: Configure the e*Gate Components 27
Step 5: Test and Tune the System 27

The e*Insight Schema 27
The eIJSchema (Java) 27
The eISchema (Classic) 28
e*Insight Business Process Manager Implementation Guide 3 SeeBeyond Proprietary and Confidential

Contents
Chapter 4

e*Insight Schema Components (eIJSchema) 29
The Purpose of the e*Gate Schema for e*Insight 29

e*Insight Components 29

e*Insight Schema Components Overview 30
e*Insight Schema Component Relationships Diagram 31

e*Insight Business Process Manager Components 32
Components That Run Business Processes 32
Components that Start Business Processes 33
Components that Implement Business Process Activities 33

e*Insight Engine 33
Configuring the e*Insight Engine 34
Configuring the e*Insight Engine Connection 34
eIcr_eBPM Collaboration 38

eI_Resubmitter BOB 38
Configuring the eI_Resubmitter BOB 39
eI_Resubmitter Collaboration 39

Failed Event Handling by the e*Insight Engine 39
Error Types 39
Error Handling 40

START_BP Component 40
Configuring the START_BP Component 41
START_BP Collaboration 41

Single-Mode Activity e*Way 41
Configuring the eX_to_Activity e*Way 42
eX_to_Activity Collaboration 42
eX_from_Activity Collaboration 44

Multi-Mode Activity e*Way 44
eX_Activity Collaboration 45

Activity BOB 45
eX_Activity Collaboration 46

Using Monk in eIJSchema 47
Updating an eISchema to use the eIJSchema engine 47

Chapter 5

e*Insight Schema Components (eISchema) 48
The Purpose of the e*Gate Schema for e*Insight 48

e*Insight Components 48

e*Insight Schema Components Overview 49
Additional Components 49

e*Insight Schema Component Relationships Diagram 50

e*Insight Business Process Manager Components 51
Components That Run Business Processes 51
Components that Start Business Processes 52
Components that Implement Business Process Activities 52
e*Insight Business Process Manager Implementation Guide 4 SeeBeyond Proprietary and Confidential

Contents
e*Insight Engine 52
Configuring the e*Insight Engine 53
eX_from_eBPM Collaboration 57
eX_to_eBPM Collaboration 57

eI_Resubmitter BOB 57
Configuring the eI_Resubmitter BOB 58
eI_Resubmitter Collaboration 58

Failed Event Handling by the e*Insight Engine 58
Error Types 58
Error Handling 59

START_BP Component (e*Way or BOB) 59
Configuring the START_BP Component 60
START_BP Collaboration 61

Activity e*Way 62
Configuring the eX_to_Activity e*Way 62
eX_to_Activity Collaboration 63
eX_from_Activity Collaboration 64

Activity BOB 64
eX_Activity Collaboration 65

Chapter 6

Understanding the e*Insight ETD 67
Using the ETD with e*Insight 67

About Business Process Attributes 67
Global Attributes 68
Local Attributes 68

e*Insight ETD for Java — eI_StandardEvent.xsc 69
BP_EVENT 69

BP_EVENT Element 70
BP_EVENT.ACTIVITY Nodes 71
ACTIVITY Element 71
ACTIVITY.ATTRIBUTE Element 72
BP_EVENT.ATTRIBUTE Nodes 72

e*Insight ETD for Monk—eX_Standard_Event.ssc 74
ETD Structure 74
XML Element with Sub-elements 74
XML Element without sub-elements 75
XML Attribute 75
Element Overview 76

Example: XML Element with Sub-elements 76
Example: XML Element with Attributes 77

Using eX_Standard_Event.ssc 78
BP_EVENT 78

BP_EVENT.AS Nodes 78
BP_EVENT.CT.DSN.DS.ACTIVITY Nodes 80
ACTIVITY.AS Nodes 80
ACTIVITY.CT.DSN.DS.ATTRIBUTE Nodes 80
BP_EVENT.CT.DSN.DS.ATTRIBUTE.AS Nodes 81
e*Insight Business Process Manager Implementation Guide 5 SeeBeyond Proprietary and Confidential

Contents
Chapter 7

Common Configuration Tasks 83
Implementation Road Map 84

Common Configuration Tasks 84
Copy the e*Insight Schema 85

Using the e*Insight GUI 85
Copying the Schema from the Registry Host 86
Installing from the CD 86

Sending Messages to the e*Insight Engine (eIJSchema) 87
Starting a Business Process (eIJSchema) 87
Setting Attributes (eIJSchema) 87
Getting Attributes (eIJSchema) 88
Sending the “Done” Event Back to e*Insight (eIJSchema) 88

Sending Messages to the e*Insight Engine (eISchema) 90
Starting a Business Process (eISchema) 90
Setting Attributes (eISchema) 91

Setting Attributes in a Monk Collaboration 91
Setting Attributes in a Java Collaboration 92

Getting Attributes (eISchema) 92
Getting Attributes in a Monk Collaboration 92
Getting Attributes in a Java Collaboration 93

Sending the “Done” Event Back to e*Insight (eISchema) 93

Chapter 8

e*Insight Implementation (eIJSchema) 96
Overview 96

Case Study: Payroll Processing 97

Create the Payroll BP in e*Insight 100
Creating the processes performing the Activities 102

Configuring the e*Insight Script for Update_Status 102

Configure the Integration Schema (e*Insight) 103
Integration Schema Activity Components Summary 103
Creating the eX_Check_Eligibility Multi-Mode e*Way 104
Creating the eX_Calculate_Bonus BOB 106
Process_Payroll e*Way Configuration 107

Configure the Integration Schema (e*Gate) 107
Configure the e*Insight Engine 107

Edit the eIcp_eInsightEngine Connection Configuration File 107
Configure the JMS Connection 108

Configure User-defined e*Gate Components 108
Configuration Order for the User-defined Components 108

Configure the START_BP e*Way 108
Step 1: Create the START_BP e*Way 109
Step 2: Create the Input ETD 110
e*Insight Business Process Manager Implementation Guide 6 SeeBeyond Proprietary and Confidential

Contents
Step 3: Create the START_BP Collaboration 110
Step 4: Configure the Collaboration in the GUI 112

Configure the Process_Payroll e*Way 113
Step 1: Configure the e*Way 114
Step 2: Create the Output ETD:PayrollProcess.xsc using Java 114
Step 3: Create the Process_Payroll Collaboration Rule 114
Step 4: Configure the Collaboration 116

Run and Test the e*Insight scenario 117
Testing the Standard Business Logic 117

Payroll Processing 118
Not Eligible Processing 119

Demonstrating Business Process Undo Functionality 121
Manual Undo 122

Demonstrating Business Process Restart Functionality 123
Repairing a String Attribute 123

Chapter 9

e*Insight Authorization Activity Implementation (eIJSchema) 126
Overview 126

Case Study: Payroll Processing 126

Step 1: Update the Payroll BP in e*Insight 128
Creating the processes performing the Activities 129

Configuring the e*Insight Script for Bonus_Refused 129

Step 2: Run and Test the e*Insight scenario 129
Testing the Standard Business Logic 130

Authorized Processing 130
Not Authorized Processing 132

Chapter 10

e*Insight Implementation (eISchema) 133
Overview 133

Case Study: Order Processing 134

Create the ProcessOrder BP in e*Insight 137
Creating the processes performing the Activities 139

Configuring the e*Insight Script for Ship_Ord 139

Configure the Integration Schema 140
Integration Schema Activity Components Summary 140
Creating the eX_Check_Inv BOB 141
Creating the eX_Out_of_Inv BOB 144
Send_Status e*Way Configuration 147

Configure the e*Insight Engine 148
Edit the eX_eBPM Configuration File 148

Configure User-defined e*Gate Components 148
Configuration Order for the User-defined Components 148
e*Insight Business Process Manager Implementation Guide 7 SeeBeyond Proprietary and Confidential

Contents
Configure the START_BP e*Way 149
Step 1: Create the START_BP e*Way using Monk 149
Step 2: Create the Input ETD using Monk 150
Step 3: Create the START_BP CRS using Monk 150
Step 4: Configure the START_BP Collaboration in the GUI using Monk 151
Step 1: Create the START_BP e*Way using Java 152
Step 2: Create the Input ETD using Java 152
Step 3: Create the START_BP Collaboration using Java 153
Step 4: Configure the Collaboration in the GUI using Java 155

Configure the Send_Status e*Way 156
Step 1: Configure the eX_Send_Status e*Way using Monk 156
Step 2: Create the Output ETD using Monk 157
Step 3: Create the eX_Send_Status.tsc CRS using Monk 157
Step 4: Configure the Collaboration using Monk 158
Step 1: Configure the e*Way using Java 159
Step 2: Create the Output ETD: SendStatus.xsc using Java 159
Step 3: Create the Send_Status Collaboration Rule using Java 160
Step 4: Configure the Collaboration using Java 161

Run and Test the e*Insight scenario 162
Testing the Standard Business Logic 162

In-Stock Processing 162
Out-of-Stock Processing 164

Demonstrating Business Process Undo Functionality 165
Manual Undo 165

Demonstrating Business Process Restart Functionality 167
Repairing a String Attribute 167

Chapter 11

e*Insight Authorization Activity Implementation (eISchema) 170
Overview 170

Case Study: Order Processing 170

Step 1: Create the ProcessOrder BP in e*Insight 173

Step 2: Configure the Integration Schema 174
Integration Schema Activity Components Summary 174

Step 3: Configure User-defined e*Gate Components 174
Configure the Activity BOB CRS in the Enterprise Manager GUI 174
Configure the Activity BOB Collaborations in the Enterprise Manager GUI 175

Configure the Authorize_Quantity e*Way 175
Step 2: Create the Authorize_Quantity.tsc CRS 175
Step 3: Configure the e*Way 176
Step 4: Configure the Collaboration 176

Step 5: Run and Test the e*Insight scenario 177
Testing the Standard Business Logic 177

Authorized Processing 177
Not Authorized Processing 179
e*Insight Business Process Manager Implementation Guide 8 SeeBeyond Proprietary and Confidential

Contents
Chapter 12

e*Insight User Activity Implementation 181
Overview of the User Activity 181

User Activity Security 181
Deployment of the User Activity 182

Overview of the Payroll BP 182

Overview 183
Case Study: Payroll Processing with User Activity 183

Step 1: Update the Payroll BP in e*Insight 183

Step 2: Configure the Integration Schema 184

Step 3: Run and Test the e*Insight scenario 185
Testing the User Activity 185

Overview of the ProcessOrder BP 187

Overview 188
Case Study: Order Processing with User Activity 188

Step 1: Update the ProcessOrder BP in e*Insight 188

Step 2: Configure the Integration Schema 189

Step 3: Run and Test the e*Insight scenario 190
Testing the User Activity 190

Chapter 13

e*Insight Sub-Process Implementation (eIJSchema) 193
Overview of the Sub-Process Example 193

Create the CalculateBonus BP in e*Insight 194

Configure the Integration Schema for CalculateBonus 195

Modify the Payroll BP in e*Insight 196

Configure the Integration Schema for Payroll 197

Run and Test the e*Insight scenario 197

Overview of the Dynamic Sub-Process Example 198

Create the accounts BP in e*Insight 199

Configure the Integration Schema for accounts 199
Creating the CRS in e*Gate 200

Create the marketing BP in e*Insight 201

Configure the Integration Schema for marketing 201
Creating the CRS for eX_Calculate_Bonus_marketing in e*Gate 201

Modify the Payroll BP in e*Insight 203
e*Insight Business Process Manager Implementation Guide 9 SeeBeyond Proprietary and Confidential

Contents
Configure the Integration Schema for Payroll 204

Run and Test the e*Insight scenario 204

Chapter 14

e*Insight Sub-Process Implementation (eISchema) 205
Overview of the Sub-Process Example 205

Create the CheckInventory BP in e*Insight 206

Configure the Integration Schema for CheckInventory 207

Modify the ProcessOrder BP in e*Insight 208

Configure the Integration Schema for ProcessOrder 209

Run and Test the e*Insight scenario 209

Overview of the Dynamic Sub-Process Example 210

Create the CA BP in e*Insight 211

Configure the Integration Schema for CA 211
Creating the CRS in e*Gate 213

Create the OR BP in e*Insight 214

Configure the Integration Schema for OR 214
Creating the CRS in e*Gate 216

Modify the ProcessOrder BP in e*Insight 217

Configure the Integration Schema for ProcessOrder 218

Run and Test the e*Insight scenario 218

Chapter 15

e*Insight Remote Sub-Process Implementation 219
Overview 219

Overview of the Remote Sub-Process 219

Installation and Configuration of Tomcat 220
Installing Tomcat 220
Configuring Tomcat 221
Deploying the SOAP Service 221

Installation of Tomcat and e*Insight on Different Hosts 222

Overview of the Remote Sub-Process Example (eIJSchema) 223

Install and configure Tomcat 223

Create the CalculateBonus BP in e*Insight 224

Configure the Integration Schema for CalculateBonus 225
e*Insight Business Process Manager Implementation Guide 10 SeeBeyond Proprietary and Confidential

Contents
Create the CalculateBonus Schema 225
Configure the CalculateBonus Schema 226

Create the Calculate_Bonus activity BOB 226
Edit the eIcp_eInsightEngine Connection Configuration File 226
Configure the JMS Connection 226

Modify the Payroll BP in e*Insight 227

Configure the Integration Schema for Payroll 228

Run and Test the e*Insight scenario 229

Overview of the Remote Sub-Process Example (eISchema) 229

Install and configure Tomcat 230

Create the CheckInventory BP in e*Insight 230

Configure the Integration Schema for CheckInventory 231
Create the CheckInventory Schema 231
Configure the e*Insight engine 232
Create the Check_Inv activity BOB 232

Modify the ProcessOrder BP in e*Insight 233

Configure the Integration Schema for ProcessOrder 234

Run and Test the e*Insight scenario 234
In-Stock Processing 234

Chapter 16

Active and Passive Modes 236
Overview 236

Case Study 236
Case Study - Active Control Mode 237
Case Study - Passive Control Mode 238

Create the Order BP in e*Insight 240

Configure the Integration Schema (eIJSchema) 241
Integration Schema Activity Components Summary 241
Creating the eX_Bill_Customer BOB 242
Creating the eX_Ship_Order BOB 243

Configure the e*Insight Engine (eIJSchema) 244
Edit the eIcp_eInsightEngine Connection Configuration File 244

Configure the JMS Connection 244

Configure User-defined e*Gate Components (eIJSchema) 244
Configuration Order for the User-defined Components 245

Configure the START_BP e*Way 245
Step 1: Create the START_BP e*Way 245
Step 2: Create the Input ETD 246
Step 3: Create the START_BP Collaboration 247
Step 4: Configure the Collaboration in the GUI 249

Configure the Integration Schema (eISchema) 250
e*Insight Business Process Manager Implementation Guide 11 SeeBeyond Proprietary and Confidential

Contents
Integration Schema Activity Components Summary 250

Configure the e*Insight Engine (eISchema) 250
Edit the eX_eBPM Engine’s Configuration File 250

Configure User-defined e*Gate Components (eISchema) 251
Configuration Order for the User-defined Components 251

Configure the START_BP e*Way 251
Step 1: Create the Input ETD 251
Step 2: Create the START_BP Collaboration Rules Script (CRS) 252
Step 3: Add the e*Way and Create the e*Way Configuration File 252
Step 4: Configure the Collaboration in the GUI 253

Configure the Activity BOBs 253
Create the Activity BOB CRSs 253
Configure the Activity BOB Collaborations in the Enterprise Manager GUI 254

Run and Test the e*Insight scenario 255

Case Study - Passive Control Mode 256

Passive Control Mode (eIJSchema) 256
Modify the Order BP in e*Insight (eIJSchema) 256
Modify User-defined e*Gate Components (eIJSchema) 256

Configuration Order for the User-defined Components 256
Configure the Bill_Customer Collaboration Rule and Collaboration 256

Run and Test the e*Insight scenario 259

Passive Control Mode (eISchema) 260
Modify the Order BP in e*Insight (eISchema) 260
Modify User-defined e*Gate Components (eISchema) 260

Configuration Order for the User-defined Components 260
Configure the Bill_Customer Collaboration Rule and Collaboration 261

Run and Test the e*Insight scenario 261

Chapter 17

e*Insight Performance 262
Performance Improvements Using eIJSchema 262

Instance Caching 262
Using Multiple e*Insight Engines 263
e*Insight Engine Affinity (eIJSchema) 266
Using Engine Affinity with e*Gate 4.5.2 266

Configuring the Engine Affinity JMS Properties 267
Using Engine Affinity with e*Gate 4.5.1 267
Using e*Xchange with e*Insight (eIJSchema) 268
Using Binary XML (eIJSchema) 268
Subscribing to Event Types 269

Subscribing to a Single “Go” Event 269
Configuring a Separate Collaboration for Do and Undo Events 269
Removing Unnecessary Subscriptions 270

Event Type “get” Interval 270
Review JVM Settings 270

Performance Improvements Using eISchema 270
Instance Caching 271
e*Insight Business Process Manager Implementation Guide 12 SeeBeyond Proprietary and Confidential

Contents
Using Multiple e*Insight Engines (eISchema) 271
e*Insight Engine Affinity (eISchema) 272

Manually Publishing Events using eX-event-sendback-to-sender 273
Exchange Data Interval (eISchema) 273
Review JVM Settings 273

General e*Insight Performance Tips 274

Chapter 18

Troubleshooting 275
Log File Locations 275

Generating Log Files 275

Common Problems 277

General Troubleshooting Tips 281
Locating the problem 281
Viewing the Message Content 282

Chapter 19

e*Insight Helper Monk Functions 284
e*Insight Helper Monk Functions 285

eX-get-attribute 286
eX-count-attribute 287
eX-set-attribute 288
eX-set-BP_EVENT 289
eX-get-BP_EVENT 290
eX-get-Activity 291
eX-set-Activity 292
eX-string-set-attribute 293
eX-xml-set-attribute 294
eX-bin-set-attribute 295
eX-count-local-attribute 296
eX-get-local-attribute 297
eX-set-local-attribute 298
eX-copy-no-attribute 299
eX-set-all-BP_EVENT 300
eX-get-all-attribute 301
eX-get-all-local-attribute 302

Chapter 20

Java Helper Methods 303
ACTIVITY Class 304

addATTRIBUTE 305
clearATTRIBUTE 306
countATTRIBUTE 307
getATTRIBUTE_VALUE 308
getATTRIBUTE 309
getID 310
e*Insight Business Process Manager Implementation Guide 13 SeeBeyond Proprietary and Confidential

Contents
getNAME 311
hasID 312
hasNAME 313
marshal 314
omitID 315
omitNAME 316
removeATTRIBUTE 317
setATTRIBUTE 318
setID 320
setNAME 321
toString 322
unmarshal 323

ATTRIBUTE Class 324
getENCODING 325
getLOCATION 326
getNAME 327
getTYPE 328
getVALUE 329
hasENCODING 330
hasLOCATION 331
marshal 332
omitENCODING 333
omitLOCATION 334
setENCODING 335
setLOCATION 336
setNAME 337
setTYPE 338
setVALUE 339
toString 340
unmarshal 341

BP_EVENT Class 342
addATTRIBUTE 344
clearATTRIBUTE 345
countATTRIBUTE 346
getACTIVITY 347
getATTRIBUTE_VALUE 348
getATTRIBUTE 349
getBPI_ID 350
getID 351
getNAME 352
getSTATUS 353
getTYPE 354
hasACTIVITY 355
hasBPI_ID 356
hasID 357
hasNAME 358
hasSTATUS 359
marshal 360
omitACTIVITY 361
omitBPI_ID 362
omitID 363
omitNAME 364
omitSTATUS 365
removeATTRIBUTE 366
setACTIVITY 367
setATTRIBUTE 368
setBPI_ID 370
setEventInfo 371
setID 372
setNAME 373
setSTATUS 374
setTYPE 375
toString 376
e*Insight Business Process Manager Implementation Guide 14 SeeBeyond Proprietary and Confidential

Contents
unmarshal 377

eX_StandardEvent Class 378
from_eBPMConvert 380
getBP_EVENT 381
getTP_EVENT 382
hasBP_EVENT 383
hasTP_EVENT 384
marshal 385
omitBP_EVENT 386
omitTP_EVENT 387
setBP_EVENT 388
setTP_EVENT 389
to_eBPMConvert 390
toString 391
unmarshal 392

Chapter 21

e*Insight User Activity API Methods 393
User Activity Security 393
Defining the Classpath 394

Imessage Interface 395
clearMessage 396
getActivityAttributesCount 397
getActivityAttributeValue 398
getActivityName 399
getBusinessModelId 400
getBusinessModelInstanceId 401
getBusinessModelName 402
getGlobalAttributeCount 403
getGlobalAttributeType 404
getGlobalAttributeValue 405
getMsgType 406
removeActivity 407
removeGlobalAttribute 408
setActivityAttributeValue 409
setActivityName 410
setBPIStack 411
setBusinessModelInstanceId 412
setBusinessModelId 413
setBusinessModelName 414
setGlobalAttributeValue 415
setMsgType 416
setStatus 417
toXML 418

UserActivityMessage Class 419

IClient Interface 420
authenticate 421
checkoutActivityInstance 422
getActivityGlobalAttributeNames 423
getActivityInstanceEndTime 424
getActivityInstanceStartTime 425
getActivityInstanceStatus 426
getActivityNames 427
getAssignedBPIIdByState 428
getAuthorizationActivityNames 429
getBPIStack 430
getBusinessModelInstancesIds 431
e*Insight Business Process Manager Implementation Guide 15 SeeBeyond Proprietary and Confidential

Contents
getBusinessModelInstanceName 432
getBusinessModelInstanceStatus 433
getBusinessModelName 434
getEnabledBusinessModelId 435
getEnabledBusinessModelsIds 436
getGlobalAttributeDefaultValue 437
getGlobalAttributeDirection 438
getGlobalAttributeNames 439
getGlobalAttributeType 440
getGlobalAttributeValue 441
getLocalAttributeNames 442
getLocalAttributeType 443
getLocalAttributeValue 444
getMessageStatus 445
getUser 446
getUserActivityNames 447
getUUID 448
initialize 449
refreshCachedMemory 450
releaseActivityInstance 451
releaseResources 452
resetUser 453
sendMessage 454
setGlobalAttributeValue 455
setLocalAttributeValue 456
setUser 457

EbpmMonitor Class 458
checkUserPrivileges 459

Appendix A

XML Structure for the e*Insight Event 460
XML Structure 460

Glossary 462

Index 465
e*Insight Business Process Manager Implementation Guide 16 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This guide provides comprehensive information on implementing eBusiness solutions
using the e*Insight Business Process Manager. It discusses the essentials of
implementing e*Insight, and the components used in a complete e*Insight
implementation. This guide also provides detailed information on the e*Insight
architecture and its core components, as well as the e*Gate schema components that
make up an e*Insight implementation. Finally, it discusses how e*Insight and e*Gate
work together to provide a comprehensive toolset for designing, creating, and
maintaining a fully functional eApplication.

1.1 Document Purpose and Scope
This guide explains how to use the e*Insight Business Process Manager. This user guide
includes information on the following topics:

! Understanding the e*Insight schema components.

! Functions and methods available to the user.

This guide gives the e*Insight implementor the necessary background and
methodology for getting an e*Insight system up and running in a real-world situation.
To do this, it provides detailed information on the e*Gate schema that e*Insight uses as
its back end and explains the various areas requiring configuration. This guide also
contains several detailed case studies showing how to implement various features built
into e*Insight, such as automatic undo of failed business processes.

1.2 Intended Audience
The reader of this guide is presumed to be a developer or system administrator with
responsibility for developing or maintaining the e*Insight system. The implementor
should have experience of Windows NT and UNIX operations and administration, and
should be thoroughly familiar with Windows-style GUI operations.

Since most of the work in an e*Insight implementation involves setting up the e*Gate
components that send data into and out of the e*Insight system, the implementor
should also have experience implementing e*Gate.
e*Insight Business Process Manager Implementation Guide 17 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction Writing Conventions
1.3 Writing Conventions
The writing conventions listed in this section are observed throughout this document.

Hypertext Links

When you are using this guide online, cross-references are also hypertext links and
appear in blue text as shown below. Click the blue text to jump to the section.

For information on these and related topics, see “Supporting Documents” on
page 19.

Command Line

Text to be typed at the command line is displayed in a special font as shown below.

java -jar ValidationBuilder.jar

Variables within a command line are set in the same font and bold italic as shown
below.

stcregutil -rh host-name -un user-name -up password -sf

Code and Samples

Computer code and samples (including printouts) on a separate line or lines are set in
the command-line font as shown below.

Configuration for BOB_Promotion

However, when these elements (or portions of them) or variables representing several
possible elements appear within ordinary text, they are set in italics as shown below.

path and file-name are the path and file name specified as arguments to -fr in the
stcregutil command line.

Notes and Cautions

Points of particular interest or significance to the reader are introduced with Note,
Caution, or Important, and the text is displayed in italics, for example:

Note: The Actions menu is only available when a Properties window is displayed.

User Input

The names of items in the user interface such as icons or buttons that you click or select
appear in bold as shown below.

Click Apply to save, or OK to save and close.

File Names and Paths

When names of files are given in the text, they appear in bold as shown below.

Use a text editor to open the ValidationBuilder.properties file.

When file paths and drive designations are used, with or without the file name, they
appear in bold as shown below.

In the Open field, type D:\setup\setup.exe where D: is your CD-ROM drive.
e*Insight Business Process Manager Implementation Guide 18 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction Supporting Documents
Parameter, Function, and Command Names

When names of parameters, functions, and commands are given in the body of the text,
they appear in bold as follows:

The default parameter localhost is normally only used for testing.

The Monk function iq-put places an Event into an IQ.

After you extract the schema files from the CD-ROM, you must import them to an
e*Gate schema using the stcregutil utility.

1.4 Supporting Documents
The following SeeBeyond documents provide additional information about e*Insight
and e*Gate:

! SeeBeyond eBusiness Integration Suite Deployment Guide

! SeeBeyond eBusiness Integration Suite Primer

! e*Insight Business Process Manager User's Guide

! e*Insight Business Process Manager Installation Guide

! e*Gate Integrator Alert Agent User’s Guide

! e*Gate Integrator Alert and Log File Reference Guide

! e*Gate Integrator Collaboration Services Reference Guide

! e*Gate Integrator Intelligent Queue Services Reference Guide

! e*Gate Integrator SNMP Agent User’s Guide

! e*Gate Integrator System Administration and Operations Guide

! e*Gate Integrator User’s Guide

! Monk Developer’s Reference

! Standard e*Way Intelligent Adapters User’s Guide

1.5 SeeBeyond Web Site
The SeeBeyond Web site is your best source for up-to-date product news and technical
support information. The site’s URL is

http://www.SeeBeyond.com
e*Insight Business Process Manager Implementation Guide 19 SeeBeyond Proprietary and Confidential

http://www.SeeBeyond.com

Chapter 2

Introduction to the SeeBeyond eBI Suite

This chapter provides an overview of the SeeBeyond eBusiness Integration Suite, and
explains how the e*Insight Business Process Manager fits into the Suite.

2.1 SeeBeyond eBusiness Integration Suite
This section provides an overview of the SeeBeyond eBusiness Integration Suite and its
parts. It also provides a detailed overview of the e*Insight Business Process Manager
(e*Insight) components.

Complex and dynamic partner relationships, and the management of various
processes, present a tremendous challenge in eBusiness. Organizations and their
trading partners are both faced with the problem of managing disparate component
applications and aligning proprietary software requirements. In addition,
organizations and their trading partners must agree on data exchange and security
standards.

The SeeBeyond eBusiness Integration Suite merges traditional Enterprise Application
Integration (EAI) and Business-to-Business (B2B) interactions into a multi-enterprise
eBusiness Integration (eBI) product suite. This suite allows you to:

! Leverage your existing technology and applications.

! Create an eApplication consisting of component applications that are managed by
your organization or your trading partners.

! Rapidly execute eBusiness strategies.

! Create and manage virtual organizations across the entire value chain.

! Rapidly implement industry standard business protocols.

! Quickly and easily establish new business partners, or update existing ones.

! Automatically secure transmissions sent over the public domain.

This suite also provides:

! Extensive and flexible back-office connectivity.

! Powerful data transformation and mapping facilities.

! Content-based routing.

! Unparalleled scalability based on a fully distributed architecture.
e*Insight Business Process Manager Implementation Guide 20 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.1
Introduction to the SeeBeyond eBI Suite SeeBeyond eBusiness Integration Suite
2.1.1 SeeBeyond eBusiness Integration Suite Components
The SeeBeyond eBusiness Integration Suite includes the following components and
sub-components:

! eBusiness integration applications:

" e*Insight™ Business Process Manager

" e*Xchange™ Partner Manager

" e*Index Global Identifier

! e*Gate™ Integrator:

" e*Way™ Intelligent Adapters

" Intelligent Queues (IQ™)

" Business Object Brokers (BOBs)

See Figure 1 for a graphical representation of the SeeBeyond eBusiness Integration Suite
and its components.

Figure 1 SeeBeyond eBusiness Integration Suite

e*Insight Business Process Manager

The e*Insight Business Process Manager facilitates the automation and administration
of business process flow across eBusiness activities. Through graphical modeling and
monitoring, business analysts can instantly assess the detailed state of a business
process instance and identify bottlenecks in the process.
e*Insight Business Process Manager Implementation Guide 21 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.1
Introduction to the SeeBeyond eBI Suite SeeBeyond eBusiness Integration Suite
e*Xchange Partner Manager

The e*Xchange Partner Manager manages trading partner profiles and supports
standard eBusiness message format and enveloping protocols, including RosettaNet,
UN/EDIFACT, ASC X12, and BizTalk. The e*Xchange Partner Manager includes a
Validation Rules Builder to aid in the creation of X12 and UN/EDIFACT message
validation based on industry implementation guides.

The eSecurity Manager authenticates and ensures full integrity of message data sent to
and from trading partners, which is imperative when conducting eBusiness over the
public domain. The eSecurity Manager uses public key infrastructure (PKI) to ensure
origin authentication of the sender.

e*Index Global Identifier

e*Index Global Identifier (e*Index) is a global cross-indexing application that provides
a complete solution for automated person-matching across disparate source systems,
simplifying the process of sharing member data between systems.

e*Index centralizes information about the people who participate throughout your
business enterprise. The application provides accurate identification and cross-
referencing of member information in order to maintain the most current information
about each member. e*Index creates a single, consistent view of all member data by
providing an automatic, common identification process regardless of the location or
system from which the data originates.

e*Gate Integrator Components

e*Gate Integrator enables the flow of information across an extended enterprise by
providing comprehensive connectivity to applications and datastores across a network.
e*Gate is based on a distributed architecture with an open design that deploys flexible
load balancing options. e*Gate processes Events according to user-defined business
logic and integrates business processes between applications, ensuring end-to-end data
flow into back-office systems.

e*Way Intelligent Adapters

e*Way Intelligent Adapters provide specialized application connectivity and also
provide support for robust data processing such as business Collaborations,
transformation logic, and publish/subscribe relationships. e*Way adapters are multi-
threaded to enable high-performance distributed processing capabilities. This multi-
threaded processing allows for ultimate deployment flexibility and load balancing.

Intelligent Queues

Intelligent Queues (IQs) are open-queue services for SeeBeyond or third-party queuing
technology that provide robust data transport.

In conjunction with Java-enabled Collaborations, SeeBeyond JMS IQs can provide
guaranteed exactly once delivery of messages.
e*Insight Business Process Manager Implementation Guide 22 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Introduction to the SeeBeyond eBI Suite Introducing e*Insight Business Process Manager (e*Insight)
Business Object Brokers

A BOB component is similar to an e*Way in the sense that it establishes connectivity
and is capable of data transformation. BOBs use Collaborations to route and transform
data within the e*Gate system. They have the following properties:

! They only communicate with IQs within e*Gate. They do not communicate with
external applications as e*Ways do.

! They are optional by design. You can add them to an environment to remove some
load from your e*Ways, either to set up easily maintainable data processing or to
enable multiple internal processes.

2.2 Introducing e*Insight Business Process Manager
(e*Insight)

The e*Insight Business Process Manager (e*Insight) is the component within the
SeeBeyond eBusiness Integration Suite that facilitates the automation of the business
process flow of eBusiness activities. The functions of e*Insight include business process
model design, monitoring, and execution as well as the ability to analyze historical
performance.

Using e*Insight, business analysts are able to design eBusiness process models through
a user-friendly, fully graphical tool. The e*Insight GUI provides the appropriate
graphical tools for an analyst to define all types of business models, from simple to very
complex.

Once a business flow is modeled, the business analyst has the capability to instantly
assess the detailed state of a business process instance through a color-coded graphical
representation of the model. This way, the user can identify the processes that need
intervention, repair, or authorization. The e*Insight GUI provides the appropriate
facilities for the business analyst to examine the attributes of the business process
instance (as defined by the business process analyst, during the design of the model),
and—with the appropriate security privileges—modify their values.

For example, the business analyst can examine both syntactically and semantically the
contents of a purchase order that failed to be processed, modify (repair) the purchase
order, and then restart the failed business process instance, taking into account the
modified purchase order.

In addition to the capability of monitoring the state of a given business process
instance, e*Insight provides the business analyst with a complete historical picture, by
tracking and storing all instances and the associated attributes of the business process
model. The analyst has access to each one of the instances and can assess the
performance of each through examining the values of the model’s attributes as
instantiated in the specific instance in review.

e*Insight provides the capability to analyze the performance of a business process
model on a historical basis, so that trends can be determined and possible bottlenecks
identified. The analyst can create charts on the performance of the business process
model against an array of system attributes (such as “duration” and “state”), and user-
e*Insight Business Process Manager Implementation Guide 23 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Introduction to the SeeBeyond eBI Suite Building an eApplication
defined attributes (for example, “order amount” or “PO source”). Charting the data in
this way makes it easy to discern areas where the model needs re-design.

2.3 Building an eApplication
An eApplication is an integrated collection of software that enables you to model and
manage an eBusiness. The SeeBeyond eBusiness Integration Suite provides the glue
and essential building blocks that allow you to create a composite eApplication for
running your eBusiness.

Implementing e*Insight involves the following steps:

1 Install and learn the basics of e*Insight.

Use the e*Insight Business Process Manager Installation Guide to help you install the
e*Insight software. See the e*Insight Business Process Manager User’s Guide for
overview information and details on using the e*Insight GUI.

2 Obtain a working knowledge of e*Insight.

Read chapters 1 through 3 of this Guide to comprehend the technical architecture of
e*Insight, its components, and how they work together with e*Gate back-end
components. This provides the foundation for implementing a working end-to-end
eBusiness scenario.

3 Create an implementation plan.

Use this manual as a guide for preparing a step-by-step roadmap of your
implementation. This book describes several different types of e*Insight
implementations. Use these as the basis for planning the e*Insight implementation
best suited to your business needs.

2.4 Basic Information
Implementing an e*Insight system is the process of translating the vision of the
business analyst into a functioning system. Once the analyst has determined that a
certain business task must be accomplished with e*Insight, it is the job of the
implementor to make this a reality.

You implement e*Insight by using the e*Insight GUI to enter the relevant data into the
e*Insight database. Then you combine the generated e*Gate components with other
e*Gate components you add to create a complete e*Insight schema. The e*Insight
components are mostly pre-configured and do not require any (or very slight)
modification by the implementor. The components that you add are completely user-
defined. However, the e*Insight GUI and this guide provide a framework for
integrating these user-defined components into a working e*Insight system.
e*Insight Business Process Manager Implementation Guide 24 SeeBeyond Proprietary and Confidential

Chapter 3

Implementation Overview

3.1 Basic Information
Implementing an e*Insight system is the process of translating the vision of the
business analyst into a functioning system. Once the analyst has determined that a
certain business task must be accomplished with e*Insight, it is the job of the
implementor to make this a reality.

You implement e*Insight by using the e*Insight GUI to enter the relevant data into the
e*Insight database. Then you combine the generated e*Gate components with other
e*Gate components you add to create a complete e*Insight schema. The e*Insight
components are mostly pre-configured and do not require any (or very slight)
modification by the implementor. The components that you add are completely user-
defined. However, the e*Insight GUI and this guide provide a framework for
integrating these user-defined components into a working e*Insight system.

3.2 Implementation Road Map
While each type of implementation involves a different approach. However, at a high
level, there are certain similarities.

In general, the work of implementing an end-to-end scenario with e*Insight involves
taking what is created in e*Insight and integrating it into a working e*Gate schema.
e*Gate powers every e*Insight scenario, and a successful e*Insight implementation is
dependent on a successful e*Gate implementation.

To give you an overview of the complete process, the following implementation road
map contains high-level steps for a full e*Insight implementation. The road map is
further refined and given more detail in the case study chapters that immediately
follow this one.

Figure 2, illustrates the major steps in the integration process for an e*Insight
implementation.
e*Insight Business Process Manager Implementation Guide 25 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Implementation Overview Implementation Road Map
Figure 2 Integration Road Map

Step 1: Create a Business Process

Use the e*Insight GUI to design the business process.

For information on creating the business process, see the e*Insight Business Process
Manager User’s Guide.

Step 2: Copy the e*Insight Schema

Use a copy of the e*Insight schema as your starting point in e*Gate for supporting
e*Insight.

For information on creating a copy of the e*Insight schema, see “Copy the e*Insight
Schema” on page 85.

Step 3: Configure the e*Insight Schema Based on the Business Process

After you create the business process in e*Insight you must configure the e*Gate
schema created in step 3 that supports your business process. Use the e*Gate schema
configuration utility in the e*Insight GUI for this step. Complete your configuration
using e*Gate Enterprise Manager.

GUI

Step 1

Step 2

Create the
Business
Process

Step 4
Configure
the e*Gate

Components

Step 5 Test the System

Step 3

Create the
e*Insight Schema
from a template

Configure the
e*Insight Schema
e*Insight Business Process Manager Implementation Guide 26 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Implementation Overview The e*Insight Schema
Step 4: Configure the e*Gate Components

Configuring the e*Gate components forms the majority of the integration work done in
e*Insight implementations. In this step, you:

! configure the e*Ways that send data into and out of the e*Insight system

! make all user-configurable associations in the e*Gate GUI

Step 5: Test and Tune the System

It is a good idea to test the system in stages. For example, make sure that one activity
works properly before you try to run the entire business process. One good approach is
to start with the “upstream” activities at the beginning of the business process, and
work your way down to the last activity.

Once you have the entire system working, make adjustments as necessary to improve
performance.

3.3 The e*Insight Schema
The e*Insight Schema is the e*Gate schema that implements a particular e*Insight
installation. The starting point for a working e*Gate schema for e*Insight are the e*Gate
schemas provided with the product. These schemas are:

! eIJSchema (Java)

! eISchema (Classic)

These schemas contains a number of pre-configured and partially pre-configured
e*Gate components used by e*Insight. In addition to the components that are provided,
a complete e*Insight implementation requires several other e*Gate components that are
added to the e*Insight schema during the implementation process. The pre-configured
components that are used, as well as the additional e*Gate components that are added
to make up the final working e*Insight schema, depends entirely on the specifics of the
implementation.

3.3.1 The eIJSchema (Java)
This is a new schema, introduced for 4.5.2. It is designed specifically to be used in a Java
environment and all the components provided are Java based. The following sections
in this guide provide information for the eIJSchema:

! Configuration Information

" “e*Insight Schema Components (eIJSchema)” on page 29

" “e*Insight ETD for Java — eI_StandardEvent.xsc” on page 69

" “Common Configuration Tasks” on page 83

" “e*Insight Performance” on page 262
e*Insight Business Process Manager Implementation Guide 27 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Implementation Overview The e*Insight Schema
" “Troubleshooting” on page 275

" “Java Helper Methods” on page 303

! Sample Implementations

" “e*Insight Implementation (eIJSchema)” on page 96

" “e*Insight Authorization Activity Implementation (eIJSchema)” on page 126

" “e*Insight User Activity Implementation” on page 181

" “e*Insight Sub-Process Implementation (eIJSchema)” on page 193

" “e*Insight Remote Sub-Process Implementation” on page 219

" “Active and Passive Modes” on page 236

3.3.2 The eISchema (Classic)
This schema can be used in a combined Monk and Java environment. The following
sections in this guide provided information for the eISchema.

! Configuration Information

" “e*Insight Schema Components (eISchema)” on page 48

" “e*Insight ETD for Monk—eX_Standard_Event.ssc” on page 74

" “Common Configuration Tasks” on page 83

" “e*Insight Performance” on page 262

" “Troubleshooting” on page 275

" “e*Insight Helper Monk Functions” on page 284

! Sample Implementations

" “e*Insight Implementation (eIJSchema)” on page 96

" “e*Insight Authorization Activity Implementation (eISchema)” on page 170

" “e*Insight User Activity Implementation” on page 181

" “e*Insight Sub-Process Implementation (eISchema)” on page 205

" “e*Insight Remote Sub-Process Implementation” on page 219

" “Active and Passive Modes” on page 236
e*Insight Business Process Manager Implementation Guide 28 SeeBeyond Proprietary and Confidential

Chapter 4

e*Insight Schema Components (eIJSchema)

The purpose of this chapter is to describe the e*Gate components provided with the
eIJSchema as well as those that are added in the implementation process, and discuss
how each fits into and supports a working e*Insight implementation. For each
component there is a detailed drawing showing the other components with which it
interacts as well as the publication and subscription information for its Collaborations.
In addition, for each component we discuss: the type of component it is, its function in
e*Insight, any configuration the implementor must perform, the Collaborations it uses,
and what is contained in the Events it processes.

4.1 The Purpose of the e*Gate Schema for e*Insight
The purpose of the e*Gate Schema for e*Insight is to provide the working portion of
e*Insight. Whereas the e*Insight GUI is primarily used to configure and monitor the
e*Insight system, the Schema components actually move and transform the data
handled by e*Insight.

4.1.1 e*Insight Components
The e*Insight components start, run and implement business processes. The e*Insight
components that start and implement business processes are user-defined and must be
added to the e*Insight schema. The components that run business processes are
provided by the e*Insight installation and require only a small amount of configuration
on the part of the user.
e*Insight Business Process Manager Implementation Guide 29 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
e*Insight Schema Components (eIJSchema) e*Insight Schema Components Overview
4.2 e*Insight Schema Components Overview
Table 1 lists all of the module types used by e*Insight. It lists the components that are
provided as part of the e*Insight schema (eIJSchema) installation, and also the
components that the user adds in the implementation process. The meaning of the
column headings is as follows.

! Component—The e*Gate logical name for the component. Italics indicates that the
name varies by association or is user-defined.

! Description—A brief description of what the component does in e*Insight.

! In Default eIJSchema—Whether or not this component is provided as part of the
schema installation of e*Insight.

! Configuration Required—Most of the modules in the default eIJSchema require
little configuration on the part of the implementor. Table 1 uses the following terms
to describe the level of configuration required:

" No—The component does not require any configuration or programming on
the part of the implementor.

" Minor—You must add the e*Insight database connection information to the
configuration file.

" Some—You must make additional changes to the configuration file beyond
providing the e*Insight database connection information.

" Yes—The component is mostly or entirely user-defined and must be configured
and programmed by the implementor.

! More Information—A cross reference to the section that describes this component
in detail.
e*Insight Business Process Manager Implementation Guide 30 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
e*Insight Schema Components (eIJSchema) e*Insight Schema Components Overview
4.2.1 e*Insight Schema Component Relationships Diagram
Figure 4 on the next page illustrates the relationships among the e*Insight schema
components. Not every e*Insight implementation uses all of these components. Some of
the components shown are not provided as part of the e*Gate Schema for e*Insight
installation from the CD. These components are shown in light blue and must be added
to the base e*Insight schema by the implementor as needed.

Figure 3 e*Insight Overview Legend

Table 1 e*Insight Schema Component Types

Component Description In Default
eISchema?

Configuration
Required?

More
Information

e*Insight Engine This is a specially configured Multi-Mode
e*Way that runs business processes, using
the e*Insight e*Way Connection.

Yes Some 4.3.1 on
page 33

eI_Resubmitter A placeholder component used in the
e*Insight Event failure handling process.

Yes Yes 4.3.2 on
page 38

Start BP Component Either an e*Way or BOB that sends the Event
that starts a business process instance.

No Yes 4.3.4 on
page 40

eX_Activity e*Way Implements an e*Insight activity that
connects to an external system.

No Yes 4.3.5 on
page 41

eX_Activity BOB Implements an e*Insight activity that does
not connect to an external system.

No Yes ß on
page 44

Database

GUI

BOB

e*Way

Intelligent
Queue

Component connection
with arrow indicating
direction of data flow

External
to eX system

Medium
Gray

Light Blue Not in default
Schema

Multiple components
of a similar type
e*Insight Business Process Manager Implementation Guide 31 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Insight Schema Components (eIJSchema) e*Insight Business Process Manager Components
Figure 4 e*Insight 4.5.2 Components

4.3 e*Insight Business Process Manager Components
The e*Insight components start, run and implement the businesses processes created in
the e*Insight GUI. The components that run the business processes are supplied in the
e*Insight installation, while those that implement a business process are user defined
and must be added to the e*Insight e*Gate schema.

Components That Run Business Processes

The two component types dedicated to running and managing business processes are:

! One or more e*Insight engines

! The eI_Resubmitter e*Way

The e*Insight engine manages and runs business processes in e*Insight. One e*Insight
engine is required, but more can be added to provide additional processing capacity
when handling a large number of transactions.

For information on using multiple engines, see “Using Multiple e*Insight Engines” on
page 263.

The eI_Resubmitter e*Way is used in e*Insight Event failure handling.

e*Insight
GUI

eX_Activity
e*W ay

External
Process

eX_Activity BOBStart BP
Component

JMS Server

e*Insight
Database

eX_eBPM
Engine

eX_Resubmitter
BOB
e*Insight Business Process Manager Implementation Guide 32 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Insight Schema Components (eIJSchema) e*Insight Business Process Manager Components
Components that Start Business Processes

The component that starts a business process is:

! The START_BP component (the exact name can be chosen by the user).

This is a user-defined component that creates the e*Insight Event that begins a business
process instance.

Components that Implement Business Process Activities

The components that implement business process activities are:

! eX_Activity e*Ways

By default the activity components are named after the activity they implement with
the prefix “eX_” added to the activity name found in the e*Insight GUI. They are added
to the e*Insight schema when you use the e*Insight GUI to configure that schema for a
particular business process. The e*Way may connect to an external system if required
by the business activity. The user must also supply the programming to carry out the
business logic of the activity and return an activity completed message (the “Done”
Event) to the e*Insight engine

Note: In addition to Collaborations running in e*Gate components, activities can also be
implemented using Java scripts that run within the e*Insight engine. See the
e*Insight Business Process Manager User’s Guide for more information.

4.3.1 e*Insight Engine
The e*Insight engine manages and runs business processes. One e*Insight engine is
required to operate, but more can be added to provide additional processing capacity
when handling a large number of transactions.

For more information on using multiple engines, see “e*Insight Engine Affinity
(eIJSchema)” on page 266.

An e*Insight engine is comprised of a specially configured Collaboration (eIcol_eBPM)
and the e*Insight e*Way Connection (eIcp_eInsightEngine). The e*Insight engine runs
within a Multi-Mode e*Way (eX_eBPM), which is referred to as the e*Insight Engine
Container. An e*Insight engine allows an e*Way to communicate with the e*Insight
database as shown in Figure 5.
e*Insight Business Process Manager Implementation Guide 33 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Insight Schema Components (eIJSchema) e*Insight Business Process Manager Components
Figure 5 The e*Insight Engine (Java)

Configuring the e*Insight Engine

The configuration file for the e*Insight engine allows you to set the JVM parameters
available for the Multi-Mode e*Way. You can change the default configuration if
required.

Note: The e*Insight engine configuration file does not exist by default. You must create a
new configuration file.

Configuring the e*Insight Engine Connection

The e*Insight engine connection requires only minimal configuration on the part of the
user. Table 2 lists those parameters in the engine’s configuration file that the user can
change.

Table 2 e*Insight Engine Connection Configuration Settings

Screen Parameter Setting

eBPM Settings Database Type Specifies the type of e*Insight database. Select one
of the following:
! Oracle when using an Oracle 8i (8.1.6 and 8.1.7)
! SQL Server when using SQL Server 7.0 or SQL

Server 2000
! Sybase when using Sybase 11.9 or 12.

JDBC URL
String

This is the connection string used by the e*Insight
engine to communicate with the e*Insight database.
Use the connection string that is appropriate for the
database client setup on the machine running the
e*Insight engine. (Refer to the relevant driver
documentation for more details on configuring your
system).

eX_to_eBPM

eX_Activity1_Do
eX_Activity1_Undo
eX_Activity2_Do

eX_External_Evt

eX_eBPM
Engine

eIcr_eBPM
Collaboration

eX_Failed_From_eBPM

JMS Server

eX_Activity2_Undo
eX_Activity3_Do
eX_Activity3_Undo

e*Insight
Database
e*Insight Business Process Manager Implementation Guide 34 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Insight Schema Components (eIJSchema) e*Insight Business Process Manager Components
eBPM Settings JDBC URL
String

An Oracle database connection might use the string:
jdbc:oracle:thin:@machine_name:port:db where
! thin is the type of oracle client interface. See your

e*Insight database administrator for more
information.

! machine_name is the network name of the
computer running the e*Insight database. If the
database is on the same machine as the e*Insight
engine you can use “localhost” instead of the
machine’s network name.

! port is correct port for communicating with the
e*Insight database (1521 is the default).

! db is the service name used to communicate with
e*Insight Oracle database from the local machine.

If you are using XML data and a Model Specific
database, then you would use the OCI8 driver. See
the e*Insight Business Process Manager Installation
Guide for information on installing the driver. You
might use the string:
jdbc:oracle:oci8:@db where
! oci8 is the type of oracle client interface.
! db is the service name used to communicate with

e*Insight Oracle database from the local machine.

A SQL Server database connection might use the
string:
jdbc:SeeBeyond:sqlserver://
<server>:<port#>;DatabaseName=<dbname>;embe
dded=true;SelectMethod=cursor
! server is the network name of the computer

running the e*Insight database. If the database is
on the same machine as the e*Insight engine you
can use “localhost” instead of the machine’s
network name.

! dbname is the name of the e*Insight SQL Server
database.

! port is correct port for communicating with the
e*Insight database.

A Sybase database connection might use the string:
jdbc:sybase:Tds:<server>:<port>
! server is the network name of the computer

running the e*Insight database. If the database is
on the same machine as the e*Insight engine you
can use “localhost” instead of the machine’s
network name.

! port is correct port for communicating with the
e*Insight database.

Table 2 e*Insight Engine Connection Configuration Settings (Continued)

Screen Parameter Setting
e*Insight Business Process Manager Implementation Guide 35 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Insight Schema Components (eIJSchema) e*Insight Business Process Manager Components
eBPM Settings JDBC Driver
Class

Enter name of JDBC Driver Class which interprets the
JDBC URL String specified previously to gain access
to the e*Insight database. For example,
oracle.jdbc.driver.OracleDriver
can be used with an ORACLE database, and
sun.jdbc.odbc.JdbcOdbcDriver can be used with a
SQL Server database or a Sybase database.

Database User
name

Determines the database user name under which the
e*Insight engine accesses the e*Insight database.
The user should have the same rights as the
administrator user (default is ex_admin) created by
the e*Insight database schema creation scripts.

Encrypted
Password

Determines the password associated with the name
the e*Insight engine uses to access the e*Insight
database. The default password used by e*Insight
database creation scripts is ex_admin.

Maximum
Business
Process Cache
Size

This is the number of business processes that the
e*Insight engine can hold in memory at one time. If
the cache is full and another business process needs
to be loaded, the least recently used (LRU) business
process in the cache is replaced with the new
business process. The default is 1024 business
processes. The size of the business processes does
not matter.
Entering the special value of zero (0) implies that
caching of Business Process definitions is NOT
desired, and thus the eBPM Engine ALWAYS reloads
the Business Process definition from the database for
EVERY Activity event of a Business Process Instance.
Note, this feature severely impacts performance

Maximum
Instance
Cache Size

Enter the maximum number of Business Process
Instances that the e*Insight engine caches in
memory. When the maximum size is reached, the
Engine first removes the Least Recently Used (LRU)
Instance from the cache. Entering a value of -1
means that there is no limit to the number of
Instances kept in memory.

The value entered for this parameter effects the total
amount of memory used by the engine. Limit the
number of instances if you start getting out of
memory messages when running the engine.

Note: A value of zero (0) should NOT be used.

Table 2 e*Insight Engine Connection Configuration Settings (Continued)

Screen Parameter Setting
e*Insight Business Process Manager Implementation Guide 36 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Insight Schema Components (eIJSchema) e*Insight Business Process Manager Components
eBPM Settings Auto Model
Reload

Determines if the engine dynamically loads an
enabled Business Process Version if the enabled/
disabled status of Business Process Version changes.
If the value is set to YES then Business Process
Versions that are enabled or disabled while the
engine is running are immediately recognized.
However, setting this value to YES may degrade
performance.

Instance
Caching

Instance Caching is the most efficient way to process
Business Process Instances. Setting this value to YES
keeps a cache of the instance information
throughout the life span of the Business Process
Instance. Setting this value to NO retrieves the
information from the database instead. This allows
more flexibility and fault tolerance at the cost of
performance.

To improve performance it is recommended to set
this parameter to YES and use multiple e*Insight
engines. To use both instance caching and multiple
engines it is necessary to ensure that a single
instance is always processed by the same engine.
This is achieved by using engine affinity. For
information using Instance Caching with multiple
engines see “e*Insight Engine Affinity
(eIJSchema)” on page 266.

Brand By
Collaboration
Name

This parameter allows you to name Event Types
based on the Collaboration rather than the e*Way
name. This is used for engine affinity when multiple
e*Insight engine e*Way Connections are used in a
single e*Way. For more information, see “e*Insight
Engine Affinity (eIJSchema)” on page 266.

Business
Processes to
Preload

This parameter allows you to load all or a subset of all
the business processes stored in the e*Insight
database. The default is ALL.

Using
e*Xchange
with e*Insight

If an Event Type Definition is used that contains both
e*Insight and e*Xchange sections, setting this to NO
causes the e*Xchange section to be ignored. This
reduces the time taken by the e*Insight engine at
runtime to parse the Event.

(Others) (Default)

connector ALL (Default)

Table 2 e*Insight Engine Connection Configuration Settings (Continued)

Screen Parameter Setting
e*Insight Business Process Manager Implementation Guide 37 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Insight Schema Components (eIJSchema) e*Insight Business Process Manager Components
eIcr_eBPM Collaboration

The eIcr_eBPM Collaboration is not user-configurable. It provides the eX_Activity_Do
and eX_Activity_Undo Events to the e*Gate layer components that carry out those
activities. It also publishes failed Events to the JMS Server. This Collaboration is also
used to retrieve Events that require processing by the e*Insight engine. For example, it
would retrieve “Done” Events from an activity Collaboration.

Subscribed Event Type:

! eX_External_Evt—This Event carries the data retrieved from the e*Insight database
to the e*Insight engine.

! eX_to_eBPM—This Event Type carries all Events intended for e*Insight. These
include Start BP Events, “Done” Events, and other Events that must be processed
by the e*Insight engine. The corresponding ETD is eI_StandardEvent.xsc. This is
the only Event Type to which the e*Insight engine subscribes; all data sent to the
e*Insight engine must use this Event Type.

Note: The eI_StandardEvent.xsc does not contain a section for the e*Xchange Partner
Manager information. If your implementation also uses e*Xchange Partner
Manager then you may need to use eIX_StandardEvent.xsc as this contains the
TP_EVENT location.

Published Event Types:

! eX_DynamicET—This Event is used to enable the Collaboration to automatically
generate one of the following Events:

" eX_Activity_Do—This Event causes the subscribing Collaboration to execute
the “Do” logic of the activity with the same name in the business process. See
“Subscribed Event Type: eX_Activity_Do” on page 43 for more information.

" eX_Activity_Undo—This Event causes the subscribing Collaboration to execute
the “Undo” logic of the activity with the same name in the business process. See
“Subscribed Event Type: eX_Activity_Undo” on page 43 for more
information.

! eX_Failed_From_eBPM—This Event contains the failed Event along with error
information.

! eX_External_Evt—This Event carries the data that is written to the e*Insight
database.

4.3.2 eI_Resubmitter BOB
The eI_Resubmitter BOB is a placeholder component that the implementor can use to
resubmit failed Events back to the JMS Server after repairing them. The Event Repair
logic in the eI_Resubmitter BOB’s Collaboration must be supplied by the implementor.
e*Insight Business Process Manager Implementation Guide 38 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Insight Schema Components (eIJSchema) e*Insight Business Process Manager Components
Figure 6 eI_Resubmitter Detail (Java)

Configuring the eI_Resubmitter BOB

The user must fill in the eI_Resubmitter Collaboration with the logic to repair and
resubmit Events retrieved from the JMS Server.

eI_Resubmitter Collaboration

The eI_Resubmitter Collaboration is a placeholder Collaboration that the implementor
can use as a starting point to add logic that repairs and resubmits Events that have
failed to be processed by the e*Insight engine due to data errors.

Subscribed Event Type: eX_Failed_From_eBPM

This Event Type contains the e*Insight Event that failed to process correctly at the
e*Insight engine level due to a data error, along with the error information.

Published Event Type: eX_to_eBPM

This Event Type contains the repaired version of the failed Event to be reprocessed by
the e*Insight engine.

4.3.3 Failed Event Handling by the e*Insight Engine
How the e*Insight engine handles errors generated when processing Events, depends
on the type of error.

Error Types

Connection errors

Connection errors are errors that e*Insight receives because of a faulty connection to the
e*Insight database.

Data errors

Data errors are exceptions that e*Insight generates because it cannot process an Event
that is sent to it. Also in this class of errors are those generated by e*Insight because of a
faulty business process configuration.

eX_to_eBPM

eI_Failed eI_Resubmitter
Collaboration

eI_Resubmitter BOB

JMS Server
e*Insight Business Process Manager Implementation Guide 39 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Insight Schema Components (eIJSchema) e*Insight Business Process Manager Components
Error Handling

Connection Failure Handling

The normal handling of Events that can’t be processed due to a connection error is to
make a note of the error in the e*Insight engine’s log file and retry processing the Event
until a connection is made.

Data Failure Handling

Events that fail to process due to data errors are not retried, but a notation is made in
the e*Insight log file and the Event itself is published to a special location. This method
allows the e*Insight engine to move on to other processing and not spend time
attempting to resend failed Events.

The e*Insight engine publishes the failed Event to the JMS Server under the
eX_FailedEvent Event Type. The eI_Resubmitter BOB subscribes to this Event Type
and you can use it to repair the Event and republish it to the e*Insight Engine. The
eX_FailedEvent.xsc ETD associated with the eX_FailedEvent Event Type has two
major node structures. Once contains error information, and the other contains the
failed Event.

4.3.4 START_BP Component
The START_BP component is the e*Gate component that sends the “Start” Event which
initiates a business process instance (BPI). This component does not have a
corresponding activity in the business process model.

Figure 7 START_BP e*Way Detail

Typically, an e*Way used to start the BPI connects to a business application, which in
turn provides the data used by the business process. The type of e*Way connection
chosen depends on the type of business application or external system to which the
e*Way must connect in order to bring in the data. For example, if the business
application is Siebel, then the e*Way Connection used is the Siebel e*Way Connection.
If the data is held internally to e*Gate then a JMS Connection is used. Alternatively, it is
possible to retrieve data from a JMS IQ.

The Collaboration must put the data they receive into the standard format used
throughout e*Insight.

eX_to_eBPM

START_BP e*Way

START_BP
Collaboration

eX_External_Evt
JMS ServerExternal

Process
e*Insight Business Process Manager Implementation Guide 40 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Insight Schema Components (eIJSchema) e*Insight Business Process Manager Components
Configuring the START_BP Component

Configuring the START_BP Component depends on where the data is retrieved from.
See the appropriate e*Way User Guide for information on configuring a specific e*Way
Connection. In addition, the implementor must create a Collaboration Rules Script for
the START_BP component that constructs the inbound e*Insight Event that starts a
business process instance.

START_BP Collaboration

This Collaboration, used by the START_BP component, prepares the eX_to_eBPM
Event. This Event is sent to the e*Insight engine in order to start an instance of the
business process. The Collaboration must do two things:

! populate the three nodes required to start a BPI in the e*Insight standard Event

! place the data it receives into one or more global attributes of the business process

See “Starting a Business Process (eIJSchema)” on page 87 for more information on
how to start a BPI.

Subscribed Event Type: eX_External_Evt

When using a START_BP e*Way, this Event carries the data from the external
application to which the START_BP e*Way connects. When the data is held internally
to e*Gate, this Event carries data from a JMS Server.

Published Event Type: eX_to_eBPM

This “Start” Event carries the data to begin an instance of a particular business process
to the e*Insight engine.

4.3.5 Single-Mode Activity e*Way
An activity e*Way implements an e*Insight activity that requires a connection to a
system outside of e*Gate.

Figure 8 Activity e*Way Detail

eX_to_eBPMeX_Activity e*Way

eX_from_Activity
Collaboration

eX_to_Activity
Collaboration

eX_to_eBPM

eX_Activity2_Undo
eX_Activity3_Do
eX_Activity3_Undo

eX_Activity1_Do
eX_Activity1_Undo
eX_Activity2_Do

External
System

eX_External_Evt

JMS Server
eX_External_Evt
e*Insight Business Process Manager Implementation Guide 41 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Insight Schema Components (eIJSchema) e*Insight Business Process Manager Components
When you use the e*Insight GUI to configure the e*Gate schema supporting the
e*Insight implementation, each activity in the business process becomes either a pair of
Collaborations or a single Collaboration. The choice to use s single Collaboration or
multiple Collaborations depends on the preference of the implementor.

For an activity e*Way that connects to an external system, the two Collaborations that
are created are named eX_from_Activity and eX_to_Activity, where Activity is
replaced with the Activity Name from the associated business process in e*Insight. In
addition to the Collaborations, the corresponding Collaboration Rules and the Event
Types subscribed to and published by the Collaborations are also named after the
activity name.

The Collaboration Rule created in this process is only a placeholder. Implementors
must configure the Collaboration Rules by writing the Collaboration Rules Script and
choosing the service under which this script runs. The CRS contains the programming
that implements the business logic for the corresponding activity in the business
process.

The type of e*Way Connection used to implement a particular activity depends on
what the activity is supposed to accomplish in the business process. For example, an
SAP e*Way Connection could be used to connect to an ERP system to look up the credit
standing of a customer, or an Oracle e*Way Connection could be used to look up the
mailing address of a prospective client in a marketing database.

Configuring the eX_to_Activity e*Way

Some of the configuration for the activity e*Way is done for you when you use the
e*Insight GUI to configure the schema. This includes setting up the component
relationships and Event Type routing in the e*Insight schema, but not the actual
business logic programming or the type of e*Way that is used. The business logic
programming must be done by the implementor in Collaboration Rules Scripts used by
the activity Collaborations, and the e*Way’s configuration file must be defined based
on the type of e*Way chosen to implement the activity. See the appropriate e*Way
Users Guide for information on how to set up the e*Way chosen.

eX_to_Activity Collaboration

The eX_to_Activity Collaboration receives the Event that carries the data used in the
activity. It receives the Event from the e*Insight Engine, and passes it to the external
process that implements the activity’s business logic. The Collaboration must be
configured to convert the data into whatever format is required by the external system
to which the activity e*Way connects.

Important: In addition to passing the attribute data it receives from the e*Insight engine to the
external system, the eX_to_Activity Collaboration must preserve the e*Insight
Business Process Instance tracking information contained in the eX_Activity_Do
or eX_Activity_Undo Events. This information is used to send the return or
“Done” Event back to the e*Insight engine, when the activity completes. See
Sending the “Done” Event Back to e*Insight (eIJSchema) on page 88 for
more information on what information is required in the “Done” Event.
e*Insight Business Process Manager Implementation Guide 42 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Insight Schema Components (eIJSchema) e*Insight Business Process Manager Components
Do and Undo logic in an Activity Collaboration

The eX_to_Activity Collaboration in an activity e*Way connecting to an external
system and the eX_Activity Collaboration in an Activity connecting internally to
e*Gate both subscribe to two Event Types: eX_Activity_Do and eX_Activity_Undo.
When the activity Collaboration picks up a “Do” Event Type, it carries out a “positive”
instance of the activity. When the activity Collaboration picks up an “Undo” Event
Type from the JMS Server, it carries out a “negative” or compensating version of the
activity—in other words, an activity that cancels out a previously completed “Do”
instance of the activity for the current business process instance.

By default, the eX_to_Activity and eX_Activity Collaboration in an activity e*Way
subscribe to both the “Do” and “Undo” Events. Consequently the CRS must contain
logic to handle both the activity and the compensating transaction for the activity. Of
course, the implementor is also free to place the “Undo” logic in a separate
Collaboration as long as the eX_Activity_Undo Event Type is subscribed to and the
proper Event is returned to the e*Insight engine.

The e*Insight engine provides local attributes only available to a particular activity. It
uses them for holding values set by the “Do” portion of the activity Collaboration.
These values can then be used in the “Undo” logic portion of the activity Collaboration
to carry out the compensating transaction. That is, these attributes can be set by the
“Do” portion of the CRS and then recalled by the “Undo” portion of the CRS in order to
cancel out the “Do” when necessary.

For more information on local attributes and where to set them in the e*Insight
Standard ETD, see “Local Attributes” on page 68.

Subscribed Event Type: eX_Activity_Do

This Event causes the subscribing Collaboration to execute the “Do” logic of the
corresponding activity in the business process. This Event Type is in standard e*Insight
format and contains the current values of any global variables designated as “Input” by
the activity in the appropriate location in the eI_StandardEvent.xsc ETD.

Subscribed Event Type: eX_Activity_Undo

This Event causes the subscribing Collaboration to execute the “Undo” logic of the
corresponding activity in the business process. That is, it causes a compensating
transaction to occur that “undoes” the completed activity within a BPI (see“Do and
Undo logic in an Activity Collaboration” on page 43 for an explanation of “undoing”
an activity). This Event Type is in standard e*Insight format, and contains the current
values of any global variables designated as “Input” by the activity in the appropriate
location in the eI_StandardEvent.xsc ETD. Also, the eX_Activity_Undo Event contains
any local variables set by the Collaboration executing the “Do” logic associated with
this activity.

Published Event Type: eX_External_Evt

This Event carries data to the external process that executes the activity. It must be in a
form compatible with the external system to which the e*Way connects.
e*Insight Business Process Manager Implementation Guide 43 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Insight Schema Components (eIJSchema) e*Insight Business Process Manager Components
eX_from_Activity Collaboration

This Collaboration returns the “Done” Event to the e*Insight engine. To do this, the
eX_from_Activity Collaboration must take the data it receives from the external system
and use it to populate the required nodes in the Event returned to the e*Insight engine.
Specifically, it must do the following:

! Populate the activity status node on the eI_StandardEvent.xsc ETD with the value
“SUCCESS” or “FAILURE” depending on whether or not the activity completes
successfully.

! Set the values of any global variables designated as “Output” or “Input/Output”
by the business process activity.

! Return the e*Insight BPI tracking information included in the Event (either
eX_Activity_Do or eX_Activity_Undo) that initiated this activity.

! Set the values of any local variables used by the activity.

See Sending the “Done” Event Back to e*Insight (eIJSchema) on page 88 for more
information.

Subscribed Event Type: eX_External_Evt

This Event contains the result of the completed activity from the external process that
executed the activity’s business logic.

Published Event Type: eX_to_eBPM

! This is the “Done” Event that carries the data from a completed activity back to the
e*Insight engine.

4.3.6 Multi-Mode Activity e*Way
The Multi-Mode Activity e*Way implements an e*Insight activity that can have
multiple connections either inside or outside of e*Gate. A Multi-Mode Activity e*Way
only needs one Collaboration to process the data and return it to the JMS Server. The
CRS associated with the Multi-Mode e*Way’s Collaboration Rule carries out the
business logic of the activity to which it corresponds. This Rule could be a Monk script,
a Java program, or any other script or application supported by the Collaboration
Service under which the CRS runs.

Figure 9 Multi-Mode Activity e*Way Detail

Multi-Mode
Activity e*Way

eX_Activity
Collaboration

eX_to_eBPM

eX_Activity_Do
eX_Activity_Undo

JMS Server
External
e*Insight Business Process Manager Implementation Guide 44 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Insight Schema Components (eIJSchema) e*Insight Business Process Manager Components
eX_Activity Collaboration

This BOB activity Collaboration fulfills all of the functions that were split into a “to”
and a “from” Collaboration in the case of an Single-Mode activity e*Way. In other
words, it must:

! copy the e*Insight BPI tracking information to the destination Event in the CRS

! use the values of the “Input” attributes provided by the e*Insight engine in the
eX_Activity_Do (or eX_Activity_Undo) to complete the business logic for this
activity

! implement both the “Do” and “Undo” logic for the activity

! populate the status node (with “SUCCESS” or “FAILURE”) depending on the
outcome of the activity

! set the values for any “Output” or “Input/Output” attributes

! set the values for any local attributes

Subscribed Event Types:

! eX_Activity_Do—This Event causes the subscribing Collaboration to execute the
“Do” logic of the activity with the same name in the business process. It is the same
Event Type as that subscribed to by the eX_to_Activity Collaboration. See
“Subscribed Event Type: eX_Activity_Do” on page 43 for more information.

! eX_Activity_Undo—This Event causes the subscribing Collaboration to execute the
“Undo” logic of the activity with the same name in the business process. It is the
same Event Type as that subscribed to by the eX_to_Activity Collaboration. See
“Subscribed Event Type: eX_Activity_Undo” on page 43 for more information.

Published Event Type: eX_to_eBPM

This “Done” Event carries the data from a completed activity back to the e*Insight
engine. It is the same as that published by the eX_from_Activity Collaboration. See
“Published Event Type: eX_to_eBPM” on page 44 for more information.

4.3.7 Activity BOB
The Activity BOB implements an e*Insight activity that does not require a connection to
a system outside of e*Gate. A BOB only needs one Collaboration to process the data
and return it to the JMS Server. The CRS associated with the BOB’s Collaboration Rule
carries out the business logic of the activity to which it corresponds. This Rule could be
a Monk script, a Java program, or any other script or application supported by the
Collaboration Service under which the CRS runs.
e*Insight Business Process Manager Implementation Guide 45 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Insight Schema Components (eIJSchema) e*Insight Business Process Manager Components
Figure 10 Activity BOB Detail

eX_Activity Collaboration

This BOB activity Collaboration fulfills all of the functions that were split into a “to”
and a “from” Collaboration in the case of an activity e*Way. In other words, it must:

! copy the e*Insight BPI tracking information to the destination Event in the CRS

! use the values of the “Input” attributes provided by the e*Insight engine in the
eX_Activity_Do (or eX_Activity_Undo) to complete the business logic for this
activity

! implement both the “Do” and “Undo” logic for the activity

! populate the status node (with “SUCCESS” or “FAILURE”) depending on the
outcome of the activity

! set the values for any “Output” or “Input/Output” attributes

! set the values for any local attributes

Unlike the e*Way activity Collaborations, the BOB Collaboration does not need to
reformat the data for an external system. The data remains in the standard e*Insight
ETD.

Subscribed Event Types:

! eX_Activity_Do—This Event causes the subscribing Collaboration to execute the
“Do” logic of the activity with the same name in the business process. It is the same
Event Type as that subscribed to by the eX_to_Activity Collaboration. See
“Subscribed Event Type: eX_Activity_Do” on page 43 for more information.

! eX_Activity_Undo—This Event causes the subscribing Collaboration to execute the
“Undo” logic of the activity with the same name in the business process. It is the
same Event Type as that subscribed to by the eX_to_Activity Collaboration. See
“Subscribed Event Type: eX_Activity_Undo” on page 43 for more information.

Published Event Type: eX_to_eBPM

This “Done” Event carries the data from a completed activity back to the e*Insight
engine. It is the same as that published by the eX_from_Activity Collaboration. See
“Published Event Type: eX_to_eBPM” on page 44 for more information.

Activity BOB

eX_Activity
Collaboration

eX_to_eBPM

eX_Activity_Do
eX_Activity_Undo

JMS Server
e*Insight Business Process Manager Implementation Guide 46 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
e*Insight Schema Components (eIJSchema) Using Monk in eIJSchema
4.4 Using Monk in eIJSchema
Although eIJSchema is primarily designed to use Java, you can manually configure a
schema based on eIJSchema to use Monk. If you use a Monk component, then you
introduce the following limitations:

! the engine can no longer publish a binary XML string

! the JMS connection cannot be used to connect to the Monk component

! the Event Type published to the Monk component must be specifically named in
the engine’s publications

4.4.1 Updating an eISchema to use the eIJSchema engine

1 Backup your schema.

2 Open eIJSchema and export the eX_eBPM module.

3 Open the schema that you are updating.

4 Rename eX_eBPM to eX_eBPM_old.

5 Import the eX_eBPM module that you exported in step 2.

6 Configure e*Insight engine connection.

7 Open the eIcr_eBPM Collaboration Rule properties.

A Delete initialization string.

8 Open the eIcol_eBPM Collaboration properties.

A Change the subscription source to <ANY>.

B Delete the publication of Event Type eX_DynamicET.

C Add a publication for every activity in your e*Gate schema as described in Table
3.

Table 3 Publication for eIJSchema update

9 Open the IQ Manager properties. Change the IQ Manager Type to SeeBeyond
JMS.

10 Delete eX_eBPM_old.

Instance Name Event Type Destination

EIStandardInOut eX_<Activity Name>_Do eX_eBPM

EIStandardInOut eX_<Activity Name>_Undo eX_eBPM
e*Insight Business Process Manager Implementation Guide 47 SeeBeyond Proprietary and Confidential

Chapter 5

e*Insight Schema Components (eISchema)

The e*Insight Schema is the e*Gate schema that implements a particular e*Insight
installation. The starting point for a working e*Gate Schema for e*Insight is the e*Gate
schema called eISchema created when you install the e*Gate Schema for e*Insight from
the installation CD. This schema contains a number of pre-configured and partially pre-
configured e*Gate components used by e*Insight. In addition to the components that
are provided on the CD, a complete e*Insight implementation requires several other
e*Gate components that are added to the e*Insight schema during the implementation
process. The pre-configured components that are used, as well as the additional e*Gate
components that are added to make up the final working e*Insight schema, depends
entirely on the specifics of the implementation.

The purpose of this chapter is to describe the e*Gate components provided with the
eISchema as well as those that are added in the implementation process, and discuss
how each fits into and supports a working e*Insight implementation. For each
component there is a detailed drawing showing the other components with which it
interacts as well as the publication and subscription information for its Collaborations.
In addition, for each component we discuss: the type of component it is, its function in
e*Insight, any configuration the implementor must perform, the Collaborations it uses,
and what is contained in the Events it processes.

5.1 The Purpose of the e*Gate Schema for e*Insight
The purpose of the e*Gate Schema for e*Insight is to provide the working portion of
e*Insight. Whereas the e*Insight GUI is primarily used to configure and monitor the
e*Insight system, the Schema components actually move and transform the data
handled by e*Insight.

5.1.1 e*Insight Components
The e*Insight components start, run and implement business processes. The e*Insight
components that start and implement business processes are user-defined and must be
added to the e*Insight schema. The components that run business processes are
provided by the e*Insight installation and require only a small amount of configuration
on the part of the user.
e*Insight Business Process Manager Implementation Guide 48 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
e*Insight Schema Components (eISchema) e*Insight Schema Components Overview
5.2 e*Insight Schema Components Overview
Table 4 lists all of the component types used by e*Insight. It lists the components that
are provided as part of the e*Insight schema (eISchema) installation, and also the
components that the user adds in the implementation process. The meaning of the
column headings is as follows.

! Component—The e*Gate logical name for the component. Italics indicates that the
name varies by association or is user-defined.

! Description—A brief description of what the component does in e*Insight.

! In Default eISchema—Whether or not this component is provided as part of the
schema installation of e*Insight.

! Configuration Required—Most of the components in the default eISchema require
little configuration on the part of the implementor. Table 4 uses the following terms
to describe the level of configuration required:

" No—The component does not require any configuration or programming on
the part of the implementor.

" Minor—You must add the e*Insight database connection information to the
configuration file.

" Some—You must make additional changes to the configuration file beyond
providing the e*Insight database connection information.

" Yes—The component is mostly or entirely user-defined and must be configured
and programmed by the implementor.

! More Information—A cross reference to the section that describes this component
in detail.

Additional Components

There are a number of components in eISchema that are not used in a standard
implementation. These include:

! eI_DynamicET Event Type

! eIcr_BuiltForSuccess Collaboration Rule

! eIcr_eBPM Collaboration Rule

! <host_name>_jmsserver IQ Manager

The above components are provided to enable you to upgrade your schema to use the
engine provided with eIJSchema. For more information, see “e*Insight Schema
Components (eIJSchema)” on page 29. You can delete these components if you do not
want to use them.

Important: It is recommended that you use the eIJSchema base e*Gate schema initially, rather
than upgrade an e*Gate schema based on eISchema to use the components provided
in eIJSchema.
e*Insight Business Process Manager Implementation Guide 49 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
e*Insight Schema Components (eISchema) e*Insight Schema Components Overview
5.2.1 e*Insight Schema Component Relationships Diagram
Figure 12 on the next page illustrates the relationships among the e*Insight schema
components. Not every e*Insight implementation uses all of these components. Some of
the components shown are not provided as part of the e*Gate Schema for e*Insight
installation. These components are shown in light blue and must be added to the base
e*Insight schema by the implementor as needed.

Figure 11 e*Insight Overview Legend

Table 4 e*Insight Schema Component Types

Component Description In Default
eISchema?

Configuration
Required?

More
Information

eX_eBPM Engine This is a specially configured Java e*Way
Connector that runs business processes.

Yes Some 5.3.1 on
page 52

eI_Resubmitter BOB A placeholder component used in the
e*Insight Event failure handling process.

Yes Yes 5.3.2 on
page 57

Start BP Component Either an e*Way or BOB that sends the Event
that starts a business process instance.

No Yes 5.3.4 on
page 59

eX_Activity e*Way Implements an e*Insight activity that
connects to an external system.

No Yes 5.3.5 on
page 62

eX_Activity BOB Implements an e*Insight activity that does
not connect to an external system.

No Yes 5.3.6 on
page 64

Database

GUI

BOB

e*Way

Intelligent
Queue

Component connection
with arrow indicating
direction of data flow

External
to eX system

Medium
Gray

Light Blue Not in default
Schema

Multiple components
of a similar type
e*Insight Business Process Manager Implementation Guide 50 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Insight Schema Components (eISchema) e*Insight Business Process Manager Components
Figure 12 e*Insight 4.5.2 Components

5.3 e*Insight Business Process Manager Components
The e*Insight components start, run and implement the businesses processes created in
the e*Insight GUI. The components that run the business processes are supplied in the
e*Insight installation, while those that implement a business process are user defined
and must be added to the e*Insight e*Gate schema.

Components That Run Business Processes

The two component types dedicated to running and managing business processes are:

! One or more e*Insight engines

! The eI_Resubmitter BOB

The e*Insight engine manages and runs business processes in e*Insight. One e*Insight
engine is required, but more can be added to provide additional processing capacity
when handling a large number of transactions.

The eI_Resubmitter BOB is used in e*Insight Event failure handling.

e*Insight
GUI

eX_Activity
e*Way

External
Process

eX_Activity BOBStart BP
Component

eX_eBPM IQ

e*Insight
Database

eX_eBPM
Engine

eX_Dead
Letter

Queue IQ
eI_Resubmitter

BOB
e*Insight Business Process Manager Implementation Guide 51 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Insight Schema Components (eISchema) e*Insight Business Process Manager Components
Components that Start Business Processes

The component that starts a business process is:

! The START_BP component (the exact name can be chosen by the user).

This is a user-defined component that creates the e*Insight Event that begins a business
process instance. It can be a BOB or an e*Way depending on the requirements of the
scenario.

Components that Implement Business Process Activities

The components that implement business process activities are:

! eX_Activity e*Ways

! eX_Activity BOBs

By default the activity components are named after the activity they implement with
the prefix “eX_” added to the activity name found in the e*Insight GUI. They are added
to the e*Insight schema when you use the e*Insight GUI to configure that schema for a
particular business process. They can be either an e*Way or a BOB depending on
whether the business activity involves a connection to an external system. The user
must also supply the programming to carry out the business logic of the activity and
return an activity completed message (the “Done” Event) to the e*Insight engine

Note: In addition to Collaborations running in e*Gate components, activities can also be
implemented using Java scripts that run within the e*Insight engine. See the
e*Insight Business Process Manager User’s Guide for more information.

5.3.1 e*Insight Engine
The e*Insight engine manages and runs business processes. One e*Insight engine is
required to operate, but more can be added to provide additional processing capacity
when handling a large number of transactions.

For more information on using multiple engines, see “Using Multiple e*Insight
Engines (eISchema)” on page 271.

The e*Insight engine, eX_eBPM, is a specially configured Java e*Way that is used to run
business processes. An e*Insight engine communicates with both the eX_eBPM and
eX_Dead_Letter_Queue IQs, as well as the e*Insight database as shown in Figure 13.
e*Insight Business Process Manager Implementation Guide 52 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Insight Schema Components (eISchema) e*Insight Business Process Manager Components
Figure 13 eX_eBPM Engine Detail

Configuring the e*Insight Engine

The e*Insight engine requires only minimal configuration on the part of the user. Table
5 lists those parameters in the engine’s configuration file that the user can change.

Table 5 e*Insight Engine Configuration Settings

Screen Parameter Setting

General
Settings

(All) (Default)

Communication
Setup

(All) (Default)

Java VM
Configuration

JNI DLL This is the path to the java virtual machine used by
the e*Insight engine. If necessary, replace the default
value, C:\eGate\Client\JRE\1.3\bin\hotspot\jvm.dll,
with the fully qualified path to the JNI DLL file on the
Participating Host that is running the e*Insight
engine. The default location given above is where the
public installation of java 1.2.2 places this file on a
Windows NT machine.
Note: In a UNIX environment the name and location

of this file is different; for example, /usr/
Solaris_JDK_1.2.2_05a/jre/sparc/libjvm.sol

Enable Custom
Error Handling

The default value is “YES”. Change the value to “NO”
if you do not want custom error handling enabled.
See the eI_Resubmitter BOB below for more
information.

(Others) (Default)

eX_to_eBPM

eX_Activity1_Do
eX_Activity1_Undo
eX_Activity2_Do

eX_External_Evt

eX_External_Evt

eX_eBPM
Engine

eX_to_eBPM
Collaboration

eX_from_eBPM
Collaboration

eX_Failed_From_eBPM

eX_Dead_Letter
_Queue IQ

eX_eBPM
IQ

eX_Activity2_Undo
eX_Activity3_Do
eX_Activity3_Undo

e*Insight
Database
e*Insight Business Process Manager Implementation Guide 53 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Insight Schema Components (eISchema) e*Insight Business Process Manager Components
eBPM Settings JDBC URL
String

This is the connection string used by the e*Insight
engine to communicate with the e*Insight database.
Use the connection string that is appropriate for the
database client setup on the machine running the
e*Insight engine. (Refer to the relevant driver
documentation for more details on configuring your
system).

An Oracle database connection might use the string:
jdbc:oracle:thin:@machine_name:port:db where
! thin is the type of oracle client interface. See your

e*Insight database administrator for more
information.

! machine_name is the network name of the
computer running the e*Insight database. If the
database is on the same machine as the e*Insight
engine you can use “localhost” instead of the
machine’s network name.

! port is correct port for communicating with the
e*Insight database (1521 is the default).

! db is the service name used to communicate with
e*Insight Oracle database from the local machine.

If you are using XML data and a Model Specific
database, then you would use the OCI8 driver. See
the e*Insight Business Process Manager Installation
Guide for information on installing the driver. You
might use the string:
jdbc:oracle:oci8:@db where
! oci8 is the type of oracle client interface.
! db is the service name used to communicate with

e*Insight Oracle database from the local machine.

A SQL Server database connection might use the
string:
jdbc:SeeBeyond:sqlserver://
<server>:<port#>;DatabaseName=<dbname>;embe
dded=true
! server is the network name of the computer

running the e*Insight database. If the database is
on the same machine as the e*Insight engine you
can use “localhost” instead of the machine’s
network name.

! dbname is the name of the e*Insight SQL Server
database.

! port is correct port for communicating with the
e*Insight database.

Table 5 e*Insight Engine Configuration Settings (Continued)

Screen Parameter Setting
e*Insight Business Process Manager Implementation Guide 54 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Insight Schema Components (eISchema) e*Insight Business Process Manager Components
eBPM Settings JDBC URL
String

A Sybase database connection might use the string:
jdbc:sybase:Tds:<server>:<port>
! server is the network name of the computer

running the e*Insight database. If the database is
on the same machine as the e*Insight engine you
can use “localhost” instead of the machine’s
network name.

! port is correct port for communicating with the
e*Insight database.

Database Type Specifies the type of e*Insight database. Select one
of the following:
! Oracle when using an Oracle 8i (8.1.5 and above)
! SQL Server when using SQL Server 7.0 or SQL

Server 2000
! Sybase when using Sybase 11.9

User name Determines the database user name under which the
e*Insight engine accesses the e*Insight database.
The user should have the same rights as the
administrator user (default is ex_admin) created by
the e*Insight database schema creation scripts.

Password Determines the password associated with the name
the e*Insight engine uses to access the e*Insight
database. The default password used by e*Insight
database creation scripts is ex_admin.

JDBC Driver
Class

Enter name of JDBC Driver Class which interprets the
JDBC URL String specified previously to gain access
to the e*Insight database. For example,
oracle.jdbc.driver.OracleDriver
can be used with an ORACLE database, and
sun.jdbc.odbc.JdbcOdbcDriver can be used with a
SQL Server database or a Sybase database.

Maximum
Business
Process Cache
Size

This is the number of business processes that the
e*Insight engine can hold in memory at one time. If
the cache is full and another business process needs
to be loaded, the least recently used (LRU) business
process in the cache is replaced with the new
business process. The default is 1024 business
processes. The size of the business processes does
not matter.
Entering the special value of zero (0) implies that
caching of Business Process definitions is NOT
desired, and thus the e*Insight engine ALWAYS
reloads the Business Process definition from the
database for EVERY Activity event of a Business
Process Instance. Note, this feature severely impacts
performance.

Table 5 e*Insight Engine Configuration Settings (Continued)

Screen Parameter Setting
e*Insight Business Process Manager Implementation Guide 55 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Insight Schema Components (eISchema) e*Insight Business Process Manager Components
Maximum
Instance
Cache Size

Enter the maximum number of Business Process
Instances that the e*Insight engine caches in
memory. When the maximum size is reached, the
Engine first removes the Least Recently Used (LRU)
Instance from the cache. Entering a value of -1
means that there is no limit to the number of
Instances kept in memory.

The value entered for this parameter effects the total
amount of memory used by the engine. Limit the
number of instances if you start getting out of
memory messages when running the engine.

Note: A value of zero (0) should NOT be used.

Instance
Caching

Instance Caching is the most efficient way to process
Business Process Instances.Setting this value to YES
keeps a cache of the instance information
throughout the life span of the Business Process
Instance. Setting this value to NO retrieves the
information from the database instead. This allows
more flexibility and fault tolerance at the cost of
performance.

To improve performance it is recommended to set
this parameter to YES and use multiple e*Insight
engines. To use both instance caching and multiple
engines it is necessary to ensure that a single
instance is always processed by the same engine.
This is achieved by using engine affinity. For
information using Instance Caching with multiple
engines see “e*Insight Engine Affinity
(eISchema)” on page 272.

Business
Processes to
Preload

This parameter allows you to load all or a subset of all
the business processes stored in the e*Insight
database. The default is ALL.

Use Default
Locale
Encoding

Setting this value to YES specifies that all data
received by and sent from this e*Insight Engine is
encoded in the same language as the default Locale
setting of this Participating Host.
Setting this value to NO specifies that data is being
passed to and from this e*Insight Engine in an UTF-8
encoding format.

(Others) (Default)

Table 5 e*Insight Engine Configuration Settings (Continued)

Screen Parameter Setting
e*Insight Business Process Manager Implementation Guide 56 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Insight Schema Components (eISchema) e*Insight Business Process Manager Components
eX_from_eBPM Collaboration

The eX_from_eBPM Collaboration is not user-configurable. It provides the
eX_Activity_Do and eX_Activity_Undo Events to the e*Gate layer components that
carry out those activities. It also publishes failed Events to the eX_Dead_Letter_Queue
IQ.

Subscribed Event Type: eX_External_Evt

This Event carries the data retrieved from the e*Insight database to the e*Insight
engine.

Published Event Types:

! eX_Activity_Do—This Event causes the subscribing Collaboration to execute the
“Do” logic of the activity with the same name in the business process. See
“Subscribed Event Type: eX_Activity_Do” on page 63 for more information.

! eX_Activity_Undo—This Event causes the subscribing Collaboration to execute the
“Undo” logic of the activity with the same name in the business process. See
“Subscribed Event Type: eX_Activity_Undo” on page 64 for more information.

! eX_Failed_From_eBPM—This Event contains the failed Event along with error
information.

eX_to_eBPM Collaboration

The eX_to_eBPM Collaboration is not user-configurable. The e*Insight engine uses this
Collaboration to retrieve from the eX_eBPM IQ Events that require processing by the
e*Insight engine. For example, it would retrieve “Done” Events put there by activity
Collaborations in the e*Gate layer.

Subscribed Event Type: eX_to_eBPM

This Event Type carries all Events intended for e*Insight. These include Start BP Events,
“Done” Events, and other Events that must be processed by the e*Insight engine. The
corresponding ETD is eX_Standard_Event.ssc. This is the only Event Type to which the
e*Insight engine subscribes; all data sent to the e*Insight engine must use this Event
Type.

Published Event Type: eX_External_Evt

This Event carries the data that is written to the e*Insight database.

5.3.2 eI_Resubmitter BOB
The eI_Resubmitter BOB is a placeholder component that the implementor can use to
resubmit failed Events back to the e*Insight IQ after repairing them. The Event Repair
logic in the eI_Resubmitter BOB’s Collaboration must be supplied by the implementor.
e*Insight Business Process Manager Implementation Guide 57 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Insight Schema Components (eISchema) e*Insight Business Process Manager Components
Figure 14 eI_Resubmitter BOB Detail

Configuring the eI_Resubmitter BOB

The user must fill in the eI_Resubmitter Collaboration with the logic to repair and
resubmit Events retrieved from the eX_Dead_Letter_Queue.

eI_Resubmitter Collaboration

The eI_Resubmitter Collaboration is a placeholder Collaboration that the implementor
can use as a starting point to add logic that repairs and resubmits Events that have
failed to be processed by the e*Insight engine due to data errors.

Subscribed Event Type: eX_Failed_From_eBPM

This Event Type contains the e*Insight Event that failed to process correctly at the
e*Insight engine level due to a data error, along with the error information.

Published Event Type: eX_to_eBPM

This Event Type contains the repaired version of the failed Event to be reprocessed by
the e*Insight engine.

5.3.3 Failed Event Handling by the e*Insight Engine
How the e*Insight engine handles errors generated when processing Events, depends
on the type of error and on whether custom error handling is enabled in the e*Insight
engine’s configuration file.

Error Types

Connection errors

Connection errors are errors that the e*Insight receives because of a faulty connection to
the e*Insight database.

Data errors

Data errors are exceptions that the e*Insight generates because it cannot process an
Event that is sent to it. Also in this class of errors are those generated by the e*Insight
because of a faulty business process configuration.

eX_to_eBPMeX_Failed_From_eBPM

eI_Resubmitter
Collaboration

eI_Resubmitter BOB

eX_Dead_Letter
_Queue IQ

eX_eBPM
IQ
e*Insight Business Process Manager Implementation Guide 58 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Insight Schema Components (eISchema) e*Insight Business Process Manager Components
Error Handling

Normal Event Failure Handling

The normal handling of Events that can’t be processed due to a connection error is to
make a note of the error in the e*Insight engine’s log file and retry processing the Event
until a connection is made.

The normal e*Insight engine handling of Events that can’t be processed due to a data
error is, in addition to generating a log entry, to retry processing the Event that
generated the error up to a maximum value and then count the Event as failed. Once a
certain number of failed Events have been processed by the engine it shuts down. Both
the maximum number of resends per Event and the maximum number of failed Events
allowed by the e*Insight engine are set in the e*Insight engine’s configuration file in the
General Settings section.

Special Event Failure Handling

When custom error handling is enabled in the e*Insight engine’s configuration file (as it
is by default) Events that fail to process due to data errors are handled in a special way.
Events that fail to process due to communication errors are not affected by custom error
handling. When the e*Insight engine has custom error handling enabled, an Event is
not retried, but a notation is made in the e*Insight log file and the Event itself is
published to a special IQ. This method allows the e*Insight engine to move on to other
processing and not spend time attempting to resend failed Events.

The e*Insight engine publishes the failed Event to the eX_Dead_Letter_Queue IQ
under the eX_Failed_From_eBPM Event Type. The eI_Resubmitter BOB subscribes to
this Event Type and you can use it to repair the Event and republish it to the eX_eBPM
IQ. The eX_Failed_Event.ssc ETD associated with the eX_Failed_From_eBPM Event
Type has two major node structures. Once contains error information, and the other
contains the failed Event. The failed Event is placed in the CDATA leaf node that can
contain XML data.

5.3.4 START_BP Component (e*Way or BOB)
The START_BP component is the e*Gate component that sends the “Start” Event which
initiates a business process instance (BPI). This component does not have a
corresponding activity in the business process model. The start BP component can be
either an e*Way or a BOB depending on the availability of the data within the e*Insight
system. If the data required to start a BPI is available within the system, then you can
use a BOB to start the BPI. Otherwise, you must use an e*Way to bring the data into the
e*Gate environment before it can be used to send the “Start” Event.
e*Insight Business Process Manager Implementation Guide 59 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Insight Schema Components (eISchema) e*Insight Business Process Manager Components
Figure 15 START_BP e*Way Detail

Typically, an e*Way used to start the BPI connects to a business application, which in
turn provides the data used by the business process. The type of e*Way chosen
depends on the type of business application or external system to which the e*Way
must connect in order to bring in the data. For example, if the business application is
Siebel, then the e*Way used is the Siebel e*Way.

Using a BOB to start the business process is almost the same as using an e*Way; the
only difference is where these two component types get their data. Unlike an e*Way, a
BOB gets its data directly from an e*Gate IQ without having to connect to an external
system, as shown in Figure 16.

Figure 16 START_BP BOB Detail

Both the BOB and the e*Way starting the BP must put the data they receive into the
standard format used throughout e*Insight.

Configuring the START_BP Component

Configuring the START_BP Component depends on the type of component it is. For
example, a BOB has no configuration file, and an e*Way’s configuration file is different
depending on the type of e*Way that is used. See the appropriate e*Way User Guide for
information on configuring a specific e*Way. In addition, the implementor must create
a Collaboration Rules Script for the START_BP component that constructs the inbound
e*Insight Event that starts a business process instance.

eX_to_eBPM

START_BP e*Way

START_BP
Collaboration

eX_External_Evt eX_eBPM
IQ

External
Process

eX_to_eBPM

START_BP
Collaboration

START_BP BOB

Data
IQ

eX_eBPM
IQeX_External_Evt
e*Insight Business Process Manager Implementation Guide 60 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Insight Schema Components (eISchema) e*Insight Business Process Manager Components
START_BP Collaboration

This Collaboration, used by the START_BP component, prepares the eX_to_eBPM
Event. This Event is sent to the e*Insight engine in order to start an instance of the
business process. The Collaboration must do two things:

! populate the three nodes required to start a BPI in the e*Insight standard Event

! place the data it receives into one or more global attributes of the business process

Start BP Nodes in the e*Insight Standard Event

The following three nodes in the eX_Standard_Event.ssc ETD must be populated in the
Event sent to the e*Insight engine in order to start a BPI:

! BP_EVENT.AS.NAME.Value must be filled with the exact name of the business
process as it appears in the e*Insight GUI

! BP_EVENT.AS.ID.Value must be filled with a unique ID (for example,
a timestamp)

! BP_EVENT.AS.TYPE.Value must be filled with the string “START_BP”

Converting Input Data to e*Insight Format

Data required by the business process must be placed in one or more global attributes
of the business process by the START_BP Collaboration. In addition, the Collaboration
must also convert any data it receives to the XML format used by the e*Insight system.

If any global attribute data contains characters that conflict with the XML structure of
the e*Insight Event, then this data must be converted to base 64 encoding prior to
sending it into the e*Insight system. You can convert the data in the START_BP
Collaboration by using the Monk function raw->base64.

Note: Make sure that the stc_monkutils.dll that contains the function raw->base64 is
loaded before using raw->base64 in a Collaboration Rules Script. For example, you
may use the command: load-extension “stc_monkutils.dll” in the CRS itself or
you may put path to a file that loads in the initialization file box in the
Collaboration Rule that uses the CRS.

See “Starting a Business Process (eIJSchema)” on page 87 for more information on
how to start a BPI.

Published Event Type: eX_to_eBPM

This “Start” Event carries the data to begin an instance of a particular business process
to the e*Insight engine.

Subscribed Event Type: eX_External_Evt

When using a START_BP e*Way, this Event carries the data from the external
application to which the START_BP e*Way connects. In the case of a START_BP BOB,
this Event carries data from an e*Gate IQ.
e*Insight Business Process Manager Implementation Guide 61 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Insight Schema Components (eISchema) e*Insight Business Process Manager Components
5.3.5 Activity e*Way
An activity e*Way implements an e*Insight activity that requires a connection to a
system outside of e*Gate.

Figure 17 Activity e*Way Detail

When you use the e*Insight GUI to configure the e*Gate schema supporting the
e*Insight implementation, each activity in the business process becomes either a pair of
Collaborations in an e*Way or a single Collaboration in a BOB. The choice to use an
e*Way or a BOB to hold the activity Collaboration or Collaborations depends on the
preference of the implementor.

For an activity e*Way, the two Collaborations that are created are named
eX_from_Activity and eX_to_Activity, where Activity is replaced with the Activity
Name from the associated business process in e*Insight. In addition to the
Collaborations, the corresponding Collaboration Rules and the Event Types subscribed
to and published by the Collaborations are also named after the activity name.

The Collaboration Rule created in this process is only a placeholder. Implementors
must configure the Collaboration Rules by writing the Collaboration Rules Script and
choosing the service under which this script runs. The CRS contains the programming
that implements the business logic for the corresponding activity in the business
process.

The type of e*Way used to implement a particular activity depends on what the activity
is supposed to accomplish in the business process. For example, an SAP e*Way could
be used to connect to an ERP system to look up the credit standing of a customer, or an
Oracle e*Way could be used to look up the mailing address of a prospective client in a
marketing database.

Configuring the eX_to_Activity e*Way

Some of the configuration for the activity e*Way is done for you when you use the
e*Insight GUI to configure the schema. This includes setting up the component
relationships and Event Type routing in the e*Insight schema, but not the actual
business logic programming or the type of e*Way that is used. The business logic
programming must be done by the implementor in Collaboration Rules Scripts used by

Activity e*Way

eX_to_Activity
Collaboration

eX_from_Activity
CollaborationeX_to_eBPM

eX_Activity_Do
eX_Activity_Undo eX_External_Evt

eX_External_Evt

External
Process

eX_eBPM
IQ
e*Insight Business Process Manager Implementation Guide 62 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Insight Schema Components (eISchema) e*Insight Business Process Manager Components
the activity Collaborations, and the e*Way’s configuration file must be defined based
on the type of e*Way chosen to implement the activity. See the appropriate e*Way
Users Guide for information on how to set up the e*Way chosen.

eX_to_Activity Collaboration

The eX_to_Activity Collaboration receives the Event that carries the data used in the
activity. It receives the Event from the e*Insight Engine, and passes it to the external
process that implements the activity’s business logic. The Collaboration must be
configured to convert the data into whatever format is required by the external system
to which the activity e*Way connects.

Important: In addition to passing the attribute data it receives from the e*Insight engine to the
external system, the eX_to_Activity Collaboration must preserve the e*Insight
Business Process Instance tracking information contained in the eX_Activity_Do
or eX_Activity_Undo Events. This information is used to send the return or
“Done” Event back to the e*Insight engine, when the activity completes. See
Sending the “Done” Event Back to e*Insight (eIJSchema) on page 88 for
more information on what information is required in the “Done” Event.

Do and Undo logic in an Activity Collaboration

The eX_to_Activity Collaboration in an activity e*Way and the eX_Activity
Collaboration in an Activity BOB both subscribe to two Event Types: eX_Activity_Do
and eX_Activity_Undo. When the activity Collaboration picks up a “Do” Event Type
from the eX_eBPM IQ, it carries out a “positive” instance of the activity. When the
activity Collaboration picks up an “Undo” Event Type from the IQ, it carries out a
“negative” or compensating version of the activity—in other words, an activity that
cancels out a previously completed “Do” instance of the activity for the current
business process instance.

By default, the eX_to_Activity Collaboration in an activity e*Way (eX_Activity in a
BOB) subscribe to both the “Do” and “Undo” Events. Consequently the CRS must
contain logic to handle both the activity and the compensating transaction for the
activity. Of course, the implementor is also free to place the “Undo” logic in a separate
Collaboration as long as the eX_Activity_Undo Event Type is subscribed to and the
proper Event is returned to the e*Insight engine.

The e*Insight engine provides local attributes only available to a particular activity. It
uses them for holding values set by the “Do” portion of the activity Collaboration.
These values can then be used in the “Undo” logic portion of the activity Collaboration
to carry out the compensating transaction. That is, these attributes can be set by the
“Do” portion of the CRS and then recalled by the “Undo” portion of the CRS in order to
cancel out the “Do” when necessary.

For more information on local attributes and where to set them in the e*Insight
Standard ETD, see “Local Attributes” on page 68.

Subscribed Event Type: eX_Activity_Do

This Event causes the subscribing Collaboration to execute the “Do” logic of the
corresponding activity in the business process. This Event Type is in standard e*Insight
e*Insight Business Process Manager Implementation Guide 63 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Insight Schema Components (eISchema) e*Insight Business Process Manager Components
format and contains the current values of any global variables designated as “Input” by
the activity in the appropriate location in the eX_Standard_Event.ssc ETD.

Subscribed Event Type: eX_Activity_Undo

This Event causes the subscribing Collaboration to execute the “Undo” logic of the
corresponding activity in the business process. That is, it causes a compensating
transaction to occur that “undoes” the completed activity within a BPI (see“Do and
Undo logic in an Activity Collaboration” on page 63 for an explanation of “undoing”
an activity). This Event Type is in standard e*Insight format, and contains the current
values of any global variables designated as “Input” by the activity in the appropriate
location in the eX_Standard_Event.ssc ETD. Also, the eX_Activity_Undo Event
contains any local variables set by the Collaboration executing the “Do” logic
associated with this activity.

Published Event Type: eX_External_Evt

This Event carries data to the external process that executes the activity. It must be in a
form compatible with the external system to which the e*Way connects.

eX_from_Activity Collaboration

This Collaboration returns the “Done” Event to the e*Insight engine. To do this, the
eX_from_Activity Collaboration must take the data it receives from the external system
and use it to populate the required nodes in the Event returned to the e*Insight engine.
Specifically, it must do the following:

! Populate the activity status node on the eX_Standard_Event.ssc ETD with the value
“SUCCESS” or “FAILURE” depending on whether or not the activity completes
successfully.

! Set the values of any global variables designated as “Output” or “Input/Output”
by the business process activity.

! Return the e*Insight BPI tracking information included in the Event (either
eX_Activity_Do or eX_Activity_Undo) that initiated this activity.

! Set the values of any local variables used by the activity.

See Sending the “Done” Event Back to e*Insight (eIJSchema) on page 88 for more
information.

Subscribed Event Type: eX_External_Evt

This Event contains the result of the completed activity from the external process that
executed the activity’s business logic.

Published Event Type: eX_to_eBPM

This is the “Done” Event that carries the data from a completed activity back to the
e*Insight engine.

5.3.6 Activity BOB
The Activity BOB implements an e*Insight activity that does not require a connection to
a system outside of e*Gate. A BOB only needs one Collaboration to process the data
e*Insight Business Process Manager Implementation Guide 64 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Insight Schema Components (eISchema) e*Insight Business Process Manager Components
and return it to the eX_eBPM IQ. The CRS associated with the BOB’s Collaboration
Rule carries out the business logic of the activity to which it corresponds. This Rule
could be a Monk script, a Java program, or any other script or application supported by
the Collaboration Service under which the CRS runs.

Figure 18 Activity BOB Detail

eX_Activity Collaboration

This BOB activity Collaboration fulfills all of the functions that were split into a “to”
and a “from” Collaboration in the case of an activity e*Way. In other words, it must:

! copy the e*Insight BPI tracking information to the destination Event in the CRS

! use the values of the “Input” attributes provided by the e*Insight engine in the
eX_Activity_Do (or eX_Activity_Undo) to complete the business logic for this
activity

! implement both the “Do” and “Undo” logic for the activity

! populate the status node (with “SUCCESS” or “FAILURE”) depending on the
outcome of the activity

! set the values for any “Output” or “Input/Output” attributes

! set the values for any local attributes

Unlike the e*Way activity Collaborations, the BOB Collaboration does not need to
reformat the data for an external system. The data remains in the standard e*Insight
ETD.

Subscribed Event Types:

! eX_Activity_Do—This Event causes the subscribing Collaboration to execute the
“Do” logic of the activity with the same name in the business process. It is the same
Event Type as that subscribed to by the eX_to_Activity Collaboration. See
“Subscribed Event Type: eX_Activity_Do” on page 63 for more information.

! eX_Activity_Undo—This Event causes the subscribing Collaboration to execute the
“Undo” logic of the activity with the same name in the business process. It is the
same Event Type as that subscribed to by the eX_to_Activity Collaboration. See
“Subscribed Event Type: eX_Activity_Undo” on page 64 for more information.

Activity BOB

eX_Activity
Collaboration

eX_to_eBPM

eX_Activity_Do
eX_Activity_Undo

eX_eBPM
IQ
e*Insight Business Process Manager Implementation Guide 65 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Insight Schema Components (eISchema) e*Insight Business Process Manager Components
Published Event Type: eX_to_eBPM

This “Done” Event carries the data from a completed activity back to the e*Insight
engine. It is the same as that published by the eX_from_Activity Collaboration. See
“Published Event Type: eX_to_eBPM” on page 64 for more information.
e*Insight Business Process Manager Implementation Guide 66 SeeBeyond Proprietary and Confidential

Chapter 6

Understanding the e*Insight ETD

e*Insight uses a single Event Type Definition (ETD) to define Events as they move from
one component to another in the e*Insight system. The ETD is named
eI_StandardEvent.xsc for Java and eX_Standard_Event.ssc for Monk. It is an XML
DTD in SeeBeyond’s proprietary messaging format. For a description of the XML DTD
see Appendix A.

All data going into and coming out of the e*Insight components is parsed according to
the e*Insight ETD. Understanding this ETD is the key to creating the Collaboration
Rules scripts necessary to process the data according to the rules determined by the
business process.

Note: The eI_StandardEvent.xsc does not contain a section for the e*Xchange Partner
Manager information. If your implementation also uses e*Xchange Partner
Manager then you may need to use eIX_StandardEvent.xsc as this contains the
TP_EVENT location.
The TP_EVENT location in the eX_Standard_Event.ssc contains information for
e*Xchange Partner Manager. You can ignore this section if your implementation
does not use e*Xchange Partner Manager.
For more information on the TP_EVENT location, refer to the e*Xchange Partner
Manager Implementation Guide.

6.1 Using the ETD with e*Insight
The e*Insight engine uses the e*Insight ETD to carry out the business process. The
BP_EVENT location in the e*Insight ETD contains data the e*Insight engine uses to
track the business process instance. BP_EVENT also contains global and local attribute
data.

6.1.1 About Business Process Attributes
Business process attributes are defined in the e*Insight GUI and can be global or local.

Global attributes are available to be used and shared by any of the activities in the
business process. Local attributes can only be used within a specific activity.

The e*Insight engine uses attributes defined in the business process to send data to
Collaborations associated with each business activity and receive data from them.
e*Insight Business Process Manager Implementation Guide 67 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Understanding the e*Insight ETD Using the ETD with e*Insight
Global Attributes

You define global attributes as part of creating the business process in the e*Insight
GUI. These global attributes make it possible to share data between activities in a
business process as well as move data to and from the e*Gate components that
implement those activities. The e*Insight GUI allows you to designate whether a
particular global attribute is used by a particular activity and whether it is an “Input,”
“Output,” or “Input/Output” attribute.

Input Attributes

The current values of global attributes designated as “Input,” for a particular activity in
a business process, are included in the e*Insight portion of the eX_Activity_Do (or
Undo) Event.

Important: The e*Insight engine does not send a value for every one of the global attributes in a
business process to the current activity. The e*Insight engine only sends values for
the global attributes designated as “Input” or “Input/Output,” for the current
activity, with the eX_Activity_Do Event.

Output Attributes

The e*Insight engine expects global attributes designated as “Output,” to be provided
in the “Done” Event it receives from the activity component once the activity has
completed. The activity Collaboration that publishes this Event must set the values for
the “Output” attributes in its Collaboration Rules script prior to sending the “Done”
Event.

Input/Output Attributes

The e*Insight engine populates the eX_Activity_Do (or Undo) Event with the current
values of the global attributes designated as “Input/Output,” for a particular activity in
the business process. In addition, the e*Insight engine expects to receive values for
global attributes designated as “Input/Output,” in the “Done” Event it receives from a
completed activity. The activity Collaboration that publishes this Event must set the
values for the “Input/Output” attributes in its Collaboration Rules script.

Local Attributes

Unlike global attributes that can be used by any of the activities within a business
process, local attributes are defined only for a specific activity and cannot be used
outside that activity. Also, you do not need to specify whether they are “Input,”
“Output,” or “Input/Output.” In practice they behave as “Output” attributes, because
they can be set by the activity Collaboration that publishes the “Done” Event.

You cannot use local attributes to pass information from the eX_Activity_Do Event to
the eX_Activity Collaboration, because they are empty (null) until they have been set.
This is because while local attributes are defined (a placeholder is set up) in the
e*Insight GUI, they are not set (given an actual value) until they are set by an activity
Collaboration in the “Done” Event that is sent to the e*Insight engine when an activity
completes. On the other hand, you can use local attributes to pass information from the
eX_Activity_Undo Event to the eX_Activity Collaboration. In this case, the value for
e*Insight Business Process Manager Implementation Guide 68 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Understanding the e*Insight ETD e*Insight ETD for Java — eI_StandardEvent.xsc
the attribute could have been previously set by the activity Collaboration in the “Done”
Event it sent when it completed the “Do” portion of the activity.

Use local attributes to implement undo logic

Because local attributes are set in the “Done” Event that is sent back to e*Insight after
the activity completes, local attributes can be used to store prior state information that
would be used by the “Undo” portion of the activity, should a completed “Do” activity
need to be undone.

6.2 e*Insight ETD for Java — eI_StandardEvent.xsc
This section describes how the Java Event Type Definition is structured.

Note: When you install the e*Gate Schema for e*Insight, eIX_StandardEvent.xsc is also
created. This ETD has a TP_EVENT location that is used for e*Xchange Partner
Manager. You should use this ETD if your implementation requires both e*Insight
and e*Xchange. For more information on the TP_EVENT location, refer to the
e*Xchange Partner Manager Implementation Guide.

6.2.1 BP_EVENT
All data relevant to e*Insight processing is contained in the BP_EVENT branch of the
ETD. The structure is shown in Figure 19.

Figure 19 BP_EVENT

The information is held in three different locations within the Event Type Definition.
Each of these nodes contains a different type of information pertinent to e*Insight.

! BP_EVENT contains information about the business process. It also contains the
child elements ACTIVITY and ATTRIBUTE.
e*Insight Business Process Manager Implementation Guide 69 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Understanding the e*Insight ETD e*Insight ETD for Java — eI_StandardEvent.xsc
! ACTIVITY is an optional element that contains information about the current
business process activity and any local attributes that have been defined for that
activity.

! ATTRIBUTE is a repeating element that contains information about the global
attributes for the business process.

BP_EVENT Element

This location in the e*Insight ETD contains general information about the current
business process in the five nodes as shown in Figure 31.

Figure 20 BP_EVENT Element

ID

This node must contain a user-assigned unique identifier for the business process
instance. This ID could be a time stamp, a document number, or some other ID string.

This node must be populated in the Event that starts a business process instance as well
as in the “Done” Event sent back to the e*Insight engine.

STATUS

This node can contain one of the values shown in the following table.

The activity Collaboration must set the value of this node in the “Done” Event sent to
the e*Insight engine.

BPI_ID

This node contains a value assigned by the e*Insight engine. When e*Insight is running
in active mode, including the BPI_ID value in “Done” Event returned to the e*Insight
engine after an activity completes speeds up the time it takes for the engine to process
the Event.

NAME

This node must contain the name of the business process, exactly (including case) as it
appears in the e*Insight GUI.

Value Purpose

“SUCCESS” Indicates that the current activity completed successfully.

“FAILURE” Indicates that the current activity did not complete
successfully.
e*Insight Business Process Manager Implementation Guide 70 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Understanding the e*Insight ETD e*Insight ETD for Java — eI_StandardEvent.xsc
TYPE

This node must contain one of the values shown in the following table.

This node must be populated with the string “START_BP” in the Event that starts a BPI.

BP_EVENT.ACTIVITY Nodes

This location in the e*Insight ETD contains information about the current activity. The
ACTIVITY node contains information of a general nature about the current activity.
The ACTIVITY.ATTRIBUTE node contains information about any local attributes that
have been defined for the current activity. Figure 21 shows the location of these nodes
in the e*Insight ETD.

Figure 21 BP_EVENT.ACTIVITY

ACTIVITY Element

This location in the e*Insight ETD contains ID information about the current activity in
two nodes as shown in Figure 22.

Figure 22 ACTIVITY Element

ID

This node contains a number assigned by the e*Insight engine for the current activity
within a BPI. The e*Insight engine uses this number to speed up processing.

NAME

This node contains the name of the current activity. It must match exactly, including
case, the name as it appears in the e*Insight GUI.

Value Purpose

“START_BP” Indicates to the e*Insight engine that this Event starts a BPI.

“DO_ACTIVITY” Indicates that this is a “Do” Event for the current activity.

“UNDO_ACTIVITY” Indicates that this is an “Undo” Event for the current
activity.
e*Insight Business Process Manager Implementation Guide 71 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Understanding the e*Insight ETD e*Insight ETD for Java — eI_StandardEvent.xsc
ACTIVITY.ATTRIBUTE Element

This repeating node structure contains the local attribute information defined for the
current activity. The structure itself is exactly the same as the global attribute node
structure, and holds exactly the same types of data. The only difference is the location
in the ETD structure. The following section describes the node structure in the e*Insight
ETD used by both global and local attributes.

BP_EVENT.ATTRIBUTE Nodes

This is a repeating node structure that contains the global business process attribute
information in five fields as shown in Figure 23.

Figure 23 ATTRIBUTE Element

ENCODING

Describes the type of encoding used to safely convert XML data to an ASCII format.
Currently only base 64 encoding is supported.

VALUE

This node contains the current value of the attribute. Events sent to an activity
Collaboration have this node populated by the e*Insight engine for attributes
designated as “Input” or “Input/Output” in the e*Insight GUI for the current activity.
This node must be filled in the “Done” Event sent back to the e*Insight engine by the
activity Collaboration, for attributes designated as “Output” or “Input/Output.”

NAME

This node must contain the name of the global attribute. It must match exactly the name
as it appears in the e*Insight GUI.

LOCATION

The value in this node describes where the attribute value is located.

Setting this node to a value other than “EMBEDDED” indicates that the data in the
VALUE field is a pointer (for example, the path to a file) to where the e*Insight engine
can find the value for the attribute, but not actual value itself.

If a value for the LOCATION node is not provided (left out of the Event), the e*Insight
engine assumes the value is “EMBEDDED”.

This node can contain one of the values from the following table.
e*Insight Business Process Manager Implementation Guide 72 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Understanding the e*Insight ETD e*Insight ETD for Java — eI_StandardEvent.xsc
TYPE

The value in this node describes the data type of attribute value. This field must contain
one of the values from the following table.

Value Purpose

“FILE” Indicates that the value for the attribute can be found in the
file at the location specified in the VALUE field.

“DB” Indicates that the value for the attribute can be found in the
e*Insight database at the location specified in the VALUE
field.

“URL” Indicates that the value for the attribute can be found at the
URL location specified in the VALUE field.

“EMBEDDED” Indicates that the value for the attribute is contained in the
current e*Insight Event in the VALUE field. This is the
default value.

“AUTO” Indicates that the value for the attribute is actual data but
storage in e*Insight is automatically determined.

Value Purpose

“BIN” Indicates that the data in the VALUE field is base 64
encoded binary data and is not interpreted as XML by the
e*Insight engine.

“XML” Indicates that the data in the VALUE field is XML data that
has been encoded using the scheme described in the
ENCODING field. Currently only base 64 encoding is
supported.

“STRING” Indicates that the data in the VALUE field is clear ASCII
data, with no characters that could be interpreted as XML
tags.

“TRANSIENT” Indicates that the data in the VALUE field is string data that
is not stored in the e*Insight database. The e*Insight
engine uses special global attributes with this data type to
increase its processing speed.

“NUMBER” Indicates that the data in the VALUE field is interpreted as a
number. The data is interpreted as a decimal number,
however, it must be given as a string.

“BOOLEAN” Indicates that the data in the VALUE field is interpreted as
boolean.
e*Insight Business Process Manager Implementation Guide 73 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Understanding the e*Insight ETD e*Insight ETD for Monk—eX_Standard_Event.ssc
6.3 e*Insight ETD for Monk—eX_Standard_Event.ssc
The first step in using the ETD is understanding the structure of the nodes in the
context of the XML message being created. This section describes how the Monk Event
Type Definition is structured.

6.3.1 ETD Structure
The ETD contains a number of nodes that do not explicitly correlate to the XML DTD
but are required by the Monk engine to parse the XML data correctly. Each level is
structured in the same way.

Table 6 lists these facilitator nodes.

The facilitator nodes always occur in a set order and define the structure of the XML
message. In the e*Insight ETD, the facilitator nodes define three types of branches:

! XML element with sub-elements

! XML element without sub-elements

! XML attribute

6.3.2 XML Element with Sub-elements
The following diagram illustrates the ETD structure for an XML element that has sub-
elements.

Table 6 Facilitator Nodes in the ETD

Name Description

CT A container node for an XML element. This node allows the
short and long forms of XML tags to coexist in the structure.

DSN Identifies a data section within an XML element. This is the
long form of the XML tag.

DS Identifies a data set within an XML element. The sub-elements
within a data set can occur in any order.

Empty The short form of the corresponding DSN node XML tag.

CM XML comment.

Data Holds the data for the element.

AS Identifies an XML attribute set within an XML element.

EQ The equals sign (“=”) within an XML attribute.

Value Holds the value for the XML attribute.
e*Insight Business Process Manager Implementation Guide 74 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Understanding the e*Insight ETD e*Insight ETD for Monk—eX_Standard_Event.ssc
Figure 24 XML Element with Sub-elements

Each XML element contains one child node, CT. CT identifies the parent node as an
XML element. The CT node contains two child nodes: DSN and Empty. DSN is the
long form of the XML tag (</tag>) and Empty is the short form (</>).

The DSN and DS nodes always occur as parent-child pairs. In this type of branch, DS
is the parent node for two types of child nodes:

! CM, which holds XML comments for the element

! <sub-element>, the name of a sub-element of the parent element

The DS node always contains a CM child node to hold XML comments. Each <sub-
element> node contains an ETD structure of its own, with the <sub-element> node as
the parent node for the branch.

6.3.3 XML Element without sub-elements
The following diagram illustrates the ETD structure for an XML element that does not
have sub-elements.

Figure 25 XML Element without sub-elements

Notice that the only difference between this diagram and the previous diagram is a
Data child node in place of the <sub-element> child nodes above. The Data node
contains the actual data for the XML element that is defined. When creating
Collaboration Rules scripts, you must map the XML element data to the Data nodes at
the terminal end of the element’s branch.

6.3.4 XML Attribute
The following diagram illustrates the ETD structure for an XML attribute.

<XML Element> CT

DSN

Empty

DS

CM

<Sub-element>

<Sub-element>

<XML Element> CT

DSN

Empty

DS

CM

Data
e*Insight Business Process Manager Implementation Guide 75 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Understanding the e*Insight ETD e*Insight ETD for Monk—eX_Standard_Event.ssc
Figure 26 XML Attribute

In this case, the XML element contains one child node, AS, which identifies the branch
as XML attributes of the parent element. The AS node contains the <XML Attribute>
nodes as child nodes. Each <XML Attribute> node has two child nodes: EQ to
represent the equal sign (=) in the attribute and Value which holds the actual value for
the attribute. When creating Collaboration Rules scripts, you must map the XML
attribute value to the Value nodes at the terminal end of the attribute’s branch.

6.3.5 Element Overview
The following diagram illustrates the entire e*Insight ETD tree. Note that this is only a
diagrammatic representation of the tree, since the actual tree conforms to the node
structure described in “e*Insight ETD for Monk—eX_Standard_Event.ssc” on
page 74.

Figure 27 The e*Insight ETD

All data pertinent to e*Insight is contained in the XML element eX_Event. eX_Event
contains two distinct “trees”: BP_EVENT and TP_EVENT. BP_EVENT contains all of
the information pertaining to e*Insight. TP_EVENT contains all of the information
pertaining to e*Xchange. Both BP_EVENT and TP_EVENT are optional nodes in the
ETD. So if you use e*Insight to track business process activities but do not use
e*Xchange to send data to and from trading partners, you do not need to populate the
TP_EVENT element. Conversely, if you use e*Xchange to send data to and from
trading partners but do not track business process activities in e*Insight, you do not
need to populate the BP_EVENT element in your Collaboration Rules scripts.

Example: XML Element with Sub-elements

eX_Event is an example of a top-level XML element.

<XML Element> AS

<XML Attribute>

<XML Attribute>

EQ

Value

EQ

Value
e*Insight Business Process Manager Implementation Guide 76 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Understanding the e*Insight ETD e*Insight ETD for Monk—eX_Standard_Event.ssc
In this example, the CT, DSN, DS, Empty, and CM facilitator nodes describe the top-
level XML element eX_Event. Figure 28 shows the ETD structure for this element.

Figure 28 XML Element eX_Event

The eX_Event parent node contains one child node, CT. CT identifies eX_Event as an
XML element. The CT node contains two child nodes: DSN and Empty. DSN is the
long form of the XML tag (</eX_Event>) and Empty is the short form (</>).

The DSN and DS nodes always occur as parent-child pairs. DS is the parent node for
three child nodes:

! A CM node to hold XML comments for the element.

! BP_EVENT, a sub-element of eX_Event.

! TP_EVENT, a sub-element of eX_Event.

The DS node always contains a CM child node to hold XML comments. In this
example, the eX_Event element does not hold data directly, but contains two sub-
elements—BP_EVENT and TP_EVENT—which have similar facilitator node branches
associated with them.

The following example explains the structure of XML attributes.

Example: XML Element with Attributes

In this example, the AS and EQ facilitator nodes describe the XML attributes TYPE and
LOCATION. Both are XML attributes of the Payload element. Figure 29 shows the
ETD structure for these attributes.

Figure 29 XML Attribute Type
e*Insight Business Process Manager Implementation Guide 77 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Understanding the e*Insight ETD Using eX_Standard_Event.ssc
6.4 Using eX_Standard_Event.ssc
This section describes how eX_Standard_Event.ssc is populated.

6.4.1 BP_EVENT
All data relevant to e*Insight processing is contained in the BP_EVENT branch of the
ETD.

Figure 30 BP_EVENT

Three of the nodes shown in Figure 30 are collapsed (followed by three dashes)
indicating there are additional nodes underneath these nodes. Each of these nodes
contains a different type of information pertinent to e*Insight.

! BP_EVENT.AS contains information about the business process.

! BP_EVENT.CT.DSN.DS.ACTIVITY is an optional node that contains information
about the current business process activity and any local attributes that have been
defined for that activity.

! BP_EVENT.CT.DSN.DS.ATTRIBUTE is a repeating node that contains
information about the global attributes for the business process.

BP_EVENT.AS Nodes

This location in the e*Insight ETD contains general information about the current
business process in the five nodes as shown in Figure 31.
e*Insight Business Process Manager Implementation Guide 78 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Understanding the e*Insight ETD Using eX_Standard_Event.ssc
Figure 31 BP_EVENT.AS

BPI_ID

This node contains a value assigned by the e*Insight engine. When e*Insight is running
in active mode, including the BPI_ID value in “Done” Event returned to the e*Insight
engine after an activity completes speeds up the time it takes for the engine to process
the Event.

TYPE

This node must contain one of the values shown in the following table.

This node must be populated with the string “START_BP” in the Event that starts a BPI.

STATUS

This node can contain one of the values shown in the following table.

The activity Collaboration must set the value of this node in the “Done” Event sent to
the e*Insight engine.

ID

This node must contain a user-assigned unique identifier for the business process
instance. This ID could be a time stamp, a document number, or some other ID string.

Value Purpose

“START_BP” Indicates to the e*Insight engine that this Event starts a BPI.

“DO_ACTIVITY” Indicates that this is a “Do” Event for the current activity.

“UNDO_ACTIVITY” Indicates that this is an “Undo” Event for the current
activity.

Value Purpose

“SUCCESS” Indicates that the current activity completed successfully.

“FAILURE” Indicates that the current activity did not complete
successfully.
e*Insight Business Process Manager Implementation Guide 79 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Understanding the e*Insight ETD Using eX_Standard_Event.ssc
This node must be populated in the Event that starts a business process instance as well
as in the “Done” Event sent back to the e*Insight engine.

NAME

This node must contain the name of the business process, exactly (including case) as it
appears in the e*Insight GUI.

BP_EVENT.CT.DSN.DS.ACTIVITY Nodes

This location in the e*Insight ETD contains information about the current activity. The
ACTIVITY.AS node contains information of a general nature about the current
activity. The ACTIVITY.CT.DSN.DS.ATTRIBUTE node contains information about
any local attributes that have been defined for the current activity. Figure 32 shows the
location of these nodes in the e*Insight ETD.

Figure 32 BP_EVENT.CT.DSN.DS.ACTIVITY

ACTIVITY.AS Nodes

This location in the e*Insight ETD contains ID information about the current activity in
two nodes as shown in Figure 33.

Figure 33 ACTIVITY.AS

ID

This node contains a number assigned by the e*Insight engine for the current activity
within a BPI. The e*Insight engine uses this number to speed up processing.

NAME

This node contains the name of the current activity. It must match exactly, including
case, the name as it appears in the e*Insight GUI.

ACTIVITY.CT.DSN.DS.ATTRIBUTE Nodes

This repeating node structure contains the local attribute information defined for the
current activity. The structure itself is exactly the same as the global attribute node
e*Insight Business Process Manager Implementation Guide 80 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Understanding the e*Insight ETD Using eX_Standard_Event.ssc
structure, and holds exactly the same types of data. The only difference is the location
in the ETD structure. The following section describes the node structure in the e*Insight
ETD used by both global and local attributes.

BP_EVENT.CT.DSN.DS.ATTRIBUTE.AS Nodes

This is a repeating node structure that contains the global business process attribute
information in five sub-node locations as shown in Figure 34:

Figure 34 BP_EVENT.CT.DSN.DS.ATTRIBUTE

Note: The ATTRIBUTE.CT node structure is not used in e*Insight processing, but is
needed in the e*Insight ETD for correct XML parsing.

VALUE

This node contains the current value of the attribute. Events sent to an activity
Collaboration have this node populated by the e*Insight engine for attributes
designated as “Input” or “Input/Output” in the e*Insight GUI for the current activity.
This node must be filled in the “Done” Event sent back to the e*Insight engine by the
activity Collaboration, for attributes designated as “Output” or “Input/Output.”

LOCATION

The value in this node describes where the attribute value is located.

Setting this node to a value other than “EMBEDDED” indicates that the data in the
VALUE.Value node is a pointer (for example, the path to a file) to where the e*Insight
engine can find the value for the attribute, but not actual value itself.

If a value for the LOCATION node is not provided (left out of the Event), the e*Insight
engine assumes the value is “EMBEDDED”.

This node can contain one of the values from the following table.
e*Insight Business Process Manager Implementation Guide 81 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Understanding the e*Insight ETD Using eX_Standard_Event.ssc
TYPE

The value in this node describes the data type of attribute value. This node must
contain one of the values from the following table.

ENCODING

Describes the type of encoding used to safely convert XML data to an ASCII format.
Currently only base 64 encoding is supported.

NAME

This node must contain the name of the global attribute. It must match exactly the name
as it appears in the e*Insight GUI.

Value Purpose

“FILE” Indicates that the value for the attribute can be found in the
file at the location specified in the VALUE.Value node.

“DB” Indicates that the value for the attribute can be found in the
e*Insight database at the location specified in the
VALUE.Value node.

“URL” Indicates that the value for the attribute can be found at the
URL location specified in the VALUE.Value node.

“EMBEDDED” Indicates that the value for the attribute is contained in the
current e*Insight Event in the VALUE.Value node. This is
the default value.

“AUTO” Reserved for future use.

Value Purpose

“BIN” Indicates that the data in the VALUE.Value node is base 64
encoded binary data and is not interpreted as XML by the
e*Insight engine.

“XML” Indicates that the data in the VALUE.Value node is XML
data that has been encoded using the scheme described in
the ENCODING node. Currently only base 64 encoding is
supported.

“STRING” Indicates that the data in the VALUE.Value node is string
data.

“TRANSIENT” Indicates that the data in the VALUE.Value node is string
data that is not stored in the e*Insight database. The
e*Insight engine uses special global attributes with this
data type to increase its processing speed.

“NUMBER” Indicates that the data in the VALUE.Value node is
interpreted as a number. The data is interpreted as a
decimal number, however, it must be given as a string.

“BOOLEAN” Indicates that the data in the VALUE.Value node is
interpreted as boolean.
e*Insight Business Process Manager Implementation Guide 82 SeeBeyond Proprietary and Confidential

Chapter 7

Common Configuration Tasks

This chapter provides a configuration information for common implementation tasks.
The chapter starts with a review of the e*Insight implementation road map and then
looks in detail at certain tasks that are performed within an e*Insight implementation.

The tasks covered in this chapter include copying the e*Insight Schema and creating
messages to send to the e*Insight engine.

This chapter also contains instructions for deleting business processes and business
process instances from the database.
e*Insight Business Process Manager Implementation Guide 83 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.1
Common Configuration Tasks Implementation Road Map
7.1 Implementation Road Map
Before considering individual tasks, we will first review the implementation road map
for an e*Insight implementation.

Figure 35, illustrates the major steps in the integration process for an e*Insight
implementation.

Figure 35 Integration Road Map

7.2 Common Configuration Tasks
The following are common tasks that an implementor must perform in the course of
setting up the e*Gate components, both to carry out the business process and to interact
with the e*Insight system.

GUI

Step 1

Step 2

Create the
Business
Process

Step 4
Configure
the e*Gate

Components

Step 5 Test the System

Step 3

Create the
e*Insight Schema
from a template

Configure the
e*Insight Schema
e*Insight Business Process Manager Implementation Guide 84 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Common Configuration Tasks Common Configuration Tasks
7.2.1 Copy the e*Insight Schema
When beginning an integration project, make a copy of the e*Insight schema, that is
installed from the CD. Don’t make any modifications to e*Insight Schema itself; keep it
as a template. Make changes to the copy of the e*Insight Schema that you create. Use
this copy as your starting point in e*Gate for supporting e*Insight.

When you install the e*Gate Schema for e*Insight from the CD a number of different
components are installed on your Registry Host. Firstly, you install the eIJSchema and/
or eISchema that can be seen in the e*Gate Enterprise Manager GUI. Secondly, you
install the support files that are used by the Schema into the Default repository, for
example the configuration files, Event Type Definitions, and Collaboration Rules
Scripts. You also install some files required for e*Gate to communicate with e*Insight,
for example, workflow.jar.

There are three ways to copy the e*Insight Schema; you can use the e*Insight GUI,
create a copy of the schema from e*Gate Enterprise Manager, or install from the CD.
These methods are described below. The method that you choose depends on your
requirements.

Using the e*Insight GUI

When you install the e*Insight GUI a text file is created on your local machine
containing e*Insight schema information. This text file is used to create your schema on
the Registry host. This process does not effect any of the files associated with the
e*Insight schemas.

Note: If you have changed the eIJSchema or eISchema on the Registry host, these changes
do not appear in your new schema since the new schema is based on the text file
installed with the e*Insight GUI.

To create a new e*Insight Schema using the e*Insight GUI

1 Open the e*Insight GUI.

2 From the File menu, select Create New e*Gate Schema.

3 The New e*Gate Schema dialog appears. See Figure 36.

Figure 36 New e*Gate Schema Dialog
e*Insight Business Process Manager Implementation Guide 85 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Common Configuration Tasks Common Configuration Tasks
4 Enter or select the name of the Registry Host where you want to create the schema.

5 Enter a user name and password that are valid on the Registry Host.

6 From the Based On drop-down list, select either eIJSchema (Java) or eISchema
(Classic).

7 Enter a name for the schema in the Name box.

8 Click OK.

Copying the Schema from the Registry Host

This process makes an exact copy of the current eIJSchema or eISchema held on the
Registry Host. You may want to use this method if you have modified the eIJSchema or
eISchema since the original installation from the CD. This process does not effect any of
the files associated with the e*Insight schemas.

To create a copy of the e*Insight Schema

1 Open the eISchema in the e*Gate Enterprise Manager GUI.

A Start the e*Gate Enterprise Manager.

B Log in to eIJSchema or eISchema.

2 Export the schema to a file c:\eGate\client\<e*Insight schema backup file name>.

A Select Export Schema Definitions to File ... from the File pull-down menu.

B In the Select archive File dialog box enter <e*Insight schema backup file name> in
the File name text box, and then click Save.

3 Create a new schema using the export file as a template.

A Select New Schema from the File pull-down menu.

B Enter <new e*Insight schema name> in the text box.

C Mark the Create from export check box.

D Click Find and browse for the <e*Insight schema backup file name> file created in
step 2 above.

E Click Open.

The Enterprise Manager creates a copy of the eIJSchema or eISchema with the
schema name entered in step 3B above.

Installing from the CD

You can install a new schema from the CD. Refer to the e*Insight Business Process
Manager Installation Guide for installation instructions. You should define a unique
name for your schema so it does not overwrite an existing schema.

Note: Installing from the CD installs the eIJSchema and/or eISchema that can be seen in
the e*Gate Enterprise Manager GUI. It also re-installs the support files that are
used by the Schema into the Default repository and the files required for e*Gate to
e*Insight Business Process Manager Implementation Guide 86 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Common Configuration Tasks Sending Messages to the e*Insight Engine (eIJSchema)
communicate with e*Insight, for example, workflow.jar. If you have changed these
files, either manually or via an ESR, then these changes are overwritten.

7.3 Sending Messages to the e*Insight Engine (eIJSchema)

7.3.1 Starting a Business Process (eIJSchema)
The Collaboration in the e*Way (or BOB) that feeds data into the business process must
publish an eX_to_eBPM Event Type to the eIcp_eInsightJMS connection point. This
“Start” Event must include the following:

! the name of the business process

! a unique ID for the business process instance

! an event type of “START_BP”

! all the input global attributes required for the event

When the e*Insight engine receives this Event, it creates a new instance of the business
process.

The business process name, unique ID, and “START_BP” event type are set by setting a
value in the relevant node. The three nodes required to start the BPI populated in the
eI_StandardEvent.xsc ETD are described in Table 7.

For information on setting global attribute values, see “Setting Attributes
(eIJSchema)” on page 87.

7.3.2 Setting Attributes (eIJSchema)
You must set the value of a global attribute for a business process that has been
designated as an “Output” attribute for that activity in the e*Insight GUI, or designated
as an “Input” attribute when starting a business process. To do this you create an
activity Collaboration that sends the eX_to_eBPM Event back to the e*Insight engine.

You can use the setATTRIBUTE method in your Collaboration Rules script to set the
value of a global attribute. The syntax is:

setATTRIBUTE(java.lang.String name, java.lang.String type,
java.lang.String value)

Table 7 Configuring a start message

eI_StandardEvent How to populate

BP_EVENT.NAME Must be filled with the exact name of the BP as
it appears in the e*Insight GUI.

BP_EVENT.ID Must be filled with a unique ID (for example, a
timestamp).

BP_EVENT.TYPE Must be filled with the string “START_BP”.
e*Insight Business Process Manager Implementation Guide 87 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Common Configuration Tasks Sending Messages to the e*Insight Engine (eIJSchema)
! replace java.lang.String name with the exact name of the attribute as it appears in
the e*Insight GUI

! replace java.lang.String type with one of the strings “STRING”, “XML”, “BIN”,
“NUMBER”, or “BOOLEAN” as appropriate

! replace java.lang.String value with the attribute value

7.3.3 Getting Attributes (eIJSchema)
You must get the value of a global attribute for a business process that has been
designated as an “Input” attribute for that activity in the e*Insight GUI. To do this,
create an activity Collaboration that receives the eX_Activity_Do (or Undo) Event sent
from the e*Insight engine.

You can use the getATTRIBUTE_VALUE helper function to retrieve the value of an
attribute. The syntax is:

void getATTRIBUTE_VALUE(java.lang.String name)

" replace java.lang.String name with the exact name of the attribute as it appears
in the e*Insight GUI

7.3.4 Sending the “Done” Event Back to e*Insight (eIJSchema)
When an activity completes (successfully or not), a “Done” Event must be sent back to
the e*Insight engine carrying the status of the activity. To do this, the activity
Collaboration sending this Event must publish an eX_to_eBPM Event Type to the
eIcr_eInsightJMS connection point.

Note: The User Activity, and Authorization Activity do not require a “Done” Event to be
sent back to the e*Insight engine.

The “Done” Event must have the following nodes in eI_StandardEvent (Java) ETD
populated. Table 8 describes the required nodes when an activity is set to Active
control and Table 9 describes the required nodes when an activity is set to Passive
control.

Table 8 Done Event in Active control mode

Java Node Location How to populate

BP_EVENT.BPI_ID Copy from source to destination.

BP_EVENT.ID Copy from source to destination.

BP_EVENT.NAME Copy from source to destination.

BP_EVENT.TYPE Copy from source to destination.

BP_EVENT.STATUS Copy either the string “SUCCESS” or “FAILURE”,
depending on whether or not the activity completed
successfully.

BP_EVENT.ACTIVITY.ID Copy from source to destination. (Not absolutely
required, but recommended to speed processing.)

BP_EVENT.ACTIVITY.NAME Copy from source to destination.
e*Insight Business Process Manager Implementation Guide 88 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Common Configuration Tasks Sending Messages to the e*Insight Engine (eIJSchema)
Note: Make sure that setting the “Output” or “Input/Output” attributes does not conflict
with setting the e*Insight engine assigned eX_eBPMServer attribute, set in the
same repeating node.

Using a copy of the entire BP_Event to send the “Done” Event

You can copy the entire BP_EVENT source node to the BP_EVENT destination node
instead of copying each field individually. In addition to the necessary information for
the “Done” Event, you are also copying the attributes that have a direction defined in
the activity of Input or Input/Output. You can send attributes that are only defined as
Input attributes in the “Done” event, but since they are not defined as Output, the
engine cannot update the database. The activity works correctly, but the engine has to
perform unnecessary processing when it tries to update the database.

Alternatively, you can use the removeATTRIBUTE method in a Collaboration to
remove attributes from the “Done” Event that is sent back to the e*Insight Engine. The
following example code copies everything in the BP_EVENT node to the output,
removes the “Customer_Name” global attribute, and then sets the value of the BP
status node to “SUCCESS”.

getEIStandardInOut().setBP_EVENT(getEIStandardInOut().getBP_EVENT())
getEIStandardInOut().getBP_EVENT().removeATTRIBUTE("Customer_Name")
getEIStandardInOut().getBP_EVENT().setSTATUS("SUCCESS")

Table 9 Done Event in Passive control mode

BP_EVENT.ATTRIBUTE[i].VALUE Use the e*Insight helper function
getATTRIBUTE_VALUE to determine the value of the
machine-assigned attribute, eX_eBPMServer, in the
source ETD. Copy this value to the destination ETD.
Make sure the instance [i] to which you copy does
not overwrite or append to an existing iteration of
the destination ETD’s repeating node. (Active mode
only)

BP_EVENT.ATTRIBUTE[i].TYPE Copy the string “TRANSIENT”. Make sure the
instance [i] to which you copy does not overwrite or
append to an existing iteration of the destination
repeating node. (Active mode only)

BP_EVENT.ATTRIBUTE[i].NAME Copy the string “eX_eBPMServer”. Make sure the
instance [i] to which you copy does not overwrite or
append to an existing iteration of the destination
repeating node. (Active mode only)

Java Node Location How to populate

BP_EVENT.ID Copy from source to destination. It is the
responsibility of the developer to ensure that this
value is stored within the event as it is passed
through e*Gate.

Java Node Location How to populate
e*Insight Business Process Manager Implementation Guide 89 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Common Configuration Tasks Sending Messages to the e*Insight Engine (eISchema)
In addition, the “Done” Event must carry with it the values for any attributes (global or
local) specified as “Output” or “Input/Output”. These can be set as shown in “Setting
Attributes (eIJSchema)” on page 87.

7.4 Sending Messages to the e*Insight Engine (eISchema)

7.4.1 Starting a Business Process (eISchema)
The Collaboration in the e*Way (or BOB) that feeds data into the business process must
publish an eX_to_eBPM Event Type. This “Start” Event must include the following:

! the name of the business process

! a unique ID for the business process instance

! an event type of “START_BP”

! all the input global attributes required for the event

When the e*Insight engine receives this Event, it creates a new instance of the business
process.

The business process name, unique ID, and “START_BP” event type are set by setting a
value in the relevant node. The three nodes required to start the BPI populated in the
eX_Standard_Event.ssc (Monk), or eI_StandardEvent.xsc (Java) ETDs are described in
Table 7.

BP_EVENT.NAME The business processes name is hard-coded and is
the name of the business process for the immediate
parent of this activity (this is very important for sub-
processes).

BP_EVENT.TYPE Set the string to “DO_ACTIVITY”.

BP_EVENT.STATUS Set the string to either “SUCCESS”, or “FAILURE”,
depending on whether or not the activity completed
successfully.

BP_EVENT.ACTIVITY.ID Leave this blank. In Passive mode, the source may
not contain the correct ID.

BP_EVENT.ACTIVITY.NAME Set the string to contain the activity name.

Table 10 Configuring a start message (eISchema)

Monk Node Location
Java Node
Location

How to populate

BP_EVENT.AS.NAME.Value BP_EVENT.NAME Must be filled with the exact name of the BP as
it appears in the e*Insight GUI.

BP_EVENT.AS.ID.Value BP_EVENT.ID Must be filled with a unique ID (for example, a
timestamp).

Java Node Location How to populate
e*Insight Business Process Manager Implementation Guide 90 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Common Configuration Tasks Sending Messages to the e*Insight Engine (eISchema)
For information on setting global attribute values, see “Setting Attributes
(eIJSchema)” on page 87.

7.4.2 Setting Attributes (eISchema)
You must set the value of a global attribute for a business process that has been
designated as an “Output” attribute for that activity in the e*Insight GUI, or designated
as an “Input” attribute when starting a business process. To do this you create an
activity Collaboration that sends the eX_to_eBPM Event back to the e*Insight engine.
The methods of achieving this in both a Monk and Java Collaboration are discussed
below.

Setting Attributes in a Monk Collaboration

The Monk Collaboration must do one of the following:

! populate the correct nodes in the eX_Standard_Event.ssc

! use the e*Insight helper function eX-set-attribute

Setting Attributes by Populating Nodes in the e*Insight Standard ETD

Your Collaboration must populate three required nodes in the eX_Standard_Event.ssc
ETD for each attribute that must be set. Set them as follows:

! BP_EVENT.CT.DSN.DS.ATTRIBUTE[n].AS.VALUE.Value, with the attribute
value

! BP_EVENT.CT.DSN.DS.ATTRIBUTE[n].AS.NAME.Value, with the exact name
of the attribute as it appears in the e*Insight GUI

! BP_EVENT.CT.DSN.DS.ATTRIBUTE[n].AS.TYPE.Value, with one of the strings
“STRING”, “XML”, or “BIN” as appropriate

Note: In the above list, n = 0 for the first attribute that you set, 1 for the next, and so on.
Also, be sure to increment the index to prevent overwriting data in the destination
Event. If an attribute already exists (for example, eX_eBPMServer) then you should
ensure that this does not get overwritten.

Setting Attributes by Using the eX-set-attribute Helper Function

Rather than use three COPY statements in your Collaboration Rules script, you can use
the eX-set-attribute helper function instead. The syntax is:

eX-set-attribute <root-path> <attribute> <value> <type>

" replace <root-path> with ~input%eX_Event or ~output%eX_Event

BP_EVENT.AS.TYPE.Value BP_EVENT.TYPE Must be filled with the string “START_BP”.

Table 10 Configuring a start message (eISchema)

Monk Node Location
Java Node
Location

How to populate
e*Insight Business Process Manager Implementation Guide 91 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Common Configuration Tasks Sending Messages to the e*Insight Engine (eISchema)
" replace <attribute> with the exact name of the attribute as it appears in the
e*Insight GUI

" replace <value> with the attribute value

" replace <type> with one of the strings “STRING”, “XML”, or “BIN” as
appropriate

Important: Make sure that the Monk file eX-eBPM-utils.monk, containing the e*Insight
helper functions, are loaded before calling them in a Collaboration Rules Script. You
can do this in several ways, by putting them in the root of the monk_library
directory, loading them explicitly in your CRS, or using the eX-init-eXchange
bootstrap file to load them via the Collaboration Rule.

Setting Attributes in a Java Collaboration

You can use the setATTRIBUTE method in your Collaboration Rules script to set the
value of a global attribute. The syntax is:

setATTRIBUTE(java.lang.String name, java.lang.String type,
java.lang.String value)

! replace java.lang.String name with the exact name of the attribute as it appears in
the e*Insight GUI

! replace java.lang.String type with one of the strings “STRING”, “XML”, “BIN”,
“NUMBER”, or “BOOLEAN” as appropriate

! replace java.lang.String value with the attribute value

7.4.3 Getting Attributes (eISchema)
You must get the value of a global attribute for a business process that has been
designated as an “Input” attribute for that activity in the e*Insight GUI. To do this,
create an activity Collaboration that receives the eX_Activity_Do (or Undo) Event sent
from the e*Insight engine. The methods of achieving this in both a Monk and Java
Collaboration are discussed below.

Getting Attributes in a Monk Collaboration

This Collaboration must do one of the following:

! retrieve the value from the correct node in the eX_Standard_Event.ssc

! use the e*Insight helper function eX-get-attribute

Getting Attributes by Copying from Nodes in the e*Insight Standard ETD

To get the value from the correct node, your Collaboration must systematically search
through all of the attribute nodes until it finds the one containing the value for the
required attribute. Figure 37, on the next page, shows an example of a LOOP rule that
does this.
e*Insight Business Process Manager Implementation Guide 92 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Common Configuration Tasks Sending Messages to the e*Insight Engine (eISchema)
Figure 37 Get Attribute Loop

Using an IF statement inside the LOOP, this CRS checks the repeating node
BP_EVENT.CT.DSN.ATTRIBUTE for the specified attribute. When it finds the
attribute (in the above example, “Order_Quantity”), the node
ATTRIBUTE[<i>].AS.VALUE.Value contains the attributes value.

Once found, the script can use the value of the attribute to carry out the business logic
of the Collaboration. In the above example, a check is made to see if the value in
question is greater than zero and if it is to set the value of an output attribute to “yes”.

Getting Attributes by Using the eX-get-attribute Helper Function

Rather than use a LOOP in your Collaboration to obtain the value of an Input attribute
you can use the eX-get-attribute helper function instead. The syntax is:

eX-get-attribute <root-path> <attribute>

" replace <root-path> with ~input%eX_Event or ~output%eX_Event

" replace <attribute> with the exact name of the attribute as it appears in the
e*Insight GUI

Getting Attributes in a Java Collaboration

You can use the getATTRIBUTE_VALUE helper function to retrieve the value of an
attribute. The syntax is:

void getATTRIBUTE_VALUE(java.lang.String name)

" replace java.lang.String name with the exact name of the attribute as it appears
in the e*Insight GUI

7.4.4 Sending the “Done” Event Back to e*Insight (eISchema)
When an activity completes (successfully or not), a “Done” Event must be sent back to
the e*Insight engine carrying the status of the activity. To do this, the activity
Collaboration sending this Event must publish an eX_to_eBPM Event Type to the
eX_eBPM IQ.

Note: The User Activity, and Authorization Activity do not require a “Done” Event to be
sent back to the e*Insight engine.

The “Done” Event must have the following nodes in either the eX_Standard_Event.ssc
(Monk), or eI_Standard_Event (Java) ETD populated. Table 8 describes the required
nodes when an activity is set to Active control and Table 9 describes the required nodes
when an activity is set to Passive control.
e*Insight Business Process Manager Implementation Guide 93 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Common Configuration Tasks Sending Messages to the e*Insight Engine (eISchema)
Table 11 Done Event in Active control mode

Note: Make sure that setting the “Output” or “Input/Output” attributes does not conflict
with setting the e*Insight engine assigned eX_eBPMServer attribute, set in the
same repeating node.

Using the helper function eX-copy-no-attribute to send the “Done” Event

The eX-copy-no-attribute e*Insight helper function copies the entire source node to the
destination node, except for the user defined attributes. You can use this function in a
Collaboration that sends the “Done” Event back to the e*Insight Engine, as shown in
the following example.

eX-copy-no-attribute ~input%eX_Event ~output%eX_Event
eX-set-BP_EVENT ~output%eX_Event "STATUS" "SUCCESS"

The second command sets the value of the BP status node to “SUCCESS” after all the
required information is copied to the destination Event. To report the failure of the
activity, replace “SUCCESS” with “FAILURE” in the second command.

Monk Node Location
Java Node
Location

How to populate

BP_EVENT.AS.BPI_ID.Value BP_EVENT.BPI_I
D

Copy from source to destination.

BP_EVENT.AS.ID.Value BP_EVENT.ID Copy from source to destination.

BP_EVENT.AS.NAME.Value BP_EVENT.NAME Copy from source to destination.

BP_EVENT.AS.TYPE.Value BP_EVENT.TYPE Copy from source to destination.

BP_EVENT.AS.STATUS.Valu
e

BP_EVENT.STATU
S

Copy either the string “SUCCESS” or “FAILURE”,
depending on whether or not the activity completed
successfully.

BP_EVENT.CT.DSN.DS.ACT
IVITY.AS.ID.Value

BP_EVENT.ACTIV
ITY.ID

Copy from source to destination. (Not absolutely
required, but recommended to speed processing.)

BP_EVENT.CT.DSN.DS.ACT
IVITY.AS.NAME.Value

BP_EVENT.ACTIV
ITY.NAME

Copy from source to destination.

BP_EVENT.DS.ATTRIBUTE[i
].AS.VALUE.Value

BP_EVENT.ATTRI
BUTE[i].VALUE

Use a loop or the e*Insight helper function eX-get-
attribute, or getATTRIBUTE_VALUE to determine the
value of the machine-assigned attribute,
eX_eBPMServer, in the source ETD. Copy this value
to the destination ETD. Make sure the instance [i] to
which you copy does not overwrite or append to an
existing iteration of the destination ETD’s repeating
node. (Active mode only)

BP_EVENT.DS.ATTRIBUTE[i
].AS.TYPE.Value

BP_EVENT.ATTRI
BUTE[i].TYPE

Copy the string “TRANSIENT”. Make sure the
instance [i] to which you copy does not overwrite or
append to an existing iteration of the destination
repeating node. (Active mode only)

BP_EVENT.DS.ATTRIBUTE[i
].AS.NAME.Value

BP_EVENT.ATTRI
BUTE[i].NAME

Copy the string “eX_eBPMServer”. Make sure the
instance [i] to which you copy does not overwrite or
append to an existing iteration of the destination
repeating node. (Active mode only)
e*Insight Business Process Manager Implementation Guide 94 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Common Configuration Tasks Sending Messages to the e*Insight Engine (eISchema)
Table 12 Done Event in Passive control mode

In addition, the “Done” Event must carry with it the values for any attributes (global or
local) specified as “Output” or “Input/Output”. These can be set as shown in “Setting
Attributes (eIJSchema)” on page 87.

Monk Node Location
Java Node
Location

How to populate

BP_EVENT.AS.ID.Value BP_EVENT.ID Copy from source to destination. It is the
responsibility of the developer to ensure that this
value is stored within the event as it is passed
through e*Gate.

BP_EVENT.AS.NAME.Value BP_EVENT.NAME The business processes name is hard-coded and is
the name of the business process for the immediate
parent of this activity (this is very important for sub-
processes).

BP_EVENT.AS.TYPE.Value BP_EVENT.TYPE Set the string to “DO_ACTIVITY”.

BP_EVENT.AS.STATUS.Valu
e

BP_EVENT.STATU
S

Set the string to either “SUCCESS”, or “FAILURE”,
depending on whether or not the activity completed
successfully.

BP_EVENT.CT.DSN.DS.ACT
IVITY.AS.ID.Value

BP_EVENT.ACTIV
ITY.ID

Leave this blank. In Passive mode, the source may
not contain the correct ID.

BP_EVENT.CT.DSN.DS.ACT
IVITY.AS.NAME.Value

BP_EVENT.ACTIV
ITY.NAME

Set the string to contain the activity name.
e*Insight Business Process Manager Implementation Guide 95 SeeBeyond Proprietary and Confidential

Chapter 8

e*Insight Implementation (eIJSchema)

This chapter discusses the steps involved to create an e*Insight Business Process
Manager implementation using the eIJSchema base schema.

The case study in this chapter was designed primarily to illustrate the functionality of
e*Insight. In addition to showing a working example of a business process
implementation, the following e*Insight features are demonstrated:

! Attribute value correction and business process restart

! Undoing a partially completed business process

This case study is extended in later chapters to include authorization and user
activities, and local, dynamic, and remote sub-processes.

8.1 Overview
The major tasks in the implementation are shown in Table 13.

The chapter begins with a description of the scenario and then shows how to set it up.

Table 13 Overview of implementation tasks

Task Section

1 Create the business process (BP) in the
e*Insight GUI

“Create the Payroll BP in e*Insight” on
page 100

2 Use the e*Insight GUI to configure the e*Gate
schema that supports e*Insight

“Configure the Integration Schema
(e*Insight)” on page 103

3 Configure the e*Insight Engine “Configure the e*Insight Engine” on
page 107

4 Add and configure the user-defined e*Gate
components

“Configure User-defined e*Gate
Components” on page 108

5 Run and test the scenario “Run and Test the e*Insight scenario” on
page 117
e*Insight Business Process Manager Implementation Guide 96 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
e*Insight Implementation (eIJSchema) Overview
8.1.1 Case Study: Payroll Processing
The case study discussed in this chapter illustrates a simplified implementation of
payroll processing. In this case, e*Insight receives payroll data as a delimited text file.
Once e*Insight has received the data, a check is made to see if the employee is eligible
for a bonus, if they are the bonus is calculated. Finally, the payroll is processed and a
message added to the payslip indicating whether a bonus has been paid.

Figure 39 shows the components involved in the business process implementation. The
diagram is then separated into two sections and there is a description of how the data
flows between these components.

Figure 38 e*Insight Data Flow Diagram

e*Insight
Database

JMS Server

External
System

START_BP
e*Way

eX_Check_
Eligibility e*Way

eX_Process_
Payroll e*Way

eX_Calculate_
Bonus BOB

START_BP

eX_Check_
Eligibility

eX_Calculate_
Bonus

eX_Process_
Payroll

eX_eBPM
Engine

eIcr_eBPM

eX_Check_Eligibility_Do

eX_Process_Payroll_Do

eX_to_eBPM

eX_to_eBPM

eX_to_eBPM

eX_to_eBPM

eX_Check_Eligibility_Do

eX_Process_Payroll_Do

External
System

1

23

1

1

2

3 3

6

6

5

6

7

e*Insight
GUI

Check_
Eligibility

Calculate_
Bonus

Update_
Status

Process_
Payroll

DEC

M

eX_Calculate_Bonus_Do4

5 eX_to_eBPM

7

eX_Calculate_Bonus_Do4
e*Insight Business Process Manager Implementation Guide 97 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
e*Insight Implementation (eIJSchema) Overview
Figure 39 e*Insight Data Flow Diagram (Part 1)

1 The user-defined START_BP e*Way picks up the text file containing the order
information from a shared location on the network, uses the order information
to create the e*Insight Event that causes the e*Insight engine to start a business
process instance, and publishes it using the eX_to_eBPM Event Type to the JMS
Server. The e*Insight engine retrieves the Event and uses the information it
contains to start the BPI.

2 The e*Insight engine publishes a “Do” Event (eX_Check_Eligibility_Do) for the
first activity in the business process (Check_Eligibility). eX_Check_Eligibility
e*Way, the e*Gate component that corresponds to this activity in the business
process, retrieves this Event from the JMS Server and uses the information it
contains to check the availability of the items ordered.

3 When the Check_Eligibility activity is finished, the eX_Check_Eligibility BOB
publishes a “Done” Event using the eX_to_eBPM Event Type. The e*Insight
engine retrieves the “Done” Event, updates the BPI to reflect whether the
employee is eligible for a bonus, and then moves forward to the next activity in
the business process based on the result of a decision gate. If the employee is
eligible for a bonus, the next activity is Calculate_Bonus; if the employee is in
the sales department then the next activity is Process_Payroll, if the employee
has been employed for less than three months then the next activity is
Update_Status.

Let’s assume the employee has been employed for less than three months. The
e*Insight engine processes the e*Insight script corresponding to the
Update_Status activity in the business process, and then moves forward to the
next activity in the business process—Process_Payroll.

e*Insight
Database

JMS Server

External
System

START_BP
e*Way

eX_Check_
Eligibilty e*Way

START_BP

eX_Check_
Eligibility

eX_eBPM
Engine

eIcr_eBPM

eX_Check_Eligibility_Do

eX_to_eBPM

eX_to_eBPM

eX_to_eBPM

eX_Check_Eligibility_Do

1

2

3

1

1

2

3

e*Insight
GUI

Check_
Eligibility

Calculate_
Bonus

Update_
Status

Process_
Payroll

DEC

M

e*Insight Business Process Manager Implementation Guide 98 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
e*Insight Implementation (eIJSchema) Overview
Figure 40 e*Insight Data Flow Diagram (Part 2)

4 Let’s assume the employee is eligible for a bonus. The e*Insight engine publishes
a “Do” Event (eX_Calculate_Bonus_Do) corresponding to the Calculate_Bonus
activity in the business process. The eX_Calculate_Bonus BOB retrieves this
Event and uses the information to calculate the bonus.

5 When the Calculte_Bonus activity is finished, the eX_Calculate_Bonus BOB
publishes a “Done” Event indicating that the bonus has been calculated. The
e*Insight engine retrieves this Event, updates the BPI, and then moves forward to
the next activity in the business process—Process_Payroll.

6 The e*Insight engine publishes a “Do” Event (eX_Process_Payroll_Do)
corresponding to the Process_Payroll activity in the business process. The
eX_Process_Payroll e*Way retrieves this Event and uses the information it
contains to send a order status report to the payroll system.

7 The eX_Process_Payroll e*Way publishes two Events: one containing the status
report to be sent to the payroll system, and also the “Done” Event. The e*Insight
engine retrieves the “Done” Event and uses the information it contains to update
the BPI to indicate that the final activity in the business process has completed
successfully.

e*Insight
Database

JMS Server

eX_Send_Status
e*Way

eX_Send_Status

eX_eBPM
Engine

eIcr_eBPM

eX_Send_Status_Do

eX_to_eBPM

eX_to_eBPM

eX_Send_Status_Do

External
System

6

6

7

7

7

e*Insight
GUI

Check_Inv

Ship_Ord Out_of_Inv

Send_Status

DEC

M

eX_to_eBPM

eX_Out_of_Inv_Do4

5

BOB
eX_Out_of_Inv

eX_Ship_Ord

eX_Out_of_Inv_Do4

5

e*Insight Business Process Manager Implementation Guide 99 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.2
e*Insight Implementation (eIJSchema) Create the Payroll BP in e*Insight
8.2 Create the Payroll BP in e*Insight
The following is a summary of the procedure for creating a BP in the e*Insight GUI.

1 Create a Business Process named Payroll.

1 Add the activities.

2 Add the decision gates.

3 Make the connections between the activities and gates.

4 Add all the global attributes.

5 Assign global attributes to activities.

6 Add the logic to the decision gates.

7 Configure the properties for the activities.

For more information on creating this business process, see the e*Insight Business Process
Manager User’s Guide.

Use the diagram shown in Figure 41 and the following tables to create the BP in
e*Insight.

Important: Mark the check box for Manual Restart on the General tab of the Properties dialog
box for each activity.

Figure 41 Payroll Business Process Model
e*Insight Business Process Manager Implementation Guide 100 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.2
e*Insight Implementation (eIJSchema) Create the Payroll BP in e*Insight
Table 14 BP Global Attributes

Attribute Type Data Direction Default Value

First_Name String Input

Last_Name String Input

Department String Input

Salary Number Input

Start_Date String Input

Pay_Period String Input

Grade String Input/Output

Probation Boolean Input

Eligibility String Internal null

Comments String Internal No comment

Bonus Number Internal 0

Table 15 Activity Attributes

Activity Attribute(s) Input/Output

Check_Eligibility Department Input

Probation Input

Eligibility Output

Calculate_Bonus Salary Input

Grade Input

Bonus Output

Update_Status Comments Output

Process_Payroll First_Name Input

Last_Name Input

Department Input

Salary Input

Pay_Period Input

Bonus Input

Comments Input

Table 16 Decision Gate

Link Target Activity Expression

EmployedLT3Months Update_Status Probation==true

DepartmentNotEligible Merge Department==”sales”

EligibleForBonus Calculate_Bonus (Default)
e*Insight Business Process Manager Implementation Guide 101 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.2
e*Insight Implementation (eIJSchema) Create the Payroll BP in e*Insight
8.2.1 Creating the processes performing the Activities
The activities in our scenario can either be performed by e*Gate or an e*Insight Script.
Three of the activities (Check_Eligibility, Calculate_Bonus, and Process_Payroll) use
e*Gate. This is described in “Configure the Integration Schema (e*Insight)” on
page 103.

The Update_Status activity is performed by an e*Insight Script. This is described
below.

Configuring the e*Insight Script for Update_Status

This script defines a message that appears on the pay slip. It sets the value of the
Comments attribute to a short message indicating that the employee has not been with
the company long enough to receive a bonus.

To configure the e*Insight Script for Update_Status

1 From the Update_Status properties, Activity Performed by area, select e*Insight
Script.

2 Select the e*Insight Script tab.

3 Configure the script as shown in Figure 42.

Figure 42 Update_Status e*Insight Script Tab
e*Insight Business Process Manager Implementation Guide 102 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
e*Insight Implementation (eIJSchema) Configure the Integration Schema (e*Insight)
8.3 Configure the Integration Schema (e*Insight)
All the activities in this example, except Update_Status are carried out using e*Gate
components. You must first create a Schema (a copy of eIJSchema) with the basic
components required for e*Insight. You then configure these components for your
environment and create additional components for the activities.

To create a copy of eIJSchema

1 From the e*Insight GUI File menu, select New e*Gate Schema.

2 Enter or select a Registry Host on which to create the schema.

3 Enter a Username and Password that is valid on the Registry Host.

4 From the Based on list, select eIJSchema (Java).

5 In the Name box, enter Payroll.

6 Click OK.

After creating the business process, you must configure the e*Gate Registry schema
that supports the e*Insight system.

e*Insight allows you to specify the type of component (e*Way or BOB) associated with
a particular activity and where it runs.

Integration Schema Activity Components Summary

The information in Table 17 shows a summary of the e*Gate components that support
this example.

For information on how to use the e*Insight GUI to configure the e*Gate Registry see
the e*Insight Business Process Manger User’s Guide.

Note: This example runs all software components on a single machine (named
“localhost”). In an actual implementation, these components could be distributed
throughout a network, depending on the requirements of the system.

Table 17 Integration Schema Activity Components

Name Type
Participating

Host
Configuration Instructions

eX_Check_Eligibility Multi-Mode
e*Way

localhost “Creating the
eX_Check_Eligibility
Multi-Mode e*Way” on
page 104

eX_Calculate_Bonus BOB localhost “Creating the
eX_Calculate_Bonus
BOB” on page 106

eX_Process_Payroll Single-Mode
e*Way

localhost “Process_Payroll e*Way
Configuration” on
page 107
e*Insight Business Process Manager Implementation Guide 103 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
e*Insight Implementation (eIJSchema) Configure the Integration Schema (e*Insight)
Creating the eX_Check_Eligibility Multi-Mode e*Way

The eX_Check_Eligibility Collaboration runs the Check_Eligibility CRS. This checks to
see what type of Event it has received, either a “Do” Event or an “Undo” Event. If it is
an “Undo” Event the Comments attribute is populated with the string “The
Check_Eligibility activity has been reversed” simulating the case of executing a
compensating transaction for the activity.

If the Event is a “Do” Event, then the values for the Department and Probation are
checked. Depending on what this number is the following happens.

If the department is sales, this indicates that the employee is not eligible for a bonus
since the department they work for is not eligible. The CRS sets the value of the
Eligible attribute to “department not eligible” and sends a “SUCCESS” Event back to
e*Insight indicating that the activity has completed successfully.

If the employee is still on probation, this indicates that the employee is not eligible for a
bonus since they have not been working for the company for the required three
months. The CRS sets the value of the Eligible attribute to “probation” and sends a
“SUCCESS” Event back to e*Insight indicating that the activity has completed
successfully.

Any other employee is treated as being eligible for a bonus and the CRS set the value of
Eligible to “yes” and sends “SUCCESS”.

To configure the Check_Eligibility activity

1 In the e*Insight GUI, open the Check_Eligibility activity properties.

2 On the General tab, e*Gate Module section, select a Module Type of Multi-Mode
e*Way.

3 Click New.

You may be required to log into e*Gate.

The Define Collaboration dialog appears.

4 Click OK.

5 Create eX_Check_Eligibility.xpr.

Figure 43, on the following page, shows the eX_Check_Eligibility.xpr CRS used in
this example.
e*Insight Business Process Manager Implementation Guide 104 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
e*Insight Implementation (eIJSchema) Configure the Integration Schema (e*Insight)
Figure 43 eX_Check_Eligibility.xpr CRS (Java)

6 Compile and save the CRS.

7 Close the editor.

8 In the Check_Eligibility Activity properties, click Configure e*Gate Schema.

9 Click OK to close the information dialog.

10 Close the Check_Eligibility Activity properties.
e*Insight Business Process Manager Implementation Guide 105 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
e*Insight Implementation (eIJSchema) Configure the Integration Schema (e*Insight)
Creating the eX_Calculate_Bonus BOB

The Calculate_Bonus translation implements the logic associated with calculating a
bonus. The Grade is used to calculate the bonus.

In addition, this translation demonstrates how e*Insight handles “undoing” a partially
completed business process. If no Grade is defined, then “FAILURE” is returned to the
e*Insight engine which in turn issues “undo” Events for any activities upstream from
the failed activity. In this example there is only one, Check_Eligibility, and the
Check_Eligibility CRS handles reversing that already completed activity.

To configure the Calculate_Bonus activity

1 In the e*Insight GUI, open the Calculate_Bonus activity properties.

2 On the General tab, e*Gate Module section, select a Module Type of BOB.

3 Click New.

The Define Collaboration dialog appears.

4 Click OK.

5 Create eX_Calculate_Bonus.xpr.

Figure 44 shows the eX_Calculate_Bonus CRS used in this example.

Figure 44 eX_Calculate_Bonus.xpr CRS

6 Compile and save the CRS.

7 Close the editor.

8 In the Calculate_Bonus Activity properties, click Configure e*Gate Schema.
e*Insight Business Process Manager Implementation Guide 106 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.4
e*Insight Implementation (eIJSchema) Configure the Integration Schema (e*Gate)
9 Click OK to close the information dialog.

10 Close the Calculate_Bonus Activity properties.

Process_Payroll e*Way Configuration

The Process_Payroll Collaboration is configured using e*Gate, see “Configure the
Process_Payroll e*Way” on page 113. The e*Way and basic components should be
created from within the e*Insight GUI.

To create the Process_Payroll Activity e*Way

1 In the e*Insight GUI, open the Process_Payroll activity properties.

2 On the General tab, e*Gate Module section, from the Module Type list select the
Single-Mode e*Way.

3 Click Configure e*Gate Schema.

4 Click OK, to close the information dialog.

5 Close the Process_Payroll Activity properties.

8.4 Configure the Integration Schema (e*Gate)
The remaining components used in this implementation are configured from the e*Gate
Enterprise Manager. You must start the e*Gate Enterprise Manager and open the
Payroll schema that you created in “To create a copy of eIJSchema” on page 103.

8.4.1 Configure the e*Insight Engine
The e*Insight engine runs in a specially configured Multi-Mode e*Way. You must make
changes to the e*Insight engine connection configuration file for this e*Way to conform
to the requirements of your system. For example, you must specify the name of the
e*Insight database to which the e*Way connects.

Note: This example uses only one e*Insight engine. In an actual implementation, more
than one e*Insight engine can be configured to handle the required workload. In
such a case, you must make changes to each of the e*Insight engines.

Edit the eIcp_eInsightEngine Connection Configuration File

Most of the parameter settings in the eIcp_eInsightEngine connection’s configuration
file should not be changed. “Configuring the e*Insight Engine Connection” on
page 34 discusses the parameters that may need to be changed depending on the
implementation. Use the e*Way Editor and the information in “Configuring the
e*Insight Engine Connection” on page 34 to make the required changes for the Payroll
example.
e*Insight Business Process Manager Implementation Guide 107 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
e*Insight Implementation (eIJSchema) Configure User-defined e*Gate Components
8.4.2 Configure the JMS Connection
The JMS connection for e*Insight must be configured for your system. The minimal
configuration required for this implementation is described in this section. For more
information on JMS IQ Services, see SeeBeyond JMS Intelligent Queue User’s Guide.

To configure the JMS connection

1 From the e*Gate Enterprise Manager GUI components view, select the e*Way
Connections folder.

2 Select the eI_cpeInsightJMS connection, and click the Properties tool.

3 In the e*Way Connection Configuration File section, click Edit.

4 From the Goto Section list, select Message Service.

5 Enter a Server Name and Host Name where your JMS server resides.

8.5 Configure User-defined e*Gate Components
The user-defined components in an e*Insight implementation consist of two types: the
first type starts the business process, and second type runs as part of the business
process. The activity components are of the second type.

The Payroll example uses a file e*Way to start the business process and BOBs to run all
the activities except the last. The last activity is represented by an additional file e*Way.

Configuration Order for the User-defined Components

Table 18 shows the configuration order for the user-defined components.

Important: All the integration schema associations are displayed in table format at the end of
this section. The sections dealing with e*Way configuration include tables detailing
the non-default e*Way parameter settings. The sections dealing with the Monk and
Java Collaboration Rules Scripts show screen shots of these scripts as they appear in
the e*Gate Collaboration Editor.

8.5.1 Configure the START_BP e*Way
The e*Way that sends the Event that starts the business process, named START_BP in
this example, must convert the incoming data into e*Insight Event format, as well as

Table 18 Configuration Order for User-defined Components

Task Section

1 Add and configure the START_BP e*Way “Configure the START_BP e*Way” on
page 108

2 Configure the Process_Payroll e*Way “Configure the Process_Payroll e*Way” on
page 113
e*Insight Business Process Manager Implementation Guide 108 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
e*Insight Implementation (eIJSchema) Configure User-defined e*Gate Components
send the appropriate acknowledgment to the e*Insight engine to create the Business
Process Instance (BPI).

The START_BP e*Way is completely user defined and must be added to the
eIJSchema in the e*Gate Enterprise Manager. In an actual implementation, the choice
of e*Way (or BOB) would depend on the requirements of the situation. For example, if
the data were coming from an SAP system, you might select an SAP ALE e*Way; or if
the data were already in the e*Gate system, you could use a BOB to start the BPI. In the
present case, a text file on the local system provides the input data, therefore this
example uses a file e*Way to send the “Start” Event to the e*Insight engine.

Table 19 shows the steps to configure the START_BP e*Way.

Step 1: Create the START_BP e*Way

The e*Way for the Payroll example is a simple file e*Way (executable: stcewfile.exe)
that polls a directory (<eGate>\client\data\Payroll) for any file with the extension
“.fin” and moves it into the e*Insight system.

Use the Enterprise Manager and the following table to add the START_BP e*Way and
create its configuration file.

.

Table 19 Configuration steps for the START_BP e*Way

Step Section

1 Add the e*Way and
create the e*Way
configuration file

“Step 1: Create the
START_BP e*Way” on
page 109

2 Create the Input ETD “Step 2: Create the Input
ETD” on page 110

3 Create the START_BP
Collaboration Rules
script (CRS)

“Step 3: Create the
START_BP Collaboration”
on page 110

4 Configure the
Collaboration in the
GUI

“Step 4: Configure the
Collaboration in the GUI”
on page 112

Table 20 Start e*Way Parameters

Screen Parameter Setting

General Settings (All) (Default)

Outbound (send) settings (All) (Default)

Poller (inbound) settings PollDirectory <eGate>\client\data\Payroll

(All others) (Default)

Performance Testing (All) (Default)
e*Insight Business Process Manager Implementation Guide 109 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
e*Insight Implementation (eIJSchema) Configure User-defined e*Gate Components
Step 2: Create the Input ETD

The input ETD is based on the format of the input data. The Payroll example uses a
delimited text file (Employee.fin) that contains the data needed to process the order.

The input data file used in this example is shown in Figure 45. Place this data file at the
directory location c:\eGate\client\data\Payroll.

Figure 45 Input Text File (Employee.fin)

Using the ETD Editor and the input data as a guide, create an ETD like the one shown
in Figure 46. Set the global delimiter to a ^ character.For more information on using the
ETD Editor see the ETD Editor’s online help.

Figure 46 Input ETD: PayrollStart.xsc (Java)

Step 3: Create the START_BP Collaboration

The Collaboration that sends the Event that starts the BPI must do two things:

! Put the data into e*Insight ETD (eI_StandardEvent.xsc) format.

! Populate the Event with the information the e*Insight engine needs to start a BPI.

In addition to these two tasks, the START_BP Collaboration also provides the
recommended location for setting any global attributes that are required in your
business process.

1 Create a Collaboration Rule, START_BP, that uses the Java service.

2 Configure the Collaboration Mapping tab, as shown in Figure 47.
e*Insight Business Process Manager Implementation Guide 110 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
e*Insight Implementation (eIJSchema) Configure User-defined e*Gate Components
Figure 47 Start_BP Properties, Collaboration Mapping Tab

3 Click Apply, and click the General Tab.

4 Click New to create a new CRS, as show in Figure 48.

Figure 48 START_BP CRS
e*Insight Business Process Manager Implementation Guide 111 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
e*Insight Implementation (eIJSchema) Configure User-defined e*Gate Components
Step 4: Configure the Collaboration in the GUI

In addition to creating the configuration file for the e*Way and the CRS used by the
Collaboration, you must also configure the Start_BP e*Way’s Collaboration in the
Enterprise Manager GUI.

1 Create a Collaboration for the Start_BP e*Way configured as shown in Figure 49.

Figure 49 Start_BP Collaboration
e*Insight Business Process Manager Implementation Guide 112 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
e*Insight Implementation (eIJSchema) Configure User-defined e*Gate Components
8.5.2 Configure the Process_Payroll e*Way
The last component that must be configured in the Payroll example is the
Process_Payroll e*Way.

This e*Way must accomplish two tasks:

! Create a file containing the text of an update for the payroll system

! Return “SUCCESS” to the e*Insight engine

This e*Way simulates updating the payroll system by writing a short status message to
a text file. When this is successful, an Event is returned to the e*Insight engine with the
status node set to “SUCCESS”.

Table 21 shows the steps to configure the Process_Payroll e*Way.

Table 21 Process_Payroll e*Way configuration steps

Step Section

1 Find the executable
and create the e*Way
configuration file

“Step 1: Configure the
e*Way” on page 114

2 Create the Output ETD “Step 2: Create the Output
ETD:PayrollProcess.xsc
using Java” on page 114

3 Create the
eX_Process_Payroll.tsc
CRS

“Step 3: Create the
Process_Payroll
Collaboration Rule” on
page 114

4 Configure the
Collaboration in the
GUI

“Step 4: Configure the
Collaboration” on page 116
e*Insight Business Process Manager Implementation Guide 113 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
e*Insight Implementation (eIJSchema) Configure User-defined e*Gate Components
Step 1: Configure the e*Way

First find the executable, then create the configuration file.

The eX_Process_Payroll e*Way is a simple file e*Way (stcewfile.exe) that writes a text
file (Payroll_output%d.dat) to the directory <egate>\client\data\Payroll_Out. The
file created contains the e-mail address of the person who placed the order, along with
the status of the order. Use the following table to set the e*Way parameters in the
configuration file:

.

Step 2: Create the Output ETD:PayrollProcess.xsc using Java

Use the e*Gate ETD Editor to create an ETD like that shown in Figure 50. Set the global
delimiter to a , (comma) character.For more information on using the ETD Editor see
the ETD Editor’s online help.

Figure 50 PayrollProcess.xsc ETD

Step 3: Create the Process_Payroll Collaboration Rule

This CRS must accomplish three things:

! put the output data into a readable format that can be written to a file

Table 22 Process_Payroll e*Way Parameters

Screen Parameter Setting

General Settings AllowIncoming No

AllowOutgoing Yes

PerformanceTesting No (Default)

Outbound (send) settings OutputDirectory <eGate>\client\data\Payroll_Out

OutputFileName Payroll_output%d.dat

(All others) (Default)

Poller (inbound) settings (All) (Default)

Performance Testing (All) (Default)
e*Insight Business Process Manager Implementation Guide 114 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
e*Insight Implementation (eIJSchema) Configure User-defined e*Gate Components
! set the BP status node to “SUCCESS”

! send the “Done” Event back to the e*Insight engine

To Configure the eX_Process_Payroll Collaboration Rule

1 From the eX_to_Process_Payroll Collaboration Rule General tab, clear the defined
Collaboration Rule and Initialization File.

2 From the eX_to_Process_Payroll Collaboration Rule Collaboration Mapping tab,
add the new ProcessPayroll instance as shown in Figure 51.

Figure 51 eX_to_Process_Payroll CR Properties, Collaboration Mapping tab

3 Click Apply, and click the General Tab.

4 Click New to create a new CRS, as show in Figure 52.
e*Insight Business Process Manager Implementation Guide 115 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
e*Insight Implementation (eIJSchema) Configure User-defined e*Gate Components
Figure 52 eX_to_Process_Payroll.xpr CRS

Step 4: Configure the Collaboration

The eX_Process_Payroll e*Way in Payroll example does not receive data back from and
external system. Consequently, it requires only a single Collaboration. Use the
following procedure to edit the two default Collaborations created by the e*Insight GUI
during the configuration of the integration schema.

In the Enterprise Manager:

1 Highlight the eX_Process_Payroll e*Way.

2 Delete the two Collaborations eX_to_Process_Payroll and
eX_from_Process_Payroll.

3 Add a Collaboration named eX_Process_Payroll.

4 Configure the Collaboration, as shown in Figure 53.
e*Insight Business Process Manager Implementation Guide 116 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.6
e*Insight Implementation (eIJSchema) Run and Test the e*Insight scenario
Figure 53 eX_Process_Payroll Collaboration

8.6 Run and Test the e*Insight scenario
Once the schema has been set up in e*Gate you can run the scenario.

8.6.1 Testing the Standard Business Logic
The following procedure tests the standard business logic of the e*Insight Payroll case
study example. That logic is as follows: a check is made to see whether or not the
employee is eligible for a bonus. If they are the Calculate_Bonus activity is invoked and
a message is generated that can be sent to the payroll system indicating that his bonus
has been paid to him. If the employee is not eligible, then either the Update_Status
activity or Process_Payroll is invoked which creates a message informing the customer
that the bonus is unavailable.

The test is made by sending in data with different departments and probations, and
verifying the correct processing. Input data with a department of accounts and a
probation value of false is interpreted as being eligible. A department of sales or a
probation value of true are interpreted as being ineligible.
e*Insight Business Process Manager Implementation Guide 117 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.6
e*Insight Implementation (eIJSchema) Run and Test the e*Insight scenario
Payroll Processing

Use the following procedure to test the functionality of the example for an employee
that is eligible for a bonus.

1 Start the e*Insight GUI and select the Payroll business process. Switch to monitor
mode.

Note: Make sure that the business process has been enabled in the e*Insight GUI before
attempting to run it.

2 Make a final check of the e*Gate schema, using the tables to confirm all of the GUI
associations. Make sure that all of the e*Insight components, including the
user-defined components, are set to start automatically.

3 At the command line, type the following to start the schema. You must type the
command on a single line.

stccb.exe -rh localhost -rs Payroll -ln localhost_cb
-un username -up password

Substitute the appropriate username and password for your installation.

4 Start the e*Gate Monitor, and check the status of all the components. Any
components displayed in red are not running. Any e*Insight components that are
not running should be investigated before feeding data into the system.

5 Navigate to the location for the input data file, Employee.~in, shown in Figure 45
on page 110 (c:\eGate\client\data\Payroll) and change the extension to “.fin”.

Note: The change of the extension to “.~in” indicates that the data file has been picked up
by the START_BP e*Way.

If everything is working correctly, an output file (Payroll_output#.dat) as shown in
Figure 54 appears in the directory indicating successful completion of the BPI.

Figure 54 In Stock Output File

6 Switch to the e*Insight GUI and, while in monitor mode, select the most recent BPI
from the List tab, and then select the Diagram tab to observe the path that the data
has taken.

The activities that have completed successfully appear green. Any activities that are
still running appear blue.

In the Payroll example, an activity that stays blue for more than couple minutes
indicates a problem, and the e*Gate component associated with that activity should
be investigated for the cause of the problem. Figure 55 illustrates how the
successfully completed BPI appears in the e*Insight GUI.
e*Insight Business Process Manager Implementation Guide 118 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.6
e*Insight Implementation (eIJSchema) Run and Test the e*Insight scenario
Figure 55 Eligible for Bonus Completed BPI Diagram

Not Eligible Processing

Testing the functionality for employees that are not eligible for a bonus uses exactly the
same procedure as that for eligible processing except that different input data is
submitted.

! Verify that sending in the data shown in Figure 56 with a department of sales
causes the business process to take the “EmployedLT3Months” branch of the
decision gate and create the diagram shown in Figure 57 and the output file shown
in Figure 58.

Figure 56 EmployedLT3Months Input File
e*Insight Business Process Manager Implementation Guide 119 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.6
e*Insight Implementation (eIJSchema) Run and Test the e*Insight scenario
Figure 57 Employed Less Than 3 months Completed BPI Diagram

Figure 58 Out of Stock Output File

! Verify that sending in the data shown in Figure 59 with a department of sales
causes the business process to take the “DepartmentNotEligible” branch of the
decision gate and create the diagram shown in Figure 60 and the output file shown
in Figure 61.

Figure 59 DepartmentNotEligible Input File
e*Insight Business Process Manager Implementation Guide 120 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.6
e*Insight Implementation (eIJSchema) Run and Test the e*Insight scenario
Figure 60 Department Not Eligible Completed BPI Diagram

Figure 61 Department Not Eligible Output File

8.6.2 Demonstrating Business Process Undo Functionality
e*Insight has two methods for undoing a failed business process instance (BPI):
automatic and manual. Whether the failure of a particular activity generates an
automatic undo of the entire BPI or whether the e*Insight engine waits for user
intervention, is set on the General tab of the Activity Properties dialog box for that
activity. The default setting is automatic undo.

When an activity is set to automatic undo and the activity “fails,” then e*Insight marks
the activity as “Failed” in the GUI and publishes an “undo” Event (eX_Activity_Undo)
for the last completed activity in the BPI. In this context, fails means that the e*Insight
engine receives a “Done” Event where the status node is set to “FAILURE” rather than
“SUCCESS”. If the last completed activity is undone successfully, then an “undo”
Event is generated for the next activity upstream, and so on, until all the previously
completed activities in that BPI have been undone.

If an activity fails and the Manual Restart check box is marked on the General tab of
the Activity Properties dialog box for that activity, then e*Insight marks the activity as
“Failed” in the GUI and then waits for the user to initiate the next course of action; skip,
restart, or undo. If the user selects undo, then the BPI is undone as described in the
paragraph above.
e*Insight Business Process Manager Implementation Guide 121 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.6
e*Insight Implementation (eIJSchema) Run and Test the e*Insight scenario
Manual Undo

Use the following procedure to test the functionality of manual undo in the e*Insight
scenario.

1 Perform steps 1 through 4 outlined in “Payroll Processing” on page 118.

2 Verify that Manual Restart has been marked for the activities in the business
process.

If Manual Restart has not been marked and the check box itself is grayed out, you
must delete the BPIs for the business process, or save the business process as a new
version, before you can mark it. Refer to the e*Insight Business Process Manager User’s
Guide for information on how to do this.

3 Navigate to the location (c:\eGate\client\data\Payroll\NoGrade.~in) for the
input data file with no grade defined as shown in Figure 62 and change the
extension to “.fin”.

Figure 62 Manual Undo Input File

Note: The change of the extension to “.~in” indicates that the data file has been picked up
by the START_BP e*Way.

4 Switch to the e*Insight GUI and, while in monitor mode, select the most recent
business process instance. Observe the path that the data has taken, as shown in
Figure 63 on the next page.

Figure 63 Manual Undo—Failed BPI Diagram
e*Insight Business Process Manager Implementation Guide 122 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.6
e*Insight Implementation (eIJSchema) Run and Test the e*Insight scenario
The Check_Eligibility activity should be green, indicating that it completed
successfully, but the Calculate_Bonus activity should appear red, indicating that it
has failed.

5 Right-click the Calculate_Bonus activity from the tree view, then select Properties
from the popup menu.

The Activity Properties - Monitor Mode: (Calculate_Bonus) is displayed.

6 Select the Business Process Attributes tab.

7 Click Undo Business Process, and then click OK to close the Activity Properties
dialog box.

8 Highlight the enabled business process version in the tree view.

The Check_Eligibility activity should now appear dark blue indicating that the
activity has been successfully undone.

Figure 64 Manual Undo Completed BPI Diagram

8.6.3 Demonstrating Business Process Restart Functionality
An important feature of e*Insight is its ability to allow the operator to fix and restart a
business process instance. If the data in one of the business process attributes used by
an activity causes the business process to fail, the value can be corrected by the operator
and the BPI restarted from the point of failure.

Repairing a String Attribute

Attributes can be of various types; Boolean, number, string, and XML. The following
example shows the procedure to repair an attribute of type string. For information on
e*Insight Business Process Manager Implementation Guide 123 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.6
e*Insight Implementation (eIJSchema) Run and Test the e*Insight scenario
repairing an attribute with type XML, see the e*Insight Business Process Manager User’s
Guide.

1 Perform steps 1 through 4 outlined in “Payroll Processing” on page 118.

2 Verify that Manual Restart has been marked for the activities in the business
process.

3 Navigate to the location (c:\eGate\client\data\Payroll\NoGrade.~in) for the
input data file with the grade not defined as shown in Figure 65, and change the
extension to “.fin”.

Figure 65 Attribute Repair Input File

Note: The change of the extension to “.~in” indicates that the data file has been picked up
by the START_BP e*Way.

4 Switch to the e*Insight GUI and, while in monitor mode, select the most recent
business process instance. Observe the path that the data has taken.

Figure 66 Attribute Repair—Failed BPI Diagram

The Check_Eligibility activity should be red, indicating that it failed, and the other
activities should appear yellow, indicating that they are waiting.

5 Right-click the enabled Payroll business process version from the tree view, then
select Properties from the popup menu.
e*Insight Business Process Manager Implementation Guide 124 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.6
e*Insight Implementation (eIJSchema) Run and Test the e*Insight scenario
Figure 67 Attribute Repair—Business Process Properties

6 On the Business Process Attributes tab in the Business Process Properties dialog

7 In the Edit Business Process Attribute dialog box, change the value of the attribute
in the Current Value: box to 3, and then click OK.

8 Click OK to close the Business Process Properties dialog box.

9 Right-click the Check_Eligibility activity from the tree view, then select Properties
from the popup menu.

The Activity Properties - Monitor Mode: (Check_Eligibility) dialog box displays.

10 Select the Result/Recourse tab.

11 Click Restart Activity, and then click OK.

The BPI now completes successfully.
e*Insight Business Process Manager Implementation Guide 125 SeeBeyond Proprietary and Confidential

Chapter 9

e*Insight Authorization Activity
Implementation (eIJSchema)

This chapter discusses the steps involved to enhance the previous case study to include
the Authorization Activity.

You can use the Authorization Activity to stop the Business Process and wait for
authorization. The decision to authorize or not authorize is entered via the e*Insight
GUI.

This case study is a continuation of the previous example. See “e*Insight
Implementation (eIJSchema)” on page 96 for the initial configuration instructions.

9.1 Overview
The major steps in the implementation are:

1 Create and configure the Authorization Activity and Automated Activity in the
e*Insight GUI.

2 Run and test the scenario.

The chapter begins with a description of the scenario and then shows how to use these
steps to set it up.

9.1.1 Case Study: Payroll Processing
The bonus must be manually authorized by HR. After the bonus is calculated, the next
activity is the Authorization Activity. The business process waits for a user to authorize
or reject the activity in the e*Insight GUI. If the bonus is authorized, the process
continues to the merge; otherwise the Bonus_Refused Activity runs. This activity uses
an e*Insight script to update the Comments attribute. Then the process continues to the
merge.

Important Considerations

The Authorization Activity has two fixed Local Attributes—assignedTo (the user to
whom the Authorization process is assigned) and performedBy (a security measure to
ensure the correct user is performing the Authorization). It is important to note the
following:
e*Insight Business Process Manager Implementation Guide 126 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
e*Insight Authorization Activity Implementation (eIJSchema) Overview
! The user name of the assignedTo attribute must exactly match the name of the user
logged into the e*Insight GUI or the name of the user group to which the name of
the logged in user belongs

! The assignedTo attribute must have a value to complete the Authorization process.

! Any user assigned the role of Instance Manager can authorize, reject, or undo an
Authorization Activity within a business process instance.
e*Insight Business Process Manager Implementation Guide 127 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
e*Insight Authorization Activity Implementation (eIJSchema) Step 1: Update the Payroll BP in e*Insight
9.2 Step 1: Update the Payroll BP in e*Insight
The following is a summary of the procedure for creating a BP in the e*Insight GUI.

1 Add the Authorization Activity.

2 Edit the assignedTo Local Attribute to contain the correct user name.

Note: The Authorization Activity has two fixed Local Attributes—assignedTo (the user to
whom the Authorization process is assigned) and performedBy (automatically
assigned at run time as the user logged in to the e*Insight GUI). These two values
must match in order for the user to Authorize, Reject, or Undo the business process
instance.

3 Add the additional Automated Activity.

4 Make the connections between the activities and merge.

5 Add the e*Insight script to the Authorization Activity.

For more information on creating a business process and using the e*Insight GUI, see
the e*Insight Business Process Manager User’s Guide.

Use the diagram shown in Figure 68 and the following tables to create the BP in
e*Insight.

Figure 68 Payroll Business Process Model
e*Insight Business Process Manager Implementation Guide 128 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.3
e*Insight Authorization Activity Implementation (eIJSchema) Step 2: Run and Test the e*Insight scenario
9.2.1 Creating the processes performing the Activities
The Authorization Activity (Authorize_Bonus) can be configured to send notification
to e*Gate. This means that a “DO” event is sent to e*Gate. However, unlike an
Automated Activity, a “DONE” event is not expected to be returned to the engine. The
“DONE” event is effectively created when the user clicks a button in the e*Insight GUI.

Sending a notification to e*Gate might be used to send an e-mail to the person who
needs to authorize the activity. An e*Way would be configured that subscribes to the
“DO” event and would perform the required processing to send an e-mail. In our
example, we assume that no notification is required.

The Bonus_Refused activity is performed by an e*Insight Script. This is described
below.

Configuring the e*Insight Script for Bonus_Refused

This script defines a message that appears on the pay slip. It sets the value of the
Comments attribute to a short message indicating that the employee has not been paid
a bonus.

To configure the e*Insight Script for Update_Status

1 From the Bonus_Refused properties, Activity Performed by area, select e*Insight
Script.

2 Select the e*Insight Script tab.

3 Configure the script as shown in Figure 69.

Figure 69 Update_Status e*Insight Script Tab

9.3 Step 2: Run and Test the e*Insight scenario
Once the schema has been set up in e*Gate you can run the scenario.
e*Insight Business Process Manager Implementation Guide 129 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.3
e*Insight Authorization Activity Implementation (eIJSchema) Step 2: Run and Test the e*Insight scenario
9.3.1 Testing the Standard Business Logic
The following procedure tests the additional logic provided by the Authorization
Activity. The test is made by sending data that requires authorization and selecting
both responses of authorized and not authorized.

Authorized Processing

Use the following procedure to test the functionality of the example.

1 Start the e*Insight GUI and select the Payroll business process. Switch to monitor
mode.

Note: Make sure that the business process has been enabled in the e*Insight GUI before
attempting to run it.

2 Make a final check of the e*Gate schema, to confirm all of the GUI associations.
Make sure that all of the e*Insight components, including the user-defined
components, are set to start automatically.

3 At the command line, type the following to start the schema. You must type the
command on a single line.

stccb.exe -rh localhost -rs Payroll -ln localhost_cb
-un username -up password

Substitute the appropriate username and password for your installation.

4 Start the e*Gate Monitor, and check the status of all the components. Any
components displayed in red are not running. Any e*Insight components that are
not running should be investigated before feeding data into the system.

5 Navigate to the location for the input data file, Employee.~in,
(c:\eGate\client\data\Payroll) and change the extension to “.fin”.

Note: The change of the extension to “.~in” indicates that the data file has been picked up
by the START_BP e*Way.

6 Switch to the e*Insight GUI and, while in monitor mode, select the most recent BPI,
and then observe the path that the data has taken.

The Authorize_Bonus Authorization Activity should appear gray. This shows that
the activity is pending.
e*Insight Business Process Manager Implementation Guide 130 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.3
e*Insight Authorization Activity Implementation (eIJSchema) Step 2: Run and Test the e*Insight scenario
Figure 70 Authorize_Bonus Pending BPI Diagram

7 Right-click the Authorize_Bonus activity from the tree view, then select Properties
from the popup menu.

The Authorization Activity Properties - Monitor Mode: (Authorize_Bonus) is
displayed.

8 Select the Business Process Attributes tab.

9 Click Authorize, and then click OK to close the Activity Properties dialog box.

10 The Business Process then completes using the route shown in Figure 71.
e*Insight Business Process Manager Implementation Guide 131 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.3
e*Insight Authorization Activity Implementation (eIJSchema) Step 2: Run and Test the e*Insight scenario
Figure 71 Authorization_Quantity - Authorized

Not Authorized Processing

Repeat the above procedure, but this time do not authorize the order.

Figure 72 Authorize_Bonus - Not Authorized
e*Insight Business Process Manager Implementation Guide 132 SeeBeyond Proprietary and Confidential

Chapter 10

e*Insight Implementation (eISchema)

This chapter discusses the steps involved to create an e*Insight Business Process
Manager implementation based on eISchema (Classic).

The case study in this chapter was designed primarily to illustrate the functionality of
e*Insight. In addition to showing a working example of a business process
implementation, the following e*Insight features are demonstrated:

! Attribute value correction and business process restart

! Undoing a partially completed business process

This case study is extended to include authorization and user activities, and local,
dynamic, and remote sub-processes.

Important: The implementation contains instruction for using both Java and Monk for the
Collaboration Rules scripts. You can use either the monk or java CRS for any BOB
or e*Way, but do not configure both for the same module.

10.1 Overview
The major tasks in the implementation are shown in Table 23.

The chapter begins with a description of the scenario and then shows how to set it up.

Table 23 Overview of implementation tasks

Task Section

1 Create the business process (BP) in the
e*Insight GUI

“Create the ProcessOrder BP in e*Insight”
on page 137

2 Use the e*Insight GUI to configure the e*Gate
schema that supports e*Insight

“Configure the Integration Schema” on
page 140

3 Configure the e*Insight Engine “Configure the e*Insight Engine” on
page 148

4 Add and configure the user-defined e*Gate
components

“Configure User-defined e*Gate
Components” on page 148

5 Run and test the scenario “Run and Test the e*Insight scenario” on
page 162
e*Insight Business Process Manager Implementation Guide 133 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.1
e*Insight Implementation (eISchema) Overview
10.1.1 Case Study: Order Processing
The case study discussed in this chapter illustrates a simplified implementation of
order processing. In this case, e*Insight receives an incoming order as a delimited text
file. Once e*Insight has received the order an inventory check is made to see if the items
ordered are in stock, if they are the order is shipped. An order status report is sent to
the customer indicating whether or not the order was shipped.

Figure 74 shows the components involved in the business process implementation. The
diagram is then separated into two sections and there is a description of how the data
flows between these components.

Figure 73 e*Insight Data Flow Diagram

e*Insight
Database

JMS Server

External
System

START_BP
e*Way

BOB
eX_Check_Inv

eX_Send_Status
e*Way

BOB
eX_Out_of_Inv

START_BP

eX_Check_Inv

eX_Out_of_Inv

eX_Send_Status

eX_eBPM
Engine

eX_from_eBPM

eX_to_eBPM

eX_Check_Eligibilty_Do

eX_Process_Payroll_Do

eX_to_eBPM

eX_to_eBPM

eX_to_eBPM

eX_to_eBPM

eX_Check_Eligibility_Do

eX_Process_Payroll_Do

External
System

1

23

1

1

2

3 3

6

6

5

6

7

e*Insight
GUI

Check_Eligibility

Calculate_
Bonus

Update_
Status

Process_
Payroll

DEC

M

eX_Calculate_Bonus_Do4

5 eX_to_eBPM

7

eX_Calculate_Bonus_Do4
e*Insight Business Process Manager Implementation Guide 134 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.1
e*Insight Implementation (eISchema) Overview
Figure 74 e*Insight Data Flow Diagram (Part 1)

1 The user-defined START_BP e*Way picks up the text file containing the order
information from a shared location on the network, uses the order information
to create the e*Insight Event that causes the e*Insight engine to start a business
process instance, and publishes it using the eX_to_eBPM Event Type to the
eX_eBPM IQ. The e*Insight engine retrieves the Event from the IQ and uses the
information it contains to start the BPI.

2 The e*Insight engine publishes a “Do” Event (eX_Check_Inv_Do) for first
activity in the business process (Check_Inv). eX_Check_Inv BOB, the e*Gate
component that corresponds to this activity in the business process, retrieves
this Event from the eX_eBPM IQ and uses the information it contains to check
the availability of the items ordered.

3 When the Check_Inv activity is finished, the eX_Check_Inv BOB publishes a
“Done” Event using the eX_to_eBPM Event Type to the eX_eBPM IQ. The
e*Insight engine retrieves the “Done” Event from the IQ, updates the BPI to
reflect whether the items ordered are in stock, and then moves forward to the
next activity in the business process based on the result of a decision gate. If
the items are in stock, the next activity is Ship_Ord; otherwise the next activity
is Out_of_Inv.

Let’s assume the items are in stock. The e*Insight engine processes the
e*Insight script corresponding to the Ship_Ord activity in the business process,
and then moves forward to the next activity in the business process—
Send_Status.

e*Insight
Database

JMS Server

External
System

START_BP
e*Way

BOB
eX_Check_Inv

START_BP

eX_Check_Inv

eX_eBPM
Engine

eX_from_eBPM

eX_to_eBPM

eX_Check_Inv_Do

eX_to_eBPM

eX_to_eBPM

eX_to_eBPM

eX_Check_Inv_Do

1

2

3

1

1

2

3

e*Insight
GUI

Check_Inv

Ship_Ord Out_of_Inv

Send_Status

DEC

M

e*Insight Business Process Manager Implementation Guide 135 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.1
e*Insight Implementation (eISchema) Overview
Figure 75 e*Insight Data Flow Diagram (Part 2)

4 Let’s assume the items are not in stock. The e*Insight engine publishes a “Do”
Event (eX_Out_of_Inv_Do) corresponding to the Out_of_Inv activity in the
business process. The eX_Out_of_Inv BOB retrieves this Event from the
eX_eBPM IQ and uses the information it contains to ship the order to the
customer.

5 When the Ship_Ord activity is finished, the eX_Out_of_Inv BOB publishes a
“Done” Event to the eX_eBPM IQ indicating that the order has been shipped.
The e*Insight engine retrieves this Event, updates the BPI, and then moves
forward to the next activity in the business process—Send_Status.

6 The e*Insight engine publishes a “Do” Event (eX_Send_Status_Do)
corresponding to the Send_Status activity in the business process. The
eX_Send_Status e*Way retrieves this Event from the eX_eBPM IQ and uses the
information it contains to send a order status report to the customer.

7 The eX_Send_Status e*Way publishes two Events: one containing the status
report to be sent to the customer to the external system responsible for sending
out the report, and also the “Done” Event to the eX_eBPM IQ. The e*Insight
engine retrieves the “Done” Event from the eX_eBPM IQ and uses the
information it contains to update the BPI to indicate that the final activity in the
business process has completed successfully.

e*Insight
Database

JMS Server

eX_Send_Status
e*Way

eX_Send_Status

eX_eBPM
Engine

eIcr_eBPM

eX_Send_Status_Do

eX_to_eBPM

eX_to_eBPM

eX_Send_Status_Do

External
System

6

6

7

7

7

e*Insight
GUI

Check_Inv

Ship_Ord Out_of_Inv

Send_Status

DEC

M

eX_to_eBPM

eX_Out_of_Inv_Do4

5

BOB
eX_Out_of_Inv

eX_Ship_Ord

eX_Out_of_Inv_Do4

5

e*Insight Business Process Manager Implementation Guide 136 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.2
e*Insight Implementation (eISchema) Create the ProcessOrder BP in e*Insight
10.2 Create the ProcessOrder BP in e*Insight
The following is a summary of the procedure for creating a BP in the e*Insight GUI.

1 Create a Business Process named ProcessOrder.

1 Add the activities.

2 Add the decision gates.

3 Make the connections between the activities and gates.

4 Add all the global attributes.

5 Assign global attributes to activities.

6 Add the logic to the decision gates.

7 Configure the properties for the activities.

For more information on creating this business process, see the e*Insight Business Process
Manager User’s Guide.

Use the diagram shown in Figure 76 and the following tables to create the BP in
e*Insight.

Important: Mark the check box for Manual Restart on the General tab of the Properties dialog
box for each activity.

Figure 76 ProcessOrder Business Process Model
e*Insight Business Process Manager Implementation Guide 137 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.2
e*Insight Implementation (eISchema) Create the ProcessOrder BP in e*Insight
Table 24 BP Global Attributes

Attribute Type Data Direction

Address_Street String Input

Address_City String Input

Address_State String Input

Address_Zip String Input

Cust_Name String Input

Cust_email String Input

Item_Description String Input

Item_Number String Input

Order_Quantity Number Input

Order_Status String Internal

In_Stock Boolean Internal

Table 25 Activity Attributes

Activity Attribute(s) Input/Output

Check_Inv Item_Number Input/Output

Order_Quantity Input

In_Stock Output

Order_Status Output

Ship_Ord Address_State Input

Order_Status Output

Out_of_Inv Item_Number Input

Item_Description Input

Order_Quantity Input

Order_Status Output

Send_Status Cust_email Input

Order_Status Input

Address_Street Input

Address_City Input

Address_State Input

Address_Zip Input

Cust_Name Input

Item_Description Input

Item_Number Input

Order_Quantity Input
e*Insight Business Process Manager Implementation Guide 138 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.2
e*Insight Implementation (eISchema) Create the ProcessOrder BP in e*Insight
10.2.1 Creating the processes performing the Activities
The activities in our scenario can either be performed by e*Gate or an e*Insight Script.
Three of the activities (Check_Inv, Out_of_Inv, and Send_Status) use e*Gate. This is
described in “Configure the Integration Schema” on page 140.

The Ship_Ord activity is performed by an e*Insight Script. This is described below.

Configuring the e*Insight Script for Ship_Ord

This script simulates the activity of sending out an item that is in stock. It sets the value
of the Order_Status attribute to a short message indicating that the order has been sent
from either California or Oregon depending on the customer’s zip code.

To configure the e*Insight Script for Ship_Ord

1 From the Ship_Ord properties, Activity Performed by area, select e*Insight Script.

2 Select the e*Insight Script tab.

3 Configure the script as shown in Figure 77.

Figure 77 Ship_Order e*Insight Script Tab

Table 26 Decision Gates

Feeding Activity Expression

Check_Inv In_Stock==true
e*Insight Business Process Manager Implementation Guide 139 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.3
e*Insight Implementation (eISchema) Configure the Integration Schema
10.3 Configure the Integration Schema
All the activities in this example, except Ship_Order are carried out using e*Gate
components. You must first create a Schema (a copy of eISchema) with the basic
components required for e*Insight. You then configure these components for your
environment and create additional components for the activities.

To create a copy of eIJSchema

1 From the e*Insight GUI File menu, select New e*Gate Schema.

2 Enter or select a Registry Host on which to create the schema.

3 Enter a Username and Password that is valid on the Registry Host.

4 From the Based on list, select eISchema (Classic).

5 In the Name box, enter ProcessOrder.

6 Click OK.

After creating the business process, you must configure the e*Gate Registry schema
that supports the e*Insight system.

e*Insight allows you to specify the type of component (e*Way or BOB) associated with
a particular activity and where it runs.

In the ProcessOrder example, all the components are BOBs except one: Send_Status.
The Send_Status activity must be associated with an e*Way because it interfaces with
an external component.

Integration Schema Activity Components Summary

The information in Table 27 shows a summary of the e*Gate components that support
this example.

For information on how to use the e*Insight GUI to configure the e*Gate Registry see
the e*Insight Business Process Manger User’s Guide.

Table 27 Integration Schema Activity Components

Name Type
Participating

Host
Configuration Instructions

eX_Check_Inv BOB localhost “Creating the
eX_Check_Inv BOB” on
page 141

eX_Out_of_Inv BOB localhost “Creating the
eX_Out_of_Inv BOB”
on page 144

eX_Send_Status e*Way localhost “Send_Status e*Way
Configuration” on
page 147
e*Insight Business Process Manager Implementation Guide 140 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.3
e*Insight Implementation (eISchema) Configure the Integration Schema
Note: This example runs all software components on a single machine (named
“localhost”). In an actual implementation, these components could be distributed
throughout a network, depending on the requirements of the system.

Creating the eX_Check_Inv BOB

The eX_Check_Inv Collaboration runs the Check_Inv CRS. This checks to see what type
of Event it has received, either a “Do” Event or an “Undo” Event. If it is an “Undo”
Event the Order_Status attribute is populated with the string “The Check_Inv activity
has been reversed” simulating the case of executing a compensating transaction for the
activity.

If the Event is a “Do” Event, then the value for the Item_Number is checked. This
simulates the checking of inventory by an inventory control system. Depending on
what this number is the following happens.

99999 indicates that the Event is a failure. This simulates the case of an Event that
contains bad data. The CRS sends a “FAILURE” Event back to the e*Insight engine
indicating the activity could not be completed correctly. The e*Insight engine then
implements the failure handling that is defined for this business process. In our
example, the operator has the opportunity to make changes to the data an restart the
business process.

33333 indicates that the item in question is in stock. The CRS sets the value of the
In_Stock attribute to “yes” and sends a “SUCCESS” Event back to e*Insight, indicating
that the activity has completed successfully.

Any other Item_Number is treated as being out of stock and the CRS set the value of
In_Stock to “no” and sends “SUCCESS”.
e*Insight Business Process Manager Implementation Guide 141 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.3
e*Insight Implementation (eISchema) Configure the Integration Schema
To configure the Check_Inv activity using Monk

1 In the e*Insight GUI, check that the Default Editor is Monk.

2 Open the Check_Inv activity properties.

3 On the General tab, select the BOB e*Gate module.

4 Click New.

The Define Collaboration dialog appears.

5 Click OK.

6 Create eX_Check_Inv.tsc. The source and destination Event Type Definitions are
eX_Standard_Event.

Figure 78, on the following page, shows the eX_Check_Inv.tsc CRS used in this
example.

Figure 78 eX_Check_Inv.tsc CRS (Monk)

7 Validate and save the CRS.

8 Close the editor.

9 In the Check_Inv activity properties, click Configure e*Gate Schema.

You may be required to log into e*Gate.

10 Click OK, to close the information dialog.

11 Close the Check_Inv Activity properties.
e*Insight Business Process Manager Implementation Guide 142 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.3
e*Insight Implementation (eISchema) Configure the Integration Schema
To configure the Check_Inv activity using Java

1 In the e*Insight GUI, check that the Default Editor is Java.

2 Open the Check_Inv activity properties.

3 On the General tab, select the BOB e*Gate module.

4 Click New.

The Define Collaboration dialog appears.

5 Select the Define Mapping tab.

6 Configure the instances as shown in Figure 79.

Figure 79 Define Mapping for eX_Check_Inv

7 Click OK.

8 Create eX_Check_Inv.xsc.

Figure 80, on the following page, shows the eX_Check_Inv.xsc CRS used in this
example.
e*Insight Business Process Manager Implementation Guide 143 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.3
e*Insight Implementation (eISchema) Configure the Integration Schema
Figure 80 eX_Check_Inv.xsc CRS (Java)

9 Compile and save the CRS.

10 Close the editor.

11 In the Check_Inv Activity properties, click Configure e*Gate Schema.

You may be required to log into e*Gate.

12 Click OK, to close the information dialog.

13 Close the Check_Inv Activity properties.

Creating the eX_Out_of_Inv BOB

The Out_of_Inv translation implements the logic associated with processing an order
for an item that is not in stock. The Item_Number is checked and a determination is
made as to whether the item can be special ordered or a message must be created
telling the customer that the item is unavailable.

In addition, this translation demonstrates how e*Insight handles “undoing” a partially
completed business process. If Item_Number 11111 is encountered, then “FAILURE” is
returned to the e*Insight engine which in turn issues “undo” Events for any activities
upstream from the failed activity. In this example there is only one, Check_Inv, and the
Check_Inv CRS handles reversing that already completed activity.
e*Insight Business Process Manager Implementation Guide 144 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.3
e*Insight Implementation (eISchema) Configure the Integration Schema
To configure the Out_of_Inv activity using Monk

1 In the e*Insight GUI, check that the Default Editor is Monk.

2 Open the Out_of_Inv activity properties.

3 On the General tab, select the BOB e*Gate module.

4 Click New.

The Define Collaboration dialog appears.

5 Click OK.

6 Create eX_Out_of_Inv.tsc. The source and destination Event Type Definitions are
eX_Standard_Event.ssc.

Figure 81 shows the eX_Out_of_Inv CRS used in this example.

Figure 81 eX_Out_of_Inv.tsc CRS (Monk)

7 Validate and save the CRS.

8 Close the editor.

9 In the Out_of_Inv Activity properties, click Configure e*Gate Schema.

You may be required to log into e*Gate.

10 Click OK, to close the information dialog.

11 Close the Out_of_Inv Activity properties.
e*Insight Business Process Manager Implementation Guide 145 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.3
e*Insight Implementation (eISchema) Configure the Integration Schema
To configure the Out_of_Inv activity using Java

1 In the e*Insight GUI, check that the Default Editor is Java.

2 Open the Out_of_Inv activity properties.

3 On the General tab, select the BOB e*Gate module.

4 Click New.

The Define Collaboration dialog appears.

5 Select the Define Mapping tab.

6 Configure instances as shown in Figure 82.

Figure 82 Define Mapping for eX_Out_of_Inv (Java)

7 Click OK.

8 Create eX_Out_of_Inv.tsc.

Figure 83 shows the eX_Out_of_Inv CRS used in this example.
e*Insight Business Process Manager Implementation Guide 146 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.3
e*Insight Implementation (eISchema) Configure the Integration Schema
Figure 83 eX_Out_of_Inv.xsc CRS (Java)

9 Compile and save the CRS.

10 Close the editor.

11 In the Out_of_Inv Activity properties, click Configure e*Gate Schema.

You may be required to log into e*Gate.

12 Click OK, to close the information dialog.

13 Close the Out_of_Inv Activity properties.

Send_Status e*Way Configuration

The Send_Status Collaboration is configured using e*Gate, see “Configure the
Send_Status e*Way” on page 156. The e*Way and basic components should be created
from within the e*Insight GUI.

To create the Send_Status Activity e*Way

1 In the e*Insight GUI, open the Send_Status activity properties.

2 On the General tab, select the e*Way e*Gate module.

3 Click Configure e*Gate Schema.

You may be required to log into e*Gate.

4 Click OK, to close the information dialog.
e*Insight Business Process Manager Implementation Guide 147 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.4
e*Insight Implementation (eISchema) Configure the e*Insight Engine
5 Close the Send_Status Activity properties.

10.4 Configure the e*Insight Engine
The e*Insight engine runs in a specially configured Java e*Way. You must make
changes to the configuration file for this e*Way to conform to the requirements of your
system. For example, you must specify the name of the e*Insight database to which the
e*Way connects.

Note: This example uses only one e*Insight engine. In an actual implementation, more
than one e*Insight engine can be configured to handle the required workload. In
such a case, you must make changes to each of the e*Insight engines.

Edit the eX_eBPM Configuration File

Most of the parameter settings in the eX_eBPM engine’s configuration file should not
be changed. Table 28 discusses the parameters that may need to be changed depending
on the implementation. Use the e*Way Editor and the information in “Configuring the
e*Insight Engine” on page 53 to make the required changes for the ProcessOrder
example.

10.5 Configure User-defined e*Gate Components
The user-defined components in an e*Insight implementation consist of two types: the
first type starts the business process, and second type runs as part of the business
process. The activity components are of the second type.

The ProcessOrder example uses a file e*Way to start the business process and BOBs to
run all the activities except the last. The last activity is represented by an additional file
e*Way.

Configuration Order for the User-defined Components

Table 28 shows the configuration order for the user-defined components.

Important: All the integration schema associations are displayed in table format at the end of
this section. The sections dealing with e*Way configuration include tables detailing

Table 28 Configuration Order for User-defined Components

Task Section

1 Add and configure the START_BP e*Way “Configure the START_BP e*Way” on
page 149

2 Configure the Send_Status e*Way “Configure the Send_Status e*Way” on
page 156
e*Insight Business Process Manager Implementation Guide 148 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
e*Insight Implementation (eISchema) Configure User-defined e*Gate Components
the non-default e*Way parameter settings. The sections dealing with the Monk and
Java Collaboration Rules Scripts show screen shots of these scripts as they appear in
the e*Gate Collaboration Editor.

10.5.1 Configure the START_BP e*Way
The e*Way that sends the Event that starts the business process, named START_BP in
this example, must convert the incoming data into e*Insight Event format, as well as
send the appropriate acknowledgment to the e*Insight engine to create the Business
Process Instance (BPI).

The START_BP e*Way is completely user defined and must be added to the eISchema
in the e*Gate Enterprise Manager. In an actual implementation, the choice of e*Way (or
BOB) would depend on the requirements of the situation. For example, if the data were
coming from an SAP system, you might select an SAP ALE e*Way; or if the data were
already in the e*Gate system, you could use a BOB to start the BPI. In the present case, a
text file on the local system provides the input data, therefore this example uses a file
e*Way to send the “Start” Event to the e*Insight engine.

Table 29 shows the steps to configure the START_BP e*Way.

Step 1: Create the START_BP e*Way using Monk

The e*Way for the ProcessOrder example is a simple file e*Way (executable:
stcewfile.exe) that polls a directory (<eGate>\client\data\ProcessOrder) for any file
with the extension “.fin” and moves it into the e*Insight system.

Table 29 Configuration steps for the START_BP e*Way

Step
Section

Monk Java

1 Add the e*Way and
create the e*Way
configuration file

“Step 1: Create the
START_BP e*Way using
Monk” on page 149

“Step 1: Create the
START_BP e*Way using
Java” on page 152

2 Create the Input ETD “Step 2: Create the Input
ETD using Monk” on
page 150

“Step 2: Create the Input
ETD using Java” on
page 152

3 Create the START_BP
Collaboration Rules
script (CRS)

“Step 3: Create the
START_BP CRS using
Monk” on page 150

“Step 3: Create the
START_BP Collaboration
using Java” on page 153

4 Configure the
Collaboration in the
GUI

“Step 4: Configure the
START_BP Collaboration in
the GUI using Monk” on
page 151

“Step 4: Configure the
Collaboration in the GUI
using Java” on page 155
e*Insight Business Process Manager Implementation Guide 149 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
e*Insight Implementation (eISchema) Configure User-defined e*Gate Components
Use the Enterprise Manager and the following table to add the START_BP e*Way and
create its configuration file.

.

Step 2: Create the Input ETD using Monk

The input ETD is based on the format of the input data. The ProcessOrder example uses
a delimited text file (InStock.~in) that contains the data needed to process the order.

The input data file used in this example is shown in Figure 84. Place this data file at the
directory location <eGate>\client\data\ProcessOrder.

Figure 84 Input Text File (InStock.~in)

Using the ETD Editor and the input data as a guide, create an ETD like the one shown
in Figure 85. For more information on using the ETD Editor see the ETD Editor’s online
help.

Figure 85 Input ETD: ProcessOrderStart.ssc (Monk)

Step 3: Create the START_BP CRS using Monk

The Collaboration that sends the Event that starts the BPI must do two things:

! Put the data into e*Insight ETD (eX_Standard_Event.ssc) format.

! Populate the Event with the information the e*Insight engine needs to start a BPI.

Table 30 Start e*Way Parameters

Screen Parameter Setting

General Settings (All) (Default)

Outbound (send) settings (All) (Default)

Poller (inbound) settings PollDirectory <eGate>\client\data\ProcessOrder

(All others) (Default)

Performance Testing (All) (Default)
e*Insight Business Process Manager Implementation Guide 150 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
e*Insight Implementation (eISchema) Configure User-defined e*Gate Components
In addition to these two tasks, the START_BP Collaboration also provides the
recommended location for setting any global attributes that are required in your
business process.

Figure 86, shows the START_BP CRS used in the ProcessOrder example:

Figure 86 START_BP CRS (Monk)

Step 4: Configure the START_BP Collaboration in the GUI using Monk

In addition to creating the configuration file for the e*Way and the CRS used by the
Collaboration, you must also configure the START_BP e*Way’s Collaboration in the
Enterprise Manager GUI.

To configure the Collaboration

1 Create a Collaboration Rule, START_BP, that uses the Monk service and the
START_BP CRS created in step 2, subscribes to the eX_External_Evt Event Type,
and publishes to the eX_to_eBPM Event Type.

2 Create a Collaboration for the START_BP e*Way that uses the START_BP
Collaboration Rule, subscribes to the eX_External_Evt Event Type from
<EXTERNAL>, and publishes the eX_to_eBPM Event Type to the eX_eBPM IQ.
e*Insight Business Process Manager Implementation Guide 151 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
e*Insight Implementation (eISchema) Configure User-defined e*Gate Components
Step 1: Create the START_BP e*Way using Java

The e*Way for the ProcessOrder example is a simple file e*Way (executable:
stcewfile.exe) that polls a directory (<eGate>\client\data\ProcessOrder) for any file
with the extension “.fin” and moves it into the e*Insight system.

Use the Enterprise Manager and the following table to add the START_BP e*Way and
create its configuration file.

.

Step 2: Create the Input ETD using Java

The input ETD is based on the format of the input data. The ProcessOrder example uses
a delimited text file (InStock.fin) that contains the data needed to process the order.

The input data file used in this example is shown in Figure 87. Place this data file at the
directory location c:\eGate\client\data\ProcessOrder.

Figure 87 Input Text File (InStock.fin)

Using the ETD Editor and the input data as a guide, create an ETD like the one shown
in Figure 88. Set the global delimiter to a ^ character.For more information on using the
ETD Editor see the ETD Editor’s online help.

Table 31 Start e*Way Parameters

Screen Parameter Setting

General Settings (All) (Default)

Outbound (send) settings (All) (Default)

Poller (inbound) settings PollDirectory <eGate>\client\data\ProcessOrder

(All others) (Default)

Performance Testing (All) (Default)
e*Insight Business Process Manager Implementation Guide 152 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
e*Insight Implementation (eISchema) Configure User-defined e*Gate Components
Figure 88 Input ETD: ProcessOrderStart.xsc (Java)

Step 3: Create the START_BP Collaboration using Java

The Collaboration that sends the Event that starts the BPI must do two things:

! Put the data into e*Insight ETD (eI_Standard_Event.xsc) format.

! Populate the Event with the information the e*Insight engine needs to start a BPI.

In addition to these two tasks, the START_BP Collaboration also provides the
recommended location for setting any global attributes that are required in your
business process.

1 Create a Collaboration Rule, START_BP, that uses the Java service.

2 Configure the Collaboration Mapping tab, as shown in Figure 89.
e*Insight Business Process Manager Implementation Guide 153 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
e*Insight Implementation (eISchema) Configure User-defined e*Gate Components
Figure 89 Start_BP Properties, Collaboration Mapping Tab (Java)

3 Click Apply, and click the General Tab.

4 Click New to create a new CRS, as show in Figure 90.

Figure 90 START_BP CRS (Java)
e*Insight Business Process Manager Implementation Guide 154 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
e*Insight Implementation (eISchema) Configure User-defined e*Gate Components
Step 4: Configure the Collaboration in the GUI using Java

In addition to creating the configuration file for the e*Way and the CRS used by the
Collaboration, you must also configure the START_BP e*Way’s Collaboration in the
Enterprise Manager GUI.

1 Create a Collaboration for the START_BP e*Way configured as shown in Figure 91.

Figure 91 START_BP Collaboration
e*Insight Business Process Manager Implementation Guide 155 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
e*Insight Implementation (eISchema) Configure User-defined e*Gate Components
10.5.2 Configure the Send_Status e*Way
The last component that must be configured in the ProcessOrder example is the
Send_Status e*Way.

This e*Way must accomplish two tasks:

! Create a file containing the text of e-mail message that can be sent to an order-status
message via e-mail (simulated; no actual mail is sent)

! Return “SUCCESS” to the e*Insight engine

This e*Way simulates sending an e-mail order status message by writing the customer’s
e-mail address and a short status message to a text file. When this is successful, an
Event is returned to the e*Insight engine with the status node set to “SUCCESS”.

Table 32 shows the steps to configure the Send_Status e*Way.

Step 1: Configure the eX_Send_Status e*Way using Monk

First find the executable, then create the configuration file.

The eX_Send_Status e*Way is a simple file e*Way (stcewfile.exe) that writes a text file
(ProcessOrder_output%d.dat) to the directory <egate>\client\data\ProcessOrder.
The file created contains the e-mail address of the person who placed the order, along
with the status of the order. Use the following table to set the e*Way parameters in the
configuration file:

Table 32 Send_Status e*Way configuration steps

Step
Section

Monk Java

1 Find the executable
and create the e*Way
configuration file

“Step 1: Configure the
eX_Send_Status e*Way
using Monk” on page 156

“Step 1: Configure the
e*Way using Java” on
page 159

2 Create the Output ETD “Step 2: Create the Output
ETD using Monk” on
page 157

“Step 2: Create the Output
ETD: SendStatus.xsc using
Java” on page 159

3 Create the
eX_Send_Status.tsc
CRS

“Step 3: Create the
eX_Send_Status.tsc CRS
using Monk” on page 157

“Step 3: Create the
Send_Status Collaboration
Rule using Java” on
page 160

4 Configure the
Collaboration in the
GUI

“Step 4: Configure the
Collaboration using Monk”
on page 158

“Step 4: Configure the
Collaboration using Java”
on page 161
e*Insight Business Process Manager Implementation Guide 156 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
e*Insight Implementation (eISchema) Configure User-defined e*Gate Components
.

Step 2: Create the Output ETD using Monk

Use the e*Gate ETD Editor to create a single node ETD like that shown in Figure 92.

Figure 92 root.ssc ETD

Step 3: Create the eX_Send_Status.tsc CRS using Monk

This CRS must accomplish three things:

! put the output data into a readable format that can be written to a file

! use the e*Insight helper function eX-set-BP_EVENT to set the BP status node to
“SUCCESS”

! send the “Done” Event back to the e*Insight engine using the Monk function iq-put

The CRS shown in Figure 93 accomplishes these tasks. The source ETD is
eX_Standard_Event.ssc and the destination ETD is root.ssc.

Figure 93 eX_Send_Status.tsc CRS (Monk)

Table 33 Send_Status e*Way Parameters

Screen Parameter Setting

General Settings AllowIncoming No

AllowOutgoing Yes

PerformanceTesting No (Default)

Outbound (send) settings OutputDirectory <eGate>\client\data\ProcessOrder

OutputFileName ProcessOrder_output%d.dat

(All others) (Default)

Poller (inbound) settings (All) (Default)

Performance Testing (All) (Default)
e*Insight Business Process Manager Implementation Guide 157 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
e*Insight Implementation (eISchema) Configure User-defined e*Gate Components
Step 4: Configure the Collaboration using Monk

The eX_Send_Status e*Way in ProcessOrder example does not receive data back from
and external system. Consequently, it requires only a single Collaboration. Use the
following procedure to edit the two default Collaborations created by the e*Insight GUI
during the configuration of the integration schema.

To configure the collaboration

1 Highlight the eX_Send_Status e*Way.

2 Delete the two Collaborations eX_to_Send_Status and eX_from_Send_Status.

3 Add a Collaboration named eX_Send_Status.

4 Highlight the Collaboration Rules folder.

5 Delete the two Collaboration Rules eX_to_Send_Status and eX_from_Send_Status.

6 Add a Collaboration Rule named eX_Send_Status.

7 Edit the Collaboration Rule.

8 In the Collaboration Rules Properties dialog box, select the Monk service.

9 Find the CRS eX_Send_Status.tsc and associate it with the Collaboration Rule.

10 On the Subscriptions tab, move the eX_Send_Status_Do and
eX_Send_Status_Undo Event Types to the Selected Input Event Types box.

11 On the Publications tab, move the eX_External_Evt and the eX_to_eBPM Event
Types to the Selected Output Event Types box.

Verify that the eX_External_Evt Event Type is marked as the default.

12 Click OK to close the Collaboration Rules Properties dialog box.

13 Highlight the eX_Send_Status e*Way and edit the eX_Send_Status Collaboration
you associated with it in step 3.

14 In the Collaboration Properties dialog box, select the eX_Send_Status
Collaboration Rule.

15 Under Subscriptions add the eX_Send_Status_Do and eX_Send_Status_Undo
Event Types from the eX_from_eBPM source.

16 Under Publications add the Event Type eX_External_Evt with destination
<EXTERNAL> and Event Type eX_to_eBPM with destination eX_eBPM IQ.
e*Insight Business Process Manager Implementation Guide 158 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
e*Insight Implementation (eISchema) Configure User-defined e*Gate Components
Step 1: Configure the e*Way using Java

First find the executable, then create the configuration file.

The eX_Send_Status e*Way is a simple file e*Way (stcewfile.exe) that writes a text file
(ProcessOrder_output%d.dat) to the directory <egate>\client\data\ProcessOrder.
The file created contains the e-mail address of the person who placed the order, along
with the status of the order. Use the following table to set the e*Way parameters in the
configuration file:

.

Step 2: Create the Output ETD: SendStatus.xsc using Java

Use the e*Gate ETD Editor to create an ETD like that shown in Figure 94.

Figure 94 SendStatus.xsc ETD (Java)

Table 34 Send_Status e*Way Parameters

Screen Parameter Setting

General Settings AllowIncoming No

AllowOutgoing Yes

PerformanceTesting No (Default)

Outbound (send) settings OutputDirectory <eGate>\client\data\ProcessOrder

OutputFileName ProcessOrder_output%d.dat

(All others) (Default)

Poller (inbound) settings (All) (Default)

Performance Testing (All) (Default)
e*Insight Business Process Manager Implementation Guide 159 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
e*Insight Implementation (eISchema) Configure User-defined e*Gate Components
Step 3: Create the Send_Status Collaboration Rule using Java

This CRS must accomplish three things:

! put the output data into a readable format that can be written to a file

! set the BP status node to “SUCCESS”

! send the “Done” Event back to the e*Insight engine

To Configure the eX_Send_Status Collaboration Rule

1 From the eX_Send_Status Collaboration Rule General tab, select the Java
Collaboration Service.

2 From the eX_Send_Status Collaboration Rule Collaboration Mapping tab, create
two new instances as shown in Figure 95.

Figure 95 eX_Send_Status CR Properties, Collaboration Mapping tab (Java)

3 Click Apply, and click the General Tab.

4 Click New to create a new CRS, as show in Figure 96.
e*Insight Business Process Manager Implementation Guide 160 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
e*Insight Implementation (eISchema) Configure User-defined e*Gate Components
Figure 96 eX_Send_Status.xsc CRS (Java)

Step 4: Configure the Collaboration using Java

The eX_Send_Status e*Way in ProcessOrder example does not receive data back from
and external system. Consequently, it requires only a single Collaboration. Use the
following procedure to edit the two default Collaborations created by the e*Insight GUI
during the configuration of the integration schema.

In the Enterprise Manager:

1 Highlight the eX_Send_Status e*Way.

2 Delete the two Collaborations eX_to_Send_Status and eX_from_Send_Status.

3 Add a Collaboration named eX_Send_Status.

4 Configure the Collaboration, as shown in Figure 97.
e*Insight Business Process Manager Implementation Guide 161 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.6
e*Insight Implementation (eISchema) Run and Test the e*Insight scenario
Figure 97 eX_Send_Status Collaboration (Java)

10.6 Run and Test the e*Insight scenario
Once the schema has been set up in e*Gate you can run the scenario.

10.6.1 Testing the Standard Business Logic
The following procedure tests the standard business logic of the e*Insight ProcessOrder
case study example. That logic is as follows: a check is made to see whether or not the
item ordered is available. If it is in stock the Ship_Order activity is invoked and a
message is generated that can be sent to the customer indicating that his order has been
shipped to him. If the item is unavailable, then the Out_of_Inv activity is invoked
which creates a message informing the customer that his item is unavailable.

The test is made by sending in data with different item numbers and verifying the
correct processing. Input data with an item number of 33333 is interpreted as being in
stock and any other number except for the three special numbers (11111, 22222, and
99999) is interpreted as being out of stock.

In-Stock Processing

Use the following procedure to test the functionality of the example for an item that is
in stock.

1 Start the e*Insight GUI and select the ProcessOrder business process. Switch to
monitor mode.
e*Insight Business Process Manager Implementation Guide 162 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.6
e*Insight Implementation (eISchema) Run and Test the e*Insight scenario
Note: Make sure that the business process has been enabled in the e*Insight GUI before
attempting to run it.

2 Make a final check of the e*Gate schema, using the tables to confirm all of the GUI
associations. Make sure that all of the e*Insight components, including the
user-defined components, are set to start automatically.

3 At the command line, type the following to start the schema. You must type the
command on a single line.

stccb.exe -rh localhost -rs ProcessOrder -ln localhost_cb
-un username -up password

Substitute the appropriate username and password for your installation.

4 Start the e*Gate Monitor, and check the status of all the components. Any
components displayed in red are not running. Any e*Insight components that are
not running should be investigated before feeding data into the system.

5 Navigate to the location for the input data file, InStock.~in, shown in Figure 84 on
page 150 (c:\eGate\client\data\ProcessOrder) and change the extension to “.fin”.

Note: The change of the extension to “.~in” indicates that the data file has been picked up
by the START_BP e*Way.

If everything is working correctly, an output file (ProcessOrder_output#.dat) as
appears in the directory indicating successful completion of the BPI.

6 Switch to the e*Insight GUI and, while in monitor mode, select the most recent BPI
from the List tab, and then select the Diagram tab to observe the path that the data
has taken.

The activities that have completed successfully appear green. Any activities that are
still running appear blue.

In the ProcessOrder example, an activity that stays blue for more than couple
minutes indicates a problem, and the e*Gate component associated with that
activity should be investigated for the cause of the problem. Figure 98 illustrates
how the successfully completed BPI appears in the e*Insight GUI.
e*Insight Business Process Manager Implementation Guide 163 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.6
e*Insight Implementation (eISchema) Run and Test the e*Insight scenario
Figure 98 In Stock Completed BPI Diagram

Out-of-Stock Processing

Testing the functionality for out of stock processing uses exactly the same procedure as
that for in stock processing except that different input data is submitted.

! Verify that sending in the data with an item number of 44444 causes the business
process to take the “FALSE” branch of the decision gate and create the diagram
shown in Figure 99.

Figure 99 Out of Stock Completed BPI Diagram
e*Insight Business Process Manager Implementation Guide 164 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.6
e*Insight Implementation (eISchema) Run and Test the e*Insight scenario
10.6.2 Demonstrating Business Process Undo Functionality
e*Insight has two methods for undoing a failed business process instance (BPI):
automatic and manual. Whether the failure of a particular activity generates an
automatic undo of the entire BPI or whether the e*Insight engine waits for user
intervention, is set on the General tab of the Activity Properties dialog box for that
activity. The default setting is automatic undo.

When an activity is set to automatic undo and the activity “fails,” then e*Insight marks
the activity as “Failed” in the GUI and publishes an “undo” Event (eX_Activity_Undo)
for the last completed activity in the BPI. In this context, fails means that the e*Insight
engine receives a “Done” Event where the status node is set to “FAILURE” rather than
“SUCCESS”. If the last completed activity is undone successfully, then an “undo”
Event is generated for the next activity upstream, and so on, until all the previously
completed activities in that BPI have been undone.

If an activity fails and the Manual Restart check box is marked on the General tab of
the Activity Properties dialog box for that activity, then e*Insight marks the activity as
“Failed” in the GUI and then waits for the user to initiate the next course of action; skip,
restart, or undo. If the user selects undo, then the BPI is undone as described in the
paragraph above.

Manual Undo

Use the following procedure to test the functionality of manual undo in the e*Insight
scenario.

1 Perform steps 1 through 4 outlined in “In-Stock Processing” on page 162.

2 Verify that Manual Restart has been marked for the activities in the business
process.

If Manual Restart has not been marked and the check box itself is grayed out, you
must delete the BPIs for the business process, or save the business process as a new
version, before you can mark it. Refer to the e*Insight Business Process Manager User’s
Guide for information on how to do this.

3 Navigate to the location (c:\eGate\client\data\ProcessOrder\ManualUndo.~in)
and create an input data file with an item number of 11111 and change the
extension to “.fin”.

Note: The change of the extension to “.~in” indicates that the data file has been picked up
by the START_BP e*Way.

4 Switch to the e*Insight GUI and, while in monitor mode, select the most recent
business process instance. Observe the path that the data has taken, as shown in
Figure 100 on the next page.
e*Insight Business Process Manager Implementation Guide 165 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.6
e*Insight Implementation (eISchema) Run and Test the e*Insight scenario
Figure 100 Manual Undo—Failed BPI Diagram

The Check_Inv activity should be green, indicating that it completed successfully,
but the Out_of_Inv activity should appear red, indicating that it has failed.

5 Right-click the Out_of_Inv activity from the tree view, then select Properties from
the popup menu.

The Activity Properties - Monitor Mode: (Out_of_Inv) is displayed.

6 Select the Business Process Attributes tab.

7 Click Undo Business Process, and then click OK to close the Activity Properties
dialog box.

8 Highlight the enabled business process version in the tree view.

The Check_Inv activity should now appear dark green indicating that the activity
has been successfully undone.
e*Insight Business Process Manager Implementation Guide 166 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.6
e*Insight Implementation (eISchema) Run and Test the e*Insight scenario
Figure 101 Manual Undo Completed BPI Diagram

10.6.3 Demonstrating Business Process Restart Functionality
An important feature of e*Insight is its ability to allow the operator to fix and restart a
business process instance. If the data in one of the business process attributes used by
an activity causes the business process to fail, the value can be corrected by the operator
and the BPI restarted from the point of failure.

Repairing a String Attribute

Attributes can be of various types; Boolean, number, string, and XML. The following
example shows the procedure to repair an attribute of type string. For information on
repairing an attribute with type XML, see the e*Insight Business Process Manager User’s
Guide.

1 Perform steps 1 through 4 outlined in “In-Stock Processing” on page 162.

2 Verify that Manual Restart has been marked for the activities in the business
process.

3 Navigate to the location
(c:\eGate\client\data\ProcessOrder\AttributeRepair.~in) and create an input
data file with an item number of 99999, and change the extension to “.fin”.

Note: The change of the extension to “.~in” indicates that the data file has been picked up
by the START_BP e*Way.

4 Switch to the e*Insight GUI and, while in monitor mode, select the most recent
business process instance from the List tab. Select the Diagram tab to observe the
path that the data has taken.
e*Insight Business Process Manager Implementation Guide 167 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.6
e*Insight Implementation (eISchema) Run and Test the e*Insight scenario
Figure 102 Attribute Repair—Failed BPI Diagram

The Check_Inv activity should be red, indicating that it failed, and the other
activities should appear yellow, indicating that they are waiting.

5 Double-click the Check_Inv activity, then click the Business Process Attributes tab.

Figure 103 Attribute Repair—Business Process Attributes tab

6 Highlight the Item_Number attribute line, and then click Edit.

The Edit Business Process Attribute dialog box is displayed, as shown in Figure
104.
e*Insight Business Process Manager Implementation Guide 168 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.6
e*Insight Implementation (eISchema) Run and Test the e*Insight scenario
Figure 104 Attribute Repair—Edit BP Attribute

7 In the Edit Business Process Attribute dialog box, change the value of the attribute
in the Current Value: box from 99999 to 44444, and then click OK.

The value 99999 was supplied to the e*Insight engine by the input file and it is this
value that causes the Check_Inv Collaboration to return “FAILURE” to the
e*Insight engine.

8 Click OK to close the Edit Business Process Attribute dialog box.

9 Click Restart Activity, and then click OK.

10 Highlight the enabled ProcessOrder business process version in the tree view.

The completed BPI diagram is displayed, as shown in Figure 105 on the next page.

Figure 105 Attribute Repair Completed BPI Diagram

The Check_Inv, Out_of_Inv, and Send_Status activities now appear green
indicating that the BPI has been restarted and has now completed successfully.

11 Verify that a text file (ProcessOrder_output#.dat) to be sent as e-mail is created
indicating that item number 44444 is unavailable.
e*Insight Business Process Manager Implementation Guide 169 SeeBeyond Proprietary and Confidential

Chapter 11

e*Insight Authorization Activity
Implementation (eISchema)

This chapter discusses the steps involved to enhance the previous case study to include
the Authorization Activity.

You can use the Authorization Activity to stop the Business Process and wait for
authorization. The decision to authorize or not authorize is entered via the e*Insight
GUI.

This case study is a continuation of the previous example. See “e*Insight
Implementation (eISchema)” on page 133 for the initial configuration instructions.

11.1 Overview
The major steps in the implementation are:

1 Create and configure the Decision gate and Authorization Activity in the e*Insight
GUI.

2 Use the e*Insight GUI to configure the e*Gate schema that supports e*Insight.

3 Add and configure the user-defined e*Gate components.

4 Run and test the scenario.

The chapter begins with a description of the scenario and then shows how to use these
steps to set it up.

11.1.1 Case Study: Order Processing
The Order Process only automatically processes orders where less than 100 items are
ordered. If 100 or more items are ordered then the order should be manually
authorized.

Figure 106, shows the additional components involved in the business process
implementation. Below the diagram is a description of how the data flows between
these components for an item that is shipped successfully.

For the original diagram and description, see “Case Study: Order Processing” on
page 134.
e*Insight Business Process Manager Implementation Guide 170 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.1
e*Insight Authorization Activity Implementation (eISchema) Overview
Figure 106 e*Insight Data Flow Diagram

Figure 106 data flow description

3 When the Check_Inv activity is finished, the eX_Check_Inv BOB publishes a
“Done” Event using the eX_to_eBPM Event Type to the eX_eBPM IQ. The
e*Insight engine retrieves the “Done” Event from the IQ, updates the BPI to reflect
whether the items ordered are in stock, and then moves forward to the next activity
in the business process based on the result of a decision gate. If the items are in
stock, the next activity is another decision gate; otherwise the next activity is
Out_of_Inv.

Let’s assume the items are in stock. The BPI moves to the next activity based on the
result of the second decision gate. If the quantity is less than 100, the next activity is
Ship_Ord; otherwise the next activity is eX_Authorize_Quantity.

Let’s assume the quantity is greater than or equal to 100. The e*Insight engine
publishes a “Do” Event (eX_Authorize_Quantity_Do) corresponding to the
Authorize_Quantity authorization activity in the business process. The
eX_Authorize_Quantity e*Way retrieves this Event from the eX_eBPM IQ and
uses the information it contains to retrieve the BPI ID and alert the relevant person
that this instance requires authorization.

When the eX_Authorize_Quantity activity has either been authorized or rejected,
the e*Insight engine moves forward to the next activity in the business process. This
is Not_Authorized if the quantity was not authorized; otherwise the next activity is
Ship_Order.

e*Insight
GUI

eX_Check_Inv

BOB
eX_NotAuthorized

e*Insight
Database

eX_eBPM
IQ

eX_eBPM
Engine

eX_from_eBPM

eX_to_eBPM
eX_to_eBPM

4

External
System

eX_Authorize_
Quantity e*Way

eX_Authorize_
Quantity

eX_to_eBPM

eX_NotAuthorzed_Do

3

eX_Authorze_Quantity_Do

4

4

e*Insight Business Process Manager Implementation Guide 171 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.1
e*Insight Authorization Activity Implementation (eISchema) Overview
4 Let’s assume the quantity is not authorized. The e*Insight engine publishes a “Do”
Event (eX_Not_Authorized_Do) corresponding to the Not_Authorized activity in
the business process. The eX_Not_Authorized BOB retrieves this Event from the
eX_eBPM IQ and updates the status. When the Not_Authorized activity is
finished, the eX_Not_Authorized BOB publishes a “Done” Event using the
eX_to_eBPM Event Type to the eX_eBPM IQ. The e*Insight engine retrieves the
“Done” Event from the IQ, updates the BPI to reflect the status, and then moves
forward to the Send_Status activity.

Let’s assume that either the quantity is authorized, or the item was in stock, but the
quantity was less than 100. The e*Insight engine processes the e*Insight script
corresponding to the Ship_Ord activity in the business process, and then moves
forward to the Send_Status activity.

Important Considerations

The Authorization Activity has two fixed Local Attributes—assignedTo (the user to
whom the Authorization process is assigned) and performedBy (a security measure to
ensure the correct user is performing the Authorization). It is important to note the
following:

! The user name of the assignedTo attribute must exactly match the name of the user
logged into the e*Insight GUI or the name of the user group to which the name of
the logged in user belongs

! The assignedTo attribute must have a value to complete the Authorization process.

! Any user assigned the role of Instance Manager can authorize, reject, or undo an
Authorization Activity within a business process instance.
e*Insight Business Process Manager Implementation Guide 172 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.2
e*Insight Authorization Activity Implementation (eISchema) Step 1: Create the ProcessOrder BP in e*Insight
11.2 Step 1: Create the ProcessOrder BP in e*Insight
The following is a summary of the procedure for creating a BP in the e*Insight GUI.

1 Add the Authorization Activity.

2 Edit the assignedTo Local Attribute to contain the correct user name.

Note: The Authorization Activity has two fixed Local Attributes—assignedTo (the user to
whom the Authorization process is assigned) and performedBy (automatically
assigned at run time as the user logged in to the e*Insight GUI). These two values
must match in order for the user to Authorize, Reject, or Undo the business process
instance.

3 Add the additional Decision gate.

4 Make the connections between the activities and gates.

5 Add the logic to the Decision gate.

For more information on creating a business process and using the e*Insight GUI, see
the e*Insight Business Process Manager User’s Guide.

Use the diagram shown in Figure 107 and the following tables to create the BP in
e*Insight.

Figure 107 ProcessOrder Business Process Model
e*Insight Business Process Manager Implementation Guide 173 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.3
e*Insight Authorization Activity Implementation (eISchema) Step 2: Configure the Integration Schema
11.3 Step 2: Configure the Integration Schema
After creating the additional components, you must configure the e*Gate Registry
schema that supports the e*Insight system.

e*Insight allows you to specify the type of component (e*Way or BOB) associated with
a particular activity and where it runs.

In this example, you use an additional BOB for the NotAuthorized Activity, and an
additional e*Way for the Authorize_Quantity Authorization Activity. The
Send_Status activity must be associated with an e*Way because it interfaces with an
external component.

Integration Schema Activity Components Summary

Use the information in Table 35 to configure the e*Gate schema that supports this
example.

For information on how to use the e*Insight GUI to configure the e*Gate Registry see
the e*Insight Business Process Manger User’s Guide.

11.4 Step 3: Configure User-defined e*Gate Components
This example requires the configuration of an additional BOB and e*Way.

Configure the Activity BOB CRS in the Enterprise Manager GUI

Not_Authorized CRS

The Not_Authorized translation simulates the activity of sending out an item that is in
stock. It sets the value of the Order_Status attribute to a short message indicating that
the order has not been authorized, and returns “SUCCESS” to the e*Insight engine.

Figure 108, on the following page, shows the Not_Authorized.tsc CRS used in this
example. The source and destination ETDs are eX_Standard_Event.ssc.

Table 35 Integration Schema Activity Components

Name Type
Participating

Host
Active/
Passive

Manual
Restart

TimeOut

eX_Authorize_Quantity e*Way localhost Active Yes Not used

eX_NotAuthorized BOB localhost Active Yes Not used
e*Insight Business Process Manager Implementation Guide 174 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.4
e*Insight Authorization Activity Implementation (eISchema) Step 3: Configure User-defined e*Gate Components
Figure 108 Not_Authorized.tsc CRS

Configure the Activity BOB Collaborations in the Enterprise Manager
GUI

Once you have created the CRS for the eX_NotAuthorized BOB, you must associate it
with the corresponding Collaboration Rule in the e*Gate GUI. You must:

1 Highlight the BOB’s Collaboration.

2 Open the Collaboration Properties dialog box for the Collaboration.

3 Edit the Collaboration Rules.

4 Change the Service to Monk.

5 Find the “Not_Authorized.tsc” file and associate it with the Collaboration Rule.

6 Click OK to continue.

11.4.1 Configure the Authorize_Quantity e*Way
The last component that must be configured in the ProcessOrder example is the
Authorize_Quantity e*Way.

This e*Way must create a file containing the text of e-mail message that can be sent to
advise that an order requires authorization that can be sent via e-mail (simulated; no
actual mail is sent)

This e*Way simulates sending an e-mail order status message simply by writing a short
status message to a text file giving the Business Process Instance ID. An Event is not
returned to the e*Insight engine as it is expecting authorization via the e*Insight GUI in
this example.

Follow these steps to configure the Send_Status e*Way:

1 Create the Authorize_Quantity.tsc CRS.

2 Find the executable and create the e*Way configuration file.

3 Configure the Collaboration in the GUI.

Step 2: Create the Authorize_Quantity.tsc CRS

The Authorize_Quantity translation copies a fixed text message and the Business
Process Instance ID into the outgoing message. No message is sent back to the e*Insight
engine.

The Authorize_Quantity.tsc CRS is shown in Figure 109. The source ETD is
eX_Standard_Event.ssc and the destination ETD is GenericOutEvent.ssc
e*Insight Business Process Manager Implementation Guide 175 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.4
e*Insight Authorization Activity Implementation (eISchema) Step 3: Configure User-defined e*Gate Components
Figure 109 Authorize_Quantity.tsc CRS

Step 3: Configure the e*Way

First find the executable, then create the configuration file.

The Authorize_Quantity e*Way is a simple file e*Way (stcewfile.exe) that writes a text
file (output%d.dat) to the directory c:\eGate\client\data\Authorize. The file created
contains the Business Process Instance ID of the order that requires authorization. Use
the following table to set the e*Way parameters in the configuration file:

.

Step 4: Configure the Collaboration

The eX_Authorize_Quantity e*Way in this example does not receive data back from an
external system. Consequently, it requires only a single Collaboration. Use the
following procedure to edit the two default Collaborations created by the e*Insight GUI
during the configuration of the integration schema.

In the Enterprise Manager:

1 Highlight the eX_Authorize_Quantity e*Way.

2 Delete the two Collaborations eX_to_Authorize_Quantity and
eX_from_Authorize_Quantity.

3 Add a Collaboration named eX_Authorize_Quantity.

4 Highlight the Collaboration Rules folder.

5 Delete the two Collaboration Rules eX_to_Authorize_Quantity and
eX_from_Authorize_Quantity.

6 Add a Collaboration Rule named eX_Authorize_Quantity.

7 Edit the Collaboration Rule.

8 In the Collaboration Rules Properties dialog box, select the Monk service.

Table 36 Send_Status e*Way Parameters

Screen Parameter Setting

General Settings AllowIncoming No

AllowOutgoing Yes

PerformanceTesting No (Default)

Outbound (send) settings OutputDirectory c:\eGate\client\data\Authorize

OutputFileName output%d.dat

(All others) (Default)

Poller (inbound) settings (All) (Default)

Performance Testing (All) (Default)
e*Insight Business Process Manager Implementation Guide 176 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.5
e*Insight Authorization Activity Implementation (eISchema) Step 5: Run and Test the e*Insight scenario
9 Find the CRS Authorize_Quantity.tsc and associate it with the Collaboration Rule.

10 On the Subscriptions tab, move the eX_Authorize_Quantity_Do and
eX_Authorize_Quantity_Undo Event Types to the Selected Input Event Types
box.

11 On the Publications tab, move the eX_External_Evt to the Selected Output Event
Types box.

12 Click OK to close the Collaboration Rules Properties dialog box.

13 Highlight the eX_Authorize_Quantity e*Way and edit the eX_Authorize_Quantity
Collaboration you associated with it in step 3.

14 In the Collaboration Properties dialog box, select the eX_Authorize_Quantity
Collaboration Rule.

15 Under Subscriptions add the eX_Authorize_Quantity_Do and
eX_Authorize_Quantity_Undo Event Types from the eX_from_eBPM source.

16 Under Publications add the Event Type eX_External_Evt with destination
<EXTERNAL>.

11.5 Step 5: Run and Test the e*Insight scenario
Once the schema has been set up in e*Gate you can run the scenario.

11.5.1 Testing the Standard Business Logic
The following procedure tests the additional logic provided by the Authorization
Activity. The test is made by sending data that requires authorization and selecting
both responses of authorized and not authorized.

Authorized Processing

Use the following procedure to test the functionality of the example.

1 Start the e*Insight GUI and select the ProcessOrder business process. Switch to
monitor mode.

Note: Make sure that the business process has been enabled in the e*Insight GUI before
attempting to run it.

2 Make a final check of the e*Gate schema, using the tables to confirm all of the GUI
associations. Make sure that all of the e*Insight components, including the
user-defined components, are set to start automatically.

3 At the command line, type the following to start the schema. You must type the
command on a single line.

stccb.exe -rh localhost -rs ProcessOrder -ln localhost_cb
-un username -up password
e*Insight Business Process Manager Implementation Guide 177 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.5
e*Insight Authorization Activity Implementation (eISchema) Step 5: Run and Test the e*Insight scenario
Substitute the appropriate username and password for your installation.

4 Start the e*Gate Monitor, and check the status of all the components. Any
components displayed in red are not running. Any e*Insight components that are
not running should be investigated before feeding data into the system.

5 Navigate to the location for the input data file, InStock.~in,
(c:\eGate\client\data\ProcessOrder) and change the extension to “.fin”.

Note: The change of the extension to “.~in” indicates that the data file has been picked up
by the START_BP e*Way.

If everything is working correctly, an output file (output#.dat) as shown in Figure
110 appears in the directory indicating that an order requires authorization.

Figure 110 In Stock Output File

6 Switch to the e*Insight GUI and, while in monitor mode, select the most recent BPI
from the List tab, and then select the Diagram tab to observe the path that the data
has taken.

The Authorize_Quantity Authorization Activity should appear gray. This shows
that the activity is pending.

Figure 111 Authorize_Quantity Pending BPI Diagram
e*Insight Business Process Manager Implementation Guide 178 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.5
e*Insight Authorization Activity Implementation (eISchema) Step 5: Run and Test the e*Insight scenario
7 Right-click the Authorize_Quantity activity from the tree view, then select
Properties from the popup menu.

The Authorization Activity Properties - Monitor Mode: (Authorize_Quantity) is
displayed.

8 Select the Business Process Attributes tab.

9 Click Authorize, and then click OK to close the Activity Properties dialog box.

10 The Business Process then completes using the route shown in Figure 112.

Figure 112 Authorization_Quantity - Authorized

Not Authorized Processing

Repeat the above procedure, but this time do not authorize the order.
e*Insight Business Process Manager Implementation Guide 179 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.5
e*Insight Authorization Activity Implementation (eISchema) Step 5: Run and Test the e*Insight scenario
Figure 113 Authorization_Quantity - Not Authorized
e*Insight Business Process Manager Implementation Guide 180 SeeBeyond Proprietary and Confidential

Chapter 12

e*Insight User Activity Implementation

This chapter discusses the implementation of the User Activity considering aspects of
deployment and security.

This chapter also considers how the previous case studies could be enhanced to include
the User Activity.

12.1 Overview of the User Activity
User Activities allow external applications to access attributes in the business process
using an API. The API provides a set of functions that allow the external application to
access attributes for the User Activity from the e*Insight database. The e*Insight engine
uses the returned value of the attributes to continue the business process.

For more information on the API, see “e*Insight User Activity API Methods” on
page 393.

The role of the APIs is to allow the external application to communicate with the
e*Insight engine for the purpose of setting security and verifying users, retrieving
business model related information, getting and returning attribute types and values,
tracking instances, and many other functions related to the business process instances.
However, design and development of the external application is left up to the
developer.

12.1.1 User Activity Security
Three security checks are performed when connecting to the database using the User
Activity methods. First, use the initialize method to connect to the database. You
should use a user that has no authority to access any of the Business Processes.

Once that connection has been made, use the authenticate method to pass the user
name and password for a user that has privileges for the Business Process. This user
should have the necessary authority for the Business Processes that they are accessing.
For subsequent messages sent during the session, use the setUser method to re-
establish the user security, or resetUser to establish security for a new user.

To create a user for the initial connection

1 Use e*Xchange Administrator to create a user (for example, Connection_User), and
assign a password.
e*Insight Business Process Manager Implementation Guide 181 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.2
e*Insight User Activity Implementation Overview of the Payroll BP
2 Do not give this user any authorization rights within e*Insight.

Note: For additional security, create the connection user directly in the database rather
than using e*Xchange Administrator.

12.1.2 Deployment of the User Activity
The application used with the User Activity may connect directly to the database, or it
may be a Web-based application that connects to the database via a Web/App Server.
The security described in “User Activity Security” on page 181 is still valid when
connecting via a Web/App Server, however there are additional considerations. Figure
114 shows how e*Insight, the Web/App Server, and the external application may be
deployed.

Figure 114 User Activity Deployment

The firewall is configured to use port 80 to communicate with the Web/App Server.
The Web/App Server is configured to communicate with the database using a direct
database connection.

An example User Activity scenario using a Web-based application is provided with
e*Insight. For information on installing this, see the e*Insight Business Process Manager
Installation Guide.

12.2 Overview of the Payroll BP
In this example, we assume we have a custom Web application developed for the
purpose of allowing various users to set the bonus values. The current example uses an
Automated Activity to do a similar function from within the e*Insight GUI. By

Web/App
Server

e*Insight
Database

External
Application

Firewall

Port 80
Port 80

Port 1521

e*Insight GUI

e*Gate
Registry Host
e*Insight Business Process Manager Implementation Guide 182 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.3
e*Insight User Activity Implementation Overview
replacing the Automated Activity with a User Activity, the business process can now
integrate with an external application such as a Web-based application. This
application would allows users to login, view lists of the business process instances,
make appropriate changes, and have those changes re-enter the e*Insight business
model for continued processing.

While this example specifically uses a custom Web application, design and
development of the external application is left up to the developer. The external
application uses the Java API’s provided with the e*Insight engine (a complete
description and list of these APIs is available in “e*Insight User Activity API
Methods” on page 393). The role of the APIs is to allow the external application to
communicate with the e*Insight engine for the purpose of setting security and verifying
users, retrieving business model related information, getting and returning attribute
types and values, tracking instances, and many other functions related to the business
process instances.

12.3 Overview
The major steps in the implementation are:

1 Add the User Activity to the Business Process.

2 Use the e*Insight GUI to configure the e*Gate schema that supports e*Insight.

3 Add and configure the user-defined e*Gate components.

4 Run and test the scenario.

12.3.1 Case Study: Payroll Processing with User Activity
The Payroll example uses an external application to allow various users to determine
the bonus for an employee. The external application retrieves new instances, and for
those employees that are eligible for a bonus, the manager enters a bonus value. The
user of the external application could also perform other changes to the order based on
capabilities developed into the external application.

12.4 Step 1: Update the Payroll BP in e*Insight
The following is a summary of the procedures for adding a User Activity in the
e*Insight GUI.

1 Delete the Calculate_Bonus Activity.

2 Add a User Activity called API_Calculate_Bonus.

3 Make the connections between the Decision gates, Merge gate, and User Activity, as
shown in Figure 115.
e*Insight Business Process Manager Implementation Guide 183 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.5
e*Insight User Activity Implementation Step 2: Configure the Integration Schema
Note: assignedTo and performedBy are default Local Attributes used to ensure the user
performing the Authorize/Reject/Undo activity is sanctioned to do so.

For more information on creating a business process and using the e*Insight GUI, see
the e*Insight Business Process Manager User’s Guide.

Figure 115 Payroll Business Process Model

12.5 Step 2: Configure the Integration Schema
After creating the additional component, you must configure the e*Gate Registry
schema that supports the e*Insight system.

You can send notifications through e*Gate to the external application but in this
example, the same result is achieved using only the e*Insight engine. To use only the
e*Insight engine, double click the User Activity, and make sure the “Send Notifications
through e*Gate check box is not marked.

Note: To send notifications through e*Gate, make sure the check box is marked, and
configure your e*Way or BOB as in all other cases.
e*Insight Business Process Manager Implementation Guide 184 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.6
e*Insight User Activity Implementation Step 3: Run and Test the e*Insight scenario
12.6 Step 3: Run and Test the e*Insight scenario
Once the schema has been set up in e*Gate you can run the scenario.

12.6.1 Testing the User Activity
Use the following procedure to test the functionality of the User Activity.

1 Start the e*Insight GUI and select the ProcessOrder business process. Switch to
monitor mode.

Note: Make sure that the business process has been enabled in the e*Insight GUI before
attempting to run it.

2 Make a final check of the e*Gate schema, using the tables to confirm all of the GUI
associations. Make sure that all of the e*Insight components, including the
user-defined components, are set to start automatically.

3 At the command line, type the following to start the schema. You must type the
command on a single line.

stccb.exe -rh localhost -rs Payroll -ln localhost_cb
-un username -up password

Substitute the appropriate username and password for your installation.

4 Start the e*Gate Monitor, and check the status of all the components. Any
components displayed in red are not running. Any e*Insight components that are
not running should be investigated before feeding data into the system.

5 Navigate to the location for the input data file, Employee.~in,
(c:\eGate\client\data\Payroll) and change the extension to “.fin”.

Note: The change of the extension to “.~in” indicates that the data file has been picked up
by the START_BP e*Way.

6 Switch to the e*Insight GUI and, while in monitor mode, select the most recent BPI
from the List tab, and then select the Diagram tab to observe the path that the data
has taken.

The API_Authorize_Quantity should be in a pending state. This remains in a
pending state until the e*Insight engine receives a message from an external
application relating to this Business Process Instance.

Figure 116 shows how the BPI Diagram appears.
e*Insight Business Process Manager Implementation Guide 185 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.6
e*Insight User Activity Implementation Step 3: Run and Test the e*Insight scenario
Figure 116 API_Calculate_Bonus Pending BPI Diagram

7 Start the external application. Return to the e*Insight GUI. The Business Process
then completes using the route shown in Figure 117 on page 187.

The external application refers to any application developed by you to be inserted
into the business process. A common example could be a method by which users
can view lists of business instances assigned to them. These instances may require a
simple review/authorize/reject process or, a more complex task using a custom-
developed GUI interface to adjust or introduce attribute values. After the
application completes its job, the updated business process instance information re-
enters the User Activity and the business process continues.

The external application uses an API to communicate with the e*Insight engine.
Listed below are some examples of API functions to help illustrate what kind of
information is available to the external application (a complete list of API functions
can be found in Chapter 16).

" setUser—This function passes the name of the user to the e*Insight engine if the
external application uses login/password.

" checkUserPrivileges—This function establishes the security rights for the
session using security levels as set within e*Insight.

" getGlobalAttributeValue and getLocalAttributeValue—This function receives
Attribute values for a business process instance for use within the external
application.

" getBusinessModelInstanceIds—The external application uses this function to
retrieve identification information for business model instances and then uses
this information to appropriately track instances when sending information
back into the business process.
e*Insight Business Process Manager Implementation Guide 186 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.7
e*Insight User Activity Implementation Overview of the ProcessOrder BP
A example of a business model including a User Activity and an external
application are shipped with e*Insight 4.5.2. This example can be installed by you
and set up and used to demonstrate a business process using a Web-based
application to allow users to log in, and view lists of instances that need to be
reviewed and adjusted. The external application then sends the information back to
e*Insight, thus allowing the business process to continue.

Note: For information on installing the sample business model see the e*Insight Business
Process Manager Installation Guide.

Figure 117 User Activity - Bonus set

12.7 Overview of the ProcessOrder BP
In this example, we assume we have a custom Web application developed for the
purpose of allowing various users to set the quantities. The current example uses an
Authorization Activity to do a similar function from within the e*Insight GUI. By
replacing the Authorization Activity with a User Activity, the business process can now
integrate with an external application such as a Web-based application. This
application would allows users to login, view lists of the business process instances,
make appropriate changes, and have those changes re-enter the e*Insight business
model for continued processing.

While this example specifically uses a custom Web application, design and
development of the external application is left up to the developer. The external
application uses the Java API’s provided with the e*Insight engine (a complete
description and list of these APIs is available in “e*Insight User Activity API
e*Insight Business Process Manager Implementation Guide 187 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.8
e*Insight User Activity Implementation Overview
Methods” on page 393). The role of the APIs is to allow the external application to
communicate with the e*Insight engine for the purpose of setting security and verifying
users, retrieving business model related information, getting and returning attribute
types and values, tracking instances, and many other functions related to the business
process instances.

12.8 Overview
The major steps in the implementation are:

1 Add the User Activity to the Business Process.

2 Use the e*Insight GUI to configure the e*Gate schema that supports e*Insight.

3 Add and configure the user-defined e*Gate components.

4 Run and test the scenario.

12.8.1 Case Study: Order Processing with User Activity
The Order Process example uses an external application to allow various users to
authorize the quantity. The external application retrieves new orders, and for those
orders that are in stock, the users evaluate all orders with quantity >100. Based on
certain criteria, users either authorize the order for shipment or reject the order. The
user of the external application could also perform other changes to the order based on
capabilities developed into the external application.

Note: The external application can also retrieve orders and deliver them to the correct user
if the developer of the application uses specific API functions.

12.9 Step 1: Update the ProcessOrder BP in e*Insight
The following is a summary of the procedures for adding a User Activity in the
e*Insight GUI.

1 Delete the Authorize_Quantity Activity.

2 Add a User Activity called API_Authorize_Order.

3 Add a Decision gate to receive the output from the User Activity.

4 Make the connections between the Decision gates, Merge gate, and Not Authorized
Activity, as shown in Figure 115 on page 184.

Note: assignedTo and performedBy are default Local Attributes used to ensure the user
performing the Authorize/Reject/Undo activity is sanctioned to do so.
e*Insight Business Process Manager Implementation Guide 188 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.10
e*Insight User Activity Implementation Step 2: Configure the Integration Schema
For more information on creating a business process and using the e*Insight GUI, see
the e*Insight Business Process Manager User’s Guide.

Figure 118 ProcessOrder Business Process Model

12.10 Step 2: Configure the Integration Schema
After creating the additional component, you must configure the e*Gate Registry
schema that supports the e*Insight system.

You can send notifications through e*Gate to the external application but in this
example, the same result is achieved using only the e*Insight engine. To use only the
e*Insight engine, double click the User Activity, and make sure the “Send Notifications
through e*Gate check box is not marked.

Note: To send notifications through e*Gate, make sure the check box is marked, and
configure your e*Way or BOB as required.
e*Insight Business Process Manager Implementation Guide 189 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.11
e*Insight User Activity Implementation Step 3: Run and Test the e*Insight scenario
12.11 Step 3: Run and Test the e*Insight scenario
Once the schema has been set up in e*Gate you can run the scenario.

12.11.1Testing the User Activity
Use the following procedure to test the functionality of the User Activity.

1 Start the e*Insight GUI and select the ProcessOrder business process. Switch to
monitor mode.

Note: Make sure that the business process has been enabled in the e*Insight GUI before
attempting to run it.

2 Make a final check of the e*Gate schema, using the tables to confirm all of the GUI
associations. Make sure that all of the e*Insight components, including the
user-defined components, are set to start automatically.

3 At the command line, type the following to start the schema. You must type the
command on a single line.

stccb.exe -rh localhost -rs ProcessOrder -ln localhost_cb
-un username -up password

Substitute the appropriate username and password for your installation.

4 Start the e*Gate Monitor, and check the status of all the components. Any
components displayed in red are not running. Any e*Insight components that are
not running should be investigated before feeding data into the system.

5 Navigate to the location for the input data file, InStock.~in,
(c:\eGate\client\data\ProcessOrder) and change the extension to “.fin”.

The example instance should have the inventory quantity set to >100. This ensures that
the business process instance follows the correct path to test the User Activity.

Note: The change of the extension to “.~in” indicates that the data file has been picked up
by the START_BP e*Way.

6 Switch to the e*Insight GUI and, while in monitor mode, select the most recent BPI
from the List tab, and then select the Diagram tab to observe the path that the data
has taken.

The API_Authorize_Quantity should be in a pending state. This remains in a
pending state until the e*Insight engine receives a message from an external
application relating to this Business Process Instance.

Figure 119 shows how the BPI Diagram appears.
e*Insight Business Process Manager Implementation Guide 190 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.11
e*Insight User Activity Implementation Step 3: Run and Test the e*Insight scenario
Figure 119 API_Authorize_Quantity Pending BPI Diagram

7 Start the external application. Return to the e*Insight GUI. The Business Process
then completes using the route shown in Figure 120 on page 192.

The external application refers to any application developed by you to be inserted
into the business process. A common example could be a method by which users
can view lists of business instances assigned to them. These instances may require a
simple review/authorize/reject process or, a more complex task using a custom-
developed GUI interface to adjust or introduce attribute values. After the
application completes its job, the updated business process instance information re-
enters the User Activity and the business process continues.

The external application uses an API to communicate with the e*Insight engine.
Listed below are some examples of API functions to help illustrate what kind of
information is available to the external application (a complete list of API functions
can be found in Chapter 16).

" setUser—This function passes the name of the user to the e*Insight engine if the
external application uses login/password.

" checkUserPrivileges—This function establishes the security rights for the
session using security levels as set within e*Insight.

" getGlobalAttributeValue and getLocalAttributeValue—This function receives
attribute values for a business process instance for use within the external
application.

" getBusinessModelInstanceIds—The external application uses this function to
retrieve identification information for business model instances and then uses
e*Insight Business Process Manager Implementation Guide 191 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.11
e*Insight User Activity Implementation Step 3: Run and Test the e*Insight scenario
this information to appropriately track instances when sending information
back into the business process.

A example of a business model including a User Activity and an external
application are shipped with e*Insight 4.5.2. This example can be installed by you
and set up and used to demonstrate a business process using a Web-based
application to allow users to log in, and view lists of instances that need to be
reviewed and adjusted. The external application then sends the information back to
e*Insight, thus allowing the business process to continue.

Note: For information on installing the sample business model see the e*Insight Business
Process Manager Installation Guide.

Figure 120 User Activity - Item in stock
e*Insight Business Process Manager Implementation Guide 192 SeeBeyond Proprietary and Confidential

Chapter 13

e*Insight Sub-Process Implementation
(eIJSchema)

This chapter discusses the steps involved to enhance the previous case study to include
the Sub-Process.

The implementation starts with a local Sub-Process and then enhanced to demonstrate
the use of the Remote Sub-Process and Dynamic Sub-Process.

This case study is a continuation of the previous example. See “e*Insight
Implementation (eIJSchema)” on page 96 for the initial configuration instructions.

13.1 Overview of the Sub-Process Example
The major steps in the implementation are:

1 Create and configure a new business process to perform the activities required for
checking inventory.

2 Update the Payroll business process to replace the Calculate_Bonus activity with a
Sub-Process.

3 Use the e*Insight GUI to configure the e*Gate schema that supports e*Insight.

4 Add and configure the user-defined e*Gate components.

5 Run and test the scenario.

The chapter begins with a description of the scenario and then shows how to use these
steps to set it up.
e*Insight Business Process Manager Implementation Guide 193 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Insight Sub-Process Implementation (eIJSchema) Create the CalculateBonus BP in e*Insight
13.2 Create the CalculateBonus BP in e*Insight
The following is a summary of the procedure for creating a BP in the e*Insight GUI.

1 Create a business process named CalculateBonus.

2 Add the activities.

3 Make the connections between the activities.

4 Enable the business process version.

For more information on creating a business process and using the e*Insight GUI, see
the e*Insight Business Process Manager User’s Guide.

Use the diagram shown in Figure 121 and the following tables to create the BP in
e*Insight.

Figure 121 CalculateBonus Business Process Model
e*Insight Business Process Manager Implementation Guide 194 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.3
e*Insight Sub-Process Implementation (eIJSchema) Configure the Integration Schema for CalculateBonus
13.3 Configure the Integration Schema for CalculateBonus
The Calculate_Bonus activity uses the eX_Calculate_Bonus BOB that was created in
“Creating the eX_Calculate_Bonus BOB” on page 106.

To configure the Calculate_Bonus Activity

1 In the e*Insight GUI, open the Calculate_Bonus activity properties.

2 On the General tab, select the BOB e*Gate module.

3 Check the module name is eX_Calculate_Bonus, and modify if necessary.

4 Check that the correct Participating Host is selected.

5 Close the Calculate_Bonus Activity properties.

Table 37 BP Global Attributes

Attribute Type Data Direction Default Value

Salary Number Input

Grade String Input

Bonus Number Output 0

Table 38 Activity Attributes

Activity Attribute(s) Input/Output

Calculate_Bonus Salary Input

Grade Input

Bonus Output
e*Insight Business Process Manager Implementation Guide 195 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.4
e*Insight Sub-Process Implementation (eIJSchema) Modify the Payroll BP in e*Insight
13.4 Modify the Payroll BP in e*Insight
The following is a summary of the procedure for modifying the Payroll BP in the
e*Insight GUI.

1 Delete the Calculate_Bonus activity.

2 Add the Calculate_Bonus Sub-Process.

3 Make the connections between the sub-process, decision gate and activity as shown
in Figure 122.

Figure 122 Payroll BP with Sub-Process

4 Configure the Calculate_Bonus sub-process properties.

A Assign the CalculateBonus business process as the sub-process.

B Map the sub-process attributes to business process attributes as defined in Table
39.

Note: In this example, the sub-process attribute names and the business process attributes
names are the same. This is not a requirement for the sub-process, however, it is a
requirement for the dynamic sub-process.

Table 39 Sub-Process attribute mapping

Sub-Process Attributes Business Process Attributes Direction

Salary Salary Input

Grade Grade Input

Bonus Bonus Output
e*Insight Business Process Manager Implementation Guide 196 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Insight Sub-Process Implementation (eIJSchema) Configure the Integration Schema for Payroll
13.5 Configure the Integration Schema for Payroll
The schema created in “e*Insight Implementation (eIJSchema)” on page 96 does not
need to be modified for this example.

13.6 Run and Test the e*Insight scenario
Once the schema has been set up in e*Gate you can run the scenario.

Use the instructions in “Run and Test the e*Insight scenario” on page 117 to test your
sub-process.

Note: You can access the CalculateBonus business process directly from the Payroll
business process. Right-click on the Sub-Process in the parent business process as
shown in Figure 123.

Figure 123 Accessing the CalculateBonus business process
e*Insight Business Process Manager Implementation Guide 197 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.7
e*Insight Sub-Process Implementation (eIJSchema) Overview of the Dynamic Sub-Process Example
13.7 Overview of the Dynamic Sub-Process Example
The Dynamic Sub-Process Example is a continuation of the previous example.

In this example the Business Process that is called as the Sub-Process depends on where
the department that the employee works for. If the department is accounts, then the
Calculate_Bonus_accounts Business Process is called, and if the department is
marketing, then the Calculate_Bonus_marketing Business Process is called.

The major steps in the implementation are:

1 Create and configure two new business processes (Calculate_Bonus_accounts for
accounts and Calculate_Bonus_marketing for marketing) to perform the activities
required for calculating the bonus.

2 Update the Payroll business process to replace the Calculate_Bonus sub-process
with a dynamic sub-process.

3 Use the e*Insight GUI to configure the e*Gate schema that supports e*Insight.

4 Add and configure the user-defined e*Gate components.

5 Run and test the scenario.

The chapter begins with a description of the scenario and then shows how to use these
steps to set it up.
e*Insight Business Process Manager Implementation Guide 198 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.8
e*Insight Sub-Process Implementation (eIJSchema) Create the accounts BP in e*Insight
13.8 Create the accounts BP in e*Insight
The following is a summary of the procedure for creating a Business Process for
California orders.

1 Export business process named CalculateBonus.

Note: The exported file is used in “Create the marketing BP in e*Insight” on
page 201.

2 Rename the CalculateBonus business process accounts.

3 Select the enabled version, and from the File menu, select Save as New Version.

4 Rename the activity Calculate_Bonus_accounts.

5 Enable the business process version.

13.9 Configure the Integration Schema for accounts
To configure the Calculate_Bonus_accounts activity

1 In the e*Insight GUI, open the Calculate_Bonus_accounts activity properties.

2 On the General tab, select the BOB e*Gate module.

3 Click New.

The Define Collaboration dialog appears.

4 Click OK.

5 Create eX_Calculate_Bonus_marketing.xpr.

The actual CRS is created later in “To create eX_Calculate_Bonus_accounts.xpr”
on page 200.

6 Save the CRS.

7 Close the editor.

8 Click Configure e*Gate.

You may be required to log into e*Gate.

9 Click OK, to close the information dialog.

10 Close the Calculate_Bonus_accounts Activity properties.

For more information on creating a business process and using the e*Insight GUI, see
the e*Insight Business Process Manager User’s Guide.
e*Insight Business Process Manager Implementation Guide 199 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.9
e*Insight Sub-Process Implementation (eIJSchema) Configure the Integration Schema for accounts
Creating the CRS in e*Gate

Since the CRS for eX_Calculate_Bonus_accounts BOB is very similar to the
eX_Calculate_Bonus CRS previously created you can copy this instead of creating a
new script from scratch.

To create eX_Calculate_Bonus_accounts.xpr

1 Open the Collaboration Editor.

2 Open eX_Calculate_Bonus.xpr.

3 From the File menu, select Save As, and enter the name
eX_Calculate_Bonus_accounts.xpr.

Important: You should replace the existing file in
Collaboration_Rules\Calculate_Bonus_accounts.

4 Compile and then close the editor.
e*Insight Business Process Manager Implementation Guide 200 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.10
e*Insight Sub-Process Implementation (eIJSchema) Create the marketing BP in e*Insight
13.10 Create the marketing BP in e*Insight
The following is a summary of the procedure for creating a Business Process for
marketing.

1 Import the business process that was exported in “Create the accounts BP in
e*Insight” on page 199.

2 Rename the imported CalculateBonus business process marketing.

3 Rename the activity Calculate_Bonus_marketing.

4 Enable the business process version.

13.11 Configure the Integration Schema for marketing
To configure the Calculate_Bonus_marketing activity using Monk

1 In the e*Insight GUI, open the Calculate_Bonus_marketing activity properties.

2 On the General tab, select the BOB e*Gate module.

3 Click New.

The Define Collaboration dialog appears.

4 Click OK.

5 Create eX_Calculate_Bonus_marketing.xpr.

The actual CRS script is created later in “To create
eX_Calculate_Bonus_marketing.xpr” on page 202.

6 Save the CRS.

7 Close the editor.

Note: You do not need to compile the script yet.

8 In the Calculate_Bonus_marketing activity properties, check the module name is
eX_Calculate_Bonus_marketing, and modify if necessary.

9 Click Configure e*Gate.

You may be required to log into e*Gate.

10 Click OK, to close the information dialog.

11 Close the Calculate_Bonus_marketing Activity properties.

Creating the CRS for eX_Calculate_Bonus_marketing in e*Gate

Since the CRS for eX_Calculate_Bonus_marketing BOB is very similar to the
eX_Calculate_Bonus CRS previously created you can copy this instead of creating a
new script from scratch.
e*Insight Business Process Manager Implementation Guide 201 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.11
e*Insight Sub-Process Implementation (eIJSchema) Configure the Integration Schema for marketing
To create eX_Calculate_Bonus_marketing.xpr

1 Open the Collaboration Editor.

2 Open eX_Calculate_Bonus_marketing.xpr.

3 From the File menu, select Save As, and enter the name
eX_Calculate_Bonus_marketing.xpr.

Important: You should replace the existing file in
Collaboration_Rules\Calculate_Bonus_marketing.

4 Update the script to define grade 1 as 5000.

5 Compile and then close the editor.
e*Insight Business Process Manager Implementation Guide 202 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.12
e*Insight Sub-Process Implementation (eIJSchema) Modify the Payroll BP in e*Insight
13.12 Modify the Payroll BP in e*Insight
The following is a summary of the procedure for modifying the Payroll BP in the
e*Insight GUI.

1 Save the enabled Payroll business process as a new version.

2 Delete the Calculate_Bonus activity.

3 Add the Calculate_Bonus Dynamic Sub-Process.

4 Make the connections between the dynamic sub-process, decision gate and activity
as shown in Figure 124.

Figure 124 Payroll BP with Dynamic Sub-Process

5 Configure the Calculate_Bonus dynamic sub-process properties.

A Ensure that the dynamic sub-process uses the Incoming Global Attribute
Value.

B Map the global attributes to the sub-process as defined in Table 39.

C From the Local Attributes tab, edit the subBPName, and select Department
from the Value drop down list.

Table 40 Global attribute mapping

Global Attributes Direction

Department Input

Salary Input

Grade Input

Bonus Output
e*Insight Business Process Manager Implementation Guide 203 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.13
e*Insight Sub-Process Implementation (eIJSchema) Configure the Integration Schema for Payroll
13.13 Configure the Integration Schema for Payroll
The schema created in “e*Insight Implementation (eIJSchema)” on page 96 does not
need to be modified for this example.

13.14 Run and Test the e*Insight scenario
Once the schema has been set up in e*Gate you can run the scenario.

Use the instructions in “Run and Test the e*Insight scenario” on page 117 to test your
sub-process.
e*Insight Business Process Manager Implementation Guide 204 SeeBeyond Proprietary and Confidential

Chapter 14

e*Insight Sub-Process Implementation
(eISchema)

This chapter discusses the steps involved to enhance the previous case study to include
the Sub-Process.

The implementation starts with a local Sub-Process and then enhanced to demonstrate
the use of the Remote Sub-Process and Dynamic Sub-Process.

This case study is a continuation of the previous example. See “e*Insight
Implementation (eISchema)” on page 133 for the initial configuration instructions.

14.1 Overview of the Sub-Process Example
The major steps in the implementation are:

1 Create and configure a new business process to perform the activities required for
checking inventory.

2 Update the ProcessOrder business process to replace the Check_Inv activity with a
Sub-Process.

3 Use the e*Insight GUI to configure the e*Gate schema that supports e*Insight.

4 Add and configure the user-defined e*Gate components.

5 Run and test the scenario.

The chapter begins with a description of the scenario and then shows how to use these
steps to set it up.
e*Insight Business Process Manager Implementation Guide 205 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.2
e*Insight Sub-Process Implementation (eISchema) Create the CheckInventory BP in e*Insight
14.2 Create the CheckInventory BP in e*Insight
The following is a summary of the procedure for creating a BP in the e*Insight GUI.

1 Create a business process named CheckInventory.

2 Add the activities.

3 Make the connections between the activities.

4 Enable the business process version.

For more information on creating a business process and using the e*Insight GUI, see
the e*Insight Business Process Manager User’s Guide.

Use the diagram shown in Figure 125 and the following tables to create the BP in the
e*Insight.

Figure 125 CheckInventory Business Process Model
e*Insight Business Process Manager Implementation Guide 206 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.3
e*Insight Sub-Process Implementation (eISchema) Configure the Integration Schema for CheckInventory
14.3 Configure the Integration Schema for CheckInventory
The Check_Inv activity uses the eX_Check_Inv BOB that was created in “Creating the
eX_Check_Inv BOB” on page 141.

To configure the Check_Inv Activity

1 In the e*Insight GUI, open the Check_Inv activity properties.

2 On the General tab, select the BOB e*Gate module.

3 Check the module name is eX_Check_Inv, and modify if necessary.

4 Check that the correct Participating Host is selected.

5 Close the Check_Inv Activity properties.

Table 41 BP Global Attributes

Attribute Type Data Direction

Item_Number String Input

Order_Quantity Number Input

Order_Status String Output

In_Stock Boolean Output

Table 42 Activity Attributes

Activity Attribute(s) Input/Output

Check_Inv Item_Number Input

Order_Quantity Input

In_Stock Output

Order_Status Output
e*Insight Business Process Manager Implementation Guide 207 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
e*Insight Sub-Process Implementation (eISchema) Modify the ProcessOrder BP in e*Insight
14.4 Modify the ProcessOrder BP in e*Insight
The following is a summary of the procedure for modifying the ProcessOrder BP in the
e*Insight GUI.

1 Delete the Check_Inv activity.

2 Add the Check_Inventory Sub-Process.

3 Make the connections between the sub-process, decision gate and activity as shown
in Figure 126.

Figure 126 ProcessOrder BP with Sub-Process

4 Configure the Check_Inventory sub-process properties.

A Assign the CheckInventory business process as the sub-process.

B Map the sub-process attributes to business process attributes as defined in Table
43.

Table 43 Sub-Process attribute mapping

Sub-Process Attributes Business Process Attributes Direction

Item_Number Item_Number Input

Order_Quantity Order_Quantity Input

In_Stock In_Stock Output

Order_Status Order_Status Output
e*Insight Business Process Manager Implementation Guide 208 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.5
e*Insight Sub-Process Implementation (eISchema) Configure the Integration Schema for ProcessOrder
Note: In this example, the sub-process attribute names and the business process attributes
names are the same. This is not a requirement for the sub-process, however, it is a
requirement for the dynamic sub-process.

For more information on creating a business process and using the e*Insight GUI, see
the e*Insight Business Process Manager User’s Guide.

14.5 Configure the Integration Schema for ProcessOrder
The schema created in “e*Insight Implementation (eISchema)” on page 133 does not
need to be modified for this example.

14.6 Run and Test the e*Insight scenario
Once the schema has been set up in e*Gate you can run the scenario.

Use the instructions in “Run and Test the e*Insight scenario” on page 162 to test your
sub-process.
e*Insight Business Process Manager Implementation Guide 209 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.7
e*Insight Sub-Process Implementation (eISchema) Overview of the Dynamic Sub-Process Example
14.7 Overview of the Dynamic Sub-Process Example
The Dynamic Sub-Process Example is a continuation of the previous example.

In this example the Business Process that is called as the Sub-Process depends on where
the order is being delivered. If the order is for California, then the Check_Inv_CA
Business Process is called, and if the order is for Oregon, then the Check_Inv_OR
Business Process is called.

The major steps in the implementation are:

1 Create and configure two new business processes (Check_Inv_CA for California
and Check_Inv_OR for Oregon) to perform the activities required for checking
inventory.

2 Update the ProcessOrder business process to replace the Check_Inventory sub-
process with a dynamic sub-process.

3 Use the e*Insight GUI to configure the e*Gate schema that supports e*Insight.

4 Add and configure the user-defined e*Gate components.

5 Run and test the scenario.

The chapter begins with a description of the scenario and then shows how to use these
steps to set it up.
e*Insight Business Process Manager Implementation Guide 210 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.8
e*Insight Sub-Process Implementation (eISchema) Create the CA BP in e*Insight
14.8 Create the CA BP in e*Insight
The following is a summary of the procedure for creating a Business Process for
California orders.

1 Export business process named CheckInventory.

Note: The exported file is used in “Create the OR BP in e*Insight” on page 214.

2 Rename the CheckInventory business process CA.

3 Select the enabled version, and from the File menu, select Save as New Version.

4 Rename the activity Check_Inv_CA.

5 Enable the business process version.

14.9 Configure the Integration Schema for CA
To configure the Check_Inv_CA activity using Monk

1 In the e*Insight GUI, open the Check_Inv_CA activity properties.

2 On the General tab, select the BOB e*Gate module.

3 Click New.

The Define Collaboration dialog appears.

4 Click OK.

5 Create eX_Check_Inv_CA.tsc. The source and destination Event Type Definitions
are eX_Standard_Event.

The actual CRS script is created later in “To create eX_Check_Inv_CA.tsc using
Monk” on page 213.

6 Save the CRS.

7 Close the editor.

8 In the Check_Inv_CA activity properties, check the module name is
eX_Check_Inv_CA, and modify if necessary.

9 Click Configure e*Gate Schema.

You may be required to log into e*Gate.

10 Click OK, to close the information dialog.

11 Close the Check_Inv_CA Activity properties.
e*Insight Business Process Manager Implementation Guide 211 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.9
e*Insight Sub-Process Implementation (eISchema) Configure the Integration Schema for CA
To configure the Check_Inv_CA activity using Java

1 In the e*Insight GUI, open the Check_Inv_CA activity properties.

2 On the General tab, select the BOB e*Gate module.

3 Click New.

The Define Collaboration dialog appears.

4 Select the Define Mapping tab.

5 Configure the instances as shown in Figure 127.

Figure 127 Define Mapping for eX_Check_Inv

6 Click OK.

7 Create eX_Check_Inv_CA.xsc.

The actual CRS is created later in “To create eX_Check_Inv_CA.xsc using Java” on
page 213.

8 Save the CRS.

9 Close the editor.

10 In the Check_Inv_CA activity properties, check the module name is
eX_Check_Inv_CA, and modify if necessary.

11 Click Configure e*Gate.

You may be required to log into e*Gate.

12 Click OK, to close the information dialog.

13 Close the Check_Inv_CA Activity properties.

For more information on creating a business process and using the e*Insight GUI, see
the e*Insight Business Process Manager User’s Guide.
e*Insight Business Process Manager Implementation Guide 212 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.9
e*Insight Sub-Process Implementation (eISchema) Configure the Integration Schema for CA
Creating the CRS in e*Gate

Since the CRS for eX_Check_Inv_CA BOB is very similar to the eX_Check_Inv CRS
previously created you can copy this instead of creating a new script from scratch.

To create eX_Check_Inv_CA.tsc using Monk

1 Open the Collaboration Editor.

2 Open eX_Check_Inv.tsc.

3 From the File menu, select Save As, and enter the name eX_Check_Inv_CA.tsc.
You should replace the existing file.

4 Close the editor.

To create eX_Check_Inv_CA.xsc using Java

1 Open the Collaboration Editor.

2 Open eX_Check_Inv.xsc.

3 From the File menu, select Save As, and enter the name eX_Check_Inv_CA.xsc.
You should replace the existing file.

4 Compile and then close the editor.
e*Insight Business Process Manager Implementation Guide 213 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.10
e*Insight Sub-Process Implementation (eISchema) Create the OR BP in e*Insight
14.10 Create the OR BP in e*Insight
The following is a summary of the procedure for creating a Business Process for
Oregon.

1 Import the business process that was exported in “Create the CA BP in e*Insight”
on page 211.

2 Rename the imported CheckInventory business process OR.

3 Rename the activity Check_Inv_OR.

4 Enable the business process version.

14.11 Configure the Integration Schema for OR
To configure the Check_Inv_OR activity using Monk

1 In the e*Insight GUI, open the Check_Inv_OR activity properties.

2 On the General tab, select the BOB e*Gate module.

3 Click New.

The Define Collaboration dialog appears.

4 Click OK.

5 Create eX_Check_Inv_OR.tsc. The source and destination Event Type Definitions
are eX_Standard_Event.

The actual CRS script is created later in “To create eX_Check_Inv_OR.tsc using
Monk” on page 216.

6 Save the CRS.

7 Close the editor.

8 In the Check_Inv_OR activity properties, check the module name is
eX_Check_Inv_OR, and modify if necessary.

9 Click Configure e*Gate.

You may be required to log into e*Gate.

10 Click OK, to close the information dialog.

11 Close the Check_Inv_OR Activity properties.
e*Insight Business Process Manager Implementation Guide 214 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.11
e*Insight Sub-Process Implementation (eISchema) Configure the Integration Schema for OR
To configure the Check_Inv_OR activity using Java

1 In the e*Insight GUI, open the Check_Inv_OR activity properties.

2 On the General tab, select the BOB e*Gate module.

3 Click New.

The Define Collaboration dialog appears.

4 Select the Define Mapping tab.

5 Configure the instances as shown in Figure 128.

Figure 128 Define Mapping for eX_Check_Inv

6 Click OK.

7 Create eX_Check_Inv_OR.xsc.

The actual CRS is created later in “To create eX_Check_Inv_OR.xsc using Java” on
page 216.

8 Save the CRS.

9 Close the editor.

10 In the Check_Inv_OR activity properties, check the module name is
eX_Check_Inv_OR, and modify if necessary.

11 Click Configure e*Gate.

You may be required to log into e*Gate.

12 Click OK, to close the information dialog.

13 Close the Check_Inv_OR Activity properties.

For more information on creating a business process and using the e*Insight GUI, see
the e*Insight Business Process Manager User’s Guide.
e*Insight Business Process Manager Implementation Guide 215 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.11
e*Insight Sub-Process Implementation (eISchema) Configure the Integration Schema for OR
Creating the CRS in e*Gate

Since the CRS for eX_Check_Inv_OR BOB is very similar to the eX_Check_Inv CRS
previously created you can copy this instead of creating a new script from scratch.

To create eX_Check_Inv_OR.tsc using Monk

1 Open the Collaboration Editor.

2 Open eX_Check_Inv.tsc.

3 Update the script to define 11111 as in stock.

4 From the File menu, select Save As, and enter the name eX_Check_Inv_OR.tsc.
You should replace the existing file.

5 Close the editor.

To create eX_Check_Inv_OR.xsc using Java

1 Open the Collaboration Editor.

2 Open eX_Check_Inv_OR.xsc.

3 From the File menu, select Save As, and enter the name eX_Check_Inv_OR.xsc.
You should replace the existing file.

4 Update the script to define 11111 as out of stock.

5 Compile and then close the editor.
e*Insight Business Process Manager Implementation Guide 216 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.12
e*Insight Sub-Process Implementation (eISchema) Modify the ProcessOrder BP in e*Insight
14.12 Modify the ProcessOrder BP in e*Insight
The following is a summary of the procedure for modifying the ProcessOrder BP in the
e*Insight GUI.

1 Save the enable ProcessOrder business process as a new version.

2 Delete the Check_Inv activity.

3 Add the Check_Inventory Dynamic Sub-Process.

4 Make the connections between the dynamic sub-process, decision gate and activity
as shown in Figure 129.

Figure 129 ProcessOrder BP with Dynamic Sub-Process

5 Configure the Check_Inventory dynamic sub-process properties.

A Ensure that the dynamic sub-process uses the Incoming Global Attribute
Value.

B Map the global attributes to the sub-process as defined in Table 43.

Table 44 Global attribute mapping

Global Attributes Direction

Address_State Input

Item_Number Input

Order_Quantity Input

In_Stock Output

Order_Status Output
e*Insight Business Process Manager Implementation Guide 217 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.13
e*Insight Sub-Process Implementation (eISchema) Configure the Integration Schema for ProcessOrder
C From the Local Attributes tab, edit subBPName, and select Address_State from
the Value drop down list.

For more information on creating a business process and using the e*Insight GUI, see
the e*Insight Business Process Manager User’s Guide.

14.13 Configure the Integration Schema for ProcessOrder
The schema created in “e*Insight Implementation (eISchema)” on page 133 does not
need to be modified for this example.

14.14 Run and Test the e*Insight scenario
Once the schema has been set up in e*Gate you can run the scenario.

Use the instructions in “Run and Test the e*Insight scenario” on page 162 to test your
sub-process.
e*Insight Business Process Manager Implementation Guide 218 SeeBeyond Proprietary and Confidential

Chapter 15

e*Insight Remote Sub-Process
Implementation

This chapter discusses the steps involved to configure the Remote Sub-Process. It
covers the installation and configuration of Tomcat on single and multiple machines,
and also works through a detailed implementation.

This case study is a continuation of a previous example. See either “e*Insight
Implementation (eIJSchema)” on page 96 or “e*Insight Implementation (eISchema)”
on page 133 for the initial configuration instructions.

15.1 Overview
The major topics covered in this chapter are:

! Installation and configuration of Tomcat

! Implementation steps

15.2 Overview of the Remote Sub-Process
The Remote Sub-Process allows you to access a Business Process defined on a different
machine. Business Process messages are sent between the two e*Insight engines via a
Web/Application Server. The Web/Application Server routes the Business Process
message to the correct location.

Note: e*Insight uses Apache/Tomcat Web/Application Server.

The Remote Sub-Process can be used across machines with the LAN, WAN, or the
Internet. The deployment of machines that are separated by a firewall is considered in
“Installation of Tomcat and e*Insight on Different Hosts” on page 222.
e*Insight Business Process Manager Implementation Guide 219 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.3
e*Insight Remote Sub-Process Implementation Installation and Configuration of Tomcat
Figure 130 Remote Sub-Process Overview

The Remote Sub-Process defined in this scenario uses Apache/Tomcat as the Web/
App Server. Tomcat is provided with e*Insight, and this needs to be installed and
configured before using the Remote Sub-Process with SOAP.

15.3 Installation and Configuration of Tomcat
This section describes how to install and configure Tomcat. This procedure is divided
into three sections:

Installing Tomcat

The e*Insight installation provides Tomcat and additional files required for the Soap
implementation.

To install Tomcat

1 Install the SOAP add-on via the Installation Wizard. For more information, see the
e*Insight Business Process Manager Installation Guide.

Table 45 Steps for Installation and Configuration of Tomcat

Step Procedure

1 Install Tomcat “Installing Tomcat” on page 220

2 Configure Tomcat “Configuring Tomcat” on page 221

3 Deploy the SOAP service “Deploying the SOAP Service” on
page 221

e*Insight
Engine

e*Insight
Engine

Web/App
 Server

B

Remote
Sub-Process

Remote
Business Process

System A System B

Web/App
 Server

A

e*Insight Business Process Manager Implementation Guide 220 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.3
e*Insight Remote Sub-Process Implementation Installation and Configuration of Tomcat
2 Unzip jakarta-tomcat-3.2.1.zip

Note: When you install from the zip file (in the <eInsight>\SOAP folder), extract the files
to the root folder on your C: drive. The zip file creates a folder named jakarta-tomcat-
3.2.1 with accompanying files and subfolders.

Configuring Tomcat

This section describes how to configure Tomcat once it has been installed. The
procedure updates and copies files that are required for an e*Insight/Soap
implementation.

To configure Tomcat

1 Open <eInsight>\Soap\eInsight_tomcat.bat. Locate the EINSIGHT variable and
ensure that it is set to <eInsight>\Soap.

2 Copy the following files from <eInsight>\Soap.

" copy eInsight_startup.bat to <tomcat>\bin

" copy eInsight_tomcat.bat to <tomcat>\bin

" copy soap.war to <tomcat>\webapps

3 Edit EInsightBridge.properties to connect to correct database.

Note: You should make sure that when you set parameter values, you do not add any
trailing spaces, as these are interpreted as part of the parameter.

4 Set system environment classpath c:\eInsight\soap.

A Go to Control Panel

B Select System

C Select Advanced tab

D Select Environment Variables

E Edit CLASSPATH on system variables

F Add "c:\eInsight\soap" to Variable Value to the front

5 From a command prompt, change directory to <tomcat> folder and run

bin\eInsight_startup.bat

Deploying the SOAP Service

The Tomcat Server has to be made aware of the SOAP service and the methods that it
can use. This is achieved by deploying the SOAP service using the procedure described
below.

To Deploy the SOAP Service

1 Open <eInsight>\Soap\registerSoapService.cmd.

2 Edit the following variables for your system:
e*Insight Business Process Manager Implementation Guide 221 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.4
e*Insight Remote Sub-Process Implementation Installation of Tomcat and e*Insight on Different Hosts
SOAP_SERVICE
INTEGRATOR
TOMCAT_HOME
JAVA_HOME

3 Open eInsightDeploymentDescripter.xml in any text editor. Modify the following
parameter:

id="<URN>"

where <URN> should be in the format urn:<user defined name>.

4 In a command prompt, change directory to <einsight>\soap.

5 Run RegisterSoapService.cmd.

Note: Before you run registerSoapService.cmd, make sure your Apache Tomcat service is
running.

6 Start Internet Explorer and go to url: http://<webhost>:8080/soap/admin/
index.html

7 Click List to check that the URN has been successfully deployed.

15.4 Installation of Tomcat and e*Insight on Different Hosts
There are a number of considerations when deploying Tomcat and e*Insight on
different hosts. Figure 131 shows a possible scenario, where Tomcat and e*Insight are
installed on separate machines and are separated from the external application by a
firewall.

Figure 131 e*Insight and Tomcat Deployment

Tomcate*Insight
Database Internet

Firewall

Port 80
Port 80

Port 1521

e*Insight GUI

e*Gate
Registry Host
e*Insight Business Process Manager Implementation Guide 222 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.5
e*Insight Remote Sub-Process Implementation Overview of the Remote Sub-Process Example (eIJSchema)
The firewall is configured to use port 80 to communicate with Tomcat. Tomcat is
configured to communicate with the database using a direct database connection.

Installing Tomcat on a different machine to e*Insight

The installation of the SOAP add-on installs all the files required for the installation and
configuration of Tomcat. To ensure that the correct files reside on the Tomcat machine
either:

A From the Tomcat machine, run the installation wizard and install the SOAP add-
on, or

B Install the SOAP add-on on another machine and then copy the
<eInsight>\SOAP directory to the C drive on the Tomcat machine.

To configure Tomcat, see “To configure Tomcat” on page 221.

15.5 Overview of the Remote Sub-Process Example
(eIJSchema)

This case study is a continuation of the Payroll example. The procedure that checked
the inventory is going to be moved to a remote system and SOAP messages is used to
send the data to and from the remote process.

The Payroll example must be completed before the remote sub-process example. See
“e*Insight Implementation (eIJSchema)” on page 96 for the initial configuration
instructions.

For this example, SystemA is the machine where the Payroll example was created.
SystemB is the machine where the business process that calculates the bonus runs.

The major steps in the implementation are:

1 Configure Tomcat on both machines.

2 Create the CalculateBonus business process.

3 Create the e*Gate schema that supports the CalculateBonus business process.

4 Update the Payroll business process.

5 Run and test the scenario.

15.6 Install and configure Tomcat
Tomcat needs to be installed on both SystemA and SystemB. In a real scenario, it may
be necessary to run Tomcat on a different machine to e*Insight, but in this example we
assume that Tomcat and e*Insight run on the same machine.
e*Insight Business Process Manager Implementation Guide 223 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.7
e*Insight Remote Sub-Process Implementation Create the CalculateBonus BP in e*Insight
Follow the instructions in “Installation and Configuration of Tomcat” on page 220 for
both machines. Define the URN’s as follows:

15.7 Create the CalculateBonus BP in e*Insight
The following is a summary of the procedure for creating a BP in the e*Insight GUI.

1 Create a business process named CalculateBonus.

2 Add the activities.

3 Make the connections between the activities.

4 Create and assign the global attributes.

Use the diagram shown in Figure 134 and the following tables to create the BP in
e*Insight.

Figure 132 CalculateBonus Business Process Model

SystemA (Original system) urn:Payroll

SystemB (Added for the Remote Sub-Process example) urn:CalculateBonus

Table 46 BP Global Attributes

Attribute Type Data Direction Default Value

Salary Number Input

Grade String Input

Bonus Number Output 0
e*Insight Business Process Manager Implementation Guide 224 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.8
e*Insight Remote Sub-Process Implementation Configure the Integration Schema for CalculateBonus
5 In the business process properties, select Send Business Process Done Event.

6 Enable the business process version.

To configure the Partner Information

1 From the Options menu, select Define Information for Partners.

2 Enter UUID.

This is a unique name that identifies your e*Insight database to other Trading
Partners. For example, SystemB.

3 Enter the URN.

This corresponds to the URN setup in the SOAP client. For example,
urn:CalculateBonus.

4 Enter the URL.

This is the location of the SOAP client. By default this is http://localhost:8080/soap/
servlet/rpcrouter.

5 Click OK.

15.8 Configure the Integration Schema for CalculateBonus
All the activities in this example are carried out using e*Gate components.

15.8.1 Create the CalculateBonus Schema
Use the following procedure to create a copy of the eIJSchema:

1 From the e*Insight GUI File menu, select New e*Gate Schema.

2 Enter or select a Registry Host on which to create the schema.

3 Enter a Username and Password that is valid on the Registry Host.

4 From the Based on list, select eIJSchema (Java).

5 In the Name box, enter CalculateBonus.

6 Click OK.

Table 47 Activity Attributes

Activity Attribute(s) Input/Output

Calculate_Bonus Salary Input

Grade Input

Bonus Output
e*Insight Business Process Manager Implementation Guide 225 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.8
e*Insight Remote Sub-Process Implementation Configure the Integration Schema for CalculateBonus
15.8.2 Configure the CalculateBonus Schema
Since the module for the Calculate_Bonus activity has been created in a previous case
study, you only need to import the module into the CalculateBonus schema and
configure the e*Insight engine and JMS server. These three procedures are described
below.

Create the Calculate_Bonus activity BOB

1 In the SystemA e*Gate Enterprise Manager GUI, open the Payroll schema.

2 Select the eX_Calculate_Bonus BOB.

3 From the File menu select Export Module Definitions to File.

The Select Archive File dialog appears.

4 Enter eX_Calculate_Bonus, and then click OK.

The file eX_Calculate_Bonus.zip is created.

5 Log into the SystemB e*Gate Enterprise Manager GUI and open the
CalculateBonus schema.

6 From the File menu select Import Module Definitions from File.

7 Locate the file created in step 4.

8 Click OK.

Edit the eIcp_eInsightEngine Connection Configuration File

Most of the parameter settings in the eIcp_eInsightEngine connection’s configuration
file should not be changed. “Configuring the e*Insight Engine Connection” on
page 34 discusses the parameters that may need to be changed depending on the
implementation. Use the e*Way Editor and the information in “Configuring the
e*Insight Engine Connection” on page 34 to make the required changes for the
CalculateBonus example.

Configure the JMS Connection

The JMS connection for e*Insight must be configured for your system. The minimal
configuration required for this implementation is described in this section. For more
information on JMS IQ Services, see SeeBeyond JMS Intelligent Queue User’s Guide.

To configure the JMS connection

1 From the e*Gate Enterprise Manager GUI components view, select the e*Way
Connections folder.

2 Select the eX_cpeInsightJMS connection, and click the Properties tool.

3 In the e*Way Connection Configuration File section, click Edit.

4 From the Goto Section list, select Message Service.

5 Enter a Server Name and Host Name where your JMS server resides.
e*Insight Business Process Manager Implementation Guide 226 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.9
e*Insight Remote Sub-Process Implementation Modify the Payroll BP in e*Insight
15.9 Modify the Payroll BP in e*Insight
The following is a summary of the procedure for modifying the Payroll BP in the
e*Insight GUI.

1 Delete the Calculate_Bonus activity.

2 Add the Calculate_Bonus Remote Sub-Process.

3 Make the connections between the remote sub-process, decision gate and activity as
shown in Figure 135.

Figure 133 Payroll BP with Remote Sub-Process

4 Assign EligibleForBonus as the default link in Bonus_Eligibility_Decision.

5 Configure the Partner Information

A From the Options menu, select Define Information for Partners.

B Enter UUID.
This is a unique name that identifies your e*Insight database to other Trading
Partners. For example, SystemA.

C Enter the URN.
This corresponds to the URN setup in the SOAP client. For example,
urn:Payroll.

D Enter the URL.
This is the location of the SOAP client. By default this is http://localhost:8080/
soap/servlet/rpcrouter.
e*Insight Business Process Manager Implementation Guide 227 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.10
e*Insight Remote Sub-Process Implementation Configure the Integration Schema for Payroll
E Click OK.

6 Configure the Calculate_Bonus remote sub-process properties.

A Enter the relevant information for the remote e*Insight database including URL,
URN, user name and password. Use the following values:

Note: To use an Anonymous login you must create a user called Anonymous on the
remote system. Although e*Xchange Administrator requires that a password is
defined to create the user, this does not need to be supplied when connecting via
SOAP.

Click Connect, and select the CalculateBonus business process from the Remote Sub-
Process drop-down list

B Map Attributes as shown in Table 51.

7 Enable the business process version.

For more information on creating a business process and using the e*Insight GUI, see
the e*Insight Business Process Manager User’s Guide.

15.10 Configure the Integration Schema for Payroll
The schema created in “e*Insight Implementation (eISchema)” on page 133 does not
need to be modified for this example.

URL http://<SystemB>:8080/soap/servlet/rpcrouter

URN urn:CalculateBonus

User Name Anonymous

Password

Table 48 Sub-Process attribute mapping

Sub-Process Attributes Business Process Attributes Direction

Salary Salary Input

Grade Grade Input

Bonus Bonus Output
e*Insight Business Process Manager Implementation Guide 228 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.11
e*Insight Remote Sub-Process Implementation Run and Test the e*Insight scenario
15.11 Run and Test the e*Insight scenario
Once the schema has been set up in e*Gate you can run the scenario.

To test the Remote Sub-Process scenario

1 Start Tomcat on both machines.

2 Start the control broker for Payroll, and check all components are running.

3 Start the control broker for CalculateBonus, and check all components are running.

4 Rename the data file.

To monitor a remote business process

1 Select the remote business process, and then select the down arrow.

2 If prompted, enter a user name and password provided by the partner.

15.12 Overview of the Remote Sub-Process Example
(eISchema)

This case study is a continuation of the Process Order example. The procedure that
checked the inventory is going to be moved to a remote system and SOAP messages are
used to send the data to and from the remote process.

The Process Order example must be completed before the remote sub-process example.
See “e*Insight Implementation (eISchema)” on page 133 for the initial configuration
instructions.

For this example, SystemA is the machine where the Process Order example was
created. SystemB is the machine where the business process that checks the inventory
runs.

The major steps in the implementation are:

1 Configure Tomcat on both machines.

2 Create the CheckInventory business process.

3 Create the e*Gate schema that supports the CheckInventory business process.

4 Update the ProcessOrder business process.

5 Run and test the scenario.
e*Insight Business Process Manager Implementation Guide 229 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.13
e*Insight Remote Sub-Process Implementation Install and configure Tomcat
15.13 Install and configure Tomcat
Tomcat needs to be installed on both SystemA and SystemB. In a real scenario, it may
be necessary to run Tomcat on a different machine to e*Insight, but in this example we
assume that Tomcat and e*Insight run on the same machine.

Follow the instructions in “Installation and Configuration of Tomcat” on page 220 for
both machines. Define the URN’s as follows:

15.14 Create the CheckInventory BP in e*Insight
The following is a summary of the procedure for creating a BP in the e*Insight GUI.

1 Create a business process named CheckInventory.

2 Add the activities.

3 Make the connections between the activities.

4 Create and assign the global attributes.

Use the diagram shown in Figure 134 and the following tables to create the BP in
e*Insight.

Figure 134 CheckInventory Business Process Model

SystemA urn:ProcessOrder

SystemB urn:CheckInventory
e*Insight Business Process Manager Implementation Guide 230 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.15
e*Insight Remote Sub-Process Implementation Configure the Integration Schema for CheckInventory
5 In the business process properties, select Send Business Process Done Event.

6 Enable the business process version.

To configure the Partner Information

1 From the Options menu, select Define Information for Partners.

2 Enter UUID.

This is a unique name that identifies your e*Insight database to other Trading
Partners. For example, SystemB.

3 Enter the URN.

This corresponds to the URN setup in the SOAP client. For example,
urn:CheckInventory.

4 Enter the URL.

This is the location of the SOAP client. By default this is http://localhost:8080/soap/
servlet/rpcrouter.

5 Click OK.

15.15 Configure the Integration Schema for CheckInventory
All the activities in this example are carried out using e*Gate components.

15.15.1Create the CheckInventory Schema
Use the following procedure to create a copy of the eISchema:

1 Open the eISchema in the e*Gate Enterprise Manager GUI.

Table 49 BP Global Attributes

Attribute Type Data Direction

Item_Number String Input

Order_Quantity Number Input

Order_Status String Output

In_Stock Boolean Output

Table 50 Activity Attributes

Activity Attribute(s) Input/Output

Check_Inv Item_Number Input

Order_Quantity Input

In_Stock Output

Order_Status Output
e*Insight Business Process Manager Implementation Guide 231 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.15
e*Insight Remote Sub-Process Implementation Configure the Integration Schema for CheckInventory
A Start the e*Gate Enterprise Manager.

B Log in to eISchema.

2 Export the eISchema to a file <eGate>\client\eISchema.zip.

A Select Export Schema Definitions to File ... from the File pull-down menu.

B In the Select archive File dialog box enter eISchema.zip in the File name text
box, and then click Save.

3 Create a new schema using the eISchema export file as a template.

A Select New Schema from the File pull-down menu.

B Enter CheckInventory in the text box.

C Mark the Create from export check box.

D Click Find and browse for the eISchema.zip file created in step 2 above.

E Click Open.

15.15.2Configure the e*Insight engine
Most of the parameter settings in the eX_eBPM engine’s configuration file should not
be changed. Use the e*Way Editor and the information in “Configuring the e*Insight
Engine” on page 53 to make the required changes for the CheckInventory example.

15.15.3Create the Check_Inv activity BOB
1 In the SystemA e*Gate Enterprise Manager GUI, open the ProcessOrder schema.

2 Select the eX_Check_Inv BOB.

3 From the File menu select Export Module Definitions to File.

The Select Archive File dialog appears.

4 Enter eX_Check_Inv, and then click OK.

The file eX_Check_Inv.zip is created.

5 Log into the SystemB e*Gate Enterprise Manager GUI and open the
CheckInventory schema.

6 From the File menu select Import Module Definitions from File.

7 Locate the file created in step 4.

8 Click OK.
e*Insight Business Process Manager Implementation Guide 232 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.16
e*Insight Remote Sub-Process Implementation Modify the ProcessOrder BP in e*Insight
15.16 Modify the ProcessOrder BP in e*Insight
The following is a summary of the procedure for modifying the ProcessOrder BP in the
e*Insight GUI.

1 Delete the Check_Inv activity.

2 Add the Check_Inventory Remote Sub-Process.

3 Make the connections between the remote sub-process, decision gate and activity as
shown in Figure 135.

Figure 135 ProcessOrder BP with Remote Sub-Process

4 Configure the Partner Information.

A From the Options menu, select Define Information for Partners.

B Enter UUID.
This is a unique name that identifies your e*Insight database to other Trading
Partners. For example, SystemA.

C Enter the URN.
This corresponds to the URN setup in the SOAP client. For example,
urn:ProcessOrder.

D Enter the URL.
This is the location of the SOAP client. By default this is http://localhost:8080/
soap/servlet/rpcrouter.

E Click OK.

5 Configure the Check_Inventory remote sub-process properties.
e*Insight Business Process Manager Implementation Guide 233 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.17
e*Insight Remote Sub-Process Implementation Configure the Integration Schema for ProcessOrder
A Enter the relevant information for the remote e*Insight database including URL,
URN, user name and password. Use the following values:

Note: To use an Anonymous login you must create a user called Anonymous on the
remote system. Although e*Xchange Administrator requires that a password is
defined to create the user, this does not need to be supplied when connecting via
SOAP.

Click Connect, and select the CheckInventory business process from the Remote Sub-
Process drop-down list

B Map Attributes as shown in Table 51.

6 Enable the business process version.

For more information on creating a business process and using the e*Insight GUI, see
the e*Insight Business Process Manager User’s Guide.

15.17 Configure the Integration Schema for ProcessOrder
The schema created in “e*Insight Implementation (eISchema)” on page 133 does not
need to be modified for this example.

15.18 Run and Test the e*Insight scenario
Once the schema has been set up in e*Gate you can run the scenario.

In-Stock Processing

Use the following procedure to test the functionality of the example for an item that is
in stock.

URL http://SystemB:8080/soap/servlet/rpcrouter

URN urn:CheckInventory

User Name Anonymous

Password

Table 51 Sub-Process attribute mapping

Sub-Process Attributes Business Process Attributes Direction

Item_Number Item_Number Input

Order_Quantity Order_Quantity Input

In_Stock In_Stock Output

Order_Status Order_Status Output
e*Insight Business Process Manager Implementation Guide 234 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.18
e*Insight Remote Sub-Process Implementation Run and Test the e*Insight scenario
To test the Remote Sub-Process scenario

1 Start Tomcat on both machines.

2 Start the control broker for ProcessOrder, and check all components are running.

3 Start the control broker for CheckInventory, and check all components are running.

4 Rename the data file.

To monitor a remote business process

1 Select the remote business process, and then select the down arrow.

2 If prompted, enter a user name and password provided by the partner.
e*Insight Business Process Manager Implementation Guide 235 SeeBeyond Proprietary and Confidential

Chapter 16

Active and Passive Modes

This chapter discusses the difference between implementing an actively controlled and
passively controlled activity.

16.1 Overview
The difference between running an activity in active and passive mode is how the
activity is started. In active mode e*Insight sends a message to e*Gate to start an
activity. e*Insight requires a message from e*Gate to determine that the activity has
completed processing. If you choose this option, you can manually repair and restart
failed activities.

In passive mode, e*Insight does not send a message to start the activity, e*Gate must be
configured to do this. e*Insight requires a message from e*Gate to determine that the
activity has completed processing. If you choose this option, you cannot manually
repair or restart failed activities.

This chapter describes a very simple business process that is first created with all
activities using active mode. Then it is updated so one activity uses passive mode.

16.1.1 Case Study
The case study discussed in this chapter illustrates a simplified implementation of
order processing. In this case, e*Insight receives an incoming order as a delimited text
file. Once e*Insight has received the order the customer is billed and then the order is
shipped. See Figure 138 for the Business Process diagram.
e*Insight Business Process Manager Implementation Guide 236 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.1
Active and Passive Modes Overview
16.1.2 Case Study - Active Control Mode
Figure 136 shows the components involved in the business process implementation
when both activities are running in an active mode. Below is a description of how the
data flows between these components for an item that is shipped successfully.

Figure 136 e*Insight Data Flow Diagram

Figure 136 data flow description

1 The user-defined START_BP e*Way picks up the text file containing the order
information from a shared location on the network, uses the order information to
create the event that causes the e*Insight engine to start a business process instance,
and publishes it using the eX_to_eBPM Event Type. The e*Insight engine retrieves
the Event and uses the information it contains to start the BPI.

2 The e*Insight engine publishes a “Do” Event (eX_Bill_Customer_Do) for first
activity in the business process (Bill_Customer). eX_Bill_Customer BOB, the
e*Gate component that corresponds to this activity in the business process,
retrieves this Event and uses the information it contains to check the availability of
the items ordered.

3 When the Bill_Customer activity is finished, the eX_Bill_Customer BOB publishes
a “Done” Event using the eX_to_eBPM Event Type.

4 The e*Insight engine publishes a “Do” Event (eX_Ship_Order_Do) corresponding
to the Ship_Order activity in the business process. The eX_Ship_Order BOB
retrieves this Event and uses the information it contains to ship the order to the
customer.

5 When the Ship_Order activity is finished, the eX_Ship_Order BOB publishes a
“Done” Event indicating that the order has been shipped.

e*Insight
Database

IQ Manager eX_eBPM
Engine

eX_to_eBPM

BOB
eX_Bill_Customer

eX_to_eBPM

eX_Ship_Order_Do
eX_Bill_Customer_Do

BOB
eX_Ship_Order

eX_Ship_Order_Do

eX_Bill_Customer_Do

1

e*Way
START_BP

eX_to_eBPM

1

2
2

3
3

eX_to_eBPM

4

4

5

5

e*Insight Business Process Manager Implementation Guide 237 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.1
Active and Passive Modes Overview
16.1.3 Case Study - Passive Control Mode
We are now going to change the configuration of the Ship_Order activity to use passive
control, that is e*Gate controls the Activity rather than e*Insight. The e*Gate configuration
is modified so the Bill_Customer collaboration publishes eX_Ship_Order_Do in addition to
returning a “Done” message to the e*Insight engine.

Figure 137 e*Insight Data Flow Diagram

Figure 136 data flow description

1 The user-defined START_BP e*Way picks up the text file containing the order
information from a shared location on the network, uses the order information to
create the event that causes the e*Insight engine to start a business process instance,
and publishes it using the eX_to_eBPM Event Type. The e*Insight engine retrieves
the Event from the IQ and uses the information it contains to start the BPI.

2 The e*Insight engine publishes a “Do” Event (eX_Bill_Customer) for first activity
in the business process (eX_Bill_Customer_Do). eX_Bill_Customer BOB, the
e*Gate component that corresponds to this activity in the business process,
retrieves this Event and uses the information it contains to check the availability of
the items ordered.

3 When the Bill_Customer activity is finished, the eX_Bill_Customer BOB publishes
a “Done” Event using the eX_to_eBPM Event Type.

4 The Bill_Customer activity also publishes a “Do” Event (eX_Ship_Order_Do)
corresponding to the Ship_Order activity in the business process. The
eX_Ship_Order BOB retrieves this Event and uses the information it contains to
ship the order to the customer.

5 When the Ship_Order activity is finished, the eX_Ship_Order BOB publishes a
“Done” Event indicating that the order has been shipped.

e*Insight
Database

IQ Manager eX_eBPM
Engine

eX_to_eBPM

BOB
eX_Bill_Customer eX_to_eBPM

eX_Ship_Order_Do

eX_Bill_Customer_Do

BOB
eX_Ship_Order

eX_Ship_Order_Do

eX_Bill_Customer_Do

1

e*Way
START_BP eX_to_eBPM

1

22

3

3

eX_to_eBPM

4

4

5

5

e*Insight Business Process Manager Implementation Guide 238 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.1
Active and Passive Modes Overview
The major steps in the implementation are:

1 Create the business process (BP) in the e*Insight GUI.

2 Use the e*Insight GUI to configure the e*Gate schema that supports e*Insight.

3 Configure the e*Insight engine.

4 Add and configure the user-defined e*Gate components.

5 Run and test the scenario.

This chapter shows how to use these steps to set it up. Since the configuration for steps
2 to 4 is different for eIJSchema and eISchema, there is a separate section for each
schema type.

Follow the steps below to configure the schema using the active mode for all activities:

! Step 1: “Create the Order BP in e*Insight” on page 240

! Step 2, 3, and 4:

" “Configure the Integration Schema (eIJSchema)” on page 241 or

" “Configure the Integration Schema (eISchema)” on page 250

! Step 5: “Run and Test the e*Insight scenario” on page 255

Once the schema is working in active mode, then follow the steps below to modify one
activity to use passive mode using eIJSchema:

A “Modify the Order BP in e*Insight (eIJSchema)” on page 256

B “Modify User-defined e*Gate Components (eIJSchema)” on page 256

C “Run and Test the e*Insight scenario” on page 259

Use the following steps if you are using eISchema:

A “Modify the Order BP in e*Insight (eISchema)” on page 260

B “Modify User-defined e*Gate Components (eISchema)” on page 260

C “Run and Test the e*Insight scenario” on page 261
e*Insight Business Process Manager Implementation Guide 239 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.2
Active and Passive Modes Create the Order BP in e*Insight
16.2 Create the Order BP in e*Insight
The following is a summary of the procedure for creating a BP in the e*Insight GUI.

1 Add the Activities.

2 Make the connections between the Activities.

3 Add all the global attributes.

4 Assign global attributes to Activities.

5 Configure the properties for the activities.

For more information on creating a business process and using the e*Insight GUI, see
the e*Insight Business Process Manager User’s Guide.

Figure 138 Order Process

The case study is implemented using both active and passive control for the
Ship_Order Activity.

The following Attributes should be configured for both the active and passive
examples.

Table 52 BP Global Attributes

Attribute Type Data Direction Default Value

Customer_Name String Input

Item_Number String Input

Order_Quantity String Input

Order_Status String Internal Received

Table 53 Activity Attributes

Activity Attribute(s) Input/Output

Bill_Customer Customer_Name Input

Order_Status Output
e*Insight Business Process Manager Implementation Guide 240 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.3
Active and Passive Modes Configure the Integration Schema (eIJSchema)
16.3 Configure the Integration Schema (eIJSchema)
All the activities in this example are carried out using e*Gate components. You must
first create a Schema (a copy of eIJSchema) with the basic components required for
e*Insight. You then configure these components for your environment and create
additional components for the activities.

To create a copy of eIJSchema

1 From the e*Insight GUI File menu, select New e*Gate Schema.

2 Enter or select a Registry Host on which to create the schema.

3 Enter a Username and Password that is valid on the Registry Host.

4 From the Based on list, select eIJSchema (Java).

5 In the Name box, enter Order.

6 Click OK.

Integration Schema Activity Components Summary

Use the information in Table 57 to configure the e*Gate schema that supports the
example.

For information on how to use the e*Insight GUI to configure the e*Gate Registry see
the e*Insight Business Process Manger User’s Guide.

Ship_Order Cust_Name Input

Item_Number Input

Order_Status Output

Table 54 Integration Schema Activity Components

Name Type
Participating

Host
Active/Passive

Manual
Restart

TimeOut

eX_Bill_Customer BOB localhost Active Yes Not used

eX_Ship_Order BOB localhost Active Yes Not used

Table 53 Activity Attributes

Activity Attribute(s) Input/Output
e*Insight Business Process Manager Implementation Guide 241 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.3
Active and Passive Modes Configure the Integration Schema (eIJSchema)
Creating the eX_Bill_Customer BOB

The Bill_Customer translation implements the logic associated with billing the
customer. In this simple example, this component sets the “Order_Status” attribute
value.

To configure the Bill_Customer activity

1 In the e*Insight GUI, open the Bill_Customer activity properties.

2 On the General tab, e*Gate Module section, select a Module Type of BOB.

3 Click New.

The Define Collaboration dialog appears.

4 Click OK.

5 Create eX_Bill_Customer.xpr.

Figure 139 shows the eX_Bill_Customer CRS used in the example.

Figure 139 eX_Bill_Customer.xpr CRS

6 Compile and save the CRS.

7 Close the editor.

8 In the Bill_Customer Activity properties, click Configure e*Gate Schema.

You may be required to log into e*Gate.

9 Click OK, to close the information dialog.

10 Close the Bill_Customer Activity properties.
e*Insight Business Process Manager Implementation Guide 242 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.3
Active and Passive Modes Configure the Integration Schema (eIJSchema)
Creating the eX_Ship_Order BOB

The Ship_Order translation implements the logic associated with shipping to the
customer. In this simple example, this component sets the “Order_Status” attribute
value.

To configure the Ship_Order activity

1 In the e*Insight GUI, open the Ship_Order activity properties.

2 On the General tab, e*Gate Module section, select a Module Type of BOB.

3 Click New.

The Define Collaboration dialog appears.

4 Click OK.

5 Create eX_Ship_Order.xpr.

Figure 139 shows the eX_Ship_Order CRS used in the example.

Figure 140 eX_Ship_Order.xpr CRS

6 Compile and save the CRS.

7 Close the editor.

8 In the Ship_Order Activity properties, click Configure e*Gate Schema.

You may be required to log into e*Gate.

9 Click OK, to close the information dialog.

10 Close the Ship_Order Activity properties.
e*Insight Business Process Manager Implementation Guide 243 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.4
Active and Passive Modes Configure the e*Insight Engine (eIJSchema)
16.4 Configure the e*Insight Engine (eIJSchema)
The e*Insight engine runs in a specially configured Multi-Mode e*Way. You must make
changes to the configuration file for this e*Way to conform to the requirements of your
system. For example, you must specify the name of the e*Insight database to which the
e*Way connects.

Note: This example uses only one e*Insight engine. In an actual implementation, more
than one e*Insight engine can be configured to handle the required workload. In
such a case, you must make changes to each of the e*Insight engines.

Edit the eIcp_eInsightEngine Connection Configuration File

Most of the parameter settings in the eIcp_eInsightEngine connection’s configuration
file should not be changed. “Configuring the e*Insight Engine Connection” on
page 34 discusses the parameters that may need to be changed depending on the
implementation. Use the e*Way Editor and the information in “Configuring the
e*Insight Engine Connection” on page 34 to make the required changes for the
example.

16.4.1 Configure the JMS Connection
The JMS connection for e*Insight must be configured for your system. The minimal
configuration required for this implementation is described in this section. For more
information on JMS IQ Services, see SeeBeyond JMS Intelligent Queue User’s Guide.

To configure the JMS connection

1 From the e*Gate Enterprise Manager GUI components view, select the e*Way
Connections folder.

2 Select the eX_cpeInsightJMS connection, and click the Properties tool.

3 In the e*Way Connection Configuration File section, click Edit.

4 From the Goto Section list, select Message Service.

5 Enter a Server Name and Host Name where your JMS server resides.

16.5 Configure User-defined e*Gate Components
(eIJSchema)

The user-defined components in an e*Insight implementation consist of two types: the
first type starts the business process, and second type runs as part of the business
process. The activity components are of the second type.

The Order example uses a file e*Way to start the business process and BOBs to run all
the other activities.
e*Insight Business Process Manager Implementation Guide 244 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.5
Active and Passive Modes Configure User-defined e*Gate Components (eIJSchema)
Configuration Order for the User-defined Components

1 Add and configure the START_BP e*Way.

2 Configure the Collaborations for the activity components running as BOBs.

Important: All the integration schema associations are displayed in table format at the end of
this section. The sections dealing with e*Way configuration include tables detailing
the non-default e*Way parameter settings. The sections dealing with the Monk
Collaboration Rules Scripts show screen shots of these scripts as they appear in the
e*Gate Collaboration Editor.

16.5.1 Configure the START_BP e*Way
The e*Way that sends the Event that starts the business process, named START_BP in
this example, must convert the incoming data into e*Insight Event format, as well as
send the appropriate acknowledgment to the e*Insight engine to create the Business
Process Instance (BPI).

The START_BP e*Way is completely user defined and must be added to the
eIJSchema in the e*Gate Enterprise Manager. In an actual implementation, the choice
of e*Way (or BOB) would depend on the requirements of the situation. For example, if
the data were coming from an SAP system, you might select an SAP ALE e*Way; or if
the data were already in the e*Gate system, you could use a BOB to start the BPI. In the
present case, a text file on the local system provides the input data, therefore the
example uses a file e*Way to send the “Start” Event to the e*Insight engine.

Table 55 shows the steps to configure the START_BP e*Way.

Step 1: Create the START_BP e*Way

The e*Way for the Payroll example is a simple file e*Way (executable: stcewfile.exe)
that polls a directory (<eGate>\client\data\Order) for any file with the extension
“.fin” and moves it into the e*Insight system.

Table 55 Configuration steps for the START_BP e*Way

Step Section

1 Add the e*Way and create the e*Way
configuration file

“Step 1: Create the START_BP e*Way” on
page 245

2 Create the Input ETD “Step 2: Create the Input ETD” on page 246

3 Create the START_BP Collaboration Rules
script (CRS)

“Step 3: Create the START_BP
Collaboration” on page 247

4 Configure the Collaboration in the GUI “Step 4: Configure the Collaboration in the
GUI” on page 249
e*Insight Business Process Manager Implementation Guide 245 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.5
Active and Passive Modes Configure User-defined e*Gate Components (eIJSchema)
Use the Enterprise Manager and the following table to add the START_BP e*Way and
create its configuration file.

.

Step 2: Create the Input ETD

The input ETD is based on the format of the input data. The Order example uses a
delimited text file (SimpleOrder.~in) that contains the data needed to process the
order.

The input data file used in this example is shown in Figure 141. Place this data file at the
directory location c:\eGate\client\data\Order.

Figure 141 Input Text File (SimpleOrder.~in)

Using the ETD Editor and the input data as a guide, create an ETD like the one shown
in Figure 147. Set the global delimiter to a ~ character. For more information on using
the ETD Editor see the ETD Editor’s online help.

Table 56 Start e*Way Parameters

Screen Parameter Setting

General Settings (All) (Default)

Outbound (send) settings (All) (Default)

Poller (inbound) settings PollDirectory <eGate>\client\data\Order

(All others) (Default)

Performance Testing (All) (Default)
e*Insight Business Process Manager Implementation Guide 246 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.5
Active and Passive Modes Configure User-defined e*Gate Components (eIJSchema)
Figure 142 Input ETD: Customer.xsc (Java)

Step 3: Create the START_BP Collaboration

The Collaboration that sends the Event that starts the BPI must do two things:

! Put the data into e*Insight ETD (eI_StandardEvent.xsc) format.

! Populate the Event with the information the e*Insight engine needs to start a BPI.

In addition to these two tasks, the START_BP Collaboration also provides the
recommended location for setting any global attributes that are required in your
business process.

1 Create a Collaboration Rule, START_BP, that uses the Java service.

2 Configure the Collaboration Mapping tab, as shown in Figure 143.
e*Insight Business Process Manager Implementation Guide 247 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.5
Active and Passive Modes Configure User-defined e*Gate Components (eIJSchema)
Figure 143 Start_BP Properties, Collaboration Mapping Tab

3 Click Apply, and click the General Tab.

4 Click New to create a new CRS, as show in Figure 144.

Figure 144 START_BP CRS
e*Insight Business Process Manager Implementation Guide 248 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.5
Active and Passive Modes Configure User-defined e*Gate Components (eIJSchema)
Step 4: Configure the Collaboration in the GUI

In addition to creating the configuration file for the e*Way and the CRS used by the
Collaboration, you must also configure the Start_BP e*Way’s Collaboration in the
Enterprise Manager GUI.

1 Create a Collaboration for the Start_BP e*Way configured as shown in Figure 145.

Figure 145 Start_BP Collaboration
e*Insight Business Process Manager Implementation Guide 249 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.6
Active and Passive Modes Configure the Integration Schema (eISchema)
16.6 Configure the Integration Schema (eISchema)
All the activities in this example are carried out using e*Gate components.

Important: Before you begin to make changes to the e*Gate Registry, make a copy of the
e*Insight schema. See “Copy the e*Insight Schema” on page 85 for
instructions on how to do this.

After creating the business process, you must configure the e*Gate Registry schema
that supports the e*Insight system.

e*Insight allows you to specify the type of component (e*Way or BOB) associated with
a particular activity and where it runs.

Integration Schema Activity Components Summary

Use the information in Table 57 to configure the e*Gate schema that supports the
example.

For information on how to use the e*Insight GUI to configure the e*Gate Registry see
the e*Insight Business Process Manger User’s Guide.

16.7 Configure the e*Insight Engine (eISchema)
The e*Insight engine runs in a specially configured Java e*Way. You must make
changes to the configuration file for this e*Way to conform to the requirements of your
system. For example, you must specify the name of the e*Insight database to which the
e*Way connects.

Note: This example uses only one e*Insight engine. In an actual implementation, more
than one e*Insight engine can be configured to handle the required workload. In
such a case, you must make changes to each of the e*Insight engines.

Edit the eX_eBPM Engine’s Configuration File

Most of the parameter settings in the eX_eBPM engine’s configuration file should not
be changed. Use the e*Way Editor and the information in “Configuring the e*Insight
Engine” on page 53 to make the required changes for the Order example.

Table 57 Integration Schema Activity Components

Name Type
Participating

Host
Active/Passive

Manual
Restart

TimeOut

eX_Bill_Customer BOB localhost Active Yes Not used

eX_Ship_Order BOB localhost Active Yes Not used
e*Insight Business Process Manager Implementation Guide 250 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.8
Active and Passive Modes Configure User-defined e*Gate Components (eISchema)
16.8 Configure User-defined e*Gate Components
(eISchema)

The user-defined components in an e*Insight implementation consist of two types: the
first type starts the business process, and second type runs as part of the business
process. The activity components are of the second type.

The Order example uses a file e*Way to start the business process and BOBs to run all
the activities except the last. The last activity is represented by an additional file e*Way.

Configuration Order for the User-defined Components

1 Add and configure the START_BP e*Way.

2 Configure the Collaborations for the activity components running as BOBs.

Important: All the integration schema associations are displayed in table format at the end of
this section. The sections dealing with e*Way configuration include tables detailing
the non-default e*Way parameter settings. The sections dealing with the Monk
Collaboration Rules Scripts show screen shots of these scripts as they appear in the
e*Gate Collaboration Editor.

16.8.1 Configure the START_BP e*Way
The e*Way that sends the Event that starts the business process, named START_BP in
this example, must convert the incoming data into e*Insight Event format, as well as
send the appropriate acknowledgment to the e*Insight engine to create the Business
Process Instance (BPI).

Follow these steps to configure the START_BP e*Way:

1 Create the Input ETD

2 Create the START_BP Collaboration Rules script (CRS)

3 Add the e*Way and create the e*Way configuration file

4 Configure the Collaboration in the GUI

Step 1: Create the Input ETD

The input ETD is based on the format of the input data. The Order example uses a
delimited text file (SimpleOrder.~in) that contains the data needed to process the
order.

The input data file used in this example is shown in Figure 146. Place this data file at the
directory location c:\eGate\client\data\Order.
e*Insight Business Process Manager Implementation Guide 251 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.8
Active and Passive Modes Configure User-defined e*Gate Components (eISchema)
Figure 146 Input Text File (SimpleOrder.~in)

Using the ETD Editor and the input data as a guide, create an ETD like the one shown
in Figure 147. For more information on using the ETD Editor see the ETD Editor’s
online help.

Figure 147 Input ETD: Customer.ssc

Step 2: Create the START_BP Collaboration Rules Script (CRS)

The Collaboration that sends the Event that starts the BPI must do two things:

! Put the data into e*Insight ETD (eX_Standard_Event.ssc) format.

! Populate the Event with the information the e*Insight engine needs to start a BPI.

In addition to these two tasks, the START_BP Collaboration also provides the
recommended location for setting any global attributes that are required in your
business process.

Figure 148 shows the START_BP CRS used in the Order example:

Figure 148 START_BP CRS

Step 3: Add the e*Way and Create the e*Way Configuration File

The e*Way for the Order example is a simple file e*Way (executable: stcewfile.exe) that
polls a directory (c:\eGate\client\data\Order) for any file with the extension “.fin”
and moves it into the e*Insight system.
e*Insight Business Process Manager Implementation Guide 252 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.8
Active and Passive Modes Configure User-defined e*Gate Components (eISchema)
Use the Enterprise Manager and the following table to add the START_BP e*Way and
create its configuration file.

.

Step 4: Configure the Collaboration in the GUI

In addition to creating the configuration file for the e*Way and the CRS used by the
Collaboration, you must also configure the START_BP e*Way’s Collaboration in the
Enterprise Manager GUI.

1 Create a Collaboration Rule, START_BP, that uses the Monk service and the
START_BP CRS created in step 2, subscribes to the eX_External_Evt Event Type,
and publishes to the eX_to_eBPM Event Type.

2 Create a Collaboration for the START_BP e*Way that uses the START_BP
Collaboration Rule, subscribes to the eX_External_Evt Event Type from
<EXTERNAL>, and publishes the eX_to_eBPM Event Type to the eX_eBPM IQ.

16.8.2 Configure the Activity BOBs
You must complete these two tasks in order to configure the Activity BOBs:

! Set up the activity Collaborations in the e*Gate GUI.

! Create the corresponding CRS used by the activity Collaborations.

Note: Any time you create e*Ways, you must configure those e*Ways before e*Insight can
communicate with external systems or components.

Create the Activity BOB CRSs

Creating the CRSs associated with the activity components is the responsibility of the
implementor. What these programs do varies depending on the type of component and
the business logic they must implement. Nevertheless, they all must take the
information provided to them by the e*Insight engine, process it, and return the
appropriate response to the e*Insight engine. This includes setting the values of any
output attributes and the BP_EVENT status node to “SUCCESS” or “FAILURE”
depending on whether the activity completes successfully or not.

The CRSs associated with the BOBs used in this example are described in the following
sections along with a screen capture showing the actual Monk Collaboration Rules
Script used.

Table 58 Start e*Way Parameters

Screen Parameter Setting

General Settings (All) (Default)

Outbound (send) settings (All) (Default)

Poller (inbound) settings PollDirectory c:\eGate\client\data\Order

(All others) (Default)

Performance Testing (All) (Default)
e*Insight Business Process Manager Implementation Guide 253 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.8
Active and Passive Modes Configure User-defined e*Gate Components (eISchema)
Bill Customer CRS

The CRS sets the value of the Order_Status attribute to “Billing Customer” and sends a
“SUCCESS” Event back to e*Insight, indicating that the activity has completed
successfully.

Figure 149, shows the Billing_Customer.tsc CRS used in the example.

Figure 149 Billing_Customer.tsc CRS

Ship_Order CRS

The Ship_Order translation simulates the activity of sending out an item that is in stock.
It sets the value of the Order_Status attribute to a short message indicating that the
order has been sent and returns “SUCCESS” to the e*Insight engine.

Figure 150 shows the Ship_Order CRS used in the example.

Figure 150 Ship_Order.tsc CRS

Configure the Activity BOB Collaborations in the Enterprise Manager
GUI

Once you have created the CRS for a BOB, you must associate it with the corresponding
Collaboration Rule in the e*Gate GUI. For each BOB you must:

1 Highlight the BOB’s Collaboration.

2 Open the Collaboration Properties dialog box for the Collaboration.

3 Edit the Collaboration Rules.
e*Insight Business Process Manager Implementation Guide 254 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.9
Active and Passive Modes Run and Test the e*Insight scenario
4 Change the Service to Monk.

5 Find the corresponding “.tsc” file and associate it with the Collaboration Rule.

6 Click OK to continue.

16.9 Run and Test the e*Insight scenario
Once the schema has been set up in e*Gate you can run the scenario. Use the following
procedure to test the functionality of the example.

1 Start the e*Insight GUI and select the Order business process. Switch to monitor
mode.

Note: Make sure that the business process has been enabled in the e*Insight GUI before
attempting to run it.

2 Make a final check of the e*Gate schema, using the tables to confirm all of the GUI
associations. Make sure that all of the e*Insight components, including the
user-defined components, are set to start automatically.

3 At the command line, type the following to start the schema. You must type the
command on a single line.

stccb.exe -rh localhost -rs Order -ln localhost_cb
-un username -up password

Substitute the appropriate username and password for your installation.

4 Start the e*Gate Monitor, and check the status of all the components. Any
components displayed in red are not running. Any e*Insight components that are
not running should be investigated before feeding data into the system.

5 Navigate to the location for the input data file, SimpleOrder.~in, shown in Figure
146 on page 252 (c:\eGate\client\data\Order) and change the extension to “.fin”.

Note: The change of the extension to “.~in” indicates that the data file has been picked up
by the START_BP e*Way.

6 Switch to the e*Insight GUI and, while in monitor mode, select the most recent BPI
from the List pane. The Diagram should show the activities as completed (green). If
the activities are not green then the e*Gate component associated with that activity
should be investigated for the cause of the problem.
e*Insight Business Process Manager Implementation Guide 255 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.10
Active and Passive Modes Case Study - Passive Control Mode
16.10 Case Study - Passive Control Mode
We are now going to change the configuration of the Ship_Order activity to use passive
control, that is e*Gate controls the Activity rather than e*Insight. The e*Gate configuration
is modified so the Bill_Customer collaboration publishes eX_Ship_Order_Do in addition to
returning a “Done” message to the e*Insight engine. The Ship_Order CRS is also modified
to ensure that the “Done” message contains the correct information.

16.11 Passive Control Mode (eIJSchema)

16.11.1Modify the Order BP in e*Insight (eIJSchema)
The following is a summary of the procedure for modifying the BP in the e*Insight GUI.

1 Save the business process as a new version.

2 Change the Ship_Order activity properties to use passive control.

16.11.2Modify User-defined e*Gate Components (eIJSchema)

Configuration Order for the User-defined Components

1 Modify the Bill_Customer CRS.

2 Modify the Ship_Order CRS.

3 Modify the Bill_Customer Collaboration Rule and Collaboration.

Configure the Bill_Customer Collaboration Rule and Collaboration

1 Update the Bill_Customer Collaboration Rule with the following Collaboration
Mapping.

Note: Both instances are now configured to publish the event manually.
e*Insight Business Process Manager Implementation Guide 256 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.11
Active and Passive Modes Passive Control Mode (eIJSchema)
Figure 151 eX_Bill_Customer Collaboration Mapping

2 Update the Bill_Customer Collaboration to additionally publish a Ship_Order_Do
instance, Event Type eX_Ship_Order_Do, to the destination eIcr_eInsightJMS.

Bill Customer CRS (eIJSchema)

The CRS is already defined to set the value of the Order_Status attribute to “Billing
Customer” and send a “SUCCESS” Event back to the e*Insight, indicating that the
activity has completed successfully.

The script is modified to manually publish eX_to_eBPM, and to additionally publish
eX_Ship_Order_Do.

Figure 152, shows the Billing_Customer.xpr CRS used in the example.
e*Insight Business Process Manager Implementation Guide 257 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.11
Active and Passive Modes Passive Control Mode (eIJSchema)
Figure 152 Bill_Customer.xpr CRS

Ship_Order CRS

The Ship_Order translation simulates the activity of sending out an item that is in stock.
It sets the value of the Order_Status attribute to a short message indicating that the
order has been sent and returns “SUCCESS” to the e*Insight engine.

In the active example, the event is sent from the e*Insight engine with information
pertaining to the Ship_Order activity. In the passive example, the event was originally
created by the e*Insight engine for the Bill_Customer activity, and the
eX_Bill_Customer Collaboration is configured to send a “Do” event. This “Do” event
contains information pertaining to the Bill_Customer activity, rather than the
Ship_Order activity, so the following values need to be updated:

! Activity Name — should be set to “Ship_Order”

! Activity ID — should be deleted

Figure 150 shows the Ship_Order CRS used in the example.
e*Insight Business Process Manager Implementation Guide 258 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.11
Active and Passive Modes Passive Control Mode (eIJSchema)
Figure 153 Ship_Order.xpr CRS

16.11.3Run and Test the e*Insight scenario
Run the Schema again as described in “Run and Test the e*Insight scenario” on
page 255.
e*Insight Business Process Manager Implementation Guide 259 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.12
Active and Passive Modes Passive Control Mode (eISchema)
16.12 Passive Control Mode (eISchema)
This section describes the steps for updating a schema based on eISchema (Classic). For
information on eIJSchema, see “Passive Control Mode (eIJSchema)” on page 256.

16.12.1Modify the Order BP in e*Insight (eISchema)
The following is a summary of the procedure for modifying the BP in the e*Insight GUI.

1 Save the business process as a new version.

2 Change the Ship_Order activity properties to use passive control.

16.12.2Modify User-defined e*Gate Components (eISchema)

Configuration Order for the User-defined Components

1 Modify the Bill_Customer CRS.

2 Modify the Ship_Order CRS.

3 Modify the Bill_Customer Collaboration Rule and Collaboration.

Bill Customer CRS

The CRS is already defined to set the value of the Order_Status attribute to “Billing
Customer” and send a “SUCCESS” Event back to the e*Insight, indicating that the
activity has completed successfully.

The script is modified to use an iq-put to publish eX_Ship_Order_Do.

Figure 152, shows the Billing_Customer.tsc CRS used in the example.

Figure 154 Billing_Customer.tsc CRS

Ship_Order CRS

The Ship_Order translation simulates the activity of sending out an item that is in stock.
It sets the value of the Order_Status attribute to a short message indicating that the
order has been sent and returns “SUCCESS” to the e*Insight engine.
e*Insight Business Process Manager Implementation Guide 260 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.12
Active and Passive Modes Passive Control Mode (eISchema)
In the active example, the event is sent from the e*Insight engine with information
pertaining to the Ship_Order activity. In the passive example, the event was originally
created by the e*Insight engine for the Bill_Customer activity, and the
eX_Bill_Customer Collaboration is configured to send a “Do” event. This “Do” event
contains information pertaining to the Bill_Customer activity, rather than the
Ship_Order activity, so the following values need to be updated:

! Activity Name — should be set to “Ship_Order”

! Activity ID — should be deleted

Figure 150 shows the Ship_Order CRS used in the example.

Figure 155 Ship_Order.tsc CRS

Configure the Bill_Customer Collaboration Rule and Collaboration

1 Update the Bill_Customer Collaboration Rule to additionally publish
eX_Ship_Order_Do. This should not be selected as the default publication.

2 Update the Bill_Customer Collaboration to additionally publish
eX_Ship_Order_Do to the eX_eBPM IQ.

16.12.3Run and Test the e*Insight scenario
Run the Schema again as described in “Run and Test the e*Insight scenario” on
page 255.
e*Insight Business Process Manager Implementation Guide 261 SeeBeyond Proprietary and Confidential

Chapter 17

e*Insight Performance

The purpose of this chapter is to describe methods that can be used to improve
performance. The chapter is divided into three sections; the first describes the
performance enhancements that can be made to a schema based on eIJSchema (Java).
The second describes the performance enhancements that can be made to a schema
based on eISchema (Classic). The last section describes performance enhancements that
are not schema specific.

17.1 Performance Improvements Using eIJSchema
The purpose of this section is to describe methods that can be used to improve
performance of the eIJSchema.

! Instance caching

! Using multiple engines

! Using instance caching with multiple engines

! Using binary XML

! Configuring e*Insight to ignore e*Xchange ETD

! Changing the Event Type “get” Interval

17.1.1 Instance Caching
Instance Caching is the most efficient way to process Business Process Instances. Using
instance caching keeps a cache of the instance information throughout the life span of
the Business Process Instance. If instance caching is not used the instance information is
retrieved from the database instead.

To configure the engine to use instance caching

1 In the e*Way Connections folder, open the engine’s e*Way connector properties.

2 Click Edit to open the engine’s configuration file.

3 In the eBPM Setting section, set Instance Caching to YES.
e*Insight Business Process Manager Implementation Guide 262 SeeBeyond Proprietary and Confidential

Chapter 17 Section 17.1
e*Insight Performance Performance Improvements Using eIJSchema
17.1.2 Using Multiple e*Insight Engines
An e*Insight engine is comprised of a specially configured Collaboration (eIcol_eBPM)
and the e*Insight e*Way Connection (eIcp_eInsightEngine). The e*Insight engine runs
within a Multi-Mode e*Way (eX_eBPM), which is referred to as the e*Insight Engine
Container. You can use multiple e*Insight engines to increase performance. This section
describes how to add and configure these. You can use instance caching to further
improve performance. See “e*Insight Engine Affinity (eIJSchema)” on page 266 for
more information.

When you add e*Insight engines, you can either add them to an existing e*Insight
engine container or create additional e*Insight engine containers. Figure 156 shows a
scenario where three e*Insight engine containers are used, each with a single engine.

Important: A single e*Insight e*Way connection cannot be used by multiple Collaborations.

Figure 156 Multiple Engine Containers with a Single Engine

Alternatively, you can have multiple e*Insight engines in a single e*Insight engine
container. See Figure 157.

e*Insight
Database

eX_eBPM e*Insight Engine Container

eIcp_eInsightEngine
e*Way Connection

eIcol_eBPM
Collaboration

eX_eBPM_0 e*Insight Engine Container

eIcp_eInsightEngine_0
e*Way Connection

eIcol_eBPM_0
Collaboration

eX_eBPM_1 e*Insight Engine Container

eIcp_eInsightEngine_1
e*Way Connection

eIcol_eBPM_1
Collaboration
e*Insight Business Process Manager Implementation Guide 263 SeeBeyond Proprietary and Confidential

Chapter 17 Section 17.1
e*Insight Performance Performance Improvements Using eIJSchema
Figure 157 A Single Engine Container with Multiple Engines

You can either create a new engine from scratch, or copy the engine container,
Collaboration, Collaboration Rules, and engine connection.

To create a new e*Insight engine container

1 Add a new e*Insight engine in the participating host.

2 In the engine properties, Executable file section, click Find.

3 Browse for stceway.exe and click Select.

4 Clear the engine’s configuration file.

Note: You can create a new e*Insight engine container by copying the eX_eBPM
e*Insight engine that is provided in the eIJSchema.

To add and configure an e*Insight e*Way Connection

1 Select the e*Way Connections folder and create a new e*Way Connection.

2 Open the Connection properties and set the e*Way Connection Type to e*Insight
Engine.

3 Create and configure a new Configuration File. For information on the settings, see
“Configuring the e*Insight Engine Connection” on page 34.

To configure an e*Insight engine container for a new e*Way Connection

1 Create a new e*Way Connection. See “To add and configure an e*Insight e*Way
Connection” on page 264.

2 Add a Collaboration Rule and configure it as shown in Figure 158.

e*Insight
Database

eX_eBPM e*Insight Engine Container

eIcp_eInsightEngine
e*Way Connection

eIcol_eBPM_1
Collaboration

eIcol_eBPM_0
Collaboration

eIcol_eBPM
Collaboration

eIcp_eInsightEngine_1
e*Way Connection

eIcp_eInsightEngine_0
e*Way Connection
e*Insight Business Process Manager Implementation Guide 264 SeeBeyond Proprietary and Confidential

Chapter 17 Section 17.1
e*Insight Performance Performance Improvements Using eIJSchema
Figure 158 e*Insight Engine General Tab

Figure 159 e*Insight Engine Collaboration Mapping Tab

Note: You can create this Collaboration Rule by copying the eIcr_eBPM Collaboration
Rule that is provided in the eIJSchema.

3 Add a Collaboration to the e*Insight engine container that uses the Collaboration
Rule created in step 2. Configure the Collaboration as shown Figure 160. You
should configure the Collaboration to publish to the e*Way Connection created in
step 1.
e*Insight Business Process Manager Implementation Guide 265 SeeBeyond Proprietary and Confidential

Chapter 17 Section 17.1
e*Insight Performance Performance Improvements Using eIJSchema
Figure 160 e*Insight Engine Collaboration

17.1.3 e*Insight Engine Affinity (eIJSchema)
e*Insight Engine Affinity allows e*Insight engines in a multi-engine environment to
cache information about particular Business Process Instances as they flow through the
e*Gate schema using Instance Caching. Since the engines hold the instance information
in a cache, it is essential that an individual instance is always processed by the same
engine or Collaboration. This is achieved by setting a JMS property in e*Gate 4.5.2, or
using a different Event Type for each engine in e*Gate 4.5.1.

Using Engine Affinity can possibly improve the overall message throughput but if an
engine is shut down for some reason, the instances associated with that engine do not
finish being processed until the engine is manually restarted using the e*Gate Monitor.

17.1.4 Using Engine Affinity with e*Gate 4.5.2
The JMS Message Server uses message selectors to filter out certain messages from a
specific queue before sending them to the JMS e*Way connection. The message selector
ensures that an engine only receives Business Process Instances that it originally
processed, or START_BP messages .

Note: The message selector for the inbound eX_StandardEvent is only set if you are using
e*Gate 4.5.2 and are subscribing to a JMS e*Way Connection Point. Otherwise, you
must configure Engine Affinity using different Event Types, see “Using Engine
Affinity with e*Gate 4.5.1” on page 267.
e*Insight Business Process Manager Implementation Guide 266 SeeBeyond Proprietary and Confidential

Chapter 17 Section 17.1
e*Insight Performance Performance Improvements Using eIJSchema
To configure multiple engines to use e*Insight Engine Affinity

1 Create multiple engines. See “Using Multiple e*Insight Engines” on page 263.

2 Edit the configuration file for each e*Insight engine connection. In the eBPM
Settings, set the Instance Caching parameter to Yes.

Note: The engines can refer to the same connection configuration file.

3 Configure the Engine Affinity JMS properties in your Activity Collaborations, if
you are using different source and destination instances for eI_StandardEvent. See
“Configuring the Engine Affinity JMS Properties”.

Configuring the Engine Affinity JMS Properties

You need to set up the Engine Affinity JMS properties in your Activity Collaborations,
if you are using different source and destination instances for eI_StandardEvent. You
can set up the properties using the prepareReplyToSender method in the
eI_StandardEvent ETD.

Create a rule before you return from executeBusinessRules() by dragging the root node
of the inbound eI_StandardEvent into the parameter for the prepareReplyToSender()
method of the outbound eI_StandardEvent. This generates code such as:

getEIStandardOut.prepareReplyToSender(getEIStandardIn());

Note: If you are using one instance (such as EIStandardInOut), you do not need to use
prepareReplyToSender() since the Engine Affinity JMS Properties already exist.

For backwards compatibility, if the first Business Process Activity is passive, the
e*Insight engine still echoes back the incoming START_BP message for
synchronization. To disable this feature, add another System Property definition,
ei.pasvNoEcho=true, in the Initialization string of the e*Insight Engine Collaboration
Rules.

17.1.5 Using Engine Affinity with e*Gate 4.5.1
The procedures described in the next section use unique names for the Event Types
based on the Collaboration name. You can alternatively use the e*Way name if the
e*Way uses a single e*Way Connection. If multiple e*Way Connections are used then
using the e*Way name does not provide a unique name for each engine. For
information on configuring the e*Way Connection to use the e*Way name, see
“Configuring the e*Insight Engine Connection” on page 34.

To configure multiple engines to use e*Insight Engine Affinity

1 Create multiple engines.

2 Edit the configuration file for each e*Insight engine. In the eBPM Settings, set the
Instance Caching parameter to Yes.

Note: The engines can refer to the same configuration file.
e*Insight Business Process Manager Implementation Guide 267 SeeBeyond Proprietary and Confidential

Chapter 17 Section 17.1
e*Insight Performance Performance Improvements Using eIJSchema
3 Ensure that every Collaboration uses a unique Collaboration Rule.

4 Create an Event Type named eX_to_<Collaboration Name> for each e*Way
connection.

Important: An Event Type must be created for the default engine named eX_to_eX_eBPM in
addition to the Event Types required for additional engines.

5 For every e*Way connection, update the Collaboration that subscribes to eX_eBPM
using the following procedure. Replace <Collaboration name> with the appropriate
name.

" In the Collaboration properties Subscriptions box, change the Event Type to
eX_to_<Collaboration name> with Source eIcp_eInsightJMS.

6 For every Activity e*Way or BOB, update the Collaboration that publishes
eX_to_eBPM with the additional publications for the additional engines.

" In the Collaboration properties Subscriptions box, add an entry for every e*Way
Connection Collaboration with the following properties: EIStandardInOut
instance, eX_to_<Collaboration name> Event Type, with Destination
eIcp_eInsightJMS.

Note: The instance name may be different, depending on your implementation.

17.1.6 Using e*Xchange with e*Insight (eIJSchema)
The Event Type Definition used in the engine’s Collaboration Rules Script,
eIX_StandardEvent.xsc contains two sections, BP_EVENT, containing information for
e*Insight and TP_EVENT, containing information for e*Xchange. If you are not using
the e*Xchange section of the ETD, then you can configure the engine ignore this section,
reducing processing.

To configure the engine to ignore e*Xchange section of the ETD

1 Select the e*Way Connections folder.

2 Open the properties of the e*Insight engine e*Way Connector.

3 Click Edit.

4 Go to the eBPM Settings section, and find Using e*Xchange with e*Insight.

5 Click No.

6 Close the configuration editor and save the changes.

17.1.7 Using Binary XML (eIJSchema)
By default, the e*Insight engine generates a binary XML message. This data format
reduces parsing and so can increase performance. The following initialization string in
the Collaboration Rule properties determines that a binary XML message is created:

-def egate.binXmlMarshal=true
e*Insight Business Process Manager Implementation Guide 268 SeeBeyond Proprietary and Confidential

Chapter 17 Section 17.1
e*Insight Performance Performance Improvements Using eIJSchema
Important: Monk is not able to interpret this data format so you should only configure Java
Collaborations to subscribe to this Event.

17.1.8 Subscribing to Event Types
The method of subscribing for multiple Event Types from a JMS e*Way Connection
entails waiting 'n' milliseconds (configured in the Event Type "get" interval of the
e*Way Connection Properties dialog, see “Event Type “get” Interval” on page 270) for
the first Event Type and if none is found, waiting for 1 millisecond for the next Event
Type and if none again, the JMS Server waits 'n' milliseconds for the second Event Type
and so on. This method works well if the distribution of the different Event Types is
relatively even, but there are likely to be more “Do” Events than there are “Undo”
Events for e*Insight. Therefore, the engines spend a lot of time waiting for a Event
Type that is not there.

You can avoid unnecessary wait times due to the “Do” and “Undo” Event Types, by:

! Subscribing to a single “Go” Event Type which retrieves both “Do” and “Undo”
Events

! Having a separate Collaboration to subscribe to the “Do” and “Undo” Event Types

! Removing unnecessary subscriptions from Collaborations

The options are described in detail below.

Subscribing to a Single “Go” Event

The e*Insight engine can be configured to publish an Event Type eI_<Activity
Name>_Go, rather than eX_<Activity Name>_Do or eI_<Activity Name>_Undo. This
allows you to subscribe to a single Event Type and then check the type of Event within
your Collaboration Rule script.

To configure the engine to publish the single Event Type, set the initialization string in
the eI Engine Collaboration Rules dialog to:

-def egate.multiDef=;egate.binXmlMarshal=true;ei.oneETPerAct=true

This new Java System Property definition, ei.oneETPerAct=true, directs the engine to
publish only one ET, eI_<Activity Name>_Go, for both “Do” and “Undo” Events.

Note: You must use the egate.multiDef parameter to define more than one System
Property definition in the initialization string. The first character after the equal
(=) sign is the delimiter to use for separating different System Property key=value
pairs (for example, the semi-colon (;) is used above). The Enterprise Manager does
not allow the use of commas (,) since the e*Gate Registry uses this delimiter
internally. Special characters can be specified by using standard escape codes (such
as\t, \n) or Unicode escape codes (such as \u003d for '=').

Configuring a Separate Collaboration for Do and Undo Events

To remove the requirement for a single Collaboration to subscribe to both “Do” and
“Undo” Events, separate the “Do” and “Undo” logic in your Collaboration Rules script.
e*Insight Business Process Manager Implementation Guide 269 SeeBeyond Proprietary and Confidential

Chapter 17 Section 17.2
e*Insight Performance Performance Improvements Using eISchema
Then create a “Do” and an “Undo” Collaboration, each subscribing to a single Event
Type.

Removing Unnecessary Subscriptions

Subscribing to multiple Event Types is less efficient than subscribing to a single Event
Type. If you have not implemented “undo” logic in your business process, then remove
the subscriptions to the eX_<Activity_Name>_Undo Event Types.

17.1.9 Event Type “get” Interval
The e*Insight engine uses the “get” interval to determine how long the JMS Server
waits for an Event of a particular Event Type to arrive.

Ideally, a Collaboration should only subscribe to a single Event Type, but if that is not
possible then the “get” interval can impact performance. The default interval is 10,000
milliseconds which should be suitable if the distribution of the different Event Types is
even. If the distribution of the different Event Types is not even, the you might want to
reduce the“get” interval. Consider an example where you are subscribing to Event
Types A and B, and Event Type B rarely (or never) arrives. Using the default “get”
interval, you wait 10,000 milliseconds after every Event Type A is processed. Reducing
the “get” interval to a value less than 100 can dramatically increase performance.

The Event Type “get” Interval is set in the e*Way Connection properties.

17.1.10Review JVM Settings
You may be able to improve performance by changing the memory allocated for the
Java Virtual Machine. This is set in the e*Insight engine configuration file, JVM
Settings, Maximum Heap Size. If this is left set to zero (0), the preferred value for the
maximum heap size of the Java VM is used.

Note: The e*Insight engine configuration file does not exist by default. You must create a
new configuration file.

17.2 Performance Improvements Using eISchema
The purpose of this section is to describe methods that can be used to improve
performance of the eIJSchema.

! Instance caching

! Using multiple engines

! Using instance caching with multiple engines

! Setting the Exchange Data Interval
e*Insight Business Process Manager Implementation Guide 270 SeeBeyond Proprietary and Confidential

Chapter 17 Section 17.2
e*Insight Performance Performance Improvements Using eISchema
17.2.1 Instance Caching
Instance Caching is the most efficient way to process Business Process Instances. Using
instance caching keeps a cache of the instance information throughout the life span of
the Business Process Instance. If instance caching is not used the instance information is
retrieved from the database instead. This allows more flexibility and fault tolerance at
the cost of performance.

To configure the engine to use instance caching

1 Open the engine’s properties.

2 Click Edit to open the engine’s configuration file.

3 In the eBPM Setting section, set Instance Caching to YES.

17.2.2 Using Multiple e*Insight Engines (eISchema)
You can use multiple e*Insight engines to increase performance. This section describes
how to add and configure additional engines. You can use instance caching to further
improve performance. See “e*Insight Engine Affinity (eISchema)” on page 272 for
more information.

You can either create a new engine from scratch, or copy the engine and collaborations.
Both procedures are described below.

To create a new e*Insight engine

1 Add a new e*Insight to the participating host.

2 Edit the engine’s configuration file.

3 Add a Collaboration Rule that subscribes to eX_External_Evt and publishes
eX_Failed_From_eBPM.

4 Add a Collaboration Rule that subscribes to eX_to_eBPM and publishes
eX_External_Evt.

5 Add a Collaboration to the e*Insight engine that uses the Collaboration Rule
created in step 3. Configure to subscribe to External and publish to
eX_Dead_Letter_Queue IQ.

6 Add a Collaboration to the e*Insight engine that uses the Collaboration Rule
created in step 3. Configure to subscribe to eX_eBPM and publish to External IQ.

To copy an existing engine

1 Copy the e*Insight engine.

2 Copy the eX_to_eBPM Collaboration.

3 Copy the eX_from_eBPM Collaboration.

Important: When you copy the above components some elements are then used by both engines.
These include the e*Insight engine configuration file and the Collaboration Rules. If
you need to change these for one engine, but not the other, you must create a new
version.
e*Insight Business Process Manager Implementation Guide 271 SeeBeyond Proprietary and Confidential

Chapter 17 Section 17.2
e*Insight Performance Performance Improvements Using eISchema
17.2.3 e*Insight Engine Affinity (eISchema)
e*Insight Engine Affinity allows e*Insight engines in a multi-engine e*Gate schema to
cache information about particular Business Process Instances as they flow through the
e*Gate schema using Instance Caching. Using Engine Affinity can possibly improve the
overall message throughput but if an engine is shutdown for some reason, the instances
associated with that engine do not finish being processed until the engine is manually
restarted using the e*Gate Monitor.

To configure multiple engines to use e*Insight Engine Affinity

1 Create multiple engines.

2 Edit the configuration file for each e*Insight engine. In the eBPM Settings, set the
Instance Caching parameter to Yes.

Note: The engines can refer to the same configuration file.

3 Ensure that every Collaboration uses a unique Collaboration Rule.

4 Create an Event Type named eX_to_<eInsight Engine Name> for each e*Insight
engine.

Important: An Event Type must be created for the default engine named eX_to_eX_eBPM in
addition to the Event Types required for additional engines.

5 For every e*Insight engine, update the Collaboration that subscribes to eX_eBPM
using the following procedure. Replace <eInsight engine name> with the
appropriate name.

A In the Collaboration Rule properties, go to the Subscription tab and add
eX_to_<eInsight engine name>.

B In the Collaboration properties Subscriptions box, add eX_to_<eInsight engine
name> with Source <ANY>.

6 For every Activity e*Way or BOB, update the Collaboration that publishes
eX_to_eBPM with the additional publications for the additional engines.

To update a Monk Collaboration

A In the Collaboration Rule properties, go to the Publication tab and add
eX_to_<eInsight engine name> for every e*Insight engine.

B In the Collaboration properties Publications box, add eX_to_<eInsight engine
name> with Destination eX_eBPM for every e*Insight engine.

C Update the Monk Collaboration Rule Script to manually publish the event using
eX-event-sendback-to-sender, and then suppress the default output. For details
on these two lines of code see Figure 161.

To update a Java Collaboration

A In the Collaboration Rule properties, go to the Collaboration Mapping tab and
add eX_to_<eInsight engine name> instance for every e*Insight engine.
e*Insight Business Process Manager Implementation Guide 272 SeeBeyond Proprietary and Confidential

Chapter 17 Section 17.2
e*Insight Performance Performance Improvements Using eISchema
B In the Collaboration properties Subscriptions box, add an entry for every
e*Insight engine with the following properties: eX_to_<eInsight engine name>
instance, eX_to_<eInsight engine name> Event Type, with Destination
eX_eBPM.

Manually Publishing Events using eX-event-sendback-to-sender

The eX-event-sendback-to-sender function performs an iq-put that dynamically assigns
the destination Event Type. The destination Event Type is defined by appending the
name of the e*Insight engine that sent the message to the string “eX_to”. The syntax is:

eX-event-sendback-to-sender <root-path>

You would usually replace <root-path> with ~output%eX_Event. For an example of
how this is used in a Collaboration Rule Script, see Figure 161.

Note: Make sure that the Monk file eX-event-sendback-to-sender.monk, containing
this function, is loaded before calling it in a Collaboration Rules Script. You can do
this by putting it in the root of the monk_library directory, or loading it explicitly
in your CRS.

Finally, you must suppress the default output. This is achieved by overwriting the
destination Event Type Definition with an empty string. Use the copy function as
shown in Figure 161.

Figure 161 Monk Collaboration Rule Script for Engine Affinity

17.2.4 Exchange Data Interval (eISchema)
The e*Insight engine uses the interval to determine how often to poll the control table.
The control table contains entries for batch tasks, such as manual restarts, and also
contains entries for instances using the User Activity or Authorization Activity.
Depending on your implementation of e*Insight, it may be desirable to reduce the
polling frequency to increase performance.

The Exchange Data Interval is set in the e*Way Configuration file, Communication
Setup section.

17.2.5 Review JVM Settings
You may be able to improve performance by changing the memory allocated for the
Java Virtual Machine. This is set in the e*Insight engine configuration file, JVM
Settings, Maximum Heap Size. If this is left set to zero (0), the preferred value for the
maximum heap size of the Java VM is used.
e*Insight Business Process Manager Implementation Guide 273 SeeBeyond Proprietary and Confidential

Chapter 17 Section 17.3
e*Insight Performance General e*Insight Performance Tips
17.3 General e*Insight Performance Tips
This section describes some ways of improving performance that are not specific to the
type of e*Insight schema that you are running.

! Review the SeeBeyond eBusiness Integration Suite Deployment Guide.

! Use a third party tool to determine if hardware is the limitation.

! Enhance database access by one of the following:

A Use RAID/stripe disks with a multi-controller.

B Install the database and e*Insight engines on the same machine.

C Tune the database.

! Use a Model Specific database — The Model Specific database uses a different
structure for storing the attribute values, which increases performances. If you are
using the Model Specific database, you can modify the database to your specific
data requirements by controlling the size allocated to each attribute value. You
need to create the necessary database tables before running your e*Insight schema.
Every business process version uses its own set of tables.

See the e*Insight Business Process Manager User’s Guide for information on creating
the Model Specific database.

! Do not automatically reload models — The Auto Model Reload engine
configuration parameter determines if the engine dynamically loads an enabled
Business Process Version if the enabled/disabled status of Business Process Version
changes. If the value is set to YES then Business Process Versions that are enabled or
disabled while the engine is running are immediately recognized. However, setting
this value to YES may degrade performance.

! Do not preload unnecessary Business Processes — The Business Processes to
Preload engine configuration parameter allows you to load all or a subset of all the
business processes stored in the e*Insight database. The default setting is ALL.
Naming specific business processes to preload may improve performance if you
have a large number of business processes defined.

! Do not include input only attributes in the “Done” Event — To simplify your
Collaboration Rules script, you may decide to copy everything from the source ETD
to the destination ETD, especially when using Java. This copies all the input
attributes to the destination ETD and, unless they are removed, they are included in
the “Done” Event. This requires additional processing by the engine, as it tries to
write the attribute to the database but is refused permission.
e*Insight Business Process Manager Implementation Guide 274 SeeBeyond Proprietary and Confidential

Chapter 18

Troubleshooting

One of the easiest ways to debug your e*Gate configuration is through the use of log
files. All executable components—BOBs, e*Ways, IQ Managers, and Control Brokers—
have the ability to create log files that contain whatever level of debugging information
you select.

18.1 Log File Locations
All log files are stored in the \eGate\client\logs directory on the Participating Host
running the elements that generate the log entries. Logs are named after the component
that creates them; for example, the eX_eBPM engine creates a log file called
eX_eBPM.log.

18.2 Generating Log Files
To configure a component to generate a log file:

1 In the e*Gate Enterprise Manager window, select the component that you want to
configure and display its properties.

2 Select the Advanced tab, and then click Log.

3 Select the desired logging options (see Figure 162).
e*Insight Business Process Manager Implementation Guide 275 SeeBeyond Proprietary and Confidential

Chapter 18 Section 18.2
Troubleshooting Generating Log Files
Figure 162 Logging Options

You can view a component’s log using any text editor, and you can view the log while
the component is still running. However, depending on the editor, you may need to re-
read the file to “refresh” your view of the log data. You cannot get log updates “on the
fly.”

The most common error most first-time e*Gate developers find in a log file is, “Unable
to load module configuration.” This message means that you have created an e*Gate
component but not assigned both an executable file and a configuration file to it.

When you first start to debug your e*Insight schema, you should apply minimal flags
so it is easier to find useful messages. You can start with the following flags with a
DEBUG logging level selected:

! e*Way (EWY)

! Collaboration (COL) — for eIJSchema

! Monk (MNK) — for eISchema

Note: A specific debugging flag does not appear in the flags list for the e*Insight engine,
but if the logging level is set to anything other than None, then messages of type
EBPM appear in the log.Setting the e*Insight engine logging level to Trace
generates a very detailed log of the engine’s activity.

For more information about logging and debugging options, see the e*Gate Integrator
System Administration and Operations Guide.
e*Insight Business Process Manager Implementation Guide 276 SeeBeyond Proprietary and Confidential

Chapter 18 Section 18.3
Troubleshooting Common Problems
18.3 Common Problems
The common problems when you run an e*Insight schema initially broadly fall into
two categories; either the e*Insight engine is incorrectly configured or the XML
message that is sent to the e*Insight engine contains invalid information.

Table 59 and Table 60 show a number of common problems and suggested actions you
should take. The tables also shows where to look for the error message and the logging
required to display the error.

Table 59 Common errors (eIJSchema)

Error Message
Debug

Flag
Problem Resolution

JMSException: Could not
connect to host: [hostname],
port: 24053

COL eIcp_eInsightJMS e*Way
connection is configured
incorrectly

In the eIcp_eInsightJMS
connection configuration file,
Message Service section,
check the value for Server
Name and Host Name.

Cannot connect to e*Insight
Backend DataBase: Io
exception: Invalid number
format for port number

EWY JDBC URL incorrect In the eIcp_eInsightEngine
configuration file, eBPM
Settings section, check the
value defined for JDBC URL
String.

Cannot connect to e*Insight
Backend DataBase: Invalid
Oracle URL specified

EWY

Cannot connect to e*Insight
Backend DataBase: Io
exception: Connection
refused

EWY Unable to connect to the
database

In the eIcp_eInsightEngine
configuration file, eBPM
Settings section, check the
value defined for JDBC URL
String.

Cannot connect to e*Insight
Backend DataBase: ORA-
01017: invalid username/
password; logon denied

EWY Incorrect user name or
password

In the eIcp_eInsightEngine
configuration file, eBPM
Settings section, check the
values defined for Database
User Name and Encrypted
Password.
e*Insight Business Process Manager Implementation Guide 277 SeeBeyond Proprietary and Confidential

Chapter 18 Section 18.3
Troubleshooting Common Problems
startActivity() failed:
Definition not found for
:Payrolls

EWY Incorrect business process
name

Check that the business
process name defined in the
CRS matches the business
process name defined in
e*Insight exactly.
Also, check that a business
process version has been
enabled for this business
process.
Note: Although the error
message appears in the
eX_eBPM log, the problem is
in the component that sent
the message to the e*Insight
engine.

startActivity() failed: Invalid
BP_EVENT type:STARTBP

EWY Incorrect BP_EVENT type Check that the BP_EVENT type
defined in the CRS is correct.
Note: Although the error
appears in the eX_eBPM log,
the problem is in the
component that sent the
message to the e*Insight
engine.

ewjx: Exception getMessage():
processOutgoing(): eBPM
cannot process XML data:
ORA-01407: cannot update
("EX_ADMIN"."BUSINESS_PR
OCESS_INSTANCE"."BPI_NM
") to NULL

EWY No ID set Check that the ID is defined in
the CRS.
Note: Although the error
appears in the eX_eBPM log,
the problem is in the
component that sent the
message to the e*Insight
engine.

Table 59 Common errors (eIJSchema)

Error Message
Debug

Flag
Problem Resolution
e*Insight Business Process Manager Implementation Guide 278 SeeBeyond Proprietary and Confidential

Chapter 18 Section 18.3
Troubleshooting Common Problems
Table 60 Common errors (eISchema)

Error Message
Debug

Flag
Problem Resolution

eX_eBPM (Fatal): ewjx: the
"JNI DLL" (<jvm path>)
specified is not a Java 2
version

EBPM jvm configuration incorrect In the eX_eBPM configuration
file, Java VM Configuration
section, check the value
defined for JNI DLL.

eX_eBPM (Warning): Cannot
connect to eBPM Backend
DataBase: Io exception:
Connection
refused(DESCRIPTION=(TMP
=)(VSNNUM=135290880)(ERR=
12505)(ERROR_STACK=(ERRO
R=(CODE=12505)(EMFI=4))))

EBPM jdbc url incorrect In the eX_eBPM configuration
file, eBPM Settings section,
check the value defined for
JDBC URL String.

eX_eBPM (Warning): Cannot
connect to eBPM Backend
DataBase: ORA-01017: invalid
username/password; logon
denied

EBPM Incorrect user name or
password

In the eX_eBPM configuration
file, eBPM Settings section,
check the values defined for
Database User Name and
Encrypted Password.

 >>>>MONKEXCEPT:0036:
RESOLVE_VARIABLE: v
ariable <eX-set-attribute> has
not been defined.

MNK eX-eBPM-utils.monk has not
been loaded

Copy eX-eBPM-utils.monk to
<egate>\client\monk_library.

>>>>MONKEXCEPT:0069:
throw: eBPM: Cannot process
event

MNK Incorrect business process
name

Check that the business
process name defined in the
CRS matches the business
process name defined in
e*Insight exactly.
Also, check that a business
process version has been
enabled for this business
process.
Note: Although the error
message appears in the
eX_eBPM log, the problem is
in the component that sent
the message to the e*Insight
engine.

ewjx: Exception getMessage():
processOutgoing(): eBPM
cannot process XML data:
ERROR: Unable to load
business process. bpoId not
found for :fred

EWY
e*Insight Business Process Manager Implementation Guide 279 SeeBeyond Proprietary and Confidential

Chapter 18 Section 18.3
Troubleshooting Common Problems
>>>>MONKEXCEPT:0069:
throw: eBPM: Cannot process
event

MNK Incorrect BP_EVENT type Check that the BP_EVENT type
defined in the CRS is correct.
Note: Although the error
appears in the eX_eBPM log,
the problem is in the
component that sent the
message to the e*Insight
engine.

ewjx: Exception getMessage():
processOutgoing(): eBPM
cannot process XML data:
Invalid BP_EVENT
type:START_BD

EWY

>>>>MONKEXCEPT:0069:
throw: eBPM: Cannot process
event

MNK No ID set Check that the ID is defined in
the CRS.
Note: Although the error
appears in the eX_eBPM log,
the problem is in the
component that sent the
message to the e*Insight
engine.

ewjx: Exception getMessage():
processOutgoing(): eBPM
cannot process XML data:
ORA-01407: cannot update
("EX_ADMIN"."BUSINESS_PR
OCESS_INSTANCE"."BPI_NM
") to NULL

EWY

ERROR - CONTINUING: BP
attribute not found
:Cust_Addres in createBPI()
bpiId:1016

EBPM Attribute does not exist in
e*Insight

Check that the attribute name
matches the name defined in
the CRS.
Note: Although the error
appears in the eX_eBPM log,
the problem is in the
component that sent the
message to the e*Insight
engine.

(get (eX-get-attribute
~input%eX_Event
"Item_Number"))
>>>>MONKEXCEPT:0009: get:
argument 1 must be a valid
path.

MNK Attribute does not exist in the
message sent to an e*Way or
BOB for an activity

Check that the attribute is
defined as an input attribute
for the activity.
Also, check that the attribute
name matches the name
defined in the CRS.
Note: This error appears in the
log for the e*Way or BOB for
the activity.

Table 60 Common errors (eISchema)

Error Message
Debug

Flag
Problem Resolution
e*Insight Business Process Manager Implementation Guide 280 SeeBeyond Proprietary and Confidential

Chapter 18 Section 18.4
Troubleshooting General Troubleshooting Tips
18.4 General Troubleshooting Tips

18.4.1 Locating the problem
Use the e*Insight GUI in monitor mode to determine whether a business process
instance has been created. If the BPI has not been created then you should look at the
eX_eBPM log and whatever component created the original message that was sent to
the engine. If the BPI has been created then locate the activity that is having a problem
and look in the appropriate log files.

Use the e*Gate Enterprise Monitor GUI to check whether a message has been processed
by a component. The number of inbound and outbound messages for a component is
displayed by the status command.

To display the status of a component

1 In the navigator pane of the Enterprise Monitor, click the desired component.

2 Click the Control tab.

3 From the Command drop-down list box, select Status.

4 Click Run.

Figure 163 shows an example status display. EventsInbound and EventsOutbound
display the number of messages processed.
e*Insight Business Process Manager Implementation Guide 281 SeeBeyond Proprietary and Confidential

Chapter 18 Section 18.4
Troubleshooting General Troubleshooting Tips
Figure 163 Example status display

Note: The ExtInterface value shows whether the e*Insight engine has successfully
connected to the database. If the value is “Down” then the connection has not yet
been successfully made, even though the e*Insight engine state is shown as “Up”.

18.4.2 Viewing the Message Content
The messages sent to and from the e*Insight engine can be viewed and interpreted. The
sample below shows a “START_BP” message sent to the e*Insight engine. You should
be able to determine from the message that the business process name is ProcessOrder,
the ID is 200108231344480169, and there are a number of global attributes defined
(namely, Cust_Address, Cust_Name, Cust_email, Item_Description, Item_Number,
and Order_Quantity).

13:44:48.219 IQV D 2488 (iqput.cxx:114): sending to iq manager Data Follows
(bytes 581):
 3C 65 58 5F 45 76 65 6E 74 3E 0A 3C 42 50 5F 45 | <eX_Event>.<BP_E
 56 45 4E 54 0A 54 59 50 45 3D 22 53 54 41 52 54 | VENT.TYPE="START
 5F 42 50 22 0A 49 44 3D 22 32 30 30 31 30 38 32 | _BP".ID="2001082
 33 31 33 34 34 34 38 30 31 36 39 22 0A 4E 41 4D | 31344480169".NAM
 45 3D 22 50 72 6F 63 65 73 73 4F 72 64 65 72 22 | E="ProcessOrder"
 3E 0A 3C 41 54 54 52 49 42 55 54 45 0A 56 41 4C | >.<ATTRIBUTE.VAL
 55 45 3D 22 34 30 34 20 45 2E 20 48 75 6E 74 69 | UE="404 E. Hunti
 6E 67 74 6F 6E 20 44 72 2E 22 0A 54 59 50 45 3D | ngton Dr.".TYPE=
 22 53 54 52 49 4E 47 22 0A 4E 41 4D 45 3D 22 43 | "STRING".NAME="C
 75 73 74 5F 41 64 64 72 65 73 73 22 3E 3C 2F 41 | ust_Address"></A
 54 54 52 49 42 55 54 45 3E 0A 3C 41 54 54 52 49 | TTRIBUTE>.<ATTRI
e*Insight Business Process Manager Implementation Guide 282 SeeBeyond Proprietary and Confidential

Chapter 18 Section 18.4
Troubleshooting General Troubleshooting Tips
 42 55 54 45 0A 56 41 4C 55 45 3D 22 4A 6F 68 6E | BUTE.VALUE="John
 20 53 6D 69 74 68 22 0A 54 59 50 45 3D 22 53 54 | Smith".TYPE="ST
 52 49 4E 47 22 0A 4E 41 4D 45 3D 22 43 75 73 74 | RING".NAME="Cust
 5F 4E 61 6D 65 22 3E 3C 2F 41 54 54 52 49 42 55 | _Name"></ATTRIBU
 54 45 3E 0A 3C 41 54 54 52 49 42 55 54 45 0A 56 | TE>.<ATTRIBUTE.V
 41 4C 55 45 3D 22 6A 73 6D 69 74 68 40 73 65 65 | ALUE="jsmith@see
 62 65 79 6F 6E 64 2E 63 6F 6D 22 0A 54 59 50 45 | beyond.com".TYPE
 3D 22 53 54 52 49 4E 47 22 0A 4E 41 4D 45 3D 22 | ="STRING".NAME="
 43 75 73 74 5F 65 6D 61 69 6C 22 3E 3C 2F 41 54 | Cust_email"></AT
 54 52 49 42 55 54 45 3E 0A 3C 41 54 54 52 49 42 | TRIBUTE>.<ATTRIB
 55 54 45 0A 56 41 4C 55 45 3D 22 4D 69 6C 6C 65 | UTE.VALUE="Mille
 6E 6E 69 75 6D 20 50 65 74 20 52 6F 63 6B 22 0A | nnium Pet Rock".
 54 59 50 45 3D 22 53 54 52 49 4E 47 22 0A 4E 41 | TYPE="STRING".NA
 4D 45 3D 22 49 74 65 6D 5F 44 65 73 63 72 69 70 | ME="Item_Descrip
 74 69 6F 6E 22 3E 3C 2F 41 54 54 52 49 42 55 54 | tion"></ATTRIBUT
 45 3E 0A 3C 41 54 54 52 49 42 55 54 45 0A 56 41 | E>.<ATTRIBUTE.VA
 4C 55 45 3D 22 33 33 33 33 33 22 0A 54 59 50 45 | LUE="33333".TYPE
 3D 22 53 54 52 49 4E 47 22 0A 4E 41 4D 45 3D 22 | ="STRING".NAME="
 49 74 65 6D 5F 4E 75 6D 62 65 72 22 3E 3C 2F 41 | Item_Number"></A
 54 54 52 49 42 55 54 45 3E 0A 3C 41 54 54 52 49 | TTRIBUTE>.<ATTRI
 42 55 54 45 0A 56 41 4C 55 45 3D 22 31 22 0A 54 | BUTE.VALUE="1".T
 59 50 45 3D 22 4E 55 4D 42 45 52 22 0A 4E 41 4D | YPE="NUMBER".NAM
 45 3D 22 4F 72 64 65 72 5F 51 75 61 6E 74 69 74 | E="Order_Quantit
 79 22 3E 3C 2F 41 54 54 52 49 42 55 54 45 3E 3C | y"></ATTRIBUTE><
 2F 42 50 5F 45 56 45 4E 54 3E 3C 2F 65 58 5F 45 | /BP_EVENT></eX_E
 76 65 6E 74 3E | vent>

The sample below shows an example of a “Do” message. You should be able to
determine from the message that the business process name is ProcessOrder, the ID is
200108231344480169, and the activity name is Check_Inv. There are two global
attributes defined as input attributes for this activity, Item_Number and
Order_Quantity.

14:42:27.716 MNKV D 2228 (monk_extension.cxx:745): Output topic:
eX_Check_Inv_Do
14:42:27.726 MNKV D 2228 (monk_extension.cxx:763): Msg body Data Follows
(bytes 389):
 3C 65 58 5F 45 76 65 6E 74 3E 0A 3C 42 50 5F 45 | <eX_Event>.<BP_E
 56 45 4E 54 0A 42 50 49 5F 49 44 3D 22 31 36 31 | VENT.BPI_ID="161
 36 2E 30 2E 32 30 32 3A 22 0A 54 59 50 45 3D 22 | 6.0.202:".TYPE="
 44 4F 5F 41 43 54 49 56 49 54 59 22 0A 49 44 3D | DO_ACTIVITY".ID=
 22 32 30 30 31 30 38 32 30 31 34 33 38 30 34 30 | "200108231344480
 36 34 36 22 0A 4E 41 4D 45 3D 22 50 72 6F 63 65 | 169".NAME="Proce
 73 73 4F 72 64 65 72 22 3E 0A 3C 41 43 54 49 56 | ssOrder">.<ACTIV
 49 54 59 20 4E 41 4D 45 3D 22 43 68 65 63 6B 5F | ITY NAME="Check_
 49 6E 76 22 20 49 44 3D 22 31 36 31 36 2E 35 36 | Inv" ID="1616.56
 39 22 20 2F 3E 0A 3C 41 54 54 52 49 42 55 54 45 | 9" />.<ATTRIBUTE
 20 4E 41 4D 45 3D 22 49 74 65 6D 5F 4E 75 6D 62 | NAME="Item_Numb
 65 72 22 20 54 59 50 45 3D 22 53 54 52 49 4E 47 | er" TYPE="STRING
 22 20 56 41 4C 55 45 3D 22 39 39 39 39 39 22 20 | " VALUE="99999"
 2F 3E 0A 3C 41 54 54 52 49 42 55 54 45 20 4E 41 | />.<ATTRIBUTE NA
 4D 45 3D 22 4F 72 64 65 72 5F 51 75 61 6E 74 69 | ME="Order_Quanti
 74 79 22 20 54 59 50 45 3D 22 4E 75 6D 62 65 72 | ty" TYPE="Number
 22 20 56 41 4C 55 45 3D 22 31 2E 30 22 20 2F 3E | " VALUE="1.0" />
 0A 3C 41 54 54 52 49 42 55 54 45 0A 56 41 4C 55 | .<ATTRIBUTE.VALU
 45 3D 22 65 42 50 4D 22 0A 4C 4F 43 41 54 49 4F | E="eBPM".LOCATIO
 4E 3D 22 45 4D 42 45 44 44 45 44 22 0A 54 59 50 | N="EMBEDDED".TYP
 45 3D 22 54 52 41 4E 53 49 45 4E 54 22 0A 4E 41 | E="TRANSIENT".NA
 4D 45 3D 22 65 58 5F 65 42 50 4D 53 65 72 76 65 | ME="eX_eBPMServe
 72 22 3E 3C 2F 41 54 54 52 49 42 55 54 45 3E 3C | r"></ATTRIBUTE><
 2F 42 50 5F 45 56 45 4E 54 3E 3C 2F 65 58 5F 45 | /BP_EVENT></eX_E
 76 65 6E 74 3E | vent>
e*Insight Business Process Manager Implementation Guide 283 SeeBeyond Proprietary and Confidential

Chapter 19

e*Insight Helper Monk Functions

This chapter provides information on the e*Insight Monk APIs. For e*Insight Monk
helper functions (used when working with the e*Insight ETD) see “e*Insight Helper
Monk Functions” on page 285.
e*Insight Business Process Manager Implementation Guide 284 SeeBeyond Proprietary and Confidential

Chapter 19 Section 19.1
e*Insight Helper Monk Functions e*Insight Helper Monk Functions
19.1 e*Insight Helper Monk Functions
These functions allow you to set information in the e*Insight Event
(eX_Standard_Event.ssc ETD) and to get information from it. These functions are
contained in the following file:

! eX-eBPM-utils.monk

Important: Make sure that the Monk file eX-eBPM-utils.monk, containing the e*Insight
helper functions, are loaded before calling them in a Collaboration Rules Script. You
can do this in several ways, by putting them in the root of the monk_library
directory, loading them explicitly in your CRS, or using the eX-init-eXchange
bootstrap file to load them via the Collaboration Rule.

These functions are described in detail on the following pages:

eX-get-attribute on page 286 eX-bin-set-attribute on page 295

eX-count-attribute on page 287 eX-count-local-attribute on page 296

eX-set-attribute on page 288 eX-get-local-attribute on page 297

eX-set-BP_EVENT on page 289 eX-set-local-attribute on page 298

eX-get-BP_EVENT on page 290 eX-copy-no-attribute on page 299

eX-get-Activity on page 291 eX-set-all-BP_EVENT on page 300

eX-set-Activity on page 292 eX-get-all-attribute on page 301

eX-string-set-attribute on page 293 eX-get-all-local-attribute on page 302

eX-xml-set-attribute on page 294
e*Insight Business Process Manager Implementation Guide 285 SeeBeyond Proprietary and Confidential

Chapter 19 Section 19.1
e*Insight Helper Monk Functions e*Insight Helper Monk Functions
eX-get-attribute

Syntax

(eX-get-attribute root-path attribute)

Description

eX-get-attribute finds the path to the value of the attribute specified in the e*Insight
Event named in the root-path.

Parameters

Return Values

Returns one of the following values:

Boolean
Returns #f (false) if the attribute value is not found

path

Returns the path to the attribute in the e*Insight Event. Use get to return the actual
value of the attribute.

Throws

None.

Example

For an Event where the value of Is_Valid_account? is "yes":

(get (eX-get-attribute ~input%eX_Event "Is_Valid_account?"))

=> yes

Name Type Description

root-path path Either ~input%eX_Event or
~output%eX_Event

attribute string The name of the attribute as it appears
in the e*Insight GUI.
e*Insight Business Process Manager Implementation Guide 286 SeeBeyond Proprietary and Confidential

Chapter 19 Section 19.1
e*Insight Helper Monk Functions e*Insight Helper Monk Functions
eX-count-attribute

Syntax

(eX-count-attribute root-path)

Description

eX-count-attribute searches the Event specified for attributes, and counts the number
of attributes found.

Parameters

Return Values

integer
Returns 0 to n depending on the number of attributes found.

Throws

None.

Example

For an Event containing three attributes:

(eX-count-attribute ~input%eX_Event)

=> 3

Name Type Description

root-path path Either ~input%eX_Event or
~output%eX_Event
e*Insight Business Process Manager Implementation Guide 287 SeeBeyond Proprietary and Confidential

Chapter 19 Section 19.1
e*Insight Helper Monk Functions e*Insight Helper Monk Functions
eX-set-attribute

Syntax

(eX-set-attribute root-path attribute value type)

Description

If the attribute exists in the Event specified in root-path, eX-set-attribute is reset to the
new value, otherwise a new entry for the specified attribute is created at the
appropriate location in the Event.

Parameters

Return Values

None.

Throws

None.

Example

(eX-set-attribute ~input%eX_Event "Is_Valid_account?" "no" "STRING")

=> sets the value of Is_Valid_account to "no".

Name Type Description

root-path path Either ~input%eX_Event or
~output%eX_Event

attribute string The name of the attribute as it appears
in the e*Insight GUI.

value string, XML or BIN The value to which you want to set the
attribute.

type string The type of Attribute. Examples:
! "BIN" - Interpreted as binary,

however, must be suitably encoded
for XML.

! "XML" - Interpreted as XML,
however, must be Base64 encoded
for XML.

! "STRING" - Interpreted as a string
(default).

! "TRANSIENT" - Interpreted as a
transient. The e*Insight engine does
not process the value but simply
return it as-is.

! "NUMBER" - Interpreted as a
decimal number, however, must be
given as a string.

! "BOOLEAN" - Interpreted as a
boolean, such as "true" and "false".
e*Insight Business Process Manager Implementation Guide 288 SeeBeyond Proprietary and Confidential

Chapter 19 Section 19.1
e*Insight Helper Monk Functions e*Insight Helper Monk Functions
eX-set-BP_EVENT

Syntax

(eX-set-BP_EVENT root-path event-type value)

Description

eX-set-BP_EVENT sets the value of the event type node in the e*Insight Event.

Parameters

Return Values

Boolean
Returns #t (true) except when an invalid parameter is passed, then #f (false) is returned.

Throws

None.

Example

(eX-set-BP_EVENT ~input%eX_Event "STATUS" "SUCCESS")

=> sets the status of the activity to SUCCESS

Name Type Description

root-path path Either ~input%eX_Event or
~output%eX_Event

event-type string STATUS, ID, NAME, or TYPE

value string The value for the business process
Event. For event-type "STATUS" value
must be either "SUCCESS" or
"FAILURE". For event-type "TYPE"
value must be DO_ACTIVITY,
START_BP, or UNDO_ACTIVITY.
e*Insight Business Process Manager Implementation Guide 289 SeeBeyond Proprietary and Confidential

Chapter 19 Section 19.1
e*Insight Helper Monk Functions e*Insight Helper Monk Functions
eX-get-BP_EVENT

Syntax

(eX-get-BP_EVENT root-path event-type)

Description

eX-get-BP_EVENT finds the path to the value for the event-type in the e*Insight Event
named in the root-path.

Parameters

Return Values

Returns one of the following values:

Boolean
Returns #f (false) if no data is found.

path
Returns the path to the value in the e*Insight Event. Use get to return the actual value.

Throws

None.

Example

For an Event with an ID of 11111:

(get (eX-get-BP_EVENT ~input%eX_Event "ID"))

=> 11111

Name Type Description

root-path path Either ~input%eX_Event or
~output%eX_Event

event-type string STATUS, ID, NAME or TYPE
e*Insight Business Process Manager Implementation Guide 290 SeeBeyond Proprietary and Confidential

Chapter 19 Section 19.1
e*Insight Helper Monk Functions e*Insight Helper Monk Functions
eX-get-Activity

Syntax

(eX-get-Activity root-path event-type)

Description

eX-get-Activity searches the e*Insight Event specified in for the name or ID of the
current activity.

Parameters

Return Values

Returns one of the following values:

Boolean
Returns #f (false) if the requested value is not found.

path
Returns the path to the name of the current activity as found in the e*Insight Event. Use
get to return the actual value.

Throws

None.

Example

For an Event with an activity name of "Check_Credit":

(get (eX-get-Activity ~input%eX_Event "NAME"))

=> Check_Credit

Name Type Description

root-path path Either ~input%eX_Event or
~output%eX_Event

event-type string Either ID, NAME
e*Insight Business Process Manager Implementation Guide 291 SeeBeyond Proprietary and Confidential

Chapter 19 Section 19.1
e*Insight Helper Monk Functions e*Insight Helper Monk Functions
eX-set-Activity

Syntax

(eX-set-Activity root-path event-type data)

Description

eX-set-Activity sets the value of either the current activity name or ID.

Parameters

Return Values

None.

Throws

None.

Example

(eX-set-Activity ~input%eX_Event "ID" "12345")

=> sets the activity ID to "12345"

Name Type Description

root-path path Either ~input%eX_Event or
~output%eX_Event

event-type string Either ID, NAME

data string The value of the activity ID or NAME.
e*Insight Business Process Manager Implementation Guide 292 SeeBeyond Proprietary and Confidential

Chapter 19 Section 19.1
e*Insight Helper Monk Functions e*Insight Helper Monk Functions
eX-string-set-attribute

Syntax

(eX-string-set-attribute root-path attribute value)

Description

eX-string-set-attribute automatically calls eX-set-attribute with the last argument as
"STRING".

Parameters

Return Values

None.

Throws

None.

Example

(eX-sting-set-attribute ~input%eX_Event "Is_Valid_account?" "no")

=> sets the value of Is_Valid_account to "no".

Name Type Description

root-path path Either ~input%eX_Event or
~output%eX_Event

attribute string The name of the attribute as it appears
in the e*Insight GUI.

value string The value to which you want to set the
attribute.
e*Insight Business Process Manager Implementation Guide 293 SeeBeyond Proprietary and Confidential

Chapter 19 Section 19.1
e*Insight Helper Monk Functions e*Insight Helper Monk Functions
eX-xml-set-attribute

Syntax

(eX-xml-set-attribute root-path attribute value)

Description

eX-xml-set-attribute automatically calls eX-set-attribute with last argument as "XML".

Parameters

Return Values

None.

Throws

None.

Example

(eX-xml-set-attribute ~input%eX_Event "Cust_name" (raw->base64
"<a>Bryce Ferney)")

=> sets Cust_name to "PGE+QnJ5Y2UgRmVybmV5PC8+"

Name Type Description

root-path path Either ~input%eX_Event or
~output%eX_Event

attribute string The name of the attribute as it appears
in the e*Insight GUI.

value XML The base 64 encoded XML value to
which you want to set the attribute.
e*Insight Business Process Manager Implementation Guide 294 SeeBeyond Proprietary and Confidential

Chapter 19 Section 19.1
e*Insight Helper Monk Functions e*Insight Helper Monk Functions
eX-bin-set-attribute

Syntax

(eX-bin-set-attribute root-path attribute value)

Description

eX-bin-set-attribute automatically calls eX-set-attribute with last argument as "BIN".

Parameters

Return Values

None.

Throws

None.

Example

(eX-sting-set-attribute ~input%eX_Event "Cust_name" "<base64 encoded
binary data>")

=> sets Cust_name to the specified value

Name Type Description

root-path path Either ~input%eX_Event or
~output%eX_Event

attribute string The name of the attribute as it appears
in the e*Insight GUI.

value string The base 64 encoded binary value to
which you want to set the attribute.
e*Insight Business Process Manager Implementation Guide 295 SeeBeyond Proprietary and Confidential

Chapter 19 Section 19.1
e*Insight Helper Monk Functions e*Insight Helper Monk Functions
eX-count-local-attribute

Syntax

(eX-count-local-attribute root-path)

Description

eX-count-local-attribute counts the number of local attributes a specific e*Insight Event
contains.

Parameters

Return Values

integer
Returns 0 to n, depending on the number of attributes found.

Throws

None.

Example

For an Event containing three local attributes:

(eX-count-local-attribute ~input%eX_Event)

=> 3

Name Type Description

root-path path Either ~input%eX_Event or
~output%eX_Event
e*Insight Business Process Manager Implementation Guide 296 SeeBeyond Proprietary and Confidential

Chapter 19 Section 19.1
e*Insight Helper Monk Functions e*Insight Helper Monk Functions
eX-get-local-attribute

Syntax

(eX-get-local-attribute root-path attr-name)

Description

eX-get-local-attribute finds the path to the specified local attribute in the e*Insight
Event named in the root-node.

Parameters

Return Values

Returns one of the following values:

Boolean
Returns #f (false) if the attribute value is not found.

path

Returns the path to the value of the local attribute. Use get to return the actual value.

Throws

None.

Example

For an Event where the value of the local attribute "Debit_Amount" is "500":

(get (eX-get-local-attribute ~input%eX_Event "Debit_Amount"))

=> 500

Name Type Description

root-path path Either ~input%eX_Event or
~output%eX_Event

attr-name string The name of the local attribute as it
appears in the e*Insight GUI.
e*Insight Business Process Manager Implementation Guide 297 SeeBeyond Proprietary and Confidential

Chapter 19 Section 19.1
e*Insight Helper Monk Functions e*Insight Helper Monk Functions
eX-set-local-attribute

Syntax

(eX-set-local-attribute root-path attr-name attr-value attr-type)

Description

If the local attribute exists in the Event specified in root-path, eX-set-local-attribute is
reset to the new value; otherwise a new entry for the specified attribute is created at the
appropriate location in the Event.

Parameters

Return Values

None.

Throws

None.

Example

(eX-set-local-attribute ~input%eX_Event "Debit_Amount" "500"
"STRING")

=> sets the value of the local attribute "Debit_Amount" to 500.

Name Type Description

root-path path Either ~input%eX_Event or
~output%eX_Event

attr-name string The name of the attribute as it appears
in the e*Insight GUI.

attr-value string, XML or BIN The value to which you want to set the
attribute.

attr-type string The type of Attribute. Examples:
! "BIN" - Interpreted as binary,

however, must be suitably encoded
for XML.

! "XML" - Interpreted as XML,
however, must be Base64 encoded
for XML.

! "STRING" - Interpreted as a string
(default).

! "TRANSIENT" - Interpreted as a
transient. The e*Insight engine does
not process the value but simply
return it as-is.

! "NUMBER" - Interpreted as a
decimal number, however, must be
given as a string.

! "BOOLEAN" - Interpreted as a
boolean, such as "true" and "false".
e*Insight Business Process Manager Implementation Guide 298 SeeBeyond Proprietary and Confidential

Chapter 19 Section 19.1
e*Insight Helper Monk Functions e*Insight Helper Monk Functions
eX-copy-no-attribute

Syntax

(eX-copy-no-attribute source-root-node dest-root-node)

Description

eX-copy-no-attribute copies all of the business process tracking information in the
source e*Insight Event to the destination e*Insight Event. No attribute information is
copied except for the machine-defined attribute eX_eBPMServer, which is used to
return the e*Insight Event to the proper e*Insight engine.

The eX_Activity_Do (or Undo) Event published by the e*Insight engine contains
tracking information (such as the business process instance ID, name of the activity,
and so on) that must be included in the "Done" Event that is sent back to the e*Insight
engine when the activity is finished.

eX-copy-no-attribute provides a convenient way for an activity Collaboration to copy
the e*Insight tracking information from source to destination, without copying the
input attribute information that does not belong in the "Done" Event. See “Sending the
“Done” Event Back to e*Insight (eIJSchema)” on page 88 for more information on
how to use this function.

Parameters

Return Values

None.

Throws

None.

Example

(eX-copy-no-attribute ~input%eX_Event ~output%eX_Event)

=> copies all data except attribute data

Name Type Description

source-root-node path ~input%eX_Event

dest-root-node path ~output%eX_Event
e*Insight Business Process Manager Implementation Guide 299 SeeBeyond Proprietary and Confidential

Chapter 19 Section 19.1
e*Insight Helper Monk Functions e*Insight Helper Monk Functions
eX-set-all-BP_EVENT

Syntax

(eX-set-all-BP_EVENT source-root-node type status id name [BPI_ID])

Description

eX-set-all-BP_EVENT is used to set all the information in the BP_EVENT node
structure at one time.

Parameters

Return Values

None.

Throws

None.

Example

(eX-set-all-BP_EVENT ~output%eX_Event "DO_ACTIVITY" "SUCCESS"
"UNIQUE_ID_1002345812" "WebOrder")

=> sets the value of all the BP_EVENT nodes in the output Event.

Name Type Description

source-root-node path Either ~input%eX_Event or
~output%eX_Event

type string The type of business process Event.
Must be one of the following:
"DO_ACTIVITY", "UNDO_ACTIVITY",
or "START_BP".

status string For types "DO_ACTIVITY" or
"UNDO_ACTIVITY" indicates whether
the activity completed successfully or
not. Must be either "SUCCESS" or
"FAILURE". For type "START_BP" this
parameter is ignored.

id string User-assigned unique identifier for
the business process instance.

name string Name of the current business process.
Must match the name in the e*Insight
GUI.

BPI_ID integer Machine assigned ID used to speed up
processing (optional).
e*Insight Business Process Manager Implementation Guide 300 SeeBeyond Proprietary and Confidential

Chapter 19 Section 19.1
e*Insight Helper Monk Functions e*Insight Helper Monk Functions
eX-get-all-attribute

Syntax

(eX-get-all-attribute source-root-node [attr1 attr2 ... attrN])

Description

eX-get-all-attribute provides a way to return a number of paths to attribute values at
once, in a list format. The order of paths in the list is the same as the order in which you
requested them, that is, path-to-attr1 first, path-to-attr2 second, and so on.

Parameters

Return Values

Returns one of the following values:

list
Returns a list composed of the paths to the values in the order you specified. If a
specified attribute is not found, its value in the list is #f (false).

Boolean
Returns #f (false) if no attribute names are passed in as parameters.

Throws

None.

Example

(get (car (eX-get-all-attribute ~input%eX_Event "Cust_Name"
"Cust_Address" "Cust_e-mail")))

=> "Bryce Ferney"

Name Type Description

source-root-node path Either ~input%eX_Event or
~output%eX_Event

attr1 string The name of the attribute whose path
you want to be first in the list.

attr2 string The name of the attribute whose path
you want to be second in the list.

attrN string The name of the attribute whose path
you want to be the last in the list.
e*Insight Business Process Manager Implementation Guide 301 SeeBeyond Proprietary and Confidential

Chapter 19 Section 19.1
e*Insight Helper Monk Functions e*Insight Helper Monk Functions
eX-get-all-local-attribute

Syntax

(eX-get-all-local-attribute source-root-node [attr1 attr2 ... attrN])

Description

eX-get-all-local-attribute provides a way to return a number of paths to local attribute
values at once, in a list format. The order of paths in the list is the same as the order in
which you requested them, that is, path-to-attr1 first, path-to-attr2 second, and so on.

Parameters

Return Values

Returns one of the following values:

list
Returns a list composed of the paths to the values in the order you specified. If a
specified attribute is not found, its value in the list is #f (false).

Boolean
Returns #f (false) if no attribute names are passed in as parameters.

Throws

None.

Example

(get (car (eX-get-all-local-attribute ~input%eX_Event "Cust_Name"
"Cust_Address" "Cust_e-mail")))

=> "Bryce Ferney"

Name Type Description

source-root-node path Either ~input%eX_Event or
~output%eX_Event

attr1 string The name of the local attribute whose
path you want to be first in the list.

attr2 string The name of the local attribute whose
path you want to be second in the list.

attrN string The name of the local attribute whose
path you want to be the last in the list.
e*Insight Business Process Manager Implementation Guide 302 SeeBeyond Proprietary and Confidential

Chapter 20

Java Helper Methods

A number of Java methods have been added to make it easier to set information in the
e*Insight Event (ETD) and to get information from it. These methods are contained in
classes:

! “ACTIVITY Class” on page 304

! “ATTRIBUTE Class” on page 324

! “BP_EVENT Class” on page 342

! “eX_StandardEvent Class” on page 378
e*Insight Business Process Manager Implementation Guide 303 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class
20.1 ACTIVITY Class
public class ACTIVITY

extends com.stc.jcsre.XMLETDImpl

implements com.stc.jcsre.ETD

A class to represent the ACTIVITY object of an e*Insight (Business Process
Management) XML ETD. It is defined in the following DTD:

<!--eBusiness Process Manager Event section-->
 <!ELEMENT BP_EVENT (ACTIVITY?, ATTRIBUTE*)>
 <!ATTLIST BP_EVENT
 TYPE (START_BP | DO_ACTIVITY | UNDO_ACTIVITY | UNDO_BPI |
RESTART_ACTIVITY | SKIP_ACTIVITY | RELOAD_BP | AUTHORIZE |
DONT_AUTHORIZE) #REQUIRED
 STATUS (SUCCESS | FAILURE) #IMPLIED
 NAME CDATA #IMPLIED
 ID CDATA #IMPLIED
 BPI_ID CDATA #IMPLIED
 >
 <!ELEMENT ATTRIBUTE EMPTY>
 <!--ENCODING=base64 or whatever; eBPM only recognizes base64 for
TYPE=XML-->
 <!ATTLIST ATTRIBUTE
 TYPE (BIN | XML | STRING | TRANSIENT | NUMBER | BOOLEAN) #REQUIRED
 NAME CDATA #REQUIRED
 VALUE CDATA #REQUIRED
 ENCODING CDATA #IMPLIED
 LOCATION (FILE | DB | URL | EMBEDDED | AUTO) #IMPLIED
 >
 <!ELEMENT ACTIVITY (ATTRIBUTE*)>
 <!ATTLIST ACTIVITY
 NAME CDATA #IMPLIED
 ID CDATA #IMPLIED
 >

These methods are described in detail on the following pages:

addATTRIBUTE on page 305 marshal on page 314

clearATTRIBUTE on page 306 omitID on page 315

countATTRIBUTE on page 307 omitNAME on page 316

getATTRIBUTE_VALUE on page 308 removeATTRIBUTE on page 317

getATTRIBUTE on page 309 setATTRIBUTE on page 318

getID on page 310 setID on page 320

getNAME on page 311 setNAME on page 321

hasID on page 312 toString on page 322

hasNAME on page 313 unmarshal on page 323
e*Insight Business Process Manager Implementation Guide 304 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class
addATTRIBUTE

Syntax

void addATTRIBUTE(ATTRIBUTE value)
void addATTRIBUTE(int index, ATTRIBUTE value)

Description

addATTRIBUTE inserts a new local Attribute into this ACTIVITY object.
Parameters

Return Values

None.

Throws

None.

Name Type Description

index integer The offset to the list at which insertion
occurs (zero-based).

value ATTRIBUTE The local Attribute.
e*Insight Business Process Manager Implementation Guide 305 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class
clearATTRIBUTE

Syntax

void clearATTRIBUTE()

Description

clearATTRIBUTE removes all the local Attributes from this ACTIVITY object.
Parameters

None.

Return Values

None.

Throws

None.

Example

clearATTRIBUTE();
e*Insight Business Process Manager Implementation Guide 306 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class
countATTRIBUTE

Syntax

int countATTRIBUTE()

Description

countATTRIBUTE retrieves the number of local Attributes currently existing in this
Activity of the Business Process object.

Parameters

None.

Return Values

integer
Returns the number of global Attributes.

Throws

None.

Example

countATTRIBUTE();
=> 5
e*Insight Business Process Manager Implementation Guide 307 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class
getATTRIBUTE_VALUE

Syntax

java.lang.String getATTRIBUTE_VALUE(java.lang.String name)

Description

getATTRIBUTE_VALUE retrieves the value of a specific local Attribute by name.

Parameters

Return Values

String
Returns the value of the local Attribute. Can be null if the Attribute of that name doesn't
exist.

Throws

None.

Example

getInstance().getBP_EVENT().getACTIVITY.getATTRIBUTE_VALUE("In_Stock"
);

=> "yes"

Name Type Description

name java.lang.String The name of the local Attribute.
e*Insight Business Process Manager Implementation Guide 308 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class
getATTRIBUTE

Syntax

ATTRIBUTE[] getATTRIBUTE()
ATTRIBUTE getATTRIBUTE(int i)
ATTRIBUTE getATTRIBUTE(java.lang.String name)

Description

getATTRIBUTE retrieves local Attributes. A specific Attribute can be retrieved by
name or by index. Alternatively, it can be used to retrieve all the local Attributes of an
Activity of the Business Process as an array.

Parameters

Return Values

Returns one of the following values:

ATTRIBUTE[]
Returns the array of local Attributes.

ATTRIBUTE
Returns the requested Attribute.

Throws

None.

Name Type Description

i integer The list index of the Attribute to be
retrieved (zero-based).

name string The name of the local Attribute.
e*Insight Business Process Manager Implementation Guide 309 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class
getID

Syntax

java.lang.String getID()

Description

getID retrieves the internal unique identifier created by e*Insight for this Activity in the
Business Process.

Parameters

None.

Return Values

java.lang.String
Returns the unique internal identifier created for this Activity.

Throws

None.

Example

getID();
=> "12345"
e*Insight Business Process Manager Implementation Guide 310 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class
getNAME

Syntax

java.lang.String getNAME()

Description

getNAME retrieves the case-sensitive name of this Business Process Activity.

Parameters

None.

Return Values

java.lang.String
Returns the case-sensitive name of this ACTIVITY object.

Throws

None.

Example

getInstance().getBP_EVENT().getACTIVITY().getNAME();
=> "Ship_Order"
e*Insight Business Process Manager Implementation Guide 311 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class
hasID

Syntax

boolean hasID()

Description

hasID checks if there is an unique identifier for this ACTIVITY object.

Parameters

None.

Return Values

boolean
Returns true if there exists an unique ID; otherwise returns false.

Throws

None.

Example

hasID();
=> true
e*Insight Business Process Manager Implementation Guide 312 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class
hasNAME

Syntax

boolean hasNAME()

Description

hasNAME checks if there exists a name for this ACTIVITY object.

Parameters

None.

Return Values

boolean
Returns true if name exists for this ACTIVITY object; otherwise returns false.

Throws

None.

Example

hasNAME();
=> true
e*Insight Business Process Manager Implementation Guide 313 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class
marshal

Syntax

void marshal(org.xml.sax.ContentHandler handler,
org.xml.sax.ErrorHandler errorHandler)

Description

marshal gathers the data contained within this ETD object and formulates it back into a
serialized XML message.

Parameters

Return Values

None.

Throws

None.

Name Type Description

handler org.xml.sax.ContentHan
dler

The handler that converts content
within to XML.

errorHandler org.xml.sax.ErrorHandle
r

The handler to address errors during
conversion.
e*Insight Business Process Manager Implementation Guide 314 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class
omitID

Syntax

void omitID()

Description

omitID removes the unique identifier definition for this ACTIVITY object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitID();
e*Insight Business Process Manager Implementation Guide 315 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class
omitNAME

Syntax

void omitNAME()

Description

omitNAME removes the name definition from this ACTIVITY object.

Parameters

None

Return Values

None.

Throws

None.

Example

omitNAME();
e*Insight Business Process Manager Implementation Guide 316 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class
removeATTRIBUTE

Syntax

void removeATTRIBUTE(java.lang.String name)
void removeATTRIBUTE(int index)

Description

removeATTRIBUTE removes a specific local attribute from this ACTIVITY object.

Parameters

Return Values

None.

Throws

None.

Example

removeATTRIBUTE(1);

Name Type Description

name java.lang.String The name of the local attribute.

index int The index to the list of local attributes
(zero-based).
e*Insight Business Process Manager Implementation Guide 317 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class
setATTRIBUTE

Syntax

void setATTRIBUTE(ATTRIBUTE[] val)
void setATTRIBUTE(int i, ATTRIBUTE val)
void setATTRIBUTE(java.lang.String name java.lang.String value)
void setATTRIBUTE(java.lang.String name, java.lang.String type,
java.lang.String value)
void setATTRIBUTE(java.lang.String name, java.lang.String type,
java.lang.String encoding,java.lang.String value)
void setATTRIBUTE(java.lang.String name, java.lang.String type,
java.lang.String value, java.lang.String encoding,java.lang.String
location)

Description

setATTRIBUTE can be used to set all the local Attributes of an Activity of the Business
Process, set a local Attribute of an Activity of the Business Process, or set a specific local
Attribute by name.

Parameters

Name Type Description

val ATTRIBUTE The Attribute object.

val ATTRIBUTE[] The array of local Attributes.
i int The list index of the Attribute to be

retrieved (zero-based).

name java.lang.String The name of the global Attribute.

value java.lang.String The value of the global Attribute.

type java.lang.String The type of Attribute. Examples:
! "BIN" - Interpreted as binary,

however, must be suitably encoded
for XML.

! "XML" - Interpreted as XML,
however, must be Base64 encoded
for XML.

! "STRING" - Interpreted as a string
(default).

! "TRANSIENT" - Interpreted as a
transient. The e*Insight engine does
not process the value but simply
return it as-is.

! "NUMBER" - Interpreted as a
decimal number, however, must be
given as a string.

! "BOOLEAN" - Interpreted as a
boolean, such as "true" and "false".
e*Insight Business Process Manager Implementation Guide 318 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class
Return Values

None.

Throws

None.

Example

getInstance().getBP_EVENT().getACTIVITY.setATTRIBUTE("In_Stock","STRI
NG","yes");

encoding java.lang.String The encoding used for the value.
Examples:
! "base64’ - Standard MIME Base64

encoding.
! Null if plain text.

location java.lang.String The location of the actual data
associated with the Attribute value.
Examples:
! "FILE" - Attribute value specifies a

file where actual data exists.
! "DB" - Attribute value is a reference

to a row in a database table.
! "URL" - Attribute value specifies a

URL of where actual data exists.
! "EMBEDDED" - Attribute value is the

actual data (default).
! "AUTO" - Attribute value is actual

data but storage in e*Insight is
automatically determined.

Name Type Description
e*Insight Business Process Manager Implementation Guide 319 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class
setID

Syntax

void setID(java.lang.String val)

Description

setID sets the internal unique identifier created by e*Insight for this Activity in the
Business Process.

Parameters

Return Values

None.

Throws

None.

Example

setID("12345");

Name Type Description

val string The unique internal identifier created
for this Activity.
e*Insight Business Process Manager Implementation Guide 320 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class
setNAME

Syntax

void setNAME(java.lang.String val)

Description

setNAME sets the case-sensitive name of this Business Process Activity.

Parameters

Return Values

None.

Throws

None.

Example

setNAME("Ship_Order");

Name Type Description

val string The case-sensitive name of this
ACTIVITY object.
e*Insight Business Process Manager Implementation Guide 321 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class
toString

Syntax

java.lang.String toString()

Description

toString converts this ETD object to a printable String form.

Parameters

None.

Return Values

java.lang.String
Returns the XML message represent by this ETD object.

Throws

None.

Example

toSTRING();
e*Insight Business Process Manager Implementation Guide 322 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class
unmarshal
Syntax

void unmarshal(org.xml.sax.InputSource inputSource,
com.stc.jcsre.sml.SAXLexer lexer)

Description

unmarshal takes a serialized (marshalled) form of the ACTIVITY XML Event and
distributes (unmarshals) the data into this ETD object.

Parameters

Return Values

None.

Throws

org.xml.sax.SAXException - thrown when the data cannot be parsed

com.stc.jcsre.UnmarshalException - throw when the data cannot be unmarshalled

Name Type Description

inputSource org.xml.sax.InputSource The input source for the serialized
data.

lexer com.stc.jcsre.sml.SAXLe
xer

The SAX lexer (parser) to distribute the
data.
e*Insight Business Process Manager Implementation Guide 323 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class
20.2 ATTRIBUTE Class
public class ATTRIBUTE

extends com.stc.jcsre.XMLETDImpl

implements com.stc.jcsre.ETD

A class to represent the ATTRIBUTE object of an e*Insight (Business Process
Management) XML ETD. It is defined in the following DTD:

<!--eBusiness Process Manager Event section-->
 <!ELEMENT BP_EVENT (ACTIVITY?, ATTRIBUTE*)>
 <!ATTLIST BP_EVENT
 TYPE (START_BP | DO_ACTIVITY | UNDO_ACTIVITY | UNDO_BPI |
RESTART_ACTIVITY | SKIP_ACTIVITY | RELOAD_BP | AUTHORIZE |
DONT_AUTHORIZE) #REQUIRED
 STATUS (SUCCESS | FAILURE) #IMPLIED
 NAME CDATA #IMPLIED
 ID CDATA #IMPLIED
 BPI_ID CDATA #IMPLIED
 >
 <!ELEMENT ATTRIBUTE EMPTY>
 <!--ENCODING=base64 or whatever; eBPM only recognizes base64 for
TYPE=XML-->
 <!ATTLIST ATTRIBUTE
 TYPE (BIN | XML | STRING | TRANSIENT | NUMBER | BOOLEAN) #REQUIRED
 NAME CDATA #REQUIRED
 VALUE CDATA #REQUIRED
 ENCODING CDATA #IMPLIED
 LOCATION (FILE | DB | URL | EMBEDDED | AUTO) #IMPLIED
 >
 <!ELEMENT ACTIVITY (ATTRIBUTE*)>
 <!ATTLIST ACTIVITY
 NAME CDATA #IMPLIED
 ID CDATA #IMPLIED
 >

These methods are described on the following pages:

getENCODING on page 325 omitLOCATION on page 334

getLOCATION on page 326 setENCODING on page 335

getNAME on page 327 setLOCATION on page 336

getTYPE on page 328 setNAME on page 337

getVALUE on page 329 setTYPE on page 338

hasENCODING on page 330 setVALUE on page 339

hasLOCATION on page 331 toString on page 340

marshal on page 332 unmarshal on page 341

omitENCODING on page 333
e*Insight Business Process Manager Implementation Guide 324 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class
getENCODING

Syntax

java.lang.String getENCODING()

Description

getENCODING retrieves the encoding algorithm for the data contained in the Business
Process or Activity Attribute. Currently, only the base64 algorithm is supported. If not
defined, clear-text is assumed.

Parameters

None.

Return Values

java.lang.String
Returns the encoding algorithm used on the data.

Throws

None.

Example

getENCODING();
=> "base64"
e*Insight Business Process Manager Implementation Guide 325 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class
getLOCATION

Syntax

java.lang.String getLOCATION()

Description

getLOCATION retrieves the location type of where the data for an Attribute is actually
stored. In cases where the data is too long to be stored in standard database column, it
can be stored in another table where the column can be defined as a LONG RAW for
example, or it may be stored in a file on some file system. In such cases, a reference to
the actual data location is stored as the data for the Attribute.

Parameters

None.

Return Values

java.lang.String

Returns the location type for the Attribute data. This is one of the following values:

Throws

None.

Example

getLOCATION();
=> "EMBEDDED"

"FILE" Attribute data is the name of a file where actual
data is stored.

"DB" Attribute data is a reference such as ROWID to
a row in a table.

"URL" Attribute data is the URL to where the actual
data is stored.

"EMBEDDED" Attribute data is the actual data (this is the
default).

"AUTO" The actual data storage location is
automatically determined by the e*Insight
engine.
e*Insight Business Process Manager Implementation Guide 326 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class
getNAME

Syntax

java.lang.String getNAME()

Description

getNAME retrieves the name of the Business Process or Activity Attribute.

Parameters

None.

Return Values

java.lang.String
Returns the name of the Attribute.

Throws

None.

Example

getInstance().getBP_EVENT().getNAME();
=> "ProcessOrder"
e*Insight Business Process Manager Implementation Guide 327 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class
getTYPE

Syntax

java.lang.String getTYPE()

Description

getTYPE Retrieves the type of data stored in the Attribute.

Parameters

None.

Return Values

java.lang.String
Returns the type of data stored as one of the following values:

Throws

None.

Example

getInstance().getBP_EVENT().getTYPE();
=> "STRING"

"BIN" Attribute data is binary in nature. However,
must be safely encoded for XML.

"XML" Attribute data represents a XML message.
However, must be base64 encoded.

"STRING" Attribute data appears as clear-text string (this
is the default).

"TRANSIENT" Attribute data is not persisted in the e*Insight
database; is passed-through.

"NUMBER" Attribute data represents a decimal numeric
string.

"BOOLEAN" Attribute data represents a boolean string such
as "true" or "false".
e*Insight Business Process Manager Implementation Guide 328 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class
getVALUE

Syntax

java.lang.String getVALUE()

Description

getVALUE retrieves the value of the Business Process or Activity Attribute.

Parameters

None.

Return Values

java.lang.String
Returns the value of the Attribute.

Throws

None.

Example

getVALUE();
=> "yes"
e*Insight Business Process Manager Implementation Guide 329 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class
hasENCODING

Syntax

boolean hasENCODNG()

Description

hasENCODING checks if the encoding algorithm is defined for this ATTRIBUTE
object.

Parameters

None.

Return Values

boolean
Returns true if the encoding algorithm exists; otherwise returns false.

Throws

None.

Example

hasENCODING();
=> true
e*Insight Business Process Manager Implementation Guide 330 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class
hasLOCATION

Syntax

boolean hasLOCATION()

Description

hasLOCATION checks if the location is defined for this ATTRIBUTE object.

Parameters

None.

Return Values

boolean
Returns true if location exists, otherwise returns false.

Throws

None.

Example

hasLOCATION();
=> true
e*Insight Business Process Manager Implementation Guide 331 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class
marshal

Syntax

void marshal(org.xml.sax.ContentHandler handler,
org.xml.sax.ErrorHandler errorHandler)

Description

marshal gathers the data contained within this ETD object and formulates it back into a
serialized XML message.

Parameters

Return Values

None.

Throws

com.stc.jcsre.MarshalException

org.xml.sax.SAXException

Name Type Description

handler org.xml.sax.ContentHan
dler

The handler that converts content
within to XML.

errorHandler or.xml.sax.ErrorHandler The handler to address errors during
conversion.
e*Insight Business Process Manager Implementation Guide 332 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class
omitENCODING

Syntax

void omitENCODING()

Description

omitENCODING removes the encoding algorithm definition for this ATTRIBUTE
object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitENCODING();
e*Insight Business Process Manager Implementation Guide 333 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class
omitLOCATION

Syntax

void omitLOCATION()

Description

omitLOCATION removes the location definition for this ATTRIBUTE object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitLOCATION();
e*Insight Business Process Manager Implementation Guide 334 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class
setENCODING

Syntax

void setENCODING(java.lang.String val)

Description

setENCODING sets the encoding algorithm for the data contained in the Business
Process or Activity Attribute. Currently, only the "base64" algorithm is supported. If
not defined, clear-text is assumed.

Parameters

Return Values

None.

Throws

None.

Example

setENCODING("base64");

Name Type Description

val string The encoding algorithm used on the
data.
e*Insight Business Process Manager Implementation Guide 335 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class
setLOCATION

Syntax

void setLOCATION(java.lang.String val)

Description

setLOCATION sets the location type of where the data for an Attribute is actually
stored. In cases where the data is too long to be stored in standard database column, it
can be stored in another table where the column can be defined as a "LONG RAW" for
example, or it may be stored in a file on some file system.

Parameters

Return Values

None.

Throws

None.

Example

setLOCATION("EMBEDDED");

Name Type Description

val java.lang.String The location type for the Attribute
data. This can have one the following
values:
! "FILE" - Attribute data is the name of

a file where actual data is stored.
! "DB" - Attribute data is a reference

such as "ROWID" to a row in a table.
! "URL" - Attribute data is the URL to

where the actual data is stored.
! "EMBEDDED" - Attribute data is the

actual data (this is the default).
! "AUTO" - The actual data storage

location is automatically determined
by the e*Insight engine.
e*Insight Business Process Manager Implementation Guide 336 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class
setNAME

Syntax

void setNAME(java.lang.String val)

Description

setNAME sets the name of the Business Process or Activity Attribute.

Parameters

Return Values

None.

Throws

None.

Example

setNAME("In_Stock");

Name Type Description

val java.lang.String The name of the Attribute.
e*Insight Business Process Manager Implementation Guide 337 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class
setTYPE

Syntax

void setTYPE(java.lang.String val)

Description

setTYPE sets the type of data stored in the Attribute.

Parameters

Return Values

None.

Throws

None.

Example

setTYPE("STRING");

Name Type Description

val java.lang.String The type of data stored. This can take
one of the following values:
! "BIN" - Attribute data is binary in

nature. However, must be safely
encoded for XML.

! "XML" - Attribute data represents a
XML message. However, must be
base64 encoded.

! "STRING"- Attribute data appears as
clear-text string (this is the default).

! "TRANSIENT" - Attribute data is not
persisted in the e*Insight database;
is passed-thru.

! "NUMBER" - Attribute data
represents a decimal numeric string.

! "BOOLEAN" - Attribute data
represents a boolean string such as
"true" or "false".
e*Insight Business Process Manager Implementation Guide 338 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class
setVALUE

Syntax

void setVALUE(java.lang.String val)

Description

setVALUE sets the value of the Business Process or Activity Attribute.

Parameters

Return Values

None.

Throws

None.

Example

setVALUE("yes");

Name Type Description

val java.lang.String The value of the Attribute.
e*Insight Business Process Manager Implementation Guide 339 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class
toString

Syntax

java.lang.String toString()

Description

toString Converts this ETD object to a printable String form.

Parameters

None.

Return Values

java.lang.String
Returns the XML message represent by this ETD object.

Throws

None.

Example

toSTRING();
e*Insight Business Process Manager Implementation Guide 340 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class
unmarshal
Syntax

void unmarshal(org.xml.sax.InputSource inputSource,
com.stc.jcsre.sml.SAXLexer lexer)

Description

unmarshal takes a serialized (marshalled) form of the e*Insight XML Event and
distributes (unmarshals) the data into this ETD object.

Parameters

Return Values

None.

Throws

org.xml.sax.SAXException, when the data cannot be parsed.

com.stc.jcsre.UnmarshalException, when the data cannot be unmarshalled.

Name Type Description

inputSource org.xml.sax.InputSource The input source for the serialized
data.

lexer com.stc.jcsre.xml.SAXLe
xer

The SAX Lexer (parser) to distribute
the data.
e*Insight Business Process Manager Implementation Guide 341 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
20.3 BP_EVENT Class
public class BP_EVENT

extends com.stc.jcsre.AMLETDImpl

implements com.stc.eBIpkg.BPEventETD

The BP_EVENT class represents the e*Insight Business Process Manager section of the
SeeBeyond eBI Standard XML ETD which is used to communicate with the e*Insight
engine. The DTD is:

<!--eBusiness Process Manager Event section-->
<!ELEMENT BP_EVENT (ACTIVITY?, ATTRIBUTE*)>
<!ATTLIST BP_EVENT

TYPE (START_BP | DO_ACTIVITY | UNDO_ACTIVITY | UNDO_BPI
|RESTART_ACTIVITY | SKIP_ACTIVITY)

STATUS (SUCCESS | FAILURE) #IMPLIED
NAME CDATA #IMPLIED
ID CDATA #IMPLIED
BPI_ID CDATA #IMPLIED

>
<!ELEMENT ATTRIBUTE EMPTY>
<!--ENCODING=base64 or whatever; eBPM only recognizes base64 for

TYPE=XML-->
<!ATTLIST ATTRIBUTE

TYPE (BIN | XML | STRING | TRANSIENT | NUMBER | BOOLEAN)
#REQUIRED

NAME CDATA #REQUIRED
VALUE CDATA #REQUIRED
ENCODING CDATA #IMPLIED
LOCATION (FILE | DB | URL | EMBEDDED | AUTO) #IMPLIED

>
<!ELEMENT ACTIVITY (ATTRIBUTE*)>
<!ATTLIST ACTIVITY

NAME CDATA #IMPLIED
ID CDATA #IMPLIED

>

These methods are described in detail on the following pages:

addATTRIBUTE on page 344 omitACTIVITY on page 361

clearATTRIBUTE on page 345 omitBPI_ID on page 362

countATTRIBUTE on page 346 omitID on page 363

getACTIVITY on page 347 omitNAME on page 364

getATTRIBUTE_VALUE on page 348 omitSTATUS on page 365

getATTRIBUTE on page 349 removeATTRIBUTE on page 366

getBPI_ID on page 350 setACTIVITY on page 367

getID on page 351 setATTRIBUTE on page 368

getNAME on page 352 setBPI_ID on page 370

getSTATUS on page 353 setEventInfo on page 371

getTYPE on page 354 setID on page 372

hasACTIVITY on page 355 setNAME on page 373
e*Insight Business Process Manager Implementation Guide 342 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
hasBPI_ID on page 356 setSTATUS on page 374

hasID on page 357 setTYPE on page 375

hasNAME on page 358 toString on page 376

hasSTATUS on page 359 unmarshal on page 377

marshal on page 360
e*Insight Business Process Manager Implementation Guide 343 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
addATTRIBUTE

Syntax

void addATTRIBUTE(int index, ATTRIBUTE value)

Description

addATTRIBUTE adds a new global Attribute to this Business Process object.

Parameters

Return Values

None.

Throws

None.

Name Type Description

index integer (Optional) The offset to the list at
which insertion occurs (zero-
based).

value com.stc.eBIpkg.ATTRIBUTE The global Attribute.
e*Insight Business Process Manager Implementation Guide 344 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
clearATTRIBUTE

Syntax

void clearATTRIBUTE()

Description

clearATTRIBUTE removes all the global Attributes from this Business Process object.

Parameters

None.

Return Values

None.

Throws

None.

Example

clearATTRIBUTE();
e*Insight Business Process Manager Implementation Guide 345 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
countATTRIBUTE

Syntax

int countATTRIBUTE()

Description

countATTRIBUTE retrieves the number of global Attributes currently existing in this
Business Process object.

Parameters

None.

Return Values

integer

Returns the number of global Attributes as an integer.

Throws

None

Example
countATTRIBUTE();

=> 5
e*Insight Business Process Manager Implementation Guide 346 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
getACTIVITY

Syntax

ACTIVITY getACTIVITY()

Description

getACTIVITY retrieves the current Activity for a Business Process.

Parameters

None.

Return Values

ACTIVITY
Returns the current Activity object.

Throws

None.
e*Insight Business Process Manager Implementation Guide 347 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
getATTRIBUTE_VALUE

Syntax

java.lang.String getATTRIBUTE_VALUE(java.lang.String name)

Description

getATTRIBUTE_VALUE retrieves the value of a specific global Attribute by name.

Parameters

Return Values

java.lang.String
Returns the value of the global Attribute. Can be null if the Attribute of that name does
not exist.

Throws

None.

Example

getATTRIBUTE_VALUE("In_Stock");
=> "yes"

Name Type Description

name java.lang.String The name of the global Attribute.
e*Insight Business Process Manager Implementation Guide 348 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
getATTRIBUTE

Syntax

com.stc.eBIpkg.ATTRIBUTE[] getATTRIBUTE()
com.stc.eBIpkg.ATTRIBUTE getATTRIBUTE(int i)
com.stc.eBIpkg.ATTRIBUTE getATTRIBUTE(java.lang.String name)

Description

getATTRIBUTE retrieves a specific global Attribute by name.

Parameters

Return Values

Returns one of the following values:

ATTRIBUTE[]
Returns an array of global Attributes if no name or offset were specified.

ATTRIBUTE
Returns the global Attribute if the name or offset were specified.

Throws

None.

Name Type Description

i integer (Optional) The offset to the list where
the Attribute appears.

name java.lang.String The global Attribute.
e*Insight Business Process Manager Implementation Guide 349 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
getBPI_ID

Syntax

java.lang.String getBPI_ID()

Description

getBPI_ID retrieves the internal Business Process ID used by the e*Insight engine. It
must be returned as-is in a "Done" event back to the e*Insight engine when the active
mode is enabled.

Parameters

None.

Return Values

java.lang.String
Returns the internal Business Process ID.

Throws

None.

Example

getBPI_ID();
=> "605.0.21"
e*Insight Business Process Manager Implementation Guide 350 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
getID

Syntax

java.lang.String getID()

Description

getID retrieves the Business Process user-assigned unique ID (relative to an ERP, for
example).

Parameters

None.

Return Values

java.lang.String
Returns the Business Process user-assigned unique ID.

Throws

None.

Example

getID();
=> "12345"
e*Insight Business Process Manager Implementation Guide 351 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
getNAME

Syntax

java.lang.String getNAME()

Description

getNAME retrieves the case-sensitive name of the Business Process.

Parameters

None.

Return Values

java.lang.String
Returns the name of the Business Process.

Throws

None.

Example

getNAME();
=> "ProcessOrder"
e*Insight Business Process Manager Implementation Guide 352 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
getSTATUS

Syntax

java.lang.String getSTATUS()

Description

getSTATUS retrieves the status of the current Activity in a Business Process.

Parameters

None.

Return Values

java.lang.String
Returns "SUCCESS" if the current Activity has successfully completed; otherwise
returns "FAILURE" if the current Activity has not successfully completed.

Throws

None.

Example

getSTATUS();
=> "SUCCESS"
e*Insight Business Process Manager Implementation Guide 353 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
getTYPE

Syntax

java.lang.String getTYPE()

Description

getTYPE retrieves the type of command represented by this Business Process object.

Parameters

None.

Return Values

java.lang.String
Returns one of the following:

Throws

None.

Example

getTYPE();
=> "DO_ACTIVITY"

"START_BP" Instructs the e*Insight engine to start a
Business Process Instance.

"DO_ACTIVITY" Indicates a "Do" Event for the current Activity.

"UNDO_ACTIVITY" Indicates an "Undo" Event for the current
Activity.

"UNDO_BPI" Indicates an "Undo" for the entire Business
Process Instance.

"RESTART_ACTIVITY" Indicates restarting the current Activity after it
has paused.

"SKIP_ACTIVITY" Indicates the current Activity should be
skipped.

"RELOAD_BP" Indicates the Business Process definition
should be reloaded.

"AUTHORIZE" Indicates the current Activity should be
authorized.

"DONT_AUTHORIZE
"

Indicates that the current Activity should not
be authorized.
e*Insight Business Process Manager Implementation Guide 354 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
hasACTIVITY

Syntax

boolean hasACTIVITY()

Description

hasACTIVITY checks whether the Activity object exists in the Business Process object.

Parameters

None.

Return Values

boolean
Returns true if the Activity object is defined; otherwise returns false.

Throws

None.

Example

hasACTIVITY();
=> true
e*Insight Business Process Manager Implementation Guide 355 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
hasBPI_ID

Syntax

boolean hasBPI_ID()

Description

hasBPI_ID checks whether the internal Business Process ID exits in this Business
Process object.

Parameters

None.

Return Values

boolean
Returns true if the internal Business Process ID is defined; otherwise returns false.

Throws

None.

Example

hasBPI_ID();
=> true
e*Insight Business Process Manager Implementation Guide 356 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
hasID

Syntax

boolean hasID()

Description

hasID checks whether there is a user-assigned unique ID for this Business Process.

Parameters

None.

Return Values

boolean
Returns true if a user-assigned unique ID exits; otherwise returns false.

Throws

None.

Example

hasID();
=> true
e*Insight Business Process Manager Implementation Guide 357 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
hasNAME

Syntax

boolean hasNAME()

Description

hasNAME checks whether the name exists in the Business Process object.

Parameters

None.

Return Values

boolean
Returns true if the name is defined; otherwise returns false.

Throws

None.

Example

hasNAME();
=> true
e*Insight Business Process Manager Implementation Guide 358 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
hasSTATUS

Syntax

boolean hasSTATUS()

Description

hasSTATUS checks whether there is a status defined.

Parameters

None.

Return Values

boolean
Returns true if there is a status defined; otherwise returns false.

Throws

None.

Example

hasSTATUS();
=> true
e*Insight Business Process Manager Implementation Guide 359 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
marshal

Syntax

void marshal(org.xml.sax.ContentHandler handler,
org.xml.sax.ErrorHandler errorHandler)

Description

marshal gathers the data contained within this ETD object and formulates it back into a
serialized XML message.

Parameters

Return Values

None.

Throws

com.stc.jcsre.MarshalException

org.xml.sax.SAXException

Name Type Description

handler org.xml.sax.ContentHan
dler

The handler that converts content
within to XML.

errorHandler or.xml.sax.ErrorHandler The handler to address errors during
conversion.
e*Insight Business Process Manager Implementation Guide 360 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
omitACTIVITY

Syntax

void omitACTIVITY()

Description

omitACTIVITY removes the Activity object definition from this Business Process
object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitACTIVITY();
e*Insight Business Process Manager Implementation Guide 361 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
omitBPI_ID

Syntax

void omitBPI_ID()

Description

omitBPI_ID removes the internal Business Process ID definition from the Business
Process object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitBPI_ID();
e*Insight Business Process Manager Implementation Guide 362 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
omitID

Syntax

void omitID()

Description

omitID removes the user-assigned unique ID definition from the Business Process
object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitID();
e*Insight Business Process Manager Implementation Guide 363 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
omitNAME

Syntax

void omitNAME()

Description

omitNAME removes the name definition from the Business Process object.

Parameters

None

Return Values

None.

Throws

None.

Example

omitNAME();
e*Insight Business Process Manager Implementation Guide 364 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
omitSTATUS

Syntax

void omitSTATUS()

Description

omitSTATUS removes the status definition from the Business Process object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitSTATUS();
e*Insight Business Process Manager Implementation Guide 365 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
removeATTRIBUTE

Syntax

void removeATTRIBUTE(java.lang.String name)
void removeATTRIBUTE(int index)

Description

removeATTRIBUTE removes a specific global attribute from the Business Process
object.

Parameters

Return Values

None.

Throws

None.

Example

removeATTRIBUTE(1);

Name Type Description

name java.lang.String The name of the local attribute.

index int The index to the list of global
attributes (zero-based).
e*Insight Business Process Manager Implementation Guide 366 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
setACTIVITY

Syntax

void setACTIVITY(ACTIVITY val)

Description

setACTIVITY sets the current Activity of a Business Process.

Parameters

Return Values

None.

Throws

None.

Name Type Description

val ACTIVITY The current Activity object.
e*Insight Business Process Manager Implementation Guide 367 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
setATTRIBUTE

Syntax

void setATTRIBUTE(ATTRIBUTE[] val)
void setATTRIBUTE(int i, ATTRIBUTE val)
void setATTRIBUTE(java.lang.String name java.lang.String value)
void setATTRIBUTE(java.lang.String name, java.lang.String type,
java.lang.String value)
void setATTRIBUTE(java.lang.String name, java.lang.String type,
java.lang.String encoding,java.lang.String value)
void setATTRIBUTE(java.lang.String name, java.lang.String type,
java.lang.String value, java.lang.String encoding,java.lang.String
location)

Description

setATTRIBUTE sets a global Attribute of the Business Process.

Parameters

Name Type Description

val ATTRIBUTE[] The Attribute object.

i int The list index of the Attribute to be
retrieved (zero-based).

name java.lang.String The name of the global Attribute.

value java.lang.String The value of the global Attribute.

type java.lang.String The type of Attribute. Examples:
! "BIN" - Interpreted as binary,

however, must be suitably encoded
for XML.

! "XML" - Interpreted as XML,
however, must be Base64 encoded
for XML.

! "STRING" - Interpreted as a string
(default).

! "TRANSIENT" - Interpreted as a
transient. The e*Insight engine does
not process the value but simply
return it as-is.

! "NUMBER" - Interpreted as a
decimal number, however, must be
given as a string.

! "BOOLEAN" - Interpreted as a
boolean, such as "true" and "false".

encoding java.lang.String The encoding used for the value.
Examples:
! "base64’ - Standard MIME Base64

encoding.
! Null if plain text.
e*Insight Business Process Manager Implementation Guide 368 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
Return Values

None.

Throws

None.

Example

setATTRIBUTE("In_Stock","STRING","yes");

location java.lang.String The location of the actual data
associated with the Attribute value.
Examples:
! "FILE" - Attribute value specifies a

file where actual data exists.
! "DB" - Attribute value is a reference

to a row in a database table.
! "URL" - Attribute value specifies a

URL of where actual data exists.
! "EMBEDDED" - Attribute value is the

actual data (default).
! "AUTO" - Attribute value is actual

data but storage in e*Insight is
automatically determined.

Name Type Description
e*Insight Business Process Manager Implementation Guide 369 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
setBPI_ID

Syntax

void setBPI_ID(java.lang.String val)

Description

setBPI_ID sets the internal Business Process ID used by the e*Insight engine. It must be
returned as-is in a "Done" event back to the e*Insight engine when the active mode is
enabled.

Parameters

Return Values

None.

Throws

None.

Example

setBPI_ID("605.0.21");

Name Type Description

val java.lang.String The internal Business Process ID.
e*Insight Business Process Manager Implementation Guide 370 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
setEventInfo

Syntax

void setEventInfo(java.lang.String type, java.lang.String status,
java.lang.String id, java.lang.String name)
void setEventInfo(java.lang.String type, java.lang.String status,
java.lang.String id, java.lang.String name, java.lang.String bpi_id)

Description

setEventInfo sets the Type, Status, ID and Name information for the Business Process
object.

Parameters

Return Values

None.

Throws

None.

Example

setEventInfo("DO_ACTIVITY","SUCCESS","605","ProcessOrder","605.0.21")
;

Name Type Description

type java.lang.String The Type of command represented by
this Business Process object.

status java.lang.String The Status of the current Activity.

id java.lang.String The user-assigned unique ID for this
Business Process instance.

name java.lang.String The Name of the Business Process.

bpi_id java.lang.String The internal Business Process Instance
ID.
e*Insight Business Process Manager Implementation Guide 371 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
setID

Syntax

void setID(java.lang.String val)

Description

setID sets the Business Process user-assigned unique ID (relative to an ERP, for
example).

Parameters

Return Values

None.

Throws

None.

Example

setID("12345");

Name Type Description

val java.lang.String The Business Process user-assigned
unique ID.
e*Insight Business Process Manager Implementation Guide 372 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
setNAME

Syntax

void setNAME(java.lang.String val)

Description

setNAME sets the case-sensitive name of the Business Process.

Parameters

Return Values

None.

Throws

None.

Example

setNAME("ProcessOrder");

Name Type Description

val java.lang.String The name of the Business Process.
e*Insight Business Process Manager Implementation Guide 373 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
setSTATUS

Syntax

void setSTATUS(java.lang.String val)

Description

setSTATUS sets the status of the current Activity in a Business Process.

Parameters

Return Values

None.

Throws

None.

Example

setSTATUS("SUCCESS");

Name Type Description

val java.lang.String The status of the current Activity in a
Business Process. Examples:
! "SUCCESS" - Indicates that the

current Activity has successfully
completed.

! "FAILURE" - Indicates that the
current Activity has not successfully
completed.
e*Insight Business Process Manager Implementation Guide 374 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
setTYPE

Syntax

void setTYPE(java.lang.String val)

Description

setTYPE sets the type of command represented by the Business Process object.

Parameters

Return Values

None.

Throws

None.

Example

setTYPE("DO_ACTIVITY");

Name Type Description

val java.lang.String The command represented by the
Business Process object. Examples:
! "START_BP" - Instructs the e*Insight

engine to start a Business Process
Instance.

! "DO_ACTIVITY" - Indicates a "Do"
Event for the current Activity.

! "UNDO_ACTIVITY" - Indicates an
"Undo" Event for the current
Activity.

! "UNDO_BPI" - Indicates an "Undo"
for the entire Business Process
Instance.

! "RESTART_ACTIVITY" - Indicates
restarting the current Activity after it
has paused.

! "SKIP_ACTIVITY" - Indicates the
current Activity should be skipped.

! "RELOAD_BP" - Indicates the
Business Process definition should
be reloaded.

! "AUTHORIZE" - Indicates that the
current Activity should be
authorized.

! "DONT_AUTHORIZE" - Indicates
that the current Activity should not
be authorized.
e*Insight Business Process Manager Implementation Guide 375 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
toString

Syntax

java.lang.String toString()

Description

toString converts this ETD object to a printable String form.

Parameters

None.

Return Values

java.lang.String
Returns the XML message to represent by this ETD object.

Throws

None.

Example

toSTRING();
e*Insight Business Process Manager Implementation Guide 376 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class
unmarshal
Syntax

void unmarshal(org.xml.sax.InputSource inputSource,
com.stc.jcsre.sml.SAXLexer lexer)

Description

unmarshal takes a serialized (marshalled) form of the e*Insight XML Event and
distributes (unmarshals) the data into this ETD object.

Parameters

Return Values

None.

Throws

org.xml.sax.SAXException, when the data cannot be parsed.

com.stc.jcsre.UnmarshalException, when the data cannot be unmarshalled.

Name Type Description

inputSource org.xml.sax.InputSource The input source for the serialized
data.

lexer com.stc.jcsre.xml.SAXLe
xer

The SAX Lexer (parser) to distribute
the data.
e*Insight Business Process Manager Implementation Guide 377 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.4
Java Helper Methods eX_StandardEvent Class
20.4 eX_StandardEvent Class
public class eX_StandardEvent

extends com.stc.jcsre.SMLETDImpl

implements com.stc.jcsre.ETD

eX_StandardEvent class is an ETD class used to represent the standard XML message
that is used to interchange information with the e*Insight Business Process Manager
engine. The DTD is:

<!ELEMENT eX_Event (BP_EVENT?, TP_EVENT?)>
<!--eBusiness Process Manager Event section-->
<!ELEMENT BP_EVENT (ACTIVITY?, ATTRIBUTE*)>
<!ATTLIST BP_EVENT

TYPE (START_BP | DO_ACTIVITY | UNDO_ACTIVITY | UNDO_BPI |
RESTART_ACTIVITY | SKIP_ACTIVITY | RELOAD_BP | AUTHORIZE
| DONT_AUTHORIZE) #REQUIRED

STATUS (SUCCESS | FAILURE) #IMPLIED
NAME CDATA #IMPLIED
ID CDATA #IMPLIED
BPI_ID CDATA #IMPLIED

>
<!ELEMENT ATTIBUTE EMPTY>
<!--ENCODING=base64 or whatever; eBPM only recognizes base64 for

TYPE=XML-->
<!ATTLIST ATTRIBUTE

TYPE (BIN | XML | STRING | TRANSIENT | NUMBER | BOOLEAN)
#REQUIRED

NAME CDATA #REQUIRED
VALUE CDATA #REQUIRED
ENCODING CDATA #REQUIRED
LOCATION (FILE | DB | URL | EMBEDDED | AUTO) #IMPLIED

>
<!ELEMENT ACTIVITY (ATTRIBUTE*)>
<!ATTLIST ACTIVITY

NAME CDATA #IMPLIED
ID CDATA #IMPLIED

>
<!--ePartner Manager Input/Output Event section-->
<!ELEMENT TP_EVENT (PartnerName?, InternalName?, Direction?,

MessageID?, OrigEventC
<!--External Partner Name-->
<!ELEMENT PartnerName (#PCDATA)>
<!--Internal Sending ERP (ex.SAP)-->
<!ELEMENT InternalName (#PCDATA)>
<!--Direction of Transaction to/from Trading Partner (ex.Outbound=O

Inbound=I)-->
<!ELEMENT Direction (#PCDATA)>
<!--Original request ID from Internal Sending ERP-->
<!ELEMENT MessageID (#PCDATA)>
<!--Original Event Classification (ex.QAP for Query Price and

Availability)-->
<!ELEMENT OrigEventClass (#PCDATA)>
<!--Usage Indicator of EDI message by Trading Partner (Production=P

Test=T)-->
<!ELEMENT UsageIndicator (#PCDATA)>
<!--Payload to carry EDI message-->
<!ELEMENT Payload (#PCDATA)>
<!ATTLIST Payload

TYPE (RAW | PROCESSED | ENCRYPTED) #REQUIRED
e*Insight Business Process Manager Implementation Guide 378 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.4
Java Helper Methods eX_StandardEvent Class
LOCATION (FILE | DB | URL | EMBEDDED | AUTO) #IMPLIED
>
<!--RAW=Need translation PROCESSED=Already X12 or RN ENCRYPTED=from

Trading Partner>
<!--Communication Protocol (ex. BATCH, HTTP) for sending to Trading

Partner-->
<!ELEMENT CommProt (#PCDATA)>
<!--URL for EDI message to be exchanged with Trading Partner-->
<!ELEMENT Url (#PCDATA)>
<!--SSL information-->
<!ELEMENT SSLClientKeyFileName (#PCDATA)>
<!ELEMENT SSLClientKeyFileType (#PCDATA)>
<!ELEMENT SSLClientCertFileName (#PCDATA)>
<!ELEMENT SSLClientCertFileType (#PCDATA)>
<!--Message Index for Batched delivery, ex. 1|20 means 1 of 20-->
<!ELEMENT MessageIndex (#PCDATA)>
<!--TP Attribute will contain optional repeating name value pair for
storing of TP-->
<!ELEMENT TPAttribute (NameValuePair*)>
<!ELEMENT NameValuePair (Name, Value)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Value (#PCDATA)>

These methods are described in detail on the following pages:

from_eBPMConvert on page 380 omitTP_EVENT on page 387

getBP_EVENT on page 381 setBP_EVENT on page 388

getTP_EVENT on page 382 setTP_EVENT on page 389

hasBP_EVENT on page 383 to_eBPMConvert on page 390

hasTP_EVENT on page 384 toString on page 391

marshal on page 385 unmarshal on page 392

omitBP_EVENT on page 386
e*Insight Business Process Manager Implementation Guide 379 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.4
Java Helper Methods eX_StandardEvent Class
from_eBPMConvert

Syntax

void from_eBPMConvert(com.stc.eBIpkg.BP_EVENT bpevent

Description

from_eBPMConvert converts all pertinent global Attributes of an e*Insight (Business
Process) Event back to an e*Xchange (Trading Partner) Event.

Parameters

Return Values

None.

Throws

None.

Name Type Description

bpevent com.stc.eBIpkg.BP_EVENT The incoming e*Insight Event.
e*Insight Business Process Manager Implementation Guide 380 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.4
Java Helper Methods eX_StandardEvent Class
getBP_EVENT

Syntax

com.stc.eBIpkg.BP_EVENT getBP_EVENT()

Description

getBP_EVENT retrieves the e*Insight (Business Process) portion of the e*Gate Standard
XML Event.

Parameters

None.

Return Values

com.stc.eBIpkg.BP_EVENT
Returns the Business Process Event.

Throws

None.
e*Insight Business Process Manager Implementation Guide 381 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.4
Java Helper Methods eX_StandardEvent Class
getTP_EVENT

Syntax

com.stc.eBIpkg.TP_EVENT getTP_EVENT()

Description

getTP_EVENT retrieves the e*Xchange (Trading Partner) portion of the e*Gate
Standard XML Event.

Parameters

None.

Return Values

com.stc.eBIpkg.TP_EVENT
Returns the Trading Partner Event.

Throws

None.
e*Insight Business Process Manager Implementation Guide 382 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.4
Java Helper Methods eX_StandardEvent Class
hasBP_EVENT

Syntax

boolean hasBP_EVENT()

Description

hasBP_EVENT tests whether the e*Gate Standard XML Event has an e*Insight
(Business Process) portion.

Parameters

None.

Return Values

boolean
Returns true if the Business Process portion exists; otherwise returns false if the
Business Process portion does not exist.

Throws

None.

Example

hasBP_EVENT();
=> true
e*Insight Business Process Manager Implementation Guide 383 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.4
Java Helper Methods eX_StandardEvent Class
hasTP_EVENT

Syntax

boolean hasTP_EVENT()

Description

hasTP_EVENT tests whether the e*Gate Standard XML Event has an e*Xchange
(Trading Partner) portion.

Parameters

None.

Return Values

boolean
Returns true if the Trading Partner portion exists; otherwise returns false if the Trading
Partner portion does not exist.

Throws

None.

Example

hasTP_EVENT();
=> true
e*Insight Business Process Manager Implementation Guide 384 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.4
Java Helper Methods eX_StandardEvent Class
marshal

Syntax

void marshal(org.xml.sax.ContentHandler handler,
org.xml.sax.ErrorHandler errorHandler)

Description

marshal gathers the data contained within this ETD object and formulates it back into a
serialized XML message.

Parameters

Return Values

None.

Throws

com.stc.jcsre.MarshalException

org.xml.sax.SAXException

Name Type Description

handler org.xml.sax.ContentHan
dler

The handler that converts content
within to XML.

errorHandler org.xml.sax.ErrorHandle
r

The handler to address errors during
conversion.
e*Insight Business Process Manager Implementation Guide 385 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.4
Java Helper Methods eX_StandardEvent Class
omitBP_EVENT

Syntax

void omitBP_EVENT()

Description

omitBP_EVENT removes the e*Insight (Business Process) portion of the e*Gate
Standard XML Event.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitBP_EVENT();
e*Insight Business Process Manager Implementation Guide 386 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.4
Java Helper Methods eX_StandardEvent Class
omitTP_EVENT

Syntax

void omitTP_EVENT()

Description

omitTP_EVENT removes the e*Xchange (Trading Partner) portion of the e*Gate
Standard XML Event.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitTP_EVENT();
e*Insight Business Process Manager Implementation Guide 387 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.4
Java Helper Methods eX_StandardEvent Class
setBP_EVENT

Syntax

void setBP_EVENT(com.stc.eBIpkg.BP_EVENT val)

Description

setBP_EVENT sets the e*Insight (Business Process) portion of the e*Gate Standard
XML Event.

Parameters

Return Values

None.

Throws

None.

Name Type Description

val com.stc.eBIpkg.BP_EVEN
T

The Business Process Event.
e*Insight Business Process Manager Implementation Guide 388 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.4
Java Helper Methods eX_StandardEvent Class
setTP_EVENT

Syntax

void setTP_EVENT(com.stc.eBIpkg.TP_EVENT val)

Description

setTP_EVENT sets the e*Xchange (Partner Manager) portion of the e*Gate Standard
XML Event.

Parameters

Return Values

None.

Throws

None.

Name Type Description

val com.stc.eBIpkg.TP_EVEN
T

The Trading Partner Event.
e*Insight Business Process Manager Implementation Guide 389 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.4
Java Helper Methods eX_StandardEvent Class
to_eBPMConvert

Syntax

com.stc.eBIpkg.BP_EVENT to_eBPMConvert()

Description

to_eBPMConvert converts the e*Gate Standard XML Event entirely to e*Insight
(Business Process) portion by saving all the e*Xchange (Trading Partner) information as
global Attributes.

Parameters

None.

Return Values

com.stc.eBIpkg.BP_EVENT
Returns the Business Process portion of this ETD object.

Throws

None.
e*Insight Business Process Manager Implementation Guide 390 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.4
Java Helper Methods eX_StandardEvent Class
toString

Syntax

java.lang.String toString()

Description

toString converts this ETD object to a printable String form.

Parameters

None.

Return Values

java.lang.String
Returns the XML message to represent by this ETD object.

Throws

None.

Example

toSTRING();
e*Insight Business Process Manager Implementation Guide 391 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.4
Java Helper Methods eX_StandardEvent Class
unmarshal
Syntax

void unmarshal(org.xml.sax.InputSource inputSource,
com.stc.jcsre.sml.SAXLexer lexer)

Description

unmarshal takes a serialized (marshalled) form of the e*Insight XML Event and
distributes (unmarshals) the data into this ETD object.

Parameters

Return Values

None.

Throws

org.xml.sax.SAXException, when the data cannot be parsed.

com.stc.jcsre.UnmarshalException, when the data cannot be unmarshalled.

Name Type Description

inputSource org.xml.sax.InputSource The input source for the serialized
data.

lexer com.stc.jcsre.xml.SAXLe
xer

The SAX Lexer (parser) to distribute
the data.
e*Insight Business Process Manager Implementation Guide 392 SeeBeyond Proprietary and Confidential

Chapter 21

e*Insight User Activity API Methods

This chapter provides information on the e*Insight User Activity API methods. A
number of Java API methods have been added to use with the User Activity object.

User Activities allow external applications to access attributes in the business process
using User Activity methods, as described in this chapter. These methods allow the
external application to access attributes for the User Activity from the e*Insight
database. The e*Insight engine uses the returned value of the attributes to continue the
business process.

21.0.1 User Activity Security
Three security checks are performed when connecting to the database using the User
Activity methods. First, use the initialize method to connect to the database. You
should use a user that has no authority to access any of the Business Processes.

Once that connection has been made, use the authenticate method to pass the user
name and password for a user that has privileges for the Business Process. This user
should have the necessary authority for the Business Processes that they are accessing.
For subsequent messages sent during the sessionse, use the setUser method to re-
establish the user security, or resetUser to establish security for a new user.

To create a user for the initial connection

1 Use e*Xchange Administrator to create a user (for example, Connection_User), and
assign a password.

2 Do not give this user any authorization rights within e*Insight.

Note: For additional security, create the connection user directly in the database rather
than using e*Xchange Administrator.

The User Activity methods are contained in:

! “Imessage Interface” on page 395

! “UserActivityMessage Class” on page 419

! “IClient Interface” on page 420

! “EbpmMonitor Class” on page 458
e*Insight Business Process Manager Implementation Guide 393 SeeBeyond Proprietary and Confidential

Chapter 21 Section
e*Insight User Activity API Methods
21.0.2 Defining the Classpath
In order to use the User Activity API methods, you must define the following files in
your classpath:

These files are all located in <eInsight>\Integrator.

activation.jar DGutil.jar stcjcs.jar

antlrall.jar eIX_StandardEvent.jar workflow.jar

classes12.zip jconn2.jar xerces.jar

DGbase.jar js.jar xml.jar

DGsqlserver.jar mail.jar

DGsybase.jar soap.jar
e*Insight Business Process Manager Implementation Guide 394 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity API Methods Imessage Interface
21.1 Imessage Interface
These methods are described in detail on the following pages:

clearMessage on page 396 removeGlobalAttribute on page 408

getActivityAttributesCount on page 397 setActivityAttributeValue on page 409

getActivityAttributeValue on page 398 setActivityName on page 410

getActivityName on page 399 setBPIStack on page 411

getBusinessModelId on page 400 setBusinessModelInstanceId on page 412

getBusinessModelInstanceId on page 401 setBusinessModelId on page 413

getBusinessModelName on page 402 setBusinessModelName on page 414

getGlobalAttributeCount on page 403 setGlobalAttributeValue on page 415

getGlobalAttributeType on page 404 setMsgType on page 416

getGlobalAttributeValue on page 405 setStatus on page 417

getMsgType on page 406 toXML on page 418

removeActivity on page 407
e*Insight Business Process Manager Implementation Guide 395 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity API Methods Imessage Interface
clearMessage

Syntax

void clearMessage()

Description

clearMessage clears the message.

Parameters

None.

Return Values

None.

Throws

None.

Example

clearMessage();
e*Insight Business Process Manager Implementation Guide 396 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity API Methods Imessage Interface
getActivityAttributesCount

Syntax

int getActivityAttributesCount()

Description

getActivityAttributesCount gets the activity attribute count.

Parameters

None.

Return Values

integer
Returns an integer in the range 0 to n depending on the number of activity attributes.

Throws

None.

Example

getActivityAttributesCount();
=> 3
e*Insight Business Process Manager Implementation Guide 397 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity API Methods Imessage Interface
getActivityAttributeValue

Syntax

java.lang.String getActivityAttributeValue(java.lang.String
attributeName)

Description

getActivityAttributeValue is used to determine the value of an activity attribute.

Parameters

Return Values

java.lang.String
Returns a string containing the activity attribute value.

Throws

None.

Example

getActivityAttributesValue(�In_Stock�);
=> �yes�

Name Type Description

attributeName java.lang.String The attribute name.
e*Insight Business Process Manager Implementation Guide 398 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity API Methods Imessage Interface
getActivityName

Syntax

java.lang.String getActivityName()

Description

getActivityName gets the activity name.

Parameters

None.

Return Values

java.lang.String

Returns an string containing the activity name.

Throws

None.

Example

getActivityName();
=> �API_Check_Inv�
e*Insight Business Process Manager Implementation Guide 399 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity API Methods Imessage Interface
getBusinessModelId

Syntax

java.lang.String getBusinessModelId()

Description

getBusinessModelId is used to retrieve the business model identifier.

Parameters

None.

Return Values

java.lang.String
Returns a string containing the business model id.

Throws

None.

Example

getBusinessModelId();
=> �12345�
e*Insight Business Process Manager Implementation Guide 400 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity API Methods Imessage Interface
getBusinessModelInstanceId

Syntax

java.lang.String getBusinessModelInstanceId()

Description

getBusinessModelInstanceId is used to retrieve the business model instance identifier.

Parameters

None.

Return Values

java.lang.String
Returns a string containing the business model instance id.

Throws

None.

Example

getBusinessModelId();
=> �123456789�
e*Insight Business Process Manager Implementation Guide 401 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity API Methods Imessage Interface
getBusinessModelName

Syntax

java.lang.String getBusinessModelName()

Description

getBusinessModelName is used to get the business model name.

Parameters

None.

Return Values

java.lang.String
Returns a string containing the business model name.

Throws

None.

Example

getBusinessModelName();
=> �ProcessOrder�
e*Insight Business Process Manager Implementation Guide 402 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity API Methods Imessage Interface
getGlobalAttributeCount

Syntax

int getGlobalAttributeCount()

Description

getGobalAttributeCount is used to get the global attribute count.

Parameters

None.

Return Values

integer
Returns an integer value in the range 0 to n depending on the number of global
attributes.

Throws

None.

Example

getGlobalAttributeCount();
=> �12�
e*Insight Business Process Manager Implementation Guide 403 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity API Methods Imessage Interface
getGlobalAttributeType

Syntax

java.lang.String getGlobalAttributeType(java.lang.String
attributeName)

Description

getGlobalAttributeType is used to determine the type of an attribute passed in as a
parameter.

Parameters

Return Values

java.lang.String
Returns a string containing the attribute type.

Throws

None.

Example

getGlobalAttributeType(�In_Stock�);
=> �String�

Name Type Description

attributeName java.lang.String The attribute name.
e*Insight Business Process Manager Implementation Guide 404 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity API Methods Imessage Interface
getGlobalAttributeValue

Syntax

java.lang.String getGlobalAttributeValue(java.lang.String
attributeName)

Description

getGlobalAttributeType is used to determine the value of an attribute passed in as a
parameter.

Parameters

Return Values

java.lang.String
Returns a string containing the attribute value.

Throws

None.

Example

getGlobalAttributeValue(�In_Stock�);
=> �yes�

Name Type Description

attributeName java.lang.String The attribute name.
e*Insight Business Process Manager Implementation Guide 405 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity API Methods Imessage Interface
getMsgType

Syntax

java.lang.String getMsgType()

Description

getMsgType gets the message type.

Parameters

None.

Return Values

java.lang.String
Returns the message type.

Throws

None.

Example

getMsgType();
=> �DO_ACTIVITY�
e*Insight Business Process Manager Implementation Guide 406 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity API Methods Imessage Interface
removeActivity

Syntax

void removeActivity()

Description

removeActivity is used to remove the activity.

Parameters

None.

Return Values

None.

Throws

None.

Example

removeActivity();
e*Insight Business Process Manager Implementation Guide 407 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity API Methods Imessage Interface
removeGlobalAttribute

Syntax

void removeGlobalAttribute(java.lang.String attributeName)

Description

removeGlobalAttribute is used to remove the global attribute named as a parameter.

Parameters

Return Values

None.

Throws

None.

Example

removeGlobalAttribute(�In_Stock�);

Name Type Description

attributName java.lang.String The attribute name
e*Insight Business Process Manager Implementation Guide 408 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity API Methods Imessage Interface
setActivityAttributeValue

Syntax

void setActivityAttributeValue(java.lang.String attributeName,
java.lang.String attributeType, java.lang.String attributeValue)

Description

setActivityAttributeValue is used to set the activity attribute value.

Parameters

Return Values

None.

Throws

None.

Example

setActivityAttributeValue(�In_Stock� , �String�, �no�);

Name Type Description

attributeName java.lang.String The attribute name.

attributeType java.lang.String The attribute type.

attributeValue java.lang.String The attribute value.
e*Insight Business Process Manager Implementation Guide 409 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity API Methods Imessage Interface
setActivityName

Syntax

void setActivityName(java.lang.String activityName)

Description

setActivityName is used to set the activity name.

Parameters

Return Values

None.

Throws

None.

Example

setActivityName(�API_Check_Inv�);

Name Type Description

activityName java.lang.String The activity name.
e*Insight Business Process Manager Implementation Guide 410 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity API Methods Imessage Interface
setBPIStack

Syntax

void setBPIStack(java.lang.String bpiStack)

Description

setBPIStack sets the business model stack.

Parameters

Return Values

None.

Throws

None.

Example

setBPIStack(�637.0.133�);

Name Type Description

bpiStack java.lang.String The business model stack. For
example “637.0.133”.
e*Insight Business Process Manager Implementation Guide 411 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity API Methods Imessage Interface
setBusinessModelInstanceId

Syntax

void setBusinessModelInstanceId(java.lang.String businessInstanceId)

Description

setBusinessModelInstanceId sets the business model instance id.

Parameters

Return Values

None.

Throws

None.

Example

setBusinessModelInstanceId(�602�);

Name Type Description

businessInstanceId java.lang.String The business model instance ID.
e*Insight Business Process Manager Implementation Guide 412 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity API Methods Imessage Interface
setBusinessModelId

Syntax

void setBusinessModelId(java.lang.String businessModelId)

Description

setBusinessModelId sets the business model id.

Parameters

Return Values

None.

Throws

None.

Example

setBusinessModelId(�12345�);

Name Type Description

businessModelId java.lang.String The business model id.
e*Insight Business Process Manager Implementation Guide 413 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity API Methods Imessage Interface
setBusinessModelName

Syntax

void setBusinessModelName(java.lang.String businessModelName)

Description

setBusinessModelName sets the business model name.

Parameters

Return Values

None.

Throws

None.

Example

setBusinessModelName(�ProcessOrder�);

Name Type Description

businessModelName java.lang.String The business model name.
e*Insight Business Process Manager Implementation Guide 414 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity API Methods Imessage Interface
setGlobalAttributeValue

Syntax

void setGlobalAttributeValue(java.lang.String attributeName,
java.lang.String attributeValue, java.lang.String attributeType)

Description

setGlobalAttributeValue sets the global attribute value.

Parameters

Return Values

None.

Throws

None.

Example

setGlobalAttributeValue(�In_Stock� , �no� , �StringString�);

Name Type Description

attributeName java.lang.String The attribute name.

attributeValue java.lang.String The attribute value.

attributeType java.lang.String The attribute type.
e*Insight Business Process Manager Implementation Guide 415 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity API Methods Imessage Interface
setMsgType

Syntax

void setMsgType(java.lang.String msgType)

Description

setMsgType sets the message type.

Parameters

Return Values

None.

Throws

Example

setMsgType(�DO_ACTIVITY�);

Name Type Description

msgType java.lang.String The message type.
e*Insight Business Process Manager Implementation Guide 416 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity API Methods Imessage Interface
setStatus
Syntax

void setStatus(java.lang.String status)

Description

setStatus is used to set the message status.

Parameters

Return Values

None.

Throws

None.

Example

setStatus(�SUCCESS�);

Name Type Description

status java.lang.String The message status.
e*Insight Business Process Manager Implementation Guide 417 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity API Methods Imessage Interface
toXML

Syntax

java.lang.String toXML()

Description

toXML converts the message to XML.

Parameters

None.

Return Values

java.lang.String

Returns the message in XML format.

Throws

None.

Example

toXML();
=> <BP_EVENT NAME="api" STATUS="SUCCESS" ID="231"

BPI_ID="231.0.21:" TYPE="DO_ACTIVITY"><ATTRIBUTE
NAME="In_Stock" TYPE="String" VALUE="no" /><ACTIVITY
NAME="API_Check_Inv" /></BP_EVENT>
e*Insight Business Process Manager Implementation Guide 418 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.2
e*Insight User Activity API Methods UserActivityMessage Class
21.2 UserActivityMessage Class
Implements IMessage.

See “Imessage Interface” on page 395.
e*Insight Business Process Manager Implementation Guide 419 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
21.3 IClient Interface
These methods are described in detail on the following pages:

getActivityGlobalAttributeNames on
page 423

getGlobalAttributeType on page 440

getActivityInstanceEndTime on page 424 getGlobalAttributeValue on page 441

getActivityInstanceStartTime on
page 425

getLocalAttributeNames on page 442

getActivityInstanceStatus on page 426 getLocalAttributeType on page 443

getActivityNames on page 427 getLocalAttributeValue on page 444

getAssignedBPIIdByState on page 428 getMessageStatus on page 445

getAuthorizationActivityNames on
page 429

getUser on page 446

getBPIStack on page 430 getUserActivityNames on page 447

getBusinessModelInstancesIds on
page 431

getUUID on page 448

getBusinessModelInstanceName on
page 432

initialize on page 449

getBusinessModelInstanceStatus on
page 433

refreshCachedMemory on page 450

getBusinessModelName on page 434 releaseActivityInstance on page 451

getEnabledBusinessModelId on
page 435

resetUser on page 453

getEnabledBusinessModelsIds on
page 436

sendMessage on page 454

getGlobalAttributeDefaultValue on
page 437

setGlobalAttributeValue on page 455

getGlobalAttributeDirection on page 438 setLocalAttributeValue on page 456

getGlobalAttributeNames on page 439 setUser on page 457
e*Insight Business Process Manager Implementation Guide 420 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
authenticate

Syntax

boolean authenticate(java.lang.String userId, java.lang.String
password)

Description

authenticate authenticates User Id and password with the e*Insight database.

Parameters

Return Values

boolean

Returns true if the user Id and password are valid; otherwise returns false.

Throws

java.lang.Exception

Example

try {
 String userId = "joe_smith";
 String password = "xxxxx";
 boolean flag = client.authenticate(userId, password);
 System.out.println("flag=" + flag);
 } catch (Exception ex) {
 ex.printStackTrace();
 }

Name Type Description

userId java.lang.String The User id.

password java.lang.String The password.
e*Insight Business Process Manager Implementation Guide 421 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
checkoutActivityInstance

Syntax

java.lang.String checkoutActivityInstance(java.lang.String
businessModelId, java.lang.String businessModelInstanceId,
java.lang.String activityName)

Description

checkoutActivityInstance puts a lock on the activity instance by this current userId.

Parameters

Return Values

java.lang.String

Returns the userId who is using this actitivy instance.

Throws

java.lang.Exception

Example

checkoutActivityInstance(�12345� , �605� , �API_Check_Inv�);
=> �jo_smith�

Name Type Description

businessModelId java.lang.String The business model id.

businessModelInstanceId java.lang.String The business model instance id.

activityName java.lang.String The activtity name.
e*Insight Business Process Manager Implementation Guide 422 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
getActivityGlobalAttributeNames

Syntax

java.lang.String[] getActivityGlobalAttributeNames(java.lang.String
businessModelId, java.lang.String activityName)

Description

getActivityGlobalAttributeNames retrieves a list of global attributes defined for an
activity.

Parameters

Return Values

java.lang.String

Returns a string[] of activity global attribute names.

Throws

java.lang.Exception

Example

getActivityGlobalAttributeNames(�12345� , �API_Check_Inv�);
=> {�Customer_Name�, �In_Stock�}

Name Type Description

businessModelId java.lang.String The business model id.

activityName java.lang.String The activity name
e*Insight Business Process Manager Implementation Guide 423 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
getActivityInstanceEndTime

Syntax

java.lang.String getActivityInstanceEndTime(java.lang.String
businessModelInstanceId, java.lang.String businessModelId,
java.lang.String activityName)

Description

getActivityInstanceEndTime retrieves the end time of the activity instance on the
e*Insight server.

Parameters

Return Values

java.lang.String

Returns the end time of the activity instance.

Throws

java.lang.Exception

Example

getActivityInstanceEndTime(�602� , �12345� , �API_Check_Inv�);
=> �2001-05-23 14:31:56�

Name Type Description

businessModelInstanceId java.lang.String The business model instance id.

businessModelId java.lang.String The business model id.

activityName java.lang.String The activity name
e*Insight Business Process Manager Implementation Guide 424 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
getActivityInstanceStartTime

Syntax

java.lang.String getActivityInstanceStartTime(java.lang.String
businessModelInstanceId, java.lang.String businessModelId,
java.lang.String activityName)

Description

getActivityInstanceStartTime retrieves the start time of the activity instance on the
e*Insight server.

Parameters

Return Values

java.lang.String

Returns the start time of the activity instance.

Throws

java.lang.Exception

Example

getActivityInstanceEndTime(�602� , �12345� , �API_Check_Inv�);
=> �2001-05-23 14:31:57�

Name Type Description

businessModelInstanceId java.lang.String The business model instance id.

businessModelId java.lang.String The business model id.

activityName java.lang.String The activity name
e*Insight Business Process Manager Implementation Guide 425 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
getActivityInstanceStatus

Syntax

java.lang.String getActivityInstanceStatus(java.lang.String
businessModelInstanceId, java.lang.String businessModelId,
java.lang.String activityName, java.lang.String activityType)

Description

getActivityInstanceStatus retrieves the status of the activity instance on the e*Insight
server.

Parameters

Return Values

java.lang.String

Returns the status of the activity instance.

Throws

java.lang.Exception

Example

getActivityInstanceEndTime(�602� , �12345� , �API_Check_Inv� , �USER�);
=> �pending�

Name Type Description

businessModelInstanceId java.lang.String The business model instance id.

businessModelId java.lang.String The business model id.

activityName java.lang.String The activity name

activityType java.lang.String The activity type
e*Insight Business Process Manager Implementation Guide 426 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
getActivityNames

Syntax

java.lang.String[] getActivityNames(java.lang.String businessModelId)

Description

getActivityNames gets the activity names.

Parameters

Return Values

java.lang.String

Returns an string[] containing the activity names.

Throws

None.

Example

getActivityNames("12345");
=> {"API_Check_Inv", "Send_Status"}

Name Type Description

businessModelId java.lang.String The business model id.
e*Insight Business Process Manager Implementation Guide 427 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
getAssignedBPIIdByState

Syntax

java.lang.String[] getActivityNames(java.lang.String businessModelId,
java.lang.String activityName, java.lang.String status)

Description

getAssignedBPIIdByState gets the business process instance ids of all business process
instances in a particular state.

Parameters

Return Values

java.lang.String

Returns an string[] containing the business process instance ids.

Throws

None.

Example

getAssignedBPIIdByState("Pending");
=> {"603", "604"}

Name Type Description

businessModelId java.lang.String The business model id.

activityName java.lang.String The activity name.

status java.lang.String The activity status.
e*Insight Business Process Manager Implementation Guide 428 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
getAuthorizationActivityNames

Syntax

java.lang.String[] getAuthorizationActivityNames(java.lang.String
businessModelId)

Description

getAuthorizationActivityNames gets a String[] of authorization acitivity names.

Parameters

Return Values

java.lang.String[]

Returns the authorization acitivity names.

Throws

java.lang.Exception

Example

getAuthorizationActivityNames(�12345�);
=> {�Authorize_Quantity�, �Authorize_Total�}

Name Type Description

businessModelId java.lang.String The business model id.
e*Insight Business Process Manager Implementation Guide 429 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
getBPIStack

Syntax

java.lang.String getBPIStack(java.lang.String businessInstanceId)

Description

getBPIStack gets the business model instance stack.

Parameters

Return Values

java.lang.String

The business model instance stack. For example, "637.0.133:".

Throws

java.lang.Exception

Example
getBPIStack();

=>(�637.0.133�)

Name Type Description

businessInstanceId java.lang.String The business model instance id.
e*Insight Business Process Manager Implementation Guide 430 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
getBusinessModelInstancesIds

Syntax

java.lang.String[] getBusinessModelInstancesIds(java.lang.String
businessModelId)

Description

getBusinessModelInstancesIds gets a String[] of business instance ids.

Parameters

Return Values

java.lang.String[]

Returns the business instance ids.

Throws

java.lang.Exception

Example

getBusinessModelInstanceIds(�12345�);
=> {�602�, �603�}

Name Type Description

businessModelId java.lang.String The business model id.
e*Insight Business Process Manager Implementation Guide 431 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
getBusinessModelInstanceName

Syntax

java.lang.String getBusinessModelInstanceName(java.lang.String
businessModelId)

Description

getBusinessModelInstanceName retrieves the business model instance name.

Parameters

Return Values

java.lang.String

Returns the business instance model instance name.

Throws

java.lang.Exception

Example

getBusinessModelInstanceName(�12345�);
=> {�bp_603�}

Name Type Description

businessModelId java.lang.String The business model id.
e*Insight Business Process Manager Implementation Guide 432 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
getBusinessModelInstanceStatus

Syntax

java.lang.String[] getBusinessModelInstanceStatus(java.lang.String
businessModelId)

Description

getBusinessModelInstancesIds gets the status of business model instance.

Parameters

Return Values

java.lang.String

Returns the status of a business instance.

Throws

java.lang.Exception

Example

getBusinessModelInstanceIds(�12345�);
=> �Pending�

Name Type Description

businessModelId java.lang.String The business model id.
e*Insight Business Process Manager Implementation Guide 433 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
getBusinessModelName

Syntax

java.lang.String getBusinessModelName(java.lang.String
businessModelName)

Description

getBusinessModelName gets the business model name.

Parameters

Return Values

java.lang.String

Returns the business model name.

Throws

java.lang.Exception

Example

getBusinessModelName();
=> �ProcessOrder�

Name Type Description

businessModelName java.lang.String The business model name.
e*Insight Business Process Manager Implementation Guide 434 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
getEnabledBusinessModelId

Syntax

java.lang.String getEnabledBusinessModelId(java.lang.String
businessModelName)

Description

getEnabledBusinessModelId gets the enabled business model id.

Parameters

Return Values

java.lang.String
Returns the business model id.

Throws

java.lang.Exception

Example

getEnabledBusinessModelId();
=> �12345�

Name Type Description

businessModelName java.lang.String The business model name.
e*Insight Business Process Manager Implementation Guide 435 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
getEnabledBusinessModelsIds

Syntax

java.lang.String[] getEnabledBusinessModelsIds()

Description

getEnabledBusinessModelsIds gets a String[] of enabled business model ids.

Parameters

None.

Return Values

java.lang.String[]
Returns the enabled business model ids.

Throws

java.lang.Exception

Example

getEnabledBusinessModelsIds();
=> { �12345� , �12386� }
e*Insight Business Process Manager Implementation Guide 436 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
getGlobalAttributeDefaultValue

Syntax

java.lang.String getGlobalAttributeDirection(java.lang.String
businessModelId, java.lang.String attributeName)

Description

getGlobalAttributeDefaultValue gets the business model attribute default value.

Parameters

Return Values

java.lang.String
Returns a String containing the global attribute default value.

Throws

java.lang.Exception

Example

getGlobalAttributeDefaultValue(�In_Stock�);
=> �no�

Name Type Description

businessModelId java.lang.String The business model id.

attributeName java.lang.String The attribute name.
e*Insight Business Process Manager Implementation Guide 437 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
getGlobalAttributeDirection

Syntax

java.lang.String getGlobalAttributeDirection(java.lang.String
businessModelId, java.lang.String activityName, java.lang.String
attributeName)

Description

getGlobalAttributeDirection gets the business model attribute direction.

Parameters

Return Values

java.lang.String
Returns a String containing the global attribute direction.

Throws

java.lang.Exception

Example

getGlobalAttributeDirection(�12345� , �API_Check_Inv� , �In_Stock�);
=> �OUTPUT�

Name Type Description

businessModelId java.lang.String The business model id.

activityName java.lang.String The activity name.

attributeName java.lang.String The attribute name.
e*Insight Business Process Manager Implementation Guide 438 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
getGlobalAttributeNames

Syntax

java.lang.String[] getGlobalAttributeNames(java.lang.String
businessModelId)

Description

getGlobalAttributeNames gets a String[] of global attribute names.

Parameters

Return Values

java.lang.String[]
Returns global attribute names.

Throws

java.lang.Exception

Example

getGlobalAttributeNames();
=> { �Customer_Name� , �In_Stock� }

Name Type Description

businessModelId java.lang.String The business model id.
e*Insight Business Process Manager Implementation Guide 439 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
getGlobalAttributeType

Syntax

java.lang.String getGlobalAttributeType(java.lang.String
businessModelId, java.lang.String attributeName)

Description

getGlobalAttributeType gets the business model attribute type.

Parameters

Return Values

java.lang.String
Returns a global attribute type.

Throws

java.lang.Exception

Example

getGlobalAttributeType(�12345� , �In_Stock�);
=> �String�

Name Type Description

businessModelId java.lang.String The business model id.

attributeName java.lang.String The attribute name.
e*Insight Business Process Manager Implementation Guide 440 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
getGlobalAttributeValue

Syntax

java.lang.String getGlobalAttributeValue(java.lang.String
businessInstanceId, java.lang.String businessModelId,
java.lang.String attributeName)

Description

getGlobalAttributeValue gets the business model attribute value.

Parameters

Return Values

java.lang.String
Returns a global attribute value.

Throws

java.lang.Exception

Example

getGlobalAttributeValue(�602� , �12345� , �In_Stock�);
=> �yes�

Name Type Description

businessInstanceId java.lang.String The business model instance id.

businessModelId java.lang.String The business model id.

attributeName java.lang.String The attribute name.
e*Insight Business Process Manager Implementation Guide 441 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
getLocalAttributeNames

Syntax

java.lang.String[] getLocalAttributeNames(java.lang.String
businessModelId, java.lang.String activityId)

Description

getLocalAttributeNames is used to retrieve activity attribute names.

Parameters

Return Values

java.lang.String
Returns the local attribute names.

Throws

java.lang.Exception

Example

getLocalAttributeNames(�12345� , �123�);
=> { �Customer_Temp_Id� , �Previous_Customer� }

Name Type Description

businessModelId java.lang.String The business model id.

activityId java.lang.String The activity id.
e*Insight Business Process Manager Implementation Guide 442 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
getLocalAttributeType

Syntax

java.lang.String getLocalAttributeType(java.lang.String
businessModelId, java.lang.String activityName, java.lang.String
attributeName)

Description

getLocalAttributeType gets a String of local attribute type.

Parameters

Return Values

java.lang.String
Returns the local attribute type.

Throws

java.lang.Exception

Example

getGlobalAttributeType(�12345� , �API_Check_Inv� , �Previous_Customer�);
=> �String�

Name Type Description

businessModelId java.lang.String The business model id.

activityName java.lang.String The activity name.

attributeName java.lang.String The attribute name.
e*Insight Business Process Manager Implementation Guide 443 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
getLocalAttributeValue

Syntax

java.lang.String getLocalAttributeValue(java.lang.String
businessInstanceId, java.lang.String businessModelId,
java.lang.String activityName, java.lang.String attributeName)

Description

getLocalAttributeValue retrieves local attribute value.

Parameters

Return Values

java.lang.String
Returns the local attribute value.

Throws

java.lang.Exception

Example

getGlobalAttributeValue(�602� , �12345� , �API_Check_Inv� ,
�Previous_Customer�);

=> �yes�

Name Type Description

businessInstanceId java.lang.String The business model instance id.

businessModelId java.lang.String The business model id.

activityName java.lang.String The activity name.

attributeName java.lang.String The attribute name.
e*Insight Business Process Manager Implementation Guide 444 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
getMessageStatus

Syntax

java.lang.String getMessageStatus(java.lang.String msgId)

Description

getMessageStatus gets the status state of the message sent to the e*Insight server.

Parameters

Return Values

java.lang.String
Returns the status of the message.

Throws

java.lang.Exception

Example

getMessageStatus(�99�);
=> �unprocessed�

Name Type Description

msgId java.lang.String The message id.
e*Insight Business Process Manager Implementation Guide 445 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
getUser

Syntax

java.lang.String getUser()

Description

getUser is used to get the User id.

Parameters

None.

Return Values

java.lang.String
Returns the User id.

Throws

None.

Example

getUser();
=> �ex_admin�
e*Insight Business Process Manager Implementation Guide 446 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
getUserActivityNames

Syntax

java.lang.String[] getUserActivityNames(java.lang.String
businessModelId)

Description

getUserActivityNames gets the user activity names.

Parameters

Return Values

java.lang.String[]
Returns the user activity names.

Throws

java.lang.Exception

Example

getUserActivityNames(�12345�);
=> { �API_Check_Inv� , �Send_Order� }

Name Type Description

businessModelId java.lang.String The business model id.
e*Insight Business Process Manager Implementation Guide 447 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
getUUID

Syntax

java.lang.String[] getUUID ()

Description

getUUID retrieves the UUID.

Parameters

None.

Return Values

java.lang.String
Returns the UUID.

Throws

None.

Example

getUUID();
e*Insight Business Process Manager Implementation Guide 448 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
initialize

Syntax

void initialize(java.util.Properties p)

Description

initialize establishes a connection to the e*Insight engine and database. The user needs
to provide the appropriate e*Insight connection property configuration.

Parameters

Return Values

None.

Throws

java.lang.Exception

Example

Properties p = new Properties();
p.setProperty(�dbURL� , �jdbc:oracle:thin:@localhost:1521:eXchange�);
p.setProperty(�userID� , �ex_admin�);
p.setProperty(�password� , �ex_admin�);
p.setProperty(�driverName� , �oracle.jdbc.driver.OracleDriver�);
p.setProperty(�DBServerType� , �Oracle�);
initialize(p);

Name Type Description

p Properties The e*Insight configuration
properties.
For example:
dbURL=jdbc:oracle:thin:@hostname:1
521:dbname
userID=ex_admin
password=xxxxx
driverName=oracle.jdbc.driver.Oracle
Driver
DBServerType=Oracle
e*Insight Business Process Manager Implementation Guide 449 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
refreshCachedMemory

Syntax

void refreshCachedMemory()

Description

refreshCachedMemory refreshes the cached memory used by this client.

Parameters

None.

Return Values

None.

Throws

java.lang.Exception

Example

refreshCachedMemory();
e*Insight Business Process Manager Implementation Guide 450 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
releaseActivityInstance

Syntax

void releaseActivityInstance(java.lang.String businessModelId,
java.lang.String businessModelInstanceId, java.lang.String
activityName)

Description

releaseResources releases the usage on the activity instance by this current userId.

Parameters

Return Values

java.lang.String

Returns the userId of the user who is using this activity instance. Returns null if the
current userId did not checkout the activity instance.

Throws

java.lang.Exception

Example

releaseActivityInstance("12345", "605", "API_Check_Inventory");
=> "jo_smith"

Name Type Description

businessModelId java.lang.String The business model id.

businessModelInstanceId java.lang.String The business model instance id.

activityName java.lang.String The activtity name.
e*Insight Business Process Manager Implementation Guide 451 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
releaseResources

Syntax

void releaseResources()

Description

releaseResources releases the resource used by the client. This method should be called
after all executions are complete.

Parameters

None.

Return Values

None.

Throws

java.lang.Exception

Example

releaseResources();
e*Insight Business Process Manager Implementation Guide 452 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
resetUser

Syntax

void resetUser()

Description

resetUser resets the user.
Parameters

None.

Return Values

None.

Throws

None.

Example

resetUser();
e*Insight Business Process Manager Implementation Guide 453 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
sendMessage

Syntax

java.lang.String sendMessage(IMessage msg)

Description

sendMessage sends an e*Insight message to the e*Insight server for processing. The
message will be sent to the e*Insight server queue.

Parameters

Return Values

java.lang.String
Returns an acknowledge message id sent to the e*Insight server queue.

Throws

java.lang.Exception

Example

IMessage msg = new UserActivityMessage();
msg.setBusinessModelId(act.bpoId);
msg.setBusinessModelInstanceId(bpiId);
msg.setBusinessModelName(act.bpoName);
msg.setActivityName(act.bpoName);
sendMessage(msg);

=> �99�

Name Type Description

msg IMessage An e*Insight message.
e*Insight Business Process Manager Implementation Guide 454 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
setGlobalAttributeValue

Syntax

void setGlobalAttributeValue(java.lang.String businessInstanceId,
java.lang.String businessModelId, java.lang.String attributeName,
java.lang.String attributeValue, java.lang.String attributeType)

Description

setGlobalAttributeValue sets a global attribute value.

Parameters

Return Values

None.

Throws

java.lang.Exception

Example

setGlobalAttributeValue(�602� , �12345� , �In_Stock� , �no� , �String�);

Name Type Description

businessInstanceId java.lang.String The business model instance id.

businessModelId java.lang.String The business model id.

attributeName java.lang.String The attribute name.

attributeValue java.lang.String The attribute value.

attributeType java.lang.String The attribute type.
e*Insight Business Process Manager Implementation Guide 455 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
setLocalAttributeValue

Syntax

void setLocalAttributeValue(java.lang.String businessInstanceId,
java.lang.String businessModelId, java.lang.String activityName,
java.lang.String attributeName, java.lang.String attributeValue,
java.lang.String attributeType)

Description

setLocalAttributeValue sets the local attribute value.

Parameters

Return Values

None.

Throws

java.lang.Exception

Example

setLocalAttributeValue(�602� , �12345� , �API_Check_Inv� , �In_Stock� , �no� ,
�String�);

Name Type Description

businessInstanceId java.lang.String The business model instance id.

businessModelId java.lang.String The business model id.

activityName java.lang.String The activity name.

attributeName java.lang.String The attribute name.

attributeValue java.lang.String The attribute value.

attributeType java.lang.String The attribute type.
e*Insight Business Process Manager Implementation Guide 456 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity API Methods IClient Interface
setUser

Syntax

void setUser(java.lang.String userId)

Description

setUser sets the user to connect to e*Insight server.

Parameters

Return Values

None.

Throws

java.lang.Exception

Example

setUser(�ex_admin�);

Name Type Description

userId java.lang.String The user id.
e*Insight Business Process Manager Implementation Guide 457 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.4
e*Insight User Activity API Methods EbpmMonitor Class
21.4 EbpmMonitor Class
This is the e*Insight monitor client to the e*Insight engine. The user can access the
e*Insight business model with sufficient user privileges. This class also allows the user
to send e*Insight messages to the e*Insight engine.

The EbpmMonitor Class implements IClient interface. See IClient Interface on
page 420, for details of methods contained in this interface.

Additional methods are described in detail on the following pages:

checkUserPrivileges on page 459
e*Insight Business Process Manager Implementation Guide 458 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.4
e*Insight User Activity API Methods EbpmMonitor Class
checkUserPrivileges

Syntax

void checkUserPrivileges(int bpoId)

Description

checkUserPrivileges checks user privileges for bpoId. Throws
InsufficientPrivilegesException if userId is not set properly or does not have sufficient
privileges to bpoId.

Parameters

Return Values

None.

Throws

java.sql.SQLException, InsufficientPrivilegesException

Example

checkUserPrivileges(�123�);

Name Type Description

bpoId integer The business process object id.
e*Insight Business Process Manager Implementation Guide 459 SeeBeyond Proprietary and Confidential

Appendix A

XML Structure for the e*Insight Event

This appendix shows the XML structure for the e*Insight Event Type Definition. If
your data conforms to this structure, you do not need to convert it upon entry to the
e*Insight system.

Note: BP_EVENT attribute names must match the attributes defined in the business
process created in the e*Insight GUI. These names are case-sensitive. If the
attributes defined in the e*Insight GUI do not match the incoming XML structure
you must create a Collaboration to map the incoming data to the correct attribute
names; otherwise, the e*Insight system will not function correctly.

A.1 XML Structure
<<!-- edited with XML Spy v3.0 NT (http://www.xmlspy.com) by STC (STC)
-->
<!--DTD for eX_Standard_Event.ssc $Id: eX_event.dtd,v 1.1.2.10
2000/09/07 04:43:14 galbers Exp $-->
<!ELEMENT eX_Event (BP_EVENT?, TP_EVENT?)>
<!--eBusiness Process Manager Event section-->
<!ELEMENT BP_EVENT (ACTIVITY?, ATTRIBUTE*)>
<!ATTLIST BP_EVENT

TYPE (START_BP | DO_ACTIVITY | UNDO_ACTIVITY) #REQUIRED
STATUS (SUCCESS | FAILURE) #IMPLIED
NAME CDATA #IMPLIED
ID CDATA #IMPLIED
BPI_ID CDATA #IMPLIED

>
<!ELEMENT ATTRIBUTE EMPTY>
<!--ENCODING=base64 or whatever; eBPM only recognizes base64 for
TYPE=XML-->
<!ATTLIST ATTRIBUTE

TYPE (BIN | XML | STRING | TRANSIENT | NUMBER | BOOLEAN) #REQUIRED
NAME CDATA #REQUIRED
VALUE CDATA #REQUIRED
ENCODING CDATA #IMPLIED
LOCATION (FILE | DB | URL | EMBEDDED | AUTO) #IMPLIED

>
<!ELEMENT ACTIVITY (#PCDATA | ATTRIBUTE)*>
<!ATTLIST ACTIVITY

NAME CDATA #IMPLIED
ID CDATA #IMPLIED

>
<!--ePartner Manager Input/Output Event section-->
<!ELEMENT TP_EVENT (PartnerName?, InternalName?, Direction?,
MessageID?, OrigEventClass?, UsageIndicator?, Payload?, CommProt?,
Url?, SSLClientKeyFileName?, SSLClientKeyFileType?,
e*Insight Business Process Manager Implementation Guide 460 SeeBeyond Proprietary and Confidential

Appendix A Section A.1
XML Structure for the e*Insight Event XML Structure
SSLClientCertFileName?, SSLClientCertFileType?, MessageIndex?,
TPAttribute?)>
<!--External Partner Name-->
<!ELEMENT PartnerName (#PCDATA)>
<!--Internal Sending ERP (ex. SAP)-->
<!ELEMENT InternalName (#PCDATA)>
<!--Direction of Transaction to/from Trading Partner (ex. Outbound=O
Inbound=I)-->
<!ELEMENT Direction (#PCDATA)>
<!--Original Request ID from Internal Sending ERP-->
<!ELEMENT MessageID (#PCDATA)>
<!--Original Event Classification (ex. QAP for Query Price and
Availability)-->
<!ELEMENT OrigEventClass (#PCDATA)>
<!--Usage Indicator of EDI message by Trading Partner (Production=P
Test=T)-->
<!ELEMENT UsageIndicator (#PCDATA)>
<!--Payload to carry EDI message-->
<!ELEMENT Payload (#PCDATA)>
<!ATTLIST Payload

TYPE (RAW | PROCESSED | ENCRYPTED) #REQUIRED
LOCATION (FILE | DB | URL | EMBEDDED | AUTO) #IMPLIED

>
<!--RAW=Need translation PROCESSED=Already X12 or RN ENCRYPTED=from
Trading Partner-->
<!--Communication Protocol (ex. BATCH, HTTP) for sending to Trading
Partner-->
<!ELEMENT CommProt (#PCDATA)>
<!--URL for EDI message to be exchanged with Trading Partner-->
<!ELEMENT Url (#PCDATA)>
<!--SSL information-->
<!ELEMENT SSLClientKeyFileName (#PCDATA)>
<!ELEMENT SSLClientKeyFileType (#PCDATA)>
<!ELEMENT SSLClientCertFileName (#PCDATA)>
<!ELEMENT SSLClientCertFileType (#PCDATA)>
<!--Message Index for Batched delivery, ex. 1|20 means 1 of 20-->
<!ELEMENT MessageIndex (#PCDATA)>
<!--TP Attribute will contain optional repeating name value pair for
storing of TP data -->
<!ELEMENT TPAttribute (NameValuePair*)>
<!ELEMENT NameValuePair (Name, Value)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Value (#PCDATA)>
e*Insight Business Process Manager Implementation Guide 461 SeeBeyond Proprietary and Confidential

Glossary
Glossary

attribute
Attributes pass user-defined control information (programming arguments) to and
from the e*Insight Business Process Manager and its activities.

activity
An activity is an organizational unit for performing a specific function.

activity states
Activity states are the stages that activities within the business process instance go
through as the business process version is being run.

business process
A business process is a collection of actions and messages, revolving around a specific
business practice, that flow in a specific pattern to produce an end result.

business process attributes
Business process attributes pass user-defined control information (programming
arguments) to and from the e*Insight Business process manager, external sources, and
internal components.

business process expression
Business process expressions allow you to dictate business process logic flow based on
the ability to perform various types of logic on business process instance attributes.

business process instance (BPI)
A unique instantiation of a business process.

business process version
A form or variant of the original business process model.

Collaboration
A component of an e*Way or BOB that receives and processes Events and forwards the
output to other e*Gate components. Collaborations perform three functions: they
subscribe to Events of a known type, they apply business rules to Event data, and they
publish output Events to a specified recipient. Collaborations use Monk translation
script files with the extension “.tsc” to do the actual data manipulation.

Design mode
The mode used during the design phase of the business process. Design mode allows
you access to the drawing canvas, enabling you to create or modify a business process
version, based on its status.
e*Insight Business Process Manager Implementation Guide 462 SeeBeyond Proprietary and Confidential

Glossary
Diagram pane
The Diagram pane is used in Monitor mode to review the status of a business process
instance, using a pictorial representation of it. Various colors assigned to the activities
within the instance inform you of the status of each, during the cycle of the instance.

documentation box
The documentation box displays comments and free-text descriptions about the
business process version.

e*Insight Business Process Manager (e*Insight)
The component within the SeeBeyond eBusiness Integration Suite product suite that
facilitates the automation of the business process flow of eBusiness activities.

e*Xchange Partner Manager (e*Xchange)
An application that allows you to set up and maintain trading partner profiles and
view processed messages. e*Xchange also processes inbound and outbound messages
according to certain eBusiness protocols and your validation Collaborations.

eSecurity Manager (eSM)
An application that is used with the e*Xchange Partner Manager to secure transmission
of business-to-business exchanges over public domains such as the Internet.

Event (Message)
Data to be exchanged, either within e*Gate or between e*Gate and external systems,
which has a defined data structure; for example, a known number of fields, with
known characteristics and delimiters. Events are classified by type and exchanged
within e*Gate using Event Type Definitions.

Event Type Definition (ETD)
An Event Type template, defining Event fields, field sequences, and delimiters. Event
Type Definitions enable e*Insight systems to identify and transform Event Types. They
are Monk script files with an extension of ssc and Java script files with an extension of
xsc.

e*Xchange Administrator
An application within the eBusiness Integration Solutions suite of products that you
use to establish user security for e*Xchange Partner Manager (e*Xchange) and e*Insight
Business Process Manager (e*Insight).

gate
Gates control the logical flow of data-based decisions in the business process model. A
gate outputs specific information when specified input conditions are met.

Graph Wizard
The Graph Wizard is used in Monitor mode to display custom graphs, based on
instance data.
e*Insight Business Process Manager Implementation Guide 463 SeeBeyond Proprietary and Confidential

Glossary
GUI
Graphical User Interface. A type of computer interface that enables the user to perform
actions via the use of symbols, visual metaphors and pointing devices.

List pane
The List pane is used in Monitor mode to review the status of a business process
version, by reviewing the instances created by it.

modeling canvas
The modeling canvas is the portion of the e*Insight Business Process Manager where
you create the business process model, in the form of a flow chart.

Monitor mode
Monitor mode is used during the monitoring and reporting phase of the process, and
allows you to view the status of the business process.

schema
Schemas are files and associated stores created by e*Xchange that contain the parameters
of all the components that control, route, and transform data as it moves through
e*Xchange.

security
Security is the ability to limit user access to specific items based on a pre-determined
profile of the user.

String
A sequence of text characters.

sub-process
A sub-process is a business process version which is called, or used by, another
business process, as a sub-component.

tree view
The tree view displays a hierarchical representation of all the business process models,
and their activities.

user account
A user account is information about a particular user that is stored in a database for
security purposes.

user group
User groups allow you to grant access permissions to a set of users with similar
processing needs without having to specify individual privileges for each user.

XML
Extensible Markup Language. XML is a language that is used in Events or messages in
e*Insight, containing structured information. XML is different from String in that XML
messages can contain both content, and information about the content.
e*Insight Business Process Manager Implementation Guide 464 SeeBeyond Proprietary and Confidential

Index
Index

A
Activity BOB

configuring 253
creating the Collaboration Rules scripts 253

addATTRIBUTE 305, 344, 345
APIs

eX-bin-set-attribute 295
eX-copy-no-attribute 299, 320
eX-count-attribute 287, 306
eX-count-local-attribute 296, 316
eX-get-Activity 291, 310
eX-get-all-attribute 301
eX-get-all-local-attribute 302
eX-get-attribute 286, 305
eX-get-BP_EVENT 290, 309
eX-get-local-attribute 297
eX-set-Activity 292, 311
eX-set-all-BP_EVENT 300, 321
eX-set-attribute 288, 307
eX-set-BP_EVENT 289, 308
eX-set-local-attribute 298, 318
eX-string-set-attribute 293, 312
eX-xml-set-attribute 294, 313
getBusinessModelInstanceId 401
getBusinessModelName 402

attributes
getting 88, 92
global 68
input 68
input/output 68
local 68
output 68
setting 87, 91
using local attributes to implement undo logic 69

authenticate 421

B
Basic 25
BOB

Activity BOB 44, 45, 64
BP_EVENT 69, 78
business logic, testing 117, 130, 162, 177, 185, 190
business processes

attributes, about 67
restarting 123, 167
starting 87, 90

C
case study (order processing) 97, 126, 134, 170, 183,
188, 236
checkoutActivityInstance 422
checkUserPrivileges 459
clearATTRIBUTE 306
clearMessage 396
Collaboration

START_BP Collaboration 41, 61
Collaborations

configuring 112, 151, 155, 249, 253
Do and Undo logic in 43, 63
eX_Activity 45, 46, 65
eX_from_eBPM 38, 57
eX_Resubmitter 39, 58
eX_to_Activity 42, 63
eX_to_eBPM 57

common configuration tasks 84
configuring

common configuration tasks 84
e*Insight engine 34, 53, 244, 250
editing the eX_eBPM engine’s configuration file

107, 148, 226, 244, 250
eX_Resubmitter BOB 39, 58
eX_to_Activity e*Way 42, 62
Send_Status e*Way 113, 156, 175
START_BP e*Way 108, 149, 245, 251
starting a business process 87, 90
user-defined e*Gate components 174, 244, 251,

256, 260
Configuring the START_BP Component 41, 60
conventions, writing in document 18
Copy the eISchema 26
countATTRIBUTE 346

D
demonstrating business process restart 123, 167
demonstrating business process undo 121, 165
Do and Undo logic in an Activity collaboration 43,
63

E
e*Gate Schema for e*Insight 29, 48
e*Insight

schema components 29, 48, 262
sending the "Done" Event back 88, 93
e*Insight Business Process Manager Implementation Guide 465 SeeBeyond Proprietary and Confidential

Index
e*Insight Authorization Activity Implementation
126–132, 170–180
e*Insight Business Process Manager 23
e*Insight engine

configuring 244, 250
e*Insight ETD, understanding 67–82
e*Insight Helper Monk Functions 284–302
e*Insight Implementation 96–125, 133–169
e*Insight Java Helper Methods 303–392
e*Insight Schema components overview 30, 49
e*Insight Sub-Process Implementation 193–204,
205–218
e*Insight User Activity Implementation 181–192
e*Insight User Activity Methods 393–459
e*Ways

Send_Status, configuring 113, 156, 175
START_BP, configuring 108, 149, 245, 251

error handling 40, 59
connection failure handling 40
data failure handling 40
normal event failure handling 59
special event failure handling 59

error type 39, 58
connection 39, 58
data 39, 58

ETD
using, with e*Insight 67

ETD Java
structure 69

ETD Monk
structure 74

eX 378
eX-bin-set-attribute 295
eX-copy-no-attribute 299, 320
eX-count-attribute 287, 306
eX-count-local-attribute 296, 316
eX-get-Activity 291, 310
eX-get-all-attribute 301
eX-get-all-local-attribute 302
eX-get-attribute 286, 305
eX-get-BP_EVENT 290, 309
eX-get-local-attribute 297
eXSchema 48
eXSchema, copying 26
eX-set-Activity 292, 311
eX-set-all-BP_EVENT 300, 321
eX-set-attribute 288, 307
eX-set-BP_EVENT 289, 308
eX-set-local-attribute 298, 318
eX-string-set-attribute 293, 312
eX-xml-set-attribute 294, 313

F
from 380
from_eBPMConvert 380

G
getACTIVITY 347
getActivityAttributesCount 397
getActivityAttributeValue 398
getActivityGlobalAttributeNames 423
getActivityInstanceEndTime 424
getActivityInstanceStartTime 425
getActivityInstanceStatus 426
getActivityName 399, 427
getAssignedBPIIdByState 428
getATTRIBUTE 309, 349
getATTRIBUTE_VALUE 308, 348
getAuthorizationActivityNames 429
getBP_EVENT 381
getBPI_ID 350
getBPIStack 430
getBusinessModelId 400
getBusinessModelInstanceId 401
getBusinessModelInstanceName 432
getBusinessModelInstancesIds 431
getBusinessModelInstanceStatus 433
getBusinessModelName 402, 414, 434
getEnabledBusinessModelId 435
getEnabledBusinessModelsIds 436
getENCODING 325
getGlobalAttributeCount 403
getGlobalAttributeDefaultValue 437
getGlobalAttributeDirection 438
getGlobalAttributeNames 439
getGlobalAttributeType 404, 440
getGlobalAttributeValue 405, 441
getID 310, 351
getLocalAttributeNames 442
getLocalAttributeType 443
getLocalAttributeValue 444
getLOCATION 326
getMessageStatus 445
getMsgType 406
getNAME 311, 327, 352
getSTATUS 353
getTP_EVENT 382
getTYPE 328, 354
getUser 446
getUserActivityNames 447
getUUID 448
getVALUE 329
global attributes 68
e*Insight Business Process Manager Implementation Guide 466 SeeBeyond Proprietary and Confidential

Index
H
hasACTIVITY 355
hasBP_EVENT 383
hasBPI_ID 356
hasENCODING 330
hasID 312, 357
hasLOCATION 331
hasNAME 313, 358
hasSTATUS 359
hasTP_EVENT 384

I
implementation

basic information 24, 25
configuring the e*Gate components 27
configuring the e*Insight schema based on the

business process 26
copying the eXSchema 26
creating a business process 26
e*Insight 96–125, 133–169
e*Insight Authorization Activity 126–132, 170–

180
e*Insight User Activity 181–192
Remote Sub-Process 219–235
road map 25, 84
Sub-Process 193–204, 205–218
testing and tuning the system 27

initialize 449
input attributes 68
input/output attributes 68
Introducing e*Insight Business Process Manager
(e*Insight) 23

J
Java APIs

addATTRIBUTE 305, 344, 345
authenticate 421
checkoutActivityInstance 422
checkUserPrivileges 459
clearATTRIBUTE 306
clearMessage 396
countATTRIBUTE 346
from_eBPMConvert 380
getACTIVITY 347
getActivityAttributesCount 397
getActivityAttributeValue 398
getActivityGlobalAttributeNames 423
getActivityInstanceEndTime 424
getActivityInstanceStartTime 425
getActivityInstanceStatus 426
getActivityName 399, 427

getAssignedBPIIdByState 428
getATTRIBUTE 309, 349
getATTRIBUTE_VALUE 308, 348
getAuthorizationActivityNames 429
getBP_EVENT 381
getBPI_ID 350
getBPIStack 430
getBusinessModelId 400
getBusinessModelInstanceName 432
getBusinessModelInstancesIds 431
getBusinessModelInstanceStatus 433
getBusinessModelName 414, 434
getEnabledBusinessModelId 435
getEnabledBusinessModelsIds 436
getENCODING 325
getGlobalAttributeCount 403
getGlobalAttributeDefaultValue 437
getGlobalAttributeDirection 438
getGlobalAttributeNames 439
getGlobalAttributeType 404, 440
getGlobalAttributeValue 405, 441
getID 310, 351
getLocalAttributeNames 442
getLocalAttributeType 443
getLocalAttributeValue 444
getLOCATION 326
getMessageStatus 445
getMsgType 406
getNAME 311, 327, 352
getSTATUS 353
getTP_EVENT 382
getTYPE 328, 354
getUser 446
getUserActivityNames 447
getUUID 448
getVALUE 329
hasACTIVITY 355
hasBP_EVENT 383
hasBPI_ID 356
hasENCODING 330
hasID 312, 357
hasLOCATION 331
hasNAME 313, 358
hasSTATUS 359
hasTP_EVENT 384
initialize 449
marshal 314, 332, 360, 385
omitACTIVITY 361
omitBP_EVENT 386
omitBPI_ID 362
omitENCODING 333
omitID 315, 363
omitLOCATION 334
omitNAME 316, 364
e*Insight Business Process Manager Implementation Guide 467 SeeBeyond Proprietary and Confidential

Index
omitSTATUS 365
omitTP_EVENT 387
refreshCachedMemory 450
releaseActivityInstance 451
releaseResources 452
removeActivity 407
removeATTRIBUTE 317, 366
removeGlobalAttribute 408
resetUser 453
sendMessage 454
setACTIVITY 367
setActivityAttributeValue 409
setActivityName 410
setATTRIBUTE 318, 368
setBP_EVENT 388
setBPI_ID 370
setBPIStack 411
setBusinessModelId 413
setBusinessModelInstanceId 412
setENCODING 335
setEventInfo 371
setGlobalAttributeValue 455
setID 320, 372
setLocalAttributeValue 456
setLOCATION 336
setMsgType 416
setNAME 321, 337, 373
setSTATUS 374
setStatus 417
setTP_EVENT 389
setTYPE 338, 375
setUser 457
setVALUE 339
to_eBPMConvert 390
toString 322, 340, 376, 391
toXML 418
unmarshal 323, 341, 377, 392

Java APIssetGlobalAttributeValue 415

L
local attributes 68

using to implement undo logic 69

M
marshal 314, 332, 360, 385
Monk functions see functions

O
omitACTIVITY 361
omitBP_EVENT 386

omitBPI_ID 362
omitENCODING 333
omitID 315, 363
omitLOCATION 334
omitNAME 316, 364
omitSTATUS 365
omitTP_EVENT 387
order processing case study 97, 126, 134, 170, 183,
188, 236
output attributes 68
Overview 187

R
refreshCachedMemory 450
releaseActivityInstance 451
releaseResources 452
Remote Sub-Process Implementation 219–235
removeActivity 407
removeATTRIBUTE 317, 366
removeGlobalAttribute 408
resetUser 453
restart, demonstrating 123, 167

S
schema, copying 26
SeeBeyond eBusiness Integration Suite 20–24
sending the "Done" Event back to e*Insight 88, 93
sendMessage 454
setACTIVITY 367
setActivityAttributeValue 409
setActivityName 410
setATTRIBUTE 318, 368
setBP_EVENT 388
setBPI_ID 370
setBPIStack 411
setBusinessModelId 413
setBusinessModelInstanceId 412
setENCODING 335
setEventInfo 371
setGlobalAttributeValue 415, 455
setI 320
setID 372
setLocalAttributeValue 456
setLOCATION 336
setMsgType 416
setNAME 321, 337, 373
setSTATUS 374
setStatus 417
setting attributes 87, 91
setTP_EVENT 389
setTYPE 338, 375
setUser 457
e*Insight Business Process Manager Implementation Guide 468 SeeBeyond Proprietary and Confidential

Index
setVALUE 339
START_BP component, configuring 41, 60
START_BP e*Way, configuring 108, 149, 245, 251
starting a business process 87, 90
supporting documents 19

T
testing the standard business logic 117, 130, 162,
177, 185, 190
to_eBPMConvert 390
toString 322, 340, 376, 391
toXML 418

U
understanding the e*Insight ETD 67–82
Undo, demonstrating 121, 165
unmarshal 323, 341, 377, 392
user-defined e*Gate components, configuring 174,
244, 251, 256, 260
Using the ETD with e*Insight 67

X
XML

element with sub-elements 74
element without sub-elements 75
ETD structure for an XML attribute 75
structure for the e*Xchange Event 460–461
e*Insight Business Process Manager Implementation Guide 469 SeeBeyond Proprietary and Confidential

	e*Insight Business Process Manager Implementation Guide
	Contents
	Introduction
	1.1 Document Purpose and Scope
	1.2 Intended Audience
	1.3 Writing Conventions
	1.4 Supporting Documents
	1.5 SeeBeyond Web Site

	Introduction to the SeeBeyond eBI Suite
	2.1 SeeBeyond eBusiness Integration Suite
	2.1.1 SeeBeyond eBusiness Integration Suite Components
	e*Gate Integrator Components

	2.2 Introducing e*Insight Business Process Manager (e*Insight)
	2.3 Building an eApplication
	2.4 Basic Information

	Implementation Overview
	3.1 Basic Information
	3.2 Implementation Road Map
	Step 1: Create a Business Process
	Step 2: Copy the e*Insight Schema
	Step 3: Configure the e*Insight Schema Based on the Business Process
	Step 4: Configure the e*Gate Components
	Step 5: Test and Tune the System

	3.3 The e*Insight Schema
	3.3.1 The eIJSchema (Java)
	3.3.2 The eISchema (Classic)

	e*Insight Schema Components (eIJSchema)
	4.1 The Purpose of the e*Gate Schema for e*Insight
	4.1.1 e*Insight Components

	4.2 e*Insight Schema Components Overview
	4.2.1 e*Insight Schema Component Relationships Diagram

	4.3 e*Insight Business Process Manager Components
	Components That Run Business Processes
	Components that Start Business Processes
	Components that Implement Business Process Activities
	4.3.1 e*Insight Engine
	Configuring the e*Insight Engine
	Configuring the e*Insight Engine Connection
	eIcr_eBPM Collaboration

	4.3.2 eI_Resubmitter BOB
	Configuring the eI_Resubmitter BOB
	eI_Resubmitter Collaboration

	4.3.3 Failed Event Handling by the e*Insight Engine
	Error Types
	Error Handling

	4.3.4 START_BP Component
	Configuring the START_BP Component
	START_BP Collaboration

	4.3.5 Single-Mode Activity e*Way
	Configuring the eX_to_Activity e*Way
	eX_to_Activity Collaboration
	eX_from_Activity Collaboration

	4.3.6 Multi-Mode Activity e*Way
	eX_Activity Collaboration

	4.3.7 Activity BOB
	eX_Activity Collaboration

	4.4 Using Monk in eIJSchema
	4.4.1 Updating an eISchema to use the eIJSchema engine

	e*Insight Schema Components (eISchema)
	5.1 The Purpose of the e*Gate Schema for e*Insight
	5.1.1 e*Insight Components

	5.2 e*Insight Schema Components Overview
	Additional Components
	5.2.1 e*Insight Schema Component Relationships Diagram

	5.3 e*Insight Business Process Manager Components
	Components That Run Business Processes
	Components that Start Business Processes
	Components that Implement Business Process Activities
	5.3.1 e*Insight Engine
	Configuring the e*Insight Engine
	eX_from_eBPM Collaboration
	eX_to_eBPM Collaboration

	5.3.2 eI_Resubmitter BOB
	Configuring the eI_Resubmitter BOB
	eI_Resubmitter Collaboration

	5.3.3 Failed Event Handling by the e*Insight Engine
	Error Types
	Error Handling

	5.3.4 START_BP Component (e*Way or BOB)
	Configuring the START_BP Component
	START_BP Collaboration

	5.3.5 Activity e*Way
	Configuring the eX_to_Activity e*Way
	eX_to_Activity Collaboration
	eX_from_Activity Collaboration

	5.3.6 Activity BOB
	eX_Activity Collaboration

	Understanding the e*Insight ETD
	6.1 Using the ETD with e*Insight
	6.1.1 About Business Process Attributes
	Global Attributes
	Local Attributes

	6.2 e*Insight ETD for Java — eI_StandardEvent.xsc
	6.2.1 BP_EVENT
	BP_EVENT Element
	BP_EVENT.ACTIVITY Nodes
	ACTIVITY Element
	ACTIVITY.ATTRIBUTE Element
	BP_EVENT.ATTRIBUTE Nodes

	6.3 e*Insight ETD for Monk—eX_Standard_Event.ssc
	6.3.1 ETD Structure
	6.3.2 XML Element with Sub-elements
	6.3.3 XML Element without sub-elements
	6.3.4 XML Attribute
	6.3.5 Element Overview
	Example: XML Element with Sub-elements
	Example: XML Element with Attributes

	6.4 Using eX_Standard_Event.ssc
	6.4.1 BP_EVENT
	BP_EVENT.AS Nodes
	BP_EVENT.CT.DSN.DS.ACTIVITY Nodes
	ACTIVITY.AS Nodes
	ACTIVITY.CT.DSN.DS.ATTRIBUTE Nodes
	BP_EVENT.CT.DSN.DS.ATTRIBUTE.AS Nodes

	Common Configuration Tasks
	7.1 Implementation Road Map
	7.2 Common Configuration Tasks
	7.2.1 Copy the e*Insight Schema
	Using the e*Insight GUI
	Copying the Schema from the Registry Host
	Installing from the CD

	7.3 Sending Messages to the e*Insight Engine (eIJSchema)
	7.3.1 Starting a Business Process (eIJSchema)
	7.3.2 Setting Attributes (eIJSchema)
	7.3.3 Getting Attributes (eIJSchema)
	7.3.4 Sending the “Done” Event Back to e*Insight (eIJSchema)

	7.4 Sending Messages to the e*Insight Engine (eISchema)
	7.4.1 Starting a Business Process (eISchema)
	7.4.2 Setting Attributes (eISchema)
	Setting Attributes in a Monk Collaboration
	Setting Attributes in a Java Collaboration

	7.4.3 Getting Attributes (eISchema)
	Getting Attributes in a Monk Collaboration
	Getting Attributes in a Java Collaboration

	7.4.4 Sending the “Done” Event Back to e*Insight (eISchema)

	e*Insight Implementation (eIJSchema)
	8.1 Overview
	8.1.1 Case Study: Payroll Processing

	8.2 Create the Payroll BP in e*Insight
	8.2.1 Creating the processes performing the Activities
	Configuring the e*Insight Script for Update_Status

	8.3 Configure the Integration Schema (e*Insight)
	Integration Schema Activity Components Summary
	Creating the eX_Check_Eligibility Multi-Mode e*Way
	Creating the eX_Calculate_Bonus BOB
	Process_Payroll e*Way Configuration

	8.4 Configure the Integration Schema (e*Gate)
	8.4.1 Configure the e*Insight Engine
	Edit the eIcp_eInsightEngine Connection Configuration File

	8.4.2 Configure the JMS Connection

	8.5 Configure User-defined e*Gate Components
	Configuration Order for the User-defined Components
	8.5.1 Configure the START_BP e*Way
	Step 1: Create the START_BP e*Way
	Step 2: Create the Input ETD
	Step 3: Create the START_BP Collaboration
	Step 4: Configure the Collaboration in the GUI

	8.5.2 Configure the Process_Payroll e*Way
	Step 1: Configure the e*Way
	Step 2: Create the Output ETD:PayrollProcess.xsc using Java
	Step 3: Create the Process_Payroll Collaboration Rule
	Step 4: Configure the Collaboration

	8.6 Run and Test the e*Insight scenario
	8.6.1 Testing the Standard Business Logic
	Payroll Processing
	Not Eligible Processing

	8.6.2 Demonstrating Business Process Undo Functionality
	Manual Undo

	8.6.3 Demonstrating Business Process Restart Functionality
	Repairing a String Attribute

	e*Insight Authorization Activity Implementation (eIJSchema)
	9.1 Overview
	9.1.1 Case Study: Payroll Processing

	9.2 Step 1: Update the Payroll BP in e*Insight
	9.2.1 Creating the processes performing the Activities
	Configuring the e*Insight Script for Bonus_Refused

	9.3 Step 2: Run and Test the e*Insight scenario
	9.3.1 Testing the Standard Business Logic
	Authorized Processing
	Not Authorized Processing

	e*Insight Implementation (eISchema)
	10.1 Overview
	10.1.1 Case Study: Order Processing

	10.2 Create the ProcessOrder BP in e*Insight
	10.2.1 Creating the processes performing the Activities
	Configuring the e*Insight Script for Ship_Ord

	10.3 Configure the Integration Schema
	Integration Schema Activity Components Summary
	Creating the eX_Check_Inv BOB
	Creating the eX_Out_of_Inv BOB
	Send_Status e*Way Configuration

	10.4 Configure the e*Insight Engine
	Edit the eX_eBPM Configuration File

	10.5 Configure User-defined e*Gate Components
	Configuration Order for the User-defined Components
	10.5.1 Configure the START_BP e*Way
	Step 1: Create the START_BP e*Way using Monk
	Step 2: Create the Input ETD using Monk
	Step 3: Create the START_BP CRS using Monk
	Step 4: Configure the START_BP Collaboration in the GUI using Monk
	Step 1: Create the START_BP e*Way using Java
	Step 2: Create the Input ETD using Java
	Step 3: Create the START_BP Collaboration using Java
	Step 4: Configure the Collaboration in the GUI using Java

	10.5.2 Configure the Send_Status e*Way
	Step 1: Configure the eX_Send_Status e*Way using Monk
	Step 2: Create the Output ETD using Monk
	Step 3: Create the eX_Send_Status.tsc CRS using Monk
	Step 4: Configure the Collaboration using Monk
	Step 1: Configure the e*Way using Java
	Step 2: Create the Output ETD: SendStatus.xsc using Java
	Step 3: Create the Send_Status Collaboration Rule using Java
	Step 4: Configure the Collaboration using Java

	10.6 Run and Test the e*Insight scenario
	10.6.1 Testing the Standard Business Logic
	In-Stock Processing
	Out-of-Stock Processing

	10.6.2 Demonstrating Business Process Undo Functionality
	Manual Undo

	10.6.3 Demonstrating Business Process Restart Functionality
	Repairing a String Attribute

	e*Insight Authorization Activity Implementation (eISchema)
	11.1 Overview
	11.1.1 Case Study: Order Processing

	11.2 Step 1: Create the ProcessOrder BP in e*Insight
	11.3 Step 2: Configure the Integration Schema
	Integration Schema Activity Components Summary

	11.4 Step 3: Configure User-defined e*Gate Components
	Configure the Activity BOB CRS in the Enterprise Manager GUI
	Configure the Activity BOB Collaborations in the Enterprise Manager GUI
	11.4.1 Configure the Authorize_Quantity e*Way
	Step 2: Create the Authorize_Quantity.tsc CRS
	Step 3: Configure the e*Way
	Step 4: Configure the Collaboration

	11.5 Step 5: Run and Test the e*Insight scenario
	11.5.1 Testing the Standard Business Logic
	Authorized Processing
	Not Authorized Processing

	e*Insight User Activity Implementation
	12.1 Overview of the User Activity
	12.1.1 User Activity Security
	12.1.2 Deployment of the User Activity

	12.2 Overview of the Payroll BP
	12.3 Overview
	12.3.1 Case Study: Payroll Processing with User Activity

	12.4 Step 1: Update the Payroll BP in e*Insight
	12.5 Step 2: Configure the Integration Schema
	12.6 Step 3: Run and Test the e*Insight scenario
	12.6.1 Testing the User Activity

	12.7 Overview of the ProcessOrder BP
	12.8 Overview
	12.8.1 Case Study: Order Processing with User Activity

	12.9 Step 1: Update the ProcessOrder BP in e*Insight
	12.10 Step 2: Configure the Integration Schema
	12.11 Step 3: Run and Test the e*Insight scenario
	12.11.1 Testing the User Activity

	e*Insight Sub-Process Implementation (eIJSchema)
	13.1 Overview of the Sub-Process Example
	13.2 Create the CalculateBonus BP in e*Insight
	13.3 Configure the Integration Schema for CalculateBonus
	13.4 Modify the Payroll BP in e*Insight
	13.5 Configure the Integration Schema for Payroll
	13.6 Run and Test the e*Insight scenario
	13.7 Overview of the Dynamic Sub-Process Example
	13.8 Create the accounts BP in e*Insight
	13.9 Configure the Integration Schema for accounts
	Creating the CRS in e*Gate

	13.10 Create the marketing BP in e*Insight
	13.11 Configure the Integration Schema for marketing
	Creating the CRS for eX_Calculate_Bonus_marketing in e*Gate

	13.12 Modify the Payroll BP in e*Insight
	13.13 Configure the Integration Schema for Payroll
	13.14 Run and Test the e*Insight scenario

	e*Insight Sub-Process Implementation (eISchema)
	14.1 Overview of the Sub-Process Example
	14.2 Create the CheckInventory BP in e*Insight
	14.3 Configure the Integration Schema for CheckInventory
	14.4 Modify the ProcessOrder BP in e*Insight
	14.5 Configure the Integration Schema for ProcessOrder
	14.6 Run and Test the e*Insight scenario
	14.7 Overview of the Dynamic Sub-Process Example
	14.8 Create the CA BP in e*Insight
	14.9 Configure the Integration Schema for CA
	Creating the CRS in e*Gate

	14.10 Create the OR BP in e*Insight
	14.11 Configure the Integration Schema for OR
	Creating the CRS in e*Gate

	14.12 Modify the ProcessOrder BP in e*Insight
	14.13 Configure the Integration Schema for ProcessOrder
	14.14 Run and Test the e*Insight scenario

	e*Insight Remote Sub-Process Implementation
	15.1 Overview
	15.2 Overview of the Remote Sub-Process
	15.3 Installation and Configuration of Tomcat
	Installing Tomcat
	Configuring Tomcat
	Deploying the SOAP Service

	15.4 Installation of Tomcat and e*Insight on Different Hosts
	15.5 Overview of the Remote Sub-Process Example (eIJSchema)
	15.6 Install and configure Tomcat
	15.7 Create the CalculateBonus BP in e*Insight
	15.8 Configure the Integration Schema for CalculateBonus
	15.8.1 Create the CalculateBonus Schema
	15.8.2 Configure the CalculateBonus Schema
	Create the Calculate_Bonus activity BOB
	Edit the eIcp_eInsightEngine Connection Configuration File
	Configure the JMS Connection

	15.9 Modify the Payroll BP in e*Insight
	15.10 Configure the Integration Schema for Payroll
	15.11 Run and Test the e*Insight scenario
	15.12 Overview of the Remote Sub-Process Example (eISchema)
	15.13 Install and configure Tomcat
	15.14 Create the CheckInventory BP in e*Insight
	15.15 Configure the Integration Schema for CheckInventory
	15.15.1 Create the CheckInventory Schema
	15.15.2 Configure the e*Insight engine
	15.15.3 Create the Check_Inv activity BOB

	15.16 Modify the ProcessOrder BP in e*Insight
	15.17 Configure the Integration Schema for ProcessOrder
	15.18 Run and Test the e*Insight scenario
	In-Stock Processing

	Active and Passive Modes
	16.1 Overview
	16.1.1 Case Study
	16.1.2 Case Study - Active Control Mode
	16.1.3 Case Study - Passive Control Mode

	16.2 Create the Order BP in e*Insight
	16.3 Configure the Integration Schema (eIJSchema)
	Integration Schema Activity Components Summary
	Creating the eX_Bill_Customer BOB
	Creating the eX_Ship_Order BOB

	16.4 Configure the e*Insight Engine (eIJSchema)
	Edit the eIcp_eInsightEngine Connection Configuration File
	16.4.1 Configure the JMS Connection

	16.5 Configure User-defined e*Gate Components (eIJSchema)
	Configuration Order for the User-defined Components
	16.5.1 Configure the START_BP e*Way
	Step 1: Create the START_BP e*Way
	Step 2: Create the Input ETD
	Step 3: Create the START_BP Collaboration
	Step 4: Configure the Collaboration in the GUI

	16.6 Configure the Integration Schema (eISchema)
	Integration Schema Activity Components Summary

	16.7 Configure the e*Insight Engine (eISchema)
	Edit the eX_eBPM Engine’s Configuration File

	16.8 Configure User-defined e*Gate Components (eISchema)
	Configuration Order for the User-defined Components
	16.8.1 Configure the START_BP e*Way
	Step 1: Create the Input ETD
	Step 2: Create the START_BP Collaboration Rules Script (CRS)
	Step 3: Add the e*Way and Create the e*Way Configuration File
	Step 4: Configure the Collaboration in the GUI

	16.8.2 Configure the Activity BOBs
	Create the Activity BOB CRSs
	Configure the Activity BOB Collaborations in the Enterprise Manager GUI

	16.9 Run and Test the e*Insight scenario
	16.10 Case Study - Passive Control Mode
	16.11 Passive Control Mode (eIJSchema)
	16.11.1 Modify the Order BP in e*Insight (eIJSchema)
	16.11.2 Modify User-defined e*Gate Components (eIJSchema)
	Configuration Order for the User-defined Components
	Configure the Bill_Customer Collaboration Rule and Collaboration

	16.11.3 Run and Test the e*Insight scenario

	16.12 Passive Control Mode (eISchema)
	16.12.1 Modify the Order BP in e*Insight (eISchema)
	16.12.2 Modify User-defined e*Gate Components (eISchema)
	Configuration Order for the User-defined Components
	Configure the Bill_Customer Collaboration Rule and Collaboration

	16.12.3 Run and Test the e*Insight scenario

	e*Insight Performance
	17.1 Performance Improvements Using eIJSchema
	17.1.1 Instance Caching
	17.1.2 Using Multiple e*Insight Engines
	17.1.3 e*Insight Engine Affinity (eIJSchema)
	17.1.4 Using Engine Affinity with e*Gate 4.5.2
	Configuring the Engine Affinity JMS Properties

	17.1.5 Using Engine Affinity with e*Gate 4.5.1
	17.1.6 Using e*Xchange with e*Insight (eIJSchema)
	17.1.7 Using Binary XML (eIJSchema)
	17.1.8 Subscribing to Event Types
	Subscribing to a Single “Go” Event
	Configuring a Separate Collaboration for Do and Undo Events
	Removing Unnecessary Subscriptions

	17.1.9 Event Type “get” Interval
	17.1.10 Review JVM Settings

	17.2 Performance Improvements Using eISchema
	17.2.1 Instance Caching
	17.2.2 Using Multiple e*Insight Engines (eISchema)
	17.2.3 e*Insight Engine Affinity (eISchema)
	Manually Publishing Events using eX-event-sendback-to-sender

	17.2.4 Exchange Data Interval (eISchema)
	17.2.5 Review JVM Settings

	17.3 General e*Insight Performance Tips

	Troubleshooting
	18.1 Log File Locations
	18.2 Generating Log Files
	18.3 Common Problems
	18.4 General Troubleshooting Tips
	18.4.1 Locating the problem
	18.4.2 Viewing the Message Content

	e*Insight Helper Monk Functions
	19.1 e*Insight Helper Monk Functions
	eX-get-attribute
	eX-count-attribute
	eX-set-attribute
	eX-set-BP_EVENT
	eX-get-BP_EVENT
	eX-get-Activity
	eX-set-Activity
	eX-string-set-attribute
	eX-xml-set-attribute
	eX-bin-set-attribute
	eX-count-local-attribute
	eX-get-local-attribute
	eX-set-local-attribute
	eX-copy-no-attribute
	eX-set-all-BP_EVENT
	eX-get-all-attribute
	eX-get-all-local-attribute

	Java Helper Methods
	20.1 ACTIVITY Class
	addATTRIBUTE
	clearATTRIBUTE
	countATTRIBUTE
	getATTRIBUTE_VALUE
	getATTRIBUTE
	getID
	getNAME
	hasID
	hasNAME
	marshal
	omitID
	omitNAME
	removeATTRIBUTE
	setATTRIBUTE
	setID
	setNAME
	toString
	unmarshal

	20.2 ATTRIBUTE Class
	getENCODING
	getLOCATION
	getNAME
	getTYPE
	getVALUE
	hasENCODING
	hasLOCATION
	marshal
	omitENCODING
	omitLOCATION
	setENCODING
	setLOCATION
	setNAME
	setTYPE
	setVALUE
	toString
	unmarshal

	20.3 BP_EVENT Class
	addATTRIBUTE
	clearATTRIBUTE
	countATTRIBUTE
	getACTIVITY
	getATTRIBUTE_VALUE
	getATTRIBUTE
	getBPI_ID
	getID
	getNAME
	getSTATUS
	getTYPE
	hasACTIVITY
	hasBPI_ID
	hasID
	hasNAME
	hasSTATUS
	marshal
	omitACTIVITY
	omitBPI_ID
	omitID
	omitNAME
	omitSTATUS
	removeATTRIBUTE
	setACTIVITY
	setATTRIBUTE
	setBPI_ID
	setEventInfo
	setID
	setNAME
	setSTATUS
	setTYPE
	toString
	unmarshal

	20.4 eX_StandardEvent Class
	from_eBPMConvert
	getBP_EVENT
	getTP_EVENT
	hasBP_EVENT
	hasTP_EVENT
	marshal
	omitBP_EVENT
	omitTP_EVENT
	setBP_EVENT
	setTP_EVENT
	to_eBPMConvert
	toString
	unmarshal

	e*Insight User Activity API Methods
	21.0.1 User Activity Security
	21.0.2 Defining the Classpath
	21.1 Imessage Interface
	clearMessage
	getActivityAttributesCount
	getActivityAttributeValue
	getActivityName
	getBusinessModelId
	getBusinessModelInstanceId
	getBusinessModelName
	getGlobalAttributeCount
	getGlobalAttributeType
	getGlobalAttributeValue
	getMsgType
	removeActivity
	removeGlobalAttribute
	setActivityAttributeValue
	setActivityName
	setBPIStack
	setBusinessModelInstanceId
	setBusinessModelId
	setBusinessModelName
	setGlobalAttributeValue
	setMsgType
	setStatus
	toXML

	21.2 UserActivityMessage Class
	21.3 IClient Interface
	authenticate
	checkoutActivityInstance
	getActivityGlobalAttributeNames
	getActivityInstanceEndTime
	getActivityInstanceStartTime
	getActivityInstanceStatus
	getActivityNames
	getAssignedBPIIdByState
	getAuthorizationActivityNames
	getBPIStack
	getBusinessModelInstancesIds
	getBusinessModelInstanceName
	getBusinessModelInstanceStatus
	getBusinessModelName
	getEnabledBusinessModelId
	getEnabledBusinessModelsIds
	getGlobalAttributeDefaultValue
	getGlobalAttributeDirection
	getGlobalAttributeNames
	getGlobalAttributeType
	getGlobalAttributeValue
	getLocalAttributeNames
	getLocalAttributeType
	getLocalAttributeValue
	getMessageStatus
	getUser
	getUserActivityNames
	getUUID
	initialize
	refreshCachedMemory
	releaseActivityInstance
	releaseResources
	resetUser
	sendMessage
	setGlobalAttributeValue
	setLocalAttributeValue
	setUser

	21.4 EbpmMonitor Class
	checkUserPrivileges

	XML Structure for the e*Insight Event
	A.1 XML Structure

	Glossary
	Index
	A
	Activity BOB
	addATTRIBUTE 305, 344, 345
	APIs
	attributes
	authenticate 421

	B
	Basic 25
	BOB
	BP_EVENT 69, 78
	business logic, testing 117, 130, 162, 177, 185, 190
	business processes

	C
	case study (order processing) 97, 126, 134, 170, 183, 188, 236
	checkoutActivityInstance 422
	checkUserPrivileges 459
	clearATTRIBUTE 306
	clearMessage 396
	Collaboration
	Collaborations
	common configuration tasks 84
	configuring
	Configuring the START_BP Component 41, 60
	conventions, writing in document 18
	Copy the eISchema 26
	countATTRIBUTE 346

	D
	demonstrating business process restart 123, 167
	demonstrating business process undo 121, 165
	Do and Undo logic in an Activity collaboration 43, 63

	E
	e*Gate Schema for e*Insight 29, 48
	e*Insight
	e*Insight Authorization Activity Implementation 126–132, 170–180
	e*Insight Business Process Manager 23
	e*Insight engine
	e*Insight ETD, understanding 67–82
	e*Insight Helper Monk Functions 284–302
	e*Insight Implementation 96–125, 133–169
	e*Insight Java Helper Methods 303–392
	e*Insight Schema components overview 30, 49
	e*Insight Sub-Process Implementation 193–204, 205–218
	e*Insight User Activity Implementation 181–192
	e*Insight User Activity Methods 393–459
	e*Ways
	error handling 40, 59
	error type 39, 58
	ETD
	ETD Java
	ETD Monk
	eX 378
	eX-bin-set-attribute 295
	eX-copy-no-attribute 299, 320
	eX-count-attribute 287, 306
	eX-count-local-attribute 296, 316
	eX-get-Activity 291, 310
	eX-get-all-attribute 301
	eX-get-all-local-attribute 302
	eX-get-attribute 286, 305
	eX-get-BP_EVENT 290, 309
	eX-get-local-attribute 297
	eXSchema 48
	eXSchema, copying 26
	eX-set-Activity 292, 311
	eX-set-all-BP_EVENT 300, 321
	eX-set-attribute 288, 307
	eX-set-BP_EVENT 289, 308
	eX-set-local-attribute 298, 318
	eX-string-set-attribute 293, 312
	eX-xml-set-attribute 294, 313

	F
	from 380
	from_eBPMConvert 380

	G
	getACTIVITY 347
	getActivityAttributesCount 397
	getActivityAttributeValue 398
	getActivityGlobalAttributeNames 423
	getActivityInstanceEndTime 424
	getActivityInstanceStartTime 425
	getActivityInstanceStatus 426
	getActivityName 399, 427
	getAssignedBPIIdByState 428
	getATTRIBUTE 309, 349
	getATTRIBUTE_VALUE 308, 348
	getAuthorizationActivityNames 429
	getBP_EVENT 381
	getBPI_ID 350
	getBPIStack 430
	getBusinessModelId 400
	getBusinessModelInstanceId 401
	getBusinessModelInstanceName 432
	getBusinessModelInstancesIds 431
	getBusinessModelInstanceStatus 433
	getBusinessModelName 402, 414, 434
	getEnabledBusinessModelId 435
	getEnabledBusinessModelsIds 436
	getENCODING 325
	getGlobalAttributeCount 403
	getGlobalAttributeDefaultValue 437
	getGlobalAttributeDirection 438
	getGlobalAttributeNames 439
	getGlobalAttributeType 404, 440
	getGlobalAttributeValue 405, 441
	getID 310, 351
	getLocalAttributeNames 442
	getLocalAttributeType 443
	getLocalAttributeValue 444
	getLOCATION 326
	getMessageStatus 445
	getMsgType 406
	getNAME 311, 327, 352
	getSTATUS 353
	getTP_EVENT 382
	getTYPE 328, 354
	getUser 446
	getUserActivityNames 447
	getUUID 448
	getVALUE 329
	global attributes 68

	H
	hasACTIVITY 355
	hasBP_EVENT 383
	hasBPI_ID 356
	hasENCODING 330
	hasID 312, 357
	hasLOCATION 331
	hasNAME 313, 358
	hasSTATUS 359
	hasTP_EVENT 384

	I
	implementation
	initialize 449
	input attributes 68
	input/output attributes 68
	Introducing e*Insight Business Process Manager (e*Insight) 23

	J
	Java APIs
	Java APIssetGlobalAttributeValue 415

	L
	local attributes 68

	M
	marshal 314, 332, 360, 385
	Monk functions see functions

	O
	omitACTIVITY 361
	omitBP_EVENT 386
	omitBPI_ID 362
	omitENCODING 333
	omitID 315, 363
	omitLOCATION 334
	omitNAME 316, 364
	omitSTATUS 365
	omitTP_EVENT 387
	order processing case study 97, 126, 134, 170, 183, 188, 236
	output attributes 68
	Overview 187

	R
	refreshCachedMemory 450
	releaseActivityInstance 451
	releaseResources 452
	Remote Sub-Process Implementation 219–235
	removeActivity 407
	removeATTRIBUTE 317, 366
	removeGlobalAttribute 408
	resetUser 453
	restart, demonstrating 123, 167

	S
	schema, copying 26
	SeeBeyond eBusiness Integration Suite 20–24
	sending the "Done" Event back to e*Insight 88, 93
	sendMessage 454
	setACTIVITY 367
	setActivityAttributeValue 409
	setActivityName 410
	setATTRIBUTE 318, 368
	setBP_EVENT 388
	setBPI_ID 370
	setBPIStack 411
	setBusinessModelId 413
	setBusinessModelInstanceId 412
	setENCODING 335
	setEventInfo 371
	setGlobalAttributeValue 415, 455
	setI 320
	setID 372
	setLocalAttributeValue 456
	setLOCATION 336
	setMsgType 416
	setNAME 321, 337, 373
	setSTATUS 374
	setStatus 417
	setting attributes 87, 91
	setTP_EVENT 389
	setTYPE 338, 375
	setUser 457
	setVALUE 339
	START_BP component, configuring 41, 60
	START_BP e*Way, configuring 108, 149, 245, 251
	starting a business process 87, 90
	supporting documents 19

	T
	testing the standard business logic 117, 130, 162, 177, 185, 190
	to_eBPMConvert 390
	toString 322, 340, 376, 391
	toXML 418

	U
	understanding the e*Insight ETD 67–82
	Undo, demonstrating 121, 165
	unmarshal 323, 341, 377, 392
	user-defined e*Gate components, configuring 174, 244, 251, 256, 260
	Using the ETD with e*Insight 67

	X
	XML

