SeeBeyond™ eBusiness Integration Suite

e*Insight Business Process
Manager Implementation

Guide

Release 4.5.2

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBl, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 1999-2002 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20020220105939.

e*Insight Business Process Manager Implementation Guide 2 SeeBeyond Proprietary and Confidential

Contents

Contents
Chapter 1
Introduction 17
Document Purpose and Scope 17
Intended Audience 17
Writing Conventions 18
Supporting Documents 19
SeeBeyond Web Site 19
Chapter 2
Introduction to the SeeBeyond eBI Suite 20
SeeBeyond eBusiness Integration Suite 20
SeeBeyond eBusiness Integration Suite Components 21
e*Gate Integrator Components 22
Introducing e*Insight Business Process Manager (e*Insight) 23
Building an eApplication 24
Basic Information 24
Chapter 3
Implementation Overview 25
Basic Information 25
Implementation Road Map 25
Step 1: Create a Business Process 26
Step 2: Copy the e*Insight Schema 26
Step 3: Configure the e*Insight Schema Based on the Business Process 26
Step 4: Configure the e*Gate Components 27
Step 5: Test and Tune the System 27
The e*Insight Schema 27
The elJSchema (Java) 27
The elSchema (Classic) 28

e*Insight Business Process Manager Implementation Guide 3 SeeBeyond Proprietary and Confidential

Contents

Chapter 4

e*Insight Schema Components (elJSchema) 29
The Purpose of the e*Gate Schema for e*Insight 29
e*Insight Components 29
e*Insight Schema Components Overview 30
e*Insight Schema Component Relationships Diagram 31
e*Insight Business Process Manager Components 32
Components That Run Business Processes 32
Components that Start Business Processes 33
Components that Implement Business Process Activities 33
e*Insight Engine 33
Configuring the e*Insight Engine 34
Configuring the e*Insight Engine Connection 34
elcr_eBPM Collaboration 38
el_Resubmitter BOB 38
Configuring the el_Resubmitter BOB 39
el_Resubmitter Collaboration 39

Failed Event Handling by the e*Insight Engine 39
Error Types 39

Error Handling 40
START_BP Component 40
Configuring the START_BP Component 41
START_BP Collaboration 41
Single-Mode Activity e*Way 41
Configuring the eX_to_Activity e*Way 42
eX_to_Activity Collaboration 42
eX_from_Activity Collaboration 44
Multi-Mode Activity e*Way 44
eX_Activity Collaboration 45
Activity BOB 45
eX_Activity Collaboration 46

Using Monk in elJSchema 47
Updating an elSchema to use the elJSchema engine 47

Chapter 5

e*Insight Schema Components (elSchema) 48
The Purpose of the e*Gate Schema for e*Insight 48
e*Insight Components 48
e*Insight Schema Components Overview 49
Additional Components 49
e*Insight Schema Component Relationships Diagram 50
e*Insight Business Process Manager Components 51
Components That Run Business Processes 51
Components that Start Business Processes 52
Components that Implement Business Process Activities 52

e*Insight Business Process Manager Implementation Guide 4 SeeBeyond Proprietary and Confidential

Contents

e*Insight Engine 52
Configuring the e*Insight Engine 53
eX_from_eBPM Collaboration 57
eX_to_eBPM Collaboration 57

el_Resubmitter BOB 57
Configuring the el_Resubmitter BOB 58
el_Resubmitter Collaboration 58

Failed Event Handling by the e*Insight Engine 58
Error Types 58
Error Handling 59

START_BP Component (e*Way or BOB) 59
Configuring the START_BP Component 60
START_BP Collaboration 61

Activity e*Way 62
Configuring the eX_to_Activity e*Way 62
eX_to_Activity Collaboration 63
eX_from_Activity Collaboration 64

Activity BOB 64
eX_Activity Collaboration 65

Chapter 6
Understanding the e*Insight ETD 67
Using the ETD with e*Insight 67

About Business Process Attributes 67
Global Attributes 68
Local Attributes 68

e*Insight ETD for Java — el_StandardEvent.xsc 69

BP_EVENT 69
BP_EVENT Element 70
BP_EVENT.ACTIVITY Nodes 71
ACTIVITY Element 71
ACTIVITY.ATTRIBUTE Element 72
BP_EVENT.ATTRIBUTE Nodes 72

e*Insight ETD for Monk—eX_Standard_Event.ssc 74

ETD Structure 74

XML Element with Sub-elements 74

XML Element without sub-elements 75

XML Attribute 75

Element Overview 76
Example: XML Element with Sub-elements 76
Example: XML Element with Attributes 77

Using eX_Standard_Event.ssc 78

BP_EVENT 78
BP_EVENT.AS Nodes 78
BP_EVENT.CT.DSN.DS.ACTIVITY Nodes 80
ACTIVITY.AS Nodes 80
ACTIVITY.CT.DSN.DS.ATTRIBUTE Nodes 80
BP_EVENT.CT.DSN.DS.ATTRIBUTE.AS Nodes 81

e*Insight Business Process Manager Implementation Guide 5

SeeBeyond Proprietary and Confidential

Contents

Chapter 7

Common Configuration Tasks 83
Implementation Road Map 84
Common Configuration Tasks 84
Copy the e*Insight Schema 85
Using the e*Insight GUI 85
Copying the Schema from the Registry Host 86
Installing from the CD 86
Sending Messages to the e*Insight Engine (elJSchema) 87
Starting a Business Process (el)Schema) 87
Setting Attributes (elJSchema) 87
Getting Attributes (elJSchema) 88
Sending the “Done” Event Back to e*Insight (elJSchema) 88
Sending Messages to the e*Insight Engine (elSchema) 90
Starting a Business Process (elSchema) 90
Setting Attributes (elSchema) 91
Setting Attributes in a Monk Collaboration 91

Setting Attributes in a Java Collaboration 92

Getting Attributes (elSchema) 92
Getting Attributes in a Monk Collaboration 92
Getting Attributes in a Java Collaboration 93
Sending the “Done” Event Back to e*Insight (elSchema) 93

Chapter 8

e*Insight Implementation (elJSchema) 96
Overview 96
Case Study: Payroll Processing 97
Create the Payroll BP in e*Insight 100
Creating the processes performing the Activities 102
Configuring the e*Insight Script for Update_Status 102
Configure the Integration Schema (e*Insight) 103
Integration Schema Activity Components Summary 103
Creating the eX_Check_Eligibility Multi-Mode e*Way 104
Creating the eX_Calculate_Bonus BOB 106
Process_Payroll e*Way Configuration 107
Configure the Integration Schema (e*Gate) 107
Configure the e*Insight Engine 107
Edit the elcp_elnsightEngine Connection Configuration File 107
Configure the JMS Connection 108
Configure User-defined e*Gate Components 108
Configuration Order for the User-defined Components 108
Configure the START_BP e*Way 108
Step 1: Create the START_BP e*Way 109

Step 2: Create the Input ETD 110

e*Insight Business Process Manager Implementation Guide 6

SeeBeyond Proprietary and Confidential

Contents

Step 3: Create the START_BP Collaboration
Step 4: Configure the Collaboration in the GUI
Configure the Process_Payroll e¥*Way
Step 1: Configure the e*Way
Step 2: Create the Output ETD:PayrollProcess.xsc using Java
Step 3: Create the Process_Payroll Collaboration Rule
Step 4: Configure the Collaboration

Run and Test the e*Insight scenario

Testing the Standard Business Logic
Payroll Processing
Not Eligible Processing

Demonstrating Business Process Undo Functionality
Manual Undo

Demonstrating Business Process Restart Functionality
Repairing a String Attribute

110
112
113
114
114
114
116

117
117
118
119
121
122
123
123

Chapter 9

e*Insight Authorization Activity Implementation (elJSchema) 126

Overview 126
Case Study: Payroll Processing 126
Step 1: Update the Payroll BP in e*Insight 128
Creating the processes performing the Activities 129
Configuring the e*Insight Script for Bonus_Refused 129

Step 2: Run and Test the e*Insight scenario 129
Testing the Standard Business Logic 130
Authorized Processing 130

Not Authorized Processing 132

Chapter 10

e*Insight Implementation (elSchema) 133
Overview 133
Case Study: Order Processing 134
Create the ProcessOrder BP in e*Insight 137
Creating the processes performing the Activities 139
Configuring the e*Insight Script for Ship_Ord 139
Configure the Integration Schema 140
Integration Schema Activity Components Summary 140
Creating the eX_Check_Inv BOB 141
Creating the eX_Out_of_Inv BOB 144
Send_Status e*Way Configuration 147
Configure the e*Insight Engine 148
Edit the eX_eBPM Configuration File 148
Configure User-defined e*Gate Components 148
Configuration Order for the User-defined Components 148

e*Insight Business Process Manager Implementation Guide 7

SeeBeyond Proprietary and Confidential

Contents

Configure the START_BP e*Way

Step 1:
Step 2:
Step 3:
Step 4:
Step 1:
Step 2:
Step 3:
Step 4:

Create the START_BP e*Way using Monk
Create the Input ETD using Monk
Create the START_BP CRS using Monk

Configure the START_BP Collaboration in the GUI using Monk

Create the START_BP e*Way using Java

Create the Input ETD using Java

Create the START_BP Collaboration using Java
Configure the Collaboration in the GUI using Java

Configure the Send_Status e*Way

Step 1:
Step 2:
Step 3:
Step 4:
Step 1:
Step 2:
Step 3:
Step 4:

Configure the eX_Send_Status e*Way using Monk
Create the Output ETD using Monk

Create the eX_Send_Status.tsc CRS using Monk
Configure the Collaboration using Monk

Configure the e*Way using Java

Create the Output ETD: SendStatus.xsc using Java
Create the Send_Status Collaboration Rule using Java
Configure the Collaboration using Java

Run and Test the e*Insight scenario

Testing the

Standard Business Logic

In-Stock Processing
Out-of-Stock Processing

Demonstrating Business Process Undo Functionality
Manual Undo

Demonstrating Business Process Restart Functionality
Repairing a String Attribute

149
149
150
150
151
152
152
153
155
156
156
157
157
158
159
159
160
161

162
162
162
164
165
165
167
167

Chapter 11

e*Insight Authorization Activity Implementation (elSchema) 170

Overview

Case Study: Order Processing

Step 1: Create the ProcessOrder BP in e*Insight

Step 2: Configure the Integration Schema
Integration Schema Activity Components Summary

Step 3: Configure User-defined e*Gate Components

Configure the Activity BOB CRS in the Enterprise Manager GUI
Configure the Activity BOB Collaborations in the Enterprise Manager GUI

Configure the Authorize_Quantity e*Way

Step 2:
Step 3:
Step 4:

Create the Authorize_Quantity.tsc CRS
Configure the e*Way
Configure the Collaboration

Step 5: Run and Test the e*Insight scenario

Testing the

Standard Business Logic

Authorized Processing
Not Authorized Processing

e*Insight Business Process Manager Implementation Guide 8

170
170

173

174
174

174
174
175
175
175
176
176

177
177
177
179

SeeBeyond Proprietary and Confidential

Contents

Chapter 12

e*Insight User Activity Implementation 181
Overview of the User Activity 181
User Activity Security 181
Deployment of the User Activity 182
Overview of the Payroll BP 182
Overview 183
Case Study: Payroll Processing with User Activity 183
Step 1: Update the Payroll BP in e*Insight 183
Step 2: Configure the Integration Schema 184
Step 3: Run and Test the e*Insight scenario 185
Testing the User Activity 185
Overview of the ProcessOrder BP 187
Overview 188
Case Study: Order Processing with User Activity 188
Step 1: Update the ProcessOrder BP in e*Insight 188
Step 2: Configure the Integration Schema 189
Step 3: Run and Test the e*Insight scenario 190
Testing the User Activity 190
Chapter 13

e*Insight Sub-Process Implementation (el)JSchema) 193
Overview of the Sub-Process Example 193
Create the CalculateBonus BP in e*Insight 194
Configure the Integration Schema for CalculateBonus 195
Modify the Payroll BP in e*Insight 196
Configure the Integration Schema for Payroll 197
Run and Test the e*Insight scenario 197
Overview of the Dynamic Sub-Process Example 198
Create the accounts BP in e*Insight 199
Configure the Integration Schema for accounts 199
Creating the CRS in e*Gate 200
Create the marketing BP in e*Insight 201
Configure the Integration Schema for marketing 201
Creating the CRS for eX_Calculate_Bonus_marketing in e*Gate 201
Modify the Payroll BP in e*Insight 203

e*Insight Business Process Manager Implementation Guide 9 SeeBeyond Proprietary and Confidential

Contents

Configure the Integration Schema for Payroll 204

Run and Test the e*Insight scenario 204
Chapter 14

e*Insight Sub-Process Implementation (elSchema) 205
Overview of the Sub-Process Example 205
Create the CheckInventory BP in e*Insight 206
Configure the Integration Schema for CheckInventory 207
Modify the ProcessOrder BP in e*Insight 208
Configure the Integration Schema for ProcessOrder 209
Run and Test the e*Insight scenario 209
Overview of the Dynamic Sub-Process Example 210
Create the CA BP in e*Insight 211
Configure the Integration Schema for CA 211

Creating the CRS in e*Gate 213
Create the OR BP in e*Insight 214
Configure the Integration Schema for OR 214

Creating the CRS in e*Gate 216
Modify the ProcessOrder BP in e*Insight 217
Configure the Integration Schema for ProcessOrder 218
Run and Test the e*Insight scenario 218

Chapter 15

e*Insight Remote Sub-Process Implementation 219
Overview 219
Overview of the Remote Sub-Process 219
Installation and Configuration of Tomcat 220

Installing Tomcat 220

Configuring Tomcat 221

Deploying the SOAP Service 221
Installation of Tomcat and e*Insight on Different Hosts 222
Overview of the Remote Sub-Process Example (elJSchema) 223
Install and configure Tomcat 223
Create the CalculateBonus BP in e*Insight 224
Configure the Integration Schema for CalculateBonus 225

e*Insight Business Process Manager Implementation Guide 10 SeeBeyond Proprietary and Confidential

Contents

Create the CalculateBonus Schema 225
Configure the CalculateBonus Schema 226
Create the Calculate_Bonus activity BOB 226

Edit the elcp_elnsightEngine Connection Configuration File 226
Configure the JMS Connection 226
Modify the Payroll BP in e*Insight 227
Configure the Integration Schema for Payroll 228
Run and Test the e*Insight scenario 229
Overview of the Remote Sub-Process Example (elSchema) 229
Install and configure Tomcat 230
Create the CheckInventory BP in e*Insight 230
Configure the Integration Schema for CheckInventory 231
Create the CheckInventory Schema 231
Configure the e*Insight engine 232
Create the Check_Inv activity BOB 232
Modify the ProcessOrder BP in e*Insight 233
Configure the Integration Schema for ProcessOrder 234
Run and Test the e*Insight scenario 234
In-Stock Processing 234

Chapter 16

Active and Passive Modes 236
Overview 236
Case Study 236
Case Study - Active Control Mode 237
Case Study - Passive Control Mode 238
Create the Order BP in e*Insight 240
Configure the Integration Schema (elJSchema) 241
Integration Schema Activity Components Summary 241
Creating the eX_Bill_Customer BOB 242
Creating the eX_Ship_Order BOB 243
Configure the e*Insight Engine (el)Schema) 244
Edit the elcp_elnsightEngine Connection Configuration File 244
Configure the JMS Connection 244
Configure User-defined e*Gate Components (elJSchema) 244
Configuration Order for the User-defined Components 245
Configure the START_BP e*Way 245
Step 1: Create the START_BP e*Way 245

Step 2: Create the Input ETD 246

Step 3: Create the START_BP Collaboration 247

Step 4: Configure the Collaboration in the GUI 249
Configure the Integration Schema (elSchema) 250

e*Insight Business Process Manager Implementation Guide 11 SeeBeyond Proprietary and Confidential

Contents

Integration Schema Activity Components Summary 250
Configure the e*Insight Engine (elSchema) 250
Edit the eX_eBPM Engine’s Configuration File 250
Configure User-defined e*Gate Components (elSchema) 251
Configuration Order for the User-defined Components 251
Configure the START_BP e*Way 251
Step 1: Create the Input ETD 251

Step 2: Create the START_BP Collaboration Rules Script (CRS) 252

Step 3: Add the e*Way and Create the e*Way Configuration File 252

Step 4: Configure the Collaboration in the GUI 253
Configure the Activity BOBs 253
Create the Activity BOB CRSs 253
Configure the Activity BOB Collaborations in the Enterprise Manager GUI 254

Run and Test the e*Insight scenario 255
Case Study - Passive Control Mode 256
Passive Control Mode (el)Schema) 256
Modify the Order BP in e*Insight (elJSchema) 256
Modify User-defined e*Gate Components (elJSchema) 256
Configuration Order for the User-defined Components 256
Configure the Bill_Customer Collaboration Rule and Collaboration 256

Run and Test the e*Insight scenario 259
Passive Control Mode (elSchema) 260
Modify the Order BP in e*Insight (elSchema) 260
Modify User-defined e*Gate Components (elSchema) 260
Configuration Order for the User-defined Components 260
Configure the Bill_Customer Collaboration Rule and Collaboration 261

Run and Test the e*Insight scenario 261

Chapter 17

e*Insight Performance 262
Performance Improvements Using elJSchema 262
Instance Caching 262
Using Multiple e*Insight Engines 263
e*Insight Engine Affinity (el]Schema) 266
Using Engine Affinity with e*Gate 4.5.2 266
Configuring the Engine Affinity JMS Properties 267

Using Engine Affinity with e*Gate 4.5.1 267
Using e*Xchange with e*Insight (elJSchema) 268
Using Binary XML (elJSchema) 268
Subscribing to Event Types 269
Subscribing to a Single “Go” Event 269
Configuring a Separate Collaboration for Do and Undo Events 269
Removing Unnecessary Subscriptions 270

Event Type “get” Interval 270
Review JVM Settings 270
Performance Improvements Using elSchema 270
Instance Caching 271

e*Insight Business Process Manager Implementation Guide 12 SeeBeyond Proprietary and Confidential

Contents

Using Multiple e*Insight Engines (elSchema) 271
e*Insight Engine Affinity (elSchema) 272
Manually Publishing Events using eX-event-sendback-to-sender 273
Exchange Data Interval (elSchema) 273
Review JVM Settings 273
General e*Insight Performance Tips 274
Chapter 18
Troubleshooting 275
Log File Locations 275
Generating Log Files 275
Common Problems 277
General Troubleshooting Tips 281
Locating the problem 281
Viewing the Message Content 282
Chapter 19
e*Insight Helper Monk Functions 284
e*Insight Helper Monk Functions 285
eX-get-attribute 286
eX-count-attribute 287
eX-set-attribute 288
eX-set-BP_EVENT 289
eX-get-BP_EVENT 290
eX-get-Activity 291
eX-set-Activity 292
eX-string-set-attribute 293
eX-xml-set-attribute 294
eX-bin-set-attribute 295
eX-count-local-attribute 296
eX-get-local-attribute 297
eX-set-local-attribute 298
eX-copy-no-attribute 299
eX-set-all-BP_EVENT 300
eX-get-all-attribute 301
eX-get-all-local-attribute 302
Chapter 20
Java Helper Methods 303
ACTIVITY Class 304
addATTRIBUTE 305
clearATTRIBUTE 306
countATTRIBUTE 307
getATTRIBUTE_VALUE 308
getATTRIBUTE 309
getlD 310

e*Insight Business Process Manager Implementation Guide 13

SeeBeyond Proprietary and Confidential

Contents

etNAME 311

asID 312
hasNAME 313
marshal 314
omitlD 315
omitNAME 316
removeATTRIBUTE 317
setATTRIBUTE 318
setlD 320
setNAME 321
toString 322
unmarshal 323

ATTRIBUTE Class 324
getENCODING 325
getLOCATION 326
getNAME 327
getTYPE 328

etVALUE 329

asENCODING 330
hasLOCATION 331
marshal 332
omitENCODING 333
omitLOCATION 334
setENCODING 335
setLOCATION 336
setNAME 337
setTYPE 338
setVALUE 339
toString 340
unmarshal 341

BP_EVENT Class 342
addATTRIBUTE 344
clearATTRIBUTE 345
countATTRIBUTE 346
getACTIVITY 347
getATTRIBUTE_VALUE 348
getATTRIBUTE 349
getBPI_ID 350
getlD 351
getNAME 352
getSTATUS 353

etTYPE 354

asACTIVITY 355
hasBPI_ID 356
hasID 357
hasNAME 358
hasSTATUS 359
marshal 360
omitACTIVITY 361
omitBPI_ID 362
omitlD 363
omitNAME 364
omitSTATUS 365
removeATTRIBUTE 366
setACTIVITY 367
setATTRIBUTE 368
setBPI_ID 370
setEventInfo 371
setlD 372
setNAME 373
setSTATUS 374
setTYPE 375
toString 376

e*Insight Business Process Manager Implementation Guide 14 SeeBeyond Proprietary and Confidential

Contents

unmarshal 377
eX_StandardEvent Class 378
from_eBPMConvert 380
getBP_EVENT 381
etTP_EVENT 382
asBP_EVENT 383
hasTP_EVENT 384
marshal 385
omitBP_EVENT 386
omitTP_EVENT 387
setBP_EVENT 388
setTP_EVENT 389
to_eBPMConvert 390
toString 391
unmarshal 392
Chapter 21
e*Insight User Activity APl Methods 393
User Activity Security 393
Defining the Classpath 394
Imessage Interface 395
clearMessage 396
getActivityAttributesCount 397
getActivityAttributeValue 398
getActivityName 399
getBusinessModelld 400
getBusinessModellnstanceld 401
getBusinessModelName 402
getGlobalAttributeCount 403
getGlobalAttributeType 404
getGlobalAttributeValue 405
getMsgType 406
removeActivity 407
removeGlobalAttribute 408
setActivityAttributeValue 409
setActivityName 410
setBPIStack 411
setBusinessModellnstanceld 412
setBusinessModelld 413
setBusinessModelName 414
setGlobalAttributeValue 415
setMsgType 416
setStatus 417
toXML 418
UserActivityMessage Class 419
IClient Interface 420
authenticate 421
checkoutActivitylnstance 422
getActivityGlobalAttributeNames 423
getActivitylnstanceEndTime 424
getActivitylnstanceStartTime 425
getActivitylnstanceStatus 426
getActivityNames 427
getAssignedBPIIdByState 428
getAuthorizationActivityNames 429
getBPIStack 430
getBusinessModellnstanceslds 431

e*Insight Business Process Manager Implementation Guide 15 SeeBeyond Proprietary and Confidential

Contents

getBusinessModellnstanceName 432
getBusinessModellnstanceStatus 433
getBusinessModelName 434
getEnabledBusinessModelld 435
getEnabledBusinessModelslds 436
getGlobalAttributeDefaultValue 437
getGlobalAttributeDirection 438
getGlobalAttributeNames 439
getGlobalAttributeType 440
getGlobalAttributeValue 441
getLocalAttributeNames 442
getLocalAttributeType 443
getLocalAttributeValue 444
getMessageStatus 445
getUser 446
getUserActivityNames 447
getUUID 448
initialize 449
refreshCachedMemory 450
releaseActivitylnstance 451
releaseResources 452
resetUser 453
sendMessage 454
setGlobalAttributeValue 455
setLocalAttributeValue 456
setUser 457
EbpmMonitor Class 458
checkUserPrivileges 459
Appendix A
XML Structure for the e*Insight Event 460
XML Structure 460
Glossary 462
Index 465

e*Insight Business Process Manager Implementation Guide 16 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This guide provides comprehensive information on implementing eBusiness solutions
using the e*Insight Business Process Manager. It discusses the essentials of
implementing e*Insight, and the components used in a complete e*Insight
implementation. This guide also provides detailed information on the e*Insight
architecture and its core components, as well as the e*Gate schema components that
make up an e*Insight implementation. Finally, it discusses how e*Insight and e*Gate
work together to provide a comprehensive toolset for designing, creating, and
maintaining a fully functional eApplication.

11 Document Purpose and Scope

This guide explains how to use the e*Insight Business Process Manager. This user guide
includes information on the following topics:

= Understanding the e*Insight schema components.
= Functions and methods available to the user.

This guide gives the e*Insight implementor the necessary background and
methodology for getting an e*Insight system up and running in a real-world situation.
To do this, it provides detailed information on the e*Gate schema that e*Insight uses as
its back end and explains the various areas requiring configuration. This guide also
contains several detailed case studies showing how to implement various features built
into e*Insight, such as automatic undo of failed business processes.

12 Intended Audience

The reader of this guide is presumed to be a developer or system administrator with
responsibility for developing or maintaining the e*Insight system. The implementor
should have experience of Windows NT and UNIX operations and administration, and
should be thoroughly familiar with Windows-style GUI operations.

Since most of the work in an e*Insight implementation involves setting up the e*Gate
components that send data into and out of the e*Insight system, the implementor
should also have experience implementing e*Gate.

e*Insight Business Process Manager Implementation Guide 17 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction Writing Conventions

13 Writing Conventions

The writing conventions listed in this section are observed throughout this document.
Hypertext Links

When you are using this guide online, cross-references are also hypertext links and
appear in blue text as shown below. Click the blue text to jump to the section.

For information on these and related topics, see “Supporting Documents” on
page 19.

Command Line
Text to be typed at the command line is displayed in a special font as shown below.

java -jar ValidationBuilder.jar

Variables within a command line are set in the same font and bold italic as shown
below.

stcregutil -rh host-nane -un user-nanme -up password -sf
Code and Samples

Computer code and samples (including printouts) on a separate line or lines are set in
the command-line font as shown below.

Configuration for BOB_Pronption

However, when these elements (or portions of them) or variables representing several
possible elements appear within ordinary text, they are set in italics as shown below.

path and file-name are the path and file name specified as arguments to -fr in the
stcregutil command line.

Notes and Cautions
Points of particular interest or significance to the reader are introduced with Note,
Caution, or Important, and the text is displayed in italics, for example:

Note: The Actions menu is only available when a Properties window is displayed.

User Input

The names of items in the user interface such as icons or buttons that you click or select
appear in bold as shown below.

Click Apply to save, or OK to save and close.
File Names and Paths
When names of files are given in the text, they appear in bold as shown below.
Use a text editor to open the ValidationBuilder.properties file.

When file paths and drive designations are used, with or without the file name, they
appear in bold as shown below.

In the Open field, type D:\setup\setup.exe where D: is your CD-ROM drive.

e*Insight Business Process Manager Implementation Guide 18 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction Supporting Documents
Parameter, Function, and Command Names

When names of parameters, functions, and commands are given in the body of the text,
they appear in bold as follows:

The default parameter localhost is normally only used for testing.
The Monk function ig-put places an Event into an IQ.

After you extract the schema files from the CD-ROM, you must import them to an
e*Gate schema using the stcregutil utility.

14 Supporting Documents

The following SeeBeyond documents provide additional information about e*Insight
and e*Gate:

= SeeBeyond eBusiness Integration Suite Deployment Guide

= SeeBeyond eBusiness Integration Suite Primer

= e*Insight Business Process Manager User’s Guide

= e*Insight Business Process Manager Installation Guide

= e*Gate Integrator Alert Agent User’s Guide

= e*Gate Integrator Alert and Log File Reference Guide

= e*Gate Integrator Collaboration Services Reference Guide

= e*Gate Integrator Intelligent Queue Services Reference Guide
= e*Gate Integrator SNMP Agent User’s Guide

= e*Gate Integrator System Administration and Operations Guide
= e*Gate Integrator User’s Guide

= Monk Developer’s Reference

= Standard e*Way Intelligent Adapters User’s Guide

15 SeeBeyond Web Site

The SeeBeyond Web site is your best source for up-to-date product news and technical
support information. The site’s URL is

http://www.SeeBeyond.com

e*Insight Business Process Manager Implementation Guide 19 SeeBeyond Proprietary and Confidential

http://www.SeeBeyond.com

Chapter 2

Introduction to the SeeBeyond eBI Suite

This chapter provides an overview of the SeeBeyond eBusiness Integration Suite, and
explains how the e*Insight Business Process Manager fits into the Suite.

21 SeeBeyond eBusiness Integration Suite

This section provides an overview of the SeeBeyond eBusiness Integration Suite and its
parts. It also provides a detailed overview of the e*Insight Business Process Manager
(e*Insight) components.

Complex and dynamic partner relationships, and the management of various

processes, present a tremendous challenge in eBusiness. Organizations and their
trading partners are both faced with the problem of managing disparate component
applications and aligning proprietary software requirements. In addition,
organizations and their trading partners must agree on data exchange and security
standards.

The SeeBeyond eBusiness Integration Suite merges traditional Enterprise Application
Integration (EAI) and Business-to-Business (B2B) interactions into a multi-enterprise
eBusiness Integration (eBI) product suite. This suite allows you to:

= Leverage your existing technology and applications.

= Create an eApplication consisting of component applications that are managed by
your organization or your trading partners.

= Rapidly execute eBusiness strategies.
= Create and manage virtual organizations across the entire value chain.
= Rapidly implement industry standard business protocols.
= Quickly and easily establish new business partners, or update existing ones.
= Automatically secure transmissions sent over the public domain.
This suite also provides:
= Extensive and flexible back-office connectivity.
= Powerful data transformation and mapping facilities.
= Content-based routing.

= Unparalleled scalability based on a fully distributed architecture.

e*Insight Business Process Manager Implementation Guide 20 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.1
Introduction to the SeeBeyond eBI Suite SeeBeyond eBusiness Integration Suite

211 SeeBeyond eBusiness Integration Suite Components

The SeeBeyond eBusiness Integration Suite includes the following components and
sub-components:

= eBusiness integration applications:
+ e*Insight™ Business Process Manager
+ e*Xchange™ Partner Manager
+ e*Index Global Identifier

= e*Gate™ Integrator:
+ e*Way™ Intelligent Adapters
+ Intelligent Queues (IQ™)
+ Business Object Brokers (BOBs)

See Figure 1 for a graphical representation of the SeeBeyond eBusiness Integration Suite

and its components.

Figure 1 SeeBeyond eBusiness Integration Suite

Partner Manager
Partner Profiles
B2B Protocols
Audit Trail
eSecurity

e*Insight™ e*Index™ |
Model
Monitor

Auto Matching

Cross Indexing

Manage Data Mgmt

QOptimize

e*Gate Integrator

e*Insight Business Process Manager

The e*Insight Business Process Manager facilitates the automation and administration
of business process flow across eBusiness activities. Through graphical modeling and
monitoring, business analysts can instantly assess the detailed state of a business
process instance and identify bottlenecks in the process.

e*Insight Business Process Manager Implementation Guide 21 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.1
Introduction to the SeeBeyond eBI Suite SeeBeyond eBusiness Integration Suite

e*Xchange Partner Manager

The e*Xchange Partner Manager manages trading partner profiles and supports
standard eBusiness message format and enveloping protocols, including RosettaNet,
UN/EDIFACT, ASC X12, and BizTalk. The e*Xchange Partner Manager includes a
Validation Rules Builder to aid in the creation of X12 and UN/EDIFACT message
validation based on industry implementation guides.

The eSecurity Manager authenticates and ensures full integrity of message data sent to
and from trading partners, which is imperative when conducting eBusiness over the
public domain. The eSecurity Manager uses public key infrastructure (PKI) to ensure
origin authentication of the sender.

e*Index Global Identifier

e*Index Global Identifier (e*Index) is a global cross-indexing application that provides
a complete solution for automated person-matching across disparate source systems,
simplifying the process of sharing member data between systems.

e*Index centralizes information about the people who participate throughout your
business enterprise. The application provides accurate identification and cross-
referencing of member information in order to maintain the most current information
about each member. e*Index creates a single, consistent view of all member data by
providing an automatic, common identification process regardless of the location or
system from which the data originates.

e*Gate Integrator Components

e*Gate Integrator enables the flow of information across an extended enterprise by
providing comprehensive connectivity to applications and datastores across a network.
e*Gate is based on a distributed architecture with an open design that deploys flexible
load balancing options. e*Gate processes Events according to user-defined business
logic and integrates business processes between applications, ensuring end-to-end data
flow into back-office systems.

e*Way Intelligent Adapters

e*Way Intelligent Adapters provide specialized application connectivity and also
provide support for robust data processing such as business Collaborations,
transformation logic, and publish/subscribe relationships. e*Way adapters are multi-
threaded to enable high-performance distributed processing capabilities. This multi-
threaded processing allows for ultimate deployment flexibility and load balancing.

Intelligent Queues

Intelligent Queues (IQs) are open-queue services for SeeBeyond or third-party queuing
technology that provide robust data transport.

In conjunction with Java-enabled Collaborations, SeeBeyond JMS IQs can provide
guaranteed exactly once delivery of messages.

e*Insight Business Process Manager Implementation Guide 22 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Introduction to the SeeBeyond eBI Suite Introducing e*Insight Business Process Manager (e*Insight)

Business Object Brokers

A BOB component is similar to an e*Way in the sense that it establishes connectivity
and is capable of data transformation. BOBs use Collaborations to route and transform
data within the e*Gate system. They have the following properties:

= They only communicate with IQs within e*Gate. They do not communicate with
external applications as e*Ways do.

= They are optional by design. You can add them to an environment to remove some
load from your e*Ways, either to set up easily maintainable data processing or to
enable multiple internal processes.

22 Introducing e*Insight Business Process Manager
(e*Insight)

The e*Insight Business Process Manager (e*Insight) is the component within the
SeeBeyond eBusiness Integration Suite that facilitates the automation of the business
process flow of eBusiness activities. The functions of e*Insight include business process
model design, monitoring, and execution as well as the ability to analyze historical
performance.

Using e*Insight, business analysts are able to design eBusiness process models through
a user-friendly, fully graphical tool. The e*Insight GUI provides the appropriate
graphical tools for an analyst to define all types of business models, from simple to very
complex.

Once a business flow is modeled, the business analyst has the capability to instantly
assess the detailed state of a business process instance through a color-coded graphical
representation of the model. This way, the user can identify the processes that need
intervention, repair, or authorization. The e*Insight GUI provides the appropriate
facilities for the business analyst to examine the attributes of the business process
instance (as defined by the business process analyst, during the design of the model),
and—with the appropriate security privileges—modify their values.

For example, the business analyst can examine both syntactically and semantically the
contents of a purchase order that failed to be processed, modify (repair) the purchase
order, and then restart the failed business process instance, taking into account the
modified purchase order.

In addition to the capability of monitoring the state of a given business process
instance, e*Insight provides the business analyst with a complete historical picture, by
tracking and storing all instances and the associated attributes of the business process
model. The analyst has access to each one of the instances and can assess the
performance of each through examining the values of the model’s attributes as
instantiated in the specific instance in review.

e*Insight provides the capability to analyze the performance of a business process
model on a historical basis, so that trends can be determined and possible bottlenecks
identified. The analyst can create charts on the performance of the business process
model against an array of system attributes (such as “duration” and “state”), and user-

e*Insight Business Process Manager Implementation Guide 23 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Introduction to the SeeBeyond eBI Suite Building an eApplication

defined attributes (for example, “order amount” or “PO source”). Charting the data in
this way makes it easy to discern areas where the model needs re-design.

23 Building an eApplication

An eApplication is an integrated collection of software that enables you to model and
manage an eBusiness. The SeeBeyond eBusiness Integration Suite provides the glue
and essential building blocks that allow you to create a composite eApplication for
running your eBusiness.

Implementing e*Insight involves the following steps:
1 Install and learn the basics of e*Insight.

Use the e*Insight Business Process Manager Installation Guide to help you install the
e*Insight software. See the e*Insight Business Process Manager User’s Guide for
overview information and details on using the e*Insight GUIL

2 Obtain a working knowledge of e*Insight.

Read chapters 1 through 3 of this Guide to comprehend the technical architecture of
e*Insight, its components, and how they work together with e*Gate back-end
components. This provides the foundation for implementing a working end-to-end
eBusiness scenario.

3 Create an implementation plan.

Use this manual as a guide for preparing a step-by-step roadmap of your
implementation. This book describes several different types of e*Insight
implementations. Use these as the basis for planning the e*Insight implementation
best suited to your business needs.

24 Basic Information

Implementing an e*Insight system is the process of translating the vision of the
business analyst into a functioning system. Once the analyst has determined that a
certain business task must be accomplished with e*Insight, it is the job of the
implementor to make this a reality.

You implement e*Insight by using the e*Insight GUI to enter the relevant data into the
e*Insight database. Then you combine the generated e*Gate components with other
e*Gate components you add to create a complete e*Insight schema. The e*Insight
components are mostly pre-configured and do not require any (or very slight)
modification by the implementor. The components that you add are completely user-
defined. However, the e*Insight GUI and this guide provide a framework for
integrating these user-defined components into a working e*Insight system.

e*Insight Business Process Manager Implementation Guide 24 SeeBeyond Proprietary and Confidential

Chapter 3
Implementation Overview

31 Basic Information

Implementing an e*Insight system is the process of translating the vision of the
business analyst into a functioning system. Once the analyst has determined that a
certain business task must be accomplished with e*Insight, it is the job of the
implementor to make this a reality.

You implement e*Insight by using the e*Insight GUI to enter the relevant data into the
e*Insight database. Then you combine the generated e*Gate components with other
e*Gate components you add to create a complete e*Insight schema. The e*Insight
components are mostly pre-configured and do not require any (or very slight)
modification by the implementor. The components that you add are completely user-
defined. However, the e*Insight GUI and this guide provide a framework for
integrating these user-defined components into a working e*Insight system.

;2 Implementation Road Map

While each type of implementation involves a different approach. However, at a high
level, there are certain similarities.

In general, the work of implementing an end-to-end scenario with e*Insight involves
taking what is created in e*Insight and integrating it into a working e*Gate schema.
e*Gate powers every e*Insight scenario, and a successful e*Insight implementation is
dependent on a successful e*Gate implementation.

To give you an overview of the complete process, the following implementation road
map contains high-level steps for a full e*Insight implementation. The road map is
further refined and given more detail in the case study chapters that immediately
follow this one.

Figure 2, illustrates the major steps in the integration process for an e*Insight
implementation.

e*Insight Business Process Manager Implementation Guide 25 SeeBeyond Proprietary and Confidential

Chapter 3
Implementation Overview

Figure 2 Integration Road Map

Section 3.2
Implementation Road Map

-~

Create the
Business
Process

Step 1

\
>

Create the
Step 2 e*Insight Schema

from a template

\
>

\
b

% \
/
<

o
%
N
/
<

N
>

(S

Configure the
Step 3 e*Insight Schema
Configure
Step 4 the e*Gate
Components |
=
<
S\\\ "///,4
Step 5 Test the System EQE

Step 1: Create a Business Process

Use the e*Insight GUI to design the business process.

For information on creating the business process, see the e*Insight Business Process
Manager User’s Guide.

Step 2: Copy the e*Insight Schema

Use a copy of the e*Insight schema as your starting point in e*Gate for supporting

e*Insight.

For information on creating a copy of the e*Insight schema, see “Copy the e*Insight
Schema” on page 85.

Step 3: Configure the e*Insight Schema Based on the Business Process

After you create the business process in e*Insight you must configure the e*Gate
schema created in step 3 that supports your business process. Use the e*Gate schema
configuration utility in the e*Insight GUI for this step. Complete your configuration
using e*Gate Enterprise Manager.

e*Insight Business Process Manager Implementation Guide 26

SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Implementation Overview The e*Insight Schema

Step 4: Configure the e*Gate Components

Configuring the e*Gate components forms the majority of the integration work done in
e*Insight implementations. In this step, you:

= configure the e*Ways that send data into and out of the e*Insight system

= make all user-configurable associations in the e*Gate GUI

Step 5: Test and Tune the System

It is a good idea to test the system in stages. For example, make sure that one activity
works properly before you try to run the entire business process. One good approach is
to start with the “upstream” activities at the beginning of the business process, and
work your way down to the last activity.

Once you have the entire system working, make adjustments as necessary to improve
performance.

33 The e*Insight Schema

The e*Insight Schema is the e*Gate schema that implements a particular e*Insight
installation. The starting point for a working e*Gate schema for e*Insight are the e*Gate
schemas provided with the product. These schemas are:

= eIJSchema (Java)
= eISchema (Classic)

These schemas contains a number of pre-configured and partially pre-configured
e*Gate components used by e*Insight. In addition to the components that are provided,
a complete e*Insight implementation requires several other e*Gate components that are
added to the e*Insight schema during the implementation process. The pre-configured
components that are used, as well as the additional e*Gate components that are added
to make up the final working e*Insight schema, depends entirely on the specifics of the
implementation.

331 The el)Schema (Java)

This is a new schema, introduced for 4.5.2. It is designed specifically to be used in a Java
environment and all the components provided are Java based. The following sections
in this guide provide information for the eIJSchema:

= Configuration Information
+ “e*Insight Schema Components (eIJSchema)” on page 29
+ “e*Insight ETD for Java — el_StandardEvent.xsc” on page 69
+ “Common Configuration Tasks” on page 83

+ “e*Insight Performance” on page 262

e*Insight Business Process Manager Implementation Guide 27 SeeBeyond Proprietary and Confidential

Implementation Overview The e*Insight Schema
+ “Troubleshooting” on page 275
+ “Java Helper Methods” on page 303
= Sample Implementations
+ “e*Insight Implementation (eIJSchema)” on page 96
+ “e*Insight Authorization Activity Implementation (eIJSchema)” on page 126
+ “e*Insight User Activity Implementation” on page 181
+ “e*Insight Sub-Process Implementation (eIJSchema)” on page 193
+ “e*Insight Remote Sub-Process Implementation” on page 219

+ “Active and Passive Modes” on page 236

332 The elSchema (Classic)

This schema can be used in a combined Monk and Java environment. The following
sections in this guide provided information for the eISchema.

= Configuration Information
+ “e*Insight Schema Components (eISchema)” on page 48
+ “e*Insight ETD for Monk—eX_Standard_Event.ssc” on page 74
+ “Common Configuration Tasks” on page 83
+ “e*Insight Performance” on page 262
+ “Troubleshooting” on page 275
+ “e*Insight Helper Monk Functions” on page 284
= Sample Implementations
+ “e*Insight Implementation (eIJSchema)” on page 96
+ “e*Insight Authorization Activity Implementation (eISchema)” on page 170
+ “e*Insight User Activity Implementation” on page 181
+ “e*Insight Sub-Process Implementation (eISchema)” on page 205
+ “e*Insight Remote Sub-Process Implementation” on page 219

+ “Active and Passive Modes” on page 236

e*Insight Business Process Manager Implementation Guide 28 SeeBeyond Proprietary and Confidential

Chapter 4
e*Insight Schema Components (elJSchema)

The purpose of this chapter is to describe the e*Gate components provided with the
elJSchema as well as those that are added in the implementation process, and discuss
how each fits into and supports a working e*Insight implementation. For each
component there is a detailed drawing showing the other components with which it
interacts as well as the publication and subscription information for its Collaborations.
In addition, for each component we discuss: the type of component it is, its function in
e*Insight, any configuration the implementor must perform, the Collaborations it uses,
and what is contained in the Events it processes.

21 The Purpose of the e*Gate Schema for e*Insight

The purpose of the e*Gate Schema for e*Insight is to provide the working portion of
e*Insight. Whereas the e*Insight GUI is primarily used to configure and monitor the
e*Insight system, the Schema components actually move and transform the data
handled by e*Insight.

411 e*Insight Components

The e*Insight components start, run and implement business processes. The e*Insight
components that start and implement business processes are user-defined and must be
added to the e*Insight schema. The components that run business processes are
provided by the e*Insight installation and require only a small amount of configuration
on the part of the user.

e*Insight Business Process Manager Implementation Guide 29 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
e*Insight Schema Components (elJSchema) e*Insight Schema Components Overview

42 e*Insight Schema Components Overview

Table 1 lists all of the module types used by e*Insight. It lists the components that are
provided as part of the e*Insight schema (eIJSchema) installation, and also the
components that the user adds in the implementation process. The meaning of the
column headings is as follows.

= Component—The e*Gate logical name for the component. Italics indicates that the
name varies by association or is user-defined.

= Description—A brief description of what the component does in e*Insight.

= In Default eIJSchema—Whether or not this component is provided as part of the
schema installation of e*Insight.

= Configuration Required—Most of the modules in the default el[JSchema require
little configuration on the part of the implementor. Table 1 uses the following terms
to describe the level of configuration required:

¢ No—The component does not require any configuration or programming on
the part of the implementor.

+ Minor—You must add the e*Insight database connection information to the
configuration file.

+ Some—You must make additional changes to the configuration file beyond
providing the e*Insight database connection information.

+ Yes—The component is mostly or entirely user-defined and must be configured
and programmed by the implementor.

= More Information—A cross reference to the section that describes this component
in detail.

e*Insight Business Process Manager Implementation Guide 30 SeeBeyond Proprietary and Confidential

Chapter 4

e*Insight Schema Components (elJSchema)

Section 4.2

e*Insight Schema Components Overview

Table 1 e*Insight Schema Component Types

Component Description cischema? | Reduived? | nformation
e*Insight Engine This is a specially configured Multi-Mode Yes Some 4.3.1 on
tne cVinsght o-vay Comection. page 33
el_Resubmitter A placeholder component used in the Yes Yes 4.3.2 on
e*Insight Event failure handling process. page 38
Start BP Component Either an e*Way or BOB that sends the Event | No Yes 4.3.4 on
that starts a business process instance. page 40
eX_Activity e*Way Implements an e*Insight activity that No Yes 4.3.5 on
connects to an external system. page 41

eX_Activity BOB Implements an e*Insight activity that does No Yes 3 on
not connect to an external system. page 44

421 e*Insight Schema Component Relationships Diagram

Figure 4 on the next page illustrates the relationships among the e*Insight schema
components. Not every e*Insight implementation uses all of these components. Some of
the components shown are not provided as part of the e*Gate Schema for e*Insight
installation from the CD. These components are shown in light blue and must be added
to the base e*Insight schema by the implementor as needed.

Database

GUI

BOB

QUL

Figure 3 e*Insight Overview Legend

e*Way

Intelligent
Queue

Not in default
Schema

Light Blue

e*Insight Business Process Manager Implementation Guide 31

e
Medium
Gray

Component connection
with arrow indicating
direction of data flow

External

to eX system

Multiple components
of a similar type

SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Insight Schema Components (elJSchema) e*Insight Business Process Manager Components

Figure 4 e*Insight 4.5.2 Components

External
Process

2

csm Bl ! eX_Activity eX_Activity BOB »
omponen exway

T 1
—)

.
eX_eBPM eX_Resubmitter
Engine BOB

e*Insight
Database

43 e*Insight Business Process Manager Components

The e*Insight components start, run and implement the businesses processes created in
the e*Insight GUIL The components that run the business processes are supplied in the
e*Insight installation, while those that implement a business process are user defined
and must be added to the e*Insight e*Gate schema.

Components That Run Business Processes
The two component types dedicated to running and managing business processes are:
= One or more e*Insight engines
= The el_Resubmitter e*Way

The e*Insight engine manages and runs business processes in e*Insight. One e*Insight
engine is required, but more can be added to provide additional processing capacity
when handling a large number of transactions.

For information on using multiple engines, see “Using Multiple e*Insight Engines” on
page 263.

The el_Resubmitter e*Way is used in e*Insight Event failure handling.

e*Insight Business Process Manager Implementation Guide 32 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Insight Schema Components (elJSchema) e*Insight Business Process Manager Components

Components that Start Business Processes

The component that starts a business process is:
= The START_BP component (the exact name can be chosen by the user).

This is a user-defined component that creates the e*Insight Event that begins a business
process instance.

Components that Implement Business Process Activities

The components that implement business process activities are:
= eX_Activity e*Ways

By default the activity components are named after the activity they implement with
the prefix “eX_" added to the activity name found in the e*Insight GUI. They are added
to the e*Insight schema when you use the e*Insight GUI to configure that schema for a
particular business process. The e*Way may connect to an external system if required
by the business activity. The user must also supply the programming to carry out the
business logic of the activity and return an activity completed message (the “Done”
Event) to the e*Insight engine

Note: In addition to Collaborations running in e*Gate components, activities can also be
implemented using Java scripts that run within the e*Insight engine. See the
e*Insight Business Process Manager User’s Guide for more information.

431 e*Insight Engine

The e*Insight engine manages and runs business processes. One e*Insight engine is
required to operate, but more can be added to provide additional processing capacity
when handling a large number of transactions.

For more information on using multiple engines, see “e*Insight Engine Affinity
(eIJSchema)” on page 266.

An e*Insight engine is comprised of a specially configured Collaboration (elcol_eBPM)
and the e*Insight e*Way Connection (elcp_elnsightEngine). The e*Insight engine runs
within a Multi-Mode e*Way (eX_eBPM), which is referred to as the e*Insight Engine
Container. An e*Insight engine allows an e*Way to communicate with the e*Insight
database as shown in Figure 5.

e*Insight Business Process Manager Implementation Guide 33 SeeBeyond Proprietary and Confidential

Chapter 4

e*Insight Schema Components (elJSchema)

Section 4.3
e*Insight Business Process Manager Components

Figure 5 The e*Insight Engine (Java)

JMS Server

\ eX_to_eBPM

J

4
eX_Activity?_Do

eX_Failed_From_eBPM

eX_eBPM
Engine
- - e*Insight
elcr_eBPM Database

Collaboration eX_Extornal_Ev

eX_Activity1_Undo|

eX_Activity2_Do
eX_Activity2_Undo
eX_Activity3_Do
eX_Activity3_Undo

Configuring the e*Insight Engine

The configuration file for the e*Insight engine allows you to set the JVM parameters
available for the Multi-Mode e*Way. You can change the default configuration if

required.

Note: The e*Insight engine configuration file does not exist by default. You must create a
new configuration file.

Configuring the e*Insight Engine Connection

e*Insight Business Process Manager Implementation Guide 34

The e*Insight engine connection requires only minimal configuration on the part of the
user. Table 2 lists those parameters in the engine’s configuration file that the user can

change.
Table 2 e*Insight Engine Connection Configuration Settings
Screen Parameter Setting
eBPM Settings Database Type | Specifies the type of e*Insight database. Select one
of the following:
= Oracle when using an Oracle 8i (8.1.6 and 8.1.7)
= SQL Server when using SQL Server 7.0 or SQL
Server 2000

= Sybase when using Sybase 11.9 or 12.

JDBC URL This is the connection string used by the e*Insight

String engine to communicate with the e*Insight database.

Use the connection string that is appropriate for the
database client setup on the machine running the
e*Insight engine. (Refer to the relevant driver
documentation for more details on configuring your
system).

SeeBeyond Proprietary and Confidential

Chapter 4

e*Insight Schema Components (elJSchema)

Section 4.3

e*Insight Business Process Manager Components

Table 2 e*Insight Engine Connection Configuration Settings (Continued)

Screen Parameter Setting
eBPM Settings JDBC URL An Oracle database connection might use the string:
String jdbc:oracle:thin:@machine_name:port:db where

= thin is the type of oracle client interface. See your
e*Insight database administrator for more
information.

= machine_name is the network name of the
computer running the e*Insight database. If the
database is on the same machine as the e*Insight
engine you can use “localhost” instead of the
machine’s network name.

= portis correct port for communicating with the
e*Insight database (1521 is the default).

= db is the service name used to communicate with
e*Insight Oracle database from the local machine.

If you are using XML data and a Model Specific

database, then you would use the OCI8 driver. See

the e*Insight Business Process Manager Installation

Guide for information on installing the driver. You

might use the string:

jdbc:oracle:oci8:@db where

= oci8 is the type of oracle client interface.

= db is the service name used to communicate with
e*Insight Oracle database from the local machine.

A SQL Server database connection might use the

string:

jdbc:SeeBeyond:sqlserver://

<server>:<porti#>; DatabaseName=<dbname>;embe

dded=true;SelectMethod=cursor

= server is the network name of the computer
running the e*Insight database. If the database is
on the same machine as the e*Insight engine you
can use “localhost” instead of the machine’s
network name.

= dbname is the name of the e*Insight SQL Server
database.

= portis correct port for communicating with the
e*Insight database.

A Sybase database connection might use the string:

jdbc:sybase:Tds:<server>:<port>

= server is the network name of the computer
running the e*Insight database. If the database is
on the same machine as the e*Insight engine you
can use “localhost” instead of the machine’s
network name.

= port is correct port for communicating with the
e*Insight database.

e*Insight Business Process Manager Implementation Guide 35

SeeBeyond Proprietary and Confidential

Chapter 4

e*Insight Schema Components (elJSchema)

Section 4.3
e*Insight Business Process Manager Components

Table 2 e*Insight Engine Connection Configuration Settings (Continued)

Screen Parameter Setting
eBPM Settings JDBC Driver Enter name of JDBC Driver Class which interprets the
Class JDBC URL String specified previously to gain access

to the e*Insight database. For example,
oracle.jdbc.driver.OracleDriver

can be used with an ORACLE database, and
sun.jdbc.odbc.JdbcOdbcDriver can be used with a
SQL Server database or a Sybase database.

Database User
name

Determines the database user name under which the
e*Insight engine accesses the e*Insight database.
The user should have the same rights as the
administrator user (default is ex_admin) created by
the e*Insight database schema creation scripts.

Encrypted Determines the password associated with the name

Password the e*Insight engine uses to access the e*Insight
database. The default password used by e*Insight
database creation scripts is ex_admin.

Maximum This is the number of business processes that the

Business e*Insight engine can hold in memory at one time. If

Process Cache
Size

the cache is full and another business process needs
to be loaded, the least recently used (LRU) business
process in the cache is replaced with the new
business process. The default is 1024 business
processes. The size of the business processes does
not matter.

Entering the special value of zero (0) implies that
caching of Business Process definitions is NOT
desired, and thus the eBPM Engine ALWAYS reloads
the Business Process definition from the database for
EVERY Activity event of a Business Process Instance.
Note, this feature severely impacts performance

Maximum
Instance
Cache Size

Enter the maximum number of Business Process
Instances that the e*Insight engine caches in
memory. When the maximum size is reached, the
Engine first removes the Least Recently Used (LRU)
Instance from the cache. Entering a value of -1
means that there is no limit to the number of
Instances kept in memory.

The value entered for this parameter effects the total
amount of memory used by the engine. Limit the
number of instances if you start getting out of
memory messages when running the engine.

Note: A value of zero (0) should NOT be used.

e*Insight Business Process Manager Implementation Guide 36

SeeBeyond Proprietary and Confidential

e*Insight Schema Components (elJSchema)

Section 4.3
e*Insight Business Process Manager Components

Table 2 e*Insight Engine Connection Configuration Settings (Continued)

Screen

Parameter

Setting

eBPM Settings

Auto Model
Reload

Determines if the engine dynamically loads an
enabled Business Process Version if the enabled/
disabled status of Business Process Version changes.
If the value is set to YES then Business Process
Versions that are enabled or disabled while the
engine is running are immediately recognized.
However, setting this value to YES may degrade
performance.

Instance
Caching

Instance Caching is the most efficient way to process
Business Process Instances. Setting this value to YES
keeps a cache of the instance information
throughout the life span of the Business Process
Instance. Setting this value to NO retrieves the
information from the database instead. This allows
more flexibility and fault tolerance at the cost of
performance.

To improve performance it is recommended to set
this parameter to YES and use multiple e*Insight
engines. To use both instance caching and multiple
engines it is necessary to ensure that a single
instance is always processed by the same engine.
This is achieved by using engine affinity. For
information using Instance Caching with multiple
engines see “e*Insight Engine Affinity
(eIJSchema)” on page 266.

Brand By
Collaboration
Name

This parameter allows you to name Event Types
based on the Collaboration rather than the e*Way
name. This is used for engine affinity when multiple
e*Insight engine e*Way Connections are used in a
single e*Way. For more information, see “e*Insight
Engine Affinity (eIJSchema)” on page 266.

Business This parameter allows you to load all or a subset of all
Processes to the business processes stored in the e*Insight
Preload database. The default is ALL.

Using If an Event Type Definition is used that contains both
e*Xchange e*Insight and e*Xchange sections, setting this to NO

with e*Insight

causes the e*Xchange section to be ignored. This
reduces the time taken by the e*Insight engine at
runtime to parse the Event.

(Others)

(Default)

connector

ALL

(Default)

e*Insight Business Process Manager Implementation Guide 37

SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Insight Schema Components (elJSchema) e*Insight Business Process Manager Components

elcr_eBPM Collaboration

The elcr_eBPM Collaboration is not user-configurable. It provides the eX_Activity_Do
and eX_Activity_Undo Events to the e*Gate layer components that carry out those
activities. It also publishes failed Events to the JMS Server. This Collaboration is also
used to retrieve Events that require processing by the e*Insight engine. For example, it
would retrieve “Done” Events from an activity Collaboration.

Subscribed Event Type:

= eX_External_Evt—This Event carries the data retrieved from the e*Insight database
to the e*Insight engine.

= eX_to_eBPM—This Event Type carries all Events intended for e*Insight. These
include Start BP Events, “Done” Events, and other Events that must be processed
by the e*Insight engine. The corresponding ETD is el_StandardEvent.xsc. This is
the only Event Type to which the e*Insight engine subscribes; all data sent to the
e*Insight engine must use this Event Type.

Note: The el_StandardEvent.xsc does not contain a section for the e*Xchange Partner
Manager information. If your implementation also uses e*Xchange Partner
Manager then you may need to use eIX_StandardEvent.xsc as this contains the
TP_EVENT location.

Published Event Types:

= eX_DynamicET—This Event is used to enable the Collaboration to automatically
generate one of the following Events:

+ eX_Activity_Do—This Event causes the subscribing Collaboration to execute
the “Do” logic of the activity with the same name in the business process. See
“Subscribed Event Type: eX_Activity_Do” on page 43 for more information.

+ eX_Activity_Undo—This Event causes the subscribing Collaboration to execute
the “Undo” logic of the activity with the same name in the business process. See
“Subscribed Event Type: eX_Activity_Undo” on page 43 for more
information.

= eX_Failed_From_eBPM—This Event contains the failed Event along with error
information.

= eX_External_Evt—This Event carries the data that is written to the e*Insight
database.

432 el _Resubmitter BOB

The el_Resubmitter BOB is a placeholder component that the implementor can use to
resubmit failed Events back to the JMS Server after repairing them. The Event Repair
logic in the el_Resubmitter BOB’s Collaboration must be supplied by the implementor.

e*Insight Business Process Manager Implementation Guide 38 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Insight Schema Components (elJSchema) e*Insight Business Process Manager Components

Figure 6 el_Resubmitter Detail (Java)

el_Resubmitter BOB

JMS Server oL Faied o el_Resubmitter
Collaboration

eX_to_eBPM

Configuring the el_Resubmitter BOB

The user must fill in the eI_Resubmitter Collaboration with the logic to repair and
resubmit Events retrieved from the JMS Server.

el_Resubmitter Collaboration

The el_Resubmitter Collaboration is a placeholder Collaboration that the implementor
can use as a starting point to add logic that repairs and resubmits Events that have
failed to be processed by the e*Insight engine due to data errors.

Subscribed Event Type: eX_Failed_From_eBPM

This Event Type contains the e*Insight Event that failed to process correctly at the
e*Insight engine level due to a data error, along with the error information.

Published Event Type: eX_to_eBPM

This Event Type contains the repaired version of the failed Event to be reprocessed by
the e*Insight engine.

433 Failed Event Handling by the e*Insight Engine

How the e*Insight engine handles errors generated when processing Events, depends
on the type of error.

Error Types
Connection errors

Connection errors are errors that e*Insight receives because of a faulty connection to the
e*Insight database.

Data errors

Data errors are exceptions that e*Insight generates because it cannot process an Event
that is sent to it. Also in this class of errors are those generated by e*Insight because of a
faulty business process configuration.

e*Insight Business Process Manager Implementation Guide 39 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Insight Schema Components (elJSchema) e*Insight Business Process Manager Components

Error Handling

Connection Failure Handling

The normal handling of Events that can’t be processed due to a connection error is to
make a note of the error in the e*Insight engine’s log file and retry processing the Event
until a connection is made.

Data Failure Handling

Events that fail to process due to data errors are not retried, but a notation is made in
the e*Insight log file and the Event itself is published to a special location. This method
allows the e*Insight engine to move on to other processing and not spend time
attempting to resend failed Events.

The e*Insight engine publishes the failed Event to the JMS Server under the
eX_FailedEvent Event Type. The el_Resubmitter BOB subscribes to this Event Type
and you can use it to repair the Event and republish it to the e*Insight Engine. The
eX_FailedEvent.xsc ETD associated with the eX_FailedEvent Event Type has two
major node structures. Once contains error information, and the other contains the
failed Event.

434 START_BP Component

The START_BP component is the e*Gate component that sends the “Start” Event which
initiates a business process instance (BPI). This component does not have a
corresponding activity in the business process model.

Figure 7 START_BP e*Way Detail

START_BP e*Way
External | eX Extemal_Evt START BP eXto eBPM |
Process ~| Collaboration (VS Serve

Typically, an e*Way used to start the BPI connects to a business application, which in
turn provides the data used by the business process. The type of e*Way connection
chosen depends on the type of business application or external system to which the
e*Way must connect in order to bring in the data. For example, if the business
application is Siebel, then the e*Way Connection used is the Siebel e*Way Connection.
If the data is held internally to e*Gate then a JMS Connection is used. Alternatively, it is
possible to retrieve data from a JMS IQ.

The Collaboration must put the data they receive into the standard format used
throughout e*Insight.

e*Insight Business Process Manager Implementation Guide 40 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Insight Schema Components (elJSchema) e*Insight Business Process Manager Components

Configuring the START_BP Component

Configuring the START_BP Component depends on where the data is retrieved from.
See the appropriate e*Way User Guide for information on configuring a specific e*Way
Connection. In addition, the implementor must create a Collaboration Rules Script for
the START_BP component that constructs the inbound e*Insight Event that starts a
business process instance.

START _BP Collaboration

This Collaboration, used by the START_BP component, prepares the eX_to_eBPM
Event. This Event is sent to the e*Insight engine in order to start an instance of the
business process. The Collaboration must do two things:

= populate the three nodes required to start a BPI in the e*Insight standard Event
= place the data it receives into one or more global attributes of the business process

See “Starting a Business Process (eIJSchema)” on page 87 for more information on
how to start a BPI.

Subscribed Event Type: eX_External_Evt

When using a START_BP e*Way, this Event carries the data from the external
application to which the START_BP e*Way connects. When the data is held internally
to e*Gate, this Event carries data from a JMS Server.

Published Event Type: eX_to_eBPM

This “Start” Event carries the data to begin an instance of a particular business process
to the e*Insight engine.

435 Single-Mode Activity e*Way

An activity e*Way implements an e*Insight activity that requires a connection to a
system outside of e*Gate.

Figure 8 Activity e*Way Detail

eX_Activity e*Way
eX_from_Activity Xt
eX Bxtemal B} | Collaboration |
External JMS Server
System |_ L
eX_Extemal_Evt eX_to_Activity
Collaboration eX_Activity?_Do
eX_Activity?_Undo
eX_Activity2_Do
eX_Activity2_Undo
eX_Activity3_Do

eX_Activity3_Undo

e*Insight Business Process Manager Implementation Guide 41 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Insight Schema Components (elJSchema) e*Insight Business Process Manager Components

When you use the e*Insight GUI to configure the e*Gate schema supporting the
e*Insight implementation, each activity in the business process becomes either a pair of
Collaborations or a single Collaboration. The choice to use s single Collaboration or
multiple Collaborations depends on the preference of the implementor.

For an activity e*Way that connects to an external system, the two Collaborations that
are created are named eX_from_Activity and eX_to_Activity, where Activity is
replaced with the Activity Name from the associated business process in e*Insight. In
addition to the Collaborations, the corresponding Collaboration Rules and the Event
Types subscribed to and published by the Collaborations are also named after the
activity name.

The Collaboration Rule created in this process is only a placeholder. Implementors
must configure the Collaboration Rules by writing the Collaboration Rules Script and
choosing the service under which this script runs. The CRS contains the programming
that implements the business logic for the corresponding activity in the business
process.

The type of e*Way Connection used to implement a particular activity depends on
what the activity is supposed to accomplish in the business process. For example, an
SAP e*Way Connection could be used to connect to an ERP system to look up the credit
standing of a customer, or an Oracle e*Way Connection could be used to look up the
mailing address of a prospective client in a marketing database.

Configuring the eX_to_Activity e*Way

Some of the configuration for the activity e*Way is done for you when you use the
e*Insight GUI to configure the schema. This includes setting up the component
relationships and Event Type routing in the e*Insight schema, but not the actual
business logic programming or the type of e*Way that is used. The business logic
programming must be done by the implementor in Collaboration Rules Scripts used by
the activity Collaborations, and the e*Way’s configuration file must be defined based
on the type of e*Way chosen to implement the activity. See the appropriate e*Way
Users Guide for information on how to set up the e*Way chosen.

eX_to_Activity Collaboration

The eX_to_Activity Collaboration receives the Event that carries the data used in the
activity. It receives the Event from the e*Insight Engine, and passes it to the external
process that implements the activity’s business logic. The Collaboration must be
configured to convert the data into whatever format is required by the external system
to which the activity e*Way connects.

Important: In addition to passing the attribute data it receives from the e*Insight engine to the
external system, the eX_to_Activity Collaboration must preserve the e*Insight
Business Process Instance tracking information contained in the eX_Activity_Do
or eX_Activity_Undo Events. This information is used to send the return or
“Done” Event back to the e*Insight engine, when the activity completes. See
Sending the “Done” Event Back to e*Insight (eIJSchema) on page 88 for
more information on what information is required in the “Done” Event.

e*Insight Business Process Manager Implementation Guide 42 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Insight Schema Components (elJSchema) e*Insight Business Process Manager Components

Do and Undo logic in an Activity Collaboration

The eX_to_Activity Collaboration in an activity e*Way connecting to an external
system and the eX_Activity Collaboration in an Activity connecting internally to
e*Gate both subscribe to two Event Types: eX_Activity_Do and eX_Activity_Undo.
When the activity Collaboration picks up a “Do” Event Type, it carries out a “positive”
instance of the activity. When the activity Collaboration picks up an “Undo” Event
Type from the JMS Server, it carries out a “negative” or compensating version of the
activity—in other words, an activity that cancels out a previously completed “Do”
instance of the activity for the current business process instance.

By default, the eX_to_Activity and eX_Activity Collaboration in an activity e*Way
subscribe to both the “Do” and “Undo” Events. Consequently the CRS must contain
logic to handle both the activity and the compensating transaction for the activity. Of
course, the implementor is also free to place the “Undo” logic in a separate
Collaboration as long as the eX_Activity_Undo Event Type is subscribed to and the
proper Event is returned to the e*Insight engine.

The e*Insight engine provides local attributes only available to a particular activity. It
uses them for holding values set by the “Do” portion of the activity Collaboration.
These values can then be used in the “Undo” logic portion of the activity Collaboration
to carry out the compensating transaction. That is, these attributes can be set by the
“Do” portion of the CRS and then recalled by the “Undo” portion of the CRS in order to
cancel out the “Do” when necessary.

For more information on local attributes and where to set them in the e*Insight
Standard ETD, see “Local Attributes” on page 68.

Subscribed Event Type: eX_Activity_Do

This Event causes the subscribing Collaboration to execute the “Do” logic of the
corresponding activity in the business process. This Event Type is in standard e*Insight
format and contains the current values of any global variables designated as “Input” by
the activity in the appropriate location in the el_StandardEvent.xsc ETD.

Subscribed Event Type: eX_Activity_Undo

This Event causes the subscribing Collaboration to execute the “Undo” logic of the
corresponding activity in the business process. That is, it causes a compensating
transaction to occur that “undoes” the completed activity within a BPI (see“Do and
Undo logic in an Activity Collaboration” on page 43 for an explanation of “undoing”
an activity). This Event Type is in standard e*Insight format, and contains the current
values of any global variables designated as “Input” by the activity in the appropriate
location in the el_StandardEvent.xsc ETD. Also, the eX_Activity_Undo Event contains
any local variables set by the Collaboration executing the “Do” logic associated with
this activity.

Published Event Type: eX_External_Evt

This Event carries data to the external process that executes the activity. It must be in a
form compatible with the external system to which the e*Way connects.

e*Insight Business Process Manager Implementation Guide 43 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Insight Schema Components (elJSchema) e*Insight Business Process Manager Components

eX_from_Activity Collaboration

This Collaboration returns the “Done” Event to the e*Insight engine. To do this, the
eX_from_Activity Collaboration must take the data it receives from the external system
and use it to populate the required nodes in the Event returned to the e*Insight engine.
Specifically, it must do the following:

= Populate the activity status node on the el_StandardEvent.xsc ETD with the value
“SUCCESS” or “FAILURE” depending on whether or not the activity completes
successfully.

= Set the values of any global variables designated as “Output” or “Input/Output”
by the business process activity.

= Return the e*Insight BPI tracking information included in the Event (either
eX_Activity_Do or eX_Activity_Undo) that initiated this activity.

= Set the values of any local variables used by the activity.

See Sending the “Done” Event Back to e*Insight (eIJSchema) on page 88 for more
information.

Subscribed Event Type: eX_External_Evt

This Event contains the result of the completed activity from the external process that
executed the activity’s business logic.

Published Event Type: eX_to_eBPM

= This is the “Done” Event that carries the data from a completed activity back to the
e*Insight engine.

436 Multi-Mode Activity e*Way

The Multi-Mode Activity e*Way implements an e*Insight activity that can have
multiple connections either inside or outside of e*Gate. A Multi-Mode Activity e*Way
only needs one Collaboration to process the data and return it to the JMS Server. The
CRS associated with the Multi-Mode e*Way’s Collaboration Rule carries out the
business logic of the activity to which it corresponds. This Rule could be a Monk script,
a Java program, or any other script or application supported by the Collaboration
Service under which the CRS runs.

Figure 9 Multi-Mode Activity e*Way Detail

Multi-Mode

eX_Activity_Do Activity e*Way
eX_Activity Undo [@ ——— Y- > :
™ eX_Activit External |
JVS Serve \ Ay |
< Collaboration
eXtoeBPM = 0N ————— 1/ e

e*Insight Business Process Manager Implementation Guide 44 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Insight Schema Components (elJSchema) e*Insight Business Process Manager Components

eX_Activity Collaboration

This BOB activity Collaboration fulfills all of the functions that were split into a “to”
and a “from” Collaboration in the case of an Single-Mode activity e*Way. In other
words, it must:

= copy the e*Insight BPI tracking information to the destination Event in the CRS

= use the values of the “Input” attributes provided by the e*Insight engine in the
eX_Activity_Do (or eX_Activity_Undo) to complete the business logic for this
activity

= implement both the “Do” and “Undo” logic for the activity

= populate the status node (with “SUCCESS” or “FAILURE”) depending on the
outcome of the activity

= set the values for any “Output” or “Input/Output” attributes
= set the values for any local attributes
Subscribed Event Types:

= eX_Activity_Do—This Event causes the subscribing Collaboration to execute the
“Do” logic of the activity with the same name in the business process. It is the same
Event Type as that subscribed to by the eX_to_Activity Collaboration. See
“Subscribed Event Type: eX_Activity_Do” on page 43 for more information.

= eX_Activity_Undo—This Event causes the subscribing Collaboration to execute the
“Undo” logic of the activity with the same name in the business process. It is the
same Event Type as that subscribed to by the eX_to_Activity Collaboration. See
“Subscribed Event Type: eX_Activity_Undo” on page 43 for more information.

Published Event Type: eX_to_eBPM

This “Done” Event carries the data from a completed activity back to the e*Insight
engine. It is the same as that published by the eX_from_Activity Collaboration. See
“Published Event Type: eX_to_eBPM” on page 44 for more information.

437 Activity BOB

The Activity BOB implements an e*Insight activity that does not require a connection to
a system outside of e*Gate. A BOB only needs one Collaboration to process the data
and return it to the JMS Server. The CRS associated with the BOB’s Collaboration Rule
carries out the business logic of the activity to which it corresponds. This Rule could be
a Monk script, a Java program, or any other script or application supported by the
Collaboration Service under which the CRS runs.

e*Insight Business Process Manager Implementation Guide 45 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
e*Insight Schema Components (elJSchema) e*Insight Business Process Manager Components

Figure 10 Activity BOB Detail

Activity BOB
eX_Activity_Do
eX_Activity_Undo

™| eX Activity
JMS Serve \ Collaboration

-

eX_to_eBPM

eX_Activity Collaboration

This BOB activity Collaboration fulfills all of the functions that were split into a “to”
and a “from” Collaboration in the case of an activity e*Way. In other words, it must:

= copy the e*Insight BPI tracking information to the destination Event in the CRS

= use the values of the “Input” attributes provided by the e*Insight engine in the
eX_Activity_Do (or eX_Activity_Undo) to complete the business logic for this
activity

= implement both the “Do” and “Undo” logic for the activity

= populate the status node (with “SUCCESS” or “FAILURE”) depending on the
outcome of the activity

= set the values for any “Output” or “Input/Output” attributes
= set the values for any local attributes

Unlike the e*Way activity Collaborations, the BOB Collaboration does not need to

reformat the data for an external system. The data remains in the standard e*Insight
ETD.

Subscribed Event Types:

= eX_Activity_Do—This Event causes the subscribing Collaboration to execute the
“Do” logic of the activity with the same name in the business process. It is the same
Event Type as that subscribed to by the eX_to_Activity Collaboration. See
“Subscribed Event Type: eX_Activity_Do” on page 43 for more information.

= eX_Activity_Undo—This Event causes the subscribing Collaboration to execute the
“Undo” logic of the activity with the same name in the business process. It is the
same Event Type as that subscribed to by the eX_to_Activity Collaboration. See
“Subscribed Event Type: eX_Activity_Undo” on page 43 for more information.

Published Event Type: eX_to_eBPM

This “Done” Event carries the data from a completed activity back to the e*Insight
engine. It is the same as that published by the eX_from_Activity Collaboration. See
“Published Event Type: eX_to_eBPM” on page 44 for more information.

e*Insight Business Process Manager Implementation Guide 46 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
e*Insight Schema Components (elJSchema) Using Monk in el)Schema

44 Using Monk in elJSchema

Although elJSchema is primarily designed to use Java, you can manually configure a
schema based on elJSchema to use Monk. If you use a Monk component, then you
introduce the following limitations:

= the engine can no longer publish a binary XML string
= the JMS connection cannot be used to connect to the Monk component

= the Event Type published to the Monk component must be specifically named in
the engine’s publications

441 Updating an elSchema to use the elJSchema engine

Backup your schema.

Open elJSchema and export the eX_eBPM module.
Open the schema that you are updating.

Rename eX_eBPM to eX_eBPM_old.

Import the eX_eBPM module that you exported in step 2.

Configure e*Insight engine connection.

N & G » W N =

Open the elcr_eBPM Collaboration Rule properties.

A Delete initialization string.

8 Open the elcol_eBPM Collaboration properties.

A Change the subscription source to <ANY>.

B Delete the publication of Event Type eX_DynamicET.

C Add a publication for every activity in your e*Gate schema as described in Table

3.
Table 3 Publication for elJSchema update
Instance Name Event Type Destination
ElStandardInOut eX_<Activity Name>_Do eX_eBPM
ElStandardInOut eX_<Activity Name>_Undo | eX_eBPM

9 Open the IQ Manager properties. Change the IQ Manager Type to SeeBeyond
JMS.

10 Delete eX_eBPM_old.

e*Insight Business Process Manager Implementation Guide 47 SeeBeyond Proprietary and Confidential

Chapter 5

e*Insight Schema Components (elSchema)

The e*Insight Schema is the e*Gate schema that implements a particular e*Insight
installation. The starting point for a working e*Gate Schema for e*Insight is the e*Gate
schema called eISchema created when you install the e*Gate Schema for e*Insight from
the installation CD. This schema contains a number of pre-configured and partially pre-
configured e*Gate components used by e*Insight. In addition to the components that
are provided on the CD, a complete e*Insight implementation requires several other
e*Gate components that are added to the e*Insight schema during the implementation
process. The pre-configured components that are used, as well as the additional e*Gate
components that are added to make up the final working e*Insight schema, depends
entirely on the specifics of the implementation.

The purpose of this chapter is to describe the e*Gate components provided with the
elSchema as well as those that are added in the implementation process, and discuss
how each fits into and supports a working e*Insight implementation. For each
component there is a detailed drawing showing the other components with which it
interacts as well as the publication and subscription information for its Collaborations.
In addition, for each component we discuss: the type of component it is, its function in
e*Insight, any configuration the implementor must perform, the Collaborations it uses,
and what is contained in the Events it processes.

51 The Purpose of the e*Gate Schema for e*Insight

The purpose of the e*Gate Schema for e*Insight is to provide the working portion of
e*Insight. Whereas the e*Insight GUI is primarily used to configure and monitor the
e*Insight system, the Schema components actually move and transform the data
handled by e*Insight.

511 e*Insight Components

The e*Insight components start, run and implement business processes. The e*Insight
components that start and implement business processes are user-defined and must be
added to the e*Insight schema. The components that run business processes are
provided by the e*Insight installation and require only a small amount of configuration
on the part of the user.

e*Insight Business Process Manager Implementation Guide 48 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
e*Insight Schema Components (elSchema) e*Insight Schema Components Overview

52 e*Insight Schema Components Overview

Table 4 lists all of the component types used by e*Insight. It lists the components that
are provided as part of the e*Insight schema (elSchema) installation, and also the
components that the user adds in the implementation process. The meaning of the
column headings is as follows.

= Component—The e*Gate logical name for the component. Italics indicates that the
name varies by association or is user-defined.

= Description—A brief description of what the component does in e*Insight.

= In Default eISchema—Whether or not this component is provided as part of the
schema installation of e*Insight.

= Configuration Required—Most of the components in the default el[Schema require
little configuration on the part of the implementor. Table 4 uses the following terms
to describe the level of configuration required:

¢ No—The component does not require any configuration or programming on
the part of the implementor.

+ Minor—You must add the e*Insight database connection information to the
configuration file.

+ Some—You must make additional changes to the configuration file beyond
providing the e*Insight database connection information.

+ Yes—The component is mostly or entirely user-defined and must be configured
and programmed by the implementor.

= More Information—A cross reference to the section that describes this component
in detail.

Additional Components

There are a number of components in el[Schema that are not used in a standard
implementation. These include:

= el_DynamicET Event Type

= elcr_BuiltForSuccess Collaboration Rule
= elcr_eBPM Collaboration Rule

= <host_name>_jmsserver IQ Manager

The above components are provided to enable you to upgrade your schema to use the
engine provided with elJSchema. For more information, see “e*Insight Schema
Components (eIJSchema)” on page 29. You can delete these components if you do not
want to use them.

Important: It is recommended that you use the el]Schema base e*Gate schema initially, rather

than upgrade an e*Gate schema based on elSchema to use the components provided
in elJSchema.

e*Insight Business Process Manager Implementation Guide 49 SeeBeyond Proprietary and Confidential

Chapter 5

e*Insight Schema Components (elSchema)

Section 5.2

e*Insight Schema Components Overview

Table 4 e*Insight Schema Component Types

Component Description cischemat | Requireds | Information
eX_eBPM Engine This is a specially configured Java e*Way Yes Some 5.3.1 on
Connector that runs business processes. page 52

el_Resubmitter BOB A placeholder component used in the Yes Yes 5.3.2 on
e*Insight Event failure handling process. page 57

Start BP Component Either an e*Way or BOB that sends the Event | No Yes 5.3.4 on
that starts a business process instance. page 59

eX_Activity e*Way Implements an e*Insight activity that No Yes 5.3.5 on
connects to an external system. page 62

eX_Activity BOB Implements an e*Insight activity that does No Yes 5.3.6 on
not connect to an external system. page 64

521 e*Insight Schema Component Relationships Diagram

Figure 12 on the next page illustrates the relationships among the e*Insight schema
components. Not every e*Insight implementation uses all of these components. Some of
the components shown are not provided as part of the e*Gate Schema for e*Insight
installation. These components are shown in light blue and must be added to the base
e*Insight schema by the implementor as needed.

Database

GUI

BOB

QUL

Figure 11 e*Insight Overview Legend

e*Way

Intelligent
Queue

0

Light Blue

Not in default
Schema

e*Insight Business Process Manager Implementation Guide 50

—_—
Medium
Gray

Component connection
with arrow indicating
direction of data flow

External

to eX system

Multiple components
of a similar type

SeeBeyond Proprietary and Confidential

Section 5.3

Chapter 5
e*Insight Schema Components (elSchema) e*Insight Business Process Manager Components

Figure 12 e*Insight 4.5.2 Components

External
Process

: J
A

A\
I
CSta" Bpt eX_Activity J eX_Activity BOB »
omponen e*Way

A

Yy

(eX_eBPM IQ O
4

A 4

eX_Dead .
eX_eBPM Bl Letter el_Resubmitter
Engine ["\ QuewelQ BOB

e*Insight
Database

53 e*Insight Business Process Manager Components

The e*Insight components start, run and implement the businesses processes created in
the e*Insight GUI. The components that run the business processes are supplied in the
e*Insight installation, while those that implement a business process are user defined

and must be added to the e*Insight e*Gate schema.

Components That Run Business Processes
The two component types dedicated to running and managing business processes are:

= One or more e*Insight engines

* The el_Resubmitter BOB

The e*Insight engine manages and runs business processes in e*Insight. One e*Insight
engine is required, but more can be added to provide additional processing capacity

when handling a large number of transactions.

The el_Resubmitter BOB is used in e*Insight Event failure handling.

e*Insight Business Process Manager Implementation Guide 51 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Insight Schema Components (elSchema) e*Insight Business Process Manager Components

Components that Start Business Processes

The component that starts a business process is:
= The START_BP component (the exact name can be chosen by the user).

This is a user-defined component that creates the e*Insight Event that begins a business
process instance. It can be a BOB or an e*Way depending on the requirements of the
scenario.

Components that Implement Business Process Activities

The components that implement business process activities are:
= eX_Activity e*Ways
= eX_Activity BOBs

By default the activity components are named after the activity they implement with
the prefix “eX_"” added to the activity name found in the e*Insight GUI. They are added
to the e*Insight schema when you use the e*Insight GUI to configure that schema for a
particular business process. They can be either an e*Way or a BOB depending on
whether the business activity involves a connection to an external system. The user
must also supply the programming to carry out the business logic of the activity and
return an activity completed message (the “Done” Event) to the e*Insight engine

Note: In addition to Collaborations running in e*Gate components, activities can also be
implemented using Java scripts that run within the e*Insight engine. See the
e*Insight Business Process Manager User’s Guide for more information.

531 e*Insight Engine

The e*Insight engine manages and runs business processes. One e*Insight engine is
required to operate, but more can be added to provide additional processing capacity
when handling a large number of transactions.

For more information on using multiple engines, see “Using Multiple e*Insight
Engines (eI[Schema)” on page 271.

The e*Insight engine, eX_eBPM, is a specially configured Java e*Way that is used to run
business processes. An e*Insight engine communicates with both the eX_eBPM and
eX_Dead_Letter_Queue IQs, as well as the e*Insight database as shown in Figure 13.

e*Insight Business Process Manager Implementation Guide 52 SeeBeyond Proprietary and Confidential

Chapter 5

e*Insight Schema Components (elSchema)

Section 5.3
e*Insight Business Process Manager Components

Figure 13 eX_eBPM Engine Detail

eX_to_eBPM

eX_eBPM

IQ

A

eX_Dead_Letter

_Queue IQ

eX_Activity1_Do
eX_Activity?_Undo
eX_Activity2_Do

A
eX_Failed_From_eBPM

eX_to_eBPM eX_External_Evt
Collaboration
A
eX_eBPM e*Insight
Engine Database

eX_from_eBPM
Collaboration

eX_External_Evt

eX_Activity2_Undo
eX_Activity3_Do
eX_Activity3_Undo

Configuring the e*Insight Engine

The e*Insight engine requires only minimal configuration on the part of the user. Table
5 lists those parameters in the engine’s configuration file that the user can change.

Table 5 e*Insight Engine Configuration Settings

Screen Parameter Setting
General (Al (Default)
Settings
Communication | (All) (Default)
Setup
Java VM JNI DLL This is the path to the java virtual machine used by

Configuration

the e*Insight engine. If necessary, replace the default
value, C:\eGate\Client\JRE\1.3\bin\hotspot\jvm.dlII,
with the fully qualified path to the JNI DLL file on the
Participating Host that is running the e*Insight
engine. The default location given above is where the
public installation of java 1.2.2 places this file on a
Windows NT machine.
Note: In a UNIX environment the name and location
of this file is different; for example, /usr/
Solaris_JDK _1.2.2_05a/jre/sparc/libjvm.sol

Enable Custom
Error Handling

The default value is “YES”. Change the value to “NO”
if you do not want custom error handling enabled.
See the el_Resubmitter BOB below for more
information.

(Others)

(Default)

e*Insight Business Process Manager Implementation Guide 53

SeeBeyond Proprietary and Confidential

Chapter 5

e*Insight Schema Components (elSchema)

Section 5.3

e*Insight Business Process Manager Components

Table 5 e*Insight Engine Configuration Settings (Continued)

Screen Parameter Setting
eBPM Settings JDBC URL This is the connection string used by the e*Insight
String engine to communicate with the e*Insight database.

Use the connection string that is appropriate for the
database client setup on the machine running the
e*Insight engine. (Refer to the relevant driver
documentation for more details on configuring your
system).

An Oracle database connection might use the string:

jdbc:oracle:thin:@machine_name:port:db where

= thin is the type of oracle client interface. See your
e*Insight database administrator for more
information.

= machine_name is the network name of the
computer running the e*Insight database. If the
database is on the same machine as the e*Insight
engine you can use “localhost” instead of the
machine’s network name.

= portis correct port for communicating with the
e*Insight database (1521 is the default).

= db is the service name used to communicate with
e*Insight Oracle database from the local machine.

If you are using XML data and a Model Specific

database, then you would use the OCI8 driver. See

the e*Insight Business Process Manager Installation

Guide for information on installing the driver. You

might use the string:

jdbc:oracle:oci8:@db where

= oci8 is the type of oracle client interface.

= db is the service name used to communicate with
e*Insight Oracle database from the local machine.

A SQL Server database connection might use the

string:

jdbc:SeeBeyond:sqlserver://

<server>:<porti#>; DatabaseName=<dbname>; embe

dded=true

= server is the network name of the computer
running the e*Insight database. If the database is
on the same machine as the e*Insight engine you
can use “localhost” instead of the machine’s
network name.

= dbname is the name of the e*Insight SQL Server
database.

= portis correct port for communicating with the
e*Insight database.

e*Insight Business Process Manager Implementation Guide 54

SeeBeyond Proprietary and Confidential

Chapter 5

e*Insight Schema Components (elSchema)

Section 5.3
e*Insight Business Process Manager Components

Table 5 e*Insight Engine Configuration Settings (Continued)

Screen

Parameter

Setting

eBPM Settings

JDBC URL
String

A Sybase database connection might use the string:

jdbc:sybase:Tds:<server>:<port>

= server is the network name of the computer
running the e*Insight database. If the database is
on the same machine as the e*Insight engine you
can use “localhost” instead of the machine’s
network name.

= portis correct port for communicating with the
e*Insight database.

Database Type

Specifies the type of e*Insight database. Select one

of the following:

= Oracle when using an Oracle 8i (8.1.5 and above)

= SQL Server when using SQL Server 7.0 or SQL
Server 2000

= Sybase when using Sybase 11.9

User name

Determines the database user name under which the
e*Insight engine accesses the e*Insight database.
The user should have the same rights as the
administrator user (default is ex_admin) created by
the e*Insight database schema creation scripts.

Password

Determines the password associated with the name
the e*Insight engine uses to access the e*Insight
database. The default password used by e*Insight
database creation scripts is ex_admin.

JDBC Driver
Class

Enter name of JDBC Driver Class which interprets the
JDBC URL String specified previously to gain access
to the e*Insight database. For example,
oracle.jdbc.driver.OracleDriver

can be used with an ORACLE database, and
sun.jdbc.odbc.JdbcOdbcDriver can be used with a
SQL Server database or a Sybase database.

Maximum
Business
Process Cache
Size

This is the number of business processes that the
e*Insight engine can hold in memory at one time. If
the cache is full and another business process needs
to be loaded, the least recently used (LRU) business
process in the cache is replaced with the new
business process. The default is 1024 business
processes. The size of the business processes does
not matter.

Entering the special value of zero (0) implies that
caching of Business Process definitions is NOT
desired, and thus the e*Insight engine ALWAYS
reloads the Business Process definition from the
database for EVERY Activity event of a Business
Process Instance. Note, this feature severely impacts
performance.

e*Insight Business Process Manager Implementation Guide 55

SeeBeyond Proprietary and Confidential

Chapter 5

e*Insight Schema Components (elSchema)

Section 5.3
e*Insight Business Process Manager Components

Table 5 e*Insight Engine Configuration Settings (Continued)

Screen

Parameter

Setting

Maximum
Instance
Cache Size

Enter the maximum number of Business Process
Instances that the e*Insight engine caches in
memory. When the maximum size is reached, the
Engine first removes the Least Recently Used (LRU)
Instance from the cache. Entering a value of -1
means that there is no limit to the number of
Instances kept in memory.

The value entered for this parameter effects the total
amount of memory used by the engine. Limit the
number of instances if you start getting out of
memory messages when running the engine.

Note: A value of zero (0) should NOT be used.

Instance
Caching

Instance Caching is the most efficient way to process
Business Process Instances.Setting this value to YES
keeps a cache of the instance information
throughout the life span of the Business Process
Instance. Setting this value to NO retrieves the
information from the database instead. This allows
more flexibility and fault tolerance at the cost of
performance.

To improve performance it is recommended to set
this parameter to YES and use multiple e*Insight
engines. To use both instance caching and multiple
engines it is necessary to ensure that a single
instance is always processed by the same engine.
This is achieved by using engine affinity. For
information using Instance Caching with multiple
engines see “e*Insight Engine Affinity
(eISchema)” on page 272.

Business
Processes to
Preload

This parameter allows you to load all or a subset of all
the business processes stored in the e*Insight
database. The default is ALL.

Use Default
Locale
Encoding

Setting this value to YES specifies that all data
received by and sent from this e*Insight Engine is
encoded in the same language as the default Locale
setting of this Participating Host.

Setting this value to NO specifies that data is being
passed to and from this e*Insight Engine in an UTF-8
encoding format.

(Others)

(Default)

e*Insight Business Process Manager Implementation Guide 56

SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Insight Schema Components (elSchema) e*Insight Business Process Manager Components

eX_from_eBPM Collaboration

The eX_from_eBPM Collaboration is not user-configurable. It provides the
eX_Activity_Do and eX_Activity_Undo Events to the e*Gate layer components that
carry out those activities. It also publishes failed Events to the eX_Dead_Letter_Queue

1Q.
Subscribed Event Type: eX_External_Evt
This Event carries the data retrieved from the e*Insight database to the e*Insight
engine.
Published Event Types:
= eX_Activity_Do—This Event causes the subscribing Collaboration to execute the

“Do” logic of the activity with the same name in the business process. See
“Subscribed Event Type: eX_Activity_Do” on page 63 for more information.

= eX_Activity_Undo—This Event causes the subscribing Collaboration to execute the
“Undo” logic of the activity with the same name in the business process. See
“Subscribed Event Type: eX_Activity_Undo” on page 64 for more information.

= eX_Failed_From_eBPM—This Event contains the failed Event along with error
information.

eX_to_eBPM Collaboration

The eX_to_eBPM Collaboration is not user-configurable. The e*Insight engine uses this
Collaboration to retrieve from the eX_eBPM IQ Events that require processing by the
e*Insight engine. For example, it would retrieve “Done” Events put there by activity
Collaborations in the e*Gate layer.

Subscribed Event Type: eX_to_eBPM

This Event Type carries all Events intended for e*Insight. These include Start BP Events,
“Done” Events, and other Events that must be processed by the e*Insight engine. The
corresponding ETD is eX_Standard_Event.ssc. This is the only Event Type to which the
e*Insight engine subscribes; all data sent to the e*Insight engine must use this Event

Type.
Published Event Type: eX_External_Evt

This Event carries the data that is written to the e*Insight database.

532 el_Resubmitter BOB

The el_Resubmitter BOB is a placeholder component that the implementor can use to
resubmit failed Events back to the e*Insight IQ after repairing them. The Event Repair
logic in the el_Resubmitter BOB’s Collaboration must be supplied by the implementor.

e*Insight Business Process Manager Implementation Guide 57 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Insight Schema Components (elSchema) e*Insight Business Process Manager Components

Figure 14 el_Resubmitter BOB Detail

el_Resubmitter BOB

eX_Dead_Letter \
_Queue IQ } eX_Failed_From_eBPM

el_Resubmitter
Collaboration

eX_eBPM
IQ

eX_to_eBPM

Configuring the el_Resubmitter BOB

The user must fill in the eI_Resubmitter Collaboration with the logic to repair and
resubmit Events retrieved from the eX_Dead_Letter_Queue.

el_Resubmitter Collaboration

The el_Resubmitter Collaboration is a placeholder Collaboration that the implementor
can use as a starting point to add logic that repairs and resubmits Events that have
failed to be processed by the e*Insight engine due to data errors.

Subscribed Event Type: eX_Failed_From_eBPM

This Event Type contains the e*Insight Event that failed to process correctly at the
e*Insight engine level due to a data error, along with the error information.

Published Event Type: eX_to_eBPM

This Event Type contains the repaired version of the failed Event to be reprocessed by
the e*Insight engine.

533 Failed Event Handling by the e*Insight Engine

How the e*Insight engine handles errors generated when processing Events, depends
on the type of error and on whether custom error handling is enabled in the e*Insight
engine’s configuration file.

Error Types
Connection errors

Connection errors are errors that the e*Insight receives because of a faulty connection to
the e*Insight database.

Data errors

Data errors are exceptions that the e*Insight generates because it cannot process an
Event that is sent to it. Also in this class of errors are those generated by the e*Insight
because of a faulty business process configuration.

e*Insight Business Process Manager Implementation Guide 58 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Insight Schema Components (elSchema) e*Insight Business Process Manager Components

Error Handling

Normal Event Failure Handling

The normal handling of Events that can’t be processed due to a connection error is to
make a note of the error in the e*Insight engine’s log file and retry processing the Event
until a connection is made.

The normal e*Insight engine handling of Events that can’t be processed due to a data
error is, in addition to generating a log entry, to retry processing the Event that
generated the error up to a maximum value and then count the Event as failed. Once a
certain number of failed Events have been processed by the engine it shuts down. Both
the maximum number of resends per Event and the maximum number of failed Events
allowed by the e*Insight engine are set in the e*Insight engine’s configuration file in the
General Settings section.

Special Event Failure Handling

When custom error handling is enabled in the e*Insight engine’s configuration file (as it
is by default) Events that fail to process due to data errors are handled in a special way.
Events that fail to process due to communication errors are not affected by custom error
handling. When the e*Insight engine has custom error handling enabled, an Event is
not retried, but a notation is made in the e*Insight log file and the Event itself is
published to a special IQ. This method allows the e*Insight engine to move on to other
processing and not spend time attempting to resend failed Events.

The e*Insight engine publishes the failed Event to the eX_Dead_Letter_Queue IQ
under the eX_Failed_From_eBPM Event Type. The el_Resubmitter BOB subscribes to
this Event Type and you can use it to repair the Event and republish it to the eX_eBPM
1Q. The eX_Failed_Event.ssc ETD associated with the eX_Failed_From_eBPM Event
Type has two major node structures. Once contains error information, and the other
contains the failed Event. The failed Event is placed in the CDATA leaf node that can
contain XML data.

534 START_BP Component (e*Way or BOB)

The START_BP component is the e*Gate component that sends the “Start” Event which
initiates a business process instance (BPI). This component does not have a
corresponding activity in the business process model. The start BP component can be
either an e*Way or a BOB depending on the availability of the data within the e*Insight
system. If the data required to start a BPI is available within the system, then you can
use a BOB to start the BPI. Otherwise, you must use an e*Way to bring the data into the
e*Gate environment before it can be used to send the “Start” Event.

e*Insight Business Process Manager Implementation Guide 59 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Insight Schema Components (elSchema) e*Insight Business Process Manager Components

Figure 15 START_BP e*Way Detail

START_BP e*Way

External | eX ExemalEvt | | START BP eX o eBPM [eX eBPM
Process ~| Collaboration " IQ

Typically, an e*Way used to start the BPI connects to a business application, which in
turn provides the data used by the business process. The type of e*Way chosen
depends on the type of business application or external system to which the e*Way
must connect in order to bring in the data. For example, if the business application is
Siebel, then the e*Way used is the Siebel e*Way.

Using a BOB to start the business process is almost the same as using an e*Way; the
only difference is where these two component types get their data. Unlike an e*Way, a
BOB gets its data directly from an e*Gate IQ without having to connect to an external
system, as shown in Figure 16.

Figure 16 START_BP BOB Detail

START_BP BOB

Data
|Q eX_External_Evt

START BP
Collaboration

eX_to_eBPM

Both the BOB and the e*Way starting the BP must put the data they receive into the
standard format used throughout e*Insight.

Configuring the START_BP Component

Configuring the START_BP Component depends on the type of component it is. For
example, a BOB has no configuration file, and an e*Way’s configuration file is different
depending on the type of e*Way that is used. See the appropriate e*Way User Guide for
information on configuring a specific e*Way. In addition, the implementor must create
a Collaboration Rules Script for the START_BP component that constructs the inbound
e*Insight Event that starts a business process instance.

e*Insight Business Process Manager Implementation Guide 60 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Insight Schema Components (elSchema) e*Insight Business Process Manager Components

START_BP Collaboration

This Collaboration, used by the START_BP component, prepares the eX_to_eBPM
Event. This Event is sent to the e*Insight engine in order to start an instance of the
business process. The Collaboration must do two things:

= populate the three nodes required to start a BPI in the e*Insight standard Event
= place the data it receives into one or more global attributes of the business process
Start BP Nodes in the e*Insight Standard Event

The following three nodes in the eX_Standard_Event.ssc ETD must be populated in the
Event sent to the e*Insight engine in order to start a BPI:

= BP_EVENT.AS.NAME.Value must be filled with the exact name of the business
process as it appears in the e*Insight GUI

= BP_EVENT.AS.ID.Value must be filled with a unique ID (for example,
a timestamp)

= BP_EVENT.AS.TYPE.Value must be filled with the string “START_BP”
Converting Input Data to e*Insight Format

Data required by the business process must be placed in one or more global attributes
of the business process by the START_BP Collaboration. In addition, the Collaboration
must also convert any data it receives to the XML format used by the e*Insight system.

If any global attribute data contains characters that conflict with the XML structure of
the e*Insight Event, then this data must be converted to base 64 encoding prior to
sending it into the e*Insight system. You can convert the data in the START_BP
Collaboration by using the Monk function raw->base64.

Note: Make sure that the stc_monkutils.dll that contains the function raw->base64 is
loaded before using raw->base64 in a Collaboration Rules Script. For example, you
may use the command: load-extension “stc_monkutils.dll” in the CRS itself or
you may put path to a file that loads in the initialization file box in the
Collaboration Rule that uses the CRS.

See “Starting a Business Process (eIJSchema)” on page 87 for more information on
how to start a BPL
Published Event Type: eX_to_eBPM

This “Start” Event carries the data to begin an instance of a particular business process
to the e*Insight engine.

Subscribed Event Type: eX_External_Evt

When using a START_BP e*Way, this Event carries the data from the external
application to which the START_BP e*Way connects. In the case of a START_BP BOB,
this Event carries data from an e*Gate 1Q.

e*Insight Business Process Manager Implementation Guide 61 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Insight Schema Components (elSchema) e*Insight Business Process Manager Components

535 Activity e*Way

An activity e*Way implements an e*Insight activity that requires a connection to a
system outside of e*Gate.

Figure 17 Activity e*Way Detail

Activity e*Way
eX_Activity_Do
eX eBPM eX_Activity_Undo eX to Activity eX_External_Evt
IQ ~| Collaboration
A 4
eX_from_Activity | External
eX_to_eBPM Collaboration eX_External_Evt Process

When you use the e*Insight GUI to configure the e*Gate schema supporting the
e*Insight implementation, each activity in the business process becomes either a pair of
Collaborations in an e*Way or a single Collaboration in a BOB. The choice to use an
e*Way or a BOB to hold the activity Collaboration or Collaborations depends on the
preference of the implementor.

For an activity e*Way, the two Collaborations that are created are named
eX_from_Activity and eX_to_Activity, where Activity is replaced with the Activity
Name from the associated business process in e*Insight. In addition to the
Collaborations, the corresponding Collaboration Rules and the Event Types subscribed
to and published by the Collaborations are also named after the activity name.

The Collaboration Rule created in this process is only a placeholder. Implementors
must configure the Collaboration Rules by writing the Collaboration Rules Script and
choosing the service under which this script runs. The CRS contains the programming
that implements the business logic for the corresponding activity in the business
process.

The type of e*Way used to implement a particular activity depends on what the activity
is supposed to accomplish in the business process. For example, an SAP e*Way could
be used to connect to an ERP system to look up the credit standing of a customer, or an
Oracle e*Way could be used to look up the mailing address of a prospective client in a
marketing database.

Configuring the eX_to_Activity e*Way

Some of the configuration for the activity e*Way is done for you when you use the
e*Insight GUI to configure the schema. This includes setting up the component
relationships and Event Type routing in the e*Insight schema, but not the actual
business logic programming or the type of e*Way that is used. The business logic
programming must be done by the implementor in Collaboration Rules Scripts used by

e*Insight Business Process Manager Implementation Guide 62 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Insight Schema Components (elSchema) e*Insight Business Process Manager Components

the activity Collaborations, and the e*Way’s configuration file must be defined based
on the type of e*Way chosen to implement the activity. See the appropriate e*Way
Users Guide for information on how to set up the e*Way chosen.

eX_to_Activity Collaboration

The eX_to_Activity Collaboration receives the Event that carries the data used in the
activity. It receives the Event from the e*Insight Engine, and passes it to the external
process that implements the activity’s business logic. The Collaboration must be
configured to convert the data into whatever format is required by the external system
to which the activity e*Way connects.

Important: In addition to passing the attribute data it receives from the e*Insight engine to the
external system, the eX_to_Activity Collaboration must preserve the e*Insight
Business Process Instance tracking information contained in the eX_Activity_Do
or eX_Activity_Undo Events. This information is used to send the return or
“Done” Event back to the e*Insight engine, when the activity completes. See
Sending the “Done” Event Back to e*Insight (eIJSchema) on page 88 for
more information on what information is required in the “Done” Event.

Do and Undo logic in an Activity Collaboration

The eX_to_Activity Collaboration in an activity e*Way and the eX_Activity
Collaboration in an Activity BOB both subscribe to two Event Types: eX_Activity_Do
and eX_Activity_Undo. When the activity Collaboration picks up a “Do” Event Type
from the eX_eBPM IQ, it carries out a “positive” instance of the activity. When the
activity Collaboration picks up an “Undo” Event Type from the IQ), it carries out a
“negative” or compensating version of the activity—in other words, an activity that
cancels out a previously completed “Do” instance of the activity for the current
business process instance.

By default, the eX_to_Activity Collaboration in an activity e*Way (eX_Activity in a
BOB) subscribe to both the “Do” and “Undo” Events. Consequently the CRS must
contain logic to handle both the activity and the compensating transaction for the
activity. Of course, the implementor is also free to place the “Undo” logic in a separate
Collaboration as long as the eX_Activity_Undo Event Type is subscribed to and the
proper Event is returned to the e*Insight engine.

The e*Insight engine provides local attributes only available to a particular activity. It
uses them for holding values set by the “Do” portion of the activity Collaboration.
These values can then be used in the “Undo” logic portion of the activity Collaboration
to carry out the compensating transaction. That is, these attributes can be set by the
“Do” portion of the CRS and then recalled by the “Undo” portion of the CRS in order to
cancel out the “Do” when necessary.

For more information on local attributes and where to set them in the e*Insight
Standard ETD, see “Local Attributes” on page 68.

Subscribed Event Type: eX_Activity_Do

This Event causes the subscribing Collaboration to execute the “Do” logic of the
corresponding activity in the business process. This Event Type is in standard e*Insight

e*Insight Business Process Manager Implementation Guide 63 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Insight Schema Components (elSchema) e*Insight Business Process Manager Components

format and contains the current values of any global variables designated as “Input” by
the activity in the appropriate location in the eX_Standard_Event.ssc ETD.

Subscribed Event Type: eX_Activity_Undo

This Event causes the subscribing Collaboration to execute the “Undo” logic of the
corresponding activity in the business process. That is, it causes a compensating
transaction to occur that “undoes” the completed activity within a BPI (see“”Do and
Undo logic in an Activity Collaboration” on page 63 for an explanation of “undoing”
an activity). This Event Type is in standard e*Insight format, and contains the current
values of any global variables designated as “Input” by the activity in the appropriate
location in the eX_Standard_Event.ssc ETD. Also, the eX_Activity_Undo Event
contains any local variables set by the Collaboration executing the “Do” logic
associated with this activity.

Published Event Type: eX_External_Evt

This Event carries data to the external process that executes the activity. It must be in a
form compatible with the external system to which the e*Way connects.

eX_from_Activity Collaboration

This Collaboration returns the “Done” Event to the e*Insight engine. To do this, the
eX_from_Activity Collaboration must take the data it receives from the external system
and use it to populate the required nodes in the Event returned to the e*Insight engine.
Specifically, it must do the following:

= Populate the activity status node on the eX_Standard_Event.ssc ETD with the value
“SUCCESS” or “FAILURE” depending on whether or not the activity completes
successfully.

= Set the values of any global variables designated as “Output” or “Input/Output”
by the business process activity.

= Return the e*Insight BPI tracking information included in the Event (either
eX_Activity_Do or eX_Activity_Undo) that initiated this activity.

= Set the values of any local variables used by the activity.

See Sending the “Done” Event Back to e*Insight (eIJSchema) on page 88 for more
information.

Subscribed Event Type: eX_External_Evt

This Event contains the result of the completed activity from the external process that
executed the activity’s business logic.

Published Event Type: eX_to_eBPM

This is the “Done” Event that carries the data from a completed activity back to the
e*Insight engine.

536 Activity BOB

The Activity BOB implements an e*Insight activity that does not require a connection to
a system outside of e*Gate. A BOB only needs one Collaboration to process the data

e*Insight Business Process Manager Implementation Guide 64 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Insight Schema Components (elSchema) e*Insight Business Process Manager Components

and return it to the eX_eBPM IQ. The CRS associated with the BOB’s Collaboration
Rule carries out the business logic of the activity to which it corresponds. This Rule
could be a Monk script, a Java program, or any other script or application supported by
the Collaboration Service under which the CRS runs.

Figure 18 Activity BOB Detail

Activity BOB
eX_Activity_Do
eX_Activity_Undo

eX_eBPM \ ™ eX_Activity
1Q < Collaboration

eX_to_eBPM

eX_Activity Collaboration
This BOB activity Collaboration fulfills all of the functions that were split into a “to”
and a “from” Collaboration in the case of an activity e*Way. In other words, it must:
= copy the e*Insight BPI tracking information to the destination Event in the CRS

= use the values of the “Input” attributes provided by the e*Insight engine in the
eX_Activity_Do (or eX_Activity_Undo) to complete the business logic for this
activity

= implement both the “Do” and “Undo” logic for the activity

= populate the status node (with “SUCCESS” or “FAILURE”) depending on the
outcome of the activity

= set the values for any “Output” or “Input/Output” attributes
= set the values for any local attributes

Unlike the e*Way activity Collaborations, the BOB Collaboration does not need to

reformat the data for an external system. The data remains in the standard e*Insight
ETD.

Subscribed Event Types:

= eX_Activity_Do—This Event causes the subscribing Collaboration to execute the
“Do” logic of the activity with the same name in the business process. It is the same
Event Type as that subscribed to by the eX_to_Activity Collaboration. See
“Subscribed Event Type: eX_Activity_Do” on page 63 for more information.

= eX_Activity_Undo—This Event causes the subscribing Collaboration to execute the
“Undo” logic of the activity with the same name in the business process. It is the
same Event Type as that subscribed to by the eX_to_Activity Collaboration. See
“Subscribed Event Type: eX_Activity_Undo” on page 64 for more information.

e*Insight Business Process Manager Implementation Guide 65 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Insight Schema Components (elSchema) e*Insight Business Process Manager Components

Published Event Type: eX_to_eBPM

This “Done” Event carries the data from a completed activity back to the e*Insight
engine. It is the same as that published by the eX_from_Activity Collaboration. See
“Published Event Type: eX_to_eBPM"” on page 64 for more information.

e*Insight Business Process Manager Implementation Guide 66 SeeBeyond Proprietary and Confidential

Chapter 6
Understanding the e*Insight ETD

e*Insight uses a single Event Type Definition (ETD) to define Events as they move from
one component to another in the e*Insight system. The ETD is named
el_StandardEvent.xsc for Java and eX_Standard_Event.ssc for Monk. It is an XML
DTD in SeeBeyond’s proprietary messaging format. For a description of the XML DTD
see Appendix A.

All data going into and coming out of the e*Insight components is parsed according to
the e*Insight ETD. Understanding this ETD is the key to creating the Collaboration
Rules scripts necessary to process the data according to the rules determined by the
business process.

Note: The el_StandardEvent.xsc does not contain a section for the e*Xchange Partner
Manager information. If your implementation also uses e*Xchange Partner
Manager then you may need to use eIX_StandardEvent.xsc as this contains the
TP_EVENT location.

The TP_EVENT location in the eX_Standard_Event.ssc contains information for
e*Xchange Partner Manager. You can ignore this section if your implementation
does not use e*Xchange Partner Manager.

For more information on the TP_EVENT location, refer to the e*Xchange Partner
Manager Implementation Guide.

61 Using the ETD with e*Insight

The e*Insight engine uses the e*Insight ETD to carry out the business process. The
BP_EVENT location in the e*Insight ETD contains data the e*Insight engine uses to
track the business process instance. BP_EVENT also contains global and local attribute

data.

611 About Business Process Attributes

Business process attributes are defined in the e*Insight GUI and can be global or local.

Global attributes are available to be used and shared by any of the activities in the
business process. Local attributes can only be used within a specific activity.

The e*Insight engine uses attributes defined in the business process to send data to
Collaborations associated with each business activity and receive data from them.

e*Insight Business Process Manager Implementation Guide 67 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Understanding the e*Insight ETD Using the ETD with e*Insight

Global Attributes

You define global attributes as part of creating the business process in the e*Insight
GUL These global attributes make it possible to share data between activities in a
business process as well as move data to and from the e*Gate components that
implement those activities. The e*Insight GUI allows you to designate whether a
particular global attribute is used by a particular activity and whether it is an “Input,”
“Output,” or “Input/Output” attribute.

Input Attributes

The current values of global attributes designated as “Input,” for a particular activity in
a business process, are included in the e*Insight portion of the eX_Activity_Do (or
Undo) Event.

Important: The e*Insight engine does not send a value for every one of the global attributes in a
business process to the current activity. The e*Insight engine only sends values for
the global attributes designated as “Input” or “Input/Output,” for the current
activity, with the eX_Activity_Do Event.

Output Attributes

The e*Insight engine expects global attributes designated as “Output,” to be provided
in the “Done” Event it receives from the activity component once the activity has
completed. The activity Collaboration that publishes this Event must set the values for
the “Output” attributes in its Collaboration Rules script prior to sending the “Done”
Event.

Input/Output Attributes

The e*Insight engine populates the eX_Activity_Do (or Undo) Event with the current
values of the global attributes designated as “Input/Output,” for a particular activity in
the business process. In addition, the e*Insight engine expects to receive values for
global attributes designated as “Input/Output,” in the “Done” Event it receives from a
completed activity. The activity Collaboration that publishes this Event must set the
values for the “Input/Output” attributes in its Collaboration Rules script.

Local Attributes

Unlike global attributes that can be used by any of the activities within a business
process, local attributes are defined only for a specific activity and cannot be used
outside that activity. Also, you do not need to specify whether they are “Input,”
“Output,” or “Input/Output.” In practice they behave as “Output” attributes, because
they can be set by the activity Collaboration that publishes the “Done” Event.

You cannot use local attributes to pass information from the eX_Activity_Do Event to
the eX_Activity Collaboration, because they are empty (null) until they have been set.
This is because while local attributes are defined (a placeholder is set up) in the
e*Insight GUI, they are not set (given an actual value) until they are set by an activity
Collaboration in the “Done” Event that is sent to the e*Insight engine when an activity
completes. On the other hand, you can use local attributes to pass information from the
eX_Activity_Undo Event to the eX_Activity Collaboration. In this case, the value for

e*Insight Business Process Manager Implementation Guide 68 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Understanding the e*Insight ETD e*Insight ETD for Java — el_StandardEvent.xsc

the attribute could have been previously set by the activity Collaboration in the “Done”
Event it sent when it completed the “Do” portion of the activity.

Use local attributes to implement undo logic

Because local attributes are set in the “Done” Event that is sent back to e*Insight after
the activity completes, local attributes can be used to store prior state information that
would be used by the “Undo” portion of the activity, should a completed “Do” activity
need to be undone.

62 €e*Insight ETD for Java — el_StandardEvent.xsc

This section describes how the Java Event Type Definition is structured.

Note: When you install the e*Gate Schema for e*Insight, eIX_StandardEvent.xsc is also
created. This ETD has a TP_EVENT location that is used for e*Xchange Partner
Manager. You should use this ETD if your implementation requires both e*Insight
and e*Xchange. For more information on the TP_EVENT location, refer to the
e*Xchange Partner Manager Implementation Guide.

621 BP_EVENT

All data relevant to e*Insight processing is contained in the BP_EVENT branch of the
ETD. The structure is shown in Figure 19.

Figure 19 BP_EVENT

=-#15 BP_EVENT

-[FE ACTRATY

-[FE ATTRIBUTE
-z getd TTRIBUTE
- getd TTRIBUTE_WaALUE
<% petd TTRIBUTE
% et TTRIBUTE
- setdb TTRIBUTE
- setdb TTRIBUTE
2% zetEventinfo
2% zetEventinfo
- hasATTRIBEUTE

The information is held in three different locations within the Event Type Definition.
Each of these nodes contains a different type of information pertinent to e*Insight.

= BP_EVENT contains information about the business process. It also contains the
child elements ACTIVITY and ATTRIBUTE.

e*Insight Business Process Manager Implementation Guide 69 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Understanding the e*Insight ETD e*Insight ETD for Java — el_StandardEvent.xsc

= ACTIVITY is an optional element that contains information about the current
business process activity and any local attributes that have been defined for that
activity.

= ATTRIBUTE is a repeating element that contains information about the global
attributes for the business process.

BP_EVENT Element

This location in the e*Insight ETD contains general information about the current
business process in the five nodes as shown in Figure 31.

Figure 20 BP_EVENT Element

1D

This node must contain a user-assigned unique identifier for the business process
instance. This ID could be a time stamp, a document number, or some other ID string.

This node must be populated in the Event that starts a business process instance as well
as in the “Done” Event sent back to the e*Insight engine.

STATUS

This node can contain one of the values shown in the following table.

Value Purpose
“SUCCESS” Indicates that the current activity completed successfully.
“FAILURE” Indicates that the current activity did not complete
successfully.

The activity Collaboration must set the value of this node in the “Done” Event sent to
the e*Insight engine.

BPI_ID

This node contains a value assigned by the e*Insight engine. When e*Insight is running
in active mode, including the BPI_ID value in “Done” Event returned to the e*Insight
engine after an activity completes speeds up the time it takes for the engine to process
the Event.

NAME

This node must contain the name of the business process, exactly (including case) as it
appears in the e*Insight GUL

e*Insight Business Process Manager Implementation Guide 70 SeeBeyond Proprietary and Confidential

Chapter 6

Section 6.2
Understanding the e*Insight ETD e*Insight ETD for Java — el_StandardEvent.xsc
TYPE
This node must contain one of the values shown in the following table.
Value Purpose

“START_BP” Indicates to the e*Insight engine that this Event starts a BPI.

“DO_ACTIVITY” Indicates that this is a “Do” Event for the current activity.

“UNDO_ACTIVITY” Indicates that this is an “Undo” Event for the current

activity.

This node must be populated with the string “START_BP” in the Event that starts a BPL

BP_EVENT.ACTIVITY Nodes

This location in the e*Insight ETD contains information about the current activity. The
ACTIVITY node contains information of a general nature about the current activity.
The ACTIVITY.ATTRIBUTE node contains information about any local attributes that
have been defined for the current activity. Figure 21 shows the location of these nodes
in the e*Insight ETD.

Figure 21 BP_EVENTACTIVITY

= ACTIVITY
..... D

=-#8 ATTRIBUTE

- F5 ENCODING
- yALUE
MekE
LOCATION
. TYFE

ACTIVITY Element

This location in the e*Insight ETD contains ID information about the current activity in
two nodes as shown in Figure 22.

Figure 22 ACTIVITY Element

- # ACTIVITY
D
ID

This node contains a number assigned by the e*Insight engine for the current activity
within a BPI. The e*Insight engine uses this number to speed up processing.

NAME

This node contains the name of the current activity. It must match exactly, including
case, the name as it appears in the e*Insight GUL

e*Insight Business Process Manager Implementation Guide 71 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Understanding the e*Insight ETD e*Insight ETD for Java — el_StandardEvent.xsc

ACTIVITY.ATTRIBUTE Element

This repeating node structure contains the local attribute information defined for the
current activity. The structure itself is exactly the same as the global attribute node
structure, and holds exactly the same types of data. The only difference is the location
in the ETD structure. The following section describes the node structure in the e*Insight
ETD used by both global and local attributes.

BP_EVENT.ATTRIBUTE Nodes

This is a repeating node structure that contains the global business process attribute
information in five fields as shown in Figure 23.

Figure 23 ATTRIBUTE Element

=-#2 ATTRIBUTE
o ENCODING
5 yalLUE

5 NAME

& LOCATION
...... T+PE

ENCODING

Describes the type of encoding used to safely convert XML data to an ASCII format.
Currently only base 64 encoding is supported.

VALUE

This node contains the current value of the attribute. Events sent to an activity
Collaboration have this node populated by the e*Insight engine for attributes
designated as “Input” or “Input/Output” in the e*Insight GUI for the current activity.
This node must be filled in the “Done” Event sent back to the e*Insight engine by the
activity Collaboration, for attributes designated as “Output” or “Input/Output.”

NAME

This node must contain the name of the global attribute. It must match exactly the name
as it appears in the e*Insight GUIL

LOCATION
The value in this node describes where the attribute value is located.

Setting this node to a value other than “EMBEDDED” indicates that the data in the
VALUE field is a pointer (for example, the path to a file) to where the e*Insight engine
can find the value for the attribute, but not actual value itself.

If a value for the LOCATION node is not provided (left out of the Event), the e*Insight
engine assumes the value is “"EMBEDDED”.

This node can contain one of the values from the following table.

e*Insight Business Process Manager Implementation Guide 72 SeeBeyond Proprietary and Confidential

Chapter 6
Understanding the e*Insight ETD

Section 6.2
e*Insight ETD for Java — el_StandardEvent.xsc

Value Purpose

“FILE” Indicates that the value for the attribute can be found in the
file at the location specified in the VALUE field.

“DB” Indicates that the value for the attribute can be found in the
e*Insight database at the location specified in the VALUE
field.

“URL” Indicates that the value for the attribute can be found at the
URL location specified in the VALUE field.

“EMBEDDED” Indicates that the value for the attribute is contained in the
current e*Insight Event in the VALUE field. This is the
default value.

“AUTO” Indicates that the value for the attribute is actual data but
storage in e*Insight is automatically determined.

TYPE

The value in this node describes the data type of attribute value. This field must contain
one of the values from the following table.

Value

Purpose

I/BIN/!

Indicates that the data in the VALUE field is base 64
encoded binary data and is not interpreted as XML by the
e*Insight engine.

//XML’/

Indicates that the data in the VALUE field is XML data that
has been encoded using the scheme described in the
ENCODING field. Currently only base 64 encoding is
supported.

“STRING”

Indicates that the data in the VALUE field is clear ASCII
data, with no characters that could be interpreted as XML
tags.

“TRANSIENT”

Indicates that the data in the VALUE field is string data that
is not stored in the e*Insight database. The e*Insight
engine uses special global attributes with this data type to
increase its processing speed.

“NUMBER” Indicates that the data in the VALUE field is interpreted as a
number. The data is interpreted as a decimal number,
however, it must be given as a string.

“BOOLEAN" Indicates that the data in the VALUE field is interpreted as

boolean.

e*Insight Business Process Manager Implementation Guide 73 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Understanding the e*Insight ETD e*Insight ETD for Monk—eX_Standard_Event.ssc

63 €e*Insight ETD for Monk—eX_Standard_Event.ssc

The first step in using the ETD is understanding the structure of the nodes in the
context of the XML message being created. This section describes how the Monk Event
Type Definition is structured.

631 ETD Structure

The ETD contains a number of nodes that do not explicitly correlate to the XML DTD
but are required by the Monk engine to parse the XML data correctly. Each level is
structured in the same way.

Table 6 lists these facilitator nodes.

Table 6 Facilitator Nodes in the ETD

Name Description

CT A container node for an XML element. This node allows the
short and long forms of XML tags to coexist in the structure.

DSN Identifies a data section within an XML element. This is the
long form of the XML tag.

DS Identifies a data set within an XML element. The sub-elements
within a data set can occur in any order.

Empty The short form of the corresponding DSN node XML tag.
CM XML comment.

Data Holds the data for the element.

AS Identifies an XML attribute set within an XML element.
EQ The equals sign (“=") within an XML attribute.

Value Holds the value for the XML attribute.

The facilitator nodes always occur in a set order and define the structure of the XML
message. In the e*Insight ETD, the facilitator nodes define three types of branches:

= XML element with sub-elements
= XML element without sub-elements

= XML attribute
632 XML Element with Sub-elements

The following diagram illustrates the ETD structure for an XML element that has sub-
elements.

e*Insight Business Process Manager Implementation Guide 74 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Understanding the e*Insight ETD e*Insight ETD for Monk—eX_Standard_Event.ssc

Figure 24 XML Element with Sub-elements

DSN |—| DS

<Sub-element> |

<Sub-element>

| <XML Element> |—| CT

Empty

Each XML element contains one child node, CT. CT identifies the parent node as an
XML element. The CT node contains two child nodes: DSN and Empty. DSN is the
long form of the XML tag (</tag>) and Empty is the short form (</>).

The DSN and DS nodes always occur as parent-child pairs. In this type of branch, DS
is the parent node for two types of child nodes:

= CM, which holds XML comments for the element
= <sub-element>, the name of a sub-element of the parent element

The DS node always contains a CM child node to hold XML comments. Each <sub-
element> node contains an ETD structure of its own, with the <sub-element> node as
the parent node for the branch.

633 XML Element without sub-elements

The following diagram illustrates the ETD structure for an XML element that does not
have sub-elements.

Figure 25 XML Element without sub-elements

DSN — DS
(S Eemen }—__or
Empty

Notice that the only difference between this diagram and the previous diagram is a
Data child node in place of the <sub-element> child nodes above. The Data node
contains the actual data for the XML element that is defined. When creating
Collaboration Rules scripts, you must map the XML element data to the Data nodes at
the terminal end of the element’s branch.

634 XML Attribute

The following diagram illustrates the ETD structure for an XML attribute.

e*Insight Business Process Manager Implementation Guide 75 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Understanding the e*Insight ETD e*Insight ETD for Monk—eX_Standard_Event.ssc

Figure 26 XML Attribute

<XML Attribute>

<XML Element> |—| AS

<XML Attribute>

In this case, the XML element contains one child node, AS, which identifies the branch
as XML attributes of the parent element. The AS node contains the <XML Attribute>
nodes as child nodes. Each <XML Attribute> node has two child nodes: EQ to
represent the equal sign (=) in the attribute and Value which holds the actual value for
the attribute. When creating Collaboration Rules scripts, you must map the XML
attribute value to the Value nodes at the terminal end of the attribute’s branch.

635 Element Overview

The following diagram illustrates the entire e*Insight ETD tree. Note that this is only a
diagrammatic representation of the tree, since the actual tree conforms to the node
structure described in “e*Insight ETD for Monk—eX_Standard_Event.ssc” on

page 74.
Figure 27 The e*Insight ETD
Sl o ofa] s oo o |
=] TS
gﬂ e)(_Euentl = gﬂlﬂ| gﬂﬂ[i‘
— = =2 60| < /e¥_Event>* [~ QME| ﬂM”
— @JJ| 2| TP_EVENT”---
R

All data pertinent to e*Insight is contained in the XML element eX_Event. eX_Event
contains two distinct “trees”: BP_EVENT and TP_EVENT. BP_EVENT contains all of
the information pertaining to e*Insight. TP_EVENT contains all of the information
pertaining to e*Xchange. Both BP_EVENT and TP_EVENT are optional nodes in the
ETD. So if you use e*Insight to track business process activities but do not use
e*Xchange to send data to and from trading partners, you do not need to populate the
TP_EVENT element. Conversely, if you use e*Xchange to send data to and from
trading partners but do not track business process activities in e*Insight, you do not
need to populate the BP_EVENT element in your Collaboration Rules scripts.

Example: XML Element with Sub-elements

eX_Event is an example of a top-level XML element.

e*Insight Business Process Manager Implementation Guide 76 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Understanding the e*Insight ETD e*Insight ETD for Monk—eX_Standard_Event.ssc

In this example, the CT, DSN, DS, Empty, and CM facilitator nodes describe the top-
level XML element eX_Event. Figure 28 shows the ETD structure for this element.

Figure 28 XML Element eX_Event

= Ll
[=lEE (| *</ex_Events |- &]#07| E| 2] Be_EvenT ||
2| P_EvEnT ||

| 2B s Event | - gﬂm|

=R R
The eX_Event parent node contains one child node, CT. CT identifies eX_Event as an

XML element. The CT node contains two child nodes: DSN and Empty. DSN is the
long form of the XML tag (</eX_Event>) and Empty is the short form (</>).

The DSN and DS nodes always occur as parent-child pairs. DS is the parent node for
three child nodes:

= A CM node to hold XML comments for the element.
= BP_EVENT, a sub-element of eX_Event.
= TP_EVENT, a sub-element of eX_Event.

The DS node always contains a CM child node to hold XML comments. In this
example, the eX_Event element does not hold data directly, but contains two sub-
elements—BP_EVENT and TP_EVENT—which have similar facilitator node branches
associated with them.

The following example explains the structure of XML attributes.

Example: XML Element with Attributes

In this example, the AS and EQ facilitator nodes describe the XML attributes TYPE and
LOCATION. Both are XML attributes of the Payload element. Figure 29 shows the
ETD structure for these attributes.

Figure 29 XML Attribute Type

=K anmmn”{ QJE[LI
& st
s =RET/
=] & of e T
2| nsm || "</Payload:" |- #0) | 8 gﬂﬂm
2 S Sl o
=

e*Insight Business Process Manager Implementation Guide 77 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Understanding the e*Insight ETD Using eX_Standard_Event.ssc

64+ Using eX_Standard_Event.ssc

This section describes how eX_Standard_Event.ssc is populated.

641 BP_EVENT

All data relevant to e*Insight processing is contained in the BP_EVENT branch of the
ETD.

Figure 30 BP_EVENT

s~
= ETE=S
ggﬂ |l s | *</mp_evEnT>" |- QME| j HETIVITY”---
| ATTRIBUTE ||
=] N

Three of the nodes shown in Figure 30 are collapsed (followed by three dashes)
indicating there are additional nodes underneath these nodes. Each of these nodes
contains a different type of information pertinent to e*Insight.

= BP_EVENT.AS contains information about the business process.

= BP_EVENT.CT.DSN.DS.ACTIVITY is an optional node that contains information
about the current business process activity and any local attributes that have been
defined for that activity.

= BP_EVENT.CT.DSN.DS.ATTRIBUTE is a repeating node that contains
information about the global attributes for the business process.

BP_EVENT.AS Nodes

This location in the e*Insight ETD contains general information about the current
business process in the five nodes as shown in Figure 31.

e*Insight Business Process Manager Implementation Guide 78 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Understanding the e*Insight ETD Using eX_Standard_Event.ssc

Figure 31 BP_EVENT.AS

=i S
R @l_luu
5] o Tree @.ﬂ[;l
NS0 = B
L &5 2| vere @.ﬂ[;l

BPI_ID

This node contains a value assigned by the e*Insight engine. When e*Insight is running
in active mode, including the BPI_ID value in “Done” Event returned to the e*Insight
engine after an activity completes speeds up the time it takes for the engine to process
the Event.

TYPE

This node must contain one of the values shown in the following table.

Value Purpose
“START_BP” Indicates to the e*Insight engine that this Event starts a BPI.
“DO_ACTIVITY” Indicates that this is a “Do” Event for the current activity.
“UNDO_ACTIVITY” Indicates that this is an “Undo” Event for the current
activity.

This node must be populated with the string “START_BP” in the Event that starts a BPL
STATUS

This node can contain one of the values shown in the following table.

Value Purpose
“SUCCESS” Indicates that the current activity completed successfully.
“FAILURE” Indicates that the current activity did not complete
successfully.

The activity Collaboration must set the value of this node in the “Done” Event sent to
the e*Insight engine.

1D

This node must contain a user-assigned unique identifier for the business process
instance. This ID could be a time stamp, a document number, or some other ID string.

e*Insight Business Process Manager Implementation Guide 79 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Understanding the e*Insight ETD Using eX_Standard_Event.ssc

This node must be populated in the Event that starts a business process instance as well
as in the “Done” Event sent back to the e*Insight engine.

NAME

This node must contain the name of the business process, exactly (including case) as it
appears in the e*Insight GUL

BP_EVENT.CT.DSN.DS.ACTIVITY Nodes

This location in the e*Insight ETD contains information about the current activity. The
ACTIVITY.AS node contains information of a general nature about the current
activity. The ACTIVITY.CT.DSN.DS.ATTRIBUTE node contains information about

any local attributes that have been defined for the current activity. Figure 32 shows the
location of these nodes in the e*Insight ETD.

Figure 32 BP_EVENT.CT.DSN.DS.ACTIVITY

s~
=0T
o[= EE ([<sncTrvires | gﬂlﬂ| | | Data
@JJ| & HTTRIBUTE”---
& 7|ty 1]

ACTIVITY.AS Nodes

This location in the e*Insight ETD contains ID information about the current activity in
two nodes as shown in Figure 33.

Figure 33 ACTIVITY.AS

&|_|e]=
oy juff 242=1
| | votee[v
R ELE
| | votee[v

1D

This node contains a number assigned by the e*Insight engine for the current activity

within a BPI. The e*Insight engine uses this number to speed up processing.
NAME

This node contains the name of the current activity. It must match exactly, including
case, the name as it appears in the e*Insight GUL

ACTIVITY.CT.DSN.DS.ATTRIBUTE Nodes

This repeating node structure contains the local attribute information defined for the
current activity. The structure itself is exactly the same as the global attribute node

e*Insight Business Process Manager Implementation Guide 80 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Understanding the e*Insight ETD Using eX_Standard_Event.ssc

structure, and holds exactly the same types of data. The only difference is the location
in the ETD structure. The following section describes the node structure in the e*Insight
ETD used by both global and local attributes.

BP_EVENT.CT.DSN.DS.ATTRIBUTE.AS Nodes

This is a repeating node structure that contains the global business process attribute
information in five sub-node locations as shown in Figure 34:

Figure 34 BP_EVENT.CT.DSN.DS.ATTRIBUTE

& gal=]

o] setue|[]
& gal=]
| setue][]
& gal=]

? | ENCODING QJE -
& gal=]
| setue][]

= EE ([<sarTrrmuTES” |~ QMEH
2| e[|

F &]of vl
- 5] s {

- ©]s0 sl o e |
e |

L] {

&z~
EHES

: @m{

Note: The ATTRIBUTE.CT node structure is not used in e*Insight processing, but is
needed in the e*Insight ETD for correct XML parsing.

VALUE

This node contains the current value of the attribute. Events sent to an activity
Collaboration have this node populated by the e*Insight engine for attributes
designated as “Input” or “Input/Output” in the e*Insight GUI for the current activity.
This node must be filled in the “Done” Event sent back to the e*Insight engine by the
activity Collaboration, for attributes designated as “Output” or “Input/Output.”

LOCATION
The value in this node describes where the attribute value is located.

Setting this node to a value other than “EMBEDDED” indicates that the data in the
VALUE.Value node is a pointer (for example, the path to a file) to where the e*Insight
engine can find the value for the attribute, but not actual value itself.

If a value for the LOCATION node is not provided (left out of the Event), the e*Insight
engine assumes the value is “TEMBEDDED”.

This node can contain one of the values from the following table.

e*Insight Business Process Manager Implementation Guide 81 SeeBeyond Proprietary and Confidential

Chapter 6
Understanding the e*Insight ETD

Section 6.4
Using eX_Standard_Event.ssc

Value Purpose

“FILE” Indicates that the value for the attribute can be found in the
file at the location specified in the VALUE.Value node.

“DB” Indicates that the value for the attribute can be found in the
e*Insight database at the location specified in the
VALUE.Value node.

“URL” Indicates that the value for the attribute can be found at the
URL location specified in the VALUE.Value node.

“EMBEDDED” Indicates that the value for the attribute is contained in the
current e*Insight Event in the VALUE.Value node. This is
the default value.

“AUTO” Reserved for future use.

TYPE

The value in this node describes the data type of attribute value. This node must
contain one of the values from the following table.

Value

Purpose

I/BIN/!

Indicates that the data in the VALUE.Value node is base 64
encoded binary data and is not interpreted as XML by the
e*Insight engine.

//XML’/

Indicates that the data in the VALUE.Value node is XML
data that has been encoded using the scheme described in
the ENCODING node. Currently only base 64 encoding is
supported.

“STRING”

Indicates that the data in the VALUE.Value node is string
data.

“TRANSIENT”

Indicates that the data in the VALUE.Value node is string
data that is not stored in the e*Insight database. The
e*Insight engine uses special global attributes with this
data type to increase its processing speed.

“NUMBER”

Indicates that the data in the VALUE.Value node is
interpreted as a number. The data is interpreted as a
decimal number, however, it must be given as a string.

“BOOLEAN"

Indicates that the data in the VALUE.Value node is
interpreted as boolean.

ENCODING

Describes the type of encoding used to safely convert XML data to an ASCII format.
Currently only base 64 encoding is supported.

NAME

This node must contain the name of the global attribute. It must match exactly the name
as it appears in the e*Insight GUIL

e*Insight Business Process Manager Implementation Guide 82 SeeBeyond Proprietary and Confidential

Chapter 7

Common Configuration Tasks

This chapter provides a configuration information for common implementation tasks.
The chapter starts with a review of the e*Insight implementation road map and then
looks in detail at certain tasks that are performed within an e*Insight implementation.

The tasks covered in this chapter include copying the e*Insight Schema and creating
messages to send to the e*Insight engine.

This chapter also contains instructions for deleting business processes and business
process instances from the database.

e*Insight Business Process Manager Implementation Guide 83 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.1
Common Configuration Tasks Implementation Road Map

71 Implementation Road Map

Before considering individual tasks, we will first review the implementation road map
for an e*Insight implementation.

Figure 35, illustrates the major steps in the integration process for an e*Insight

implementation.
Figure 35 Integration Road Map

4 N

Create the

Step 1 Business

Process
\ /
4 N

Create the
Step 2 e*Insight Schema

from a template

.
>

AN

SteP 3 e*Insight Schema

Configure the %i»

> /
f S
Configure
Step 4 the e*Gate
Components |
\ GUI—=<
f W
S\\ ! //’4/
Step 5 Test the System EQ =
~ J

72 Common Configuration Tasks

The following are common tasks that an implementor must perform in the course of
setting up the e*Gate components, both to carry out the business process and to interact
with the e*Insight system.

e*Insight Business Process Manager Implementation Guide 84 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Common Configuration Tasks Common Configuration Tasks

721 Copy the e*Insight Schema

When beginning an integration project, make a copy of the e*Insight schema, that is
installed from the CD. Don’t make any modifications to e*Insight Schema itself; keep it
as a template. Make changes to the copy of the e*Insight Schema that you create. Use
this copy as your starting point in e*Gate for supporting e*Insight.

When you install the e*Gate Schema for e*Insight from the CD a number of different
components are installed on your Registry Host. Firstly, you install the elJSchema and/
or elSchema that can be seen in the e*Gate Enterprise Manager GUI. Secondly, you
install the support files that are used by the Schema into the Default repository, for
example the configuration files, Event Type Definitions, and Collaboration Rules
Scripts. You also install some files required for e*Gate to communicate with e*Insight,
for example, workflow jar.

There are three ways to copy the e*Insight Schema; you can use the e*Insight GUI,
create a copy of the schema from e*Gate Enterprise Manager, or install from the CD.
These methods are described below. The method that you choose depends on your
requirements.

Using the e*Insight GUI

When you install the e*Insight GUI a text file is created on your local machine
containing e*Insight schema information. This text file is used to create your schema on
the Registry host. This process does not effect any of the files associated with the
e*Insight schemas.

Note: If you have changed the el]Schema or eISchema on the Registry host, these changes
do not appear in your new schema since the new schema is based on the text file
installed with the e*Insight GUI.

To create a new e*Insight Schema using the e*Insight GUI
1 Open the e*Insight GUIL

2 From the File menu, select Create New e*Gate Schema.

3 The New e*Gate Schema dialog appears. See Figure 36.

Figure 36 New e*Gate Schema Dialog

ﬂ
g*Gate Connection
Reqistry Host: Iﬁ
User Mame: W
Passward: I—

MNew Schema

Bazed On: IeIJSchema [Jawal 'I
Mame: I

ak I Cancel | Help |

e*Insight Business Process Manager Implementation Guide 85 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2

Common Configuration Tasks Common Configuration Tasks
4 Enter or select the name of the Registry Host where you want to create the schema.
5 Enter a user name and password that are valid on the Registry Host.

6 From the Based On drop-down list, select either e[JSchema (Java) or eISchema
(Classic).

7 Enter a name for the schema in the Name box.

8 Click OK.

Copying the Schema from the Registry Host

This process makes an exact copy of the current elJSchema or eISchema held on the
Registry Host. You may want to use this method if you have modified the elJ[Schema or
elSchema since the original installation from the CD. This process does not effect any of
the files associated with the e*Insight schemas.

To create a copy of the e*Insight Schema
1 Open the elSchema in the e*Gate Enterprise Manager GUL
A Start the e*Gate Enterprise Manager.
B Login to elJSchema or elSchema.
2 Export the schema to a file c:\eGate\client\<e*Insight schema backup file name>.
A Select Export Schema Definitions to File ... from the File pull-down menu.

B In the Select archive File dialog box enter <e*Insight schema backup file name> in
the File name text box, and then click Save.

3 Create a new schema using the export file as a template.
A Select New Schema from the File pull-down menu.
B Enter <new e*Insight schema name> in the text box.

C Mark the Create from export check box.

D

Click Find and browse for the <e*Insight schema backup file name> file created in
step 2 above.

Click Open.

myl

The Enterprise Manager creates a copy of the elJSchema or elSchema with the
schema name entered in step 3B above.

Installing from the CD

You can install a new schema from the CD. Refer to the e*Insight Business Process
Manager Installation Guide for installation instructions. You should define a unique
name for your schema so it does not overwrite an existing schema.

Note: Installing from the CD installs the el]Schema and/or elSchema that can be seen in

the e*Gate Enterprise Manager GUL It also re-installs the support files that are
used by the Schema into the Default repository and the files required for e*Gate to

e*Insight Business Process Manager Implementation Guide 86 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Common Configuration Tasks Sending Messages to the e*Insight Engine (el]Schema)

communicate with e*Insight, for example, workflow.jar. If you have changed these
files, either manually or via an ESR, then these changes are overwritten.

73 Sending Messages to the e*Insight Engine (elJSchema)

731 Starting a Business Process (elJSchema)

The Collaboration in the e*Way (or BOB) that feeds data into the business process must
publish an eX_to_eBPM Event Type to the elcp_eInsight)MS connection point. This
“Start” Event must include the following:

= the name of the business process

= a unique ID for the business process instance

= an event type of “START_BP”

= all the input global attributes required for the event

When the e*Insight engine receives this Event, it creates a new instance of the business
process.

The business process name, unique ID, and “START_BP” event type are set by setting a
value in the relevant node. The three nodes required to start the BPI populated in the
el_StandardEvent.xsc ETD are described in Table 7.

Table 7 Configuring a start message

el_StandardEvent How to populate

BP_EVENT.NAME Must be filled with the exact name of the BP as
it appears in the e*Insight GUI.

BP_EVENT.ID Must be filled with a unique ID (for example, a
timestamp).

BP_EVENT.TYPE Must be filled with the string “START_BP".

For information on setting global attribute values, see “Setting Attributes
(eIJSchema)” on page 87.

732 Setting Attributes (elJSchema)

You must set the value of a global attribute for a business process that has been
designated as an “Output” attribute for that activity in the e*Insight GUI, or designated
as an “Input” attribute when starting a business process. To do this you create an
activity Collaboration that sends the eX_to_eBPM Event back to the e*Insight engine.

You can use the setATTRIBUTE method in your Collaboration Rules script to set the
value of a global attribute. The syntax is:

set ATTRI BUTE(j ava. | ang. String name, java.lang.String type,
java.lang. String val ue)

e*Insight Business Process Manager Implementation Guide 87 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Common Configuration Tasks Sending Messages to the e*Insight Engine (el]Schema)

= replace java.lang.String name with the exact name of the attribute as it appears in
the e*Insight GUI

= replace java.lang.String type with one of the strings “STRING”, “XML”, “BIN”,
“NUMBER”, or “BOOLEAN" as appropriate

= replace java.lang.String value with the attribute value

733 Getting Attributes (elJSchema)

You must get the value of a global attribute for a business process that has been
designated as an “Input” attribute for that activity in the e*Insight GUL To do this,
create an activity Collaboration that receives the eX_Activity_Do (or Undo) Event sent
from the e*Insight engine.

You can use the getATTRIBUTE_VALUE helper function to retrieve the value of an
attribute. The syntax is:

voi d get ATTRI BUTE_VALUE(| ava. | ang. Stri ng nane)

+ replace java.lang.String name with the exact name of the attribute as it appears
in the e*Insight GUI

734 Sending the “Done” Event Back to e*Insight (el)]Schema)

When an activity completes (successfully or not), a “Done” Event must be sent back to
the e*Insight engine carrying the status of the activity. To do this, the activity
Collaboration sending this Event must publish an eX_to_eBPM Event Type to the
elcr_eInsight]MS connection point.

Note: The User Activity, and Authorization Activity do not require a “Done” Event to be
sent back to the e*Insight engine.

The “Done” Event must have the following nodes in el_StandardEvent (Java) ETD
populated. Table 8 describes the required nodes when an activity is set to Active
control and Table 9 describes the required nodes when an activity is set to Passive

control.
Table 8 Done Event in Active control mode
Java Node Location How to populate

BP_EVENT.BPI_ID Copy from source to destination.

BP_EVENT.ID Copy from source to destination.

BP_EVENT.NAME Copy from source to destination.

BP_EVENT.TYPE Copy from source to destination.

BP_EVENT.STATUS Copy either the string “SUCCESS” or “FAILURE”,
depending on whether or not the activity completed
successfully.

BP_EVENT.ACTIVITY.ID Copy from source to destination. (Not absolutely
required, but recommended to speed processing.)

BP_EVENT.ACTIVITY.NAME Copy from source to destination.

e*Insight Business Process Manager Implementation Guide 88 SeeBeyond Proprietary and Confidential

Chapter 7

Section 7.3

Common Configuration Tasks Sending Messages to the e*Insight Engine (el]Schema)

Java Node Location How to populate

BP_EVENT.ATTRIBUTE[i].VALUE | Use the e*Insight helper function

getATTRIBUTE_VALUE to determine the value of the
machine-assigned attribute, eX_eBPMServer, in the
source ETD. Copy this value to the destination ETD.
Make sure the instance [i] to which you copy does
not overwrite or append to an existing iteration of
the destination ETD’s repeating node. (Active mode
only)

BP_EVENT.ATTRIBUTE[i].TYPE Copy the string “TRANSIENT”. Make sure the

instance [i] to which you copy does not overwrite or
append to an existing iteration of the destination
repeating node. (Active mode only)

BP_EVENT.ATTRIBUTE[i].NAME | Copy the string “eX_eBPMServer”. Make sure the

instance [i] to which you copy does not overwrite or
append to an existing iteration of the destination
repeating node. (Active mode only)

Note: Make sure that setting the “Output” or “Input/Output” attributes does not conflict

with setting the e*Insight engine assigned eX_eBPMServer attribute, set in the
same repeating node.

Using a copy of the entire BP_Event to send the “Done” Event

You can copy the entire BP_EVENT source node to the BP_EVENT destination node
instead of copying each field individually. In addition to the necessary information for
the “Done” Event, you are also copying the attributes that have a direction defined in
the activity of Input or Input/Output. You can send attributes that are only defined as
Input attributes in the “Done” event, but since they are not defined as Output, the
engine cannot update the database. The activity works correctly, but the engine has to
perform unnecessary processing when it tries to update the database.

Alternatively, you can use the removeATTRIBUTE method in a Collaboration to
remove attributes from the “Done” Event that is sent back to the e*Insight Engine. The
following example code copies everything in the BP_EVENT node to the output,
removes the “Customer_Name” global attribute, and then sets the value of the BP
status node to “SUCCESS”.

get El St andar dl nQut () . set BP_EVENT(get El St andar dl nQut (). get BP_EVENT())
get El St andar dl nQut () . get BP_EVENT() . renoveATTRI BUTE(" Cust oner _Nane")
get El St andar dl nQut () . get BP_EVENT() . set STATUS(" SUCCESS")

Table 9 Done Event in Passive control mode

Java Node Location How to populate

BP_EVENT.ID Copy from source to destination. It is the
responsibility of the developer to ensure that this
value is stored within the event as it is passed
through e*Gate.

e*Insight Business Process Manager Implementation Guide 89 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4

Common Configuration Tasks Sending Messages to the e*Insight Engine (elSchema)
Java Node Location How to populate
BP_EVENT.NAME The business processes name is hard-coded and is

the name of the business process for the immediate
parent of this activity (this is very important for sub-

processes).
BP_EVENT.TYPE Set the string to “DO_ACTIVITY".
BP_EVENT.STATUS Set the string to either “SUCCESS”, or “FAILURE”,

depending on whether or not the activity completed
successfully.

BP_EVENT.ACTIVITY.ID Leave this blank. In Passive mode, the source may
not contain the correct ID.

BP_EVENTACTIVITY.NAME | Set the string to contain the activity name.

In addition, the “Done” Event must carry with it the values for any attributes (global or
local) specified as “Output” or “Input/Output”. These can be set as shown in “Setting
Attributes (eIJSchema)” on page 87.

74 Sending Messages to the e*Insight Engine (elSchema)

741 Starting a Business Process (elSchema)

The Collaboration in the e*Way (or BOB) that feeds data into the business process must
publish an eX_to_eBPM Event Type. This “Start” Event must include the following:

= the name of the business process

= a unique ID for the business process instance

= an event type of “START_BP”

= all the input global attributes required for the event

When the e*Insight engine receives this Event, it creates a new instance of the business
process.

The business process name, unique ID, and “START_BP” event type are set by setting a
value in the relevant node. The three nodes required to start the BPI populated in the
eX_Standard_Event.ssc (Monk), or el_StandardEvent.xsc (Java) ETDs are described in

Table 7.
Table 10 Configuring a start message (elSchema)
Monk Node Location Java N.Ode How to populate
Location

BP_EVENT.AS.NAME.Value | BP_EVENT.NAME Must be filled with the exact name of the BP as
it appears in the e*Insight GUI.

BP_EVENT.AS.ID.Value BP_EVENT.ID Must be filled with a unique ID (for example, a
timestamp).

e*Insight Business Process Manager Implementation Guide 90 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Common Configuration Tasks Sending Messages to the e*Insight Engine (elSchema)

Table 10 Configuring a start message (elSchema)

Java Node

Monk Node Location .
Location

How to populate

BP_EVENT.AS.TYPE.Value BP_EVENT.TYPE Must be filled with the string “START_BP”.

For information on setting global attribute values, see “Setting Attributes
(eIJSchema)” on page 87.

742 Setting Attributes (elSchema)

You must set the value of a global attribute for a business process that has been
designated as an “Output” attribute for that activity in the e*Insight GUI, or designated
as an “Input” attribute when starting a business process. To do this you create an
activity Collaboration that sends the eX_to_eBPM Event back to the e*Insight engine.
The methods of achieving this in both a Monk and Java Collaboration are discussed
below.

Setting Attributes in a Monk Collaboration

The Monk Collaboration must do one of the following:
= populate the correct nodes in the eX_Standard_Event.ssc
= use the e*Insight helper function eX-set-attribute
Setting Attributes by Populating Nodes in the e*Insight Standard ETD

Your Collaboration must populate three required nodes in the eX_Standard_Event.ssc
ETD for each attribute that must be set. Set them as follows:

= BP_EVENT.CT.DSN.DS.ATTRIBUTE[n].AS.VALUE.Value, with the attribute
value

= BP_ EVENT.CT.DSN.DS.ATTRIBUTE[n].AS.NAME.Value, with the exact name
of the attribute as it appears in the e*Insight GUI

= BP_EVENT.CT.DSN.DS.ATTRIBUTE[n].AS.TYPE.Value, with one of the strings
“STRING”, “XML”, or “BIN” as appropriate

Note: In the above list, n = 0 for the first attribute that you set, 1 for the next, and so on.
Also, be sure to increment the index to prevent overwriting data in the destination
Event. If an attribute already exists (for example, eX_eBPMServer) then you should
ensure that this does not get overwritten.

Setting Attributes by Using the eX-set-attribute Helper Function

Rather than use three COPY statements in your Collaboration Rules script, you can use
the eX-set-attribute helper function instead. The syntax is:

eX-set-attribute <root-path> <attribute> <val ue> <type>
+ replace <root-path> with ~input%eX_Event or ~output%eX_Event

e*Insight Business Process Manager Implementation Guide 91 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Common Configuration Tasks Sending Messages to the e*Insight Engine (elSchema)

+ replace <attribute> with the exact name of the attribute as it appears in the
e*Insight GUI

* replace <value> with the attribute value
+ replace <type> with one of the strings “STRING”, “XML”, or “BIN” as
appropriate

Important: Make sure that the Monk file eX-eBPM-utils.monk, containing the e*Insight
helper functions, are loaded before calling them in a Collaboration Rules Script. You
can do this in several ways, by putting them in the root of the monk_library
directory, loading them explicitly in your CRS, or using the eX-init-eXchange
bootstrap file to load them via the Collaboration Rule.

Setting Attributes in a Java Collaboration

You can use the setATTRIBUTE method in your Collaboration Rules script to set the
value of a global attribute. The syntax is:

set ATTRI BUTE(j ava. |l ang. String nane, java.lang.String type,
java.l ang. String val ue)

= replace java.lang.String name with the exact name of the attribute as it appears in
the e*Insight GUI

= replace java.lang.String type with one of the strings “STRING”, “XML”, “BIN”,
“NUMBER”, or “BOOLEAN" as appropriate

= replace java.lang.String value with the attribute value

743 Getting Attributes (elSchema)

You must get the value of a global attribute for a business process that has been
designated as an “Input” attribute for that activity in the e*Insight GUI To do this,
create an activity Collaboration that receives the eX_Activity_Do (or Undo) Event sent
from the e*Insight engine. The methods of achieving this in both a Monk and Java
Collaboration are discussed below.

Getting Attributes in a Monk Collaboration

This Collaboration must do one of the following;:
= retrieve the value from the correct node in the eX_Standard_Event.ssc
= use the e*Insight helper function eX-get-attribute
Getting Attributes by Copying from Nodes in the e*Insight Standard ETD

To get the value from the correct node, your Collaboration must systematically search
through all of the attribute nodes until it finds the one containing the value for the

required attribute. Figure 37, on the next page, shows an example of a LOOP rule that
does this.

e*Insight Business Process Manager Implementation Guide 92 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Common Configuration Tasks Sending Messages to the e*Insight Engine (elSchema)

Figure 37 Get Attribute Loop

LOOF | i . G I(>: i {count ”1mputXeX,Evemt‘DS‘eX,Event‘CT‘DSN‘DS‘BP,EVENT‘CT‘DSN‘DS‘RTTRIBUTE))EI il

l tstring=7 "Order_Huantity” “inputXex_Event.DS.ex_Event.CT.DSH.DS.BP_EYEMT.CT.DSH.DS.AT \HLHUTE[<1>].RS.NHME.Value)n_

I (¢ 0 “inputiex_Event.DS.ex_Event.CT.0OSN.DS.BP_EVENT,CT.DSN.DS. ATTRIBUTEL<i>1.AS.YALUE. Valusl
“outputiex_Event DS, eX_Event,CT,05N, DS, BP_EVENT,CT,D5N,. DS, ATTRIBUTELO] , AS, VALUE, Value: 0-END

“outputieX_Event,DS, eX_Event,CT,05N, D5, BF_EWVENT, CT,DSN, DS, ATTRIEUTELO] , AS. VALUE , Value; O—END

Using an IF statement inside the LOOP, this CRS checks the repeating node
BP_EVENT.CT.DSN.ATTRIBUTE for the specified attribute. When it finds the
attribute (in the above example, “Order_Quantity”), the node
ATTRIBUTE[<i>].AS.VALUE.Value contains the attributes value.

Once found, the script can use the value of the attribute to carry out the business logic
of the Collaboration. In the above example, a check is made to see if the value in
question is greater than zero and if it is to set the value of an output attribute to “yes”.

Getting Attributes by Using the eX-get-attribute Helper Function

Rather than use a LOOP in your Collaboration to obtain the value of an Input attribute
you can use the eX-get-attribute helper function instead. The syntax is:

exX-get-attribute <root-path> <attribute>
* replace <root-path> with ~input%eX_Event or ~output%eX_Event

+ replace <attribute> with the exact name of the attribute as it appears in the
e*Insight GUI

Getting Attributes in a Java Collaboration

You can use the getATTRIBUTE_VALUE helper function to retrieve the value of an
attribute. The syntax is:

voi d get ATTRI BUTE_VALUE(| ava. | ang. Stri ng nane)

+ replace java.lang.String name with the exact name of the attribute as it appears
in the e*Insight GUI

744 Sending the “Done” Event Back to e*Insight (elISchema)

When an activity completes (successfully or not), a “Done” Event must be sent back to
the e*Insight engine carrying the status of the activity. To do this, the activity
Collaboration sending this Event must publish an eX_to_eBPM Event Type to the
eX_eBPM IQ.

Note: The User Activity, and Authorization Activity do not require a “Done” Event to be
sent back to the e*Insight engine.

The “Done” Event must have the following nodes in either the eX_Standard_Event.ssc
(Monk), or el_Standard_Event (Java) ETD populated. Table 8 describes the required
nodes when an activity is set to Active control and Table 9 describes the required nodes
when an activity is set to Passive control.

e*Insight Business Process Manager Implementation Guide 93 SeeBeyond Proprietary and Confidential

Chapter 7
Common Configuration Tasks

Section 7.4
Sending Messages to the e*Insight Engine (elSchema)

Table 11 Done Event in Active control mode

Monk Node Location Java N.ode How to populate
Location
BP_EVENT.AS.BPI_ID.Value | BP_EVENT.BPI_I Copy from source to destination.
D
BP_EVENT.AS.ID.Value BP_EVENT.ID Copy from source to destination.

BP_EVENT.AS.NAME.Value

BP_EVENT.NAME

Copy from source to destination.

BP_EVENT.AS.TYPE.Value

BP_EVENT.TYPE

Copy from source to destination.

BP_EVENT.AS.STATUS.Valu
e

BP_EVENT.STATU
S

Copy either the string “SUCCESS” or “FAILURE”,
depending on whether or not the activity completed
successfully.

BP_EVENT.CT.DSN.DS.ACT
IVITY.AS.ID.Value

BP_EVENT.ACTIV
ITY.ID

Copy from source to destination. (Not absolutely
required, but recommended to speed processing.)

BP_EVENT.CT.DSN.DS.ACT
IVITY.AS.NAME.Value

BP_EVENT.ACTIV
ITY.NAME

Copy from source to destination.

BP_EVENT.DS.ATTRIBUTE[i
1.AS.VALUE.Value

BP_EVENT.ATTRI
BUTE[i].VALUE

Use a loop or the e*Insight helper function eX-get-
attribute, or getATTRIBUTE_VALUE to determine the
value of the machine-assigned attribute,
eX_eBPMServer, in the source ETD. Copy this value
to the destination ETD. Make sure the instance [i] to
which you copy does not overwrite or append to an
existing iteration of the destination ETD’s repeating
node. (Active mode only)

BP_EVENT.DS.ATTRIBUTE[i
1.AS.TYPE.Value

BP_EVENT.ATTRI
BUTE[i].TYPE

Copy the string “TRANSIENT”. Make sure the
instance [i] to which you copy does not overwrite or
append to an existing iteration of the destination
repeating node. (Active mode only)

BP_EVENT.DS.ATTRIBUTE[i
1. AS.NAME.Value

BP_EVENT.ATTRI
BUTE[i].NAME

Copy the string “eX_eBPMServer”. Make sure the
instance [i] to which you copy does not overwrite or
append to an existing iteration of the destination
repeating node. (Active mode only)

Note: Make sure that setting the “Output” or “Input/Output” attributes does not conflict
with setting the e*Insight engine assigned eX_eBPMServer attribute, set in the
same repeating node.

Using the helper function eX-copy-no-attribute to send the “Done” Event

The eX-copy-no-attribute e*Insight helper function copies the entire source node to the
destination node, except for the user defined attributes. You can use this function in a
Collaboration that sends the “Done” Event back to the e*Insight Engine, as shown in
the following example.

eX-copy-no-attribute ~i nput %X Event

~out put ¥%eX_Event

eX- set - BP_EVENT ~out put %X _Event " STATUS" " SUCCESS"

The second command sets the value of the BP status node to “SUCCESS” after all the
required information is copied to the destination Event. To report the failure of the
activity, replace “SUCCESS” with “FAILURE” in the second command.

e*Insight Business Process Manager Implementation Guide 94

SeeBeyond Proprietary and Confidential

Chapter 7
Common Configuration Tasks

Section 7.4
Sending Messages to the e*Insight Engine (elSchema)

Table 12 Done Event in Passive control mode

Monk Node Location Java N.ode How to populate
Location
BP_EVENT.AS.ID.Value BP_EVENT.ID Copy from source to destination. It is the

responsibility of the developer to ensure that this
value is stored within the event as it is passed
through e*Gate.

BP_EVENT.AS.NAME.Value | BP_EVENT.NAME

The business processes name is hard-coded and is
the name of the business process for the immediate
parent of this activity (this is very important for sub-
processes).

BP_EVENT.AS.TYPE.Value BP_EVENT.TYPE

Set the string to “DO_ACTIVITY”".

BP_EVENT.AS.STATUS.Valu | BP_EVENT.STATU
e S

Set the string to either “SUCCESS”, or “FAILURE”,
depending on whether or not the activity completed
successfully.

BP_EVENT.CT.DSN.DS.ACT | BP_EVENT.ACTIV

Leave this blank. In Passive mode, the source may

IVITY.AS.ID.Value ITY.ID not contain the correct ID.
BP_EVENT.CT.DSN.DS.ACT | BP_EVENT.ACTIV | Set the string to contain the activity name.
IVITY.AS.NAME.Value ITY.NAME

In addition, the “Done” Event must carry with it the values for any attributes (global or
local) specified as “Output” or “Input/Output”. These can be set as shown in “Setting

Attributes (eIJSchema)” on page 87.

e*Insight Business Process Manager Implementation Guide 95 SeeBeyond Proprietary and Confidential

Chapter 8

e*Insight Implementation (elJSchema)

This chapter discusses the steps involved to create an e*Insight Business Process
Manager implementation using the elJSchema base schema.

The case study in this chapter was designed primarily to illustrate the functionality of
e*Insight. In addition to showing a working example of a business process
implementation, the following e*Insight features are demonstrated:

= Attribute value correction and business process restart

= Undoing a partially completed business process

This case study is extended in later chapters to include authorization and user
activities, and local, dynamic, and remote sub-processes.

81 Overview
The major tasks in the implementation are shown in Table 13.
Table 13 Overview of implementation tasks
Task Section
1 | Create the business process (BP) in the “Create the Payroll BP in e*Insight” on
e*Insight GUI page 100
2 | Use the e*Insight GUI to configure the e*Gate | “Configure the Integration Schema
schema that supports e*Insight (e*Insight)” on page 103
3 | Configure the e*Insight Engine “Configure the e*Insight Engine” on
page 107
4 | Add and configure the user-defined e*Gate “Configure User-defined e*Gate
components Components” on page 108
5 | Run and test the scenario “Run and Test the e*Insight scenario” on

page 117

The chapter begins with a description of the scenario and then shows how to set it up.

e*Insight Business Process Manager Implementation Guide 96

SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
e*Insight Implementation (elJSchema) Overview

811 Case Study: Payroll Processing

The case study discussed in this chapter illustrates a simplified implementation of
payroll processing. In this case, e*Insight receives payroll data as a delimited text file.
Once e*Insight has received the data, a check is made to see if the employee is eligible
for a bonus, if they are the bonus is calculated. Finally, the payroll is processed and a
message added to the payslip indicating whether a bonus has been paid.

Figure 39 shows the components involved in the business process implementation. The
diagram is then separated into two sections and there is a description of how the data
flows between these components.

Figure 38 e*Insight Data Flow Diagram

External
System

START_BP
e*Way
START_BP

@ eX_to_eBPM

eX_Check_
Eligibility e"Way (2 eX_Check_Eligibilty Do

eX_Check |#—|—"—————— —— 1
Eligibility

(®) eX_lo_eBPM (2 ex_Check_Eligivility_Do

I

I

| @ eX_Calculate_Bonus_Do eX_eBPM
| ' @ eX_Process_Payroll_Do Eng| ne

-t

A

JMS Server n@)@@@ . elcr_eBPM

e*Insight
.| Database

/ eX_to_eBPM [
AT A S~
eX_Calculate_ : | X
Bonus BOB @ex Caloulate_Bonus_Doy : y
KCAokle </ —— ————— — | EInsight B
(®) eX_to_eBPM : GUI
I
eX_Process_ |
Calculate_ Update_
Payroll e Way ® eX Process Payroll Do | [Bonus Status J
eX_Process_ e — — — — — — — — — — 4
Payroll (@) eX_to_eBPM
® y _ J

External
System

e*Insight Business Process Manager Implementation Guide 97 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
e*Insight Implementation (elJSchema) Overview

Figure 39 e*Insight Data Flow Diagram (Part 1)

Bonus

(o N
e*Insight [Check
START_BP Ight | cigpia
GUI
eX_Check_

e*Way
START BP @ eX_to_eBPM
_ Calculate_ Update_
Status
Ellglbllty e*Way - Process
ST | @ kB 00 L y
Eligibilit [y

@eXﬁtofeBPM :
| eX_eBPM
viv @ eX_Check_Eligibility_D Engine Y
i .
JIMS Server > elcr_eBPM e*Insight
ONO, .| Database
eX_to_eBPM o

@ The user-defined START_BP e*Way picks up the text file containing the order
information from a shared location on the network, uses the order information
to create the e*Insight Event that causes the e*Insight engine to start a business
process instance, and publishes it using the eX_to_eBPM Event Type to the J]MS
Server. The e*Insight engine retrieves the Event and uses the information it
contains to start the BPI.

@ The e*Insight engine publishes a “Do” Event (eX_Check_Eligibility_Do) for the
first activity in the business process (Check_Eligibility). eX_Check_Eligibility
e*Way, the e*Gate component that corresponds to this activity in the business
process, retrieves this Event from the JMS Server and uses the information it
contains to check the availability of the items ordered.

® When the Check_Eligibility activity is finished, the eX_Check_Eligibility BOB
publishes a “Done” Event using the eX_to_eBPM Event Type. The e*Insight
engine retrieves the “Done” Event, updates the BPI to reflect whether the
employee is eligible for a bonus, and then moves forward to the next activity in
the business process based on the result of a decision gate. If the employee is
eligible for a bonus, the next activity is Calculate_Bonus; if the employee is in
the sales department then the next activity is Process_Payroll, if the employee
has been employed for less than three months then the next activity is
Update_Status.

Let’s assume the employee has been employed for less than three months. The
e*Insight engine processes the e*Insight script corresponding to the
Update_Status activity in the business process, and then moves forward to the
next activity in the business process—Process_Payroll.

e*Insight Business Process Manager Implementation Guide 98 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
e*Insight Implementation (elJSchema) Overview

Figure 40 e*Insight Data Flow Diagram (Part 2)

@ eX_Out_of_Inv_Do eX_eBPM
BOB (8) eX_Send_Status_Do Engine
eX OutofInv. \ . [[\g ____ |] <
o | @ oxouotineo _
eX_Ship_Ord » JMS Server elcr eBPM e*Insight
) eXto_cBPM 0| .| Database
eX_to_eBPM [| o
Y ~—~
| A
|]
| e ™\
| e*Insight
: GUI
eX_Send_Status :
i Ship_Ord Out_of |
= Way @ eX_Send_Status_Do JI [el } [e J
eXSend Status [T T T~
(@) eX_to_eBPM
Send_Stat
o} L)

External
System

@ Let's assume the employee is eligible for a bonus. The e*Insight engine publishes
a “Do” Event (eX_Calculate_Bonus_Do) corresponding to the Calculate_Bonus
activity in the business process. The eX_Calculate_Bonus BOB retrieves this
Event and uses the information to calculate the bonus.

® When the Calculte_Bonus activity is finished, the eX_Calculate_Bonus BOB
publishes a “Done” Event indicating that the bonus has been calculated. The
e*Insight engine retrieves this Event, updates the BPI, and then moves forward to
the next activity in the business process—Process_Payroll.

® The e*Insight engine publishes a “Do” Event (eX_Process_Payroll_Do)
corresponding to the Process_Payroll activity in the business process. The
eX_Process_Payroll e*Way retrieves this Event and uses the information it
contains to send a order status report to the payroll system.

@ The eX_Process_Payroll e*Way publishes two Events: one containing the status
report to be sent to the payroll system, and also the “Done” Event. The e*Insight
engine retrieves the “Done” Event and uses the information it contains to update
the BPI to indicate that the final activity in the business process has completed
successfully.

e*Insight Business Process Manager Implementation Guide 99 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.2
e*Insight Implementation (elJSchema) Create the Payroll BP in e*Insight

s2 Create the Payroll BP in e*Insight

The following is a summary of the procedure for creating a BP in the e*Insight GUL
1 Create a Business Process named Payroll.

1 Add the activities.

2 Add the decision gates.

3 Make the connections between the activities and gates.
4 Add all the global attributes.

5 Assign global attributes to activities.

6 Add the logic to the decision gates.

7 Configure the properties for the activities.

For more information on creating this business process, see the e*Insight Business Process
Manager User’s Guide.

Use the diagram shown in Figure 41 and the following tables to create the BP in
e*Insight.

Important: Mark the check box for Manual Restart on the General tab of the Properties dialog
box for each activity.

Figure 41 Payroll Business Process Model

Check_Eliaitiity

=_Bonuz_Eligibility_Lecisio
(_ Caleulate_Bonus) D epartmanttotE ligible i, Undate_Status |

EligibleForB onus ErmployedLT 3t onths

Procesz Payroll

e*Insight Business Process Manager Implementation Guide 100 SeeBeyond Proprietary and Confidential

Section 8.2

Chapter 8
Create the Payroll BP in e*Insight

e*Insight Implementation (elJSchema)

Table 14 BP Global Attributes

Attribute Type Data Direction Default Value
First_Name String Input
Last_Name String Input
Department String Input
Salary Number Input
Start_Date String Input
Pay_Period String Input
Grade String Input/Output
Probation Boolean Input
Eligibility String Internal null
Comments String Internal No comment
Bonus Number Internal 0
Table 15 Activity Attributes
Activity Attribute(s) Input/Output
Check_Eligibility Department Input
Probation Input
Eligibility Output
Calculate_Bonus Salary Input
Grade Input
Bonus Output
Update_Status Comments Output
Process_Payroll First_ Name Input
Last_Name Input
Department Input
Salary Input
Pay_Period Input
Bonus Input
Comments Input
Table 16 Decision Gate
Link Target Activity Expression

EmployedLT3Months

Update_Status

Probation==true

DepartmentNotEligible

Merge

Department=="sales”

EligibleForBonus

Calculate_Bonus

(Default)

e*Insight Business Process Manager Implementation Guide 101

SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.2
e*Insight Implementation (elJSchema) Create the Payroll BP in e*Insight

821 Creating the processes performing the Activities

The activities in our scenario can either be performed by e*Gate or an e*Insight Script.
Three of the activities (Check_Eligibility, Calculate_Bonus, and Process_Payroll) use
e*Gate. This is described in “Configure the Integration Schema (e*Insight)” on

page 103.

The Update_Status activity is performed by an e*Insight Script. This is described
below.

Configuring the e*Insight Script for Update_Status

This script defines a message that appears on the pay slip. It sets the value of the
Comments attribute to a short message indicating that the employee has not been with
the company long enough to receive a bonus.

To configure the e*Insight Script for Update_Status

1 From the Update_Status properties, Activity Performed by area, select e*Insight
Script.

2 Select the e*Insight Script tab.

3 Configure the script as shown in Figure 42.

Figure 42 Update_Status e*Insight Script Tab

Activity Properties - Design Mode: {Update_Status)

Generall Local ttibutes - &lnsight Seript |I3I|:|I:|al Attributes .ﬂ.ssignmentl

Events: D,:, vI

Attribute Mame |T5Jpe |DefaultValue | | - =]/
Comments String

Ingert Attribute |

Comments = "vou are nat eligible for a bonus untl pou have been emploped at least 3 months" d

E spreszion:

e*Insight Business Process Manager Implementation Guide 102 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
e*Insight Implementation (elJSchema) Configure the Integration Schema (e*Insight)

83 Configure the Integration Schema (e*Insight)

All the activities in this example, except Update_Status are carried out using e*Gate
components. You must first create a Schema (a copy of elJSchema) with the basic
components required for e*Insight. You then configure these components for your
environment and create additional components for the activities.

To create a copy of elJSchema
1 From the e*Insight GUI File menu, select New e*Gate Schema.
2 Enter or select a Registry Host on which to create the schema.
3 Enter a Username and Password that is valid on the Registry Host.
4 From the Based on list, select eIJSchema (Java).
5 In the Name box, enter Payroll.
6 Click OK.

After creating the business process, you must configure the e*Gate Registry schema
that supports the e*Insight system.

e*Insight allows you to specify the type of component (e*Way or BOB) associated with
a particular activity and where it runs.

Integration Schema Activity Components Summary

The information in Table 17 shows a summary of the e*Gate components that support
this example.

Table 17 Integration Schema Activity Components

Name Type Part:_cllpatmg Configuration Instructions
ost
eX_Check_Eligibility | Multi-Mode | localhost “Creating the
e*Way eX_Check_Eligibility
Multi-Mode e*Way” on
page 104
eX_Calculate_Bonus | BOB localhost “Creating the
eX_Calculate_Bonus
BOB” on page 106
eX_Process_Payroll | Single-Mode | localhost “Process_Payroll e*Way
e*Way Configuration” on
page 107

For information on how to use the e*Insight GUI to configure the e*Gate Registry see
the e*Insight Business Process Manger User’s Guide.

Note: This example runs all software components on a single machine (named

“localhost”). In an actual implementation, these components could be distributed
throughout a network, depending on the requirements of the system.

e*Insight Business Process Manager Implementation Guide 103 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
e*Insight Implementation (elJSchema) Configure the Integration Schema (e*Insight)

Creating the eX_Check_Eligibility Multi-Mode e*Way

The eX_Check_Eligibility Collaboration runs the Check_Eligibility CRS. This checks to
see what type of Event it has received, either a “Do” Event or an “Undo” Event. If it is
an “Undo” Event the Comments attribute is populated with the string “The
Check_Eligibility activity has been reversed” simulating the case of executing a
compensating transaction for the activity.

If the Event is a “Do” Event, then the values for the Department and Probation are
checked. Depending on what this number is the following happens.

If the department is sales, this indicates that the employee is not eligible for a bonus
since the department they work for is not eligible. The CRS sets the value of the
Eligible attribute to “department not eligible” and sends a “SUCCESS” Event back to
e*Insight indicating that the activity has completed successfully.

If the employee is still on probation, this indicates that the employee is not eligible for a
bonus since they have not been working for the company for the required three
months. The CRS sets the value of the Eligible attribute to “probation” and sends a
“SUCCESS” Event back to e*Insight indicating that the activity has completed
successfully.

Any other employee is treated as being eligible for a bonus and the CRS set the value of
Eligible to “yes” and sends “SUCCESS”.

To configure the Check_Eligibility activity
1 In the e*Insight GUI, open the Check_Eligibility activity properties.

2 On the General tab, e*Gate Module section, select a Module Type of Multi-Mode
e*Way.

3 Click New.
You may be required to log into e*Gate.
The Define Collaboration dialog appears.
4 Click OK.
5 Create eX_Check_Eligibility.xpr.

Figure 43, on the following page, shows the eX_Check_Eligibility.xpr CRS used in
this example.

e*Insight Business Process Manager Implementation Guide 104 SeeBeyond Proprietary and Confidential

Chapter 8
e*Insight Implementation (elJSchema)

Section 8.3

Configure the Integration Schema (e*Insight)

Figure 43 eX_Check_Eligibility.xpr CRS (Java)

=% Collaboration Rules Editor - eX_Check_Eligibility (Sandbox - Modified)

File Edit Wiew Tools Help

ik
"2 Saurce Events

- EI-'I: EIStandardIinOut [e¥_StandardEwent]
[+ BR_EVENT

"2 Destination Events

FEITYPE
ERSTATUS
has3TATUS

TYPE it
STATUS p&t-
hasSTATUS =&

ElstandardinOut [e_Standardevent] =2 4 |
=

BP_EVENT [3-EI ’4
[

{} b.Iockl E Y methodl @ varl [Forl A

i &

rulel E switchl —+ casel {ha] whilel k|

dol LS returnl ! throwl@

tryl I catchl

Business Rules
ack_Eligibility ; public clas

e¥_Check_Eligibility : public eX_Check_IigbiIity()

----- @ retBoolean : boolean retBoolean = trug;

B} then:

-1} else: else

-1} then:

-1} else: else
- return | return retBoolean;
userlnitialize : public void userInitializel)
----- = userTerminate : public void userTerminate()

e implements JCollaboratorExt

executeBusinessRules : public boolean executeBusinessRules() throws Exception

----- {} Copy to output : getElStandardInOut]), setBP_EVENTgetEIStandardInOut(), getEP_EVENT());
-y iF unda event : if ("UNDO_ACTIVITY" equals(getEISkandardinduk(), getBP_EVENT(), get TYPE()T)

} Set Eligibilicy : getEIStandardincut), getBP_EVENT(), setATTRIBUTE] “Eligibility”, "STRING", "Process undone™);
} St Success ; getEIStandardInOub(),getBP_EVENT(), setSTATUS"SUCCESS");

B iF department is sales ¢ if ("sales”. equalsgetEIStandardinOuty). getBP_EYENT(), getATTRIBUITE_VaLUE! Department"ij)

} Set Eligibility ; getEIStandardIncut), getEP_EVENT(), setATTRIBUTES Eligibility","STRING", "deparkment not eligible");
} Set Success : getEIStandardInCub().getBP_EVENT().setSTATUS{"SUCCESS");

Description: E

Mame: E

Implements: IE

Extends: E

Access
Modifiers: W pul

Documentation:

.

J | jﬁ

Close the editor.

S © S N o

Compile and save the CRS.

Click OK to close the information dialog.
Close the Check_Eligibility Activity properties.

e*Insight Business Process Manager Implementation Guide 105

In the Check_Eligibility Activity properties, click Configure e*Gate Schema.

SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
e*Insight Implementation (elJSchema) Configure the Integration Schema (e*Insight)

Creating the eX_Calculate_Bonus BOB

The Calculate_Bonus translation implements the logic associated with calculating a
bonus. The Grade is used to calculate the bonus.

In addition, this translation demonstrates how e*Insight handles “undoing” a partially
completed business process. If no Grade is defined, then “FAILURE” is returned to the
e*Insight engine which in turn issues “undo” Events for any activities upstream from
the failed activity. In this example there is only one, Check_Eligibility, and the
Check_Eligibility CRS handles reversing that already completed activity.

To configure the Calculate_Bonus activity
1 In the e*Insight GUI, open the Calculate_Bonus activity properties.
2 On the General tab, e*Gate Module section, select a Module Type of BOB.
3 Click New.
The Define Collaboration dialog appears.
4 Click OK.
5 Create eX_Calculate_Bonus.xpr.

Figure 44 shows the eX_Calculate_Bonus CRS used in this example.

Figure 44 eX_Calculate_Bonus.xpr CRS

=% Collaboration Rules Editor - eX_Calculate_Bonus - |EI|£|
File Edit ‘iew Toaols Help

dh

= -
Source Events Destination Events
"2 E1standardInut [e¥_standardEvent] ElstandardIncut [ex_standardEventT* =

(3 block| =® mettiod] @ war| 19 fer| W | 3 rue| B swirch| = case| 9 whie] 0 do| @ retwn| 1 throw| D ey 1 e
Business Rules
=1-™18 e¥_Caloulate_Bonus : public class eX_Calculate_Bonus extends e%_Caloulate_BonusBase implements ICollaborator Ext Eﬂ

% e¥_Calculate_Bonus @ public eX_Calculate_Bonus()
S executeBusinessRules : public boolean executeBusinessRules() throws Exception

i @@ retBoolean : boolean retBoolean = trus; Descr
{1} Copy to output : getEIStandardInout),setBP_EYEMT{getEIStandardInOut), getBP _EVENTI); I&
E|.A. if grade is empty @ if ("*".eguals{getEIStandardInut().getBP_EVEMT). getATTRIBUTE WaLUE("Grade")))
B4} then:
LA} Set Failure : getEIStandardInCut(), getBP_EYENT), setSTATUS("FAILURE™);
E-1} else : else 3

SR grade = 1 ¢ if ("1",equals{getEIStandardInCut), getBP_EVENT(), getATTRIBUTE _WALUE"Grade")))
El-1} then :
-1} Set bonus : getEIStandardInOut(). getBP_EVEMT(). setATTRIBUTE("Bonus", "MUMBER", " 1000"};
A} Set Comments : getEIStandardInOut),getBP_EVENT), setATTRIBUTE("Comments", "STRING", "Y¥ou have received a bonus of $1000");
-4} Set Success : getEISkandardInCuk(). getBP_EWENTI). setSTATUS("SUCCESS™);
-4} else : else

EIA iF 1 if {"2".equals{getEIStandardIncut(), getBP_EYEMT{), getATTRIBUTE _WALUE("Grade")))

=1} then :
{1} Set bonus : getEIStandardInCut(), gektBP_EYENT(), setATTRIBUTE("Bonus”, "MUMEBER.", "2000");

1} Set Comments : getEIStandardInout), getBP _EVENT(). setATTRIBUTE(" Comments","STRING", "You have received a bonus of $2000");
i Lo i} SetSuccess: getEIStandardInCut(). getBP_EYENT(). setSTATUS("SUCCESS™);
21} else : else
1} Set bonus : getEIStandardInCut(). getBP_EYEMT(). setATTRIBUTE("Bonus”, "MUMBER", "3000");
1} Set Comments ; getEIStandardInut), getBP_EVEMT(), setATTRIBUTE " Comments","STRING", "You have received a bonus of $3000");

Lo} Set Success @ getEIStandardInOuk(). getBP _EVEMT(). sebSTATUS("SUCCESS");

= return ¢ return retBoolean;
----- =% yserlnitialize : public void userInitialize()

----- = userTerminate @ public void userTermninatel) LI_ILI
»

Docur

6 Compile and save the CRS.
7 Close the editor.

8 In the Calculate_Bonus Activity properties, click Configure e*Gate Schema.

e*Insight Business Process Manager Implementation Guide 106 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.4
e*Insight Implementation (elJSchema) Configure the Integration Schema (e*Gate)

9 Click OK to close the information dialog.
10 Close the Calculate_Bonus Activity properties.

Process_Payroll e*Way Configuration

The Process_Payroll Collaboration is configured using e*Gate, see “Configure the
Process_Payroll e*Way” on page 113. The e*Way and basic components should be
created from within the e*Insight GUI.

To create the Process_Payroll Activity e*Way
1 In the e*Insight GUI, open the Process_Payroll activity properties.

2 On the General tab, e*Gate Module section, from the Module Type list select the
Single-Mode e*Way.

3 Click Configure e*Gate Schema.
4 Click OK, to close the information dialog.
5 Close the Process_Payroll Activity properties.

s+ Configure the Integration Schema (e*Gate)

The remaining components used in this implementation are configured from the e*Gate
Enterprise Manager. You must start the e*Gate Enterprise Manager and open the
Payroll schema that you created in “To create a copy of elJSchema” on page 103.

841 Configure the e*Insight Engine

The e*Insight engine runs in a specially configured Multi-Mode e*Way. You must make
changes to the e*Insight engine connection configuration file for this e*Way to conform
to the requirements of your system. For example, you must specify the name of the
e*Insight database to which the e*Way connects.

Note: This example uses only one e*Insight engine. In an actual implementation, more
than one e*Insight engine can be configured to handle the required workload. In
such a case, you must make changes to each of the e*Insight engines.

Edit the elcp_elnsightEngine Connection Configuration File

Most of the parameter settings in the elcp_elnsightEngine connection’s configuration
file should not be changed. “Configuring the e*Insight Engine Connection” on

page 34 discusses the parameters that may need to be changed depending on the
implementation. Use the e*Way Editor and the information in “Configuring the
e*Insight Engine Connection” on page 34 to make the required changes for the Payroll
example.

e*Insight Business Process Manager Implementation Guide 107 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
e*Insight Implementation (elJSchema) Configure User-defined e*Gate Components

842 Configure the JMS Connection

The JMS connection for e*Insight must be configured for your system. The minimal
configuration required for this implementation is described in this section. For more
information on JMS IQ Services, see SeeBeyond JMS Intelligent Queue User’s Guide.

To configure the JMS connection

1 From the e*Gate Enterprise Manager GUI components view, select the e*Way
Connections folder.

Select the el_cpelnsightJMS connection, and click the Properties tool.
In the e*Way Connection Configuration File section, click Edit.

From the Goto Section list, select Message Service.

g h W N

Enter a Server Name and Host Name where your JMS server resides.

ss Configure User-defined e*Gate Components

The user-defined components in an e*Insight implementation consist of two types: the
first type starts the business process, and second type runs as part of the business
process. The activity components are of the second type.

The Payroll example uses a file e¥*Way to start the business process and BOBs to run all
the activities except the last. The last activity is represented by an additional file e*Way.
Configuration Order for the User-defined Components

Table 18 shows the configuration order for the user-defined components.
Table 18 Configuration Order for User-defined Components

Task Section
1 | Add and configure the START_BP e*Way “Configure the START_BP e*Way” on
page 108
2 | Configure the Process_Payroll e*Way “Configure the Process_Payroll e*Way” on
page 113

Important: All the integration schema associations are displayed in table format at the end of
this section. The sections dealing with e*Way configuration include tables detailing
the non-default e*Way parameter settings. The sections dealing with the Monk and
Java Collaboration Rules Scripts show screen shots of these scripts as they appear in
the e*Gate Collaboration Editor.

851 Configure the START_BP e*Way

The e*Way that sends the Event that starts the business process, named START_BP in
this example, must convert the incoming data into e*Insight Event format, as well as

e*Insight Business Process Manager Implementation Guide 108 SeeBeyond Proprietary and Confidential

Chapter 8

e*Insight Implementation (elJSchema)

Section 8.5
Configure User-defined e*Gate Components

send the appropriate acknowledgment to the e*Insight engine to create the Business
Process Instance (BPI).

The START_BP e*Way is completely user defined and must be added to the
elJSchema in the e*Gate Enterprise Manager. In an actual implementation, the choice
of e*Way (or BOB) would depend on the requirements of the situation. For example, if
the data were coming from an SAP system, you might select an SAP ALE e*Way; or if
the data were already in the e*Gate system, you could use a BOB to start the BPI. In the
present case, a text file on the local system provides the input data, therefore this
example uses a file e*Way to send the “Start” Event to the e*Insight engine.

Table 19 shows the steps to configure the START_BP e*Way.
Table 19 Configuration steps for the START_BP e*Way

Step Section

1 | Add the e*Way and
create the e*Way

“Step 1: Create the
START_BP e*Way” on

configuration file page 109
2 | Create the Input ETD | “Step 2: Create the Input
ETD” on page 110

3 | Create the START_BP

Collaboration Rules

“Step 3: Create the
START_BP Collaboration”

script (CRS) on page 110

4 | Configure the
Collaboration in the
GUI

“Step 4: Configure the
Collaboration in the GUI”
on page 112

Step 1: Create the START_BP e*Way

e*Insight Business Process Manager Implementation Guide 109

The e*Way for the Payroll example is a simple file e¥*Way (executable: stcewfile.exe)
that polls a directory (<eGate>\client\data\Payroll) for any file with the extension
“.fin” and moves it into the e*Insight system.

Use the Enterprise Manager and the following table to add the START_BP e*Way and
create its configuration file.

Table 20 Start e*Way Parameters

Screen Parameter Setting
General Settings (Al (Default)
Outbound (send) settings (All) (Default)
Poller (inbound) settings PollDirectory <eGate>\client\data\Payroll
(All others) (Default)
Performance Testing (Al (Default)

SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
e*Insight Implementation (elJSchema) Configure User-defined e*Gate Components

Step 2: Create the Input ETD

The input ETD is based on the format of the input data. The Payroll example uses a
delimited text file (Employee.fin) that contains the data needed to process the order.

The input data file used in this example is shown in Figure 45. Place this data file at the
directory location c:\eGate\client\data\Payroll.

Figure 45 Input Text File (Employee.fin)

g Employee.~in - Notepad = |I:I| X|
Fil= Edit Format Help
IJDhnASmithAaccountsAS5A01/31/01A02/31/01A1A'Fa'lSeA —
L

.z

Using the ETD Editor and the input data as a guide, create an ETD like the one shown
in Figure 46. Set the global delimiter to a ~ character.For more information on using the
ETD Editor see the ETD Editor’s online help.

Figure 46 Input ETD: PayrollStart.xsc (Java)

= ETD Editor: Payroll.xsc (Sandbox) - |EI|£|

Fle Edit Help
? |

OD=E
- Event Type Defirition Properties -PayrollStart

=18 PayrollStart
& FirstMame {Mame) PayrallStart

U
u

| »

Lazth ame trpe - 55C
Denatment xsCiersion 0.4
rInternal Templates P editabls True

Salary

StartDate

PayPeriod

Grade

Prabation

B reget

—Esternal Templates——— || = available -

packageMarne | Payrall

----- = [BCeive
[receive

=% send ﬂ

[1/4/2002 [317FM 4

Step 3: Create the START_BP Collaboration

The Collaboration that sends the Event that starts the BPI must do two things:
= Put the data into e*Insight ETD (el_StandardEvent.xsc) format.
= Populate the Event with the information the e*Insight engine needs to start a BPL.

In addition to these two tasks, the START_BP Collaboration also provides the
recommended location for setting any global attributes that are required in your
business process.

1 Create a Collaboration Rule, START_BP, that uses the Java service.
2 Configure the Collaboration Mapping tab, as shown in Figure 47.

e*Insight Business Process Manager Implementation Guide 110 SeeBeyond Proprietary and Confidential

Chapter 8
e*Insight Implementation (elJSchema)

=& Collaboration Rules Editor - StartBP {Sandbox) - |D|ﬂ

File:

Section 8.5

Configure User-defined e*Gate Components

Figure 47 Start_BP Properties, Collaboration Mapping Tab

ollaboration Rules - StartBP Properties i]
Generall Subscriptians | Fublications Collaboration Mapping I
Instance Mame ETD Mode | Trigger | Manual Publ...
el_StandardEvent.xsc Find .. Ot s, |
ayrollStart Payroll xsc Find .. JIn |7 2
Add Instance | Remove Instance |
(] I Cancel | Applhy | Help |

3 Click Apply, and click the General Tab.

4 Click New to create a new CRS, as show in Figure 48.

Figure 48 START_BP CRS

Edit Wiew Tools Help

]
I-I:l

- [=]. ™2 PayrollStart [Payrallstart]

=

Source Events

™% Destination Events

&%_to_eBPM [eX_StandardEvent] ") a |
BP_EVENT [B =1

TYPE

STATUS

hasSTATUS =

omitSTATUS =

MAME

hasMaME -

ormitMNAM

L0

block| =@ method| & war| [Far] o it {3 rulel B, switchl —+

Ca5E

s

while| [

do| #= return| ! throwl () tryl

catch

Business Rules
[=]-™3 StartBP : public class StartBP extends StartBPBase implements JCollaboratorEx:

- @ variable : private int ID_count = 1;

[#-==% StartBP ; public StartBP()

executeBusinessRules : public boolean executeBusinessRules() throws Exception
----- @ retBoolean : boolean retBoolean = true;

----- {} SetProcessiame : geteX_to_eBPM{). getBP_EVENT().sethAME("Payroll™);

----- {} StartBP : geteX_to_eBPM().getBP_EVENT().setTYPE("START_EP");

----- {} SetID: getex_to_eBPM{).getBP_EVEMT(). setID{™ +ID _count++);

&= reburn ¢ return retBoolean;
userInitialize : public void userInitislized)
=% userTerminate : public void userTerminate()

----- {} SetFirstMame : getel_to_eBPM{).getBP_EVENT{).setATTRIBUTE("First_Mame","STRING",getPayrollStark(). getFirstMame)); Access ¥ publi
----- {} SetLastMame : getex_to_sBPM().gstBP_EVENT() setATTRIBUTE(Last_Name","STRING",getPayrallStart().getLastiame()); Modifiers:

----- {} SetDepartrient ! geteX_to_eBPM{).getBP_EVYENT().setATTRIBUTE!"Departrant”, "STRIMNG", getPavrollStart(). getDepartrent)); Documentation:

----- {} SetSalary : getel¥_to_eEPM{).getBP _EYENTI), sebATTRIBUTE("Salary", "MUMBER", getPayrollStart(), getSalary()i; -

----- {} SetStartDate : getex_ko_eBPM{).getBP_EVEMT().setATTRIEUTE"Start_Date","STRING",getPayrollstart(). getStartDatel));
----- {} SetPayPeriod : geteX_to_eBPM().getBP _EVEMT().setATTRIEUTE("Pay_Period","STRIMNG", getPayrollStart(). getPayPeriod{));
----- {} SetGrade : geteX_to_eBPMC).getBP_EVEMT().setATTRIBUTE("Grade", "MUMBER.", getPayrollStart(). getGrade());

----- {} SetProbation : geteX_to_eBPM).qetBP_EVEMNT().setATTRIBUTEL Probation”, "STRING", getPayrallSkart). getProbation])

ss Properties A

Description: IStartI

Name: IStartI

Implements: IJCUIIE

Extends: IStartI

H
IR — _>I_I

e*Insight Business Process Manager Implementation Guide 111

SeeBeyond Proprietary and Confidential

Chapter 8
e*Insight Implementation (elJSchema)

Section 8.5
Configure User-defined e*Gate Components

Step 4: Configure the Collaboration in the GUI

In addition to creating the configuration file for the e*Way and the CRS used by the
Collaboration, you must also configure the Start_BP e*Way’s Collaboration in the

Enterprise Manager GUL

1 Create a Collaboration for the Start_BP e*Way configured as shown in Figure 49.

Figure 49 Start_BP Collaboration

@ Collaboration - StartBP Properties

General |

ﬁ StartBP

=10l x]

Collaboration Rules:

IStartElP

Subscriptions:

Instance Mame Event Type
PayrollStart =t g External_Evt

Source
|} <EXTERMAL=

Delete |

Publications:
Instance Mame Event Type Destination Priority pitels] |
ex_to_eBPM '"E ex_to_eBPM elcp_einsightms

4]

3
Delete |
Aelvanced |

2]

o |

Cancel |

Apply | Help |

e*Insight Business Process Manager Implementation Guide 112

SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
e*Insight Implementation (elJSchema) Configure User-defined e*Gate Components

852 Configure the Process_Payroll e*Way

The last component that must be configured in the Payroll example is the
Process_Payroll eWay.

This e*Way must accomplish two tasks:
= Create a file containing the text of an update for the payroll system
= Return “SUCCESS” to the e*Insight engine

This e*Way simulates updating the payroll system by writing a short status message to
a text file. When this is successful, an Event is returned to the e*Insight engine with the
status node set to “SUCCESS”.

Table 21 shows the steps to configure the Process_Payroll e*Way.
Table 21 Process_Payroll e*Way configuration steps

Step Section

1 | Find the executable “Step 1: Configure the

and create the e*Way | e*Way” on page 114
configuration file

2 | Create the Output ETD | “Step 2: Create the Output
ETD:PayrollProcess.xsc
using Java” on page 114

3 | Create the “Step 3: Create the
eX_Process_Payroll.tsc | Process_Payroll
CRS Collaboration Rule” on
page 114
4 | Configure the “Step 4: Configure the
Collaboration in the Collaboration” on page 116
GUI

e*Insight Business Process Manager Implementation Guide 113 SeeBeyond Proprietary and Confidential

Chapter 8

Section 8.5
e*Insight Implementation (elJSchema)

Configure User-defined e*Gate Components

Step 1: Configure the e*Way
First find the executable, then create the configuration file.

The eX_Process_Payroll e*Way is a simple file e*Way (stcewfile.exe) that writes a text
file (Payroll_output%d.dat) to the directory <egate>\client\data\Payroll_Out. The
file created contains the e-mail address of the person who placed the order, along with

the status of the order. Use the following table to set the e*Way parameters in the
configuration file:

Table 22 Process_Payroll e*Way Parameters

Screen

General Settings

Parameter Setting
Allowlncoming No
AllowOutgoing Yes

PerformanceTesting

No (Default)

Outbound (send) settings

OutputDirectory

OutputFileName

Payroll_output%d.dat

(All others) (Default)
Poller (inbound) settings (Al (Default)
Performance Testing (Al (Default)

Step 2: Create the Output ETD:PayrollProcess.xsc using Java

Use the e*Gate ETD Editor to create an ETD like that shown in Figure 50. Set the global
delimiter to a , (comma) character.For more information on using the ETD Editor see

the ETD Editor’s online help.

Tz ETD Editor: PayrollProcess.xsc {Sandbox)

File Edit Help

DeE

®xu
W

7

Figure 50 PayrollProcess.xsc ETD

=10] x|

— Ewent Type

— Ewent Type Definition

—Intemal Templates

— External Templates

=™ PaprolProcess

B3 Mame
Message

& 1eceive
B 1eceive
=& zend
= send

Properties -PayrollProcess

({Mame)
type
xsCWersion 0.4
editable True
packagehlame | Payrol

PavrollProcess
55C

||

[1/4/2002 [Z40FM 4

Step 3: Create the Process_Payroll Collaboration Rule

This CRS must accomplish three things:

= put the output data into a readable format that can be written to a file

e*Insight Business Process Manager Implementation Guide 114

SeeBeyond Proprietary and Confidential

<eGate>\client\data\Payroll_Out

Chapter 8
e*Insight Implementation (elJSchema)

= set the BP status node to “SUCCESS”

= send the “Done” Event back to the e*Insight engine

To Configure the eX_Process_Payroll Collaboration Rule

1 From the eX_to_Process_Payroll Collaboration Rule General tab, clear the defined

Collaboration Rule and Initialization File.

2 From the eX_to_Process_Payroll Collaboration Rule Collaboration Mapping tab,

Configure User-defined e*Gate Components

add the new ProcessPayroll instance as shown in Figure 51.

Figure 51 eX_to_Process_Payroll CR Properties, Collaboration Mapping tab

@ Collaboration Rules - eX_Process_Payroll Properties 5[
General' Suhscriptions' Fublications Collaboration Mapping |
Instance Name ETD Mode | Trigg...| Manual P
El=tandardincut el_StandardEvert xzc Find .. |In [v| i
Pa PayrollProcess xsc Find ...|In [I,
Kl [
Add Instance I Remove Instance |

Ok

Cancel |

Apply |

Help |

3 Click Apply, and click the General Tab.

4 Click New to create a new CRS, as show in Figure 52.

e*Insight Business Process Manager Implementation Guide 115

SeeBeyond Proprietary and Confidential

Chapter 8
e*Insight Implementation (elJSchema)

Section 8.5
Configure User-defined e*Gate Components

e*Insight Business Process Manager Implementation Guide 116

Figure 52 eX_to_Process_Payroll.xpr CRS

=& Collaboration Rules Editor - eX_to_Process_Payroll {Sandbox}

ol x|

File Edit Wiew Tools Help

&4

1% Destination Events

PavrolProcess [PavrolProcess] ™ '--
ElStandardIinCut [_StandardEvent] ™5

B hasBP_EVENT

S omitBP_EVEMT
Breset
B available

1} block| = method| & var| [59 = if| 1k ruIeI B, switchl —+ case| 8 whie] 5 do| = return| ! throwl@ tryl I cakch

Business Rules

[=-™= ek _to_Process_Payroll : public class eX_to_Process_Payroll extends eX_to_Process_PayrallBase implements JCollaboratorExt

1] e¥_to_Process_Payroll @ public eX_to_Process_Payroll()

£ executeBusinesshules ; public boolean executeBusinessRules]) thraws Exception

- retBoolean : boolean retBoolean = true;

A} CopytoOutput : getEIStandardInCut(). setBP_EVENT(getEIStandardInOut]). getBP _EYEMT(Y);

-1} Set Success ; getEIStandardInOut().getBP_EVENT) . setSTATUS " SUCCESS™),;

-1} SetMame : getPayrollProcess(),setMamelgetEIStandardInCut(), getBP _EVENT(), getATTRIBUTE _WaLUE("Last_Mame"));

-1} SetComments : getPayrollProcess(), setiMessagelgetEIStandardInCut(), getBP _EVEMT(). getATTRIBUTE _WALUE("Comments");

Description

Name

Implements

= refurn @ return retBoolean; Extends
“® userInitislize ¢ public void userInitialized) Access
= userTerminate : public void userTerminate!) Modifiers
Documentat

Step 4: Configure the Collaboration

The eX_Process_Payroll e*Way in Payroll example does not receive data back from and
external system. Consequently, it requires only a single Collaboration. Use the
following procedure to edit the two default Collaborations created by the e*Insight GUI
during the configuration of the integration schema.

In the Enterprise Manager:
1 Highlight the eX_Process_Payroll e*Way.

2 Delete the two Collaborations eX_to_Process_Payroll and
eX_from_Process_Payroll.

3 Add a Collaboration named eX_Process_Payroll.

4 Configure the Collaboration, as shown in Figure 53.

SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.6
e*Insight Implementation (elJSchema) Run and Test the e*Insight scenario

Figure 53 eX_Process_Payroll Collaboration

etollahoration - eX_Process_Payroll Properties - |Elll|

Generall

@g)
& eX_Process_Payrall

Collaboration Rules:

Ie}{_to_Proc:ess_Payroll LI e | Eciit |

Subscriptions:

Instance Mame | Event Type Saource Aol |
ElStandardlnOut eX_Process_Payroll_Do elcp_elnsight s
ElStandardlnOut eX_Process_Payroll_Undo elcp_elnsight s |

Publications:

Instance hame Event Type Diestination Priarity Acdd

FlStancardinCut mim eX_to_eBPM il elcp_sinsight. s 5|
PayralProcess - eX_External_Evt |2 <EXTERMAL> s| | LEEE |

Aolvanced

Ok | cancel Apply | Help |

86 Run and Test the e*Insight scenario

Once the schema has been set up in e*Gate you can run the scenario.

861 Testing the Standard Business Logic

The following procedure tests the standard business logic of the e*Insight Payroll case
study example. That logic is as follows: a check is made to see whether or not the
employee is eligible for a bonus. If they are the Calculate_Bonus activity is invoked and
a message is generated that can be sent to the payroll system indicating that his bonus
has been paid to him. If the employee is not eligible, then either the Update_Status
activity or Process_Payroll is invoked which creates a message informing the customer
that the bonus is unavailable.

The test is made by sending in data with different departments and probations, and
verifying the correct processing. Input data with a department of accounts and a
probation value of false is interpreted as being eligible. A department of sales or a
probation value of true are interpreted as being ineligible.

e*Insight Business Process Manager Implementation Guide 117 SeeBeyond Proprietary and Confidential

Chapter 8

Section 8.6

e*Insight Implementation (elJSchema) Run and Test the e*Insight scenario

Payroll Processing

Use the following procedure to test the functionality of the example for an employee
that is eligible for a bonus.

1

Note:

Note:

Start the e*Insight GUI and select the Payroll business process. Switch to monitor
mode.

Make sure that the business process has been enabled in the e*Insight GUI before
attempting to run it.

Make a final check of the e*Gate schema, using the tables to confirm all of the GUI
associations. Make sure that all of the e*Insight components, including the
user-defined components, are set to start automatically.

At the command line, type the following to start the schema. You must type the
command on a single line.

stcch.exe -rh | ocal host -rs Payroll -1n |ocal host_cb
-un usernane -up password

Substitute the appropriate username and password for your installation.

Start the e*Gate Monitor, and check the status of all the components. Any
components displayed in red are not running. Any e*Insight components that are
not running should be investigated before feeding data into the system.

Navigate to the location for the input data file, Employee.~in, shown in Figure 45
on page 110 (c:\eGate\client\data\Payroll) and change the extension to “.fin”.
The change of the extension to *
by the START_BP e*Way.

~in" indicates that the data file has been picked up

If everything is working correctly, an output file (Payroll_output#.dat) as shown in
Figure 54 appears in the directory indicating successful completion of the BPL

Figure 54 In Stock Output File

& Payroll_outputo.dat - Notepad =10l =]
File Edit Format Help

Emith, vou have received a bonus of $1000 =1
4

.z

Switch to the e*Insight GUI and, while in monitor mode, select the most recent BPI
from the List tab, and then select the Diagram tab to observe the path that the data
has taken.

The activities that have completed successfully appear green. Any activities that are
still running appear blue.

In the Payroll example, an activity that stays blue for more than couple minutes
indicates a problem, and the e*Gate component associated with that activity should
be investigated for the cause of the problem. Figure 55 illustrates how the
successfully completed BPI appears in the e*Insight GUL

e*Insight Business Process Manager Implementation Guide 118 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.6
e*Insight Implementation (elJSchema) Run and Test the e*Insight scenario

Figure 55 Eligible for Bonus Completed BPI Diagram

Legend - [Sessio A

)

ElgbieFaons ——2enus_Eligbilty Decision = Tavgarire States | Companents |

- Departmen{NotEligible | Update_Status Failed/Rejected

Undo Running

Undo Completed
Undo Failed

Merge

Timed Out
Aborted

Pending

Hever Invoked

Not Eligible Processing

Testing the functionality for employees that are not eligible for a bonus uses exactly the
same procedure as that for eligible processing except that different input data is
submitted.

= Verify that sending in the data shown in Figure 56 with a department of sales
causes the business process to take the “EmployedLT3Months” branch of the
decision gate and create the diagram shown in Figure 57 and the output file shown
in Figure 58.

Figure 56 EmployedLT3Months Input File

*

& Employee2.~in - Motepad =10] x|

File Edit Format Help
JaneAGresentaccoUntsAGSALl2 /31702402, /30 00 AL ATruar
< | »

il

e*Insight Business Process Manager Implementation Guide 119 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.6
e*Insight Implementation (elJSchema) Run and Test the e*Insight scenario

Figure 57 Employed Less Than 3 months Completed BPI Diagram

Legend - [Session K|
EligitleForB orius =Honus._Eighiity_Decisio EmployedLT3Manths States | Egmpgnentsl

| Calculate_Bonus Departmenit ctEligile - Failed/Rejected

Undo Running

§
|

Undo Completed

Merge Undo Failed

Timed Out
Aborted

Pending

Never Invoked

Figure 58 Out of Stock Output File

& Payroll_outputD.dat - Notepad =10 x|
File Edit Format Help

smith, ¥vou have received a honus of $1000 -
L=

4

reen,¥ou are not eligible for a bonus until wou have been employed at Teast 3 months =
L

= Verify that sending in the data shown in Figure 59 with a department of sales
causes the business process to take the “DepartmentNotEligible” branch of the
decision gate and create the diagram shown in Figure 60 and the output file shown
in Figure 61.

Figure 59 DepartmentNotEligible Input File

&) Employee3.~in - Notepad i] 4|

Fil= Edit Format Help
A0ABrownAsalesASSADL 31 01402 31,00 A1LAFalsesr =l

4] |

e*Insight Business Process Manager Implementation Guide 120 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.6
e*Insight Implementation (elJSchema) Run and Test the e*Insight scenario
Figure 60 Department Not Eligible Completed BPI Diagram

£
- : States |Eump0nents|
EligibleF orBorus =-Bonus_Eligivity_Decisio Employedl T 3Months m
(_ Caleulete_Borus) DepartmeniHotE igible { Update_Status }
Process_Payroll _
[waiting |
Figure 61 Department Not Eligible Output File
ﬂ Payroll_output0.dat - Notepad - ||:||5|

File Edit Format Help

smith,¥ou hawve received a bonus of $1000 i’
Green,vou are not 2ligikle for a bonus until you have been emplowed at Teast 3 months
e

Erowh, MO comment -
oz

862 Demonstrating Business Process Undo Functionality

e*Insight has two methods for undoing a failed business process instance (BPI):
automatic and manual. Whether the failure of a particular activity generates an
automatic undo of the entire BPI or whether the e*Insight engine waits for user
intervention, is set on the General tab of the Activity Properties dialog box for that
activity. The default setting is automatic undo.

When an activity is set to automatic undo and the activity “fails,” then e*Insight marks
the activity as “Failed” in the GUI and publishes an “undo” Event (eX_Activity_Undo)
for the last completed activity in the BPI. In this context, fails means that the e*Insight
engine receives a “Done” Event where the status node is set to “FAILURE” rather than
“SUCCESS”. If the last completed activity is undone successfully, then an “undo”
Event is generated for the next activity upstream, and so on, until all the previously
completed activities in that BPI have been undone.

If an activity fails and the Manual Restart check box is marked on the General tab of
the Activity Properties dialog box for that activity, then e*Insight marks the activity as
“Failed” in the GUI and then waits for the user to initiate the next course of action; skip,
restart, or undo. If the user selects undo, then the BPI is undone as described in the
paragraph above.

e*Insight Business Process Manager Implementation Guide 121 SeeBeyond Proprietary and Confidential

Chapter 8

Section 8.6

e*Insight Implementation (elJSchema) Run and Test the e*Insight scenario

Manual Undo

Use the following procedure to test the functionality of manual undo in the e*Insight
scenario.

1
2

Note:

Perform steps 1 through 4 outlined in “Payroll Processing” on page 118.

Verify that Manual Restart has been marked for the activities in the business
process.

If Manual Restart has not been marked and the check box itself is grayed out, you
must delete the BPIs for the business process, or save the business process as a new
version, before you can mark it. Refer to the e*Insight Business Process Manager User’s
Guide for information on how to do this.

Navigate to the location (c:\eGate\client\data\Payroll\NoGrade.~in) for the
input data file with no grade defined as shown in Figure 62 and change the
extension to “.fin”.

Figure 62 Manual Undo Input File

4 NoGrade.~in - Notepad)]
File Edit Format Help

JohnAasmithAiaccountsAS5A0L, /3170040231 /0L AaFalsenr =1
1

.z

%

The change of the extension to
by the START_BP e*Way.

~in" indicates that the data file has been picked up

Switch to the e*Insight GUI and, while in monitor mode, select the most recent
business process instance. Observe the path that the data has taken, as shown in
Figure 63 on the next page.

Figure 63 Manual Undo—Failed BPI Diagram

Check_Eligibility

—
o
=]
m
=
=9
(4

=]

Bonus_E ligibility_Decisio

EmployedLT Stonths

EligibleFarBonus

w
=
[
&
[
o
=
=1
o
=
@
=
&

Completed
FailedfRejected

Departmen(iatE igible { Update_Status | Undo Running

Undo Completed
Undo Failed

Calculate_Bonus

Timed Dut
Aborted

Pending

Mever Invoked

e*Insight Business Process Manager Implementation Guide 122 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.6
e*Insight Implementation (elJSchema) Run and Test the e*Insight scenario

The Check_Eligibility activity should be green, indicating that it completed
successfully, but the Calculate_Bonus activity should appear red, indicating that it
has failed.

5 Right-click the Calculate_Bonus activity from the tree view, then select Properties
from the popup menu.

The Activity Properties - Monitor Mode: (Calculate_Bonus) is displayed.
6 Select the Business Process Attributes tab.

7 Click Undo Business Process, and then click OK to close the Activity Properties
dialog box.

8 Highlight the enabled business process version in the tree view.
The Check_Eligibility activity should now appear dark blue indicating that the

activity has been successfully undone.

Figure 64 Manual Undo Completed BPI Diagram

Check_Elighilty
Legend - [Sessi #

States | Components |

=B onus_Eligibility_Decisia

¥

ElgbleFarBonus EmployedLT 3Manths

Completed
Failed/Rejected

Calculzte_Bonus Departmen(NatEligible { Update: Status | Undo Running

Undo Completed

Undo Failed

Timed Out
Aborted

Pending

Process Payrall

Never Invoked

863 Demonstrating Business Process Restart Functionality

An important feature of e*Insight is its ability to allow the operator to fix and restart a
business process instance. If the data in one of the business process attributes used by
an activity causes the business process to fail, the value can be corrected by the operator
and the BPI restarted from the point of failure.

Repairing a String Attribute

Attributes can be of various types; Boolean, number, string, and XML. The following
example shows the procedure to repair an attribute of type string. For information on

e*Insight Business Process Manager Implementation Guide 123 SeeBeyond Proprietary and Confidential

Chapter 8

e*Insight Implementation (elJSchema)

Section 8.6
Run and Test the e*Insight scenario

repairing an attribute with type XML, see the e*Insight Business Process Manager User’s
Guide.

1
2

Note:

5

e*Insight Business Process Manager Implementation Guide 124

Perform steps 1 through 4 outlined in “Payroll Processing” on page 118.

Verify that Manual Restart has been marked for the activities in the business
process.

Navigate to the location (c:\eGate\client\data\Payroll\NoGrade.~in) for the
input data file with the grade not defined as shown in Figure 65, and change the
extension to “.fin”.

Figure 65 Attribute Repair Input File

MiNoGrade.~in - Notepad

Fle Edit Format Help
JohnAsmithAaccount sASSAOL/31,/010A02 /31 /0L A Falser ;[
4

g (=l 3

H

The change of the extension to “.~in” indicates that the data file has been picked up
by the START_BP e*Way.

Switch to the e*Insight GUI and, while in monitor mode, select the most recent
business process instance. Observe the path that the data has taken.

Figure 66 Attribute Repair—Failed BPI Diagram

Check_Eligibility

A

States | Campanerts I

=__Bonus_Eligibility_Decigio

Ermployed T 3Manths

i Update_Status |

EligibleFarB onuz

y

Completed
Failed/Rejected

Calculate_Bonus

Departmenit otEligible Undo Running

Undo Completed
Undo Failed

Timed Out
Aborted

Pending

Process_Parol

Never Invoked

The Check_Eligibility activity should be red, indicating that it failed, and the other
activities should appear yellow, indicating that they are waiting.

Right-click the enabled Payroll business process version from the tree view, then
select Properties from the popup menu.

SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.6
e*Insight Implementation (elJSchema) Run and Test the e*Insight scenario

Figure 67 Attribute Repair—Business Process Properties

Business Process Properties: {Payroll) |
Eusiness Process Attibutes | Access Contral I
Attribute Mame | Type | Description | Direction | Value |
Pay Period String Pay period Input 0z/31/01
Last_Mame String .. Input Smith
Grade Input
First_Mame String Inpt John
Eligibility String Reason forineligi.. Intemal ye
Department String Department name nput accounts
Start_Date String Start date Input 1/31/m
Comments String Comments for pa. Intemal Mo comment
Salary Mumber Salary Input 55.000000
Bonus Murnber Bonus assigned Intemal 0.000000
Probation Boolean |5 employee still .. Input false
I™ | SendBusiness Frocess Done Event | Event Reparn and Authanzation | e | Ediit | Delete |

Ok I Cancel | Help |

6 On the Business Process Attributes tab in the Business Process Properties dialog

7 In the Edit Business Process Attribute dialog box, change the value of the attribute
in the Current Value: box to 3, and then click OK.

8 Click OK to close the Business Process Properties dialog box.

9 Right-click the Check_Eligibility activity from the tree view, then select Properties
from the popup menu.

The Activity Properties - Monitor Mode: (Check_Eligibility) dialog box displays.
10 Select the Result/Recourse tab.
11 Click Restart Activity, and then click OK.

The BPI now completes successfully.

e*Insight Business Process Manager Implementation Guide 125 SeeBeyond Proprietary and Confidential

Chapter 9

e*Insight Authorization Activity
Implementation (elJSchema)

This chapter discusses the steps involved to enhance the previous case study to include
the Authorization Activity.

You can use the Authorization Activity to stop the Business Process and wait for

authorization. The decision to authorize or not authorize is entered via the e*Insight
GUL

This case study is a continuation of the previous example. See “e*Insight
Implementation (eIJSchema)” on page 96 for the initial configuration instructions.

91 Overview

The major steps in the implementation are:

1 Create and configure the Authorization Activity and Automated Activity in the
e*Insight GUIL

2 Run and test the scenario.

The chapter begins with a description of the scenario and then shows how to use these
steps to set it up.

911 Case Study: Payroll Processing

The bonus must be manually authorized by HR. After the bonus is calculated, the next
activity is the Authorization Activity. The business process waits for a user to authorize
or reject the activity in the e*Insight GUI. If the bonus is authorized, the process
continues to the merge; otherwise the Bonus_Refused Activity runs. This activity uses
an e*Insight script to update the Comments attribute. Then the process continues to the
merge.

Important Considerations

The Authorization Activity has two fixed Local Attributes—assignedTo (the user to
whom the Authorization process is assigned) and performedBy (a security measure to
ensure the correct user is performing the Authorization). It is important to note the
following;:

e*Insight Business Process Manager Implementation Guide 126 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
e*Insight Authorization Activity Implementation (elJSchema) Overview

= The user name of the assignedTo attribute must exactly match the name of the user
logged into the e*Insight GUI or the name of the user group to which the name of
the logged in user belongs

= The assignedTo attribute must have a value to complete the Authorization process.

= Any user assigned the role of Instance Manager can authorize, reject, or undo an
Authorization Activity within a business process instance.

e*Insight Business Process Manager Implementation Guide 127 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
e*Insight Authorization Activity Implementation (elJSchema) Step 1: Update the Payroll BP in e*Insight

92 Step 1: Update the Payroll BP in e*Insight

The following is a summary of the procedure for creating a BP in the e*Insight GUL
1 Add the Authorization Activity.
2 Edit the assignedTo Local Attribute to contain the correct user name.

Note: The Authorization Activity has two fixed Local Attributes—assignedTo (the user to
whom the Authorization process is assigned) and performedBy (automatically
assigned at run time as the user logged in to the e*Insight GUI). These two values
must match in order for the user to Authorize, Reject, or Undo the business process
instance.

3 Add the additional Automated Activity.
4 Make the connections between the activities and merge.
5 Add the e*Insight script to the Authorization Activity.

For more information on creating a business process and using the e*Insight GUI, see
the e*Insight Business Process Manager User’s Guide.

Use the diagram shown in Figure 68 and the following tables to create the BP in
e*Insight.

Figure 68 Payroll Business Process Model

Check_Eligibility

Elgblerobons —cenus_Eligibiity_Decisio EmployedLT 3Months

(, Caloulate_Bonus) DepartmenfMatElgible { Update_Status |
@B_Bonu Authorized Merge

Mot Autharized

Y

Process Paproll

Bonuz_Refused

e*Insight Business Process Manager Implementation Guide 128 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.3
e*Insight Authorization Activity Implementation (elJSchema) Step 2: Run and Test the e*Insight scenario

921 Creating the processes performing the Activities

The Authorization Activity (Authorize_Bonus) can be configured to send notification
to e*Gate. This means that a “DO” event is sent to e*Gate. However, unlike an
Automated Activity, a “DONE” event is not expected to be returned to the engine. The
“DONE” event is effectively created when the user clicks a button in the e*Insight GUL

Sending a notification to e*Gate might be used to send an e-mail to the person who
needs to authorize the activity. An e*Way would be configured that subscribes to the
“DO” event and would perform the required processing to send an e-mail. In our
example, we assume that no notification is required.

The Bonus_Refused activity is performed by an e*Insight Script. This is described
below.

Configuring the e*Insight Script for Bonus_Refused

This script defines a message that appears on the pay slip. It sets the value of the
Comments attribute to a short message indicating that the employee has not been paid
a bonus.

To configure the e*Insight Script for Update_Status

1 From the Bonus_Refused properties, Activity Performed by area, select e*Insight
Script.

2 Select the e*Insight Script tab.

3 Configure the script as shown in Figure 69.

Figure 69 Update_Status e*Insight Script Tab

Activity Properties - Design Mode: {(Bonus_Refused)

Generall Local &ttibutes &*nsight Script | Global Attributes Assignmentl

Ewvents: El o vI

Attribute Mame |T5J|:-e |Defau|t\-"alue | +| -1 =/
Comments String Mo comment

s < e=] <=
== I=&&] I
.

Inzert Abtribute |

Commentz=="7ou have not received a bonus thiz quarter. See pour manager for more information.'ﬂ

E xpression:

95 Step 2: Run and Test the e*Insight scenario

Once the schema has been set up in e*Gate you can run the scenario.

e*Insight Business Process Manager Implementation Guide 129 SeeBeyond Proprietary and Confidential

Chapter 9

Section 9.3

e*Insight Authorization Activity Implementation (elJSchema) Step 2: Run and Test the e*Insight scenario

931 Testing the Standard Business Logic

The following procedure tests the additional logic provided by the Authorization
Activity. The test is made by sending data that requires authorization and selecting
both responses of authorized and not authorized.

Authorized Processing

Use the following procedure to test the functionality of the example.

1

Note:

Note:

Start the e*Insight GUI and select the Payroll business process. Switch to monitor
mode.

Make sure that the business process has been enabled in the e*Insight GUI before
attempting to run it.

Make a final check of the e*Gate schema, to confirm all of the GUI associations.
Make sure that all of the e*Insight components, including the user-defined
components, are set to start automatically.

At the command line, type the following to start the schema. You must type the
command on a single line.

stccb.exe -rh local host -rs Payroll -1n |ocal host_cb
-un username -up password

Substitute the appropriate username and password for your installation.
Start the e*Gate Monitor, and check the status of all the components. Any

components displayed in red are not running. Any e*Insight components that are
not running should be investigated before feeding data into the system.

Navigate to the location for the input data file, Employee.~in,
(c:\eGate\client\data\Payroll) and change the extension to “.fin”.

The change of the extension to “.~in” indicates that the data file has been picked up
by the START_BP e*Way.

Switch to the e*Insight GUI and, while in monitor mode, select the most recent BPI,
and then observe the path that the data has taken.

The Authorize_Bonus Authorization Activity should appear gray. This shows that
the activity is pending.

e*Insight Business Process Manager Implementation Guide 130 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.3
e*Insight Authorization Activity Implementation (elJSchema) Step 2: Run and Test the e*Insight scenario

Figure 70 Authorize_Bonus Pending BPI Diagram

Check_Eligibity

EligibleF orBons Bonus_Eligiblity_Decisio EmployedL T 3k onths

States | Companents |
i——:

Calculate_Bonus Departmen(MotEligible Update_Status FailedfRejected
'
utharize_Bon Autharized Merae

Mot Autharized
Process_Paproll

Bonuz Refuzed

7 Right-click the Authorize_Bonus activity from the tree view, then select Properties
from the popup menu.

The Authorization Activity Properties - Monitor Mode: (Authorize_Bonus) is
displayed.

8 Select the Business Process Attributes tab.
9 Click Authorize, and then click OK to close the Activity Properties dialog box.

10 The Business Process then completes using the route shown in Figure 71.

e*Insight Business Process Manager Implementation Guide 131 SeeBeyond Proprietary and Confidential

Chapter 9
e*Insight Authorization Activity Implementation (elJSchema)

Section 9.3

Step 2: Run and Test the e*Insight scenario

Figure 71 Authorization_Quantity - Authorized

=]

Bonus_Eligibilty_D ecisiol

EligibleF orBonus

Cepartmeni otE ligible

)

EmployedLT 3 onths

': |Update_Status :'

Legend - [Session |

States | Companents |

Failed/Rejected

. Autharized

anized

Bonus_Refused

Not Authorized Processing

Undo Running
Undo Completed
Undo Failed

Timed Out
Aborted

Pending

Mever Invoked

Repeat the above procedure, but this time do not authorize the order.

Figure 72 Authorize_Bonus - Not Authorized

=—__Honus_E ligibility_Decizsio

EligibleF orBonus

DepartmeniMotE ligible

)

EmployedLT3Months

| Update_Status |

Legend - [Session #

States | Companents I

Failed/ Reje cted

Authonized

e*Insight Business Process Manager Implementation Guide 132

Undo Running
Undo Completed
Undo Failed

Timed Out
Aborted

Pending

Mewer Invoked

Chapter 10

e*Insight Implementation (elSchema)

This chapter discusses the steps involved to create an e*Insight Business Process
Manager implementation based on eISchema (Classic).

The case study in this chapter was designed primarily to illustrate the functionality of
e*Insight. In addition to showing a working example of a business process
implementation, the following e*Insight features are demonstrated:

= Attribute value correction and business process restart
= Undoing a partially completed business process
This case study is extended to include authorization and user activities, and local,

dynamic, and remote sub-processes.

Important: The implementation contains instruction for using both Java and Monk for the
Collaboration Rules scripts. You can use either the monk or java CRS for any BOB
or e*Way, but do not configure both for the same module.

101 Overview

The major tasks in the implementation are shown in Table 23.
Table 23 Overview of implementation tasks

Task Section
1 | Create the business process (BP) in the “Create the ProcessOrder BP in e*Insight”
e*Insight GUI on page 137
2 | Use the e*Insight GUI to configure the e*Gate | “Configure the Integration Schema” on
schema that supports e*Insight page 140
3 | Configure the e*Insight Engine “Configure the e*Insight Engine” on
page 148
4 | Add and configure the user-defined e*Gate “Configure User-defined e*Gate
components Components” on page 148
5 | Run and test the scenario “Run and Test the e*Insight scenario” on
page 162

The chapter begins with a description of the scenario and then shows how to set it up.

e*Insight Business Process Manager Implementation Guide 133 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.1
e*Insight Implementation (elSchema) Overview

10.1.1 Case Study: Order Processing

The case study discussed in this chapter illustrates a simplified implementation of
order processing. In this case, e*Insight receives an incoming order as a delimited text
file. Once e*Insight has received the order an inventory check is made to see if the items
ordered are in stock, if they are the order is shipped. An order status report is sent to
the customer indicating whether or not the order was shipped.

Figure 74 shows the components involved in the business process implementation. The
diagram is then separated into two sections and there is a description of how the data
flows between these components.

Figure 73 e*Insight Data Flow Diagram

External
System

START_BP
e*Way
START_BP

@ eX_to_eBPM

BOB
eX_Check_Inv

eX_Check_Inv [

(@ eX_Check_Eligibility_Do

|
(3 eX_to_eBPM | (@) ex_Check_Eligibity_Do
I @ eX_Calculate_Bonus_Do eX_eBPM
v | v @ eX_Process_Payroll_Do Engine
————— H eX_from_eBPM ::
[*nei
JMS Server DO e*Insight
/ e eX_to_eBPM »| Database
A A

BOB
eX_Out_of Inv

A
A

I
I
I
I .
ST A | (eInsight)
(® eX_to_eBPM : GUI 7
eX_Send_Status : . i l l
lculat Updat
e*Way I [an)l:ste_J [Spia?ues_J

@ eX_Process_Payroll_Do]
-+ — — — — — — — — — —
eX_Send_Status)
@) eX_to_eBPM

Process_
®} L)

External
System

e*Insight Business Process Manager Implementation Guide 134 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.1
e*Insight Implementation (elSchema) Overview

Figure 74 e*Insight Data Flow Diagram (Part 1)

External
System

—
START BP UK

GUI

e*Way @
START BP (@ exX_to_eBPM ‘

Shlp Ord J Out_of_| Inv

@ eX_Check_Inv_Do
————————— 1 N J
A

BOB
eX_Check_Inv

eX_Check_Inv [~

(3) eX_to_eBPM :
| eX_eBPM v
v | ¥ @ eX_Check_Inv_Do Engine
T ————— —| eX_from_eBPM ::
JMS Server ST e*Insight
_ gg > eX_to_eBPM o RIS

@ The user-defined START_BP e*Way picks up the text file containing the order
information from a shared location on the network, uses the order information
to create the e*Insight Event that causes the e*Insight engine to start a business
process instance, and publishes it using the eX_to_eBPM Event Type to the
eX_eBPM IQ. The e*Insight engine retrieves the Event from the IQ and uses the
information it contains to start the BPI.

@ The e*Insight engine publishes a “Do” Event (eX_Check_Inv_Do) for first
activity in the business process (Check_Inv). eX_Check_Inv BOB, the e*Gate
component that corresponds to this activity in the business process, retrieves
this Event from the eX_eBPM 1Q and uses the information it contains to check
the availability of the items ordered.

® When the Check_Inv activity is finished, the eX_Check_Inv BOB publishes a
“Done” Event using the eX_to_eBPM Event Type to the eX_eBPM IQ. The
e*Insight engine retrieves the “Done” Event from the 1Q, updates the BPI to
reflect whether the items ordered are in stock, and then moves forward to the
next activity in the business process based on the result of a decision gate. If
the items are in stock, the next activity is Ship_Ord; otherwise the next activity
is Out_of_Inv.

Let’s assume the items are in stock. The e*Insight engine processes the
e*Insight script corresponding to the Ship_Ord activity in the business process,
and then moves forward to the next activity in the business process—
Send_Status.

e*Insight Business Process Manager Implementation Guide 135 SeeBeyond Proprietary and Confidential

Chapter 10

e*Insight Implementation (elSchema)

BOB

eX_Out_of Inv

Section 10.1
Overview

Figure 75 e*Insight Data Flow Diagram (Part 2)

eX_Ship_Ord

eX_Send_$S
e*Way

eX_Send_Status

@

A

O]

e*Insight Business Process Manager Implementation Guide 136

External
System

@ eX_Out_of_Inv_Do eX_eBPM
(8) eX_Send_Status_Do Engine
o« J@oxonamoe| [T T T] B .
» JMS Server elcr eBPM e*Insight
) eXto_cBPM ®©0|, .| Database
eX_to_eBPM
I A ~—
I J
| '
ot
| einsight b
: GUI
I
tatus |
Ship_Ord Out_of_Inv
] @ eX_Send_Status_Do JI [} [J
(@) eX_to_eBPM
Send_Status
([]

Let’s assume the items are not in stock. The e*Insight engine publishes a “Do”
Event (eX_Out_of_Inv_Do) corresponding to the Out_of_Inv activity in the
business process. The eX_Out_of_Inv BOB retrieves this Event from the
eX_eBPM IQ and uses the information it contains to ship the order to the
customer.

When the Ship_Ord activity is finished, the eX_Out_of_Inv BOB publishes a
“Done” Event to the eX_eBPM IQ indicating that the order has been shipped.
The e*Insight engine retrieves this Event, updates the BPI, and then moves
forward to the next activity in the business process—Send_Status.

The e*Insight engine publishes a “Do” Event (eX_Send_Status_Do)
corresponding to the Send_Status activity in the business process. The
eX_Send_Status e*Way retrieves this Event from the eX_eBPM IQ and uses the
information it contains to send a order status report to the customer.

The eX_Send_Status e*Way publishes two Events: one containing the status
report to be sent to the customer to the external system responsible for sending
out the report, and also the “Done” Event to the eX_eBPM IQ. The e*Insight
engine retrieves the “Done” Event from the eX_eBPM IQ and uses the
information it contains to update the BPI to indicate that the final activity in the
business process has completed successfully.

SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.2
e*Insight Implementation (elSchema) Create the ProcessOrder BP in e*Insight

102 Create the ProcessOrder BP in e*Insight

The following is a summary of the procedure for creating a BP in the e*Insight GUL
1 Create a Business Process named ProcessOrder.

1 Add the activities.

2 Add the decision gates.

3 Make the connections between the activities and gates.
4 Add all the global attributes.

5 Assign global attributes to activities.

6 Add the logic to the decision gates.

7 Configure the properties for the activities.

For more information on creating this business process, see the e*Insight Business Process
Manager User’s Guide.

Use the diagram shown in Figure 76 and the following tables to create the BP in
e*Insight.

Important: Mark the check box for Manual Restart on the General tab of the Properties dialog
box for each activity.

Figure 76 ProcessOrder Business Process Model

Check_Inv

nStock Dt U Oitotack

|: Ship_Ord Out_of_Inv :l

e*Insight Business Process Manager Implementation Guide 137 SeeBeyond Proprietary and Confidential

Chapter 10

e*Insight Implementation (elSchema)

Section 10.2

Create the ProcessOrder BP in e*Insight

Table 24 BP Global Attributes

Attribute Type Data Direction
Address_Street String Input
Address_City String Input
Address_State String Input
Address_Zip String Input
Cust_Name String Input
Cust_email String Input
Item_Description String Input
Item_Number String Input
Order_Quantity Number Input
Order_Status String Internal
In_Stock Boolean Internal
Table 25 Activity Attributes
Activity Attribute(s) Input/Output
Check_Inv Item_Number Input/Output
Order_Quantity Input
In_Stock Output
Order_Status Output
Ship_Ord Address_State Input
Order_Status Output
Out_of_Inv Item_Number Input
Item_Description Input
Order_Quantity Input
Order_Status Output
Send_Status Cust_email Input
Order_Status Input
Address_Street Input
Address_City Input
Address_State Input
Address_Zip Input
Cust_Name Input
Item_Description Input
Item_Number Input
Order_Quantity Input

e*Insight Business Process Manager Implementation Guide 138

SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.2
e*Insight Implementation (elSchema) Create the ProcessOrder BP in e*Insight

Table 26 Decision Gates

Feeding Activity Expression

Check_Inv In_Stock==true

1021 Creating the processes performing the Activities

The activities in our scenario can either be performed by e*Gate or an e*Insight Script.
Three of the activities (Check_Inv, Out_of_Inv, and Send_Status) use e*Gate. This is
described in “Configure the Integration Schema” on page 140.

The Ship_Ord activity is performed by an e*Insight Script. This is described below.

Configuring the e*Insight Script for Ship_Ord

This script simulates the activity of sending out an item that is in stock. It sets the value
of the Order_Status attribute to a short message indicating that the order has been sent
from either California or Oregon depending on the customer’s zip code.

To configure the e*Insight Script for Ship_Ord
1 From the Ship_Ord properties, Activity Performed by area, select e*Insight Script.
2 Select the e*Insight Script tab.

3 Configure the script as shown in Figure 77.

Figure 77 Ship_Order e*Insight Script Tab

Activity Properties - Design Mode: [Ship_0Ord]

General I Local &tributes &nsight Seript I Global Attibutes Assignrment I

Events: [rumuu— - |
Attribute Mame | Type | D efault W alus I + /
Address_State Stiing .
Order_Status Stiing no >l ege=ls=
==|l=]8&&| I
N
Insert Attribute |
E xpression:
if (Addiess_State == "Ca"] { =1

Order_Status = "v'our order has been shipped from California'

else {
Order_Status = "vour order haz been shipped from Oregon®

e*Insight Business Process Manager Implementation Guide 139 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.3
e*Insight Implementation (elSchema) Configure the Integration Schema

103 Configure the Integration Schema

All the activities in this example, except Ship_Order are carried out using e*Gate
components. You must first create a Schema (a copy of elSchema) with the basic
components required for e*Insight. You then configure these components for your
environment and create additional components for the activities.

To create a copy of elJSchema
1 From the e*Insight GUI File menu, select New e*Gate Schema.
2 Enter or select a Registry Host on which to create the schema.
3 Enter a Username and Password that is valid on the Registry Host.
4 From the Based on list, select eISchema (Classic).
5 In the Name box, enter ProcessOrder.
6 Click OK.

After creating the business process, you must configure the e*Gate Registry schema
that supports the e*Insight system.

e*Insight allows you to specify the type of component (e*Way or BOB) associated with
a particular activity and where it runs.

In the ProcessOrder example, all the components are BOBs except one: Send_Status.
The Send_Status activity must be associated with an e*Way because it interfaces with
an external component.

Integration Schema Activity Components Summary

The information in Table 27 shows a summary of the e*Gate components that support
this example.

Table 27 Integration Schema Activity Components

Name Type Participating Configuration Instructions
Host

eX_Check_Inv BOB localhost “Creating the
eX_Check_Inv BOB” on
page 141

eX_Out_of_Inv BOB localhost “Creating the
eX_Out_of_Inv BOB”
on page 144

eX_Send_Status e*Way localhost “Send_Status e*Way
Configuration” on
page 147

For information on how to use the e*Insight GUI to configure the e*Gate Registry see
the e*Insight Business Process Manger User’s Guide.

e*Insight Business Process Manager Implementation Guide 140 SeeBeyond Proprietary and Confidential

Chapter 10

Section 10.3

e*Insight Implementation (elSchema) Configure the Integration Schema

Note: This example runs all software components on a single machine (named

“localhost”). In an actual implementation, these components could be distributed
throughout a network, depending on the requirements of the system.

Creating the eX_Check_Inv BOB

The eX_Check_Inv Collaboration runs the Check_Inv CRS. This checks to see what type
of Event it has received, either a “Do” Event or an “Undo” Event. If it is an “Undo”
Event the Order_Status attribute is populated with the string “The Check_Inv activity
has been reversed” simulating the case of executing a compensating transaction for the
activity.

If the Event is a “Do” Event, then the value for the Item_Number is checked. This
simulates the checking of inventory by an inventory control system. Depending on
what this number is the following happens.

99999 indicates that the Event is a failure. This simulates the case of an Event that
contains bad data. The CRS sends a “FAILURE” Event back to the e*Insight engine
indicating the activity could not be completed correctly. The e*Insight engine then
implements the failure handling that is defined for this business process. In our
example, the operator has the opportunity to make changes to the data an restart the
business process.

33333 indicates that the item in question is in stock. The CRS sets the value of the
In_Stock attribute to “yes” and sends a “SUCCESS” Event back to e*Insight, indicating
that the activity has completed successfully.

Any other Item_Number is treated as being out of stock and the CRS set the value of
In_Stock to “no” and sends “SUCCESS”.

e*Insight Business Process Manager Implementation Guide 141 SeeBeyond Proprietary and Confidential

551?,'2@'13 (I]mplementation (elSchema) Configure the Integrat?glﬁtis(z?lggwg
To configure the Check_Inv activity using Monk
1 In the e*Insight GUI, check that the Default Editor is Monk.
2 Open the Check_Inv activity properties.
3 On the General tab, select the BOB e*Gate module.
4 Click New.
The Define Collaboration dialog appears.
Click OK.

6 Create eX_Check_Inv.tsc. The source and destination Event Type Definitions are
eX_Standard_Event.

]

Figure 78, on the following page, shows the eX_Check_Inv.tsc CRS used in this
example.

Figure 78 eX_Check_Inv.tsc CRS (Monk)

FUNCTION {ex-copy-no-attribute “inputiex_Event “outputiex_Event)
IF {string="7 {(get {(eX-get-BP_EVENT "input¥eX_Event "TYPE"}} "UNDO_ACTIVITY")

COPY "SUCCESS" I”outputXeX_Event.DS.eX_Event.CT.DSN.DS.BP_EVENT.HS.STRTUS.Value
FUNCTION ter-zet-attribute "outputXex_Event "Order_Status" "The Check_Inv activity has been reversed," "STRING")
ﬂ {ztring-rnumber {(get {(eX-get-attribute "inputZeX_Event "Item_Mumber")i}

(39999}
COPY "FAILURE" I”output%eX_Euent.DS‘eX_Euent‘ET‘DSN‘DS‘BP_EVENT‘HS‘STRTUS‘Value

FUMCTION ter-zet-attribute “outputieX_Event "In_Stock" "true" "BOOLEAN"
FUNCTION (er-set-attribute “outputieX_Event "Order_Status" "Checking availability" "STRIMG"?

CRSE 1] (33333

COPY "SUCCESS” |”outputXeX_Event.DS.eX_Event.CT.DSH.DS.BP_EVENT.HS.STRTUS.Value
FUNCTION {ex-set-attribute “outputieX_Event "In_Stock"” "true" "BOOLEAM"}
FUNCTION {ex-get-attribute “outputieX_Event "Order_Status" "Checking availability" "STRIMG"?

COFY "SUCCESS" “outputiex_Event,DS, eX_Event,CT,D5N,D5,BP_EVENT A5, STATUS, Value
FUMCTION {ex-zet-attribute “outputZeX_Event "In_Stock" "falze" "BOOLEAN"}
FUMCTION {ex-zet-attribute "outputieX_Event "Order_Status" "Checking availability" "STRING"}

7 Validate and save the CRS.
8 Close the editor.
9 In the Check_Inv activity properties, click Configure e*Gate Schema.
You may be required to log into e*Gate.
10 Click OK, to close the information dialog.
11 Close the Check_Inv Activity properties.

e*Insight Business Process Manager Implementation Guide 142 SeeBeyond Proprietary and Confidential

& Inkight Implementation (elSchema) Configure the Integration Schoma
To configure the Check_Inv activity using Java
1 In the e*Insight GUI, check that the Default Editor is Java.
2 Open the Check_Inv activity properties.
3 On the General tab, select the BOB e*Gate module.
4 Click New.
The Define Collaboration dialog appears.

(9}

Select the Define Mapping tab.

6 Configure the instances as shown in Figure 79.

Figure 79 Define Mapping for eX_Check_Inv

e _to_=BPM el_StandardBEvent . xsc
ex_Check_lnw el_StandardEvent . xsc

7 Click OK.
8 Create eX_Check Inv.xsc.

Figure 80, on the following page, shows the eX_Check_Inv.xsc CRS used in this
example.

e*Insight Business Process Manager Implementation Guide 143 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.3
e*Insight Implementation (elSchema) Configure the Integration Schema

Figure 80 eX_Check_Inv.xsc CRS (Java)

<& Collaboration Rules Editor - eX_Check_Inv {Sandbox} - O] =|

File Edit Yiew Tools Help

&

"= Snurce Events "= Diestination Events

a | =115 ex_Check_Inv [eX_StandardEvent] e¥_to_eBPM [eX_StandardEvent] 12 E;I
BP_EVENT [*2- '—l

reset =%
> Avvailahle =
i+ blockl =S method| @ war| [Forl il iff 1+ rulel E“, switchl —+ case| O while| 23 o] &= return| ! throwl ()] tryl ! catchl

Business Rules

=-™18 &%_Check_Inwv : public class eX_Check_Inv extends eX_cCheck_InvBase implements JCollaboratorExt
ex_Check_Inv : public eX_Check_Inv)

executeBusinessRules : public boolean executeBusinessRules() throws Exception

- @ retBoolean : boolean retBoolean = true;

~{} Copy from root : getex_to_eBPM(),setBP_EVEMT{getex_Check_Inw().getBP_EVENT());

if ¢ if ("UMDO_ACTIVITY" equals(getes_Check_Inw().getBP_EVENT(),getT¥PE()) Name: E

Description: Ie_><:_

H-{} then: Implements:lﬁ
=1} else : else Extend IT
by IF ¢ IF ("99999" eauals(getex_Check_Inv().getBP_EVENT().getATTRIBUTE _VALUE("Ttem_Mumber™)}) Heends:jes.

= . Access
El{} t{h}en . . . Modifiers: ™ P-
: rule 1 geter_to_eBPM).getBP_EVEMT().setSTATUS("FAILLRE");
1} rule : getex_to_eBPM{).getBP_EYEMT().setATTRIBUTE!"In_Stock”,"BOOLEAN", "true");
1} rule: getex_to_eBPM{).getBP_EYEMT().set ATTRIBUTE!"Order _Status","STRING","Checking Availability™);
B4} else : else
B iF 5 0F ("33333" . equals(getex_Check_Inw().getBP_EYEMT().getATTRIBUTE YALUE("Ttem_Mumber™))
-1} then:
}orule : getex_to_eEBPM().getEP_EVEMT().sebSTATUS{"SUCCESS");
}orule : getex_to_eEBPM().getEP_EVEMT().setATTRIGUTE("IN_Stock”, "BOOLEAN", "true™);
1} rule: getex_to_eBPM{).getBP_EYEMT().setATTRIBUTE"Order _Status","STRING","Checking Availability™);
-1} else : else
}orule : getex_to_eEBPM().getEP_EVEMT().sebSTATUS{"SUCCESS");
}orule ; getex_to_eEBPM().getEP_EVEMT().setATTRIGUTE("IN_Stock!,"BOOLEAN", "False™);
L { }orule : getex_to_eBPMO).getBP_EYEMT().setATTRIBUTE!"Order _Status","STRING","Checking Availability™);
2= return | return retBoolean;
userInitialize : public void userInitialize)
----- =% yserTerminate | public void userTerminate()

Documentation:

-

4 | LI_»ILI

9 Compile and save the CRS.
10 Close the editor.
11 In the Check_Inv Activity properties, click Configure e*Gate Schema.
You may be required to log into e*Gate.
12 Click OK, to close the information dialog.
13 Close the Check_Inv Activity properties.

Creating the eX_Out_of_Inv BOB

The Out_of_Inv translation implements the logic associated with processing an order
for an item that is not in stock. The Item_Number is checked and a determination is
made as to whether the item can be special ordered or a message must be created
telling the customer that the item is unavailable.

In addition, this translation demonstrates how e*Insight handles “undoing” a partially
completed business process. If Item_Number 11111 is encountered, then “FAILURE” is
returned to the e*Insight engine which in turn issues “undo” Events for any activities
upstream from the failed activity. In this example there is only one, Check_Inv, and the
Check_Inv CRS handles reversing that already completed activity.

e*Insight Business Process Manager Implementation Guide 144 SeeBeyond Proprietary and Confidential

¥ Inaight Implementation (elSchema) Configure the Integration Schoma
To configure the Out_of_Inv activity using Monk
1 In the e*Insight GUI, check that the Default Editor is Monk.
2 Open the Out_of_Inv activity properties.
3 On the General tab, select the BOB e*Gate module.
4 Click New.
The Define Collaboration dialog appears.
Click OK.

6 Create eX_Out_of_Inv.tsc. The source and destination Event Type Definitions are
eX_Standard_Event.ssc.

]

Figure 81 shows the eX_Out_of_Inv CRS used in this example.

Figure 81 eX_Out_of_Inv.tsc CRS (Monk)

FUMCTION {ex-copy-no-attribute "inputiex_Event "outputiex_Event)
SWITCH fidd Casze {string->number {get {(eX-get-attribute “inputiex_Event "Item_Number':})

H] L% (111113
l "FATLURE" I “outputieX_Event,DS,eX_Event,CT,DSM,D5,BP_EVENT, AS, STATUS, Value .

CoPy "SUCCESS" “nutputieX_Event,DS, eX_Event, CT,0SH,D5,BP_EVENT, AS, STATUS, Value
FUNCTION {ev-zet-attribute “outputie¥_Event "Order_Status" "Your items are unavailahle" "STRIHG":

7 Validate and save the CRS.
8 Close the editor.
9 In the Out_of_Inv Activity properties, click Configure e*Gate Schema.
You may be required to log into e*Gate.
10 Click OK, to close the information dialog.
11 Close the Out_of_Inv Activity properties.

e*Insight Business Process Manager Implementation Guide 145 SeeBeyond Proprietary and Confidential

¥ naight Implementation (¢lSchema) Configure the Integration Seheria
To configure the Out_of_Inv activity using Java
1 In the e*Insight GUI, check that the Default Editor is Java.
2 Open the Out_of_Inv activity properties.
3 On the General tab, select the BOB e*Gate module.
4 Click New.
The Define Collaboration dialog appears.

9}

Select the Define Mapping tab.

6 Configure instances as shown in Figure 82.

@3 Collaborat

Figure 82 Define Mapping for eX_Out_of_Inv (Java)

exX_tao_esBPmM el_StandardEvent xsc
e _Cu_of_Imy el _StandardEvent . <sc

7 Click OK.
8 Create eX_Out_of_Inv.tsc.
Figure 83 shows the eX_Out_of_Inv CRS used in this example.

e*Insight Business Process Manager Implementation Guide 146 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.3
e*Insight Implementation (elSchema) Configure the Integration Schema

Figure 83 eX_Out_of_Inv.xsc CRS (Java)

Collaboration Rules Editor - eX_Out_of_Iny -0 x|
File Edit ‘iew Tools Help
®"Source Events | 1" Destination Everts

1% gi_Ou_of_Inv [eX_StandardEvent] ‘ ‘ £%_to_eBPM [ei_StandardEvent] "%

1} blu:u:kl a‘methodl] varl | I‘u:url u ifl 1} rulel E', switchl —+ casel | whilel s u:Iu:ul L= returnl

I thrawlLT} tryl I catchl
Busingess Rules

=™ e%_Out_of_Inv : public class eX_out_of Inw extends eX_Out_of InvBase implements JCollaboratarExt Clasd=
@ ex_Out_of_Inv @ public eX_Out_of_Inv() Pro
- executeBusinessRules ; public boalean executeBusinessRules) thraws Exception
----- @ retBoolean : boalean retBoolean = true; Desc

----- 1} rule ; getex_to_eBPM{).setBP_EVEMT{getel_Ou_of Ire().getBP_EVENT;
-y F 2 iF M1 equals{geter_Cu_of_Tre(),getBP_EVEMT), getATTRIBLTE _MALUE] Trern_Mumber)
-1} then : Imple
: L) rule s getel_to_eBPM().getBP_EVENT(), sekSTATIS " FAILLUIRE™);
E-1} else : else
{} rule : geted_to_eBPM().getBP_EVEMTE), sebSTATIIS("SUCCESS",;
fe{} rule ; gete_to_eBPM().getBP_EVENT(),setATTRIBUTE(" Order _Status","STRING","Your order is out of stock™;
- return : reburn retBoolean; Docur
-8 userInitialize ; public void userInitialize!)
-2 userTerminate : public void userTerminate()

9 Compile and save the CRS.
10 Close the editor.
11 In the Out_of_Inv Activity properties, click Configure e*Gate Schema.
You may be required to log into e*Gate.
12 Click OK, to close the information dialog.
13 Close the Out_of_Inv Activity properties.

Send_Status e*Way Configuration

The Send_Status Collaboration is configured using e*Gate, see “Configure the
Send_Status e*Way” on page 156. The e*Way and basic components should be created
from within the e*Insight GUL

To create the Send_Status Activity e*Way
1 In the e*Insight GUI, open the Send_Status activity properties.
2 On the General tab, select the e*Way e*Gate module.
3 Click Configure e*Gate Schema.
You may be required to log into e*Gate.

4 Click OK, to close the information dialog.

e*Insight Business Process Manager Implementation Guide 147 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.4
e*Insight Implementation (elSchema) Configure the e*Insight Engine

5 Close the Send_Status Activity properties.

104 Configure the e*Insight Engine

The e*Insight engine runs in a specially configured Java e*Way. You must make
changes to the configuration file for this e*Way to conform to the requirements of your
system. For example, you must specify the name of the e*Insight database to which the
e*Way connects.

Note: This example uses only one e*Insight engine. In an actual implementation, more
than one e*Insight engine can be configured to handle the required workload. In
such a case, you must make changes to each of the e*Insight engines.

Edit the eX_eBPM Configuration File

Most of the parameter settings in the eX_eBPM engine’s configuration file should not
be changed. Table 28 discusses the parameters that may need to be changed depending
on the implementation. Use the e*Way Editor and the information in “Configuring the
e*Insight Engine” on page 53 to make the required changes for the ProcessOrder
example.

105 Configure User-defined e*Gate Components

The user-defined components in an e*Insight implementation consist of two types: the
first type starts the business process, and second type runs as part of the business
process. The activity components are of the second type.

The ProcessOrder example uses a file e*Way to start the business process and BOBs to
run all the activities except the last. The last activity is represented by an additional file
e*Way.

Configuration Order for the User-defined Components

Table 28 shows the configuration order for the user-defined components.

Table 28 Configuration Order for User-defined Components

Task Section
1 | Add and configure the START_BP e*Way “Configure the START_BP e*Way” on
page 149
2 | Configure the Send_Status e*Way “Configure the Send_Status e*Way” on
page 156

Important: All the integration schema associations are displayed in table format at the end of
this section. The sections dealing with e*Way configuration include tables detailing

e*Insight Business Process Manager Implementation Guide 148 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
e*Insight Implementation (elSchema) Configure User-defined e*Gate Components

the non-default e*Way parameter settings. The sections dealing with the Monk and
Java Collaboration Rules Scripts show screen shots of these scripts as they appear in
the e*Gate Collaboration Editor.

1051 Configure the START_BP e*Way

The e*Way that sends the Event that starts the business process, named START_BP in
this example, must convert the incoming data into e*Insight Event format, as well as
send the appropriate acknowledgment to the e*Insight engine to create the Business
Process Instance (BPI).

The START_BP e*Way is completely user defined and must be added to the eISchema
in the e*Gate Enterprise Manager. In an actual implementation, the choice of e*Way (or
BOB) would depend on the requirements of the situation. For example, if the data were
coming from an SAP system, you might select an SAP ALE e*Way; or if the data were
already in the e*Gate system, you could use a BOB to start the BPI. In the present case, a
text file on the local system provides the input data, therefore this example uses a file
e*Way to send the “Start” Event to the e*Insight engine.

Table 29 shows the steps to configure the START_BP e*Way.
Table 29 Configuration steps for the START_BP e*Way

Section
Step
Monk Java
Add the e*Way and | “Step 1: Create the “Step 1: Create the
create the e*Way START_BP e*Way using START_BP e*Way using
configuration file Monk” on page 149 Java” on page 152
Create the Input ETD | “Step 2: Create the Input “Step 2: Create the Input
ETD using Monk” on ETD using Java” on
page 150 page 152
Create the START_BP | “Step 3: Create the “Step 3: Create the
Collaboration Rules | START_BP CRS using START_BP Collaboration
script (CRS) Monk” on page 150 using Java” on page 153
Configure the “Step 4: Configure the “Step 4: Configure the
Collaboration inthe | START_BP Collaborationin | Collaboration in the GUI
Gul the GUI using Monk” on using Java” on page 155
page 151

Step 1: Create the START_BP e*Way using Monk

The e*Way for the ProcessOrder example is a simple file e*Way (executable:
stcewfile.exe) that polls a directory (<eGate>\client\data\ProcessOrder) for any file
with the extension “.fin” and moves it into the e*Insight system.

e*Insight Business Process Manager Implementation Guide 149 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
e*Insight Implementation (elSchema) Configure User-defined e*Gate Components

Use the Enterprise Manager and the following table to add the START_BP e*Way and
create its configuration file.

Table 30 Start e*Way Parameters

Screen Parameter Setting
General Settings (Al (Default)
Outbound (send) settings (All) (Default)
Poller (inbound) settings PollDirectory <eGate>\client\data\ProcessOrder
(All others) (Default)
Performance Testing (Al (Default)

Step 2: Create the Input ETD using Monk

The input ETD is based on the format of the input data. The ProcessOrder example uses
a delimited text file (InStock.~in) that contains the data needed to process the order.

The input data file used in this example is shown in Figure 84. Place this data file at the
directory location <eGate>\client\data\ProcessOrder.

Figure 84 Input Text File (InStock.~in)

File Edit Format Help
|John smithA404 E. Huntington Dr.AMonroviaACAarSl0lefismith@seebeyond, comA333334MiTTennium Pet RockALA

Using the ETD Editor and the input data as a guide, create an ETD like the one shown
in Figure 85. For more information on using the ETD Editor see the ETD Editor’s online
help.

Figure 85 Input ETD: ProcessOrderStart.ssc (Monk)

G e [

=l | nddress_sweeqm

L El. nddress_citgl[:[
A=l | Hddress_StateI[i‘

e @l. nddress_21p|m
=) B

A= | Item_Number|m

L El. Item_nescmptlnn“:[
= El. Quantitgl[il

Step 3: Create the START_BP CRS using Monk

The Collaboration that sends the Event that starts the BPI must do two things:
= Put the data into e*Insight ETD (eX_Standard_Event.ssc) format.

= Populate the Event with the information the e*Insight engine needs to start a BPL.

e*Insight Business Process Manager Implementation Guide 150 SeeBeyond Proprietary and Confidential

Chapter 10

e*Insight Implementation (elSchema)

Section 10.5
Configure User-defined e*Gate Components

In addition to these two tasks, the START_BP Collaboration also provides the
recommended location for setting any global attributes that are required in your
business process.

Figure 86, shows the START_BP CRS used in the ProcessOrder example:

Figure 86 START_BP CRS (Monk)

COPY "Process0rder” “output¥er_Event,DS,ex_Event,CT, 05N, D5,BP_EVENT.AS, NAME, Value

COryY "START_EBFP" “outputieX_Event,DS,eX_Event,CT, 05N, D5, BP_EVENT,AS, TYFPE.Walue
UNIQUE ID “outputiex_Event, D5, e¥_Event,CT,D5M,05,EP_EVENT,AS, 10, Value
FUNCTION {eX-get-attribute "outputiex_Event "Address_Street” “inputiProcesslrderStart,Address_Street "STRING"}
FUMCTION {ex-szet-attribute “outputiex_Event "Address_City" "inputiProcesslrderStart,Address_City "STRING")
FUMCTION {ex-zet-attribute “outputieX_Event "Address_State” "inputiProcesslrderStart,Address_State "STRING"!
FUMCTION (ex-zet-attribute “outputiex_Event "Address_Zip" "inputiProcesslrderStart,Address_Zip "STRING")
FUMCTION {ex-zet-attribute “outputiex_Event "Cust_Mame" “inputiProcessOrderStart.Mame "STRING"!
FUHCTION {ed-zet-attribute "outputieX_Event "Cust_email" "inputiProcessOrderStart,Email "STRING":
FUHCTION {ed-zet-attribute "outputiex_Event "Item_Description" “inputiProcessOrderStart,Item_Description "STRING":
FUHCTION {e¥-zet-attribute "outputieX_Event "Item_Humber" “inputiProcess0OrderStart,Item_Mumber "STRING"}
FUHCTION te¥-zet-attribute "outputieX_Event "Order_Huantity" “inputiProcessOrderStart,fluantity "HUMBER"}

Step 4: Configure the START_BP Collaboration in the GUI using Monk

In addition to creating the configuration file for the e*Way and the CRS used by the
Collaboration, you must also configure the START_BP e*Way’s Collaboration in the
Enterprise Manager GUL

To configure the Collaboration

1 Create a Collaboration Rule, START_BP, that uses the Monk service and the
START_BP CRS created in step 2, subscribes to the eX_External_Evt Event Type,
and publishes to the eX_to_eBPM Event Type.

2 Create a Collaboration for the START_BP e*Way that uses the START_BP
Collaboration Rule, subscribes to the eX_External_Evt Event Type from
<EXTERNAL>, and publishes the eX_to_eBPM Event Type to the eX_eBPM IQ.

e*Insight Business Process Manager Implementation Guide 151

SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
e*Insight Implementation (elSchema) Configure User-defined e*Gate Components

Step 1: Create the START_BP e*Way using Java

The e*Way for the ProcessOrder example is a simple file e*Way (executable:
stcewfile.exe) that polls a directory (<eGate>\client\data\ProcessOrder) for any file
with the extension “.fin” and moves it into the e*Insight system.

Use the Enterprise Manager and the following table to add the START_BP e*Way and
create its configuration file.

Table 31 Start e*Way Parameters

Screen Parameter Setting
General Settings (Al (Default)
Outbound (send) settings (All) (Default)
Poller (inbound) settings PollDirectory <eGate>\client\data\ProcessOrder
(All others) (Default)
Performance Testing (Al (Default)

Step 2: Create the Input ETD using Java

The input ETD is based on the format of the input data. The ProcessOrder example uses
a delimited text file (InStock.fin) that contains the data needed to process the order.

The input data file used in this example is shown in Figure 87. Place this data file at the
directory location c:\eGate\client\data\ProcessOrder.

Figure 87 Input Text File (InStock.fin)

File Edit Format Help
|John smithA404 E. Huntington Dr.AMonroviaACAarSl0lefismith@seebeyond, comA333334MiTTennium Pet RockALA

Using the ETD Editor and the input data as a guide, create an ETD like the one shown
in Figure 88. Set the global delimiter to a A character.For more information on using the
ETD Editor see the ETD Editor’s online help.

e*Insight Business Process Manager Implementation Guide 152 SeeBeyond Proprietary and Confidential

Chapter 10

Section 10.5
e*Insight Implementation (elSchema) Configure User-defined e*Gate Components

Figure 88 Input ETD: ProcessOrderStart.xsc (Java)

Tz ETD Editor: ProcessOrderStart.xsc {(Sandbox - Modified) - |E||Z|

File Edit Help

DS E P |
—Event Type————— —Event Typa Definition

Properties - ProcessOrderStart
E1-"8 ProcessOrderStart

[Name EName) :rsoccessOrderStart
Address_Street cg:nement

Address_City -

Address, State packagename elnsight

Address Zip
Email
[tern_MNurber
[tem_Description
- F& Quantity

rInternal Templates

r External Templates

| [8/10/2001 (1005 AM Y

Step 3: Create the START_BP Collaboration using Java

The Collaboration that sends the Event that starts the BPI must do two things:
= Put the data into e*Insight ETD (el_Standard_Event.xsc) format.
= Populate the Event with the information the e*Insight engine needs to start a BPL.

In addition to these two tasks, the START_BP Collaboration also provides the

recommended location for setting any global attributes that are required in your
business process.

1 Create a Collaboration Rule, START_BP, that uses the Java service.
2 Configure the Collaboration Mapping tab, as shown in Figure 89.

e*Insight Business Process Manager Implementation Guide 153 SeeBeyond Proprietary and Confidential

Chapter 10
e*Insight Implementation (elSchema)

Section 10.5
Configure User-defined e*Gate Components

Figure 89 Start_BP Properties, Collaboration Mapping Tab (Java)

@ Collaboration Rules - Start_BP Properties

Generall SubecHptEnE I Fublications Collaboration Mapping I

x|

Instance MName ETC Mode | Trigger | Manual Publish
ex_to_eBPM el_StandardEvent xsc Find .. .| Out s, I_
ProcessOrder... |ProcessOrderStart.xsc Find .. JIn I+ s,

Add Instance I Remove Instance I

Cancel | Apply | Helg |

3 Click Apply, and click the General Tab.

4 Click New to create a new CRS, as show in Figure 90.

Figure 90 START_BP CRS (Java)

=% Collaboration Rules Editor - StartBP o =] S
File Edit Wiew Tools Help
dh
"2 Source Events "2 Destination Events
=" e¥_to_eBPM [eX_StandardEvent] 5+
el address_Street
el address_City
il address_State
el address_Zip
hd - Froail
{F Black] =% method| & war| 3 For| Ju iffl L+ rulel E, switchl —+ case| 8] whis] [do| ®= return| ! throwl () trvl
I catch

Business Rules

[=-™15 StartEP : public class StartEP extends StartBPBase implements ICollaboratorExt

----- @ wvatiable 1 private ink ID_count = 1;

[StartBP : public StartBR()

executeBusinessRules : public boolean executeBusinessRules() throws Exception

Desci
retBoolean @ boolean retBoolean = true;
SetProcesskame : geke¥_to_eBPM().getBP_EVENT().setMAME("ProcessOrder");
SkartBP : geteX_to_eBPM().getBP_EVENT().setTYPE("START_BP"Y; Imple
SetID @ geteX_to_eBPM().getBP_EVEMT().setID(""+ID_count++);
Customerblame © geteX_to_eBPM{). getBP_EVENTL). setATTRIBUTE("Cust_Mame","STRING", getProcessOrderstart (). getMamel); Er
Address ; geter_to_eBPM{), getBP_EVENT(), setATTRIEBUTE " Address_Street","STRING", getProcessOrderStart(). getdddress _Street{));
Address @ geter_to_eBPM{).getBP_EVENT(). setATTRIBUTE("Address_City","STRIMG", getProcessOrderStart(), getaddress_Citv()); Mo
Address ; geter_to_eBPM{).getBP_EVENT(), setATTRIBUTE " Address_State","STRING", getProcessOrderStart(). getAddress_Stake()); Docun

Address @ geteX_to_eBPM{).getBP_EVENT(). setATTRIBUTE Address_Zip","STRIMG",getProcessCrderStart(). getaddress_Zip());

Email : geter_to_eBPM().getBP_EWENT(). setATTRIBUTE(Cust_email”,"3TRING", getProcessOrder Start(), getEmail());

ItemMurmber : gete¥_to_eBPM{), getBP_EVEMT().setATTRIBUTE("Itern_Mumber","STRING", getProcessOrderStark().getIkem_Number{));
ItemDescription : geteX_to_eBPM{).getBP_EVEMT(). setATTRIBUTE(" Ikem_Description”,"3TRING", getProcessCOrderstart). getItern_Descripkioni));
- Cuantity : geteX_to_eBPM().getBP_EVENT().setATTRIBUTE("Order _Quantity","NUMBER", getProcessOrderstart(), getQuantity());
&= return ; return retBoalean;

@ userInitialize @ public void userInitializel)

userTerminate ; public void userTerminate!)

e*Insight Business Process Manager Implementation Guide 154 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
e*Insight Implementation (elSchema) Configure User-defined e*Gate Components
Step 4: Configure the Collaboration in the GUI using Java

In addition to creating the configuration file for the e*Way and the CRS used by the
Collaboration, you must also configure the START_BP e*Way’s Collaboration in the
Enterprise Manager GUL

1 Create a Collaboration for the START_BP e*Way configured as shown in Figure 91.

Figure 91 START_BP Collaboration

&¥_to_sBPM mfm eX_to_eBPM S eX_sBPM

e*Insight Business Process Manager Implementation Guide 155 SeeBeyond Proprietary and Confidential

Chapter 10
e*Insight Implementation (elSchema)

105.2 Configure the Send_Status e*Way

Section 10.5
Configure User-defined e*Gate Components

The last component that must be configured in the ProcessOrder example is the

Send_Status e*Way.

This e*Way must accomplish two tasks:

= Create a file containing the text of e-mail message that can be sent to an order-status

message via e-mail (simulated; no actual mail is sent)

= Return “SUCCESS” to the e*Insight engine

This e*Way simulates sending an e-mail order status message by writing the customer’s

e-mail address and a short status message to a text file. When this is successful, an
Event is returned to the e*Insight engine with the status node set to “SUCCESS”.

Table 32 shows the steps to configure the Send_Status e*Way.

Table 32 Send_Status e*Way configuration steps

Step

Section

Monk

Java

1 | Find the executable
and create the e*Way
configuration file

“Step 1: Configure the
eX_Send_Status e*Way
using Monk” on page 156

“Step 1: Configure the
e*Way using Java” on
page 159

2 | Create the Output ETD

“Step 2: Create the Output
ETD using Monk” on
page 157

“Step 2: Create the Output
ETD: SendStatus.xsc using
Java” on page 159

3 | Create the
eX_Send_Status.tsc
CRS

“Step 3: Create the
eX_Send_Status.tsc CRS
using Monk” on page 157

“Step 3: Create the
Send_Status Collaboration
Rule using Java” on

page 160

4 | Configure the
Collaboration in the
GUI

“Step 4: Configure the
Collaboration using Monk”
on page 158

“Step 4: Configure the
Collaboration using Java”
on page 161

Step 1: Configure the eX_Send_Status e*Way using Monk

First find the executable, then create the configuration file.

e*Insight Business Process Manager Implementation Guide 156

The eX_Send_Status e*Way is a simple file e*Way (stcewfile.exe) that writes a text file
(ProcessOrder_output%d.dat) to the directory <egate>\client\data\ProcessOrder.
The file created contains the e-mail address of the person who placed the order, along
with the status of the order. Use the following table to set the e*Way parameters in the
configuration file:

SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
e*Insight Implementation (elSchema) Configure User-defined e*Gate Components

Table 33 Send_Status e*Way Parameters

Screen Parameter Setting

General Settings Allowlncoming No
AllowOutgoing Yes
PerformanceTesting No (Default)

Outbound (send) settings OutputDirectory <eGate>\client\data\ProcessOrder
OutputFileName ProcessOrder_output%d.dat
(All others) (Default)

Poller (inbound) settings (All) (Default)

Performance Testing (Al (Default)

Step 2: Create the Output ETD using Monk
Use the e*Gate ETD Editor to create a single node ETD like that shown in Figure 92.

Figure 92 root.ssc ETD

Step 3: Create the eX_Send_Status.tsc CRS using Monk
This CRS must accomplish three things:

= put the output data into a readable format that can be written to a file

= use the e*Insight helper function eX-set-BP_EVENT to set the BP status node to
“SUCCESS”

= send the “Done” Event back to the e*Insight engine using the Monk function iq-put

The CRS shown in Figure 93 accomplishes these tasks. The source ETD is
eX_Standard_Event.ssc and the destination ETD is root.ssc.

Figure 93 eX_Send_Status.tsc CRS (Monk)

COPY |. {ztring—append {get {eX-get-attribute “inputXex_Event "Cust_email"}} """ {get
{

¥ IF eX—set-BP_EVENT “inputisX_Euent "STATUS" "SUCCESS™ M

FUMCTION {ig-put "eX_to_eBPM" {get “inputXex_Event) {lis=t "ex_Send_Status") 0 0 0

DISPLAY {"Failed to set SUCCESS™) _

{get {eX¥-get-attribute “inputXex_Event "Order_Status"1)) § “outputiroot

e*Insight Business Process Manager Implementation Guide 157 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
e*Insight Implementation (elSchema) Configure User-defined e*Gate Components

Step 4: Configure the Collaboration using Monk

The eX_Send_Status e*Way in ProcessOrder example does not receive data back from
and external system. Consequently, it requires only a single Collaboration. Use the
following procedure to edit the two default Collaborations created by the e*Insight GUI
during the configuration of the integration schema.

To configure the collaboration

Highlight the eX_Send_Status e*Way.

Delete the two Collaborations eX_to_Send_Status and eX_from_Send_Status.
Add a Collaboration named eX_Send_Status.

Highlight the Collaboration Rules folder.

Delete the two Collaboration Rules eX_to_Send_Status and eX_from_Send_Status.
Add a Collaboration Rule named eX_Send_Status.

Edit the Collaboration Rule.

—

In the Collaboration Rules Properties dialog box, select the Monk service.

© S N O G s~ W BN

Find the CRS eX_Send_Status.tsc and associate it with the Collaboration Rule.

10 On the Subscriptions tab, move the eX_Send_Status_Do and
eX_Send_Status_Undo Event Types to the Selected Input Event Types box.

11 On the Publications tab, move the eX_External_Evt and the eX_to_eBPM Event
Types to the Selected Output Event Types box.

Verify that the eX_External_Evt Event Type is marked as the default.
12 Click OK to close the Collaboration Rules Properties dialog box.

13 Highlight the eX_Send_Status e*Way and edit the eX_Send_Status Collaboration
you associated with it in step 3.

14 In the Collaboration Properties dialog box, select the eX_Send_Status
Collaboration Rule.

15 Under Subscriptions add the eX_Send_Status_Do and eX_Send_Status_Undo
Event Types from the eX_from_eBPM source.

16 Under Publications add the Event Type eX_External_Evt with destination
<EXTERNAL> and Event Type eX_to_eBPM with destination eX_eBPM IQ.

e*Insight Business Process Manager Implementation Guide 158 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
e*Insight Implementation (elSchema) Configure User-defined e*Gate Components

Step 1: Configure the e*Way using Java

First find the executable, then create the configuration file.

The eX_Send_Status e*Way is a simple file e*Way (stcewfile.exe) that writes a text file
(ProcessOrder_output?%d.dat) to the directory <egate>\client\data\ProcessOrder.
The file created contains the e-mail address of the person who placed the order, along
with the status of the order. Use the following table to set the e*Way parameters in the
configuration file:

Table 34 Send_Status e*Way Parameters

Screen Parameter Setting

General Settings Allowlncoming No
AllowOutgoing Yes
PerformanceTesting No (Default)

Outbound (send) settings | OutputDirectory <eGate>\client\data\ProcessOrder
OutputFileName ProcessOrder_output%d.dat
(All others) (Default)

Poller (inbound) settings (Al (Default)

Performance Testing (Al (Default)

Step 2: Create the Output ETD: SendStatus.xsc using Java
Use the e*Gate ETD Editor to create an ETD like that shown in Figure 94.

Figure 94 SendStatus.xsc ETD (Java)

il x|
File Edit Help
DSE | ? |
—Event Typg————— —Ewvent Type Definition
[+ SendStatuz =™ SendStatus -
1 g (Mame) Email -
type java.lang.string
r Intermal Templates cgmment
minccurs 1
maxCccUrs 1
order sequUence
skruckure delim
optional False
length 1]
offset undefined
array
 External Templates endQFRec
required
separator
anchored |
beqginAnchored
endanchored
reference
inputMatch j
| 54152001 [1:22PM v

e*Insight Business Process Manager Implementation Guide 159 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
e*Insight Implementation (elSchema) Configure User-defined e*Gate Components

Step 3: Create the Send_Status Collaboration Rule using Java
This CRS must accomplish three things:

= put the output data into a readable format that can be written to a file
= set the BP status node to “SUCCESS”
= send the “Done” Event back to the e*Insight engine

To Configure the eX_Send_Status Collaboration Rule

1 From the eX_Send_Status Collaboration Rule General tab, select the Java
Collaboration Service.

2 From the eX_Send_Status Collaboration Rule Collaboration Mapping tab, create
two new instances as shown in Figure 95.

Figure 95 eX_Send_Status CR Properties, Collaboration Mapping tab (Java)

@ Collaboration Rules - eX_Send_Status Properties x|
General | SURBCHRHENE | Publications Collaboration Mapping |
Instance Mame | ETD Mode | Trigger | Manusl Publish
e¥_Send_Status |el_StandardEvert xsc Find .| Infout [w! [
SendStatus SendStatus xac Fime ...§ Cut P, [
Add Instance | Remove Instance |
Cancel | Apply | Help |

3 Click Apply, and click the General Tab.

4 Click New to create a new CRS, as show in Figure 96.

e*Insight Business Process Manager Implementation Guide 160 SeeBeyond Proprietary and Confidential

Chapter 10

Section 10.5
e*Insight Implementation (elSchema)

Configure User-defined e*Gate Components

Figure 96 eX_Send_Status.xsc CRS (Java)

Collaboration Rules Editor - eX_Send_Status -10] x|
File Edit ‘Wiew Tools Help

#h

®T"Zource Events
™5 eX_Send Status [eX_StandardEvent] —

®T"Destination Events

SendStatus [SendStatus]®™ '--
e¥_Send_Status [e%_StandardEvent] "5

i} blu:u:kl E‘methndl ¢ \-'arl [*5 Far| Ju iff| {F rulel E, switchl —+ case| [*3) while| X3 u:Iu:ul L= returnl

I throwlm trvl I catchl
Business Rules

=18 e¥_Send_status : public class e¥_Send_Status extends e¥_Send_statusBase implements 1CollaborakorExk Rule B
“2 ey _Send_Status @ public eX_Send_Status()
=3 evecubeBusinessRules ¢ public boolean executeBusinessRules]) throws Exceplion

- i@ retBoolean @ boolean retBoolean = brue; Descript
<A} rule : getSendsStatus(),setEmail{geter_Send_Status(),getBP_EVENT().getATTRIBUTE WALLE("iCust_email")); rule
-1} rule : get3endstatus().setMessagelgeter_Send_Status().getEP_EMEMT]). qetATTRIBUTE _WaALLE!"Order _Skatus"y); Rule:

A} rule : getex_Send_status(),getBP_EWEMT().setSTATUS"SUCCESS™;

w4} rule t geteX_Send_Status(),setBP_EMEMT{getex_Send_Status().getBP_EVEMT();
Bz return @ return retBoolean;

-8 userlnitialize : public waid userInitialized)
-8 userTerminate : public void userTerminate()

Step 4: Configure the Collaboration using Java

The eX_Send_Status e*Way in ProcessOrder example does not receive data back from
and external system. Consequently, it requires only a single Collaboration. Use the

following procedure to edit the two default Collaborations created by the e*Insight GUI
during the configuration of the integration schema.

In the Enterprise Manager:

—

Highlight the eX_Send_Status e*Way.

2 Delete the two Collaborations eX_to_Send_Status and eX_from_Send_Status.
3 Add a Collaboration named eX_Send_Status.
4

Configure the Collaboration, as shown in Figure 97.

e*Insight Business Process Manager Implementation Guide 161 SeeBeyond Proprietary and Confidential

Chapter 10

Section 10.6

e*Insight Implementation (elSchema) Run and Test the e*Insight scenario

Figure 97 eX_Send_Status Collaboration (Java)

/_ Collaboration - eX_Send_Status Properties x|

General |

n
&E eX_Send_Status

Callaboration Rules:

Ie){_Send_Sta‘tus LI M
Sub=zcriptions:

Instance Mame Event Type Source Al |
ex_Send_Status “E ex_Send_Status_Do &*’ ex_from_eBPM

e _Send_Status DE eX_Send_Status_U.. &# ex_from_sBP %
Publications:

Instance Mame Event Type Destination Priority Al |
SendStatus e¥_External_Ewvt 5 <EXTERMAL= 5
ex_Send_Status E ex_to_eBPM % ex_eBPM k] E

Adlveneed |

(0] 34 Cancel Apply | Help |

106 Run and Test the e*Insight scenario

Once the schema has been set up in e*Gate you can run the scenario.

10.6.1 Testing the Standard Business Logic

In-

The following procedure tests the standard business logic of the e*Insight ProcessOrder
case study example. That logic is as follows: a check is made to see whether or not the
item ordered is available. If it is in stock the Ship_Order activity is invoked and a
message is generated that can be sent to the customer indicating that his order has been
shipped to him. If the item is unavailable, then the Out_of_Inv activity is invoked
which creates a message informing the customer that his item is unavailable.

The test is made by sending in data with different item numbers and verifying the
correct processing. Input data with an item number of 33333 is interpreted as being in
stock and any other number except for the three special numbers (11111, 22222, and
99999) is interpreted as being out of stock.

Stock Processing

Use the following procedure to test the functionality of the example for an item that is
in stock.

1 Start the e*Insight GUI and select the ProcessOrder business process. Switch to
monitor mode.

e*Insight Business Process Manager Implementation Guide 162 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.6
e*Insight Implementation (elSchema) Run and Test the e*Insight scenario

Note: Make sure that the business process has been enabled in the e*Insight GUI before
attempting to run it.

2 Make a final check of the e*Gate schema, using the tables to confirm all of the GUI
associations. Make sure that all of the e*Insight components, including the
user-defined components, are set to start automatically.

3 At the command line, type the following to start the schema. You must type the
command on a single line.

stccb.exe -rh local host -rs ProcessOrder -1n | ocal host_cb
-un usernane -up password

Substitute the appropriate username and password for your installation.

4 Start the e*Gate Monitor, and check the status of all the components. Any
components displayed in red are not running. Any e*Insight components that are
not running should be investigated before feeding data into the system.

5 Navigate to the location for the input data file, InStock.~in, shown in Figure 84 on
page 150 (c:\eGate\client\data\ProcessOrder) and change the extension to “.fin”.

Note: The change of the extension to “.~in” indicates that the data file has been picked up
by the START_BP e*Way.

If everything is working correctly, an output file (ProcessOrder_output#.dat) as
appears in the directory indicating successful completion of the BPI.

6 Switch to the e*Insight GUI and, while in monitor mode, select the most recent BPI
from the List tab, and then select the Diagram tab to observe the path that the data
has taken.

The activities that have completed successfully appear green. Any activities that are
still running appear blue.

In the ProcessOrder example, an activity that stays blue for more than couple
minutes indicates a problem, and the e*Gate component associated with that
activity should be investigated for the cause of the problem. Figure 98 illustrates
how the successfully completed BPI appears in the e*Insight GUL

e*Insight Business Process Manager Implementation Guide 163 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.6
e*Insight Implementation (elSchema) Run and Test the e*Insight scenario

Figure 98 In Stock Completed BPI Diagram

Check_Inw

x otk D=t U etk

States | Companents |

I: i Out_of_| :l
Completed Ship_Ord ut_of_lny

Failed/Rejected

Undo Running

Undo Completed
Undo Failed

Timed Out
Aborted

Pending

Mever Invoked

Out-of-Stock Processing

Testing the functionality for out of stock processing uses exactly the same procedure as
that for in stock processing except that different input data is submitted.

= Verify that sending in the data with an item number of 44444 causes the business
process to take the “FALSE” branch of the decision gate and create the diagram
shown in Figure 99.

Figure 99 Out of Stock Completed BPI Diagram

Check_lrw

retock~Dec L aemstom

Legend - [Sessig

States | Components |

Completed { Ship_0rd) § Out_af_lrw |

Undo Running

L

Undo Completed

Undo Failed

Timed Out
Aborted

Send_Status,

Pending

Mever Invoked

=
s,
3
-5
=
-
a,
1]
o
o
-5

e*Insight Business Process Manager Implementation Guide 164 SeeBeyond Proprietary and Confidential

Chapter 10

Section 10.6

e*Insight Implementation (elSchema) Run and Test the e*Insight scenario

1062 Demonstrating Business Process Undo Functionality

e*Insight has two methods for undoing a failed business process instance (BPI):
automatic and manual. Whether the failure of a particular activity generates an
automatic undo of the entire BPI or whether the e*Insight engine waits for user
intervention, is set on the General tab of the Activity Properties dialog box for that
activity. The default setting is automatic undo.

When an activity is set to automatic undo and the activity “fails,” then e*Insight marks
the activity as “Failed” in the GUI and publishes an “undo” Event (eX_Activity_Undo)
for the last completed activity in the BPI. In this context, fails means that the e*Insight
engine receives a “Done” Event where the status node is set to “FAILURE” rather than
“SUCCESS”. If the last completed activity is undone successfully, then an “undo”
Event is generated for the next activity upstream, and so on, until all the previously
completed activities in that BPI have been undone.

If an activity fails and the Manual Restart check box is marked on the General tab of
the Activity Properties dialog box for that activity, then e*Insight marks the activity as
“Failed” in the GUI and then waits for the user to initiate the next course of action; skip,
restart, or undo. If the user selects undo, then the BPI is undone as described in the
paragraph above.

Manual Undo

Use the following procedure to test the functionality of manual undo in the e*Insight
scenario.

1 Perform steps 1 through 4 outlined in “In-Stock Processing” on page 162.

2 Verify that Manual Restart has been marked for the activities in the business
process.

If Manual Restart has not been marked and the check box itself is grayed out, you
must delete the BPIs for the business process, or save the business process as a new
version, before you can mark it. Refer to the e*Insight Business Process Manager User’s
Guide for information on how to do this.

3 Navigate to the location (c:\eGate\client\data\ProcessOrder\ManualUndo.~in)
and create an input data file with an item number of 11111 and change the
extension to “.fin”.

Note: The change of the extension to “.~in” indicates that the data file has been picked up

by the START_BP e*Way.

4 Switch to the e*Insight GUI and, while in monitor mode, select the most recent
business process instance. Observe the path that the data has taken, as shown in
Figure 100 on the next page.

e*Insight Business Process Manager Implementation Guide 165 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.6
e*Insight Implementation (elSchema) Run and Test the e*Insight scenario

Figure 100 Manual Undo—Failed BPI Diagram

Check_Inw

E| nStock Dt U Oitotack

States | Components I

Completed { ship_0rd .

Failed/Rejected

Undo Running

Undo Completed
Undo Failed

Timed Dut
Aborted

Pending

Never Irvoked

The Check_Inv activity should be green, indicating that it completed successfully,
but the Out_of_Inv activity should appear red, indicating that it has failed.

5 Right-click the Out_of_Inv activity from the tree view, then select Properties from
the popup menu.

The Activity Properties - Monitor Mode: (Out_of_Inv) is displayed.
6 Select the Business Process Attributes tab.

7 Click Undo Business Process, and then click OK to close the Activity Properties
dialog box.

8 Highlight the enabled business process version in the tree view.

The Check_Inv activity should now appear dark green indicating that the activity
has been successfully undone.

e*Insight Business Process Manager Implementation Guide 166 SeeBeyond Proprietary and Confidential

Chapter 10

Section 10.6

e*Insight Implementation (elSchema) Run and Test the e*Insight scenario

Figure 101 Manual Undo Completed BPI Diagram

E Totock 02 L otk

States | Components |

Completed |: Ship_0Ord .

FailedfRejected

Undo Running

Undo Completed

Undo Failed

Timed Out
Aborted

Pending

Mever Invoked

1063 Demonstrating Business Process Restart Functionality

An important feature of e*Insight is its ability to allow the operator to fix and restart a
business process instance. If the data in one of the business process attributes used by
an activity causes the business process to fail, the value can be corrected by the operator
and the BPI restarted from the point of failure.

Repairing a String Attribute

Attributes can be of various types; Boolean, number, string, and XML. The following
example shows the procedure to repair an attribute of type string. For information on
repairing an attribute with type XML, see the e*Insight Business Process Manager User’s
Guide.

1
2

Note:

Perform steps 1 through 4 outlined in “In-Stock Processing” on page 162.

Verify that Manual Restart has been marked for the activities in the business
process.

Navigate to the location

(c:\eGate\client\data\ProcessOrder\ AttributeRepair.~in) and create an input
data file with an item number of 99999, and change the extension to “.fin”.

The change of the extension to *
by the START_BP e*Way.

~in" indicates that the data file has been picked up

Switch to the e*Insight GUI and, while in monitor mode, select the most recent
business process instance from the List tab. Select the Diagram tab to observe the
path that the data has taken.

e*Insight Business Process Manager Implementation Guide 167 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.6
e*Insight Implementation (elSchema) Run and Test the e*Insight scenario

Figure 102 Attribute Repair—Failed BPI Diagram

E| retack ~Dec 0 Toiaiiock

States | Camponents |

Completed |: Ship_Ord Out_of [:l

Failed/Rejected

Undo Running

Undo Completed
Undo Failed

Timed Out
Aborted

Pending

Wever Invoked

The Check_Inv activity should be red, indicating that it failed, and the other
activities should appear yellow, indicating that they are waiting.

5 Double-click the Check_Inv activity, then click the Business Process Attributes tab.

Figure 103 Attribute Repair—Business Process Attributes tab

Activity Properties - Monitor Mode: (Check_Inv) x|

General | Local Attibutes Business Process Atributss |

Manwal | ntervention Option:
{ Restart Activiy | Skipdctivly | Undo Business Pracess | ‘
Atribute Mame | Type [Drescriptin [Directian [value I
Order_Status Sting Order Status Output no
Iberm_Mumber Shing Item Number Input/Output 99939
Order_Buantity Number Order Quantity Input 1.000000
In_Stock Boolean Quantity in Stock? Output <nones
Hew. Edi... Delets

0k | ceneel | Agn | Hen |

6 Highlight the Item_Number attribute line, and then click Edit.

The Edit Business Process Attribute dialog box is displayed, as shown in Figure
104.

e*Insight Business Process Manager Implementation Guide 168 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.6
e*Insight Implementation (elSchema) Run and Test the e*Insight scenario

Figure 104 Attribute Repair—Edit BP Attribute

— Definition
Altribute Mame: |Item_Number
Attribute Type: String j
D escription: Item Mumber
Direction:

I Input/Output j

€ Required € Optional
Current ¥ alue: Iggggg

Size: lg— . lg—
QK I Cancel | Apply | Help |

7 In the Edit Business Process Attribute dialog box, change the value of the attribute
in the Current Value: box from 99999 to 44444, and then click OK.

The value 99999 was supplied to the e*Insight engine by the input file and it is this
value that causes the Check_Inv Collaboration to return “FAILURE” to the
e*Insight engine.

8 Click OK to close the Edit Business Process Attribute dialog box.
9 Click Restart Activity, and then click OK.
10 Highlight the enabled ProcessOrder business process version in the tree view.

The completed BPI diagram is displayed, as shown in Figure 105 on the next page.

Figure 105 Attribute Repair Completed BPI Diagram

Check_[nv

rotock D2 0 TiiiStock

Legend - [Sessio |

States | Companents |

Bl ered { Ship_Ord Qut_of_lrw)
Failed/Rejected

Undo Running

Undo Completed
Undo Failed

Timed Out
Aborted

Pending

Mever Invoked

The Check_Inv, Out_of_Inv, and Send_Status activities now appear green
indicating that the BPI has been restarted and has now completed successfully.

11 Verify that a text file (ProcessOrder_output#.dat) to be sent as e-mail is created
indicating that item number 44444 is unavailable.

e*Insight Business Process Manager Implementation Guide 169 SeeBeyond Proprietary and Confidential

Chapter 11

e*Insight Authorization Activity
Implementation (elSchema)

This chapter discusses the steps involved to enhance the previous case study to include
the Authorization Activity.

You can use the Authorization Activity to stop the Business Process and wait for

authorization. The decision to authorize or not authorize is entered via the e*Insight
GUL

This case study is a continuation of the previous example. See “e*Insight
Implementation (eI[Schema)” on page 133 for the initial configuration instructions.

111 Overview

The major steps in the implementation are:

1 Create and configure the Decision gate and Authorization Activity in the e*Insight
GUL

2 Use the e*Insight GUI to configure the e*Gate schema that supports e*Insight.
3 Add and configure the user-defined e*Gate components.
4 Run and test the scenario.

The chapter begins with a description of the scenario and then shows how to use these
steps to set it up.

11.1.1 Case Study: Order Processing

The Order Process only automatically processes orders where less than 100 items are
ordered. If 100 or more items are ordered then the order should be manually
authorized.

Figure 106, shows the additional components involved in the business process
implementation. Below the diagram is a description of how the data flows between
these components for an item that is shipped successfully.

For the original diagram and description, see “Case Study: Order Processing” on
page 134.

e*Insight Business Process Manager Implementation Guide 170 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.1
e*Insight Authorization Activity Implementation (elSchema) Overview

Figure 106 e*Insight Data Flow Diagram

eX_Authorize
Quantity e‘Way

1+ - eX_Authorize_ - __
Quantity eX_Authorze_Quantity_Do |

BOB
eX_NotAuthorized

@ eX_NotAuthorzed_Do

|
|
|
|
|
|
@ €X_to_eBPM | : _______
.

______________ eX eBPM
eX_Check_Inv | Engine
! |
———4 eX_from_eBPM | <

eX_IecIJBPM e'Insight
® Database

» eX_to_eBPM

eX_to_eBPM

Figure 106 data flow description

® When the Check_Inv activity is finished, the eX_Check_Inv BOB publishes a
“Done” Event using the eX_to_eBPM Event Type to the eX_eBPM IQ. The
e*Insight engine retrieves the “Done” Event from the IQ, updates the BPI to reflect
whether the items ordered are in stock, and then moves forward to the next activity
in the business process based on the result of a decision gate. If the items are in
stock, the next activity is another decision gate; otherwise the next activity is
Out_of_Inv.

Let’s assume the items are in stock. The BPI moves to the next activity based on the
result of the second decision gate. If the quantity is less than 100, the next activity is
Ship_Ord; otherwise the next activity is eX_Authorize_Quantity.

Let’s assume the quantity is greater than or equal to 100. The e*Insight engine
publishes a “Do” Event (eX_Authorize_Quantity_Do) corresponding to the
Authorize_Quantity authorization activity in the business process. The
eX_Authorize_Quantity e*Way retrieves this Event from the eX_eBPM IQ and
uses the information it contains to retrieve the BPI ID and alert the relevant person
that this instance requires authorization.

When the eX_Authorize_Quantity activity has either been authorized or rejected,
the e*Insight engine moves forward to the next activity in the business process. This

is Not_Authorized if the quantity was not authorized; otherwise the next activity is
Ship_Order.

e*Insight Business Process Manager Implementation Guide 171 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.1
e*Insight Authorization Activity Implementation (elSchema) Overview

@ Let’s assume the quantity is not authorized. The e*Insight engine publishes a “Do”
Event (eX_Not_Authorized_Do) corresponding to the Not_Authorized activity in
the business process. The eX_Not_Authorized BOB retrieves this Event from the
eX_eBPM IQ and updates the status. When the Not_Authorized activity is
finished, the eX_Not_Authorized BOB publishes a “Done” Event using the
eX_to_eBPM Event Type to the eX_eBPM IQ. The e*Insight engine retrieves the
“Done” Event from the IQ, updates the BPI to reflect the status, and then moves
forward to the Send_Status activity.

Let’s assume that either the quantity is authorized, or the item was in stock, but the
quantity was less than 100. The e*Insight engine processes the e*Insight script
corresponding to the Ship_Ord activity in the business process, and then moves
forward to the Send_Status activity.

Important Considerations

The Authorization Activity has two fixed Local Attributes—assignedTo (the user to
whom the Authorization process is assigned) and performedBy (a security measure to
ensure the correct user is performing the Authorization). It is important to note the
following;:

= The user name of the assignedTo attribute must exactly match the name of the user
logged into the e*Insight GUI or the name of the user group to which the name of
the logged in user belongs

= The assignedTo attribute must have a value to complete the Authorization process.

= Any user assigned the role of Instance Manager can authorize, reject, or undo an
Authorization Activity within a business process instance.

e*Insight Business Process Manager Implementation Guide 172 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.2
e*Insight Authorization Activity Implementation (elSchema) Step 1: Create the ProcessOrder BP in e*Insight

12 Step 1: Create the ProcessOrder BP in e*Insight

The following is a summary of the procedure for creating a BP in the e*Insight GUL
1 Add the Authorization Activity.
2 Edit the assignedTo Local Attribute to contain the correct user name.

Note: The Authorization Activity has two fixed Local Attributes—assignedTo (the user to
whom the Authorization process is assigned) and performedBy (automatically
assigned at run time as the user logged in to the e*Insight GUI). These two values
must match in order for the user to Authorize, Reject, or Undo the business process
instance.

3 Add the additional Decision gate.
4 Make the connections between the activities and gates.
5 Add the logic to the Decision gate.

For more information on creating a business process and using the e*Insight GUI, see
the e*Insight Business Process Manager User’s Guide.

Use the diagram shown in Figure 107 and the following tables to create the BP in
e*Insight.

Figure 107 ProcessOrder Business Process Model

Check_ |

OlutofS tock

@_

Mot Aufhorized

l:dob’-‘«uthorize(:l

e*Insight Business Process Manager Implementation Guide 173 SeeBeyond Proprietary and Confidential

Chapter 11

e*Insight Authorization Activity Implementation (elSchema)

Section 11.3
Step 2: Configure the Integration Schema

13 Step 2: Configure the Integration Schema

After creating the additional components, you must configure the e*Gate Registry
schema that supports the e*Insight system.

e*Insight allows you to specify the type of component (e*Way or BOB) associated with
a particular activity and where it runs.

In this example, you use an additional BOB for the NotAuthorized Activity, and an
additional e*Way for the Authorize_Quantity Authorization Activity. The
Send_Status activity must be associated with an e*Way because it interfaces with an

external component.

Integration Schema Activity Components Summary

Use the information in Table 35 to configure the e*Gate schema that supports this

example.
Table 35 Integration Schema Activity Components
Participating | Active/ Manual .
Name Type Host Passive Restart TimeOut
eX_Authorize_Quantity | e*Way | localhost Active Yes Not used
eX_NotAuthorized BOB localhost Active Yes Not used

For information on how to use the e*Insight GUI to configure the e*Gate Registry see

the e*Insight Business Process Manger User’s Guide.

14 Step 3: Configure User-defined e*Gate Components

This example requires the configuration of an additional BOB and e*Way.

Configure the Activity BOB CRS in the Enterprise Manager GUI

Not_Authorized CRS

The Not_Authorized translation simulates the activity of sending out an item that is in
stock. It sets the value of the Order_Status attribute to a short message indicating that
the order has not been authorized, and returns “SUCCESS” to the e*Insight engine.

Figure 108, on the following page, shows the Not_Authorized.tsc CRS used in this

example. The source and destination ETDs are eX_Standard_Event.ssc.

e*Insight Business Process Manager Implementation Guide 174

SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.4
e*Insight Authorization Activity Implementation (elSchema) Step 3: Configure User-defined e*Gate Components

Figure 108 Not_Authorized.tsc CRS

FUMCTION {e¥-copy-no-attribute “inputieX_Event “outputiex_Event)
COPY "SUCCESS" “outputies_Event,DS,eX_Event,CT,DSH,D5,BP_EVENT, AS, STATUS, Yalue
FUNCTION {e¥-zet-attribute “outputieX_Event "Order_Status" "Your order haz not been authorized," "STRIHG"

Configure the Activity BOB Collaborations in the Enterprise Manager
GUI

Once you have created the CRS for the eX_NotAuthorized BOB, you must associate it
with the corresponding Collaboration Rule in the e*Gate GUIL You must:

Highlight the BOB’s Collaboration.

Open the Collaboration Properties dialog box for the Collaboration.

Edit the Collaboration Rules.

Change the Service to Monk.

Find the “Not_Authorized.tsc” file and associate it with the Collaboration Rule.

S U A W N =

Click OK to continue.

11.41 Configure the Authorize_Quantity e*Way

The last component that must be configured in the ProcessOrder example is the
Authorize_Quantity e*Way.

This e*Way must create a file containing the text of e-mail message that can be sent to
advise that an order requires authorization that can be sent via e-mail (simulated; no
actual mail is sent)

This e*Way simulates sending an e-mail order status message simply by writing a short
status message to a text file giving the Business Process Instance ID. An Event is not
returned to the e*Insight engine as it is expecting authorization via the e*Insight GUI in
this example.

Follow these steps to configure the Send_Status e*Way:
1 Create the Authorize_Quantity.tsc CRS.
2 Find the executable and create the e*Way configuration file.

3 Configure the Collaboration in the GUL

Step 2: Create the Authorize_Quantity.tsc CRS

The Authorize_Quantity translation copies a fixed text message and the Business
Process Instance ID into the outgoing message. No message is sent back to the e*Insight
engine.

The Authorize_Quantity.tsc CRS is shown in Figure 109. The source ETD is
eX_Standard_Event.ssc and the destination ETD is GenericOutEvent.ssc

e*Insight Business Process Manager Implementation Guide 175 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.4
e*Insight Authorization Activity Implementation (elSchema) Step 3: Configure User-defined e*Gate Components

Figure 109 Authorize_Quantity.tsc CRS
Rules |l Use Selected Modes in Mew

COPY "The following Business Process Instance requires Authorization: I“DutputXGenericDutEuent
COPY {get {(ex—-get-BP_EVENT “inputXex_Event "ID"i) I”DutputXGenericDutEuent

Step 3: Configure the e*Way

First find the executable, then create the configuration file.

The Authorize_Quantity e*Way is a simple file e*Way (stcewfile.exe) that writes a text
file (output%d.dat) to the directory c:\eGate\client\data\ Authorize. The file created
contains the Business Process Instance ID of the order that requires authorization. Use
the following table to set the e*Way parameters in the configuration file:

Table 36 Send_Status e*Way Parameters

Screen Parameter Setting
General Settings Allowlncoming No
AllowOutgoing Yes
PerformanceTesting No (Default)
Outbound (send) settings OutputDirectory c:\eGate\client\data\Authorize
OutputFileName output%d.dat
(All others) (Default)
Poller (inbound) settings (All) (Default)
Performance Testing (Al (Default)

Step 4: Configure the Collaboration

The eX_Authorize_Quantity e*Way in this example does not receive data back from an
external system. Consequently, it requires only a single Collaboration. Use the
following procedure to edit the two default Collaborations created by the e*Insight GUI
during the configuration of the integration schema.

In the Enterprise Manager:
1 Highlight the eX_Authorize_Quantity e*Way.

2 Delete the two Collaborations eX_to_Authorize_Quantity and
eX_from_Authorize_Quantity.

3 Add a Collaboration named eX_Authorize_Quantity.
4 Highlight the Collaboration Rules folder.

5 Delete the two Collaboration Rules eX_to_Authorize_Quantity and
eX_from_Authorize_Quantity.

6 Add a Collaboration Rule named eX_Authorize_Quantity.
7 Edit the Collaboration Rule.

8 In the Collaboration Rules Properties dialog box, select the Monk service.

e*Insight Business Process Manager Implementation Guide 176 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.5
e*Insight Authorization Activity Implementation (elSchema) Step 5: Run and Test the e*Insight scenario

9 Find the CRS Authorize_Quantity.tsc and associate it with the Collaboration Rule.

10 On the Subscriptions tab, move the eX_Authorize_Quantity_Do and
eX_Authorize_Quantity_Undo Event Types to the Selected Input Event Types
box.

11 On the Publications tab, move the eX_External_Evt to the Selected Output Event
Types box.

12 Click OK to close the Collaboration Rules Properties dialog box.

13 Highlight the eX_Authorize_Quantity e*Way and edit the eX_Authorize_Quantity
Collaboration you associated with it in step 3.

14 In the Collaboration Properties dialog box, select the eX_Authorize_Quantity
Collaboration Rule.

15 Under Subscriptions add the eX_Authorize_Quantity_Do and
eX_Authorize_Quantity_Undo Event Types from the eX_from_eBPM source.

16 Under Publications add the Event Type eX_External_Evt with destination
<EXTERNAL>.

15 Step 5: Run and Test the e*Insight scenario

Once the schema has been set up in e*Gate you can run the scenario.

1151 Testing the Standard Business Logic

The following procedure tests the additional logic provided by the Authorization
Activity. The test is made by sending data that requires authorization and selecting
both responses of authorized and not authorized.

Authorized Processing

Use the following procedure to test the functionality of the example.

1 Start the e*Insight GUI and select the ProcessOrder business process. Switch to
monitor mode.

Note: Make sure that the business process has been enabled in the e*Insight GUI before
attempting to run it.

2 Make a final check of the e*Gate schema, using the tables to confirm all of the GUI
associations. Make sure that all of the e*Insight components, including the
user-defined components, are set to start automatically.

3 At the command line, type the following to start the schema. You must type the
command on a single line.

stcch.exe -rh | ocal host -rs ProcessOrder -1n | ocal host_cb
-un usernane -up password

e*Insight Business Process Manager Implementation Guide 177 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.5
e*Insight Authorization Activity Implementation (elSchema) Step 5: Run and Test the e*Insight scenario

Substitute the appropriate username and password for your installation.

4 Start the e*Gate Monitor, and check the status of all the components. Any
components displayed in red are not running. Any e*Insight components that are
not running should be investigated before feeding data into the system.

5 Navigate to the location for the input data file, InStock.~in,
(c:\eGate\client\data\ProcessOrder) and change the extension to “.fin”.

Note: The change of the extension to “.~in" indicates that the data file has been picked up
by the START_BP e*Way.

If everything is working correctly, an output file (output#.dat) as shown in Figure
110 appears in the directory indicating that an order requires authorization.

Figure 110 In Stock Output File

& outputo.dat - Notepad
File Edit Format Help
[The following Business Process Instance requires authorization: Z00105221536100573

6 Switch to the e*Insight GUI and, while in monitor mode, select the most recent BPI
from the List tab, and then select the Diagram tab to observe the path that the data
has taken.

The Authorize_Quantity Authorization Activity should appear gray. This shows
that the activity is pending.

Figure 111 Authorize_Quantity Pending BPI Diagram

Check,_|nw

OutofStock

Mot A

| ob'luthorizet:l

horized

o

|: Clut_of_|nw :l

E|
[Mewet Invoked
[Pending

[Waiting

Hl Funning

3 Completed

B Failed/Fejected
BN Aborled

=1 Undo Running
I Undo Completed
E o Failed

B Timed Out

e*Insight Business Process Manager Implementation Guide 178 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.5
e*Insight Authorization Activity Implementation (elSchema) Step 5: Run and Test the e*Insight scenario

7 Right-click the Authorize_Quantity activity from the tree view, then select
Properties from the popup menu.

The Authorization Activity Properties - Monitor Mode: (Authorize_Quantity) is
displayed.

8 Select the Business Process Attributes tab.
9 Click Authorize, and then click OK to close the Activity Properties dialog box.

10 The Business Process then completes using the route shown in Figure 112.

Figure 112 Authorization_Quantity - Authorized

Check_|mw

CutofStock,

@_G uantity

Mok Al

|:\10Lf-‘«ut QOut_of_lnv :l

|
[Hever Invoked
[Pending

[Waiting

Hl Funhing

B Completed

B Failed/Rejected
B Aborted

O Undo Funning
B Undo Completed
Hl Undo Failed
B Timed Out

Not Authorized Processing

Repeat the above procedure, but this time do not authorize the order.

e*Insight Business Process Manager Implementation Guide 179 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.5
e*Insight Authorization Activity Implementation (elSchema) Step 5: Run and Test the e*Insight scenario

Figure 113 Authorization_Quantity - Not Authorized

Check_lnw

OutofStock

<__Authorize_Guantity

Authofiz

Mat Aulharized

|:'J omuthorizet:l Out_of_|nw :l

states Lege |

[Mewet Invoked
[Pending

[Completed

B Failed/Fejected
Bl Aborted

O TUndo Funning
B Undo Completed
B UndoFailed
B Timed Out

e*Insight Business Process Manager Implementation Guide 180 SeeBeyond Proprietary and Confidential

Chapter 12

e*Insight User Activity Implementation

This chapter discusses the implementation of the User Activity considering aspects of
deployment and security.

This chapter also considers how the previous case studies could be enhanced to include
the User Activity.

11 Overview of the User Activity

User Activities allow external applications to access attributes in the business process
using an API. The API provides a set of functions that allow the external application to
access attributes for the User Activity from the e*Insight database. The e*Insight engine
uses the returned value of the attributes to continue the business process.

For more information on the API, see “e*Insight User Activity API Methods” on
page 393.

The role of the APIs is to allow the external application to communicate with the
e*Insight engine for the purpose of setting security and verifying users, retrieving
business model related information, getting and returning attribute types and values,
tracking instances, and many other functions related to the business process instances.
However, design and development of the external application is left up to the
developer.

1211 User Activity Security

Three security checks are performed when connecting to the database using the User
Activity methods. First, use the initialize method to connect to the database. You
should use a user that has no authority to access any of the Business Processes.

Once that connection has been made, use the authenticate method to pass the user
name and password for a user that has privileges for the Business Process. This user
should have the necessary authority for the Business Processes that they are accessing.
For subsequent messages sent during the session, use the setUser method to re-
establish the user security, or resetUser to establish security for a new user.

To create a user for the initial connection

1 Use e*Xchange Administrator to create a user (for example, Connection_User), and
assign a password.

e*Insight Business Process Manager Implementation Guide 181 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.2
e*Insight User Activity Implementation Overview of the Payroll BP

2 Do not give this user any authorization rights within e*Insight.

Note: For additional security, create the connection user directly in the database rather
than using e*Xchange Administrator.

1212 Deployment of the User Activity

The application used with the User Activity may connect directly to the database, or it
may be a Web-based application that connects to the database via a Web/App Server.
The security described in “User Activity Security” on page 181 is still valid when
connecting via a Web/App Server, however there are additional considerations. Figure
114 shows how e*Insight, the Web/App Server, and the external application may be
deployed.

Figure 114 User Activity Deployment

e*Gate
Registry Host

Port 1521 Port 80 External

~ Port 80 Application

e*Insight
Database

Web/App
Server

A

e*Insight GUI

Firewall

The firewall is configured to use port 80 to communicate with the Web/App Server.
The Web/App Server is configured to communicate with the database using a direct
database connection.

An example User Activity scenario using a Web-based application is provided with
e*Insight. For information on installing this, see the e*Insight Business Process Manager
Installation Guide.

12 Overview of the Payroll BP

In this example, we assume we have a custom Web application developed for the
purpose of allowing various users to set the bonus values. The current example uses an
Automated Activity to do a similar function from within the e*Insight GUI. By

e*Insight Business Process Manager Implementation Guide 182 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.3
e*Insight User Activity Implementation Overview

replacing the Automated Activity with a User Activity, the business process can now
integrate with an external application such as a Web-based application. This
application would allows users to login, view lists of the business process instances,
make appropriate changes, and have those changes re-enter the e*Insight business
model for continued processing.

While this example specifically uses a custom Web application, design and
development of the external application is left up to the developer. The external
application uses the Java API’s provided with the e*Insight engine (a complete
description and list of these APIs is available in “e*Insight User Activity API
Methods” on page 393). The role of the APIs is to allow the external application to
communicate with the e*Insight engine for the purpose of setting security and verifying
users, retrieving business model related information, getting and returning attribute
types and values, tracking instances, and many other functions related to the business
process instances.

123 Overview

The major steps in the implementation are:

1 Add the User Activity to the Business Process.

2 Use the e*Insight GUI to configure the e*Gate schema that supports e*Insight.
3 Add and configure the user-defined e*Gate components.
4

Run and test the scenario.

1231 Case Study: Payroll Processing with User Activity

The Payroll example uses an external application to allow various users to determine
the bonus for an employee. The external application retrieves new instances, and for
those employees that are eligible for a bonus, the manager enters a bonus value. The
user of the external application could also perform other changes to the order based on
capabilities developed into the external application.

14 Step 1: Update the Payroll BP in e*Insight

The following is a summary of the procedures for adding a User Activity in the
e*Insight GUIL

1 Delete the Calculate_Bonus Activity.
2 Add a User Activity called API_Calculate_Bonus.

3 Make the connections between the Decision gates, Merge gate, and User Activity, as
shown in Figure 115.

e*Insight Business Process Manager Implementation Guide 183 SeeBeyond Proprietary and Confidential

Section 12.5

Chapter 12
e*Insight User Activity Implementation Step 2: Configure the Integration Schema

Note: assignedTo and performedBy are default Local Attributes used to ensure the user
performing the Authorize/Reject/Undo activity is sanctioned to do so.

For more information on creating a business process and using the e*Insight GUI, see
the e*Insight Business Process Manager User’s Guide.

Figure 115 Payroll Business Process Model

Check_Eligibility

EhgibleF orB onug =~-Bonus_Eliaibiity_Decisio EmployedLT Ianths

‘ AP|_Calculate_Bonus '
Departrenit ofE ligible { Update_Status |

Bonus_Refused

15 Step 2: Configure the Integration Schema

After creating the additional component, you must configure the e*Gate Registry
schema that supports the e*Insight system.
You can send notifications through e*Gate to the external application but in this

example, the same result is achieved using only the e*Insight engine. To use only the
e*Insight engine, double click the User Activity, and make sure the “Send Notifications

through e*Gate check box is not marked.

Note: To send notifications through e*Gate, make sure the check box is marked, and
configure your e*Way or BOB as in all other cases.

e*Insight Business Process Manager Implementation Guide 184 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.6
e*Insight User Activity Implementation Step 3: Run and Test the e*Insight scenario

126 Step 3: Run and Test the e*Insight scenario

Once the schema has been set up in e*Gate you can run the scenario.

1261 Testing the User Activity

Use the following procedure to test the functionality of the User Activity.

1 Start the e*Insight GUI and select the ProcessOrder business process. Switch to
monitor mode.

Note: Make sure that the business process has been enabled in the e*Insight GUI before
attempting to run it.

2 Make a final check of the e*Gate schema, using the tables to confirm all of the GUI
associations. Make sure that all of the e*Insight components, including the
user-defined components, are set to start automatically.

3 At the command line, type the following to start the schema. You must type the
command on a single line.

stcch.exe -rh |l ocal host -rs Payroll -1n |ocal host _cb
-un usernane -up password

Substitute the appropriate username and password for your installation.

4 Start the e*Gate Monitor, and check the status of all the components. Any
components displayed in red are not running. Any e*Insight components that are
not running should be investigated before feeding data into the system.

5 Navigate to the location for the input data file, Employee.~in,
(c:\eGate\client\data\Payroll) and change the extension to “.fin”.
Note: The change of the extension to “
by the START_BP e*Way.

~in" indicates that the data file has been picked up

6 Switch to the e*Insight GUI and, while in monitor mode, select the most recent BPI
from the List tab, and then select the Diagram tab to observe the path that the data
has taken.

The API_Authorize_Quantity should be in a pending state. This remains in a
pending state until the e*Insight engine receives a message from an external
application relating to this Business Process Instance.

Figure 116 shows how the BPI Diagram appears.

e*Insight Business Process Manager Implementation Guide 185 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.6
e*Insight User Activity Implementation Step 3: Run and Test the e*Insight scenario

Figure 116 API_Calculate_Bonus Pending BPI Diagram

Check_Elighilty k|
States | Componentsl
— =__Bonus_Eligibility_Decisio m
EligibleForBionus ‘ EmployedLT3Months
Failed/Rejected
‘ AP|_Calculate_Bonus '
DepartmeniMotEligible { Update_Status |
'
utharize_B onu - Merge
e
et o
Procesz Paprol
Borug_Refused

7 Start the external application. Return to the e*Insight GUI. The Business Process
then completes using the route shown in Figure 117 on page 187.

The external application refers to any application developed by you to be inserted
into the business process. A common example could be a method by which users
can view lists of business instances assigned to them. These instances may require a
simple review /authorize/reject process or, a more complex task using a custom-
developed GUI interface to adjust or introduce attribute values. After the
application completes its job, the updated business process instance information re-
enters the User Activity and the business process continues.

The external application uses an API to communicate with the e*Insight engine.
Listed below are some examples of API functions to help illustrate what kind of
information is available to the external application (a complete list of API functions
can be found in Chapter 16).

+ setUser—This function passes the name of the user to the e*Insight engine if the
external application uses login/password.

+ checkUserPrivileges—This function establishes the security rights for the
session using security levels as set within e*Insight.

+ getGlobalAttributeValue and getLocalAttributeValue—This function receives
Attribute values for a business process instance for use within the external
application.

+ getBusinessModelInstancelds—The external application uses this function to
retrieve identification information for business model instances and then uses
this information to appropriately track instances when sending information
back into the business process.

e*Insight Business Process Manager Implementation Guide 186 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.7
e*Insight User Activity Implementation Overview of the ProcessOrder BP

A example of a business model including a User Activity and an external
application are shipped with e*Insight 4.5.2. This example can be installed by you
and set up and used to demonstrate a business process using a Web-based
application to allow users to log in, and view lists of instances that need to be
reviewed and adjusted. The external application then sends the information back to
e*Insight, thus allowing the business process to continue.

Note: For information on installing the sample business model see the e*Insight Business
Process Manager Installation Guide.

Figure 117 User Activity - Bonus set

Check_Elighiity |
States | Eomponents'
— = Borus_Elighbiity_Decisio m
EligibleForBonus ‘ EmplopedLT3Months
Failed/Rejected
‘ API_Calculate_Bonus .
Departrnendt otE ligile { Update_Status |
|
Lithorize_B on - Merge
e
et bz
Process_Payrall
Bonus_Refused

127 Overview of the ProcessOrder BP

In this example, we assume we have a custom Web application developed for the
purpose of allowing various users to set the quantities. The current example uses an
Authorization Activity to do a similar function from within the e*Insight GUI. By
replacing the Authorization Activity with a User Activity, the business process can now
integrate with an external application such as a Web-based application. This
application would allows users to login, view lists of the business process instances,
make appropriate changes, and have those changes re-enter the e*Insight business
model for continued processing.

While this example specifically uses a custom Web application, design and
development of the external application is left up to the developer. The external
application uses the Java API’s provided with the e*Insight engine (a complete
description and list of these APlIs is available in “e*Insight User Activity API

e*Insight Business Process Manager Implementation Guide 187 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.8
e*Insight User Activity Implementation Overview

Methods” on page 393). The role of the APIs is to allow the external application to
communicate with the e*Insight engine for the purpose of setting security and verifying
users, retrieving business model related information, getting and returning attribute
types and values, tracking instances, and many other functions related to the business
process instances.

128 Overview

The major steps in the implementation are:

1 Add the User Activity to the Business Process.

2 Use the e*Insight GUI to configure the e*Gate schema that supports e*Insight.
3 Add and configure the user-defined e*Gate components.
4

Run and test the scenario.

1281 Case Study: Order Processing with User Activity

The Order Process example uses an external application to allow various users to
authorize the quantity. The external application retrieves new orders, and for those
orders that are in stock, the users evaluate all orders with quantity >100. Based on
certain criteria, users either authorize the order for shipment or reject the order. The
user of the external application could also perform other changes to the order based on
capabilities developed into the external application.

Note: The external application can also retrieve orders and deliver them to the correct user
if the developer of the application uses specific API functions.

19 Step 1: Update the ProcessOrder BP in e*Insight

The following is a summary of the procedures for adding a User Activity in the
e*Insight GUIL

1 Delete the Authorize_Quantity Activity.

2 Add a User Activity called API_Authorize_Order.

3 Add a Decision gate to receive the output from the User Activity.

4 Make the connections between the Decision gates, Merge gate, and Not Authorized

Activity, as shown in Figure 115 on page 184.

Note: assignedTo and performedBy are default Local Attributes used to ensure the user
performing the Authorize/Reject/Undo activity is sanctioned to do so.

e*Insight Business Process Manager Implementation Guide 188 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.10
e*Insight User Activity Implementation Step 2: Configure the Integration Schema

For more information on creating a business process and using the e*Insight GUI, see
the e*Insight Business Process Manager User’s Guide.

Figure 118 ProcessOrder Business Process Model

Check_lm

Q=100 Dee 1 ock <.Dec 0L TitafStock

AP|_guthorize_Guantity Qpd 100
Euthonzed ~Meroe
Matduthorized Ship_Ord Out_of_Inv :l

terge

1210 Step 2: Configure the Integration Schema

After creating the additional component, you must configure the e*Gate Registry
schema that supports the e*Insight system.

You can send notifications through e*Gate to the external application but in this
example, the same result is achieved using only the e*Insight engine. To use only the
e*Insight engine, double click the User Activity, and make sure the “Send Notifications
through e*Gate check box is not marked.

Note: To send notifications through e*Gate, make sure the check box is marked, and
configure your e*Way or BOB as required.

e*Insight Business Process Manager Implementation Guide 189 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.11
e*Insight User Activity Implementation Step 3: Run and Test the e*Insight scenario

1211 Step 3: Run and Test the e*Insight scenario

Once the schema has been set up in e*Gate you can run the scenario.

12111 Testing the User Activity

Use the following procedure to test the functionality of the User Activity.

1 Start the e*Insight GUI and select the ProcessOrder business process. Switch to
monitor mode.

Note: Make sure that the business process has been enabled in the e*Insight GUI before
attempting to run it.

2 Make a final check of the e*Gate schema, using the tables to confirm all of the GUI
associations. Make sure that all of the e*Insight components, including the
user-defined components, are set to start automatically.

3 At the command line, type the following to start the schema. You must type the
command on a single line.

stcch.exe -rh | ocal host -rs ProcessOrder -1n | ocal host_cb
-un usernane -up password

Substitute the appropriate username and password for your installation.
4 Start the e*Gate Monitor, and check the status of all the components. Any

components displayed in red are not running. Any e*Insight components that are
not running should be investigated before feeding data into the system.

5 Navigate to the location for the input data file, InStock.~in,
(c:\eGate\client\data\ProcessOrder) and change the extension to “.fin”.

The example instance should have the inventory quantity set to >100. This ensures that
the business process instance follows the correct path to test the User Activity.

Note: The change of the extension to “.~in” indicates that the data file has been picked up
by the START_BP e*Way.

6 Switch to the e*Insight GUI and, while in monitor mode, select the most recent BPI
from the List tab, and then select the Diagram tab to observe the path that the data
has taken.

The API_Authorize_Quantity should be in a pending state. This remains in a
pending state until the e*Insight engine receives a message from an external
application relating to this Business Process Instance.

Figure 119 shows how the BPI Diagram appears.

e*Insight Business Process Manager Implementation Guide 190 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.11
e*Insight User Activity Implementation Step 3: Run and Test the e*Insight scenario

Figure 119 API_Authorize_Quantity Pending BPI Diagram

Check_lny

Tuo=1o0 ~Dee LATkteok <\ Dee 0 ToarStock

AP|_Authorize_0uantity Qty4100

Merge

Ship_Ord Out_of_lr :l

Authorized

Mt &ughorized

Motduthonized

States Lege 2l

CJ HeverInvoked

Merge B3 Campleted
B Fuiled/Rejected
Bl Ahorted
31 Undo Running
B Unda Comgpilsted
B Unda Feilod
B Timed Out

7 Start the external application. Return to the e*Insight GUI. The Business Process
then completes using the route shown in Figure 120 on page 192.

The external application refers to any application developed by you to be inserted
into the business process. A common example could be a method by which users
can view lists of business instances assigned to them. These instances may require a
simple review /authorize/reject process or, a more complex task using a custom-
developed GUI interface to adjust or introduce attribute values. After the
application completes its job, the updated business process instance information re-
enters the User Activity and the business process continues.

The external application uses an API to communicate with the e*Insight engine.
Listed below are some examples of API functions to help illustrate what kind of
information is available to the external application (a complete list of API functions
can be found in Chapter 16).

+ setUser—This function passes the name of the user to the e*Insight engine if the
external application uses login/password.

+ checkUserPrivileges—This function establishes the security rights for the
session using security levels as set within e*Insight.

+ getGlobalAttributeValue and getLocalAttributeValue—This function receives
attribute values for a business process instance for use within the external
application.

+ getBusinessModelInstancelds—The external application uses this function to
retrieve identification information for business model instances and then uses

e*Insight Business Process Manager Implementation Guide 191 SeeBeyond Proprietary and Confidential

Chapter 12

Section 12.11

e*Insight User Activity Implementation Step 3: Run and Test the e*Insight scenario

Note:

this information to appropriately track instances when sending information
back into the business process.

A example of a business model including a User Activity and an external
application are shipped with e*Insight 4.5.2. This example can be installed by you
and set up and used to demonstrate a business process using a Web-based
application to allow users to log in, and view lists of instances that need to be
reviewed and adjusted. The external application then sends the information back to
e*Insight, thus allowing the business process to continue.

For information on installing the sample business model see the e*Insight Business
Process Manager Installation Guide.

Figure 120 User Activity - Item in stock

Check_lnv

Qty>=100 Dec AR oa Dee 0 TitofStack

AP|_Authorize_ Quantity Qw4100

Ethorzed ~teras

Motdwthorized Ship_Ord Out_of_lnv :l
States Legel |

[Never Invoked
[Pending

[Waiting

Hl Funning
Merge 0 Completed
B Failed/Rejectad
B Abosted

O Undo Running
B Undo Completed
B Usndo Failed
B Timed Cut

e*Insight Business Process Manager Implementation Guide 192 SeeBeyond Proprietary and Confidential

Chapter 13

e*Insight Sub-Process Implementation
(elJ)Schema)

This chapter discusses the steps involved to enhance the previous case study to include
the Sub-Process.

The implementation starts with a local Sub-Process and then enhanced to demonstrate
the use of the Remote Sub-Process and Dynamic Sub-Process.

This case study is a continuation of the previous example. See “e*Insight
Implementation (eIJSchema)” on page 96 for the initial configuration instructions.

131 Overview of the Sub-Process Example

The major steps in the implementation are:

1 Create and configure a new business process to perform the activities required for
checking inventory.

2 Update the Payroll business process to replace the Calculate_Bonus activity with a
Sub-Process.

3 Use the e*Insight GUI to configure the e*Gate schema that supports e*Insight.
4 Add and configure the user-defined e*Gate components.
5 Run and test the scenario.

The chapter begins with a description of the scenario and then shows how to use these
steps to set it up.

e*Insight Business Process Manager Implementation Guide 193 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Insight Sub-Process Implementation (el)Schema) Create the CalculateBonus BP in e*Insight

132 Create the CalculateBonus BP in e*Insight

The following is a summary of the procedure for creating a BP in the e*Insight GUL
1 Create a business process named CalculateBonus.

2 Add the activities.

3 Make the connections between the activities.

4 Enable the business process version.

For more information on creating a business process and using the e*Insight GUI, see
the e*Insight Business Process Manager User’s Guide.

Use the diagram shown in Figure 121 and the following tables to create the BP in
e*Insight.

Figure 121 CalculateBonus Business Process Model

[Calculate_Bonus)

®

e*Insight Business Process Manager Implementation Guide 194 SeeBeyond Proprietary and Confidential

Chapter 13

e*Insight Sub-Process Implementation (el)Schema)

Section 13.3

Configure the Integration Schema for CalculateBonus

Table 37 BP Global Attributes

Attribute Type Data Direction Default Value
Salary Number Input
Grade String Input
Bonus Number Output
Table 38 Activity Attributes
Activity Attribute(s) Input/Output
Calculate_Bonus Salary Input
Grade Input
Bonus Output

133 Configure the Integration Schema for CalculateBonus

The Calculate_Bonus activity uses the eX_Calculate_Bonus BOB that was created in
“Creating the eX_Calculate_Bonus BOB” on page 106.

To configure the Calculate_Bonus Activity

1 In the e*Insight GUI, open the Calculate_Bonus activity properties.
On the General tab, select the BOB e*Gate module.

Check the module name is eX_Calculate_Bonus, and modity if necessary.

2
3
4 Check that the correct Participating Host is selected.
5

Close the Calculate_Bonus Activity properties.

e*Insight Business Process Manager Implementation Guide 195

SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.4
e*Insight Sub-Process Implementation (elJSchema) Modify the Payroll BP in e*Insight

134 Modify the Payroll BP in e*Insight

The following is a summary of the procedure for modifying the Payroll BP in the
e*Insight GUIL

1 Delete the Calculate_Bonus activity.
2 Add the Calculate_Bonus Sub-Process.
3 Make the connections between the sub-process, decision gate and activity as shown

in Figure 122.

Figure 122 Payroll BP with Sub-Process

Check_Eligibility

IigihleFDrBonus onuz_Eligibility_Decizio

@@ DepartrentotE ligible { Update_Status |

i EmployedLT 3Months

Process_Payrol

4 Configure the Calculate_Bonus sub-process properties.
A Assign the CalculateBonus business process as the sub-process.

B Map the sub-process attributes to business process attributes as defined in Table
39.

Table 39 Sub-Process attribute mapping

Sub-Process Attributes | Business Process Attributes | Direction

Salary Salary Input
Grade Grade Input
Bonus Bonus Output

Note: In this example, the sub-process attribute names and the business process attributes
names are the same. This is not a requirement for the sub-process, however, it is a
requirement for the dynamic sub-process.

e*Insight Business Process Manager Implementation Guide 196 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Insight Sub-Process Implementation (el)Schema) Configure the Integration Schema for Payroll

135 Configure the Integration Schema for Payroll

The schema created in “e*Insight Implementation (eIJSchema)” on page 96 does not
need to be modified for this example.

136 Run and Test the e*Insight scenario

Once the schema has been set up in e*Gate you can run the scenario.
Use the instructions in “Run and Test the e*Insight scenario” on page 117 to test your
sub-process.

Note: You can access the CalculateBonus business process directly from the Payroll
business process. Right-click on the Sub-Process in the parent business process as
shown in Figure 123.

Figure 123 Accessing the CalculateBonus business process

Check_Eligibility

A
- = States |Component$|
i IigibleForBDnus onus_Eligibility_Decisi EnployedLT 3konths m
Completed
FailedfRejected
Calculate Bonus NManatment ofF ligible Update_Status .
:
Robake 90 deqrees ndao Lunning
Undo Completed
Delete
Undo Failed
Properties. ..
Timed Out
Wiew Sub-Process
Aborted
Pracess_Payrol
Mever Invoked

e*Insight Business Process Manager Implementation Guide 197 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.7
e*Insight Sub-Process Implementation (el)Schema) Overview of the Dynamic Sub-Process Example

137 Overview of the Dynamic Sub-Process Example

The Dynamic Sub-Process Example is a continuation of the previous example.

In this example the Business Process that is called as the Sub-Process depends on where
the department that the employee works for. If the department is accounts, then the
Calculate_Bonus_accounts Business Process is called, and if the department is
marketing, then the Calculate_Bonus_marketing Business Process is called.

The major steps in the implementation are:

1 Create and configure two new business processes (Calculate_Bonus_accounts for
accounts and Calculate_Bonus_marketing for marketing) to perform the activities
required for calculating the bonus.

2 Update the Payroll business process to replace the Calculate_Bonus sub-process
with a dynamic sub-process.

3 Use the e*Insight GUI to configure the e*Gate schema that supports e*Insight.
4 Add and configure the user-defined e*Gate components.
5 Run and test the scenario.

The chapter begins with a description of the scenario and then shows how to use these
steps to set it up.

e*Insight Business Process Manager Implementation Guide 198 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.8
e*Insight Sub-Process Implementation (elJSchema) Create the accounts BP in e*Insight

138 Create the accounts BP in e*Insight

The following is a summary of the procedure for creating a Business Process for
California orders.

1 Export business process named CalculateBonus.
Note: The exported file is used in “Create the marketing BP in e*Insight” on
page 201.
Rename the CalculateBonus business process accounts.

Select the enabled version, and from the File menu, select Save as New Version.

Rename the activity Calculate_Bonus_accounts.

a Hh W N

Enable the business process version.

130 Configure the Integration Schema for accounts

To configure the Calculate_Bonus_accounts activity
1 In the e*Insight GUI, open the Calculate_Bonus_accounts activity properties.
2 On the General tab, select the BOB e*Gate module.
3 Click New.
The Define Collaboration dialog appears.
4 Click OK.
5 Create eX_Calculate_Bonus_marketing.xpr.

The actual CRS is created later in “To create eX_Calculate_Bonus_accounts.xpr”
on page 200.

6 Save the CRS.
7 Close the editor.
8 Click Configure e*Gate.
You may be required to log into e*Gate.
9 Click OK, to close the information dialog.
10 Close the Calculate_Bonus_accounts Activity properties.

For more information on creating a business process and using the e*Insight GUI, see
the e*Insight Business Process Manager User’s Guide.

e*Insight Business Process Manager Implementation Guide 199 SeeBeyond Proprietary and Confidential

Chapter 13

Section 13.9
e*Insight Sub-Process Implementation (el)Schema)

Configure the Integration Schema for accounts

Creating the CRS in e*Gate

Since the CRS for eX_Calculate_Bonus_accounts BOB is very similar to the

eX_Calculate_Bonus CRS previously created you can copy this instead of creating a
new script from scratch.

To create eX_Calculate_Bonus_accounts.xpr
1 Open the Collaboration Editor.
2 Open eX_Calculate_Bonus.xpr.
3 From the File menu, select Save As, and enter the name

eX_Calculate_Bonus_accounts.xpr.

Important: You should replace the existing file in
Collaboration_Rules\ Calculate_Bonus_accounts.

4 Compile and then close the editor.

e*Insight Business Process Manager Implementation Guide 200 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.10
e*Insight Sub-Process Implementation (elJSchema) Create the marketing BP in e*Insight

1310 Create the marketing BP in e*Insight

The following is a summary of the procedure for creating a Business Process for
marketing.

1 Import the business process that was exported in “Create the accounts BP in
e*Insight” on page 199.

2 Rename the imported CalculateBonus business process marketing.
3 Rename the activity Calculate_Bonus_marketing.

4 Enable the business process version.

1311 Configure the Integration Schema for marketing

To configure the Calculate_Bonus_marketing activity using Monk
1 In the e*Insight GUI, open the Calculate_Bonus_marketing activity properties.
2 On the General tab, select the BOB e*Gate module.
3 Click New.
The Define Collaboration dialog appears.
4 Click OK.
5 Create eX_Calculate_Bonus_marketing.xpr.

The actual CRS script is created later in “To create
eX_Calculate_Bonus_marketing.xpr” on page 202.

6 Save the CRS.
7 Close the editor.

Note: You do not need to compile the script yet.
8 In the Calculate_Bonus_marketing activity properties, check the module name is
eX_Calculate_Bonus_marketing, and modify if necessary.
9 Click Configure e*Gate.
You may be required to log into e*Gate.
10 Click OK, to close the information dialog.
11 Close the Calculate_Bonus_marketing Activity properties.

Creating the CRS for eX_Calculate_Bonus_marketing in e*Gate

Since the CRS for eX_Calculate_Bonus_marketing BOB is very similar to the
eX_Calculate_Bonus CRS previously created you can copy this instead of creating a
new script from scratch.

e*Insight Business Process Manager Implementation Guide 201 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.11
e*Insight Sub-Process Implementation (el)Schema) Configure the Integration Schema for marketing

To create eX_Calculate_Bonus_marketing.xpr
1 Open the Collaboration Editor.
2 Open eX_Calculate_Bonus_marketing.xpr.
3 From the File menu, select Save As, and enter the name

eX_Calculate_Bonus_marketing.xpr.

Important: You should replace the existing file in
Collaboration_Rules\ Calculate_Bonus_marketing.

4 Update the script to define grade 1 as 5000.
5 Compile and then close the editor.

e*Insight Business Process Manager Implementation Guide 202 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.12
e*Insight Sub-Process Implementation (elJSchema) Modify the Payroll BP in e*Insight

1312 Modify the Payroll BP in e*Insight

The following is a summary of the procedure for modifying the Payroll BP in the
e*Insight GUIL

1 Save the enabled Payroll business process as a new version.

2 Delete the Calculate_Bonus activity.

3 Add the Calculate_Bonus Dynamic Sub-Process.

4 Make the connections between the dynamic sub-process, decision gate and activity

as shown in Figure 124.

Figure 124 Payroll BP with Dynamic Sub-Process

Check_E ligibility

EeF o Dnu onus_Eligibility_Decisio

@E—BE Departmen|MotE ligible { Update_Status |

El EmployedL T 3konths

i

Process_Payrol

5 Configure the Calculate_Bonus dynamic sub-process properties.

A Ensure that the dynamic sub-process uses the Incoming Global Attribute
Value.

B Map the global attributes to the sub-process as defined in Table 39.
Table 40 Global attribute mapping

Global Attributes Direction
Department Input
Salary Input
Grade Input
Bonus Output

C From the Local Attributes tab, edit the subBPName, and select Department
from the Value drop down list.

e*Insight Business Process Manager Implementation Guide 203 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.13
e*Insight Sub-Process Implementation (el)Schema) Configure the Integration Schema for Payroll

1313 Configure the Integration Schema for Payroll

The schema created in “e*Insight Implementation (eIJSchema)” on page 96 does not
need to be modified for this example.

1314 Run and Test the e*Insight scenario

Once the schema has been set up in e*Gate you can run the scenario.

Use the instructions in “Run and Test the e*Insight scenario” on page 117 to test your
sub-process.

e*Insight Business Process Manager Implementation Guide 204 SeeBeyond Proprietary and Confidential

Chapter 14

e*Insight Sub-Process Implementation
(elSchema)

This chapter discusses the steps involved to enhance the previous case study to include
the Sub-Process.

The implementation starts with a local Sub-Process and then enhanced to demonstrate
the use of the Remote Sub-Process and Dynamic Sub-Process.

This case study is a continuation of the previous example. See “e*Insight
Implementation (eI[Schema)” on page 133 for the initial configuration instructions.

141 Overview of the Sub-Process Example

The major steps in the implementation are:

1 Create and configure a new business process to perform the activities required for
checking inventory.

2 Update the ProcessOrder business process to replace the Check_Inv activity with a
Sub-Process.

3 Use the e*Insight GUI to configure the e*Gate schema that supports e*Insight.
4 Add and configure the user-defined e*Gate components.
5 Run and test the scenario.

The chapter begins with a description of the scenario and then shows how to use these
steps to set it up.

e*Insight Business Process Manager Implementation Guide 205 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.2
e*Insight Sub-Process Implementation (elSchema) Create the CheckInventory BP in e*Insight

142 Create the CheckInventory BP in e*Insight

The following is a summary of the procedure for creating a BP in the e*Insight GUL
1 Create a business process named CheckInventory.

2 Add the activities.

3 Make the connections between the activities.

4 Enable the business process version.

For more information on creating a business process and using the e*Insight GUI, see
the e*Insight Business Process Manager User’s Guide.

Use the diagram shown in Figure 125 and the following tables to create the BP in the
e*Insight.

Figure 125 Checklnventory Business Process Model

Check_Inw

e*Insight Business Process Manager Implementation Guide 206 SeeBeyond Proprietary and Confidential

Chapter 14
e*Insight Sub-Process Implementation (elSchema)

Section 14.3

Configure the Integration Schema for Checklnventory

Table 41 BP Global Attributes

Attribute Type Data Direction
Item_Number String Input
Order_Quantity Number Input
Order_Status String Output
In_Stock Boolean Output

Table 42 Activity Attributes
Activity Attribute(s) Input/Output
Check_Inv Item_Number Input
Order_Quantity Input
In_Stock Output
Order_Status Output

143 Configure the Integration Schema for CheckInventory

The Check_Inv activity uses the eX_Check_Inv BOB that was created in “Creating the
eX_Check_Inv BOB” on page 141.

To configure the Check_Inv Activity

1 In the e*Insight GUI, open the Check_Inv activity properties.

On the General tab, select the BOB e*Gate module.

Check the module name is eX_Check_Inv, and modify if necessary.

2
3
4 Check that the correct Participating Host is selected.
5

Close the Check_Inv Activity properties.

e*Insight Business Process Manager Implementation Guide 207

SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
e*Insight Sub-Process Implementation (elSchema) Modify the ProcessOrder BP in e*Insight

144 Modify the ProcessOrder BP in e*Insight

The following is a summary of the procedure for modifying the ProcessOrder BP in the
e*Insight GUIL

1 Delete the Check_Inv activity.
2 Add the Check_Inventory Sub-Process.
3 Make the connections between the sub-process, decision gate and activity as shown

in Figure 126.

Figure 126 ProcessOrder BP with Sub-Process

Check_|nventony

T
Out_oflnw '
l: Ship_0Ord :l

4 Configure the Check_Inventory sub-process properties.
A Assign the CheckInventory business process as the sub-process.

B Map the sub-process attributes to business process attributes as defined in Table
43.

Table 43 Sub-Process attribute mapping

Sub-Process Attributes | Business Process Attributes | Direction
Item_Number Item_Number Input
Order_Quantity Order_Quantity Input
In_Stock In_Stock Output
Order_Status Order_Status Output

e*Insight Business Process Manager Implementation Guide 208 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.5
e*Insight Sub-Process Implementation (elSchema) Configure the Integration Schema for ProcessOrder

Note: In this example, the sub-process attribute names and the business process attributes
names are the same. This is not a requirement for the sub-process, however, it is a
requirement for the dynamic sub-process.

For more information on creating a business process and using the e*Insight GUI, see
the e*Insight Business Process Manager User’s Guide.

145 Configure the Integration Schema for ProcessOrder

The schema created in “e*Insight Implementation (eISchema)” on page 133 does not
need to be modified for this example.

146 Run and Test the e*Insight scenario

Once the schema has been set up in e*Gate you can run the scenario.

Use the instructions in “Run and Test the e*Insight scenario” on page 162 to test your
sub-process.

e*Insight Business Process Manager Implementation Guide 209 SeeBeyond Proprietary and Confidential

Chapter 14

Section 14.7

e*Insight Sub-Process Implementation (elSchema) Overview of the Dynamic Sub-Process Example

147 Overview of the Dynamic Sub-Process Example

The Dynamic Sub-Process Example is a continuation of the previous example.

In this example the Business Process that is called as the Sub-Process depends on where
the order is being delivered. If the order is for California, then the Check_Inv_CA
Business Process is called, and if the order is for Oregon, then the Check_Inv_OR
Business Process is called.

The major steps in the implementation are:

1

3
4
5

Create and configure two new business processes (Check_Inv_CA for California
and Check_Inv_OR for Oregon) to perform the activities required for checking
inventory.

Update the ProcessOrder business process to replace the Check_Inventory sub-
process with a dynamic sub-process.

Use the e*Insight GUI to configure the e*Gate schema that supports e*Insight.
Add and configure the user-defined e*Gate components.

Run and test the scenario.

The chapter begins with a description of the scenario and then shows how to use these
steps to set it up.

e*Insight Business Process Manager Implementation Guide 210 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.8
e*Insight Sub-Process Implementation (elSchema) Create the CA BP in e*Insight

14s Create the CA BP in e*Insight

The following is a summary of the procedure for creating a Business Process for
California orders.

1 Export business process named CheckInventory.
Note: The exported file is used in “Create the OR BP in e*Insight” on page 214.

2 Rename the CheckInventory business process CA.

3 Select the enabled version, and from the File menu, select Save as New Version.
4 Rename the activity Check_Inv_CA.
5

Enable the business process version.

149 Configure the Integration Schema for CA

To configure the Check_Inv_CA activity using Monk
1 In the e*Insight GUI, open the Check_Inv_CA activity properties.
2 On the General tab, select the BOB e*Gate module.
3 Click New.
The Define Collaboration dialog appears.
4 Click OK.

5 Create eX_Check_Inv_CA.tsc. The source and destination Event Type Definitions
are eX_Standard_Event.

The actual CRS script is created later in “To create eX_Check_Inv_CA.tsc using
Monk” on page 213.

6 Save the CRS.
7 Close the editor.

8 In the Check_Inv_CA activity properties, check the module name is
eX_Check_Inv_CA, and modify if necessary.

9 Click Configure e*Gate Schema.
You may be required to log into e*Gate.
10 Click OK, to close the information dialog.
11 Close the Check_Inv_CA Activity properties.

e*Insight Business Process Manager Implementation Guide 211 SeeBeyond Proprietary and Confidential

Chapter 14

e*Insight Sub-Process Implementation (elSchema)

Section 14.9
Configure the Integration Schema for CA

To configure the Check_Inv_CA activity using Java

1
2
3

10

11

12
13

In the e*Insight GUI, open the Check_Inv_CA activity properties.
On the General tab, select the BOB e*Gate module.

Click New.

The Define Collaboration dialog appears.

Select the Define Mapping tab.

Configure the instances as shown in Figure 127.

Figure 127 Define Mapping for eX_Check_Inv

Gereral Collaboration bapping I

Instance Mame ETD Find ... I Trigger I tanual
ex_Check_lnv Jetd/eBl/el_StandardEwent.xsc | Find... [in =1 -
ex_to_eBPM Jetd/eBl/el_StandardEwent.xsc | Find.. o][-
| | i
Add Instance | Bemove Instance |
Ok I Cancel | Help |
Click OK.

Create eX_Check_Inv_CA .xsc.

The actual CRS is created later in “To create eX_Check_Inv_CA.xsc using Java” on

page 213.
Save the CRS.
Close the editor.

In the Check_Inv_CA activity properties, check the module name is
eX_Check_Inv_CA, and modify if necessary.

Click Configure e*Gate.

You may be required to log into e*Gate.

Click OK, to close the information dialog.

Close the Check_Inv_CA Activity properties.

For more information on creating a business process and using the e*Insight GUI, see
the e*Insight Business Process Manager User’s Guide.

e*Insight Business Process Manager Implementation Guide 212

SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.9
e*Insight Sub-Process Implementation (elSchema) Configure the Integration Schema for CA

Creating the CRS in e*Gate

Since the CRS for eX_Check_Inv_CA BOB is very similar to the eX_Check_Inv CRS
previously created you can copy this instead of creating a new script from scratch.

To create eX_Check_Inv_CA.tsc using Monk
1 Open the Collaboration Editor.
2 Open eX_Check_Inv.tsc.

3 From the File menu, select Save As, and enter the name eX_Check_Inv_CA.tsc.
You should replace the existing file.

4 Close the editor.

To create eX_Check_Inv_CA.xsc using Java
1 Open the Collaboration Editor.
2 Open eX_Check_Inv.xsc.

3 From the File menu, select Save As, and enter the name eX_Check_Inv_CA.xsc.
You should replace the existing file.

4 Compile and then close the editor.

e*Insight Business Process Manager Implementation Guide 213 SeeBeyond Proprietary and Confidential

Chapter 14

Section 14.10

e*Insight Sub-Process Implementation (elSchema) Create the OR BP in e*Insight

1410 Create the OR BP in e*Insight

The following is a summary of the procedure for creating a Business Process for
Oregon.

1

Import the business process that was exported in “Create the CA BP in e*Insight”
on page 211.

Rename the imported CheckInventory business process OR.
Rename the activity Check_Inv_OR.

Enable the business process version.

1411 Configure the Integration Schema for OR

To configure the Check_Inv_OR activity using Monk

1
2
3

10
11

In the e*Insight GUI, open the Check_Inv_OR activity properties.
On the General tab, select the BOB e*Gate module.

Click New.

The Define Collaboration dialog appears.

Click OK.

Create eX_Check_Inv_OR:.tsc. The source and destination Event Type Definitions
are eX_Standard_Event.

The actual CRS script is created later in “To create eX_Check_Inv_OR.tsc using
Monk” on page 216.

Save the CRS.
Close the editor.

In the Check_Inv_OR activity properties, check the module name is
eX_Check_Inv_OR, and modify if necessary.

Click Configure e*Gate.

You may be required to log into e*Gate.

Click OK, to close the information dialog.
Close the Check_Inv_OR Activity properties.

e*Insight Business Process Manager Implementation Guide 214 SeeBeyond Proprietary and Confidential

Chapter 14

e*Insight Sub-Process Implementation (elSchema)

Section 14.11
Configure the Integration Schema for OR

To configure the Check_Inv_OR activity using Java

1
2
3

10

11

12
13

In the e*Insight GUI, open the Check_Inv_OR activity properties.
On the General tab, select the BOB e*Gate module.

Click New.

The Define Collaboration dialog appears.

Select the Define Mapping tab.

Configure the instances as shown in Figure 128.

Figure 128 Define Mapping for eX_Check_Inv

Gereral Collaboration bapping I

Instance Mame ETD Find ... I Trigger I tanual
ex_Check_lnv Jetd/eBl/el_StandardEwent.xsc | Find... [in =1 -
ex_to_eBPM Jetd/eBl/el_StandardEwent.xsc | Find.. o][-
| | i
Add Instance | Bemove Instance |
Ok I Cancel | Help |
Click OK.

Create eX_Check_Inv_OR.xsc.

The actual CRS is created later in “To create eX_Check_Inv_OR.xsc using Java” on

page 216.
Save the CRS.
Close the editor.

In the Check_Inv_OR activity properties, check the module name is
eX_Check_Inv_OR, and modify if necessary.

Click Configure e*Gate.

You may be required to log into e*Gate.

Click OK, to close the information dialog.

Close the Check_Inv_OR Activity properties.

For more information on creating a business process and using the e*Insight GUI, see
the e*Insight Business Process Manager User’s Guide.

e*Insight Business Process Manager Implementation Guide 215

SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.11
e*Insight Sub-Process Implementation (elSchema) Configure the Integration Schema for OR

Creating the CRS in e*Gate

Since the CRS for eX_Check_Inv_OR BOB is very similar to the eX_Check_Inv CRS
previously created you can copy this instead of creating a new script from scratch.

To create eX_Check_Inv_OR.tsc using Monk
1 Open the Collaboration Editor.
2 Open eX_Check_Inv.tsc.
3 Update the script to define 11111 as in stock.
4

From the File menu, select Save As, and enter the name eX_Check_Inv_OR.tsc.
You should replace the existing file.

5 Close the editor.

To create eX_Check_Inv_OR.xsc using Java
1 Open the Collaboration Editor.
2 Open eX_Check_Inv_OR.xsc.

3 From the File menu, select Save As, and enter the name eX_Check_Inv_OR.xsc.
You should replace the existing file.

4 Update the script to define 11111 as out of stock.
5 Compile and then close the editor.

e*Insight Business Process Manager Implementation Guide 216 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.12
e*Insight Sub-Process Implementation (elSchema) Modify the ProcessOrder BP in e*Insight

1412 Modify the ProcessOrder BP in e*Insight

The following is a summary of the procedure for modifying the ProcessOrder BP in the
e*Insight GUIL

1 Save the enable ProcessOrder business process as a new version.
2 Delete the Check_Inv activity.

3 Add the Check_Inventory Dynamic Sub-Process.

4

Make the connections between the dynamic sub-process, decision gate and activity
as shown in Figure 129.

Figure 129 ProcessOrder BP with Dynamic Sub-Process

Check_[nventory

Trotock ~Dee 0 OitafGiock

Out_of
Ship_Ord

Hy

5 Configure the Check_Inventory dynamic sub-process properties.

A Ensure that the dynamic sub-process uses the Incoming Global Attribute
Value.

B Map the global attributes to the sub-process as defined in Table 43.
Table 44 Global attribute mapping

Global Attributes Direction
Address_State Input
Item_Number Input
Order_Quantity Input
In_Stock Output
Order_Status Output

e*Insight Business Process Manager Implementation Guide 217 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.13
e*Insight Sub-Process Implementation (elSchema) Configure the Integration Schema for ProcessOrder

C From the Local Attributes tab, edit subBPName, and select Address_State from
the Value drop down list.

For more information on creating a business process and using the e*Insight GUI, see
the e*Insight Business Process Manager User’s Guide.

1413 Configure the Integration Schema for ProcessOrder

The schema created in “e*Insight Implementation (eISchema)” on page 133 does not
need to be modified for this example.

1414 Run and Test the e*Insight scenario

Once the schema has been set up in e*Gate you can run the scenario.

Use the instructions in “Run and Test the e*Insight scenario” on page 162 to test your
sub-process.

e*Insight Business Process Manager Implementation Guide 218 SeeBeyond Proprietary and Confidential

Chapter 15

e*Insight Remote Sub-Process
Implementation

This chapter discusses the steps involved to configure the Remote Sub-Process. It
covers the installation and configuration of Tomcat on single and multiple machines,
and also works through a detailed implementation.

This case study is a continuation of a previous example. See either “e*Insight
Implementation (eIJSchema)” on page 96 or “e*Insight Implementation (eISchema)”
on page 133 for the initial configuration instructions.

151 Overview

The major topics covered in this chapter are:
= Installation and configuration of Tomcat

= Implementation steps

152 Overview of the Remote Sub-Process

The Remote Sub-Process allows you to access a Business Process defined on a different
machine. Business Process messages are sent between the two e*Insight engines via a
Web/Application Server. The Web/Application Server routes the Business Process
message to the correct location.

Note: e*Insight uses Apache/Tomcat Web/Application Server.
The Remote Sub-Process can be used across machines with the LAN, WAN, or the

Internet. The deployment of machines that are separated by a firewall is considered in
“Installation of Tomcat and e*Insight on Different Hosts” on page 222.

e*Insight Business Process Manager Implementation Guide 219 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.3
e*Insight Remote Sub-Process Implementation Installation and Configuration of Tomcat

Figure 130 Remote Sub-Process Overview

System A System B

e*Insight

/ Engine

e*Insight

Remote
Sub-Process

Remote
Business Process

The Remote Sub-Process defined in this scenario uses Apache/Tomcat as the Web/
App Server. Tomcat is provided with e*Insight, and this needs to be installed and
configured before using the Remote Sub-Process with SOAP.

153 Installation and Configuration of Tomcat

This section describes how to install and configure Tomcat. This procedure is divided
into three sections:

Table 45 Steps for Installation and Configuration of Tomcat

Step Procedure
1 | Install Tomcat “Installing Tomcat” on page 220
2 | Configure Tomcat “Configuring Tomcat” on page 221
3 | Deploy the SOAP service “Deploying the SOAP Service” on
page 221

Installing Tomcat

The e*Insight installation provides Tomcat and additional files required for the Soap
implementation.

To install Tomcat

1 Install the SOAP add-on via the Installation Wizard. For more information, see the
e*Insight Business Process Manager Installation Guide.

e*Insight Business Process Manager Implementation Guide 220 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.3
e*Insight Remote Sub-Process Implementation Installation and Configuration of Tomcat

2 Unzip jakarta-tomcat-3.2.1.zip

Note: When you install from the zip file (in the <elnsight>\SOAP folder), extract the files
to the root folder on your C: drive. The zip file creates a folder named jakarta-tomcat-
3.2.1 with accompanying files and subfolders.

Configuring Tomcat

This section describes how to configure Tomcat once it has been installed. The
procedure updates and copies files that are required for an e*Insight/Soap
implementation.

To configure Tomcat

1 Open <elnsight>\Soap\elnsight_tomcat.bat. Locate the EINSIGHT variable and
ensure that it is set to <eInsight>\Soap.

2 Copy the following files from <elnsight>\Soap.
+ copy elnsight_startup.bat to <tomcat>\bin
+ copy elnsight_tomcat.bat to <tomcat>\bin
+ copy soap.war to <tomcat>\webapps
3 Edit ElnsightBridge.properties to connect to correct database.
Note: You should make sure that when you set parameter values, you do not add any
trailing spaces, as these are interpreted as part of the parameter.
4 Set system environment classpath c:\elnsight\soap.
A Go to Control Panel
B Select System
C Select Advanced tab
D Select Environment Variables
E Edit CLASSPATH on system variables
FAdd "c:\elnsight\soap" to Variable Value to the front

5 From a command prompt, change directory to <tomcat> folder and run

bi n\ el nsi ght _startup. bat

Deploying the SOAP Service

The Tomcat Server has to be made aware of the SOAP service and the methods that it
can use. This is achieved by deploying the SOAP service using the procedure described
below.

To Deploy the SOAP Service
1 Open <elnsight>\Soap\registerSoapService.cmd.

2 Edit the following variables for your system:

e*Insight Business Process Manager Implementation Guide 221 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.4
e*Insight Remote Sub-Process Implementation Installation of Tomcat and e*Insight on Different Hosts

SOAP_SERVI CE
| NTEGRATOR
TOMCAT_HOVE
JAVA_HOVE

3 Open elnsightDeploymentDescripter.xml in any text editor. Modify the following
parameter:

i d=" <URN>"
where <URN> should be in the format urn:<user defined name>.
4 In a command prompt, change directory to <einsight>\soap.
5 Run RegisterSoapService.cmd.

Note: Before you run registerSoapService.cmd, make sure your Apache Tomcat service is
running.

6 Start Internet Explorer and go to url: http://<webhost>:8080/soap/admin/
index.html

7 Click List to check that the URN has been successfully deployed.

154 Installation of Tomcat and e*Insight on Different Hosts

There are a number of considerations when deploying Tomcat and e*Insight on
different hosts. Figure 131 shows a possible scenario, where Tomcat and e*Insight are
installed on separate machines and are separated from the external application by a
firewall.

Figure 131 e*Insight and Tomcat Deployment

e*Gate
Registry Host

e’Insight Port 1521 | Tomcat < Port 80 > Internet
Database -~ Port0 .
e*Insight GUI
Firewall

e*Insight Business Process Manager Implementation Guide 222 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.5
e*Insight Remote Sub-Process Implementation Overview of the Remote Sub-Process Example (elJSchema)

The firewall is configured to use port 80 to communicate with Tomcat. Tomcat is
configured to communicate with the database using a direct database connection.

Installing Tomcat on a different machine to e*Insight

The installation of the SOAP add-on installs all the files required for the installation and
configuration of Tomcat. To ensure that the correct files reside on the Tomcat machine
either:

A From the Tomcat machine, run the installation wizard and install the SOAP add-
on, or

B Install the SOAP add-on on another machine and then copy the
<elnsight>\SOAP directory to the C drive on the Tomcat machine.

To configure Tomcat, see “To configure Tomcat” on page 221.

155 Overview of the Remote Sub-Process Example
(el)Schema)

This case study is a continuation of the Payroll example. The procedure that checked
the inventory is going to be moved to a remote system and SOAP messages is used to
send the data to and from the remote process.

The Payroll example must be completed before the remote sub-process example. See
“e*Insight Implementation (eIJSchema)” on page 96 for the initial configuration
instructions.

For this example, SystemA is the machine where the Payroll example was created.
SystemB is the machine where the business process that calculates the bonus runs.

The major steps in the implementation are:
Configure Tomcat on both machines.
Create the CalculateBonus business process.

1
2
3 Create the e*Gate schema that supports the CalculateBonus business process.
4 Update the Payroll business process.

5

Run and test the scenario.

156 Install and configure Tomcat

Tomcat needs to be installed on both SystemA and SystemB. In a real scenario, it may
be necessary to run Tomcat on a different machine to e*Insight, but in this example we
assume that Tomcat and e*Insight run on the same machine.

e*Insight Business Process Manager Implementation Guide 223 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.7
e*Insight Remote Sub-Process Implementation Create the CalculateBonus BP in e*Insight

Follow the instructions in “Installation and Configuration of Tomcat” on page 220 for
both machines. Define the URN'’s as follows:

SystemA (Original system) urn:Payroll

SystemB (Added for the Remote Sub-Process example) urn:CalculateBonus

157 Create the CalculateBonus BP in e*Insight

The following is a summary of the procedure for creating a BP in the e*Insight GUL
1 Create a business process named CalculateBonus.

2 Add the activities.

3 Make the connections between the activities.

4 Create and assign the global attributes.

Use the diagram shown in Figure 134 and the following tables to create the BP in

e*Insight.
Figure 132 CalculateBonus Business Process Model
| Calculate_Bonus
Table 46 BP Global Attributes
Attribute Type Data Direction Default Value
Salary Number Input
Grade String Input
Bonus Number Output 0

e*Insight Business Process Manager Implementation Guide 224 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.8
e*Insight Remote Sub-Process Implementation Configure the Integration Schema for CalculateBonus
Table 47 Activity Attributes
Activity Attribute(s) Input/Output
Calculate_Bonus Salary Input
Grade Input
Bonus Output
5 In the business process properties, select Send Business Process Done Event.

6 Enable the business process version.

To configure the Partner Information

1
2

From the Options menu, select Define Information for Partners.
Enter UUID.

This is a unique name that identifies your e*Insight database to other Trading
Partners. For example, SystemB.

Enter the URN.

This corresponds to the URN setup in the SOAP client. For example,
urn:CalculateBonus.

Enter the URL.

This is the location of the SOAP client. By default this is http://localhost:8080/soap/
servlet/rpcrouter.

Click OK.

155 Configure the Integration Schema for CalculateBonus

All the activities in this example are carried out using e*Gate components.

15.8.1 Create the CalculateBonus Schema

Use the following procedure to create a copy of the elJ[Schema:

1
2
3
4
5
6

From the e*Insight GUI File menu, select New e*Gate Schema.
Enter or select a Registry Host on which to create the schema.
Enter a Username and Password that is valid on the Registry Host.
From the Based on list, select e[JSchema (Java).

In the Name box, enter CalculateBonus.

Click OK.

e*Insight Business Process Manager Implementation Guide 225 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.8
e*Insight Remote Sub-Process Implementation Configure the Integration Schema for CalculateBonus

15.82 Configure the CalculateBonus Schema

Since the module for the Calculate_Bonus activity has been created in a previous case
study, you only need to import the module into the CalculateBonus schema and
configure the e*Insight engine and JMS server. These three procedures are described
below.

Create the Calculate_Bonus activity BOB

1 In the SystemA e*Gate Enterprise Manager GUI, open the Payroll schema.
2 Select the eX_Calculate_Bonus BOB.
3 From the File menu select Export Module Definitions to File.
The Select Archive File dialog appears.
4 Enter eX_Calculate_Bonus, and then click OK.
The file eX_Calculate_Bonus.zip is created.

5 Log into the SystemB e*Gate Enterprise Manager GUI and open the
CalculateBonus schema.

6 From the File menu select Import Module Definitions from File.
7 Locate the file created in step 4.
8 Click OK.

Edit the elcp_elnsightEngine Connection Configuration File

Most of the parameter settings in the elcp_elnsightEngine connection’s configuration
file should not be changed. “Configuring the e*Insight Engine Connection” on
page 34 discusses the parameters that may need to be changed depending on the
implementation. Use the e*Way Editor and the information in “Configuring the
e*Insight Engine Connection” on page 34 to make the required changes for the
CalculateBonus example.

Configure the JMS Connection

The JMS connection for e*Insight must be configured for your system. The minimal
configuration required for this implementation is described in this section. For more
information on JMS IQ Services, see SeeBeyond [MS Intelligent Queue User’s Guide.

To configure the JMS connection

1 From the e*Gate Enterprise Manager GUI components view, select the e*Way
Connections folder.

Select the eX_cpelnsight]MS connection, and click the Properties tool.
In the e*Way Connection Configuration File section, click Edit.

From the Goto Section list, select Message Service.

ga Hh W N

Enter a Server Name and Host Name where your JMS server resides.

e*Insight Business Process Manager Implementation Guide 226 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.9
e*Insight Remote Sub-Process Implementation Modify the Payroll BP in e*Insight

159 Modify the Payroll BP in e*Insight

The following is a summary of the procedure for modifying the Payroll BP in the
e*Insight GUIL

1 Delete the Calculate_Bonus activity.
2 Add the Calculate. Bonus Remote Sub-Process.

3 Make the connections between the remote sub-process, decision gate and activity as
shown in Figure 135.

Figure 133 Payroll BP with Remote Sub-Process

Check_Eligitiity

ligibleF orB onus onus_Eligibiy_Decisio EmployedL T 3Months
(Calculate_Bonus) Departmen{tatE ligble | Update_Status |

4 Assign EligibleForBonus as the default link in Bonus_Eligibility_Decision.
5 Configure the Partner Information
A From the Options menu, select Define Information for Partners.

B Enter UUID.
This is a unique name that identifies your e*Insight database to other Trading
Partners. For example, SystemA.

C Enter the URN.
This corresponds to the URN setup in the SOAP client. For example,
urn:Payroll.

D Enter the URL.
This is the location of the SOAP client. By default this is http://localhost:8080/
soap/servlet/rpcrouter.

e*Insight Business Process Manager Implementation Guide 227 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.10
e*Insight Remote Sub-Process Implementation Configure the Integration Schema for Payroll

E Click OK.
6 Configure the Calculate_Bonus remote sub-process properties.

A Enter the relevant information for the remote e*Insight database including URL,
URN, user name and password. Use the following values:

URL http://<SystemB>:8080/soap/servlet/rpcrouter
URN urn:CalculateBonus

User Name Anonymous

Password

Note: To use an Anonymous login you must create a user called Anonymous on the
remote system. Although e*Xchange Administrator requires that a password is
defined to create the user, this does not need to be supplied when connecting via
SOAP.

Click Connect, and select the CalculateBonus business process from the Remote Sub-
Process drop-down list

B Map Attributes as shown in Table 51.
Table 48 Sub-Process attribute mapping

Sub-Process Attributes | Business Process Attributes | Direction

Salary Salary Input
Grade Grade Input
Bonus Bonus Output

7 Enable the business process version.

For more information on creating a business process and using the e*Insight GUI, see
the e*Insight Business Process Manager User’s Guide.

110 Configure the Integration Schema for Payroll

The schema created in “e*Insight Implementation (eI[Schema)” on page 133 does not
need to be modified for this example.

e*Insight Business Process Manager Implementation Guide 228 SeeBeyond Proprietary and Confidential

Chapter 15

Section 15.11

e*Insight Remote Sub-Process Implementation Run and Test the e*Insight scenario

111 Run and Test the e*Insight scenario

Once the schema has been set up in e*Gate you can run the scenario.

To test the Remote Sub-Process scenario

1

2
3
4

Start Tomcat on both machines.
Start the control broker for Payroll, and check all components are running.
Start the control broker for CalculateBonus, and check all components are running.

Rename the data file.

To monitor a remote business process

1
2

Select the remote business process, and then select the down arrow.

If prompted, enter a user name and password provided by the partner.

1512 Overview of the Remote Sub-Process Example
(elSchema)

This case study is a continuation of the Process Order example. The procedure that
checked the inventory is going to be moved to a remote system and SOAP messages are
used to send the data to and from the remote process.

The Process Order example must be completed before the remote sub-process example.
See “e*Insight Implementation (eISchema)” on page 133 for the initial configuration
instructions.

For this example, SystemA is the machine where the Process Order example was
created. SystemB is the machine where the business process that checks the inventory
runs.

The major steps in the implementation are:

1
2
3
4
5

Configure Tomcat on both machines.

Create the CheckInventory business process.

Create the e*Gate schema that supports the CheckInventory business process.
Update the ProcessOrder business process.

Run and test the scenario.

e*Insight Business Process Manager Implementation Guide 229 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.13
e*Insight Remote Sub-Process Implementation Install and configure Tomcat

1513 Install and configure Tomcat

Tomcat needs to be installed on both SystemA and SystemB. In a real scenario, it may
be necessary to run Tomcat on a different machine to e*Insight, but in this example we
assume that Tomcat and e*Insight run on the same machine.

Follow the instructions in “Installation and Configuration of Tomcat” on page 220 for
both machines. Define the URN'’s as follows:

SystemA urn:ProcessOrder

SystemB urn:Checklnventory

1514 Create the CheckInventory BP in e*Insight

The following is a summary of the procedure for creating a BP in the e*Insight GUIL
1 Create a business process named CheckInventory.

2 Add the activities.

3 Make the connections between the activities.

4 Create and assign the global attributes.

Use the diagram shown in Figure 134 and the following tables to create the BP in
e*Insight.

Figure 134 Checklnventory Business Process Model

e*Insight Business Process Manager Implementation Guide 230 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.15
e*Insight Remote Sub-Process Implementation Configure the Integration Schema for Checklnventory

Table 49 BP Global Attributes

Attribute Type Data Direction
Item_Number String Input
Order_Quantity Number Input
Order_Status String Output
In_Stock Boolean Output

Table 50 Activity Attributes

Activity Attribute(s) Input/Output
Check_Inv Item_Number Input
Order_Quantity Input
In_Stock Output
Order_Status Output

5 In the business process properties, select Send Business Process Done Event.
6 Enable the business process version.
To configure the Partner Information
1 From the Options menu, select Define Information for Partners.
2 Enter UUID.

This is a unique name that identifies your e*Insight database to other Trading
Partners. For example, SystemB.

3 Enter the URN.

This corresponds to the URN setup in the SOAP client. For example,
urn:CheckInventory.

4 Enter the URL.

This is the location of the SOAP client. By default this is http://localhost:8080/soap/
servlet/rpcrouter.

5 Click OK.

1515 Configure the Integration Schema for CheckInventory

All the activities in this example are carried out using e*Gate components.

15.15.1Create the Checklnventory Schema

Use the following procedure to create a copy of the elSchema:

1 Open the elSchema in the e*Gate Enterprise Manager GUL

e*Insight Business Process Manager Implementation Guide 231 SeeBeyond Proprietary and Confidential

ec".i‘s’fgﬁﬂ Remote Sub-Process Implementation Configure the Integration Schema for Ch:glfltmg;?oli
A Start the e*Gate Enterprise Manager.
B Log in to eI[Schema.
2 Export the elSchema to a file <eGate>\client\eISchema.zip.
A Select Export Schema Definitions to File ... from the File pull-down menu.

B In the Select archive File dialog box enter eISchema.zip in the File name text
box, and then click Save.

3 Create a new schema using the elSchema export file as a template.
A Select New Schema from the File pull-down menu.
Enter CheckInventory in the text box.
Mark the Create from export check box.
Click Find and browse for the elSchema.zip file created in step 2 above.

Click Open.

m O O &

15.152Configure the e*Insight engine

Most of the parameter settings in the eX_eBPM engine’s configuration file should not
be changed. Use the e*Way Editor and the information in “Configuring the e*Insight
Engine” on page 53 to make the required changes for the CheckInventory example.

15.15.3Create the Check_Inv activity BOB

1 Inthe SystemA e*Gate Enterprise Manager GUI, open the ProcessOrder schema.
2 Select the eX_Check_Inv BOB.
3 From the File menu select Export Module Definitions to File.
The Select Archive File dialog appears.
4 Enter eX_Check_Inv, and then click OK.
The file eX_Check_Inv.zip is created.

5 Log into the SystemB e*Gate Enterprise Manager GUI and open the
CheckInventory schema.

6 From the File menu select Import Module Definitions from File.
7 Locate the file created in step 4.
8 Click OK.

e*Insight Business Process Manager Implementation Guide 232 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.16
e*Insight Remote Sub-Process Implementation Modify the ProcessOrder BP in e*Insight

1516 Modify the ProcessOrder BP in e*Insight

The following is a summary of the procedure for modifying the ProcessOrder BP in the
e*Insight GUIL

1 Delete the Check_Inv activity.
2 Add the Check_Inventory Remote Sub-Process.
3 Make the connections between the remote sub-process, decision gate and activity as

shown in Figure 135.

Figure 135 ProcessOrder BP with Remote Sub-Process

Check_lnwventory

InStock @ OutOfStock
(Ship_Ord]' Dut_of_lnv:l

Merge

l:Send_Status:l

C)

4 Configure the Partner Information.
A From the Options menu, select Define Information for Partners.

B Enter UUID.
This is a unique name that identifies your e*Insight database to other Trading
Partners. For example, SystemA.

C Enter the URN.
This corresponds to the URN setup in the SOAP client. For example,
urn:ProcessOrder.

D Enter the URL.
This is the location of the SOAP client. By default this is http://localhost:8080/
soap/servlet/rpcrouter.

E Click OK.

5 Configure the Check_Inventory remote sub-process properties.

e*Insight Business Process Manager Implementation Guide 233 SeeBeyond Proprietary and Confidential

Chapter 15 Section 15.17
e*Insight Remote Sub-Process Implementation Configure the Integration Schema for ProcessOrder

A Enter the relevant information for the remote e*Insight database including URL,
URN, user name and password. Use the following values:

URL http://SystemB:8080/soap/servlet/rpcrouter
URN urn:Checklnventory

User Name Anonymous

Password

Note: To use an Anonymous login you must create a user called Anonymous on the
remote system. Although e*Xchange Administrator requires that a password is
defined to create the user, this does not need to be supplied when connecting via
SOAP.

Click Connect, and select the CheckInventory business process from the Remote Sub-
Process drop-down list

B Map Attributes as shown in Table 51.
Table 51 Sub-Process attribute mapping

Sub-Process Attributes | Business Process Attributes | Direction
Item_Number Item_Number Input
Order_Quantity Order_Quantity Input
In_Stock In_Stock Output
Order_Status Order_Status Output

6 Enable the business process version.

For more information on creating a business process and using the e*Insight GUI, see
the e*Insight Business Process Manager User’s Guide.

117 Configure the Integration Schema for ProcessOrder

The schema created in “e*Insight Implementation (eISchema)” on page 133 does not
need to be modified for this example.

118 Run and Test the e*Insight scenario

Once the schema has been set up in e*Gate you can run the scenario.

In-Stock Processing

Use the following procedure to test the functionality of the example for an item that is
in stock.

e*Insight Business Process Manager Implementation Guide 234 SeeBeyond Proprietary and Confidential

g’blerl\rs)?gr\:gemote Sub-Process Implementation Run and Test the e*lns?gﬁtﬁ;)c':elg}}g
To test the Remote Sub-Process scenario
1 Start Tomcat on both machines.
2 Start the control broker for ProcessOrder, and check all components are running.
3 Start the control broker for CheckInventory, and check all components are running.
4 Rename the data file.
To monitor a remote business process
1 Select the remote business process, and then select the down arrow.

2 If prompted, enter a user name and password provided by the partner.

e*Insight Business Process Manager Implementation Guide 235 SeeBeyond Proprietary and Confidential

Chapter 16

Active and Passive Modes

This chapter discusses the difference between implementing an actively controlled and
passively controlled activity.

161 Overview

The difference between running an activity in active and passive mode is how the
activity is started. In active mode e*Insight sends a message to e*Gate to start an
activity. e*Insight requires a message from e*Gate to determine that the activity has
completed processing. If you choose this option, you can manually repair and restart
failed activities.

In passive mode, e*Insight does not send a message to start the activity, e*Gate must be
configured to do this. e*Insight requires a message from e*Gate to determine that the
activity has completed processing. If you choose this option, you cannot manually
repair or restart failed activities.

This chapter describes a very simple business process that is first created with all
activities using active mode. Then it is updated so one activity uses passive mode.

16.1.1 Case Study

The case study discussed in this chapter illustrates a simplified implementation of
order processing. In this case, e*Insight receives an incoming order as a delimited text
file. Once e*Insight has received the order the customer is billed and then the order is
shipped. See Figure 138 for the Business Process diagram.

e*Insight Business Process Manager Implementation Guide 236 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.1
Active and Passive Modes Overview

16.1.2 Case Study - Active Control Mode

Figure 136 shows the components involved in the business process implementation
when both activities are running in an active mode. Below is a description of how the
data flows between these components for an item that is shipped successfully.

Figure 136 e*Insight Data Flow Diagram

e*Way
START_BP

@ extoespm

(@ exBil_Customer Do

@ eX_Ship_Order_Do

&X_Bill_Customer_Do

BOB
eX_Bill_Customer

e*Insight
Database

eX_eBPM
Engine >

eX_to_eBPM

H olele,
|
|

(® extoespm

BOB
eX_Ship_Order

Figure 136 data flow description

@ The user-defined START_BP e*Way picks up the text file containing the order
information from a shared location on the network, uses the order information to
create the event that causes the e*Insight engine to start a business process instance,
and publishes it using the eX_to_eBPM Event Type. The e*Insight engine retrieves
the Event and uses the information it contains to start the BPL

@ The e*Insight engine publishes a “Do” Event (eX_Bill_Customer_Do) for first
activity in the business process (Bill_Customer). eX_Bill_Customer BOB, the
e*Gate component that corresponds to this activity in the business process,
retrieves this Event and uses the information it contains to check the availability of
the items ordered.

® When the Bill_Customer activity is finished, the eX_Bill_Customer BOB publishes
a “Done” Event using the eX_to_eBPM Event Type.

@ The e*Insight engine publishes a “Do” Event (eX_Ship_Order_Do) corresponding
to the Ship_Order activity in the business process. The eX_Ship_Order BOB
retrieves this Event and uses the information it contains to ship the order to the
customer.

® When the Ship_Order activity is finished, the eX_Ship_Order BOB publishes a
“Done” Event indicating that the order has been shipped.

e*Insight Business Process Manager Implementation Guide 237 SeeBeyond Proprietary and Confidential

Chapter 16

Active and Passive Modes

Section 16.1
Overview

16.1.3 Case Study - Passive Control Mode

We are now going to change the configuration of the Ship_Order activity to use passive
control, that is e*Gate controls the Activity rather than e*Insight. The e*Gate configuration
is modified so the Bill_Customer collaboration publishes eX_Ship_Order_Do in addition to
returning a “Done” message to the e*Insight engine.

Figure 137 e*Insight Data Flow Diagram

e*Way
START_BP

(D exto_esPm

eX_Bill_Customer

eX_Ship_Order

@ eX_Bill_Customer_Do

@ eX_Bill_Customer_Do

BOB

eX_eBPM
Engine

e*Insight
Database

eX_to_eBPM

©lEC,

@ eX_to_eBPM

Figure 136 data flow description

O]

®

@

®

e*Insight Business Process Manager Implementation Guide 238

The user-defined START_BP e*Way picks up the text file containing the order
information from a shared location on the network, uses the order information to
create the event that causes the e*Insight engine to start a business process instance,
and publishes it using the eX_to_eBPM Event Type. The e*Insight engine retrieves
the Event from the IQ and uses the information it contains to start the BPL

The e*Insight engine publishes a “Do” Event (eX_Bill_Customer) for first activity
in the business process (eX_Bill_Customer_Do). eX_Bill_Customer BOB, the
e*Gate component that corresponds to this activity in the business process,
retrieves this Event and uses the information it contains to check the availability of
the items ordered.

When the Bill_Customer activity is finished, the eX_Bill_Customer BOB publishes
a “Done” Event using the eX_to_eBPM Event Type.

The Bill_Customer activity also publishes a “Do” Event (eX_Ship_Order_Do)
corresponding to the Ship_Order activity in the business process. The
eX_Ship_Order BOB retrieves this Event and uses the information it contains to
ship the order to the customer.

When the Ship_Order activity is finished, the eX_Ship_Order BOB publishes a
“Done” Event indicating that the order has been shipped.

SeeBeyond Proprietary and Confidential

Active and Passive Modes * Gvericw
The major steps in the implementation are:
1 Create the business process (BP) in the e*Insight GUL
2 Use the e*Insight GUI to configure the e*Gate schema that supports e*Insight.
3 Configure the e*Insight engine.
4 Add and configure the user-defined e*Gate components.
5 Run and test the scenario.

This chapter shows how to use these steps to set it up. Since the configuration for steps
2 to 4 is different for elJSchema and elSchema, there is a separate section for each
schema type.

Follow the steps below to configure the schema using the active mode for all activities:
= Step 1: “Create the Order BP in e*Insight” on page 240
= Step 2, 3, and 4:
+ “Configure the Integration Schema (eIJSchema)” on page 241 or
+ “Configure the Integration Schema (eISchema)” on page 250
= Step 5: “Run and Test the e*Insight scenario” on page 255

Once the schema is working in active mode, then follow the steps below to modify one
activity to use passive mode using el]Schema:

A “Modify the Order BP in e*Insight (eIJSchema)” on page 256
B “Modify User-defined e*Gate Components (eIJSchema)” on page 256
C “Run and Test the e*Insight scenario” on page 259

Use the following steps if you are using elSchema:
A “Modify the Order BP in e*Insight (eISchema)” on page 260
B “Modify User-defined e*Gate Components (eISchema)” on page 260
C “Run and Test the e*Insight scenario” on page 261

e*Insight Business Process Manager Implementation Guide 239 SeeBeyond Proprietary and Confidential

Chapter 16
Active and Passive Modes

Section 16.2
Create the Order BP in e*Insight

162 Create the Order BP in e*Insight

The following is a summary of the procedure for creating a BP in the e*Insight GUL

Add the Activities.

Make the connections between the Activities.

Assign global attributes to Activities.

1
2
3 Add all the global attributes.
4
5

Configure the properties for the activities.

For more information on creating a business process and using the e*Insight GUI, see
the e*Insight Business Process Manager User’s Guide.

Figure 138 Order Process

1 Bill_Customner |

|: Ship_Order :l

)

The case study is implemented using both active and passive control for the

Ship_Order Activity.

The following Attributes should be configured for both the active and passive

examples.
Table 52 BP Global Attributes
Attribute Type Data Direction Default Value
Customer_Name String Input
[tem_Number String Input
Order_Quantity String Input
Order_Status String Internal Received
Table 53 Activity Attributes
Activity Attribute(s) Input/Output
Bill_Customer Customer_Name Input
Order_Status Output

e*Insight Business Process Manager Implementation Guide 240

SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.3
Active and Passive Modes Configure the Integration Schema (elJSchema)

Table 53 Activity Attributes

Activity Attribute(s) Input/Output
Ship_Order Cust_Name Input
Item_Number Input
Order_Status Output

163 Configure the Integration Schema (elJ)Schema)

All the activities in this example are carried out using e*Gate components. You must
first create a Schema (a copy of elJSchema) with the basic components required for
e*Insight. You then configure these components for your environment and create
additional components for the activities.

To create a copy of elJSchema
1 From the e*Insight GUI File menu, select New e*Gate Schema.
Enter or select a Registry Host on which to create the schema.

Enter a Username and Password that is valid on the Registry Host.

2
3
4 From the Based on list, select eIJSchema (Java).
5 In the Name box, enter Order.

6

Click OK.

Integration Schema Activity Components Summary

Use the information in Table 57 to configure the e*Gate schema that supports the

example.
Table 54 Integration Schema Activity Components
Participating . . Manual .
Name Type Host Active/Passive Restart TimeOut
eX_Bill_Customer | BOB localhost Active Yes Not used
eX_Ship_Order BOB localhost Active Yes Not used

For information on how to use the e*Insight GUI to configure the e*Gate Registry see
the e*Insight Business Process Manger User’s Guide.

e*Insight Business Process Manager Implementation Guide 241 SeeBeyond Proprietary and Confidential

e*Insight Business Process Manager Implementation Guide 242

Chapter 16
Active and Passive Modes

Creating the eX_Bill_Customer BOB

Section 16.3

Configure the Integration Schema (elJSchema)

The Bill_Customer translation implements the logic associated with billing the
customer. In this simple example, this component sets the “Order_Status” attribute

value.

To configure the Bill_Customer activity

1 In the e*Insight GUI, open the Bill_Customer activity properties.
2 On the General tab, e*Gate Module section, select a Module Type of BOB.
3 Click New.
The Define Collaboration dialog appears.
4 Click OK.
5 Create eX_Bill_Customer.xpr.

Figure 139 shows the eX_Bill_Customer CRS used in the example.

Figure 139 eX_Bill_Customer.xpr CRS

2% Collaboration Rules Editor - eX_Bill_Customer

File Edit WYiew Tools Help

=10l x|

#4

L o)
Source Events
« | =™ 18 EIStandardInout [s%_StandardEvent]

1% Destination Events

EIStandardInGut [e_StandardEvent T* 'E|;|

EP_EVENT [-3
hasBP_EVENT =
omitBP_EVENT =@

reset =
hd Availahle =S
i+ Block| =2 method| & var| [21 far| u it 1+ rulel B, switchl —+ case| [3) while] [*3 do| #= return| ! throwl@ tryl
I cakch

Business Rules

|_Customer ¢ public class e_Eill_ ke
e¥_Bill_Customer : public eX_Bill_Customer()

=% gxecuteBusinessRules : public boolean executeBusinessRules() throws Exception

retBoolean : boolean retBoolean = true;

Copy to output ; getEIStandardIndut), setBP _EVENT{getEIStandardInout), getBP_EVENTI));

Set Success : getEIStandardIndut), getBP _EVENT(), setSTATIUS("SUCCESS™;

Set Order_Status : getEIStandardIndut),getBP_EYENTL), setATTRIBUTE " Crder_Status","STRING", "Biling Customer™);
= return ¢ return retBoolean;

userInitialize ; public void userInitialized)

userTerminate : public void userTerminated)

ill_Custome = eX_Bill_CustomerBase implements 1CollaboratorExt
I

Class Properties

Description: m
Name: m
Implements: M
Extends: m

Access .
Modifiers: Il public [absti

Documentation:

6 Compile and save the CRS.
7 Close the editor.
8 In the Bill_Customer Activity properties, click Configure e*Gate Schema.
You may be required to log into e*Gate.
9 Click OK, to close the information dialog.
10 Close the Bill_Customer Activity properties.

SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.3
Active and Passive Modes Configure the Integration Schema (elJSchema)

Creating the eX_Ship_Order BOB

The Ship_Order translation implements the logic associated with shipping to the
customer. In this simple example, this component sets the “Order_Status” attribute
value.

To configure the Ship_Order activity
1 In the e*Insight GUI, open the Ship_Order activity properties.
2 On the General tab, e*Gate Module section, select a Module Type of BOB.
3 Click New.
The Define Collaboration dialog appears.
4 Click OK.
5 Create eX_Ship_Order.xpr.
Figure 139 shows the eX_Ship_Order CRS used in the example.

Figure 140 eX_Ship_Order.xpr CRS

2% Collaboration Rules Editor - eX_Ship_0Order (Sandbox) ;Iglll

File Edit WYiew Tools Help

4

"2 Source Events ™12 Destination Events

« |E1™ 2 E1standardInouk [eX_StandardEvent] ElStandardInGut [e_StandardEvent -5 4 |
[P BR_EVENT BP_EVENT [d)-R

hasBP_EVENT =
arnitBP_EVENT

L |

receive =

1k b:lockl -:-_@methodl @ varl [Forl A ifl 1K rulel =4 switchl = casel Lay whilel [dol‘.‘—' returnl ! throwl () tryl I catchl :

Class Properties

Description: |e¥_Ship_Order
retBoolean : boolean retBoolean = true; -
Copy to output ; getEIStandardInout(}.setBP_EVENT{getEIStandardInOLE().getBP_EYENT()); Name: |eX_Ship_Order
Set Success ; getETStandardInOuti), getBP_EYENTI), setSTATUS{"SUCCESS"; Implements: |1CollaboratorExt
Set Order_Status ; getEIStandardIngut(),getBP_EYENT(), setATTRIBUTE(" Order_Status","STRING","Shipping Order"); -

Extends: [e¥_Ship_OrderBase
= reburn reburn retBoolean;
itislize + oublic woi Access
% yserInitialize : public void userInitialize() Modifiere: Ird Fublic I abstract [

% yserTerminate | public void userTerminate!)
Documentation:

6 Compile and save the CRS.
7 Close the editor.
8 In the Ship_Order Activity properties, click Configure e*Gate Schema.
You may be required to log into e*Gate.
9 Click OK, to close the information dialog.
10 Close the Ship_Order Activity properties.

e*Insight Business Process Manager Implementation Guide 243 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.4
Active and Passive Modes Configure the e*Insight Engine (elJSchema)

164 Configure the e*Insight Engine (elJSchema)

The e*Insight engine runs in a specially configured Multi-Mode e*Way. You must make
changes to the configuration file for this e*Way to conform to the requirements of your
system. For example, you must specify the name of the e*Insight database to which the
e*Way connects.

Note: This example uses only one e*Insight engine. In an actual implementation, more
than one e*Insight engine can be configured to handle the required workload. In
such a case, you must make changes to each of the e*Insight engines.

Edit the elcp_elnsightEngine Connection Configuration File

Most of the parameter settings in the elcp_elnsightEngine connection’s configuration
file should not be changed. “Configuring the e*Insight Engine Connection” on
page 34 discusses the parameters that may need to be changed depending on the
implementation. Use the e*Way Editor and the information in “Configuring the
e*Insight Engine Connection” on page 34 to make the required changes for the
example.

1641 Configure the JMS Connection

The JMS connection for e*Insight must be configured for your system. The minimal
configuration required for this implementation is described in this section. For more
information on JMS IQ Services, see SeeBeyond [MS Intelligent Queue User’s Guide.

To configure the JMS connection

1 From the e*Gate Enterprise Manager GUI components view, select the e*Way
Connections folder.

Select the eX_cpelnsight]MS connection, and click the Properties tool.
In the e*Way Connection Configuration File section, click Edit.

From the Goto Section list, select Message Service.

g Hh W N

Enter a Server Name and Host Name where your JMS server resides.

165 Configure User-defined e*Gate Components
(elJSchema)

The user-defined components in an e*Insight implementation consist of two types: the
first type starts the business process, and second type runs as part of the business
process. The activity components are of the second type.

The Order example uses a file e*Way to start the business process and BOBs to run all
the other activities.

e*Insight Business Process Manager Implementation Guide 244 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.5
Active and Passive Modes Configure User-defined e*Gate Components (elJSchema)

Configuration Order for the User-defined Components
1 Add and configure the START_BP e*Way.

2 Configure the Collaborations for the activity components running as BOBs.

Important: All the integration schema associations are displayed in table format at the end of
this section. The sections dealing with e*Way configuration include tables detailing
the non-default e*Way parameter settings. The sections dealing with the Monk
Collaboration Rules Scripts show screen shots of these scripts as they appear in the
e*Gate Collaboration Editor.

1651 Configure the START_BP e*Way

The e*Way that sends the Event that starts the business process, named START_BP in
this example, must convert the incoming data into e*Insight Event format, as well as
send the appropriate acknowledgment to the e*Insight engine to create the Business
Process Instance (BPI).

The START_BP e*Way is completely user defined and must be added to the
elJSchema in the e*Gate Enterprise Manager. In an actual implementation, the choice
of e*Way (or BOB) would depend on the requirements of the situation. For example, if
the data were coming from an SAP system, you might select an SAP ALE e*Way; or if
the data were already in the e*Gate system, you could use a BOB to start the BPI. In the
present case, a text file on the local system provides the input data, therefore the
example uses a file e*Way to send the “Start” Event to the e*Insight engine.

Table 55 shows the steps to configure the START_BP e*Way.
Table 55 Configuration steps for the START_BP e*Way

Step Section
1 | Add the e*Way and create the e*Way “Step 1: Create the START_BP e*Way” on
configuration file page 245
2 | Create the Input ETD “Step 2: Create the Input ETD” on page 246
3 | Create the START_BP Collaboration Rules “Step 3: Create the START_BP
script (CRS) Collaboration” on page 247
4 | Configure the Collaboration in the GUI “Step 4: Configure the Collaboration in the
GUI” on page 249

Step 1: Create the START_BP e*Way

The e*Way for the Payroll example is a simple file e¥*Way (executable: stcewfile.exe)
that polls a directory (<eGate>\client\data\Order) for any file with the extension
“.fin” and moves it into the e*Insight system.

e*Insight Business Process Manager Implementation Guide 245 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.5
Active and Passive Modes Configure User-defined e*Gate Components (elJSchema)

Use the Enterprise Manager and the following table to add the START_BP e*Way and
create its configuration file.

Table 56 Start e*Way Parameters

Screen Parameter Setting
General Settings (Al (Default)
Outbound (send) settings (All) (Default)
Poller (inbound) settings PollDirectory <eGate>\client\data\Order
(All others) (Default)
Performance Testing (Al (Default)

Step 2: Create the Input ETD

The input ETD is based on the format of the input data. The Order example uses a
delimited text file (SimpleOrder.~in) that contains the data needed to process the
order.

The input data file used in this example is shown in Figure 141. Place this data file at the
directory location c:\eGate\client\data\Order.

Figure 141 Input Text File (SimpleOrder.~in)

& simmpleOrder.~in - — =l =]
File Edit Format Help

pohn Smith-—-32449-4 —

L 1

Using the ETD Editor and the input data as a guide, create an ETD like the one shown
in Figure 147. Set the global delimiter to a ~ character. For more information on using
the ETD Editor see the ETD Editor’s online help.

e*Insight Business Process Manager Implementation Guide 246 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.5
Active and Passive Modes Configure User-defined e*Gate Components (elJSchema)

Figure 142 Input ETD: Customer.xsc (Java)

=101
File Edit Help
D[] ? |
—Ewvent Type——————— [~ Event Type Definition
Customer
= CustomerM ame (Name) Customer
O Iternt urnber comment :
nternal Templates _ dataEncoding | ASCIT
Buantity editable True
rese_t sscEncoding | ASCIT
available type 55C
et xscersion 0.4
receive packageMame | Order
receive
zend
zend
rawl nput
— External Templates topic
publications
subscriptions
marshal
urmarzhal
readProperty
[#--=28 writeProperty
[1/14/2002 [1:48 PH A

Step 3: Create the START_BP Collaboration

The Collaboration that sends the Event that starts the BPI must do two things:
= Put the data into e*Insight ETD (el_StandardEvent.xsc) format.
= Populate the Event with the information the e*Insight engine needs to start a BPL.

In addition to these two tasks, the START_BP Collaboration also provides the
recommended location for setting any global attributes that are required in your
business process.

1 Create a Collaboration Rule, START_BP, that uses the Java service.
2 Configure the Collaboration Mapping tab, as shown in Figure 143.

e*Insight Business Process Manager Implementation Guide 247 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.5
Active and Passive Modes Configure User-defined e*Gate Components (elJSchema)

Figure 143 Start_BP Properties, Collaboration Mapping Tab

0 Collaboration Rules - START_BP Properties x|
General | SubecHpticns I Fublications Colaboration Mapping I
Instance Mame ETD Mode | Trigger | Manual Publish
Customer xsc Find .| In [+ P,
ElStandardOut el_StandardEvent xsc Find . Jlout [-1] res -
Add Instance | Remove Instance |
Cancel | Apply | Help |

3 Click Apply, and click the General Tab.

4 Click New to create a new CRS, as show in Figure 144.

Figure 144 START_BP CRS

& Collaboration Rules Editor - START_BP (Sandbox) - |EI|1|
File Edit Wiew Tools Help
@4
"I Source Events 12 Destination Events
| =™ 5TART _BP [Customer] ElStandardout [ex_StandardEvent]" == - |
ustamerhame ' "] =]
Custamerh BP_EVEMT =]
emiumber
EF TtemMumbs TYPE

& Quantity STATUS
hassTATUS
omitSTATUS
MNAME
hasMAME

=l

ik

var| [fior] if| 1t rulel E‘, switchl —+ case| 3 whilz] [*3 do| #= return| 1 throwl@

Business Rules

=-™12 START_EP : public class START_EP extends START_EPEase implements JCollsboratorExt
@ wariable : private int ID_count = 1;

S START_BP : public START_BP() Description:lﬁRT_
% executeBusinessRules : public boolean executeBusinessRules() throws Exception
@ retBoolean : boolean retBoclean = krue; Name: ISTART-
{} Set BP Mame : getEIStandardout(). getBP_EVENT(). setAMEL" Order™y; Implements: m
{} 3et Start BP @ getEIStandardOut(), getBP_EYENTI), setTYPE("START_BP");
{} 5etID: getEISgtandardOut().get(B)P?EVEN_T().setl(g)(""+ID_c(ount++)_j § Extends: [START

{} Set Customer Mame : getEIStandardOut(),getBP_EVENT().setATTRIBUTE("Customer_Mame","STRING",getSTART_EP(}, getCustomerhame(); M ::Flfess ¥ pubdic
1} Set Item Mumber : getEIStandardOub?). getBR_EWENT().setATTRIBUTE(" Ttern_Mumber”,"STRING", getSTART_BP().getTtemMumber(); odiers:
1} Set Quantity : getEIStandardOut(). getEBP _EYENT().setATTRIBUTE(" Quantity", "STRING", getSTART_BP(). getQuantity()); Documentation:

= return : return retBoolean;
% userlnitialize : public void userInitialize])
% userTerminate : public void userTerminate!)

e*Insight Business Process Manager Implementation Guide 248 SeeBeyond Proprietary and Confidential

Chapter 16

Section 16.5

Active and Passive Modes Configure User-defined e*Gate Components (elJSchema)

Step 4: Configure the Collaboration in the GUI

In addition to creating the configuration file for the e*Way and the CRS used by the
Collaboration, you must also configure the Start_BP e*Way’s Collaboration in the

Enterprise Manager GUL

1 Create a Collaboration for the Start_BP e*Way configured as shown in Figure 145.

Figure 145 Start_BP Collaboration

@ Collaboration - START_BP Properties

General |

7
&é START_BP

Collsbaoration Rules:

Subsctiptions:

ey | Ediit |

Inztance Mame Evert Type SOurce

START_BP off eX_External Bt ||2) <EXTERNAL>
Publications:

Inztance Mame Evert Type Destination Priority
ElStandardCut DEE ex_to_eBPi excp_einsight WS

i

Al

EIETE |

A
EIETE

Advanced

01,4 I Cancel Apply |

Help |

e*Insight Business Process Manager Implementation Guide 249

SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.6
Active and Passive Modes Configure the Integration Schema (elSchema)

166 Configure the Integration Schema (elSchema)

All the activities in this example are carried out using e*Gate components.

Important: Before you begin to make changes to the e*Gate Registry, make a copy of the
e*Insight schema. See “Copy the e*Insight Schema” on page 85 for
instructions on how to do this.

After creating the business process, you must configure the e*Gate Registry schema
that supports the e*Insight system.

e*Insight allows you to specify the type of component (e*Way or BOB) associated with
a particular activity and where it runs.

Integration Schema Activity Components Summary

Use the information in Table 57 to configure the e*Gate schema that supports the

example.
Table 57 Integration Schema Activity Components
Participating . . Manual .
Name Type Host Active/Passive Restart TimeOut
eX_Bill_Customer | BOB localhost Active Yes Not used
eX_Ship_Order BOB localhost Active Yes Not used

For information on how to use the e*Insight GUI to configure the e*Gate Registry see
the e*Insight Business Process Manger User’s Guide.

167 Configure the e*Insight Engine (elSchema)

The e*Insight engine runs in a specially configured Java e*Way. You must make
changes to the configuration file for this e*Way to conform to the requirements of your
system. For example, you must specify the name of the e*Insight database to which the
e*Way connects.

Note: This example uses only one e*Insight engine. In an actual implementation, more
than one e*Insight engine can be configured to handle the required workload. In
such a case, you must make changes to each of the e*Insight engines.

Edit the eX_eBPM Engine’s Configuration File

Most of the parameter settings in the eX_eBPM engine’s configuration file should not
be changed. Use the e*Way Editor and the information in “Configuring the e*Insight
Engine” on page 53 to make the required changes for the Order example.

e*Insight Business Process Manager Implementation Guide 250 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.8
Active and Passive Modes Configure User-defined e*Gate Components (elSchema)

165 Configure User-defined e*Gate Components
(elSchema)

The user-defined components in an e*Insight implementation consist of two types: the
first type starts the business process, and second type runs as part of the business
process. The activity components are of the second type.

The Order example uses a file e*Way to start the business process and BOBs to run all
the activities except the last. The last activity is represented by an additional file e*Way.

Configuration Order for the User-defined Components
1 Add and configure the START_BP e*Way.

2 Configure the Collaborations for the activity components running as BOBs.
Important: All the integration schema associations are displayed in table format at the end of
this section. The sections dealing with e*Way configuration include tables detailing
the non-default e*Way parameter settings. The sections dealing with the Monk

Collaboration Rules Scripts show screen shots of these scripts as they appear in the
e*Gate Collaboration Editor.

16.81 Configure the START_BP e*Way

The e*Way that sends the Event that starts the business process, named START_BP in
this example, must convert the incoming data into e*Insight Event format, as well as
send the appropriate acknowledgment to the e*Insight engine to create the Business
Process Instance (BPI).

Follow these steps to configure the START_BP e*Way:

1 Create the Input ETD

2 Create the START_BP Collaboration Rules script (CRS)
3 Add the e*Way and create the e*Way configuration file
4 Configure the Collaboration in the GUI

Step 1: Create the Input ETD

The input ETD is based on the format of the input data. The Order example uses a
delimited text file (SimpleOrder.~in) that contains the data needed to process the
order.

The input data file used in this example is shown in Figure 146. Place this data file at the
directory location c:\eGate\client\data\Order.

e*Insight Business Process Manager Implementation Guide 251 SeeBeyond Proprietary and Confidential

Chapter 16

Section 16.8
Active and Passive Modes

Configure User-defined e*Gate Components (elSchema)

Figure 146 Input Text File (SimpleOrder.~in)

& simpleOrder.~in - Nok = O] =]

File Edit Format Help

Ehn smith~3244—4
A

.z

Using the ETD Editor and the input data as a guide, create an ETD like the one shown

in Figure 147. For more information on using the ETD Editor see the ETD Editor’s
online help.

Figure 147 Input ETD: Customer.ssc

A | seon-tumeer [
]] et [

Step 2: Create the START_BP Collaboration Rules Script (CRS)

The Collaboration that sends the Event that starts the BPI must do two things:
= Put the data into e*Insight ETD (eX_Standard_Event.ssc) format.
= Populate the Event with the information the e*Insight engine needs to start a BPL.

In addition to these two tasks, the START_BP Collaboration also provides the

recommended location for setting any global attributes that are required in your
business process.

Figure 148 shows the START_BP CRS used in the Order example:

Figure 148 START_BP CRS

5| [custoner _Nane || (= ” "2 = 5| g e ||— =
@J customer ” | g. Ttem_Humber ” e | gj DDCTYPE' Dy
] 0] ex_Event ||— |0 |ﬂ|
& nuantity | = & x| on [
o I DT
I~ i
Rules W Use Selected Modes in Mew Rt
COPY "Pagzivelrder" “outputieX_Event,DS,ex_Event,CT.DSH,D5,BP_EWVENT,AS, MAME,Value
Copy "START_EP" “outputier_Event,DS,eX_Event,CT,.DSH,D5,BP_EWENT,AS.TYPE.Value
UNMIGUE ID “outputzex_Event,DS,ex_Event,CT,DSM,D5,BP_EVEMT., AS,ID,Value
FUMCTION {e¥-set-attribute "outputieX_Event "Customer_Mame" “input¥customer,Customer_Mame "STRING"?
——
FUNCTION {ex¥-set—attribute “outputzex_Event "Item_Mumber" “inputicustomer,Iltem_Number "STRIMG":
S—
FUMCTION {ex-zet-attribute “outputiex_Event "Quantity" “inputXcustomer,fluantity "STRIMG"}

Step 3: Add the e*Way and Create the e*Way Configuration File

The e*Way for the Order example is a simple file e*Way (executable: stcewfile.exe) that
polls a directory (c:\eGate\client\data\Order) for any file with the extension “.fin”
and moves it into the e*Insight system.

e*Insight Business Process Manager Implementation Guide 252 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.8
Active and Passive Modes Configure User-defined e*Gate Components (elSchema)

Use the Enterprise Manager and the following table to add the START_BP e*Way and
create its configuration file.

Table 58 Start e*Way Parameters

Screen Parameter Setting
General Settings (All) (Default)
Outbound (send) settings (All) (Default)
Poller (inbound) settings PollDirectory c:\eGate\client\data\Order
(All others) (Default)
Performance Testing (Al (Default)

Step 4: Configure the Collaboration in the GUI

In addition to creating the configuration file for the e*Way and the CRS used by the
Collaboration, you must also configure the START_BP e*Way’s Collaboration in the
Enterprise Manager GUL

1 Create a Collaboration Rule, START_BP, that uses the Monk service and the
START_BP CRS created in step 2, subscribes to the eX_External_Evt Event Type,
and publishes to the eX_to_eBPM Event Type.

2 Create a Collaboration for the START_BP e*Way that uses the START_BP
Collaboration Rule, subscribes to the eX_External_Evt Event Type from
<EXTERNAL>, and publishes the eX_to_eBPM Event Type to the eX_eBPM IQ.

16.82 Configure the Activity BOBs

You must complete these two tasks in order to configure the Activity BOBs:
= Set up the activity Collaborations in the e*Gate GUI.
= Create the corresponding CRS used by the activity Collaborations.

Note: Any time you create eWays, you must configure those e*Ways before e*Insight can
communicate with external systems or components.

Create the Activity BOB CRSs

Creating the CRSs associated with the activity components is the responsibility of the
implementor. What these programs do varies depending on the type of component and
the business logic they must implement. Nevertheless, they all must take the
information provided to them by the e*Insight engine, process it, and return the
appropriate response to the e*Insight engine. This includes setting the values of any
output attributes and the BP_EVENT status node to “SUCCESS” or “FAILURE”
depending on whether the activity completes successfully or not.

The CRSs associated with the BOBs used in this example are described in the following
sections along with a screen capture showing the actual Monk Collaboration Rules
Script used.

e*Insight Business Process Manager Implementation Guide 253 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.8
Active and Passive Modes Configure User-defined e*Gate Components (elSchema)
Bill Customer CRS

The CRS sets the value of the Order_Status attribute to “Billing Customer” and sends a
“SUCCESS” Event back to e*Insight, indicating that the activity has completed
successfully.

Figure 149, shows the Billing_Customer.tsc CRS used in the example.

Figure 149 Billing_Customer.tsc CRS

& [211=] e = B & 1 2= [e = A
@ﬂw[ﬂ 0| ef_Event || = #03| D5 gjwm
S BltlcmEolal] oS

FElal v cuene || i Bl al oy cuant ||
I\J | e I"""I [| =

Bl - B0]

Rules | Use Selected Nades in New Rules

FUNCTION {e¥-copy-no—attribute "inputiex_Event “outputieX_Event)
COPY "SUCCESS" | “outputiex_Event,DS,eX_Event,CT,DSH,DS,BP_EVENT,AS, STATUS, Value

FUNCTION {e¥-set-attribute "outputieX_Event "Order_Status" "Billing Customer" "STRING"}

Ship_Order CRS

The Ship_Order translation simulates the activity of sending out an item that is in stock.
It sets the value of the Order_Status attribute to a short message indicating that the
order has been sent and returns “SUCCESS” to the e*Insight engine.

Figure 150 shows the Ship_Order CRS used in the example.
Figure 150 Ship_Order.tsc CRS
S = e =T | B |11 e g

QHMM 0 e_Event ||— #0005 QHMM
B IR =T st

Bt |- 0]

BSlal oy Foane || i Bl al oy Foane ||
i~ i = [i P
Rules |l Use Selected Modes in New Rules

FUNCTION {eX-copy-no-attribute "outputier_Event “inputieX_Event)
COPY "SUCCESS™ I “outputieX_Event, DS, e¥_Event,CT,DSMN,DS,BP_EVENT,AS, STATUS,Value: O-END
FUMCTION (ex-set-attribute “outputieX_Event "Order_Status" "Shipping Order" "STRIMG":

Configure the Activity BOB Collaborations in the Enterprise Manager
GUI

Once you have created the CRS for a BOB, you must associate it with the corresponding
Collaboration Rule in the e*Gate GUI For each BOB you must:

1 Highlight the BOB’s Collaboration.
2 Open the Collaboration Properties dialog box for the Collaboration.
3 Edit the Collaboration Rules.

e*Insight Business Process Manager Implementation Guide 254 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.9
Active and Passive Modes Run and Test the e*Insight scenario

4 Change the Service to Monk.
5 Find the corresponding “.tsc” file and associate it with the Collaboration Rule.

6 Click OK to continue.

169 Run and Test the e*Insight scenario

Once the schema has been set up in e*Gate you can run the scenario. Use the following
procedure to test the functionality of the example.

1 Start the e*Insight GUI and select the Order business process. Switch to monitor
mode.

Note: Make sure that the business process has been enabled in the e*Insight GUI before
attempting to run it.

2 Make a final check of the e*Gate schema, using the tables to confirm all of the GUI
associations. Make sure that all of the e*Insight components, including the
user-defined components, are set to start automatically.

3 At the command line, type the following to start the schema. You must type the
command on a single line.

stccbh.exe -rh localhost -rs Order -In Iocal host _cb
-un usernane -up password

Substitute the appropriate username and password for your installation.

4 Start the e*Gate Monitor, and check the status of all the components. Any
components displayed in red are not running. Any e*Insight components that are
not running should be investigated before feeding data into the system.

5 Navigate to the location for the input data file, SimpleOrder.~in, shown in Figure
146 on page 252 (c:\eGate\client\data\Order) and change the extension to “.fin".

Note: The change of the extension to “.~in” indicates that the data file has been picked up
by the START_BP e*Way.

6 Switch to the e*Insight GUI and, while in monitor mode, select the most recent BPI
from the List pane. The Diagram should show the activities as completed (green). If
the activities are not green then the e*Gate component associated with that activity
should be investigated for the cause of the problem.

e*Insight Business Process Manager Implementation Guide 255 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.10
Active and Passive Modes Case Study - Passive Control Mode

1610 Case Study - Passive Control Mode

We are now going to change the configuration of the Ship_Order activity to use passive
control, that is e*Gate controls the Activity rather than e*Insight. The e*Gate configuration
is modified so the Bill_Customer collaboration publishes eX_Ship_Order_Do in addition to
returning a “Done” message to the e*Insight engine. The Ship_Order CRS is also modified
to ensure that the “Done” message contains the correct information.

1611 Passive Control Mode (elJSchema)

16.11.1Modify the Order BP in e*Insight (elJSchema)

The following is a summary of the procedure for modifying the BP in the e*Insight GUL
1 Save the business process as a new version.

2 Change the Ship_Order activity properties to use passive control.
16112Modify User-defined e*Gate Components (elJSchema)

Configuration Order for the User-defined Components

1 Modify the Bill_Customer CRS.
2 Modity the Ship_Order CRS.
3 Modify the Bill_Customer Collaboration Rule and Collaboration.

Configure the Bill_Customer Collaboration Rule and Collaboration

1 Update the Bill_Customer Collaboration Rule with the following Collaboration
Mapping.

Note: Both instances are now configured to publish the event manually.

e*Insight Business Process Manager Implementation Guide 256 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.11
Active and Passive Modes Passive Control Mode (elJSchema)

Figure 151 eX_Bill_Customer Collaboration Mapping

@ Collaboration Rules - eX_Bill_Customer Propetties x|
Generall SUbECHRHoNE: | Publications ollaborstion Mapping |
Instance Mame | ETD Mode | Trigger | Manual Publish
Ship_Crder_Dao |el_StandardEvert xsc Find .| Out IiL, |7
ElStandardinCut |el_StandardEvent xsc Find .| Iniout v v
Add Instance | Remaove Instance |
Cancel | Apply | Help |

2 Update the Bill_Customer Collaboration to additionally publish a Ship_Order_Do
instance, Event Type eX_Ship_Order_Do, to the destination elcr_eInsight]MS.

Bill Customer CRS (elJSchema)

The CRS is already defined to set the value of the Order_Status attribute to “Billing
Customer” and send a “SUCCESS” Event back to the e*Insight, indicating that the
activity has completed successfully.

The script is modified to manually publish eX_to_eBPM, and to additionally publish
eX_Ship_Order_Do.

Figure 152, shows the Billing_Customer.xpr CRS used in the example.

e*Insight Business Process Manager Implementation Guide 257 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.11
Active and Passive Modes Passive Control Mode (elJSchema)

Figure 152 Bill_Customer.xpr CRS

=% Collaboration Rules Editor - eX_Bill_Customer = IEllll
File Edit %iew Tools Help
&4
12 Source Events ™12 Destination Events
™2 EIStandardInout [e¥_standardEvent] Ship_Order_Dao [eX_StandardEvent] ™
BP_EVENT [&
hasBP_EVENT =%
omitBP_EVENT =%
reset =S
available =
next =%
receive
receive -
{F block] == methodl @ war| 4] Fiar| if] £} rulel E‘, switchl —+ case| [4 whileI Lo do| &= returm| ! throwl 0y tryl ! catchl
Business Rules
=" ill_Customer @ public cl Bill_cCustarmer mplements 1CollaboratorExt Class Properties ;I
ex_Bill_Customer : public eX_Rill_Customer()
=12 executeBusinessRules : public boalean executeBusinessRulest) throws Exception Description:lm
@@ retBoolean : boolean retBoolean = true;
{} Copy to output : getEIStandardInGut().setBF_EVENT(getEIStandardInouti), getBF_EVENT(); Name: [ex Bil_Customer
1} Set Success : getEIStandardInCut(). getBP_EVEMT(). setSTATUS{"SUCCESS"); Implements: IJCUIIabDratDrExt
{} Set Order_Status @ getEIStandardInOut().getBP_EYEMT{). setATTRIBUTE("Order _Status","STRING", "Biling Cuskarmer"); I—
{1} Publish eX_ta_sBPM : getEISkandardInCut(). send("eX_to_eBPM"); Extends: JeX_Bil_CustomerBase
{} Set ship_Order_Do @ getShip_Order_Dof),setBP_EVEMT{getEIStandardInOuk(), getBP_EVENTYY; Access ol putlic T abstract
{1} Publish Ship_torder_Da @ getShip_Order_Dof).send{"e¥_Ship_Order_Da"); Modifiers:
E = return @ return retBoolean; Documentation:
=% yserlnitialize : public void userInitialized) ;I
----- =B userTerminate ; public void userTerminatel)
H g
4« | _'I_I

Ship_Order CRS

The Ship_Order translation simulates the activity of sending out an item that is in stock.
It sets the value of the Order_Status attribute to a short message indicating that the
order has been sent and returns “SUCCESS” to the e*Insight engine.

In the active example, the event is sent from the e*Insight engine with information
pertaining to the Ship_Order activity. In the passive example, the event was originally
created by the e*Insight engine for the Bill_Customer activity, and the
eX_Bill_Customer Collaboration is configured to send a “Do” event. This “Do” event
contains information pertaining to the Bill_Customer activity, rather than the
Ship_Order activity, so the following values need to be updated:

= Activity Name — should be set to “Ship_Order”
= Activity ID — should be deleted
Figure 150 shows the Ship_Order CRS used in the example.

e*Insight Business Process Manager Implementation Guide 258 SeeBeyond Proprietary and Confidential

Chapter 16
Active and Passive Modes

Figure 153 Ship_Order.xpr CRS

Passive Control Mode (elJSchema)

<% Collaboration Rules Editor - eX_Ship_Drder (Sandbox) -0 ﬂ
File Edit Yiew Tools Help
dh

"% Source Events
% EIStandardInCut [eX_StandardEvent]

™12 Destination Events

hashAME =8

=

1} b\ockl -:-.%methodl @ varl L forl A

iFl {} ru\el B swwtchl —+ casel (5 whilel (5 dolO:— retuml ! thrm\lﬁl‘é; Atryl ! . oatch

Business Rules

[=-™1% eX_ship_Order : public class e%_Ship_Crder extends eX_Ship_CrderBase implements JCollaboratorExt

% ex_Ship_Order : public eX_Ship_Order()

% executeBusinessRules : public boolean executeBusinessRules() throws Exception

retBoolean : boolean retBoolean = true;

{} Copy ta output : getEIStandardinCut).setBP_EYEMT({getEIStandardInCut(). getBP_EVENT());

{} Set Success ; getEIStandardInOuts).getBP_EVEMT().setSTATIS("SUCCESS",;

{} Set Order_Status : getEIStandardInOut{),getBR_EVENT(), setATTRIBUTES"Crder_Status","STRING", "Shipping Order™;
{} Set Activity Name : getEIStandardInCut]). getBP_EVEMT().qetACTIVITY), sethAME("Ship_Order");
{} Clear Activity ID ; getEIStandardInCut(), getBP_EVENT().qetACTIVITYE).omitID);

E = return | return retBoolean;

B userlnitialize : public void userInitialized)

% userTerminate | public void userTerminate!)

-

Description: W
Name: W
Implements: lm
Extends: lm

Access
Modifiers:

Documentation:

=

o public ™ abstract

16.11.3Run and Test the e*Insight scenario

Run the Schema again as described in “Run and Test the e*Insight scenario” on

page 255.

e*Insight Business Process Manager Implementation Guide 259

SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.12
Active and Passive Modes Passive Control Mode (elSchema)

1612 Passive Control Mode (elSchema)

This section describes the steps for updating a schema based on elSchema (Classic). For
information on elJSchema, see “Passive Control Mode (eIJSchema)” on page 256.

16.121Modify the Order BP in e*Insight (elSchema)

The following is a summary of the procedure for modifying the BP in the e*Insight GUL
1 Save the business process as a new version.

2 Change the Ship_Order activity properties to use passive control.
16.122Modify User-defined e*Gate Components (elSchema)

Configuration Order for the User-defined Components
1 Modify the Bill_Customer CRS.
2 Modify the Ship_Order CRS.
3 Modify the Bill_Customer Collaboration Rule and Collaboration.

Bill Customer CRS

The CRS is already defined to set the value of the Order_Status attribute to “Billing
Customer” and send a “SUCCESS” Event back to the e*Insight, indicating that the
activity has completed successfully.

The script is modified to use an ig-put to publish eX_Ship_Order_Do.
Figure 152, shows the Billing Customer.tsc CRS used in the example.

Figure 154 Billing_Customer.tsc CRS

= B R S = L i ||— =, |2 i = B RS = | i ||
5| 7 | pocTveE || > | 7| pocTvee || >
=] 0] s _Eusrt. ||— | #0 | s || il =] o] s _Evert. ||— =] #¢ | s || il
= e = el
5 0| ex_Event [[-- £ o] =4 Event [[--
| = T = T
Rules W Use Selected Maodes in M
FUNCTION {ex—copy—no—attribute “inputX¥erX_Event “outputier_Ewent?
=
CoPY "SUCCESS ["outputfer_Event.DS.eX_Event.CT.DSN.DS5.BF_EWVENT .AS.STATUS . Value
FURCTION fex—set—attribute “outputiex _Ewvent "Order_Status" "Billing Customer’” "“"STRIMNG'?
FUNCTION {im—put 'ex_Ship_Order_Oo" (get "outpubier_Euvent) (list (ig—initial-topict? O O O
S — —

Ship_Order CRS

The Ship_Order translation simulates the activity of sending out an item that is in stock.
It sets the value of the Order_Status attribute to a short message indicating that the
order has been sent and returns “SUCCESS” to the e*Insight engine.

e*Insight Business Process Manager Implementation Guide 260 SeeBeyond Proprietary and Confidential

Chapter 16 Section 16.12
Active and Passive Modes Passive Control Mode (elSchema)

In the active example, the event is sent from the e*Insight engine with information
pertaining to the Ship_Order activity. In the passive example, the event was originally
created by the e*Insight engine for the Bill_Customer activity, and the
eX_Bill_Customer Collaboration is configured to send a “Do” event. This “Do” event
contains information pertaining to the Bill_Customer activity, rather than the
Ship_Order activity, so the following values need to be updated:

= Activity Name — should be set to “Ship_Order”
= Activity ID — should be deleted
Figure 150 shows the Ship_Order CRS used in the example.

Figure 155 Ship_Order.tsc CRS

il
SRR =] s =T SRR = R =T
@ j DOCTYPE [L‘ @| j DOCTYPE [L‘
=1 eX_Event”— @I“"lﬁ” B5| o] ex_Fvent ||— @I“"lﬁ”
=R & on =]
Sl ol ex Event Il--- A il ol ex Event Il---
I~ I - = | =
Rules |l Use Selected Modes in Mew Rulesl
FUNCTIOHN {ed-—copy-no—attribute “output¥ex_Event “inputiex_Event}
COPYy "SUCCESS" I “outputEeX_Ewvent,DS,ex_Ewvent,CT,05M.05,BP_EVENT,AS.STATUS,Yalue: O—END
FUMCTION tex—set—attribute "outputXex_Event "Order_Status" "Shipping Order" "STRIHG"?
COPY C“O0_ACTIVITY" "outputXex_Event.DS.ex_Event.CT.DSH.DS.BF_EVENT.AS.TYFE.Yalues: 0-END
COPY "Ship_Order" “outputXeX_Event.DS.eX_Event.CT.DSH.DS.BPF_EVENT.CT.DSM.DS.ACTIVITY.AS.NAME.Val
COPY “outputXeX_Event.DS.eX_Event.CT.DSH.DS.BP_EVENT.CT.DSM.DS.ACTIVITY.AS.ID.Value

Configure the Bill_Customer Collaboration Rule and Collaboration

1 Update the Bill_Customer Collaboration Rule to additionally publish
eX_Ship_Order_Do. This should not be selected as the default publication.

2 Update the Bill_Customer Collaboration to additionally publish
eX_Ship_Order_Do to the eX_eBPM IQ.

16123Run and Test the e*Insight scenario

Run the Schema again as described in “Run and Test the e*Insight scenario” on
page 255.

e*Insight Business Process Manager Implementation Guide 261 SeeBeyond Proprietary and Confidential

Chapter 17

e*Insight Performance

The purpose of this chapter is to describe methods that can be used to improve
performance. The chapter is divided into three sections; the first describes the
performance enhancements that can be made to a schema based on elJSchema (Java).
The second describes the performance enhancements that can be made to a schema
based on elSchema (Classic). The last section describes performance enhancements that
are not schema specific.

171 Performance Improvements Using el]Schema

The purpose of this section is to describe methods that can be used to improve
performance of the elJSchema.

= Instance caching

= Using multiple engines

= Using instance caching with multiple engines

= Using binary XML

= Configuring e*Insight to ignore e*Xchange ETD
= Changing the Event Type “get” Interval

1711 Instance Caching

Instance Caching is the most efficient way to process Business Process Instances. Using
instance caching keeps a cache of the instance information throughout the life span of
the Business Process Instance. If instance caching is not used the instance information is
retrieved from the database instead.

To configure the engine to use instance caching
1 In the e*Way Connections folder, open the engine’s e*Way connector properties.
2 Click Edit to open the engine’s configuration file.

3 In the eBPM Setting section, set Instance Caching to YES.

e*Insight Business Process Manager Implementation Guide 262 SeeBeyond Proprietary and Confidential

Chapter 17 Section 17.1
e*Insight Performance Performance Improvements Using elJSchema

1712Using Multiple e*Insight Engines

An e*Insight engine is comprised of a specially configured Collaboration (elcol_eBPM)
and the e*Insight e*Way Connection (elcp_eInsightEngine). The e*Insight engine runs
within a Multi-Mode e*Way (eX_eBPM), which is referred to as the e*Insight Engine
Container. You can use multiple e*Insight engines to increase performance. This section
describes how to add and configure these. You can use instance caching to further
improve performance. See “e*Insight Engine Affinity (eIJSchema)” on page 266 for
more information.

When you add e*Insight engines, you can either add them to an existing e*Insight
engine container or create additional e*Insight engine containers. Figure 156 shows a
scenario where three e*Insight engine containers are used, each with a single engine.

Important: A single e*Insight e*Way connection cannot be used by multiple Collaborations.

Figure 156 Multiple Engine Containers with a Single Engine

eX_eBPM e*Insight Engine Container

r-———7777 1
elcol_eBPM | elcp_elnsightEngine |
Collaboration I e*Way Connection :‘
/_‘ L\
eX_eBPM_0 e*Insight Engine Container N A
L
elcol_eBPM_0 | elep_elnsightEngine_0 | _ e*Insight
Collaboration | e*Way Connection J| Database
~_

A

I
elcol_eBPM_1 | elep_elnsightEngine_1 |
Collaboration | e*Way Connection |~

Alternatively, you can have multiple e*Insight engines in a single e*Insight engine
container. See Figure 157.

e*Insight Business Process Manager Implementation Guide 263 SeeBeyond Proprietary and Confidential

Chapter 17

e*Insight Performance

Section 17.1
Performance Improvements Using elJSchema

Figure 157 A Single Engine Container with Multiple Engines

elcol_eBPM
Collaboration

elcol_eBPM_0
Collaboration

elcol_eBPM_1
Collaboration

eX_eBPM e*Insight Engine Container

I
| elcp_elnsightEngine |

e*Way Connection |~

|
| elcp_elnsightEngine_0 |
| e*Way Connection |

I
| elep_elnsightEngine_1 |

e*Insight
Database

&Ak_/

e*Way Connection |~

You can either create a new engine from scratch, or copy the engine container,
Collaboration, Collaboration Rules, and engine connection.

To create a new e*Insight engine container

1
2
3
4

Note:

To add and configure an e*Insight e*Way Connection

1
2

Add a new e*Insight engine in the participating host.

In the engine properties, Executable file section, click Find.

Browse for stceway.exe and click Select.

Clear the engine’s configuration file.

You can create a new e*Insight engine container by copying the eX_eBPM

e*Insight engine that is provided in the el]Schema.

Select the e*Way Connections folder and create a new e*Way Connection.

Open the Connection properties and set the e*Way Connection Type to e*Insight

Engine.

Create and configure a new Configuration File. For information on the settings, see
“Configuring the e*Insight Engine Connection” on page 34.

To configure an e*Insight engine container for a new e*Way Connection

1 Create a new e*Way Connection. See “To add and configure an e*Insight e*Way
Connection” on page 264.

2 Add a Collaboration Rule and configure it as shown in Figure 158.

e*Insight Business Process Manager Implementation Guide 264

SeeBeyond Proprietary and Confidential

Chapter 17 Section 17.1
e*Insight Performance Performance Improvements Using elJSchema

Figure 158 e*Insight Engine General Tab

@B Collaboration Rules - eIcr_eBPM_0 Properties X|

Figure 159 e*Insight Engine Collaboration Mapping Tab

| [Mode | Trigger | Manusl Publish ||
ElEngjine elnzightEngine xsc | InCut
ElStandardin elx_StandardEvent xsc | In Iid,
ElFailed eX_FailedEvert xsc | Find .| out i,
ElStandardOut | el¥_StandardEvent xsc | Find .| out i,

Note: You can create this Collaboration Rule by copying the elcr_eBPM Collaboration
Rule that is provided in the el]Schema.

3 Add a Collaboration to the e*Insight engine container that uses the Collaboration
Rule created in step 2. Configure the Collaboration as shown Figure 160. You
should configure the Collaboration to publish to the e*Way Connection created in
step 1.

e*Insight Business Process Manager Implementation Guide 265 SeeBeyond Proprietary and Confidential

Chapter 17 Section 17.1
e*Insight Performance Performance Improvements Using elJSchema

Figure 160 e*Insight Engine Collaboration

@ Collaboration - Engine2 Properties x|

General |

[
&é Engine?

Collaboration Rules:

elcr_eBPM_D [+ hew | Eciit |

Subscriptions:

Instance Mame Evert Type Source el |
ElStandardin o2 6¥_to_cBPM elcp_elnsight WS
LrElEte |

Puhlications:

Instance Mame Event Type Destination Al |
EIEngine e _External_Evt & Connection2 5
ElStandardOut e¥_DynamicET ol elop_sinsight M 5 Deletz |

ElFiled eX_Failed_From_eBPM [[i[d] elcp_sinsight s 5 Advancedl

Ok I Cancel |

1713 e*Insight Engine Affinity (elJSchema)

e*Insight Engine Affinity allows e*Insight engines in a multi-engine environment to
cache information about particular Business Process Instances as they flow through the
e*Gate schema using Instance Caching. Since the engines hold the instance information
in a cache, it is essential that an individual instance is always processed by the same
engine or Collaboration. This is achieved by setting a JMS property in e*Gate 4.5.2, or
using a different Event Type for each engine in e*Gate 4.5.1.

Using Engine Affinity can possibly improve the overall message throughput but if an
engine is shut down for some reason, the instances associated with that engine do not
finish being processed until the engine is manually restarted using the e*Gate Monitor.

1714 Using Engine Affinity with e*Gate 4.5.2

The JMS Message Server uses message selectors to filter out certain messages from a
specific queue before sending them to the JMS e*Way connection. The message selector
ensures that an engine only receives Business Process Instances that it originally
processed, or START_BP messages .

Note: The message selector for the inbound eX_StandardEvent is only set if you are using
e*Gate 4.5.2 and are subscribing to a JMS e*Way Connection Point. Otherwise, you
must configure Engine Affinity using different Event Types, see “Using Engine
Affinity with e*Gate 4.5.1” on page 267.

e*Insight Business Process Manager Implementation Guide 266 SeeBeyond Proprietary and Confidential

Chapter 17 Section 17.1
e*Insight Performance Performance Improvements Using elJSchema

To configure multiple engines to use e*Insight Engine Affinity
1 Create multiple engines. See “Using Multiple e*Insight Engines” on page 263.

2 Edit the configuration file for each e*Insight engine connection. In the eBPM
Settings, set the Instance Caching parameter to Yes.

Note: The engines can refer to the same connection configuration file.

3 Configure the Engine Affinity JMS properties in your Activity Collaborations, if
you are using different source and destination instances for el_StandardEvent. See
“Configuring the Engine Affinity JMS Properties”.

Configuring the Engine Affinity JMS Properties

You need to set up the Engine Affinity JMS properties in your Activity Collaborations,
if you are using different source and destination instances for el_StandardEvent. You
can set up the properties using the prepareReplyToSender method in the
el_StandardEvent ETD.

Create a rule before you return from executeBusinessRules() by dragging the root node
of the inbound el_StandardEvent into the parameter for the prepareReplyToSender()
method of the outbound el_StandardEvent. This generates code such as:

get El St andar dQut . pr epar eRepl yToSender (get El St andardl n());

Note: If you are using one instance (such as EIStandardInOut), you do not need to use
prepareReplyToSender() since the Engine Affinity [MS Properties already exist.

For backwards compatibility, if the first Business Process Activity is passive, the
e*Insight engine still echoes back the incoming START_BP message for
synchronization. To disable this feature, add another System Property definition,
ei.pasvNoEcho=true, in the Initialization string of the e*Insight Engine Collaboration
Rules.

1715 Using Engine Affinity with e*Gate 4.5.1

The procedures described in the next section use unique names for the Event Types
based on the Collaboration name. You can alternatively use the e*Way name if the
e*Way uses a single e*Way Connection. If multiple e*Way Connections are used then
using the e*Way name does not provide a unique name for each engine. For
information on configuring the e*Way Connection to use the e*Way name, see
“Configuring the e*Insight Engine Connection” on page 34.

To configure multiple engines to use e*Insight Engine Affinity
1 Create multiple engines.
2 Edit the configuration file for each e*Insight engine. In the eBPM Settings, set the

Instance Caching parameter to Yes.

Note: The engines can refer to the same configuration file.

e*Insight Business Process Manager Implementation Guide 267 SeeBeyond Proprietary and Confidential

Chapter 17 Section 17.1
e*Insight Performance Performance Improvements Using elJSchema
3 Ensure that every Collaboration uses a unique Collaboration Rule.

4 Create an Event Type named eX_to_<Collaboration Name> for each e*Way
connection.

Important: An Event Type must be created for the default engine named eX_to_eX_eBPM in
addition to the Event Types required for additional engines.

5 For every e*Way connection, update the Collaboration that subscribes to eX_eBPM
using the following procedure. Replace <Collaboration name> with the appropriate
name.

+ In the Collaboration properties Subscriptions box, change the Event Type to
eX_to_<Collaboration name> with Source elcp_eInsight]MS.

6 For every Activity e*Way or BOB, update the Collaboration that publishes
eX_to_eBPM with the additional publications for the additional engines.

+ In the Collaboration properties Subscriptions box, add an entry for every e*Way
Connection Collaboration with the following properties: EIStandardInOut
instance, eX_to_<Collaboration name> Event Type, with Destination
elcp_eInsight]MS.

Note: The instance name may be different, depending on your implementation.

1716 Using e*Xchange with e*Insight (elJSchema)

The Event Type Definition used in the engine’s Collaboration Rules Script,
eIX_StandardEvent.xsc contains two sections, BP_EVENT, containing information for
e*Insight and TP_EVENT, containing information for e*Xchange. If you are not using
the e*Xchange section of the ETD, then you can configure the engine ignore this section,
reducing processing.

To configure the engine to ignore e*Xchange section of the ETD
1 Select the e*Way Connections folder.
Open the properties of the e*Insight engine e*Way Connector.
Click Edit.

2
3
4 Go to the eBPM Settings section, and find Using e*Xchange with e*Insight.
5 Click No.

6

Close the configuration editor and save the changes.

171.7Using Binary XML (el)JSchema)

By default, the e*Insight engine generates a binary XML message. This data format
reduces parsing and so can increase performance. The following initialization string in
the Collaboration Rule properties determines that a binary XML message is created:

-def egate. bi nXnl Marshal =t rue

e*Insight Business Process Manager Implementation Guide 268 SeeBeyond Proprietary and Confidential

Chapter 17 Section 17.1
e*Insight Performance Performance Improvements Using elJSchema

Important: Monk is not able to interpret this data format so you should only configure Java
Collaborations to subscribe to this Event.

171.8Subscribing to Event Types

The method of subscribing for multiple Event Types from a JMS e*Way Connection
entails waiting n' milliseconds (configured in the Event Type "get" interval of the
e*Way Connection Properties dialog, see “Event Type “get” Interval” on page 270) for
the first Event Type and if none is found, waiting for 1 millisecond for the next Event
Type and if none again, the JMS Server waits 'n' milliseconds for the second Event Type
and so on. This method works well if the distribution of the different Event Types is
relatively even, but there are likely to be more “Do” Events than there are “Undo”
Events for e*Insight. Therefore, the engines spend a lot of time waiting for a Event
Type that is not there.

You can avoid unnecessary wait times due to the “Do” and “Undo” Event Types, by:

= Subscribing to a single “Go” Event Type which retrieves both “Do” and “Undo”
Events

= Having a separate Collaboration to subscribe to the “Do” and “Undo” Event Types
= Removing unnecessary subscriptions from Collaborations

The options are described in detail below.

Subscribing to a Single “Go” Event

The e*Insight engine can be configured to publish an Event Type el_<Activity
Name>_Go, rather than eX_<Activity Name>_Do or el_<Activity Name>_Undo. This
allows you to subscribe to a single Event Type and then check the type of Event within
your Collaboration Rule script.

To configure the engine to publish the single Event Type, set the initialization string in
the el Engine Collaboration Rules dialog to:

-def egate. nulti Def=;egate.binXm Marshal =true; ei . oneETPer Act =t rue

This new Java System Property definition, ei.oneETPerAct=true, directs the engine to
publish only one ET, el_<Activity Name>_Go, for both “Do” and “Undo” Events.

Note: You must use the egate.multiDef parameter to define more than one System
Property definition in the initialization string. The first character after the equal
(=) sign is the delimiter to use for separating different System Property key=value
pairs (for example, the semi-colon (;) is used above). The Enterprise Manager does
not allow the use of commas (,) since the e*Gate Registry uses this delimiter
internally. Special characters can be specified by using standard escape codes (such
as\t, \n) or Unicode escape codes (such as \u003d for '=’").

Configuring a Separate Collaboration for Do and Undo Events

To remove the requirement for a single Collaboration to subscribe to both “Do” and
“Undo” Events, separate the “Do” and “Undo” logic in your Collaboration Rules script.

e*Insight Business Process Manager Implementation Guide 269 SeeBeyond Proprietary and Confidential

Chapter 17 Section 17.2
e*Insight Performance Performance Improvements Using elSchema

Then create a “Do” and an “Undo” Collaboration, each subscribing to a single Event
Type.

Removing Unnecessary Subscriptions

Subscribing to multiple Event Types is less efficient than subscribing to a single Event
Type. If you have not implemented “undo” logic in your business process, then remove
the subscriptions to the eX_<Activity_Name>_Undo Event Types.

1719 Event Type “get” Interval

The e*Insight engine uses the “get” interval to determine how long the JMS Server
waits for an Event of a particular Event Type to arrive.

Ideally, a Collaboration should only subscribe to a single Event Type, but if that is not
possible then the “get” interval can impact performance. The default interval is 10,000
milliseconds which should be suitable if the distribution of the different Event Types is
even. If the distribution of the different Event Types is not even, the you might want to
reduce the”get” interval. Consider an example where you are subscribing to Event
Types A and B, and Event Type B rarely (or never) arrives. Using the default “get”
interval, you wait 10,000 milliseconds after every Event Type A is processed. Reducing
the “get” interval to a value less than 100 can dramatically increase performance.

The Event Type “get” Interval is set in the e*Way Connection properties.

171.10Review JVM Settings

You may be able to improve performance by changing the memory allocated for the
Java Virtual Machine. This is set in the e*Insight engine configuration file, JVM
Settings, Maximum Heap Size. If this is left set to zero (0), the preferred value for the
maximum heap size of the Java VM is used.

Note: The e*Insight engine configuration file does not exist by default. You must create a
new configuration file.

172 Performance Improvements Using elSchema

The purpose of this section is to describe methods that can be used to improve
performance of the elJSchema.

= Instance caching
= Using multiple engines
= Using instance caching with multiple engines

= Setting the Exchange Data Interval

e*Insight Business Process Manager Implementation Guide 270 SeeBeyond Proprietary and Confidential

Chapter 17 Section 17.2
e*Insight Performance Performance Improvements Using elSchema

1721 Instance Caching

Instance Caching is the most efficient way to process Business Process Instances. Using
instance caching keeps a cache of the instance information throughout the life span of
the Business Process Instance. If instance caching is not used the instance information is
retrieved from the database instead. This allows more flexibility and fault tolerance at
the cost of performance.

To configure the engine to use instance caching
1 Open the engine’s properties.
2 Click Edit to open the engine’s configuration file.

3 In the eBPM Setting section, set Instance Caching to YES.

1722 Using Multiple e*Insight Engines (elSchema)

You can use multiple e*Insight engines to increase performance. This section describes
how to add and configure additional engines. You can use instance caching to further
improve performance. See “e*Insight Engine Affinity (eISchema)” on page 272 for
more information.

You can either create a new engine from scratch, or copy the engine and collaborations.
Both procedures are described below.

To create a new e*Insight engine
1 Add a new e*Insight to the participating host.
2 Edit the engine’s configuration file.

3 Add a Collaboration Rule that subscribes to eX_External_Evt and publishes
eX_Failed From_eBPM.

4 Add a Collaboration Rule that subscribes to eX_to_eBPM and publishes
eX_External_Evt.

5 Add a Collaboration to the e*Insight engine that uses the Collaboration Rule
created in step 3. Configure to subscribe to External and publish to
eX_Dead_Letter_Queue IQ.

6 Add a Collaboration to the e*Insight engine that uses the Collaboration Rule
created in step 3. Configure to subscribe to eX_eBPM and publish to External 1Q.

To copy an existing engine
1 Copy the e*Insight engine.
2 Copy the eX_to_eBPM Collaboration.
3 Copy the eX_from_eBPM Collaboration.
Important: When you copy the above components some elements are then used by both engines.
These include the e*Insight engine configuration file and the Collaboration Rules. If

you need to change these for one engine, but not the other, you must create a new
version.

e*Insight Business Process Manager Implementation Guide 271 SeeBeyond Proprietary and Confidential

Chapter 17

Section 17.2

e*Insight Performance Performance Improvements Using elSchema

1723 e*Insight Engine Affinity (elSchema)

e*Insight Engine Affinity allows e*Insight engines in a multi-engine e*Gate schema to
cache information about particular Business Process Instances as they flow through the
e*Gate schema using Instance Caching. Using Engine Affinity can possibly improve the
overall message throughput but if an engine is shutdown for some reason, the instances
associated with that engine do not finish being processed until the engine is manually
restarted using the e*Gate Monitor.

To configure multiple engines to use e*Insight Engine Affinity

Important:

Create multiple engines.
Edit the configuration file for each e*Insight engine. In the eBPM Settings, set the
Instance Caching parameter to Yes.

The engines can refer to the same configuration file.

Ensure that every Collaboration uses a unique Collaboration Rule.
Create an Event Type named eX_to_<elnsight Engine Name> for each e*Insight

engine.

An Event Type must be created for the default engine named eX_to_eX_eBPM in
addition to the Event Types required for additional engines.

For every e*Insight engine, update the Collaboration that subscribes to eX_eBPM
using the following procedure. Replace <elnsight engine name> with the
appropriate name.

A In the Collaboration Rule properties, go to the Subscription tab and add
eX_to_<elnsight engine name>.

B In the Collaboration properties Subscriptions box, add eX_to_<eInsight engine
name> with Source <ANY>.

For every Activity e*Way or BOB, update the Collaboration that publishes
eX_to_eBPM with the additional publications for the additional engines.

To update a Monk Collaboration

A In the Collaboration Rule properties, go to the Publication tab and add
eX_to_<elnsight engine name> for every e*Insight engine.

B In the Collaboration properties Publications box, add eX_to_<elInsight engine
name> with Destination eX_eBPM for every e*Insight engine.

C Update the Monk Collaboration Rule Script to manually publish the event using
eX-event-sendback-to-sender, and then suppress the default output. For details
on these two lines of code see Figure 161.

To update a Java Collaboration

A In the Collaboration Rule properties, go to the Collaboration Mapping tab and
add eX_to_<elnsight engine name> instance for every e*Insight engine.

e*Insight Business Process Manager Implementation Guide 272 SeeBeyond Proprietary and Confidential

Chapter 17 Section 17.2
e*Insight Performance Performance Improvements Using elSchema

B In the Collaboration properties Subscriptions box, add an entry for every
e*Insight engine with the following properties: eX_to_<elnsight engine name>
instance, eX_to_<elInsight engine name> Event Type, with Destination
eX_eBPM.

Manually Publishing Events using eX-event-sendback-to-sender

The eX-event-sendback-to-sender function performs an iq-put that dynamically assigns
the destination Event Type. The destination Event Type is defined by appending the
name of the e*Insight engine that sent the message to the string “eX_to”. The syntax is:

eX-event-sendback-to-sender <root-path>

You would usually replace <root-path> with ~output%eX_Event. For an example of
how this is used in a Collaboration Rule Script, see Figure 161.

Note: Make sure that the Monk file eX-event-sendback-to-sender.monk, containing
this function, is loaded before calling it in a Collaboration Rules Script. You can do
this by putting it in the root of the monk_library directory, or loading it explicitly
in your CRS.

Finally, you must suppress the default output. This is achieved by overwriting the
destination Event Type Definition with an empty string. Use the copy function as

shown in Figure 161.

Figure 161 Monk Collaboration Rule Script for Engine Affinity

FUMCTION
COPY

(ex-event—zendback-to-sender “outputierx_Event?
“output¥er_Event:O-END

1724 Exchange Data Interval (elSchema)

The e*Insight engine uses the interval to determine how often to poll the control table.
The control table contains entries for batch tasks, such as manual restarts, and also
contains entries for instances using the User Activity or Authorization Activity.
Depending on your implementation of e*Insight, it may be desirable to reduce the
polling frequency to increase performance.

The Exchange Data Interval is set in the e*Way Configuration file, Communication
Setup section.

1725 Review JVM Settings

You may be able to improve performance by changing the memory allocated for the
Java Virtual Machine. This is set in the e*Insight engine configuration file, JVM
Settings, Maximum Heap Size. If this is left set to zero (0), the preferred value for the
maximum heap size of the Java VM is used.

e*Insight Business Process Manager Implementation Guide 273 SeeBeyond Proprietary and Confidential

Chapter 17 Section 17.3
e*Insight Performance General e*Insight Performance Tips

173 General e*Insight Performance Tips

This section describes some ways of improving performance that are not specific to the
type of e*Insight schema that you are running.

= Review the SeeBeyond eBusiness Integration Suite Deployment Guide.
= Use a third party tool to determine if hardware is the limitation.
= Enhance database access by one of the following;:
A Use RAID/stripe disks with a multi-controller.
B Install the database and e*Insight engines on the same machine.
C Tune the database.

= Use a Model Specific database — The Model Specific database uses a different
structure for storing the attribute values, which increases performances. If you are
using the Model Specific database, you can modify the database to your specific
data requirements by controlling the size allocated to each attribute value. You
need to create the necessary database tables before running your e*Insight schema.
Every business process version uses its own set of tables.

See the e*Insight Business Process Manager User’s Guide for information on creating
the Model Specific database.

= Do not automatically reload models — The Auto Model Reload engine
configuration parameter determines if the engine dynamically loads an enabled
Business Process Version if the enabled /disabled status of Business Process Version
changes. If the value is set to YES then Business Process Versions that are enabled or
disabled while the engine is running are immediately recognized. However, setting
this value to YES may degrade performance.

= Do not preload unnecessary Business Processes — The Business Processes to
Preload engine configuration parameter allows you to load all or a subset of all the
business processes stored in the e*Insight database. The default setting is ALL.
Naming specific business processes to preload may improve performance if you
have a large number of business processes defined.

= Do not include input only attributes in the “Done” Event — To simplify your
Collaboration Rules script, you may decide to copy everything from the source ETD
to the destination ETD, especially when using Java. This copies all the input
attributes to the destination ETD and, unless they are removed, they are included in
the “Done” Event. This requires additional processing by the engine, as it tries to
write the attribute to the database but is refused permission.

e*Insight Business Process Manager Implementation Guide 274 SeeBeyond Proprietary and Confidential

Chapter 18

Troubleshooting

One of the easiest ways to debug your e*Gate configuration is through the use of log
files. All executable components—BOBs, e*Ways, IQ Managers, and Control Brokers—
have the ability to create log files that contain whatever level of debugging information
you select.

181 Log File Locations

All log files are stored in the \eGate\client\logs directory on the Participating Host
running the elements that generate the log entries. Logs are named after the component
that creates them; for example, the eX_eBPM engine creates a log file called
eX_eBPM.log.

182 Generating Log Files

To configure a component to generate a log file:

1 In the e*Gate Enterprise Manager window, select the component that you want to
configure and display its properties.

2 Select the Advanced tab, and then click Log.
3 Select the desired logging options (see Figure 162).

e*Insight Business Process Manager Implementation Guide 275 SeeBeyond Proprietary and Confidential

Chapter 18
Troubleshooting

Section 18.2
Generating Log Files

Figure 162 Logging Options

Inbound Properties

Logging level;

Dehugging flags:

JFIags

[Display counts (CHNTS)

[~ STC Common verbaze (COMY)
|_ STCAPIE verhose (AP

[~ Registry verhoze (REGY)

|_ Irternal Queus verbose (IQY)
[Database verbose (DEY)

[TCPIP verbose (IPV)
T hdank wvarkines hdbll

Walue: 0x=00000000

[v U=e log file

i

=

Select All | Clear All |

[o |

Cancel | Helgp |

You can view a component’s log using any text editor, and you can view the log while
the component is still running. However, depending on the editor, you may need to re-
read the file to “refresh” your view of the log data. You cannot get log updates “on the

fly.”

The most common error most first-time e*Gate developers find in a log file is, “Unable
to load module configuration.” This message means that you have created an e*Gate
component but not assigned both an executable file and a configuration file to it.

When you first start to debug your e*Insight schema, you should apply minimal flags
so it is easier to find useful messages. You can start with the following flags with a

DEBUG logging level selected:
= e*Way (EWY)

= Collaboration (COL) — for elJSchema

= Monk (MNK) — for elSchema

Note: A specific debugging flag does not appear in the flags list for the e*Insight engine,
but if the logging level is set to anything other than None, then messages of type
EBPM appear in the log.Setting the e*Insight engine logging level to Trace
generates a very detailed log of the engine’s activity.

For more information about logging and debugging options, see the e*Gate Integrator

System Administration and Operations Guide.

e*Insight Business Process Manager Implementation Guide 276

SeeBeyond Proprietary and Confidential

Chapter 18 Section 18.3
Troubleshooting Common Problems

183 Common Problems

The common problems when you run an e*Insight schema initially broadly fall into
two categories; either the e*Insight engine is incorrectly configured or the XML
message that is sent to the e*Insight engine contains invalid information.

Table 59 and Table 60 show a number of common problems and suggested actions you
should take. The tables also shows where to look for the error message and the logging
required to display the error.

Table 59 Common errors (elJSchema)

Debug

Error Message I Problem Resolution
ag

JMSException: Could not COL elcp_elnsight)MS e*Way In the elcp_elnsight)MS

connect to host: [hostname], connection is configured connection configuration file,

port: 24053 incorrectly Message Service section,
check the value for Server
Name and Host Name.

Cannot connect to e*Insight EWY JDBC URL incorrect In the elcp_elnsightEngine

Backend DataBase: lo configuration file, eBPM

exception: Invalid number Settings section, check the

format for port number value defined for JDBC URL
String.

Cannot connect to e*Insight EWY

Backend DataBase: Invalid

Oracle URL specified

Cannot connect to e*Insight EWY Unable to connect to the In the elcp_elnsightEngine

Backend DataBase: lo database configuration file, eBPM

exception: Connection Settings section, check the

refused value defined for JDBC URL
String.

Cannot connect to e*Insight EWY Incorrect user name or In the elcp_elnsightEngine

Backend DataBase: ORA- password configuration file, eBPM

01017: invalid username/ Settings section, check the

password; logon denied values defined for Database
User Name and Encrypted
Password.

e*Insight Business Process Manager Implementation Guide 277 SeeBeyond Proprietary and Confidential

Chapter 18
Troubleshooting

Table 59 Common errors (elJSchema)

Section 18.3
Common Problems

Error Message

Debug
Flag

Problem

Resolution

startActivity() failed:
Definition not found for
:Payrolls

EWY

Incorrect business process

name

Check that the business
process name defined in the
CRS matches the business
process name defined in
e*Insight exactly.

Also, check that a business
process version has been
enabled for this business
process.

Note: Although the error
message appears in the
eX_eBPM log, the problem is
in the component that sent
the message to the e*Insight
engine.

startActivity() failed: Invalid
BP_EVENT type:STARTBP

EWY

Incorrect BP_EVENT type

Check that the BP_EVENT type
defined in the CRS is correct.
Note: Although the error
appears in the eX_eBPM log,
the problem is in the
component that sent the
message to the e*Insight
engine.

ewjx: Exception getMessage():

processOutgoing(): eBPM
cannot process XML data:
ORA-01407: cannot update
("EX_ADMIN"."BUSINESS_PR
OCESS_INSTANCE"."BPI_NM
") to NULL

EWY

No ID set

Check that the ID is defined in
the CRS.

Note: Although the error
appears in the eX_eBPM log,
the problem is in the
component that sent the
message to the e*Insight
engine.

e*Insight Business Process Manager Implementation Guide 278

SeeBeyond Proprietary and Confidential

Chapter 18
Troubleshooting

Table 60 Common errors (elSchema)

Section 18.3
Common Problems

Debug

Error Message I Problem Resolution
ag

eX_eBPM (Fatal): ewjx: the EBPM | jvm configuration incorrect In the eX_eBPM configuration
"JNI DLL" (<jvm path>) file, Java VM Configuration
specified is not a Java 2 section, check the value
version defined for JNI DLL.
eX_eBPM (Warning): Cannot EBPM jdbc url incorrect In the eX_eBPM configuration
connect to eBPM Backend file, eBPM Settings section,
DataBase: lo exception: check the value defined for
Connection JDBC URL String.
refused(DESCRIPTION=(TMP
=)(VSNNUM=135290880)(ERR=
12505)(ERROR_STACK=(ERRO
R=(CODE=12505)(EMFI=4))))
eX_eBPM (Warning): Cannot EBPM Incorrect user name or In the eX_eBPM configuration
connect to eBPM Backend password file, eBPM Settings section,
DataBase: ORA-01017: invalid check the values defined for
username/password; logon Database User Name and
denied Encrypted Password.
>>>>MONKEXCEPT:0036: MNK eX-eBPM-utils.monk has not Copy eX-eBPM-utils.monk to
RESOLVE_VARIABLE: v been loaded <egate>\client\imonk_library.
ariable <eX-set-attribute> has
not been defined.
>>>>MONKEXCEPT:0069: MNK Incorrect business process Check that the business
throw: eBPM: Cannot process name process name defined in the
event CRS matches the business
ewjx: Exception getMessage(): | EWY process name defined in

processOutgoing(): eBPM
cannot process XML data:
ERROR: Unable to load
business process. bpold not
found for :fred

e*Insight Business Process Manager Implementation Guide 279

e*Insight exactly.

Also, check that a business
process version has been
enabled for this business
process.

Note: Although the error
message appears in the
eX_eBPM log, the problem is
in the component that sent
the message to the e*Insight
engine.

SeeBeyond Proprietary and Confidential

Chapter 18
Troubleshooting

Table 60 Common errors (elSchema)

Section 18.3
Common Problems

Debug

Error Message I Problem Resolution
ag

>>>>MONKEXCEPT:0069: MNK Incorrect BP_EVENT type Check that the BP_EVENT type

throw: eBPM: Cannot process defined in the CRS is correct.

event Note: Although the error

ewjx: Exception getMessage(): | EWY ar;])pearsblln th? ?X—EBPM log,

processOutgoing(): eBPM the problem Is in the

cannot process XML data: component that ient.the

Invalid BP_EVENT message to the e*Insight

type:START_BD engine.

>>>>MONKEXCEPT:0069: MNK No ID set Check that the ID is defined in

throw: eBPM: Cannot process the CRS.

event Note: Although the error

ewjx: Exception getMessage(): | EWY appears in th? gX_eBPM log,

processOutgoing(): eBPM the problem is in the

cannot process XML data: component that ient'the

ORA-01407: cannot update message to the e*Insight

("EX_ADMIN"."BUSINESS_PR engine.

OCESS_INSTANCE"."BPI_NM

") to NULL

ERROR - CONTINUING: BP EBPM | Attribute does not exist in Check that the attribute name

attribute not found e*Insight matches the name defined in

:Cust_Addres in createBPI() the CRS.

bpild:1016 Note: Although the error
appears in the eX_eBPM log,
the problem is in the
component that sent the
message to the e*Insight
engine.

(get (eX-get-attribute MNK Attribute does not exist in the | Check that the attribute is

~input%eX_Event
"Item_Number"))
>>>>MONKEXCEPT:0009: get:
argument 1 must be a valid
path.

message sent to an e*Way or
BOB for an activity

defined as an input attribute
for the activity.

Also, check that the attribute
name matches the name
defined in the CRS.

Note: This error appears in the
log for the e*Way or BOB for
the activity.

e*Insight Business Process Manager Implementation Guide 280

SeeBeyond Proprietary and Confidential

Chapter 18 Section 18.4
Troubleshooting General Troubleshooting Tips

184 General Troubleshooting Tips

184.1 Locating the problem

Use the e*Insight GUI in monitor mode to determine whether a business process
instance has been created. If the BPI has not been created then you should look at the
eX_eBPM log and whatever component created the original message that was sent to
the engine. If the BPI has been created then locate the activity that is having a problem
and look in the appropriate log files.

Use the e*Gate Enterprise Monitor GUI to check whether a message has been processed
by a component. The number of inbound and outbound messages for a component is
displayed by the status command.

To display the status of a component
1 In the navigator pane of the Enterprise Monitor, click the desired component.
2 Click the Control tab.
3 From the Command drop-down list box, select Status.
4 Click Run.

Figure 163 shows an example status display. EventsInbound and EventsOutbound
display the number of messages processed.

e*Insight Business Process Manager Implementation Guide 281 SeeBeyond Proprietary and Confidential

Chapter 18
Troubleshooting

Figure 163 Example status display

{9 e*Gate Monitor - ProcessOrder

Help

File Ecit ‘iew

Cptionz

Section 18.4

General Troubleshooting Tips

Blgl®| v|&l& &léle| =]

|] Schema - ProcessOrder
-] Participating Hosts
E_@ localhost
=659 localhost_ch

B START_PP
ex_API_Check_Inv
2 eX_Authorize Cuantity
- \:Ij eX_Check_lnv

----- &8 =_Motauthorized
----- &) =¥ _Out_of_Inv
B8 e¥_Resubmiter

#lerts | Status Cortral |

CiCansale

LliTlaigd FESPOINSE:D

Elemnent name

Elenent type

jtate

Host name

Last update

Startup

Shared data directory

: ex_eBPH

: eBEPM Engine

: Up

: laocalhaost

: 0872372001 13:15:40
T 0872372001 13:12: 36

C:AZEGATE\Client

g BH_Send_Status Control port s 4000
----- &8 =_Ship_Ord Proceas ID : o267z
..... o EventsInbound Z
-5 Incalhost_igmor Eventziuthound I
ExtInterface : Up
Kl)
Command
Run | Cleat | Help |
Al [+]
IDane I_ﬁ* Administrator I I|EI

Note: The ExtInterface value shows whether the e*Insight engine has successfully
connected to the database. If the value is “Down” then the connection has not yet
been successfully made, even though the e*Insight engine state is shown as “Up”.

1842 Viewing the Message Content

The messages sent to and from the e*Insight engine can be viewed and interpreted. The
sample below shows a “START_BP” message sent to the e*Insight engine. You should
be able to determine from the message that the business process name is ProcessOrder,
the ID is 200108231344480169, and there are a number of global attributes defined
(namely, Cust_Address, Cust_Name, Cust_email, Item_Description, Item_Number,
and Order_Quantity).

13:44:48.219 | Qv D 2488 (iqgput.cxx:
(bytes 581):

3C
56
5F
33
45
3E
55
6E
22
75
54

65
45
42
31
3D
0A
45
67
53
73
54

58
4E
50
33
22
3C
3D
74
54
74
52

5F
54
22
34
50
41
22
6F
52
5F
49

45
0A
0A
34
72
54
34
6E
49
41
42

76
54
49
34
6F
54
30
20
4E
64
55

65
59
44
38
63
52
34
44
47
64
54

6E
50
3D
30
65
49
20
72
22
72
45

74
45
22
31
73
42
45
2E
OA
65
3E

3E
3D
32
36
73
55
2E
22
4E
73
0A

e*Insight Business Process Manager Implementation Guide 282

114):

0A
22
30
39
4F
54
20
0A
41
73
3C

3C
53
30
22
72
45
48
54
4D
22
41

sendi ng to i g manager

42
54
31
0A
64
0A
75
59
45
3E
54

50
41
30
4E
65
56
6E
50
3D
3C
54

5F
52
38
41
72
41
74
45
22
2F
52

45
54
32
4D
22
4C
69
3D
43
41
49

Dat a Fol | ows

<eX_ Event >. <BP_E
VENT. TYPE=" START
_BP".1D="2001082
31344480169". NAM
E="ProcessOrder"

>, <ATTRI BUTE. VAL
UE="404 E. Hunti

ngton Dr.". TYPE=
"STRI NG'. NAME="C
ust _Address"></A
TTRI BUTE>. <ATTRI

SeeBeyond Proprietary and Confidential

Chapter 18 Section 18.4

Troubleshooting General Troubleshooting Tips
42 55 54 45 0OA 56 41 4C 55 45 3D 22 4A 6F 68 6E BUTE. VALUE="John
20 53 6D 69 74 68 22 OA 54 59 50 45 3D 22 53 54 Smith". TYPE="ST
52 49 4E 47 22 OA 4E 41 4D 45 3D 22 43 75 73 74 RI NG'. NAVE=" Cust
5F 4E 61 6D 65 22 3E 3C 2F 41 54 54 52 49 42 55 _Nanme" ></ ATTRI BU
54 45 3E OA 3C 41 54 54 52 49 42 55 54 45 OA 56 TE>. <ATTRI BUTE. V
41 4C 55 45 3D 22 6A 73 6D 69 74 68 40 73 65 65 ALUE="]j sm th@ee
62 65 79 6F 6E 64 2E 63 6F 6D 22 OA 54 59 50 45 beyond. cont'. TYPE
3D 22 53 54 52 49 4E 47 22 OA 4E 41 4D 45 3D 22 =" STRI NG'. NAMVE="
43 75 73 74 5F 65 6D 61 69 6C 22 3E 3C 2F 41 54 Cust _emai | "></ AT
54 52 49 42 55 54 45 3E OA 3C 41 54 54 52 49 42 TRI BUTE>. <ATTRI B
55 54 45 OA 56 41 4C 55 45 3D 22 4D 69 6C 6C 65 UTE. VALUE="M | | e
6E 6E 69 75 6D 20 50 65 74 20 52 6F 63 6B 22 OA nni um Pet Rock".
54 59 50 45 3D 22 53 54 52 49 4E 47 22 OA 4E 41 TYPE="STRI NG'. NA
4D 45 3D 22 49 74 65 6D 5F 44 65 73 63 72 69 70 ME="1tem Descrip
74 69 6F 6E 22 3E 3C 2F 41 54 54 52 49 42 55 54 tion"></ATTRI BUT
45 3E OA 3C 41 54 54 52 49 42 55 54 45 OA 56 41 E>. <ATTRI BUTE. VA
4C 55 45 3D 22 33 33 33 33 33 22 0A 54 59 50 45 LUE="33333". TYPE
3D 22 53 54 52 49 4E 47 22 OA 4E 41 4D 45 3D 22 =" STRI NG'. NAVE="
49 74 65 6D 5F 4E 75 6D 62 65 72 22 3E 3C 2F 41 I tem Nurber " ></ A
54 54 52 49 42 55 54 45 3E OA 3C 41 54 54 52 49 TTRI BUTE>. <ATTRI
42 55 54 45 OA 56 41 4C 55 45 3D 22 31 22 OA 54 BUTE. VALUE="1". T
59 50 45 3D 22 4E 55 4D 42 45 52 22 OA 4E 41 4D YPE=" NUMBER"' . NAM
45 3D 22 4F 72 64 65 72 5F 51 75 61 6E 74 69 74 E="Order _Quantit
79 22 3E 3C 2F 41 54 54 52 49 42 55 54 45 3E 3C y" ></ ATTRI BUTE><
2F 42 50 5F 45 56 45 4E 54 3E 3C 2F 65 58 5F 45 / BP_EVENT></ eX_E
76 65 6E 74 3E | vent>

The sample below shows an example of a “Do” message. You should be able to
determine from the message that the business process name is ProcessOrder, the ID is
200108231344480169, and the activity name is Check_Inv. There are two global
attributes defined as input attributes for this activity, Item_Number and
Order_Quantity.

14:42:27.716 MNKV D 2228 (nonk_extension. cxx: 745): Qutput topic:

eX_Check_I nv_Do

14742:27.726 MNKV D 2228 (nonk_ext ensi on. cxx: 763): Msg body Data Fol | ows
(bytes 389):

3C 65 58 5F 45 76 65 6E 74 3E OA 3C 42 50 5F 45 <eX_Event>. <BP_E
56 45 4E 54 OA 42 50 49 5F 49 44 3D 22 31 36 31 VENT. BPI _I D="161
36 2E 30 2E 32 30 32 3A 22 OA 54 59 50 45 3D 22 6.0.202:". TYPE="
44 4AF SF 41 43 54 49 56 49 54 59 22 0A 49 44 3D DO ACTIVI TY". | D=
22 32 30 30 31 30 38 32 30 31 34 33 38 30 34 30 "200108231344480
36 34 36 22 OA 4E 41 4D 45 3D 22 50 72 6F 63 65 169" . NAMVE="Pr oce
73 73 AF 72 64 65 72 22 3E OA 3C 41 43 54 49 56 ssOrder">. <ACTI V
49 54 59 20 4E 41 4D 45 3D 22 43 68 65 63 6B 5F I TY NAME=" Check_
49 6E 76 22 20 49 44 3D 22 31 36 31 36 2E 35 36 I nv" |1 D="1616. 56
39 22 20 2F 3E OA 3C 41 54 54 52 49 42 55 54 45 9" />. <ATTRI BUTE
20 4E 41 4D 45 3D 22 49 74 65 6D 5F 4E 75 6D 62 NAME=" |t em Nurb
65 72 22 20 54 59 50 45 3D 22 53 54 52 49 4E 47 er" TYPE="STRI NG
22 20 56 41 4C 55 45 3D 22 39 39 39 39 39 22 20 " VALUE="99999"
2F 3E OA 3C 41 54 54 52 49 42 55 54 45 20 4E 41 />. <ATTRI BUTE NA
4D 45 3D 22 4F 72 64 65 72 5F 51 75 61 6E 74 69 ME=" Or der _Quant i
74 79 22 20 54 59 50 45 3D 22 4E 75 6D 62 65 72 ty" TYPE="Nunber
22 20 56 41 4C 55 45 3D 22 31 2E 30 22 20 2F 3E " VALUE="1.0" />
OA 3C 41 54 54 52 49 42 55 54 45 OA 56 41 4C 55 . <ATTRI BUTE. VALU
45 3D 22 65 42 50 4D 22 OA 4C 4F 43 41 54 49 4F E="eBPM' . LOCATI O
4E 3D 22 45 4D 42 45 44 44 45 44 22 0OA 54 59 50 N=" EMBEDDED" . TYP
45 3D 22 54 52 41 4E 53 49 45 4E 54 22 OA 4E 41 E="TRANSI ENT" . NA
4D 45 3D 22 65 58 5F 65 42 50 4D 53 65 72 76 65 ME=" eX_eBPMser ve
72 22 3E 3C 2F 41 54 54 52 49 42 55 54 45 3E 3C r"></ ATTRI BUTE><
2F 42 50 5F 45 56 45 4E 54 3E 3C 2F 65 58 5F 45 / BP_EVENT></ eX_E
76 65 6E 74 3E vent >

e*Insight Business Process Manager Implementation Guide 283 SeeBeyond Proprietary and Confidential

Chapter 19

e*Insight Helper Monk Functions

This chapter provides information on the e*Insight Monk APIs. For e*Insight Monk
helper functions (used when working with the e*Insight ETD) see “e*Insight Helper
Monk Functions” on page 285.

e*Insight Business Process Manager Implementation Guide 284 SeeBeyond Proprietary and Confidential

Chapter 19 Section 19.1
e*Insight Helper Monk Functions e*Insight Helper Monk Functions

191 e*Insight Helper Monk Functions

These functions allow you to set information in the e*Insight Event
(eX_Standard_Event.ssc ETD) and to get information from it. These functions are
contained in the following file:

= eX-eBPM-utils.monk

Important: Make sure that the Monk file eX-eBPM-utils.monk, containing the e*Insight
helper functions, are loaded before calling them in a Collaboration Rules Script. You
can do this in several ways, by putting them in the root of the monk_library
directory, loading them explicitly in your CRS, or using the eX-init-eXchange
bootstrap file to load them via the Collaboration Rule.

These functions are described in detail on the following pages:

eX-get-attribute on page 286 eX-bin-set-attribute on page 295
eX-count-attribute on page 287 eX-count-local-attribute on page 296
eX-set-attribute on page 288 eX-get-local-attribute on page 297
eX-set-BP_EVENT on page 289 eX-set-local-attribute on page 298
eX-get-BP_EVENT on page 290 eX-copy-no-attribute on page 299
eX-get-Activity on page 291 eX-set-all-BP_EVENT on page 300
eX-set-Activity on page 292 eX-get-all-attribute on page 301
eX-string-set-attribute on page 293 eX-get-all-local-attribute on page 302

eX-xml-set-attribute on page 294

e*Insight Business Process Manager Implementation Guide 285 SeeBeyond Proprietary and Confidential

Chapter 19
e*Insight Helper Monk Functions

eX-get-attribute
Syntax

(eX-get-attribute root-path attribute)

Description

Section 19.1
e*Insight Helper Monk Functions

eX-get-attribute finds the path to the value of the attribute specified in the e*Insight

Event named in the root-path.

Parameters
Name Type Description
root-path path Either ~input%eX_Event or
~output%eX_Event
attribute string The name of the attribute as it appears
in the e*Insight GUI.

Return Values

Returns one of the following values:

Boolean

Returns #f (false) if the attribute value is not found

path

Returns the path to the attribute in the e*Insight Event. Use get to return the actual

value of the attribute.
Throws
None.

Example

For an Event where the value of Is_Valid_account? is "yes":

(get (eX-get-attribute ~i nput%X Event

=> yes

e*Insight Business Process Manager Implementation Guide 286

"I's_Valid_account?"))

SeeBeyond Proprietary and Confidential

Chapter 19
e*Insight Helper Monk Functions

eX-count-attribute

Syntax

(eX-count-attri bute root-path)

Description

Section 19.1
e*Insight Helper Monk Functions

eX-count-attribute searches the Event specified for attributes, and counts the number

of attributes found.

Parameters
Name Type Description
root-path path Either ~input%eX_Event or
~output%eX_Event

Return Values

integer

Returns 0 to n depending on the number of attributes found.

Throws
None.

Example

For an Event containing three attributes:

(eX-count-attribute ~i nput%eX Event)

=> 3

e*Insight Business Process Manager Implementation Guide 287

SeeBeyond Proprietary and Confidential

Chapter 19 Section 19.1
e*Insight Helper Monk Functions e*Insight Helper Monk Functions

eX-set-attribute
Syntax

(eX-set-attribute root-path attribute val ue type)
Description

If the attribute exists in the Event specified in root-path, eX-set-attribute is reset to the
new value, otherwise a new entry for the specified attribute is created at the
appropriate location in the Event.

Parameters
Name Type Description

root-path path Either ~input%eX_Event or
~output%eX_Event

attribute string The name of the attribute as it appears
in the e*Insight GUI.

value string, XML or BIN The value to which you want to set the
attribute.

type string The type of Attribute. Examples:

= "BIN" - Interpreted as binary,
however, must be suitably encoded
for XML.

= "XML" - Interpreted as XML,
however, must be Base64 encoded
for XML.

= "STRING" - Interpreted as a string
(default).

= "TRANSIENT" - Interpreted as a
transient. The e*Insight engine does
not process the value but simply
return it as-is.

= "NUMBER" - Interpreted as a
decimal number, however, must be
given as a string.

= "BOOLEAN" - Interpreted as a
boolean, such as "true" and "false".

Return Values
None.

Throws
None.

Example

(eX-set-attribute ~i nput%X Event "lIs Valid account?" "no" "STRI NG')

=> sets the value of Is Valid account to "no".

e*Insight Business Process Manager Implementation Guide 288 SeeBeyond Proprietary and Confidential

Chapter 19 Section 19.1
e*Insight Helper Monk Functions e*Insight Helper Monk Functions

eX-set-BP_EVENT

Syntax
(eX-set-BP_EVENT root-path event-type val ue)

Description

eX-set-BP_EVENT sets the value of the event type node in the e*Insight Event.

Parameters
Name Type Description
root-path path Either ~input%eX_Event or
~output%eX_Event
event-type string STATUS, ID, NAME, or TYPE
value string The value for the business process

Event. For event-type "STATUS" value
must be either "SUCCESS" or
"FAILURE". For event-type "TYPLE"
value must be DO_ACTIVITY,
START_BP, or UNDO_ACTIVITY.

Return Values
Boolean
Returns #t (true) except when an invalid parameter is passed, then #f (false) is returned.
Throws
None.
Example
(eX-set-BP_EVENT ~i nput %X Event "STATUS" " SUCCESS")

=> sets the status of the activity to SUCCESS

e*Insight Business Process Manager Implementation Guide 289 SeeBeyond Proprietary and Confidential

Chapter 19 Section 19.1
e*Insight Helper Monk Functions e*Insight Helper Monk Functions

eX-get-BP_EVENT

Syntax
(eX-get-BP_EVENT root-path event-type)
Description

eX-get-BP_EVENT finds the path to the value for the event-type in the e*Insight Event
named in the root-path.

Parameters
Name Type Description
root-path path Either ~input%eX_Event or
~output%eX_Event
event-type string STATUS, ID, NAME or TYPE

Return Values
Returns one of the following values:
Boolean

Returns #f (false) if no data is found.

pat}Il{eturns the path to the value in the e*Insight Event. Use get to return the actual value.
Throws
None.
Example
For an Event with an ID of 11111:
(get (eX-get-BP_EVENT ~i nput %X Event "1D"))
= 11111

e*Insight Business Process Manager Implementation Guide 290 SeeBeyond Proprietary and Confidential

Chapter 19
e*Insight Helper Monk Functions

eX-get-Activity
Syntax

(eX-get-Activity root-path event-type)

Description

Section 19.1
e*Insight Helper Monk Functions

eX-get-Activity searches the e*Insight Event specified in for the name or ID of the

current activity.

Parameters
Name Type Description
root-path path Either ~input%eX_Event or
~output%eX_Event
event-type string Either ID, NAME

Return Values

Returns one of the following values:

Boolean

Returns #f (false) if the requested value is not found.

path

Returns the path to the name of the current activity as found in the e*Insight Event. Use

get to return the actual value.

Throws
None.

Example

For an Event with an activity name of "Check_Credit":

(get (eX-get-Activity ~i nput%eX Event

=> Check Credit

e*Insight Business Process Manager Implementation Guide 291

"NAVE"))

SeeBeyond Proprietary and Confidential

Chapter 19
e*Insight Helper Monk Functions

eX-set-Activity
Syntax

Section 19.1
e*Insight Helper Monk Functions

(eX-set-Activity root-path event-type data)

Description

eX-set-Activity sets the value of either the current activity name or ID.

Parameters
Name Type Description
root-path path Either ~input%eX_Event or
~output%eX_Event
event-type string Either ID, NAME
data string The value of the activity ID or NAME.

Return Values
None.

Throws
None.

Example

(eX-set-Activity ~i nput%eX Event
=> sets the activity IDto "12345"

e*Insight Business Process Manager Implementation Guide 292

"I D' "12345")

SeeBeyond Proprietary and Confidential

Chapter 19
e*Insight Helper Monk Functions

eX-string-set-attribute

Section 19.1
e*Insight Helper Monk Functions

Syntax
(eX-string-set-attribute root-path attribute val ue)
Description
eX-string-set-attribute automatically calls eX-set-attribute with the last argument as
"STRING".
Parameters
Name Type Description
root-path path Either ~input%eX_Event or
~output%eX_Event
attribute string The name of the attribute as it appears
in the e*Insight GUI.
value string The value to which you want to set the
attribute.

Return Values
None.

Throws
None.

Example

(eX-sting-set-attribute ~i nput%X Event "Is_Valid_account?"

=> sets the value of Is _Valid account to

e*Insight Business Process Manager Implementation Guide 293

no")

no- .

SeeBeyond Proprietary and Confidential

Section 19.1

Chapter 19
e*Insight Helper Monk Functions

e*Insight Helper Monk Functions

eX-xml-set-attribute
Syntax
(eX-xm -set-attribute root-path attribute val ue)

Description
eX-xml-set-attribute automatically calls eX-set-attribute with last argument as "XML".

Parameters
Name Type Description

root-path path Either ~input%eX_Event or
~output%eX_Event

attribute string The name of the attribute as it appears
in the e*Insight GUI.

value XML The base 64 encoded XML value to
which you want to set the attribute.

Return Values
None.

Throws
None.

Example

(eX-xm -set-attribute ~i nput%eX Event "Cust_nane" (raw >base64
"<a>Bryce Ferney)")

=> sets Cust_nane to "PGE+MJI5Y2UgRmvybnv5PC3+"

e*Insight Business Process Manager Implementation Guide 294 SeeBeyond Proprietary and Confidential

Chapter 19

e*Insight Helper Monk Functions

eX-bin-set-attribute

Syntax

Section 19.1
e*Insight Helper Monk Functions

(eX-bin-set-attribute root-path attribute val ue)

Description
eX-bin-set-attribute automatically calls eX-set-attribute with last argument as "BIN".

Parameters
Name Type Description

root-path path Either ~input%eX_Event or
~output%eX_Event

attribute string The name of the attribute as it appears
in the e*Insight GUI.

value string The base 64 encoded binary value to
which you want to set the attribute.

Return Values

None.
Throws
None.

Example

(eX-sting-set-attribute ~i nput%X Event "Cust_name" "<base64 encoded

bi nary data>")

=> sets Cust_nane to the specified val ue

e*Insight Business Process Manager Implementation Guide 295

SeeBeyond Proprietary and Confidential

Chapter 19 Section 19.1
e*Insight Helper Monk Functions e*Insight Helper Monk Functions

eX-count-local-attribute

Syntax
(eX-count-local -attribute root-path)
Description
eX-count-local-attribute counts the number of local attributes a specific e*Insight Event
contains.
Parameters
Name Type Description
root-path path Either ~input%eX_Event or
~output%eX_Event

Return Values
integer
Returns 0 to n, depending on the number of attributes found.
Throws
None.
Example
For an Event containing three local attributes:
(eX-count-local -attribute ~i nput%X Event)

=> 3

e*Insight Business Process Manager Implementation Guide 296 SeeBeyond Proprietary and Confidential

Chapter 19
e*Insight Helper Monk Functions

eX-get-local-attribute

Syntax

Section 19.1
e*Insight Helper Monk Functions

(eX-get-local-attribute root-path attr-nane)

Description

eX-get-local-attribute finds the path to the specified local attribute in the e*Insight

Event named in the root-node.

Parameters
Name Type Description
root-path path Either ~input%eX_Event or
~output%eX_Event
attr-name string The name of the local attribute as it
appears in the e*Insight GUI.

Return Values

Returns one of the following values:

Boolean

Returns #f (false) if the attribute value is not found.

path

Returns the path to the value of the local attribute. Use get to return the actual value.

Throws
None.

Example

For an Event where the value of the local attribute "Debit_ Amount” is "500":

(get (eX-get-local-attribute ~i nput%X Event "Debit_ Anount"))

=> 500

e*Insight Business Process Manager Implementation Guide 297

SeeBeyond Proprietary and Confidential

Chapter 19
e*Insight Helper Monk Functions

eX-set-local-attribute

Syntax

Section 19.1
e*Insight Helper Monk Functions

(eX-set-local-attribute root-path attr-nanme attr-value attr-type)

Description

If the local attribute exists in the Event specified in root-path, eX-set-local-attribute is
reset to the new value; otherwise a new entry for the specified attribute is created at the
appropriate location in the Event.

Parameters
Name Type Description

root-path path Either ~input%eX_Event or
~output%eX_Event

attr-name string The name of the attribute as it appears
in the e*Insight GUI.

attr-value string, XML or BIN The value to which you want to set the
attribute.

attr-type string The type of Attribute. Examples:

= "BIN" - Interpreted as binary,
however, must be suitably encoded
for XML.

= "XML" - Interpreted as XML,
however, must be Base64 encoded
for XML.

= "STRING" - Interpreted as a string
(default).

= "TRANSIENT" - Interpreted as a
transient. The e*Insight engine does
not process the value but simply
return it as-is.

= "NUMBER" - Interpreted as a
decimal number, however, must be
given as a string.

= "BOOLEAN" - Interpreted as a
boolean, such as "true" and "false".

Return Values
None.

Throws
None.

Example

(eX-set-local-attribute ~i nput %X Event

"STRI NG')

=> sets the value of the | ocal

e*Insight Business Process Manager Implementation Guide 298

" Debi t _Amount" " 500"

attribute "Debit_Amount" to 500.

SeeBeyond Proprietary and Confidential

Chapter 19 Section 19.1
e*Insight Helper Monk Functions e*Insight Helper Monk Functions

eX-copy-no-attribute
Syntax

(eX-copy-no-attri bute source-root-node dest-root-node)
Description

eX-copy-no-attribute copies all of the business process tracking information in the
source e*Insight Event to the destination e*Insight Event. No attribute information is
copied except for the machine-defined attribute eX_eBPMServer, which is used to
return the e*Insight Event to the proper e*Insight engine.

The eX_Activity_Do (or Undo) Event published by the e*Insight engine contains
tracking information (such as the business process instance ID, name of the activity,
and so on) that must be included in the "Done" Event that is sent back to the e*Insight
engine when the activity is finished.

eX-copy-no-attribute provides a convenient way for an activity Collaboration to copy
the e*Insight tracking information from source to destination, without copying the
input attribute information that does not belong in the "Done" Event. See “Sending the
“Done” Event Back to e*Insight (eIJSchema)” on page 88 for more information on
how to use this function.

Parameters
Name Type Description
source-root-node path ~input%eX_Event
dest-root-node path ~output%eX_Event

Return Values
None.
Throws
None.
Example
(eX-copy-no-attribute ~i nput%eX Event ~output %X Event)

=> copies all data except attribute data

e*Insight Business Process Manager Implementation Guide 299 SeeBeyond Proprietary and Confidential

Chapter 19 Section 19.1
e*Insight Helper Monk Functions e*Insight Helper Monk Functions

eX-set-all-BP_EVENT

Syntax
(eX-set-all-BP_EVENT source-root-node type status id nane [BPI _ID])
Description

eX-set-all-BP_EVENT is used to set all the information in the BP_EVENT node
structure at one time.

Parameters

Name Type Description

source-root-node path Either ~input%eX_Event or
~output%eX_Event

type string The type of business process Event.
Must be one of the following:
"DO_ACTIVITY", "UNDO_ACTIVITY",
or "START_BP".

status string For types "DO_ACTIVITY" or
"UNDO_ACTIVITY" indicates whether
the activity completed successfully or
not. Must be either "SUCCESS" or
"FAILURE". For type "START_BP" this
parameter is ignored.

id string User-assigned unique identifier for
the business process instance.

name string Name of the current business process.
Must match the name in the e*Insight
GUL

BPI_ID integer Machine assigned ID used to speed up
processing (optional).

Return Values
None.

Throws
None.

Example

(eX-set-al | - BP_EVENT ~out put %eX_Event "DO _ACTI VI TY" " SUCCESS"
"UNI QUE_| D _1002345812" "WebOr der")

=> sets the value of all the BP_EVENT nodes in the output Event.

e*Insight Business Process Manager Implementation Guide 300 SeeBeyond Proprietary and Confidential

Chapter 19 Section 19.1
e*Insight Helper Monk Functions e*Insight Helper Monk Functions

eX-get-all-attribute
Syntax

(eX-get-all-attribute source-root-node [attrl attr2 ... attrN])
Description

eX-get-all-attribute provides a way to return a number of paths to attribute values at
once, in a list format. The order of paths in the list is the same as the order in which you
requested them, that is, path-to-attr1 first, path-to-attr2 second, and so on.

Parameters
Name Type Description

source-root-node path Either ~input%eX_Event or
~output%eX_Event

attr1 string The name of the attribute whose path
you want to be first in the list.

attr2 string The name of the attribute whose path
you want to be second in the list.

attrN string The name of the attribute whose path
you want to be the last in the list.

Return Values
Returns one of the following values:

list
Returns a list composed of the paths to the values in the order you specified. If a
specified attribute is not found, its value in the list is #f (false).

Boolean
Returns #f (false) if no attribute names are passed in as parameters.

Throws
None.

Example

(get (car (eX-get-all-attribute ~i nput%X Event "Cust_ Nane"
"Cust _Address" "Cust_e-mail")))

=> "Bryce Ferney"

e*Insight Business Process Manager Implementation Guide 301 SeeBeyond Proprietary and Confidential

Chapter 19 Section 19.1
e*Insight Helper Monk Functions e*Insight Helper Monk Functions

eX-get-all-local-attribute

Syntax
(eX-get-all-local-attribute source-root-node [attrl attr2 ... attrN])
Description

eX-get-all-local-attribute provides a way to return a number of paths to local attribute
values at once, in a list format. The order of paths in the list is the same as the order in
which you requested them, that is, path-to-attr1 first, path-to-attr2 second, and so on.

Parameters
Name Type Description

source-root-node path Either ~input%eX_Event or
~output%eX_Event

attr1 string The name of the local attribute whose
path you want to be first in the list.

attr2 string The name of the local attribute whose
path you want to be second in the list.

attrN string The name of the local attribute whose
path you want to be the last in the list.

Return Values
Returns one of the following values:

list
Returns a list composed of the paths to the values in the order you specified. If a
specified attribute is not found, its value in the list is #f (false).

Boolean

Returns #f (false) if no attribute names are passed in as parameters.
Throws

None.

Example

(get (car (eX-get-all-local-attribute ~i nput%X Event "Cust_Nane"
"Cust _Address" "Cust_e-mail")))

=> "Bryce Ferney"

e*Insight Business Process Manager Implementation Guide 302 SeeBeyond Proprietary and Confidential

Chapter 20

Java Helper Methods

A number of Java methods have been added to make it easier to set information in the
e*Insight Event (ETD) and to get information from it. These methods are contained in
classes:

= “ACTIVITY Class” on page 304

= “/ATTRIBUTE Class” on page 324

= “BP_EVENT Class” on page 342

= “eX_StandardEvent Class” on page 378

e*Insight Business Process Manager Implementation Guide 303 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class

201 ACTIVITY Class

public class ACTIVITY
extends com.stc.jcsre. XMLETDImpl
implements com.stc.jcsre. ETD

A class to represent the ACTIVITY object of an e*Insight (Business Process
Management) XML ETD. It is defined in the following DTD:

<!l --eBusi ness Process Manager Event section-->
<! ELEMENT BP_EVENT (ACTIVITY?, ATTRI BUTE*)>
<! ATTLI ST BP_EVENT
TYPE (START_BP | DO ACTIVITY | UNDO ACTIVITY | UNDO BPI |
RESTART_ACTIVITY | SKIP_ACTIVITY | RELOAD BP | AUTHORI ZE |
DONT_AUTHORI ZE) #REQUI RED
STATUS (SUCCESS | FAI LURE) #l MPLI ED
NAME CDATA #| MPLI ED
| D CDATA #l MPLI ED
BPI _I D CDATA #l MPLI ED
>
<! ELEMENT ATTRI BUTE EMPTY>
<! - - ENCODI NG=base64 or whatever; eBPM only recogni zes base64 for
TYPE=XM.- - >
<! ATTLI ST ATTRI BUTE
TYPE (BIN| XM. | STRING| TRANSIENT | NUMBER | BOOLEAN) #REQUI RED
NAME CDATA #REQUI RED
VALUE CDATA #REQUI RED
ENCODI NG CDATA #| MPLI ED
LOCATION (FILE | DB | URL | EMBEDDED | AUTO #l MPLI ED
>
<! ELEMENT ACTI VI TY (ATTRI BUTE*) >
<I ATTLI ST ACTIVITY
NAME CDATA #| MPLI ED
| D CDATA #l MPLI ED

These methods are described in detail on the following pages:

addATTRIBUTE on page 305 marshal on page 314
clearATTRIBUTE on page 306 omitID on page 315
countATTRIBUTE on page 307 omitNAME on page 316
getATTRIBUTE_VALUE on page 308 removeATTRIBUTE on page 317
getATTRIBUTE on page 309 setATTRIBUTE on page 318
getID on page 310 setID on page 320

getNAME on page 311 setNAME on page 321

hasID on page 312 toString on page 322

hasNAME on page 313 unmarshal on page 323

e*Insight Business Process Manager Implementation Guide 304 SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

addATTRIBUTE
Syntax

voi d addATTRI BUTE(ATTRI BUTE val ue)
voi d addATTRI BUTE(i nt

Description

i ndex,

Section 20.1
ACTIVITY Class

ATTRI BUTE val ue)

addATTRIBUTE inserts a new local Attribute into this ACTIVITY object.

Parameters
Name Type Description
index integer The offset to the list at which insertion
occurs (zero-based).
value ATTRIBUTE The local Attribute.

Return Values
None.
Throws

None.

e*Insight Business Process Manager Implementation Guide 305

SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class

clearATTRIBUTE

Syntax

voi d cl ear ATTRI BUTE()
Description

clearATTRIBUTE removes all the local Attributes from this ACTIVITY object.
Parameters

None.
Return Values

None.
Throws

None.
Example

cl ear ATTRI BUTE() ;

e*Insight Business Process Manager Implementation Guide 306 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class

countATTRIBUTE

Syntax

i nt count ATTRI BUTE()
Description

countATTRIBUTE retrieves the number of local Attributes currently existing in this
Activity of the Business Process object.

Parameters
None.
Return Values
integer
Returns the number of global Attributes.
Throws
None.
Example

count ATTRI BUTE() ;
=> 5

e*Insight Business Process Manager Implementation Guide 307 SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

getATTRIBUTE_VALUE

Syntax

Section 20.1
ACTIVITY Class

java.l ang. String get ATTRI BUTE_VALUE(] ava. | ang. Stri ng nane)

Description

getATTRIBUTE_VALUE retrieves the value of a specific local Attribute by name.

Parameters

Name

Type

Description

name

java.lang.String

The name of the local Attribute.

Return Values

String

Returns the value of the local Attribute. Can be null if the Attribute of that name doesn't

exist.

Throws
None.

Example

getl nstance() . get BP_EVENT(). get ACTI VI TY. get ATTRI BUTE_VALUE("I n_St ock”

= yes"

e*Insight Business Process Manager Implementation Guide 308

SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

getATTRIBUTE

Syntax
ATTRI BUTE[]

get ATTRI BUTE()

ATTRI BUTE get ATTRI BUTE(i nt i)
ATTRI BUTE get ATTRI BUTE(j ava. |l ang. Stri ng nane)

Description

Section 20.1
ACTIVITY Class

getATTRIBUTE retrieves local Attributes. A specific Attribute can be retrieved by
name or by index. Alternatively, it can be used to retrieve all the local Attributes of an

Activity of the Business Process as an array.

Parameters
Name Type Description
i integer The list index of the Attribute to be
retrieved (zero-based).
name string The name of the local Attribute.

Return Values

Returns one of the following values:

ATTRIBUTEI]

Returns the array of local Attributes.

ATTRIBUTE

Returns the requested Attribute.

Throws

None.

e*Insight Business Process Manager Implementation Guide 309

SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class

getlD

Syntax

java.lang. String getl D)
Description

getID retrieves the internal unique identifier created by e*Insight for this Activity in the
Business Process.

Parameters
None.
Return Values
java.lang.String
Returns the unique internal identifier created for this Activity.
Throws
None.
Example

getlI();
=> "12345"

e*Insight Business Process Manager Implementation Guide 310 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class

getNAME

Syntax

java.l ang. String get NAME()
Description

getNAME retrieves the case-sensitive name of this Business Process Activity.
Parameters
None.
Return Values
java.lang.String
Returns the case-sensitive name of this ACTIVITY object.
Throws
None.
Example

get I nstance(). get BP_EVENT(). get ACTI VI TY() . get NAME() ;
=> "Shi p_Order"

e*Insight Business Process Manager Implementation Guide 311 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class

hasID
Syntax

bool ean hasl D()

Description

hasID checks if there is an unique identifier for this ACTIVITY object.
Parameters

None.
Return Values
boolean

Returns true if there exists an unique ID; otherwise returns false.
Throws

None.
Example

has!l D() ;

=> true

e*Insight Business Process Manager Implementation Guide 312 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class

hasNAME

Syntax
bool ean hasNAME()

Description

hasNAME checks if there exists a name for this ACTIVITY object.
Parameters

None.
Return Values
boolean

Returns true if name exists for this ACTIVITY object; otherwise returns false.
Throws

None.
Example

hasNAME() ;
=> true

e*Insight Business Process Manager Implementation Guide 313 SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

marshal

Syntax

Section 20.1
ACTIVITY Class

voi d marshal (org. xm . sax. Cont ent Handl er handl er,

org. xm . sax. Error Handl er errorHandl er)

Description

marshal gathers the data contained within this ETD object and formulates it back into a
serialized XML message.

Parameters

Name

Type

Description

handler

org.xml.sax.ContentHan
dler

The handler that converts content
within to XML.

errorHandler

org.xml.sax.ErrorHandle
r

The handler to address errors during
conversion.

Return Values
None.
Throws

None.

e*Insight Business Process Manager Implementation Guide 314

SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class

omitlD

Syntax

void omtlD()
Description

omitID removes the unique identifier definition for this ACTIVITY object.
Parameters
None.
Return Values
None.
Throws
None.
Example

omtlD();

e*Insight Business Process Manager Implementation Guide 315 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class

omitNAME

Syntax

voi d om t NAMVE()
Description

omitNAME removes the name definition from this ACTIVITY object.
Parameters

None
Return Values

None.

Throws
None.
Example
om t NAME() ;

e*Insight Business Process Manager Implementation Guide 316 SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

removeATTRIBUTE

Syntax

voi d renmoveATTRI BUTE(] ava. | ang. String nane)

voi d renoveATTRI BUTE(i nt

Description

i ndex)

Section 20.1
ACTIVITY Class

removeATTRIBUTE removes a specific local attribute from this ACTIVITY object.

Parameters
Name Type Description
name java.lang.String The name of the local attribute.
index int The index to the list of local attributes
(zero-based).

Return Values
None.

Throws
None.

Example

renmoveATTRI BUTE(1) ;

e*Insight Business Process Manager Implementation Guide 317

SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class

setATTRIBUTE

Syntax

voi d set ATTRI BUTE(ATTRI BUTE[] val)

voi d set ATTRI BUTE(int i, ATTRIBUTE val)

voi d set ATTRI BUTE(j ava. |l ang. String nane java.lang. String val ue)

voi d set ATTRI BUTE(j ava. | ang. String nanme, java.lang. String type,
java.lang. String val ue)

voi d set ATTRI BUTE(j ava. |l ang. String nane, java.lang.String type,
java.l ang. String encoding,java.lang. String val ue)

voi d set ATTRI BUTE(j ava. |l ang. String nane, java.lang. String type,
java.lang. String value, java.lang.String encoding,java.lang. String
| ocati on)

Description

setATTRIBUTE can be used to set all the local Attributes of an Activity of the Business
Process, set a local Attribute of an Activity of the Business Process, or set a specific local

Attribute by name.
Parameters
Name Type Description
val ATTRIBUTE The Attribute object.
val ATTRIBUTE[] The array of local Attributes.
i int The list index of the Attribute to be
retrieved (zero-based).
name java.lang.String The name of the global Attribute.
value java.lang.String The value of the global Attribute.
type java.lang.String The type of Attribute. Examples:

= "BIN" - Interpreted as binary,
however, must be suitably encoded
for XML.

= "XML" - Interpreted as XML,
however, must be Base64 encoded
for XML.

= "STRING" - Interpreted as a string
(default).

= "TRANSIENT" - Interpreted as a
transient. The e*Insight engine does
not process the value but simply
return it as-is.

= "NUMBER" - Interpreted as a
decimal number, however, must be
given as a string.

= "BOOLEAN" - Interpreted as a
boolean, such as "true" and "false".

e*Insight Business Process Manager Implementation Guide 318 SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

Section 20.1
ACTIVITY Class

Name Type Description
encoding java.lang.String The encoding used for the value.
Examples:
= "base64’ - Standard MIME Base64
encoding.

= Null if plain text.

location

java.lang.String

The location of the actual data

associated with the Attribute value.

Examples:

= "FILE" - Attribute value specifies a
file where actual data exists.

= "DB" - Attribute value is a reference
to a row in a database table.

= "URL" - Attribute value specifies a
URL of where actual data exists.

= "EMBEDDED" - Attribute value is the
actual data (default).

= "AUTQO" - Attribute value is actual
data but storage in e*Insight is
automatically determined.

Return Values

None.
Throws
None.

Example

getl nstance() . get BP_EVENT(). get ACTIVITY. set ATTRI BUTE(" I n_St ock", " STRI

NG', "yes");

e*Insight Business Process Manager Implementation Guide 319

SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

setiD
Syntax

void setlD(java.lang. String val)

Description

Section 20.1
ACTIVITY Class

setID sets the internal unique identifier created by e*Insight for this Activity in the

Business Process.

Parameters
Name Type Description
val string The unique internal identifier created
for this Activity.

Return Values
None.
Throws
None.
Example
set | D("12345") ;

e*Insight Business Process Manager Implementation Guide 320

SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

setNAME
Syntax

voi d set NAME(j ava. |l ang. String val)

Description

Section 20.1
ACTIVITY Class

setNAME sets the case-sensitive name of this Business Process Activity.

Parameters
Name Type Description
val string The case-sensitive name of this
ACTIVITY obiject.

Return Values
None.

Throws
None.

Example

set NAME(" Shi p_Order");

e*Insight Business Process Manager Implementation Guide 321

SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.1
Java Helper Methods ACTIVITY Class

toString

Syntax

java.lang. String toString()
Description

toString converts this ETD object to a printable String form.
Parameters

None.
Return Values
java.lang.String

Returns the XML message represent by this ETD object.
Throws

None.
Example

t 0STRI N) ;

e*Insight Business Process Manager Implementation Guide 322 SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

unmarshal
Syntax

Section 20.1
ACTIVITY Class

voi d unmar shal (org. xm . sax. | nput Sour ce i nput Sour ce,

comstc.jcsre.snl.SAXLexer | exer)

Description

unmarshal takes a serialized (marshalled) form of the ACTIVITY XML Event and
distributes (unmarshals) the data into this ETD object.

Parameters
Name Type Description
inputSource org.xml.sax.InputSource | The input source for the serialized
data.
lexer com.stc.jcsre.sml.SAXLe | The SAX lexer (parser) to distribute the
xer data.

Return Values
None.

Throws

org.xml.sax.SAXException - thrown when the data cannot be parsed

com.stc.jesre.UnmarshalException - throw when the data cannot be unmarshalled

e*Insight Business Process Manager Implementation Guide 323

SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class

202 ATTRIBUTE Class

public class ATTRIBUTE
extends com.stc.jcsre. XMLETDImpl
implements com.stc.jcsre. ETD

A class to represent the ATTRIBUTE object of an e*Insight (Business Process
Management) XML ETD. It is defined in the following DTD:

<!l --eBusi ness Process Manager Event section-->
<! ELEMENT BP_EVENT (ACTIVITY?, ATTRI BUTE*)>
<! ATTLI ST BP_EVENT
TYPE (START_BP | DO ACTIVITY | UNDO ACTIVITY | UNDO BPI |
RESTART_ACTIVITY | SKIP_ACTIVITY | RELOAD BP | AUTHORI ZE |
DONT_AUTHORI ZE) #REQUI RED
STATUS (SUCCESS | FAI LURE) #l MPLI ED
NAME CDATA #| MPLI ED
| D CDATA #l MPLI ED
BPI _I D CDATA #l MPLI ED
>
<! ELEMENT ATTRI BUTE EMPTY>
<! - - ENCODI NG=base64 or whatever; eBPM only recogni zes base64 for
TYPE=XM.- - >
<! ATTLI ST ATTRI BUTE
TYPE (BIN| XM. | STRING| TRANSIENT | NUMBER | BOOLEAN) #REQUI RED
NAME CDATA #REQUI RED
VALUE CDATA #REQUI RED
ENCODI NG CDATA #| MPLI ED
LOCATION (FILE | DB | URL | EMBEDDED | AUTO #l MPLI ED
>
<! ELEMENT ACTI VI TY (ATTRI BUTE*) >
<I ATTLI ST ACTIVITY
NAME CDATA #| MPLI ED
| D CDATA #l MPLI ED

These methods are described on the following pages:

getENCODING on page 325
getLOCATION on page 326
getNAME on page 327
getTYPE on page 328
getVALUE on page 329
hasENCODING on page 330
hasLOCATION on page 331
marshal on page 332
omitENCODING on page 333

e*Insight Business Process Manager Implementation Guide 324

omitLOCATION on page 334
setENCODING on page 335
setLOCATION on page 336
setNAME on page 337
setTYPE on page 338
setVALUE on page 339
toString on page 340

unmarshal on page 341

SeeBeyond Proprietary and Confidential

Section 20.2

Chapter 20
ATTRIBUTE Class

Java Helper Methods

getENCODING

Syntax
java.l ang. String get ENCODI N&)
Description

getENCODING retrieves the encoding algorithm for the data contained in the Business
Process or Activity Attribute. Currently, only the base64 algorithm is supported. If not
defined, clear-text is assumed.

Parameters
None.
Return Values
java.lang.String
Returns the encoding algorithm used on the data.
Throws
None.
Example

get ENCODI N) ;
=> "base64"

e*Insight Business Process Manager Implementation Guide 325 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class

getLOCATION

Syntax

java.l ang. String get LOCATI ON()
Description

getLOCATION retrieves the location type of where the data for an Attribute is actually
stored. In cases where the data is too long to be stored in standard database column, it
can be stored in another table where the column can be defined as a LONG RAW for
example, or it may be stored in a file on some file system. In such cases, a reference to
the actual data location is stored as the data for the Attribute.

Parameters
None.

Return Values

java.lang.String

Returns the location type for the Attribute data. This is one of the following values:

"FILE" Attribute data is the name of a file where actual
data is stored.
"DB" Attribute data is a reference such as ROWID to

arow in atable.

"URL" Attribute data is the URL to where the actual
data is stored.

"EMBEDDED" Attribute data is the actual data (this is the

default).

"AUTO" The actual data storage location is
automatically determined by the e*Insight
engine.

Throws
None.
Example
get LOCATI ON() ;

=> " EMBEDDED"

e*Insight Business Process Manager Implementation Guide 326 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class

getNAME

Syntax

java.l ang. String get NAME()
Description

getNAME retrieves the name of the Business Process or Activity Attribute.
Parameters
None.
Return Values
java.lang.String
Returns the name of the Attribute.
Throws
None.
Example

get | nstance() . get BP_EVENT() . get NAME() ;
=> "ProcessOrder"”

e*Insight Business Process Manager Implementation Guide 327 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class

getTYPE

Syntax
java.l ang. String get TYPE()
Description
getTYPE Retrieves the type of data stored in the Attribute.
Parameters
None.
Return Values

java.lang.String
Returns the type of data stored as one of the following values:

"BIN" Attribute data is binary in nature. However,
must be safely encoded for XML.

"XML" Attribute data represents a XML message.
However, must be base64 encoded.

"STRING" Attribute data appears as clear-text string (this
is the default).

"TRANSIENT" Attribute data is not persisted in the e*Insight
database; is passed-through.

"NUMBER" Attribute data represents a decimal numeric
string.

"BOOLEAN" Attribute data represents a boolean string such
as "true" or "false".

Throws
None.

Example

get I nstance(). get BP_EVENT(). get TYPE() ;
=> " STRI NG'

e*Insight Business Process Manager Implementation Guide 328 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class

getVALUE

Syntax

java.l ang. String get VALUE()
Description

getVALUE retrieves the value of the Business Process or Activity Attribute.
Parameters
None.
Return Values
java.lang.String
Returns the value of the Attribute.
Throws
None.
Example

get VALUE() ;
=> "yes"

e*Insight Business Process Manager Implementation Guide 329 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class

hasENCODING

Syntax
bool ean hasENCODNE)
Description

hasENCODING checks if the encoding algorithm is defined for this ATTRIBUTE
object.

Parameters
None.
Return Values
boolean
Returns true if the encoding algorithm exists; otherwise returns false.
Throws
None.
Example

has ENCODI N&) ;
=> true

e*Insight Business Process Manager Implementation Guide 330 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class

hasLOCATION

Syntax
bool ean hasLOCATI ON()

Description

hasLOCATION checks if the location is defined for this ATTRIBUTE object.
Parameters

None.
Return Values
boolean

Returns true if location exists, otherwise returns false.
Throws

None.
Example

hasLOCATI ON() ;
=> true

e*Insight Business Process Manager Implementation Guide 331 SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

marshal

Syntax

Section 20.2
ATTRIBUTE Class

voi d marshal (org. xm . sax. Cont ent Handl er handl er,

org. xm . sax. Error Handl er errorHandl er)

Description

marshal gathers the data contained within this ETD object and formulates it back into a
serialized XML message.

Parameters

Name

Type

Description

handler

org.xml.sax.ContentHan

dler

The handler that converts content
within to XML.

errorHandler

orxml.sax.ErrorHandler

The handler to address errors during
conversion.

Return Val
None.

Throws

com.stc.jcsre.MarshalException

ues

org.xml.sax.SAXException

e*Insight Business Process Manager Implementation Guide 332

SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class

omitENCODING

Syntax

voi d oni t ENCODI NX)
Description

omitENCODING removes the encoding algorithm definition for this ATTRIBUTE
object.

Parameters

None.
Return Values

None.
Throws

None.
Example

om t ENCODI N) ;

e*Insight Business Process Manager Implementation Guide 333 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class

omitLOCATION

Syntax

voi d onit LOCATI ON()
Description

omitLOCATION removes the location definition for this ATTRIBUTE object.
Parameters

None.
Return Values

None.
Throws

None.
Example

om t LOCATI ON() ;

e*Insight Business Process Manager Implementation Guide 334 SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

setENCODING
Syntax

voi d set ENCODI N j ava. |l ang. String val)

Description

Section 20.2
ATTRIBUTE Class

setENCODING sets the encoding algorithm for the data contained in the Business
Process or Activity Attribute. Currently, only the "base64" algorithm is supported. If
not defined, clear-text is assumed.

Parameters

Name

Type

Description

val

string

The encoding algorithm used on the

data.

Return Values
None.

Throws
None.

Example

set ENCODI N& " base64") ;

e*Insight Business Process Manager Implementation Guide 335

SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class

setLOCATION

Syntax

voi d set LOCATI ON(j ava. l ang. String val)
Description

setLOCATION sets the location type of where the data for an Attribute is actually
stored. In cases where the data is too long to be stored in standard database column, it
can be stored in another table where the column can be defined as a "LONG RAW" for
example, or it may be stored in a file on some file system.

Parameters
Name Type Description
val java.lang.String The location type for the Attribute
data. This can have one the following
values:

= "FILE" - Attribute data is the name of
a file where actual data is stored.

= "DB" - Attribute data is a reference
such as "ROWID" to arow in a table.

= "URL" - Attribute data is the URL to
where the actual data is stored.

= "EMBEDDED" - Attribute data is the
actual data (this is the default).

= "AUTO" - The actual data storage
location is automatically determined
by the e*Insight engine.

Return Values
None.

Throws
None.

Example

set LOCATI ON(" EMBEDDED") ;

e*Insight Business Process Manager Implementation Guide 336 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class

setNAME

Syntax

voi d set NAME(j ava. |l ang. String val)
Description

setNAME sets the name of the Business Process or Activity Attribute.

Parameters

Name Type Description

val java.lang.String The name of the Attribute.

Return Values
None.
Throws
None.
Example
set NAME(" I n_St ock");

e*Insight Business Process Manager Implementation Guide 337 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class

setTYPE

Syntax

voi d set TYPE(j ava.l ang. String val)
Description

setTYPE sets the type of data stored in the Attribute.

Parameters

Name Type Description

val java.lang.String The type of data stored. This can take

one of the following values:

= "BIN" - Attribute data is binary in
nature. However, must be safely
encoded for XML.

= "XML" - Attribute data represents a
XML message. However, must be
base64 encoded.

= "STRING"- Attribute data appears as
clear-text string (this is the default).

= "TRANSIENT" - Attribute data is not
persisted in the e*Insight database;
is passed-thru.

= "NUMBER" - Attribute data
represents a decimal numeric string.

= "BOOLEAN" - Attribute data
represents a boolean string such as
"true" or "false".

Return Values
None.
Throws
None.
Example
set TYPE(" STRING') ;

e*Insight Business Process Manager Implementation Guide 338 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class

setVALUE

Syntax

voi d set VALUE(j ava.l ang. String val)
Description

setVALUE sets the value of the Business Process or Activity Attribute.

Parameters

Name Type Description

val java.lang.String The value of the Attribute.

Return Values
None.
Throws
None.
Example
set VALUE("yes");

e*Insight Business Process Manager Implementation Guide 339 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.2
Java Helper Methods ATTRIBUTE Class

toString

Syntax

java.lang. String toString()
Description

toString Converts this ETD object to a printable String form.
Parameters

None.
Return Values
java.lang.String

Returns the XML message represent by this ETD object.
Throws

None.
Example

t 0STRI N) ;

e*Insight Business Process Manager Implementation Guide 340 SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

unmarshal
Syntax

Section 20.2
ATTRIBUTE Class

voi d unmar shal (org. xm . sax. | nput Sour ce i nput Sour ce,

comstc.jcsre.snl.SAXLexer | exer)

Description

unmarshal takes a serialized (marshalled) form of the e*Insight XML Event and
distributes (unmarshals) the data into this ETD object.

Parameters
Name Type Description
inputSource org.xml.sax.InputSource | The input source for the serialized
data.
lexer com.stc.jcsre.xml.SAXLe | The SAX Lexer (parser) to distribute
xer the data.

Return Values
None.

Throws

org.xml.sax.SAXException, when the data cannot be parsed.

com.stc.jesre.UnmarshalException, when the data cannot be unmarshalled.

e*Insight Business Process Manager Implementation Guide 341

SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

Section 20.3
BP_EVENT Class

203 BP_EVENT Class

public class BP_EVENT
extends com.stc.jcsre. AMLETDImpl

implements com.stc.eBlpkg.BPEventETD

The BP_EVENT class represents the e*Insight Business Process Manager section of the
SeeBeyond eBI Standard XML ETD which is used to communicate with the e*Insight

engine. The DTD is:

<! --eBusi ness Process Mnager
<! ELEMENT BP_EVENT (ACTI VI TY?,
<! ATTLI ST BP_EVENT

TYPE (START_BP |

Event section-->
ATTRI BUTE*) >

DO _ACTIVITY | UNDO _ACTIVITY | UNDO _BPI

| RESTART_ACTIVITY | SKIP_ACTIVITY)
STATUS (SUCCESS | FAI LURE) #i MPLI ED

NAMVE CDATA #l| MPLI ED

| D CDATA #l MPLI ED

BPI _I D CDATA #l MPLI ED
>

<! ELEMENT ATTRI BUTE EMPTY>

<! - - ENCODI NG=base64 or whatever;

TYPE=XM.- - >
<I ATTLI ST ATTRI BUTE

TYPE (BIN | XM. | STRING |

#REQUI RED
NAME CDATA #REQUI RED
VALUE CDATA #REQUI RED

ENCODI NG CDATA #| MPLI ED
URL |

LOCATI ON (FILE | DB |
>

<! ELEMENT ACTI VI TY (ATTRI BUTE*) >

<I ATTLI ST ACTIVITY
NAME CDATA #| MPLI ED
| D CDATA #l MPLI ED

>

eBPM only recogni zes base64 for

TRANSI ENT | NUMBER | BOOLEAN)

EMBEDDED | AUTO #l MPLI ED

These methods are described in detail on the following pages:

addATTRIBUTE on page 344
clearATTRIBUTE on page 345
countATTRIBUTE on page 346
getACTIVITY on page 347
getATTRIBUTE_VALUE on page 348
getATTRIBUTE on page 349
getBPI_ID on page 350

getID on page 351

getNAME on page 352
getSTATUS on page 353
getTYPE on page 354
hasACTIVITY on page 355

e*Insight Business Process Manager Implementation Guide 342

omitACTIVITY on page 361
omitBPI_ID on page 362
omitID on page 363
omitNAME on page 364
omitSTATUS on page 365
removeATTRIBUTE on page 366
setACTIVITY on page 367
setATTRIBUTE on page 368
setBPI_ID on page 370
setEventInfo on page 371
setID on page 372

setNAME on page 373

SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3

Java Helper Methods BP_EVENT Class
hasBPI_ID on page 356 setSTATUS on page 374
hasID on page 357 setTYPE on page 375
hasNAME on page 358 toString on page 376
hasSTATUS on page 359 unmarshal on page 377

marshal on page 360

e*Insight Business Process Manager Implementation Guide 343 SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

addATTRIBUTE

Syntax

Section 20.3
BP_EVENT Class

voi d addATTRI BUTE(i nt i ndex, ATTRI BUTE val ue)

Descriptio

n

addATTRIBUTE adds a new global Attribute to this Business Process object.

Parameters
Name Type Description
index integer (Optional) The offset to the list at
which insertion occurs (zero-
based).
value com.stc.eBlpkg. ATTRIBUTE | The global Attribute.

Return Values

None.
Throws

None.

e*Insight Business Process Manager Implementation Guide 344

SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class

clearATTRIBUTE

Syntax

voi d cl ear ATTRI BUTE()
Description

clearATTRIBUTE removes all the global Attributes from this Business Process object.
Parameters
None.
Return Values
None.
Throws
None.
Example

cl ear ATTRI BUTE() ;

e*Insight Business Process Manager Implementation Guide 345 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class

countATTRIBUTE

Syntax
i nt count ATTRI BUTE()
Description

countATTRIBUTE retrieves the number of global Attributes currently existing in this
Business Process object.

Parameters
None.
Return Values
integer
Returns the number of global Attributes as an integer.
Throws
None

Example

count ATTRI BUTE() ;
=> 5

e*Insight Business Process Manager Implementation Guide 346 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class

getACTIVITY

Syntax

ACTI VI TY get ACTI VI TY()
Description

getACTIVITY retrieves the current Activity for a Business Process.
Parameters
None.
Return Values
ACTIVITY
Returns the current Activity object.
Throws

None.

e*Insight Business Process Manager Implementation Guide 347 SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

getATTRIBUTE_VALUE
Syntax

Section 20.3
BP_EVENT Class

java.l ang. String get ATTRI BUTE_VALUE(] ava. | ang. Stri ng nane)

Description

getATTRIBUTE_VALUE retrieves the value of a specific global Attribute by name.

Parameters

Name Type

Description

name java.lang.String

The name of the global Attribute.

Return Values

java.lang.String

Returns the value of the global Attribute. Can be null if the Attribute of that name does

not exist.

Throws
None.
Example

get ATTRI BUTE_VALUE(" I n_St ock");
=> "yes"

e*Insight Business Process Manager Implementation Guide 348

SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

getATTRIBUTE
Syntax

com st c. eBl pkg. ATTRI BUTE]]

Section 20.3
BP_EVENT Class

get ATTRI BUTE()

com st c. eBl pkg. ATTRI BUTE get ATTRI BUTE(int i)
com st c. eBl pkg. ATTRI BUTE get ATTRI BUTE(j ava. | ang. Stri ng nane)

Description

getATTRIBUTE retrieves a specific global Attribute by name.

Parameters
Name Type Description
i integer (Optional) The offset to the list where
the Attribute appears.
name java.lang.String The global Attribute.

Return Values

Returns one of the following values:

ATTRIBUTEI]

Returns an array of global Attributes if no name or offset were specified.

ATTRIBUTE

Returns the global Attribute if the name or offset were specified.

Throws

None.

e*Insight Business Process Manager Implementation Guide 349

SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class

getBPI_ID

Syntax

java.lang. String getBPI _| D)
Description

getBPI_ID retrieves the internal Business Process ID used by the e*Insight engine. It
must be returned as-is in a "Done" event back to the e*Insight engine when the active
mode is enabled.

Parameters
None.
Return Values
java.lang.String
Returns the internal Business Process ID.
Throws
None.
Example

getBPI _I1DIX);
=> "605. 0. 21"

e*Insight Business Process Manager Implementation Guide 350 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class

getlD

Syntax

java.lang. String getl D)
Description

getID retrieves the Business Process user-assigned unique ID (relative to an ERP, for
example).

Parameters
None.
Return Values
java.lang.String
Returns the Business Process user-assigned unique ID.
Throws
None.
Example

getlI();
=> "12345"

e*Insight Business Process Manager Implementation Guide 351 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class

getNAME

Syntax

java.l ang. String get NAME()
Description

getNAME retrieves the case-sensitive name of the Business Process.
Parameters
None.
Return Values
java.lang.String
Returns the name of the Business Process.
Throws
None.
Example

get NAME() ;
=> "ProcessOrder"”

e*Insight Business Process Manager Implementation Guide 352 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class

getSTATUS

Syntax
java.l ang. String get STATUS()
Description
getSTATUS retrieves the status of the current Activity in a Business Process.
Parameters
None.
Return Values

java.lang.String
Returns "SUCCESS" if the current Activity has successfully completed; otherwise
returns "FAILURE" if the current Activity has not successfully completed.

Throws
None.

Example

get STATUS() ;
=> " SUCCESS"

e*Insight Business Process Manager Implementation Guide 353 SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

getTYPE
Syntax

java.l ang. String get TYPE()

Description

Section 20.3
BP_EVENT Class

getTYPE retrieves the type of command represented by this Business Process object.

Parameters
None.
Return Values

java.lang.String

Returns one of the following;:

"START_BP"

"DO_ACTIVITY"
"UNDO_ACTIVITY"

"UNDO_BPI"
"RESTART_ACTIVITY"
"SKIP_ACTIVITY"
"RELOAD_BP"
"AUTHORIZE"

"DONT_AUTHORIZE

n

Throws
None.
Example

get TYPE() ;
=> "DO_ACTI VI TY"

e*Insight Business Process Manager Implementation Guide 354

Instructs the e*Insight engine to start a
Business Process Instance.

Indicates a "Do" Event for the current Activity.

Indicates an "Undo" Event for the current
Activity.

Indicates an "Undo" for the entire Business
Process Instance.

Indicates restarting the current Activity after it
has paused.

Indicates the current Activity should be
skipped.

Indicates the Business Process definition
should be reloaded.

Indicates the current Activity should be
authorized.

Indicates that the current Activity should not
be authorized.

SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class

hasACTIVITY

Syntax
bool ean hasACTI VI TY()

Description

hasACTIVITY checks whether the Activity object exists in the Business Process object.
Parameters

None.
Return Values
boolean

Returns true if the Activity object is defined; otherwise returns false.
Throws

None.
Example

hasACTI VI TY() ;
=> true

e*Insight Business Process Manager Implementation Guide 355 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class

hasBPI_ID

Syntax
bool ean hasBPI _| D()
Description

hasBPI_ID checks whether the internal Business Process ID exits in this Business
Process object.

Parameters
None.
Return Values
boolean
Returns true if the internal Business Process ID is defined; otherwise returns false.
Throws
None.
Example

hasBPI |) ;
=> true

e*Insight Business Process Manager Implementation Guide 356 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class

hasID
Syntax

bool ean hasl D()
Description

hasID checks whether there is a user-assigned unique ID for this Business Process.
Parameters
None.
Return Values
boolean
Returns true if a user-assigned unique ID exits; otherwise returns false.
Throws
None.
Example

has!l D() ;

=> true

e*Insight Business Process Manager Implementation Guide 357 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class

hasNAME

Syntax
bool ean hasNAME()

Description

hasNAME checks whether the name exists in the Business Process object.
Parameters

None.
Return Values
boolean

Returns true if the name is defined; otherwise returns false.
Throws

None.
Example

hasNAME() ;
=> true

e*Insight Business Process Manager Implementation Guide 358 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class

hasSTATUS

Syntax

bool ean hasSTATUS()
Description

hasSTATUS checks whether there is a status defined.
Parameters

None.
Return Values
boolean

Returns true if there is a status defined; otherwise returns false.
Throws

None.
Example

hasSTATUS() ;
=> true

e*Insight Business Process Manager Implementation Guide 359 SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

marshal

Syntax

Section 20.3
BP_EVENT Class

voi d marshal (org. xm . sax. Cont ent Handl er handl er,

org. xm . sax. Error Handl er errorHandl er)

Description

marshal gathers the data contained within this ETD object and formulates it back into a
serialized XML message.

Parameters

Name

Type

Description

handler

org.xml.sax.ContentHan

dler

The handler that converts content
within to XML.

errorHandler

orxml.sax.ErrorHandler

The handler to address errors during
conversion.

Return Val
None.

Throws

com.stc.jcsre.MarshalException

ues

org.xml.sax.SAXException

e*Insight Business Process Manager Implementation Guide 360

SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class

omitACTIVITY

Syntax

voi d onit ACTI VI TY()
Description

omitACTIVITY removes the Activity object definition from this Business Process
object.

Parameters
None.
Return Values
None.

Throws
None.
Example

omi t ACTI VI TY() ;

e*Insight Business Process Manager Implementation Guide 361 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class

omitBPI_ID

Syntax

void om tBPI _I D)
Description

omitBPI_ID removes the internal Business Process ID definition from the Business
Process object.

Parameters

None.
Return Values

None.
Throws

None.
Example

om tBPI _1D();

e*Insight Business Process Manager Implementation Guide 362 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class

omitlD

Syntax

void omtlD()
Description

omitID removes the user-assigned unique ID definition from the Business Process
object.

Parameters
None.
Return Values
None.

Throws
None.
Example

omtlD();

e*Insight Business Process Manager Implementation Guide 363 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class

omitNAME

Syntax

voi d om t NAMVE()
Description

omitNAME removes the name definition from the Business Process object.
Parameters

None
Return Values

None.

Throws
None.
Example
om t NAME() ;

e*Insight Business Process Manager Implementation Guide 364 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class

omitSTATUS

Syntax

voi d onit STATUS()
Description

omitSTATUS removes the status definition from the Business Process object.
Parameters

None.
Return Values

None.
Throws

None.
Example

oni t STATUS() ;

e*Insight Business Process Manager Implementation Guide 365 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class

removeATTRIBUTE

Syntax

voi d renmoveATTRI BUTE(] ava. | ang. String nane)
voi d renoveATTRI BUTE(i nt i ndex)

Description

removeATTRIBUTE removes a specific global attribute from the Business Process

object.
Parameters
Name Type Description
name java.lang.String The name of the local attribute.
index int The index to the list of global
attributes (zero-based).

Return Values
None.
Throws
None.
Example
renoveATTRI BUTE(1) ;

e*Insight Business Process Manager Implementation Guide 366 SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

setACTIVITY

Syntax

voi d set ACTI VI TY(ACTI VI TY val)

Description

Section 20.3
BP_EVENT Class

setACTIVITY sets the current Activity of a Business Process.

Parameters

Name

Type

Description

val

ACTIVITY

The current Activity object.

Return Values
None.
Throws

None.

e*Insight Business Process Manager Implementation Guide 367

SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

setATTRIBUTE

Syntax

voi d set ATTRI BUTE(ATTRI BUTE[] val)
voi d set ATTRI BUTE(i nt i, ATTRI BUTE
voi d set ATTRI BUTE(j ava. |l ang. String
voi d set ATTRI BUTE(j ava. | ang. Stri ng
java.lang. String val ue)

voi d

j ava.

voi d

set ATTRI BUTE(j ava. | ang. Stri ng
set ATTRI BUTE(j ava. | ang. String

Section 20.3
BP_EVENT Class

val)
nane java.lang. String val ue)
name, java.lang.String type,

nane, java.lang.String type,

| ang. Stri ng encodi ng, java.l ang. String val ue)

nane, java.lang.String type,

java.lang. String value, java.lang.String encoding,java.lang. String
| ocati on)

Description

setATTRIBUTE sets a global Attribute of the Business Process.

Parameter

S

Name Type

Description

val

ATTRIBUTE[]

The Attribute object.

int

The list index of the Attribute to be
retrieved (zero-based).

name

java.lang.String

The name of the global Attribute.

value

java.lang.String

The value of the global Attribute.

type

java.lang.String

The type of Attribute. Examples:

= "BIN" - Interpreted as binary,
however, must be suitably encoded
for XML.

= "XML" - Interpreted as XML,
however, must be Base64 encoded
for XML.

= "STRING" - Interpreted as a string
(default).

= "TRANSIENT" - Interpreted as a
transient. The e*Insight engine does
not process the value but simply
return it as-is.

= "NUMBER" - Interpreted as a
decimal number, however, must be
given as a string.

= "BOOLEAN" - Interpreted as a
boolean, such as "true" and "false".

encoding

java.lang.String

The encoding used for the value.

Examples:

= "base64’ - Standard MIME Base64
encoding.

= Null if plain text.

e*Insight Business Process Manager Implementation Guide 368

SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

Section 20.3
BP_EVENT Class

Name

Type

Description

location

java.lang.String

The location of the actual data
associated with the Attribute value.
Examples:

"FILE" - Attribute value specifies a
file where actual data exists.

"DB" - Attribute value is a reference
to a row in a database table.

"URL" - Attribute value specifies a
URL of where actual data exists.
"EMBEDDED" - Attribute value is the
actual data (default).

"AUTO" - Attribute value is actual
data but storage in e*Insight is
automatically determined.

Return Values
None.

Throws
None.

Example

set ATTRI BUTE("I n_St ock", "STRI NG', "yes");

e*Insight Business Process Manager Implementation Guide 369

SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

setBPL_ID
Syntax

void setBPl _ID(java.lang. String val)

Description

Section 20.3
BP_EVENT Class

setBPI_ID sets the internal Business Process ID used by the e*Insight engine. It must be
returned as-is in a "Done" event back to the e*Insight engine when the active mode is

enabled.
Parameters
Name Type Description
val java.lang.String The internal Business Process ID.

Return Values
None.

Throws
None.

Example

set BPI _I D("605. 0.21");

e*Insight Business Process Manager Implementation Guide 370

SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class

setEventinfo

Syntax
voi d setEventInfo(java.lang. String type, java.lang. String status,
java.lang. String id, java.lang. String nane)

voi d set EventInfo(java.lang. String type, java.lang.String status,
java.lang. String id, java.lang. String nane, java.lang.String bpi _id)

Description
setEventInfo sets the Type, Status, ID and Name information for the Business Process
object.
Parameters
Name Type Description
type java.lang.String The Type of command represented by
this Business Process object.
status java.lang.String The Status of the current Activity.
id java.lang.String The user-assigned unique ID for this
Business Process instance.
name java.lang.String The Name of the Business Process.
bpi_id java.lang.String The internal Business Process Instance
ID.

Return Values
None.

Throws
None.

Example

set Event | nf o(" DO_ACTI VI TY", " SUCCESS", " 605", "ProcessOrder", "605. 0. 21")

e*Insight Business Process Manager Implementation Guide 371 SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

Section 20.3
BP_EVENT Class

setlD
Syntax
void setlD(java.lang. String val)
Description
setID sets the Business Process user-assigned unique ID (relative to an ERP, for
example).
Parameters
Name Type Description
val java.lang.String The Business Process user-assigned
unique ID.

Return Values
None.
Throws
None.
Example
set | D("12345") ;

e*Insight Business Process Manager Implementation Guide 372

SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class

setNAME

Syntax

voi d set NAME(j ava. |l ang. String val)
Description

setNAME sets the case-sensitive name of the Business Process.

Parameters

Name Type Description

val java.lang.String The name of the Business Process.

Return Values
None.
Throws
None.
Example
set NAME(" ProcessOrder");

e*Insight Business Process Manager Implementation Guide 373 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class

setSTATUS

Syntax
voi d set STATUS(j ava. |l ang. String val)
Description
setSTATUS sets the status of the current Activity in a Business Process.

Parameters

Name Type Description

val java.lang.String The status of the current Activity in a

Business Process. Examples:

= "SUCCESS" - Indicates that the
current Activity has successfully
completed.

= "FAILURE" - Indicates that the
current Activity has not successfully
completed.

Return Values
None.

Throws
None.

Example

set STATUS(" SUCCESS") ;

e*Insight Business Process Manager Implementation Guide 374 SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

setTYPE
Syntax

voi d set TYPE(j ava.l ang. String val)

Description

Section 20.3
BP_EVENT Class

setTYPE sets the type of command represented by the Business Process object.

Parameters

Name

Type

Description

val

java.lang.String

The command represented by the

Business Process object. Examples:

= "START_BP" - Instructs the e*Insight
engine to start a Business Process
Instance.

= "DO_ACTIVITY" - Indicates a "Do"
Event for the current Activity.

= "UNDO_ACTIVITY" - Indicates an
"Undo" Event for the current
Activity.

= "UNDO_BPI" - Indicates an "Undo"
for the entire Business Process
Instance.

= "RESTART_ACTIVITY" - Indicates
restarting the current Activity after it
has paused.

= "SKIP_ACTIVITY" - Indicates the
current Activity should be skipped.

= "RELOAD_BP" - Indicates the
Business Process definition should
be reloaded.

= "AUTHORIZE" - Indicates that the
current Activity should be
authorized.

= "DONT_AUTHORIZE" - Indicates
that the current Activity should not
be authorized.

Return Values

None.
Throws
None.

Example

set TYPE(" DO _ACTI VI TY") ;

e*Insight Business Process Manager Implementation Guide 375

SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.3
Java Helper Methods BP_EVENT Class

toString

Syntax

java.lang. String toString()
Description

toString converts this ETD object to a printable String form.
Parameters

None.
Return Values
java.lang.String

Returns the XML message to represent by this ETD object.
Throws

None.
Example

t 0STRI N) ;

e*Insight Business Process Manager Implementation Guide 376 SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

unmarshal
Syntax

Section 20.3
BP_EVENT Class

voi d unmar shal (org. xm . sax. | nput Sour ce i nput Sour ce,

comstc.jcsre.snl.SAXLexer | exer)

Description

unmarshal takes a serialized (marshalled) form of the e*Insight XML Event and
distributes (unmarshals) the data into this ETD object.

Parameters
Name Type Description
inputSource org.xml.sax.InputSource | The input source for the serialized
data.
lexer com.stc.jcsre.xml.SAXLe | The SAX Lexer (parser) to distribute
xer the data.

Return Values
None.

Throws

org.xml.sax.SAXException, when the data cannot be parsed.

com.stc.jesre.UnmarshalException, when the data cannot be unmarshalled.

e*Insight Business Process Manager Implementation Guide 377

SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

Section 20.4
eX_StandardEvent Class

204 eX_StandardEvent Class

public class eX_StandardEvent
extends com.stc.jcsre. SMLETDImpl

implements com.stc.jcsre. ETD

eX_StandardEvent class is an ETD class used to represent the standard XML message
that is used to interchange information with the e*Insight Business Process Manager

engine. The DTD is:

e*Insight Business Process Manager Implementation Guide 378

<! ELEMENT eX Event (BP_EVENT?, TP_EVENT?) >
<!l --eBusi ness Process Manager Event section-->
<! ELEMENT BP_EVENT (ACTIVITY?, ATTRI BUTE*)>
<! ATTLI ST BP_EVENT
TYPE (START_BP | DO _ACTIVITY | UNDO ACTIVITY | UNDO BPI
RESTART_ACTIVITY | SKIP_ACTIVITY | RELOAD BP | AUTHORI ZE
DONT_AUTHORI ZE) #REQUI RED
STATUS (SUCCESS | FAI LURE) #| MPLI ED
NAME CDATA #| MPLI ED
| D CDATA #l MPLI ED
BPI _| D CDATA #l MPLI ED
>
<! ELEMENT ATTI BUTE EMPTY>
<! - - ENCODI NG=base64 or whatever; eBPMonly recogni zes base64 for
TYPE=XM.- - >
<! ATTLI ST ATTRI BUTE
TYPE (BIN| XM. | STRING | TRANSIENT | NUVBER | BOOLEAN)
#REQUI RED
NAME CDATA #REQUI RED
VALUE CDATA #REQUI RED
ENCODI NG CDATA #REQUI RED
LOCATION (FILE | DB | URL | EMBEDDED | AUTO) #| MPLIED
>
<! ELEMENT ACTI VI TY (ATTRI BUTE*) >
<I ATTLI ST ACTIVITY
NAME CDATA #| MPLI ED
| D CDATA #l MPLI ED
>
<l --ePartner Manager |nput/Qutput Event section-->
<! ELEMENT TP_EVENT (Partner Nane?, |nternal Nane?, Direction?,
Messagel D?, OrigEventC
<I--External Partner Nane-->
<! ELEMENT Part ner Nane (#PCDATA) >
<l--Internal Sending ERP (ex.SAP)-->
<!l ELEMENT I nt er nal Nane (#PCDATA) >
<I--Direction of Transaction to/from Tradi ng Partner (ex.Qutbound=0
I nbound=I) - ->
<I ELEMENT Direction (#PCDATA) >
<l--Original request ID fromlnternal Sending ERP-->
<! ELEMENT Messagel D (#PCDATA) >
<I--Original Event Cassification (ex. QAP for Query Price and
Availability)-->
<! ELEMENT Ori gEvent O ass (#PCDATA) >
<l--Usage Indicator of ED nessage by Tradi ng Partner (Production=P
Test=T)-->
<! ELEMENT Usagel ndi cat or (#PCDATA) >
<l--Payload to carry ED nessage-->
<! ELEMENT Payl oad (#PCDATA) >
<! ATTLI ST Payl oad
TYPE (RAW | PROCESSED | ENCRYPTED) #REQUI RED

SeeBeyond Proprietary and Confidential

Chapter 20

Section 20.4

Java Helper Methods eX_StandardEvent Class

LOCATION (FILE | DB | URL | EMBEDDED | AUTO #l MPLI ED

>

<l --RAWNeed transl ati on PROCESSED=Al ready X12 or RN ENCRYPTED=from

Tradi ng Partner>

<!l --Comuni cation Protocol (ex. BATCH, HTTP) for sending to Tradi ng

Part ner-->
<! ELEMENT ComrPr ot (#PCDATA) >

<I--URL for EDI nessage to be exchanged with Tradi ng Partner-->

<! ELEMENT Url (#PCDATA) >

<I--SSL information-->

<! ELEMENT SSLC i ent KeyFi | eNane (#PCDATA) >
<! ELEMENT SSLO i ent KeyFi | eType (#PCDATA) >
<! ELEMENT SSLd i ent CertFil eNane (#PCDATA) >
<! ELEMENT SSLO ientCertFil eType (#PCDATA) >

<l--Message Index for Batched delivery, ex. 1|20 neans 1 of 20-->

<! ELEMENT Messagel ndex (#PCDATA) >

<I--TP Attribute will contain optional repeating nane value pair for

storing of TP-->

<!l ELEMENT TPAttri bute (NameVal uePair*)>
<! ELEMENT NaneVal uePair (Nane, Val ue)>
<! ELEMENT Name (#PCDATA) >

<! ELEMENT Val ue (#PCDATA) >

These methods are described in detail on the following pages:

from_eBPMConvert on page 380 omitTP_EVENT on page 387
getBP_EVENT on page 381 setBP_EVENT on page 388
getTP_EVENT on page 382 setTP_EVENT on page 389
hasBP_EVENT on page 383 to_eBPMConvert on page 390
hasTP_EVENT on page 384 toString on page 391

marshal on page 385 unmarshal on page 392

omitBP_EVENT on page 386

e*Insight Business Process Manager Implementation Guide 379 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.4
Java Helper Methods eX_StandardEvent Class

from_eBPMConvert

Syntax

voi d from eBPMConvert (com stc. eBl pkg. BP_EVENT bpevent
Description

from_eBPMConvert converts all pertinent global Attributes of an e*Insight (Business
Process) Event back to an e*Xchange (Trading Partner) Event.

Parameters

Name Type Description

bpevent com.stc.eBlpkg.BP_EVENT | The incoming e*Insight Event.

Return Values
None.
Throws

None.

e*Insight Business Process Manager Implementation Guide 380 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.4
Java Helper Methods eX_StandardEvent Class

getBP_EVENT

Syntax

com st c. eBl pkg. BP_EVENT get BP_EVENT()
Description

getBP_EVENT retrieves the e*Insight (Business Process) portion of the e*Gate Standard
XML Event.

Parameters

None.
Return Values
com.stc.eBIpkg.BP_EVENT

Returns the Business Process Event.
Throws

None.

e*Insight Business Process Manager Implementation Guide 381 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.4
Java Helper Methods eX_StandardEvent Class

getTP_EVENT

Syntax
com st c. eBl pkg. TP_EVENT get TP_EVENT()
Description

getTP_EVENT retrieves the e*Xchange (Trading Partner) portion of the e*Gate
Standard XML Event.

Parameters
None.
Return Values
com.stc.eBIpkg. TP_EVENT
Returns the Trading Partner Event.
Throws

None.

e*Insight Business Process Manager Implementation Guide 382 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.4
Java Helper Methods eX_StandardEvent Class

hasBP_EVENT

Syntax
bool ean hasBP_EVENT()
Description

hasBP_EVENT tests whether the e*Gate Standard XML Event has an e*Insight
(Business Process) portion.

Parameters
None.
Return Values

boolean
Returns true if the Business Process portion exists; otherwise returns false if the

Business Process portion does not exist.
Throws
None.

Example

hasBP_EVENT() ;
=> true

e*Insight Business Process Manager Implementation Guide 383 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.4
Java Helper Methods eX_StandardEvent Class

hasTP_EVENT

Syntax
bool ean hasTP_EVENT()
Description

hasTP_EVENT tests whether the e*Gate Standard XML Event has an e*Xchange
(Trading Partner) portion.

Parameters
None.
Return Values

boolean
Returns true if the Trading Partner portion exists; otherwise returns false if the Trading

Partner portion does not exist.
Throws
None.

Example

hasTP_EVENT() ;
=> true

e*Insight Business Process Manager Implementation Guide 384 SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

marshal

Syntax

Section 20.4
eX_StandardEvent Class

voi d marshal (org. xm . sax. Cont ent Handl er handl er,

org. xm . sax. Error Handl er errorHandl er)

Description

marshal gathers the data contained within this ETD object and formulates it back into a
serialized XML message.

Parameters

Name

Type

Description

handler

org.xml.sax.ContentHan
dler

The handler that converts content
within to XML.

errorHandler

org.xml.sax.ErrorHandle
r

The handler to address errors during
conversion.

Return Values
None.

Throws

com.stc.jcsre.MarshalException

org.xml.sax.SAXException

e*Insight Business Process Manager Implementation Guide 385

SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.4
Java Helper Methods eX_StandardEvent Class

omitBP_EVENT

Syntax

voi d om t BP_EVENT()
Description

omitBP_EVENT removes the e*Insight (Business Process) portion of the e*Gate
Standard XML Event.

Parameters
None.
Return Values

None.

Throws
None.
Example

oni t BP_EVENT() ;

e*Insight Business Process Manager Implementation Guide 386 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.4
Java Helper Methods eX_StandardEvent Class

omitTP_EVENT

Syntax

voi d om t TP_EVENT()
Description

omitTP_EVENT removes the e*Xchange (Trading Partner) portion of the e*Gate
Standard XML Event.

Parameters
None.
Return Values

None.

Throws
None.
Example

oni t TP_EVENT() ;

e*Insight Business Process Manager Implementation Guide 387 SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

setBP_EVENT

Section 20.4
eX_StandardEvent Class

Syntax
voi d set BP_EVENT(com st c. eBl pkg. BP_EVENT val)

Description

setBP_EVENT sets the e*Insight (Business Process) portion of the e*Gate Standard

XML Event.
Parameters

Name Type Description
val com.stc.eBlpkg.BP_EVEN | The Business Process Event.
T

Return Values

None.

Throws

None.

e*Insight Business Process Manager Implementation Guide 388

SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

setTP_EVENT

Section 20.4
eX_StandardEvent Class

Syntax
voi d set TP_EVENT(com st c. eBl pkg. TP_EVENT val)

Description

setTP_EVENT sets the e*Xchange (Partner Manager) portion of the e*Gate Standard

XML Event.
Parameters

Name Type Description
val com.stc.eBlpkg. TP_EVEN | The Trading Partner Event.
T

Return Values

None.

Throws

None.

e*Insight Business Process Manager Implementation Guide 389

SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.4
Java Helper Methods eX_StandardEvent Class

to_eBPMConvert

Syntax
com st c. eBl pkg. BP_EVENT t o_eBPMConvert ()
Description

to_eBPMConvert converts the e*Gate Standard XML Event entirely to e*Insight
(Business Process) portion by saving all the e*Xchange (Trading Partner) information as
global Attributes.

Parameters
None.
Return Values
com.stc.eBIpkg.BP_EVENT
Returns the Business Process portion of this ETD object.
Throws

None.

e*Insight Business Process Manager Implementation Guide 390 SeeBeyond Proprietary and Confidential

Chapter 20 Section 20.4
Java Helper Methods eX_StandardEvent Class

toString

Syntax

java.lang. String toString()
Description

toString converts this ETD object to a printable String form.
Parameters

None.
Return Values
java.lang.String

Returns the XML message to represent by this ETD object.
Throws

None.
Example

t 0STRI N) ;

e*Insight Business Process Manager Implementation Guide 391 SeeBeyond Proprietary and Confidential

Chapter 20
Java Helper Methods

unmarshal
Syntax

Section 20.4
eX_StandardEvent Class

voi d unmar shal (org. xm . sax. | nput Sour ce i nput Sour ce,

comstc.jcsre.snl.SAXLexer | exer)

Description

unmarshal takes a serialized (marshalled) form of the e*Insight XML Event and
distributes (unmarshals) the data into this ETD object.

Parameters
Name Type Description
inputSource org.xml.sax.InputSource | The input source for the serialized
data.
lexer com.stc.jcsre.xml.SAXLe | The SAX Lexer (parser) to distribute
xer the data.

Return Values
None.

Throws

org.xml.sax.SAXException, when the data cannot be parsed.

com.stc.jesre.UnmarshalException, when the data cannot be unmarshalled.

e*Insight Business Process Manager Implementation Guide 392

SeeBeyond Proprietary and Confidential

Chapter 21
e*Insight User Activity APl Methods

This chapter provides information on the e*Insight User Activity API methods. A
number of Java API methods have been added to use with the User Activity object.

User Activities allow external applications to access attributes in the business process
using User Activity methods, as described in this chapter. These methods allow the
external application to access attributes for the User Activity from the e*Insight
database. The e*Insight engine uses the returned value of the attributes to continue the
business process.

21.01 User Activity Security

Three security checks are performed when connecting to the database using the User
Activity methods. First, use the initialize method to connect to the database. You
should use a user that has no authority to access any of the Business Processes.

Once that connection has been made, use the authenticate method to pass the user
name and password for a user that has privileges for the Business Process. This user
should have the necessary authority for the Business Processes that they are accessing.
For subsequent messages sent during the sessionse, use the setUser method to re-
establish the user security, or resetUser to establish security for a new user.

To create a user for the initial connection

1 Use e*Xchange Administrator to create a user (for example, Connection_User), and
assign a password.

2 Do not give this user any authorization rights within e*Insight.
Note: For additional security, create the connection user directly in the database rather
than using e*Xchange Administrator.
The User Activity methods are contained in:

= “Imessage Interface” on page 395

= “UserActivityMessage Class” on page 419

= “IClient Interface” on page 420

= “EbpmMonitor Class” on page 458

e*Insight Business Process Manager Implementation Guide 393 SeeBeyond Proprietary and Confidential

Chapter 21 Section
e*Insight User Activity APl Methods

21.02 Defining the Classpath

In order to use the User Activity API methods, you must define the following files in
your classpath:

activation.jar DGutil.jar stcjcs.jar
antlrall.jar elX_StandardEvent.jar workflow.jar
classes12.zip jconn2.jar xerces.jar
DGbase.jar js.jar xml.jar
DGsqlserver.jar mail.jar

DGsybase.jar soap.jar

These files are all located in <eInsight>\Integrator.

e*Insight Business Process Manager Implementation Guide 394 SeeBeyond Proprietary and Confidential

Chapter 21
e*Insight User Activity APl Methods

Section 21.1
Imessage Interface

211 Imessage Interface

These methods are described in detail on the following pages:

clearMessage on page 396

getActivity AttributesCount on page 397
getActivityAttributeValue on page 398
getActivityName on page 399
getBusinessModelld on page 400
getBusinessModellnstanceld on page 401
getBusinessModelName on page 402
getGlobalAttributeCount on page 403
getGlobalAttributeType on page 404
getGlobalAttributeValue on page 405
getMsgType on page 406

removeActivity on page 407

e*Insight Business Process Manager Implementation Guide 395

removeGlobalAttribute on page 408
setActivityAttributeValue on page 409
setActivityName on page 410
setBPIStack on page 411
setBusinessModelInstanceld on page 412
setBusinessModelld on page 413
setBusinessModelName on page 414
setGlobalAttributeValue on page 415
setMsgType on page 416

setStatus on page 417

toXML on page 418

SeeBeyond Proprietary and Confidential

Chapter 21
e*Insight User Activity APl Methods

clearMessage

Syntax

voi d cl ear Message()
Description

clearMessage clears the message.
Parameters
None.
Return Values
None.
Throws
None.
Example

cl ear Message() ;

e*Insight Business Process Manager Implementation Guide 396

Section 21.1
Imessage Interface

SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity APl Methods Imessage Interface

getActivityAttributesCount

Syntax

int getActivityAttributesCount()
Description

getActivityAttributesCount gets the activity attribute count.
Parameters
None.
Return Values
integer
Returns an integer in the range 0 to n depending on the number of activity attributes.
Throws
None.
Example

get ActivityAttributesCount();
=> 3

e*Insight Business Process Manager Implementation Guide 397 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity APl Methods Imessage Interface

getActivityAttributeValue

Syntax

java.lang. String getActivityAttributeVal ue(java.lang. String
attri but eNane)

Description

getActivityAttributeValue is used to determine the value of an activity attribute.

Parameters
Name Type Description
attributeName java.lang.String The attribute name.

Return Values
java.lang.String
Returns a string containing the activity attribute value.
Throws
None.
Example

get ActivityAttributesVal ue(“l n_Stock”);
:> (iyesﬂ

e*Insight Business Process Manager Implementation Guide 398 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity APl Methods Imessage Interface

getActivityName

Syntax

java.l ang. String getActivityNanme()
Description

getActivityName gets the activity name.
Parameters

None.
Return Values
java.lang.String

Returns an string containing the activity name.
Throws

None.
Example

get Acti vi tyName();
=> “AP| _Check_I nv”

e*Insight Business Process Manager Implementation Guide 399 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity APl Methods Imessage Interface

getBusinessModelld

Syntax

java.l ang. String get Busi nesshbdel | d()
Description

getBusinessModelld is used to retrieve the business model identifier.
Parameters
None.
Return Values
java.lang.String
Returns a string containing the business model id.
Throws
None.
Example

get Busi nesshMbodel 1 d() ;
=> “12345”

e*Insight Business Process Manager Implementation Guide 400 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity APl Methods Imessage Interface

getBusinessModellnstanceld

Syntax

java.l ang. String get Busi nessMbdel | nst ancel d()
Description

getBusinessModellnstanceld is used to retrieve the business model instance identifier.
Parameters
None.
Return Values
java.lang.String
Returns a string containing the business model instance id.
Throws
None.
Example

get Busi nesshModel 1 d() ;
=> “123456789"

e*Insight Business Process Manager Implementation Guide 401 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity APl Methods Imessage Interface

getBusinessModelName

Syntax

java.l ang. String get Busi nessMbdel Nane()
Description

getBusinessModelName is used to get the business model name.
Parameters
None.
Return Values
java.lang.String
Returns a string containing the business model name.
Throws
None.
Example

get Busi nessMbdel Name() ;
=> “ProcessOrder”

e*Insight Business Process Manager Implementation Guide 402 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity APl Methods Imessage Interface

getGlobalAttributeCount

Syntax

int getd obal Attri buteCount ()
Description

getGobalAttributeCount is used to get the global attribute count.
Parameters
None.
Return Values
integer
Returns an integer value in the range 0 to n depending on the number of global
attributes.
Throws
None.
Example

get d obal Attri buteCount ();
:> (i12"

e*Insight Business Process Manager Implementation Guide 403 SeeBeyond Proprietary and Confidential

Chapter 21
e*Insight User Activity APl Methods

getGlobalAttributeType
Syntax

Section 21.1
Imessage Interface

java.lang. String getd obal Attri buteType(java.lang. String

attri but eNane)
Description

getGlobalAttributeType is used to determine the type of an attribute passed in as a

parameter.
Parameters
Name Type Description
attributeName java.lang.String The attribute name.

Return Values

java.lang.String

Returns a string containing the attribute type.

Throws
None.
Example

get G obal Attri but eType(“l n_St ock”);
=> “String”

e*Insight Business Process Manager Implementation Guide 404

SeeBeyond Proprietary and Confidential

Chapter 21
e*Insight User Activity APl Methods

getGlobalAttributeValue
Syntax

Section 21.1
Imessage Interface

java.l ang. String get d obal Attri buteVal ue(java.l ang. String

attri but eNane)
Description

getGlobalAttributeType is used to determine the value of an attribute passed in as a

parameter.
Parameters
Name Type Description
attributeName java.lang.String The attribute name.

Return Values

java.lang.String

Returns a string containing the attribute value.

Throws
None.
Example

get d obal Attri but eVal ue(“l n_St ock”);
:> (iyesﬂ

e*Insight Business Process Manager Implementation Guide 405

SeeBeyond Proprietary and Confidential

Chapter 21
e*Insight User Activity APl Methods

getMsgType
Syntax

java.l ang. String get MsgType()
Description

getMsgType gets the message type.
Parameters
None.
Return Values
java.lang.String
Returns the message type.
Throws
None.
Example

get MsgType() ;
=> “DO_ACTI VI TY”

e*Insight Business Process Manager Implementation Guide 406

Section 21.1
Imessage Interface

SeeBeyond Proprietary and Confidential

Chapter 21
e*Insight User Activity APl Methods

removeActivity

Syntax

voi d renmoveActivity()
Description

removeActivity is used to remove the activity.

Parameters
None.
Return Values
None.

Throws
None.
Example

removeActivity();

e*Insight Business Process Manager Implementation Guide 407

Section 21.1
Imessage Interface

SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity APl Methods Imessage Interface

removeGlobalAttribute

Syntax

voi d renmoved obal Attribute(java.lang. String attri buteNane)
Description

removeGlobalAttribute is used to remove the global attribute named as a parameter.

Parameters
Name Type Description
attributName java.lang.String The attribute name

Return Values

None.

Throws
None.
Example

renoved obal Attri but e(“l n_St ock”);

e*Insight Business Process Manager Implementation Guide 408 SeeBeyond Proprietary and Confidential

Chapter 21

e*Insight User Activity APl Methods

setActivityAttributeValue

Syntax

Section 21.1
Imessage Interface

void setActivityAttributeVal ue(java.lang. String attri buteNane,

java.lang. String attributeType,

Description

java.lang. String attri buteVal ue)

setActivityAttributeValue is used to set the activity attribute value.

Parameters

Name

Type

Description

attributeName

java.lang.String

The attribute name.

attributeType

java.lang.String

The attribute type.

attributeValue

java.lang.String

The attribute value.

Return Values
None.

Throws
None.

Example

set ActivityAttributeVal ue(“l n_Stock”, “String”, “no”);

e*Insight Business Process Manager Implementation Guide 409

SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity APl Methods Imessage Interface
setActivityName

Syntax

voi d setActivityName(java.lang. String activityNane)
Description

setActivityName is used to set the activity name.

Parameters
Name Type Description
activityName java.lang.String The activity name.

Return Values
None.

Throws
None.

Example

set Acti vi t yName(“API _Check_I nv”);

e*Insight Business Process Manager Implementation Guide 410 SeeBeyond Proprietary and Confidential

Chapter 21

e*Insight User Activity APl Methods

setBPIStack
Syntax

Section 21.1
Imessage Interface

voi d setBPI St ack(j ava.l ang. String bpi St ack)

Description

setBPIStack sets the business model stack.

Parameters
Name Type Description
bpiStack java.lang.String The business model stack. For
example “637.0.133".

Return Values

None.

Throws
None.

Example

set BPI St ack(“637. 0. 133");

e*Insight Business Process Manager Implementation Guide 411

SeeBeyond Proprietary and Confidential

Chapter 21

e*Insight User Activity APl Methods

setBusinessModellnstanceld

Syntax

Section 21.1
Imessage Interface

voi d set Busi nessModel I nstancel d(j ava. | ang. Stri ng busi nessl nst ancel d)

Description

setBusinessModellnstanceld sets the business model instance id.

Parameters

Name

Type

Description

businessinstanceld

java.lang.String

The business model instance ID.

Return Values
None.

Throws
None.

Example

set Busi nessMbdel | nst ancel d(“602") ;

e*Insight Business Process Manager Implementation Guide 412

SeeBeyond Proprietary and Confidential

Chapter 21

e*Insight User Activity APl Methods

setBusinessModelld

Syntax

Section 21.1
Imessage Interface

voi d setBusi nessModel I d(j ava. |l ang. Stri ng busi nesshMbdel | d)

Description

setBusinessModelld sets the business model id.

Parameters

Name

Type

Description

businessModelld

java.lang.String

The business model id.

Return Values
None.

Throws
None.

Example

set Busi nessMbdel | d(“12345”);

e*Insight Business Process Manager Implementation Guide 413

SeeBeyond Proprietary and Confidential

Chapter 21
e*Insight User Activity APl Methods

setBusinessModelName

Syntax

Section 21.1
Imessage Interface

voi d set Busi nessModel Nane(j ava. |l ang. Stri ng busi nessMdel Nane)

Description

setBusinessModelName sets the business model name.

Parameters
Name Type Description
businessModelName java.lang.String The business model name.

Return Values
None.

Throws
None.

Example

set Busi nessMbdel Name(“Pr ocessOr der”);

e*Insight Business Process Manager Implementation Guide 414

SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity APl Methods Imessage Interface

setGlobalAttributeValue

Syntax
voi d setd obal Attri buteVal ue(java.lang. String attri buteNane,
java.lang. String attributeValue, java.lang.String attributeType)

Description

setGlobalAttributeValue sets the global attribute value.

Parameters
Name Type Description
attributeName java.lang.String The attribute name.
attributeValue java.lang.String The attribute value.
attributeType java.lang.String The attribute type.

Return Values
None.
Throws
None.

Example

set d obal Attri buteVal ue(“I n_Stock”, “no”, “StringString”);

e*Insight Business Process Manager Implementation Guide 415 SeeBeyond Proprietary and Confidential

Chapter 21

e*Insight User Activity APl Methods

setMsgType
Syntax

Section 21.1
Imessage Interface

voi d set MsgType(java.l ang. String nsgType)

Description

setMsgType sets the message type.

Parameters

Name

Type

Description

msgTlype

java.lang.String

The message type.

Return Values
None.

Throws

Example

set MsgType(“DO_ACTI VI TY") ;

e*Insight Business Process Manager Implementation Guide 416

SeeBeyond Proprietary and Confidential

Chapter 21
e*Insight User Activity APl Methods

setStatus
Syntax

voi d setStatus(java.lang. String status)

Description

setStatus is used to set the message status.

Parameters

Section 21.1
Imessage Interface

Name

Type

Description

status

java.lang.String

The message status.

Return Values
None.

Throws
None.

Example

set St at us(“SUCCESS”) ;

e*Insight Business Process Manager Implementation Guide 417

SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.1
e*Insight User Activity APl Methods Imessage Interface

toXML

Syntax

java.lang. String toXM.()
Description
toXML converts the message to XML.
Parameters
None.
Return Values
java.lang.String
Returns the message in XML format.
Throws
None.
Example
t oXM_();
=> <BP_EVENT NAME="api" STATUS="SUCCESS" | D="231"
BPI 1 D="231.0.21:" TYPE="DO_ACTI VI TY" ><ATTRI BUTE

NAME="1n_St ock" TYPE="String" VALUE="no" /><ACTI VI TY
NAVE=" APl _Check_I nv" /></ BP_EVENT>

e*Insight Business Process Manager Implementation Guide 418 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.2
e*Insight User Activity APl Methods UserActivityMessage Class

212 UserActivityMessage Class

Implements IMessage.

See “Imessage Interface” on page 395.

e*Insight Business Process Manager Implementation Guide 419 SeeBeyond Proprietary and Confidential

Chapter 21

e*Insight User Activity APl Methods

Section 21.3
IClient Interface

213 IClient Interface

getActivityGlobalAttributeNames on
page 423

getActivityInstanceEndTime on page 424

getActivityInstanceStartTime on
page 425

getActivityInstanceStatus on page 426
getActivityNames on page 427
getAssigned BPIIdByState on page 428

getAuthorizationActivityNames on
page 429

getBPIStack on page 430

getBusinessModellnstancesIds on
page 431

getBusinessModellnstanceName on
page 432

getBusinessModellnstanceStatus on
page 433

getBusinessModelName on page 434

getEnabledBusinessModelld on
page 435
getEnabledBusinessModelslds on
page 436

getGlobalAttributeDefaultValue on
page 437

These methods are described in detail on the following pages:

getGlobalAttributeType on page 440

getGlobalAttributeValue on page 441
getLocalAttributeNames on page 442

getLocalAttributeType on page 443
getLocalAttributeValue on page 444
getMessageStatus on page 445
getUser on page 446

getUserActivityNames on page 447
getUUID on page 448

initialize on page 449
refreshCachedMemory on page 450

releaseActivityInstance on page 451

resetUser on page 453
sendMessage on page 454

setGlobal AttributeValue on page 455

getGlobalAttributeDirection on page 438
getGlobalAttributeNames on page 439

setLocal AttributeValue on page 456
setUser on page 457

e*Insight Business Process Manager Implementation Guide 420 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity APl Methods IClient Interface

authenticate

Syntax

bool ean aut henticate(java.lang. String userld, java.lang.String
passwor d)

Description

authenticate authenticates User Id and password with the e*Insight database.

Parameters
Name Type Description
userld java.lang.String The User id.
password java.lang.String The password.

Return Values
boolean
Returns true if the user Id and password are valid; otherwise returns false.
Throws
java.lang.Exception
Example

try {
String userld = "joe_smth";
String password = "XXXxX";
bool ean flag = client.authenticate(userld, password);
Systemout.printlin("flag=" + flag);
} catch (Exception ex) {
ex. print StackTrace();

e*Insight Business Process Manager Implementation Guide 421 SeeBeyond Proprietary and Confidential

Chapter 21

Section 21.3
e*Insight User Activity APl Methods

IClient Interface

checkoutActivitylnstance
Syntax
java.l ang. String checkout Activitylnstance(java.lang. String

busi nessMbdel 1d, java.lang. String busi nessMbdel | nst ancel d,
java.lang. String activityNane)

Description

checkoutActivityInstance puts a lock on the activity instance by this current userld.

Parameters
Name Type Description
businessModelld java.lang.String The business model id.
businessModellnstanceld | java.lang.String The business model instance id.
activityName java.lang.String The activtity name.

Return Values
java.lang.String
Returns the userld who is using this actitivy instance.
Throws
java.lang.Exception
Example

checkout Activityl nstance(“12345”, “605”, “API _Check_I nv");
=> ‘jo_snmith”

e*Insight Business Process Manager Implementation Guide 422 SeeBeyond Proprietary and Confidential

Chapter 21

e*Insight User Activity APl Methods

getActivityGlobalAttributeNames

Syntax

java.lang. String[]
busi nessMbdel | d,

Description

Section 21.3
IClient Interface

get Activityd obal Attri but eNanes(java.l ang. String

java.lang. String activityNane)

getActivityGlobal AttributeNames retrieves a list of global attributes defined for an

activity.

Parameters

Name

Type

Description

businessModelld

java.lang.String

The business model id.

activityName

java.lang.String

The activity name

Return Values

java.lang.String

Returns a string][] of activity global attribute names.

Throws

java.lang.Exception

Example

get Activityd obal Attri but eNanes(“12345”, “APl _Check_I nv”);

=> {“Cust omer _Name”, “l n_St ock”}

e*Insight Business Process Manager Implementation Guide 423

SeeBeyond Proprietary and Confidential

Chapter 21

Section 21.3
e*Insight User Activity APl Methods

IClient Interface

getActivitylnstanceEndTime
Syntax

java.l ang. String getActivitylnstanceEndTi me(java.lang. String
busi nessModel | nstancel d, java.lang. String busi nessWodel Id,
java.lang. String activityNane)

Description

getActivityInstanceEndTime retrieves the end time of the activity instance on the
e*Insight server.

Parameters
Name Type Description
businessModellnstanceld | java.lang.String The business model instance id.
businessModelld java.lang.String The business model id.
activityName java.lang.String The activity name

Return Values
java.lang.String
Returns the end time of the activity instance.
Throws
java.lang.Exception
Example

get Activi tyl nstanceEndTi ne(“602”, “12345”, “API _Check_I nv”);
=> “2001- 05- 23 14: 31: 56"

e*Insight Business Process Manager Implementation Guide 424 SeeBeyond Proprietary and Confidential

Chapter 21

Section 21.3
e*Insight User Activity APl Methods

IClient Interface

getActivitylnstanceStartTime
Syntax

java.lang. String getActivitylnstanceStartTi me(java.lang. String
busi nessModel | nstancel d, java.lang. String busi nessModel Id,
java.lang. String activityNane)

Description

getActivityInstanceStartTime retrieves the start time of the activity instance on the
e*Insight server.

Parameters
Name Type Description
businessModellnstanceld | java.lang.String The business model instance id.
businessModelld java.lang.String The business model id.
activityName java.lang.String The activity name

Return Values
java.lang.String
Returns the start time of the activity instance.
Throws
java.lang.Exception
Example

get Activi tyl nstanceEndTi ne(“602”, “12345”, “API _Check_I nv”);
=> “2001- 05-23 14:31: 57"

e*Insight Business Process Manager Implementation Guide 425 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity APl Methods IClient Interface
getActivitylnstanceStatus
Syntax
java.lang. String getActivitylnstanceStatus(java.lang. String

busi nessModel | nstancel d, java.lang. String busi nessWodel Id,
java.lang. String activityName, java.lang.String activityType)

Description

getActivityInstanceStatus retrieves the status of the activity instance on the e*Insight

server.
Parameters
Name Type Description
businessModellnstanceld | java.lang.String The business model instance id.
businessModelld java.lang.String The business model id.
activityName java.lang.String The activity name
activityType java.lang.String The activity type

Return Values
java.lang.String
Returns the status of the activity instance.
Throws
java.lang.Exception
Example

get Acti vi tyl nstanceEndTi ne(“602”, “12345”, “APl _Check_I nv”, “USER’) ;
=> “pendi ng”

e*Insight Business Process Manager Implementation Guide 426 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity APl Methods IClient Interface

getActivityNames

Syntax

java.lang. String[] getActivityNanes(java.lang. String busi nessiWbdel | d)
Description

getActivityNames gets the activity names.

Parameters
Name Type Description
businessModelld java.lang.String The business model id.

Return Values
java.lang.String
Returns an string[] containing the activity names.
Throws
None.
Example

get ActivityNames("12345");
=> {"API _Check_Inv","Send_St at us"}

e*Insight Business Process Manager Implementation Guide 427 SeeBeyond Proprietary and Confidential

Chapter 21

Section 21.3
e*Insight User Activity APl Methods

IClient Interface

getAssignedBPllIdByState
Syntax

java.lang. String[] getActivityNanmes(java.lang. String busi nessMdel |d,
java.lang. String activityName, java.lang.String status)

Description

getAssignedBPIIdByState gets the business process instance ids of all business process
instances in a particular state.

Parameters
Name Type Description
businessModelld java.lang.String The business model id.
activityName java.lang.String The activity name.
status java.lang.String The activity status.

Return Values
java.lang.String
Returns an string[] containing the business process instance ids.
Throws
None.
Example

get Assi gnedBPI | dBySt at e(" Pendi ng") ;
=> {"603"," 604"}

e*Insight Business Process Manager Implementation Guide 428 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity APl Methods IClient Interface

getAuthorizationActivityNames

Syntax

java.lang. String[] getAuthorizationActivityNanmes(java.lang. String
busi nessivbdel | d)

Description

getAuthorizationActivityNames gets a String[] of authorization acitivity names.

Parameters
Name Type Description
businessModelld java.lang.String The business model id.

Return Values
java.lang.String|]
Returns the authorization acitivity names.
Throws
java.lang.Exception
Example

get Aut hori zati onActi vi t yNames(“12345”);
=> {“Aut hori ze_Quantity”, “Aut hori ze_Tot al 7}

e*Insight Business Process Manager Implementation Guide 429 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity APl Methods IClient Interface

getBPIStack
Syntax

java.l ang. String getBPI Stack(java.l ang. String busi nessl nstancel d)

Description

getBPIStack gets the business model instance stack.

Parameters
Name Type Description
businesslnstanceld java.lang.String The business model instance id.

Return Values
java.lang.String

The business model instance stack. For example, "637.0.133:".
Throws

java.lang.Exception

Example

get BPI St ack() ;
=>("637. 0. 133"

e*Insight Business Process Manager Implementation Guide 430 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity APl Methods IClient Interface

getBusinessModellnstanceslds

Syntax

java.l ang. String[] getBusi nessMdel | nstancesl ds(java.lang. String
busi nessivbdel | d)

Description

getBusinessModellnstanceslds gets a String[] of business instance ids.

Parameters
Name Type Description
businessModelld java.lang.String The business model id.

Return Values
java.lang.String|]
Returns the business instance ids.
Throws
java.lang.Exception
Example

get Busi nessMbdel | nst ancel ds(“12345”) ;
=> {“602”, “603"}

e*Insight Business Process Manager Implementation Guide 431 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity APl Methods IClient Interface

getBusinessModellnstanceName

Syntax

java.l ang. String get Busi nessMbdel | nst anceNane(j ava. |l ang. String
busi nessivbdel | d)

Description

getBusinessModellnstanceName retrieves the business model instance name.

Parameters
Name Type Description
businessModelld java.lang.String The business model id.

Return Values
java.lang.String
Returns the business instance model instance name.
Throws
java.lang.Exception
Example

get Busi nessMbdel | nst anceName(“12345”) ;
=> {“bp_6037}

e*Insight Business Process Manager Implementation Guide 432 SeeBeyond Proprietary and Confidential

Chapter 21
e*Insight User Activity APl Methods

getBusinessModellnstanceStatus

Syntax

Section 21.3
IClient Interface

java.l ang. String[] getBusi nessMdel | nstanceStatus(java.lang. String
d)

busi nessivbdel |
Description

getBusinessModellnstanceslds gets the status of business model instance.

Parameters
Name Type Description
businessModelld java.lang.String The business model id.

Return Values
java.lang.String
Returns the status of a business instance.
Throws
java.lang.Exception
Example

get Busi nessMbdel | nst ancel ds(“12345”) ;
=> “Pendi ng”

e*Insight Business Process Manager Implementation Guide 433

SeeBeyond Proprietary and Confidential

Chapter 21

e*Insight User Activity APl Methods

getBusinessModelName

Syntax

Section 21.3
IClient Interface

java.l ang. String get Busi nessMbdel Nane(j ava. | ang. String
busi nessMbdel Nane)

Description

getBusinessModelName gets the business model name.

Parameters

Name

Type

Description

businessModelName

java.lang.String

The business model name.

Return Values

java.lang.String

Returns the business model name.

Throws

java.lang.Exception

Example

get Busi nesshbdel Nane();
=> “ProcessOrder”

e*Insight Business Process Manager Implementation Guide 434

SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity APl Methods IClient Interface

getEnabledBusinessModelld

Syntax

java.l ang. String get Enabl edBusi nessModel I d(j ava. |l ang. String
busi nessMbdel Nane)

Description

getEnabledBusinessModelld gets the enabled business model id.

Parameters
Name Type Description
businessModelName java.lang.String The business model name.

Return Values
java.lang.String
Returns the business model id.
Throws
java.lang.Exception
Example

get Enabl edBusi nessModel 1 d();
=> “12345”

e*Insight Business Process Manager Implementation Guide 435 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity APl Methods IClient Interface

getEnabledBusinessModelslds
Syntax
java.l ang. String[] get Enabl edBusi nessModel sl ds()

Description

getEnabledBusinessModelslIds gets a String[] of enabled business model ids.
Parameters

None.
Return Values
java.lang.String|]

Returns the enabled business model ids.
Throws

java.lang.Exception
Example

get Enabl edBusi nessModel sl ds();
=> { “12345”,712386"}

e*Insight Business Process Manager Implementation Guide 436 SeeBeyond Proprietary and Confidential

Chapter 21

e*Insight User Activity APl Methods

getGlobalAttributeDefaultValue

Syntax

Section 21.3
IClient Interface

java.lang. String getd obal Attri buteDirection(java.lang. String

busi nessMbdel | d,

Description

java.lang. String attributeNane)

getGlobalAttributeDefaultValue gets the business model attribute default value.

Parameters

Name

Type

Description

businessModelld

java.lang.String

The business model id.

attributeName

java.lang.String

The attribute name.

Return Values

java.lang.String

Returns a String containing the global attribute default value.

Throws

java.lang.Exception

Example

get G obal Attri but eDef aul t Val ue(“lI n_St ock”);

=> “no”

e*Insight Business Process Manager Implementation Guide 437

SeeBeyond Proprietary and Confidential

Chapter 21

Section 21.3
e*Insight User Activity APl Methods

IClient Interface

getGlobalAttributeDirection
Syntax

java.lang. String getd obal Attri buteDirection(java.lang. String
busi nessMbdel 1d, java.lang. String activityNane, java.lang.String
attri but eNane)

Description

getGlobalAttributeDirection gets the business model attribute direction.

Parameters
Name Type Description
businessModelld java.lang.String The business model id.
activityName java.lang.String The activity name.
attributeName java.lang.String The attribute name.

Return Values
java.lang.String
Returns a String containing the global attribute direction.
Throws
java.lang.Exception
Example

get G obal AttributeDirection(“12345”,“APlI _Check_I nv”,“l n_St ock”);
=> “OUTPUT”

e*Insight Business Process Manager Implementation Guide 438 SeeBeyond Proprietary and Confidential

Chapter 21

e*Insight User Activity APl Methods

getGlobalAttributeNames

Syntax

java.l ang. Stri
busi nessModel |

Description

Section 21.3
IClient Interface

ng[] getd obal Attri buteNanmes(java.lang. String
d)

getGlobalAttributeNames gets a String[] of global attribute names.

Parameters

Name

Type

Description

businessModelld

java.lang.String

The business model id.

Return Values

java.lang.String|]

Returns global attribute names.

Throws

java.lang.Exception

Example

get G obal Attri but eNanes();

=> { “Custoner_Nane”, “I n_St ock”}

e*Insight Business Process Manager Implementation Guide 439

SeeBeyond Proprietary and Confidential

Chapter 21

e*Insight User Activity APl Methods

getGlobalAttributeType

Syntax

Section 21.3
IClient Interface

java.lang. String getd obal Attri buteType(java.lang. String

busi nessMbdel | d,

Description

java.lang. String attribut eNane)

getGlobalAttributeType gets the business model attribute type.

Parameters

Name

Type

Description

businessModelld

java.lang.String

The business model id.

attributeName

java.lang.String

The attribute name.

Return Values

java.lang.String

Returns a global attribute type.

Throws

java.lang.Exception

Example

get G obal Attri but eType(“12345”,“l n_St ock”);

=> “String”

e*Insight Business Process Manager Implementation Guide 440

SeeBeyond Proprietary and Confidential

Chapter 21

e*Insight User Activity APl Methods

getGlobalAttributeValue

Syntax

Section 21.3
IClient Interface

java.l ang. String get d obal Attri buteVal ue(java.lang. String

busi nessl nst ancel d,
java.lang. String attributeNane)

Description

java.l ang. String busi nesshdel | d,

getGlobalAttributeValue gets the business model attribute value.

Parameters

Name

Type

Description

businessinstanceld

java.lang.String

The business model instance id.

businessModelld

java.lang.String

The business model id.

attributeName

java.lang.String

The attribute name.

Return Values

java.lang.String

Returns a global attribute value.

Throws

java.lang.Exception

Example

get G obal Attri but eVal ue(“602”,“12345”, “I n_St ock”) ;

= “yesu

e*Insight Business Process Manager Implementation Guide 441

SeeBeyond Proprietary and Confidential

Chapter 21

e*Insight User Activity APl Methods

getLocalAttributeNames

Syntax

java.lang. String[]
busi nessMbdel | d,

Description

Section 21.3
IClient Interface

get Local Attri but eNanmes(j ava.l ang. Stri ng

java.lang. String activityld)

getLocalAttributeNames is used to retrieve activity attribute names.

Parameters

Name

Type

Description

businessModelld

java.lang.String

The business model id.

activityld

java.lang.String

The activity id.

Return Values

java.lang.String

Returns the local attribute names.

Throws

java.lang.Exception

Example

get Local Attri but eNames(“12345”,“123");

=> { “Custoner_Tenp_ld”, “Previ ous_Cust omer”}

e*Insight Business Process Manager Implementation Guide 442

SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity APl Methods IClient Interface

getLocalAttributeType

Syntax

java.l ang. String getlLocal Attri buteType(java.lang. String
busi nessMbdel 1d, java.lang. String activityNane, java.lang. String
attri but eNane)

Description

getLocalAttributeType gets a String of local attribute type.

Parameters
Name Type Description
businessModelld java.lang.String The business model id.
activityName java.lang.String The activity name.
attributeName java.lang.String The attribute name.

Return Values
java.lang.String
Returns the local attribute type.
Throws
java.lang.Exception
Example

get G obal Attri buteType(“12345”, “APlI _Check_I nv”, “Previ ous_Cust oner”) ;
=> “String”

e*Insight Business Process Manager Implementation Guide 443 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity APl Methods IClient Interface

getLocalAttributeValue
Syntax

java.lang. String getlLocal Attri buteVal ue(java.lang. String
busi nessl nstancel d, java.lang. String busi nessMdel Id,
java.lang. String activityName, java.lang.String attributeNane)

Description

getLocal AttributeValue retrieves local attribute value.

Parameters
Name Type Description
businesslnstanceld java.lang.String The business model instance id.
businessModelld java.lang.String The business model id.
activityName java.lang.String The activity name.
attributeName java.lang.String The attribute name.

Return Values
java.lang.String
Returns the local attribute value.
Throws
java.lang.Exception
Example
get d obal Attri but eVal ue(“602”, “12345”, “API _Check_I nv”,

“Previ ous_Cust oner”) ;
=> “yes”

e*Insight Business Process Manager Implementation Guide 444 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity APl Methods IClient Interface

getMessageStatus

Syntax

java.l ang. String get MessageStatus(java.lang. String nsgl d)
Description

getMessageStatus gets the status state of the message sent to the e*Insight server.

Parameters

Name Type Description

msgld java.lang.String The message id.

Return Values
java.lang.String
Returns the status of the message.
Throws
java.lang.Exception
Example

get MessageSt at us(“99”) ;
=> “unprocessed”

e*Insight Business Process Manager Implementation Guide 445 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity APl Methods IClient Interface

getUser

Syntax

java.l ang. String getUser ()
Description

getUser is used to get the User id.
Parameters
None.
Return Values
java.lang.String
Returns the User id.
Throws
None.
Example

get User () ;
=> “ex_adm n”

e*Insight Business Process Manager Implementation Guide 446 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity APl Methods IClient Interface

getUserActivityNames

Syntax

java.lang. String[] getUserActivityNanes(java.lang. String
busi nessivbdel | d)

Description

getUserActivityNames gets the user activity names.

Parameters
Name Type Description
businessModelld java.lang.String The business model id.

Return Values
java.lang.String|]
Returns the user activity names.
Throws
java.lang.Exception
Example

get User Acti vi t yNanmes(“12345”) ;
=> { “API _Check_Inv”, “Send_Order”}

e*Insight Business Process Manager Implementation Guide 447 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity APl Methods IClient Interface

getUUID

Syntax

java.lang. String[] getUU D ()
Description

getUUID retrieves the UUID.
Parameters

None.
Return Values
java.lang.String

Returns the UUID.
Throws

None.
Example

get UUI D() ;

e*Insight Business Process Manager Implementation Guide 448 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity APl Methods IClient Interface
initialize
Syntax

void initialize(java.util.Properties p)
Description

initialize establishes a connection to the e*Insight engine and database. The user needs
to provide the appropriate e*Insight connection property configuration.

Parameters

Name Type Description

p Properties The e*Insight configuration
properties.

For example:
dbURL=jdbc:oracle:thin:@hostname:1
521:dbname

userID=ex_admin

password=xxxxx
driverName=oracle.jdbc.driver.Oracle
Driver

DBServerType=Oracle

Return Values
None.
Throws
java.lang.Exception
Example
Properties p = new Properties();
p. set Property(“dbURL®, “] dbc: oracl e: t hi n: @ ocal host: 1521: eXchange®);
p. set Property(“userl D‘, “ex_adm n“);
p. set Property(“password”, “ex_adm n®);
p. set Property(“dri ver Nane“, “oracl e.j dbc. driver. Oracl eDri ver®);
p.

set Property(“DBServer Type“, “Oracl e“);
initialize(p);

e*Insight Business Process Manager Implementation Guide 449 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity APl Methods IClient Interface

refreshCachedMemory

Syntax

voi d refreshCachedMenory()
Description

refreshCachedMemory refreshes the cached memory used by this client.
Parameters

None.
Return Values

None.

Throws
java.lang.Exception
Example
ref reshCachedMenory();

e*Insight Business Process Manager Implementation Guide 450 SeeBeyond Proprietary and Confidential

Chapter 21

Section 21.3
e*Insight User Activity APl Methods

IClient Interface

releaseActivitylnstance
Syntax

voi d rel easeActivitylnstance(java.lang. String busi nesshdel | d,

java.l ang. String busi nesshMbdel | nstanceld, java.lang. String
activityName)

Description

releaseResources releases the usage on the activity instance by this current userld.

Parameters
Name Type Description
businessModelld java.lang.String The business model id.
businessModellnstanceld | java.lang.String The business model instance id.
activityName java.lang.String The activtity name.

Return Values
java.lang.String

Returns the userld of the user who is using this activity instance. Returns null if the
current userld did not checkout the activity instance.

Throws
java.lang.Exception

Example

rel easeActivitylnstance("12345", "605", "API_Check_ | nventory");
=> "jo_smth"

e*Insight Business Process Manager Implementation Guide 451 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity APl Methods IClient Interface

releaseResources

Syntax

voi d rel easeResources()
Description

releaseResources releases the resource used by the client. This method should be called
after all executions are complete.

Parameters
None.
Return Values
None.
Throws
java.lang.Exception
Example

rel easeResources();

e*Insight Business Process Manager Implementation Guide 452 SeeBeyond Proprietary and Confidential

Chapter 21
e*Insight User Activity APl Methods

resetUser

Syntax

voi d reset User ()
Description

resetUser resets the user.
Parameters
None.
Return Values
None.
Throws
None.
Example

reset User ();

e*Insight Business Process Manager Implementation Guide 453

Section 21.3
IClient Interface

SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity APl Methods IClient Interface

sendMessage

Syntax
java.l ang. String sendMessage(| Message nsQ)
Description

sendMessage sends an e*Insight message to the e*Insight server for processing. The
message will be sent to the e*Insight server queue.

Parameters

Name Type Description

msg IMessage An e*Insight message.

Return Values

java.lang.String
Returns an acknowledge message id sent to the e*Insight server queue.

Throws
java.lang.Exception
Example

| Message nmsg = new User Acti vityMessage();
nsg. set Busi nessMbdel | d(act . bpol d);
nsg. set Busi nessMbdel | nst ancel d(bpi 1d);
neg. set Busi nessMbdel Nare(act . bpoNane) ;
nsg. set Acti vi t yNanme(act. bpoNane) ;
sendMessage(nsq) ;

=> “99”

e*Insight Business Process Manager Implementation Guide 454 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity APl Methods IClient Interface

setGlobalAttributeValue
Syntax

voi d setd obal Attri buteVal ue(java.l ang. String busi nessl nstancel d,
java.lang. String busi nesshMdel I d, java.lang. String attributeNane,
java.lang. String attributeValue, java.lang.String attributeType)

Description

setGlobalAttributeValue sets a global attribute value.

Parameters
Name Type Description
businesslnstanceld java.lang.String The business model instance id.
businessModelld java.lang.String The business model id.
attributeName java.lang.String The attribute name.
attributeValue java.lang.String The attribute value.
attributeType java.lang.String The attribute type.

Return Values
None.
Throws
java.lang.Exception
Example

set d obal Attri but eVal ue(“602”,“12345”, “I n_St ock”, “no”, “Stri ng”) ;

e*Insight Business Process Manager Implementation Guide 455 SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.3
e*Insight User Activity APl Methods IClient Interface

setLocalAttributeValue
Syntax

voi d setlLocal Attri buteVal ue(java.lang. String busi nessl nstancel d,
java.lang. String busi nesshbdel I d, java.lang. String activityNane,
java.lang. String attributeNane, java.lang.String attributeVal ue,
java.lang. String attributeType)

Description
setLocal AttributeValue sets the local attribute value.

Parameters

Name Type Description

businessinstanceld
businessModelld

java.lang.String The business model instance id.

java.lang.String The business model id.

activityName

java.lang.String

The activity name.

attributeName

java.lang.String

The attribute name.

attributeValue

java.lang.String

The attribute value.

attributeType

java.lang.String

The attribute type.

Return Values

None.

Throws
java.lang.Exception
Example

set Local Attri but evVal ue(“602”, “12345”, “APl _Check_I nv”, “I n_St ock”, “no”,
“String”);

e*Insight Business Process Manager Implementation Guide 456 SeeBeyond Proprietary and Confidential

Chapter 21
e*Insight User Activity APl Methods

setUser

Syntax

voi d setUser(java.lang. String userld)

Description

Section 21.3
IClient Interface

setUser sets the user to connect to e*Insight server.

Parameters

Name

Type

Description

userld

java.lang.String

The user id.

Return Values
None.

Throws
java.lang.Exception

Example

set User (“ex_adni n”);

e*Insight Business Process Manager Implementation Guide 457

SeeBeyond Proprietary and Confidential

Chapter 21 Section 21.4
e*Insight User Activity APl Methods EbpmMonitor Class

214 EbpmMonitor Class

This is the e*Insight monitor client to the e*Insight engine. The user can access the
e*Insight business model with sufficient user privileges. This class also allows the user
to send e*Insight messages to the e*Insight engine.

The EbpmMonitor Class implements IClient interface. See IClient Interface on
page 420, for details of methods contained in this interface.

Additional methods are described in detail on the following pages:

checkUserPrivileges on page 459

e*Insight Business Process Manager Implementation Guide 458 SeeBeyond Proprietary and Confidential

Chapter 21
e*Insight User Activity APl Methods

checkUserPrivileges

Syntax

voi d checkUserPrivil eges(int bpold)

Description

Section 21.4
EbpmMonitor Class

checkUserPrivileges checks user privileges for bpold. Throws
InsufficientPrivilegesException if userld is not set properly or does not have sufficient

privileges to bpold.
Parameters
Name Type Description
bpold integer The business process object id.

Return Values
None.

Throws

java.sql.SQLException, InsufficientPrivilegesException

Example

checkUser Privil eges(“123");

e*Insight Business Process Manager Implementation Guide 459

SeeBeyond Proprietary and Confidential

Appendix A
XML Structure for the e*Insight Event

This appendix shows the XML structure for the e*Insight Event Type Definition. If
your data conforms to this structure, you do not need to convert it upon entry to the
e*Insight system.

Note: BP_EVENT attribute names must match the attributes defined in the business
process created in the e*Insight GUL These names are case-sensitive. If the
attributes defined in the e*Insight GUI do not match the incoming XML structure
you must create a Collaboration to map the incoming data to the correct attribute
names; otherwise, the e*Insight system will not function correctly.

A1 XML Structure

<<l-- edited with XML Spy v3.0 NT (http://ww. xm spy.com) by STC (STC)
-->
<I--DTD for eX Standard_Event. ssc $ld: eX event.dtd,v 1.1.2.10
2000/ 09/ 07 04: 43: 14 gal bers Exp $-->
<! ELEMENT eX_ Event (BP_EVENT?, TP_EVENT?) >
<! --eBusi ness Process Manager Event section-->
<! ELEMENT BP_EVENT (ACTI VI TY?, ATTRI BUTE*) >
<! ATTLI ST BP_EVENT
TYPE (START_BP | DO _ACTIVITY | UNDO_ACTIVITY) #REQU RED
STATUS (SUCCESS | FAI LURE) #I MPLI ED
NAME CDATA #| MPLI ED
| D CDATA #l MPLI ED
BPI _| D CDATA #l VPLI ED
>
<! ELEMENT ATTRI BUTE EMPTY>
<! - - ENCODI NG=base64 or whatever; eBPM only recogni zes base64 for
TYPE=XM.- - >
<! ATTLI ST ATTRI BUTE
TYPE (BIN| XML | STRING | TRANSI ENT | NUMBER | BOOLEAN) #REQUI RED
NAMVE CDATA #REQUI RED
VALUE CDATA #REQUI RED
ENCODI NG CDATA #I MPLI ED
LOCATION (FILE | DB | URL | EMBEDDED | AUTO #l MPLI ED
>
<!l ELEMENT ACTIVITY (#PCDATA | ATTRI BUTE) *>
<! ATTLI ST ACTIVITY
NAME CDATA #| MPLI ED
| D CDATA #l MPLI ED
>
<l --ePartner Manager |nput/CQutput Event section-->
<!l ELEMENT TP_EVENT (Partner Nanme?, |nternal Nane?, Direction?,
Messagel D?, OrigEvent C ass?, Usagel ndi cator?, Payload?, ConmProt?,
Ul ?, SSLO i entKeyFil eName?, SSLC ient KeyFil eType?,

e*Insight Business Process Manager Implementation Guide 460 SeeBeyond Proprietary and Confidential

Appendix A Section A.1
XML Structure for the e*Insight Event XML Structure

SSLC ientCertFil eName?, SSLO ientCertFil eType?, Messagel ndex?,
TPAttri bute?)>
<I--External Partner Nane-->
<!l ELEMENT Part ner Nane (#PCDATA) >
<l--Internal Sending ERP (ex. SAP)-->
<! ELEMENT I nt er nal Name (#PCDATA) >
<I--Direction of Transaction to/from Tradi ng Partner (ex. Qutbound=0
| nbound=l) - ->
<! ELEMENT Direction (#PCDATA) >
<l--Original Request ID fromlnternal Sending ERP-->
<! ELEMENT Messagel D (#PCDATA) >
<I--Original Event Classification (ex. QAP for Query Price and
Availability)-->
<l ELEMENT Ori gEvent d ass (#PCDATA) >
<l--Usage Indicator of EDI message by Tradi ng Partner (Production=P
Test=T)-->
<! ELEMENT Usagel ndi cat or (#PCDATA) >
<!--Payload to carry ED nessage-->
<! ELEMENT Payl oad (#PCDATA) >
<! ATTLI ST Payl oad
TYPE (RAW | PROCESSED | ENCRYPTED) #REQUI RED
LOCATION (FILE | DB | URL | EMBEDDED | AUTO #l MPLI ED
>
<I--RAWENeed transl ati on PROCESSED=Already X12 or RN ENCRYPTED=from
Tradi ng Partner-->
<! --Comuni cation Protocol (ex. BATCH, HTTP) for sending to Tradi ng
Par t ner-->
<! ELEMENT CommPr ot (#PCDATA) >
<I--URL for EDI nessage to be exchanged with Tradi ng Partner-->
<! ELEMENT Url (#PCDATA) >
<I--SSL information-->
<! ELEMENT SSLC i ent KeyFi | eNane (#PCDATA) >
<l ELEMENT SSLd i ent KeyFi | eType (#PCDATA) >
<! ELEMENT SSLd i ent CertFil eNane (#PCDATA) >
<! ELEMENT SSLO ientCertFil eType (#PCDATA) >
<l--Message Index for Batched delivery, ex. 1|20 neans 1 of 20-->
<!l ELEMENT Messagel ndex (#PCDATA) >
<I--TP Attribute will contain optional repeating nane value pair for
storing of TP data -->
<l ELEMENT TPAttri bute (NameVal uePair*)>
<! ELEMENT NaneVal uePair (Nane, Val ue)>
<! ELEMENT Name (#PCDATA) >
<! ELEMENT Val ue (#PCDATA) >

e*Insight Business Process Manager Implementation Guide 461 SeeBeyond Proprietary and Confidential

Glossary

Glossary

attribute
Attributes pass user-defined control information (programming arguments) to and
from the e*Insight Business Process Manager and its activities.

activity
An activity is an organizational unit for performing a specific function.

activity states
Activity states are the stages that activities within the business process instance go
through as the business process version is being run.

business process
A business process is a collection of actions and messages, revolving around a specific
business practice, that flow in a specific pattern to produce an end result.

business process attributes
Business process attributes pass user-defined control information (programming
arguments) to and from the e*Insight Business process manager, external sources, and
internal components.

business process expression
Business process expressions allow you to dictate business process logic flow based on
the ability to perform various types of logic on business process instance attributes.

business process instance (BPI)
A unique instantiation of a business process.

business process version
A form or variant of the original business process model.

Collaboration
A component of an e*Way or BOB that receives and processes Events and forwards the
output to other e*Gate components. Collaborations perform three functions: they
subscribe to Events of a known type, they apply business rules to Event data, and they
publish output Events to a specified recipient. Collaborations use Monk translation
script files with the extension “.tsc” to do the actual data manipulation.

Design mode
The mode used during the design phase of the business process. Design mode allows
you access to the drawing canvas, enabling you to create or modify a business process
version, based on its status.

e*Insight Business Process Manager Implementation Guide 462 SeeBeyond Proprietary and Confidential

Glossary

Diagram pane
The Diagram pane is used in Monitor mode to review the status of a business process
instance, using a pictorial representation of it. Various colors assigned to the activities
within the instance inform you of the status of each, during the cycle of the instance.

documentation box
The documentation box displays comments and free-text descriptions about the
business process version.

e*Insight Business Process Manager (e*Insight)
The component within the SeeBeyond eBusiness Integration Suite product suite that
facilitates the automation of the business process flow of eBusiness activities.

e*Xchange Partner Manager (e*Xchange)
An application that allows you to set up and maintain trading partner profiles and
view processed messages. e*Xchange also processes inbound and outbound messages
according to certain eBusiness protocols and your validation Collaborations.

eSecurity Manager (eSM)
An application that is used with the e*Xchange Partner Manager to secure transmission
of business-to-business exchanges over public domains such as the Internet.

Event (Message)
Data to be exchanged, either within e*Gate or between e*Gate and external systems,
which has a defined data structure; for example, a known number of fields, with
known characteristics and delimiters. Events are classified by type and exchanged
within e*Gate using Event Type Definitions.

Event Type Definition (ETD)
An Event Type template, defining Event fields, field sequences, and delimiters. Event
Type Definitions enable e*Insight systems to identify and transform Event Types. They
are Monk script files with an extension of ssc and Java script files with an extension of
XSC.

e*Xchange Administrator
An application within the eBusiness Integration Solutions suite of products that you
use to establish user security for e*Xchange Partner Manager (e*Xchange) and e*Insight
Business Process Manager (e*Insight).

gate
Gates control the logical flow of data-based decisions in the business process model. A
gate outputs specific information when specified input conditions are met.

Graph Wizard

The Graph Wizard is used in Monitor mode to display custom graphs, based on
instance data.

e*Insight Business Process Manager Implementation Guide 463 SeeBeyond Proprietary and Confidential

Glossary

GUI
Graphical User Interface. A type of computer interface that enables the user to perform
actions via the use of symbols, visual metaphors and pointing devices.

List pane
The List pane is used in Monitor mode to review the status of a business process
version, by reviewing the instances created by it.

modeling canvas
The modeling canvas is the portion of the e*Insight Business Process Manager where
you create the business process model, in the form of a flow chart.

Monitor mode
Monitor mode is used during the monitoring and reporting phase of the process, and
allows you to view the status of the business process.

schema
Schemas are files and associated stores created by e*Xchange that contain the parameters
of all the components that control, route, and transform data as it moves through
e*Xchange.

security
Security is the ability to limit user access to specific items based on a pre-determined
profile of the user.

String
A sequence of text characters.

sub-process
A sub-process is a business process version which is called, or used by, another
business process, as a sub-component.

tree view
The tree view displays a hierarchical representation of all the business process models,
and their activities.

user account
A user account is information about a particular user that is stored in a database for
security purposes.

user group
User groups allow you to grant access permissions to a set of users with similar
processing needs without having to specify individual privileges for each user.

XML
Extensible Markup Language. XML is a language that is used in Events or messages in
e*Insight, containing structured information. XML is different from String in that XML
messages can contain both content, and information about the content.

e*Insight Business Process Manager Implementation Guide 464 SeeBeyond Proprietary and Confidential

Index

Index

A

Activity BOB
configuring 253
creating the Collaboration Rules scripts 253
addATTRIBUTE 305, 344, 345
APIs
eX-bin-set-attribute 295
eX-copy-no-attribute 299, 320
eX-count-attribute 287, 306
eX-count-local-attribute 296, 316
eX-get-Activity 291, 310
eX-get-all-attribute 301
eX-get-all-local-attribute 302
eX-get-attribute 286, 305
eX-get-BP_EVENT 290, 309
eX-get-local-attribute 297
eX-set-Activity 292, 311
eX-set-all-BP_EVENT 300, 321
eX-set-attribute 288, 307
eX-set-BP_EVENT 289, 308
eX-set-local-attribute 298, 318
eX-string-set-attribute 293, 312
eX-xml-set-attribute 294, 313
getBusinessModellnstanceld 401
getBusinessModelName 402
attributes
getting 88, 92
global 68
input 68
input/output 68
local 68
output 68
setting 87, 91
using local attributes to implement undo logic 69
authenticate 421

B

Basic 25
BOB
Activity BOB 44, 45, 64
BP_EVENT 69, 78
business logic, testing 117, 130, 162, 177, 185, 190
business processes

e*Insight Business Process Manager Implementation Guide 465

attributes, about 67
restarting 123, 167
starting 87, 90

C

case study (order processing) 97, 126, 134, 170, 183,
188, 236
checkoutActivityInstance 422
checkUserPrivileges 459
clearATTRIBUTE 306
clearMessage 396
Collaboration
START_BP Collaboration 41, 61
Collaborations
configuring 112, 151, 155, 249, 253
Do and Undo logic in 43, 63
eX_Activity 45, 46, 65
eX_from_eBPM 38, 57
eX_Resubmitter 39, 58
eX_to_Activity 42, 63
eX_to_eBPM 57
common configuration tasks 84
configuring
common configuration tasks 84
e*Insight engine 34, 53, 244, 250
editing the eX_eBPM engine’s configuration file
107, 148, 226, 244, 250
eX_Resubmitter BOB 39, 58
eX_to_Activity e*Way 42, 62
Send_Status e*Way 113, 156, 175
START_BP e*Way 108, 149, 245, 251
starting a business process 87, 90
user-defined e*Gate components 174, 244, 251,
256, 260
Configuring the START_BP Component 41, 60
conventions, writing in document 18
Copy the elSchema 26
countATTRIBUTE 346

D

demonstrating business process restart 123, 167
demonstrating business process undo 121, 165

Do and Undo logic in an Activity collaboration 43,
63

E

e*Gate Schema for e*Insight 29, 48
e*Insight
schema components 29, 48, 262
sending the "Done" Event back 88, 93

SeeBeyond Proprietary and Confidential

Index

e*Insight Authorization Activity Implementation
126-132, 170-180
e*Insight Business Process Manager 23
e*Insight engine

configuring 244, 250
e*Insight ETD, understanding 67-82
e*Insight Helper Monk Functions 284-302
e*Insight Implementation 96125, 133-169
e*Insight Java Helper Methods 303-392
e*Insight Schema components overview 30, 49
e*Insight Sub-Process Implementation 193-204,
205-218
e*Insight User Activity Implementation 181-192
e*Insight User Activity Methods 393-459
e*Ways

Send_Status, configuring 113, 156, 175

START_BP, configuring 108, 149, 245, 251
error handling 40, 59

connection failure handling 40

data failure handling 40

normal event failure handling 59

special event failure handling 59
error type 39, 58

connection 39, 58

data 39, 58
ETD

using, with e*Insight 67
ETD Java

structure 69
ETD Monk

structure 74
eX 378
eX-bin-set-attribute 295
eX-copy-no-attribute 299, 320
eX-count-attribute 287, 306
eX-count-local-attribute 296, 316
eX-get-Activity 291, 310
eX-get-all-attribute 301
eX-get-all-local-attribute 302
eX-get-attribute 286, 305
eX-get-BP_EVENT 290, 309
eX-get-local-attribute 297
eXSchema 48
eXSchema, copying 26
eX-set-Activity 292, 311
eX-set-all-BP_EVENT 300, 321
eX-set-attribute 288, 307
eX-set-BP_EVENT 289, 308
eX-set-local-attribute 298, 318
eX-string-set-attribute 293, 312
eX-xml-set-attribute 294, 313

e*Insight Business Process Manager Implementation Guide 466

F

from 380
from_eBPMConvert 380

G

getACTIVITY 347

getActivity AttributesCount 397
getActivityAttributeValue 398
getActivityGlobal AttributeNames 423
getActivitylnstanceEnd Time 424
getActivityInstanceStartTime 425
getActivityInstanceStatus 426
getActivityName 399, 427
getAssigned BPIIdByState 428
getATTRIBUTE 309, 349
getATTRIBUTE_VALUE 308, 348
getAuthorizationActivityNames 429
getBP_EVENT 381

getBPI_ID 350

getBPIStack 430
getBusinessModelld 400
getBusinessModellnstanceld 401
getBusinessModelInstanceName 432
getBusinessModellnstanceslds 431
getBusinessModellnstanceStatus 433
getBusinessModelName 402, 414, 434
getEnabledBusinessModelld 435
getEnabledBusinessModelsIds 436
getENCODING 325
getGlobalAttributeCount 403
getGlobalAttributeDefaultValue 437
getGlobalAttributeDirection 438
getGlobal AttributeNames 439
getGlobalAttributeType 404, 440
getGlobalAttributeValue 405, 441
getID 310, 351

getLocal AttributeNames 442
getLocalAttributeType 443
getLocalAttributeValue 444
getLOCATION 326
getMessageStatus 445

getMsgType 406

getNAME 311, 327, 352

getSTATUS 353

getTP_EVENT 382

getTYPE 328, 354

getUser 446

getUserActivityNames 447
getUUID 448

getVALUE 329

global attributes 68

SeeBeyond Proprietary and Confidential

Index

H

hasACTIVITY 355
hasBP_EVENT 383
hasBPI_ID 356
hasENCODING 330
hasID 312, 357
hasLOCATION 331
hasNAME 313, 358
hasSTATUS 359
hasTP_EVENT 384

implementation
basic information 24, 25
configuring the e*Gate components 27
configuring the e*Insight schema based on the
business process 26
copying the eXSchema 26
creating a business process 26
e*Insight 96-125, 133-169
e*Insight Authorization Activity 126-132, 170-
180
e*Insight User Activity 181-192
Remote Sub-Process 219-235
road map 25, 84
Sub-Process 193-204, 205-218
testing and tuning the system 27
initialize 449
input attributes 68
input/output attributes 68
Introducing e*Insight Business Process Manager
(e*Insight) 23

J

Java APIs
addATTRIBUTE 305, 344, 345
authenticate 421
checkoutActivityInstance 422
checkUserPrivileges 459
clearATTRIBUTE 306
clearMessage 396
countATTRIBUTE 346
from_eBPMConvert 380
getACTIVITY 347
getActivity AttributesCount 397
getActivityAttributeValue 398
getActivityGlobal AttributeNames 423
getActivitylnstanceEndTime 424
getActivityInstanceStartTime 425
getActivityInstanceStatus 426
getActivityName 399, 427

e*Insight Business Process Manager Implementation Guide 467

getAssignedBPIIdByState 428
getATTRIBUTE 309, 349
getATTRIBUTE_VALUE 308, 348
getAuthorizationActivityNames 429
getBP_EVENT 381

getBPI_ID 350

getBPIStack 430
getBusinessModelld 400
getBusinessModellnstanceName 432
getBusinessModellnstanceslds 431
getBusinessModellnstanceStatus 433
getBusinessModelName 414, 434
getEnabledBusinessModelld 435
getEnabledBusinessModelslds 436
getENCODING 325
getGlobalAttributeCount 403
getGlobalAttributeDefaultValue 437
getGlobalAttributeDirection 438
getGlobal AttributeNames 439
getGlobalAttributeType 404, 440
getGlobalAttributeValue 405, 441
getID 310, 351
getLocalAttributeNames 442
getLocalAttributeType 443
getLocalAttributeValue 444
getLOCATION 326
getMessageStatus 445
getMsgType 406

getNAME 311, 327, 352
getSTATUS 353

getTP_EVENT 382

getTYPE 328, 354

getUser 446
getUserActivityNames 447
getUUID 448

getVALUE 329

hasACTIVITY 355

hasBP_EVENT 383

hasBPI_ID 356

hasENCODING 330

hasID 312, 357

hasLOCATION 331

hasNAME 313, 358

hasSTATUS 359

hasTP_EVENT 384

initialize 449

marshal 314, 332, 360, 385
omitACTIVITY 361
omitBP_EVENT 386

omitBPI_ID 362

omitENCODING 333

omitID 315, 363

omitLOCATION 334

omitNAME 316, 364

SeeBeyond Proprietary and Confidential

Index

omitSTATUS 365 omitBPI_ID 362
omitTP_EVENT 387 omitENCODING 333
refreshCachedMemory 450 omitID 315, 363
releaseActivityInstance 451 omitLOCATION 334
releaseResources 452 omitNAME 316, 364
removeActivity 407 omitSTATUS 365
removeATTRIBUTE 317, 366 omitTP_EVENT 387
removeGlobal Attribute 408 order processing case study 97, 126, 134, 170, 183,
resetUser 453 188, 236
sendMessage 454 output attributes 68
setACTIVITY 367 Overview 187
setActivity AttributeValue 409
setActivityName 410 R
setATTRIBUTE 318, 368
setBP_EVENT 388 refreshCachedMemory 450
setBPI_ID 370 releaseActivityInstance 451
setBPIStack 411 releaseResources 452
setBusinessModelld 413 Remote Sub-Process Implementation 219-235
setBusinessModellnstanceld 412 removeActivity 407
setENCODING 335 removeATTRIBUTE 317, 366
setEventInfo 371 removeGlobal Attribute 408
setGlobal AttributeValue 455 resetUser 453
setID 320, 372 restart, demonstrating 123, 167
setLocal AttributeValue 456
setLOCATION 336
setMsgType 416 S
setNAME 321, 337,373 schema, copying 26
setSTATUS 374 SeeBeyond eBusiness Integration Suite 20-24
setStatus 417 sending the "Done" Event back to e*Insight 88, 93
setTP_EVENT 389 sendMessage 454
setTYPE 338, 375 setACTIVITY 367
setUser 457 setActivity AttributeValue 409
setVALUE 339 setActivityName 410
to_eBPMConvert 390 setATTRIBUTE 318, 368
toString 322, 340, 376, 391 setBP_EVENT 388
toXML 418 setBPI_ID 370
unmarshal 323, 341, 377, 392 setBPIStack 411
Java APIssetGlobalAttributeValue 415 setBusinessModelld 413
setBusinessModellnstanceld 412
L setENCODING 335
setEventInfo 371
local attributes 68 setGlobalAttributeValue 415, 455
using to implement undo logic 69 set] 320
setlD 372
M setLocalAttributeValue 456
setLOCATION 336
marshal 314, 332, 360, 385 setMsgType 416
Monk functions see functions setNAME 321, 337, 373
setSTATUS 374
O setStatus 417
setting attributes 87, 91
omitACTIVITY 361 setTP_EVENT 389
omitBP_EVENT 386 setTYPE 338, 375
setUser 457

e*Insight Business Process Manager Implementation Guide 468 SeeBeyond Proprietary and Confidential

Index

setVALUE 339

START_BP component, configuring 41, 60
START_BP e*Way, configuring 108, 149, 245, 251
starting a business process 87, 90

supporting documents 19

T

testing the standard business logic 117, 130, 162,
177,185, 190

to_eBPMConvert 390

toString 322, 340, 376, 391

toXML 418

U

understanding the e*Insight ETD 67-82

Undo, demonstrating 121, 165

unmarshal 323, 341, 377, 392

user-defined e*Gate components, configuring 174,
244,251, 256, 260

Using the ETD with e*Insight 67

X

XML
element with sub-elements 74
element without sub-elements 75
ETD structure for an XML attribute 75
structure for the e*Xchange Event 460461

e*Insight Business Process Manager Implementation Guide 469

SeeBeyond Proprietary and Confidential

	e*Insight Business Process Manager Implementation Guide
	Contents
	Introduction
	1.1 Document Purpose and Scope
	1.2 Intended Audience
	1.3 Writing Conventions
	1.4 Supporting Documents
	1.5 SeeBeyond Web Site

	Introduction to the SeeBeyond eBI Suite
	2.1 SeeBeyond eBusiness Integration Suite
	2.1.1 SeeBeyond eBusiness Integration Suite Components
	e*Gate Integrator Components

	2.2 Introducing e*Insight Business Process Manager (e*Insight)
	2.3 Building an eApplication
	2.4 Basic Information

	Implementation Overview
	3.1 Basic Information
	3.2 Implementation Road Map
	Step 1: Create a Business Process
	Step 2: Copy the e*Insight Schema
	Step 3: Configure the e*Insight Schema Based on the Business Process
	Step 4: Configure the e*Gate Components
	Step 5: Test and Tune the System

	3.3 The e*Insight Schema
	3.3.1 The eIJSchema (Java)
	3.3.2 The eISchema (Classic)

	e*Insight Schema Components (eIJSchema)
	4.1 The Purpose of the e*Gate Schema for e*Insight
	4.1.1 e*Insight Components

	4.2 e*Insight Schema Components Overview
	4.2.1 e*Insight Schema Component Relationships Diagram

	4.3 e*Insight Business Process Manager Components
	Components That Run Business Processes
	Components that Start Business Processes
	Components that Implement Business Process Activities
	4.3.1 e*Insight Engine
	Configuring the e*Insight Engine
	Configuring the e*Insight Engine Connection
	eIcr_eBPM Collaboration

	4.3.2 eI_Resubmitter BOB
	Configuring the eI_Resubmitter BOB
	eI_Resubmitter Collaboration

	4.3.3 Failed Event Handling by the e*Insight Engine
	Error Types
	Error Handling

	4.3.4 START_BP Component
	Configuring the START_BP Component
	START_BP Collaboration

	4.3.5 Single-Mode Activity e*Way
	Configuring the eX_to_Activity e*Way
	eX_to_Activity Collaboration
	eX_from_Activity Collaboration

	4.3.6 Multi-Mode Activity e*Way
	eX_Activity Collaboration

	4.3.7 Activity BOB
	eX_Activity Collaboration

	4.4 Using Monk in eIJSchema
	4.4.1 Updating an eISchema to use the eIJSchema engine

	e*Insight Schema Components (eISchema)
	5.1 The Purpose of the e*Gate Schema for e*Insight
	5.1.1 e*Insight Components

	5.2 e*Insight Schema Components Overview
	Additional Components
	5.2.1 e*Insight Schema Component Relationships Diagram

	5.3 e*Insight Business Process Manager Components
	Components That Run Business Processes
	Components that Start Business Processes
	Components that Implement Business Process Activities
	5.3.1 e*Insight Engine
	Configuring the e*Insight Engine
	eX_from_eBPM Collaboration
	eX_to_eBPM Collaboration

	5.3.2 eI_Resubmitter BOB
	Configuring the eI_Resubmitter BOB
	eI_Resubmitter Collaboration

	5.3.3 Failed Event Handling by the e*Insight Engine
	Error Types
	Error Handling

	5.3.4 START_BP Component (e*Way or BOB)
	Configuring the START_BP Component
	START_BP Collaboration

	5.3.5 Activity e*Way
	Configuring the eX_to_Activity e*Way
	eX_to_Activity Collaboration
	eX_from_Activity Collaboration

	5.3.6 Activity BOB
	eX_Activity Collaboration

	Understanding the e*Insight ETD
	6.1 Using the ETD with e*Insight
	6.1.1 About Business Process Attributes
	Global Attributes
	Local Attributes

	6.2 e*Insight ETD for Java — eI_StandardEvent.xsc
	6.2.1 BP_EVENT
	BP_EVENT Element
	BP_EVENT.ACTIVITY Nodes
	ACTIVITY Element
	ACTIVITY.ATTRIBUTE Element
	BP_EVENT.ATTRIBUTE Nodes

	6.3 e*Insight ETD for Monk—eX_Standard_Event.ssc
	6.3.1 ETD Structure
	6.3.2 XML Element with Sub-elements
	6.3.3 XML Element without sub-elements
	6.3.4 XML Attribute
	6.3.5 Element Overview
	Example: XML Element with Sub-elements
	Example: XML Element with Attributes

	6.4 Using eX_Standard_Event.ssc
	6.4.1 BP_EVENT
	BP_EVENT.AS Nodes
	BP_EVENT.CT.DSN.DS.ACTIVITY Nodes
	ACTIVITY.AS Nodes
	ACTIVITY.CT.DSN.DS.ATTRIBUTE Nodes
	BP_EVENT.CT.DSN.DS.ATTRIBUTE.AS Nodes

	Common Configuration Tasks
	7.1 Implementation Road Map
	7.2 Common Configuration Tasks
	7.2.1 Copy the e*Insight Schema
	Using the e*Insight GUI
	Copying the Schema from the Registry Host
	Installing from the CD

	7.3 Sending Messages to the e*Insight Engine (eIJSchema)
	7.3.1 Starting a Business Process (eIJSchema)
	7.3.2 Setting Attributes (eIJSchema)
	7.3.3 Getting Attributes (eIJSchema)
	7.3.4 Sending the “Done” Event Back to e*Insight (eIJSchema)

	7.4 Sending Messages to the e*Insight Engine (eISchema)
	7.4.1 Starting a Business Process (eISchema)
	7.4.2 Setting Attributes (eISchema)
	Setting Attributes in a Monk Collaboration
	Setting Attributes in a Java Collaboration

	7.4.3 Getting Attributes (eISchema)
	Getting Attributes in a Monk Collaboration
	Getting Attributes in a Java Collaboration

	7.4.4 Sending the “Done” Event Back to e*Insight (eISchema)

	e*Insight Implementation (eIJSchema)
	8.1 Overview
	8.1.1 Case Study: Payroll Processing

	8.2 Create the Payroll BP in e*Insight
	8.2.1 Creating the processes performing the Activities
	Configuring the e*Insight Script for Update_Status

	8.3 Configure the Integration Schema (e*Insight)
	Integration Schema Activity Components Summary
	Creating the eX_Check_Eligibility Multi-Mode e*Way
	Creating the eX_Calculate_Bonus BOB
	Process_Payroll e*Way Configuration

	8.4 Configure the Integration Schema (e*Gate)
	8.4.1 Configure the e*Insight Engine
	Edit the eIcp_eInsightEngine Connection Configuration File

	8.4.2 Configure the JMS Connection

	8.5 Configure User-defined e*Gate Components
	Configuration Order for the User-defined Components
	8.5.1 Configure the START_BP e*Way
	Step 1: Create the START_BP e*Way
	Step 2: Create the Input ETD
	Step 3: Create the START_BP Collaboration
	Step 4: Configure the Collaboration in the GUI

	8.5.2 Configure the Process_Payroll e*Way
	Step 1: Configure the e*Way
	Step 2: Create the Output ETD:PayrollProcess.xsc using Java
	Step 3: Create the Process_Payroll Collaboration Rule
	Step 4: Configure the Collaboration

	8.6 Run and Test the e*Insight scenario
	8.6.1 Testing the Standard Business Logic
	Payroll Processing
	Not Eligible Processing

	8.6.2 Demonstrating Business Process Undo Functionality
	Manual Undo

	8.6.3 Demonstrating Business Process Restart Functionality
	Repairing a String Attribute

	e*Insight Authorization Activity Implementation (eIJSchema)
	9.1 Overview
	9.1.1 Case Study: Payroll Processing

	9.2 Step 1: Update the Payroll BP in e*Insight
	9.2.1 Creating the processes performing the Activities
	Configuring the e*Insight Script for Bonus_Refused

	9.3 Step 2: Run and Test the e*Insight scenario
	9.3.1 Testing the Standard Business Logic
	Authorized Processing
	Not Authorized Processing

	e*Insight Implementation (eISchema)
	10.1 Overview
	10.1.1 Case Study: Order Processing

	10.2 Create the ProcessOrder BP in e*Insight
	10.2.1 Creating the processes performing the Activities
	Configuring the e*Insight Script for Ship_Ord

	10.3 Configure the Integration Schema
	Integration Schema Activity Components Summary
	Creating the eX_Check_Inv BOB
	Creating the eX_Out_of_Inv BOB
	Send_Status e*Way Configuration

	10.4 Configure the e*Insight Engine
	Edit the eX_eBPM Configuration File

	10.5 Configure User-defined e*Gate Components
	Configuration Order for the User-defined Components
	10.5.1 Configure the START_BP e*Way
	Step 1: Create the START_BP e*Way using Monk
	Step 2: Create the Input ETD using Monk
	Step 3: Create the START_BP CRS using Monk
	Step 4: Configure the START_BP Collaboration in the GUI using Monk
	Step 1: Create the START_BP e*Way using Java
	Step 2: Create the Input ETD using Java
	Step 3: Create the START_BP Collaboration using Java
	Step 4: Configure the Collaboration in the GUI using Java

	10.5.2 Configure the Send_Status e*Way
	Step 1: Configure the eX_Send_Status e*Way using Monk
	Step 2: Create the Output ETD using Monk
	Step 3: Create the eX_Send_Status.tsc CRS using Monk
	Step 4: Configure the Collaboration using Monk
	Step 1: Configure the e*Way using Java
	Step 2: Create the Output ETD: SendStatus.xsc using Java
	Step 3: Create the Send_Status Collaboration Rule using Java
	Step 4: Configure the Collaboration using Java

	10.6 Run and Test the e*Insight scenario
	10.6.1 Testing the Standard Business Logic
	In-Stock Processing
	Out-of-Stock Processing

	10.6.2 Demonstrating Business Process Undo Functionality
	Manual Undo

	10.6.3 Demonstrating Business Process Restart Functionality
	Repairing a String Attribute

	e*Insight Authorization Activity Implementation (eISchema)
	11.1 Overview
	11.1.1 Case Study: Order Processing

	11.2 Step 1: Create the ProcessOrder BP in e*Insight
	11.3 Step 2: Configure the Integration Schema
	Integration Schema Activity Components Summary

	11.4 Step 3: Configure User-defined e*Gate Components
	Configure the Activity BOB CRS in the Enterprise Manager GUI
	Configure the Activity BOB Collaborations in the Enterprise Manager GUI
	11.4.1 Configure the Authorize_Quantity e*Way
	Step 2: Create the Authorize_Quantity.tsc CRS
	Step 3: Configure the e*Way
	Step 4: Configure the Collaboration

	11.5 Step 5: Run and Test the e*Insight scenario
	11.5.1 Testing the Standard Business Logic
	Authorized Processing
	Not Authorized Processing

	e*Insight User Activity Implementation
	12.1 Overview of the User Activity
	12.1.1 User Activity Security
	12.1.2 Deployment of the User Activity

	12.2 Overview of the Payroll BP
	12.3 Overview
	12.3.1 Case Study: Payroll Processing with User Activity

	12.4 Step 1: Update the Payroll BP in e*Insight
	12.5 Step 2: Configure the Integration Schema
	12.6 Step 3: Run and Test the e*Insight scenario
	12.6.1 Testing the User Activity

	12.7 Overview of the ProcessOrder BP
	12.8 Overview
	12.8.1 Case Study: Order Processing with User Activity

	12.9 Step 1: Update the ProcessOrder BP in e*Insight
	12.10 Step 2: Configure the Integration Schema
	12.11 Step 3: Run and Test the e*Insight scenario
	12.11.1 Testing the User Activity

	e*Insight Sub-Process Implementation (eIJSchema)
	13.1 Overview of the Sub-Process Example
	13.2 Create the CalculateBonus BP in e*Insight
	13.3 Configure the Integration Schema for CalculateBonus
	13.4 Modify the Payroll BP in e*Insight
	13.5 Configure the Integration Schema for Payroll
	13.6 Run and Test the e*Insight scenario
	13.7 Overview of the Dynamic Sub-Process Example
	13.8 Create the accounts BP in e*Insight
	13.9 Configure the Integration Schema for accounts
	Creating the CRS in e*Gate

	13.10 Create the marketing BP in e*Insight
	13.11 Configure the Integration Schema for marketing
	Creating the CRS for eX_Calculate_Bonus_marketing in e*Gate

	13.12 Modify the Payroll BP in e*Insight
	13.13 Configure the Integration Schema for Payroll
	13.14 Run and Test the e*Insight scenario

	e*Insight Sub-Process Implementation (eISchema)
	14.1 Overview of the Sub-Process Example
	14.2 Create the CheckInventory BP in e*Insight
	14.3 Configure the Integration Schema for CheckInventory
	14.4 Modify the ProcessOrder BP in e*Insight
	14.5 Configure the Integration Schema for ProcessOrder
	14.6 Run and Test the e*Insight scenario
	14.7 Overview of the Dynamic Sub-Process Example
	14.8 Create the CA BP in e*Insight
	14.9 Configure the Integration Schema for CA
	Creating the CRS in e*Gate

	14.10 Create the OR BP in e*Insight
	14.11 Configure the Integration Schema for OR
	Creating the CRS in e*Gate

	14.12 Modify the ProcessOrder BP in e*Insight
	14.13 Configure the Integration Schema for ProcessOrder
	14.14 Run and Test the e*Insight scenario

	e*Insight Remote Sub-Process Implementation
	15.1 Overview
	15.2 Overview of the Remote Sub-Process
	15.3 Installation and Configuration of Tomcat
	Installing Tomcat
	Configuring Tomcat
	Deploying the SOAP Service

	15.4 Installation of Tomcat and e*Insight on Different Hosts
	15.5 Overview of the Remote Sub-Process Example (eIJSchema)
	15.6 Install and configure Tomcat
	15.7 Create the CalculateBonus BP in e*Insight
	15.8 Configure the Integration Schema for CalculateBonus
	15.8.1 Create the CalculateBonus Schema
	15.8.2 Configure the CalculateBonus Schema
	Create the Calculate_Bonus activity BOB
	Edit the eIcp_eInsightEngine Connection Configuration File
	Configure the JMS Connection

	15.9 Modify the Payroll BP in e*Insight
	15.10 Configure the Integration Schema for Payroll
	15.11 Run and Test the e*Insight scenario
	15.12 Overview of the Remote Sub-Process Example (eISchema)
	15.13 Install and configure Tomcat
	15.14 Create the CheckInventory BP in e*Insight
	15.15 Configure the Integration Schema for CheckInventory
	15.15.1 Create the CheckInventory Schema
	15.15.2 Configure the e*Insight engine
	15.15.3 Create the Check_Inv activity BOB

	15.16 Modify the ProcessOrder BP in e*Insight
	15.17 Configure the Integration Schema for ProcessOrder
	15.18 Run and Test the e*Insight scenario
	In-Stock Processing

	Active and Passive Modes
	16.1 Overview
	16.1.1 Case Study
	16.1.2 Case Study - Active Control Mode
	16.1.3 Case Study - Passive Control Mode

	16.2 Create the Order BP in e*Insight
	16.3 Configure the Integration Schema (eIJSchema)
	Integration Schema Activity Components Summary
	Creating the eX_Bill_Customer BOB
	Creating the eX_Ship_Order BOB

	16.4 Configure the e*Insight Engine (eIJSchema)
	Edit the eIcp_eInsightEngine Connection Configuration File
	16.4.1 Configure the JMS Connection

	16.5 Configure User-defined e*Gate Components (eIJSchema)
	Configuration Order for the User-defined Components
	16.5.1 Configure the START_BP e*Way
	Step 1: Create the START_BP e*Way
	Step 2: Create the Input ETD
	Step 3: Create the START_BP Collaboration
	Step 4: Configure the Collaboration in the GUI

	16.6 Configure the Integration Schema (eISchema)
	Integration Schema Activity Components Summary

	16.7 Configure the e*Insight Engine (eISchema)
	Edit the eX_eBPM Engine’s Configuration File

	16.8 Configure User-defined e*Gate Components (eISchema)
	Configuration Order for the User-defined Components
	16.8.1 Configure the START_BP e*Way
	Step 1: Create the Input ETD
	Step 2: Create the START_BP Collaboration Rules Script (CRS)
	Step 3: Add the e*Way and Create the e*Way Configuration File
	Step 4: Configure the Collaboration in the GUI

	16.8.2 Configure the Activity BOBs
	Create the Activity BOB CRSs
	Configure the Activity BOB Collaborations in the Enterprise Manager GUI

	16.9 Run and Test the e*Insight scenario
	16.10 Case Study - Passive Control Mode
	16.11 Passive Control Mode (eIJSchema)
	16.11.1 Modify the Order BP in e*Insight (eIJSchema)
	16.11.2 Modify User-defined e*Gate Components (eIJSchema)
	Configuration Order for the User-defined Components
	Configure the Bill_Customer Collaboration Rule and Collaboration

	16.11.3 Run and Test the e*Insight scenario

	16.12 Passive Control Mode (eISchema)
	16.12.1 Modify the Order BP in e*Insight (eISchema)
	16.12.2 Modify User-defined e*Gate Components (eISchema)
	Configuration Order for the User-defined Components
	Configure the Bill_Customer Collaboration Rule and Collaboration

	16.12.3 Run and Test the e*Insight scenario

	e*Insight Performance
	17.1 Performance Improvements Using eIJSchema
	17.1.1 Instance Caching
	17.1.2 Using Multiple e*Insight Engines
	17.1.3 e*Insight Engine Affinity (eIJSchema)
	17.1.4 Using Engine Affinity with e*Gate 4.5.2
	Configuring the Engine Affinity JMS Properties

	17.1.5 Using Engine Affinity with e*Gate 4.5.1
	17.1.6 Using e*Xchange with e*Insight (eIJSchema)
	17.1.7 Using Binary XML (eIJSchema)
	17.1.8 Subscribing to Event Types
	Subscribing to a Single “Go” Event
	Configuring a Separate Collaboration for Do and Undo Events
	Removing Unnecessary Subscriptions

	17.1.9 Event Type “get” Interval
	17.1.10 Review JVM Settings

	17.2 Performance Improvements Using eISchema
	17.2.1 Instance Caching
	17.2.2 Using Multiple e*Insight Engines (eISchema)
	17.2.3 e*Insight Engine Affinity (eISchema)
	Manually Publishing Events using eX-event-sendback-to-sender

	17.2.4 Exchange Data Interval (eISchema)
	17.2.5 Review JVM Settings

	17.3 General e*Insight Performance Tips

	Troubleshooting
	18.1 Log File Locations
	18.2 Generating Log Files
	18.3 Common Problems
	18.4 General Troubleshooting Tips
	18.4.1 Locating the problem
	18.4.2 Viewing the Message Content

	e*Insight Helper Monk Functions
	19.1 e*Insight Helper Monk Functions
	eX-get-attribute
	eX-count-attribute
	eX-set-attribute
	eX-set-BP_EVENT
	eX-get-BP_EVENT
	eX-get-Activity
	eX-set-Activity
	eX-string-set-attribute
	eX-xml-set-attribute
	eX-bin-set-attribute
	eX-count-local-attribute
	eX-get-local-attribute
	eX-set-local-attribute
	eX-copy-no-attribute
	eX-set-all-BP_EVENT
	eX-get-all-attribute
	eX-get-all-local-attribute

	Java Helper Methods
	20.1 ACTIVITY Class
	addATTRIBUTE
	clearATTRIBUTE
	countATTRIBUTE
	getATTRIBUTE_VALUE
	getATTRIBUTE
	getID
	getNAME
	hasID
	hasNAME
	marshal
	omitID
	omitNAME
	removeATTRIBUTE
	setATTRIBUTE
	setID
	setNAME
	toString
	unmarshal

	20.2 ATTRIBUTE Class
	getENCODING
	getLOCATION
	getNAME
	getTYPE
	getVALUE
	hasENCODING
	hasLOCATION
	marshal
	omitENCODING
	omitLOCATION
	setENCODING
	setLOCATION
	setNAME
	setTYPE
	setVALUE
	toString
	unmarshal

	20.3 BP_EVENT Class
	addATTRIBUTE
	clearATTRIBUTE
	countATTRIBUTE
	getACTIVITY
	getATTRIBUTE_VALUE
	getATTRIBUTE
	getBPI_ID
	getID
	getNAME
	getSTATUS
	getTYPE
	hasACTIVITY
	hasBPI_ID
	hasID
	hasNAME
	hasSTATUS
	marshal
	omitACTIVITY
	omitBPI_ID
	omitID
	omitNAME
	omitSTATUS
	removeATTRIBUTE
	setACTIVITY
	setATTRIBUTE
	setBPI_ID
	setEventInfo
	setID
	setNAME
	setSTATUS
	setTYPE
	toString
	unmarshal

	20.4 eX_StandardEvent Class
	from_eBPMConvert
	getBP_EVENT
	getTP_EVENT
	hasBP_EVENT
	hasTP_EVENT
	marshal
	omitBP_EVENT
	omitTP_EVENT
	setBP_EVENT
	setTP_EVENT
	to_eBPMConvert
	toString
	unmarshal

	e*Insight User Activity API Methods
	21.0.1 User Activity Security
	21.0.2 Defining the Classpath
	21.1 Imessage Interface
	clearMessage
	getActivityAttributesCount
	getActivityAttributeValue
	getActivityName
	getBusinessModelId
	getBusinessModelInstanceId
	getBusinessModelName
	getGlobalAttributeCount
	getGlobalAttributeType
	getGlobalAttributeValue
	getMsgType
	removeActivity
	removeGlobalAttribute
	setActivityAttributeValue
	setActivityName
	setBPIStack
	setBusinessModelInstanceId
	setBusinessModelId
	setBusinessModelName
	setGlobalAttributeValue
	setMsgType
	setStatus
	toXML

	21.2 UserActivityMessage Class
	21.3 IClient Interface
	authenticate
	checkoutActivityInstance
	getActivityGlobalAttributeNames
	getActivityInstanceEndTime
	getActivityInstanceStartTime
	getActivityInstanceStatus
	getActivityNames
	getAssignedBPIIdByState
	getAuthorizationActivityNames
	getBPIStack
	getBusinessModelInstancesIds
	getBusinessModelInstanceName
	getBusinessModelInstanceStatus
	getBusinessModelName
	getEnabledBusinessModelId
	getEnabledBusinessModelsIds
	getGlobalAttributeDefaultValue
	getGlobalAttributeDirection
	getGlobalAttributeNames
	getGlobalAttributeType
	getGlobalAttributeValue
	getLocalAttributeNames
	getLocalAttributeType
	getLocalAttributeValue
	getMessageStatus
	getUser
	getUserActivityNames
	getUUID
	initialize
	refreshCachedMemory
	releaseActivityInstance
	releaseResources
	resetUser
	sendMessage
	setGlobalAttributeValue
	setLocalAttributeValue
	setUser

	21.4 EbpmMonitor Class
	checkUserPrivileges

	XML Structure for the e*Insight Event
	A.1 XML Structure

	Glossary
	Index
	A
	Activity BOB
	addATTRIBUTE 305, 344, 345
	APIs
	attributes
	authenticate 421

	B
	Basic 25
	BOB
	BP_EVENT 69, 78
	business logic, testing 117, 130, 162, 177, 185, 190
	business processes

	C
	case study (order processing) 97, 126, 134, 170, 183, 188, 236
	checkoutActivityInstance 422
	checkUserPrivileges 459
	clearATTRIBUTE 306
	clearMessage 396
	Collaboration
	Collaborations
	common configuration tasks 84
	configuring
	Configuring the START_BP Component 41, 60
	conventions, writing in document 18
	Copy the eISchema 26
	countATTRIBUTE 346

	D
	demonstrating business process restart 123, 167
	demonstrating business process undo 121, 165
	Do and Undo logic in an Activity collaboration 43, 63

	E
	e*Gate Schema for e*Insight 29, 48
	e*Insight
	e*Insight Authorization Activity Implementation 126–132, 170–180
	e*Insight Business Process Manager 23
	e*Insight engine
	e*Insight ETD, understanding 67–82
	e*Insight Helper Monk Functions 284–302
	e*Insight Implementation 96–125, 133–169
	e*Insight Java Helper Methods 303–392
	e*Insight Schema components overview 30, 49
	e*Insight Sub-Process Implementation 193–204, 205–218
	e*Insight User Activity Implementation 181–192
	e*Insight User Activity Methods 393–459
	e*Ways
	error handling 40, 59
	error type 39, 58
	ETD
	ETD Java
	ETD Monk
	eX 378
	eX-bin-set-attribute 295
	eX-copy-no-attribute 299, 320
	eX-count-attribute 287, 306
	eX-count-local-attribute 296, 316
	eX-get-Activity 291, 310
	eX-get-all-attribute 301
	eX-get-all-local-attribute 302
	eX-get-attribute 286, 305
	eX-get-BP_EVENT 290, 309
	eX-get-local-attribute 297
	eXSchema 48
	eXSchema, copying 26
	eX-set-Activity 292, 311
	eX-set-all-BP_EVENT 300, 321
	eX-set-attribute 288, 307
	eX-set-BP_EVENT 289, 308
	eX-set-local-attribute 298, 318
	eX-string-set-attribute 293, 312
	eX-xml-set-attribute 294, 313

	F
	from 380
	from_eBPMConvert 380

	G
	getACTIVITY 347
	getActivityAttributesCount 397
	getActivityAttributeValue 398
	getActivityGlobalAttributeNames 423
	getActivityInstanceEndTime 424
	getActivityInstanceStartTime 425
	getActivityInstanceStatus 426
	getActivityName 399, 427
	getAssignedBPIIdByState 428
	getATTRIBUTE 309, 349
	getATTRIBUTE_VALUE 308, 348
	getAuthorizationActivityNames 429
	getBP_EVENT 381
	getBPI_ID 350
	getBPIStack 430
	getBusinessModelId 400
	getBusinessModelInstanceId 401
	getBusinessModelInstanceName 432
	getBusinessModelInstancesIds 431
	getBusinessModelInstanceStatus 433
	getBusinessModelName 402, 414, 434
	getEnabledBusinessModelId 435
	getEnabledBusinessModelsIds 436
	getENCODING 325
	getGlobalAttributeCount 403
	getGlobalAttributeDefaultValue 437
	getGlobalAttributeDirection 438
	getGlobalAttributeNames 439
	getGlobalAttributeType 404, 440
	getGlobalAttributeValue 405, 441
	getID 310, 351
	getLocalAttributeNames 442
	getLocalAttributeType 443
	getLocalAttributeValue 444
	getLOCATION 326
	getMessageStatus 445
	getMsgType 406
	getNAME 311, 327, 352
	getSTATUS 353
	getTP_EVENT 382
	getTYPE 328, 354
	getUser 446
	getUserActivityNames 447
	getUUID 448
	getVALUE 329
	global attributes 68

	H
	hasACTIVITY 355
	hasBP_EVENT 383
	hasBPI_ID 356
	hasENCODING 330
	hasID 312, 357
	hasLOCATION 331
	hasNAME 313, 358
	hasSTATUS 359
	hasTP_EVENT 384

	I
	implementation
	initialize 449
	input attributes 68
	input/output attributes 68
	Introducing e*Insight Business Process Manager (e*Insight) 23

	J
	Java APIs
	Java APIssetGlobalAttributeValue 415

	L
	local attributes 68

	M
	marshal 314, 332, 360, 385
	Monk functions see functions

	O
	omitACTIVITY 361
	omitBP_EVENT 386
	omitBPI_ID 362
	omitENCODING 333
	omitID 315, 363
	omitLOCATION 334
	omitNAME 316, 364
	omitSTATUS 365
	omitTP_EVENT 387
	order processing case study 97, 126, 134, 170, 183, 188, 236
	output attributes 68
	Overview 187

	R
	refreshCachedMemory 450
	releaseActivityInstance 451
	releaseResources 452
	Remote Sub-Process Implementation 219–235
	removeActivity 407
	removeATTRIBUTE 317, 366
	removeGlobalAttribute 408
	resetUser 453
	restart, demonstrating 123, 167

	S
	schema, copying 26
	SeeBeyond eBusiness Integration Suite 20–24
	sending the "Done" Event back to e*Insight 88, 93
	sendMessage 454
	setACTIVITY 367
	setActivityAttributeValue 409
	setActivityName 410
	setATTRIBUTE 318, 368
	setBP_EVENT 388
	setBPI_ID 370
	setBPIStack 411
	setBusinessModelId 413
	setBusinessModelInstanceId 412
	setENCODING 335
	setEventInfo 371
	setGlobalAttributeValue 415, 455
	setI 320
	setID 372
	setLocalAttributeValue 456
	setLOCATION 336
	setMsgType 416
	setNAME 321, 337, 373
	setSTATUS 374
	setStatus 417
	setting attributes 87, 91
	setTP_EVENT 389
	setTYPE 338, 375
	setUser 457
	setVALUE 339
	START_BP component, configuring 41, 60
	START_BP e*Way, configuring 108, 149, 245, 251
	starting a business process 87, 90
	supporting documents 19

	T
	testing the standard business logic 117, 130, 162, 177, 185, 190
	to_eBPMConvert 390
	toString 322, 340, 376, 391
	toXML 418

	U
	understanding the e*Insight ETD 67–82
	Undo, demonstrating 121, 165
	unmarshal 323, 341, 377, 392
	user-defined e*Gate components, configuring 174, 244, 251, 256, 260
	Using the ETD with e*Insight 67

	X
	XML

