
e*Xchange Partner Manager
Implementation Guide

Release 4.5.2
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBI, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 1999–2002 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20020207131749.
e*Xchange Partner Manager Implementation Guide 2 SeeBeyond Proprietary and Confidential

Contents
Contents

Chapter 1

Introduction 15
Document Purpose and Scope 15

Intended Audience 15

Organization of Information 16

Writing Conventions 16

Supporting Documents 18

SeeBeyond Web Site 18

Chapter 2

Introduction to the SeeBeyond eBI Suite 19
SeeBeyond eBusiness Integration Suite 19

SeeBeyond eBusiness Integration Suite Components 20
e*Gate Integrator Components 21

Building an eApplication 22

Chapter 3

Business-to-Business Integration 23
An eBI Example 23

How Is eBI different from EAI? 25
Traditional EAI 25
The Emerging eBI Model 25

Meeting the Challenges of eBI 26
Meeting the EAI Challenge 26
Meeting the Trading-Partner Challenge 26
Meeting the Challenge of Using Public Domains 27

The Benefits of eBI 27
Increased Efficiency 27
Tracking Complete Business Transactions 27
Business Model Analysis 27
e*Xchange Partner Manager Implementation Guide 3 SeeBeyond Proprietary and Confidential

Contents
Chapter 4

Understanding e*Gate Integrator 28
e*Gate Architecture 28

Schemas 28
Components 28

Registry Host Components 29
Participating Host Components 29
Graphical User Interfaces (GUIs) 29

e*Gate Components 30
Security and e*Gate Users 30
Event Types and Event Type Definitions 31
IQ Intelligent Queues, IQ Services, and IQ Managers 31
e*Way Intelligent Adapters 31
BOBs 32
Collaborations, Collaboration Rules, and Collaboration Services 32

Chapter 5

e*Xchange Schema Components 34
The Purpose of the e*Gate Schema for e*Xchange 34

e*Xchange Components 34

e*Gate schema for e*Xchange Components Overview 35
e*Xchange Schema Component Relationships Diagram 37

e*Xchange Partner Manager Components 39
e*Xchange Partner Manager—Internal Components 39
e*Xchange Partner Manager—External Components 39

eX_ePM e*Way 39
Configuring the e*Xchange Database Connectivity e*Ways 40
eX_to_ePM Collaboration 41
eX_from_ePM Collaboration 42

eX_ePM_Ack_Monitor e*Way 43
X12 and UN/EDIFACT Acknowledgment Handling 43
RosettaNet Acknowledgment Handling 43
Configuring the eX_ePM_Ack_Monitor e*Way 44
eX_Poll_Ack_Mon Collaboration 44

eX_ePM_Batch e*Way 45
Configuring the eX_ePM_Batch e*Way 46
Scaling of eX_ePM _Batch e*Way 46
eX_ePM_Batching Collaboration 47

eX_ePM_Trans_Poll e*Way 47
Configuring the eX_ePM_Trans_Poll e*Way 48
eX_ePM_Transaction_Poll Collaboration 48

eX_Batch_to_Trading_Partner e*Way 48
Configuring the eX_Batch_to_Trading_Partner e*Way 49
eX_Batch_to_Trading_Partner Collaboration 49
eX_from_Batch_to_Trading_Partner Collaboration 49

eX_Https_to_Trading_Partner e*Way 50
e*Xchange Partner Manager Implementation Guide 4 SeeBeyond Proprietary and Confidential

Contents
Configuring the eX_Https_to_Trading_Partner e*Way 51
eX_Https_to_Trading_Partner Collaboration 51
eX_Https_to_ePM Collaboration 51

eX_Poll_Receive_FTP e*Way 51
Configuring the eX_Poll_Receive_FTP e*Way 52
eX_Poll_Receive_FTP Collaboration 52

eX_Batch_from_Trading_Partner e*Way 52
Configuring the eX_Batch_from_Trading_Partner e*Way 53
eX_Sent_Batch_from_Trading_Partner Collaboration 53
eX_Batch_from_Trading_Partner Collaboration 54

eX_Mux_from_Trading_Partner e*Way 54
Configuring the eX_Mux_from_Trading_Partner e*Way 55
eX_Mux_from_Trading_Partner Collaboration 56
cgi_Request_Ack_Collab Collaboration 57

eX_POP3_from_Trading_Partner e*Way 57
Configuring the eX_POP3_from_Trading_Partner e*Way 57
eX_POP3_from_Trading_Partner Collaboration 57

eX_SMTP_to_Trading_Partner e*Way 58
Configuring the eX_SMTP_to_Trading_Partner e*Way 58
eX_SMTP_to_Trading_Partner Collaboration 58

Send_to_ePM e*Way 59
Configuring the Send_to_ePM e*Way 59
Send_to_ePM Collaboration 60
Converting Business Application Data to e*Xchange Format 60
e*Xchange-required Tracking Nodes 60

Receive_from_ePM e*Way 61
Configuring the Receive_from_ePM e*Way 61
Receive_from_ePM Collaboration 61

eX_from_Trading_Partner e*Way 61
Configuring the eX_from_Trading_Partner e*Way 62
eX_from_Trading_Partner Collaboration 62

Chapter 6

Using the Monk e*Xchange ETD 64
ETD Structure 64

XML Element with Sub-elements 65
XML Element without sub-elements 65
XML Attribute 66

Element Overview 66
Example: XML Element with Sub-elements 67
Example: XML Element with Attributes 68

Using the ETD in e*Xchange 69
TP_EVENT 69

Sending Data to e*Xchange 72
Put the Data into the Required Format 73
Convert the Event to Base 64 Encoding 73
Populate the Required e*Xchange Nodes 74
e*Xchange Partner Manager Implementation Guide 5 SeeBeyond Proprietary and Confidential

Contents
Chapter 7

Using the Java e*Xchange ETD 76
Understanding the Java e*Xchange ETD 76

Element Overview 76
Using the ETD with e*Xchange 77

TP_EVENT 77

Sending a Message to e*Xchange 80
Populate the Required e*Xchange Nodes 81

Chapter 8

Implementation Overview 83
Basic Information 83

Types of e*Xchange Implementations 83

Implementation Road Map 83
Step 1: Determine the Scope of the Project 84
Step 2: Create Trading Partner Profiles 85
Step 3: Copy the eXSchema 85
Step 4: Configure the e*Gate Components 86
Step 5: Test and Tune the System 86

Chapter 9

e*Xchange Implementation—X12 87
Overview 87

Case Study: Sending an X12 850 Purchase Order 87

Using the Implementation Sample 90

Create Necessary Validation Collaborations 91
Create the SEF File 91
Create the Validation Collaboration with the VRB 91

Create the Trading Partner Profiles 93
Trading Partner Information Hierarchy 93

The Savvy Toy Company Trading Partner 93
Step 1: Create the Company 94
Step 2: Create the Trading Partner 94
Step 3: Set Up the B2B Protocol Information 95
Step 4: Create the Message Profile 96

Clone the eXSchema 97

Configure the e*Way to Send the Message to e*Xchange 97
The e*Xchange Send_to_ePM e*Way 98

Configuring the Send_to_ePM_Java e*Way 98
Step 1: Edit the Send_to_ePM_Java e*Way Configuration File 98
e*Xchange Partner Manager Implementation Guide 6 SeeBeyond Proprietary and Confidential

Contents
Step 2: Create the Send_to_ePM_Java ETDs 98
Step 3: Create the Send_to_ePM_Java Collaboration Rule and Collaboration Rule Script 99
Step 4: Create the Send_to_ePM_Java Collaboration 100

Configuring the Send_to_ePM_Monk e*Way 101
Step 1: Edit the Send_to_ePM_Monk e*Way Configuration File 101
Step 2: Create the Send_to_ePM_Monk ETDs 102
Step 3: Create the Send_to_ePM_Monk Collaboration Rules Script 102
Step 4: Create the Send_to_ePM_Monk Collaboration Rule 102
Step 5: Create the Send_to_ePM_Monk Collaboration 103

Configure the eX_ePM e*Way 104

Configure Any Other e*Gate Components 105

Run and Test the e*Xchange Scenario 105
Viewing the Results in Message Tracking 106

Editing the Data File 106

Chapter 10

e*Xchange Implementation—UN/EDIFACT 107
Overview 107

Case Study: Sending an UN/EDIFACT Purchase Order 107

Using the Implementation Sample 110

Create the Trading Partner Profiles 111
Trading Partner Information Hierarchy 111

The Car Interiors Trading Partner 111
Step 1: Create the Company 112
Step 2: Create the Trading Partner 113
Step 3: Set up the Inbound B2B Protocol Information 113
Step 4: Create the Inbound Message Profiles 114
Step 5: Set up outbound B2B Protocol Information 116
Step 6: Create the Outbound Message Profiles 116
Step 7: Configure Return Messages for Inbound 119

Clone the eXSchema 119

Configure the TP_Order_Feeder e*Way 119
The e*Xchange TP_Order_Feeder e*Way 120

Step 1: Create and configure the TP_Order_Feeder e*Way 120
Step 2: Create the TP_Order_Feeder ETDs 121
Step 3: Create the TP_Order_Feeder Collaboration 121

Convert the Event to Base 64 Encoding 121
Populate the Required e*Xchange Nodes 121
The e*Xchange TP_Order_Feeder CRS 122
TP_Order_Feeder Collaboration Properties Setup 123

Configure the Internal_Order_Eater e*Way 125
The e*Xchange Internal_Order_Eater e*Way 125

Step 1: Create and Configure the Internal_Order_Eater e*Way 125
Step 2: Create the Internal_Order_Eater Collaboration 126

The e*Xchange Internal_Order_Eater CRS 126
e*Xchange Partner Manager Implementation Guide 7 SeeBeyond Proprietary and Confidential

Contents
Internal_Order_Eater Collaboration Properties Setup 127

Configure the eX_ePM e*Way 128

Editing the Data Files 129

Running the Scenario 130
Viewing the Results in Message Tracking 130

Sending the Response 132

Configure the Internal_OrderResponse_Feeder e*Way 134
The e*Xchange Internal_OrderResponse_Feeder e*Way 134

Step 1: Create and Configure the Internal_OrderResponse_Feeder e*Way 134
Step 2: Create the Internal_OrderResponse_Feeder Collaboration 135

The e*Xchange Internal_OrderResponse_Feeder CRS 135
Internal_OrderResponse_Feeder Collaboration Properties Setup 136

Sending and Viewing the Response Message 137
Viewing the Results in Message Tracking 138

Receiving a Control Message from the Trading Partner 139
Editing the Data File 139
Preparing the Data File 139
Copying the Response Control Numbers 139
Incrementing the UNB/UNZ Control Numbers 140
Sending and Viewing the Control Message 141

Chapter 11

e*Xchange Implementation—RosettaNet 143
Overview 143

Case Study: Sending a RosettaNet Purchase Order 143

Using the Implementation Sample 147

Create the Trading Partner Profiles 148
Trading Partner Information Hierarchy 148

The Retailer Company 148
Step 1: Create the Wholesaler Company 149
Step 2: Create the Wholesaler Trading Partner 150
Step 3: Set Up Inbound B2B Protocol Information (Wholesaler TP) 150
Step 4: Create the Inbound Message Profiles (Wholesaler TP) 151
Step 5: Set Up Outbound B2B Protocol Information (Wholesaler TP) 153
Step 6: Create the Outbound Message Profiles (Wholesaler TP) 153
Step 7: Configure Return Messages for Inbound (Wholesaler TP) 155

The Wholesaler 157
Step 1: Create the Retailer Company 158
Step 2: Create the Retailer Trading Partner 158
Step 3: Set Up Inbound B2B Protocol Information (Retailer TP) 158
Step 4: Create the Inbound Message Profiles (Retailer TP) 159
Step 5: Set Up the Outbound B2B Protocol Information (Retailer TP) 161
Step 6: Set Up the Outbound Message Profiles (Retailer TP) 162
Step 7: Configure Return Messages for Inbound (Retailer TP) 164

Clone the eXSchema 164
e*Xchange Partner Manager Implementation Guide 8 SeeBeyond Proprietary and Confidential

Contents
Configure the Internal_Order_Feeder e*Way 164
The e*Xchange Internal_Order_Feeder e*Way 165

Step 1: Create and configure the Internal_Order_Feeder e*Way 165
Step 2: Create the Internal_Order_Feeder ETDs 166
Step 3: Create the Internal_Order_Feeder Collaboration 166

Convert the Event to Base 64 Encoding 166
Populate the Required e*Xchange Nodes 166
The e*Xchange Internal_Order_Feeder CRS 167
Internal_Order_Feeder Collaboration Properties Setup 168

Configure the TP_Order_Eater e*Way 170
The e*Xchange TP_Order_Eater e*Way 170

Step 1: Create and configure the TP_Order_Eater e*Way 170
Step 2: Create the TP_Order_Eater Collaboration 171

The e*Xchange TP_Order_Eater CRS 171
TP_Order_Eater Collaboration Properties Setup 172

Configure the TP_Order_Feeder e*Way 173
The e*Xchange TP_Order_Feeder e*Way 173

Step 1: Create and configure the TP_Order_Feeder e*Way 174
Step 2: Create the TP_Order_Feeder Collaboration 174

Convert the Event to Base 64 Encoding 174
Populate the Required e*Xchange Nodes 175
The e*Xchange TP_Order_Feeder CRS 175
TP_Order_Feeder Collaboration Properties Setup 175

Configure the Internal_Eater e*Way 177
The e*Xchange Internal_Eater e*Way 177

Step 1: Create and configure the Internal_Eater e*Way 177
Step 2: Create the Internal_Eater Collaboration 178

Internal_Eater Collaboration Properties Setup 178

Configure the Internal_Response_Feeder e*Way 179
The e*Xchange Internal_Response_Feeder e*Way 179

Step 1: Create and configure the Internal_Response_Feeder e*Way 180
Step 2: Create the Internal_Response_Feeder Collaboration 180

Convert the Event to Base 64 Encoding 181
Populate the Required e*Xchange Nodes 181
The e*Xchange Internal_Response_Feeder CRS 181
Internal_Response_Feeder Collaboration Properties Setup 182

Configure the TP_Response_Eater e*Way 184
The e*Xchange TP_Response_Eater e*Way 184

Step 1: Create and configure the TP_Response_Eater e*Way 184
Step 2: Create the TP_Response_Eater Collaboration 185

The e*Xchange TP_Response_Eater CRS 185
TP_Response_Eater Collaboration Properties Setup 186

Configure the TP_Response_Feeder e*Way 187
The e*Xchange TP_Response_Feeder e*Way 187

Step 1: Create and Configure the TP_Response_Feeder e*Way 188
Step 2: Create the TP_Response_Feeder Collaboration 188

Convert the Event to Base 64 Encoding 189
Populate the Required e*Xchange Nodes 189
The e*Xchange TP_Response_Feeder CRS 189
TP_Response_Feeder Collaboration Properties Setup 190
e*Xchange Partner Manager Implementation Guide 9 SeeBeyond Proprietary and Confidential

Contents
Configure the eX_ePM e*Way 192

Running the Scenario 193
Viewing the Results in Message Tracking 195

Sending the Response 197
Viewing the Results in Message Tracking 197

Editing the Data Files 199

Chapter 12

Advanced Configuration 201
Manually Creating a Validation Rules Collaboration 201

Creating a Validation Rules Collaboration for X12 or UN/EDIFACT 201
Creating the Validation ETD 201
Creating the Validation Collaboration 202

Creating a Validation Rules Collaboration for RosettaNet 204
Using the util-add-to-error function 205
Predefined Validation Scripts 206

Adding a Custom Protocol 207
Adding a Custom Protocol for X12 or UN/EDIFACT 207

Step 1: Add a Comm Protocol to the Code Table 207
Step 2: Add an Event Type for the Protocol 207
Step 3: Update eX_from_ePM Collaboration Rule 208
Step 4: Update eX_from_ePM Collaboration 208
Step 5: Update eX_ePM_Send_To_External.monk 208
Step 6: Update eX_from_ePM.tsc 209

Adding a Customer Protocol for RosettaNet 1.1 209
Step 1: Add a Comm Protocol to the Code Table 209
Step 2: Add an Event Type for the Protocol 210
Step 3: Update eX_from_ePM Collaboration Rule 210
Step 4: Update eX_from_ePM Collaboration 210
Step 5: Update eX_ROS_main.dsc 211
Step 6: Update eX_from_ePM.tsc 211
Step 7: Modify ack_mon.dsc 212

Adding a Customer Protocol for RosettaNet 2.0 212
Step 1: Add a Comm Protocol to the Code Table 212
Step 2: Add an Event Type for the Protocol 213
Step 3: Update eX_from_ePM Collaboration Rule 213
Step 4: Update eX_from_ePM Collaboration 213
Step 5: Update eX_ROS_Send_To_Egate.monk 214
Step 6: Update eX_from_ePM.tsc 215

Chapter 13

e*Xchange Partner Manager Functions 216
e*Xchange Helper Monk Functions 217

eX-set-TP_EVENT 218
eX-get-TP_EVENT 219
eX-set-Payload 220
e*Xchange Partner Manager Implementation Guide 10 SeeBeyond Proprietary and Confidential

Contents
eX-count-TP-attribute 221
eX-get-TP-attribute 222
eX-set-TP-attribute 223

e*Xchange Functions 224
ux-ack-handler 225
ux-ack-monitor 229
ux-check-shutdown-uid 232
ux-control-check 233
ux-dbproc-ros-inb 235
ux-dbproc-ros-outb 239
ux-dequeue 243
ux-duplicate-check 245
ux-func-ack-handler 247
ux-get-error-str 250
ux-get-fb-count 251
ux-get-header 252
ux-get-key-cert 257
ux-get-lock-ext-attrib-db 260
ux-get-mtrk-attrib 261
ux-get-seq-value 263
ux-incr-control-num 264
ux-init-exdb 266
ux-init-ic 268
ux-init-trans 273
ux-init-ts 278
ux-md5-digest 282
ux-ret-edf-batch-ts-msgs 283
ux-ret-edf-fb-ts-msgs 285
ux-ret-X12-batch-ts-msgs 287
ux-ret-X12-fb-ts-msgs 289
ux-retrieve-997-error 291
ux-retrieve-997-error-tail 294
ux-retrieve-message 296
ux-return-receipt 298
ux-set-fb-overdue 300
ux-store-msg 301
ux-store-msg-errors 305
ux-store-msg-ext 306
ux-store-shutdown-uid 310
ux-track-997-errors 311
ux-update-batch-imm 313
ux-update-control-num 314
ux-update-last-batch-send-time 316
ux-upd-mtrk-data-item 317
ux-upd-mtrk-element 318
ux-upd-mtrk-ext-data 319
ux-wait-for-ack 320

Monk Functions Used by the Validation Rules Builder 322
compare-equal 323
compare-ge 324
compare-gt 325
compare-le 326
compare-lt 327
string-alpha 328
string-alphanumeric 329
string-numeric 330
valid-date-yyyy 331
valid-time 332

e*Xchange MIME Functions 333
util-mime-get-header-value 334
util-mime-get-par-value 335
util-mime-make-mime-message 336
e*Xchange Partner Manager Implementation Guide 11 SeeBeyond Proprietary and Confidential

Contents
util-mime-map-event 337
util-mime-pack-encrypted-msg 338
util-mime-pack-signed-msg 339
util-mime-unpack-signed-message 340

e*Xchange RosettaNet 2.0 Functions 341
eX-ROS20-Generic-To-String 342
eX-ROS20-Parse-Generic 343
eX-ROS20-Pack-RNBM 344
eX-ROS20-Unpack-RNBM 345
eX-ROS20-Validate-Preamble 346

eX-ROS20-Validate-ServiceHeader347
eX-ROS20-Validate-DeliveryHeader 348
eX-ROS20-Populate-Preamble 349
eX-ROS20-Populate-ServiceHeader 350
eX-ROS20-Populate-DeliveryHeader 351
eX-ROS20-Unique-ID 352
eX-ROS20-Request-ID 353
eX-ROS20-Ack-Type 354
eX-ROS20-IsResponse? 355
eX-ROS20-IsSignal? 356

eX-ROS20-Get-PipCode357
eX-ROS20-Set-PipCode 358
eX-ROS20-Get-SigActCode 359
eX-ROS20-Set-SigActCode 360
eX-ROS20-Get-SigActVerId 361
eX-ROS20-Set-SigActVerId 362
eX-ROS20-Get-PipVerId 363
eX-ROS20-Set-PipVerId 364
eX-ROS20-Get-PipId 365
eX-ROS20-Set-PipId 366
eX-ROS20-Get-ActId 367
eX-ROS20-Set-ActId 368
eX-ROS20-Get-InReplyTo-MsgId 369
eX-ROS20-Set-InReplyTo-MsgId 370
eX-ROS20-Get-InReplyTo-ActCode 371
eX-ROS20-Set-InReplyTo-ActCode 372
eX-ROS20-Get-InitPartnerId 373
eX-ROS20-Set-InitPartnerId 374
eX-ROS20-Create-0A1Notification 375

eX-ROS20-Create-ReceiptAck376
eX-ROS20-Create-Except 377

e*Xchange Security Functions 380
Operational Groups 380

util-security-decrypt-msg 383
util-security-encrypt-msg 384
util-security-sign-msg 385
util-security-verify-sig 386
eX-security-get-keys-certs 387
eX-ROS20-decrypt-msg 388
eX-ROS20-encrypt-msg 389
eX-ROS20-sign-msg 390
eX-ROS20-verify-sig 391
eX-ROS20-get-ssl-keys 393

Chapter 14

Java Helper Methods 395
NameValuePair Class 396

getNAME 397
e*Xchange Partner Manager Implementation Guide 12 SeeBeyond Proprietary and Confidential

Contents
getVALUE 398
marshal 399
setNAME 400
setVALUE 401
toString 402
unmarshal 403

Payload Class 404
get$Text 405
getLOCATION 406
getTYPE 407
hasLOCATION 408
marshal 409
omitLOCATION 410
set$Text 411
setLOCATION 412
setTYPE 413
toString 414
unmarshal 415

TPAttribute Class 416
addNameValuePair 417
clearNameValuePair 418
countNameValuePair 419
getNameValuePair_Value 420
getNameValuePair 421
hasNameValuePair 422
marshal 423
removeNameValuePair 424
setNameValuePair 425
toString 426
unmarshal 427

TP_EVENT Class 428
getCommProt 430
getDirection 431
getInternalName 432
getMessageID 433
getMessageIndex 434
getOrigEventClass 435
getPartnerName 436
getPayload 437
getSSLClientCertFileName 438
getSSLClientCertFileType 439
getSSLClientKeyFileName 440
getSSLClientKeyFileType 441
getTPAttribute 442
getURL 443
getUsageIndicator 444
hasCommProt 445
hasDirection 446
hasInternalName 447
hasMessageID 448
hasMessageIndex 449
hasOrigEventClass 450
hasPartnerName 451
hasPayload 452
hasSSLClientCertFileName 453
hasSSLClientCertFileType 454
hasSSLClientKeyFileName 455
hasSSLClientKeyFileType 456
hasTPAttribute 457
hasUrl 458
hasUsageIndicator 459
marshal 460
e*Xchange Partner Manager Implementation Guide 13 SeeBeyond Proprietary and Confidential

Contents
omitCommProt 461
omitDirection 462
omitInternalName 463
omitMessageID 464
omitMessageIndex 465
omitOrigEventClass 466
omitPartnerName 467
omitPayload 468
omitSSLClientCertFileName 469
omitSSLClientCertFileType 470
omitSSLClientKeyFileName 471
omitSSLClientKeyFileType 472
omitTPAttribute 473
omitUrl 474
omitUsageIndicator 475
setCommProt 476
setDirection 477
setInternalName 478
setMessageID 479
setMessageIndex 480
setOrigEventClass 481
setPartnerName 482
setPayload 483
setSSLClientCertFileName 484
setSSLClientCertFileType 485
setSSLClientKeyFileName 486
setSSLClientKeyFileType 487
setTPAttribute 488
setUrl 489
setUsageIndicator 490
toString 491
unmarshal 492

Appendix A

XML Structure for the e*Xchange Event 493
XML Structure 493

Glossary 495

Index 500
e*Xchange Partner Manager Implementation Guide 14 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This guide provides comprehensive information on implementing eBusiness solutions
using the e*Xchange portion of the SeeBeyond eBusiness Integration Suite. It discusses
the essentials of implementing e*Xchange, Business-to-Business Integration, and the
components used in a complete e*Xchange implementation. This guide also provides
detailed information on the e*Xchange architecture and its core components, as well as
the e*Gate schema components that make up an e*Xchange implementation. Finally, it
discusses how e*Xchange and e*Gate work together to provide a comprehensive toolset
for designing, creating, and maintaining a fully functional eApplication.

1.1 Document Purpose and Scope
This guide explains how to use the SeeBeyond Technology CorporationTM

(SeeBeyondTM) e*Xchange Partner Manager, including:

! Understanding the e*Xchange schema components.

! Functions and methods available to the user

This guide gives the e*Xchange implementor the necessary background and
methodology for getting an e*Xchange system up and running in a real-world
situation. To do this, it provides detailed information on the e*Gate schema that
e*Xchange uses as its back end and explains the various areas requiring configuration.
This guide also contains several detailed case studies showing how to implement
various features built into e*Xchange, such as how to send secure transactions.

1.2 Intended Audience
The reader of this guide is presumed to be a developer or system administrator with
responsibility for developing or maintaining the e*Xchange system. The implementor
should have experience of Windows NT and UNIX operations and administration, and
should be thoroughly familiar with Windows-style GUI operations.

Since most of the work in an e*Xchange implementation involves setting up the e*Gate
components that send data into and out of the e*Xchange system, the implementor
should also have experience implementing e*Gate.
e*Xchange Partner Manager Implementation Guide 15 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction Organization of Information
1.3 Organization of Information
The e*Xchange Partner Manager Implementation Guide includes the following
information:

! List of Tables - Displays a list of the Tables in the document.

! List of Figures - Displays a list of Figures in the document.

! 1 - Introduction to the various applications included in the SeeBeyond eBusiness
Integration Suite and the components of each. Intended audience, writing conventions,
Overview of the e*Xchange Suite, purpose of guide

! 2 - Introduction to Business-to-Business Integration. Overview of the e*Xchange
components.

! 3 - General overview of the e*Gate components and e*Gate architecture.

! 4 - Explanation of the design and purpose of each of the e*Gate components used in the
e*Xchange schema.

! 5 - Explanation of the structure, design, and purpose of the ETD used to move data
between the e*Xchange components.

! 6 - A generalized method for approaching an e*Xchange implementation, with
explanations of how to accomplish some common implementation tasks.

! 7 - Case study of a simplified order processing e*Xchange implementation.

! 8 - Case study showing how to use e*Xchange to send an X12 850 purchase order to a
trading partner.

! 9 - Case study showing how to use e*Xchange to send out a purchase order created by
an e*Insight activity component.

! 10 - Descriptions of the specialized e*Xchange Monk functions.

! Appendix A - Example of the XML version of the ETD used by e*Xchange to exchange
data.

! Appendix B - Tables

! Glossary - Definitions of technical terms specific to the e*Insight Business Process
Manager, as well as some industry terms.

! Index - Index of key terms.

1.4 Writing Conventions
The writing conventions listed in this section are observed throughout this document.
e*Xchange Partner Manager Implementation Guide 16 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction Writing Conventions
Hypertext Links

When you are using this guide online, cross-references are also hypertext links and
appear in blue text as shown below. Click the blue text to jump to the section.

For information on these and related topics, see “Supporting Documents” on
page 18.

Command Line

Text to be typed at the command line is displayed in a special font as shown below.

java -jar ValidationBuilder.jar

Variables within a command line are set in the same font and bold italic as shown
below.

stcregutil -rh host-name -un user-name -up password -sf

Code and Samples

Computer code and samples (including printouts) on a separate line or lines are set in
the command-line font as shown below.

Configuration for BOB_Promotion

However, when these elements (or portions of them) or variables representing several
possible elements appear within ordinary text, they are set in italics as shown below.

path and file-name are the path and file name specified as arguments to -fr in the
stcregutil command line.

Notes and Cautions

Points of particular interest or significance to the reader are introduced with Note,
Caution, or Important, and the text is displayed in italics, for example:

Note: The Actions menu is only available when a Properties window is displayed.

User Input

The names of items in the user interface such as icons or buttons that you click or select
appear in bold as shown below.

Click Apply to save, or OK to save and close.

File Names and Paths

When names of files are given in the text, they appear in bold as shown below.

Use a text editor to open the ValidationBuilder.properties file.

When file paths and drive designations are used, with or without the file name, they
appear in bold as shown below.

In the Open field, type D:\setup\setup.exe where D: is your CD-ROM drive.
e*Xchange Partner Manager Implementation Guide 17 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.5
Introduction Supporting Documents
Parameter, Function, and Command Names

When names of parameters, functions, and commands are given in the body of the text,
they appear in bold as follows:

The default parameter localhost is normally only used for testing.

The Monk function iq-put places an Event into an IQ.

After you extract the schema files from the CD-ROM, you must import them to an
e*Gate schema using the stcregutil utility.

1.5 Supporting Documents
The following SeeBeyond documents provide additional information about e*Xchange
and e*Gate:

! SeeBeyond eBusiness Integration Suite Deployment Guide

! SeeBeyond eBusiness Integration Suite Primer

! e*Xchange Partner Manager User’s Guide

! e*Xchange Partner Manager Installation Guide

! e*Gate Integrator Alert Agent User’s Guide

! e*Gate Integrator Alert and Log File Reference Guide

! e*Gate Integrator Collaboration Services Reference Guide

! e*Gate Integrator Intelligent Queue Services Reference Guide

! e*Gate Integrator SNMP Agent User’s Guide

! e*Gate Integrator System Administration and Operations Guide

! e*Gate Integrator User’s Guide

! Monk Developer’s Reference

! Standard e*Way Intelligent Adapters User’s Guide

1.6 SeeBeyond Web Site
The SeeBeyond Web site is your best source for up-to-date product news and technical
support information. The site’s URL is

http://www.SeeBeyond.com
e*Xchange Partner Manager Implementation Guide 18 SeeBeyond Proprietary and Confidential

Chapter 2

Introduction to the SeeBeyond eBI Suite

This chapter provides an overview of the SeeBeyond eBusiness Integration Suite, and
explains how the e*Xchange Partner Manager fits into the Suite.

2.1 SeeBeyond eBusiness Integration Suite
This section provides an overview of the SeeBeyond eBusiness Integration Suite and its
parts. It also provides a detailed overview of the e*Xchange Partner Manager and
eSecurity Manager components.

Complex and dynamic partner relationships, and the management of various
processes, present a tremendous challenge in eBusiness. Organizations and their
trading partners are both faced with the problem of managing disparate component
applications and aligning proprietary software requirements. In addition,
organizations and their trading partners must agree on data exchange and security
standards.

The SeeBeyond eBusiness Integration Suite merges traditional Enterprise Application
Integration (EAI) and Business-to-Business (B2B) interactions into a multi-enterprise
eBusiness Integration (eBI) product suite. This suite allows you to:

! Leverage your existing technology and applications.

! Create an eApplication consisting of component applications that are managed by
your organization or your trading partners.

! Rapidly execute eBusiness strategies.

! Create and manage virtual organizations across the entire value chain.

! Rapidly implement industry standard business protocols.

! Quickly and easily establish new business partners, or update existing ones.

! Automatically secure transmissions sent over the public domain.

This suite also provides:

! Extensive and flexible back-office connectivity.

! Powerful data transformation and mapping facilities.

! Content-based routing.

! Unparalleled scalability based on a fully distributed architecture.
e*Xchange Partner Manager Implementation Guide 19 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.1
Introduction to the SeeBeyond eBI Suite SeeBeyond eBusiness Integration Suite
2.1.1 SeeBeyond eBusiness Integration Suite Components
The SeeBeyond eBusiness Integration Suite includes the following components and
sub-components:

! eBusiness integration applications:

" e*Insight™ Business Process Manager

" e*Xchange™ Partner Manager

" e*Index Global Identifier

! e*Gate™ Integrator:

" e*Way™ Intelligent Adapters

" Intelligent Queues (IQ™)

" Business Object Brokers (BOBs)

See Figure 1 for a graphical representation of the SeeBeyond eBusiness Integration Suite
and its components.

Figure 1 SeeBeyond eBusiness Integration Suite

e*Insight Business Process Manager

The e*Insight Business Process Manager facilitates the automation and administration
of business process flow across eBusiness activities. Through graphical modeling and
monitoring, business analysts can instantly assess the detailed state of a business
process instance and identify bottlenecks in the process.
e*Xchange PartnerManagerImplementation Guide 20 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.1
Introduction to the SeeBeyond eBI Suite SeeBeyond eBusiness Integration Suite
e*Xchange Partner Manager

The e*Xchange Partner Manager manages trading partner profiles and supports
standard eBusiness message format and enveloping protocols, including RosettaNet,
UN/EDIFACT, ASC X12, and BizTalk. The e*Xchange Partner Manager includes a
Validation Rules Builder to aid in the creation of X12 and UN/EDIFACT message
validation based on industry implementation guides.

The eSecurity Manager authenticates and ensures full integrity of message data sent to
and from trading partners, which is imperative when conducting eBusiness over the
public domain. The eSecurity Manager uses public key infrastructure (PKI) to ensure
origin authentication of the sender and encryption ensures business messages remain
secure and private.

e*Index Global Identifier

e*Index Global Identifier (e*Index) is a global cross-indexing application that provides
a complete solution for automated person-matching across disparate source systems,
simplifying the process of sharing member data between systems.

e*Index centralizes information about the people who participate throughout your
business enterprise. The application provides accurate identification and cross-
referencing of member information in order to maintain the most current information
about each member. e*Index creates a single, consistent view of all member data by
providing an automatic, common identification process regardless of the location or
system from which the data originates.

e*Gate Integrator Components

e*Gate Integrator enables the flow of information across an extended enterprise by
providing comprehensive connectivity to applications and datastores across a network.
e*Gate is based on a distributed architecture with an open design that deploys flexible
load balancing options. e*Gate processes Events according to user-defined business
logic and integrates business processes between applications, ensuring end-to-end data
flow into back-office systems.

e*Way Intelligent Adapters

e*Way Intelligent Adapters provide specialized application connectivity and also
provide support for robust data processing such as business Collaborations,
transformation logic, and publish/subscribe relationships. e*Way adapters are multi-
threaded to enable high-performance distributed processing capabilities. This multi-
threaded processing allows for ultimate deployment flexibility and load balancing.

Intelligent Queues

Intelligent Queues (IQs) are open-queue services for SeeBeyond or third-party queuing
technology that provide robust data transport.

In conjunction with Java-enabled Collaborations, SeeBeyond JMS IQs can provide
guaranteed exactly once delivery of messages.
e*Xchange PartnerManagerImplementation Guide 21 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Introduction to the SeeBeyond eBI Suite Building an eApplication
Business Object Brokers

A BOB component is similar to an e*Way in the sense that it establishes connectivity
and is capable of data transformation. BOBs use Collaborations to route and transform
data within the e*Gate system. They have the following properties:

! They only communicate with IQs within e*Gate. They do not communicate with
external applications as e*Ways do.

! They are optional by design. You can add them to an environment to remove some
load from your e*Ways, either to set up easily maintainable data processing or to
enable multiple internal processes.

2.2 Building an eApplication
An eApplication is an integrated collection of software that enables you to model and
manage an eBusiness. The SeeBeyond eBusiness Integration Suite provides the glue
and essential building blocks that allow you to create a composite eApplication for
running your eBusiness.

Implementing e*Xchange Partner Manager involves the following steps:

1 Install and learn the basics of e*Xchange.

Use the e*Xchange Partner Manager Installation Guide to help you install the
e*Xchange software. See the e*Xchange Partner Manager User ‘s Guide for overview
information and details on using the e*Xchange GUIs.

2 Obtain a working knowledge of e*Xchange.

Read chapters 1 through 3 of this Guide to comprehend the technical architecture of
e*Xchange, its components, and how they work together with e*Gate back-end
components. This provides the foundation for implementing a working end-to-end
eBusiness scenario.

3 Create an implementation plan.

Use this manual as a guide for preparing a step-by-step roadmap of your
implementation. This book describes several different types of e*Xchange
implementations. Use these as the basis for planning the e*Xchange implementation
best suited to your business needs.
e*Xchange PartnerManagerImplementation Guide 22 SeeBeyond Proprietary and Confidential

Chapter 3

Business-to-Business Integration

Electronic Business-to-Business Integration, or eBusiness Integration (eBI), does more
than allow one business to send electronic documents to another. eBI automates and
integrates the entire business supply chain so that a business process that uses external
trading partners can be managed as a single process. In moving from intra-business to
inter-business, the integrator must overcome several challenges, most of which stem
from the need to use infrastructure that is outside one’s control. Once these challenges
are overcome, the enterprise can manage the entire end-to-end business process and
extend the proven planning and cost savings abilities of Enterprise Application
Integration (EAI) to the larger world of eBI.

3.1 An eBI Example
The need to integrate a number of trading partners is an essential requirement in the
realm of internet retailing. For example, consider a Web retailer that sells sports
equipment online. This retailer sets up an electronic storefront that allows a customer to
browse an online catalog of items and place orders for them. After securing payment
via credit card, the items are shipped to the customer, along with the status of the
order. Figure 2, on the next page, shows a flow chart of the Web retailer’s business
process outlining the steps involved in a typical transaction.
e*Xchange Partner Manager Implementation Guide 23 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Business-to-Business Integration An eBI Example
Figure 2 Web Retailer Business Process

Three out of the five steps in this business process (checking credit, stock availability,
and shipping to the customer) are outside the Web retailer’s enterprise. However, from
the customer’s point of view, the entire transaction is handled by the online retailer.
The Web retailer’s business model depends on the efficient use of trading partners to
fulfill parts of the business transaction that he does not handle directly. Figure 3 shows
the interrelationships between the retailer and the trading partners.

Figure 3 Trading Partner Relationships

Yes

Ship Order

Credit OK?

In Stock?

Receive Order

Send Order
Status

No

No

Yes

End-to-End Supply Chain

Partner A
(Credit Card
Company)

Partner B
(Supplier)

Partner C
(Shipper)

Customer Web
Retailer

Order

Order
Status

Credit
Check

Response

Purchase
Order

Invoice

Product Delivered

Product
Shipped

Carrier Invoice
e*Xchange Partner Manager Implementation Guide 24 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Business-to-Business Integration How Is eBI different from EAI?
The goal of eBI is to successfully integrate the trading partner relationships into the
overall business process in order to create a composite eApplication.

3.2 How Is eBI different from EAI?
The necessity to coordinate the information systems of multiple trading partners
outside one’s own control is the main difference between eBusiness Integration and
traditional EAI.

3.2.1 Traditional EAI
Traditional Enterprise Application Integration focused on getting a company’s
in-house business management software applications to work together, and on
improving business process efficiency by sharing data. Data sharing also made possible
timely planning and analysis, which made businesses more efficient.

EAI became necessary because the specialized nature of the various tasks involved in
running a business gave rise to a compartmentalized approach to handling them.
Consequently, businesses often divided up the work load into departments, with each
department in charge of accomplishing a specific business task. For example, the sales
department took orders, the finance department received payments, the warehouse
stored goods and prepared the orders, and the shipping department delivered the
goods to the customer.

Each department in turn had its own computer system for keeping track of the data for
which it was responsible, and periodically prepared reports to be used by the people
entrusted with planning for the business as a whole. These stand-alone departmental
systems usually could not communicate well with each other, because each had unique
requirements for how they handled data. This inability to share data limited
inter-departmental planning or business level planning, and any suggestions for
business improvement had to wait for each department’s reports to be produced,
combined together, and reconciled.

EAI solutions improved business integration dramatically. By allowing the
departmental applications to share data, EAI solutions made it possible to model the
entire process of a business from order taking to order fulfillment, and provided the
glue to hold all the pieces of the process together. Moreover, business planners could
now do real-time analysis of how a business was doing across all its departments and
divisions, in whatever detail was required.

3.2.2 The Emerging eBI Model
eBI essentially performs the same kind of integration as EAI, but at a higher level.
Instead of integrating departments, it integrates trading partners. Because these trading
partners are autonomous businesses, the integration itself must be more flexible and
based on cooperation. Moreover, this integration needs to use the public electronic
infrastructure such as the Internet and Value Added Networks (VANs), and
established business protocols such as X12, UN/EDIFACT, RosettaNet, and CIDX, that
e*Xchange Partner Manager Implementation Guide 25 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Business-to-Business Integration Meeting the Challenges of eBI
any business can utilize. The challenge for businesses implementing an eBI model of
integration is to find ways to achieve the same level of business process tracking and
planning that are gained with EAI, within this looser structure.

3.3 Meeting the Challenges of eBI
As the logical next step in business integration, eBI faces all the challenges faced by
traditional EAI, with two other important additions:

! It must support autonomous trading partners

! It must be able to use the public electronic infrastructure

3.3.1 Meeting the EAI Challenge
Given the vast range of ways to exchange electronic information, so many data formats,
transmission protocols, and different types of software, simply making the connection
between these disparate systems is a significant technological challenge. Once these
disparate components are connected, companies face a further challenge to manage
and monitor the entire system. e*Xchange addresses these issues by using e*Gate, the
most powerful suite of tools for Enterprise Application Integration.

e*Gate’s reliable, flexible, scalable, and distributed architecture, combined with data
transformations, enables you to manipulate data whenever, wherever, and however
you wish. This solid base, combined with the wide range of e*Way communication
adapters that can exchange data between almost any software and hardware, means
that much of the work of integration and implementation has already been done for
you.

3.3.2 Meeting the Trading-Partner Challenge
In a traditional EAI project, even though you must integrate different computer
systems, you always enjoy the security of knowing that ultimately you have control of
the entire composite system. Unfortunately, you do not enjoy this same sense of control
within an eBI configuration; there are autonomous entities outside your enterprise—
and outside your control.

Fortunately, there are standards that provide “rules of engagement” between entities in
an eBI chain: the well established eBusiness protocols such as X12, UN/EDIFACT,
RosettaNet, and CIDX, which any business can use to exchange electronic business
documents. By supporting these standards, e*Xchange gives you a powerful way to
integrate beyond your enterprise. e*Xchange includes built-in support for the standard
versions of X12, UN/EDIFACT, RosettaNet, and CIDX, and includes a tool for building
customized versions of some of these standards for your particular industry.
e*Xchange Partner Manager Implementation Guide 26 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Business-to-Business Integration The Benefits of eBI
3.3.3 Meeting the Challenge of Using Public Domains
The implementation of a traditional EAI project occurs behind the safety of a
company’s firewall. This type of isolated integration environment is unavailable in an
eBI implementation. Just as every business must use the existing public transportation
infrastructure to move its physical goods to market, so too must an eBusiness use the
public Internet and Value Added Networks open to every business.

Public networks provide opportunities for unauthorized users to access your sensitive
data. e*Xchange uses safe and secure ways to carry on electronic commerce, and
includes support for sending encrypted messages over secure channels. By using a
combination of the proven public-key approach for sending secure messages over
unsecured channels, and support for the HTTPS protocol for securely connecting two
computers, e*Xchange has features that make eBusiness safe and secure.

3.4 The Benefits of eBI
Despite its challenges, eBI has definite benefits:

! Increased efficiency

! The ability to track an individual business transaction through the entire supply
chain

! The ability to analyze your business model

3.4.1 Increased Efficiency
Sharing data electronically vastly increases efficiency. Every paper-based transfer of
information brings with it the risk of introducing error and inefficiency. Every time
business data is re-entered into another system by hand, the cost of doing so is added to
the transaction, as is the cost of correcting the errors that this type of transfer inevitably
creates.

There is also a latency problem in getting the data to its intended destination; even with
“overnight delivery,” the time it takes a paper transaction to be delivered physically is
significantly longer than the time it takes to deliver it electronically.

3.4.2 Tracking Complete Business Transactions
By tying all the trading partners that handle steps in your business process into a single
end-to-end configuration, you can track the entire business transaction from beginning
to end.

3.4.3 Business Model Analysis
Because you can track the entire business process from end to end, you can analyze,
over time, how your model is performing. You can identify bottlenecks and make
intelligent decisions about how to improve your process.
e*Xchange Partner Manager Implementation Guide 27 SeeBeyond Proprietary and Confidential

Chapter 4

Understanding e*Gate Integrator

e*Gate Integrator (e*Gate), the application suite that contains the executable
components and modules that actually move data from one point to another, is the
foundation of an e*Xchange system. Implementing e*Xchange requires a fundamental
understanding of e*Gate and the skills required to configure components in e*Gate’s
graphical interfaces.

This chapter provides a brief overview of e*Gate’s architecture and components. More
information on using e*Gate can be found in the e*Gate Integrator System Administrator
and Operations Guide and the e*Gate Integrator User’s Guide.

4.1 e*Gate Architecture
e*Gate is based on a distributed and open architecture, allowing components to reside
on different workstations within a global network. Based on which communication
protocols and adapters you choose, e*Gate can communicate with and link multiple
applications and databases across a variety of operating systems.

4.1.1 Schemas
e*Gate system components are organized into schemas. A schema is a configuration
scheme that contains all of the modules and configuration parameters that control,
route, and transform data as it travels through the e*Gate system. Schemas also
maintain the relationships between the components, including the publish/subscribe
information that is at the heart of the data transportation process.

Whenever you define or configure components, establish data routing between
components, or exchange files with the e*Gate Registry, you do so within the context of
a single schema. You can also import or export schema components, or entire schemas,
so that you can move a working configuration from one environment to another; for
example, moving from test to production environments.

4.1.2 Components
From a functional standpoint, e*Gate components can be organized into three groups:

! Registry Host components

! Participating Host components
e*Xchange Partner Manager Implementation Guide 28 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Understanding e*Gate Integrator e*Gate Architecture
! Graphical User Interfaces (GUIs)

Registry Host Components

The Registry Host contains all of the configuration information that makes up the
schema, and maintains a repository of all the configuration, executable, and application
logic files required for its operation. The Registry’s file repository is divided into
“Sandbox” and “run time” areas to allow different users to simultaneously configure
different components in the schema without conflicting with each other. When a user
opens a file for editing, it is automatically downloaded to the user’s Sandbox and an
advisory “lock” is placed on the run time file. This lock warns other users who try to
open the file that it is currently being edited by the person who opened it. In the
meantime, the run time schema is unaffected by any modifications to the file until the
revised file is promoted to the run time system.

For more information on codeveloping schemas in e*Gate, see Codeveloping in e*Gate:
Using the Team Registry. For technical information about Registry Host services and
directory structure, see the e*Gate System Administration and Operations Guide.

Participating Host Components

The executable e*Gate components reside on a Participating Host. The primary
Participating Host components are:

! Control Brokers, which start, stop, and monitor all the components in the schema on
a single Participating Host

! e*Way Intelligent Adapters, which handle the data exchange between e*Gate and
external systems

! Business Object Brokers (BOBs), which have the same business-logic execution and
data processing as e*Ways, but do not communicate with external systems

These components are discussed in greater detail later in this chapter.

When you add a Participating Host to a schema, you must ensure that the host is
registered for that schema and that the Control Broker is active. This must be done
directly on the machine on which you installed the Participating Host; it cannot be done
remotely.

For more information on installing Participating Hosts and activating Control Brokers,
see the e*Gate System Administration and Operations Guide.

Graphical User Interfaces (GUIs)

e*Gate incorporates a number of Graphical User Interfaces (GUIs) to streamline
component configuration and simplify the task of implementing the programming
logic necessary to process the data. e*Gate includes a monitoring GUI that allows you
to view and resolve errors, and to start and stop components in a schema.

e*Gate GUIs include the following:

! Enterprise Manager

! SeeBeyond Collaboration Rules Editor
e*Xchange Partner Manager Implementation Guide 29 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Understanding e*Gate Integrator e*Gate Components
! SeeBeyond Collaboration-ID Rules Editor

! ETD Editor

! e*Way Editor

! e*Gate Monitor

! Alert Agent configuration tool

For more information on the e*Gate GUIs, see the SeeBeyond eBusiness Integration Suite
Primer or the online Help system for the individual GUI.

4.2 e*Gate Components
e*Gate components are organized into schemas which contain all of the parameters,
relationships, and configuration details necessary to transform and route data through
the system. The following components make up an e*Gate schema:

! Users

! Event Types and Event Type Definitions

! IQ Intelligent Queues, IQ Services, and IQ Managers

! e*Way Intelligent Adapters

! BOBs

! Collaborations, Collaboration Rules, and Collaboration Services

The following sections give brief overviews of these components and their relationship
to each other in a schema.

Note: All schema components are created and configured in the Enterprise Manager. For
information on how to create or configure a component, see the Enterprise
Manager’s online Help system.

4.2.1 Security and e*Gate Users
Before you can configure schema components in the Enterprise Manager, you must log
in as a specific user for that Registry Host. Requiring user authentication prevents
unauthorized modifications to the e*Gate system.

e*Gate sets up an initial user called Administrator when you install the Registry Host.
You must use the Administrator username and password when you log into a Registry
Host for the first time. Then you can create additional users by adding them to the
Users folder in the Enterprise Manager GUI. The user list applies to all schemas on that
Registry Host, and all users can define additional users for the host.
e*Xchange Partner Manager Implementation Guide 30 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Understanding e*Gate Integrator e*Gate Components
4.2.2 Event Types and Event Type Definitions
Every Event (packet of data) that passes through the system is identified as a particular
Event Type. An Event Type is a class of Events with a common data structure. For
example, all Events with a specific set of fields with known characteristics and
delimeters could belong to the same Event Type.

Event Type Definitions define Event Types. An Event Type Definition (ETD) is a
programmatic representation of an Event Type used to parse, transform, or route the
data through the system. Each node in the ETD represents a specifically-defined
portion of an Event. Each node can also contain subnodes, so that an ETD takes on a
hierarchical, tree-like structure.

You create Event Type components by adding them to the Event Types folder in the
Enterprise Manager GUI. You create ETDs in the ETD Editor, then associate them with
Event Type components. ETDs carry a file extension of .ssc (Monk) or .xsc (Java).

Each Event Type is defined by one and only one ETD. A single ETD, however, can
define multiple Event Types. Having multiple Event Types utilizing a single ETD
enables you to limit the number of ETD files that must be maintained in a schema.

4.2.3 IQ Intelligent Queues, IQ Services, and IQ Managers
IQ Intelligent Queues (IQs) manage the exchange of information between components
within the e*Gate system, providing persistent storage for data as it passes from one
component to another. When an Event leaves one component it is published to an IQ.
Another component then picks up the Event from the IQ based on the Event Type
under which the Event was published.

IQ Services provide the mechanism for moving Events between IQ Intelligent Queues,
handling the low-level implementation of data exchange such as system calls to
initialize or reorganize a database. IQ Intelligent Queues can use different IQ Services
depending on the implementation requirements.

IQ activities are overseen by IQ Managers, which reorganize queues, archive queue
information (upon request, to save disk space), and lock the queues when maintenance
is performed. When you create a new schema, e*Gate automatically creates an IQ
Manager component and places it under the Participating Host in the Enterprise
Manager GUI. When you add additional Participating Hosts to the schema, you must
manually add IQ Manager components for that host. Each schema must have at least
one IQ Manager. Only one per schema is needed for most installations, but you can
define additional IQ Managers if additional queue maintenance is required.

4.2.4 e*Way Intelligent Adapters
e*Way Intelligent Adapters transfer data between external systems and e*Gate. e*Ways
perform three primary functions:

! Receive unprocessed data from external systems and package it as Events of known
Event Types

! Forward Events to other components within the e*Gate system via IQ Intelligent
Queues
e*Xchange Partner Manager Implementation Guide 31 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Understanding e*Gate Integrator e*Gate Components
! Send processed data to external systems

You install an e*Way by first installing the required software on the Participating Host,
and then using the Enterprise Manager to add and configure the e*Way component
within a schema. The most important part of the installation process is configuring the
e*Way’s properties and communication parameters to meet the specific application or
protocol requirements of the external application to which the e*Way is connecting.

For more information on creating and configuring e*Way components, refer to the
e*Gate Integrator User’s Guide.

4.2.5 BOBs
Business Object Brokers (BOBs) perform the same functions as e*Ways except that they
only communicate within the e*Gate system; they cannot communicate with
applications outside of e*Gate. Adding BOBs to your schema can help redistribute the
data processing workload or allow you to modularize multiple processes. BOBs are
optional components; they are not required in order for the e*Gate system to operate
correctly.

All Participating Hosts contain the software required for BOBs; you do not need to
install anything separately to include BOBs within a schema.

4.2.6 Collaborations, Collaboration Rules, and Collaboration
Services

Collaborations are e*Gate’s data processing “powerhouses.” Each Collaboration contains
two parts: the publisher half publishes Events of a specific Event Type and the
subscriber half “listens” for Events of a specific Event Type. Events are published to a
specific IQ or to an external system. Events (Event Types) that are subscribed to must
be published by other components (Collaborations or external systems) in the schema.

The data processing within a Collaboration is completed using Collaboration Rules.
Collaboration Rules extract selected information from an incoming Event and process it
according to a specific set of instructions in a Collaboration Rules Script (CRS). The type
of CRS required depends on the Collaboration Service selected for the Collaboration
Rules. Collaboration Services are DLLs that provide the mechanism through which
e*Gate executes the rules (instructions) in the file. For example, a Collaboration Rules
that use the Java Collaboration Service require a Java class file as a CRS. Collaboration
Rules that use the Monk Collaboration Service require a Monk-based file as a CRS.

Collaborations are assigned to e*Ways or BOBs. An e*Way or BOB can contain multiple
Collaborations, but a particular Collaboration can only be assigned to one component
(e*Way or BOB) in a schema.

Each Collaboration has a single Collaboration Rules component associated with it. The
Collaboration Rules component has a Collaboration Service and CRS associated with it.

The following diagram illustrates the relationship and dependencies of these
components.
e*Xchange Partner Manager Implementation Guide 32 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Understanding e*Gate Integrator e*Gate Components
Figure 4 Relationships Between Components

The “embedded” design illustrated in Figure 4 allows you to create programming logic
once, and reuse it in multiple places in the schema. You can reuse the programming
logic in CRSs in two ways:

! By associating a single CRS with multiple Collaboration Rules components, or,

! By associating a single Collaboration Rules component with multiple
Collaborations in e*Ways or BOBs.

In either case, the result is the same: Collaborations subscribing to and publishing
different Event Types can perform the same functions without having to rewrite the
code each time.

See Creating an End-To-End Scenario in e*Gate or the Enterprise Manager’s Help system
for detailed information about how to create components and how to link components
together to create a flow of data.

e*Way or BOB

Collaboration1

Collaboration Rules

Collaboration Rules ScriptCollaboration Service

Collaboration2

Collaboration Rules

Collaboration Rules ScriptCollaboration Service
e*Xchange Partner Manager Implementation Guide 33 SeeBeyond Proprietary and Confidential

Chapter 5

e*Xchange Schema Components

The e*Gate schema for e*Xchange is the e*Gate schema that implements a particular
e*Xchange installation. The starting point is the e*Gate schema called eXSchema
created when you install the e*Gate schema for e*Xchange from the installation CD.
This schema contains a number of pre-configured and partially pre-configured e*Gate
components used by e*Xchange. In addition to the components that are provided on
the CD, a complete e*Xchange implementation requires several other e*Gate
components that are added to the e*Xchange schema during the implementation
process. The pre-configured components that are used, as well as the additional e*Gate
components that are added to make up the final working e*Xchange schema, depends
entirely on the specifics of the implementation.

The purpose of this chapter is to describe the e*Gate components provided with the
eXSchema as well as those that are added in the implementation process, and discuss
how each fits into and supports a working e*Xchange implementation. For each
component there is a detailed drawing showing the other components with which it
interacts as well as the publication and subscription information for its Collaborations.
In addition, for each component we discuss: the type of component it is, its function in
e*Xchange, any configuration the implementor must perform, the Collaborations it
uses, and what is contained in the Events it processes.

5.1 The Purpose of the e*Gate Schema for e*Xchange
The purpose of the e*Gate Schema for e*Xchange is to provide the working portion of
e*Xchange. Whereas the e*Xchange Web Interface and GUIs are primarily used to
configure and monitor the e*Xchange system, the e*Gate Schema components actually
move and transform the data handled by e*Xchange.

5.1.1 e*Xchange Components
The e*Xchange components manage the exchange of electronic messages with trading
partners.
e*Xchange Partner Manager Implementation Guide 34 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
e*Xchange Schema Components e*Gate schema for e*Xchange Components Overview
5.2 e*Gate schema for e*Xchange Components Overview
Table 1 lists all of the component types used by e*Xchange. It lists the components that
are provided as part of the e*Gate schema for e*Xchange (eXSchema) installation, and
also the components that the user adds in the implementation process. The meaning of
the column headings is as follows.

! Component—The e*Gate logical name for the component. Italics indicates that the
name varies by association or is user-defined.

! Description—A brief description of what the component does in e*Xchange.

! In Default eXSchema—Whether or not this component is provided as part of the
back end installation of e*Xchange.

! Configuration Required—Most of the components in the default eXSchema
require little configuration on the part of the implementor. Table 1 uses the
following terms to describe the level of configuration required:

" No—The component does not require any configuration or programming on
the part of the implementor.

" Minor—You must add the e*Xchange database connection information to the
configuration file.

" Some—You must make additional changes to the configuration file beyond
providing the e*Xchange database connection information.

" Yes—The component is mostly or entirely user-defined and must be configured
and programmed by the implementor.

! More Information—A cross reference to the section that describes this component
in detail.
e*Xchange Partner Manager Implementation Guide 35 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
e*Xchange Schema Components e*Gate schema for e*Xchange Components Overview
Table 1 e*Xchange Back-End Component Types

Component Description In Default
eXSchema?

Configuration
Required?

More
Information

eX_ePM e*Way Handles the tracking, validating, security, and
enveloping of Events sent to and from
trading partners.

Yes Minor 5.3.1 on
page 39

eX_ePM_Ack_Monitor
e*Way

Handles the process of resending to trading
partners Events for which no
acknowledgment has been received.
For X12 and UN/EDIFACT, this e*Way sends
the message to a staging area.
For RosettaNet, it sends the message out to
the queue.

Yes Minor 5.3.2 on
page 43

eX_ePM_Batch
e*Way

Handles the process of bundling together
transactions to be sent out as a group to a
single trading partner.

Yes Minor 5.3.3 on
page 45

eX_ePM_Trans_Poll For X12 and UN/EDIFACT, handles the
process of sending out interactive Events that
require acknowledgments. This is also used
for resend messages from the Web Interface.

Yes Minor 5.3.4 on
page 47

eX_Batch_to_Trading_
Partner e*Way

Sends out Events to trading partners in batch
(FTP) mode.

Yes No 5.3.5 on
page 48

eX_Https_to_
Trading_ Partner e*Way

Sends out Events to trading partners using a
secure HTTPS (encrypted) or unsecure HTTP
(not encrypted) communication protocol.

Yes No 5.3.6 on
page 50

eX_Poll_Receive_FTP Polls the e*Xchange database for information
on trading partners in batch (FTP) mode. This
information is passed to the
eX_Batch_From_Trading_Partner e*Way.

Yes Minor 5.3.7 on
page 51

eX_Batch_From_Tradin
g_Partner e*Way

Receives Events from trading partners in
batch (FTP) mode.

Yes Minor 5.3.8 on
page 52

eX_Mux_from_
Trading_Partner e*Way

Sends and receives Events from trading
partners using a Web server.

Yes No 5.3.9 on
page 54

eX_POP3_from_
Trading_ Partner e*Way

Receives events via email. Yes No 5.3.10 on
page 57

eX_SMTP_to_
Trading_ Partner e*Way

Sends out Events to trading partners via
email.

Yes No 5.3.11 on
page 58

Send_to_ePM e*Way Prepares Events coming from a business
application for processing by e*Xchange.

Yes Yes 5.3.12 on
page 59

Receive_from_ePM
e*Way

Prepares Events coming from e*Xchange for
use by a business application.

Yes Yes 5.3.13 on
page 61

eX_from_Trading
_Partner e*Way

Prepares Events coming from trading
partners for processing by e*Xchange.

No Yes 5.3.14 on
page 61
e*Xchange Partner Manager Implementation Guide 36 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
e*Xchange Schema Components e*Gate schema for e*Xchange Components Overview
5.2.1 e*Xchange Schema Component Relationships Diagram
Figure 6 on the next page illustrates the relationships among the e*Xchange schema
components. Not every e*Xchange implementation uses all of these components. Some
of the components shown are not provided as part of the e*Gate schema for e*Xchange
installation from the CD. These components are shown in light blue and must be added
to the base e*Xchange schema by the implementor as needed.

Figure 5 e*Xchange Overview Legend

Database

GUI

BOB

e*Way

Intelligent
Queue

Component connection
with arrow indicating
direction of data flow

External
to eX system

Medium
Gray

Light Blue Not in default
eXSchema

Multiple components
of a similar type
e*Xchange Partner Manager Implementation Guide 37 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
e*Xchange Schema Components e*Gate schema for e*Xchange Components Overview
Figure 6 e*Xchange Components

eX_ePM_
Ack_Monitor

e*Way

eX_ePM
e*Way

eX_Batch_to_
Trading_Partner

e*Way

Send_
to_ePM
e*Way

Receive_
from_ePM

e*Way

eX_ePM_
Batch
e*Way

e*Xchange
GUIs

eX_ePM_
Trans_Poll

e*Way

Trading Partner

Business
Application

Trading
Partner

eX_eBPM IQ

e*Xchange
Database

eX_Trading_Port_Queue IQ

eX_Batch_from_
Trading_Partner

e*Way

eX_Https_to_
Trading_Partner

e*Way

eX_Dead_Letter_Queue IQ

eX_POP3_from_
Trading_Partner

e*Way

eX_SMTP_to_
Trading_Partner

e*Way

eX_from_
Trading_Partner

e*Way

eX_Mux_from_
Trading_Partner

e*Way

eX_Poll_
Receive_FTP

e*Way

eX_Dyn_Inb_ftp_Queue
 IQ
e*Xchange Partner Manager Implementation Guide 38 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Xchange Schema Components e*Xchange Partner Manager Components
5.3 e*Xchange Partner Manager Components
e*Xchange contains the e*Gate components that handle the sending, receiving, and
tracking of messages to and from trading partners. The e*Xchange group is divided
into components that interact internally or with the e*Xchange database and those that
interact with external systems and trading partners.

e*Xchange Partner Manager—Internal Components

! eX_ePM e*Way

! eX_ePM_Ack_Monitor e*Way

! eX_ePM_Batch e*Way

! eX_ePM_Trans_Poll e*Way

! eX_Poll_Receive_FTP e*Way

All of these components are provided when the e*Gate schema for e*Xchange is
installed. They require only minimal configuration on the part of the user. The
components only require that you provide e*Xchange database logon information in
their configuration files.

e*Xchange Partner Manager—External Components

The e*Xchange—External component contains e*Ways that send data to and receive
data from trading partners and business applications.

! eX_Batch_from_Trading_Partner e*Way

! eX_Batch_to_Trading_Partner e*Way

! eX_HTTPS_to_Trading Partner e*Way

! eX_Mux_from_Trading_Partner e*Way

! eX_POP3_from_Trading_Partner e*Way

! eX_SMTP_to_Trading Partner e*Way

! Send_to_ePM e*Way

! Receive_from_ePM e*Way

! eX_from_Trading_Partner e*Way (this is a user-defined component)

5.3.1 eX_ePM e*Way
The e*Xchange e*Way is the main workhorse in the back-end portion of the e*Xchange
Partner Manager. The e*Xchange e*Way:

! validates protocol-specific data from trading partners

! writes Event data to the database

! retrieves trading partner profile information from the database
e*Xchange Partner Manager Implementation Guide 39 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Xchange Schema Components e*Xchange Partner Manager Components
! envelopes the data as required by the destination trading partner

The eX_ePM e*Way is a bidirectional e*Way that communicates with both the
eX_eBPM IQ and the eX_Trading_Port_Queue IQ, as well as the e*Xchange database.
It forms a bridge between the e*Insight side of the e*Xchange system and the e*Xchange
side, receiving Event information both from activity e*Ways and the e*Ways that
communicate directly with trading partners.

The e*Xchange engine prepares outbound Events coming from e*Insight activity e*Ways
to be forwarded to the appropriate trading partner. Conversely, the e*Xchange engine
takes Inbound Events coming into e*Xchange from trading partners and prepares them
to be forwarded to e*Insight.

The following diagram illustrates the eX_ePM e*Way.

Figure 7 eX_ePM e*Way Detail

Configuring the e*Xchange Database Connectivity e*Ways

All of the e*Xchange components that communicate with the e*Xchange database are
database connectivity e*Ways. You must edit the configuration files for these e*Ways
and provide the logon information about the e*Xchange database to which they
connect. Table 2 provides information about the required parameters that must be filled
in.

Table 2 Parameter Settings for the e*Xchange Database Connectivity e*Ways

Screen Parameter Setting

General
Settings

(All) (Default)

Communication
Setup

(All) (Default)

Monk
Configuration

(All) (Default)

eX_to_ePM

eX_External_Evt

eX_External_Evt

eX_ePM
e*Way

eX_from_ePM
Collaboration

eX_to_eBPM

eX_BATCH

e*Xchange
Database

eX_from_Trading_Partner

eX_Trading_
Port_Queue IQ

eX_eBPM
IQ

eX_to_ePM
Collaboration

eX_HTTPS
eX_HTTP

eX_Dead_Letter
_Queue IQ

eX_Error

eX_SMTP
eX_to_MUX
eX_TCPIP
e*Xchange Partner Manager Implementation Guide 40 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Xchange Schema Components e*Xchange Partner Manager Components
eX_to_ePM Collaboration

The eX_to_ePM Collaboration is not user-configurable.

The eX_to_ePM Collaboration retrieves Events to be processed by the e*Xchange
engine from either e*Xchange IQ (eX_eBPM or eX_Trading_Port_Queue), and passes
the information to the database script that writes the data from the Events to the
e*Xchange database.

Events subscribed to by the eX_to_ePM Collaboration must have values populating the
e*Xchange-required nodes in the eX_Standard_Event.ssc ETD used by these Event
Types. These required values include:

! Message ID (a unique identifier for the message), if the direction is outbound and
the message does not have a validation check.

! Direction (“I” = inbound, “O” = outbound)

! Partner Name (must correspond exactly to the Logical Name used in the outer
envelope of the trading partner profile)

These nodes are explained in more detail in “Using the ETD in e*Xchange” on page 69
and in the e*Xchange Partner Manager User’s Guide.

Subscribed Event Types:

! eX_from_Trading_Partner—This Event is published by the user-defined e*Ways
that handle the inbound Event traffic from trading partners. The Event’s data must
already be in the XML format required by the e*Xchange side of e*Xchange.

! eX_to_ePM—These Events are published either by a Send_to_ePM e*Way (or one
with similar function) or one of the activity e*Ways associated with the e*Insight
business process. The Event’s data must already be in the XML format required by
the e*Xchange side of e*Xchange.

Database Setup Database Type The database type. Select one of the following:
! ODBC for a SQL Server 7, SQL Server 2000, or UDB
! Oracle 8i for either an Oracle 8.1.6 or 8.1.7 database
! Sybase for Sybase 11.9 or 12

Database
Name

The Database Name is the TNS name the e*Way uses
to connect to the e*Xchange database.

User name This is the database user name, used by the e*Way to
access the e*Xchange database. Any user who is
assigned to one of the two Roles defined in the
e*Xchange Administrator has access rights to run the
e*Gate schema for e*Xchange.

Encrypted
Password

This is the password associated with the database
user name the e*Way uses to access the e*Xchange
database. The default password used by e*Xchange
database creation scripts is ex_admin.

Table 2 Parameter Settings for the e*Xchange Database Connectivity e*Ways

Screen Parameter Setting
e*Xchange Partner Manager Implementation Guide 41 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Xchange Schema Components e*Xchange Partner Manager Components
Published Event Type: eX_External_Evt

This Event carries the data to the database script that writes the information to the
e*Xchange database.

eX_from_ePM Collaboration

The eX_from_ePM Collaboration is not user-configurable.

The eX_from_ePM Collaboration retrieves Events prepared by the e*Xchange engine
from the database and publishes them to the appropriate IQ. Events forwarded to
trading partners are published to the eX_Trading_Port_Queue IQ. Events sent to
e*Insight are published to the eX_eBPM IQ.

Subscribed Event Type: eX_External_Evt

This Event carries information retrieved from the e*Xchange database after the data has
been prepared by the e*Xchange engine.

Published Event Types: eX_to_eBPM

! eX_to_eBPM—This Event contains information from a trading partner to be sent to
the e*Insight side of e*Xchange. This would be the case, for example, if an activity
e*Way required an acknowledgment from a trading partner before returning the
“Done” Event to the e*Insight engine for that activity.

! eX_to_Trading_Partner—This Event contains information that has been prepared
by the e*Xchange engine to be sent to a trading partner.

! eX_to_ePM—This Event contains information that has been prepared for
e*Xchange.

! eX_HTTPS—This Event contains the enveloped Event along with destination
information.

! eX_HTTP—This Event contains the enveloped Event along with destination
information.

! eX_Error—This Event contains error information.

Important: You need to create an e*Way or BOB that subscribes to eX_Error, otherwise the
eX_ePM e*Way is unable to publish this Event Type.

! eX_to_MUX—This Event contains the enveloped Event along with destination
information.

! eX_TCPIP—This Event contains the enveloped Event along with destination
information.

! eX_SMTP—This Event contains the enveloped Event along with destination
information.

! eX_BATCH—This Event contains the enveloped Event along with destination
information.
e*Xchange Partner Manager Implementation Guide 42 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Xchange Schema Components e*Xchange Partner Manager Components
5.3.2 eX_ePM_Ack_Monitor e*Way
The eX_ePM_Ack_Monitor e*Way is a database connectivity e*Way that monitors the
e*Xchange database for Event acknowledgments that are overdue from trading
partners.

Figure 8 illustrates the eX_ePM_Ack_Monitor e*Way.

Figure 8 eX_ePM_Ack_Monitor e*Way Detail

An acknowledgment is considered overdue if the specified amount of time to wait for
an acknowledgment has passed. This “timeout” is configurable and can be set in the
e*Xchange GUI. The acknowledgment handling for X12 messages is different than that
for RosettaNet messages.

X12 and UN/EDIFACT Acknowledgment Handling

When an acknowledgment is overdue, the eX_ePM_Ack_Monitor e*Way determines if
the retry limit (the number of times to retry sending the Event) has been reached. If it
has not, the e*Way places the Event in a “staging area” within the database to be picked
up by the eX_ePM_Trans_Poll e*Way and resent to the trading partner. If the retry
limit has been reached, the e*Way logs information about the transaction and
corresponding error information in the database, and sends an eX_Error Event back to
the eX_Dead_Letter_Queue IQ with “Hit Re-send Limit” in the eX_Standard_Event.

RosettaNet Acknowledgment Handling

The eX_ePM_Ack_Monitor e*Way polls the e*Xchange database for overdue
acknowledgments. If an acknowledgment is overdue and the retry limit for that
message has not been reached, then the original message is resent to the trading
partner. If an acknowledgment is overdue and the retry limit has been exceeded, a
failure notification is sent to both the trading partner and the internal application that
generated the original RosettaNet message.

eX_ePM_Ack_Monitor
e*Way

eX_Poll_Ack_Mon
Collaboration

eX_Poll_Ack

eX_External_Evt

eX_SMTP

eX_to_ePM
eX_to_eBPM

e*Xchange
Database

eX_eBPM
IQ

eX_Trading_
Port_Queue IQeX_HTTP

eX_HTTPS

eX_Dead_Letter_
Queue IQ

eX_Error
e*Xchange Partner Manager Implementation Guide 43 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Xchange Schema Components e*Xchange Partner Manager Components
Resends

eX_ePM_Ack_Monitor retrieves the original RosettaNet message from the e*Xchange
database, increments the retry counter, resigns the message, and then publishes the
message to the eX_Trading_Port_Queue. The message is then picked up and
forwarded to the trading partner.

Failures

eX_ePM_Ack_Monitor e*Way publishes this failure notification using two different
Event Types: eX_to_ePM and eX_to_eBPM. The e*Xchange engine picks up the
eX_to_ePM failure notification, processes it, and then sends it out to the trading partner
via the eX_Trading_Port_Queue IQ. The e*Insight engine picks up the eX_to_eBPM
failure notification and sends it to the internal application.

Configuring the eX_ePM_Ack_Monitor e*Way

The eX_ePM_Ack_Monitor e*Way requires only minor changes to the e*Way’s
configuration file. The implementor must edit this file and provide the information
required in the Database Setup section as shown in Table 2 on page 40.

eX_Poll_Ack_Mon Collaboration

Subscribed Event Type: ex_Poll_Ack

This Event type does not carry any information, since no data is actually extracted from
the database by the database script associated with the eX_ePM_Ack_Monitor e*Way.

Published Event Types:

! eX_to_ePM—This Event Type carries the RosettaNet failure notification sent to the
trading partner when the retry message limit has been exceeded.

! eX_to_eBPM—This Event Type carries the RosettaNet failure notification sent to
the internal application when the retry message limit has been exceeded.

! eX_to_HTTP—This Event Type carries the RosettaNet message that is resent when
an acknowledgment is overdue.

! eX_to_HTTPS—This Event Type carries the RosettaNet message that is resent
when an acknowledgment is overdue.

! eX_to_SMTP—This Event Type carries the RosettaNet message that is resent when
an acknowledgment is overdue.

! eX_Poll_Ack—This Event Type is used by the eX_ePM_Ack_Monitor to
communicate with the e*Xchange database.

! eX_Error—This Event contains error information.

Important: You must create an e*Way or BOB that subscribes to eX_Error, otherwise the
eX_ePM_Ack_Monitor e*Way is unable to publish this Event Type.
e*Xchange Partner Manager Implementation Guide 44 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Xchange Schema Components e*Xchange Partner Manager Components
5.3.3 eX_ePM_Batch e*Way
The eX_ePM_Batch e*Way polls the e*Xchange database for Events being sent to
trading partners using Fast Batch transfer mode or Batch transfer mode (rather than an
Interactive) and prepares them to be sent to the appropriate trading partner. When
multiple Events need to be sent to the same trading partner, the e*Way bundles these
Events together, according to a user-definable bundling scheme, before enveloping
them and publishing them to the eX_Trading_Port_Queue IQ.

Note: This e*Way only acts on Events using X12 or UN/EDIFACT enveloping protocols.
Events using RosettaNet or BizTalk protocols cannot be transmitted in batch mode.

The following diagram illustrates the eX_ePM_Batch e*Way.

Figure 9 eX_ePM_Batch e*Way Detail

Batch Bundling Schemes

There are 3 types of bundling schemes used by the eX_ePM_Batch e*Way:

! Fast batch—A set number of Events, all of the same transaction type, are bundled
together and sent to a trading partner.

! Per schedule batch—At a set time all the Events destined for a single trading
partner. The Events can be of differing transaction types.

! Per interval batch—The e*Way waits a set interval then bundle all the Events
destined for a single trading partner. The Events can be of differing transaction
types.

Whether a particular Event uses batch transfer mode and what type of bundling
scheme is used for a particular batched Event, is set in the inner envelope definition for
that transaction type. See the e*Xchange Partner Manager User’s Guide for information on
setting up the inner envelope to use batch transfer mode.

e*Xchange Event Requirements for Fast Batch

The e*Xchange Event that contains a transaction to be sent to a trading partner using
Fast Batch transfer mode, must have the following name and value pairs configured in
the standard event:

! FB_UNIQUE_ID — this name and value pair sets the fast batch unique ID. All
messages with the same identifier are batched together for processing.

! FB_COUNT — this name and the value pair sets the total number of fast batch
records. When e*Xchange receives a fast batch record count equal to or greater than

eX_ePM_Batch e*Way

eX_ePM_Batching
CollaborationeX_External_Evt eX_SMTP

e*Xchange
Database

eX_Trading_
Port_Queue IQ

eX_BATCH
eX_HTTP

eX_HTTPS
e*Xchange Partner Manager Implementation Guide 45 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Xchange Schema Components e*Xchange Partner Manager Components
the value specified in FB_COUNT, or if the fast batch records have exceeded the
timeout period, then the eX_ePM_Batch e*Way sends the batch records to the
trading partner.

Two functions are required for each name and value pair; the first sets the name of the
pair (for example, FB_UNIQUE_ID), and the second sets the value.

The example below shows how to configure both name and value pairs for a single
event that contains multiple messages in the FB_Feeder.Payload node. The unique ID is
the same for every message in the event, and the count is set by counting the number of
messages contained in the event (that is, the number of occurrences of the
FB_Feeder.Payload node). The method that you use to populate the Value nodes
depends on your implementation.

// to set the value in the Name node for the unique ID
(copy-strip "FB_UNIQUE_ID"
~output%eX_Event.DS.eX_Event.CT.DSN.DS.TP_EVENT.CT.DSN.DS.TPAttribute
.CT.DSN.DS.NameValuePair[0].CT.DSN.DS.Name.CT.DSN.DS.Data "")

// to set the actual fast batch unique id value in Value node
(uniqueid
~output%eX_Event.DS.eX_Event.CT.DSN.DS.TP_EVENT.CT.DSN.DS.TPAttribute
.CT.DSN.DS.NameValuePair[0].CT.DSN.DS.Value.CT.DSN.DS.Data)

// to set the value in the Name node for the count
(copy-strip "FB_COUNT"
~output%eX_Event.DS.eX_Event.CT.DSN.DS.TP_EVENT.CT.DSN.DS.TPAttribute
.CT.DSN.DS.NameValuePair[1].CT.DSN.DS.Name.CT.DSN.DS.Data "")

// to set the actual total fast batch record count in the Value Node
(copy-strip (count-rep ~input%FB_Feeder.Payload)
~output%eX_Event.DS.eX_Event.CT.DSN.DS.TP_EVENT.CT.DSN.DS.TPAttribute
.CT.DSN.DS.NameValuePair[1].CT.DSN.DS.Value.CT.DSN.DS.Data "")

Configuring the eX_ePM_Batch e*Way

The eX_ePM_Batch e*Way requires only minor changes to the e*Way’s configuration
file. The implementor must edit this file and provide the information required in the
Database Setup section as shown in Table 2 on page 40.

You can also specify the protocol type of the messages to be batched, if required. The
eBusiness Type is specified in the eBusiness Type Settings section. The available
parameters are:

! ALL—All protocol types are retrieved. This is the default setting.

! NCPDP—For future use.

! UN/EDIFACT—Only UN/EDIFACT messages are retrieved.

! X12—Only X12 messages are retrieved.

Scaling of eX_ePM _Batch e*Way

You can create multiple eX_ePM_Batch e*Ways to improve performance. To use
multiple e*Ways you need to modify the configuration. For example, if you want three
eX_ePM_Batch e*Ways you need to create and configure them as follows:
e*Xchange Partner Manager Implementation Guide 46 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Xchange Schema Components e*Xchange Partner Manager Components
! Copy the eX_ePM_Batch e*Way.

! Create separate configuration files for each eX_ePM_Batch e*Way.

" Open the configuration file for each new e*Way and save with a different name.
Ensure that the e*Way refers to this configuration file, not the original one.

! Modify the configuration files, as shown in the Table 3.

Table 3 Configuration File Parameters

The functionality used by each e*Way is a modulo. Therefore, if three e*Ways are used,
any one e*Way picks up every third record.

Important: Do not use this if message sequencing is desired.

eX_ePM_Batching Collaboration

This Collaboration is not user configurable.

Subscribed Event Type: eX_External_Evt

The eX_ePM_Batch e*Way uses this Event Type to communicate with the e*Xchange
database.

Published Event Type: eX_To_Trading_Partner, eX_SMTP, eX_HTTP, eX_BATCH, eX_HTTPS

This Event carries the multiple X12 transactions that have been bundled together and
enveloped by the eX_ePM_Batch e*Way.

5.3.4 eX_ePM_Trans_Poll e*Way
The eX_ePM_Trans_Poll e*Way monitors a “staging area” in the database for
outbound Events pending interactive transfer. It uses a database access script
(tran_poll.dsc) called by the Exchange Data With External Function parameter in the
e*Way’s configuration file to retrieve these Events from the e*Xchange database. The
eX_Transaction_Poll Collaboration then publishes the Events to the
eX_Trading_Port_Queue IQ under eX_HTTP, eX_BATCH, eX_SMTP, eX_HTTPS, or
eX_to_Trading_Partner Event Type.

Figure 10 illustrates the eX_ePM_Trans_Poll e*Way.

e*Way
Number of Batch
eWays Parameter

Batch eWay Instance
Number Parameter

eX_ePM_Batch 3 1

eX_ePM_Batch_0 3 2

eX_ePM_Batch_1 3 3
e*Xchange Partner Manager Implementation Guide 47 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Xchange Schema Components e*Xchange Partner Manager Components
Figure 10 eX_ePM_Trans_Poll e*Way

Configuring the eX_ePM_Trans_Poll e*Way

The eX_ePM_Trans_Poll e*Way requires only minor changes to the e*Way’s
configuration file. The implementor must edit this file and provide the information
required in the Database Setup section as shown in Table 2 on page 40.

eX_ePM_Transaction_Poll Collaboration

This is a Collaboration that does two things:

1 Changes the name of the Event from eX_Transaction_Poll to one of the following:

" eX_BATCH

" eX_HTTPS

" eX_HTTP

" eX_SMTP

" eX_to_Trading_Partner

2 Publishes it to the eX_Trading_Port_Queue IQ.

Subscribed Event Type: eX_Transaction_Poll

This Event Type is used by the eX_ePM_Trans_Poll e*Way to retrieve the enveloped
Events from the e*Xchange database.

Published Event Types: eX_Batch, eX_HTTP, eX_HTTPS, eX_SMTP, eX_to_Trading_Partner

This Event Type carries enveloped Events intended for a trading partner.

5.3.5 eX_Batch_to_Trading_Partner e*Way
The eX_Batch_to_Trading_Partner e*Way sends enveloped eBusiness messages
designated for batch transmission to trading partners using FTP.

Figure 12 illustrates the eX_Batch_to_Trading_Partner e*Way.

eX_ePM_Trans_Poll
e*Way

eX_ePM_
Transaction_Poll

CollaborationeX_Transaction_Poll One of the following:
- eX_HTTP
- eX_BATCH
- eX_SMTP
- eX_HTTPS
- eX_to_Trading_Partner

e*Xchange
Database

eX_Trading_
Port_Queue IQ
e*Xchange Partner Manager Implementation Guide 48 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Xchange Schema Components e*Xchange Partner Manager Components
Figure 11 eX_Batch_to_Trading_Partner e*Way Detail

The destination file location for each Event is carried as part of the e*Xchange Event
data passed to the eX_Batch_to_Trading_Partner e*Way. The file location is
maintained in the e*Xchange database and applied to the Event at the same time that
the Event is enveloped for a specific trading partner. When the
eX_Batch_to_Trading_Partner e*Way receives an Event, they send the data to the file
location specified within the Event itself.

Configuring the eX_Batch_to_Trading_Partner e*Way

No configuration is required.

eX_Batch_to_Trading_Partner Collaboration

This is a Pass Through Collaboration used to publish the Event outside of e*Gate. The
communication portion of the eX_Batch_to_Trading_Partner e*Way then takes the
Event and sends via FTP to the appropriate trading partner.

Subscribed Event Type: eX_BATCH

This Event carries the enveloped Event along with the destination information (URL)
used by the eX_Batch_to_Trading_Partner e*Way for transmission to the trading
partners.

Published: eX_External_Evt

This Event carries the eBusiness message to the communications half of the e*Way
where it is forwarded to the trading partner.

eX_from_Batch_to_Trading_Partner Collaboration

This Collaboration is used when the e*Way failed to connect to an external host. The
user has three options:

! Resend—Re-publishes the message to the eX_Batch_to_Trading_Partner e*Way
through the queue.

eX_External_Evt

eX_Batch_to_Trading
_Partner e*Way

eX_Batch_to_
Trading_Partner

Collaboration

Trading
Partner

eX_BATCHeX_Trading_
Port_Queue IQ

eX_from_Batch_to
_Trading_Partner

Collaboration

eX_External_Evt
eX_BATCH
e*Xchange Partner Manager Implementation Guide 49 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Xchange Schema Components e*Xchange Partner Manager Components
! Rollback—Retries the message within the eX_Batch_to_Trading_Partner e*Way the
number of times specified in the configuration for the
eX_Batch_to_Trading_Partner e*Way, in the General settings, Max Resends Per
Message. If the resend count is reached without success, the e*Way shuts down.

! Skip—Skips the message. Resends the number of times specified in the trading
partner profile (Return Inner Envelope tab) in the user interface.

5.3.6 eX_Https_to_Trading_Partner e*Way
The eX_Https_to_Trading_Partner e*Way is an HTTPS e*Way that sends eBusiness
messages enveloped by the e*Xchange Partner Manager to trading partners over a
secure (HTTPS) or unsecure (HTTP) communication link. The secure link encrypts the
data, the unsecure link does not.

Figure 12 illustrates the eX_Https_to_Trading_Partner e*Way.

Figure 12 eX_Https_to_Trading_Partner e*Way Detail

The destination URL for each Event is carried as part of the e*Xchange Event passed to
the eX_Https_to_Trading_Partner e*Way. The URL is maintained in the trading
partner database and applied to the Event at the same time that the Event is enveloped
for a specific trading partner. When the eX_Https_to_Trading_Partner e*Way receives
an Event, it sends the data to the URL specified within the Event itself.

Whether or not the Event is sent over a secure channel (encrypted) using HTTPS or
over an unsecure channel (not encrypted) using HTTP protocol is also determined by
the presence of “https” in the URL string. For example, a URL sting such as http://
tradingpartner.com indicates the use of the unsecure mode, whereas a string such as
https://tradingpartner.com indicates the use of the secure mode.

Note: When using the secure mode, the eSecurityManager components (both the GUI and
the back end) must be installed and the appropriate security key fields populated in
the trading partner profile. See the e*Xchange Partner Manager User’s Guide for
information on setting up e*Xchange to use the eSM features of e*Xchange.

eX_External_Evt

eX_HTTPS_to_
Trading_Partner

e*Way
eX_HTTPS_to_
Trading_Partner

Collaboration

Trading
Partner

eX_HTTPSeX_Trading_
Port_Queue IQ

eX_HTTPS_to_
ePM

 Collaboration

eX_HTTP

eX_External_EvteX_to_ePM
e*Xchange Partner Manager Implementation Guide 50 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Xchange Schema Components e*Xchange Partner Manager Components
Configuring the eX_Https_to_Trading_Partner e*Way

No configuration is required if the HTTP protocol is used.

If the HTTPS protocol is used, you must ensure that the configuration for the TrustStore
is correct. The trust store file contains information about Web servers that accept
messages from your system. The file
<egate>\client\pkicerts\truststore\trustcacertsjks is created when e*Gate is installed
and this default file can be used with e*Xchange. However, if you have not installed
e*Gate on your C drive, or you want to use a different file or location, you need to
update the configuration file for the eX_ePM_Https_eWay_Con e*Way connection.
The file name for the trust store file is defined in the SSL section, TrustStore parameter.

For more information about the TrustStore, see HTTPS e*Way Intelligent Adapter User’s
Guide.

eX_Https_to_Trading_Partner Collaboration

This is a Java Collaboration used to publish the Event outside of e*Gate. The
communication portion of the eX_Https_to_Trading_Partner e*Way then takes the
Event and sends it to the appropriate trading partner.

Subscribed Event Type: eX_HTTPS

This Event carries the data and destination information (URL) used by the
eX_Https_to_Trading_Partner e*Way for sending the message to the trading partner.

Published: eX_External_Evt

This Event carries the eBusiness message to the trading partner.

eX_Https_to_ePM Collaboration

This is a Pass Through Collaboration used to receive a response from the trading
partner.

Subscribed Event Type: eX_External_Evt

This Event carries the response from the trading partner.

Published: eX_to_ePM

This Event forwards the response to e*Xchange.

5.3.7 eX_Poll_Receive_FTP e*Way
The eX_Poll_Receive_FTP e*Way polls the e*Xchange database for information on
trading partners that have data to be retrieved via FTP. This information is provided in
the Trading Partner profile. The information about each Trading Partner is then passed
to the eX_Batch_From_Trading_Partner e*Way.

Figure 14 illustrates the eX_Poll_Receive_FTP e*Way.
e*Xchange Partner Manager Implementation Guide 51 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Xchange Schema Components e*Xchange Partner Manager Components
Figure 13 eX_Poll_Receive_FTP e*Way Detail

The Event is sent to eX_Batch_from_Trading_Partner.

The eX_Dyn_Inb_ftp_Queue IQ is configured to use a Subscriber Pool. This ensures
that when multiple eX_Batch_from_Trading_Partner e*Ways are used, the information
about each Trading Partner is passed to every e*Way in turn.

Configuring the eX_Poll_Receive_FTP e*Way

The eX_ePM_Trans_Poll e*Way requires only minor changes to the e*Way’s
configuration file. The implementor must edit this file and provide the information
required in the Database Setup section as shown in Table 2 on page 40.

eX_Poll_Receive_FTP Collaboration

This is a Pass Through Collaboration used to take the Event received from the
eX_Poll_Receive_FTP e*Way and send it to the eX_Trading_Port_Queue.

Subscribed Event Type: eX_External

This Event carries information about the trading partners that have files to be retrieved
by FTP.

Published: eX_Batch_from_DB_Event

This Event carries the trading partner configuration information to the
eX_Trading_Port_Queue. It is then retrieved by the eX_Batch_from_Trading_Partner
e*Way.

5.3.8 eX_Batch_from_Trading_Partner e*Way
The eX_Batch_from_Trading_Partner e*Way sends enveloped eBusiness messages to
e*Xchange.

Figure 14 illustrates the eX_Batch_from_Trading_Partner e*Way.

eX_External_Evt

eX_Poll_Receive_FTP
e*Way

eX_Poll_Receive_
FTP Collaboration

eX_Batch_from_DB_Event e*Xchange
Database

eX_Dyn_Inb_ftp
_Queue IQ
e*Xchange Partner Manager Implementation Guide 52 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Xchange Schema Components e*Xchange Partner Manager Components
Figure 14 eX_Batch_from_Trading_Partner e*Way Detail

The Event is sent to e*Xchange.

Configuring the eX_Batch_from_Trading_Partner e*Way

The eX_Batch_from_Trading_Partner e*Way supports minor changes regarding the
naming and location of files after the transfer has successfully completed and the
messages have been published to the eX_Trading_Port_Queue IQ. By default, the
remote files are renamed and local files are deleted.

The parameters that determine what happens to these files are set in the Subscribe to
External section.

eX_Sent_Batch_from_Trading_Partner Collaboration

This is a Pass Through Collaboration used to take the Event received from the
eX_Poll_Receive_FTP e*Way and send it to the external. The communication portion of
the eX_Sent_Batch_from_Trading_Partner e*Way then takes the Event and uses the
trading partner configuration information to issue the relevant FTP command to the
appropriate trading partner.

Table 4 Subscribe to External Parameters

Parameter Setting Description

Remote Command after
Transfer

archive The file is moved from the <path> defined in
the trading partner profile to <path>\ARCHIVE
Important: This directory must be created
manually.
Note: Unix is case-sensitive.

delete The file is deleted.

none This is not supported with this e*Way.

rename The file is renamed to <filename>.backup. The
location remains the same.

Trading
Partner

Trading
Partner

eX_External_Evt

eX_Batch_from_
Trading_Partner

e*Way
eX_Batch_from_
Trading_Partner

Collaboration
Trading
Partner

eX_from_Trading_PartnereX_Trading_
Port_Queue IQ

eX_Sent_Batch_
from_Trading_

Partner
Collaboration

eX_Batch_from_DB_Event

eX-batch-dynamic-
proc-out

eX_External_Evt
e*Xchange Partner Manager Implementation Guide 53 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Xchange Schema Components e*Xchange Partner Manager Components
Subscribed Event Type: eX_Batch_from_DB_Event

This Event carries information about the trading partners that have files to be retrieved
by FTP.

Published: eX_External_Evt

This Event carries the trading partner configuration information to the communications
half of the e*Way where it is used to format the FTP command sent to the trading
partner.

eX_Batch_from_Trading_Partner Collaboration

This is a Monk Collaboration used to take the Event received from the Trading Partner
and send to e*Gate.

Subscribed Event Type: eX_External_evt

This Event carries the Event retrieved from the trading partners.

Published: eX_from_Trading_Partner

This Event carries the Event retrieved from the trading partners and forwards it to
e*Gate.

5.3.9 eX_Mux_from_Trading_Partner e*Way
The eX_Mux_from_Trading_Partner e*Way is a CGI Web Server e*Way that
communicates with a CGI e*Way client running on a Web server. This allows
information sent to the Web server by a trading partner to be picked up and processed
by e*Xchange.

Figure 12 illustrates the eX_Mux_from_Trading_Partner e*Way.

Figure 15 eX_Mux_from_Trading_Partner e*Way Detail

How the CGI Web Server e*Way Works

1 The trading partner posts eBusiness data to the Web server.

eX_Mux_from_Trading
_Partner e*Way

cgi_Request
_Ack_Collab
Collaboration

eX_Trading_
Port_Queue IQ

eX_Mux_from_
Trading_Partner

Collaboration

cgi_Web_Request
eX_from_Trading_Partner

cgi_Request_Ack

cgi_Request_Ack cgi_Request_Ack

Trading
Partner CGI

e*Way
Client

Web
Server 2

4

1

3

5

6

e*Xchange Partner Manager Implementation Guide 54 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Xchange Schema Components e*Xchange Partner Manager Components
2 The CGI e*Way client program adds tracking information and forwards the
eBusiness message to the eX_Mux_from_Trading_Partner e*Way.

3 The eX_Mux_from_Trading_Partner Collaboration extracts the trading partner
name from the tracking information provided by the CGI e*Way client and
publishes the eBusiness message data as a standard e*Xchange Event
(eX_from_Trading_Partner) to the eX_Trading_Port_Queue IQ. In addition, the
Collaboration creates an acknowledgment Event (cgi_Request_Ack) with the same
Mux tracking number as the original post and publishes it to the
eX_Trading_Port_Queue IQ.

4 The cgi_Request_Ack_Collab Collaboration picks up the acknowledgment Event
and forwards it to the CGI client on the Web server.

5 The CGI client matches up the acknowledgment with the original post.

6 The trading partner receives a response from the Web server indicating that the
data has been sent successfully to e*Xchange.

Configuring the eX_Mux_from_Trading_Partner e*Way

Configuring the eX_Mux_from_Trading_Partner e*Way is a two step process.

1 Set up the cgi client on the Web server.

2 Specify the port over which the CGI e*Way server listens for connections from the
CGI e*Way client.

Setting up the CGI client

The following is a brief discussion of setting up the CGI e*Way client. For more
information about setting up client software used by the CGI e*Way, see the CGI Web
Server e*Way User’s Guide.

1 Install the cgi client files on the Web server.

The files stc_common.dll, stc_ewipmpclnt.dll, and stcewcgi.exe, provided as part
of the CGI e*Way add-on installation, should be placed at the document root
location on the Web server host machine.

2 Modify the configuration file for the Web server.

You must add the following environment variables to the virtual host setup for the
port over which the trading partners send data to the Web server. These variables
are used by the CGI e*Way Client.

" STC_EW_SERVER_NAME—The host name or IP address of the machine
running the CGI Web server e*Way. If the parameter is not supplied, the default
is localhost.

" STC_EW_SERVER_PORT—The port number on which the CGI Web server
e*Way is listening. If the parameter is not supplied, or a value of zero (0) is
supplied, the default port number is used.

" STC_EW_SECONDS_TO_EXPIRE—The number of seconds the message is
active in the e*Gate system. host name or IP address of the machine running the
e*Xchange Partner Manager Implementation Guide 55 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Xchange Schema Components e*Xchange Partner Manager Components
CGI Web server e*Way. If the parameter is not supplied, the default is zero (0),
indicating that the message remains active indefinitely.

" STC_EW_MILLISECONDS_TO_WAIT—The number of milliseconds the CGI
e*Way Client waits for the response from the CGI e*Way Server. The CGI
e*Way Client displays an error message if the CGI e*Way Server fails to respond
in the given time period. If the parameter is not supplied, a value of ten
thousand (10,000) is the default.

" DocumentRoot—The location on the Web server taken as the starting point for
relative paths to files for this virtual host setup. For example, if the
DocumentRoot for port 690 is opt/web/htdocs/exchange and a request is made
to the following URL http://www.stc.com:690/4.1.2/stcewcgi.exe, the file is
found at the location opt/web/htdocs/exchange/4.1.2/stcewcgi.exe on the Web
server.

The virtual host setup containing all the above environment variables can be kept in
a separate file and called using the include command from within the Web server’s
configuration file.

Specifying the Request Reply IP Port

You must edit the eX_Mux_from_Trading_Partner e*Way’s configuration file and
enter the appropriate port number. This port should be the same as the port specified
by the STC_EW_SERVER_PORT environment variable used by the CGI e*Way client.

eX_Mux_from_Trading_Partner Collaboration

This Collaboration takes the information in the cgi_Web_Request Event and uses it to
construct a standard e*Xchange Event (eX_from_Trading_Partner) to be processed by
e*Xchange. In addition, it creates an acknowledgment Event (cgi_Request_Ack) to be
sent back to the trading partner telling it that the information has been successfully
placed into e*Xchange for processing.

The Collaboration creates the trading partner name used by e*Xchange by
concatenating the values of HTTP_HOST and REQUEST_URI as follows

https://<HTTP_HOST><REQUEST_URI>

Subscribed Event Type: cgi_Web_Request

This is the Event is provided by the CGI client. It contains the 24 byte Mux header used
to match up the request with the reply, URL tracking information, and the data
contained in the Web server post.

Published Event Types:

! eX_from_Trading_Partner—This is the e*Xchange Event created from the Web
server post and contains the post information along with the required e*Xchange
tracking information.

! cgi_Request_Ack—This Event contains the 24 byte Mux header along with the
acknowledgment text “Post Accepted”.
e*Xchange Partner Manager Implementation Guide 56 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Xchange Schema Components e*Xchange Partner Manager Components
cgi_Request_Ack_Collab Collaboration

This is a Pass Through Collaboration that picks up the cgi_Request_Ack Event and
publishes it outside of e*Gate where it is picked up by the CGI e*Way client running on
the Web server.

Subscribed Event Type: cgi_Request_Ack

This Event contains the 24 byte Mux header along with the acknowledgment text “Post
Accepted”.

Published Event Types: cgi_Request_Ack

This Event contains the 24 byte Mux header along with the acknowledgment text “Post
Accepted”.

5.3.10 eX_POP3_from_Trading_Partner e*Way
The eX_POP3_from_Trading_Partner e*Way sends enveloped eBusiness messages to
e*Xchange.

Figure 12 illustrates the eX_POP3_from_Trading_Partner e*Way.

Figure 16 eX_POP3_from_Trading_Partner e*Way Detail

The Event is sent to e*Xchange.

Configuring the eX_POP3_from_Trading_Partner e*Way

No configuration is required.

eX_POP3_from_Trading_Partner Collaboration

This is a Pass Through Collaboration used to send the Event to e*Gate. The
communication portion of the eX_POP3_from_Trading_Partner e*Way receives the
Event via POP 3 and sends into e*Gate.

Subscribed Event Type: eX_External_Evt

This Event carries the enveloped Event along with the destination information (URL)
used by the eX_POP3_from_Trading_Partner e*Way for transmission to the trading
partners.

eX_External_Evt

eX_POP3_from_
Trading_Partner

e*Way
eX_POP3_from_
Trading_Partner

Collaboration

Trading
Partner

eX_from_Trading_PartnereX_Trading_
Port_Queue IQ
e*Xchange Partner Manager Implementation Guide 57 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Xchange Schema Components e*Xchange Partner Manager Components
Published: eX_External_Evt

This Event carries the eBusiness message to the communications half of the e*Way
where it is forwarded to the trading partner.

5.3.11 eX_SMTP_to_Trading_Partner e*Way
The eX_SMTP_to_Trading_Partner e*Way sends enveloped eBusiness messages
designated for batch transmission to trading partners using email.

Figure 12 illustrates the eX_SMTP_to_Trading_Partner e*Way.

Figure 17 eX_SMTP_to_Trading_Partner e*Way Detail

The destination information for each Event is carried as part of the e*Xchange Event
data passed to the eX_SMTP_to_Trading_Partner e*Way. The information is
maintained in the e*Xchange database and applied to the Event at the same time that
the Event is enveloped for a specific trading partner.

Configuring the eX_SMTP_to_Trading_Partner e*Way

No configuration is required.

eX_SMTP_to_Trading_Partner Collaboration

This is a Pass Through Collaboration used to publish the Event outside of e*Gate. The
communication portion of the eX_SMTP_to_Trading_Partner e*Way then takes the
Event and sends via FTP to the appropriate trading partner.

Subscribed Event Type: eX_BATCH

This Event carries the enveloped Event along with the destination information (URL)
used by the eX_SMTP_to_Trading_Partner e*Way for transmission to the trading
partners.

Published: eX_External_Evt

This Event carries the eBusiness message to the communications half of the e*Way
where it is forwarded to the trading partner.

eX_External_Evt

eX_SMTP_to_
Trading_Partner

e*Way
eX_SMTP_to_

Trading_Partner
Collaboration

Trading
Partner

eX_SMTPeX_Trading_
Port_Queue IQ
e*Xchange Partner Manager Implementation Guide 58 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Xchange Schema Components e*Xchange Partner Manager Components
5.3.12 Send_to_ePM e*Way
In an e*Xchange implementation, e*Xchange requires one or more e*Gate components
to feed data into and take data from e*Xchange. Typically, these components are
e*Ways that connect to the business application providing the eBusiness data that is
sent to trading partners via e*Xchange.

These e*Ways are user defined, and the type of e*Way used depends on the source for
the eBusiness data. For example, if the source is a business application the e*Gate
e*Way that connects to that business application (such as Siebel) is used. If the source of
the data is already available in e*Gate, you can use a BOB instead of an e*Way.

The eXSchema installed as the e*Xchange backend includes two placeholder e*Ways,
Send_to_ePM and Receive_from_ePM that can be used as the starting point for this
functionality.

These e*Ways have all the Collaborations and routing defined, but the e*Way
executable must be selected and the configuration file must be created.

The following diagram illustrates these e*Ways.

Figure 18 Send_to_ePM and Receive_from_ePM e*Ways Detail

The Send_to_ePM e*Way initiates the process of sending data to e*Xchange. This
e*Way is user-defined, and its type is dependent upon the communication protocol
and/or application-specific requirements of the customer. The Collaboration within the
e*Way is also user-defined. It converts the external, proprietary data format supplied
by the application to the internal XML format required by e*Xchange.

Configuring the Send_to_ePM e*Way

The configuration details for this eWay depend on the type of external system to which
it connects. In general you must

eX_External_Evt

Send_to_ePM
e*Way

Send_to_ePM
Collaboration

Business
Application Receive_from_ePM

e*Way

Receive_from_ePM
Collaboration

eX_to_ePM

eX_External_Evt eX_to_eBPM

eX_eBPM
IQ
e*Xchange Partner Manager Implementation Guide 59 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Xchange Schema Components e*Xchange Partner Manager Components
! Choose the e*Way executable

! Create the configuration file

! Edit the Collaboration Rules Script used by the Send_to_ePM Collaboration

See the e*Way User’s Guide for the e*Way type you wish to use for this e*Way for more
detailed configuration information.

Send_to_ePM Collaboration

The Send_to_ePM Collaboration must use the data it receives from the business
application to create the Event sent to the e*Xchange engine. Specifically it must do the
following:

! convert the data to an XML-compatible format and put it in the e*Xchange payload
node of the e*Xchange standard Event

! populate the e*Xchange-required tracking nodes in the e*Xchange standard Event

Subscribed Event Type: eX_External_Evt

This Event Type corresponds to the inbound data provided by the external application.

Published Event Type: eX_to_PM

This Event carries the e*Xchange formatted data to the e*Xchange engine.

Converting Business Application Data to e*Xchange Format

You must copy the eBusiness message data to the payload node
(TP_EVENT.CT.DSN.DS.Payload.CT.DSN.Data) of the eX_Standard_Event.ssc ETD
for the Event that is sent to e*Xchange.

If this data contains characters that conflict with the XML structure of the e*Xchange
standard Event, the data must be converted to base 64 encoding prior to being copied.

You can convert the data in the START_BP Collaboration by using the Monk function
raw->base64.

Note: Make sure that the stc_monkutils.dll that contains the function raw->base64 is
loaded before using raw->base64 in a Collaboration Rules Script. For example, you
may use the command: load-extension “stc_monkutils.dll” in the CRS itself or
you may put path to a file that loads in the initialization file box in the
Collaboration Rule that uses the CRS. See “Convert the Event to Base 64
Encoding” on page 73 for an example of how to do the later.

e*Xchange-required Tracking Nodes

The following three nodes in the eX_Standard_Event.ssc ETD must be populated in the
Event sent to the e*Xchange engine:

! TP_EVENT.CT.DSN.DS.MessageID.CT.DSN.Data node must be filled with a
unique ID for the Event, if the message is outbound with no validation checking.
e*Xchange Partner Manager Implementation Guide 60 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Xchange Schema Components e*Xchange Partner Manager Components
! TP_EVENT.CT.DSN.DS.Direction.CT.DSN.Data node must be filled with the
string “I” designating it an inbound to e*Xchange Event.

! TP_EVENT.CT.DSN.DS.PartnerName.CT.DSN.Data node must be filled with the
logical name of the trading partner to which the EDI message is being sent. This
name corresponds to the case sensitive text found in the Logical Name box on the
General tab of the outer envelope for the trading partner in the e*Xchange GUI.

5.3.13 Receive_from_ePM e*Way
The Receive_from_ePM e*Way takes eBusiness data received from trading partners
and processed by e*Xchange and formats it for use by the destination business
application that requires it. This e*Way is user-defined, and the type chosen depends
upon the communication protocol and/or application-specific requirements of the
business application or other external to e*Gate destination to which it connects. The
Collaboration within the e*Way is also user-defined. It must convert the eBusiness data
from the e*Xchange XML format back into the format required by the destination
system.

Configuring the Receive_from_ePM e*Way

The Receive_from_ePM e*Way must be configured by the user. You must select the
type of e*Way create the configuration file, and then edit the Collaboration Rules Script
used by the Receive_from_ePM Collaboration.

See the e*Way User’s Guide for the e*Way type you wish to use as the
Receive_from_ePM e*Way for more detailed configuration information.

Receive_from_ePM Collaboration

This Collaboration takes data from a trading partner, processed by e*Xchange, and
formats it for use by the business application to which the Receive_from_ePM e*Way
connects. You must edit the placeholder Collaboration (Receive_from_ePM) provided
with the default Receive_from_ePM e*Way so that it performs this translation.

Subscribed: eX_to_eBPM

This Event carries the de-enveloped trading partner data to the eX_eBPM IQ where it is
picked up by the Receive_from_ePM Collaboration.

Published: eX_External_Evt

This Event carries the properly formatted data received from a trading partner to the
business application.

5.3.14 eX_from_Trading_Partner e*Way
The eX_from_Trading_Partner e*Way is not included as part of the default eXSchema
installation. Because of the wide variety of methods used by trading partners to
transmit eBusiness data, it is impossible to predict in advance the type of e*Way needed
(Batch, HTTP, TCP/IP, etc.) or the type of data translation required to bring the data
into e*Xchange for a particular trading partner. Therefore, this e*Way must be added to
e*Xchange Partner Manager Implementation Guide 61 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Xchange Schema Components e*Xchange Partner Manager Components
the e*Xchange schema and configured for a trading partner on a per entity basis.
Typically, there are several e*Ways of this type that need to be added to a large
e*Xchange implementation.

The following discussion focuses on the requirements for the e*Xchange Event that this
e*Way type must create and send to e*Xchange. The eX_from_Trading_Partner e*Way
must ensure that the data coming into the e*Xchange system is in the proper XML
format, and that the nodes in the e*Xchange standard Event, required for processing by
the e*Xchange and the e*Insight, are populated.

The following diagram illustrates an example of an inbound e*Way.

Figure 19 eX_from_Trading_Partner e*Way Detail

Configuring the eX_from_Trading_Partner e*Way

The configuration for the eX_from_Trading_Partner e*Way depends on the type of
e*Way it is, Batch, HTTP, TCP/IP, etc. and the amount of required to get the data into
standard e*Xchange format. See the e*Way User’s Guide for the e*Way type selected for
more detailed information on configuration.

eX_from_Trading_Partner Collaboration

This user-defined Collaboration must put the data coming in from the external trading
partner into the e*Xchange standard format. In addition it must ensure that the
required tracking information is included in the Event sent to the e*Xchange engine.
Specifically, this includes:

! The Message ID (a unique identifier for the message)

If this is an acknowledgment to a previously sent out eBusiness message, it should
use the same identifier as the original Event.

! The Direction of the Event (“I” = inbound to e*Xchange)

! The Partner Name

This must correspond exactly to the Logical Name used in the outer envelope of the
trading partner profile.

! Message Type (“RAW”, “PROCESSED”, or “ENCRYPTED”)

These nodes are explained in more detail in and in the e*Xchange Partner Manager
User’s Guide. Also, see Populate the Required e*Xchange Nodes on page 74 for an

eX_External_Evt

eX_from_Trading
_Partner e*Way

eX_from_
Trading_Partner

Collaboration

Trading
Partner

eX_Trading_
Port_Queue IQ

eX_from_Trading_Partner
e*Xchange Partner Manager Implementation Guide 62 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
e*Xchange Schema Components e*Xchange Partner Manager Components
example of a Monk Collaboration that does this, or see Populate the Required
e*Xchange Nodes on page 81 for an example of a Java Collaboration that does this.

Subscribed Event Type: eX_External_Evt

This Event carries the data that comes from the trading partner. Depending on the
amount of pre-processing the data has received, this Event may or may not be in the
XML format, with the required nodes populated as needed by the e*Xchange system.

Published Event Type: eX_from_Trading_Partner

This Event carries e*Xchange formatted data to the e*Xchange engine. All inbound
e*Xchange e*Ways publish data from the trading partner using this Event Type.
e*Xchange Partner Manager Implementation Guide 63 SeeBeyond Proprietary and Confidential

Chapter 6

Using the Monk e*Xchange ETD

e*Xchange uses a single Event Type Definition (ETD) named eX_Standard_Event.ssc to
define Events as they move from one component to another in the e*Xchange system.
The ETD is an XML DTD in SeeBeyond’s proprietary messaging format. For a
description of the XML DTD see Appendix A.

All data going into and coming out of the e*Xchange components is parsed according
to the e*Xchange ETD. Understanding this ETD is the key to creating the Collaboration
Rules scripts necessary to process the data according to the rules determined by the
business process.

Note: The BP_EVENT location in the eX_Standard_Event.ssc contains information for
e*Insight Business Process Manager. You can ignore this section if your
implementation does not use e*Insight Business Process Manager. For more
information on the BP_EVENT location, refer to the e*Insight Business Process
Manager Implementation Guide.

6.1 ETD Structure
The first step in using the ETD is understanding the structure of the nodes in the
context of the XML message being created. Each level is structured in the same way.

The ETD contains a number of nodes that do not explicitly correlate to the XML DTD
but are required by the Monk engine to parse the XML data correctly. Table 5 lists these
facilitator nodes.

Table 5 Facilitator Nodes in the ETD

Name Description

CT A container node for an XML element. This node allows the
short and long forms of XML tags to coexist in the structure.

DSN Identifies a data section within an XML element. This is the
long form of the XML tag.

DS Identifies a data set within an XML element. The sub-elements
within a data set can occur in any order.

Empty The short form of the corresponding DSN node XML tag.

CM XML comment.
e*Xchange Partner Manager Implementation Guide 64 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Using the Monk e*Xchange ETD ETD Structure
The facilitator nodes always occur in a set order and define the structure of the XML
message. In the e*Xchange ETD, the facilitator nodes define three types of branches:

! XML element with sub-elements

! XML element without sub-elements

! XML attribute

6.1.1 XML Element with Sub-elements
The following diagram illustrates the ETD structure for an XML element that has sub-
elements.

Figure 20 XML Element with Sub-elements

Each XML element contains one child node, CT. CT identifies the parent node as an
XML element. The CT node contains two child nodes: DSN and Empty. DSN is the
long form of the XML tag (</tag>) and Empty is the short form (</>).

The DSN and DS nodes always occur as parent-child pairs. In this type of branch, DS
is the parent node for two types of child nodes:

! CM, which holds XML comments for the element

! <sub-element>, the name of a sub-element of the parent element

The DS node always contains a CM child node to hold XML comments. Each <sub-
element> node contains an ETD structure of its own, with the <sub-element> node as
the parent node for the branch.

6.1.2 XML Element without sub-elements
The following diagram illustrates the ETD structure for an XML element that does not
have sub-elements.

Data Holds the data for the element.

AS Identifies an XML attribute set within an XML element.

EQ The equals sign (“=”) within an XML attribute.

Value Holds the value for the XML attribute.

Table 5 Facilitator Nodes in the ETD

Name Description

<XML Element> CT

DSN

Empty

DS

CM

<Sub-element>

<Sub-element>
e*Xchange Partner Manager Implementation Guide 65 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Using the Monk e*Xchange ETD Element Overview
Figure 21 XML Element without sub-elements

Notice that the only difference between this diagram and the previous diagram is a
Data child node in place of the <sub-element> child nodes above. The Data node
contains the actual data for the XML element that is defined. When creating
Collaboration Rules scripts, you must map the XML element data to the Data nodes at
the terminal end of the element’s branch.

6.1.3 XML Attribute
The following diagram illustrates the ETD structure for an XML attribute.

Figure 22 XML Attribute

In this case, the XML element contains one child node, AS, which identifies the branch
as XML attributes of the parent element. The AS node contains the <XML Attribute>
nodes as child nodes. Each <XML Attribute> node has two child nodes: EQ to
represent the equal sign (=) in the attribute and Value which holds the actual value for
the attribute. When creating Collaboration Rules scripts, you must map the XML
attribute value to the Value nodes at the terminal end of the attribute’s branch.

6.2 Element Overview
The following diagram illustrates the entire e*Xchange ETD tree. Note that this is only a
diagrammatic representation of the tree, since the actual tree conforms to the node
structure described in “ETD Structure” on page 64.

<XML Element> CT

DSN

Empty

DS

CM

Data

<XML Element> AS

<XML Attribute>

<XML Attribute>

EQ

Value

EQ

Value
e*Xchange Partner Manager Implementation Guide 66 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Using the Monk e*Xchange ETD Element Overview
Figure 23 The e*Xchange ETD

All data pertinent to e*Xchange is contained in the XML element eX_Event. eX_Event
contains two distinct “trees”: BP_EVENT and TP_EVENT. BP_EVENT contains all of
the information pertaining to e*Insight. TP_EVENT contains all of the information
pertaining to e*Xchange. Both BP_EVENT and TP_EVENT are optional nodes in the
ETD. So if you use e*Insight to track business process activities but do not use
e*Xchange to send data to and from trading partners, you do not need to populate the
TP_EVENT element. Conversely, if you use e*Xchange to send data to and from
trading partners but do not track business process activities in e*Insight, you do not
need to populate the BP_EVENT element in your Collaboration Rules scripts.

Example: XML Element with Sub-elements

eX_Event is an example of a top-level XML element.

In this example, the CT, DSN, DS, Empty, and CM facilitator nodes describe the top-
level XML element eX_Event. Figure 24 shows the ETD structure for this element.

Figure 24 XML Element eX_Event

The eX_Event parent node contains one child node, CT. CT identifies eX_Event as an
XML element. The CT node contains two child nodes: DSN and Empty. DSN is the
long form of the XML tag (</eX_Event>) and Empty is the short form (</>).

The DSN and DS nodes always occur as parent-child pairs. DS is the parent node for
three child nodes:

! A CM node to hold XML comments for the element.

! BP_EVENT, a sub-element of eX_Event.

! TP_EVENT, a sub-element of eX_Event.

The DS node always contains a CM child node to hold XML comments. In this
example, the eX_Event element does not hold data directly, but contains two sub-
e*Xchange Partner Manager Implementation Guide 67 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Using the Monk e*Xchange ETD Element Overview
elements—BP_EVENT and TP_EVENT—which have similar facilitator node branches
associated with them.

The following example explains the structure of XML attributes.

Example: XML Element with Attributes

In this example, the AS and EQ facilitator nodes describe the XML attributes TYPE and
LOCATION. Both are XML attributes of the Payload element. Figure 25 shows the
ETD structure for these attributes.

Figure 25 XML Attribute Type
e*Xchange Partner Manager Implementation Guide 68 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Using the Monk e*Xchange ETD Using the ETD in e*Xchange
6.3 Using the ETD in e*Xchange
The e*Xchange engine uses the e*Xchange ETD to carry out enveloping and de-
enveloping the EDI messages it sends to and receives from trading partners. The
TP_EVENT location in the e*Xchange ETD contains data the e*Xchange engine uses to
track the EDI Event. TP_EVENT also contains the actual EDI message stored in the
Payload node.

TP_EVENT

All data relevant to e*Xchange processing is contained in the parent node TP_EVENT.
TP_EVENT contains fifteen elements as shown in Figure 26.

Figure 26 TP_EVENT

Because each of the categories is implemented as an XML element in the e*Xchange
ETD structure, the value for the element goes in the Data node at the end node
structure, as shown in Figure 27.
e*Xchange Partner Manager Implementation Guide 69 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Using the Monk e*Xchange ETD Using the ETD in e*Xchange
Figure 27 Location of Element Value

PartnerName

The value for this element must match the Logical Name in the Outer Envelope of the
trading partner profile.

InternalName

The name of the internal system sending the original data.

Direction

Direction of the transaction. Possible values are “O” for outbound Events going to the
trading partner or ”I” for inbound Events coming from the trading partner.

MessageID

A unique ID for each Event originating from a particular internal system. This tag
correlates data moving to and from a trading partner, with the original request sent
from the internal system.

OrigEventClass

The original Event classification. This tag is used to classify Events, not necessarily
originating from the same system, according to functional group. For example, a
request for price and availability could originate from one of many systems, but the
classification of the Events (QPA) would be the same.

UsageIndicator

Determines whether the Events being sent to the trading partner are for testing
purposes only or are part of a production environment. Possible values are “T“ for test
or “P“ for production.

Payload

This is the node structure in which you place the EDI message to be processed by
e*Xchange.

Unlike the other TP_EVENT elements, the Payload element has XML attributes
associated with it. These attributes qualify the value contained in the terminal Data
node. Figure 28 shows the Payload element’s node structure in the e*Xchange ETD.

Element value
goes here
e*Xchange Partner Manager Implementation Guide 70 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Using the Monk e*Xchange ETD Using the ETD in e*Xchange
Figure 28 Payload Node

You must supply values for the element, Payload, as well as the attributes for the
element, LOCATION and TYPE.

The following table lists acceptable values for LOCATION.

The following table lists acceptable values for TYPE.

Value Purpose

“FILE” Indicates that the value for the element can be found in the
file at the location specified in the Data node.

“DB” Indicates that the value for the element can be found in the
e*Xchange database at the location specified in the Data
node.

“URL” Indicates that the value for the element can be found at the
URL location specified in the Data node.

“EMBEDDED” Indicates that the value for the element is contained in the
current e*Xchange Event in the Data node. This is the
default value.

“AUTO” Reserved for future use.

Value Purpose

“RAW” Indicates that the data in the Data node is in ASCII format,
but not XML data that has been converted to ASCII using
base 64 or some other conversion. The data must not
contain any characters that would conflict with the XML
nature of the e*Xchange ETD (for example, EDI delimiters
that are the same as XML control characters).

“PROCESSED” Indicates that the data in the Data node is XML data that has
been encoded using the scheme described in the
ENCODING node. Currently only base 64 encoding is
supported.

“ENCRYPTED” Indicates that the data in the Data node has been
encrypted, and must be decrypted before it can be
processed by e*Xchange.
e*Xchange Partner Manager Implementation Guide 71 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Using the Monk e*Xchange ETD Sending Data to e*Xchange
The value for Payload, the EDI message to be processed by e*Xchange, must be placed
in the Data node at the end of the Payload element’s node structure.

CommProt

The communication protocol used by the trading partner. Possible values are BATCH,
HTTP, HTTPS, or TCPIP.

Url

The destination URL for the trading partner. The data is sent according to the value in
this field.

SSLClientKeyFileName

This node contains HTTPS security information.

SSLClientKeyFileType

This node contains HTTPS security information.

SSLClientCertFileName

This node contains HTTPS security information.

SSLClientCertFileType

This node contains HTTPS security information.

MessageIndex

This node contains information used by the “Fast Batch” feature of e*Xchange. Using
this feature a number of transactions of the same type can be bundled together and sent
out as a single batch transaction to a trading partner. Transactions using fast batch must
populate this node in the Event that is sent to e*Xchange using the following format:

<transaction number in bundle>|<total number of transactions to bundle together>

For example, if the Event sent to e*Xchange contains the 4th transaction of 20 that are
sent out together, this field must contain “4|20”. This is analogous to the “page X of
total pages” page numbering format used by some documents. When e*Xchange
receives the last transaction in the bundle, labeled 20|20, it sends all 20 transaction out
together.

TPAttribute

This is a repeating node containing a name/value pair that is used to add future
functionality to e*Xchange without having to change the structure of the eX ETD.

6.4 Sending Data to e*Xchange
You must create a Collaboration Rules Script that prepares the data coming into the
e*Xchange system. How complicated this task is depends on the state of the data before
the Collaboration processes it.

The Collaboration Rules Script must do the following:

! put the data into the appropriate format
e*Xchange Partner Manager Implementation Guide 72 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Using the Monk e*Xchange ETD Sending Data to e*Xchange
! convert the data to base 64 encoding

! populate the required nodes in the e*Xchange Event sent to e*Xchange for
processing

Put the Data into the Required Format

This step is only necessary if the data is not already in the appropriate format required
by the trading partner (X12, RosettaNet, or BizTalk). This would be the case where data
was coming from SAP in IDoc format and was not preprocessed into the correct format
by another Collaboration. In such a case, the Collaboration Rules Script must translate
the data into the required format before sending to e*Xchange.

This involves creating an ETD corresponding to the initial state of the data and an ETD
corresponding to the required EDI format. Most of these standard ETDs are already
pre-created and made available in the e*Xchange suite of tools. Next you build a
Collaboration that maps one format to the other. This mapping translation could be
called as a sub-translation from the main Collaboration prior to converting the entire
message to base 64.

Convert the Event to Base 64 Encoding

The Collaboration Rules Script must ensure that the data going into e*Xchange doesn’t
include any characters that cause problems for the XML structure of the standard
e*Xchange Event (for example, characters that are the same as the XML control
characters). This is done by converting the entire EDI message to base 64 encoding
using the Monk function raw->base64, before copying it to the payload node of the
eX_Standard_Event ETD.

Important: To use the Monk function raw->base64, you must make sure the file containing
this function has been loaded. You can do this by adding the following command to
the Initialization file box in the Collaboration Rules dialog box for the
Collaboration that uses this function:

monk_scripts\common\load_ext

This is shown in Figure 29.
e*Xchange Partner Manager Implementation Guide 73 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Using the Monk e*Xchange ETD Sending Data to e*Xchange
Figure 29 Send_to_ePM Collaboration Rules Properties Dialog Box

Populate the Required e*Xchange Nodes

In addition to copying the base 64 encoded message to the payload node of the
TP_EVENT portion of the e*Xchange standard Event, you must provide e*Xchange
with tracking information about the message.

e*Xchange Tracking Information

e*Xchange needs to know certain things about an message before it can apply the
proper enveloping and send it out to the trading partner. The Collaboration Rules
Script must supply this information by populating certain required nodes in the Event
that is sent to e*Xchange. At a minimum you must tell e*Xchange:

! Direction (inbound or outbound)

! Partner Name (logical name from the outer envelope in the e*Xchange)

All of these requirements can be met by copying the appropriate information to the
corresponding nodes in the TP section of the e*Xchange ETD (eX_Standard_Event.ssc).

The TP_EVENT.CT.DSN.DS.Direction.CT.DSN.DS.Data node must contain the
direction of the Event: “O” for outbound to the trading partner or “I” for inbound from
a trading partner.

The TP_EVENT.CT.DSN.DS.PartnerName.CT.DSN.DS.Data node must contain the
name (case-sensitive) of the trading partner from the Logical Name box on the General
tab of the outer envelope for this message.

The e*Xchange Payload

In addition to the tracking information, the
TP_EVENT.CT.DSN.DS.Payload.CT.DSN.DS.Data node must be filled with the
entire base 64 encoded message.

Figure 30 shows a Collaboration Rules Script with the necessary code to populate
eX_Standard_Event.ssc with the required values.

This command
loads the Monk
file where
raw->base64 is
defined
e*Xchange Partner Manager Implementation Guide 74 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Using the Monk e*Xchange ETD Sending Data to e*Xchange
Figure 30 Example Monk Collaboration Rules Script
e*Xchange Partner Manager Implementation Guide 75 SeeBeyond Proprietary and Confidential

Chapter 7

Using the Java e*Xchange ETD

e*Xchange generally uses the Monk service for collaborations. However, the Java
collaboration service can be used to transform an event from or to another format when
sending the Event into e*Gate.

7.1 Understanding the Java e*Xchange ETD
e*Xchange uses a Java Event Type Definition (ETD) named eX_StandardEvent.xsc to
define Events as they move from one component to another in the e*Xchange system.
The ETD is an XML DTD in SeeBeyond’s proprietary messaging format. For a
description of the XML DTD see Appendix A.

All data going into and coming out of the e*Xchange components is parsed according
to the e*Xchange ETD. Understanding this ETD is the key to creating the Collaboration
Rules scripts necessary to process the data according to the rules determined by the
business process.

Note: When you install the e*Gate e*Xchange Schema, eIX_StandardEvent.xsc is also
created. This ETD has a BP_EVENT location that is used for e*Insight Business
Process Manager. You should use this ETD if your implementation requires both
e*Insight and e*Xchange. For more information on the BP_EVENT location, refer
to the e*Insight Business Process Manager Implementation Guide.

7.2 Element Overview
The following diagram illustrates the entire e*Xchange ETD tree.
e*Xchange Partner Manager Implementation Guide 76 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Using the Java e*Xchange ETD Element Overview
Figure 31 The e*Xchange ETD

7.2.1 Using the ETD with e*Xchange
The e*Xchange engine uses the e*Xchange ETD to carry out enveloping and de-
enveloping messages it sends to and receives from trading partners. The TP_EVENT
location in the e*Xchange ETD contains data the e*Xchange engine uses to track the
Event. TP_EVENT also contains the actual EDI message stored in the Payload node.

TP_EVENT

All data relevant to e*Xchange processing is contained in the parent node TP_EVENT.
TP_EVENT contains fifteen elements as shown in Figure 32.

Figure 32 TP_EVENT

PartnerName

The value for this element must match the Logical Name in the B2B Protocol section of
the trading partner profile.

InternalName

The name of the internal system sending the original data.
e*Xchange Partner Manager Implementation Guide 77 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Using the Java e*Xchange ETD Element Overview
Direction

Direction of the transaction. Possible values are “O” for outbound Events going to the
trading partner or ”I” for inbound Events coming from the trading partner.

MessageID

A unique ID for each Event originating from a particular internal system. This tag
correlates data moving to and from a trading partner, with the original request sent
from the internal system.

OrigEventClass

The original Event classification. This tag is used to classify Events, not necessarily
originating from the same system, according to functional group. For example, a
request for price and availability could originate from one of many systems, but the
classification of the Events (QPA) would be the same.

UsageIndicator

Determines whether the Events being sent to the trading partner are for testing
purposes only or are part of a production environment. Possible values are “T“ for test
or “P“ for production.

Payload

This is the node structure in which you place the EDI message to be processed by
e*Xchange.

Unlike the other TP_EVENT elements, the Payload element has XML attributes
associated with it. These attributes qualify the value contained in the $text node. Figure
33 shows the Payload element’s node structure in the e*Xchange ETD.

Figure 33 Payload Node

You must supply values for the element, $text, as well as the attributes for the element,
LOCATION and TYPE.

The following table lists acceptable values for LOCATION.

Value Purpose

“FILE” Indicates that the value for the element can be found in the
file at the location specified in the Data node.

“DB” Indicates that the value for the element can be found in the
e*Xchange database at the location specified in the Data
node.

“URL” Indicates that the value for the element can be found at the
URL location specified in the Data node.

“EMBEDDED” Indicates that the value for the element is contained in the
current e*Xchange Event in the Data node. This is the
default value.
e*Xchange Partner Manager Implementation Guide 78 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Using the Java e*Xchange ETD Element Overview
The following table lists acceptable values for TYPE.

The value for Payload, the EDI message to be processed by e*Xchange, must be placed
in the Data node at the end of the Payload element’s node structure.

CommProt

The communication protocol used by the trading partner. Possible values are BATCH,
HTTP, HTTPS, or TCPIP.

Url

The destination URL for the trading partner. The data is sent according to the value in
this field.

SSLClientKeyFileName

This node contains HTTPS security information.

SSLClientKeyFileType

This node contains HTTPS security information.

SSLClientCertFileName

This node contains HTTPS security information.

SSLClientCertFileType

This node contains HTTPS security information.

MessageIndex

This node contains information used by the “Fast Batch” feature of e*Xchange. Using
this feature a number of transactions of the same type can be bundled together and sent
out as a single batch transaction to a trading partner. Transactions using fast batch must
populate this node in the Event that is sent to e*Xchange using the following format:

“AUTO” Reserved for future use.

Value Purpose

“RAW” Indicates that the data in the Data node is in ASCII format,
but not XML data that has been converted to ASCII using
base 64 or some other conversion. The data must not
contain any characters that would conflict with the XML
nature of the e*Xchange ETD (for example, EDI delimiters
that are the same as XML control characters).

“PROCESSED” Indicates that the data in the Data node is XML data that has
been encoded using the scheme described in the
ENCODING node. Currently only base 64 encoding is
supported.

“ENCRYPTED” Indicates that the data in the Data node has been
encrypted, and must be decrypted before it can be
processed by e*Xchange.

Value Purpose
e*Xchange Partner Manager Implementation Guide 79 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Using the Java e*Xchange ETD Sending a Message to e*Xchange
<transaction number in bundle>|<total number of transactions to bundle together>

For example, if the Event sent to e*Xchange contains the 4th transaction of 20 to be sent
out together, this field must contain “4|20”. This is analogous to the “page X of total
pages” page numbering format used by some documents. When e*Xchange receives
the last transaction in the bundle, labeled 20|20, it sends all 20 transaction out together.

TPAttribute

This is a repeating node containing a name/value pair that is used to add future
functionality to e*Xchange without having to change the structure of the eX ETD.

7.3 Sending a Message to e*Xchange
The Collaboration Rules Script that sends data to e*Xchange must do the following:

! put the data into the appropriate format

! convert the data to base 64 encoding

! populate the required nodes in the e*Xchange Event sent to e*Xchange for
processing

Put the Data into EDI Format

This step is only necessary if the data is not already in the appropriate format required
by the trading partner (X12, RosettaNet or BizTalk). This would be the case where data
was coming from SAP in IDoc format and was not preprocessed into the required
format by another Collaboration. In such a case, the e*Way must translate the data into
the required format before sending to e*Xchange.

This involves creating an ETD corresponding to the initial state of the data and an ETD
corresponding to the required format. Most of these standard ETDs are already pre-
created and made available in the e*Xchange suite of tools. Next you build a
Collaboration that maps one format to the other. This mapping translation could be
called as a sub-translation from the main Collaboration prior to converting the entire
message to base 64.

Convert the Event to Base 64 Encoding

The Collaboration must ensure that the data going into e*Xchange doesn’t include any
characters that will cause problems for the XML structure of the standard e*Xchange
Event (for example, characters that are the same as the XML control characters). This is
done by converting the entire EDI message to base 64 encoding using the method
string2base64, before copying it to the payload node of the eX_StandardEvent ETD.

For example:

getOut().getTP_EVENT().getPayload().set$Text(Base64.string2base64(get
In().getData()))

This converts the contents of getIn().getData() to base 64 encoding before copying to
the $text node.
e*Xchange Partner Manager Implementation Guide 80 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Using the Java e*Xchange ETD Sending a Message to e*Xchange
Populate the Required e*Xchange Nodes

In addition to copying the base 64 encoded message to the payload node of the
TP_EVENT portion of the e*Xchange standard Event, you must provide e*Xchange
with tracking information about the message.

e*Xchange Tracking Information

e*Xchange needs to know certain things about a message before it can apply the proper
enveloping and send it out to the trading partner. The Collaboration Rules Script must
supply this information by populating certain required nodes in the Event that is sent
to e*Xchange. At a minimum you must tell e*Xchange:

! Direction (inbound or outbound)

! Partner Name (logical name from the outer envelope in the e*Xchange)

All of these requirements can be met by copying the appropriate information to the
corresponding nodes in the e*Xchange ETD (eX_StandardEvent.xsc).

The TP_EVENT.Direction node must contain the direction of the Event: “O” for
outbound to the trading partner or “I” for inbound from a trading partner.

The TP_EVENT.PartnerName node must contain the name (case-sensitive) of the
trading partner from the Logical Name box on the General page of the B2B Protocol for
this message.

The e*Xchange Payload

In addition to the tracking information, the payload data must be provided. The
TP_EVENT.Payload.$text node must be filled with the entire base 64 encoded EDI
message.

Figure 34 shows a Collaboration Rules Script with the necessary code to populate
eX_StandardEvent.xsc with the required values.
e*Xchange Partner Manager Implementation Guide 81 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Using the Java e*Xchange ETD Sending a Message to e*Xchange
Figure 34 Example Java Collaboration Rules Script
e*Xchange Partner Manager Implementation Guide 82 SeeBeyond Proprietary and Confidential

Chapter 8

Implementation Overview

This chapter provides a high-level overview of the steps involved in an e*Xchange
implementation, and by doing so provides background information for the case study
chapters that follow it.

8.1 Basic Information
Implementing an e*Xchange system is the process of translating the vision of the
business analyst into a functioning system. Once the analyst has determined that a
certain business task must be accomplished with e*Xchange, it is the job of the
implementor to make this a reality.

You implement e*Xchange by using the e*Xchange GUIs to enter the relevant data into
the e*Xchange database. Then you combine the e*Xchange e*Gate components with
other e*Gate components you add to create a complete e*Xchange schema. The
e*Xchange components are mostly pre-configured and do not require any (or very
slight) modification by the implementor. The components that you add are completely
user-defined. However, the e*Xchange GUIs and this guide provide a framework for
integrating these user-defined components into a working e*Xchange system.

8.1.1 Types of e*Xchange Implementations
The e*Xchange system is designed for the large-scale integration of information
systems, both inside and outside of an enterprise, in order to run and monitor business
processes. The details of the business processes themselves depend on the nature of the
business.

Not every business process takes advantage of every feature built into the e*Xchange
suite. Because of this, some e*Xchange implementations can use a simplified eXSchema.

8.2 Implementation Road Map
Clearly, each type of implementation involves a different approach. However, at a high
level, there are certain similarities.
e*Xchange Partner Manager Implementation Guide 83 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.2
Implementation Overview Implementation Road Map
In general, the work of implementing an end-to-end scenario with e*Xchange involves
taking what is created in e*Xchange and integrating it into a working e*Gate schema.
e*Gate powers every e*Xchange scenario, and a successful e*Xchange implementation
is dependent on a successful e*Gate implementation.

To give you an overview of the complete process, the following implementation road
map contains high-level steps for a full e*Xchange implementation. The road map is
further refined and given more detail in the case study chapters that immediately
follow this one.

Figure 35, on the next page, illustrates the major steps in the integration process for an
e*Xchange implementation.

Figure 35 Integration Road Map

Step 1: Determine the Scope of the Project

Determine the type of implementation

The tasks involved in implementing e*Xchange differ depending on the type of
implementation.

Step 1

Create Trading
Partner Profiles

Determine the
Scope of the

Project

GUI

Step 2

Configure
the e*Gate

Components
Step 4

Step 5 Test the System

Step 3 Copy the
eXSchema
e*Xchange Partner Manager Implementation Guide 84 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.2
Implementation Overview Implementation Road Map
Analyze the business process

The business analyst must perform the standard tasks of analysis to develop a clear
representation of the business process. It is a good idea to have diagrams of the process
and a list of the data that must be tracked within the business process. These provide
highly beneficial starting points for working with the e*Xchange GUIs.

Step 2: Create Trading Partner Profiles

1 Create the custom validation Collaborations you need. For X12 or UN/EDIFACT
protocol implementations, use the Validation Rules Builder tool to help create these
validation Collaborations.

2 Enter the trading partner information into the e*Xchange database.

For information on entering Trading Partner information, see the e*Xchange Partner
Manager User’s Guide.

Step 3: Copy the eXSchema

When beginning an integration project, make a copy of the e*Xchange schema,
eXSchema, that is installed from the CD. Don’t make any modifications to eXSchema
itself; keep it as a template. Make changes to the copy of the eXSchema that you create.
Use this copy as your starting point in e*Gate for supporting e*Xchange.

Use the following procedure to create a copy of the eXSchema:

1 Open the eXSchema in the e*Gate Enterprise Manager GUI.

A Start the e*Gate Enterprise Manager.

B Log in to eXSchema.

2 Export the eXSchema to a file c:\eGate\client\<eXSchema backup file name>.

A Select Export Schema Definitions to File ... from the File pull-down menu.

B In the Select archive File dialog box enter <eXSchema backup file name> in the
File name text box, then click Save.

3 Create a new schema using the eXSchema export file as a template.

A Select New Schema from the File pull-down menu.

B Enter <new e*Xchange schema name> in the text box.

C Mark the Create from export check box.

D Click Find and browse for the <eXSchema backup file name> file created in step 2
above.

E Click Open.

The Enterprise Manager creates a copy of the eXSchema with the schema name
entered in step 3B above.
e*Xchange Partner Manager Implementation Guide 85 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.2
Implementation Overview Implementation Road Map
Step 4: Configure the e*Gate Components

Configuring the e*Gate components forms the majority of the integration work done. In
this step, you will:

! add and configure the e*Ways that send data into and out of the e*Xchange system

! make all user-configurable associations in the e*Gate GUI

Step 5: Test and Tune the System

It is a good idea to test the system in stages. For example, make sure that one activity
works properly before you try to run the entire business process. One good approach is
to start with the “upstream” activities at the beginning of the business process, and
work your way down to the last activity.

Once you have the entire system working, make adjustments as necessary to improve
performance.
e*Xchange Partner Manager Implementation Guide 86 SeeBeyond Proprietary and Confidential

Chapter 9

e*Xchange Implementation—X12

This chapter discusses the steps involved to create an e*Xchange implementation that
transfers X12 data.

The components for this implementation are provided on your installation CD. For
instructions on installing and using the implementation components, see “Using the
Implementation Sample” on page 90.

9.1 Overview
An e*Xchange implementation makes use of the features designed to add and remove
the EDI enveloping information for messages exchanged between trading partners.

In an e*Xchange implementation, use the e*Xchange Partner Manager Web interface to
set up the trading partner information, and the e*Gate Enterprise Manager GUI to add
user-defined e*Gate components to provide connectivity to the business application or
trading partner. Once this is done, the pre-configured e*Xchange e*Gate schema
components handle enveloping and de-enveloping Events as they travel through the
e*Xchange system.

The major steps for an e*Xchange implementation are as follows:

1 Create any needed validation Collaborations.

2 Create the Trading Partner profiles.

3 Configure the user-defined e*Ways that will connect the business application to
e*Xchange.

4 Configure the e*Xchange e*Way.

5 Run and test the scenario.

9.1.1 Case Study: Sending an X12 850 Purchase Order
The case study discussed in this chapter illustrates one possible implementation of
sending out a purchase order to a trading partner.

In this example, an X12 Version 4010 850 purchase order is sent out from a (simulated)
internal application to an external trading partner using a Batch e*Way. The X12
enveloping is automatically added to the message by e*Xchange based on trading
e*Xchange Partner Manager Implementation Guide 87 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
e*Xchange Implementation—X12 Overview
partner information retrieved from the e*Xchange database, before it is sent to the
outbound Batch e*Way.

Typically, the purchase order information would be provided by a business application
and may or may not be in X12 format. A user-defined e*Way must be created to connect
to a business application in order to receive the data and put it into the proper X12
format. The schema contains an e*Way named Send_to_ePM that you can use as a
starting point. In order to simplify this example, the purchase order information is
provided in the form of a text file that is already in X12 850 format.

This example provides instructions for creating e*Ways that use both the Java and
Monk Collaboration Services to create the event that is sent to e*Xchange.

Note: This example does not use a return acknowledgment. Therefore, the step covering
configuration of the e*Ways used to receive data back from a trading partner is not
covered in this chapter.
e*Xchange Partner Manager Implementation Guide 88 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
e*Xchange Implementation—X12 Overview
Figure 36 e*Xchange Scenario Data Flow

Figure 36 data flow description

The Send_to_ePM_Java or Send_to_ePM_Monk e*Way picks up the text file
containing the 850 Purchase order, puts the data into standard e*Xchange format,
adds the tracking information required by e*Xchange, and then publishes it to the
eX_eBPM IQ in e*Gate.

The eX_ePM e*Way picks up the e*Xchange Event from the eX_eBPM IQ, retrieves
the trading partner information from the e*Xchange database, and then uses the
retrieved trading partner information to add the X12 enveloping to the Event, and
then places it in the eX_Trading_Port_Queue IQ using the eX_BATCH Event Type.

The eX_Batch_to_Trading_Partner e*Way picks up the eX_BATCH Event from the
eX_Trading_Port_Queue IQ, and then sends the message via FTP to the trading
partner.

1

3

Order

e*Xchange
Database

Send_to_ePM
e*Way eX_ePM

Engine

Order

eX_eBPM
IQ

eX_Trading_
Port_Queue IQ

eX_Batch_to_
Trading_

Partner e*Way

2

1

2

3

e*Xchange Partner Manager Implementation Guide 89 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
e*Xchange Implementation—X12 Using the Implementation Sample
9.2 Using the Implementation Sample
The components for this implementation are provided on your installation CD, and are
located in \setup\ex\sample\X12_Implementation_Sample.zip. Follow these steps
to install the components:

1 Unzip the file to a local directory.

2 Install the e*Gate schema using one of the following commands. The instructions
refer to the schema name X12, however, this is user-defined.

Note: The default registry port number is 23001.

A For Unix

sh install_po.sh <egate_registry_host_name> <schema_name>
<user_name> <password> <egate_registry_port_num>

B For Windows

install_po.bat <egate_registry_host_name> <schema_name>
<user_name> <password> <egate_registry_port_num>

3 Use the e*Xchange Import function in e*Xchange Client for Windows or e*Xchange
Repository Manager, to import Savvy_Toy_Company.exp into e*Xchange Partner
Manager.

4 Copy eXchange_PO.~in to<egate>\client\data\eXchange.

5 Refer to “Step 3: Set Up the B2B Protocol Information” on page 95 and ensure that
the directory referred to in the File Name parameter matches the location of the file
eXchange_PO.~in, as set up in step 4 above. If it does not, change the File Name
parameter value.

6 Refer to either Table 12 on page 98 (Java) or Table 15 on page 101 (Monk) and
ensure that the directory referred to in the PollDirectory parameter exists. If it does
not, either create the directory or change the PollDirectory parameter value.

7 Configure the eX_ePM e*Way as described in “Configure the eX_ePM e*Way” on
page 104.

The steps on the following pages describe how the components for this implementation
were created. See “Run and Test the e*Xchange Scenario” on page 105 for instructions
to run the implementation.
e*Xchange Partner Manager Implementation Guide 90 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.3
e*Xchange Implementation—X12 Create Necessary Validation Collaborations
9.3 Create Necessary Validation Collaborations
Creating an X12 validation Collaboration is a two-step process:

1 Create the Standard Exchange Format (SEF) file.

2 Use the Validation Rules Builder (VRB) tool to create the validation Collaborations
based on the SEF file.

9.3.1 Create the SEF File
e*Xchange includes many generic X12 validation Collaborations that you can use to
verify the format of X12 EDI messages. You can use these as supplied, or modify them
to fit your particular needs. In addition, the e*Xchange suite includes a tool, the VRB,
for building customized validation Collaborations directly from a SEF file. You create
the SEF file with a third-party Implementation Guide editor using the EDI
Implementation Guide for your industry.

Figure 37 shows a portion of the SEF file created for the e*Xchange example, using
Foresight’s EDISIM software.

Figure 37 e*Xchange SEF File

9.3.2 Create the Validation Collaboration with the VRB
To create the validation Collaboration using the VRB, you must edit the VRB properties
file, and then run the VRB tool against the SEF file. This process generates the
corresponding CRS (.tsc) and ETD (.ssc) files needed by e*Xchange.

Figure 38 shows the edited ValidationBuilder.properties file used to create the
validation Collaboration used in this example.
e*Xchange Partner Manager Implementation Guide 91 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.3
e*Xchange Implementation—X12 Create Necessary Validation Collaborations
Figure 38 Edited VRB Properties File

Once the VRB file has been edited and saved you must run the VRB tool.

! From a command prompt within the ValidationRulesBuilder directory, enter the
following command:

java -jar c:\eGate\client\classes\ValidationBuilder.jar

The VRB tool creates the following two files and places them in the
ValidationRulesBuilder directory:

! X12_850PurcOrde_4010.ssc

! X12_850PurcOrde_4010.tsc

The VRB also commits these two files to the e*Gate Registry under the eXSchema.

See “Using the Validation Rules Builder” in the e*Xchange Partner Manager User’s Guide
for more information on how to create validation Collaborations using this tool.
e*Xchange Partner Manager Implementation Guide 92 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
e*Xchange Implementation—X12 Create the Trading Partner Profiles
9.4 Create the Trading Partner Profiles
The trading partner profiles in e*Xchange Partner Manager act as the repositories for
the information necessary to send EDI messages back and forth between the entities.
They contain all of the information to properly envelope an Event and forward it to its
correct destination.

When creating trading partner profiles, check your values carefully before saving or
leaving a section/screen, because many values cannot be changed once they are
committed to the database due to auditing restrictions. You can inactivate erroneous
information and add the correct information under a different company, B2B Protocol,
and so on.

Refer to the e*Xchange Partner Manager User’s Guide for detailed assistance with the
process of creating trading partner profiles.

Trading Partner Information Hierarchy

e*Xchange stores trading partner information at various levels. The process of creating
a trading partner profile proceeds from the most general inclusive level, that of a
company with which you do business, to the most specific information regarding an
message that you wish to send (the message profile).

9.4.1 The Savvy Toy Company Trading Partner
The Savvy Toy Company (Savvy) is a manufacturer of high quality toys that uses the
X12 format to exchange business data with its customers. In our example we send a
purchase order to Savvy for one of their products, “the Millennium Pet Rock.”

The following procedure and accompanying tables were used to create the Savvy
trading partner for this example.

Figure 39 shows an overview of the components that you need to create for this
example, including,

! Company

! Trading Partner

! B2B Protocol Information

! Message Profiles
e*Xchange Partner Manager Implementation Guide 93 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
e*Xchange Implementation—X12 Create the Trading Partner Profiles
Figure 39 The Savvy Toy Company Overview

To configure the Savvy Toy Company Trading Partner Profile you must follow the
steps listed below:

! Step 1: Create the Company on page 94

! Step 2: Create the Trading Partner on page 94

! Step 3: Set Up the B2B Protocol Information on page 95

! Step 4: Create the Message Profile on page 96

Step 1: Create the Company

1 Log in to the e*Xchange Web interface.

2 From the Main page, click Profile Management.

3 From the Company page, click New.

4 In the Company - Adding page, enter the Company name, “Savvy Toy Company”.

5 Click Next.

This saves your changes and returns to the Company page.

Note: The security information is automatically configured for the current user.

Step 2: Create the Trading Partner

1 From the Company page, ensure that “Savvy Toy Company” is selected, and click
Continue: Trading Partner.

e*Xchange

Savvy Toy Company
Outbound

Message Profile
Purchase Order

B2B Protocol Information

Savvy Toy Company
e*Xchange Partner Manager Implementation Guide 94 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
e*Xchange Implementation—X12 Create the Trading Partner Profiles
2 From the Trading Partner page, click New to access the Trading Partner - adding
page.

3 Enter the Trading Partner Name, “Savvy Toy Company”.

4 Click Next.

This saves your changes and returns to the Trading Partner page.

The required security information defaults from the company level.

Step 3: Set Up the B2B Protocol Information

1 From the Trading Partner page, ensure that the “Savvy Toy Company” is selected,
and click Continue: B2B Protocol.

2 From the B2B Protocol page, click New to access the B2B Protocol - Adding page.

3 Enter the information listed in Table 6.

In an actual implementation, your local administrator can provide you with the B2B
Protocol information. For an explanation of the B2B Protocol parameters, see the
e*Xchange Partner Manager User’s Guide.

4 Click Next to save your changes and access the General section.

5 Enter the information listed in Table 7.

6 Click Next to save your changes and access the Transport Component section.

7 In the File Name window, enter <drive>\SavvyOut\Savvy850_Out_%d_%3#.dat.

Note: You must create the directory <drive>\SavvyOut before running the Schema.

8 Click Next to accept the values and access the Message Security page.

9 No changes are required. Click Finish to save the information and return to the B2B
Protocol page.

Table 6 B2B Protocol Information

Parameter Value

eBusiness Protocol X12

Version 4010

Direction Outbound

Table 7 B2B Protocol Information, General Page

Parameter Value

Logical Name Savvy

Status Active

Communication Protocol FTP (BATCH)
e*Xchange Partner Manager Implementation Guide 95 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
e*Xchange Implementation—X12 Create the Trading Partner Profiles
Step 4: Create the Message Profile

1 From the B2B Protocol page, click Continue: Message Profile.

2 From the Message Profile page, click the New button to access the Message Profile
- adding page.

3 Enter the information listed in Table 8.

Note: This table only lists the attributes required to make this scenario work.

Table 8 General (X12_850PurcOrde_4010)

4 Click Next to access the Interchange Control Envelope section. Enter the
information listed in Table 9.

Table 9 Interchange Control Envelope (X12_850PurcOrde_4010)

5 Click Next to access the Functional Group Envelope section. Enter the information
listed in Table 10.

Note: This table only lists the attributes required to make this scenario work.

Table 10 Functional Group Envelope (X12_850PurcOrde_4010)

6 Click Next to access the Transaction Set Envelope section. Enter the information
listed in Table 11.

Name Value

Name Savvy 850 Outbound PO

Transfer Mode Interactive

Validation Collaboration X12_850PurcOrde_4010

Name Value

ISA06 Interchange Sender Identifier eBiz01

ISA08 Interchange Receiver Identifier Savvy01

ISA13 IC Control Number 2

Name Value

GS01 Functional Identification Code PO

GS02 Application Sender Code eBiz01

GS03 Application Receiver Code Savvy01

GS06 Group Control Number 2
e*Xchange Partner Manager Implementation Guide 96 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.5
e*Xchange Implementation—X12 Clone the eXSchema
Note: This table only lists the attributes required to make this scenario work.

7 Click Next to access the Return Messages section.

8 No changes are required. Click Finish to save the information and return to the
Message Profile page.

9.5 Clone the eXSchema
The supplied schema named eXSchema contains the components required to run
e*Xchange. Make a copy of this schema and then configure the copy for this
implementation.

To make a copy of eXSchema

1 Open eXSchema in the e*Gate Enterprise Manager GUI.

2 Export eXSchema.

3 Create a new schema named X12 using the exported file.

9.6 Configure the e*Way to Send the Message to
e*Xchange

The component (e*Way or BOB) that feeds data into e*Xchange must put the data into
the appropriate business protocol format. It must also populate the required fields in
the e*Xchange Event that is processed by e*Xchange.

This component is entirely user-defined and must be added to the eXSchema. The type
of component to use depends on whether a connection to a system outside e*Gate must
be made, and if so, what type of system. Typically, this component is an e*Way that
connects to a business application such as SAP that sends out electronic messages.
These messages may or may not be in the format required by the trading partner to
which they are being sent. If the data is not in the correct format, the e*Way must
translate the data into the required format before it is sent to the e*Xchange system for
enveloping and forwarding to the trading partner.

Table 11 Transaction Set Envelope (X12_850PurcOrde_4010)

Name Value

ST01 Transaction Set Identification Code 850

ST02 TS Control Number 1
e*Xchange Partner Manager Implementation Guide 97 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.6
e*Xchange Implementation—X12 Configure the e*Way to Send the Message to e*Xchange
The e*Xchange Send_to_ePM e*Way

This example simulates the publication of an electronic purchase order from an internal
(to the company, but not to e*Gate) accounting application to a shared location on the
network file system. This file, which is already in X12 850 format, is then picked up by a
file e*Way and moved into e*Xchange.

This example shows the configuration steps for creating the e*Way using the Java
Collaboration Service (see “Configuring the Send_to_ePM_Java e*Way”) and the
Monk Collaboration Service (see “Configuring the Send_to_ePM_Monk e*Way” on
page 101).

9.6.1 Configuring the Send_to_ePM_Java e*Way
Follow these steps to configure Send_to_ePM_Java e*Way.

1 Create the configuration file.

2 Create the ETDs.

3 Create the Collaboration Rule and Collaboration Rules Script.

4 Create the Collaboration.

Step 1: Edit the Send_to_ePM_Java e*Way Configuration File

1 In the Configuration file area of the General tab, in the e*Way Properties dialog
box, click Clear, and then click New.

2 Configure the Send_to_ePM_Java e*Way parameters using Table 12.

3 When finished editing the e*Way configuration file, save your work and close the
e*Way editor.

4 Click OK to close the e*Way Properties dialog box.

Step 2: Create the Send_to_ePM_Java ETDs

In the case where the Send_to_ePM_Java e*Way connects to a business application,
you must create an ETD that corresponds to the business application. For example, an
SAP system sends out EDI messages in IDoc (SAP proprietary) format. In order to work
with these messages you must create an ETD that corresponds to the IDoc.

Table 12 Send_to_ePM_Java e*Way Parameters

Screen Parameter Setting

General Settings (All) (Default)

Outbound (send) settings (All) (Default)

Poller (inbound) settings PollDirectory <eGate>\client\data\eXchange

(All others) (Default)

Performance Testing (All) (Default)
e*Xchange Partner Manager Implementation Guide 98 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.6
e*Xchange Implementation—X12 Configure the e*Way to Send the Message to e*Xchange
In the present example, since the data is already in standard X12 850 format for a
purchase order, you can bring in the Event without parsing it. To do this, all that is
required is an ETD with a root node.

Step 3: Create the Send_to_ePM_Java Collaboration Rule and
Collaboration Rule Script

The Send_to_ePM_Java.xpr CRS used in the present example is shown in Figure 40. It
does the following:

! Converts the X12 850 message to base 64 encoding, and copies it to the Payload
node of the TP_EVENT section of the e*Xchange standard Event.

! Sets the Payload type and location.

! Copies “O” for outbound to the direction node of the TP_EVENT section.

! Copies the trading partner logical name “Savvy” to the PartnerName node of the
TP_EVENT section.

To create and configure the Send_to_ePM_Java Collaboration Rule and Collaboration Rule
Script

1 Create a new Collaboration Rule named Send_to_ePM_Java.

2 From Send_to_ePM_Java Collaboration Rule properties, select the General tab.
Select Java as the Service.

3 Select the Collaboration Mapping tab. Create two instances, and configure as
shown in Table 13.

Table 13 Send_to_ePM_Java CR configuration - Collaboration Mapping Tab

4 Select the General tab, and then click New.

The Collaboration Editor opens.

5 Add the rules shown in Figure 40.

Instance Name ETD Mode Manual Publish

In Root.xsc In N/A

Out eX_StandardEvent.xsc Out
e*Xchange Partner Manager Implementation Guide 99 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.6
e*Xchange Implementation—X12 Configure the e*Way to Send the Message to e*Xchange
Figure 40 Send_to_ePM_Java.xpr

Step 4: Create the Send_to_ePM_Java Collaboration

Once the CRS has been created, you must set up the Collaboration Properties for the
Send_to_ePM_Java Component in the Enterprise Manager GUI.

To create and configure the Send_to_ePM_Java Collaboration

1 Select the Send_to_ePM_Java e*Way.

2 Create a new Collaboration named Send_to_ePM_Java.

3 Configure the Send_to_ePM_Java Collaboration properties using Table 14.

Table 14 Send_to_ePM_Java Collaboration configuration

Section Value

Collaboration Rule Send_to_ePM_Java

Subscriptions Instance: In
Event Type: eX_External_Evt
Source: <EXTERNAL>

Publication Instance: Out
Event Type: eX_to_ePM
Destination: eX_eBPM
e*Xchange Partner Manager Implementation Guide 100 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.6
e*Xchange Implementation—X12 Configure the e*Way to Send the Message to e*Xchange
Verify the information in the Collaboration Properties dialog box as shown in Figure
41.

Figure 41 Send_to_ePM_Java Collaboration Properties

9.6.2 Configuring the Send_to_ePM_Monk e*Way
Follow these steps to configure Send_to_ePM_Monk e*Way.

1 Create the configuration file.

2 Create the ETDs.

3 Create the Collaboration Rule and Collaboration Rules Script.

4 Create the Collaboration.

Step 1: Edit the Send_to_ePM_Monk e*Way Configuration File

1 In the Configuration file area of the General tab, in the e*Way Properties dialog
box, click Clear, and then click New.

2 Configure the Send_to_ePM_Monk e*Way parameters using Table 15.

Table 15 Send_to_ePM_Monk e*Way Parameters

Screen Parameter Setting

General Settings (All) (Default)

Outbound (send) settings (All) (Default)

Poller (inbound) settings PollDirectory <eGate>\client\data\eXchange

(All others) (Default)
e*Xchange Partner Manager Implementation Guide 101 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.6
e*Xchange Implementation—X12 Configure the e*Way to Send the Message to e*Xchange
3 When finished editing the e*Way configuration file, save your work and close the
e*Way editor.

4 Click OK to close the e*Way Properties dialog box.

Step 2: Create the Send_to_ePM_Monk ETDs

In the present example, since the data is already in standard X12 850 format for a
purchase order, you can bring in the Event without parsing it. To do this, all that is
required is an ETD with a root node.

Step 3: Create the Send_to_ePM_Monk Collaboration Rules Script

The Send_to_ePM_Monk.tsc CRS used in this example is shown in Figure 42. It does
the following:

! Converts the X12 850 message to base 64 encoding, and copies it to the Payload
node of the TP_EVENT section of the e*Xchange standard Event.

! Copies “O” for outbound to the direction node of the TP_EVENT section.

! Copies the trading partner logical name “Savvy” to the PartnerName node of the
TP_EVENT section.

Figure 42 shows the CRS used in this example.

Figure 42 Send_to_ePM_Monk.tsc

Step 4: Create the Send_to_ePM_Monk Collaboration Rule

To create and configure the Send_to_ePM_Monk Collaboration Rule

1 Create a new Collaboration Rule named Send_to_ePM_Monk.

2 From the Send_to_ePM_Monk Collaboration Rule properties, select the General
tab. Configure as shown in Table 16.

Performance Testing (All) (Default)

Table 15 Send_to_ePM_Monk e*Way Parameters

Screen Parameter Setting
e*Xchange Partner Manager Implementation Guide 102 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.6
e*Xchange Implementation—X12 Configure the e*Way to Send the Message to e*Xchange
Table 16 Send_to_ePM_Monk CR configuration - General Tab

3 Select the Subscriptions tab. Select eX_External_Evt and move it to the right pane.

4 Select the Publications tab. Select eX_to_ePM and move it to the right pane.

Step 5: Create the Send_to_ePM_Monk Collaboration

Once the CRS has been created, you must set up the Collaboration Properties for the
Send_to_ePM_Monk Component in the Enterprise Manager GUI.

To create and configure the Send_to_ePM_Monk Collaboration

1 Select the Send_to_ePM_Monk e*Way.

2 Create a new Collaboration named Send_to_ePM_Monk.

3 Configure the Send_to_ePM_Monk Collaboration properties using Table 17.

Table 17 Send_to_ePM_Monk Collaboration Configuration

Section Value

Service Monk

Collaboration Rule Send_to_ePM_Monk

Initialization File monk_scripts\common\load_ext

Section Value

Collaboration Rule Send_to_ePM_Monk

Subscriptions Event Type: eX_External_Evt
Source: <EXTERNAL>

Publications Event Type: eX_to_ePM
Destination: eX_eBPM
e*Xchange Partner Manager Implementation Guide 103 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.7
e*Xchange Implementation—X12 Configure the eX_ePM e*Way
Verify the information in the Collaboration Properties dialog box as shown in Figure
43.

Figure 43 Send_to_ePM_Monk Collaboration Properties

9.7 Configure the eX_ePM e*Way
The eX_ePM e*Way requires only minimal configuration. You must give it the logon
information for the e*Xchange database.

To configure the eX_ePM configuration file

1 In the eX_ePM e*Way properties, select the General tab.

2 In the Configuration File area, click Edit.

3 Configure the parameters as shown in Table 18.
.

Table 18 eX_ePM e*Way Parameters

Screen Parameter Setting

General Settings (All) (Default)

Communication Setup (All) (Default)

Monk Configuration (All) (Default)
e*Xchange Partner Manager Implementation Guide 104 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.8
e*Xchange Implementation—X12 Configure Any Other e*Gate Components
9.8 Configure Any Other e*Gate Components
The remaining component in the e*Xchange schema is the
eX_Batch_to_Trading_Partner e*Way. This component works without any user
configuration.

The Batch e*Way uses the information in the trading partner profile to FTP the message
to the trading partner. In this example this is simulated by making a local copy of the
file.

9.9 Run and Test the e*Xchange Scenario
Once the schema has been set up in e*Gate you can run and test the scenario.

1 Make a final check of the e*Gate schema. Also, make sure the eX_ePM, and
eX_Batch_to_Trading_Partner, and either Send_to_ePM_Java or
Send_to_ePM_Monk, components are set to auto-start.

Important: Verify that any other components in the schema that are not being used are not set
to auto-start or are moved to an unused host.

2 At the command line, start the schema:

stccb.exe -rh localhost -rs <schema name> -ln localhost_cb -un
Administrator -up STC

3 Start the e*Gate Monitor and check the status of all the components. Any
components used in the e*Xchange scenario that are red, indicating they are not
running, should be investigated before feeding data into the system.

4 Using Windows Explorer (or the equivalent) navigate to the location for the input
data file, eXchange_PO.~in (<eGate>\client\data\eXchange).

5 Change the extension to “.fin”. Watch as the data file name changes to “.~in”
indicating that the data file has been picked up.

6 Navigate to the location to which you are sending the output file by FTP. If
everything is working correctly, an output file should appear in the directory
indicating successful completion of the EDI exchange. Note that the enveloping

Database Setup Database Name) (Service name of the
e*Xchange database)

User name ex_admin

Password ex_admin

(All others) (Default)

Table 18 eX_ePM e*Way Parameters

Screen Parameter Setting
e*Xchange Partner Manager Implementation Guide 105 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.10
e*Xchange Implementation—X12 Editing the Data File
information has been added to the information contained in the input file by the
e*Xchange.

Viewing the Results in Message Tracking

You can view the results of the message processing by using the Message Tracking
feature of e*Xchange.

To view the outbound message in Message Tracking

1 From e*Xchange Web Interface, Main page, select Message Tracking.

The TP Profile Selection page appears.

2 In the Company Profile field, select Savvy Toy Company.

3 In the Trading Partner Profile field, select Savvy Toy Company.

4 In the eBusiness Protocol field, select X12.

5 In the Direction field, select Outbound.

6 Click the Message Profile Selection.

7 Select the Savvy 850 Outbound PO message.

8 Click the Message Details link to view the resulting list.

9.10 Editing the Data File
If you want to send the data again, you need to edit the data to ensure that it is unique.
Open <eGate>\client\data\eXchange\eXchange_PO.~in and change the field shown
in bold in to a unique value.

Figure 44 Sample data file
e*Xchange Partner Manager Implementation Guide 106 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.1
e*Xchange Implementation—UN/EDIFACT Overview
Chapter 10

e*Xchange Implementation—UN/EDIFACT

This chapter discusses the steps involved to create an e*Xchange implementation that
transfers UN/EDIFACT data.

The components for this implementation are provided on your installation CD. For
instructions on installing and using the implementation components, see “Using the
Implementation Sample” on page 110.

10.1 Overview
An e*Xchange implementation makes use of the features designed to add and remove
the EDI enveloping information for messages exchanged between trading partners.

In an e*Xchange implementation, use the e*Xchange Web Interface to set up trading
partner information, and the e*Gate Enterprise Manager GUI to add user-defined
e*Gate components to provide connectivity to the business application or trading
partner. Once this is done, the pre-configured e*Xchange e*Gate schema components
handle enveloping and de-enveloping Events as they travel through the e*Xchange
system.

The major steps for an e*Xchange implementation are as follows:

1 Create any needed validation Collaborations.

2 Add the new validation Collaborations and configure envelope profiles in the
e*Xchange GUI.

3 Create the trading partner profiles.

4 Configure the user-defined e*Ways that will connect the business application to
e*Xchange and exchange messages with the trading partner.

5 Configure the e*Xchange e*Way.

6 Run and test the scenario.

10.1.1 Case Study: Sending an UN/EDIFACT Purchase Order
The case study discussed in this chapter illustrates one possible implementation of
receiving a purchase order from a trading partner.

In this example, a UN/EDIFACT purchase order is received from an external trading
partner. The UN/EDIFACT enveloping is automatically removed from the message by
e*Xchange Partner Manager Implementation Guide 107 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.1
e*Xchange Implementation—UN/EDIFACT Overview
e*Xchange based on trading partner information retrieved from the e*Xchange
database, and then it is sent to an internal system. A control message is immediately
returned to the Trading Partner. Then the purchase order response is sent to the
Trading Partner, and the Trading Partner returns a control message to complete the
cycle. Figure 45 shows the message flow.

Figure 45 UN/EDIFACT Message Flow

Typically, the purchase order information would be provided by a business application
and may or may not be in UN/EDIFACT format. A user-defined e*Way must be
created to connect to a business application in order to receive the data and put it into
the proper UN/EDIFACT format. In order to simplify this example, the purchase order
information is provided in the form of a text file that is already in UN/EDIFACT
format.

CarSupplies
Europe TP

Purchase Order Message

Purchase Order Response Message

Control

Control

e*XchangeCarSupplies
Europe
e*Xchange Partner Manager Implementation Guide 108 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.1
e*Xchange Implementation—UN/EDIFACT Overview
Figure 46 e*Xchange Scenario Data Flow

Figure 46 data flow description

The TP_Order_Feeder e*Way picks up the order message and publishes it to the
eX_trading_Port_Queue IQ.

e*Xchange engine picks it up from the IQ, validates it, saves it to the database, and
publishes two messages:

" Control message to the eX_Trading_Port_Queue IQ

" Order message to the eX_eBPM IQ.

eX_Batch_to_Trading_Partner e*Way sends out the control message to the trading
partner.

Internal_Order_Eater e*Way picks up the message from the eX_eBPM IQ and sends
it to the internal system.

1

3

4 Order

e*Xchange
Database

Internal_Order
_Eater e*Way eX_ePM

Engine

Order

eX_eBPM
IQ

eX_Trading_
Port_Queue IQ

TP_Order
_Feeder e*Way

eX_Batch_to_
Trading_

Partner e*Way

Ctrl

2

e*Xchange

1

2

3

4

e*Xchange Partner Manager Implementation Guide 109 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.2
e*Xchange Implementation—UN/EDIFACT Using the Implementation Sample
10.2 Using the Implementation Sample
The components for this implementation are provided on your installation CD, and are
located in
\setup\eXchange\sample\EDIFACT_SAMPLE_IMPLEMENTATION.zip. Follow
these steps to install the components:

1 Unzip the file to a local directory.

2 Install the e*Gate schema using one of the following commands. The schema name
is user defined.

Note: The default registry port number is 23001.

A For Unix

sh install_edifact_po.sh <egate_registry_host_name> <schema_name>
<user_name> <password> <egate_registry_port_num>

B For Windows

install_edifact_po.bat <egate_registry_host_name> <schema_name>
<user_name> <password> <egate_registry_port_num>

3 Use the e*Xchange Import function to import EDIFACT.exp into e*Xchange Partner
Manager.

4 Copy the data folder to the <egate> directory.

5 If e*Gate is not installed on your C drive, update the Transport Component file
location as described in “Step 5: Set up outbound B2B Protocol Information” on
page 116.

6 Configure the eX_ePM e*Way as described in “Configure the eX_ePM e*Way” on
page 128.

The steps on the following pages describe how the components for this implementation
were created. See “Running the Scenario” on page 130 for instructions to run the
implementation.
e*Xchange Partner Manager Implementation Guide 110 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.3
e*Xchange Implementation—UN/EDIFACT Create the Trading Partner Profiles
10.3 Create the Trading Partner Profiles
Trading partner profiles in e*Xchange act as repositories for the information necessary
to send EDI messages back and forth between entities. They contain all of the
information needed to properly envelope an Event and forward it to its correct
destination.

When creating trading partner profiles, check your values carefully before saving or
leaving a section/screen, because many values cannot be changed once they are
committed to the database due to auditing restrictions. You can inactivate erroneous
information and add the correct information under a different company, B2B Protocol,
and so on.

Refer to the e*Xchange Partner Manager User’s Guide for detailed assistance with the
process of creating trading partner profiles.

Trading Partner Information Hierarchy

e*Xchange stores trading partner information at various levels. The process of creating
a trading partner profile proceeds from the most general inclusive level, that of a
company with which you do business, to the most specific information regarding an
message that you wish to send (the message profile).

10.3.1 The Car Interiors Trading Partner
Car Interiors is a manufacturer of high quality car interiors that uses the UN/EDIFACT
format to exchange business data with its customers. In our example we send a
purchase order to Car Interiors.

The following procedure and accompanying tables were used to create the Car
Interiors trading partner for this example.

Figure 47 shows an overview of the components that you need to create for this
example, including:

! Company

! Trading Partner

! B2B Protocol Information

! Message Profiles
e*Xchange Partner Manager Implementation Guide 111 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.3
e*Xchange Implementation—UN/EDIFACT Create the Trading Partner Profiles
Figure 47 Car Interiors Overview

To configure the CarSupplies Europe trading partner profile you must follow the steps
listed below:

! Step 1: Create the Company on page 112

! Step 2: Create the Trading Partner on page 113

! Step 3: Set up the Inbound B2B Protocol Information on page 113

! Step 4: Create the Inbound Message Profiles on page 114

! Step 5: Set up outbound B2B Protocol Information on page 116

! Step 6: Create the Outbound Message Profiles on page 116

! Step 7: Configure Return Messages for Inbound on page 119

Step 1: Create the Company

1 Log in to the e*Xchange Web interface.

2 From the Main page, click Profile Management.

3 From the Company page, click New.

4 In the Company - adding page, enter the Company name, “Car Interiors”.

5 Click Next.

This saves your changes and returns to the Company page.

Note: The security information is automatically configured for the current user.

e*Xchange

CarSupplies Europe TP

B2B Protocol Information
Inbound (Receive from CarSupplies Europe)

Message Profiles
Purchase Order Message
Control

Outbound (Send to CarSupplies Europe)

Message Profiles
Purchase Order Response Message
Control

B2B Protocol Information

Car Interiors Company
e*Xchange Partner Manager Implementation Guide 112 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.3
e*Xchange Implementation—UN/EDIFACT Create the Trading Partner Profiles
Step 2: Create the Trading Partner

1 From the Company page, ensure that “Car Interiors” is selected, and click
Continue: Trading Partner.

2 From the Trading Partner page, click New to access the Trading Partner - adding
page.

3 Enter the Trading Partner Name, “CarSupplies Europe”.

4 Click Next.

This saves your changes and returns to the Trading Partner page.

The required security information defaults from the company level.

Step 3: Set up the Inbound B2B Protocol Information

To set up the inbound B2B Protocol Information

1 From the Trading Partner page, ensure that the “CarSupplies Europe” is selected,
and click Continue: B2B Protocol.

2 From the B2B Protocol page, click New to access the B2B Protocol - adding page.

3 Enter the information listed in Table 19.

In an actual implementation, your local administrator can provide you with the B2B
Protocol information. For an explanation of the B2B Protocol parameters, see the
e*Xchange Partner Manager User’s Guide.

4 Click Next, to save your changes and access the General section.

5 Enter the information listed in Table 20.

6 Click Next, to save your changes and access the Transport Component section.

7 No changes are required. Click Next to access the Message Security section.

8 No changes are required. Click Finish to save the information and return to the B2B
Protocol page.

Table 19 B2B Protocol Information

Parameter Value

eBusiness Protocol UN/EDIFACT

Version 4B

Direction Inbound

Table 20 B2B Protocol Information, General Page

Parameter Value

Logical Name TP_001

Status Active

Communication Protocol FTP(BATCH)
e*Xchange Partner Manager Implementation Guide 113 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.3
e*Xchange Implementation—UN/EDIFACT Create the Trading Partner Profiles
Step 4: Create the Inbound Message Profiles

For the purposes of this scenario, you must set up the following inbound message
profiles:

! Purchase Order Message (EDF_ORDERSPurcOrdeMess_D99B)

! Control (EDF_CONTROL)

To set up the EDF_ORDERSPurcOrdeMess_D99B Order inbound message profile

1 From the B2B Protocol page, click Continue: Message Profile.

2 From the Message Profile page, click the New button to access the Message Profile
- adding page.

3 Enter the information listed in Table 21.

Note: This table only lists the attributes required to make this scenario work.

Table 21 General (EDF_ORDERSPurcOrdeMess_D99B)

4 Click Next to access the Interchange Control Envelope section. Enter the
information listed in Table 22.

Table 22 Interchange Control Envelope (EDF_ORDERSPurcOrdeMess_D99B)

5 Click Next to access the Functional Group Envelope section. Enter the information
listed in Table 23.

Note: This table only lists the attributes required to make this scenario work.

Table 23 Functional Group Envelope (EDF_ORDERSPurcOrdeMess_D99B)

6 Click Next to access the Message Envelope section.

Name Value

Name EDF_ORDERSPurcOrdeMess_D99B

Transfer Mode Interactive

Validation Collaboration EDF_ORDERSPurcOrdeMess_D99B

Name Value

Interchange Recipient Identifier 987654321

Interchange Recipient Identification
Qualifier

1

Interchange Sender Identifier 123456789

Interchange Sender Identification
Qualifier

1

Name Value

Application Receiver Identification Code 987654321

Application Sender Identification Code 123456789
e*Xchange Partner Manager Implementation Guide 114 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.3
e*Xchange Implementation—UN/EDIFACT Create the Trading Partner Profiles
7 In the Message Type Identifier window, type ORDERS.

8 Click Next to access the Return Messages section.

9 No changes are required. Click Finish to save the information and return to the
Message Profile page.

To set up the EDF_CONTROL inbound inner envelope

1 From the Message Profile page, click the New button to access the Message Profile
- adding page.

2 Enter the information listed in Table 24.

Note: This table only lists the attributes required to make this scenario work.

Table 24 General (EDF_CONTROL)

3 Click Next to access the Interchange Control Envelope section. Enter the
information listed in Table 25.

Table 25 Interchange Control Envelope (EDF_CONTROL)

4 Click Next to access the Functional Group Envelope section. Enter the information
listed in Table 26.

Note: This table only lists the attributes required to make this scenario work.

Table 26 Functional Group Envelope (EDF_CONTROL)

5 Click Next to access the Message Envelope section.

6 In the Message Type Identifier window, type CONTRL.

7 Click Next to access the Return Messages section.

Name Value

Name EDF_CONTROL

Transfer Mode Interactive

Validation Collaboration EDF_CONTROL

Name Value

Interchange Recipient Identifier 987654321

Interchange Recipient Identification
Qualifier

1

Interchange Sender Identifier 123456789

Interchange Sender Identification
Qualifier

1

Name Value

Application Receiver Identification Code 987654321

Application Sender Identification Code 123456789
e*Xchange Partner Manager Implementation Guide 115 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.3
e*Xchange Implementation—UN/EDIFACT Create the Trading Partner Profiles
8 No changes are required. Click Finish to save the information and return to the
Message Profile page.

Step 5: Set up outbound B2B Protocol Information

To set up the outbound B2B Protocol Information

As a shortcut, you can copy the Inbound B2B Protocol Information as a model for the
Inbound B2B Protocol Information.

1 On the B2B Protocol page, select the UN/EDIFACT-4B-Inbound protocol that you
created in “To set up the inbound B2B Protocol Information” on page 113.

2 Click Copy.

The Copy Type page appears.

3 Clear the Include Sub-components check box and then click OK.

The B2B Protocol - copying page appears.

4 In the Direction field, ensure that Outbound is selected.

5 Click Next.

The B2B Protocol - copying, General page appears.

6 No changes are needed: click Next to accept the values and access the Transport
Component page.

7 In the File Name window, enter
<egate>\data\TP\eater\order_response_%d_%3#.dat.

8 Click Next to accept the values and access the Message Security page.

9 No changes are required. Click Finish to save the information and return to the B2B
Protocol page.

Step 6: Create the Outbound Message Profiles

For the purposes of this scenario, you must set up the following outbound message
profiles:

! Purchase Order Response Message (EDF_ORDRSPPurcOrdeRespMess_D99B)

! Control (EDF_CONTROL)

To set up the EDF_ORDRSPPurcOrdeRespMess_D99B Order inbound message profile

1 From the B2B Protocol page, click Continue: Message Profile.

2 From the Message Profile page, click the New button to access the Message Profile
- adding page.

3 Enter the information listed in Table 27.

Note: This table only lists the attributes required to make this scenario work.
e*Xchange Partner Manager Implementation Guide 116 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.3
e*Xchange Implementation—UN/EDIFACT Create the Trading Partner Profiles
Table 27 General (EDF_ORDRSPPurcOrdeRespMess_D99B)

4 Click Next to access the Interchange Control Envelope section. Enter the
information listed in Table 28.

Table 28 Interchange Control Envelope (EDF_ORDRSPPurcOrdeRespMess_D99B)

5 Click Next to access the Functional Group Envelope section. Enter the information
listed in Table 29.

Note: This table only lists the attributes required to make this scenario work.

Table 29 Functional Group Envelope (EDF_ORDERSPurcOrdeMess_D99B)

6 Click Next to access the Message Envelope section.

7 In the Message Type Identifier window, type ORDRSP.

8 Click Next to access the Return Messages section.

9 Select the return message (select the Include check box), and enter the values, as
shown in Table 30.

10 Click Finish to save the information and return to the Message Profile page.

To set up the EDF_CONTROL inbound inner envelope

1 From the Message Profile page, click the New button to access the Message Profile
- adding page.

Name Value

Name EDF_ORDRSPPurcOrdeRespMess_D99B

Transfer Mode Interactive

Validation Collaboration EDF_ORDRSPPurcOrdeRespMess_D99B

Name Value

Interchange Recipient Identifier 123456789

Interchange Recipient Identification
Qualifier

1

Interchange Sender Identifier 987654321

Interchange Sender Identification
Qualifier

1

Name Value

Application Receiver Identification Code 123456789

Application Sender Identification Code 987654321

Table 30 Return Message Values: Outbound

Name Response Time Period # Retries

EDF_CONTROL 2 Minutes 2
e*Xchange Partner Manager Implementation Guide 117 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.3
e*Xchange Implementation—UN/EDIFACT Create the Trading Partner Profiles
2 Enter the information listed in Table 31.

Note: This table only lists the attributes required to make this scenario work.

Table 31 General (EDF_CONTROL)

3 Click Next to access the Interchange Control Envelope section. Enter the
information listed in Table 32.

Table 32 Interchange Control Envelope (EDF_CONTROL)

4 Click Next to access the Functional Group Envelope section. Enter the information
listed in Table 33.

Note: This table only lists the attributes required to make this scenario work.

Table 33 Functional Group Envelope (EDF_CONTROL)

5 Click Next to access the Message Envelope section.

6 In the Message Type Identifier window, type CONTRL.

7 Click Next to access the Return Messages section.

8 No changes are required. Click Finish to save the information and return to the
Message Profile page.

Name Value

Name EDF_CONTROL

Transfer Mode Interactive

Validation Collaboration EDF_CONTROL

Name Value

Interchange Recipient Identifier 123456789

Interchange Recipient Identification
Qualifier

1

Interchange Sender Identifier 987654321

Interchange Sender Identification
Qualifier

1

Name Value

Application Receiver Identification Code 123456789

Application Sender Identification Code 987654321
e*Xchange Partner Manager Implementation Guide 118 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.4
e*Xchange Implementation—UN/EDIFACT Clone the eXSchema
Step 7: Configure Return Messages for Inbound

To set up the Return Inner Envelope values for Inbound

Once you have set up inbound and outbound message profiles, you can specify return
messages.

1 From the B2B Profile page, select UN/EDIFACT-4B-Inbound.

2 Click Continue: Message Profile.

3 From the Message Profile page, select EDF_ORDERSPurcOdeMess_D99B from
the drop-down list.

4 Click the Return Messages link to access the Return Messages section.

5 Click Edit.

6 Select the return messages (select the check boxes), and enter the values, as shown
in Table 34.

7 Click Apply to save the information and return to the Message Profile page.

8 Click OK.

10.4 Clone the eXSchema
The supplied schema named eXSchema contains the components required to run
e*Xchange. Make a copy of this schema and then configure the copy for this
implementation.

To make a copy of eXSchema

1 Open eXSchema in the e*Gate Enterprise Manager GUI.

2 Export eXSchema.

3 Create a new schema named EDIFACT using the exported file.

10.5 Configure the TP_Order_Feeder e*Way
The component (e*Way or BOB) that feeds data into e*Xchange must put the data into
the appropriate business protocol format. It must also populate the required fields in
the e*Xchange Event that is processed by e*Xchange.

Table 34 Return Message Values: Inbound

Name Response Time Period # Retries

EDF_ORDRSPPurcOrdeRespMess_D99B 1 Day 0

EDF_CONTROL 2 Minutes 0
e*Xchange Partner Manager Implementation Guide 119 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
e*Xchange Implementation—UN/EDIFACT Configure the TP_Order_Feeder e*Way
This component is entirely user-defined and must be added to the EDIFACT schema.
The type of component to use depends on whether a connection to a system outside
e*Gate must be made, and if so, what type of system. Typically, this component is an
e*Way that connects to a business application such as SAP that sends out electronic
messages. These messages may or may not be in the format required by the trading
partner to which they are being sent. If the data is not in the correct format, the e*Way
must translate the data into the required format before it is sent to the e*Xchange
system for enveloping and forwarding to the trading partner.

The e*Xchange TP_Order_Feeder e*Way

The e*Xchange example simulates the publication of an electronic purchase order from
a trading partner. This file, which is already in UN/EDIFACT format, is picked up by a
file e*Way and moved into the e*Xchange system.

Configuration Steps

Follow these steps to configure the TP_Order_Feeder e*Way.

1 Create and configure the e*Way.

2 Create the ETDs.

3 Create the Collaboration.

10.5.1 Step 1: Create and configure the TP_Order_Feeder e*Way
1 Create an e*Way called TP_Order_Feeder.

2 In the e*Way Properties dialog box, in the Executable file area of the General tab,
browse for stcewfile.exe.

3 In the e*Way Properties dialog box, in the Configuration file area of the General
tab, click New.

4 Configure the TP_Order_Feeder e*Way parameters using Table 35.

5 When finished editing the e*Way configuration file, save your work and close the
e*Way editor.

6 Click OK to close the e*Way Properties dialog box.

Table 35 TP_Order_Feeder e*Way Parameters

Screen Parameter Setting

General Settings (All) (Default)

Outbound (send) settings (All) (Default)

Poller (inbound) settings PollDirectory <eGate>\Data\TP\feeder

MultipleRecordsPerFile NO

(All others) (Default)

Performance Testing (All) (Default)
e*Xchange Partner Manager Implementation Guide 120 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
e*Xchange Implementation—UN/EDIFACT Configure the TP_Order_Feeder e*Way
10.5.2 Step 2: Create the TP_Order_Feeder ETDs
In the present example, since the data is already in standard UN/EDIFACT format for
a purchase order, you can bring in the Event without parsing it. To do this, all that is
required is an ETD with a root node.

To create the root ETD

1 Create a new ETD called root.ssc. In the Type box, select Delimited, and select
Other from the drop-down list.

2 Add a single node to the structure. The ETD is shown in Figure 48.

Figure 48 root.ssc Event Type Definition

3 Save the ETD.

10.5.3 Step 3: Create the TP_Order_Feeder Collaboration
The TP_Order_Feeder Collaboration must prepare the data coming into the e*Xchange
system. How complicated this task is depends on the state of the data before the
TP_Order_Feeder Collaboration processes it.

The TP_Order_Feeder Collaboration must do the following:

! convert the data to base 64 encoding

! populate the required nodes in the e*Xchange Event sent to e*Xchange for
processing

Convert the Event to Base 64 Encoding

The TP_Order_Feeder Collaboration must ensure that the data going into e*Xchange
doesn’t include any characters that will cause problems for the XML structure of the
standard e*Xchange Event (for example, characters that are the same as the XML
control characters). This is done by converting the entire EDI message to base 64
encoding using the Monk function raw->base64, before copying it to the payload node
of the eX_Standard_Event ETD.

Populate the Required e*Xchange Nodes

In addition to copying the base 64 encoded message to the payload node of the
TP_EVENT portion of the e*Xchange standard Event, you must provide e*Xchange
with tracking information about the EDI message.

e*Xchange Tracking Information

e*Xchange needs to know certain things about an EDI message before it can process it.
The TP_Order_Feeder Collaboration must supply this information by populating
e*Xchange Partner Manager Implementation Guide 121 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
e*Xchange Implementation—UN/EDIFACT Configure the TP_Order_Feeder e*Way
certain required nodes in the Event that is sent to e*Xchange. At a minimum you must
tell e*Xchange:

! Direction (inbound or outbound)

! Partner Name (logical name from the outer envelope in e*Xchange)

All of these requirements can be met by copying the appropriate information to the
corresponding nodes in the TP section of the e*Xchange ETD (eX_Standard_Event.ssc).

The TP_EVENT.CT.DSN.DS.Direction.CT.DSN.DS.Data node must contain the
direction of the Event: “O” for outbound to the trading partner or “I” for inbound from
a trading partner.

The TP_EVENT.CT.DSN.DS.PartnerName.CT.DSN.DS.Data node must contain the
logical name (case-sensitive) of the trading partner defined in the B2B Protocol,
General page.

The e*Xchange Payload

In addition to the tracking information, the
TP_EVENT.CT.DSN.DS.Payload.CT.DSN.DS.Data node must be filled with the
entire base 64 encoded EDI message.

The e*Xchange TP_Order_Feeder CRS

The TP_Order_Feeder.tsc CRS does the following:

! Converts the UN/EDIFACT message to base 64 encoding, and copies it to the
Payload node of the TP_EVENT section of the e*Xchange standard Event.

! Copies “I” for outbound to the direction node of the TP_EVENT section.

! Copies the trading partner logical name “TP_001” to the PartnerName node of the
TP_EVENT section.

To create and configure the TP_Order_Feeder Collaboration Rule Script

1 Open the Collaboration Editor.

2 Create a new Collaboration Rules script named TP_Order_Feeder.tsc. The Source
Event Type Definition is root.ssc. The Destination Event Type Definition is
eX_Standard_Event.ssc.

3 Add the rules shown in Figure 49.
e*Xchange Partner Manager Implementation Guide 122 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
e*Xchange Implementation—UN/EDIFACT Configure the TP_Order_Feeder e*Way
Figure 49 TP_Order_Feeder.tsc

TP_Order_Feeder Collaboration Properties Setup

Once the CRS has been created, you must set up the Collaboration and Collaboration
Rules Properties for the TP_Order_Feeder Component in the Enterprise Manager GUI.

To create and configure the TP_Order_Feeder Collaboration Rule

1 Create a new Collaboration Rule named TP_Order_Feeder.

2 From TP_Order_Feeder Collaboration Rule properties, select the General tab.
Configure as shown in Table 36.

Table 36 TP_Order_Feeder CR configuration - General Tab

Section Value

Service Monk

Collaboration Rule TP_Order_Feeder

Initialization File monk_scripts\common\load_ext
e*Xchange Partner Manager Implementation Guide 123 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.5
e*Xchange Implementation—UN/EDIFACT Configure the TP_Order_Feeder e*Way
Important: To use the Monk function raw->base64, you must make sure the file containing
this function has been loaded.

Figure 50 TP_Order_Feeder Collaboration Rules Properties Dialog Box

3 Select the Subscriptions tab. Select eX_External_Evt and move it to the right pane.

4 Select the Publications tab. Select eX_from_Trading_Partner and move it to the
right pane.

To create and configure the TP_Order_Feeder Collaboration

1 Select the TP_Order_Feeder e*Way.

2 Create a new Collaboration named TP_Order_Feeder.

3 Configure the TP_Order_Feeder Collaboration properties using Table 37.

Table 37 TP_Order_Feeder Collaboration configuration

Section Value

Collaboration Rules TP_Order_Feeder

Subscriptions Event Type: eX_External_Evt
Source: <EXTERNAL>

Publications Event Type: eX_from_Trading_Partner
Destination: eX_Trading_Port_Queue

This command
loads the Monk
file where
raw->base64 is
defined
e*Xchange Partner Manager Implementation Guide 124 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.6
e*Xchange Implementation—UN/EDIFACT Configure the Internal_Order_Eater e*Way
Verify the information in the Collaboration Properties dialog box as shown in Figure
51.

Figure 51 TP_Order_Feeder Collaboration Properties

10.6 Configure the Internal_Order_Eater e*Way
The component (e*Way or BOB) sends the message to the internal system.

The e*Xchange Internal_Order_Eater e*Way

The e*Xchange example simulates the publication of the message to the internal system.

Configuration Steps

Follow these steps to configure the Internal_Order_Eater e*Way.

1 Create the configuration file.

2 Create the ETDs.

3 Create the Collaboration.

10.6.1 Step 1: Create and Configure the Internal_Order_Eater e*Way
1 Create an e*Way called Internal_Order_Eater.

2 In the e*Way Properties dialog box General tab, in the Executable file area browse
for stcewfile.exe.
e*Xchange Partner Manager Implementation Guide 125 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.6
e*Xchange Implementation—UN/EDIFACT Configure the Internal_Order_Eater e*Way
3 In the e*Way Properties dialog box General tab, in the Configuration file area click
New.

4 Configure the Internal_Order_Eater e*Way parameters using Table 38.

5 When finished editing the e*Way configuration file, save your work and close the
e*Way editor.

6 Click OK to close the e*Way Properties dialog box.

10.6.2 Step 2: Create the Internal_Order_Eater Collaboration
The Internal_Order_Eater Collaboration must prepare the data leaving the e*Xchange
system. How complicated this task is depends on the state of the data before the
Internal_Order_Eater Collaboration processes it.

The Internal_Order_Eater Collaboration must do the following:

! put the data into the appropriate EDI format

! convert the data to raw data

The e*Xchange Internal_Order_Eater CRS

The Internal_Order_Eater.tsc CRS is used to convert the UN/EDIFACT message to
raw data, and copies it from the Payload node of the TP_EVENT section of the
e*Xchange standard Event to the output ETD.

To create and configure the Internal_Order_Eater Collaboration Rule Script

1 Open the Collaboration Editor.

2 Create a new Collaboration Rules script named Internal_Order_Eater.tsc. The
Source Event Type Definition is eX_Standard_Event.ssc. The Destination Event
Type Definition is root.ssc.

3 Add the rule shown in Figure 52.

Table 38 Internal_Order_Eater e*Way Parameters

Screen Parameter Setting

General Settings AllowIncoming NO

AllowOutgoing YES

Outbound (send) settings OutputDirectory <eGate>\data\internal\eater

OutputFileName output_order%d.dat

(All others) (Default)

Poller (inbound) settings (All) (Default)

Performance Testing (All) (Default)
e*Xchange Partner Manager Implementation Guide 126 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.6
e*Xchange Implementation—UN/EDIFACT Configure the Internal_Order_Eater e*Way
Figure 52 Internal_Order_Eater.tsc

Internal_Order_Eater Collaboration Properties Setup

Once the CRS has been created, you must set up the Collaboration and Collaboration
Rules Properties for the Internal_Order_Eater Component in the Enterprise Manager
GUI.

To create and configure the Internal_Order_Eater Collaboration Rule

1 Create a new Collaboration Rule named Internal_Order_Eater.

2 From Internal_Order_Eater Collaboration Rule properties, select the General tab.
Configure as shown in Table 39.

Table 39 Internal_Order_Eater CR configuration - General Tab

Important: To use the Monk function base64->raw, you must make sure the file containing
this function has been loaded.

3 Select the Subscriptions tab. Select eX_to_eBPM and move to the right pane.

4 Select the Publications tab. Select eX_External_Evt and move to the right pane.

To create and configure the Internal_Order_Eater Collaboration

1 Select the Internal_Order_Eater e*Way.

2 Create a new Collaboration named Internal_Order_Eater.

3 Configure the Internal_Order_Eater Collaboration properties using Table 40.

Table 40 Internal_Order_Eater Collaboration configuration

Section Value

Service Monk

Collaboration Rule Internal_Order_Eater

Initialization File monk_scripts\common\load_ext

Section Value

Collaboration Rule Internal_Order_Eater
e*Xchange Partner Manager Implementation Guide 127 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.7
e*Xchange Implementation—UN/EDIFACT Configure the eX_ePM e*Way
Verify the information in the Collaboration Properties dialog box as shown in Figure
53.

Figure 53 Internal_Order_Eater Collaboration Properties

10.7 Configure the eX_ePM e*Way
The eX_ePM e*Way requires only minimal configuration. You must give it the logon
information for the e*Xchange database.

To configure the eX_ePM configuration file

1 In the eX_ePM e*Way properties, select the General tab.

2 In the Configuration File area, click Edit.

3 Configure the parameters as shown in Table 41.
.

Subscriptions Event Type: eX_to_eBPM
Source: eX_from_ePM

Publications Event Type: eX_External_Evt
Destination: <EXTERNAL>

Table 41 eX_ePM e*Way Parameters

Screen Parameter Setting

General Settings (All) (Default)

Section Value
e*Xchange Partner Manager Implementation Guide 128 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.8
e*Xchange Implementation—UN/EDIFACT Editing the Data Files
10.8 Editing the Data Files
Before running the scenario, you must make sure that the unique ID in the input file
matches that in the output file, and that both files have the expected filename and
extension.

Knowing how to set these values also gives you the capability to reset the unique ID to
an appropriate new value so that you can run the scenario multiple times.

To ensure the unique ID in both files matches

1 Open up the file ORDERS.~in (in the <egate>\data\TP\feeder folder) in a text
editor such as Notepad or Wordpad.

2 Search for the following string, which is the unique ID in the files provided:

ORDERS_000000008

3 Replace that string with the following string:

ORDERS_000000001

4 Save and close.

5 Open up the file order_response.~in (in the <egate>\data\internal\feeder folder)
in a text editor such as Notepad or Wordpad.

6 Repeat steps 2 through 4 for this file.

Note: The last nine digits of the unique ID indicate that this is the first instance for this
date. For a second and subsequent running of this scenario, increment the last three
digits: 000000002, 000000003, and so forth. In each case, make sure that the value
is the same in both files.

To set the file names correctly

1 In <egate>\data\TP\feeder, change the name of the orders.~in file to orders.fin.

2 In <egate>\data\internal\feeder, change the name of the order_response.~in file
to order_response.fin.

That completes the data setup. The next step is to run the scenario.

Communication Setup (All) (Default)

Monk Configuration (All) (Default)

Database Setup Database Name (service name of the
e*Xchange database)

User name ex_admin

Password ex_admin

(All others) (Default)

Table 41 eX_ePM e*Way Parameters

Screen Parameter Setting
e*Xchange Partner Manager Implementation Guide 129 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.9
e*Xchange Implementation—UN/EDIFACT Running the Scenario
Conditional—to reset the file names

Once you have your schema running, you can run the file again by performing the
following steps, in sequence:

1 Increment the last nine digits of the control number by 1. For example, if the control
number is ORDERS_000000001, change it to ORDERS_000000002. Make sure that
both files match.

2 Change the extension from .~in to .fin in both files.

10.9 Running the Scenario
There are two parts to running the scenario:

1 Processing the purchase order message received from the trading partner

2 Sending the response message back to the trading partner

To process the purchase order message

1 Start the Control Broker. At the command line, enter:

stccb.exe -rh localhost -rs <schema_name> -ln localhost_cb -un
Administrator -up STC

2 Open the e*Gate Monitor. Select the UN/EDIFACT schema.

Note: If you have imported the sample schema then all the e*Ways are set to start
automatically.

3 Start the TP_Order_Feeder e*Way

This e*Way retrieves the incoming message and sends it to e*Xchange.

4 Rename <eGate>\data\TP\Feeder\ORDERS.~in to ORDERS.fin.

5 Look in the <egate>\data\TP\feeder folder. The file name changes from
orders.fin to orders.~in as the file is picked up.

6 Start the eX_Batch_to_Trading_Partner e*Way

This e*Way sends the control message back to the trading partner.

7 Start the Internal_Order_Eater e*Way

This e*Way sends the message to the internal system.

That completes the first part of the exercise. You can view the results in Message
Tracking, in e*Xchange Partner Manager.

Viewing the Results in Message Tracking

You can view the results of the message processing by using the Message Tracking
feature of e*Xchange.
e*Xchange Partner Manager Implementation Guide 130 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.9
e*Xchange Implementation—UN/EDIFACT Running the Scenario
Message Tracking shows two entries for the incoming message. This is because a
control message is sent out immediately, and a response message will be sent out later.
These two responses to the trading partner are tracked separately.

To view the inbound message in Message Tracking

1 From the e*Xchange Web interface, Main page, select Message Tracking.

The TP Profile Selection page appears.

2 In the Company Profile field, select Car Interiors.

3 In the Trading Partner Profile field, select CarSupplies Europe.

4 In the eBusiness Protocol field, select UN/EDIFACT.

5 In the Direction field, select Inbound.

6 Click the Message Profile Selection.

7 Select the EDF_ORDERSPurcOrdeMess_D99B message.

8 Click the Message Details link to view the resulting list.

The results are shown in Figure 54.

Figure 54 Message Tracking: Inbound

As shown in Figure 54, e*Xchange records two entries for the message. The top entry is
for the original message, for which a response message will be sent. The second entry is
for the control message.

For one entry, the Ack Message column has a link to the message information. Click it
to view the acknowledgment message.
e*Xchange Partner Manager Implementation Guide 131 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.10
e*Xchange Implementation—UN/EDIFACT Sending the Response
Figure 55 Control Message viewed in Message Tracking

Later, when the response message is sent out, you will be able to view it in Message
Tracking. For the moment, the Ack Message column is not showing a link for the other
message, since the response has not been sent out yet.

If you look in the <egate>\data\TP\eater folder, you will see the following output file:

! output1.dat—control message sent in response to the original message.

10.10 Sending the Response
This section builds on the UN/EDIFACT implementation example. You are now
simulating sending a response message to the Trading Partner and e*Xchange receiving
a control message back from the Trading Partner after you send out the response
message.
e*Xchange Partner Manager Implementation Guide 132 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.10
e*Xchange Implementation—UN/EDIFACT Sending the Response
Figure 56 e*Xchange Scenario Data Flow

Figure 46 data flow description

The TP_Order_Feeder e*Way picks up the order message and publishes it to the
eX_trading_Port_Queue IQ.

e*Xchange engine picks up from the IQ, validates it, saves it to the database, and
publishes two messages:

" Control message to the eX_Trading_Port_Queue IQ

" Order message to the eX_eBPM IQ.

eX_Batch_to_Trading_Partner e*Way sends out the control message to the trading
partner.

Internal_Order_Eater e*Way picks up the message from the eX_eBPM IQ and sends
it to the internal system.

Internal_OrderReponse_Feeder e*Way picks up the response message and
publishes it to the eX_eBPM IQ.

e*Xchange engine picks up the message from the eX_eBPM IQ, validates it,
envelopes it, and saves it to the database, and publishes it to the
eX_Trading_Port_Queue IQ.

eX_Batch_to_Trading_Partner e*Way picks up the message from the
eX_Trading_Port_Queue IQ and sends it to the trading partner.

1

3

4

5

6

7

Order

e*Xchange
Database

Internal_Order
_Eater e*Way eX_ePM

Engine

Order

eX_eBPM
IQ

eX_Trading_
Port_Queue IQ

Order
Resp

Internal_Order
Response

_Feeder e*Way

TP_Order
_Feeder e*Way

eX_Batch_to_
Trading_

Partner e*Way

Ctrl Order
Resp

2

e*Xchange

1

2

3

4

5

6

7

e*Xchange Partner Manager Implementation Guide 133 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.11
e*Xchange Implementation—UN/EDIFACT Configure the Internal_OrderResponse_Feeder e*Way
10.11 Configure the Internal_OrderResponse_Feeder e*Way
The component (e*Way or BOB) that feeds data into e*Xchange must put the data into
the appropriate business protocol format. It must also populate the required fields in
the e*Xchange Event that is processed by e*Xchange.

This component is entirely user-defined and must be added to the eXSchema. The type
of component to use depends on whether a connection to a system outside e*Gate must
be made, and if so, what type of system. Typically, this component is an e*Way that
connects to a business application such as SAP that sends out electronic messages.
These messages may or may not be in the format required by the trading partner to
which they are being sent. If the data is not in the correct format, the e*Way must
translate the data into the required format before it is sent to the e*Xchange system for
enveloping and forwarding to the trading partner.

The e*Xchange Internal_OrderResponse_Feeder e*Way

The e*Xchange example simulates sending the response message from the internal
system.

Configuration Steps

Follow these steps to configure Internal_OrderResponse_Feeder e*Way.

1 Create the configuration file.

2 Create the ETDs.

3 Create the Collaboration.

10.11.1Step 1: Create and Configure the
Internal_OrderResponse_Feeder e*Way

1 Create a new e*Way named Internal_OrderResponse_Feeder.

2 In the Executable file area of the General tab, in the e*Way Properties dialog box,
browse for stcewfile.exe.

3 In the Configuration file area of the General tab, in the e*Way Properties dialog
box click New.

4 Configure the Internal_OrderResponse_Feeder e*Way parameters using Table 42.

Table 42 Internal_OrderResponse_Feeder e*Way Parameters

Screen Parameter Setting

General Settings (All) (Default)

Outbound (send) settings (All) (Default)

Poller (inbound) settings PollDirectory <eGate>\data\internal\feeder

MultipleRecordsPerFile NO

(All others) (Default)
e*Xchange Partner Manager Implementation Guide 134 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.11
e*Xchange Implementation—UN/EDIFACT Configure the Internal_OrderResponse_Feeder e*Way
5 When finished editing the e*Way configuration file, save your work and close the
e*Way editor.

6 Click OK to close the e*Way Properties dialog box.

10.11.2Step 2: Create the Internal_OrderResponse_Feeder
Collaboration

The Internal_OrderResponse_Feeder Collaboration must prepare the data coming into
the e*Xchange system. How complicated this task is depends on the state of the data
before the Internal_OrderResponse_Feeder Collaboration processes it.

The Internal_OrderResponse_Feeder Collaboration must do the following:

! put the data into the appropriate EDI format

! convert the data to base 64 encoding

! populate the required nodes in the e*Xchange Event sent to e*Xchange for
processing

The e*Xchange Internal_OrderResponse_Feeder CRS

The Internal_OrderResponse_Feeder.tsc CRS does the following:

! Converts the UN/EDIFACT message to base 64 encoding, and copies it to the
Payload node of the TP_EVENT section of the e*Xchange standard Event.

! Copies “O” for outbound to the direction node of the TP_EVENT section.

! Copies the trading partner logical name “TP_001” to the PartnerName node of the
TP_EVENT section.

To create and configure the Internal_OrderResponse_Feeder Collaboration Rule Script

1 Open the Collaboration Editor.

2 Create a new Collaboration Rules script named
Internal_OrderResponse_Feeder.tsc. The Source Event Type Definition is root.ssc.
The Destination Event Type Definition is eX_Standard_Event.ssc.

3 Add the rules shown in Figure 57.

Performance Testing (All) (Default)

Table 42 Internal_OrderResponse_Feeder e*Way Parameters

Screen Parameter Setting
e*Xchange Partner Manager Implementation Guide 135 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.11
e*Xchange Implementation—UN/EDIFACT Configure the Internal_OrderResponse_Feeder e*Way
Figure 57 Internal_OrderResponse_Feeder.tsc

Internal_OrderResponse_Feeder Collaboration Properties Setup

Once the CRS has been created, you must set up the Collaboration and Collaboration
Rules Properties for the Internal_OrderResponse_Feeder Component in the Enterprise
Manager GUI.

To create and configure the Internal_OrderResponse_Feeder Collaboration Rule

1 Create a new Collaboration Rule named Internal_OrderResponse_Feeder.

2 From Internal_OrderResponse_Feeder Collaboration Rule properties, select the
General tab. Configure as shown in Table 43.

Table 43 Internal_OrderResponse_Feeder CR configuration - General Tab

Important: To use the Monk function raw->base64, you must make sure the file containing
this function has been loaded.

3 Select the Subscriptions tab. Select eX_External_Evt and move it to the right pane.

4 Select the Publications tab. Select eX_to_ePM and move it to the right pane.

To create and configure the Internal_OrderResponse_Feeder Collaboration

1 Select the Internal_OrderResponse_Feeder e*Way.

2 Create a new Collaboration named Internal_OrderResponse_Feeder.

3 Configure the Internal_OrderResponse_Feeder Collaboration properties using
Table 44.

Section Value

Service Monk

Collaboration Rule Internal_OrderResponse_Feeder

Initialization File monk_scripts\common\load_ext
e*Xchange Partner Manager Implementation Guide 136 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.11
e*Xchange Implementation—UN/EDIFACT Configure the Internal_OrderResponse_Feeder e*Way
Table 44 Internal_OrderResponse_Feeder Collaboration configuration

Verify the information in the Collaboration Properties dialog box as shown in Figure
58.

Figure 58 Internal_OrderResponse_Feeder Collaboration Properties

10.11.3Sending and Viewing the Response Message
The next step is to send the response message.

The input file for the response message is the
<egate>\data\internal\feeder\order_response.~in file. Instructions for preparing
this file for running the first time were given in “Editing the Data Files” on page 129.

To send the response message:

1 In the e*Gate Monitor, start the Internal_OrderResponse_Feeder e*Way.

2 Look in the <egate>\data\internal\feeder folder. The file name changes from
order_response.fin to order_response.~in as the file is picked up.

3 Look in the <egate>\data\TP\eater folder. The following output file has been
created:

" order_response#.dat—message sent out for the response.

Section Value

Collaboration Rule Internal_OrderResponse_Feeder

Subscriptions Event Type: eX_External_Evt
Source: <EXTERNAL>

Publications Event Type: eX_to_ePM
Destination: eX_eBPM
e*Xchange Partner Manager Implementation Guide 137 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.11
e*Xchange Implementation—UN/EDIFACT Configure the Internal_OrderResponse_Feeder e*Way
That completes the second part of the exercise. You can view the results in Message
Tracking.

Viewing the Results in Message Tracking

You can view the results of the message processing in Message Tracking.

To view the association of the response message to the original inbound message in
Message Tracking

1 From the e*Xchange Web interface, Main page, select Message Tracking.

The TP Profile Selection page appears.

2 In the Company Profile field, select Car Interiors.

3 In the Trading Partner Profile field, select CarSupplies Europe.

4 In the eBusiness Protocol field, select UN/EDIFACT.

5 In the Direction field, select Inbound.

6 Click the Message Profile Selection.

7 Select the EDF_ORDERSPurcOrdeMess_D99B message.

8 Click the Message Details link to view the resulting list.

Notice that both entries now have responses available for viewing: one is the
control message, the other is the full response message.

The results are shown in Figure 59.

Figure 59 Message Tracking: Inbound with response
e*Xchange Partner Manager Implementation Guide 138 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.12
e*Xchange Implementation—UN/EDIFACT Receiving a Control Message from the Trading Partner
10.12 Receiving a Control Message from the Trading Partner

10.12.1Editing the Data File
Before running the scenario, you must make some changes to your message files.

Since the control numbers in the message that comes in must match the control
numbers in the message you sent out to your trading partner, you must manually
update the control numbers.

There are three control numbers, one in each of three segments:

! Interchange response (UCI) segment

! Group response (UCF) segment

! Message/package response (UCM) segment

For the purposes of this scenario, the same number is used for each of these. Because of
this, you can copy one number from the UNB (interchange header) segment of the
outgoing response message and paste it in three places in the file that will serve for the
incoming control message.

However, you must first have the outgoing response message available. Run the first
two parts of the previous scenario again so that e*Xchange sends out the response
message to the trading partner.

10.12.2Preparing the Data File
The next step is to prepare your data file for running this scenario. The steps are:

! Copy the control numbers from the outgoing response message to the UCF, UCI
and UCM segments of the incoming control message.

! Update the unique control numbers in the UNB and UNZ segments of the incoming
control message.

10.12.3Copying the Response Control Numbers
Next, you must copy the control number from the response message that e*Xchange
sends out.

To copy the control number:

1 Go to <egate>\data\TP\eater.

2 Locate the output file that represents the response message that was just sent out. It
will look something like the file shown in Figure 60.

Note: The response message has a larger file size than the control message. Also, since the
control message is normally sent first, the response message is likely to be
output2.dat. However, this depends on what files were already there.
e*Xchange Partner Manager Implementation Guide 139 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.12
e*Xchange Implementation—UN/EDIFACT Receiving a Control Message from the Trading Partner
3 Copy the Interchange Control Reference.

It is the fifth element of the UNB segment, as shown in Figure 60.

Figure 60 Response Message

4 Close the message file.

5 Open up the file <egate>\data\TP\feeder\INB_CONTROL.~in.

This is the inbound control message.

6 Search for UCI.

7 Change the next element (between + signs) to the string that you copied, as shown
in Figure 61.

This updates the interchange response control number.

Figure 61 Inbound Control Message

8 Search for UCF.

9 Change the next element (between + signs) to the string that you copied.

This updates the functional group response control number.

10 Search for UCM.

11 Change the next element (between + signs) to the string that you copied.

This updates the message/package response control number.

12 Save the changes, but leave the file open.

10.12.4Incrementing the UNB/UNZ Control Numbers
You must also increment the UNB and UNZ control numbers in the incoming control
message to ensure they are unique. Make sure both control numbers are set to the same
value.

To increment the UNB/UNZ control numbers:

1 In <egate>\data\TP\feeder\inb_control.~in, search for UNB.
e*Xchange Partner Manager Implementation Guide 140 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.12
e*Xchange Implementation—UN/EDIFACT Receiving a Control Message from the Trading Partner
2 Go to the fifth element of the UNB segment (see Figure 62) and increment it.

Figure 62 Control Message: Incrementing the UNB Control Number

3 Go to the last segment (after UNZ) and increment it so that it matches the value for
the UNB segment.

Figure 63 Control Message: Incrementing the UNZ Control Number

4 Save your change and close the file.

10.12.5Sending and Viewing the Control Message
The final step is to send the control message.

The input file for the response message is the
<egate>\data\TP\feeder\INB_CONTROL.~in file. Instructions for preparing this
file for running were given in “Editing the Data File” on page 139.

To send the control message

1 Rename INB_CONTROL.~in to INB_CONTROL.fin.

2 Look in the <egate>\data\TP\feeder folder. The file name changes from
INB_CONTROL.fin to INB_CONTROL.~in as the file is picked up.

That completes the final part of the exercise. You can view the results in Message
Tracking.

To view the association of the control message to the original outbound response message
in Message Tracking

1 From the e*Xchange Web interface, Main page, select Message Tracking.

The TP Profile Selection page appears.

2 In the Company Profile field, select Car Interiors.

3 In the Trading Partner Profile field, select CarSupplies Europe.

4 In the eBusiness Protocol field, select UN/EDIFACT.

5 In the Direction field, select Outbound.

6 Click the Message Profile Selection.
e*Xchange Partner Manager Implementation Guide 141 SeeBeyond Proprietary and Confidential

Chapter 10 Section 10.12
e*Xchange Implementation—UN/EDIFACT Receiving a Control Message from the Trading Partner
7 Select the EDF_ORDRSPPurcOrdeRespMess_D99B message.

8 Click the Message Details link to view the resulting list.

Notice that response message now has an acknowledgment available for viewing:
this is the control message.

The results are shown in Figure 64.

Figure 64 Message Tracking: Outbound
e*Xchange Partner Manager Implementation Guide 142 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.1
e*Xchange Implementation—RosettaNet Overview
Chapter 11

e*Xchange Implementation—RosettaNet

This chapter discusses the steps involved to create an e*Xchange implementation that
transfers RosettaNet data.

The components for this implementation are provided on your installation CD. For
instructions on installing and using the implementation components, see “Using the
Implementation Sample” on page 147.

11.1 Overview
An e*Xchange implementation makes use of the features designed to add and remove
enveloping information for messages exchanged between trading partners.

In an e*Xchange implementation, use the e*Xchange Web interface to set up trading
partner information, and the e*Gate Enterprise Manager GUI to add user-defined
e*Gate components to provide connectivity to the business application or trading
partner. Once this is done, the pre-configured e*Xchange Schema components handle
enveloping and de-enveloping Events as they travel through the e*Xchange system.

The major steps for the implementation are as follows:

1 Create the trading partner profiles.

2 Configure the user-defined e*Ways that connect the business application to
e*Xchange and exchange messages with the trading partner.

3 Configure the e*Xchange e*Way.

4 Run and test the scenario.

11.1.1 Case Study: Sending a RosettaNet Purchase Order
The case study discussed in this chapter illustrates one possible implementation of
sending a purchase order to a trading partner.

In this example, a RosettaNet purchase order is sent to an external trading partner and
the response is sent back. This is achieved by configuring a “loopback” using two
trading partners. The flow of messages between the two trading partners is shown in
Figure 65.
e*Xchange Partner Manager Implementation Guide 143 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.1
e*Xchange Implementation—RosettaNet Overview
Figure 65 RosettaNet Implementation - Message Flow

Typically the two trading partners would be located on separate machines and
transport the messages using a communication protocol such as HTTP. However, for
this example you can define both trading partners on the same machine and use local
files to transfer the messages between systems.

The RosettaNet enveloping is automatically added to the message by e*Xchange based
on trading partner information retrieved from the e*Xchange database, and then it is
sent to an external system.

Typically, the purchase order information would be provided by a business application
and may or may not be in RosettaNet format. A user-defined e*Way must be created to
connect to a business application in order to receive the data and put it into the proper
RosettaNet format. In order to simplify this example, the purchase order information is
provided in the form of a text file that is already in RosettaNet format.

e*Xchange e*Xchange
Retailer TPWholesaler

TP

Purchase Order Request

Purchase Order Response

Purchase Order Response
Acknowledgment

Purchase Order Request
Acknowledgment

WholesalerRetailer
e*Xchange Partner Manager Implementation Guide 144 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.1
e*Xchange Implementation—RosettaNet Overview
Figure 66 e*Xchange Scenario Data Flow

9

6Order

e*Xchange
Database

Internal_Eater
e*Way

eX_ePM
Engine

Order

eX_eBPM
IQ

eX_Trading_
Port_Queue IQ

TP_Order
_Feeder e*Way

TP_Response
_Eater e*Way

Ack

5

Wholesaler

1

3

4

Order

e*Xchange
Database

Internal_Order
_Feeder e*Way

eX_ePM
Engine

eX_eBPM
IQ

eX_Trading_
Port_Queue IQ

TP_Order
_Eater e*Way

2

Retailer

Order
Resp

TP_Response
_Feeder e*Way

11 Order
Resp

Internal_Response_
Feeder e*Way

Order
Resp

7

8

10

12

13

14

15

16

Ack

18

17

19
e*Xchange Partner Manager Implementation Guide 145 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.1
e*Xchange Implementation—RosettaNet Overview
Figure 66 data flow description

1 The Internal_Order_Feeder e*Way picks up the purchase order message and
publishes it to the Buyer eX_eBPM IQ.

2 The Retailer e*Xchange engine picks the purchase order message up from the IQ,
validates it, saves it to the database, and publishes the purchase order message to
the Retailer eX_Trading_Port_Queue IQ.

3 The TP_Order_Eater e*Way sends out the purchase order message to the
Wholesaler trading partner by writing the purchase order message to file.

4 The TP_Order_Feeder e*Way picks up the message from the file and publishes it to
the Wholesaler eX_Trading_Port_Queue IQ.

5 The Wholesaler e*Xchange engine picks the purchase order message up from the
IQ, validates it, saves it to the database, and publishes the purchase order message
to the Wholesaler eX_eBPM IQ.

6 The Internal_Eater e*Way sends out the purchase order message to the internal
system by writing the purchase order message to file.

7 The Wholesaler e*Xchange engine publishes a purchase order acknowledgment
message to the Wholesaler eX_Trading_Port_Queue IQ.

8 The TP_Response_Eater e*Way sends out the purchase order acknowledgment
message to the Retailer trading partner by writing the purchase order
acknowledgment message to file.

9 The TP_Response_Feeder e*Way picks up the purchase order acknowledgment
message from the file and publishes it to the Retailer eX_Trading_Port_Queue IQ.

10 The Retailer e*Xchange engine picks the purchase order acknowledgment message
up from the IQ, validates it, saves it to the database.

11 The Internal_Response_Feeder e*Way picks up the purchase order response
message and publishes it to the Wholesaler eX_eBPM IQ.

12 The Wholesaler e*Xchange engine picks the purchase order message up from the
IQ, validates it, saves it to the database, and publishes the purchase order message
to the Wholesaler eX_Trading_Port_Queue IQ.

13 The TP_Response_Eater e*Way sends out the purchase order response message to
the Retailer trading partner by writing the purchase order response message to file.

14 The TP_Response_Feeder e*Way picks up the purchase order response message
from the file and publishes it to the Retailer eX_Trading_Port_Queue IQ.

15 The Retailer e*Xchange engine picks the purchase order response message up from
the IQ, validates it, saves it to the database, and publishes the purchase order
response message to the Retailer eX_eBPM IQ. The Retailer e*Xchange engine also
publishes the purchase order response acknowledgment message to the Retailer
eX_Trading_Port_Queue IQ.

16 The Internal_Eater e*Way sends out the purchase order response message to the
internal system by writing the purchase order message to file.
e*Xchange Partner Manager Implementation Guide 146 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.2
e*Xchange Implementation—RosettaNet Using the Implementation Sample
17 The TP_Order_Eater e*Way sends out the purchase order response
acknowledgment message to the Wholesaler trading partner by writing the
purchase order message to file.

18 The TP_Order_Feeder e*Way picks up the message from the file and publishes it to
the Wholesaler eX_Trading_Port_Queue IQ.

19 The Wholesaler e*Xchange engine picks the purchase order response
acknowledgment message up from the IQ, validates it and updates database.

11.2 Using the Implementation Sample
The components for this implementation are provided on your installation CD, and are
located in
\setup\eXchange\sample\ROSETTANET_SAMPLE_IMPLEMENTATION.zip.

To install the components

1 Unzip the file to a local directory.

2 Install the e*Gate schema using one of the following commands. The schema name
is user defined.

Note: The default registry port number is 23001.

A For UNIX:

sh install_rosettanet_po.sh <egate_registry_host_name>
<schema_name> <user_name> <password> <egate_registry_port_num>

B For Windows:

install_rosettanet_po.bat <egate_registry_host_name> <schema_name>
<user_name> <password> <egate_registry_port_num>

3 Use the e*Xchange Import function to import ROSETTANET.exp into e*Xchange
Partner Manager.

4 Copy the demos folder to the <egate> directory.

5 Configure the eX_ePM e*Way as described in “Configure the eX_ePM e*Way” on
page 192.

The steps on the following pages describe how the components for this implementation
were created. See “Running the Scenario” on page 193 for instructions to run the
implementation.
e*Xchange Partner Manager Implementation Guide 147 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.3
e*Xchange Implementation—RosettaNet Create the Trading Partner Profiles
11.3 Create the Trading Partner Profiles
The trading partner profiles in e*Xchange act as the repositories for the information
necessary to send messages back and forth between the entities. They contain all of the
information to properly envelope an Event and forward it to its correct destination.

When creating trading partner profiles, check your values carefully before saving or
leaving a section/screen, because many values cannot be changed once they are
committed to the database due to auditing restrictions. You can inactivate erroneous
information and add the correct information under a different company, outer
envelope, and so on.

Refer to the e*Xchange Partner Manager User’s Guide for detailed assistance with the
process of creating trading partner profiles.

Trading Partner Information Hierarchy

e*Xchange stores trading partner information at various levels. The process of creating
a trading partner profile proceeds from the most general inclusive level, that of a
company with which you do business, to the most specific information regarding an
message that you wish to send (the message profile).

11.3.1 The Retailer Company
The Retailer Company uses the RosettaNet format to exchange business data with its
customers. In our example we send a purchase order from the Retailer Company to the
Wholesaler Company.

On the Retailer, you configure the trading partner profile for the Wholesaler company.
Figure 67 shows an overview of the components that you need to create for this
example, including:

! Company

! Trading Partner

! B2B Protocol Information

! Message Profiles
e*Xchange Partner Manager Implementation Guide 148 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.3
e*Xchange Implementation—RosettaNet Create the Trading Partner Profiles
Figure 67 Wholesaler Trading Partner Configuration on the Retailer Company

To configure the Wholesaler trading partner profile follow the steps listed below:

! Step 1: Create the Wholesaler Company on page 149

! Step 2: Create the Wholesaler Trading Partner on page 150

! Step 3: Set Up Inbound B2B Protocol Information (Wholesaler TP) on page 150

! Step 4: Create the Inbound Message Profiles (Wholesaler TP) on page 151

! Step 5: Set Up Outbound B2B Protocol Information (Wholesaler TP) on page 153

! Step 6: Create the Outbound Message Profiles (Wholesaler TP) on page 153

! Step 7: Configure Return Messages for Inbound (Wholesaler TP) on page 155

The following procedure and accompanying tables were used to create the Wholesaler
Company trading partner for this example.

Step 1: Create the Wholesaler Company

1 Log in to the e*Xchange Web interface.

2 From the Main page, click Profile Management.

3 From the Company page, click New.

4 In the Company - adding page, enter the Company name, “Wholesaler Company”.

5 Click Next.

Retailer

Wholesaler TP

B2B Protocol Information
Inbound (Receive from Wholesaler)

Message Profiles
Business Signal Acknowledgment
Purchase Order Response

Outbound (Send to Wholesaler)

Message Profiles
Purchase Order Request
Business Signal Acknowledgment

B2B Protocol Information

Wholesaler Company
e*Xchange Partner Manager Implementation Guide 149 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.3
e*Xchange Implementation—RosettaNet Create the Trading Partner Profiles
This saves your changes and returns to the Company page.

Note: The security information is automatically configured for the current user.

Step 2: Create the Wholesaler Trading Partner

1 From the Company page, ensure that the “Wholesaler Company” is selected, and
click Continue: Trading Partner.

2 From the Trading Partner page, click New to access the Trading Partner - adding
page.

3 Enter the Trading Partner Name, “Wholesaler TP”.

4 Click Next.

This saves your changes and returns to the Trading Partner page.

The required security information defaults from the company level.

Step 3: Set Up Inbound B2B Protocol Information (Wholesaler TP)

To set up the inbound B2B Protocol Information

1 From the Trading Partner page, ensure that the “Wholesaler TP” is selected, and
click Continue: B2B Protocol.

2 From the B2B Protocol page, click New to access the B2B Protocol - adding page.

3 Enter the information listed in Table 45.

In an actual implementation, your local administrator can provide you with the B2B
Protocol information. For an explanation of the B2B Protocol parameters, see the
e*Xchange Partner Manager User’s Guide.

4 Click Next to save your changes and access the General section.

5 Enter the information listed in Table 46.

Table 45 B2B Protocol Information

Parameter Value

eBusiness Protocol RosettaNet

Version 2.0

Direction Inbound

Table 46 B2B Protocol Information, General Page

Parameter Value

Logical Name Wholesaler

Status Active

Communication Protocol HTTP
e*Xchange Partner Manager Implementation Guide 150 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.3
e*Xchange Implementation—RosettaNet Create the Trading Partner Profiles
6 Click Next to save your changes and access the Transport Component section.

7 No changes are required. Click Next to access the Message Security section.

8 No changes are required. Click Finish to save the information and return to the B2B
Protocol page.

Step 4: Create the Inbound Message Profiles (Wholesaler TP)

For the purposes of this scenario, you must set up the following inbound message
profiles:

! Purchase Order Response Message (3A4 Response - Manage Purchase Order)

! Control (Business Signal - Receipt Acknowledge)

To set up the 3A4 Response - Manage Purchase Order inbound message profile

1 From the B2B Protocol page, click Continue: Message Profile.

2 From the Message Profile page, click the New button to access the Message Profile
- adding page.

3 In the Name window, type 3A4 Response - Manage Purchase Order, and leave all
other parameters with their default values.

4 Click Next to access the Delivery Header section. Enter the information listed in
Table 47.

Table 47 Delivery Header (3A4 Response - Manage Purchase Order)

5 Click Next to access the Service Header section. Enter the information listed in
Table 48.

Note: This table only lists the attributes required to make this scenario work.

Table 48 Service Header (3A4 Response - Manage Purchase Order)

Name Value

From Global Partner Business
Identification

6264712002

To Global Partner Business Identification 6264716002

Name Value

Activity Identifier 1

From Global Partner Role Classification Seller

From Global Business Service Code Seller Service

Global Business Action/Signal Code Purchase Order Acceptance Action

Global Business Action/Signal Version
Identifier

01.02

Global Process Code(PIP) 3A4

PIP Version Identifier 01.02

To Global Partner Role Classification Buyer
e*Xchange Partner Manager Implementation Guide 151 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.3
e*Xchange Implementation—RosettaNet Create the Trading Partner Profiles
6 Click Next to access the Return Messages section.

7 No changes are required. Click Finish to save the information and return to the
Message Profile page.

Note: Setup of the return inner envelope is done later, after the Outbound inner envelopes
have been set up.

To set up the Business Signal - Receipt Acknowledge inbound inner envelope

1 From the Message Profile page, click the New button to access the Message Profile
- adding page.

2 In the Name window, type Business Signal - Receipt Acknowledge, and leave all
other parameters with their default values.

3 Click Next to access the Delivery Header section. The information should appear as
listed in Table 49.

Table 49 Delivery Header (Business Signal - Receipt Acknowledge)

4 Click Next to access the Service Header section. Enter the information listed in
Table 50.

Note: This table only lists the attributes required to make this scenario work.

Table 50 Service Header (Business Signal - Receipt Acknowledge)

5 Click Next to access the Return Messages section.

To Global Business Service Code Buyer Service

Usage Code Test

Name Value

From Global Partner Business
Identification

6264712002

To Global Partner Business Identification 6264716002

Name Value

Activity Identifier 1

From Global Partner Role Classification Seller

From Global Business Service Code Seller Service

Global Business Action/signal Code Receipt Acknowledge

Global Business Action/Signal Version
Identifier

01.02

To Global Partner Role Classification Buyer

To Global Business Service Code Buyer Service

Usage Code Test

Name Value
e*Xchange Partner Manager Implementation Guide 152 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.3
e*Xchange Implementation—RosettaNet Create the Trading Partner Profiles
6 No changes are required. Click Finish to save the information and return to the
Message Profile page.

Step 5: Set Up Outbound B2B Protocol Information (Wholesaler TP)

To set up the outbound B2B Protocol Information

As a shortcut, you can copy the Inbound B2B protocol information as a model for the
Outbound B2B protocol information.

1 On the B2B Protocol page, select the RosettaNet-2.0-Inbound protocol that you
created in “To set up the inbound B2B Protocol Information” on page 150.

2 Click Copy.

The B2B Protocol - copying page appears.

3 In the Direction field, ensure that Outbound is selected.

4 Click Next.

The B2B Protocol - copying, General page appears.

5 No changes are needed: click Next to accept the values and access the Transport
Component page.

6 No changes are needed: click Next to accept the values and access the Message
Security page.

7 No changes are required. Click Finish to save the information and return to the B2B
Protocol page.

Step 6: Create the Outbound Message Profiles (Wholesaler TP)

For the purposes of this scenario, you must set up the following outbound message
profiles:

! Purchase Order Message (3A4 Request - Manage Purchase Order)

! Control (Business Signal - Receipt Acknowledge)

To set up the 3A4 Request - Manage Purchase Order outbound message profile

1 From the B2B Protocol page, click Continue: Message Profile.

2 From the Message Profile page, click the New button to access the Message Profile
- adding page.

3 In the Name window, type 3A4 Request - Manage Purchase Order. Leave all other
parameters with their default values.

4 Click Next to access the Delivery Header section. Enter the information listed in
Table 51.

Table 51 Delivery Header (3A4 Request - Manage Purchase Order)

Name Value

From Global Partner Business
Identification

6264716002
e*Xchange Partner Manager Implementation Guide 153 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.3
e*Xchange Implementation—RosettaNet Create the Trading Partner Profiles
5 Click Next to access the Service Header section. Enter the information listed in
Table 52.

6 Click Next to access the Return Messages section.

7 Select the return message (select the check box), and enter the values, as shown in
Table 53.

8 Click Finish to save the information and return to the Message Profile page.

To set up the Business Signal - Receipt Acknowledge outbound inner envelope

1 From the Message Profile page, click the New button to access the Message Profile
- adding page.

2 In the Name window, type Business Signal - Receipt Acknowledge, leave all other
parameters with their default values.

3 Click Next to access the Delivery Header section. The information should appear as
listed in Table 54.

To Global Partner Business Identification 6264712002

Table 52 Service Header (3A4 Request - Manage Purchase Order)

Name Value

Activity Identifier 1

From Global Partner Role
Classification

Buyer

From Global Business Service Code Buyer Service

Global Business Action/signal Code Purchase Order Request Action

Global Business Action/Signal
Version Identifier

01.02

Global Process Code(PIP) 3A4

PIP Version Identifier 01.02

To Global Partner Role Classification Seller

To Global Business Service Code Seller Service

Usage Code Test

Table 53 Return Message Values: Outbound

Name Response Time Period # Retries

Business Signal - Receipt Acknowledge 2 Minutes 1

3A4 Response - Manage Purchase Order 5 Minutes 1

Name Value
e*Xchange Partner Manager Implementation Guide 154 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.3
e*Xchange Implementation—RosettaNet Create the Trading Partner Profiles
Table 54 Delivery Header (Business Signal - Receipt Acknowledge)

4 Click Next to access the Service Header section. Enter the information listed in
Table 55.

Note: This table only lists the attributes required to make this scenario work.

Table 55 Service Header (Business Signal - Receipt Acknowledge)

5 Click Next to access the Return Messages section.

6 No changes are required. Click Finish to save the information and return to the
Message Profile page.

Step 7: Configure Return Messages for Inbound (Wholesaler TP)

To set up the Return Inner Envelope values for Inbound

Once you have set up inbound and outbound message profiles, you can specify return
messages.

1 From the B2B Protocol page, select RosettaNet-2.0-Inbound.

2 Click Continue: Message Profile.

3 From the Message Profile page, select 3A4 Response - Manage Purchase Order
from the drop-down list.

4 Click the Return Messages link to access the Return Messages section.

5 Click Edit.

6 Select the return messages (select the check boxes), and enter the values, as shown
in Table 56.

Name Value

From Global Partner Business
Identification

6264716002

To Global Partner Business Identification 6264712002

Name Value

Activity Identifier 1

From Global Partner Role Classification Buyer

From Global Business Service Code Buyer Service

Global Business Action/Signal Code Receipt Acknowledge

Global Business Action/Signal Version
Identifier

01.02

To Global Partner Role Classification Seller

To Global Business Service Code Seller Service

Usage Code Test
e*Xchange Partner Manager Implementation Guide 155 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.3
e*Xchange Implementation—RosettaNet Create the Trading Partner Profiles
7 Click Apply to save the information and return to the Message Profile page.

Table 56 Return Message Values: Inbound

Name Response Time Period # Retries

Business Signal - Receipt Acknowledge 10 Minutes 0
e*Xchange Partner Manager Implementation Guide 156 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.4
e*Xchange Implementation—RosettaNet The Wholesaler
11.4 The Wholesaler
The Wholesaler is the supplier that uses the RosettaNet format to exchange business
data with its customers. In our example the Wholesalers receive a purchase order from
the Retailer and sends a purchase order response back.

On the Wholesaler, you configure the Trading Partner Profile for the Retailer company.
Figure 68 shows an overview of the components that you need to create for this
example, including:

! Company

! Trading Partner

! B2B Protocol Information

! Message Profiles

Figure 68 Retailer Trading Partner Configuration on the Wholesaler Company

To configure the Retailer Trading Partner Profile you must follow the steps listed
below:

! Step 1: Create the Retailer Company on page 158

! Step 2: Create the Retailer Trading Partner on page 158

! Step 3: Set Up Inbound B2B Protocol Information (Retailer TP) on page 158

! Step 4: Create the Inbound Message Profiles (Retailer TP) on page 159

Purchase Order Request

Wholesaler

B2B Protocol Information
Inbound (Receive from Retailer)

Message Profiles

Business Signal Acknowledgment

Outbound (Send to Retailer)

Message Profiles

Purchase Order Response
Business Signal Acknowledgment

B2B Protocol Information

Retailer TP
Retailer Company

Purchase Order Request
e*Xchange Partner Manager Implementation Guide 157 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.4
e*Xchange Implementation—RosettaNet The Wholesaler
! Step 5: Set Up the Outbound B2B Protocol Information (Retailer TP) on page 161

! Step 6: Set Up the Outbound Message Profiles (Retailer TP) on page 162

! Step 7: Configure Return Messages for Inbound (Retailer TP) on page 164

The following procedure and accompanying tables were used to create the Retailer
Company trading partner for this example.

Step 1: Create the Retailer Company

1 Log in to the e*Xchange Web Interface.

2 From the Main page, click Profile Management.

3 From the Company page, click New.

4 In the Company - adding page, enter the Company name, “Retailer Company”.

5 Click Next.

This saves your changes and returns to the Company page.

Note: The security information is automatically configured for the current user.

Step 2: Create the Retailer Trading Partner

1 From the Company page, ensure that the “Retailer Company” is selected, and then
click Continue: Trading Partner.

2 From the Trading Partner page, click New to access the Trading Partner - adding
page.

3 Enter the Trading Partner Name, “Retailer TP”.

4 Click Next.

This saves your changes and returns to the Trading Partner page.

The required security information defaults from the company level.

Step 3: Set Up Inbound B2B Protocol Information (Retailer TP)

To set up the inbound B2B Protocol Information

1 From the Trading Partner page, ensure that the “Retailer TP” is selected, and click
Continue: B2B Protocol.

2 From the B2B Protocol page, click New to access the B2B Protocol - adding page.

3 Enter the information listed in Table 57.

In an actual implementation, your local administrator can provide you with the B2B
Protocol information. For an explanation of the B2B Protocol parameters, see the
e*Xchange Partner Manager User’s Guide.
e*Xchange Partner Manager Implementation Guide 158 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.4
e*Xchange Implementation—RosettaNet The Wholesaler
4 Click Next to save your changes and access the General section.

5 Enter the information listed in Table 58.

6 Click Next to save your changes and access the Transport Component section.

7 No changes are required. Click Next to access the Message Security section.

8 No changes are required. Click Finish to save the information and return to the B2B
Protocol page.

Step 4: Create the Inbound Message Profiles (Retailer TP)

For the purposes of this scenario, you must set up the following inbound message
profiles:

! Purchase Order Message (3A4 Request - Manage Purchase Order)

! Control (Business Signal - Receipt Acknowledge)

To set up the 3A4 Request - Manage Purchase Order inbound inner envelope

1 From the B2B Protocol page, click Continue: Message Profile.

2 From the Message Profile page, click the New button to access the Message Profile
- adding page.

3 In the Name window, type 3A4 Request - Manage Purchase Order, and leave all
other parameters with their default values.

4 Click Next to access the Delivery Header section. Enter the information listed in
Table 59.

Table 59 Delivery Header (3A4 Request - Manage Purchase Order)

Table 57 B2B Protocol Information

Parameter Value

eBusiness Protocol RosettaNet

Version 2.0

Direction Inbound

Table 58 B2B Protocol Information, General Page

Parameter Value

Logical Name Retailer

Status Active

Communication Protocol HTTP

Name Value

From Global Partner Business
Identification

6264716002

To Global Partner Business Identification 6264712002
e*Xchange Partner Manager Implementation Guide 159 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.4
e*Xchange Implementation—RosettaNet The Wholesaler
5 Click Next to access the Service Header section. Enter the information listed in
Table 60.

Table 60 Service Header (3A4 Request - Manage Purchase Order)

6 Click Next to access the Return Messages section.

7 No changes are required. Click Finish to save the information and return to the
Message Profile page.

Note: Setup of the return inner envelope is done later, after the Outbound inner envelopes
have been set up.

To set up the Business Signal - Receipt Acknowledge inbound inner envelope

1 From the Message Profile page, click the New button to access the Message Profile
- adding page.

2 In the Name window, type Business Signal - Receipt Acknowledge, and leave all
other parameters with their default values.

3 Click Next to access the Delivery Header section. The information should appear as
listed in Table 61.

Table 61 Delivery Header (Business Signal - Receipt Acknowledge)

4 Click Next to access the Service Header section. Enter the information listed in
Table 62.

Note: This table only lists the attributes required to make this scenario work.

Name Value

Activity Identifier 1

From Global Partner Role Classification Buyer

From Global Business Service Code Buyer Service

Global Business Action/signal Code Purchase Order Request Action

Global Business Action/Signal Version
Identifier

01.02

Global Process Code(PIP) 3A4

PIP Version Identifier 01.02

To Global Partner Role Classification Seller

To Global Business Service Code Seller Service

Usage Code Test

Name Value

From Global Partner Business
Identification

6264716002

To Global Partner Business Identification 6264712002
e*Xchange Partner Manager Implementation Guide 160 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.4
e*Xchange Implementation—RosettaNet The Wholesaler
Table 62 Service Header (Business Signal - Receipt Acknowledge)

5 Click Next to access the Return Messages section.

6 No changes are required. Click Finish to save the information and return to the
Message Profile page.

Step 5: Set Up the Outbound B2B Protocol Information (Retailer TP)

To set up the outbound B2B Protocol information

As a shortcut, you can copy the inbound B2B Protocol information as a model for the
Inbound B2B Protocol information.

1 On the B2B Protocol page, select the RosettaNet-2.0-Inbound protocol that you
created in “To set up the inbound B2B Protocol Information” on page 158. Click
Copy.

The Copy Type page appears.

2 Clear the Include Sub-components check box and then click OK.

The Copy Type page appears.

3 Clear the Include Sub-components check box and then click OK.

The B2B Protocol - Copying page appears.

4 In the Direction field, ensure that Outbound is selected.

5 Click Next.

The B2B Protocol - copying, General page appears.

6 No changes are needed: click Next to accept the values and access the Transport
Component page.

7 No changes are needed: click Next to accept the values and access the Message
Security page.

8 No changes are required. Click Finish to save the information and return to the B2B
Protocol page.

Name Value

Activity Identifier 1

From Global Partner Role Classification Buyer

From Global Business Service Code Buyer Service

Global Business Action/signal Code Receipt Acknowledge

Global Business Action/Signal Version
Identifier

01.02

To Global Partner Role Classification Seller

To Global Business Service Code Seller Service

Usage Code Test
e*Xchange Partner Manager Implementation Guide 161 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.4
e*Xchange Implementation—RosettaNet The Wholesaler
Step 6: Set Up the Outbound Message Profiles (Retailer TP)

To set up the 3A4 Response - Manage Purchase Order outbound Message Profile

1 From the B2B Protocol page, click Continue: Message Profile.

2 From the Message Profile page, click the New button to access the Message Profile
- adding page.

3 In the Name window, type 3A4 Response - Manage Purchase Order, and leave all
other parameters with their default values.

4 Click Next to access the Delivery Header section. Enter the information listed in
Table 63.

Table 63 Delivery Header (3A4 Response - Manage Purchase Order)

5 Click Next to access the Service Header section. Enter the information listed in
Table 64.

Note: This table only lists the extended attributes required to make this scenario work.

6 Click Next to access the Return Messages section.

7 Select the return message (select the check box), and enter the values, as shown in
Table 65.

Name Value

From Global Partner Business
Identification

6264712002

To Global Partner Business Identification 6264716002

Table 64 Service Header (3A4 Response - Manage Purchase Order)

Name Value

Activity Identifier 1

From Global Partner Role
Classification

Seller

From Global Business Service Code Seller Service

Global Business Action/signal Code Purchase Order Acceptance Action

Global Business Action/Signal
Version Identifier

01.02

Global Process Code(PIP) 3A4

PIP Version Identifier 01.02

To Global Partner Role Classification Buyer

To Global Business Service Code Buyer Service

Usage Code Test
e*Xchange Partner Manager Implementation Guide 162 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.4
e*Xchange Implementation—RosettaNet The Wholesaler
8 Click Finish to save the information and return to the Message Profile page.

To set up the Business Signal - Receipt Acknowledge outbound message profile

1 From the Message Profile page, click the New button to access the Message Profile
- adding page.

2 In the Name window, type Business Signal - Receipt Acknowledge, and leave all
other parameters with their default values.

3 Click Next to access the Delivery Header section. The information should appear as
listed in Table 66.

Table 66 Delivery Header (Business Signal - Receipt Acknowledge)

4 Click Next to access the Service Header section. Enter the information listed in
Table 67.

Note: This table only lists the extended attributes required to make this scenario work.

Table 67 Service Header (Business Signal - Receipt Acknowledge)

5 Click Next to access the Return Messages section.

6 No changes are required. Click Finish to save the information and return to the
Message Profile page.

Table 65 Return Message Values: Outbound

Name Response Time Period # Retries

Business Signal - Receipt Acknowledge 2 Minutes 1

Name Value

From Global Partner Business
Identification

6264712002

To Global Partner Business Identification 6264716002

Name Value

Activity Identifier 1

From Global Partner Role Classification Seller

From Global Business Service Code Seller Service

Global Business Action/signal Code Receipt Acknowledge

Global Business Action/Signal Version
Identifier

01.02

To Global Partner Role Classification Buyer

To Global Business Service Code Buyer Service

Usage Code Test
e*Xchange Partner Manager Implementation Guide 163 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.5
e*Xchange Implementation—RosettaNet Clone the eXSchema
Step 7: Configure Return Messages for Inbound (Retailer TP)

To set up the Return Inner Envelope values for Inbound

Once you have set up inbound and outbound message profiles, you can specify return
messages.

1 From the B2B Profile page, select RosettaNet-2.0-Inbound.

2 Click Continue: Message Profile.

3 From the Message Profile page, select 3A4 Request - Manage Purchase Order from
the drop-down list.

4 Click the Return Messages link to access the Return Messages section.

5 Click Edit.

6 Select the return messages (select the check boxes), and enter the values, as shown
in Table 68.

7 Click Apply to save the information and return to the Message Profile page.

11.5 Clone the eXSchema
The supplied schema named eXSchema contains the components required to run
e*Xchange. Make a copy of this schema and then configure the copy for this
implementation.

To make a copy of eXSchema

1 Open eXSchema in the e*Gate Enterprise Manager GUI.

2 Export eXSchema.

3 Create a new schema named RosettaNet using the exported file.

11.6 Configure the Internal_Order_Feeder e*Way
The component (e*Way or BOB) that feeds data into e*Xchange must put the data into
the appropriate business protocol format. It must also populate the required fields in
the e*Xchange Event that is processed by e*Xchange.

This component is entirely user-defined and must be added to the RosettaNet schema.
The type of component to use depends on whether a connection to a system outside

Table 68 Return Message Values: Inbound

Name Response Time Period # Retries

3A4 Response - Manage Purchase Order 10 Minutes 0

Business Signal - Receipt Acknowledge 5 Minutes 0
e*Xchange Partner Manager Implementation Guide 164 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.6
e*Xchange Implementation—RosettaNet Configure the Internal_Order_Feeder e*Way
e*Gate must be made, and if so, what type of system. Typically, this component is an
e*Way that connects to a business application such as SAP that sends out electronic
messages. These messages may or may not be in the format required by the trading
partner to which they are being sent. If the data is not in the correct format, the e*Way
must translate the data into the required format before it is sent to the e*Xchange
system for enveloping and forwarding to the trading partner.

The e*Xchange Internal_Order_Feeder e*Way

This example simulates the publication of an electronic purchase order from a trading
partner. This file, which is already in RosettaNet format, is picked up by a file e*Way
and moved into the e*Xchange system.

Configuration Steps

Follow these steps to configure the Internal_Order_Feeder e*Way.

1 Create and configure the e*Way.

2 Create the ETDs.

3 Create the Collaboration.

11.6.1 Step 1: Create and configure the Internal_Order_Feeder
e*Way

1 Create an e*Way called Internal_Order_Feeder.

2 In the e*Way Properties dialog box, in the Executable file area of the General tab,
browse for stcewfile.exe.

3 In the e*Way Properties dialog box, in the Configuration file area of the General
tab, click New.

4 Use the following table to set the e*Way parameters for the Internal_Order_Feeder
e*Way:

5 When finished editing the e*Way configuration file, save your work and close the
e*Way editor.

6 Click OK to close the e*Way Properties dialog box.

Table 69 Internal_Order_Feeder e*Way Parameters

Screen Parameter Setting

General Settings (All) (Default)

Outbound (send) settings (All) (Default)

Poller (inbound) settings PollDirectory <eGate>\Demos\RosettaNet\inp
ut\order

MultipleRecordsPerFile NO

(All others) (Default)

Performance Testing (All) (Default)
e*Xchange Partner Manager Implementation Guide 165 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.6
e*Xchange Implementation—RosettaNet Configure the Internal_Order_Feeder e*Way
11.6.2 Step 2: Create the Internal_Order_Feeder ETDs
In the present example, since the data is already in standard RosettaNet format for a
purchase order, you can bring in the Event without parsing it. To do this, all that is
required is an ETD with a root node.

Note: If root.ssc already exists, you do not need to create the ETD.

To create the root ETD

1 Create a new ETD called root.ssc. In the Type box, select Delimited, and select
Other from the drop-down list.

2 Add a single node to the structure. The ETD is shown in Figure 69.

Figure 69 root.ssc Event Type Definition

3 Save the ETD.

11.6.3 Step 3: Create the Internal_Order_Feeder Collaboration
The Internal_Order_Feeder Collaboration must prepare the data coming into the
e*Xchange system. How complicated this task is depends on the state of the data before
the Internal_Order_Feeder Collaboration processes it.

The Internal_Order_Feeder Collaboration must do the following:

! convert the data to base 64 encoding

! populate the required nodes in the e*Xchange Event sent to e*Xchange for
processing

Convert the Event to Base 64 Encoding

The Internal_Order_Feeder Collaboration must ensure that the data going into
e*Xchange doesn’t include any characters that cause problems for the XML structure of
the standard e*Xchange Event (for example, characters that are the same as the XML
control characters). This is done by converting the entire message to base 64 encoding
using the Monk function raw->base64, and then copying it to the payload node of the
eX_Standard_Event ETD.

Populate the Required e*Xchange Nodes

In addition to copying the base 64 encoded message to the payload node of the
TP_EVENT portion of the e*Xchange standard Event, you must provide e*Xchange
with tracking information about the message.
e*Xchange Partner Manager Implementation Guide 166 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.6
e*Xchange Implementation—RosettaNet Configure the Internal_Order_Feeder e*Way
e*Xchange Tracking Information

e*Xchange needs to know certain things about an message before processing. The
Internal_Order_Feeder Collaboration must supply this information by populating
certain required nodes in the Event that is sent to e*Xchange. At a minimum you must
tell e*Xchange:

! Direction (inbound or outbound)

! Partner Name (logical name from the outer envelope in e*Xchange)

All of these requirements can be met by copying the appropriate information to the
corresponding nodes in the TP section of the e*Xchange ETD (eX_Standard_Event.ssc).

The TP_EVENT.CT.DSN.DS.Direction.CT.DSN.DS.Data node must contain the
direction of the Event: “O” for outbound to the trading partner or “I” for inbound from
a trading partner.

The TP_EVENT.CT.DSN.DS.PartnerName.CT.DSN.DS.Data node must contain the
name (case-sensitive) of the trading partner as defined in the B2B Protocol
Information, General page.

The e*Xchange Payload

In addition to the tracking information, the
TP_EVENT.CT.DSN.DS.Payload.CT.DSN.DS.Data node must be filled with the
entire base 64 encoded message.

The e*Xchange Internal_Order_Feeder CRS

The CRS, Internal_Order_Feeder.tsc, used in the present example is shown in Figure
70. It does the following:

! Converts the RosettaNet message to base 64 encoding, and copies it to the Payload
node of the TP_EVENT section of the e*Xchange standard Event.

! Copies “O” for outbound to the direction node of the TP_EVENT section.

! Copies the trading partner logical name “Wholesaler” to the PartnerName node of
the TP_EVENT section.

To create and configure the Internal_Order_Feeder Collaboration Rule

1 Open the Collaboration Editor.

2 Create a new Collaboration Rules script named Internal_Order_Feeder.tsc. The
Source Event Type Definition is root.ssc. The Destination Event Type Definition is
eX_Standard_Event.ssc.

3 Add the rules shown in Figure 70.
e*Xchange Partner Manager Implementation Guide 167 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.6
e*Xchange Implementation—RosettaNet Configure the Internal_Order_Feeder e*Way
Figure 70 Internal_Order_Feeder.tsc

Internal_Order_Feeder Collaboration Properties Setup

Once the CRS has been created, you must set up the Collaboration and Collaboration
Rules Properties for the Internal_Order_Feeder Component in the Enterprise Manager
GUI.

To create and configure the Internal_Order_Feeder Collaboration Rule

1 Create a new Collaboration Rule named Internal_Order_Feeder.

2 From Internal_Order_Feeder Collaboration Rule properties, select the General tab.
Configure as shown in Table 70.

Table 70 Internal_Order_Feeder CR configuration - General Tab

Section Value

Service Monk

Collaboration Rule Internal_Order_Feeder

Initialization File monk_scripts\common\load_ext
e*Xchange Partner Manager Implementation Guide 168 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.6
e*Xchange Implementation—RosettaNet Configure the Internal_Order_Feeder e*Way
Important: To use the Monk function raw->base64, you must make sure the file containing
this function has been loaded.

Figure 71 Internal_Order_Feeder Collaboration Rules Properties Dialog Box

3 Select the Subscriptions tab. Select eX_External_Evt and move it to the right pane.

4 Select the Publications tab. Select eX_to_ePM and move it to the right pane.

To create and configure the Internal_Order_Feeder Collaboration

1 Select the Internal_Order_Feeder e*Way.

2 Create a new Collaboration named Internal_Order_Feeder.

3 Configure the Internal_Order_Feeder Collaboration properties using Table 71.

Table 71 Internal_Order_Feeder Collaboration configuration

Section Value

Collaboration Rules Internal_Order_Feeder

Subscriptions Event Type: eX_External_Evt
Source: <EXTERNAL>

Publications Event Type: eX_to_ePM
Destination: eX_eBPM

This command
loads the Monk
file where
raw->base64 is
defined
e*Xchange Partner Manager Implementation Guide 169 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.7
e*Xchange Implementation—RosettaNet Configure the TP_Order_Eater e*Way
Verify the information in the Collaboration Properties dialog box as shown in Figure
72.

Figure 72 Internal_Order_Feeder Collaboration Properties

11.7 Configure the TP_Order_Eater e*Way
The component (e*Way or BOB) sends the message to the external system.

The e*Xchange TP_Order_Eater e*Way

The e*Xchange example simulates the publication of the message to the external
system.

Configuration Steps

Follow these steps to configure the TP_Order_Eater e*Way.

1 Create the configuration file.

2 Create the ETDs.

3 Create the Collaboration.

11.7.1 Step 1: Create and configure the TP_Order_Eater e*Way
1 Create an e*Way called TP_Order_Eater.

2 In the e*Way Properties dialog box General tab, in the Executable file area browse
for stcewfile.exe.
e*Xchange Partner Manager Implementation Guide 170 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.7
e*Xchange Implementation—RosettaNet Configure the TP_Order_Eater e*Way
3 In the e*Way Properties dialog box General tab, in the Configuration file area,
click New.

4 Use Table 72 to set the e*Way parameters for the TP_Order_Eater e*Way.

5 When finished editing the e*Way configuration file, save your work and close the
e*Way editor.

6 Click OK to close the e*Way Properties dialog box.

11.7.2 Step 2: Create the TP_Order_Eater Collaboration
The TP_Order_Eater Collaboration must prepare the data leaving the e*Xchange
system. How complicated this task is depends on the state of the data before the
TP_Order_Eater Collaboration processes it.

The TP_Order_Eater Collaboration must do the following:

! put the data into the appropriate format

! convert the data to raw data

The e*Xchange TP_Order_Eater CRS

The CRS, TP_Order_Eater.tsc, checks that the message is for the Wholesaler Trading
Partner (Wholesaler). If it is, it converts the RosettaNet message to raw data, and then
copies it from the Payload node of the TP_EVENT section of the e*Xchange standard
Event to the output ETD.

To create and configure the TP_Order_Eater Collaboration Rule

1 Open the Collaboration Editor.

2 Create a new Collaboration Rules script named TP_Order_Eater.tsc. The Source
Event Type Definition is eX_Standard_Event.ssc. The Destination Event Type
Definition is root.ssc.

3 Add the rule shown in Figure 73.

Table 72 TP_Order_Eater e*Way Parameters

Screen Parameter Setting

General Settings AllowIncoming NO

AllowOutgoing YES

Outbound (send) settings OutputDirectory <eGate>\Demos\RosettaNet\out
put\Order_Out\TP

OutputFileName order%d.dat

MultipleRecordsPerFile NO

(All others) (Default)

Poller (inbound) settings (All) (Default)

Performance Testing (All) (Default)
e*Xchange Partner Manager Implementation Guide 171 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.7
e*Xchange Implementation—RosettaNet Configure the TP_Order_Eater e*Way
Figure 73 TP_Order_Eater.tsc

TP_Order_Eater Collaboration Properties Setup

Once the CRS has been created, you must set up the Collaboration and Collaboration
Rules Properties for the TP_Order_Eater Component in the Enterprise Manager GUI.

To create and configure the TP_Order_Eater Collaboration Rule

1 Create a new Collaboration Rule named TP_Order_Eater.

2 From the Internal_Order_Eater Collaboration Rule properties, select the General
tab. Configure as shown in Table 73.

Table 73 TP_Order_Eater CR Configuration - General Tab

Important: To use the Monk function base64->raw, you must make sure the file containing
this function has been loaded.

3 Select the Subscriptions tab. Select eX_HTTP and move to the right pane.

4 Select the Publications tab. Select eX_External_Evt and move to the right pane.

To create and configure the TP_Order_Eater Collaboration

1 Select the TP_Order_Eater e*Way.

2 Create a new Collaboration named TP_Order_Eater.

3 Configure the Internal_Order_Eater Collaboration properties using Table 74.

Table 74 TP_Order_Eater Collaboration configuration

Section Value

Service Monk

Collaboration Rule TP_Order_Eater

Initialization File monk_scripts\common\load_ext

Section Value

Collaboration Rule TP_Order_Eater
e*Xchange Partner Manager Implementation Guide 172 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.8
e*Xchange Implementation—RosettaNet Configure the TP_Order_Feeder e*Way
Verify the information in the Collaboration Properties dialog box as shown in Figure
74.

Figure 74 TP_Order_Eater Collaboration Properties

11.8 Configure the TP_Order_Feeder e*Way
This component feeds the data that was sent to the Wholesaler Trading Partner into
e*Xchange.

The e*Xchange TP_Order_Feeder e*Way

The e*Xchange example simulates the publication of an electronic purchase order from
a trading partner. This file, which is already in RosettaNet format, is picked up by a file
e*Way and moved into the e*Xchange system.

Configuration Steps

Follow these steps to configure the Internal_Order_Feeder e*Way.

1 Create and configure the e*Way.

2 Create the Collaboration.

Subscriptions Event Type: eX_HTTP
Source: eX_from_ePM

Publications Event Type: eX_External_Evt
Destination: <EXTERNAL>

Section Value
e*Xchange Partner Manager Implementation Guide 173 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.8
e*Xchange Implementation—RosettaNet Configure the TP_Order_Feeder e*Way
11.8.1 Step 1: Create and configure the TP_Order_Feeder e*Way
1 Create an e*Way called TP_Order_Feeder.

2 In the e*Way Properties dialog box, in the Executable file area of the General tab,
browse for stcewfile.exe.

3 In the e*Way Properties dialog box, in the Configuration file area of the General
tab, click New.

4 Use Table 75 to set the e*Way parameters for the TP_Order_Feeder e*Way.

5 When finished editing the e*Way configuration file, save your work and close the
e*Way editor.

6 Click OK to close the e*Way Properties dialog box.

11.8.2 Step 2: Create the TP_Order_Feeder Collaboration
The TP_Order_Feeder Collaboration must prepare the data coming into the e*Xchange
system. How complicated this task is depends on the state of the data before the
TP_Order_Feeder Collaboration processes it.

The TP_Order_Feeder Collaboration must do the following:

! convert the data to base 64 encoding

! populate the required nodes in the e*Xchange Event sent to e*Xchange for
processing

Convert the Event to Base 64 Encoding

The TP_Order_Feeder Collaboration must ensure that the data going into e*Xchange
doesn’t include any characters that cause problems for the XML structure of the
standard e*Xchange Event (for example, characters that are the same as the XML
control characters). This is done by converting the entire message to base 64 encoding
using the Monk function raw->base64, before copying it to the payload node of the
eX_Standard_Event ETD.

Table 75 TP_Order_Feeder e*Way Parameters

Screen Parameter Setting

General Settings (All) (Default)

Outbound (send) settings (All) (Default)

Poller (inbound) settings PollDirectory <eGate>\Demos\RosettaNet\out
put\order_out\TP

MultipleRecordsPerFile NO

(All others) (Default)

Performance Testing (All) (Default)
e*Xchange Partner Manager Implementation Guide 174 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.8
e*Xchange Implementation—RosettaNet Configure the TP_Order_Feeder e*Way
Populate the Required e*Xchange Nodes

In addition to copying the base 64 encoded message to the payload node of the
TP_EVENT portion of the e*Xchange standard Event, you must provide e*Xchange
with tracking information about the message.

The e*Xchange TP_Order_Feeder CRS

The CRS, TP_Order_Feeder.tsc does the following:

! Converts the RosettaNet message to base 64 encoding, and copies it to the Payload
node of the TP_EVENT section of the e*Xchange standard Event.

! Copies “I” for outbound to the direction node of the TP_EVENT section.

! Copies the trading partner logical name “Retailer” to the PartnerName node of the
TP_EVENT section.

To create and configure the TP_Order_Feeder Collaboration Rule

1 Open the Collaboration Editor.

2 Create a new Collaboration Rules script named TP_Order_Feeder.tsc. The Source
Event Type Definition is root.ssc. The Destination Event Type Definition is
eX_Standard_Event.ssc.

3 Add the rules shown in Figure 75.

Figure 75 TP_Order_Feeder.tsc

TP_Order_Feeder Collaboration Properties Setup

Once the CRS has been created, you must set up the Collaboration and Collaboration
Rules Properties for the TP_Order_Feeder Component in the Enterprise Manager GUI.

To create and configure the TP_Order_Feeder Collaboration Rule

1 Create a new Collaboration Rule named TP_Order_Feeder.

2 From TP_Order_Feeder Collaboration Rule properties, select the General tab.
Configure as shown in Table 76.
e*Xchange Partner Manager Implementation Guide 175 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.8
e*Xchange Implementation—RosettaNet Configure the TP_Order_Feeder e*Way
Table 76 TP_Order_Feeder CR Configuration - General Tab

Important: To use the Monk function raw->base64, you must make sure the file containing
this function has been loaded.

Figure 76 TP_Order_Feeder Collaboration Rules Properties Dialog Box

3 Select the Subscriptions tab. Select eX_External_Evt and move it to the right pane.

4 Select the Publications tab. Select eX_to_ePM and move it to the right pane.

To create and configure the TP_Order_Feeder Collaboration

1 Select the TP_Order_Feeder e*Way.

2 Create a new Collaboration named TP_Order_Feeder.

3 Configure the TP_Order_Feeder Collaboration properties as shown in Table 77.

Table 77 TP_Order_Feeder Collaboration Configuration

Section Value

Service Monk

Collaboration Rule TP_Order_Feeder

Initialization File monk_scripts\common\load_ext

Section Value

Collaboration Rules TP_Order_Feeder

Subscriptions Event Type: eX_External_Evt
Source: <EXTERNAL>

Publications Event Type: eX_to_ePM
Destination: eX_eBPM

This command
loads the Monk
file where
raw->base64 is
defined
e*Xchange Partner Manager Implementation Guide 176 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.9
e*Xchange Implementation—RosettaNet Configure the Internal_Eater e*Way
Verify the information in the Collaboration Properties dialog box as shown in Figure
77.

Figure 77 TP_Order_Feeder Collaboration Properties

11.9 Configure the Internal_Eater e*Way
This component eats messages sent to the internal system. It is used for both purchase
orders and purchase order responses.

The e*Xchange Internal_Eater e*Way

The e*Xchange example simulates the publication of the message to the internal system.

Configuration Steps

Follow these steps to configure the Internal_Eater e*Way.

1 Create the configuration file.

2 Create the ETDs.

3 Create the Collaboration.

11.9.1 Step 1: Create and configure the Internal_Eater e*Way
1 Create an e*Way called Internal_Eater.

2 In the e*Way Properties dialog box General tab, in the Executable file area browse
for stcewfile.exe.
e*Xchange Partner Manager Implementation Guide 177 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.9
e*Xchange Implementation—RosettaNet Configure the Internal_Eater e*Way
3 In the e*Way Properties dialog box, General tab, in the Configuration file area,
click New.

4 Use the following table to set the e*Way parameters for the Internal_Eater e*Way.

5 When finished editing the e*Way configuration file, save your work and close the
e*Way editor.

6 Click OK to close the e*Way Properties dialog box.

11.9.2 Step 2: Create the Internal_Eater Collaboration
The Internal_Eater Collaboration routes the data without changing its format.

Internal_Eater Collaboration Properties Setup

You must set up the Collaboration and Collaboration Rules Properties for the
Internal_Eater Component in the Enterprise Manager GUI.

To create and configure the Internal_Eater Collaboration Rule

1 Create a new Collaboration Rule named Internal_Eater.

2 From Internal_Eater Collaboration Rule properties, select the General tab.
Configure as shown in Table 79.

Table 79 Internal_Order_Eater CR configuration - General Tab

3 Select the Subscriptions tab. Select eX_to_eBPM and move to the right pane.

4 Select the Publications tab. Select eX_External_Evt and move to the right pane.

To create and configure the Internal_Order_Eater Collaboration

1 Select the Internal_Eater e*Way.

Table 78 Internal_Eater e*Way Parameters

Screen Parameter Setting

General Settings AllowIncoming NO

AllowOutgoing YES

Outbound (send) settings OutputDirectory <eGate>\Demos\RosettaNet\out
put\Order_Out

OutputFileName order%d.dat

MultipleRecordsPerFile NO

(All others) (Default)

Poller (inbound) settings (All) (Default)

Performance Testing (All) (Default)

Section Value

Service PassThrough
e*Xchange Partner Manager Implementation Guide 178 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.10
e*Xchange Implementation—RosettaNet Configure the Internal_Response_Feeder e*Way
2 Create a new Collaboration named Internal_Eater.

3 Configure the Internal_Eater Collaboration properties using Table 80.

Table 80 Internal_Eater Collaboration configuration

Verify the information in the Collaboration Properties dialog box as shown in Figure
78.

Figure 78 Internal_Eater Collaboration Properties

11.10 Configure the Internal_Response_Feeder e*Way
This component feeds the purchase order response to e*Xchange to be sent to the
Retailer Trading Partner.

The e*Xchange Internal_Response_Feeder e*Way

The e*Xchange example simulates the publication of an electronic purchase order
response to a trading partner. This file, which is already in RosettaNet format, is picked
up by a file e*Way and moved into the e*Xchange system.

Section Value

Collaboration Rule Internal_Eater

Subscriptions Event Type: eX_to_eBPM
Source: eX_from_ePM

Publications Event Type: eX_External_Evt
Destination: <EXTERNAL>
e*Xchange Partner Manager Implementation Guide 179 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.10
e*Xchange Implementation—RosettaNet Configure the Internal_Response_Feeder e*Way
Configuration Steps

Follow these steps to configure the Internal_Response_Feeder e*Way.

1 Create and configure the e*Way.

2 Create the Collaboration.

11.10.1Step 1: Create and configure the Internal_Response_Feeder
e*Way

1 Create an e*Way called Internal_Response_Feeder.

2 In the e*Way Properties dialog box, in the Executable file area of the General tab,
browse for stcewfile.exe.

3 In the e*Way Properties dialog box, in the Configuration file area of the General
tab, click New.

4 Configure the Internal_Response_Feeder e*Way parameters using Table 81.

5 When finished editing the e*Way configuration file, save your work and close the
e*Way editor.

6 Click OK to close the e*Way Properties dialog box.

11.10.2Step 2: Create the Internal_Response_Feeder Collaboration
The Internal_Response_Feeder Collaboration must prepare the data coming into
e*Xchange. How complicated this task is depends on the state of the data before the
Internal_Response_Feeder Collaboration processes it.

The Internal_Response_Feeder Collaboration must do the following:

! convert the data to base 64 encoding

! populate the required nodes in the e*Xchange Event sent to e*Xchange for
processing

Table 81 Internal_Response_Feeder e*Way Parameters

Screen Parameter Setting

General Settings (All) (Default)

Outbound (send) settings (All) (Default)

Poller (inbound) settings PollDirectory <eGate>\Demos\RosettaNet\inp
ut\response

MultipleRecordsPerFile NO

(All others) (Default)

Performance Testing (All) (Default)
e*Xchange Partner Manager Implementation Guide 180 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.10
e*Xchange Implementation—RosettaNet Configure the Internal_Response_Feeder e*Way
Convert the Event to Base 64 Encoding

The Internal_Response_Feeder Collaboration must ensure that the data going into
e*Xchange doesn’t include any characters that cause problems for the XML structure of
the standard e*Xchange Event (for example, characters that are the same as the XML
control characters). This is done by converting the entire message to base 64 encoding
using the Monk function raw->base64, before copying it to the payload node of the
eX_Standard_Event ETD.

Populate the Required e*Xchange Nodes

In addition to copying the base 64 encoded message to the payload node of the
TP_EVENT portion of the e*Xchange standard Event, you must provide e*Xchange
with tracking information about the message.

The e*Xchange Internal_Response_Feeder CRS

The Internal_Response_Feeder.tsc CRS does the following:

! Converts the RosettaNet message to base 64 encoding, and copies it to the Payload
node of the TP_EVENT section of the e*Xchange standard Event.

! Copies “O” for outbound to the direction node of the TP_EVENT section.

! Copies the trading partner logical name “Retailer” to the PartnerName node of the
TP_EVENT section.

To create and configure the Internal_Response_Feeder Collaboration Rule Script

1 Open the Collaboration Editor.

2 Create a new Collaboration Rules script named Internal_Response_Feeder.tsc. The
Source Event Type Definition is root.ssc. The Destination Event Type Definition is
eX_Standard_Event.ssc.

3 Add the rules shown in Figure 79.
e*Xchange Partner Manager Implementation Guide 181 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.10
e*Xchange Implementation—RosettaNet Configure the Internal_Response_Feeder e*Way
Figure 79 Internal_Response_Feeder.tsc

Internal_Response_Feeder Collaboration Properties Setup

Once the CRS has been created, you must set up the Collaboration and Collaboration
Rules Properties for the Internal_Response_Feeder Component in the Enterprise
Manager GUI.

To create and configure the Internal_Response_Feeder Collaboration Rule

1 Create a new Collaboration Rule named Internal_Response_Feeder.

2 From Internal_Response_Feeder Collaboration Rule properties, select the General
tab. Configure as shown in Table 82.

Table 82 Internal_Response_Feeder CR Configuration - General Tab

Section Value

Service Monk

Collaboration Rule Internal_Response_Feeder

Initialization File monk_scripts\common\load_ext
e*Xchange Partner Manager Implementation Guide 182 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.10
e*Xchange Implementation—RosettaNet Configure the Internal_Response_Feeder e*Way
Important: To use the Monk function raw->base64, you must make sure the file containing
this function has been loaded.

Figure 80 Internal_Response_Feeder Collaboration Rules Properties Dialog Box

3 Select the Subscriptions tab. Select eX_External_Evt and move it to the right pane.

4 Select the Publications tab. Select eX_to_ePM and move it to the right pane.

To create and configure the Internal_Response_Feeder Collaboration

1 Select the Internal_Response_Feeder e*Way.

2 Create a new Collaboration named Internal_Response_Feeder.

3 Configure the Internal_Response_Feeder Collaboration properties using Table 83.

Table 83 Internal_Response_Feeder Collaboration Configuration

Section Value

Collaboration Rules Internal_Response_Feeder

Subscriptions Event Type: eX_External_Evt
Source: <EXTERNAL>

Publications Event Type: eX_to_ePM
Destination: eX_eBPM

This command
loads the Monk
file where
raw->base64 is
defined
e*Xchange Partner Manager Implementation Guide 183 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.11
e*Xchange Implementation—RosettaNet Configure the TP_Response_Eater e*Way
Verify the information in the Collaboration Properties dialog box as shown in Figure
81.

Figure 81 Internal_Response_Feeder Collaboration Properties

11.11 Configure the TP_Response_Eater e*Way
The component (e*Way or BOB) sends the message to the external system.

The e*Xchange TP_Response_Eater e*Way

This example simulates the publication of the message to the external system.

Configuration Steps

Follow these steps to configure the TP_Response_Eater e*Way.

1 Create the configuration file.

2 Create the Collaboration.

11.11.1Step 1: Create and configure the TP_Response_Eater e*Way
1 Create an e*Way called TP_Response_Eater.

2 In the e*Way Properties dialog box, General tab, in the Executable file area,
browse for stcewfile.exe.

3 In the e*Way Properties dialog box, General tab, in the Configuration file area,
click New.
e*Xchange Partner Manager Implementation Guide 184 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.11
e*Xchange Implementation—RosettaNet Configure the TP_Response_Eater e*Way
4 Configure the TP_Response_Eater e*Way parameters using Table 84.

5 When finished editing the e*Way configuration file, save your work and close the
e*Way editor.

6 Click OK to close the e*Way Properties dialog box.

11.11.2Step 2: Create the TP_Response_Eater Collaboration
The TP_Response_Eater Collaboration must prepare the data leaving the e*Xchange
system. How complicated this task is depends on the state of the data before the
TP_Response_Eater Collaboration processes it.

The TP_Response_Eater Collaboration must do the following:

! put the data into the appropriate format

! convert the data to raw data

The e*Xchange TP_Response_Eater CRS

The CRS, TP_Response_Eater.tsc checks that the message is for the Wholesaler Trading
Partner (Retailer). If it is, it converts the RosettaNet message to raw data, and copies it
from the Payload node of the TP_EVENT section of the e*Xchange standard Event to
the output ETD.

To create and configure the TP_Response_Eater Collaboration Rule Script

1 Open the Collaboration Editor.

2 Create a new Collaboration Rules script named TP_Response_Eater.tsc. The Source
Event Type Definition is eX_Standard_Event.ssc. The Destination Event Type
Definition is root.ssc.

3 Add the rule shown in Figure 82.

Table 84 TP_Response_Eater e*Way Parameters

Screen Parameter Setting

General Settings AllowIncoming NO

AllowOutgoing YES

Outbound (send) settings OutputDirectory <eGate>\Demos\RosettaNet\out
put\Response_Out\TP

OutputFileName order%d.dat

MultipleRecordsPerFile NO

(All others) (Default)

Poller (inbound) settings (All) (Default)

Performance Testing (All) (Default)
e*Xchange Partner Manager Implementation Guide 185 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.11
e*Xchange Implementation—RosettaNet Configure the TP_Response_Eater e*Way
Figure 82 TP_Response_Eater.tsc

TP_Response_Eater Collaboration Properties Setup

Once the CRS has been created, you must set up the Collaboration and Collaboration
Rules Properties for the TP_Response_Eater Component in the Enterprise Manager
GUI.

To create and configure the TP_Response_Eater Collaboration Rule

1 Create a new Collaboration Rule named TP_Response_Eater.

2 From Internal_Order_Eater Collaboration Rule properties, select the General tab.
Configure as shown in Table 85.

Table 85 TP_Response_Eater CR configuration - General Tab

Important: To use the Monk function base64->raw, you must make sure the file containing
this function has been loaded.

3 Select the Subscriptions tab. Select eX_HTTP and move to the right pane.

4 Select the Publications tab. Select eX_External_Evt and move to the right pane.

To create and configure the TP_Response_Eater Collaboration

1 Select the TP_Response_Eater e*Way.

2 Create a new Collaboration named TP_Response_Eater.

3 Configure the TP_Response_Eater Collaboration properties using Table 86.

Section Value

Service Monk

Collaboration Rule TP_Response_Eater

Initialization File monk_scripts\common\load_ext
e*Xchange Partner Manager Implementation Guide 186 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.12
e*Xchange Implementation—RosettaNet Configure the TP_Response_Feeder e*Way
Table 86 TP_Response_Eater Collaboration configuration

Verify the information in the Collaboration Properties dialog box as shown in Figure
83.

Figure 83 TP_Response_Eater Collaboration Properties

11.12 Configure the TP_Response_Feeder e*Way
This component feeds the data that was sent to the Retailer Trading Partner into
e*Xchange.

The e*Xchange TP_Response_Feeder e*Way

The e*Xchange example simulates the publication of an electronic purchase order from
a trading partner. This file, which is already in RosettaNet format, is picked up by a file
e*Way and moved into the e*Xchange system.

Section Value

Collaboration Rules TP_Response_Eater

Subscriptions Event Type: eX_HTTP
Source: eX_from_ePM

Publications Event Type: eX_External_Evt
Destination: <EXTERNAL>
e*Xchange Partner Manager Implementation Guide 187 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.12
e*Xchange Implementation—RosettaNet Configure the TP_Response_Feeder e*Way
Configuration Steps

Follow these steps to configure the TP_Response_Feeder e*Way.

1 Create and configure the e*Way.

2 Create the Collaboration.

11.12.1Step 1: Create and Configure the TP_Response_Feeder
e*Way

1 Create an e*Way called TP_Response_Feeder.

2 In the e*Way Properties dialog box, in the Executable file area of the General tab,
browse for stcewfile.exe.

3 In the e*Way Properties dialog box, in the Configuration file area of the General
tab, click New.

4 Configure the TP_Response_Feeder e*Way parameter using Table 87.

5 When finished editing the e*Way configuration file, save your work and close the
e*Way editor.

6 Click OK to close the e*Way Properties dialog box.

11.12.2Step 2: Create the TP_Response_Feeder Collaboration
The TP_Response_Feeder Collaboration must prepare the data coming into e*Xchange.
How complicated this task is depends on the state of the data before the
TP_Response_Feeder Collaboration processes it.

The TP_Response_Feeder Collaboration must do the following:

! convert the data to base 64 encoding

! populate the required nodes in the e*Xchange Event sent to e*Xchange for
processing

Table 87 TP_Response_Feeder e*Way Parameters

Screen Parameter Setting

General Settings (All) (Default)

Outbound (send) settings (All) (Default)

Poller (inbound) settings PollDirectory <eGate>\Demos\RosettaNet\Out
put\Response_Out\TP

InputFileMask *.dat

MultipleRecordsPerFile NO

(All others) (Default)

Performance Testing (All) (Default)
e*Xchange Partner Manager Implementation Guide 188 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.12
e*Xchange Implementation—RosettaNet Configure the TP_Response_Feeder e*Way
Convert the Event to Base 64 Encoding

The TP_Response_Feeder Collaboration must ensure that the data going into
e*Xchange doesn’t include any characters that cause problems for the XML structure of
the standard e*Xchange Event (for example, characters that are the same as the XML
control characters). This is done by converting the entire message to base 64 encoding
using the Monk function raw->base64, before copying it to the payload node of the
eX_Standard_Event ETD.

Populate the Required e*Xchange Nodes

In addition to copying the base 64 encoded message to the payload node of the
TP_EVENT portion of the e*Xchange standard Event, you must provide e*Xchange
with tracking information about the message.

The e*Xchange TP_Response_Feeder CRS

The TP_Response_Feeder.tsc CRS does the following:

! Converts the RosettaNet message to base 64 encoding, and copies it to the Payload
node of the TP_EVENT section of the e*Xchange standard Event.

! Copies “I” for outbound to the direction node of the TP_EVENT section.

! Copies the trading partner logical name “Wholesaler” to the PartnerName node of
the TP_EVENT section.

To create and configure the TP_Response_Feeder Collaboration Rule Script

1 Open the Collaboration Editor.

2 Create a new Collaboration Rules script named TP_Response_Feeder.tsc. The
Source Event Type Definition is root.ssc. The Destination Event Type Definition is
eX_Standard_Event.ssc.

3 Add the rules shown in Figure 84.
e*Xchange Partner Manager Implementation Guide 189 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.12
e*Xchange Implementation—RosettaNet Configure the TP_Response_Feeder e*Way
Figure 84 TP_Response_Feeder.tsc

TP_Response_Feeder Collaboration Properties Setup

Once the CRS has been created, you must set up the Collaboration and Collaboration
Rules Properties for the TP_Response_Feeder Component in the Enterprise Manager
GUI.

To create and configure the TP_Response_Feeder Collaboration Rule

1 Create a new Collaboration Rule named TP_Response_Feeder.

2 From TP_Response_Feeder Collaboration Rule properties, select the General tab.
Configure as shown in Table 88.

Table 88 TP_Response_Feeder CR configuration - General Tab

Important: To use the Monk function raw->base64, you must make sure the file containing this
function has been loaded.

Section Value

Service Monk

Collaboration Rule TP_Response_Feeder

Initialization File monk_scripts\common\load_ext
e*Xchange Partner Manager Implementation Guide 190 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.12
e*Xchange Implementation—RosettaNet Configure the TP_Response_Feeder e*Way
Figure 85 TP_Response_Feeder Collaboration Rules Properties Dialog Box

3 Select the Subscriptions tab. Select eX_External_Evt and move it to the right pane.

4 Select the Publications tab. Select eX_to_ePM and move it to the right pane.

To create and configure the Internal_Order_Feeder Collaboration

1 Select the TP_Response_Feeder e*Way.

2 Create a new Collaboration named TP_Response_Feeder.

3 Configure the TP_Response_Feeder Collaboration properties using Table 89.

Table 89 TP_Response_Feeder Collaboration configuration

Section Value

Collaboration Rules TP_Response_Feeder

Subscriptions Event Type: eX_External_Evt
Source: <EXTERNAL>

Publications Event Type: eX_to_ePM
Destination: eX_eBPM

This command
loads the Monk
file where
raw->base64 is
defined
e*Xchange Partner Manager Implementation Guide 191 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.13
e*Xchange Implementation—RosettaNet Configure the eX_ePM e*Way
Verify the information in the Collaboration Properties dialog box as shown in Figure
86.

Figure 86 TP_Response_Feeder Collaboration Properties

11.13 Configure the eX_ePM e*Way
The eX_ePM e*Way requires only minimal configuration. You must give it the logon
information for the e*Xchange database.

To configure the eX_ePM configuration file

1 In the eX_ePM e*Way properties, select the General tab.

2 In the Configuration File area, click Edit.

3 Configure the parameters as shown in Table 90.
.

Table 90 eX_ePM e*Way Parameters

Screen Parameter Setting

General Settings (All) (Default)

Communication Setup (All) (Default)

Monk Configuration (All) (Default)
e*Xchange Partner Manager Implementation Guide 192 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.14
e*Xchange Implementation—RosettaNet Running the Scenario
To set the file names correctly

1 In <egate>\Demos\RosettaNet\input\order, change the name of the orders.~in
file to orders.fin.

2 In <egate>\Demos\RosettaNet\input\order_response, change the name of the
order_response.~in file to order_response.fin.

That completes the data setup. The next step is to run the scenario.

11.14 Running the Scenario
There are five parts to running the scenario:

A The Retailer trading partner sends the purchase order to the Wholesaler trading
partner.

B The Wholesaler trading partner processes the purchase order message received
from the Retailer trading partner

C The Wholesaler trading partner sends the acknowledgment back to the Retailer
trading partner

D The Wholesaler trading partner sends the response message back to the Retailer
trading partner

E The Retailer trading partner sends the acknowledgment back to the Wholesaler
trading partner

Parts A, B, and C are performed in “To process the purchase order message”. Parts D
and E are performed in “To send the response message” on page 197.

To process the purchase order message

1 Rename the file <egate>\Demos\RosettaNet\input\Orders.~in to Orders.fin.

Once your data file is in place, start the following e*Gate components:

2 Start the Control Broker. At the command line, enter:

stccb.exe -rh localhost -rs RosettaNet -ln localhost_cb -un
Administrator -up STC

3 Open the e*Gate Monitor and select the RosettaNet schema.

Database Setup Database Name (service name of the
e*Xchange database)

User name ex_admin

Password ex_admin

(All others) (Default)

Table 90 eX_ePM e*Way Parameters

Screen Parameter Setting
e*Xchange Partner Manager Implementation Guide 193 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.14
e*Xchange Implementation—RosettaNet Running the Scenario
4 Start the eX_ePM e*Way

This starts the e*Xchange engine.

5 Start the Internal_Order_Feeder e*Way

This e*Way retrieves the purchase order from the internal system and sends it to the
e*Xchange Partner Manager.

6 Look in the <egate>\Demos\RosettaNet\Input\Order folder. The file name
changes from Order.fin to Order.~in as the file is picked up.

7 Start the TP_Order_Eater e*Way.

This e*Way sends the purchase order to a file which is then retrieved and sent to the
Wholesaler trading partner.

8 Look in the <egate>\Demos\RosettaNet\Output\Order_Out\TP folder. The file
Order1.dat is created.

9 Start the TP_Order_Feeder e*Way.

This e*Way sends the message to the Wholesaler trading partner.

10 Look in the <egate>\Demos\RosettaNet\Output\Order_Out\TP folder. The file
name changes from Order1.dat to Order1.~in as the file is picked up.

11 Start the Internal_Eater e*Way.

This e*Way sends the message to a file (simulating sending to an internal system).

12 Look in the <egate>\Demos\RosettaNet\Output\Order_Out folder. The file
Order1.dat is created.

13 Start the TP_Response_Eater e*Way.

This e*Way sends the purchase order acknowledgment to a file which is then
retrieved and sent to the Retailer trading partner.

14 Look in the <egate>\Demos\RosettaNet\Output\Response_Out\TP folder. The
file Order1.dat is created.

15 Start the TP_Response_Feeder e*Way

This e*Way sends the purchase order acknowledgment to the Retailer trading
partner.

16 Look in the <egate>\Demos\RosettaNet\Output\Response_Out\TP folder. The
file name changes from Order1.dat to Order1.~in as the file is picked up.

The message is processed by Internal_Eater e*Way. This e*Way sends the message
to a file (simulating sending to an internal system).

Note: Look in the <egate>\Demos\RosettaNet\Output\Order_Out folder. The file
Order1.dat is created.

That completes sending the purchase order. You can view the results in Message
Tracking, in e*Xchange Web interface.
e*Xchange Partner Manager Implementation Guide 194 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.14
e*Xchange Implementation—RosettaNet Running the Scenario
Viewing the Results in Message Tracking

You can view the results of the message processing by using the Message Tracking
feature of the e*Xchange Partner Manager.

Message Tracking shows two entries for the incoming message. This is because a
control message is sent out immediately, and a response message is sent out later.
These two responses to the trading partner are tracked separately.

To view the outbound message in Message Tracking for the Wholesaler Trading Partner

1 From the e*Xchange Web interface, Main page, select Message Tracking.

The TP Profile Selection page appears.

2 In the Company Profile field, select Wholesaler Company.

3 In the Trading Partner Profile field, select Wholesaler TP.

4 In the eBusiness Protocol field, select RosettaNet.

5 In the Direction field, select Outbound.

6 Click the Message Profile Selection.

7 Select the 3A4 Request - Manage Purchase Order message.

8 Click the Message Details link to view the resulting list.

The results are shown in Figure 87.

Figure 87 Message Tracking: Outbound

As shown in Figure 87, e*Xchange records two entries for the message. One entry is for
the original message, for which a response message is sent. The other entry is for the
acknowledgment message.
e*Xchange Partner Manager Implementation Guide 195 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.14
e*Xchange Implementation—RosettaNet Running the Scenario
For one entry, the Ack Message column has a link to the message information. Click it
to view the acknowledgment message.

Later, when the response message is sent out, you are able to view it in Message
Tracking. For the moment, the Ack Message column is not showing a link for the other
message, since the response has not been sent out yet.

To view the inbound message in Message Tracking for the Retailer Trading Partner

1 From the e*Xchange Web interface, Main page, select Message Tracking.

The TP Profile Selection page appears.

2 In the Company Profile field, select Retailer Company.

3 In the Trading Partner Profile field, select Retailer TP.

4 In the eBusiness Protocol field, select RosettaNet.

5 In the Direction field, select Inbound.

6 Click the Message Profile Selection.

7 Select the 3A4 Request - Manage Purchase Order message.

8 Click the Message Details link to view the resulting list.

The results are shown in Figure 88.

Figure 88 Message Tracking: Inbound

As shown in Figure 88, e*Xchange records two entries for the message. One entry is for
the original message, for which a response message is sent later. The other entry is for
the acknowledgment message.
e*Xchange Partner Manager Implementation Guide 196 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.15
e*Xchange Implementation—RosettaNet Sending the Response
11.15 Sending the Response
The next step is to send the response message.

To send the response message

1 Rename the file
<egate>\Demos\RosettaNet\Input\Order_Response\order_response.~in to
order_response.fin.

2 In the e*Gate Monitor, start the Internal_Response_Feeder e*Way.

3 Look in the <egate>\Demos\RosettaNet\input\order_response folder. The file
name changes from order_response.fin to order_response.~in as the file is picked
up.

The message is processed by TP_Response_Eater e*Way. This e*Way sends the
purchase order response to a file which is then retrieved and sent to the Retailer
trading partner.

4 Look in the <egate>\Demos\RosettaNet\Output\Response_Out\TP folder. The
file Order2.dat is created. This is immediately renamed in the following step.

The message is processed by TP_Response_Feeder e*Way. This e*Way sends the
purchase order response to the Retailer trading partner.

5 Look in the <egate>\Demos\RosettaNet\Output\Response_Out\TP folder. The
file name changes from Order2.dat to Order2.~in as the file is picked up.

The message is process by Internal_Eater e*Way. This e*Way sends the message to
a file (simulating sending to an internal system).

6 Look in the <egate>\Demos\RosettaNet\Output\Order_Out folder. The file
Order2.dat is created.

The message is processed by TP_Order_Eater e*Way. This e*Way sends the
purchase order response acknowledgment to a file which is then retrieved and sent
to the Wholesaler trading partner.

7 Look in the <egate>\Demos\RosettaNet\Output\Order_Out\TP folder. The file
Order2.dat is created.

The message is processed by TP_Order_Feeder e*Way. This e*Way sends the
purchase order response acknowledgment to the Wholesaler trading partner.

8 Look in the <egate>\Demos\RosettaNet\Output\Order_Out\TP folder. The file
name changes from Order2.dat to Order2.~in as the file is picked up.

That completes the second part of the exercise. You can view the results in Message
Tracking.

Viewing the Results in Message Tracking

You can view the results of the message processing in Message Tracking.
e*Xchange Partner Manager Implementation Guide 197 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.15
e*Xchange Implementation—RosettaNet Sending the Response
To view the association of the response message to the original outbound message in
Message Tracking for the Retailer Trading Partner

1 From e*Xchange Web Interface, Main page, select Message Tracking.

The TP Profile Selection page appears.

2 In the Company Profile field, select Retailer Company.

3 In the Trading Partner Profile field, select Retailer TP.

4 In the eBusiness Protocol field, select RosettaNet.

5 In the Direction field, select Inbound.

6 Click the Message Profile Selection.

7 Select the 3A4 Request - Manage Purchase Order message.

8 Click the Message Details link to view the resulting list.

The results are shown in Figure 89.

Figure 89 Message Tracking: Outbound Completed

Notice that both entries now have responses available for viewing: one is the
acknowledgment message, the other is the full response message.

To view the association of the response message to the original inbound message in
Message Tracking for the Retailer trading partner

1 From the e*Xchange Web interface, Main page, select Message Tracking.

The TP Profile Selection page appears.

2 In the Company Profile field, select Retailer Company.

3 In the Trading Partner Profile field, select Retailer TP.
e*Xchange Partner Manager Implementation Guide 198 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.16
e*Xchange Implementation—RosettaNet Editing the Data Files
4 In the eBusiness Protocol field, select RosettaNet.

5 In the Direction field, select Inbound.

6 Click the Message Profile Selection.

7 Select the 3A4 Request - Manage Purchase Order message.

8 Click the Message Details link to view the resulting list.

The results are shown in Figure 90.

Figure 90 Message Tracking: Inbound Completed

Notice that both entries now have responses associated with them: one is the
acknowledgment message, the other is the full response message.

11.16 Editing the Data Files
Before rerunning the scenario, you must make sure that the unique ID in the order file
matches that in the response file, and that both files have the expected filename and
extension.

Knowing how to set these values also gives you the capability to reset the unique ID to
an appropriate new value so that you can run the scenario multiple times.

To ensure the unique ID in both files matches

1 Open up the file order.~in (in the <egate>\Demos\RosettaNet\input\order
folder) in a text editor such as Notepad or Wordpad.

2 Search for the following string, which is the unique ID in the files provided:

20_3251_062501_001

3 Replace that string with the following string:
e*Xchange Partner Manager Implementation Guide 199 SeeBeyond Proprietary and Confidential

Chapter 11 Section 11.16
e*Xchange Implementation—RosettaNet Editing the Data Files
20_3251_062501_002

4 Save and close.

5 Open up the file order_response.~in (in the
<egate>\Demos\RosettaNet\input\order_response folder) in a text editor such
as Notepad or Wordpad.

6 Repeat steps 2 through 4 for this file. Make sure that the string is updated
throughout the file.

Note: The last three digits of the unique ID indicate that this is the first instance for this
date. For a second and subsequent running of this scenario, increment the last three
digits: 002, 003, and so forth. In each case, make sure that the value is the same in
both files.
e*Xchange Partner Manager Implementation Guide 200 SeeBeyond Proprietary and Confidential

Chapter 12

Advanced Configuration

This chapter provides a information on manually creating a Validation Collaboration
and adding a custom communication protocol.

12.1 Manually Creating a Validation Rules Collaboration
Validation Collaborations can be created for X12 and UN/EDIFACT using the
Validation Collaborations Rules Builder. However, it is possible to build the Validation
Collaboration manually.

Validation Collaborations for RosettaNet must be created manually.

12.1.1 Creating a Validation Rules Collaboration for X12 or UN/
EDIFACT

The steps required to create the Validation Collaboration are as follows:

1 Create the validation ETD.

2 Create the validation collaboration rules script.

Creating the Validation ETD

The Event Type Definition used for the Validation Collaboration is based on the ETD
for the message type. For example, if you were working with X12 4010, then base your
validation ETD on X12_4010_100.ssc.

To create a validation ETD

1 Open the generic ETD (for example, X12_4010_100.ssc).

2 Save as a new ETD with a different name (for example, X12_4010_valid_100.ssc).

3 The nodes required for this ETD are those between ST and SE (ST and SE are
required in the structure) for X12 and between UNH and UNT (UNH and UNT are
required in the structure) for UN/EDIFACT. Other nodes should be deleted.

4 Add a node above ST or UNH called Delimiter.

5 From the File menu, select Default Delimiters. Set the following:
e*Xchange Partner Manager Implementation Guide 201 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.1
Advanced Configuration Manually Creating a Validation Rules Collaboration
Table 91 X12 below Version 4020

Table 92 X12 Version 4020 and above

Table 93 UN/EDIFACT

6 Save the ETD.

Creating the Validation Collaboration

The validation collaboration rule script is used to validate the incoming or outgoing
message. The minimum requirement for this script is to create a unique identifier.
Additional functionality that can be used as required, for example, to add user defined
tests on the data and to send a 997 response.

There is a variable named error that is used to determine whether the message has been
validated. The default value of error is #f, and this value should be set to #t if an error
has occurred and the message should not be processed.

To create the Validation Collaboration

1 Create a new Collaboration Rule Script using the structure created in “To create a
validation ETD” on page 201 as the source ETD. Leave the destination ETD blank.

2 Add a line of code to create a unique identifier for the message. For example:

(define unique_id (strftime �%Y%m%d%H$M%S� (time)))

Creating a unique identifier for the message is the minimum requirement for the
Validation Collaboration.

To reject the message

Set the error variable value to #t if an error has occurred and the message should not be
processed using the following line of code.

Level Delimiter

1 [2]

2 [0]

3 [1]

Level Delimiter

1 [3]

2 [0]

3 [2]

4 [1]

Level Delimiter

1 [3]

2 [0]

3 [2]

4 [1]
e*Xchange Partner Manager Implementation Guide 202 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.1
Advanced Configuration Manually Creating a Validation Rules Collaboration
(set! error #t)

To send a 997 response

Add the following line of code if you want to send a 997 response, or if you want to
reject the message:

(define add_997 (ux-track-997-error (list �AK2� (get <ST01 path>) (get <ST02 path>)))

where

! <ST01 path> is the path to the ST01 node

! <ST02 path> is the path to the ST02 node

To send a 997 response for an error

When the message is not successfully validated the 997 response can contain AK3 and
AK4 information. AK3 contains information about the segment and AK4 contains
information about the element in the segment that caused a problem.

To set AK3 information

Add the following line of code:

(define add_997 (ux-track-997-error (list �AK3� <SegIDCode> <SegPos> <LoopID>
<SegmentErrorCode>)))

where

! <SegIdCode> is the segment ID code, for example “BGN”.

! <SegPos> is the segment position. For example, the first segment has position “1”.

! <LoopID> is the loop identifier.

! <SegmentErrorCode> is a user defined error identifier.

To set AK4 information

Add the following line of code:

(define add_997 (ux-track-997-error (list �AK4� <PosInSegment> <DataElementRefNumber>
<DataElementErrorCode> <CopyOfDataElement>)))

where

! <PosInSegment> is the element position within the segment.

! <DataElementRefNumber> is the data element reference number as defined for
X12.

! <DataElementErrorCode> is a user defined error identifier.

! <CopyOfDataElement> is an optional parameter allowing you to send the data
from the element with the error message.

To send information about multiple errors

Error information can be defined in a variable named error_data. This needs to be in
the format “num^description”, using the ^ character as a delimiter. To send
information about multiple errors each number/description pair needs to be delimited
by the ~ character. For example:

�1^description1~2^description2~3^description3�
e*Xchange Partner Manager Implementation Guide 203 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.1
Advanced Configuration Manually Creating a Validation Rules Collaboration
12.1.2 Creating a Validation Rules Collaboration for RosettaNet
The inbound event for a RosettaNet validation collaboration must represent the format
of the Service Content. The Monk ETD files for each RosettaNet PIP Service Content are
found in the monk_scripts/templates directory, once you have installed them from the
add-on section of the installation CD.

The validation Collaboration Rules Script can be given any name, however it is
recommended that it represents what is being validated. For example,
eX_ROS_Validate_3A4Request_11_SC.tsc is a RosettaNet 1.1validation script that
checks the 3A4 Request service content. The extension for the validation script must be
"tsc", and the script must be located in monk_scripts/common/ROS/etc.

To create the Validation Collaboration

1 Create a new Collaboration Rule Script using the required RosettaNet structure as
the source ETD. Leave the destination ETD blank.

2 Add the required lines of code.

To reject the message

When creating a validation collaboration, the variable string, error_data, should be
used to capture all the errors. This variable is defined globally by the calling script,
(eX_ROS_main.dsc for RosettaNet 1.1,eX-ROS20-Outb-Main.dsc for RosettaNet 2.0
outbound messages, and eX-ROS20-Inb-Main.dsc for RosettaNet 2.0 inbound
messages), so set! function should be used each time error_data is reset.

Setting the error_data variable to a value other than an empty string causes the message
to be rejected. For example:

(set! error_data �5101^Missing City Name�)

If the variable error_data contains some error information, then the processing takes
place with the assumption that there is at least one invalid entry in the Service Content
and then the RosettaNet message is rejected. For RosettaNet 1.1, an Inbound message is
rejected by sending out a negative Receipt Acknowledgment, and an Outbound
message is rejected by sending out an internal failure.

For RosettaNet 2.0 Inbound messages, the validation collaboration should have the
following set, in addition to error_data, if an invalid entry is found in the service
content:

(set! error_code �UNP.SCON.VALERR�)
(set! error_comp �ServiceContent�)

If an invalid entry is found for a RosettaNet 2.0 Inbound message, then a Receipt
Acknowledgment Exception is sent out if a Receipt Acknowledgment is expected. Also,
the invalid message is stored in the e*Xchange database with the associated errors.

For RosettaNet 2.0 Outbound messages, the validation collaboration should set the
error_data variable to contain any errors for invalid entries found in the service content.
The invalid message is stored in the e*Xchange database with the associated errors. An
internal failure message is sent out to the internal application.
e*Xchange Partner Manager Implementation Guide 204 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.1
Advanced Configuration Manually Creating a Validation Rules Collaboration
To send information about multiple errors

A new error string should be appended to error_data if error_data already contains
some errors. Each error must be separated by ~, and within each error, the code and
description are separated by ^. For example, error_data may contain "5101^Missing
City Name", and then another error is encountered, such as "5118^Invalid Revision
Number". A string-append including a ~ separator should be used to be sure both
errors are included in error_data. The resulting error_data string would then be

"5101^Missing City Name~5118^Invalid Revision Number"

Using the util-add-to-error function

The util-add-to-error function can be used to generate the error string. This function is
described below.

Syntax

(util-add-to-error existing_error_str new_error_component)

Description

util-add-to-error appends the new error component to the existing error string and
returns the new error string.

Parameters

Return Values

string
Returns the new error string.

Example

The following example first test whether the city name is missing, and then tests if the
revision number is invalid. This code assumes that two user defined functions (city-
name-missing? and revision-number-invalid?) have been created to test the data.

(if (city-name-missing?)
(set! error_data "5101^Missing City Name")

)
(if (revision-number-invalid?)

(util-add-to-error (error_data "5118^Invalid Revision Number"))
)

=> sets error_data to "5101^Missing City Name~5118^Invalid Revision Number"
if both errors are found

Name Type Description

existing_error_str string The existing error string.

new_error_component string The new error component to be
appended to the error string.
e*Xchange Partner Manager Implementation Guide 205 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.1
Advanced Configuration Manually Creating a Validation Rules Collaboration
Predefined Validation Scripts

There are some validation scripts included in the installation of e*Gate Schema for
e*Xchange scripts. The validation scripts located in monk_scripts/common/ROS/etc
for RosettaNet 1.1 are:

! eX_ROS_Validate_3A4Accept_11_SC.tsc

! eX_ROS_Validate_3A4Cancel_11_SC.tsc

! eX_ROS_Validate_3A4Change_11_SC.tsc

! eX_ROS_Validate_3A4Request_11_SC.tsc

! eX_ROS_Validate_PriceAndAvailabilityQuery.tsc

! eX_ROS_Validate_PriceAndAvailabilityResponse.tsc

These validation scripts refer to code files stored in the same location. The file, eX-
validation-codes.monk, located in monk_library/eXchange contains reference
variables to all the code files used. An example of a variable defined in this file is
GLOBAL_COUNTRY_CODES_FILE, which corresponds to the codes file
monk_scripts/common/ROS/etc/Global_Country_Codes. Additional code file
references can be added to eX-validation-codes.monk, if necessary, for new validation
script references. This monk file gets loaded on startup of e*Xchange.

There are no validation scripts provided for RosettaNet 2.0.
e*Xchange Partner Manager Implementation Guide 206 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.2
Advanced Configuration Adding a Custom Protocol
12.2 Adding a Custom Protocol
This section describes how you can define additional protocols to use with e*Xchange.

12.2.1 Adding a Custom Protocol for X12 or UN/EDIFACT
The steps required to create an additional protocol are as follows:

1 Add a Comm Protocol to the Code Table.

2 Add an Event Type for the protocol.

3 Update eX_from_ePM Collaboration Rule to publish the new Event Type.

4 Update eX_from_ePM Collaboration to publish the new Event Type to the
eX_Trading_Port_Queue IQ.

5 Edit monk_library\eXchange\eX_ePM_Send_To_External.monk to set the output
event.

6 Update eX_from_ePM.tsc to perform an iq-put with the new Event Type, if the new
output event is received.

Step 1: Add a Comm Protocol to the Code Table

The UN/EDIFACT and X12 Comm Protocol in the Code table list the protocols that are
currently available. Add an additional protocol and assign a name and description.

Figure 91 shows a protocol named USER.

Figure 91 Example Code Table for UN/EDIFACT

Step 2: Add an Event Type for the Protocol

Use the e*Gate Enterprise Manager GUI to create a new Event Type in eXSchema. For
example, eX_User.
e*Xchange Partner Manager Implementation Guide 207 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.2
Advanced Configuration Adding a Custom Protocol
Step 3: Update eX_from_ePM Collaboration Rule

Update the eX_from_ePM Collaboration Rule to publish the Event Type created in Step
2.

Step 4: Update eX_from_ePM Collaboration

Update eX_from_ePM Collaboration to publish the new Event Type to the
eX_Trading_Port_Queue IQ.

Figure 92 shows an example configuration using eX_User.

Figure 92 Example eX_from_ePM using eX_User

Step 5: Update eX_ePM_Send_To_External.monk

Edit monk_libray\eXchange\eX_ePM_Send_To_External.monk to set the output
event. Add the following code within the case statement:

((<Comm Protocol>)
(set! out_event "<Comm Protocol Ref>")

)

where

! <Comm Protocol> defines the name given in the code table

! <Comm Protocol Ref> is a used defined name with exactly five characters

Example code for the USER protocol:

((USER)
(set! out_event "USERD")

)
e*Xchange Partner Manager Implementation Guide 208 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.2
Advanced Configuration Adding a Custom Protocol
Step 6: Update eX_from_ePM.tsc

Update eX_from_ePM.tsc to perform an iq-put with the new Event Type, if the new
output event is received. This should be added within the case statement that checks
for the comm protocol.

Figure 93 shows an example script.

Figure 93 Example eX_from_ePM.tsc

12.2.2 Adding a Customer Protocol for RosettaNet 1.1
The steps required to create an additional protocol are as follows:

1 Add a Comm Protocol to the Code Table.

2 Add an Event Type for the protocol.

3 Update eX_from_ePM Collaboration Rule to publish the new Event Type.

4 Update eX_from_ePM Collaboration to publish the new Event Type to the
eX_Trading_Port_Queue IQ.

5 Edit monk_scripts\common\ROS\eX_ROS_main.dsc to set the output event.

6 Update eX_from_ePM.tsc to perform an iq-put with the new Event Type, if the new
output event is received.

7 (Optional, for use with Ack Monitor) Update ack_mon.dsc to support resends for
RosettaNet.

Step 1: Add a Comm Protocol to the Code Table

The ROS 1.1 Comm Protocol in the Code table lists the protocols that are currently
available. Add an addition protocol and assign a name and description.

Figure 94 shows a protocol named USER.
e*Xchange Partner Manager Implementation Guide 209 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.2
Advanced Configuration Adding a Custom Protocol
Figure 94 Example Code Table for RosettaNet 1.1

Step 2: Add an Event Type for the Protocol

Use the e*Gate Enterprise Manager GUI to create a new Event Type in eXSchema. For
example, eX_User.

Step 3: Update eX_from_ePM Collaboration Rule

Update the eX_from_ePM Collaboration Rule to publish the Event Type created in Step
2.

Step 4: Update eX_from_ePM Collaboration

Update eX_from_ePM Collaboration to publish the new Event Type to the
eX_Trading_Port_Queue IQ.

Figure 95 shows an example configuration using eX_User.
e*Xchange Partner Manager Implementation Guide 210 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.2
Advanced Configuration Adding a Custom Protocol
Figure 95 Example eX_from_ePM using eX_User

Step 5: Update eX_ROS_main.dsc

Modify monk_scripts/common/ROS/eX_ROS_main.dsc. Search for lines that specify
"HTTPS". Replace all incidences of HTTPS with g_commport, so the new
communication protocol just added is included in the outgoing message, and does not
default to HTTPS.

It is necessary to ensure that g_commport has exactly 5 characters. If the new protocol
name is not exactly five characters then reset g_commport to a five character string in
this script. For example, reset g_commport from “USER” to “USERD”.

Step 6: Update eX_from_ePM.tsc

Update eX_from_ePM.tsc to perform an iq-put with the new Event Type, if the new
output event is received. This should be added within the case statement that checks
for the comm protocol.

Figure 96 shows an example script.

Figure 96 Example eX_from_ePM.tsc
e*Xchange Partner Manager Implementation Guide 211 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.2
Advanced Configuration Adding a Custom Protocol
Step 7: Modify ack_mon.dsc

Modify the event-send-to-egate function in ack_mon.dsc to support RosettaNet resends
from Ack Monitor. You need to add support for the new comm protocol since the
default is HTTPS in the file.

Find the following section in the code:

(event-send-to-egate (string-append �R|O|HTTPS� (get ~output%eX_Event)))

Replace HTTPS with g_commport, so the new communication protocol just added is
included in the outgoing message, and does not default to HTTPS.

It is necessary to ensure that g_commport has exactly 5 characters. If the protocol name
is not exactly five characters then reset g_commport to a five character string in this
script. For example, reset g_commport from “USER” to “USERD”, or from “HTTP” to
“HTTPS”.

12.2.3 Adding a Customer Protocol for RosettaNet 2.0
The steps required to create an additional protocol are as follows:

1 Add a Comm Protocol to the Code Table.

2 Add an Event Type for the protocol.

3 Update eX_from_ePM Collaboration Rule to publish the new Event Type.

4 Update eX_from_ePM Collaboration to publish the new Event Type to the
eX_Trading_Port_Queue IQ.

5 Edit monk_scripts/common/ROS/eX-ROS20-Send-To-Egate.monk to set the
output event.

6 Update eX_from_ePM.tsc to perform an iq-put with the new Event Type, if the new
output event is received.

Step 1: Add a Comm Protocol to the Code Table

The Comm Protocol in the Code table lists the protocols that are currently available.
Add an addition protocol and assign a name and description.

Figure 97 shows a protocol named USER.
e*Xchange Partner Manager Implementation Guide 212 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.2
Advanced Configuration Adding a Custom Protocol
Figure 97 Example Code Table for RosettaNet 2.0

Step 2: Add an Event Type for the Protocol

Use the e*Gate Enterprise Manager GUI to create a new Event Type in eXSchema. For
example, eX_User.

Step 3: Update eX_from_ePM Collaboration Rule

Update the eX_from_ePM Collaboration Rule to publish the Event Type created in Step
2.

Step 4: Update eX_from_ePM Collaboration

Update eX_from_ePM Collaboration to publish the new Event Type to the
eX_Trading_Port_Queue IQ.

Figure 98 shows an example configuration using eX_User.
e*Xchange Partner Manager Implementation Guide 213 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.2
Advanced Configuration Adding a Custom Protocol
Figure 98 Example eX_from_ePM using eX_User

Step 5: Update eX_ROS_Send_To_Egate.monk

Edit monk_scripts/common/ROS/eX_ROS20_Send_To_Egate.monk to set the output
event. This step also enables Ack Monitor to handle the new protocol. Find eX-ROS20-
Forward-To-TP function and add the following if statement:

(if (string-ci=? comm_port "<Comm Protocol>")
 (begin
 (set! comm_port "<Comm Protocol Ref>")
)
 (begin
)
)

where

! <Comm Protocol> defines the name given in the code table

! <Comm Protocol Ref> is a used defined name with exactly five characters

Example code for the USER protocol:

(if (string-ci=? comm_port "USER")
 (begin
 (set! comm_port "USERD")
)
 (begin
)
)

In addition to setting the comm_port, rules for copying and setting values in the
outgoing message should be added within the if statement for this new protocol.
e*Xchange Partner Manager Implementation Guide 214 SeeBeyond Proprietary and Confidential

Chapter 12 Section 12.2
Advanced Configuration Adding a Custom Protocol
Step 6: Update eX_from_ePM.tsc

Update eX_from_ePM.tsc to perform an iq-put with the new Event Type, if the new
output event is received. This should be added within the case statement that checks
for the comm protocol.

Figure 99 shows an example script.

Figure 99 Example eX_from_ePM.tsc
e*Xchange Partner Manager Implementation Guide 215 SeeBeyond Proprietary and Confidential

Chapter 13

e*Xchange Partner Manager Functions

This chapter provides information on the e*Xchange APIs. These APIs are divided into
three groups based on their use within e*Xchange. These groups are:

! e*Xchange helper functions (used when working with the e*Xchange ETD) see
“e*Xchange Helper Monk Functions” on page 217

! e*Xchange Partner Manager functions (used by the e*Xchange) see “e*Xchange
Functions” on page 224

! Validation Rules Builder functions (used by the validation Collaborations created
by the VRB) see “Monk Functions Used by the Validation Rules Builder” on
page 322

! Mime functions, see “e*Xchange MIME Functions” on page 333

! RosettaNet 2.0 functions, see “e*Xchange RosettaNet 2.0 Functions” on page 341

! Security functions, see “e*Xchange Security Functions” on page 380
e*Xchange Partner Manager Implementation Guide 216 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.1
e*Xchange Partner Manager Functions e*Xchange Helper Monk Functions
13.1 e*Xchange Helper Monk Functions
A number of Monk functions have been added to make it easier to set information in
the e*Xchange Event (eX_Standard_Event.ssc ETD) and to get information from it.
These functions are contained in two files:

! eX-ePM-utils.monk

Important: Make sure that the Monk file eX-ePM-utils.monk, containing the e*Xchange
helper functions, are loaded before calling them in a Collaboration Rules Script. You
can do this in several ways, by putting them in the root of the monk_library
directory, loading them explicitly in your CRS, or using the eX-init-eXchange
bootstrap file to load them via the Collaboration Rule. See “Convert the Event to
Base 64 Encoding” on page 73 for an example of how to use the eX-init-
eXchange bootstrap file in a Collaboration Rule.

These functions are discribed in detail on the following pages:

eX-set-TP_EVENT on page 218 eX-count-TP-attribute on page 221

eX-get-TP_EVENT on page 219 eX-get-TP-attribute on page 222

eX-set-Payload on page 220 eX-set-TP-attribute on page 223
e*Xchange Partner Manager Implementation Guide 217 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.1
e*Xchange Partner Manager Functions e*Xchange Helper Monk Functions
eX-set-TP_EVENT

Syntax

(eX-set-TP_EVENT root-path event-type value)

Description

eX-set-TP_EVENT sets the value of the specified event type.

Parameters

Return Values

Boolean
Returns #t (true) except when an invalid parameter is passed, then #f (false) is returned.

Throws

None.

Example

(eX-set-TP_EVENT ~input%eX_Event "PARTNERNAME" "Acme Inc.")

=> sets the trading partner name to "Acme Inc."

Name Type Description

root-path path Either ~input%eX_Event or
~output%eX_Event

event-type string Either PARTNERNAME, MESSAGEID,
ORIGEVENTCLASS,
USAGEINDICATOR, COMMPROT,
URL, INTERNALNAME, or DIRECTION

value string The value to which you want to set the
event type. For event-type
"DIRECTION" value must be I or O.
For event-type "USAGEINDICATOR"
value must be P or T.
e*Xchange Partner Manager Implementation Guide 218 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.1
e*Xchange Partner Manager Functions e*Xchange Helper Monk Functions
eX-get-TP_EVENT

Syntax

(eX-get-TP_EVENT root-path event-type)

Description

eX-get-TP_EVENT finds the path to the value of the specified event type in the
e*Xchange Event named in the root-path.

Parameters

Return Values

Returns one of the following values:

Boolean
Returns #f (false) if the value for TP_EVENT is not found.

path
Returns the path to the value found at the TP_EVENT node location. Use get to return
the actual value.

Throws

None.

Example

For an Event with a partner name of "Acme Inc.":

(get (eX-get-TP_EVENT ~input%eX_Event "PARTNERNAME"))

=> Acme Inc.

Name Type Description

root-path path Either ~input%eX_Event or
~output%eX_Event

event-type string Either PARTNERNAME, MESSAGEID,
ORIGEVENTCLASS,
USAGEINDICATOR, COMMPROT,
URL, INTERNALNAME, DIRECTION, or
PAYLOAD
e*Xchange Partner Manager Implementation Guide 219 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.1
e*Xchange Partner Manager Functions e*Xchange Helper Monk Functions
eX-set-Payload

Syntax

(eX-set-Payload root-path encrypt-type value)

Description

eX-set-Payload sets the value of the payload.

Parameters

Return Values

Returns #t (true) except when an invalid parameter is passed, then #f (false) is returned.

Throws

None.

Example

(eX-set-Payload ~input%eX_Event "RAW" "Have a nice day!")

=> sets the payload to "Have a nice day!"

Name Type Description

root-path path Either ~input%eX_Event or
~output%eX_Event

encrypt-type string RAW, PROCESSED, ENCRYPTED.

value string The value to which you want to set the
payload.
e*Xchange Partner Manager Implementation Guide 220 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.1
e*Xchange Partner Manager Functions e*Xchange Helper Monk Functions
eX-count-TP-attribute

Syntax

(eX-count-TP-attribute root-node)

Description

eX-count-TP-attribute searches the e*Xchange Event for the number of trading partner
attributes using the name/value pair format stored in the repeating TPAttribute node
in the TP_EVENT portion of the e*Xchange Event.

Parameters

Return Values

Returns the following:

integer
Number of TPAttribute name/value pairs.

Throws

None.

Example

For a e*Xchange Event that has 3 TPAttributes:

(eX-count-TP-attribute ~input%eX_Event)

=> 3

Name Type Description

root-node path Either ~input%eX_Event or
~output%eX_Event
e*Xchange Partner Manager Implementation Guide 221 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.1
e*Xchange Partner Manager Functions e*Xchange Helper Monk Functions
eX-get-TP-attribute

Syntax

(eX-get-TP-attribute root-node name)

Description

eX-get-TP-attribute finds the attribute value in the e*Xchange Event named in the
root-node.

Parameters

Return Values

Returns the following:

string
Returns the value associated with the TPAttribute name.

Throws

None.

Example

(eX-get-TP-attribute ~input%eX_Event "COMM_PROT")

=> "X12"

Name Type Description

root-node path Either ~input%eX_Event or
~output%eX_Event

name string Name of the trading partner attribute
you want to get.
e*Xchange Partner Manager Implementation Guide 222 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.1
e*Xchange Partner Manager Functions e*Xchange Helper Monk Functions
eX-set-TP-attribute

Syntax

(eX-set-TP-attribute root-node name value)

Description

eX-set-TP-attribute creates an entry in the e*Xchange Event under the TPAttribute
repeating node for the specified name/value pair.

Parameters

Return Values

None.

Throws

None.

Example

(eX-set-TP-attribute ~output%eX_Event "COMM_PROT" "X12")

=> creates an entry in the e*Xchange Event under TPAttribute for the
name/value pair COMM_PROT/X12.

Name Type Description

root-node path Either ~input%eX_Event or
~output%eX_Event

name string The name of the TP attribute whose
value you want to set.

attribute string The value to which you want to set the
TP attribute.
e*Xchange Partner Manager Implementation Guide 223 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
13.2 e*Xchange Functions
The specialized e*Xchange Monk functions used by e*Xchange are:

ux-ack-handler on page 225 ux-ret-edf-batch-ts-msgs on page 283

ux-ack-monitor on page 229 ux-ret-edf-fb-ts-msgs on page 285

ux-check-shutdown-uid on
page 232

ux-ret-X12-batch-ts-msgs on page 287

ux-control-check on page 233 ux-ret-X12-fb-ts-msgs on page 289

ux-dbproc-ros-inb on page 235 ux-retrieve-997-error on page 291

ux-dbproc-ros-outb on page 239 ux-retrieve-997-error-tail on page 294

ux-dequeue on page 243 ux-retrieve-message on page 296

ux-duplicate-check on page 245 ux-return-receipt on page 298

ux-func-ack-handler on page 247 ux-set-fb-overdue on page 300

ux-get-error-str on page 250 ux-store-msg on page 301

ux-get-fb-count on page 251 ux-store-msg-errors on page 305

ux-get-header on page 252 ux-store-msg-ext on page 306

ux-get-key-cert on page 257 ux-store-shutdown-uid on page 310

ux-get-lock-ext-attrib-db on
page 260

ux-track-997-errors on page 311

ux-get-mtrk-attrib on page 261 ux-update-batch-imm on page 313

ux-get-seq-value on page 263 ux-update-control-num on page 314

ux-incr-control-num on page 264 ux-update-last-batch-send-time on
page 316

ux-init-exdb on page 266 ux-upd-mtrk-data-item on page 317

ux-init-ic on page 268 ux-upd-mtrk-element on page 318

ux-init-trans on page 273 ux-upd-mtrk-ext-data on page 319

ux-init-ts on page 278 ux-wait-for-ack on page 320

ux-md5-digest on page 282
e*Xchange Partner Manager Implementation Guide 224 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-ack-handler

Syntax

(ux-ack-handler connection-handle ack-stat)

Description

ux-ack-handler performs message association for an inbound or outbound business
message.

Note: If the acknowledgment is to be stored in the database, then ux-store-msg should be
called before ux-ack-handler to store the ack.

Parameters

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

ack-stat list:
ack_tm
ack_type
level
mtrk_id
unique_id
error_data
direction
out_queue
resp_id
sub-list

Required. Information about the
acknowledgment.

All list arguments must be strings,
except for the sub-lists which are lists
containing strings.

All elements before the sub-list
section are required, but can be empty
strings (""), with the exception of
ack_type, level, unique_id and
direction, which return an error if no
value is provided. The first sub-list is
required.
e*Xchange Partner Manager Implementation Guide 225 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Return Values

Returns one of the following values:

string
Returns mtrk_id, if found and the row is updated.

Boolean
Returns #t (true) if the acknowledgment processed successfully; otherwise, returns #f
(false). Use the ux-get-error-str API to retrieve the corresponding error message.

Throws

Exception-InvalidArg, Exception-Mapping, Exception-Catastrophic (can’t be caught).

ack-stat List member Description

ack_tm The date and time (yyyymmddhhmmss
format).

ack_type Identifies the kind of acknowledgment
(positive or negative):
P—Positive acknowledgment
N—Negative acknowledgment

level Required. Specifies the level of the
original message:
I—B2B Protocol level information
T—Message Profile level information

mtrk_id Optional—future versions may use
this value to store messages.

unique_id The unique identifier for the original
message.

error_data Error information—
code^description~code^description
(^ separates the values for an error and
~ separates the errors).

direction Required. Indicates the direction of
the message:
I—Inbound
O—Outbound

out_queue Indicates whether the message is
placed in es_out_queue:
Y—Yes
N—No

resp_id Optional—tpts_id for Message Profile
or tpic_id for B2B Protocol

This needed when the message
received by e*Xchange is not known
to be an original message or response.

Name Type Description
e*Xchange Partner Manager Implementation Guide 226 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Additional Information

ux-ack-handler updates es_mtrk_outb or es_mtrk_inb, es_waiting_ack, and
es_mtrk_error database tables based on the global transact info associated with the
acknowledgment just received.

ux-ack-handler does the following:

! Receives a database connection handle and a list of information about the
acknowledgment from the calling process.

! Updates es_mtrk_inb.ack_que_tm and es_mtrk_inb.ack_msg_id if direction is "I".
For direction = "O", updates es_mtrk_outb.ack_tm and es_mtrk_outb.ack_msg_id ,
and deletes a row from es_waiting_ack table corresponding to the original
mtrk_outb_id.

! If the acknowledgment tran_set_id does not match the expected tran_set_id and the
ack_type = "P", then the acknowledgment is ignored.

! Returns a value to the calling process that indicates whether or not it was
successful.

Based on values of mtrk_id and resp_id in ack-stat, ux-ack-handler performs the
following:

! If mtrk_id is provided, but resp_id is not provided, then ux-ack-handler uses
mtrk_id to update the correct mtrk row in the database

! If resp_id is provided, but mtrk_id is not provided, then ux-ack-handler tries to
find the corresponding request_ids (es_ids) by looking to see if the resp_id is part of
RTN_TS_ID values. Then it uses any found request_ids (es_ids), unique_id, and
extended list after ID part to find mtrk_id. If no corresponding request_ids (es_ids)
are found or no mtrk_id is found, then the resp_id is treated as a request_id (es_id).

! If mtrk_id is provided and resp_id is provided, then ux-ack-handler ignores
resp_id and uses only mtrk_id to update the correct row in the mtrk table.

! If mtrk_id is not provided and resp_id is not provided, then ux-ack-handler uses
the given criteria (unique_id, global structures, and extended data) to find the
correct mtrk row to update.

Example

The following Monk script example calls ux-ack-handler. This script makes two
assumptions:

! That ux-init-trans was executed successfully for the given acknowledgment.

! That a connection to the database, conn-handle, has been established before ux-
ack-handler is called.

ux-ack-handler uses the unique_id "TESTVAL129" to find the appropriate row to
update in es_mtrk_outb.

If successful, then ack-msg is placed in es_mtrk_outb.ack_msg_id in the same row as
the original message. Ack-code "Negative" and ack-tm set as the current time are also
stored in es_mtrk_outb.

If ux-ack-handler fails, then the error, ux-get-error-str, is displayed.
e*Xchange Partner Manager Implementation Guide 227 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
(define ack-stat (list "" ; ack_tm
 "N" ; ack_type
 "T"; level
 "" ; mtrk_id
 "TESTVAL129" ; unique_id
 "12345^Bad dept code~56789^Invalid bed" ; error_data
 "O" ; direction
 "N" ; out_queue
 "" ; resp_id
 ""
))

(if (not (ux-ack-handler connection-handle ack-stat))
(begin
 (display "Ack Handler failed!\n")
 (display (ux-get-error-str))
 (newline)
)
 (display "Ack Handler succeeded!\n")
)
e*Xchange Partner Manager Implementation Guide 228 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-ack-monitor

Syntax

(ux-ack-monitor connection-handle wa-id)

Description

ux-ack-monitor processes messages that have overdue acknowledgments.

Parameters

ux-ack-monitor processes messages as described below:

Return Values

Returns one of the following values:

Boolean

Returns #t (true) if the API is successful and no records exceeded the retry max;
otherwise, returns #f (false) if an error occurs and the API is not successful. Use ux-get-
error-str to retrieve the corresponding error message.

Vector

Returns a vector of mtrk_outb_ids and associated original msgs for all mtrk_outb_ids
associated with the waiting_ack_id that achieved the retry max.

This vector should not contain duplicate msgs. Therefore it is possible that one
mtrk_outb_id represents all the mtrk_outb_ids that have the same orig_msg_id.

This vector takes the following form: (mtrk_outb_id1 msg1 mtrk_outb_id2 msg2 ...)

Throws

Exception-InvalidArg, Exception-Catastrophic (can’t be caught).

Additional Information

ux-ack-monitor receives, as a parameter, the record ID of a record in the
es_waiting_ack table that has an expired acknowledgment time. This occurs when
e*Xchange Partner Manager did not receive an acknowledgment message within the
time allotted by the trading partner profile. The API determines the transaction type
(X12 or RosettaNet), the transfer mode (Interactive or Batch), and the message send
count as compared to the maximum resend count allowed.

For interactive messages:

If the passed in waiting_ack_id has not hit the maximum allowable retries then the
following occurs:

1 The next send time is updated for this waiting_ack_id and all es_waiting_ack rows
that refer to the same original message (es_mtrk_outb.orig_msg_id).

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

wa-id string Required. The ID of an es_waiting_ack
record.
e*Xchange Partner Manager Implementation Guide 229 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
2 ux-ack-monitor increments send count for this row all rows with same
es_mtrk_outb.orig_msg_id.

3 The send count is updated in the es_waiting_ack and es_mtrk_outb tables, and an
entry is inserted into the es_out_queue so that the message is resent to the trading
partner by the e*Xchange Transaction Polling e*Way.

If the waiting_ack_id that was passed in has exceeded the maximum allowable retries
then:

1 ux-ack-monitor stores an error for each es_mtrk_outb row that has the same
es_mtrk_outb.env_msg_id as the waiting_ack_id, and the
es_mtrk_outb.ack_msg_id is NULL (have not received an ack).

2 All rows in es_waiting_ack that have the same es_mtrk_outb.orig_msg_id as the
passed in waiting_ack_id are deleted.

For batch messages:

If the passed in waiting_ack_id has not hit the maximum allowable retries then:

1 X12 (TS level) - Removes all env_msg_id rows associated with passed in
waiting_ack_id and nulls out control numbers, so batch process resends.

X12 (IC level) - All TS records that are subsets of IC es_mtrk_outb record referred to
by waiting_ack_id passed in, and those records that have rtn_rcpt set to 'N' have all
similar env_msg_id rows removed, IC_CONTROL_NUM is set to the value held in
IC_BATCH, and FGI_CONTROL_NUM is set to the value held in FGI_BATCH.
This allows the batch process to perform a resend. ux-ack-monitor stores an error
for the IC level es_mtrk_outb record that it has timed out.

EDF - Removes all env_msg_id rows associated with passed in waiting_ack_id,
IC_CONTROL_REF is set to the value held in IC_BATCH, and
FGI_CONTROL_REF is set to the value held in FGI_BATCH, so batch process
resends.

2 all rows in es_waiting_ack that have the same es_mtrk_outb.orig_msg_id as the
passed in waiting_ack_id are deleted.

If the passed in waiting_ack_id has exceeded the maximum allowable retries then:

1 ux-ack-monitor stores an error for each es_mtrk_outb row that has the same
es_mtrk_outb.env_msg_id as the waiting_ack_id, and the
es_mtrk_outb.ack_msg_id is NULL (have not received an ack).

2 all rows in es_waiting_ack that have the same es_mtrk_outb.orig_msg_id as the
passed in waiting_ack_id are deleted.
e*Xchange Partner Manager Implementation Guide 230 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Example

The following example passes a record ID of 75 from the es_waiting_ack table. The
function assumes that the record has already been identified as having timed out. If a
vector is returned then information about each mtrk_outb_id is written to the log and
the database changes made are committed. If the function returns #t (true), the database
changes made are committed. If #f (false) is returned (indicating an error) a rollback is
committed to roll back any database changes that may have occurred before the error
was encountered.

(define mtrk_outb_id_msgs (ux-ack-monitor connection-handle "75"))
(cond ((not (boolean? mtrk_outb_id_msgs))
 (do ((i 0 (+ i 1)) (value-count (vector-length mtrk_outb_id_msgs)))
 ((= i value-count))
 (display "mtrk_outb_id <")
 (display i)
 (display "> = ")
 (display (vector-ref mtrk_outb_id_msgs i))
 (newline)
 (set! i (+ i 1))
 (display "msg = ")
 (display (vector-ref mtrk_outb_id_msgs i))
 (newline)
)
 (db-commit connection-handle)
)
 (else
 (begin
 (if (eq? #t mtrk_outb_id_msgs)
 (begin
 (display "ux-ack-monitor succeeded - no mtrk_outb_ids hit
retry max")
 (db-commit connection-handle)
)
 (begin
 (display (ux-get-error-str))
 (db-rollback connection-handle)
)
)
)
)
)

e*Xchange Partner Manager Implementation Guide 231 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-check-shutdown-uid

Syntax

(ux-check-shutdown-uid connection-handle id level unique_id)

Description

ux-check-shutdown-uid compares unique_id provided with ones in es_sd_data. If
there is a match, then it returns a full unique_id and deletes the row from es_sd_data
table.

Parameters

Return Values

Returns one of the following values:

string
Returns a string containing the unique_id from es_sd_data table if the combination of
tpts_id, or tpic_id, level, and unique_id is found.

Boolean
Returns #t (true) if the combination of tpts_id, or tpic_id, level, and unique_id is not
found in the es_sd_data table.

Returns #f (false) if a problem occurs.

Throws

None.

Example

(define unique_id "AAAAA")
(define orig_tpts_id "1")
(define check-result (ux-check-shutdown-uid connection-handle

orig_tpts_id "T" unique_id)
)

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

id string Required. Either tpic_id or tpts_id.

level string Required. The level of the control
number. Valid values:
I—Indicates ID is tpic_id
T—Indicates ID is tpts_id

unique_id string Required. The string that uniquely
identifies the transaction.
e*Xchange Partner Manager Implementation Guide 232 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-control-check

Syntax

(ux-control-check control-num level type)

Description

ux-control-check determines whether the control number provided in an inbound
Message Profile or B2B Protocol is valid.

 It does the following:

! Checks the es_ext_detail and es_ext_data tables for the control numbers.

! Determines whether the control number in the message is valid; that is, whether
message control num is greater than database control num.

Parameters

Return Values

Returns one of the following values:

string
Returns "Y" if the control number is valid; otherwise returns "N" if the control number
is not valid.

Boolean
Returns #f (false) if the API fails. Use ux-get-error-str to retrieve the corresponding
error message.

Throws

Exception-InvalidArg, Exception-Catastrophic (can’t be caught).

Additional Information

ux-control-check compares the control numbers that are found to the values in the
global structures, which represent the values in the database. The values should be as
follows:

Name Type Description

control-num string Required. The control number to
validate.

level string Required. The level of the control
number. Valid values:
I—Interchange control number
G—Functional group control number
T—Transaction set control number

type string O—Original
A—Ack

Level Global Structure Control Number

T g_ts->ext_data.col_value and g_ts->ext_data.col_name = "T_CONTROL_NUM"
e*Xchange Partner Manager Implementation Guide 233 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
The message’s control number is valid if either of the following two conditions is true:

! The message’s control number is greater than the database control number, or

! The message’s control number is 1 or 0 and the database control number is the
maximum (9999999999).

If the database control number is at the maximum, the next time it is incremented it
starts over.

The control number must contain only numeric characters, and it must be greater than
the number stored in the database/global structures. The control number can have
leading zeros.

Example

The following Monk script example calls ux-control-check with the assumption that
ux-init-trans was executed successfully for the given message. ux-control-check
compares the given control-num "1005" and level "G" with the g_control_num stored in
the database, g_ic->ext_data.col_value where g_ic->ext_data.col_name =
"G_CONTROL_NUM". If "1005" is greater than g_ic->ext_data.col_value where g_ic-
>ext_data.col_name = "G_CONTROL_NUM", then con-res = "Y", otherwise con-res =
"N". If an error occurs, then #f is returned and the error string is printed using the
display of ux-get-error-str.

(define control-num "1005")
(define level "G")
(define type "O")

 (define con-res (ux-control-check control-num level type))
 (cond ((not (boolean? con-res))
 (cond ((string-ci=? "Y" con-res)
 (display "Control Number is valid\n")
)
 (else
 (display "Control Number is NOT valid\n")
)
)
)
 (else
 (display (ux-get-error-str))
 (newline)
)
)

G g_ic->ext_data.col_value and g_ic->ext_data.col_name = "G_CONTROL_NUM"

I g_ic->ext_data.col_value and g_ic->ext_data.col_name = "I_CONTROL_NUM"

Level Global Structure Control Number
e*Xchange Partner Manager Implementation Guide 234 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-dbproc-ros-inb

Syntax

(ux-dbproc-ros-inb connection-handle msg list_of_rn_pars)

Description

ux-dbproc-ros-inb handles message tracking and acknowledgment for an inbound
RosettaNet message that e*Xchange receives from a trading partner.

Parameters

Name Type Description

connection-handle connection-handle
Required.

The previously established connection to
the database.

msg String The raw message received from the trading
partner.

List_of_rn_pars list:
global_proc_ind_code
global_proc_id
global_trans_code
global_trans_id
global_sigact_code
global_sigact_id
inrespto_sigact_code
inrespto_sigact_id
rec_ack_time
acc_ack_time
perform_time
ext_data_col_name
ext_data_col_value
…

Required. RosettaNet transaction
information.

All list arguments must be strings.

Any number of ext_data_col_name---
ext_data_col_value pairs can be specified as
long as they are specified in pairs.

All elements are required, but can be empty
strings ("").

List member Description

global_proc_ind_code The RosettaNet global process indicator
code.

global_proc_id The RosettaNet global process ID.

global_trans_code The RosettaNet global transaction code.

global_trans_id The RosettaNet global transaction ID.

global_sigact_code The RosettaNet global action code or signal
code. This depends on whether the message
is a RosettaNet business action or business
signal.

global_sigact_id The RosettaNet global action code or signal
ID. This depends on whether the message is
a RosettaNet business action or business
signal.
e*Xchange Partner Manager Implementation Guide 235 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Return Values

Returns one of the following values:

string
Returns a string indicating what action to take, when the function executes
successfully.

inrespto_sigact_code If the message is a RosettaNet business
signal or an action that is a response to
another action, this field is the global action
code for the original action.

inrespto_sigact_id If the message is a RosettaNet business
signal or an action that is a response to
another action, this field is the global action
ID for the original action.

rec_ack_time Time allowed to acknowledge the receipt of
the message.

acc_ack_time Time allowed to acknowledge the
acceptance of the message.

perform_time Time to carry out the action specified in the
message and provide a response.

ext_data_col_name Optional. Field name for any external data to
be saved with the message.

ext_data_col_value Optional, but must appear in pair with
ext_data_col_value. This value is assigned to
the external data field with the
corresponding ext_data_col_name as the
column name. Any external data, if specified,
are saved with the message.

… More ext_data_col_name ---
ext_data_col_value pairs.

Return String Action to Take

SEND_BPFAILURE_TO_EGATE Send a standard event to the eX_eBPM queue
indicating failure of the process.

SEND_REC_ACK_TO_TP Send a receipt acknowledgment to the
eX_Trading_Port_Queue.

SEND_ACC_ACK_TO_TP Send an acceptance acknowledgment to the
eX_Trading_Port_Queue.

SEND_MSG_TO_EGATE Send the original message to the eX_eBPM
queue.

SEND_MSG_TO_TP Send the original message to the
eX_Trading_Port_Queue.

Name Type Description
e*Xchange Partner Manager Implementation Guide 236 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Boolean
Returns #f (false) when the function fails to complete successfully.

Note: Before sending an acknowledgment to the eX_Trading_Port_Queue, it is the caller’s
responsibility to save the acknowledgment message using ux_store_msg and to
register it as a response message to the original message using ux_ack_handler.

Throws

Exception-InvalidArg, Exception-Mapping, Exception-Catastrophic (can’t be caught).

Additional Information

ux-dbproc-ros-inb does the following:

! Receives a database connection handle and a list of information about the
RosettaNet message from the calling process.

! Store the original message with any external data using ux-store-msg.

! If the message is a General Exception in response to an original message, handles all
expected acknowledgments and responses for the original message as if a negative
ack was received for each. Adds the command "SEND_BPFAILURE_TO_EGATE"
to the returned list.

! If the message is a Receipt acknowledgment, handles the expected receipt
acknowledgment using ux_ack_handler. If it is a Receipt Acknowledge Exception,
adds the command "SEND_BPFAILURE_TO_EGATE" to the returned list.

! If the message is an Acceptance acknowledgment, handles any expected Receipt
acknowledgment as if positive ack were received, then handles the expected
Acceptance acknowledgment. If it is a Acceptance Acknowledge Exception, adds
the command "SEND_BPFAILURE_TO_EGATE" to the returned list.

! If the message is a business action in response to an original action, handle the
expected response for the original action message using ux-ack-handler.

! For any business action message, sets up message tracking for each response
expected by the message.

! If a Receipt acknowledgment is expected by this message, handles the
acknowledgment as if a positive ack was received from e*Gate and adds the
command "SEND_REC_ACK_TO_TP" to the command list to be returned.

! If a Acceptance acknowledgment is expected by this message, handles the
acknowledgment as if a positive ack was received from e*Gate and adds the
command "SEND_ACC_ACK_TO_TP" to the command list to be returned.

! For a business action message, adds the command "SEND_MSG_TO_EGATE" to
the command list to be returned.

! Commits or rolls back the database depending on the result of the process. Returns
to the caller.

Examples

The following Monk script example calls ux-dbproc-ros-inb. This script makes three
assumptions:
e*Xchange Partner Manager Implementation Guide 237 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
! That ux-init-trans was executed successfully for the given message.

! That a connection to the database, conn-handle, has been established before
ux-dbproc-ros-inb is called.

! All variables in the first two statements below have been properly defined with
values either from the message itself or from the trading partner profile in the
database.

If ux-dbproc-ros-inb fails, then a user defined function SendFailureNotification is
called.

(set! dbproc_info
(list g_ros_proc_ind_code g_ros_proc_id g_ros_trans_code

g_ros_trans_id g_ros_sigact_code g_ros_sigact_id
g_ros_inrespto_code g_ros_inrespto_id g_ros_rec_ack_time
g_ros_acc_ack_time g_ros_perform_time error_data))

(set! dbproc_info
(append dbproc_info

(list "ACTIVITY_TYPE" activity_type "ACT_INST_ID" event_id)))
(set! dbproc_info

(ux-dbproc-ros-inb g_connection_handle
(get ~input%RosettaNetGeneric) dbproc_info))

(if (boolean? dbproc_info)
(begin

(SendFailureNotification g_direction)
(throw Exception-Monk-Usage

(string-append "ux-dbproc-ros-inb() failed: <"
(ux-get-error-str)
">\n")))

(begin)
)
(do ((i 0 (+ 1 i)))

((>= i (vector-length dbproc_info)))
(let ((element (vector-ref dbproc_info i)))
(if (string=? element "SEND_BPFAILURE_TO_EGATE")

(begin
…

)
(begin)

)
(if (string=? element "SEND_MSG_TO_EGATE")

(begin
…

)
(begin)

)
… ;Take action for other commands.
)

e*Xchange Partner Manager Implementation Guide 238 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-dbproc-ros-outb

Syntax

(ux-dbproc-ros-outb connection-handle msg list_of_rn_pars)

Description

ux-dbproc-ros-outb handles message tracking and acknowledgment for an outbound
RosettaNet message that the e*Xchange receives from e*Gate.

Parameters

Name Type Description

connection-handle connection-handle
Required.

The previously established
connection to the database.

msg String The raw message received from e*Gate

List_of_rn_pars list:
global_proc_ind_code
global_proc_id
global_trans_code
global_trans_id
global_sigact_code
global_sigact_id
inrespto_sigact_code
inrespto_sigact_id
rec_ack_time
acc_ack_time
perform_time
ext_data_col_name
ext_data_col_value
…

Required. RosettaNet transaction
information.

All list arguments must be strings.

Any number of ext_data_col_name---
ext_data_col_value pairs can be specified as
long as they are specified in pairs.

All elements are required, but can be empty
strings ("").

List member Description

global_proc_ind_code The RosettaNet global process indicator
code.

global_proc_id The RosettaNet global process ID.

global_trans_code The RosettaNet global transaction code.

global_trans_id The RosettaNet global transaction ID.

global_sigact_code The RosettaNet global action code or signal
code, depend on if the message is a
RosettaNet business action or business
signal.

global_sigact_id The RosettaNet global action code or signal
ID, depend on if the message is a RosettaNet
business action or business signal.
e*Xchange Partner Manager Implementation Guide 239 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Return Values

Returns one of the following values:

string
Returns a string indicating what action to take when the function executes successfully.

Boolean
Returns #f (false) when the function fails to complete successfully.

Throws

Exception-InvalidArg, Exception-Mapping, Exception-Catastrophic (can’t be caught).

Additional Information

ux-dbproc-ros-outb does the following:

! Receives a database connection handle and a list of information about the
RosettaNet message from the calling process.

inrespto_sigact_code If the message is a RosettaNet business
signal or an action that is a response to
another action, this field is the global action
code for the original action.

inrespto_sigact_id If the message is a RosettaNet business
signal or an action that is a response to
another action, this field is the global action
ID for the original action.

rec_ack_time Time to acknowledge the receipt of the
message.

acc_ack_time Time to acknowledge the acceptance of the
message.

perform_time Time to carry out the action specified in the
message and provide a response.

ext_data_col_name Optional. Field name for any external data to
be saved with the message.

ext_data_col_value Optional, but must appear in pair with
ext_data_col_value. This value is assigned to
the external data field with the
corresponding ext_data_col_name as the
column name. Any external data, if specified,
are saved with the message.

… More ext_data_col_name ---
ext_data_col_value pairs.

Return String Action to Take

SEND_MSG_TO_TP end the original message to the
eX_Trading_Port_Queue.

Name Type Description
e*Xchange Partner Manager Implementation Guide 240 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
! Stores the original message with any external data using ux-store-msg.

! If the message is a General Exception, handles all expected acknowledgments and
responses for the original message as if a negative ack were received for each.

! If the message is a business action in response to an original action, handles the
expected response for the original action message using ux-ack-handler.

! For any business action message, sets up message tracking for each response
expected by this message.

! Adds the command "SEND_MSG_TO_TP" to the command list to be returned.

! Commits or rolls back the database depending on the result of the process, then
returns to the caller.
e*Xchange Partner Manager Implementation Guide 241 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Examples

The following Monk script example calls ux-dbproc-ros-outb. This script makes three
assumptions:

! That ux-init-trans was executed successfully for the given message.

! That a connection to the database, conn-handle, has been established before
ux-dbproc-ros-outb is called.

! All variables in the first two statements below have been properly defined with
values either from the message itself or from the partner profile in the database.

If ux-dbproc-ros-outb fails, then the error, a user defined function
SendFailureNotification is called.

(set! dbproc_info (list g_ros_proc_ind_code g_ros_proc_id
g_ros_trans_code g_ros_trans_id
g_ros_sigact_code g_ros_sigact_id
g_ros_inrespto_code g_ros_inrespto_id
g_ros_rec_ack_time g_ros_acc_ack_time
g_ros_perform_time error_data))

(set! dbproc_info
(append dbproc_info

(list "ACTIVITY_TYPE" activity_type "ACT_INST_ID" event_id)))
(set! dbproc_info

(ux-dbproc-ros-outb g_connection_handle
(get ~input%RosettaNetGeneric)
dbproc_info))

(if (boolean? dbproc_info)
(begin

(SendFailureNotification g_direction)
(throw Exception-Monk-Usage

(string-append "ux-dbproc-ros-outb() failed: <"
(ux-get-error-str) ">\n")))

(begin)
)
(do ((i 0 (+ 1 i))) ((>= i (vector-length dbproc_info)))
(let ((element (vector-ref dbproc_info i)))

(if (string=? element "SEND_BPFAILURE_TO_EGATE")
(begin
…
)
(begin)

)
(if (string=? element "SEND_MSG_TO_EGATE")

(begin
…
)
(begin)

)
… ;Take action for other commands.
)

e*Xchange Partner Manager Implementation Guide 242 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-dequeue

Syntax

(ux-dequeue connection-handle)

Description

ux-dequeue retrieves enveloped, outbound messages that are ready to be routed to a
trading partner.

Parameters

Return Values

Returns one of the following values:

string
If an outbound message was found and no errors were encountered, the message is
returned as a string.

Boolean
Returns #t (true) if an outbound message was not found and no errors were
encountered; otherwise returns #f (false) if the process was unsuccessful. Use
ux-get-error-str to retrieve the corresponding error message.

Throws

Exception-InvalidArg.

Additional Information

ux-dequeue is called by the e*Xchange Transaction Polling e*Way.

It does the following:

! Receives a database connection handle from the e*Xchange Transaction Polling
e*Way.

! Searches the Transaction Queue for the identity of the oldest record in the Stored
Message table that needs to be sent to a trading partner.

! Decompresses the message before adding it to the Stored Message table.

! Deletes the corresponding identifier in the Transaction Queue.

! Returns a value to the e*Xchange Transaction Polling e*Way to indicate whether or
not the process was successful and whether or not an outbound message was
found. If successful, and if a message was found, the message is returned as a string
to the e*Xchange Transaction Polling e*Way.

Internally within the API, a call is made to ux-init-trans to load the trading partner
information into global memory. This is useful so that the e*Xchange Transaction
Polling e*Way Collaboration has the information available to determine whether any

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.
e*Xchange Partner Manager Implementation Guide 243 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
encryption or digital signatures are required on the message before it is sent to the
trading partner.

Example

The following sample Monk script illustrates how the e*Xchange Transaction Polling
e*Way:

1 Creates an outbound message structure named tran_poll.

2 Calls ux-dequeue, which returns a value stored in the parameter named result.

3 Determines whether the value of the result parameter is a Boolean value or a string,
and then performs one of the following actions:

" If the value is a string, then the message contained in the result parameter is
inserted into the output message structure, and then forwarded to the server.

" If the value is Boolean #f (false), ux-get-error-str is called to display the error
message that was encountered.

" If the value is Boolean #t (true), a message is displayed indicating that no
message was returned from the database.

(define input-message-format-file-name "")
 (define output-message-format-file-name "tran_poll.ssc")
 (load "tran_poll.ssc")
 (define result (ux-dequeue connection-handle))
 (if (boolean? result)
 (begin
 (if (eq? result #f)
 (begin
 (display (ux-get-error-str))
 (newline)
)
 (begin
 (display "There are no more msgs to retrieve
 from DB\n")
)
)
)
e*Xchange Partner Manager Implementation Guide 244 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-duplicate-check

Syntax

(ux-duplicate-check connection-handle unique_id level direction)

Description

ux-duplicate-check checks whether the current Message Profile or B2B Protocol is a
duplicate.

Parameters

Return Values

Returns one of the following values:

string
Returns "Y" if the message is a duplicate; otherwise returns "N" if the message is not a
duplicate.

Boolean
Returns #f (false) if the API fails and the message cannot be verified as unique or
duplicated. Use ux-get-error-str to retrieve the error message.

Throws

Exception-InvalidArg, Exception-Catastrophic (can’t be caught).

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

unique_id string Required. The string that uniquely
identifies the transaction.
For an incoming message, this is the
unique ID created by the Validation
Rules Builder tool.
For an outgoing message, it is the
message ID taken from the message
XML.

level string Required. The envelope level from
which to obtain header segment data
to check whether the current message
is a duplicate. Valid values:
I—Interchange
T—Transaction

direction string Required. Indicates the direction of
the message:
I—Inbound
O—Outbound
e*Xchange Partner Manager Implementation Guide 245 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Additional Information

You can call ux-duplicate-check from a Monk script that handles inbound or outbound
messages.

The Inbound Message Tracking table (es_mtrk_inb) contains one row of information
for each inbound message and acknowledgment that has been processed and stored in
the Message Storage table. The Outbound Message Tracking table (es_mtrk_outb)
contains one row of information for each outbound message and acknowledgment that
has been processed and stored.

Each row of the Inbound and Outbound Message Tracking tables contains a unique
identifier for each message or acknowledgment. This identifier may consist of any
combination of the following:

! Interchange control, functional group, or (depending on the messaging protocol
used) message control numbers. X12 uses control numbers, RosettaNet does not.

! Message identifier code

! Version code

! Sending application or company name; for example, SAP or Sears

ux-duplicate-check looks at the es_mtrk_outb or es_mtrk_inb table to determine if the
data just received is a duplicate. It takes a unique_id, direction ("I" or "O"), and level
("T" or "I"), and determines whether the combination of the unique_id, es_id (tpts_id if
level = "T" or tpic_id if level = "I"), and es_opt ("TS" if level = "T" or "IC" if level = "I")
already exist in the es_mtrk_outb (if direction "O"). If that combination already exists,
then the data just received is considered a duplicate.

Example

(define unique_id "LA LA LA LA FA")
(define direction "O")
(define level "T")
(display "calling ux-duplicate-check\n")
(define res (ux-duplicate-check connection-handle unique_id level
direction))
(cond ((not (boolean? res))
 (cond ((string-ci=? "Y" res)
(display "It is a duplicate\n")
)
 (else
(display "It is not a duplicate\n")
)
)
)
 (else
 (display (ux-get-error-str))
 (newline)
)
)
e*Xchange Partner Manager Implementation Guide 246 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-func-ack-handler

Syntax

(ux-func-ack-handler connection-handle ext-list mtrk-ext-list
error_data)

Description

ux-func-ack-handler associates an inbound functional acknowledgment such as an X12
TA1 or 997 or a UN/EDIFACT CNTRL message with the appropriate outbound
message or messages. If there are errors, it adds the error data to the database.

Parameters

The valid combination of values for mtrk-ext-list are listed below:

Possible combinations for X12

T_CONTROL_NUM, G_CONTROL_NUM, RESP_ID

T_CONTROL_NUM, G_CONTROL_NUM

G_CONTROL_NUM, RESP_ID

G_CONTROL_NUM

I_CONTROL_NUM

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

ext-list list of sub-lists Required if the global Message Profile
structure has not been previously loaded by
ux-init-trans or ux-init-ts. Otherwise, this can
be an empty list. Each sub-list being a pair of
es_ext_detail.col_name and
es_ext_data.ext_data_value.
An example of each is given below:
! (list)
! (list (list "FUNC_ID_CODE" "FA"))

mtrk-ext-list list of sub-lists Required. Cannot be an empty list. Each sub-
list is a pair of es_mtrk_ext_det.col_name and
es_mtrk_ext_data.mtrk_data_value.
Example:
! (list (list "I_CONTROL_NUM" "000000009"))

error_data string Required. Two possible formats:
! If there is error information—

code^description~code^description
(^ separates the values for an error and ~
separates the errors).

! If there is no error information—empty
string ("").
e*Xchange Partner Manager Implementation Guide 247 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Possible combinations for UN/EDIFACT

IC_CONTROL_REF, TS_CONTROL_REF, RESP_ID

IC_CONTROL_REF, TS_CONTROL_REF

IC_CONTROL_REF, FG_CONTROL_REF, TS_CONTROL_REF, RESP_ID

IC_CONTROL_REF, FG_CONTROL_REF, TS_CONTROL_REF

IC_CONTROL_REF, FG_CONTROL_REF

IC_CONTROL_REF

Return values

returns one of the following values:

vector

Vector of mtrk_outb_ids (which are strings). For example:

 #("8440" "8725")

Boolean
 Returns #t (true) if nothing is retrieved; otherwise, returns #f (false) if an error is
encountered.

Throws

None.

Additional information

ux-func-ack-handler updates the es_mtrk_outb, es_waiting_ack, and es_mtrk_error (if
error data is included) database tables based on the message storage info associated
with the acknowledgment just received.

The B2B Protocol global structure must be loaded, however the Message Profile global
structure is not required. If only the B2B Protocol global structure is loaded, e*Xchange
finds the appropriate tpts_ids in the es_tpts table using the ext-list.

ux-func-ack-handler updates es_mtrk_outb.ack_msg_id with the global message
storage ID for the rows associated with the mtrk-ext-list, unique_id, and tpts_ids. It
deletes any rows in the es_waiting_ack table associated with the
es_mtrk_outb.mtrk_outb_id that has been updated with the global message storage ID.

It returns #t if no es_mtrk_outb.mtrk_outb_ids were updated. Otherwise it returns a
vector of es_mtrk_outb.mtrk_outb_ids that were updated (using distinct
es_mtrk_outb.orig_msg_ids).

If there is error data, ux-func-ack-handler inserts the data into the es_mtrk_error table.

Examples

In the following example, 8440 and 8725 are returned from the es_mtrk_outb table.
8440 and 8551 have the same orig_msg_id so only one of those is returned.

mtrk_outb_id orig_msg_id
8440 10
8551 10
8725 11
e*Xchange Partner Manager Implementation Guide 248 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
In the following example, the return value of ux-func-ack-handler is assigned to a
variable named var, which is then displayed.

(define var (ux-func-ack-handler connection-handle (list) (list
(list "I_CONTROL_NUM" "000000011")) "23^Twenty Three Desc~54^Fifty
Four Desc"))

(display var)
e*Xchange Partner Manager Implementation Guide 249 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-get-error-str

Syntax

(ux-get-error-str)

Description

ux-get-error-str is used when a function fails. It returns the last error message that was
encountered.

Parameters

ux-get-error-str requires no parameters.

Return Values

string
Returns the last error message encountered by an e*Xchange API.

Throws

Exception-InvalidArg.

Additional Information

ux-get-error-str can be used for inbound or outbound messages. It does the following:

! Retrieves the message associated with the last error encountered by another
e*Xchange API.

! Returns the error message to the calling API.

If ux-get-error-str is included in a display, the error shows in the log file.

When an e*Xchange API encounters a problem and cannot process a message as
expected, an error message is stored in the memory buffer. ux-get-error-str retrieves
this error message from the buffer.

Example

The following sample Monk script calls ux-get-error-str to retrieve the message
associated with the last error encountered. In this example, the error message is
displayed, followed by a new line.

(display (ux-get-error-str))
 (newline)
e*Xchange Partner Manager Implementation Guide 250 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-get-fb-count

Syntax

(ux-get-fb-count connection-handle FB_UNIQUE_ID)

Description

ux-get-fb-count returns the total record count from es_mtrk_outb table with the same
fast batch unique_id.

Parameters

Return values

Returns one of the following values:

Number
 Returns the total record count.

Throws

None.

Examples

(define fb_unique_id "AAAAA")
(define total_fb_cnt

(ux-get-fb-count connection-handle fb_unique_id)
)

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

FB_UNIQUE_ID string Required. The fast batch unique ID.
e*Xchange Partner Manager Implementation Guide 251 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-get-header

Syntax

(ux-get-header level type)

Description

ux-get-header returns values that are stored in the global structures (g_ic, and g_ts).
The global structures contain data from the Trading Partner Profile. The B2B Protocol
structure contains information about the protocol, version, direction, external trading
partner, and communication protocol. The Message Profile structure contains
information about the specific message, validation collaboration, transfer mode, and
response messages. The structures are populated by calling ux-init-trans (ux-init-ic or
ux-init-ts). Therefore, ux-init-trans must be called, and have successful execution,
before ux-get-header is called. Otherwise, ux-get-header returns null values (empty
strings).

Specifically, ux-get-header does the following:

! Returns a list of values retrieved from the global structures or a value that indicates
that the API did not process successfully.

Parameters

Name Type Description

level string Required. The level from which to
obtain TP Profile information. Valid
values:
I—B2B Protocol level information
T—Message Profile level information
A—Both levels

type string Required.
O—Original message
e*Xchange Partner Manager Implementation Guide 252 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Return Values

Returns one of the following values:

vector
Returns one of three vectors containing header data depending on the value of the level
argument.

Level
Argument

Vector
Element
Number

Data
Type

Description

I 1 string tpic_id

2 string tph_id

3 string tran_type

4 string version

5 string direction

6 string rtn_rcpt

7 string test_ind

8 string sec_key_type

9 string comm_port

10 string logical_name

11 string file_name

12 string user_name

13 string password

14 string host

15 string port

16 list (of
strings)

(ext_data_col_name, ext_data_col_value) These repeat
for as may entries as there are in es_ext_data/
ex_ext_detail for this level I. There is an internal limit
of 50 col_name/col_value pairs.
e*Xchange Partner Manager Implementation Guide 253 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
T 1 string tpts_id

2 string tpic_id

3 string alt_id

4 string version

5 string tran_mode

6 string bus_collab

7 string db_collab

8 string msg_compress

9 string rtn_ts_id

10 string rtn_rcpt

11 list (of
strings)

(ext_data_col_name, ext_data_col_value) These repeat
for as may entries as there are in es_ext_data/
ex_ext_detail for this level T. There is an internal limit
of 50 col_name/col_value pairs.

Level
Argument

Vector
Element
Number

Data
Type

Description
e*Xchange Partner Manager Implementation Guide 254 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Boolean
Returns #f (false) if the API did not process successfully. Use ux-get-error-str to retrieve
the corresponding error message.

A 1 string tpic_id

2 string tph_id

3 string tran_type

4 string version

5 string direction

6 string rtn_rcpt

7 string test_ind

8 string sec_key_type

9 string comm_port

10 string logical_name

11 string file_name

12 string user_name

13 string password

14 string host

15 string port

16 list (of
strings)

(ext_data_col_name, ext_data_col_value) These repeat
for as may entries as there are in es_ext_data/
ex_ext_detail for this level I. There is an internal limit
of 50 col_name/col_value pairs.

17 string tpts_id

18 string tpic_id

19 string alt_id

20 string version

21 string tran_mode

22 string bus_collab

23 string db_collab

24 string msg_compress

25 string rtn_ts_id

26 string rtn_rcpt

27 list (of
strings)

(ext_data_col_name, ext_data_col_value) These repeat
for as may entries as there are in es_ext_data/
ex_ext_detail for this level T. There is an internal limit
of 50 col_name/col_value pairs.

Level
Argument

Vector
Element
Number

Data
Type

Description
e*Xchange Partner Manager Implementation Guide 255 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Throws

Exception-InvalidArg.

Additional Information

You can call ux-get-header from a Monk script that handles inbound or outbound TP
Profiles. The ePM Batching e*Way calls this API to retrieve the enveloping information
needed to process outbound batch messages.

A global TP Profile structure is a structure in memory that stores information for
validating or assembling the message as required by its eBusiness Protocol during the
processing of the message. The global structures are populated with information
retrieved from trading partner profiles in the database with the ux-init-trans, ux-init-ic,
or ux-init-ts APIs.

Example

The following sample Monk script calls the ux-get-header API with the assumption
that the ux-init-trans processed successfully for the current original message. The ux-
get-header API returns a list that contains data for the current message B2B Protocol
level. The sample DO loop displays each string in the data list. If an error occurs, then
#f is returned. The error can be identified by calling the ux-get-error-str API.

(define type "o")
 (define level "i")
 (define header-values (ux-get-header level type))
 (cond ((not (boolean? header-values))
 (do ((i 0 (+ i 1)) (value-count (vector-length
 header-values)))
 ((= i value-count))
 (display "header value <")
 (display i)
 (display "> = ")
 (display (vector-ref header-values i))
 (newline)
)
)
 (else
 (display (ux-get-error-str))
 (newline)
)
)
e*Xchange Partner Manager Implementation Guide 256 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-get-key-cert

Syntax

(ux-get-key-cert connection-handle key-type [tpic-id])

Description

ux-get-key-cert retrieves security keys from the database. Use the ux-get-key-cert API
for inbound or outbound messages.

Parameters

Return Value

Returns one of the following:

Boolean

Returns #f (false)—if an error was encountered; otherwise returns #t (true)—if no
security certificate was found for supplied criteria.

Name Type Description

connection-
handle

connection-
handle

Required. The previously established connection to the
database.

key-type string The type of security key, certificate, or algorithm retrieved.
Use the value obtained using sec_key_type in es_tpic. Only
one key-type single character can be passed in. If
sec_key_type contains more than one security trait, then
these traits are separated by a vertical bar "|" and must be
parsed into single characters before passing the value to ux-
get-key-cert.
Possible values are:
E—Encryption certificate name
S—Signature key name
I — Signature Key Passphrase
D—Decryption key name
B—Decryption key passphrase
V—Signature verification certificate name
F—SSL Keystore Name
G—SSL Keystore Type
H—SSL Keystore Passphrase
K—SSL Client Key Name
T—SSL Client Key Type (only key name returned)
C—SSL Client Certificate Name
P—SSL Client Certificate Type (only key name returned)
Y—Encryption algorithm (only key name returned)
A—Signature algorithm (only key name returned)
N—None

tpic-id string (Optional) The ID of the B2B Protocol for the trading partner
profile. If you do not provide this parameter, then the value
of tpic-id from the main global B2B Protocol structure
stored in memory is used.
e*Xchange Partner Manager Implementation Guide 257 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
vector
Returns a vector containing the following three elements if a security certificate was
found:

Throws

Exception-InvalidArg, Exception-Catastrophic (can’t be caught).

Example 1

This example passes in key-type of "K" and tpic_id of "161" and expects back a key-
values vector containing three elements: SSL Client Key name in the first position,
security key length in the second position, and SSL Client Key value in the last position.

(define key-type "K")
(define tpic-id "161")
(define key-values

(ux-get-key-cert connection-handle key-type tpic-id))
(cond

((not (boolean? key-values))
(do ((i 0 (+ i 1)) (value-count (vector-length key-values)))

((= i value-count))
(display "key value <")
(display i)
(display "> = ")
(display (vector-ref key-values i))
(newline)))
; retrieve key-values

(else
(cond

(key-values (display "No security key found\n"))
(else (display (ux-get-error-str))

(newline)))))

Element
Number

Type Description

1 string Security key name.

2 integer Length of security key. This element is zero if there is no
security key.

3 string Security key. This element is empty if there is no security
key associated with the security key name stored in the
database.
e*Xchange Partner Manager Implementation Guide 258 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Example 2

Using a key-type of "A", this example relies on the global structure in memory, loaded
from either ux-init-trans or ux-init-ic, to obtain tpic_id. It expects back only one useful
value: the Signature Algorithm in the first position of the key-values vector, the second
position contains 0, and the third position is empty.

(define key-type "A")
(define key-values (ux-get-key-cert connection-handle key-type))
(cond

((not (boolean? key-values))
(do ((i 0 (+ i 1)) (value-count (vector-length key-values)))

((= i value-count))
(display "key value <")
(display i)
(display "> = ")
(display (vector-ref key-values i))
(newline))

; retrieve key-values
)
(else

(cond
(key-values (display "No security key found\n"))
(else

(display (ux-get-error-str))
(newline)))))

(define key-values
(ux-get-key-cert conn-handle "E" "ENCRYPT_CERT_NAME"))

(cond
((not (boolean? key-values))

(define sec-key-len (vector-ref key-values 0))
(define sec-key (vector-ref key-values 1)))

(else
(if key-values

(display "No security was found for supplied criteria\n")
(begin

(display (ux-get-error-str))
(newline)))))

(display "Testing ux-get-key-cert\n")
(define key-vec (ux-get-key-cert connection-handle "V" "STC SIG"))
(if (eq? key-vec #f)

(begin
(display (ux-get-error-str))
(newline))

(begin
(if (= 0 (string->number (vector-ref key-vec 0)))

(begin
(comment "No keys retrieved from the DB"))

(begin
(display "Size of Key is = <")
(display (vector-ref key-vec 0))
(display ">\n\n")))))
e*Xchange Partner Manager Implementation Guide 259 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-get-lock-ext-attrib-db

Syntax

(ux-get-lock-ext-attrib-db connection-handle column-name level)

Description

ux-get-lock-ext-attrib-db performs an insignificant update to the table first. This blocks
if an external update is occurring to the record and also locks the record for the current
process. Once the update has been performed, the specified attribute is retrieved from
the DB and updated in the global structures and returned.

Parameters

Return Value

string
Returns a string containing the column value if found and successfully retrieved.

Boolean

Returns #t (true) if no values could be found for retrieval; otherwise returns #f (false)—
if an error was encountered.

Throws

None.

Example

(define col-value (ux-get-lock-ext-attrib-db connection-handle
"IC_CONTROL_REF" "I"))

(if (!boolean col-value)
(display (string-append "Column value: <"col-value">\n"))
(if (eq? col-value #t)

(display "No column value could be found in the DB\n")
(display (string-append "Encountered error: <"(ux-get-

error-str)">\n"))
)

)

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

column-name string Required. The name of the attribute to
be retrieved.

level string Required. Indicates the level the value
should be retrieved from.
I - B2B Protocol level
T - Message Profile level
e*Xchange Partner Manager Implementation Guide 260 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-get-mtrk-attrib

Syntax

(ux-get-mtrk-attrib connection-handle list)

Description

ux-get-mtrk-attrib retrieves extended attributes for messages (B2B Protocol or Message
Profile) stored in either the es_mtrk_inb or es_mtrk_outb tables. Uses of this include
retrieving the Response ID or e*Insight Activity ID from an outbound message. This
API is very useful when sending response messages back to e*Insight and associating
the responses with a specific process and activity.

Use the ux-get-mtrk-attrib API for inbound or outbound messages.

Parameters

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

list list:
direction
unique_id
level
mtrk_id
sub-list

Required. Information about the
message.
All list arguments must be strings,
except for the sub-lists which are lists
containing strings.
All elements before the sub-list
section are required, but can be empty
strings (""), with the exception of
direction and level, which return an
error if no value is provided.

List member Description

direction Required. Indicates the direction of
the message:
I—Inbound
O—Outbound

unique_id Optional only if mtrk_id is provided.
The unique identifier for the original
message.

level Optional only if mtrk_id is provided.
Valid values:

I—B2BProtocol level
T—Message Profile level

mtrk_id Optional. Message tracking ID. If there
is a list of extended attributes (sub-
list), then mtrk_id or an empty string
"" must be included.

sub-list Optional and repeating. The sub-list
format is:
"Column_Name" "Column_Value") ;
may contain some of the extended
attributes if already known.
e*Xchange Partner Manager Implementation Guide 261 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Return Value

Boolean

Returns #f (false)—if an error was encountered; otherwise returns #t (true)—no
extended attributes could be found for the given input data.

vector
Returns a vector containing the following 2N elements (where N is the number of
extended attributes) if a extended attributes are found for the message:

Throws

Exception-InvalidArg, Exception-Mapping, Exception-Catastrophic (can’t be caught).

Example

(define unique_id "ACME ELIG1000000134")
(define mtrk-info (list "O" ; direction

unique_id ; unique-id
"T" ; level
"" ; represents mtrk_id needed

; because of the following sub-lists
(list "I_CONTROL_NUM" "000000002")))

(display "calling ux-get-mtrk-attrib\n")
(define ext-values (ux-get-mtrk-attrib connection-handle mtrk-info))
(display ext-values)
(newline)
(cond ((not (boolean? ext-values))

(do ((i 0 (+ i 1)) (value-count (vector-length ext-values)))
 ((= i value-count))

 (display "mtrk ext value <")
 (display i)
 (display "> = ")

 (display (vector-ref ext-values i))
 (newline)
)
)
 (else

(display (ux-get-error-str))
(newline)

)
)
(display "done calling ux-get-mtrk-attrib\n")

Element
Number

Type Description

1 string Column 1 name.

2 string Column 1 value.

3 string Column 2 name.

4 string Column 2 value.

2N-1 string Column N name.

2N string Column N value.
e*Xchange Partner Manager Implementation Guide 262 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-get-seq-value

Syntax

(ux-get-seq-value connection-handle table_name)

Description

ux-get-seq-value retrieves the current sequence value for the specified table and
returns the value in the seq_value parameter. To handle concurrency with multiple
e*Ways accessing the same table sequence value simultaneously, this function catches
locking or deadlocking errors up to 10 times and retry until sequence value is returned.
If retrieval fails after the 10th time, an error indication is returned.

Parameters

Return Values

Returns one of the following values:

string
Returns a string containing the incremented sequence value.

Boolean
Returns #f (false) if a problem occurs.

Throws

None.

Example

(define seq_value (ux-get-seq-value connection-handle "es_sd_msg"))

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

table_name string Required. The table name for the
sequence value.
e*Xchange Partner Manager Implementation Guide 263 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-incr-control-num

Syntax

(ux-incr-control-num connection-handle level type)

Description

ux-incr-control-num increments the specified control number of an outbound Message
Profile or B2B Protocol stored in the database and global structure.

Use the ux-incr-control-num API for outbound messages.

Parameters

Return Values

Returns one of the following values:

string
string (incremented control number)—if the appropriate control number was
successfully incremented.

Boolean
Returns #f (false)—if a problem occurred and the control number could not be
duplicated. Use the ux-get-error-str API to retrieve the error message.

Throws

Exception-InvalidArg, Exception-Catastrophic (can’t be caught).

Additional Information

ux-incr-control-num does the following:

! Receives a connection handle to the database and an indicator that specifies the
type of control number to increment for the current message (interchange,
functional group, or transaction set control number).

! If used at the transaction level, ux-incr-control-num increments, by one digit, the
control number for the transaction stored in the database and in the global structure
(the functional group and interchange control numbers are not changed).

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

level string Required. The level of the control
number to increment for the current
message. Valid values:
I—Interchange control number
G—Functional group control number
T—Transaction set control number

type string Required. Indicates which cached
profile to update.
Valid value:
O—original struct
e*Xchange Partner Manager Implementation Guide 264 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
! Returns either the incremented control number or a value indicating that the API
did not process successfully.

You can call the ux-incr-control-num API from a Monk script that handles outbound
TP Profiles. The ePM Batching e*Way calls this API to obtain the control number
needed to process an outbound batch message.

All control numbers are stored in the es_ext_data/es_ext_detail tables, which
correspond to the global structures.

The control number rolls over to 0 when it reaches 9999999999.

Example

The following sample Monk script calls the ux-incr-control-num API with the
assumption that the ux-init-trans API processed successfully for the current B2B
Protocol or Message Profile level. The ux-incr-control-num returns a string that
contains the incremented functional group control number. If an error occurs, then #f
(false) is returned. The error can be identified by calling the ux-get-error-str API.

(define type "O")
(define level "G")
(define control-number(ux-incr-control-num connection-
 handle level type))

 (cond ((not (boolean? control-number))
 (display "incremented control-number = <")
 (display control-number)
 (display ">\n")
)
 (else
 (display (ux-get-error-str))
 (newline)
)
)
e*Xchange Partner Manager Implementation Guide 265 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-init-exdb

Syntax

(ux-init-exdb connection-handle max_msg_size max_eWay_cnt
eWay_instance_num)

Description

ux-init-exdb performs database and global variable initialization and binds for SQL
statements and their parameters, and returns system default data stored in sb_defaults
table.

Use the ux-init-exdb API on connection to the database.

Parameters

Return Value

list
Returns a list containing sub lists of names and values as stored in system defaults, the
sb_defaults table.

Boolean

Returns #f (false) if something fails. Use ux-get-error-str to see the error.

Throws

Exception-InvalidArg.

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

max_msg_size string The maximum size of message that can
be stored in one blob. If a message is
larger, it is broken into multiple pieces
when stored.

max_eWay_cnt string The maximum number of ePM
Batching e*Ways. This value is
populated from the e*Way
configuration setting and is set to the
total number of ePM Batching e*Ways
in the schema.

For all other e*Way types the value
should be set to “1”.

eWay_instance_num string The e*Way instance for this particular
ePM Batching e*Way. This value is
populated from the e*Way
configuration setting.

For all other e*Way types the value
should be set to “1”.
e*Xchange Partner Manager Implementation Guide 266 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Additional Information

It is important that ux-init-exdb be called every time a connection is made, after login
and the connection-handle is created.

Example

(if (db-login connection-handle HOSTNAME USERNAME PASSWORD)
(begin

 (display "Logged in\n")
 (define sys-def (ux-init-exdb connection-handle 500000 5 3))

 (display sys-def)
(cond ((not (boolean? sys-def))

(do ((i 0 (+ i 1)) (value-count (vector-length sys-def)))
 ((= i value-count))

 (display "system default value <")
 (display i)
 (display "> = ")

 (display (vector-ref sys-def i))
 (newline)
)

(else
(display (ux-get-error-str))
(newline)

)
)

)

e*Xchange Partner Manager Implementation Guide 267 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-init-ic

Syntax

(ux-init-ic connection-handle transact-info)

Description

ux-init-ic retrieves the trading partner profile, based on the items included in the
transact-info list. The retrieved information is only for the B2B Protocol level and is
stored in global structures. ux-get-header with level "I" can be used to extract the data
from the global structures.

If the trading partner profile information has previously been loaded into the global
structures, the function returns an indicator showing in which global structure the data
is located. It does not make a query to the database.

Use the ux-init-ic API for inbound or outbound messages.

Parameters

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

transact-info list:
alt_id
company_name
tran_type
tpic_version
tpts_version
direction
tran_mode
tpic_id
tpts_id
rtn_ts_id
comm_port
logical_name
file_name
sub-list:

(0->many) (optional)

Required. A set of identifying
information contained within the
current message. This information is
matched against corresponding
information in the e*Xchange
database so that the correct trading
partner profile can be retrieved.

All list arguments must be strings,
except for the sub-lists which are lists
containing strings.

All elements before the sub-list
section are required, but can be empty
strings (""), with the exception of
direction which returns an error if no
value is provided.

List member Description

alt_id The identification number of the
trading partner, assigned by an
external application (1–20 characters).

company_name The name of the company to which
the message relates. If the trading
partner is a subdivision of a larger
company, this is the name of the
company (1–35 characters).
e*Xchange Partner Manager Implementation Guide 268 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
tran_type The code representing the name of
the eBusiness Protocol used to format
the message: possible values include
X12, EDF and ROS. EDF represents UN/
EDIFACT and ROS represents
RosettaNet.

tpic_version The version of the protocol being used
by the trading partner. This is the
human-readable version, as used in
the es_tpic table, not the code for the
version taken directly from the B2B
Protocol level.

Example: 4040 for X12 version 4040, or
1.1 for RosettaNet version 1.1.

tpts_version The version of the protocol being used
by the trading partner. This is the
human-readable version, as used in
the es_tpts table, not the code for the
version taken directly from the
Message Profile level.

Since ux-init-ic is only applicable to
B2B Protocol levels, any value supplied
for this parameter is ignored.
However, a placeholder ("") must be
supplied.

direction Required. Indicates the direction of
the message:
I—Inbound
O—Outbound

tran_mode The way in which messages are
exchanged with the trading partner:
I (interactive)—The message is sent to
or from the trading partner
individually to facilitate a "question
and answer" type of B2B Protocol.
B (batch)—The message is
accumulated with other messages,
which are then transmitted to or from
the trading partner as a group.
FB (fast batch)—A group of messages
that are to be batched together in one
interchange and identified by an
associating unique ID.

tpic_id The record ID of the es_tpic table.

Name Type Description
e*Xchange Partner Manager Implementation Guide 269 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Return Values

Returns one of the following values:

string
Returns "O" if the trading partner profile information was successfully loaded into the
global structure.

Boolean
Returns #f (false)—if a corresponding trading partner profile was not found, or a
problem occurred and the global structures were not initialized successfully. Use the
ux-get-error-str API to retrieve the error message.

Note: A failure generally means that the information passed into the function does not
match any of the TP Profiles set up. Review this data and verify that it is correct.

Throws

Exception-InvalidArg, Exception-Catastrophic (can’t be caught).

Additional Information

ux-init-trans, ux-init-ic, and ux-init-ts only retrieve for active trading partners. From
the e*Xchange Web Interface, verify the status of the intended TP Profile.

tpts_id The record ID for the es_tpts table.

Since ux-init-ic is only applicable to
B2B Protocol levels, any value supplied
for this parameter is ignored.
However, a placeholder ("") must be
supplied.

rtn_ts_id The record ID of the return Message
Profile set.

Since ux-init-ic is only applicable to
the B2B Protocol level, any value
supplied for this parameter is ignored.
However, a placeholder ("") must be
supplied.

comm_port The communications protocol used in
the message; for example, HTTP.

logical_name The name of the trading partner, as set
up in the Logical Name field in the
General section of the B2B Protocol
properties.

file_name The path and file name of the FTP file
containing the message.

(sub-list) (0->many) Optional. The sub-list format is:
level = "I" or "T" col_name col_value

Name Type Description
e*Xchange Partner Manager Implementation Guide 270 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-init-ic does the following:

! Receives a set of identifying values contained within the current message and a
connection handle to the database from the calling process.

! Retrieves information from the database for the trading partner profile that matches
the set of identifying values.

! Populates the B2B Protocol global structure with information from the trading
partner profile.

! Returns a value to the calling process that indicates whether or not the global
structures were initialized successfully.

Trading partner profiles, which include information required by trading partners, are
defined by users and are stored in the following e*Xchange tables: es_company, es_tph,
es_tpcat, es_tpic, es_tpts, es_ext_data, and es_ext_detail. The ux-init-trans and
associated APIs retrieve the information that is stored in these tables and load it into the
global structures.

A global structure stores B2B Protocol data in memory, while e*Xchange processes the
message. Other APIs access the information stored in the global structure to facilitate in
processing the messages.

ux-init-ic includes sec_key_type as part of the global structure.

Example

The following sample Monk script calls the ux-init-ic API to populate the global
structures. In this sample, the global structures can only be initialized if the following
values match the values defined for a trading partner profile in the database:

! The alternate identification of the trading partner must be ACMEDIV1

! The name of the trading partner must be ACME Division ONE

! The sender identification number must be sender_id and the receiver identification
number must be the ID number published by the receiver (this varies depending on
the industry, but could be the DUNS number or some equivalent).

! The functional identification code of the message must be HB

! The EDI standard used to format the message must be X12

! The version number of the EDI standard used to format the message must be 4010

! The Message Profile identification number for the message must be 271

! The message must be an outbound B2B Protocol level.

If a trading partner profile in the e*Xchange database matches the information specified
above, then data is retrieved from the trading partner profile and placed into the global
structures. #t (true) is returned to indicate that the structures were successfully
initialized.

If there is not a match, or if an error occurs, then #f (false) is returned. The error can be
identified by calling the ux-get-error-str API.
e*Xchange Partner Manager Implementation Guide 271 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
(define transact-info (list "ACMEDIV1" ; alt_id
"ACME Division ONE" ; name
"X12" ; tran_type
"4010" ; in es_tpic
"4010" ; tpts_version in es_tpts
"I" ; direction
"B" ; tran_mode
"" ; tpic_id
"" ; tpts_id
"" ; rtn_ts_id
"" ; comm_port
"" ; logical_name
"" ; file_name
(list "I" "SENDER_ID" "sender_id")
(list "I" "RCVR_ID" "hliu")
(list "T" "FUNC_ID_CODE" "HB")
(list "T" "TRAN_SET_ID" "271")
(list "I" "VERSION" "00401") ; version to

match data
))
if (struc (ux-init-ic connection-handle transact-info)
 (display "ux-init-ic was successful\n")
 (begin
 (display "ux-init-ic was not successful\n")
 (display ux-get-error-str)
 (newline)
)
)

e*Xchange Partner Manager Implementation Guide 272 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-init-trans

Syntax

(ux-init-trans connection-handle transact-info)

Description

ux-init-trans retrieves the trading partner profile based on the items included in the
transact-info list. ux-init-trans can retrieve information for both the B2B Protocol and
Message Profile levels.

The information is stored in global structures. ux-get-header can be used to extract the
data from the global structures.

Use the ux-init-trans API for inbound or outbound messages.

Parameters

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

transact-info list:
alt_id
company_name
tran_type
tpic_version
tpts_version
direction
tran_mode
tpic_id
tpts_id
rtn_ts_id
comm_port
logical_name
file_name
sub-list:

(0->many) (optional)

A set of identifying information
contained within the current message.
This information is matched against
corresponding information in the
e*Xchange database so that the
correct trading partner profile can be
retrieved.

All list arguments must be strings,
except for the sub-lists which are lists
containing strings.

All elements before the sub-list
section are required, but can be empty
strings (""), with the exception of
direction which returns an error if no
value is provided.
e*Xchange Partner Manager Implementation Guide 273 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
List member Description

alt_id The identification number of the
trading partner, assigned by an
external application (1–20 characters).

company_name The name of the company to which
the message relates. If the trading
partner is a subdivision of a larger
company, this is the name of the
company (1–35 characters).

tran_type The code representing the name of
the eBusiness Protocol used to format
the message: possible values include
X12, EDF and ROS. EDF represents UN/
EDIFACT and ROS represents
RosettaNet.

tpic_version The version of the protocol being used
by the trading partner. This is the
human-readable version, as used in
the es_tpic table, not the code for the
version taken directly from the B2B
Protocol level.

Example: 4040 for X12 version 4040, or
1.1 for RosettaNet version 1.1.

tpts_version The version of the protocol being used
by the trading partner. This is the
human-readable version, as used in
the es_tpic table, not the code for the
version taken directly from the
Message Profile level.

Example: 4040 for X12 version 4040, or
1.1 for RosettaNet version 1.1.

direction Required. Indicates the direction of
the message:
I—Inbound
O—Outbound

Name Type Description
e*Xchange Partner Manager Implementation Guide 274 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Return Values

Returns one of the following values:

string
Returns "O" if the trading partner profile information was successfully loaded into the
global structure.

Boolean
Returns #f (false)—if a corresponding trading partner profile was not found, or a
problem occurred and the global structures were not initialized successfully. Use the
ux-get-error-str API to retrieve the error message.

Note: A failure generally means that the informatio passed into the function does not
match any of the TP Profiles set up. Review this data and verify that it is correct.

Throws

Exception-InvalidArg, Exception-Catastrophic (can’t be caught).

tran_mode The way in which messages are
exchanged with the trading partner:
I (interactive)—The message is sent to
or from the trading partner
individually to facilitate a "question
and answer" type of B2B Protocol
level.
B (batch)—The message is
accumulated with other messages,
which are then transmitted to or from
the trading partner as a group.
FB (fast batch)—A group of messages
that are to be batched together in one
interchange and identified by an
associating unique ID.

tpic_id The record ID of the es_tpic table.

tpts_id The record ID for the es_tpts table.

rtn_ts_id The record ID of the return Message
Profile set.

comm_port The communications protocol used in
the message; for example, HTTP.

logical_name The name of the trading partner, as set
up in the B2B Protocol General
Section, Logical Name field.

file_name The path and file name of the FTP file
containing the message.

(sub-list) (0->many) Optional. The sub-list format is:
level = "I" or "T" col_name col_value

Name Type Description
e*Xchange Partner Manager Implementation Guide 275 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Additional Information

ux-init-trans, ux-init-ic, and ux-init-ts only retrieve for active trading partners. From
the ePM Web Interface verify the status of the intended TP Profile.

ux-init-trans does the following:

! Receives a set of identifying values contained within the current message and a
connection handle to the database from the calling process.

! Retrieves information from the database for the trading partner profile that matches
the set of identifying values.

! Populates the global structure with information from the trading partner profile.

! Returns a value to the calling process that indicates whether or not the global
structures were initialized successfully.

Trading partner profiles, which include information required by trading partners, are
defined by users and are stored in the following e*Xchange tables:

! es_company

! es_tph,es_tpcat

! es_tpic,es_tpts

! es_ext_data

! es_ext_detail

ux-init-trans retrieves the information that is stored in these tables and loads it into the
global structures.

Global structures store TP Profile data in memory while e*Xchange processes the
message. Other APIs access the information stored in the global structures to facilitate
in processing the messages.
e*Xchange Partner Manager Implementation Guide 276 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Example

(define transact-info (list "ACMEDIV1" ; alt_id
"ACME Division ONE" ; name
"X12" ; tran_type
"4010" ; in es_tpic
"4010" ; in es_tpts
"I" ; direction
"B" ; tran_mode
"" ; tpic_id
"" ; tpts_id
"" ; rtn_ts_id
"" ; comm_port
"" ; logical_name
"" ; file_name
(list "I" "SENDER_ID" "sender_id")
(list "I" "RCVR_ID" "hliu")
(list "T" "FUNC_ID_CODE" "HB")
(list "T" "TRAN_SET_ID" "271")
(list "I" "VERSION" "00401") ; version to

match data
))
(if (ux-init-trans connection-handle transact-info)
 (display "ux-init-trans was successful\n")
 (begin
 (display "ux-init-trans was not successful\n")
 (display ux-get-error-str)
 (newline)
)
)

e*Xchange Partner Manager Implementation Guide 277 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-init-ts

Syntax

(ux-init-ts connection-handle transact-info)

Description

ux-init-ts retrieves the trading partner profile from the e*Xchange database based on
the items included in the transact-info list. The retrieved information is only used by
the Message Profile level and is stored in global structures. ux-get-header with level "T"
can be used to extract the data from the global structures.

Use the ux-init-ts API for inbound or outbound messages.

Parameters

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

transact-info list:
alt_id
company_name
tran_type
tpic_version
tpts_version
direction
tran_mode
tpic_id
tpts_id
rtn_ts_id
comm_port
logical_name
file_name
sub-list:

(0->many) (optional)

Required. A set of identifying
information contained within the
current message. This information is
matched against corresponding
information in the e*Xchange
database so that the correct trading
partner profile can be retrieved.

All list arguments must be strings,
except for the sub-lists which are lists
containing strings.

All elements before the sub-list
section are required, but can be empty
strings (""), with the exception of
direction which returns an error if no
value is provided.

List member Description

alt_id The identification number of the
trading partner, assigned by an
external application (1–20 characters).

company_name The name of the company to which
the message relates. If the trading
partner is a subdivision of a larger
company, this is the name of the
company (1–35 characters).

tran_type The code representing the name of
the eBusiness Protocol used to format
the message: possible values include
X12, EDF and ROS. EDF represents UN/
EDIFACT and ROS represents
RosettaNet.
e*Xchange Partner Manager Implementation Guide 278 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
tpic_version The version of the protocol being used
by the trading partner. This is the
human-readable version, as used in
the es_tpic table.

Since ux-init-ts is only applicable to
Message Profiles, any value supplied
for this parameter is ignored.
However, a placeholder ("") must be
supplied.

tpts_version The version of the protocol being used
by the trading partner. This is the
human-readable version, as used in
the es_tpts table.

Example: 4040 for X12 version 4040, or
1.1 for RosettaNet version 1.1.

direction Required. Indicates the direction of
the message:
I—Inbound
O—Outbound

tran_mode The way in which messages are
exchanged with the trading partner:
I (interactive)—The message is sent to
or from the trading partner
individually to facilitate a "question
and answer" type of B2B Protocol
level.
B (batch)—The message is
accumulated with other messages,
which are then transmitted to or from
the trading partner as a group.
FB (fast batch)—A group of messages
that are to be batched together in one
interchange and identified by an
associating unique ID.

tpic_id The record ID of the es_tpic table.

tpts_id The record ID for the es_tpts table.

rtn_ts_id The record ID of the return inner
envelope set.

comm_port The communications protocol used in
the message; for example, HTTP.

Name Type Description
e*Xchange Partner Manager Implementation Guide 279 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Return Values

Returns one of the following values:

string
Returns "O" if the trading partner profile information is successfully loaded into the
global structure.

Boolean
Returns #f (false)—if a corresponding trading partner profile was not found, or a
problem occurred and the global B2B Protocol structures were not initialized
successfully. Use the ux-get-error-str API to retrieve the error message.

Note: A failure generally means that the information passed into the function does not
match any of the TP Profiles set up. Review this data and verify that it is correct.

Throws

Exception-InvalidArg, Exception-Catastrophic (can’t be caught).

Additional Information

ux-init-trans, ux-init-ic, and ux-init-ts only retrieve for active trading partners. From
the e*Xchange Web Interface verify the status of the intended TP Profile.

ux-init-ts does the following:

! Receives a set of identifying values contained within the current message and a
connection handle to the database from the calling process.

! Retrieves information from the database for the trading partner profile that matches
the set of identifying values.

! Populates the Message Profile global structures with information from the trading
partner profile.

! Returns a value to the calling process that indicates whether or not the global
structures were initialized successfully.

Trading partner profiles, which include the information required by trading partners,
are defined by users and are stored in the following e*Xchange tables: es_company,
es_tph, es_tpcat, es_tpic, es_tpts, es_ext_data, and es_ext_detail. The ux-init-trans and
associated APIs retrieve the information that is stored in these tables and loads it into
the global structures.

logical_name The name of the trading partner, as set
up in the Logical Name field in the
General tab of the Outer Envelope
window.

file_name The path and file name of the FTP file
containing the message.

(sub-list) (0->many) Optional. The sub-list format is:
level = "I" or "T" col_name col_value

Name Type Description
e*Xchange Partner Manager Implementation Guide 280 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
A global structure stores data for TP Profile in memory while e*Xchange processes the
message. Other APIs access the information stored in the global structures to facilitate
in processing the messages.

Example

(define transact-info (list "ACMEDIV1" ; alt_id
"ACME Division ONE" ; name
"X12" ; tran_type
"4010" ; tpic_version in es_tpic
"4010" ; tpts_version in es_tpts
"I" ; direction
"B" ; tran_mode
"" ; tpic_id
"" ; tpts_id
"" ; rtn_ts_id
"" ; comm_port
"" ; logical_name
"" ; file_name
(list "I" "SENDER_ID" "sender_id")
(list "I" "RCVR_ID" "hliu")
(list "T" "FUNC_ID_CODE" "HB")
(list "T" "TRAN_SET_ID" "271")
(list "I" "VERSION" "00401") ; version to match data

))
(if (ux-init-ts connection-handle transact-info)
 (display "ux-init-ts was successful\n")
 (begin
 (display "ux-init-ts was not successful\n")
 (display ux-get-error-str)
 (newline)
)
)

e*Xchange Partner Manager Implementation Guide 281 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-md5-digest

Syntax

(ux-md5-digest message)

Description

ux-md5-digest returns the MD5 digest of the input message.

Parameters

Return Values

Returns one of the following values:

String
Returns the digested message, if the message is digested successfully.

Boolean

Returns #f (false) if the request did not process successfully. Use the ux-get-error-str
API to retrieve the corresponding error message.

Throws

None.

Example

(define msg "AAAAAAAAAAAAAAAAAAAAAAAAAA")
(define dig-msg (ux-md5-digest msg))

Name Type Description

message string Required. The message to digest.
e*Xchange Partner Manager Implementation Guide 282 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions

ux-ret-edf-batch-ts-msgs

Syntax

(ux-ret-edf-batch-ts-msgs connection-handle file_size)

Description

ux-ret-edf-batch-ts-msgs returns batch UN/EDIFACT messages to batch out.

Parameters

Return Values

Returns one of the following values:

vector
Returns a vector that contains three elements. The first element indicates the
progressive size of the assembled batch message. If the file size exceeds 90% of the size
specified in system defaults, this value is reset to “-1”. The second element contains the
size of the messages returned in this function call. The third element is a vector with as
many elements as there are messages found. Each element of this vector is itself a
vector. Each sub-vector has a message as its first element and sub-vectors as its
subsequent elements. This contains the associated es_mtrk_outb and es_mtrk_ext_data
record IDs.

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

file-size string Contains the current size of batched
messages. This value is updated and
returned.

Element
Number

Type Description

(all) vector:
total file size
total message length
vector

A vector containing a file size, message length and
sub-vector.

(all) vector:
sub-vector 1
sub-vector 2
...
sub-vector N

A sub-vector containing a message and its associated
tracking IDs as its elements.
e*Xchange Partner Manager Implementation Guide 283 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Boolean

Returns #t when there are no messages to retrieve and no errors are encountered;
otherwise returns #f (false) if the request did not process successfully. Use the ux-get-
error-str API to retrieve the corresponding error message.

Throws

None.

Example

(define send-file-size "0")
(define mtrks-msgs (ux-ret-edf-batch-ts-msgs connection-handle send-file-
size))
 (cond
 ((> (vector-length mtrks-msgs) 0)
 (define send-immediate (vector-ref mtrks-msgs 0))
 (comment "If send-immediate is -1, the size of retrieved msgs exceeds
Maximum Batch File Size value in System Defaults" "")
 (display "\nSend Immediate : ")
 (display send-immediate)
 (newline)
 (define msg-size (vector-ref mtrks-msgs 1))
 (display "\ntotal_msg_size : ")
 (display msg-size)
 (newline)
 (define msgs-vec (vector-ref mtrks-msgs 2))
 (do ((I 0 (+ I 1)) (value-count (vector-length msgs-vec))) ((= I value-
count))
 (display "\nmtrks-msgs <")
 (display (+ I 1))
 (display "> = ")
 (display (vector-ref (vector-ref msgs-vec I) 0))
 (do ((j 1 (+ j 1)) (sub-val-count (vector-length (vector-ref msgs-vec I))))
((= j sub-val-count))
 (display "\nMtrk Outb Id: ")
 (display (vector-ref (vector-ref (vector-ref msgs-vec I) j) 0))
 (display "\nMtrk Ext Data Id <FG_CONTROL_REF>: ")
 (display (vector-ref (vector-ref (vector-ref msgs-vec I) j) 1))
 (display "\nMtrk Ext Data Id <IC_CONTROL_REF>: ")
 (display (vector-ref (vector-ref (vector-ref msgs-vec I) j) 2))
)
)
)
 (else
 (if (eq? mtrks-msgs #t)
 (display "Nothing to retrieve\n")
 (display (string-append "Encountered error: <" (ux-get-error-str) ">\n"))
)
)
)

Sub-vector element Type Description

message string A stored message to be sent using Batch
transfer mode.

vector:
mtrk_outb_id
fg_control_ref_mtrk_ext_data_id
ic_control_ref_mtrk_ext_data_id

vector A tracking number associated with the
message.

Element
Number

Type Description
e*Xchange Partner Manager Implementation Guide 284 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions

ux-ret-edf-fb-ts-msgs

Syntax

(ux-ret-edf-fb-ts-msgs connection-handle file_size)

Description

ux-ret-edf-fb-ts-msgs returns fast batch UN/EDIFACT messages to batch out.

Parameters

Return Values

Returns one of the following values:

vector
Returns a vector that contains three elements. The first element indicates the
progressive size of the assembled batch message. The second element contains the size
of the messages returned in this function call. The third element is a vector with as
many elements as there are messages found. Each element of this vector is itself a
vector. Each sub-vector has a message as its first element and sub-vectors as its
subsequent elements. This contains the associated es_mtrk_outb and es_mtrk_ext_data
record IDs.

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

file_size string Contains the current size of batched
messages. This value is updated and
returned.

Element
Number

Type Description

(all) vector:
total file size
total message length
vector

A vector containing a file size, message length and
sub-vector.

(all) vector:
fb_unique_id
sub-vector 1
sub-vector 2
...
sub-vector N

A sub-vector containing a message and its associated
tracking IDs as its elements.
e*Xchange Partner Manager Implementation Guide 285 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Boolean

Returns #t when there are no messages to retrieve and no errors are encountered;
otherwise returns #f (false)—if the request did not process successfully. Use the ux-get-
error-str API to retrieve the corresponding error message.

Throws

None.

Example

(define mtrks-msgs (ux-ret-edf-fb-ts-msgs connection-handle "0"))
 (cond
 ((not (boolean? mtrks-msgs))
 (define msg-size (vector-ref mtrks-msgs 1))
 (display "\ntotal_msg_size : ")
 (display msg-size)
 (newline)
 (define msgs-vec (vector-ref mtrks-msgs 2))
 (display "Fast Batch Unique ID : ")
 (display (vector-ref msgs-vec 0))
 (newline)
 (do ((i 1 (+ i 1)) (value-count (vector-length msgs-vec))) ((= i value-
count))
 (display "\nmtrks-msgs <")
 (display (+ i 1))
 (display "> = ")
 (display (vector-ref (vector-ref msgs-vec i) 0))
 (do ((j 1 (+ j 1)) (sub-val-count (vector-length (vector-ref msgs-vec i))))
((= j sub-val-count))
 (display "\nMtrk Outb Id: ")
 (display (vector-ref (vector-ref (vector-ref msgs-vec i) j) 0))
 (display "\nMtrk Ext Data Id <FG_CONTROL_REF>: ")
 (display (vector-ref (vector-ref (vector-ref msgs-vec i) j) 1))
 (display "\nMtrk Ext Data Id <IC_CONTROL_REF>: ")
 (display (vector-ref (vector-ref (vector-ref msgs-vec i) j) 2))
)
)
)
 (else
 (if (eq? mtrks-msgs #t)
 (display "Nothing to retrieve\n")
 (display (string-append "Encountered error: <" (ux-get-error-str) ">\n"))
)
)
)

Sub-vector element Type Description

message string A stored message to be sent using Batch
transfer mode.

vector:
mtrk_outb_id
fg_control_ref_mtrk_ext_data_id
ic_control_ref_mtrk_ext_data_id

vector A tracking number associated with the
message.

Element
Number

Type Description
e*Xchange Partner Manager Implementation Guide 286 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions

d
ux-ret-X12-batch-ts-msgs

Syntax

(ux-ret-X12-batch-ts-msgs connection-handle file_size)

Description

ux-ret-edf-batch-ts-msgs returns batch X12 messages to batch out.

Parameters

Return Values

Returns one of the following values:

vector
Returns a vector that contains three elements. The first element indicates the
progressive size of the assembled batch message. If the file size exceeds 90% of the size
specified in system defaults, this value is reset to “-1”. The second element contains the
size of the messages returned in this function call. The third element is a vector with as
many elements as there are messages found. Each element of this vector is itself a
vector. Each sub-vector has a message as its first element and sub-vectors as its
subsequent elements. This contains the associated es_mtrk_outb and es_mtrk_ext_data
record IDs.

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

file_size string Contains the current size of batched
messages. This value is updated and
returned.

Element
Number

Type Description

(all) vector:
total file size
total message length
vector

A vector containing a file size, message length, and
sub-vector.

(all) vector:
sub-vector 1
sub-vector 2
...
sub-vector N

A sub-vector containing a message and its associate
tracking IDs as its elements.
e*Xchange Partner Manager Implementation Guide 287 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Boolean

Returns #t when there are no messages to retrieve and no errors are encountered;
otherwise returns #f (false)—if the request did not process successfully. Use the ux-get-
error-str API to retrieve the corresponding error message.

Throws

None.

Example

(define send-file-size "0")
(define mtrks-msgs (ux-ret-x12-batch-ts-msgs connection-handle send-file-
size))
(cond
 ((> (vector-length mtrks-msgs) 0)
 (define send-immediate (vector-ref mtrks-msgs 0))
 (comment "If send-immediate is -1, the size of retrieved msgs exceeds
Maximum Batch File Size value in System Defaults" "")
 (display "\nSend Immediate : ")
 (display send-immediate)
 (newline)
 (define msg-size (vector-ref mtrks-msgs 1))
 (display "\ntotal_msg_size : ")
 (display msg-size)
 (newline)
 (define msgs-vec (vector-ref mtrks-msgs 2))
 (do ((I 0 (+ I 1)) (value-count (vector-length msgs-vec))) ((= I value-
count))
 (display "\nmtrks-msgs <")
 (display (+ I 1))
 (display "> = ")
 (display (vector-ref (vector-ref msgs-vec I) 0))
 (do ((j 1 (+ j 1)) (sub-val-count (vector-length (vector-ref msgs-vec I))))
((= j sub-val-count))
 (display "\nMtrk Outb Id: ")
 (display (vector-ref (vector-ref (vector-ref msgs-vec I) j) 0))
 (display "\nMtrk Ext Data Id <T_CONTROL_NUM>: ")
 (display (vector-ref (vector-ref (vector-ref msgs-vec I) j) 1))
 (display "\nMtrk Ext Data Id <G_CONTROL_NUM>: ")
 (display (vector-ref (vector-ref (vector-ref msgs-vec I) j) 2))
 (display "\nMtrk Ext Data Id <I_CONTROL_NUM>: ")
 (display (vector-ref (vector-ref (vector-ref msgs-vec I) j) 3))
)
)
)
 (else
 (if (eq? mtrks-msgs #t)
 (display "Nothing to retrieve\n")
 (display (string-append "Encountered error: <" (ux-get-error-str) ">\n"))
)))

Sub-vector element Type Description

message string A stored message to be sent using Batch
transfer mode.

vector:
mtrk_outb_id
ts_control_num_mtrk_ext_data_id
fg_control_num_mtrk_data_id
ic_control_num_mtrk_ext_data_id

vector A tracking number associated with the
message.

Element
Number

Type Description
e*Xchange Partner Manager Implementation Guide 288 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions

d
ux-ret-X12-fb-ts-msgs

Syntax

(ux-ret-X12-fb-ts-msgs connection-handle file_size)

Description

ux-ret-edf-fb-ts-msgs returns fast batch X12 messages to batch out.

Parameters

Return Values

Returns one of the following values:

vector
Returns a vector that contains three elements. The first element indicates the
progressive size of the assembled batch message. The second element contains the size
of the messages returned in this function call. The third element is a vector with as
many elements as there are messages found. Each element of this vector is itself a
vector. Each sub-vector has a message as its first element and sub-vectors as its
subsequent elements. This contains the associated es_mtrk_outb and es_mtrk_ext_data
record IDs.

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

file_size string Contains the current size of batched
messages. This value is updated and
returned.

Element
Number

Type Description

(all) vector:
total file size
total message length
vector

A vector containing a file size, message length, and
sub-vector.

(all) vector:
fb_unique_id
sub-vector 1
sub-vector 2
...
sub-vector N

A sub-vector containing a message and its associate
tracking IDs as its elements.
e*Xchange Partner Manager Implementation Guide 289 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Boolean

Returns #t when there are no messages to retrieve and no errors are encountered;
otherwise returns #f (false)—if the request did not process successfully. Use the ux-get-
error-str API to retrieve the corresponding error message.

Throws

None.

Example

(define mtrks-msgs (ux-ret-x12-fb-ts-msgs connection-handle "0"))
(cond
 ((not (boolean? mtrks-msgs))
 (define msg-size (vector-ref mtrks-msgs 1))
 (display "\ntotal_msg_size : ")
 (display msg-size)
 (newline)
 (define msgs-vec (vector-ref mtrks-msgs 2))
 (display "Fast Batch Unique ID : ")
 (display (vector-ref msgs-vec 0))
 (newline)
 (do ((i 1 (+ i 1)) (value-count (vector-length msgs-vec))) ((= i value-
count))
 (display "\nmtrks-msgs <")
 (display (+ i 1))
 (display "> = ")
 (display (vector-ref (vector-ref msgs-vec i) 0))
 (do ((j 1 (+ j 1)) (sub-val-count (vector-length (vector-ref msgs-vec i))))
((= j sub-val-count))
 (display "\nMtrk Outb Id: ")
 (display (vector-ref (vector-ref (vector-ref msgs-vec i) j) 0))
 (display "\nMtrk Ext Data Id <T_CONTROL_NUM>: ")
 (display (vector-ref (vector-ref (vector-ref msgs-vec i) j) 1))
 (display "\nMtrk Ext Data Id <G_CONTROL_NUM>: ")
 (display (vector-ref (vector-ref (vector-ref msgs-vec i) j) 2))
 (display "\nMtrk Ext Data Id <I_CONTROL_NUM>: ")
 (display (vector-ref (vector-ref (vector-ref msgs-vec i) j) 3))
)
)
)
 (else
 (if (eq? mtrks-msgs #t)
 (display "Nothing to retrieve\n")
 (display (string-append "Encountered error: <" (ux-get-error-str) ">\n"))
)
)
)

Sub-vector element Type Description

message string A stored message to be sent using Batch
transfer mode.

vector:
mtrk_outb_id
ts_control_num_mtrk_ext_data_id
fg_control_num_mtrk_data_id
ic_control_num_mtrk_ext_data_id

vector A tracking number associated with the
message.

Element
Number

Type Description
e*Xchange Partner Manager Implementation Guide 290 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-retrieve-997-error

Syntax

(ux-retrieve-997-error)

Description

ux-retrieve-997-error retrieves information from a 997 functional acknowledgment. It
retrieves a vector containing 997 segment (AK2, AK3, AK4, or AK5) elements,
originally stored by calling ux-track-997-errors. Segments are returned in the order
stored. ux-retrieve-997-error returns a vector of segment elements from the head of the
error linked-list and deletes that segment from the list. Hence, the head of the list is
shifted to the next segment.

Use the ux-retrieve-997-error API for inbound messages.

Parameters

The ux-retrieve-997-error API requires no parameters.

Return Values

Returns one of the following values:

vector
Returns one of four types of vectors containing 997 segment information, if there are
segments to retrieve.

Vector
Type

Element
Number

Type Description

AK2 1 string "AK2"

2 string tran_set_id

3 string ts_control_num

AK3 1 string "AK3"

2 string seg_id_code

3 string seg_position

4 string loop_id_code

5 string syntax_error_code

AK4 1 string "AK4"

2 string position_in_segment

3 string data_element_ref_no

4 string syntax_error_code

5 string bad_data
e*Xchange Partner Manager Implementation Guide 291 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Note: Each segment and element is returned in the order stored by ux-track-997-errors.

Boolean

Returns #t (true)—if there are no more segments to retrieve; otherwise returns #f
(false)—if the request did not process successfully. Use the ux-get-error-str API to
retrieve the corresponding error message.

Throws

Exception-InvalidArg.

Example

The following Monk script example calls ux-retrieve-997-error with the assumption
that ux-track-997-errors was executed successfully for at least one 997 segment. ux-
retrieve-997-error returns a vector containing 997 segment elements. Segment
seg_ak2345 contains the vector of returned values, and the internal DO loop displays
each string in the vector. The external DO loop keeps calling ux-retrieve-997-error to
retrieve each of the 997 segments until either #t (true) or #f (false) is encountered. When
there are no more segments to retrieve, then #t (true) is returned. If an error occurs, then
#f (false) is returned and the error string is printed by the display of ux-get-error-str.

(do ((i 0 (+ i 1)) (seg_ak2345 ""))
 ((boolean? seg_ak2345))

 (set! seg_ak2345 (ux-retrieve-997-error))

 (cond ((not (boolean? seg_ak2345))
 (do ((i 0 (+ i 1)) (value-count (vector-length
 seg_ak2345)))
 ((= i value-count))
 (display "AK2345 element <")
 (display i)
 (display "> = ")
 (display (vector-ref seg_ak2345 i))
 (newline)
)
 ; retrieve ak2345 values
)
 (else
 (if seg_ak2345
 (display "No more to retrieve\n")
 (begin
 (display (ux-get-error-str))

AK5 1 string "AK5"

2 string ts_ack_code

3 string ts_syntax_error_code_1

4 string ts_syntax_error_code_2

5 string ts_syntax_error_code_3

6 string ts_syntax_error_code_4

7 string ts_syntax_error_code_5

Vector
Type

Element
Number

Type Description
e*Xchange Partner Manager Implementation Guide 292 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
 (newline)
)
)
);else
);cond
);do
e*Xchange Partner Manager Implementation Guide 293 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-retrieve-997-error-tail

Syntax

(ux-retrieve-997-error-tail)

Description

ux-retrieve-997-error-tail retrieves the 997 segment (AK2, AK3, AK4, or AK5) that is at
the end of the list. Once a vector of segment elements is returned, this API also deletes
that segment from the list.

Use the ux-retrieve-997-error-tail API for inbound messages.

Parameters

The ux-retrieve-997-error-tail API requires no parameters.

Return Values

Returns one of the following values:

vector
Returns one of four types of vectors containing 997 segment information, if there is a
segment to retrieve.

Vector
Type

Element
Number

Type Description

AK2 1 string "AK2"

2 string tran_set_id

3 string ts_control_num

AK3 1 string "AK3"

2 string seg_id_code

3 string seg_position

4 string loop_id_code

5 string syntax_error_code

AK4 1 string "AK4"

2 string position_in_segment

3 string data_element_ref_no

4 string syntax_error_code

5 string bad_data

AK5 1 string "AK5"

2 string ts_ack_code

3 string ts_syntax_error_code_1

4 string ts_syntax_error_code_2

5 string ts_syntax_error_code_3

6 string ts_syntax_error_code_4

7 string ts_syntax_error_code_5
e*Xchange Partner Manager Implementation Guide 294 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Boolean

Returns #t—if there are no more segments to retrieve; otherwise returns #f (false)—if
the request did not process successfully. Use the ux-get-error-str API to retrieve the
corresponding error message.

Throws

Exception-InvalidArg.

Example

The following Monk script example calls ux-retrieve-997-error-tail with the
assumption that ux-track-997-errors was executed successfully for at least one 997
segment. ux-retrieve-997-error-tail returns a vector containing 997 segment elements.
Segment seg_ak2345 contains the vector of returned values, and the internal DO loop
displays each string in the vector. The external DO loop keeps calling ux-retrieve-997-
error-tail to retrieve each of the 997 segments until either #t or #f is encountered. When
there are no more segments to retrieve, then #t is returned. If an error occurs, then #f is
returned and the error string is printed by the display of ux-get-error-str.

(do ((i 0 (+ i 1)) (seg_ak2345 ""))
 ((boolean? seg_ak2345))

 (set! seg_ak2345 (ux-retrieve-997-error-tail))

 (cond ((not (boolean? seg_ak2345))
 (do ((i 0 (+ i 1)) (value-count (vector-length seg_ak2345)))
 ((= i value-count))
 (display "AK2345 element <")
 (display i)
 (display "> = ")
 (display (vector-ref seg_ak2345 i))
 (newline)
 (sleep 5)
)
 ; retrieve ak2345 values
)
 (else
 (if seg_ak2345
 (display "No more to retrieve\n")
 (begin
 (display (ux-get-error-str))
 (newline)
)
)
)
) ; cond
); do
e*Xchange Partner Manager Implementation Guide 295 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-retrieve-message

Syntax

(ux-retrieve-message connection-handle msg-id)

Description

ux-retrieve-message retrieves a message from the es_msg_ascii table or the
es_msg_binary table, depending on whether the message is compressed or not. Msg-id
is used to identify the message.

Parameters

Return Values

Returns one of the following values:

string
Returns a Monk string representing the found message, when the function executes
successfully.

Boolean
Returns #f (false) when the function fails to complete successfully.

Throws

Exception-InvalidArg, Exception-Mapping, Exception-Catastrophic (can’t be caught).

Additional Information

ux-retrieve-message retrieves the entire message, even though it may be saved in the
database in multiple rows.

Name Type Description

connection-handle connection-handle
Required.

The previously established
connection to the database.

msg-id String The message id as saved in the
es_msg_storage table.
e*Xchange Partner Manager Implementation Guide 296 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Examples

The following Monk script example calls ux-retrieve-message. This script makes three
assumptions:

! That ux-init-trans was executed successfully for the given message.

! That a connection to the database, conn-handle, has been established before
ux-retrieve-message is called.

! That all variables in the first two statements below have been properly defined with
values either from the message itself or from the partner profile in the database.

If ux-retrieve-message fails, then the error, a user defined function
SendFailureNotification, is called.

(set! msg_content (ux-retrieve-message connection-handle msg_id))
(if msg_content

(begin
(display (string-append "Got msg_content=<"

msg_content ">\n"))
(newline)
(try ($event-parse input msg_content)

(catch (always (set! success #f)))))
(begin (set! success #f))

)

e*Xchange Partner Manager Implementation Guide 297 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-return-receipt

Syntax

(ux-return-receipt level type)

Description

ux-return-receipt determines whether a return receipt (response) for an event is
expected at the specified level. Use the ux-return-receipt API for inbound or outbound
messages.

Parameters

Return Values

Returns one of the following values:

string
Returns "Y" if a return receipt is expected; otherwise returns "N" if a return receipt is
not expected.

Boolean

Returns #f (false)—if the request did not process successfully. Use the ux-get-error-str
API to retrieve the corresponding error message.

Throws

Exception-InvalidArg.

Name Type Description

level string Required. The return receipt level.
Acceptable values:
I—B2B Protocol level information
T—Message Profile level information

type string Required.
O— original struct
e*Xchange Partner Manager Implementation Guide 298 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Example

The following Monk script example calls ux-return-receipt with the assumption that
ux-init-trans was executed successfully for the given transaction. ux-return-receipt sets
result to equal "Y" if a return receipt is expected for the B2B Protocol level. Otherwise,
result equals "N", which means a return receipt is not expected for the B2B Protocol
level. If an error occurs, then #f (false) is returned and the error string is printed by the
display of ux-get-error-str.

(define level "I")
 (define res (ux-return-receipt level type))
 (cond ((not (boolean? res))
 (cond ((string-ci=? "Y" res)
 (display "Return receipt expected\n")
)
 (else
 (display "Return receipt not expected\n")
)
)
)
 (else
 (display (ux-get-error-str))
 (newline)
)
)
e*Xchange Partner Manager Implementation Guide 299 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-set-fb-overdue

Syntax

(ux-set-fb-overdue connection-handle)

Description

ux-set-fb-overdue checks the database for fast batch settings. If it finds records that
match the specified criteria, it sets the BATCH_SEND_IMM flag to Y. This value
represents any fast batch record that has exceeded its timeout used for fast batch
transactions.

ux-set-fb-overdue checks for the following values:

! BATCH_SEND_IMM = "N"

! es_mtrk_outb.es_id = g_ts.tpts_id

! es_mtrk_outb.es_opt = "TS"

! es_mtrk_outb.created_time <= current - fb_timeout in sb_defaults

If a record matches the above criteria, then BATCH_SEND_IMM is set to "Y". This
criteria represents any (fast) batch record that has exceeded its timeout. The ePM
Batching e*Way then picks up the timed out records to send out.

Use the ux-set-fb-overdue API for outbound messages.

Parameters

Return Values

Boolean
Returns #t (true)—if no errors are encountered.

Returns #f (false)—if errors are encountered.

Throws

Exception-InvalidArg

Additional Information

ux-init-trans or ux-init-ts must be called before this api is executed.

Example

(if (eq? #t (ux-set-fb-overdue connection-handle))
(display "ux-set-fb-overdue was successful! \n")
(display (string-append "ux-set-fb-overdue failed with error: <"(ux-
get-error-str) ">\n"))
)

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.
e*Xchange Partner Manager Implementation Guide 300 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-store-msg

Syntax

(ux-store-msg connection-handle msg store-info raw_msg)

Description

ux-store-msg stores a message (Message Profile or B2B Protocol level) in the e*Xchange
database, inserting entries in multiple tables in the process. If the message is
compressed before it is stored, it is stored in es_msg_binary. If it is not compressed, it is
stored in es_msg_ascii. In either case, a record is inserted into es_msg_storage that has a
column, "compressed", indicating the table in which the message is stored.

Depending on whether the message is inbound or outbound, ux-store-msg makes an
additional entry in either the es_mtrk_inb or es_mtrk_outb table. This table indicates
send or receive time, send count, transaction count, and so on. If there is information
specific to the transaction type (RosettaNet or X12) to store in the message, this data is
stored in es_mtrk_ext_data and associated to specific records in es_mtrk_ext_det.

Use the ux-store-msg API for inbound or outbound messages.

Parameters

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

msg string Required. The processed message to
be stored.

The processed message must be
provided for an inbound message.

For an outbound message, the
processed message does not need to
be stored if the raw message is stored.
If you do not want to store the
processed message, then use an
empty string ("")
Note: If both the raw and processed
messages are empty strings then ux-
store-msg fails.

Storage location:
Inbound—es_mtrk_inb
Outbound—es_mtrk_outb
e*Xchange Partner Manager Implementation Guide 301 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
store-info list:
direction
unique_id
type
error_data
level
tp_loc
msg_being_sent
compressed
mtrk_id
sub-list:

Optional: (0->many)

Required. List of items regarding the
Message Profile.

All list arguments must be strings,
except for the sub-lists which are lists
containing strings.

All elements before the sub-list
section are required, but can be empty
strings (""), with the exception of
direction, unique_id, type, and level,
which return an error if no value is
provided.

List member Description

direction Required. Indicates the direction of
the message:
I—Inbound
O—Outbound

unique_id Required. The unique identifier for the
original message.

type Required. The kind of message being
stored. The following are valid values:
"O"—Original (only the original
message is stored)
"W"—Wrapped (the original message
is stored in one location and the
wrapped message is stored in another
location)
"C"—Combined (only the wrapped
message stored)

error_data Error information. Optional—
code^description~code^description
(^ separates the values for an error and
~ separates the errors).

level Required. The storage level. Valid
values:
"I"—B2B Protocol
"T"—Message Profile

msg_being_sent Required for original and wrapped:
"Y"—Message is being sent to e*Gate
"N"—Message is not being sent to
e*Gate

compressed Indicates whether the message is to be
compressed before the msg is stored
in the database:
"Y"—Yes
"N"—No

Name Type Description
e*Xchange Partner Manager Implementation Guide 302 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Return Values

Returns one of the following values:

string
Returns string that contains the mtrk_id (mtrk_outb_id for outbound or mtrk_inb_id
for inbound)—if the message is successfully stored.

Boolean
Returns #f (false)—if the message is not successfully stored. Use the ux-get-error-str
API to retrieve the corresponding error message.

Throws

Exception-InvalidArg, Exception-Mapping, Exception-Catastrophic (can’t be caught).

Additional Information

If the length of the message is greater than the max size specified by the ux-init-exdb
API, the message is broken up and stored in multiple rows in es_msg_binary (if
compressed), es_msg_ascii (if not compressed), or es_msg_security (if encrypted or
contains a digital signature).

All messages, whether or not they are created by e*Xchange, are stored in the Stored
Messages table (es_msg_storage).

Example

The example below shows how to create the store information list.

(define store-info (list "O"; direction
 "TESTVAL119"; unique_id

 "W"; type
 "123^Not feeling so good~345^Pain in toe"; error_data
 "T"; level
 "O"; original
 "Y"; msg_being_sent
 "Y" ; compressed
 "" ; mtrk_id
 (list "I_CONTROL_NUM" "556")
 (list "G_CONTROL_NUM" "776")
 (list "T_CONTROL_NUM" "886")

)
)

The example below shows how to call the API.

mtrk_id Optional—future versions may use
this value to store messages.

sub-list Optional. The sub-list format is:
level = "I" or "T" col_name col_value

tp_loc location of trading partner. Valid value:
"O" —original

raw_msg string Optional. The raw transaction to be
stored in the database.

Name Type Description
e*Xchange Partner Manager Implementation Guide 303 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
(define raw_msg "")
(define msg "abcdefghijklmnopqrstuvwxyz1234567890")
(define mtrk-id (ux-store-msg connection-handle msg store-info

raw_msg))
(if (not (boolean? mtrk-id))
 (begin
 (display "Storing of message succeeded!\n")
 (display "returned mtrk_id = <")
 (display mtrk-id)
 (display ">\n")
)
 (begin
 (display "Storing of message failed!\n")
 (display (ux-get-error-str))
 (newline)
)
)

e*Xchange Partner Manager Implementation Guide 304 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-store-msg-errors

Syntax

(ux-store-msg-errors connection-handle mtrk_id direction errorlist)

Description

Stores errors in the e*Xchange database that are associated with a message that is
already stored in the database.

Parameters

Return Values

Boolean
Returns #t (true)—if the errors are stored successfully; otherwise returns #f (false)—if
the errors do not store properly. Use ux-get-error-str to see the error.

Throws

Exception-InvalidArg, Exception-Mapping, Exception-Catastrophic (can’t be caught).

Example

(if (ux-store-msg-errors conn-handle "12" "O" "45^Invalid Country
Code~56^Invalid Zipcode")
(display "Stored errors successfully\n")
(display "Failed to store errors\n")

)

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

mtrk_id string Required. Message tracking ID that
errors are associated with.

direction string Required. Direction of message. Either
O—Outbound
I—Inbound

errorlist string Required. Use the following format:
code1^desc1~code2^desc2

~code3^desc3...
Code is the numeric identifier for the
error. Desc explains the error. The
code and description are separated by
a "^", and each code/desc pair is
separated by a "~".
e*Xchange Partner Manager Implementation Guide 305 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-store-msg-ext

Syntax

(ux-store-msg-ext connection-handle msg store-info store-mode
msg_storage_id raw_msg)

Description

This API is similar to ux-store-msg except for the addition of two arguments
store-mode and msg_storage_id. ux-store-msg-ext stores a message (Message Profile or
B2B Protocol) in the e*Xchange database, inserting entries in multiple tables in the
process. If the message is compressed before it is stored, it is stored in es_msg_binary. If
it is not compressed, it is stored in es_msg_ascii. In either case, a record is inserted into
es_msg_storage that has a column, "compressed", indicating the table in which the
message is stored.

Depending on whether the message is inbound or outbound, ux-store-msg-ext makes
an additional entry in either the es_mtrk_inb or es_mtrk_outb table. This table indicates
send or receive time, send count, transaction count, and so on. If there is information
specific to the transaction type (RosettaNet or X12) to store in the message, this data is
stored in es_mtrk_ext_data and associated to specific records in es_mtrk_ext_det.

Use the ux-store-msg-ext API for inbound or outbound messages.

Parameters

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

msg string Required. The transaction to be
stored. Storage location:

Inbound—es_mtrk_inb
Outbound—es_mtrk_outb

store-info list:
direction
unique_id
type
error_data
level
tp_loc
msg_being_sent
compressed
mtrk_id
sub-list:

Optional: (0->many)

Required. List of items regarding the
Message Profile.

All list arguments must be strings,
except for the sub-lists which are lists
containing strings.

All elements before the sub-list
section are required, but can be empty
strings (""), with the exception of
direction, unique_id, type, and level,
which return an error if no value is
provided.
e*Xchange Partner Manager Implementation Guide 306 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
List member Description

direction Required. Indicates the direction of
the message:
I—Inbound
O—Outbound

unique_id Required. The unique identifier for the
original message.

type Required. The kind of Message Profile
being stored. The following are valid
values:
"O"—Original (only the original
message is stored)
"W"—Wrapped (the original message
is stored in one location and the
wrapped message is stored in another
location)
"C"—Combined (only the wrapped
message stored)

error_data Error information. Optional—
code^description~code^description
(^ separates the values for an error and
~ separates the errors).

level Required. The storage level the control
number represents. Valid values:
"I"—B2B Protocol level information
"T"—Message Profile level
information

tp_loc location of trading partner
"O" original or "A" ack (response
struct)

msg_being_sent Required for original and wrapped:
"Y"—Message is being sent to e*Gate
"N"—Message is not being sent to
e*Gate

compressed Indicates whether the message is to be
compressed before the msg is stored
in the database:
"Y"—Yes
"N"—No

mtrk_id Optional—future versions may use
this value to store messages.

sub-list Optional. The sub-list format is:
level = "I" or "T" col_name col_value

Name Type Description
e*Xchange Partner Manager Implementation Guide 307 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Return Values

Returns one of the following values:

vector
Returns a vector containing the following two elements if a security certificate was
found:

Boolean
Returns #f (false)—if the message is not successfully stored. Use the ux-get-error-str
API to retrieve the corresponding error message.

Throws

Exception-InvalidArg, Exception-Mapping, Exception-Catastrophic (can’t be caught).

Additional Information

If the length of the message is greater than the max size specified by the ux-init-exdb
API, the message is broken up and stored in multiple rows in es_msg_binary (if
compressed), es_msg_ascii (if not compressed) or es_msg_security (if encrypted or
contains a digital signature).

All messages, whether or not they are created by e*Xchange, are stored in the Stored
Messages table (es_msg_storage).

store-mode string 0—Saves the message and updates the
message tracking table.
1—Saves the message only (no update
to the message tracking table).
2—Updates the message tracking table
only (the message is not saved)

msg_storage_id string Required for store-mode 2.

raw_msg string Required. The raw transaction to be
stored in the database.

If there is no raw transaction
associated with this message, or you
do not want to store the raw message,
then use an empty string ("").

Element
Number

Type Description

1 string mtrk_id (message tracking ID)

2 string msg_storage_id

Name Type Description
e*Xchange Partner Manager Implementation Guide 308 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Example

(define raw_msg "")
(define store_mode 0)
(define store_rtn_vec (ux-store-msg-ext connection-handle

output_data store_orig_info store_mode
msg_storage_id raw_msg))

(if (boolean? store_rtn_vec)
(begin

(eX-ePM-log "ux-store-msg-ext failed\n"))
(begin

(set! msg_storage_id (vector-ref store_rtn_vec 1))
(set! mtrk-id (vector-ref store_rtn_vec 0))
(set! store_mode 2)))
e*Xchange Partner Manager Implementation Guide 309 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-store-shutdown-uid

Syntax

(ux-store-shutdown-uid connection-handle list)

Description

ux-store-shutdown-uid inserts a row into the es_sd_data table with es_id, es_opt and
unique_id when an eX_ePM shutdown occurs.

Parameters

Return Values

Boolean
Returns #t (true)—if the errors are stored successfully; otherwise returns #f (false)—if
the errors do not store properly. Use ux-get-error-str to see the error.

Throws

None.

Example

(define store_result (ux-store-shutdown-uid connection-handle
(list (list "1" "T" "AAAA")

(list "1" "T" "BBBBB")
)

)
)

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

list list Required. Contains any number of lists
containing es_id, es_opt, and
unique_id.

List member Description

es_id Required. This contains the tpts_id if
es_opt is “T”; otherwise, this contains
the tpic_id if es_opt is “I”.

es_opt Required. The message level.Valid
values:
"I"—B2B Protocol level information
"T"—Message Profile level
information

unique_id Required. A string that uniquely
identifies the transaction.
e*Xchange Partner Manager Implementation Guide 310 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-track-997-errors

Syntax

(ux-track-997-errors list of AK2, AK3, AK4, or AK5 elements)

Description

ux-track-997-errors stores the error information for a 997 in a linked-list, so errors can
be tracked as they are encountered in a validation. The error information is used to
create a 997 functional acknowledgment.

Use the ux-track-997-errors API for inbound messages.

The head of the linked-list must be an AK2 segment.

Parameters

Name Type Description

List of AK2, AK3, AK4, or
AK5 elements

list

Lists vary based on type
provided.

All list elements must be strings. Each
list must begin with a segment_code,
such as "AK2", "AK3", "AK4", or
"AK5". The first segment to store
must be an AK2 before an AK3, AK4,
or AK5 are accepted. Each segment is
stored in the order that ux-track-997-
errors is called.

List Type Description

AK2:
tran_set_id
ts_control_num

The transaction set (Message Profile)
response header.

AK3:
seg_id_code
seg_position
loop_id_code
syntax_error_code

A data segment note.

loop_id_code and syntax_error_code
are optional; however, "" must be in
place if no value is to be stored.

AK4:
position_in_segment
data_element_ref_no
syntax_error_code
bad_data

A data element note.

data_element_ref_no and bad_data
are optional; however, "" must be in
place if no value is to be stored.

AK5:
ts_ack_code
ts_syntax_code_error_1
ts_syntax_code_error_2
ts_syntax_code_error_3
ts_syntax_code_error_4
ts_syntax_code_error_5

The transaction set response trailer.
e*Xchange Partner Manager Implementation Guide 311 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Return Values

Boolean

Returns #t (true)—if the strings are successfully stored; otherwise returns #f (false)—if
the storage attempt is unsuccessful. Use the ux-get-error-str API to retrieve the
corresponding error message.

Throws

Exception-InvalidArg, Exception-Mapping.

Example

The following Monk script example calls ux-track-997-errors with the assumption that
ux-track-997-errors was executed successfully for an "AK2" and "AK3" previously. ux-
track-997-errors first validates that the given segment_code "AK4" is valid. If valid,
then a node is added to the end of the linked-list of 997 segments containing the
provided AK4 information. If successful, then ux-track-997-errors returns #t and
displays "Tracking 997 errors succeeded!". If an error occurs, then #f is returned,
displays "Tracking 997 errors failed!" and prints the error string by the display of ux-
get-error-str.

(define ak2345_data (list "AK4" ; segment_code
 "567" ; postion_in_segment
 "" ; data_element_ref_no
 "67" ; syntax_error_code
 "Weshington, DC" ; bad data
)
)
 (if (ux-track-997-errors ak2345_data)
 (display "Tracking 997 errors succeeded!\n")
 (begin
 (display "Tracking 997 errors failed!\n")
 (display (ux-get-error-str))
 (newline)
)
)
e*Xchange Partner Manager Implementation Guide 312 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-update-batch-imm

Syntax

(ux-update-batch-imm connection-handle update-value type)

Description

ux-update-batch-imm updates the value in the e*Xchange database that is used to
determine whether a transaction is ready to sent out using batch transfer mode. This
corresponds to the value for SEND BATCH IMMEDIATE displayed on the Extended
tab of the Message Profile for a transaction.

Parameters

Return Values

Boolean
Returns #t (true)—if the transaction is updated successfully with the update-value;
otherwise returns #f (false)—if the transaction fails to update. Use ux-get-error-str to
see the error.

Throws

Exception-InvalidArg, Exception-Mapping, Exception-Catastrophic (can’t be caught).

Example

(if (ux-update-batch-imm connection-handle "N" message_type)
(begin)
(begin

(eX-ePM-log "ux-update-batch-imm failed")))

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

update-value string Required.
Y—Yes
N—No

type string O—Original
A—Acknowledgment/Response
e*Xchange Partner Manager Implementation Guide 313 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-update-control-num

Syntax

(ux-update-control-num connection-handle level type control-num)

Description

ux-update-control-num replaces the specified control number in the database and
global structure with the one provided. If the control number provided contains
leading zeros, they are stripped off before replacing the number.

ux-update-control-num updates the control number provided for the given transaction
level (I = i_control_num, G = g_control_num, T = ts_control_num). If the given control
number is invalid (contains characters other than digits) then ux-update-control-num
returns an error.

Use the ux-update-control-num API for outbound messages.

Parameters

Return Values

Boolean

Returns #t (true)—if the control number is successfully updated; otherwise returns #f
(false)—if the control number is not successfully updated. Use the ux-get-error-str API
to retrieve the corresponding error message.

Throws

Exception-InvalidArg, Exception-Catastrophic (can’t be caught).

Example

The following Monk script example calls ux-update-control-num with the assumption
that ux-init-trans was executed successfully for the given Message Profile. ux-update-
control-num first checks to be sure that the control-num contains all digits.

An update of the database sets es_ext_data.ext_data_value = 55 where es_id = tpid_id
in the global structure and es_ext_detail.col_name = "G_CONTROL_NUMBER". A

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

level string Required. The level the control
number represents. Valid values:
I—Interchange control number
G—Functional group control number
T—Transaction set control number

type string Required. Indicates which global
struct to query. Acceptable value:
O— original struct

control-num string Required. The new control number
value which replaces the existing
control number in the database.
e*Xchange Partner Manager Implementation Guide 314 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
commit immediately follows the update. Also, the control number in the global
structure gets updated to 55. If successful, then ux-update-control-num returns #t and
"Update of control-num succeeded!" is displayed. If an error occurs, then #f is returned
and the error string is printed by the display of ux-get-error-str.

(define type "O")
(define level "G")
(define control-num "55")
 (if (ux-update-control-num connection-handle level
 control-num)
 (display "Update of control-num succeeded!\n")
 (begin
 (display "Update of control-num failed!\n")
 (display (ux-get-error-str))
 (newline)
)
e*Xchange Partner Manager Implementation Guide 315 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-update-last-batch-send-time

Syntax

(ux-update-last-batch-send-time connection-handle send_time type)

Description

ux-update-last-batch-send-time updates the batch last send time using input time.

Parameters

Return Values

Boolean

Returns #t (true)—if the batch last send time is successfully updated; otherwise returns
#f (false)—if the batch last send time is not successfully updated. Use the ux-get-error-
str API to retrieve the corresponding error message.

Throws

None.

Example

(define upd-result (ux-update-last-batch-send-time
 connection-handle
 "01/01/2001 12:00:00"
 "O"

)
)

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

send_time string Required. The time used for updating.

type string Required. Indicates which cached
profile to update. Acceptable value:
O— original struct
e*Xchange Partner Manager Implementation Guide 316 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-upd-mtrk-data-item

Syntax

(ux-upd-mtrk-data-item connection-handle id data_value)

Description

ux-upd-mtrk-element updates the es_mtrk_ext_data.mtrk_data_value for the specified
primary key record id.

Parameters

Return Values

Boolean

Returns #t (true)—if the value is successfully updated; otherwise returns #f (false)—if
the value is not successfully updated. Use the ux-get-error-str API to retrieve the
corresponding error message.

Throws

None.

Example

(define ic_ref_id "1000")
(define ic_control_num "000000111")
(define upd-result (ux-upd-mtrk-data-item

connection-handle
ic_ref_id
ic_control_num

)
)

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

id string Required. The
es_mtrk_ext_data.mtrk_data_id.

data_value string Required. The value to update the
table with.
e*Xchange Partner Manager Implementation Guide 317 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-upd-mtrk-element

Syntax

(ux-upd-mtrk-element connection-handle col_name1 col_value1 col_name2
col_value2)

Description

ux-upd-mtrk-element updates the specified column value in the extended msg
tracking data elements for the given column name and an additional col name/value
pair. This updates accross mtrk_id values. The additional name/value pair should be
some unique identifier that does not update non-related records.

Parameters

Return Values

Boolean

Returns #t (true)—if the element is successfully updated; otherwise returns #f (false)—
if the element is not successfully updated. Use the ux-get-error-str API to retrieve the
corresponding error message.

Throws

None.

Example

(define fb_unique_id "AAAAA11111")
(define upd_element (ux-upd-mtrk-element

connection-handle
"BATCH_UNIQUE_ID"
fb_unique_id
"BATCH_SEND_IMM"
"Y"

)
)

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

col_name1 string Required. The message tracking
extended column name used as a
unique identifier.

col_value1 string Required. The value used as a unique
identifier.

col_name2 string Required. The message tracking
extended column name.

col_value2 string Required. The value used to update
column.
e*Xchange Partner Manager Implementation Guide 318 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-upd-mtrk-ext-data

Syntax

(ux-upd-mtrk-ext-data connection-handle mtrk_id direction col_name
col_value)

Description

ux-upd-mtrk-element updates the specified column value in the extended msg
tracking data elements for the given column name, direction and message tracking id.

Parameters

Return Values

Boolean

Returns #t (true)—if the control number is successfully updated; otherwise returns #f
(false)—if the control number is not successfully updated. Use the ux-get-error-str API
to retrieve the corresponding error message.

Throws

None.

Example

(define upd-result (ux-upd-mtrk-ext-data
 connection-handle
 "1"
 "T_CONTROL_NUM"

"0004"
)

)

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

mtrk_id string Required. Either mtrk_outb_id, or
mtrk_inb_id.

direction string Required. Indicates the direction of
the message:
I—Inbound (mtrk_id is mtrk_inb_id)
O—Outbound (mtrk_id is
mtrk_outb_id)

col_name string Required. The message tracking
extended column name.

col_value string Required. The value used to update
column.
e*Xchange Partner Manager Implementation Guide 319 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-wait-for-ack

Syntax

(ux-wait-for-ack connection-handle tp-loc resp_tm retry_max
[mtrk-outb-id])

Description

ux-wait-for-ack creates a row in the es_waiting_ack database table for the given
Message Profile. The row contains information tied to the wrapped Message Profile
already stored in es_mtrk_outb using mtrk_outb_id, if provided. Otherwise uses
g_mtrk_id and provides information to the Ack Monitor about the acknowledgment
expected.

Use the ux-wait-for-ack API for outbound Message Profiles.

Parameters

Return Values

Boolean

Returns #t (true)—if a row was successfully created in the es_waiting_ack table;
otherwise returns #f (false)—if a row was not successfully created in the
es_waiting_ack table. Use the ux-get-error-str API to retrieve the corresponding error
message.

Throws

Exception-InvalidArg, Exception-Catastrophic (can’t be caught).

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

tp-loc string Required. Indicates which global
struct to query. Acceptable value:
O— original struct

resp_tm string How long in seconds e*Xchange
should wait for an acknowledgment. If
resp_tm is NULL or 0, then a row is not
put in es_waiting_ack.

retry_max string The maximum number of times to
resend the data. If retry_max is NULL,
then a 0 is put in es_waiting_ack for
retry_max.

mtrk-outb-id string Optional. ID that corresponds to
Message Profile in es_mtrk_outb.
If this parameter is not provided, the
system uses the g_mtrk_id, which
corresponds to the row in
es_mtrk_outb where the information
for this acknowledgment was stored.
e*Xchange Partner Manager Implementation Guide 320 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.2
e*Xchange Partner Manager Functions e*Xchange Functions
Example

The following Monk script Example call ux-wait-for-ack with the assumption that ux-
init-trans was executed successfully for the given Message Profile. ux-wait-for-ack first
checks to see if an mtrk_outb_id has been provided. The first example has a value of
"75" for mtrk_outb_id, which is used for the insertion into es_waiting_ack. If this ID
already exists in es_mtrk_outb and there is not already a row containing this
mtrk_outb_id in es_waiting_ack, then a row should be inserted into es_waiting_ack
and a #t is returned. In this case, "Wait for Ack succeeded!" is displayed. If an error
occurs, then #f is returned and the error string is printed by the display of ux-get-error-
str. The second example does not provide an mtrk_outb_id, so g_mtrk_id is used. If
g_mtrk_id is invalid or a row already exists in es_waiting_ack with that value in
mtrk_outb_id, then the insertion fails and an error string is displayed. Otherwise, on
success "Wait for Ack succeeded!" is displayed.

(define type "A")
(define mtrk-outb-id "75")
(if (ux-wait-for-ack connection-handle type "20" "" mtrk-outb-id)
 (display "Wait for Ack succeeded!\n")
 (begin
 (display "Wait for Ack failed!\n")
 (display (ux-get-error-str))
 (newline)
)
)

 (if (ux-wait-for-ack connection-handle)
 (display "Wait for Ack succeeded!\n")
 (begin
 (display "Wait for Ack failed!\n")
 (display (ux-get-error-str))
 (newline)
)
)
e*Xchange Partner Manager Implementation Guide 321 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.3
e*Xchange Partner Manager Functions Monk Functions Used by the Validation Rules Builder
13.3 Monk Functions Used by the Validation Rules Builder
A set of monk functions has been provided for the Validation Rules Builder. These
functions are used within the validation Collaborations created by the VRB. These
Collaborations are used by e*Xchange to validate the EDI data it receives from e*Gate.

The validations are based on the implementation guidelines specified in the SEF file
that is converted to e*Gate ETD and Collaboration files.

The VRB functions are described on the following pages:

“compare-equal” on page 323

“compare-ge” on page 324

“compare-gt” on page 325

“compare-le” on page 326

“compare-lt” on page 327

“string-alpha” on page 328

“string-alphanumeric” on page 329

“string-numeric” on page 330

“valid-date-yyyy” on page 331

“valid-time” on page 332
e*Xchange Partner Manager Implementation Guide 322 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.3
e*Xchange Partner Manager Functions Monk Functions Used by the Validation Rules Builder
compare-equal

Syntax

(compare=? string1 string2)

Description

compare-equal determines whether the two strings contained in the parameters are
equal. If the string values are numeric, it converts the strings to numbers before making
the comparison so that a valid numeric comparison is made.

Parameters

Return Values

Boolean
Returns #t (true) if the two strings are equal; otherwise returns #f (false) if they are not
equal.

Throws

None.

Example

(if (compare=? "A0B" "A1B")
 (display "A0B = A1B\n")
 (display "A0B != A1B\n")
)

=> A0B != A1B

Name Type Description

string1 string The first of the string values to be
compared.

string2 string The second of the string values to be
compared.
e*Xchange Partner Manager Implementation Guide 323 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.3
e*Xchange Partner Manager Functions Monk Functions Used by the Validation Rules Builder
compare-ge

Syntax

(compare>=? string1 string2)

Description

compare-ge determines whether string1 is greater than or equal to string2. If the string
values are numeric, it converts the strings to numbers before making the comparison so
that a valid numeric comparison is made.

Parameters

Return Values

Boolean
Returns #t (true) if string1 is greater than or equal to string2; otherwise #f (false) if
string1 is less than string2.

Throws

None.

Example

(if (compare>=? "A3B" "A1B")
 (display "A3B >= A1B\n")
 (display "A3B < A1B\n")
)

=> A3B >= A1B

Name Type Description

string1 string The first of the string values to be
compared.

string2 string The second of the string values to be
compared.
e*Xchange Partner Manager Implementation Guide 324 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.3
e*Xchange Partner Manager Functions Monk Functions Used by the Validation Rules Builder
compare-gt

Syntax

(compare>? string1 string2)

Description

compare-gt determines whether string1 is greater than string2. If the string values are
numeric, it converts the strings to numbers before making the comparison so that a
valid numeric comparison is made.

Parameters

Return Values

Boolean
Returns #t (true) if string1 is greater than string2; otherwise #f (false) if string1 is less
than or equal to string2.

Throws

None.

Example

(if (compare>? "A3B" "A1B")
 (display "A3B > A1B\n")
 (display "A3B <= A1B\n")
)

=> A3B > A1B

Name Type Description

string1 string The first of the string values to be
compared.

string2 string The second of the string values to be
compared.
e*Xchange Partner Manager Implementation Guide 325 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.3
e*Xchange Partner Manager Functions Monk Functions Used by the Validation Rules Builder
compare-le

Syntax

(compare<=? string1 string2)

Description

compare-le determines whether string1 is less than or equal to string2. If the string
values are numeric, it converts the strings to numbers before making the comparison so
that a valid numeric comparison is made.

Parameters

Return Values

Boolean
Returns #t (true) if string1 is less than or equal to string2; otherwise #f (false) if string1 is
greater than string2.

Throws

None.

Example

(if (compare<=? "A3B" "A1B")
 (display "A3B <= A1B\n")
 (display "A3B > A1B\n")
)

=> A3B > A1B

Name Type Description

string1 string The first of the string values to be
compared.

string2 string The second of the string values to be
compared.
e*Xchange Partner Manager Implementation Guide 326 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.3
e*Xchange Partner Manager Functions Monk Functions Used by the Validation Rules Builder
compare-lt

Syntax

(compare<? string1 string2)

Description

compare-lt determines whether string1 is less than string2. If the string values are
numeric, it converts the strings to numbers before making the comparison so that a
valid numeric comparison is made.

Parameters

Return Values

Boolean
Returns #t (true) if string1 is less than string2; #f (false) if string1 is greater than or equal
to string2.

Throws

None.

Example

(if (compare<? "A3B" "A1B")
 (display "A3B < A1B\n")
 (display "A3B >= A1B\n")
)

=> A3B >= A1B

Name Type Description

string1 string The first of the string values to be
compared.

string2 string The second of the string values to be
compared.
e*Xchange Partner Manager Implementation Guide 327 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.3
e*Xchange Partner Manager Functions Monk Functions Used by the Validation Rules Builder
string-alpha

Syntax

(string-alpha? string)

Description

string-alpha determines whether the string parameter contains only alphabetic
characters.

Parameters

Return Values

Boolean
Returns #t (true) if string contains only alphabetic characters; otherwise #f (false) if
string contains at least one character that is not alphabetic.

Throws

None.

Example

(if (string-alpha? "AbC")
 (display "AbC is alphabetic\n")
 (display "AbC is NOT alphabetic\n")
)

=> AbC is alphabetic

Name Type Description

string string The string to be evaluated.
e*Xchange Partner Manager Implementation Guide 328 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.3
e*Xchange Partner Manager Functions Monk Functions Used by the Validation Rules Builder
string-alphanumeric

Syntax

(string-alphanumeric? string)

Description

string-alphanumeric determines whether string contains only alphabetic and/or
numeric characters.

Parameters

Return Values

Boolean
Returns #t (true) if the string contains only alphabetic and/or numeric characters;
otherwise #f (false) if the string contains at least one character that is not alphabetic or
numeric.

Throws

None.

Example

(if (string-alphanumeric? "AbC")
(display "AbC is alphanumeric\n")
(display "AbC is NOT alphanumeric\n")
)

=> AbC is alphanumeric

Name Type Description

string string The string to be evaluated.
e*Xchange Partner Manager Implementation Guide 329 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.3
e*Xchange Partner Manager Functions Monk Functions Used by the Validation Rules Builder
string-numeric

Syntax

(string-numeric? string)

Description

string-numeric determines whether the string parameter contains only numeric
characters.

Parameters

Return Values

Boolean
Returns #t (true) if the string contains only numeric characters; otherwise #f (false) if
the string contains at least one character that is not numeric.

Throws

None.

Example

(if (string-numeric? "145a3")
 (display "145a3 is numeric\n")
 (display "145a3 is NOT numeric\n")
)

=> 145a3 is NOT numeric

Name Type Description

string string The string to be evaluated.
e*Xchange Partner Manager Implementation Guide 330 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.3
e*Xchange Partner Manager Functions Monk Functions Used by the Validation Rules Builder
valid-date-yyyy

Syntax

(valid-date-yyyy? YYYYMMDD or YYMMDD)

Description

valid-date-yyyy determines whether the date value YYYYMMDD or YYMMDD is a
valid date.

Parameters

Return Values

Boolean
Returns #t (true) if the string is a valid date; otherwise #f (false) if it is not a valid date.

Throws

None.

Example

(if (valid-date-yyyy? "20000229")
 (display "20000229 is a valid date\n")
 (display "20000229 is NOT a valid date\n")
)

=> 20000229 is a valid date

Name Type Description

YYYYMMDD
or YYMMDD

string Date is composed of year, month and
day:
! YYYY—4-digit year; for example, 2000
! YY—2-digit year; for example, 99 for

1999
! MM—2-digit month; for example, 05

for May
! DD—2-digit day; for example, 03 or

29
e*Xchange Partner Manager Implementation Guide 331 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.3
e*Xchange Partner Manager Functions Monk Functions Used by the Validation Rules Builder
valid-time

Syntax

(valid-time? timestamp)

Description

valid-time determines whether the timestamp is a valid time.

Parameters

Return Values

Boolean
Returns #t (true) if the timestamp is a valid time; otherwise #f (false) if it is not a valid
time.

Throws

None.

Example

(if (valid-time? "0000117a")
 (display "\n0000117a is a valid time\n")
 (display "\n0000117a is NOT a valid time\n")
)

=> 0000117a is NOT a valid time

Name Type Description

timestamp string Date and time stamp, in one of the
following formats:
! HHMM
! HHMMSS
! HHMMSSD
! HHMMSSDD
where the time stamp is composed of
the following values:
! HH = 00—23 (hours)
! MM = 00—59 (minutes)
! SS = 00—59 (seconds)
! D = 0—9 (sub-second single digit)
! DD = 00—99 (sub-second double

digit)
e*Xchange Partner Manager Implementation Guide 332 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.4
e*Xchange Partner Manager Functions e*Xchange MIME Functions
13.4 e*Xchange MIME Functions
These functions use MIMEsimple.ssc, a simple message structure, to parse and
compose MIME messages.

The following table lists the MIME functions and their locations in this document.

util-mime-get-header-value on page 334 util-mime-pack-encrypted-msg on
page 338

util-mime-get-par-value on page 335 util-mime-pack-signed-msg on page 339

util-mime-make-mime-message on
page 336

util-mime-unpack-signed-message on
page 340

util-mime-map-event on page 337
e*Xchange Partner Manager Implementation Guide 333 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.4
e*Xchange Partner Manager Functions e*Xchange MIME Functions
util-mime-get-header-value

Syntax

(util-mime-get-header-value node-path mime_field_name)

Description

util-mime-get-header-value retrieves the value of the specified field in a mime
message pointed to by the given path.

Parameters

Return Values

string

Returns the value of the specified field if one exists; otherwise, returns a null string if
the header doesn't exist or a failure occurred.

Throws

None.

Example

If ~input%MIMEsimple is mapped to the following MIME component:

Content-Type: multipart/related;

boundary="RN-boundary";

Content-Description: This is the content description;

This is the message body...

then,

(util-mime-get-header-value ~input%MIMEsimple "Content-Type")

=> "multipart/related\r\n boundary=\"RN-boundary\""

Name Type Description

node-path path The node path to the MIME structure
or substructure.

mime_field_name string The name of the field in the MIME
header.
e*Xchange Partner Manager Implementation Guide 334 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.4
e*Xchange Partner Manager Functions e*Xchange MIME Functions
util-mime-get-par-value

Syntax

(util-mime-get-par-value <node-path> mime_field_name mime_par_name)

Description

util-mime-get-par-value retrieves the value of the specified parameter in the specified
field in a mime message pointed to by the given path.

Parameters

Return Values

string

Returns the value of the specified parameter if it exists; otherwise, returns a null string
if the header or parameter doesn't exist or failure occurred.

Throws

None.

Example

If ~input%MIMEsimple is mapped to the following MIME component:

Content-Type: multipart/related;

boundary="RN-boundary";

Content-Description: This is the content description;

This is the message body...

then,

(util-mime-get-par-value ~input%MIMEsimple "Content-Type" "boundary")

=> "RN-boundary"

Name Type Description

node-path path The node path to the MIME structure
or substructure.

mime_field_name string The name of the field in the MIME
header.

mime_par_name string The name of the parameter under the
MIME field.
e*Xchange Partner Manager Implementation Guide 335 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.4
e*Xchange Partner Manager Functions e*Xchange MIME Functions
util-mime-make-mime-message

Syntax

(util-mime-make-mime-message <node-path>)

Description

util-mime-make-mime-message composes and returns a MIME message string from
the specified node.

Note that ($event->string) does not work properly due to the way the MIMEsimple
structure is composed. Instead, use (util-mime-make-mime-message) to compose a
MIME message from a node.

Parameters

Return Values

string

Returns a MIME message string.

Throws

None.

Example

If ~input%root.MIMEsimple is mapped to the following MIME component:

Content-Type: multipart/related;

boundary="RN-boundary";

Content-Description: This is the content description;

This is the message body...

then,

(util-mime-make-mime-message ~input%root.MIMEsimple)

returns the original message string:

Content-Type: multipart/related;

boundary="RN-boundary";

Content-Description: This is the content description;

This is the message body...

Name Type Description

node-path path The node path to the MIME structure
or substructure
e*Xchange Partner Manager Implementation Guide 336 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.4
e*Xchange Partner Manager Functions e*Xchange MIME Functions
util-mime-map-event

Syntax

(util-mime-map-event mime_event_map mime_message_string)

Description

util-mime-map-event populates the given mime_event_map with the given mime
message string.

Parameters

Return Values

Undefined.

Throws

eXception-Mapping.

Example

If ~input%root.MIMEsimple is a MIME structure and mime-string is the following
string:

Content-Type: multipart/related;

boundary="RN-boundary";

Content-Description: This is the content description;

This is the message body...

then,

(util-mime-map-event ~input%root.MIMEsimple mime-string) parses the message
string "mime-string" with the MIME structure "~input%root.MIMEsimple".

Name Type Description

mime_event_map path The node path to the MIME structure
or substructure

mime_message_string string The MIME message string
e*Xchange Partner Manager Implementation Guide 337 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.4
e*Xchange Partner Manager Functions e*Xchange MIME Functions
util-mime-pack-encrypted-msg

Syntax

(util-mime-pack-encrypted-msg filename base64_pkcs7_msg)

Description

util-mime-pack-encrypted-msg composes and returns an encrypted MIME message.

Parameters

Return Values

string

Returns the encrypted message in MIME format.

Throws

None.

Example

If base64_pkcs7_msg is a base64 encoded encrypted message, then

(util-mime-pack-encrypted-msg "" base64_pkcs7_msg)

=> the encrypted message (base64_pkcs7_msg) in MIME format.

Name Type Description

filename value The value of this parameter is
ignored by the function.

base64_pkcs7_msg string The base64 encoded encrypted
message
e*Xchange Partner Manager Implementation Guide 338 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.4
e*Xchange Partner Manager Functions e*Xchange MIME Functions
util-mime-pack-signed-msg

Syntax

(util-mime-pack-signed-msg protocol micalg content signature)

Description

util-mime-pack-signed-msg composes and returns a signed MIME message.

Parameters

Return Values

string

Returns the signed message in MIME format.

Throws

None.

Example

For "content" and "signature" are the content and signature of a message string,
respectively, then

(util-mime-pack-signed-msg "application/pkcs7-signature" "sha1"
content signature)

=> the message string with its signature in MIME format, where the
protocol field in the MIME header is set to "application/pkcs7-
signature" and the micalg field in the MIME header is set to "sha1".

Name Type Description

protocol value The value assigned to the ‘protocol’
parameter Content-Type field of the
MIME message.

miclag value The value assigned to the ‘micalg’
parameter Content-Type field of the
MIME message.

content string The message string.

signature string The result of signing the content with
the "micalg" algorithm.
e*Xchange Partner Manager Implementation Guide 339 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.4
e*Xchange Partner Manager Functions e*Xchange MIME Functions
util-mime-unpack-signed-message

Syntax

(util-mime-unpack-signed-message mime_message_string)

Description

util-mime-unpack-signed-message unpacks the given message string and returns a
vector of strings: (protocol micalg content signature). protocol and micalg are the
values of the protocol and micalg parameters in the Content-Type field of the input
message, respectively. content and signature are the content and signature of the
signed message, respectively.

Parameters

Return Values

Boolean

Returns #t (true) if the input message is not signed; otherwise, returns #f (false) if the
input message is signed but the function fails to get signature, content, micalg, or
protocol.

Throws

Exception-Mapping and Exception-Generic.

Example

If msg is a MIME message string as follows:

Content-Type: multipart/signed;

boundary="RN-sign";

protocol="application/pkcs7-signature";

micalg=sha1

--RN-sign

this is the content...

--RN-sign

this is the MIME header for the signature component

this is the signature...

--RN-sign--

then,

(util-mime-unpack-signed-message msg)

=> #("application/pkcs7-signature", "sha1" "this is the content...",
"this is the signature...")

Name Type Description

mime_message_string string The MIME message string.
e*Xchange Partner Manager Implementation Guide 340 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
13.5 e*Xchange RosettaNet 2.0 Functions
The following RosettaNet 2.0 functions are available.

These functions use ROS20Generic.ssc, a message structure for the RNGM. It maps the
preamble, delivery header, and service header parts of the RNBM. The service content
of the RNBM is mapped to an end node. Any attachments of an RNBM are mapped to a
repetitive node that uses the MIMEsimple structure as a template.

The following table lists the RosettaNet functions and their locations in this document.

“eX-ROS20-Generic-To-String” on
page 342

“eX-ROS20-Parse-Generic” on page 343

“eX-ROS20-Pack-RNBM” on page 344 “eX-ROS20-Unpack-RNBM” on
page 345

“eX-ROS20-Validate-Preamble” on
page 346

“eX-ROS20-Validate-ServiceHeader”
on page 347

“eX-ROS20-Validate-DeliveryHeader”
on page 348

“eX-ROS20-Populate-Preamble” on
page 349

“eX-ROS20-Populate-ServiceHeader”
on page 350

“eX-ROS20-Populate-DeliveryHeader”
on page 351

“eX-ROS20-Unique-ID” on page 352 “eX-ROS20-Request-ID” on page 353

“eX-ROS20-Ack-Type” on page 354 “eX-ROS20-IsResponse?” on page 355

“eX-ROS20-IsSignal?” on page 356 “eX-ROS20-Get-PipCode” on page 357

“eX-ROS20-Set-PipCode” on page 358 “eX-ROS20-Get-SigActCode” on
page 359

“eX-ROS20-Set-SigActCode” on
page 360

“eX-ROS20-Get-SigActVerId” on
page 361

“eX-ROS20-Set-SigActVerId” on
page 362

“eX-ROS20-Get-PipVerId” on page 363

“eX-ROS20-Set-PipVerId” on page 364 “eX-ROS20-Get-PipId” on page 365

“eX-ROS20-Set-PipId” on page 366 “eX-ROS20-Get-ActId” on page 367

“eX-ROS20-Set-ActId” on page 368 “eX-ROS20-Get-InReplyTo-MsgId” on
page 369

“eX-ROS20-Set-InReplyTo-MsgId” on
page 370

“eX-ROS20-Get-InReplyTo-ActCode”
on page 371

“eX-ROS20-Set-InReplyTo-ActCode”
on page 372

“eX-ROS20-Get-InitPartnerId” on
page 373

“eX-ROS20-Set-InitPartnerId” on
page 374

“eX-ROS20-Create-0A1Notification” on
page 375

“eX-ROS20-Create-ReceiptAck” on
page 376

“eX-ROS20-Create-Except” on page 377
e*Xchange Partner Manager Implementation Guide 341 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Generic-To-String

Syntax

(eX-ROS20-Generic-To-String input)

Description

eX-ROS20-Generic-To-String retrieves an RNGM message string from the input
ROS20Generic event map. This function should be used instead of ($event->string)
when converting an RNGM event map to a Monk string.

Parameters

Return Values

string

Returns an RNGM message string.

Throws

Exception-Mapping and Exception-Generic.

Example

If input is a event map that represents a RNGM message, then

(eX-ROS20-Generic-To-String input)

=> Monk string that represents the same RNGM message.

Name Type Description

input event The variable name of the event
structure that contains the ROS20
Generic message.
e*Xchange Partner Manager Implementation Guide 342 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Parse-Generic

Syntax

(eX-RSO20-Parse-Generic input vector_of_strings)

Description

eX-RSO20-Parse-Generic parses the various string components in the specified vector
using the given RNGM event map.

Parameters

Return Values

Boolean

Returns #t (true) on success.

Throws

Exception-Mapping and Exception-Generic.

Example

If input is a RNGM event map and vec is a vector containing the preamble, delivery
header, service header, service content, and attachments of a RNBM, then:

(eX-ROS20-Parse-Generic input vec)

returns #t and after the call "input" contains the RNGM message.

Name Type Description

input event The variable name of the event
structure that contains the ROS20
Generic message.

vector_of_strings string The vector elements: preamble,
delivery header, service header,
service content, attachments
(repeating)
e*Xchange Partner Manager Implementation Guide 343 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Pack-RNBM

Syntax

(eX-ROS20-Pack-RNBM db_connection_handle input_rngm encryption_flag
sec_keys tpic_id)

Description

eX-ROS20-Pack-RNBM composes and returns an RNBM from the given RNGM event
map (input).

Parameters

Return Values

string

Returns the RNBM.

Throws

Exception-Mapping and Exception-Generic.

Example

If input_rngm is an event map containing a RNGM, then,

(eX-ROS20-Pack-RNBM db_connection_handle input_rngm encryption_flag
sec_keys tpic_id)

returns the corresponding RNBM, in which the message is encrypted and/
or signed with the security information in the database as specified
by tpic_id, sec_keys, and encryption_flag.

Name Type Description

db_connection_handle database connection
handle

A connection handle to the database
that contains the security information.

input_rngm event The variable name of the event
structure that contains the ROS20
Generic message.

encryption_flag string The encryption required. The
following values are available:
! 0 if no encryption required.
! 1 if only service content and.

attachments need to be encrypted
! 2 if service header, service content

and attachments need to be
encrypted.

sec_keys string The security keys to be used when
signing/encrypting the message.

tpic_id string The index to the trading partner
profile.
e*Xchange Partner Manager Implementation Guide 344 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Unpack-RNBM

Syntax

(eX-ROS20-Unpack-RNBM db_connection_handle message_string
security_keys tpic_id)

Description

eX-ROS20-Unpack-RNBM parses an RNBM and returns a vector of strings (preamble,
delivery header, service header, service content, attachments, and so on.)

Parameters

Return Values

vector

Returns a vector of strings (preamble, delivery header, service header, service content,
attachments, and so on).

On failure, the global variable error_data is appended to include the failure reason.

Elements of the global variable vector 'g_output' are set as the various body parts
(preamble, deliver header, service header, and service content) and are unpacked.

Throws

Exception-Mapping and Exception-Generic.

Example

If message_string is a Monk string representing a RNBM, and security_keys and tpic_id
specifies the correction security information in the database, then

(eX-ROS20-Unpack-RNBM db_connection_handle message_string
security_keys tpic_id)

returns a vector containing the preamble, delivery header, service
header, service content, and attachments (if any) of the RosettaNet
Business Message (RNBM).

Name Type Description

db_connection_handle database connection
handle

The connection handle to the
database that contains the security
information.

message_string string The input RNBM

security_keys string The security keys to be used when
signing/encrypting the message.

tpic_id string The index to the trading partner
profile.
e*Xchange Partner Manager Implementation Guide 345 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Validate-Preamble

Syntax

(eX-ROS20-Validate-Preamble)

Description

eX-ROS20-Validate-Preamble validates the preamble. It uses parameters passed in to a
global Monk variable g_input, which is of type vector. The elements of g_input are
described in the following table in the order they appear.

Global Parameters used in g_input

Parameters

None.

Return Values

Boolean

Returns #t (true) if preamble is valid; otherwise, returns #f (false). Also error_data is
appended to reflect the error, if any.

Throws

Exception-Mapping and Exception-Generic.

Example

(set! input_rngm (eX-ROS20-Parse-RNGM...)) ;; parse the input RNGM

(set! prf_attrib (ux-get-header "A" transaction_info)) ;; set the partner profile attributes

...

(set! g_input (vector input_rngm prf_attrib)) ;; set the global variable g_input

(eX-ROS20-Validate-Preamble) => #t/#f depending on whether the preamble contained
in input_rngm is valid.

Name Type Description

input_rngm event The variable name of the event
structure that contains the ROS20
Generic message.

prf_attrib string The vector of partner profile attributes
as returned by the (ux-get-header)
Monk function.
e*Xchange Partner Manager Implementation Guide 346 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Validate-ServiceHeader

Syntax

(eX-ROS20-Validate-ServiceHeader)

Description

eX-ROS20-Validate-ServiceHeader validates the service header. It uses parameters
passed in to a global Monk variable g_input, which is of type vector. The elements of
g_input are described in the following table in the order they appear.

Global Parameters used in g_input

Parameters

None.

Return Values

Boolean

Returns #t (true) if service header is valid; otherwise, returns #f (false). Also error_data
is appended to reflect the error, if any.

Throws

Exception-Mapping and Exception-Generic.

Example

(set! input_rngm (eX-ROS20-Parse-RNGM...)) ;; parse the input RNGM

(set! prf_attrib (ux-get-header "A" transaction_info)) ;; set the partner profile attributes

...

(set! g_input (vector input_rngm prf_attrib)) ;; set the global variable g_input

(eX-ROS20-Validate-ServiceHeader) => #t/#f depending on whether the service header
contained in input_rngm is valid.

Name Type Description

input_rngm event The variable name of the event
structure that contains the ROS20
Generic message.

prf_attrib string The vector of partner profile attributes
as returned by the (ux-get-header)
Monk function.
e*Xchange Partner Manager Implementation Guide 347 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Validate-DeliveryHeader

Syntax

(eX-ROS20-Validate-DeliveryHeader)

Description

eX-ROS20-Validate-DeliveryHeader validates the delivery header.It uses parameters
passed in to a global Monk variable g_input, which is of type vector. The elements of
g_input are described in the following table in the order they appear.

Global Parameters used in g_input

Parameters

None.

Return Values

Boolean

Returns #t (true) if delivery header is valid; otherwise, returns #f (false). Also
error_data is appended to reflect the error, if any.

Throws

Exception-Mapping and Exception-Generic.

Example

(set! input_rngm (eX-ROS20-Parse-RNGM...)) ;; parse the input RNGM

(set! prf_attrib (ux-get-header "A" transaction_info)) ;; set the partner profile attributes

...

(set! g_input (vector input_rngm prf_attrib)) ;; set the global variable g_input

(eX-ROS20-Validate-DeliveryHeader) => #t/#f depending on whether the delivery
header contained in input_rngm is valid.

Name Type Description

input_rngm event The variable name of the event
structure that contains the ROS20
Generic message.

prf_attrib string The vector of partner profile attributes
as returned by the (ux-get-header)
Monk function.
e*Xchange Partner Manager Implementation Guide 348 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Populate-Preamble

Syntax

(eX-ROS20-Populate-Preamble)

Description

eX-ROS20-Populate-Preamble populates the preamble header with the extended
attributes from the database. It uses parameters passed in a global Monk variable
g_input, which is of type vector. The elements of g_input are described in the following
table in the order they appear.

Global Parameters used in g_input

Parameters

None.

Return Values

Boolean

Returns #t (true) on success; otherwise, returns #f (false).

Throws

Exception-Mapping and Exception-Generic.

Example

(set! input_rngm (eX-ROS20-Parse-RNGM...)) ;; parse the partial input RNGM

(set! prf_attrib (ux-get-header "A" transaction_info)) ;; set the partner profile attributes

...

(set! g_input (vector input_rngm prf_attrib)) ;; set the global variable g_input

(eX-ROS20-Populate-Preamble)

Name Type Description

input_rngm event The variable name of the event
structure that contains the ROS20
Generic message.
The preamble part of this event map is
partially filled before the call to eX-
ROS20-Populate-Preamble and is fully
populated after the call.

prf_attrib string A vector of partner profile attributes as
returned by the (ux-get-header) Monk
function.
e*Xchange Partner Manager Implementation Guide 349 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Populate-ServiceHeader

Syntax

(eX-ROS20-Populate-ServiceHeader)

Description

eX-ROS20-Populate-ServiceHeader populates the service header with the extended
attributes. It uses parameters passed in a global Monk variable g_input, which is of
type vector. The elements of g_input are described in the following table in the order
they appear.

Global Parameters used in g_input

Parameters

None.

Return Values

Boolean

Returns #t (true) on success; otherwise, returns #f (false).

Throws

Exception-Mapping and Exception-Generic.

Example

(set! input_rngm (eX-ROS20-Parse-RNGM...)) ;; parse the partial input RNGM

(set! prf_attrib (ux-get-header "A" transaction_info)) ;; set the partner profile attributes

...

(set! g_input (vector input_rngm prf_attrib)) ;; set the global variable g_input

(eX-ROS20-Populate-ServiceHeader)

Name Type Description

input_rngm event The variable name of the event
structure that contains the ROS20
Generic message.
The preamble part of this event map is
partially filled before the call to eX-
ROS20-Populate-Preamble and is fully
populated after the call.

prf_attrib string A vector of partner profile attributes as
returned by the (ux-get-header) Monk
function.
e*Xchange Partner Manager Implementation Guide 350 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Populate-DeliveryHeader

Syntax

(eX-ROS20-Populate-DeliveryHeader)

Description

eX-ROS20-Populate-DeliveryHeader populates the delivery header with the extended
attributes.It uses parameters passed in a global Monk variable g_input, which is of type
vector. The elements of g_input are described in the following table in the order they
appear.

Global Parameters used in g_input

Parameters

None.

Return Values

Boolean

Returns #t (true) on success; otherwise, returns #f (false).

Throws

Exception-Mapping and Exception-Generic.

Example

(set! input_rngm (eX-ROS20-Parse-RNGM...)) ;; parse the partial input RNGM

(set! prf_attrib (ux-get-header "A" transaction_info)) ;; set the partner profile attributes

...

(set! g_input (vector input_rngm prf_attrib)) ;; set the global variable g_input

(eX-ROS20-Populate-DeliveryHeader)

Name Type Description

input_rngm event The variable name of the event
structure that contains the ROS20
Generic message.
The preamble part of this event map is
partially filled before the call to eX-
ROS20-Populate-Preamble and is fully
populated after the call.

prf_attrib string A vector of partner profile attributes as
returned by the (ux-get-header) Monk
function.
e*Xchange Partner Manager Implementation Guide 351 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Unique-ID

Syntax

(eX-ROS20-Unique-ID rngm)

Description

eX-ROS20-Unique-ID retrieves the unique id for this ROS20 message.

Parameters

Return Values

string

Returns the unique id for the message if this is a valid response message; otherwise,
returns a null string if this message is not a response message or the input rngm does
not contain enough information to compose a request ID.

Throws

Exception-Mapping and Exception-Generic.

Example

If rngm contains the following fields:

Initiating_partner_ID = "1234"

PIP_code = "3A4"

PIP_Instance_ID = "567"

Activity_ID = "Create Order"

signal_code = "Order Request Action"

(eX-ROS20-Unique-ID rngm)

=> "1234|3A4|567|Create Order|OrderRequest Action"

Name Type Description

rngm event The variable name of the event
structure that contains the ROS20
Generic message.
e*Xchange Partner Manager Implementation Guide 352 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Request-ID

Syntax

(eX-ROS20-Request-ID RNGM)

Description

eX-ROS20-Request-ID retrieves the unique id of the original request message if this
message is a response.

Parameters

Return Values

string

Returns the unique id of the original request message if this message is a valid
response; otherwise, returns a null string if this message is not a response message or
input rngm doesn't contain enough information to compose a request ID.

Throws

Exception-Mapping and Exception-Generic.

Example

If rngm contains the following fields:

Initiating_partner_ID = "1234"

PIP_code = "3A4"

PIP_Instance_ID = "567"

Activity_ID = "Create Order"

signal_code = "Order Request Action"

(eX-ROS20-Request-ID rngm)

=> "1234|3A4|567|Create Order|OrderRequest Action"

Name Type Description

RNGM event The RNGM
e*Xchange Partner Manager Implementation Guide 353 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Ack-Type

Syntax

(eX-ROS20-Ack-Type rngm)

Description

eX-ROS20-Ack-Type returns "P" if this message is a positive response; "N" if negative
response; "" if not a response.

Parameters

Return Values

string

Returns one of the following values:

Throws

Exception-Mapping and Exception-Generic.

Example

If rngm contains a Receipt acknowledgement exception, then

(eX-ROS20-Ack-Type rngm) => "N"

Name Type Description

rngm event The variable name of the event
structure that contains the ROS20
Generic message.

"P" if this message is a positive response

"N" if this message is a negative response

null string if this message is not a valid response
e*Xchange Partner Manager Implementation Guide 354 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-IsResponse?

Syntax

(eX-ROS20-IsResponse? rngm)

Description

eX-ROS20-IsResponse? checks whether a message is a response message.

Parameters

Return Values

Boolean

Returns #t (true) if this message is a response message; otherwise, returns #f (false).

Throws

Exception-Mapping and Exception-Generic.

Example

if rngm contains a 3A4 request message,

(eX-ROS20-IsResposne? rngm)=> #f

Name Type Description

rngm event The variable name of the event
structure that contains the ROS20
Generic message.
e*Xchange Partner Manager Implementation Guide 355 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-IsSignal?

Syntax

(eX-ROS20-IsSignal? rngm)

Description

eX-ROS20-IsSignal? checks whether the message is a business signal.

Parameters

Return Values

Boolean

Returns #t (true) if this message is a business signal; otherwise, returns #f (false).

Throws

Exception-Mapping and Exception-Generic.

Example

if rngm is a 3A4 request message, then

(eX-ROS20-IsSignal? rngm) => #f

if rngm is a Receipt Acknowledgement signal message, then

(eX-ROS20-IsSignal? rngm) => #t

Name Type Description

rngm event The variable name of the event
structure that contains the ROS20
Generic message.
e*Xchange Partner Manager Implementation Guide 356 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Get-PipCode

Syntax

(eX-ROS20-Get-PipCode RNGM)

Description

eX-ROS20-Get-PipCode returns the PIP code in the rngm.

Parameters

Return Values

Returns the PIP code in the rngm.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Get-PipCode rngm)

=> "3A4"

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.
e*Xchange Partner Manager Implementation Guide 357 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Set-PipCode

Syntax

(eX-ROS20-Set-PipCode RNGM value)

Description

eX-ROS20-Set-PipCode sets the PIP code in the rngm.

Parameters

Return Values

Undefined.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Set-PIPCode rngm "3A4")

=> undefined

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.

value string The Pip Code.
e*Xchange Partner Manager Implementation Guide 358 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Get-SigActCode

Syntax

(eX-ROS20-Get-SigActCode RNGM)

Description

eX-ROS20-Get-SigActCode returns the signal code for a business signal or the action
code for an action message.

Parameters

Return Values

string

Returns the signal code for a business signal or the action code for an action message;
otherwise, returns a null string if this message is not a response message or input rngm
doesn't contain enough information to compose a request ID.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Get-SigAckCode rngm)

=> "Purchase Order Request Action"

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.
e*Xchange Partner Manager Implementation Guide 359 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Set-SigActCode

Syntax

(eX-ROS20-Set-SigActCode RNGM value)

Description

eX-ROS20-Set-SigActCode sets the signal code for a business signal or the action code
for an action message.

Parameters

Return Values

Undefined.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Set-SigAckCode rngm "Purchase Order Request Action")

=> undefined

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.

value string The signal or action code.
e*Xchange Partner Manager Implementation Guide 360 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Get-SigActVerId

Syntax

(eX-ROS20-Get-SigActVerId RNGM)

Description

eX-ROS20-Get-SigActVerId retrieves the signal version ID for an business signal or
the action version ID for an action message.

Parameters

Return Values

string

Returns the signal version ID for an business signal or the action version ID for an
action message.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Get-SigAckVerID rngm)

=> "2.0"

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.
e*Xchange Partner Manager Implementation Guide 361 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Set-SigActVerId

Syntax

(eX-ROS20-Set-SigActVerId RNGM value)

Description

eX-ROS20-Set-SigActVerId sets the signal version ID for an business signal or the
action version ID for an action message.

Parameters

Return Values

Undefined.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Set-SigAckVerId rngm "2.0")

=> undefined

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.

value string The signal or action version ID.
e*Xchange Partner Manager Implementation Guide 362 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Get-PipVerId

Syntax

(eX-ROS20-Get-PipVerId RNGM)

Description

eX-ROS20-Get-PipVerId retrieves the PIPVersion.VersionIdentifier in the rngm.

Parameters

Return Values

string

Returns the PIPVersion.VersionIdentifier in the rngm.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Get-PipVerId rngm)

=> "2.0"

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.
e*Xchange Partner Manager Implementation Guide 363 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Set-PipVerId

Syntax

(eX-ROS20-Set-PipVerId RNGM value)

Description

eX-ROS20-Set-PipVerId sets the PIPVersion.VersionIdentifier in the rngm.

Parameters

Return Values

Undefined.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Set-PipVerId rngm "2.0")

=> undefined

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.

value string The PIP Version.VersionIdentifier.
e*Xchange Partner Manager Implementation Guide 364 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Get-PipId

Syntax

(eX-ROS20-Get-PipId RNGM)

Description

eX-ROS20-Get-PipId retrieves the PIPInstanceId.InstanceIdentifier in the rngm.

Parameters

Return Values

string

Returns the PIPInstanceId.InstanceIdentifier in the rngm.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Get-PipId rngm)

=> "12345"

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.
e*Xchange Partner Manager Implementation Guide 365 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Set-PipId

Syntax

(eX-ROS20-Set-PipId RNGM value)

Description

eX-ROS20-Set-PipId sets the PIPInstanceId.InstanceIdentifier in the rngm.

Parameters

Return Values

Undefined.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Set-PipId rngm "12345")

=> undefined

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.

value string The PIPInstanceId.InstanceIdentifier.
e*Xchange Partner Manager Implementation Guide 366 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Get-ActId

Syntax

(eX-ROS20-Get-ActId RNGM)

Description

eX-ROS20-Get-ActId returns the activity ID in the rngm.

Parameters

Return Values

string

Returns the activity ID in the rngm.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Get-ActId rngm)

=> "Purchase Order Request"

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.
e*Xchange Partner Manager Implementation Guide 367 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Set-ActId

Syntax

(eX-ROS20-Set-ActId RNGM value)

Description

eX-ROS20-Set-ActId sets the activity ID in the rngm.

Parameters

Return Values

Undefined.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Set-AckId rngm "Purchase Order Request")

=> undefined

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.

value string The activity ID.
e*Xchange Partner Manager Implementation Guide 368 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Get-InReplyTo-MsgId

Syntax

(eX-ROS20-Get-InReplyTo-MsgId RNGM)

Description

eX-ROS20-Get-InReplyTo-MsgId retrieves
InReplyTo.MessageInstanceID.InstanceIdentifier in the rngm.

Parameters

Return Values

string

Returns InReplyTo.MessageInstanceID.InstanceIdentifier in the rngm.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Get-InReplyTo-MsgId rngm)

=> "1234"

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.
e*Xchange Partner Manager Implementation Guide 369 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Set-InReplyTo-MsgId

Syntax

(eX-ROS20-Set-InReplyTo-MsgId RNGM value)

Description

eX-ROS20-Set-InReplyTo-MsgId sets
InReplyTo.MessageInstanceID.InstanceIdentifier in the rngm.

Parameters

Return Values

Undefined.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Set-InReplyTo-MsgId rngm "1234")

=> undefined

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.

value string The
InReplyTo.MessageInstanceID.Instanc
eIdentifier.
e*Xchange Partner Manager Implementation Guide 370 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Get-InReplyTo-ActCode

Syntax

(eX-ROS20-Get-InReplyTo-ActCode RNGM)

Description

eX-ROS20-Get-InReplyTo-ActCode returns
InReplyTo.ActionIdentity.GlobalBusinessActionCode in the rngm.

Parameters

Return Values

string

Returns InReplyTo.ActionIdentity.GlobalBusinessActionCode in the rngm.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Get-InReplyTo-ActCode rngm)

=> "Purchase Order Request Action"

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.
e*Xchange Partner Manager Implementation Guide 371 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Set-InReplyTo-ActCode

Syntax

(eX-ROS20-Set-InReplyTo-ActCode RNGM value)

Description

eX-ROS20-Set-InReplyTo-ActCode sets
InReplyTo.ActionIdentity.GlobalBusinessActionCode in the rngm.

Parameters

Return Values

Undefined.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Set-InReplyTo-ActCode rngm "Purchase Order Request Action")

=> undefined

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.

value string The
InReplyTo.ActionIdentity.GlobalBusine
ssActionCode.
e*Xchange Partner Manager Implementation Guide 372 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Get-InitPartnerId

Syntax

(eX-ROS20-Get-InitPartnerId RNGM)

Description

eX-ROS20-Get-InitPartnerId returns the Initiating Partner Global Business Identifier
in the rngm.

Parameters

Return Values

string

Returns the Initiating Partner Global Business Identifier in the rngm.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Get-InitPartnerId rngm)

=> "1234567"

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.
e*Xchange Partner Manager Implementation Guide 373 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Set-InitPartnerId

Syntax

(eX-ROS20-Set-InitPartnerId RNGM value)

Description

eX-ROS20-Set-InitPartnerId sets the Initiating Partner Global Business Identifier in the
rngm.

Parameters

Return Values

Undefined.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Set-InitPartnerId rngm "1234567")

=> undefined

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.

value string The Initiating Partner Global Business
Identifier.
e*Xchange Partner Manager Implementation Guide 374 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Create-0A1Notification

Syntax

(eX-ROS20-Create-0A1Notification)

Description

eX-ROS20-Create-0A1Notification creates an 0A1 Notification message and populates
the reply RNGM. It uses parameters passed in to a global Monk variable g_input,
which is of type vector. The elements of g_input are described in the following table in
the order they appear.

Global Parameters used in g_input

Parameters

None.

Return Values

string

Returns a null string.

Throws

Exception-Mapping and Exception-Generic.

Example

If prf_attrib contains the Message Profile attributes associated with an action message,
unique_id is the unique ID of the same action message, error_text contains a text
description of the reason for creating the 0A1 notification, and reply_rngm is an event
map to the RNGM structure, then after the following statements

(set! g_input (vector prf_attrib, reply_rngm, error_text, unique_id)

(eX-ROS20-Create-0A1Notification)

"reply_rngm" contains the 0A1 notification message created in response to the original
action message identified by unique_id.

Name Type Description

prf_attrib vector The trading partner profile attributes
(Message Profile) as returned by the
Monk function (ux-get-header).

reply_rngm event The variable name of the event
structure that contains the 0A1
Notification message on return.

error_detail string The error text.

unique_id string The unique id.
e*Xchange Partner Manager Implementation Guide 375 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Create-ReceiptAck

Syntax

(eX-ROS20-Create-ReceiptAck)

Description

eX-ROS20-Create-ReceiptAck creates a Receipt Acknowledgement message and
populates the reply RNGM, based on the original RNGM. It uses parameters passed in
to a global Monk variable g_input, which is of type vector. The elements of g_input are
described in the following table in the order they appear.

Global Parameters used in g_input

Parameters

None.

Return Values

string

Returns a null string.

Throws

Exception-Mapping and Exception-Generic.

Example

If original_rngm is the an event map containing the original ROS20 message,
original_rnbm is a Monk string containing the same original ROS20 message, and
reply_rngm is an empty event mapped to the RNGM structure, then, after the
following statements:

(set! g_input (vector original_rngm original_rnbm reply_rngm))

(eX-ROS20-Create-ReceiptAck)

reply_rngm contains the newly created Receipt Acknowledgement in response to the
original ROS20 message.

Name Type Description

original_rngm event The original ROS20 message in RNGM
format.

original_rnbm string The original ROS20 message in RNBM
format.

reply_rngm event The newly created Receipt
Acknowledgement message in RNGM
format.
e*Xchange Partner Manager Implementation Guide 376 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Create-Except

Syntax

(eX-ROS20-Create-Except)

Description

eX-ROS20-Create-Except creates an Exception message and populates the reply
RNGM, based on the original RNGM. It uses parameters passed in to a global Monk
variable g_input, which is of type vector. The elements of g_input are described in the
following table in the order they appear.

Global Parameters used in g_input

Name Type Description

original_rngm event The original ROS20 message in RNGM
format.

reply_rngm event The newly created Receipt
Acknowledgement message in RNGM
format.
e*Xchange Partner Manager Implementation Guide 377 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
error_code string The error code. Possible values are:
! UNP.MESG.SIGNERR: Error during

unpackaging – Verifying the
signature of the RosettaNet Business
Message

! UNP.PRMB.READERR: Error during
unpackaging – Reading the
Preamble

! UNP.PRMB.VALERR: Error during
unpackaging – Validating the
Preamble

! UNP.DHDR.READERR: Error during
unpackaging – Reading the Delivery
Header

! UNP.DHDR.VALERR: Error during
unpackaging – Validating the
Delivery Header

! UNP.SHDR.READERR: Error during
unpackaging – Reading the Service
Header

! UNP.SHDR.VALERR: Error during
unpackaging – Validating the Service
Header

! UNP.SHDR.MNFSTERR: Error during
unpackaging – Verifying Manifest
against the actual attachment body
parts

! UNP.MESG.SEQERR: Error during
unpackaging – Validating the
message sequence

! UNP.MESG.RESPTYPERR:
Unexpected Response type in the
HTTP header

! UNP.MESG.DCRYPTERR: Error
Decrypting the message

! UNP.SCON.READERR: Error during
unpackaging – Reading the Service
Content

! UNP.SCON.VALERR: Error during
unpackaging – Validating the Service
Content

! PKG.MESG.GENERR: Error during
packaging – General error

! PRF.ACTN.GENERR: Error during
action performance – General Error

! PRF.DICT.VALERR: Error during
action performance – Validating the
Service Content against a PIP-
specified dictionary

! UNP.MESG.GENERR: Error during
unpackaging – General error

Name Type Description
e*Xchange Partner Manager Implementation Guide 378 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
Parameters

None.

Return Values

string

Returns a null string.

Throws

Exception-Mapping and Exception-Generic.

Example

If original_rngm is the an event map containing the original ROS20 message, and
reply_rngm is an empty event mapped to the RNGM structure, then, after the
following statements:

(set! g_input (vector original_rngm reply_rngm "UNP.MESG.SIGNERR" "sign error"
"ServiceContent" "Receipt Acknowledgement Exception"))

(eX-ROS20-Create-Exception)

reply_rngm contains the newly created Receipt Acknowledgement Exception in
response to the orignal ROS20 message.

error_detail string The description of the error.

error_component string The message component where the
error occurred. Possible values
include:
! Preamble
! DeliveryHeader
! ServiceHeader
! ServiceContent
! Attachment

except_type string The type of exception to be created.
Possible values include General
Exception and Receipt
Acknowledgement exception.

Name Type Description
e*Xchange Partner Manager Implementation Guide 379 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
13.6 e*Xchange Security Functions
This section provides detailed information on e*Xchange Security functions, divided
into two groups. The first group contains generic functions that can be used with any
data format. It includes the following functions:

" util-security-decrypt-msg.monk

" util-security-encrypt-msg.monk

" util-security-sign-msg.monk

" util-security-verify-sig.monk

The second group is specifically for working with the e*Xchange APIs and database. It
includes the following functions:

" eX-security-get-keys-certs.monk

" eX-ROS20-decrypt-msg.monk

" eX-ROS20-encrypt-msg.monk

" eX-ROS20-sign-msg.monk

" eX-ROS20-verify-sig.monk

" eX-ROS20-get-ssl-keys.monk

13.6.1 Operational Groups
The e*Xchange security functions can also be divided into two operational groups. The
first group contains the following functions:

" util-security-decrypt-msg.monk

" util-security-encrypt-msg.monk

" util-security-sign-msg.monk

" util-security-verify-sig.monk

" eX-security-get-keys-certs.monk

" eX-ROS20-decrypt-msg.monk

" eX-ROS20-encrypt-msg.monk

" eX-ROS20-sign-msg.monk

" eX-ROS20-verify-sig.monk

These functions are used within e*Xchange RosettaNet 2.0 scripts, as described below.

A Initialization – (eX-init.monk)

" Load stc_monksmime.dll successfully and define SMIMEH.

" Load dummy decryption key into SME cache.
e*Xchange Partner Manager Implementation Guide 380 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
B Inbound

" Verify digital signature.

" Extract content from RosettaNet Business Message.

" Extract signature from RosettaNet Business Message.

Note: The signature should already be in base64 format, so no conversion is necessary.

" Obtain sec_key_type values and tpic_id using ux-get-header.

" Call eX-ROS20-verify-sig passing in content, signature, algorithm, sec_key_type
values and tpic_id.

" If eX-ROS20-verify-sig returns true (#t) then continue with normal processing.

" If eX-ROS20-verify-sig returns false (#f) then go to error processing.

C Decrypt message

" Extract encrypted portion of RosettaNet Business Message.

Note: The encrypted portion should already be in base64 format, so no conversion is
necessary.)

" Obtain sec_key_type values and tpic_id using ux-get-header.

" Call eX-ROS20-decrypt-msg passing in encrypted message, sec_key_type
values and tpic_id.

" If eX-ROS20-decrypt-msg returns data (not #f) then continue with normal
processing using decrypted message.

" If eX-ROS20-decrypt-msg returns false (#f) then go to error processing.

D Outbound

 Add Digital Signature

" Extract content from RosettaNet Business Message.

" Obtain sec_key_type values and tpic_id using ux-get-header.

" Call eX-ROS20-sign-msg passing in content, sec_key_type values and tpic_id.

" If eX-ROS20-sign-msg returns a vector containing signature algorithm and
base64 encoded signature (not #f) then continue with normal processing using
digital signature.

" If eX-ROS20-sign-msg returns false (#f) then go to error processing.

E Encrypt message

" Extract portion from RosettaNet Business Message to be encrypted.

" Obtain sec_key_type values and tpic_id using ux-get-header.

" Call eX-ROS20-encrypt-msg passing in content, sec_key_type values and
tpic_id.
e*Xchange Partner Manager Implementation Guide 381 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
" If eX-ROS20-encrypt-msg returns a base64 encoded message (not #f) then
continue with normal processing using encrypted message.

" If eX-ROS20-encrypt-msg returns false (#f) then go to error processing

The second operational group contains the following function:

" eX-ROS20-get-ssl-keys

This function is used in e*Xchange RosettaNet 2.0 scripts as described below.

A Outbound

" Find out if communicating via HTTPS with Trading Partner profile.

" If protocol = HTTPS then retrieve SSL information by calling eX-ROS20-get-ssl-
keys.

" Take return vector and place the values in the standard event for the output.

" element 0 = SSLClientKeyFileName under TP_EVENT

" element 1 = SSLClientKeyFileType under TP_EVENT

" element 2 = SSLClientCertFileName under TP_EVENT

" element 3 = SSLClientCertFileType under TP_EVENT

A Note Regarding Security Function Examples

Note: It is assumed that db-login, creation of connection-handle, and creation of SME
handle (SMIMEH) were already executed successfully before each example. Also,
the util functions assume error_data has previously been defined.

The following table lists the security functions and their locations in this document.

util-security-decrypt-msg on page 383 util-security-encrypt-msg on page 384

util-security-sign-msg on page 385 util-security-verify-sig on page 386

eX-security-get-keys-certs on page 387 eX-ROS20-decrypt-msg on page 388

eX-ROS20-encrypt-msg on page 389 eX-ROS20-sign-msg on page 390

eX-ROS20-verify-sig on page 391 eX-ROS20-get-ssl-keys on page 393
e*Xchange Partner Manager Implementation Guide 382 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
util-security-decrypt-msg

Syntax

(util-security-decrypt-msg msg key_name key_value)

Description

util-security-decrypt-msg processes decryption of a given message. Calls Secure
Message Extension functions to decrypt a message using decryption key and value.

Parameters

Return Values

string

Returns decrypted msg in raw readable format.

Boolean

Returns #f (false) if an error is encountered. error_data contains error string(s).

Throws

None.

Example

(define FILE (open-input-file "d:/temp/xi_encrypted_ROS20_msg"))
(define msg (read FILE 65536))
(close-input-port FILE)
(define FILE (open-input-file "c:/temp/certs/stc-ssl-client-test-1.p12"))
(define key_value (read FILE 65536))
(close-input-port FILE)
(define key_name "STC SSL Client Test #1")
(define decrypted_msg (util-security-decrypt-msg msg key_name key_value))
(if (boolean? decrypted_msg)

(begin
(display (string-append "Decryption failed with error: " error_data

"\n"))
)

(begin
(display "Decryption succeeded - Decrypted msg placed in d:/temp/

decrypted_msg\n")
(define FILE (open-output-file "d:/temp/decrypted_msg"))
(display decrypted_msg FILE)
(close-port FILE)

)
)

Name Type Description

msg string The encrypted msg in base64 format.

key_name string The decryption key name.

key_value string The decryption key value.
e*Xchange Partner Manager Implementation Guide 383 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
util-security-encrypt-msg

Syntax

(util-security-encrypt-msg msg cert_name cert_value algorithm)

Description

util-security-encrypt-msg processes encryption of a given message. Calls Secure
Message Extension functions to encrypt message using encryption certificate name and
value, and encryption algorithm.

Parameters

Return Values

string

Returns encrypted msg in base64 format (S/MIME headers have been stripped off).

Boolean

Returns #f (false) if an error is encountered. error_data contains error string(s).

Throws

None.

Example

(define FILE (open-input-file "d:/stc/egate/client/data/data2/con3A4.dat"))
(define msg (read FILE 65536))
(close-input-port FILE)
(define FILE (open-input-file "c:/temp/certs/stc-ssl-client-test-1.pk7"))
(define cert_value (read FILE 65536))
(close-input-port FILE)
(define cert_name "STC SSL Client Test #1")
(define alg "RC2_128")
(define encrypted_msg (util-security-encrypt-msg msg cert_name cert_value
alg))
(if (boolean? encrypted_msg)

(begin
(display (string-append "Encryption failed with error: "error_data

"\n"))
)

(begin
(display "Encryption succeeded - Encrypted msg placed in d:/temp/

encrypted_msg\n")
(define FILE (open-output-file "d:/temp/encrypted_msg"))
(display encrypted_msg FILE)
(close-port FILE)

)
)

Name Type Description

msg string The message (in raw readable format)
to be encrypted.

cert_name string The encryption cert name.

cert_value string The encryption cert value.

algorithm string The encryption algorithm.
e*Xchange Partner Manager Implementation Guide 384 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
util-security-sign-msg

Syntax

(util-security-sign-msg msg key_name key_value algorithm)

Description

util-security-sign-msg creates a digital signature for a given message. Calls Secure
Message Extension functions to create a digital signature for the given message using
signature key name and value, and signature algorithm. Removes S/MIME headers
and raw content before returning base64 encoded digital signature.

Parameters

Return Values

string

Returns digital signature in base64 format (S/MIME headers and content have been
stripped off)

Boolean

Returns #f (false) if an error is encountered. error_data contains error strings.

Throws

None.

Example

(define FILE (open-input-file "d:/stc/egate/client/data/con3A4.dat"))
(define msg (read FILE 65536))
(close-input-port FILE)
(define FILE (open-input-file "c:/temp/certs/stc-ssl-client-test-1.p12"))
(define key_value (read FILE 65536))
(close-input-port FILE)
(define key_name "STC SSL Client Test #1")
(define alg "RSA_MD5")
(define signed_msg (util-security-sign-msg msg key_name key_value alg))
(if (boolean? signed_msg)

(begin
(display (string-append "Signing failed with error: "error_data "\n"))

)
(begin
(display "Signing succeeded-Signed msg placed in d:/temp/signed_msg\n")
(define FILE (open-output-file "d:/temp/signed_msg"))
(display signed_msg FILE)
(close-port FILE)

)
)

Name Type Description

msg string The message (in raw readable format)
to use for creating digital signature.

key_name string The signature key name.

key_value string The signature key value.

algorithm string The signature algorithm.
e*Xchange Partner Manager Implementation Guide 385 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
util-security-verify-sig

Syntax

(util-security-verify-sig content signature algorithm cert_name
cert_value)

Description

util-security-verify-sig performs verification of a digital signature for a given message.
Calls Secure Message Extension functions to verify if the digital signature is valid for a
given message using the certificate.

Parameters

Return Values

Boolean

Returns #t (true) if verification succeeded, that is the content and digital signature
match; otherwise returns #f (false) if content and digital signature do not match or an
error was encountered. error_data contains error string(s).

Throws

None.

Example

(define FILE (open-input-file "d:/stc/egate/client/data/con3A4.dat"))
(define content (read FILE 65536))
(close-input-port FILE)
(define FILE (open-input-file "d:/temp/signed_msg"))
(define sig (read FILE 65536))
(close-input-port FILE)
(define FILE (open-input-file "c:/temp/certs/stc-ssl-client-test-

1.pk7"))
(define cert_value (read FILE 65536))
(close-input-port FILE)
(define cert_name "STC SSL Client Test #1")
(define alg "MD5")
(if (util-security-verify-sig content sig alg cert_name cert_value)

(display "Verification succeeded!\n")
(display (string-append "Verification failed with error: "

error_data "\n"))
)

Name Type Description

content string The content (in raw readable format)
portion of data.

signature string The digital signature (in base64
format).

algorithm string The signature algorithm, such as MD5
or SHA1.

cert_name string The verification certificate name.

cert_value string The verification certificate value.
e*Xchange Partner Manager Implementation Guide 386 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
eX-security-get-keys-certs

Syntax

(eX-security-get-keys-certs connection-handle tpic_id key)

Description

eX-security-get-keys-certs retrieves the key name, key value length and key value for a
particular trading partner and key type.

Parameters

Return Values

vector

Returns a 3 element vector containing key name, key value length, and key value.

Boolean

Returns #t (true) if there is no key name or value to retrieve; otherwise returns #f (false)
if an error occurred. error_data contains error string(s)

Throws

None.

Example

(let ((ret_vec "")
(tpic_id "12")
(key "A"))

(set! ret_vec (eX-security-get-keys-certs connection-handle tpic_id key))
(if (vector? ret_vec)

(begin
(display "key name = <")
(display (vector-ref ret_vec 0))
(display ">\n")
(display "length of key value = <")
(display (vector-ref ret_vec 1))
(display ">\n")
(display "key value = <")
(display (vector-ref ret_vec 2))
(display ">\n")

)
(begin

(if (eq? #t ret_vec)
(display "No key/value to retrieve\n")
(display "eX-security-get-keys-certs failed to retrieve key/value.")

)
)
)
)

Name Type Description

connection-handle string The database connection handle.

tpic_id string The id for the trading partner profile.

key string The key type in es_security_key. Valid
key types: E, S, D, V, K, T, C, P, Y, A.
e*Xchange Partner Manager Implementation Guide 387 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
eX-ROS20-decrypt-msg

Syntax

(eX-ROS20-decrypt-msg connection-handle msg keys tpic_id)

Description

eX-ROS20-decrypt-msg processes decryption of a given message. Calls eX-security-
get-keys-certs to obtain decryption key and value. Calls util-security-decrypt-msg to
perform decryption of given message using decryption key and value.

Parameters

Return Values

string

Returns encrypted msg in raw readable format.

Boolean

Returns #f (false) if an error is encountered. error_data contains error string(s).

Throws

None.

Example

(let ((dec_msg "")
(tpic_id "13")
(keys "D"))

(define FILE (open-input-file "d:/temp/encrypted_mime1.txt"))
(define msg (read FILE 65536))
(close-input-port FILE)
(set! dec_msg (eX-ROS20-decrypt-msg connection-handle msg keys tpic_id))
(if (boolean? dec_msg)

(begin
(display "eX-ROS20-decrypt-msg failed!\n")

)
(begin
(define FILE (open-output-file "d:/temp/decrypted_ROS20_msg"))
(display dec_msg FILE)
(close-port FILE)

)
)
)

Name Type Description

connection-handle string The database connection handle.

msg string Encrypted msg in base64 format.

keys string The key types for trading partner
profile (obtained from
es_tpic.sec_key_type). Must contain
key type D.

tpic_id string The id for the trading partner profile.
e*Xchange Partner Manager Implementation Guide 388 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
eX-ROS20-encrypt-msg

Syntax

(eX-ROS20-encrypt-msg connection-handle msg keys tpic_id)

Description

eX-ROS20-encrypt-msg processes encryption of a given message. Calls eX-security-
get-keys-certs to obtain encryption certificate name and value, and encryption
algorithm. Calls util-security-encrypt-msg to perform encryption of given message
using certificate and algorithm.

Parameters

Return Values

string

Returns encrypted msg in base64 format.

Boolean

Returns #f (false) if an error is encountered. error_data contains error string(s).

Throws

None.

Example

(let ((enc_msg "")
(tpic_id "14")
(keys "D|Y|E"))

(define FILE (open-input-file "d:/temp/mime1.txt"))
(define msg (read FILE 65536))
(close-input-port FILE)
(set! enc_msg (eX-ROS20-encrypt-msg connection-handle msg keys tpic_id))
(if (boolean? enc_msg)

(begin
(display "eX-ROS20-encrypt-msg failed!\n")

)
(begin
(define FILE (open-output-file "d:/temp/encrypted_ROS20_msg"))
(display enc_msg FILE)
(close-port FILE)

)
)
)

Name Type Description

connection-handle string The database connection handle.

msg string The message in raw readable format,
to encrypt.

keys string The key types for trading partner
profile (obtained from
es_tpic.sec_key_type). Must contain
key types E and Y.

tpic_id string The id for the trading partner profile.
e*Xchange Partner Manager Implementation Guide 389 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
eX-ROS20-sign-msg

Syntax

(eX-ROS20-sign-msg connection-handle msg keys tpic_id)

Description

eX-ROS20-sign-msg creates a digital signature for a given message. Calls eX-security-
get-keys-certs to obtain signature key name and value, and signature algorithm. Calls
util-security-sign-msg to create a digital signature for a given message using key and
algorithm.

Parameters

Return Values

vector

Returns a 2 element vector containing algorithm and signature in base64 format.

Boolean

Returns #f (false) if an error is encountered. error_data contains error string(s).

Throws

None.

Example

(let ((sign_msg_vec "")
(tpic_id "14")
(keys "S|A"))

(define FILE (open-input-file "d:/temp/encrypted_ROS20_msg"))
(define msg (read FILE 65536))
(close-input-port FILE)
(set! sign_msg_vec (eX-ROS20-sign-msg connection-handle msg keys tpic_id))
(if (boolean? sign_msg_vec)

(begin
(display "eX-ROS20-sign-msg failed!\n")

)
(begin
(display (string-append "Algorithm = "

(vector-ref sign_msg_vec 0) "\n"))
(define FILE (open-output-file "d:/temp/signed_ROS20_msg"))
(display (vector-ref sign_msg_vec 1) FILE)
(close-port FILE)

)
)
)

Name Type Description

connection-handle string The database connection handle.

msg string The message in raw readable format,
for which to create a digital signature.

keys string The key types for trading partner
profile (obtained from
es_tpic.sec_key_type). Must contain
key types S and A.

tpic_id string The id for the trading partner profile.
e*Xchange Partner Manager Implementation Guide 390 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
eX-ROS20-verify-sig

Syntax

(eX-ROS20-verify-sig connection-handle content signature algorithm
keys tpic_id)

Description

eX-ROS20-verify-sig performs verification of a digital signature for a given message.
Calls eX-security-get-keys-certs to obtain verification certificate name and value. Calls
util-security-verify-sig to verify if the digital signature is valid for a given message
using the certificate.

Parameters

Return Values

Boolean

Returns #t (true) if verification succeeded, that is the content and digital signature
match; otherwise returns #f (false) if the content and digital signature do not match or
an error was encountered. error_data contains error string(s).

Throws

None.

Example

(let ((sig_msg "")
(tpic_id "13")
(alg "MD5")
(keys "V"))

(define FILE (open-input-file "d:/temp/encrypted_ROS20_msg"))
(define content (read FILE 65536))
(close-input-port FILE)
(define FILE (open-input-file "d:/temp/signed_ROS20_msg"))
(define sig (read FILE 65536))
(close-input-port FILE)
(if (eq? #t (eX-ROS20-verify-sig connection-handle content sig

alg keys tpic_id))
(begin

(display "eX-ROS20-verify-sig succeeded!\n")

Name Type Description

connection-handle string The database connection handle.

content string The content (in raw readable format)
portion of data.

signature string The digital signature (in base64
format).

algorithm string The signature algorithm, such as MD5
or SHA1.

keys string The key types for trading partner
profile (obtained from
es_tpic.sec_key_type). Must contain
key type V.

tpic_id string The id for the trading partner profile.
e*Xchange Partner Manager Implementation Guide 391 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
)
(begin

(display "eX-ROS20-verify-sig failed!\n")
)
)
)

e*Xchange Partner Manager Implementation Guide 392 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
eX-ROS20-get-ssl-keys

Syntax

(eX-ROS20-get-ssl-keys connection-handle keys tpic_id)

Description

eX-ROS20-get-ssl-keys retrieves the SSL Client key and certificate for a certain trading
partner profile. Calls eX-security-get-keys-certs to obtain the key and certificate values,
and the file types.

Parameters

Return Values

vector

Returns a 4 element vector containing the key, certificate, and file types

#(ssl_key_value in base64 format

 ssl key file type (either PEM or ASN.1)

 ssl certificate value in base64 format

 ssl certificate file type (either PEM or ASN.1)

)

Boolean

Returns #f (false) if an error is encountered. error_data contains error string(s).

Throws

None.

Example

(let ((out_vec "")
(tpic_id "12")
(keys "K|C|T|P"))

(set! out_vec (eX-ROS20-get-ssl-keys connection-handle keys tpic_id))
(if (eq? #f out_vec)

(begin
(display "eX-ROS20-get-ssl-keys failed!\n")

)
(begin
(define FILE (open-output-file "d:/temp/ssl_key_base64"))
(display (vector-ref out_vec 0) FILE)
(close-port FILE)
(display "SSL Key File Type = ")

Name Type Description

connection-handle string The database connection handle.

keys string The key types for trading partner
profile (obtained from
es_tpic.sec_key_type). Must contain
key types K, T, C, and P.

tpic_id string The id for the trading partner profile.
e*Xchange Partner Manager Implementation Guide 393 SeeBeyond Proprietary and Confidential

Chapter 13 Section 13.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
(display (vector-ref out_vec 1))
(newline)
(define FILE (open-output-file "d:/temp/ssl_cert_base64"))
(display (vector-ref out_vec 2) FILE)
(close-port FILE)
(display "SSL Cert File Type = ")
(display (vector-ref out_vec 3))
(newline)
(display "eX-ROS20-get-ssl-keys succeeded!\n")

)
)
)

e*Xchange Partner Manager Implementation Guide 394 SeeBeyond Proprietary and Confidential

Chapter 14

Java Helper Methods

A number of Java methods have been added to make it easier to set information in the
e*Xchange Event (eX_StandardEvent.xsc ETD) and to get information from it. These
methods are contained in classes:

! NameValuePair Class on page 396

! Payload Class on page 404

! TPAttribute Class on page 416

! TP_EVENT Class on page 428
e*Xchange Partner Manager Implementation Guide 395 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.1
Java Helper Methods NameValuePair Class
14.1 NameValuePair Class
public class NameValuePair

extends com.stc.jcsre.XMLETDImpl

implements com.stc.jcsre.ETD

A class to represent the NameValuePair object of an e*Xchange (Business Process
Management) XML ETD. It is defined in the following DTD:

<!ELEMENT TPAttribute (NameValuePair*)>
<!ELEMENT NameValuePair (Name, Value)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Value (#PCDATA)>

These methods are described in detail on the following pages:

! getNAME on page 397

! getVALUE on page 398

! marshal on page 399

! setNAME on page 400

! setVALUE on page 401

! toString on page 402

! unmarshal on page 403
e*Xchange Partner Manager Implementation Guide 396 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.1
Java Helper Methods NameValuePair Class
getNAME

Syntax

java.lang.String getNAME()

Description

getNAME retrieves the name portion of this object.

Parameters

None.

Return Values

java.lang.String
Returns the name of this object.

Throws

None.

Example

getNAME();

=> "COMM_PROT"
e*Xchange Partner Manager Implementation Guide 397 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.1
Java Helper Methods NameValuePair Class
getVALUE

Syntax

java.lang.String getVALUE()

Description

getVALUE retrieves the value portion of this object.

Parameters

None.

Return Values

java.lang.String
Returns the value of the object.

Throws

None.

Example

getVALUE();

=> "X12"
e*Xchange Partner Manager Implementation Guide 398 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.1
Java Helper Methods NameValuePair Class
marshal

Syntax

void marshal(org.xml.sax.ContentHandler handler,
org.xml.sax.ErrorHandler errorHandler)

Description

marshal gathers the data contained within this ETD object and formulates it back into a
serialized XML message.

Parameters

Return Values

None.

Throws

None.

Name Type Description

handler org.xml.sax.ContentHan
dler

The handler that converts content
within to XML.

errorHandler org.xml.sax.ErrorHandle
r

The handler to address errors during
conversion.
e*Xchange Partner Manager Implementation Guide 399 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.1
Java Helper Methods NameValuePair Class
setNAME

Syntax

void setNAME(java.lang.String val)

Description

setNAME sets the name portion of this object.

Parameters

Return Values

None.

Throws

None.

Example

setNAME("COMM_PROT");

Name Type Description

val string The case-sensitive name of this Partner
Manager Attribute.
e*Xchange Partner Manager Implementation Guide 400 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.1
Java Helper Methods NameValuePair Class
setVALUE

Syntax

void setVALUE(java.lang.String val)

Description

setVALUE sets the value portion of this object.

Parameters

Return Values

None.

Throws

None.

Example

setVALUE("X12");

Name Type Description

val java.lang.String The value of the Attribute.
e*Xchange Partner Manager Implementation Guide 401 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.1
Java Helper Methods NameValuePair Class
toString

Syntax

java.lang.String toString()

Description

toString converts this ETD object to a printable String form.

Parameters

None.

Return Values

java.lang.String
Returns the XML message represent by this ETD object.

Throws

None.

Example

toString();
e*Xchange Partner Manager Implementation Guide 402 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.1
Java Helper Methods NameValuePair Class
unmarshal
Syntax

void unmarshal(org.xml.sax.InputSource inputSource,
com.stc.jcsre.sml.SAXLexer lexer)

Description

unmarshal takes a serialized (marshalled) form of the ACTIVITY XML Event and
distributes (unmarshals) the data into this ETD object.

Parameters

Return Values

None.

Throws

org.xml.sax.SAXException - thrown when the data cannot be parsed

com.stc.jcsre.UnmarshalException - throw when the data cannot be unmarshalled

Name Type Description

inputSource org.xml.sax.InputSource The input source for the serialized
data.

lexer com.stc.jcsre.sml.SAXLe
xer

The SAX lexer (parser) to distribute the
data.
e*Xchange Partner Manager Implementation Guide 403 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.2
Java Helper Methods Payload Class
14.2 Payload Class
public class Payload

extends com.stc.jcsre.XMLETDImpl

implements com.stc.jcsre.ETD

A class to represent the Payload object of an e*Xchange (Partner Manager) XML ETD. It
is defined in the following DTD:

<!--Payload to carry EDI message-->
<!ELEMENT Payload (#PCDATA)>
<!ATTLIST Payload

TYPE (RAW | PROCESSED | ENCRYPTED) #REQUIRED
LOCATION (FILE | DB | URL | EMBEDDED | AUTO) #IMPLIED

>

These methods are described on the following pages:

! get$Text on page 405

! getLOCATION on page 406

! getTYPE on page 407

! hasLOCATION on page 408

! marshal on page 409

! omitLOCATION on page 410

! set$Text on page 411

! setLOCATION on page 412

! setTYPE on page 413

! toString on page 414

! unmarshal on page 415
e*Xchange Partner Manager Implementation Guide 404 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.2
Java Helper Methods Payload Class
get$Text

Syntax

java.lang.String get$Text()

Description

get$Text retrieves the Payload data.

Parameters

None.

Return Values

java.lang.String

Returns the Payload data.

Throws

None.
e*Xchange Partner Manager Implementation Guide 405 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.2
Java Helper Methods Payload Class
getLOCATION

Syntax

java.lang.String getLOCATION()

Description

getLOCATION retrieves the location type of where the data for Payload is actually
stored. In cases where the data is too long to be stored in standard database column, it
can be stored in another table where the column can be defined as a "LONG RAW" for
example, or it may be stored in a file on some file system. In such cases, a reference to
the actual data location is stored as the data for Payload.

Parameters

None.

Return Values

java.lang.String

Returns the location type for the Payload data. This is one of the following values:

Throws

None.

Example

getLOCATION();

=> "EMBEDDED"

"FILE" The Payload data contains the name of a file
where actual data is stored.

"DB" The Payload data contains a reference such as
"ROWID" to a row in a table.

"URL" The Payload data contains a URL to where the
actual data is stored.

"EMBEDDED" The Payload data contains the actual data (this
is the default).

"AUTO" The Payload data contains the actual data
storage location is automatically determined
by the e*Xchange engine.
e*Xchange Partner Manager Implementation Guide 406 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.2
Java Helper Methods Payload Class
getTYPE

Syntax

java.lang.String getTYPE()

Description

getTYPE retrieves the type of data stored in the Payload object.

Parameters

None.

Return Values

java.lang.String
Returns the type of data stored as one of the following values:

Throws

None.

Example

getTYPE();

=> "STRING"

“RAW” Indicates that the data in the Data node is in
ASCII format, but not XML data that has been
converted to ASCII using base 64 or some
other conversion. The data must not contain
any characters that would conflict with the
XML nature of the e*Xchange ETD (for
example, EDI delimiters that are the same as
XML control characters).

“PROCESSED” Indicates that the data in the Data node is XML
data that has been encoded using the scheme
described in the ENCODING node. Currently
only base 64 encoding is supported.

“ENCRYPTED” Indicates that the data in the Data node has
been encrypted, and must be decrypted
before it can be processed by e*Xchange.
e*Xchange Partner Manager Implementation Guide 407 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.2
Java Helper Methods Payload Class
hasLOCATION

Syntax

boolean hasLOCATION()

Description

hasLOCATION checks if the location is defined for this Payload object.

Parameters

None.

Return Values

boolean
Returns true if location exists, otherwise returns false.

Throws

None.

Example

hasLOCATION();

=> true
e*Xchange Partner Manager Implementation Guide 408 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.2
Java Helper Methods Payload Class
marshal

Syntax

void marshal(org.xml.sax.ContentHandler handler,
org.xml.sax.ErrorHandler errorHandler)

Description

marshal gathers the data contained within this ETD object and formulates it back into a
serialized XML message.

Parameters

Return Values

None.

Throws

com.stc.jcsre.MarshalException

org.xml.sax.SAXException

Name Type Description

handler org.xml.sax.ContentHan
dler

The handler that converts content
within to XML.

errorHandler or.xml.sax.ErrorHandler The handler to address errors during
conversion.
e*Xchange Partner Manager Implementation Guide 409 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.2
Java Helper Methods Payload Class
omitLOCATION

Syntax

void omitLOCATION()

Description

omitLOCATION removes the location definition for this Payload object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitLOCATION();
e*Xchange Partner Manager Implementation Guide 410 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.2
Java Helper Methods Payload Class
set$Text

Syntax

void set$Text(java.lang.String val)

Description

set$Text sets the Payload data.

Parameters

Return Values

None.

Throws

None.

Name Type Description

val java.lang.String The Payload data.
e*Xchange Partner Manager Implementation Guide 411 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.2
Java Helper Methods Payload Class
setLOCATION

Syntax

void setLOCATION(java.lang.String val)

Description

setLOCATION sets the location type of where the data for a Payload is actually stored.
In cases where the data is too long to be stored in standard database column, it can be
stored in another table where the column can be defined as a "LONG RAW" for
example, or it may be stored in a file on some file system.

Parameters

Return Values

None.

Throws

None.

Example

setLOCATION("FILE");

Name Type Description

val java.lang.String The location type for the Payload data.
This can have one the following
values:
! "FILE" - Attribute data is the name of

a file where actual data is stored.
! "DB" - Attribute data is a reference

such as "ROWID" to a row in a table.
! "URL" - Attribute data is the URL to

where the actual data is stored.
! "EMBEDDED" - Attribute data is the

actual data (this is the default).
! "AUTO" - The actual data storage

location is automatically determined
by the e*Xchange engine.
e*Xchange Partner Manager Implementation Guide 412 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.2
Java Helper Methods Payload Class
setTYPE

Syntax

void setTYPE(java.lang.String val)

Description

setTYPE sets the type of data stored in Payload.

Parameters

Return Values

None.

Throws

None.

Example

setTYPE("STRING");

Name Type Description

val java.lang.String The type of data stored. This can take
one of the following values:
! "RAW" - Indicates that the data in

the Data node is in ASCII format, but
not XML data that has been
converted to ASCII using base 64 or
some other conversion. The data
must not contain any characters that
would conflict with the XML nature
of the e*Xchange ETD (for example,
EDI delimiters that are the same as
XML control characters).

! "PROCESSED" - Indicates that the
data in the Data node is XML data
that has been encoded using the
scheme described in the
ENCODING node. Currently only
base 64 encoding is supported.

! "ENCRYPTED"- Indicates that the
data in the Data node has been
encrypted, and must be decrypted
before it can be processed by
e*Xchange.
e*Xchange Partner Manager Implementation Guide 413 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.2
Java Helper Methods Payload Class
toString

Syntax

java.lang.String toString()

Description

toString Converts this ETD object to a printable String form.

Parameters

None.

Return Values

java.lang.String
Returns the XML message represent by this ETD object.

Throws

None.

Example

toString();
e*Xchange Partner Manager Implementation Guide 414 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.2
Java Helper Methods Payload Class
unmarshal
Syntax

void unmarshal(org.xml.sax.InputSource inputSource,
com.stc.jcsre.sml.SAXLexer lexer)

Description

unmarshal takes a serialized (marshalled) form of the e*Insight XML Event and
distributes (unmarshals) the data into this ETD object.

Parameters

Return Values

None.

Throws

org.xml.sax.SAXException, when the data cannot be parsed.

com.stc.jcsre.UnmarshalException, when the data cannot be unmarshalled.

Name Type Description

inputSource org.xml.sax.InputSource The input source for the serialized
data.

lexer com.stc.jcsre.xml.SAXLe
xer

The SAX Lexer (parser) to distribute
the data.
e*Xchange Partner Manager Implementation Guide 415 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.3
Java Helper Methods TPAttribute Class
14.3 TPAttribute Class
public class TPAttribute

extends com.stc.jcsre.XMLETDImpl

implements com.stc.jcsre.ETD

The TPAttribute class represents the e*Xchange section of the SeeBeyond eBI Standard
XML ETD which is used to communicate with the e*Xchange engine. The DTD is:

<!--TP Attribute will contain optional repeating name value pair for
storing of TP-->
<!ELEMENT TPAttribute (NameValuePair*)>

These methods are described in detail on the following pages:

! addNameValuePair on page 417

! clearNameValuePair on page 418

! countNameValuePair on page 419

! getNameValuePair_Value on page 420

! getNameValuePair on page 421

! hasNameValuePair on page 422

! marshal on page 423

! removeNameValuePair on page 424

! setNameValuePair on page 425

! toString on page 426

! unmarshal on page 427
e*Xchange Partner Manager Implementation Guide 416 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.3
Java Helper Methods TPAttribute Class
addNameValuePair

Syntax

void addNameValuePair(int index, NameValuePair value)

Description

addNameValuePair inserts a new NameValuePair into this Trading Partner object.

Parameters

Return Values

None.

Throws

None.

Name Type Description

index integer (Optional) Zero-base index to
where the NameValuePair object is
to be inserted.

value com.stc.eBIpkg.ATTRIBUTE The NameValuePair object.
e*Xchange Partner Manager Implementation Guide 417 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.3
Java Helper Methods TPAttribute Class
clearNameValuePair

Syntax

void clearNameValuePair()

Description

clearNameValuePair removes all the NameValuePairs from this TPAttribute object.

Parameters

None.

Return Values

None.

Throws

None.

Example

clearNameValuePair();
e*Xchange Partner Manager Implementation Guide 418 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.3
Java Helper Methods TPAttribute Class
countNameValuePair

Syntax

int countNameValuePair()

Description

countNameValuePair retrieves the number of NameValuePair objects this TPAttribute
object.

Parameters

None.

Return Values

integer

Returns the number of NameValuePair objects as an integer.

Throws

None

Example
countNameValuePair();
=>3
e*Xchange Partner Manager Implementation Guide 419 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.3
Java Helper Methods TPAttribute Class
getNameValuePair_Value

Syntax

java.lang.String getNameValuePair_Value(java.lang.String name)

Description

getNameValuePair_Value retrieves the value of a specific NameValuePair by name.

Parameters

Return Values

java.lang.String
Returns the value of the NameValuePair object. Can be null if the Attribute of that
name does not exist.

Throws

None.

Name Type Description

name java.lang.String The name of the NameValuePair
object.
e*Xchange Partner Manager Implementation Guide 420 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.3
Java Helper Methods TPAttribute Class
getNameValuePair

Syntax

NameValuePair[] getNameValuePair()
NameValuePair getNameValuePair(int i)
NameValuePair getNameValuePair(java.lang.String name)

Description

getNameValuePair retrieves all the NameValuePair objects in the TPAttribute object,
or can be used to retrieve a specific NameValuePair by name or index.

Parameters

Return Values

Returns one of the following values:

NameValuePair[]
Returns an array of NameValuePair objects if no name or offset were specified.

NameValuePair
Returns the NameValuePair object if the name or offset were specified.

Throws

None.

Name Type Description

i integer (Optional) The offset to the list where
the NameValuePair appears.

name java.lang.String The NameValuePair name.
e*Xchange Partner Manager Implementation Guide 421 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.3
Java Helper Methods TPAttribute Class
hasNameValuePair

Syntax

boolean hasNameValuePair(java.lang.String name)

Description

hasNameValuePair checks whether a specific TP Attribute contains a NameValuePair.

Parameters

Return Values

boolean
Returns true if the NameValuePair is defined; otherwise returns false.

Throws

None.

Example

hasNameValuePair();
=>true

Name Type Description

name java.lang.String The name of the Trading Partner
Attribute (TPAttribute) that you want
to retrieve.
e*Xchange Partner Manager Implementation Guide 422 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.3
Java Helper Methods TPAttribute Class
marshal

Syntax

void marshal(org.xml.sax.ContentHandler handler,
org.xml.sax.ErrorHandler errorHandler)

Description

marshal gathers the data contained within this ETD object and formulates it back into a
serialized XML message.

Parameters

Return Values

None.

Throws

com.stc.jcsre.MarshalException

org.xml.sax.SAXException

Name Type Description

handler org.xml.sax.ContentHan
dler

The handler that converts content
within to XML.

errorHandler or.xml.sax.ErrorHandler The handler to address errors during
conversion.
e*Xchange Partner Manager Implementation Guide 423 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.3
Java Helper Methods TPAttribute Class
removeNameValuePair

Syntax

void removeNameValuePair(java.lang.String name)
void removeNameValuePair(int index)

Description

removeNameValuePair removes a specific NameValuePair object from this
TPAttribute object by name or index.

Parameters

Return Values

None.

Throws

None.

Name Type Description

name java.lang.String The name of the NameValuePair.

index int The index to the list of global
attributes (zero-based).
e*Xchange Partner Manager Implementation Guide 424 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.3
Java Helper Methods TPAttribute Class
setNameValuePair

Syntax

void setNameValuePair(NameValuePair[] val)
void setNameValuePair(int i, NameValuePair val)
void setNameValuePair(java.lang.String name java.lang.String value)

Description

setNameValuePair sets a NameValuePair object in the TPAttribute object.

Parameters

Return Values

None.

Throws

None.

Name Type Description

val NameValuePair[] The NameValuePair object.

i int The list index of the NameValuePair to
be retrieved (zero-based).

name java.lang.String The name of the NameValuePair.

value java.lang.String The value of the NameValuePair.
e*Xchange Partner Manager Implementation Guide 425 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.3
Java Helper Methods TPAttribute Class
toString

Syntax

java.lang.String toString()

Description

toString converts this ETD object to a printable String form.

Parameters

None.

Return Values

java.lang.String
Returns the XML message to represent by this ETD object.

Throws

None.

Example

toString();
e*Xchange Partner Manager Implementation Guide 426 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.3
Java Helper Methods TPAttribute Class
unmarshal
Syntax

void unmarshal(org.xml.sax.InputSource inputSource,
com.stc.jcsre.sml.SAXLexer lexer)

Description

unmarshal takes a serialized (marshalled) form of the e*Insight XML Event and
distributes (unmarshals) the data into this ETD object.

Parameters

Return Values

None.

Throws

org.xml.sax.SAXException, when the data cannot be parsed.

com.stc.jcsre.UnmarshalException, when the data cannot be unmarshalled.

Name Type Description

inputSource org.xml.sax.InputSource The input source for the serialized
data.

lexer com.stc.jcsre.xml.SAXLe
xer

The SAX Lexer (parser) to distribute
the data.
e*Xchange Partner Manager Implementation Guide 427 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
14.4 TP_EVENT Class
public class TP_EVENT

extends com.stc.jcsre.SMLETDImpl

implements com.eBIpkg.TPEventETD

TP_EVENT class represents the e*Xchange section of the SeeBeyond eBI Standard XML
ETD which is used to communicate with the e*Xchange engine. The DTD is:

<!--ePartner Manager Input/Output Event section-->
<!ELEMENT TP_EVENT (PartnerName?, InternalName?, Direction?,

MessageID?, OrigEventC
<!--External Partner Name-->
<!ELEMENT PartnerName (#PCDATA)>
<!--Internal Sending ERP (ex.SAP)-->
<!ELEMENT InternalName (#PCDATA)>
<!--Direction of Transaction to/from Trading Partner (ex.Outbound=O

Inbound=I)-->
<!ELEMENT Direction (#PCDATA)>
<!--Original request ID from Internal Sending ERP-->
<!ELEMENT MessageID (#PCDATA)>
<!--Original Event Classification (ex.QAP for Query Price and

Availability)-->
<!ELEMENT OrigEventClass (#PCDATA)>
<!--Usage Indicator of EDI message by Trading Partner (Production=P

Test=T)-->
<!ELEMENT UsageIndicator (#PCDATA)>
<!--Payload to carry EDI message-->
<!ELEMENT Payload (#PCDATA)>
<!ATTLIST Payload

TYPE (RAW | PROCESSED | ENCRYPTED) #REQUIRED
LOCATION (FILE | DB | URL | EMBEDDED | AUTO) #IMPLIED

>
<!--RAW=Need translation PROCESSED=Already X12 or RN ENCRYPTED=from

Trading Partner>
<!--Communication Protocol (ex. BATCH, HTTP) for sending to Trading

Partner-->
<!ELEMENT CommProt (#PCDATA)>
<!--URL for EDI message to be exchanged with Trading Partner-->
<!ELEMENT Url (#PCDATA)>
<!--SSL information-->
<!ELEMENT SSLClientKeyFileName (#PCDATA)>
<!ELEMENT SSLClientKeyFileType (#PCDATA)>
<!ELEMENT SSLClientCertFileName (#PCDATA)>
<!ELEMENT SSLClientCertFileType (#PCDATA)>
<!--Message Index for Batched delivery, ex. 1|20 means 1 of 20-->
<!ELEMENT MessageIndex (#PCDATA)>
<!--TP Attribute will contain optional repeating name value pair for
storing of TP-->
<!ELEMENT TPAttribute (NameValuePair*)>
<!ELEMENT NameValuePair (Name, Value)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Value (#PCDATA)>

These methods are described in detail on the following pages:

getCommProt on page 430 omitDirection on page 462

getDirection on page 431 omitInternalName on page 463
e*Xchange Partner Manager Implementation Guide 428 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
getInternalName on page 432 omitMessageID on page 464

getMessageID on page 433 omitMessageIndex on page 465

getMessageIndex on page 434 omitOrigEventClass on page 466

getOrigEventClass on page 435 omitPartnerName on page 467

getPartnerName on page 436 omitPayload on page 468

getPayload on page 437 omitSSLClientCertFileName on
page 469

getSSLClientCertFileName on page 438 omitSSLClientCertFileType on page 470

getSSLClientCertFileType on page 439 omitSSLClientKeyFileName on page 471

getSSLClientKeyFileName on page 440 omitSSLClientKeyFileType on page 472

getSSLClientKeyFileType on page 441 omitTPAttribute on page 473

getTPAttribute on page 442 omitUrl on page 474

getURL on page 443 omitUsageIndicator on page 475

getUsageIndicator on page 444 setCommProt on page 476

hasCommProt on page 445 setDirection on page 477

hasDirection on page 446 setInternalName on page 478

hasInternalName on page 447 setMessageID on page 479

hasMessageID on page 448 setMessageIndex on page 480

hasMessageIndex on page 449 setOrigEventClass on page 481

hasOrigEventClass on page 450 setPartnerName on page 482

hasPartnerName on page 451 setPayload on page 483

hasPayload on page 452 setSSLClientCertFileName on page 484

hasSSLClientCertFileName on page 453 setSSLClientCertFileType on page 485

hasSSLClientCertFileType on page 454 setSSLClientKeyFileName on page 486

hasSSLClientKeyFileName on page 455 setSSLClientKeyFileType on page 487

hasSSLClientKeyFileType on page 456 setTPAttribute on page 488

hasTPAttribute on page 457 setUrl on page 489

hasUrl on page 458 setUsageIndicator on page 490

hasUsageIndicator on page 459 toString on page 491

marshal on page 460 unmarshal on page 492

omitCommProt on page 461
e*Xchange Partner Manager Implementation Guide 429 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
getCommProt

Syntax

java.lang.String getCommProt()

Description

getCommProt retrieves the communication protocol used.

Parameters

None.

Return Values

java.lang.String
Returns the communication protocol. Possible values include “BATCH”, “HTTP” and
“HTTPS”.

Throws

None.

Example

getCommProt();
=>"BATCH"
e*Xchange Partner Manager Implementation Guide 430 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
getDirection

Syntax

java.lang.String getDirection()

Description

getDirection retrieves the direction of transaction relative to e*Xchange.

Parameters

None.

Return Values

java.lang.String
Returns the direction. Possible values include; “O” representing Outbound, or “I”
representing Inbound.

Throws

None.

Example

getDirection();
=>"I"
e*Xchange Partner Manager Implementation Guide 431 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
getInternalName

Syntax

java.lang.String getInternalName()

Description

getInternalName retrieves the internal name of the Trading Partner as known by the
sending ERP.

Parameters

None.

Return Values

java.lang.String
Returns the Internal Name of the Trading Partner per sending ERP.

Throws

None.
e*Xchange Partner Manager Implementation Guide 432 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
getMessageID

Syntax

java.lang.String getMessageID()

Description

getMessageID retrieves the original request ID from the sending ERP system.

Parameters

None.

Return Values

java.lang.String
Returns the message ID.

Throws

None.
e*Xchange Partner Manager Implementation Guide 433 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
getMessageIndex

Syntax

java.lang.String getMessageIndex()

Description

getMessageIndex retrieves the message index for batched delivery. For example, 5/7
indicates the fifth message in a batch of seven.

Parameters

None.

Return Values

java.lang.String
Returns the message index.

Throws

None.
e*Xchange Partner Manager Implementation Guide 434 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
getOrigEventClass

Syntax

java.lang.String getOrigEventClass()

Description

getOrigEventClass retrieves the original event classification from the sending ERP
system.

Parameters

None.

Return Values

java.lang.String
Returns the original event classification.

Throws

None.
e*Xchange Partner Manager Implementation Guide 435 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
getPartnerName

Syntax

java.lang.String getPartnerName()

Description

getPartnerName retrieves the name of the Trading Partner.

Parameters

None.

Return Values

java.lang.String
Returns the Trading Partner Name.

Throws

None.

Example

getPartnerName();
=>"The Savvy Toy Company"
e*Xchange Partner Manager Implementation Guide 436 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
getPayload

Syntax

java.lang.String getPayload()

Description

getPayload retrieves the Payload object.

Parameters

None.

Return Values

Payload
Returns the Payload object.

Throws

None.
e*Xchange Partner Manager Implementation Guide 437 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
getSSLClientCertFileName

Syntax

java.lang.String SSLClientCertFileName()

Description

SSLClientCertFileName retrieves the name of the file that contains the SSL Client
Certificate.

Parameters

None.

Return Values

java.lang.String
Returns the name of the file that contains the SSL Client Certificate.

Throws

None.
e*Xchange Partner Manager Implementation Guide 438 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
getSSLClientCertFileType

Syntax

java.lang.String getSSLClientCertFileType()

Description

SSLClientCertFileType retrieves the SSL Client Certificate file type.

Parameters

None.

Return Values

java.lang.String
Returns the SSL Client Certificate file type. Possible values include “ASN.1” and
“PEM”.

Throws

None.

Example

getSSLClientCertFileType();
=>"PEM"
e*Xchange Partner Manager Implementation Guide 439 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
getSSLClientKeyFileName

Syntax

java.lang.String SSLClientKeyFileName()

Description

SSLClientKeyFileName retrieves the name of the file that contains the SSL Client Key.

Parameters

None.

Return Values

java.lang.String
Returns the SSL Client Key file name.

Throws

None.
e*Xchange Partner Manager Implementation Guide 440 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
getSSLClientKeyFileType

Syntax

java.lang.String SSLClientKeyFileType()

Description

SSLClientKeyFileType retrieves the SSL Client Key file type.

Parameters

None.

Return Values

java.lang.String
Returns the SSL Client Key file type. Possible values include “ASN.1” and “PEM”.

Throws

None.

Example

getSSLClientKeyFileType();
=>"PEM"
e*Xchange Partner Manager Implementation Guide 441 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
getTPAttribute

Syntax

TPAttribute getTPAttribute()

Description

getTPAttribute retrieves the TPAttribute object.

Parameters

None.

Return Values

TPAttribute
Returns the TPAttribute object.

Throws

None.
e*Xchange Partner Manager Implementation Guide 442 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
getURL

Syntax

java.lang.String getURL()

Description

getURL retrieves the URL used for an EDI message exchanged with a Trading Partner.

Parameters

None.

Return Values

java.lang.String
Returns the URL.

Throws

None.
e*Xchange Partner Manager Implementation Guide 443 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
getUsageIndicator

Syntax

java.lang.String getUsageIndicator()

Description

getUsageIndicator retrieves the usage indicator for a Trading Partner object.

Parameters

None.

Return Values

java.lang.String
Returns the usage indicator. Possible values include “P” representing Production and
“T” representing Testing.

Throws

None.

Example

getUsageIndicator();
=>"P"
e*Xchange Partner Manager Implementation Guide 444 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
hasCommProt

Syntax

boolean hasCommProt()

Description

hasCommProt checks whether the communication protocol has been defined in this
Trading Partner object.

Parameters

None.

Return Values

boolean
Returns true if the communication protocol exists.

Throws

None.

Example

hasCommProt();
=>true
e*Xchange Partner Manager Implementation Guide 445 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
hasDirection

Syntax

boolean hasDirection()

Description

hasDirection checks whether the direction has been defined in this Trading Partner
object.

Parameters

None.

Return Values

boolean
Returns true if the direction exists.

Throws

None.

Example

hasDirection();
=>true
e*Xchange Partner Manager Implementation Guide 446 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
hasInternalName

Syntax

boolean hasInternalName()

Description

hasInternalName checks whether the internal name of the Trading Partner, as known
by the sending ERP, has been defined for this Trading Partner.

Parameters

None.

Return Values

boolean
Returns true if the internal name exists.

Throws

None.

Example

hasInternalName();
=>true
e*Xchange Partner Manager Implementation Guide 447 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
hasMessageID

Syntax

boolean hasMessageID()

Description

hasMessageID checks whether the original request ID from the internal sending ERP is
defined for this Trading Partner object.

Parameters

None.

Return Values

boolean
Returns true if the request id exists.

Throws

None.

Example

hasMessageID();
=>true
e*Xchange Partner Manager Implementation Guide 448 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
hasMessageIndex

Syntax

boolean hasMessageIndex()

Description

hasMessageIndex checks whether the message index for batched delivery has been
defined for this Trading Partner.

Parameters

None.

Return Values

boolean
Returns true if the message index exists.

Throws

None.

Example

hasMessageIndex();
=>true
e*Xchange Partner Manager Implementation Guide 449 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
hasOrigEventClass

Syntax

boolean hasOrigEventClass()

Description

hasOrigEventClass checks whether the original Event classification has been defined
for this Trading Partner.

Parameters

None.

Return Values

boolean
Returns true if the original Event classification exists.

Throws

None.

Example

hasOrigEventClass();
=>true
e*Xchange Partner Manager Implementation Guide 450 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
hasPartnerName

Syntax

boolean hasPartnerName()

Description

hasPartnerName checks whether the Trading Partner name has been defined for this
Trading Partner object.

Parameters

None.

Return Values

boolean
Returns true if the Partner name exists.

Throws

None.

Example

hasPartnerName();
=>true
e*Xchange Partner Manager Implementation Guide 451 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
hasPayload

Syntax

boolean hasPayload()

Description

hasPayload checks whether the Payload has been defined for this Trading Partner
object.

Parameters

None.

Return Values

boolean
Returns true if the Payload exists.

Throws

None.

Example

hasPayload();
=>true
e*Xchange Partner Manager Implementation Guide 452 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
hasSSLClientCertFileName

Syntax

boolean hasSSLClientCertFileName()

Description

hasSSLClientCertFileName checks whether the file name for the SSL Client Certificate
has been defined for this Trading Partner object.

Parameters

None.

Return Values

boolean
Returns true if the file name exists.

Throws

None.

Example

hasSSLClientCertFileName();
=>true
e*Xchange Partner Manager Implementation Guide 453 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
hasSSLClientCertFileType

Syntax

boolean hasSSLClientCertFileType()

Description

hasSSLClientCertFileType checks whether the SSL Client Certificate file type has been
defined for this Trading Partner object.

Parameters

None.

Return Values

boolean
Returns true if the file type exists.

Throws

None.

Example

hasSSLClientCertFileType();
=>true
e*Xchange Partner Manager Implementation Guide 454 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
hasSSLClientKeyFileName

Syntax

boolean hasSSLClientKeyFileName()

Description

hasSSLClientKeyFileName checks whether the file name for the SSL Client Key has
been defined for this Trading Partner object.

Parameters

None.

Return Values

boolean
Returns true if the file name exists.

Throws

None.

Example

hasSSLClientKeyFileName();
=>true
e*Xchange Partner Manager Implementation Guide 455 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
hasSSLClientKeyFileType

Syntax

boolean hasSSLClientKeyFileType()

Description

hasSSLClientKeyFileType checks whether the SSL Client Key file type has been
defined for this Trading Partner object.

Parameters

None.

Return Values

boolean
Returns true if the file type exists.

Throws

None.

Example

hasSSLClientKeyFileType();
=>true
e*Xchange Partner Manager Implementation Guide 456 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
hasTPAttribute

Syntax

boolean hasTPAttribute()

Description

hasTPAttribute checks whether the TPAttribute has been defined for this Trading
Partner object.

Parameters

None.

Return Values

boolean
Returns true if the TPAttribute exists.

Throws

None.

Example

hasTPAttribute();
=>true
e*Xchange Partner Manager Implementation Guide 457 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
hasUrl

Syntax

boolean hasUrl()

Description

hasUrl checks whether the URL for an EDI message has been defined for this Trading
Partner object.

Parameters

None.

Return Values

boolean
Returns true if the URL exists.

Throws

None.

Example

hasURL();
=>true
e*Xchange Partner Manager Implementation Guide 458 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
hasUsageIndicator

Syntax

boolean hasUsageIndicator()

Description

hasUsageIndicator checks whether the usage indicator has been defined for this
Trading Partner object.

Parameters

None.

Return Values

boolean
Returns true if the usage indicator exists.

Throws

None.

Example

hasUsageIndicator();
=>true
e*Xchange Partner Manager Implementation Guide 459 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
marshal

Syntax

void marshal(org.xml.sax.ContentHandler handler,
org.xml.sax.ErrorHandler errorHandler)

Description

marshal gathers the data contained within this ETD object and formulates it back into a
serialized XML message.

Parameters

Return Values

None.

Throws

com.stc.jcsre.MarshalException

org.xml.sax.SAXException

Name Type Description

handler org.xml.sax.ContentHan
dler

The handler that converts content
within to XML.

errorHandler org.xml.sax.ErrorHandle
r

The handler to address errors during
conversion.
e*Xchange Partner Manager Implementation Guide 460 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
omitCommProt

Syntax

void omitCommProt()

Description

omitCommProt removes the communication protocol from this Trading Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitCommProt();
e*Xchange Partner Manager Implementation Guide 461 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
omitDirection

Syntax

void omitDirection()

Description

omitDirection removes the direction from this Trading Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitDirection();
e*Xchange Partner Manager Implementation Guide 462 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
omitInternalName

Syntax

void omitInternalName()

Description

omitInternalName removes the definition of the Internal Name of the Trading Partner
as known by the sending ERP System from this Trading Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitInternalName();
e*Xchange Partner Manager Implementation Guide 463 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
omitMessageID

Syntax

void omitMessageID()

Description

omitMessageID removes the original request ID from the internal sending ERP from
this Trading Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitMessageID();
e*Xchange Partner Manager Implementation Guide 464 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
omitMessageIndex

Syntax

void omitMessageIndex()

Description

omitMessageIndex removes the message index for batched delivery from this Trading
Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitMessageIndex();
e*Xchange Partner Manager Implementation Guide 465 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
omitOrigEventClass

Syntax

void omitOrigEventClass()

Description

omitOrigEventClass removes the original Event classification from this Trading
Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitOrigEventClass();
e*Xchange Partner Manager Implementation Guide 466 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
omitPartnerName

Syntax

void omitPartnerName()

Description

omitPartnerName removes the Trading Partner name definition from this Trading
Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitPartnerName();
e*Xchange Partner Manager Implementation Guide 467 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
omitPayload

Syntax

void omitPayload()

Description

omitPayload removes the Payload definition from this Trading Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitPayload();
e*Xchange Partner Manager Implementation Guide 468 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
omitSSLClientCertFileName

Syntax

void omitSSLClientCertFileName()

Description

omitSSLClientCertFileName removes the file name for the SSL Client Certificate from
this Trading Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitSSLClientCertFileName();
e*Xchange Partner Manager Implementation Guide 469 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
omitSSLClientCertFileType

Syntax

void omitSSLClientCertFileType()

Description

omitSSLClientCertFileType removes the SSL Client Certificate file type from this
Trading Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitSSLClientCertFileType();
e*Xchange Partner Manager Implementation Guide 470 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
omitSSLClientKeyFileName

Syntax

void omitSSLClientKeyFileName()

Description

omitSSLClientKeyFileName removes the file name for the SSL Client Key from this
Trading Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitSSLClientKeyFileName();
e*Xchange Partner Manager Implementation Guide 471 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
omitSSLClientKeyFileType

Syntax

void omitSSLClientKeyFileType()

Description

omitSSLClientKeyFileType removes the SSL Client Key file type from this Trading
Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitSSLClientKeyFileType();
e*Xchange Partner Manager Implementation Guide 472 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
omitTPAttribute

Syntax

void omitTPAttribute()

Description

omitTPAttribute removes the TPAttribute from this Trading Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitTPAttribute();
e*Xchange Partner Manager Implementation Guide 473 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
omitUrl

Syntax

void omitUrl()

Description

omitUrl removes the URL for EDI messages from this Trading Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitURL();
e*Xchange Partner Manager Implementation Guide 474 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
omitUsageIndicator

Syntax

void omitUsageIndicator()

Description

omitUsageIndicator removes the usage indicator from this Trading Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitUsageIndicator();
e*Xchange Partner Manager Implementation Guide 475 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
setCommProt

Syntax

void setCommProt(java.lang.String val)

Description

setCommProt sets the communication protocol.

Parameters

Return Values

None.

Throws

None.

Example

setCommProt("BATCH");

Name Type Description

val java.lang.String The communication protocol. Possible
values include:
! "BATCH"
! "HTTP"
! "HTTPS"
e*Xchange Partner Manager Implementation Guide 476 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
setDirection

Syntax

void setDirection(java.lang.String val)

Description

setDirection sets the direction of the transaction to or from the trading partner.

Parameters

Return Values

None.

Throws

None.

Example

setDirection("O");

Name Type Description

val java.lang.String The direction. Possible values include:
! “O” - Outbound
! “I” - Inbound
e*Xchange Partner Manager Implementation Guide 477 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
setInternalName

Syntax

void setInternalName(java.lang.String val)

Description

setInternalName sets the Internal Name of the Trading Partner as known by the
sending ERP System.

Parameters

Return Values

None.

Throws

None.

Name Type Description

val java.lang.String The internal sending ERP name.
e*Xchange Partner Manager Implementation Guide 478 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
setMessageID

Syntax

void setMessageID(java.lang.String val)

Description

setMessageID sets the original request ID from the internal sending ERP.

Parameters

Return Values

None.

Throws

None.

Name Type Description

val java.lang.String The original request ID from the
internal sending ERP.
e*Xchange Partner Manager Implementation Guide 479 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
setMessageIndex

Syntax

void setMessageIndex(java.lang.String val)

Description

setMessageIndex sets the message index for batched delivery. For example, 5/7
indicates the fifth message in a batch of seven.

Parameters

Return Values

None.

Throws

None.

Name Type Description

val java.lang.String The message index for batched
delivery.
e*Xchange Partner Manager Implementation Guide 480 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
setOrigEventClass

Syntax

void setOrigEventClass(java.lang.String val)

Description

setOrigEventClass sets the original Event classification for the Trading Partner object.

Parameters

Return Values

None.

Throws

None.

Name Type Description

val java.lang.String The original Event classification.
e*Xchange Partner Manager Implementation Guide 481 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
setPartnerName

Syntax

void setPartnerName(java.lang.String val)

Description

setPartnerName sets the Trading Partner name for the Trading Partner object.

Parameters

Return Values

None.

Throws

None.

Name Type Description

val java.lang.String The Trading Partner name.
e*Xchange Partner Manager Implementation Guide 482 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
setPayload

Syntax

void setPayload(Payload val)

Description

setPayload sets the Payload for the Trading Partner object.

Parameters

Return Values

None.

Throws

None.

Name Type Description

val java.lang.String The Payload object.
e*Xchange Partner Manager Implementation Guide 483 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
setSSLClientCertFileName

Syntax

void setSSLClientCertFileName(java.lang.String val)

Description

setSSLClientCertFileName sets the file name for the SSL Client Certificate.

Parameters

Return Values

None.

Throws

None.

Name Type Description

val java.lang.String The file name.
e*Xchange Partner Manager Implementation Guide 484 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
setSSLClientCertFileType

Syntax

void setSSLClientCertFileType(java.lang.String val)

Description

setSSLClientCertFileType sets the SSL Client Certificate file type.

Parameters

Return Values

None.

Throws

None.

Example

setSSLClientCertFileType("PEM");

Name Type Description

val java.lang.String The file type. Possible values include
“ASN.1” and “PEM”.
e*Xchange Partner Manager Implementation Guide 485 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
setSSLClientKeyFileName

Syntax

void setSSLClientKeyFileName(java.lang.String val)

Description

setSSLClientKeyFileName sets the file name for the SSL Client Key.

Parameters

Return Values

None.

Throws

None.

Name Type Description

val java.lang.String The file name.
e*Xchange Partner Manager Implementation Guide 486 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
setSSLClientKeyFileType

Syntax

void setSSLClientKeyFileType(java.lang.String val)

Description

setSSLClientKeyFileType sets the SSL Client Key file type.

Parameters

Return Values

None.

Throws

None.

Example

setSSLClientKeyFileType("PEM");

Name Type Description

val java.lang.String The file type. Possible values include
“ASN.1” and “PEM”.
e*Xchange Partner Manager Implementation Guide 487 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
setTPAttribute

Syntax

void setTPAttribute(TPAttribute val)

Description

setTPAttribute sets the TPAttribute for the Trading Partner object.

Parameters

Return Values

None.

Throws

None.

Name Type Description

val TPAttribute The TPAttribute object.
e*Xchange Partner Manager Implementation Guide 488 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
setUrl

Syntax

void setUrl(java.lang.String val)

Description

setUrl sets the URL for an EDI message to be exchanged with a Trading Partner.

Parameters

Return Values

None.

Throws

None.

Name Type Description

val java.lang.String The URL.
e*Xchange Partner Manager Implementation Guide 489 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
setUsageIndicator

Syntax

void setUsageIndicator(java.lang.String val)

Description

setUsageIndicator sets the usage indicator of an EDI message.

Parameters

Return Values

None.

Throws

None.

Example

setUsageIndicator("P");

Name Type Description

val java.lang.String The usage indicator of an EDI message.
Possible values include:
! “P” - Production
! “T” - Test
e*Xchange Partner Manager Implementation Guide 490 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
toString

Syntax

java.lang.String toString()

Description

toString converts this ETD object to a printable String form.

Parameters

None.

Return Values

java.lang.String
Returns the XML message to represent by this ETD object.

Throws

None.

Example

toString();
e*Xchange Partner Manager Implementation Guide 491 SeeBeyond Proprietary and Confidential

Chapter 14 Section 14.4
Java Helper Methods TP_EVENT Class
unmarshal
Syntax

void unmarshal(org.xml.sax.InputSource inputSource,
com.stc.jcsre.sml.SAXLexer lexer)

Description

unmarshal takes a serialized (marshalled) form of the e*Insight XML Event and
distributes (unmarshals) the data into this ETD object.

Parameters

Return Values

None.

Throws

org.xml.sax.SAXException, when the data cannot be parsed.

com.stc.jcsre.UnmarshalException, when the data cannot be unmarshalled.

Name Type Description

inputSource org.xml.sax.InputSource The input source for the serialized
data.

lexer com.stc.jcsre.xml.SAXLe
xer

The SAX Lexer (parser) to distribute
the data.
e*Xchange Partner Manager Implementation Guide 492 SeeBeyond Proprietary and Confidential

Appendix A

XML Structure for the e*Xchange Event

This appendix shows the XML structure for the e*Xchange Event Type Definitions
(eX_Standard_Event.ssc and eX_StandardEvent.xsc). If your data conforms to this
structure, you do not need to convert it upon entry to the e*Xchange system.

A.1 XML Structure
<<!-- edited with XML Spy v3.0 NT (http://www.xmlspy.com) by STC (STC)
-->
<!--DTD for eX_Standard_Event.ssc $Id: eX_event.dtd,v 1.1.2.10
2000/09/07 04:43:14 galbers Exp $-->
<!--ePartner Manager Input/Output Event section-->
<!ELEMENT TP_EVENT (PartnerName?, InternalName?, Direction?,

MessageID?, OrigEventC
<!--External Partner Name-->
<!ELEMENT PartnerName (#PCDATA)>
<!--Internal Sending ERP (ex.SAP)-->
<!ELEMENT InternalName (#PCDATA)>
<!--Direction of Transaction to/from Trading Partner (ex.Outbound=O

Inbound=I)-->
<!ELEMENT Direction (#PCDATA)>
<!--Original request ID from Internal Sending ERP-->
<!ELEMENT MessageID (#PCDATA)>
<!--Original Event Classification (ex.QAP for Query Price and

Availability)-->
<!ELEMENT OrigEventClass (#PCDATA)>
<!--Usage Indicator of EDI message by Trading Partner (Production=P

Test=T)-->
<!ELEMENT UsageIndicator (#PCDATA)>
<!--Payload to carry EDI message-->
<!ELEMENT Payload (#PCDATA)>
<!ATTLIST Payload

TYPE (RAW | PROCESSED | ENCRYPTED) #REQUIRED
LOCATION (FILE | DB | URL | EMBEDDED | AUTO) #IMPLIED

>
<!--RAW=Need translation PROCESSED=Already X12 or RN ENCRYPTED=from

Trading Partner>
<!--Communication Protocol (ex. BATCH, HTTP) for sending to Trading

Partner-->
<!ELEMENT CommProt (#PCDATA)>
<!--URL for EDI message to be exchanged with Trading Partner-->
<!ELEMENT Url (#PCDATA)>
<!--SSL information-->
<!ELEMENT SSLClientKeyFileName (#PCDATA)>
<!ELEMENT SSLClientKeyFileType (#PCDATA)>
<!ELEMENT SSLClientCertFileName (#PCDATA)>
<!ELEMENT SSLClientCertFileType (#PCDATA)>
e*Xchange Partner Manager Implementation Guide 493 SeeBeyond Proprietary and Confidential

Appendix A Section A.1
XML Structure for the e*Xchange Event XML Structure
<!--Message Index for Batched delivery, ex. 1|20 means 1 of 20-->
<!ELEMENT MessageIndex (#PCDATA)>
<!--TP Attribute will contain optional repeating name value pair for
storing of TP-->
<!ELEMENT TPAttribute (NameValuePair*)>
<!ELEMENT NameValuePair (Name, Value)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Value (#PCDATA)>
e*Xchange Partner Manager Implementation Guide 494 SeeBeyond Proprietary and Confidential

Glossary
Glossary

attribute (e*Insight)
Attributes pass user-defined control information (programming arguments) to and
from the e*Insight Business Process Manager and its activities.

activity
An activity is an organizational unit for performing a specific function.

API
An acronym for Application Program Interface, which is a set of protocols, routines,
and tools for building software applications. The e*Xchange API consists of a set of
Monk functions that can be called from custom validation Collaborations to interface
with the database.

business process
A business process is a collection of actions and messages, revolving around a specific
business practice, that flow in a specific pattern to produce an end result.

business process instance (BPI)
A unique instantiation of a business process.

Collaboration
A component of an e*Way or BOB that receives and processes Events and forwards the
output to other e*Gate components. Collaborations perform three functions: they
subscribe to Events of a known type, they apply business rules to Event data, and they
publish output Events to a specified recipient. Collaborations use Monk translation
script files with the extension “.tsc” to do the actual data manipulation.

Company (e*Xchange)
An organization with which you conduct electronic business (eBusiness). A company
can consist of one or more trading partners. See also Trading partner.

compensating transaction

A transaction that when executed undoes the effects of the transaction for which it is
compensating. When a transaction and the compensating transaction are both
executed, there should be no net change in the state of affairs. For example, a $100 debit
is the compensating transaction for a $100 credit.

e*Insight Business Process Manager (e*Insight)
The component within the SeeBeyond eBI Product Suite that facilitates the automation
of the business process flow of eBusiness activities.
e*Xchange Partner Manager Implementation Guide 495 SeeBeyond Proprietary and Confidential

Glossary
eBusiness protocol
Generally accepted standards for formatting and exchanging electronic messages
between trading partners. ANSI X12, RosettaNet, and BizTalk are examples of
eBusiness protocols.

e*Xchange Partner Manager (e*Xchange)
An application within the SeeBeyond eBI Product Suite that you use to set up and
maintain trading partner profiles and view processed messages. The e*Xchange also
processes inbound and outbound messages according to certain eBusiness protocols
and your validation Collaborations.

eSecurity Manager (eSM)
An application within the SeeBeyond eBI Product Suite that secures transmission of
business-to-business exchanges over public domains such as the Internet.

Event (Message)
Data to be exchanged, either within e*Xchange or between e*Xchange and external
systems, which has a defined data structure; for example, a known number of fields,
with known characteristics and delimiters. Events are classified by type using Event
Type Definitions.

Event Type Definition (ETD)
An Event Type template, defining Event fields, field sequences, and delimiters. Event
Type Definitions enable e*Xchange systems to identify and transform Event Types.
They are Monk script files with an extension of “.ssc,” short for message structure script
file.

e*Xchange Administrator
An application that allows you to establish user security for e*Xchange Partner
Manager (e*Xchange) and e*Insight Business Process Manager (e*Insight).

extended attributes
Information you can store at the company, trading partner, outer envelope, and inner
envelope levels, as needed for your business. For companies and trading partners, you
can create extended attributes to store specific information about the company or
trading partner. For outer and inner envelopes, the extended attributes are specific to a
particular eBusiness protocol. Characteristics of ANSI X12 Interchange, Functional
Group, and transaction set envelopes are examples of extended attributes you need to
enter if you exchange X12 messages with a trading partner. Contrast with General
attributes.

general attributes
Basic information that identifies companies and trading partners. For inner and outer
envelopes, this includes the information you enter for a trading partner profile that is
necessary for the exchange of messages but is not specific to a particular eBusiness
protocol. The direction of a transmission or the password needed to send messages to
an FTP site are examples of general attributes. Contrast with Extended attributes.
e*Xchange Partner Manager Implementation Guide 496 SeeBeyond Proprietary and Confidential

Glossary
implementation guide (eBusiness Protocol)
A document, published for a particular electronic message standard by an industry
subcommittee, that describes the structure and content of a specific transaction. You
can use the Validation Rules Builder to convert electronic versions of ANSI X12
implementation guides to validation Collaborations used by e*Xchange.

inner envelope
An inner envelope definition is a set of parameters and other information you enter
about each electronic inner envelope you process with e*Xchange Partner Manager.
This definition associates the validation Collaborations that are needed to validate each
kind of transaction.

The version number of the eBusiness protocol that applies to the transaction and
whether the transaction is transmitted interactively or in batch are examples of inner
envelope characteristics.

message tracking attributes
A set of attributes you can define to identify messages stored in the e*Xchange
database. Special message tracking extended attributes can be set up and associated
with a specific message type (protocol, version, and direction). Examples of attributes
that are set up at the message tracking attribute level are Process Instance ID and
Activity Instance ID for RosettaNet and FG and TS control numbers for X12.

outer envelope
The trading partner profile component that you use to enter technical information
about the exchange of messages between you and your trading partner. The type of
eBusiness protocol you agree to use, such as ANSI X12, RosettaNet, or BizTalk, is an
example of an outer envelope characteristic.

Partner Manager Envelope Profile
A partner manager envelope profile is a set of default extended attribute values that
you define for a trading partner profile component (company, trading partner, outer
envelope, or inner envelope).

schema
Files and associated stores created by e*Gate that contain the parameters of all the
components that control, route, and transform data as it moves through e*Gate.

Standard Exchange Format (SEF)
The Standard Exchange Format (SEF) is a flat file representation of an EDI
implementation guideline. It is a standard that defines how data segments and data
elements should be structured so that the message can be understood between trading
partners. It also includes validation rules, for example what are the valid values for a
data element, or conditions such as if Field A is present then Field B is required.

The purpose of SEF is to put the EDI implementation guidelines in a file in machine
readable format so that translators can directly import the file and use the
implementation guidelines to translate or map the EDI file. The file can also be used as
a means to exchange the implementation guidelines between trading partners, and can
e*Xchange Partner Manager Implementation Guide 497 SeeBeyond Proprietary and Confidential

Glossary
be posted on a public bulletin board or on the company's Web site in the Internet to
convey to the public the implementation guidelines used by the company.

The SEF format was developed by Foresight Corporation and is now in the public
domain. Programs that can directly import SEF files can save users considerable time in
developing new translations or maps.

trading partner component
The trading partner profile component that you use to enter business information about
your trading partner. The name of the trading partner, which could be a subdivision of
a company, and the people you want to contact are examples of information you enter
for a trading partner component.

transaction definition
A set of parameters and other information you enter about each electronic transaction
you process with e*Xchange. This definition also associates the validation
Collaborations that are needed to validate each kind of transaction.

transaction set
In X12, each business grouping of data is called a transaction set. For example, a group
of benefit enrollments sent from a sponsor to a payer is considered a transaction set.
Each transaction set contains groups of logically related data in units called segments.
For example, the N4 segment conveys the city, state, ZIP code, and other geographic
information.

A transaction set contains multiple segments, so the addresses of the different parties,
for example, can be conveyed from one computer to the other. An analogy would be
that the transaction set is like a freight train; the segments are like the train’s cars, and
each segment can contain several data elements in the same way that a train car can
hold multiple crates.

Specifically, in X12, the transaction set is comprised of segments ST through SE.

transaction type
The kind of eBusiness protocol you agree to use to exchange data and information with
a particular trading partner. For example, ANSI X12 and RosettaNet are two different
transaction types.

user group
User groups allow you to grant access permissions to a set of users with similar
processing needs without having to specify individual privileges for each user. For
example, the User Administrator can set up a group for users who need full access to a
specific trading partner profile, but who should not be able to view information about
any other profile. The User Administrator assigns each user that meets this criterion to
a particular user group. Then, your eX Administrator (or another user who has been
granted appropriate privileges) grants access privileges to this user group so that all
members of the group can view and modify the desired information.
e*Xchange Partner Manager Implementation Guide 498 SeeBeyond Proprietary and Confidential

Glossary
validation Collaboration
A Collaboration that you create to define the syntax and validate the content of
electronic business-to-business (B2B) messages. One validation Collaboration is
required for each type of electronic transaction to be processed by e*Xchange. You can
use the Validation Rules Builder to automatically generate a validation Collaboration
for a specific kind of X12 transaction, according to specific implementation guidelines.

Validation Rules Builder
An e*Xchange Partner Manager tool for converting electronic EDI implementation
guides into files that are compatible for use with e*Xchange. This conversion tool
accepts Standard Exchange Format (SEF) version 1.4 or 1.5 files and converts then into
e*Gate Integrator Event Type Definition (ETD) and Collaboration Rules files.

XML
Extensible Markup Language. XML is a language that is used in Events or messages in
e*Insight Business Process Manager, containing structured information. XML is
different from String in that XML messages can contain both content, and information
about the content.
e*Xchange Partner Manager Implementation Guide 499 SeeBeyond Proprietary and Confidential

Index
Index

A
acknowledgment handling

for RosettaNet 43
for X12 43

addNameValuePair 417
Alert Agent 30
APIs

compare-equal 323
compare-ge 324
compare-gt 325
compare-le 326
compare-lt 327
eX-count-TP-attribute 221
eX-get-TP_EVENT 219
eX-get-TP-attribute 222
eX-ROS20-Ack-Type 354
eX-ROS20-Create-0A1Notification.dsc 375
eX-ROS20-Create-Except.dsc 377
eX-ROS20-Create-ReceiptAck.dsc 376
eX-ROS20-decrypt-msg 388
eX-ROS20-encrypt-msg 389
eX-ROS20-Generic-To-String 342
eX-ROS20-Get-ActId 367
eX-ROS20-Get-InitPartnerId 373
eX-ROS20-Get-InReplyTo-ActCode 371
eX-ROS20-Get-InReplyTo-MsgId 369
eX-ROS20-Get-PipCode 357
eX-ROS20-Get-PipId 365
eX-ROS20-Get-PipVerId 363
eX-ROS20-Get-SigActCode 359
eX-ROS20-Get-SigActVerId 361
eX-ROS20-get-ssl-keys 393
eX-ROS20-IsResponse? 355
eX-ROS20-IsSignal? 356
eX-ROS20-Pack-RNBM 344
eX-ROS20-Populate-Preamble 349
eX-ROS20-Populate-ServiceHeader 350, 351
eX-ROS20-Request-ID 353
eX-ROS20-Set-ActId 368
eX-ROS20-Set-InitPartnerId 374
eX-ROS20-Set-InReplyTo-ActCode 372
eX-ROS20-Set-InReplyTo-MsgId 370
eX-ROS20-Set-PipCode 358
eX-ROS20-Set-PipId 366

eX-ROS20-Set-PipVerId 364
eX-ROS20-Set-SigActCode 360
eX-ROS20-Set-SigActVerId 362
eX-ROS20-sign-msg 390
eX-ROS20-Unique-ID 352
eX-ROS20-Unpack-RNBM 345
eX-ROS20-Validate-DeliveryHeader 348
eX-ROS20-Validate-Preamble 346
eX-ROS20-Validate-ServiceHeader 347
eX-ROS20-verify-sig 391
eX-RSO20-Parse-Generic 343
eX-security-get-keys-certs 387
eX-set-Activity 397
eX-set-all-BP_EVENT 400
eX-set-Payload 220
eX-set-TP_EVENT 218
eX-set-TP-attribute 223
string-alpha 328
string-alphanumeric 329
string-numeric 330
util-mime-get-header-value 334
util-mime-get-par-value 335
util-mime-make-mime-message 336
util-mime-map-event 337
util-mime-pack-encrypted-msg 338
util-mime-pack-signed-msg 339
util-mime-unpack-signed-message 340
util-security-decrypt-msg 383
util-security-encrypt-msg 384
util-security-sign-msg 385
util-security-verify-sig 386
ux-ack-handler 225
ux-ack-monitor 229
ux-check-shutdown-uid 232
ux-control-check 233
ux-dbproc-ros-inb 235
ux-dbproc-ros-outb 239
ux-dequeue 243
ux-duplicate-check 245
ux-func-ack-handler 247
ux-get-error-str 250
ux-get-fb-count 251
ux-get-header 252
ux-get-key-cert 257
ux-get-mtrk-attrib 260, 261
ux-get-seq-value 263
ux-incr-control-num 264
ux-init-exdb 266
ux-init-ic 268
ux-init-trans 273
ux-init-ts 278
ux-md5-digest 282
ux-ret-edf-batch-ts-msgs 283
ux-ret-edf-fb-ts-msgs 285
e*Xchange Partner Manager Implementation Guide 500 SeeBeyond Proprietary and Confidential

Index
ux-retrieve-997-error 291
ux-retrieve-997-error-tail 294
ux-retrieve-message 296
ux-return-receipt 298
ux-ret-X12-fb-ts-msgs 287, 289
ux-set-fb-overdue 300
ux-store-msg 301
ux-store-msg-errors 305
ux-store-msg-ext 306
ux-store-shutdown-uid 310
ux-track-997-errors 311
ux-update-batch-imm 313
ux-update-control-num 314
ux-update-last-batch-send-time 316
ux-upd-mtrk-element 317, 318, 319
ux-wait-for-ack 320
valid-date-yyyy 331
valid-time 332

B
Batching in X12 45
BOB 32
Business Object Brokers 29, 32

C
CGI Web Server e*Way, how it works 54
cgi_Request_Ack_Collab Collaboration 57
clearNameValuePair 418
Collaboration Rules 32
Collaboration Services 32
Collaborations 32

cgi_Request_Ack_Collab 57
eX_Batch_to_Trading_Partner 49, 54
eX_ePM_Batching 47
eX_ePM_Transaction_Poll 48
eX_from_Batch_to_Trading_Partner 49
ex_from_ePM 42
eX_from_Trading_Partner 62
eX_Https_to_ePM 51
eX_Https_to_Trading_Partner 51
eX_Mux_from_Trading_Partner 56
eX_Poll_Ack_Mon 44
eX_Poll_Receive_FTP 52
eX_POP3_from_Trading_Partner 57
eX_Sent_Batch_to_Trading_Partner 53
eX_SMTP_to_Trading_Partner 58
eX_to_ePM 41
Receive_from_ePM 61
Send_to_ePM 60

company, creating 94, 112, 149, 158
compare-equal 323
compare-ge 324

compare-gt 325
compare-le 326
compare-lt 327
components

e*Xchange Partner Manager
external 39
internal 39

for e*Xchange Partner Manager 39
configuring

e*Xchange database connectivity e*Ways 40
envelope profiles 111, 148
eX_Batch_to_Trading_Partner e*Way 49, 53
eX_ePM e*Way 104
eX_ePM_Ack_Monitor e*Way 44
eX_ePM_Batch e*Way 46
eX_ePM_Trans_Poll e*Way 48
eX_Mux_from_Trading_Partner e*Way 55
eX_Poll_Receive_FTPr e*Way 52
eX_POP3_from_Trading_Partner e*Way 57
eX_SMTP_to_Trading_Partner e*Way 58

Control Brokers 29
conventions, writing in document 16
converting business application data to e*Xchange
format 60
converting the Event to Base 64 encoding 73, 80
countNameValuePair 419
creating the Send_to_ePM ETDs 98, 102

E
e*Gate 28

architecture 28
components 28, 30
schema 28
security 30

e*Gate Integrator 28
e*Gate Monitor 30
e*Gate Schema for e*Xchange 34
e*Way Editor 30
e*Way Intelligent Adapters 29, 31
e*Ways

configuring the e*Xchange database connectivity
e*Ways 40

eX_Batch_from_Trading_Partner 52
eX_Batch_to_Trading_Partner 48
eX_Batch_to_Trading_Partner e*Way 49, 53
eX_ePM 39
eX_ePM_Ack_Monitor 43
eX_ePM_Batch 45
eX_ePM_Batch (configuring) 46
eX_ePM_Trans_Poll 47
eX_from_Trading_Partner 61
eX_Https_to_Trading_Partner 50
eX_Mux_from_Trading_Partner 54, 55
e*Xchange Partner Manager Implementation Guide 501 SeeBeyond Proprietary and Confidential

Index
eX_Poll_Receive_FTP 51
eX_Poll_Receive_FTP e*Way 52
eX_POP3_from_Trading_Partner 57
eX_POP3_from_Trading_Partner e*Way 57
eX_SMTP_to_Trading_Partner 58
eX_SMTP_to_Trading_Partner e*Way 58
Receive_from_ePM 61
Send_to_ePM 59

e*Xchange
back end components overview 35
schema components 34

e*Xchange ETD, understanding 64–72, 76–80
e*Xchange functions 224–321
e*Xchange Partner Manager

components 39
using the ETD in e*Xchange 69, 77

e*Xchange-only Send_to_ePM e*Way 98
e*Xchange-required tracking nodes 60
EAI 25
eBI 23
eBusiness Integration 23
editing the Send_to_ePM e*Way configuration file
98, 101, 120
Enterprise Manager 29
envelope profiles, configuring 111, 148
ePM Event requirements for Fast Batch 45
ePM tracking information 74, 81
ePM-only Send_to_ePM e*Way 120, 134
ETD

structure 64
using, in e*Xchange 69, 77

ETD Editor 30
Event 31
Event Type Definition 31
Event types 31
eX_Batch_to_Trading_Partner Collaboration 49, 54
eX_Batch_to_Trading_Partner e*Way 48, 105
eX_Batch_to_Trading_Partner e*Way, configuring
49, 53
eX_ePM e*Way, configuring 104
eX_ePM_Ack_Monitor e*Way 43
eX_ePM_Ack_Monitor e*Way, configuring 44
eX_ePM_Batch e*Way 45
eX_ePM_Batching Collaboration 47
eX_ePM_Trans_Poll e*Way 47
eX_ePM_Trans_Poll e*Way, configuring 48
eX_ePM_Transaction_Poll Collaboration 48
eX_from_Batch_to_Trading_Partner Collaboration
49
eX_from_Trading_Partner Collaboration 62
eX_from_Trading_Partner e*Way 61
eX_Https_to_ePM Collaboration 51
eX_Https_to_Trading_Partner Collaboration 51
eX_Https_to_Trading_Partner e*Way 50

eX_Mux_from_Trading_Partner Collaboration 56
eX_Mux_from_Trading_Partner e*Way 54
eX_Mux_from_Trading_Partner e*Way,
configuring 55
eX_Poll_Ack_Mon Collaboration 44
eX_Poll_Receive_FFTP Collaboration 52
eX_Poll_Receive_FTP e*Way 51
eX_Poll_Receive_FTP e*Way, configuring 52
eX_POP3_from_Trading Partner e*Way,
configuring 57
eX_POP3_from_Trading_Partner Collaboration 57
eX_Sent_Batch_to_Trading_Partner Collaboration
53
eX_SMTP_to_Trading_Partner Collaboration 58
eX_SMTP_to_Trading_Partner e*Way, configuring
58
eX-count-TP-attribute 221
eX-get-TP_EVENT 219
eX-get-TP-attribute 222
eX-ROS20-Ack-Type 354
eX-ROS20-Create-0A1Notification.dsc 375
eX-ROS20-Create-Except.dsc 377
eX-ROS20-Create-ReceiptAck.dsc 376
eX-ROS20-decrypt-msg 388
eX-ROS20-encrypt-msg 389
eX-ROS20-Generic-To-String 342
eX-ROS20-Get-ActId 367
eX-ROS20-Get-InitPartnerId 373
eX-ROS20-Get-InReplyTo-ActCode 371
eX-ROS20-Get-InReplyTo-MsgId 369
eX-ROS20-Get-PipCode 357
eX-ROS20-Get-PipId 365
eX-ROS20-Get-PipVerId 363
eX-ROS20-Get-SigActCode 359
eX-ROS20-Get-SigActVerId 361
eX-ROS20-get-ssl-keys 393
eX-ROS20-IsResponse? 355
eX-ROS20-IsSignal? 356
eX-ROS20-Pack-RNBM 344
eX-ROS20-Populate-Preamble 349
eX-ROS20-Populate-ServiceHeader 350, 351
eX-ROS20-Request-ID 353
eX-ROS20-Set-ActId 368
eX-ROS20-Set-InitPartnerId 374
eX-ROS20-Set-InReplyTo-ActCode 372
eX-ROS20-Set-InReplyTo-MsgId 370
eX-ROS20-Set-PipCode 358
eX-ROS20-Set-PipId 366
eX-ROS20-Set-PipVerId 364
eX-ROS20-Set-SigActCode 360
eX-ROS20-Set-SigActVerId 362
eX-ROS20-sign-msg 390
eX-ROS20-Unique-ID 352
eX-ROS20-Unpack-RNBM 345
e*Xchange Partner Manager Implementation Guide 502 SeeBeyond Proprietary and Confidential

Index
eX-ROS20-Validate-DeliveryHeader 348
eX-ROS20-Validate-Preamble 346
eX-ROS20-Validate-ServiceHeader 347
eX-ROS20-verify-sig 391
eX-RSO20-Parse-Generic 343
eXSchema 34
eXSchema, copying 85
eX-security-get-keys-certs 387
eX-set-Activity 397
eX-set-all-BP_EVENT 400
eX-set-Payload 220
eX-set-TP_EVENT 218
eX-set-TP-attribute 223

F
Fast Batch, Event requirements for 45
functions

e*Xchange 224–321
Validation Rules Builder 322–394

G
getCommProt 430
getDirection 431
getInternalName 432
getMessageID 433
getMessageIndex 434
getNameValuePair 420, 421
getOrigEventClass 435
getPartnerName 436
getPayload 437
getSSLClientCertFileName 438
getTPAttribute 442
getURL 443
getUsageIndicator 444
glossary 495–499
graphical user interface 29
GUI 29

H
hasCommProt 445
hasDirection 446
hasInternalName 447
hasMessageID 448
hasMessageIndex 449
hasOrigEventClass 450
hasPartnerName 451
hasPayload 452
hasSSLClientCertFileName 453
hasSSLClientCertFileType 454
hasSSLClientKeyFileName 455

hasSSLClientKeyFileType 456
hasTPAttribute 457
hasUrl 458
hasUsageIndicator 459

I
implementation

basic information 83
configuring the e*Gate components 86
copying the eXSchema 85
creating a business process 85
creating trading partner profiles 85
determining the scope of the project 84
overview 83–86
road map 83
testing and tuning the system 86
types of e*Xchange implementations 83

inner envelope
creating 96, 114, 151, 159

IQ Intelligent Queues 31
IQ Managers 31
IQ Services 31
IQs 31

J
Java Helper Methods 395–492

M
marshal 460
Monk functions see functions

N
nodes

populating 74, 81
required by e*Xchange 60

O
omitCommProt 461
omitDirection 462
omitInternalName 463
omitMessageID 464
omitMessageIndex 465
omitOrigEventClass 466
omitPartnerName 467
omitPayload 468
omitSSLClientCertFileName 469
omitSSLClientCertFileType 470
omitSSLClientKeyFileName 471
e*Xchange Partner Manager Implementation Guide 503 SeeBeyond Proprietary and Confidential

Index
omitSSLClientKeyFileType 472
omitTPAttribute 473
omitUrl 474
omitUsageIndicator 475
outer envelope, creating 95, 113, 150, 158

P
Participating Host components 29
payload, in e*Xchange 74, 81
payload, in ePM 167
populating the required e*Xchange nodes 74, 81
public domain 27

R
Receive_from_ePM Collaboration 61
Receive_from_ePM e*Way 61
Registry Host components 29
RosettaNet

sending a purchase order (case study) 143
RosettaNet acknowledgment handling 43
running and testing the e*Xchange-only scenario
105

S
schema, copying 85
SeeBeyond Collaboration Rules Editor 29
SeeBeyond Collaboration-ID Rules Editor 30
SeeBeyond eBusiness Integration Suite 19–22
SEF file, creating 91
Send_to_ePM Collaboration 60
Send_to_ePM e*Way 59

for e*Xchange only 98
for ePM only 120, 134

setCommProt 476
setDirection 477
setInternalName 478
setMessageID 479
setMessageIndex 480
setNameValuePair 425
setOrigEventClass 481
setPartnerName 482
setPayload 483
setSSLClientCertFileName 484
setSSLClientCertFileType 485
setSSLClientKeyFileName 486
setSSLClientKeyFileType 487
setTPAttribute 488
setUrl 489
setUsageIndicator 490
string-alpha 328

string-alphanumeric 329
string-numeric 330
supporting documents 18

T
TP 428
trading partner profiles, creating 93
trading partner, creating 94, 113, 150, 158

U
UN/EDIFACT

sending a purchase order (case study) 107
understanding the e*Xchange ETD 64–72, 76–80
Using Java with e*Xchange 76, 395–492
using the ETD in e*Xchange 69, 77
util-mime-get-header-value 334
util-mime-get-par-value 335
util-mime-make-mime-message 336
util-mime-map-event 337
util-mime-pack-encrypted-msg 338
util-mime-pack-signed-msg 339
util-mime-unpack-signed-message 340
util-security-decrypt-msg 383
util-security-encrypt-msg 384
util-security-sign-msg 385
util-security-verify-sig 386
ux-ack-handler 225
ux-ack-monitor 229
ux-check-shutdown-uid 232
ux-control-check 233
ux-dbproc-ros-inb 235
ux-dbproc-ros-outb 239
ux-dequeue 243
ux-duplicate-check 245
ux-func-ack-handler 247
ux-get-error-str 250
ux-get-fb-count 251
ux-get-header 252
ux-get-key-cert 257
ux-get-mtrk-attrib 260, 261
ux-get-seq-value 263
ux-incr-control-num 264
ux-init-exdb 266
ux-init-ic 268
ux-init-trans 273
ux-init-ts 278
ux-md5-digest 282
ux-ret-edf-batch-ts-msgs 283
ux-ret-edf-fb-ts-msgs 285
ux-retrieve-997-error 291
ux-retrieve-997-error-tail 294
ux-retrieve-message 296
e*Xchange Partner Manager Implementation Guide 504 SeeBeyond Proprietary and Confidential

Index
ux-return-receipt 298
ux-ret-X12-fb-ts-msgs 287, 289
ux-set-fb-overdue 300
ux-store-msg 301
ux-store-msg-errors 305
ux-store-msg-ext 306
ux-store-shutdown-uid 310
ux-track-997-errors 311
ux-update-batch-imm 313
ux-update-control-num 314
ux-update-last-batch-send-time 316
ux-upd-mtrk-element 317, 318, 319
ux-wait-for-ack 320

V
validation Collaboration, creating 91
Validation Rules Builder APIs

compare-equal 323
compare-ge 324
compare-gt 325
compare-le 326
compare-lt 327
string-alpha 328
string-alphanumeric 329
string-numeric 330
valid-date-yyyy 331
valid-time 332

Validation Rules Builder Monk functions 322–394
Validation Rules Builder, creating Collaboration
with 91
valid-date-yyyy 331
valid-time 332
Value Added Network 27
VAN 27

X
X12

acknowledgment handling 43
batching in 45
sending an X12 purchase order (case study) 87

XML
element with sub-elements 65
element without sub-elements 65
ETD structure for an XML attribute 66
structure for the e*Xchange Event 493–494
e*Xchange Partner Manager Implementation Guide 505 SeeBeyond Proprietary and Confidential

	e*Xchange Partner Manager Implementation Guide
	Contents
	Introduction
	1.1 Document Purpose and Scope
	1.2 Intended Audience
	1.3 Organization of Information
	1.4 Writing Conventions
	1.5 Supporting Documents
	1.6 SeeBeyond Web Site

	Introduction to the SeeBeyond eBI Suite
	2.1 SeeBeyond eBusiness Integration Suite
	2.1.1 SeeBeyond eBusiness Integration Suite Components
	e*Gate Integrator Components

	2.2 Building an eApplication

	Business-to-Business Integration
	3.1 An eBI Example
	3.2 How Is eBI different from EAI?
	3.2.1 Traditional EAI
	3.2.2 The Emerging eBI Model

	3.3 Meeting the Challenges of eBI
	3.3.1 Meeting the EAI Challenge
	3.3.2 Meeting the Trading-Partner Challenge
	3.3.3 Meeting the Challenge of Using Public Domains

	3.4 The Benefits of eBI
	3.4.1 Increased Efficiency
	3.4.2 Tracking Complete Business Transactions
	3.4.3 Business Model Analysis

	Understanding e*Gate Integrator
	4.1 e*Gate Architecture
	4.1.1 Schemas
	4.1.2 Components
	Registry Host Components
	Participating Host Components
	Graphical User Interfaces (GUIs)

	4.2 e*Gate Components
	4.2.1 Security and e*Gate Users
	4.2.2 Event Types and Event Type Definitions
	4.2.3 IQ Intelligent Queues, IQ Services, and IQ Managers
	4.2.4 e*Way Intelligent Adapters
	4.2.5 BOBs
	4.2.6 Collaborations, Collaboration Rules, and Collaboration Services

	e*Xchange Schema Components
	5.1 The Purpose of the e*Gate Schema for e*Xchange
	5.1.1 e*Xchange Components

	5.2 e*Gate schema for e*Xchange Components Overview
	5.2.1 e*Xchange Schema Component Relationships Diagram

	5.3 e*Xchange Partner Manager Components
	e*Xchange Partner Manager—Internal Components
	e*Xchange Partner Manager—External Components
	5.3.1 eX_ePM e*Way
	Configuring the e*Xchange Database Connectivity e*Ways
	eX_to_ePM Collaboration
	eX_from_ePM Collaboration

	5.3.2 eX_ePM_Ack_Monitor e*Way
	X12 and UN/EDIFACT Acknowledgment Handling
	RosettaNet Acknowledgment Handling
	Configuring the eX_ePM_Ack_Monitor e*Way
	eX_Poll_Ack_Mon Collaboration

	5.3.3 eX_ePM_Batch e*Way
	Configuring the eX_ePM_Batch e*Way
	Scaling of eX_ePM _Batch e*Way
	eX_ePM_Batching Collaboration

	5.3.4 eX_ePM_Trans_Poll e*Way
	Configuring the eX_ePM_Trans_Poll e*Way
	eX_ePM_Transaction_Poll Collaboration

	5.3.5 eX_Batch_to_Trading_Partner e*Way
	Configuring the eX_Batch_to_Trading_Partner e*Way
	eX_Batch_to_Trading_Partner Collaboration
	eX_from_Batch_to_Trading_Partner Collaboration

	5.3.6 eX_Https_to_Trading_Partner e*Way
	Configuring the eX_Https_to_Trading_Partner e*Way
	eX_Https_to_Trading_Partner Collaboration
	eX_Https_to_ePM Collaboration

	5.3.7 eX_Poll_Receive_FTP e*Way
	Configuring the eX_Poll_Receive_FTP e*Way
	eX_Poll_Receive_FTP Collaboration

	5.3.8 eX_Batch_from_Trading_Partner e*Way
	Configuring the eX_Batch_from_Trading_Partner e*Way
	eX_Sent_Batch_from_Trading_Partner Collaboration
	eX_Batch_from_Trading_Partner Collaboration

	5.3.9 eX_Mux_from_Trading_Partner e*Way
	Configuring the eX_Mux_from_Trading_Partner e*Way
	eX_Mux_from_Trading_Partner Collaboration
	cgi_Request_Ack_Collab Collaboration

	5.3.10 eX_POP3_from_Trading_Partner e*Way
	Configuring the eX_POP3_from_Trading_Partner e*Way
	eX_POP3_from_Trading_Partner Collaboration

	5.3.11 eX_SMTP_to_Trading_Partner e*Way
	Configuring the eX_SMTP_to_Trading_Partner e*Way
	eX_SMTP_to_Trading_Partner Collaboration

	5.3.12 Send_to_ePM e*Way
	Configuring the Send_to_ePM e*Way
	Send_to_ePM Collaboration
	Converting Business Application Data to e*Xchange Format
	e*Xchange-required Tracking Nodes

	5.3.13 Receive_from_ePM e*Way
	Configuring the Receive_from_ePM e*Way
	Receive_from_ePM Collaboration

	5.3.14 eX_from_Trading_Partner e*Way
	Configuring the eX_from_Trading_Partner e*Way
	eX_from_Trading_Partner Collaboration

	Using the Monk e*Xchange ETD
	6.1 ETD Structure
	6.1.1 XML Element with Sub-elements
	6.1.2 XML Element without sub-elements
	6.1.3 XML Attribute

	6.2 Element Overview
	Example: XML Element with Sub-elements
	Example: XML Element with Attributes

	6.3 Using the ETD in e*Xchange
	TP_EVENT

	6.4 Sending Data to e*Xchange
	Put the Data into the Required Format
	Convert the Event to Base 64 Encoding
	Populate the Required e*Xchange Nodes

	Using the Java e*Xchange ETD
	7.1 Understanding the Java e*Xchange ETD
	7.2 Element Overview
	7.2.1 Using the ETD with e*Xchange
	TP_EVENT

	7.3 Sending a Message to e*Xchange
	Populate the Required e*Xchange Nodes

	Implementation Overview
	8.1 Basic Information
	8.1.1 Types of e*Xchange Implementations

	8.2 Implementation Road Map
	Step 1: Determine the Scope of the Project
	Step 2: Create Trading Partner Profiles
	Step 3: Copy the eXSchema
	Step 4: Configure the e*Gate Components
	Step 5: Test and Tune the System

	e*Xchange Implementation—X12
	9.1 Overview
	9.1.1 Case Study: Sending an X12 850 Purchase Order

	9.2 Using the Implementation Sample
	9.3 Create Necessary Validation Collaborations
	9.3.1 Create the SEF File
	9.3.2 Create the Validation Collaboration with the VRB

	9.4 Create the Trading Partner Profiles
	Trading Partner Information Hierarchy
	9.4.1 The Savvy Toy Company Trading Partner
	Step 1: Create the Company
	Step 2: Create the Trading Partner
	Step 3: Set Up the B2B Protocol Information
	Step 4: Create the Message Profile

	9.5 Clone the eXSchema
	9.6 Configure the e*Way to Send the Message to e*Xchange
	The e*Xchange Send_to_ePM e*Way
	9.6.1 Configuring the Send_to_ePM_Java e*Way
	Step 1: Edit the Send_to_ePM_Java e*Way Configuration File
	Step 2: Create the Send_to_ePM_Java ETDs
	Step 3: Create the Send_to_ePM_Java Collaboration Rule and Collaboration Rule Script
	Step 4: Create the Send_to_ePM_Java Collaboration

	9.6.2 Configuring the Send_to_ePM_Monk e*Way
	Step 1: Edit the Send_to_ePM_Monk e*Way Configuration File
	Step 2: Create the Send_to_ePM_Monk ETDs
	Step 3: Create the Send_to_ePM_Monk Collaboration Rules Script
	Step 4: Create the Send_to_ePM_Monk Collaboration Rule
	Step 5: Create the Send_to_ePM_Monk Collaboration

	9.7 Configure the eX_ePM e*Way
	9.8 Configure Any Other e*Gate Components
	9.9 Run and Test the e*Xchange Scenario
	Viewing the Results in Message Tracking

	9.10 Editing the Data File

	e*Xchange Implementation—UN/EDIFACT
	10.1 Overview
	10.1.1 Case Study: Sending an UN/EDIFACT Purchase Order

	10.2 Using the Implementation Sample
	10.3 Create the Trading Partner Profiles
	Trading Partner Information Hierarchy
	10.3.1 The Car Interiors Trading Partner
	Step 1: Create the Company
	Step 2: Create the Trading Partner
	Step 3: Set up the Inbound B2B Protocol Information
	Step 4: Create the Inbound Message Profiles
	Step 5: Set up outbound B2B Protocol Information
	Step 6: Create the Outbound Message Profiles
	Step 7: Configure Return Messages for Inbound

	10.4 Clone the eXSchema
	10.5 Configure the TP_Order_Feeder e*Way
	The e*Xchange TP_Order_Feeder e*Way
	10.5.1 Step 1: Create and configure the TP_Order_Feeder e*Way
	10.5.2 Step 2: Create the TP_Order_Feeder ETDs
	10.5.3 Step 3: Create the TP_Order_Feeder Collaboration
	Convert the Event to Base 64 Encoding
	Populate the Required e*Xchange Nodes
	The e*Xchange TP_Order_Feeder CRS
	TP_Order_Feeder Collaboration Properties Setup

	10.6 Configure the Internal_Order_Eater e*Way
	The e*Xchange Internal_Order_Eater e*Way
	10.6.1 Step 1: Create and Configure the Internal_Order_Eater e*Way
	10.6.2 Step 2: Create the Internal_Order_Eater Collaboration
	The e*Xchange Internal_Order_Eater CRS
	Internal_Order_Eater Collaboration Properties Setup

	10.7 Configure the eX_ePM e*Way
	10.8 Editing the Data Files
	10.9 Running the Scenario
	Viewing the Results in Message Tracking

	10.10 Sending the Response
	10.11 Configure the Internal_OrderResponse_Feeder e*Way
	The e*Xchange Internal_OrderResponse_Feeder e*Way
	10.11.1 Step 1: Create and Configure the Internal_OrderResponse_Feeder e*Way
	10.11.2 Step 2: Create the Internal_OrderResponse_Feeder Collaboration
	The e*Xchange Internal_OrderResponse_Feeder CRS
	Internal_OrderResponse_Feeder Collaboration Properties Setup

	10.11.3 Sending and Viewing the Response Message
	Viewing the Results in Message Tracking

	10.12 Receiving a Control Message from the Trading Partner
	10.12.1 Editing the Data File
	10.12.2 Preparing the Data File
	10.12.3 Copying the Response Control Numbers
	10.12.4 Incrementing the UNB/UNZ Control Numbers
	10.12.5 Sending and Viewing the Control Message

	e*Xchange Implementation—RosettaNet
	11.1 Overview
	11.1.1 Case Study: Sending a RosettaNet Purchase Order

	11.2 Using the Implementation Sample
	11.3 Create the Trading Partner Profiles
	Trading Partner Information Hierarchy
	11.3.1 The Retailer Company
	Step 1: Create the Wholesaler Company
	Step 2: Create the Wholesaler Trading Partner
	Step 3: Set Up Inbound B2B Protocol Information (Wholesaler TP)
	Step 4: Create the Inbound Message Profiles (Wholesaler TP)
	Step 5: Set Up Outbound B2B Protocol Information (Wholesaler TP)
	Step 6: Create the Outbound Message Profiles (Wholesaler TP)
	Step 7: Configure Return Messages for Inbound (Wholesaler TP)

	11.4 The Wholesaler
	Step 1: Create the Retailer Company
	Step 2: Create the Retailer Trading Partner
	Step 3: Set Up Inbound B2B Protocol Information (Retailer TP)
	Step 4: Create the Inbound Message Profiles (Retailer TP)
	Step 5: Set Up the Outbound B2B Protocol Information (Retailer TP)
	Step 6: Set Up the Outbound Message Profiles (Retailer TP)
	Step 7: Configure Return Messages for Inbound (Retailer TP)

	11.5 Clone the eXSchema
	11.6 Configure the Internal_Order_Feeder e*Way
	The e*Xchange Internal_Order_Feeder e*Way
	11.6.1 Step 1: Create and configure the Internal_Order_Feeder e*Way
	11.6.2 Step 2: Create the Internal_Order_Feeder ETDs
	11.6.3 Step 3: Create the Internal_Order_Feeder Collaboration
	Convert the Event to Base 64 Encoding
	Populate the Required e*Xchange Nodes
	The e*Xchange Internal_Order_Feeder CRS
	Internal_Order_Feeder Collaboration Properties Setup

	11.7 Configure the TP_Order_Eater e*Way
	The e*Xchange TP_Order_Eater e*Way
	11.7.1 Step 1: Create and configure the TP_Order_Eater e*Way
	11.7.2 Step 2: Create the TP_Order_Eater Collaboration
	The e*Xchange TP_Order_Eater CRS
	TP_Order_Eater Collaboration Properties Setup

	11.8 Configure the TP_Order_Feeder e*Way
	The e*Xchange TP_Order_Feeder e*Way
	11.8.1 Step 1: Create and configure the TP_Order_Feeder e*Way
	11.8.2 Step 2: Create the TP_Order_Feeder Collaboration
	Convert the Event to Base 64 Encoding
	Populate the Required e*Xchange Nodes
	The e*Xchange TP_Order_Feeder CRS
	TP_Order_Feeder Collaboration Properties Setup

	11.9 Configure the Internal_Eater e*Way
	The e*Xchange Internal_Eater e*Way
	11.9.1 Step 1: Create and configure the Internal_Eater e*Way
	11.9.2 Step 2: Create the Internal_Eater Collaboration
	Internal_Eater Collaboration Properties Setup

	11.10 Configure the Internal_Response_Feeder e*Way
	The e*Xchange Internal_Response_Feeder e*Way
	11.10.1 Step 1: Create and configure the Internal_Response_Feeder e*Way
	11.10.2 Step 2: Create the Internal_Response_Feeder Collaboration
	Convert the Event to Base 64 Encoding
	Populate the Required e*Xchange Nodes
	The e*Xchange Internal_Response_Feeder CRS
	Internal_Response_Feeder Collaboration Properties Setup

	11.11 Configure the TP_Response_Eater e*Way
	The e*Xchange TP_Response_Eater e*Way
	11.11.1 Step 1: Create and configure the TP_Response_Eater e*Way
	11.11.2 Step 2: Create the TP_Response_Eater Collaboration
	The e*Xchange TP_Response_Eater CRS
	TP_Response_Eater Collaboration Properties Setup

	11.12 Configure the TP_Response_Feeder e*Way
	The e*Xchange TP_Response_Feeder e*Way
	11.12.1 Step 1: Create and Configure the TP_Response_Feeder e*Way
	11.12.2 Step 2: Create the TP_Response_Feeder Collaboration
	Convert the Event to Base 64 Encoding
	Populate the Required e*Xchange Nodes
	The e*Xchange TP_Response_Feeder CRS
	TP_Response_Feeder Collaboration Properties Setup

	11.13 Configure the eX_ePM e*Way
	11.14 Running the Scenario
	Viewing the Results in Message Tracking

	11.15 Sending the Response
	Viewing the Results in Message Tracking

	11.16 Editing the Data Files

	Advanced Configuration
	12.1 Manually Creating a Validation Rules Collaboration
	12.1.1 Creating a Validation Rules Collaboration for X12 or UN/ EDIFACT
	Creating the Validation ETD
	Creating the Validation Collaboration

	12.1.2 Creating a Validation Rules Collaboration for RosettaNet
	Using the util-add-to-error function
	Predefined Validation Scripts

	12.2 Adding a Custom Protocol
	12.2.1 Adding a Custom Protocol for X12 or UN/EDIFACT
	Step 1: Add a Comm Protocol to the Code Table
	Step 2: Add an Event Type for the Protocol
	Step 3: Update eX_from_ePM Collaboration Rule
	Step 4: Update eX_from_ePM Collaboration
	Step 5: Update eX_ePM_Send_To_External.monk
	Step 6: Update eX_from_ePM.tsc

	12.2.2 Adding a Customer Protocol for RosettaNet 1.1
	Step 1: Add a Comm Protocol to the Code Table
	Step 2: Add an Event Type for the Protocol
	Step 3: Update eX_from_ePM Collaboration Rule
	Step 4: Update eX_from_ePM Collaboration
	Step 5: Update eX_ROS_main.dsc
	Step 6: Update eX_from_ePM.tsc
	Step 7: Modify ack_mon.dsc

	12.2.3 Adding a Customer Protocol for RosettaNet 2.0
	Step 1: Add a Comm Protocol to the Code Table
	Step 2: Add an Event Type for the Protocol
	Step 3: Update eX_from_ePM Collaboration Rule
	Step 4: Update eX_from_ePM Collaboration
	Step 5: Update eX_ROS_Send_To_Egate.monk
	Step 6: Update eX_from_ePM.tsc

	e*Xchange Partner Manager Functions
	13.1 e*Xchange Helper Monk Functions
	eX-set-TP_EVENT
	eX-get-TP_EVENT
	eX-set-Payload
	eX-count-TP-attribute
	eX-get-TP-attribute
	eX-set-TP-attribute

	13.2 e*Xchange Functions
	ux-ack-handler
	ux-ack-monitor
	ux-check-shutdown-uid
	ux-control-check
	ux-dbproc-ros-inb
	ux-dbproc-ros-outb
	ux-dequeue
	ux-duplicate-check
	ux-func-ack-handler
	ux-get-error-str
	ux-get-fb-count
	ux-get-header
	ux-get-key-cert
	ux-get-lock-ext-attrib-db
	ux-get-mtrk-attrib
	ux-get-seq-value
	ux-incr-control-num
	ux-init-exdb
	ux-init-ic
	ux-init-trans
	ux-init-ts
	ux-md5-digest
	ux-ret-edf-batch-ts-msgs
	ux-ret-edf-fb-ts-msgs
	ux-ret-X12-batch-ts-msgs
	ux-ret-X12-fb-ts-msgs
	ux-retrieve-997-error
	ux-retrieve-997-error-tail
	ux-retrieve-message
	ux-return-receipt
	ux-set-fb-overdue
	ux-store-msg
	ux-store-msg-errors
	ux-store-msg-ext
	ux-store-shutdown-uid
	ux-track-997-errors
	ux-update-batch-imm
	ux-update-control-num
	ux-update-last-batch-send-time
	ux-upd-mtrk-data-item
	ux-upd-mtrk-element
	ux-upd-mtrk-ext-data
	ux-wait-for-ack

	13.3 Monk Functions Used by the Validation Rules Builder
	compare-equal
	compare-ge
	compare-gt
	compare-le
	compare-lt
	string-alpha
	string-alphanumeric
	string-numeric
	valid-date-yyyy
	valid-time

	13.4 e*Xchange MIME Functions
	util-mime-get-header-value
	util-mime-get-par-value
	util-mime-make-mime-message
	util-mime-map-event
	util-mime-pack-encrypted-msg
	util-mime-pack-signed-msg
	util-mime-unpack-signed-message

	13.5 e*Xchange RosettaNet 2.0 Functions
	eX-ROS20-Generic-To-String
	eX-ROS20-Parse-Generic
	eX-ROS20-Pack-RNBM
	eX-ROS20-Unpack-RNBM
	eX-ROS20-Validate-Preamble
	eX-ROS20-Validate-ServiceHeader
	eX-ROS20-Validate-DeliveryHeader
	eX-ROS20-Populate-Preamble
	eX-ROS20-Populate-ServiceHeader
	eX-ROS20-Populate-DeliveryHeader
	eX-ROS20-Unique-ID
	eX-ROS20-Request-ID
	eX-ROS20-Ack-Type
	eX-ROS20-IsResponse?
	eX-ROS20-IsSignal?
	eX-ROS20-Get-PipCode
	eX-ROS20-Set-PipCode
	eX-ROS20-Get-SigActCode
	eX-ROS20-Set-SigActCode
	eX-ROS20-Get-SigActVerId
	eX-ROS20-Set-SigActVerId
	eX-ROS20-Get-PipVerId
	eX-ROS20-Set-PipVerId
	eX-ROS20-Get-PipId
	eX-ROS20-Set-PipId
	eX-ROS20-Get-ActId
	eX-ROS20-Set-ActId
	eX-ROS20-Get-InReplyTo-MsgId
	eX-ROS20-Set-InReplyTo-MsgId
	eX-ROS20-Get-InReplyTo-ActCode
	eX-ROS20-Set-InReplyTo-ActCode
	eX-ROS20-Get-InitPartnerId
	eX-ROS20-Set-InitPartnerId
	eX-ROS20-Create-0A1Notification
	eX-ROS20-Create-ReceiptAck
	eX-ROS20-Create-Except

	13.6 e*Xchange Security Functions
	13.6.1 Operational Groups
	util-security-decrypt-msg
	util-security-encrypt-msg
	util-security-sign-msg
	util-security-verify-sig
	eX-security-get-keys-certs
	eX-ROS20-decrypt-msg
	eX-ROS20-encrypt-msg
	eX-ROS20-sign-msg
	eX-ROS20-verify-sig
	eX-ROS20-get-ssl-keys

	Java Helper Methods
	14.1 NameValuePair Class
	getNAME
	getVALUE
	marshal
	setNAME
	setVALUE
	toString
	unmarshal

	14.2 Payload Class
	get$Text
	getLOCATION
	getTYPE
	hasLOCATION
	marshal
	omitLOCATION
	set$Text
	setLOCATION
	setTYPE
	toString
	unmarshal

	14.3 TPAttribute Class
	addNameValuePair
	clearNameValuePair
	countNameValuePair
	getNameValuePair_Value
	getNameValuePair
	hasNameValuePair
	marshal
	removeNameValuePair
	setNameValuePair
	toString
	unmarshal

	14.4 TP_EVENT Class
	getCommProt
	getDirection
	getInternalName
	getMessageID
	getMessageIndex
	getOrigEventClass
	getPartnerName
	getPayload
	getSSLClientCertFileName
	getSSLClientCertFileType
	getSSLClientKeyFileName
	getSSLClientKeyFileType
	getTPAttribute
	getURL
	getUsageIndicator
	hasCommProt
	hasDirection
	hasInternalName
	hasMessageID
	hasMessageIndex
	hasOrigEventClass
	hasPartnerName
	hasPayload
	hasSSLClientCertFileName
	hasSSLClientCertFileType
	hasSSLClientKeyFileName
	hasSSLClientKeyFileType
	hasTPAttribute
	hasUrl
	hasUsageIndicator
	marshal
	omitCommProt
	omitDirection
	omitInternalName
	omitMessageID
	omitMessageIndex
	omitOrigEventClass
	omitPartnerName
	omitPayload
	omitSSLClientCertFileName
	omitSSLClientCertFileType
	omitSSLClientKeyFileName
	omitSSLClientKeyFileType
	omitTPAttribute
	omitUrl
	omitUsageIndicator
	setCommProt
	setDirection
	setInternalName
	setMessageID
	setMessageIndex
	setOrigEventClass
	setPartnerName
	setPayload
	setSSLClientCertFileName
	setSSLClientCertFileType
	setSSLClientKeyFileName
	setSSLClientKeyFileType
	setTPAttribute
	setUrl
	setUsageIndicator
	toString
	unmarshal

	XML Structure for the e*Xchange Event
	A.1 XML Structure

	Glossary
	Index
	A
	acknowledgment handling
	addNameValuePair 417
	Alert Agent 30
	APIs

	B
	Batching in X12 45
	BOB 32
	Business Object Brokers 29, 32

	C
	CGI Web Server e*Way, how it works 54
	cgi_Request_Ack_Collab Collaboration 57
	clearNameValuePair 418
	Collaboration Rules 32
	Collaboration Services 32
	Collaborations 32
	company, creating 94, 112, 149, 158
	compare-equal 323
	compare-ge 324
	compare-gt 325
	compare-le 326
	compare-lt 327
	components
	configuring
	Control Brokers 29
	conventions, writing in document 16
	converting business application data to e*Xchange format 60
	converting the Event to Base 64 encoding 73, 80
	countNameValuePair 419
	creating the Send_to_ePM ETDs 98, 102

	E
	e*Gate 28
	e*Gate Integrator 28
	e*Gate Monitor 30
	e*Gate Schema for e*Xchange 34
	e*Way Editor 30
	e*Way Intelligent Adapters 29, 31
	e*Ways
	e*Xchange
	e*Xchange ETD, understanding 64–72, 76–80
	e*Xchange functions 224–321
	e*Xchange Partner Manager
	e*Xchange-only Send_to_ePM e*Way 98
	e*Xchange-required tracking nodes 60
	EAI 25
	eBI 23
	eBusiness Integration 23
	editing the Send_to_ePM e*Way configuration file 98, 101, 120
	Enterprise Manager 29
	envelope profiles, configuring 111, 148
	ePM Event requirements for Fast Batch 45
	ePM tracking information 74, 81
	ePM-only Send_to_ePM e*Way 120, 134
	ETD
	ETD Editor 30
	Event 31
	Event Type Definition 31
	Event types 31
	eX_Batch_to_Trading_Partner Collaboration 49, 54
	eX_Batch_to_Trading_Partner e*Way 48, 105
	eX_Batch_to_Trading_Partner e*Way, configuring 49, 53
	eX_ePM e*Way, configuring 104
	eX_ePM_Ack_Monitor e*Way 43
	eX_ePM_Ack_Monitor e*Way, configuring 44
	eX_ePM_Batch e*Way 45
	eX_ePM_Batching Collaboration 47
	eX_ePM_Trans_Poll e*Way 47
	eX_ePM_Trans_Poll e*Way, configuring 48
	eX_ePM_Transaction_Poll Collaboration 48
	eX_from_Batch_to_Trading_Partner Collaboration 49
	eX_from_Trading_Partner Collaboration 62
	eX_from_Trading_Partner e*Way 61
	eX_Https_to_ePM Collaboration 51
	eX_Https_to_Trading_Partner Collaboration 51
	eX_Https_to_Trading_Partner e*Way 50
	eX_Mux_from_Trading_Partner Collaboration 56
	eX_Mux_from_Trading_Partner e*Way 54
	eX_Mux_from_Trading_Partner e*Way, configuring 55
	eX_Poll_Ack_Mon Collaboration 44
	eX_Poll_Receive_FFTP Collaboration 52
	eX_Poll_Receive_FTP e*Way 51
	eX_Poll_Receive_FTP e*Way, configuring 52
	eX_POP3_from_Trading Partner e*Way, configuring 57
	eX_POP3_from_Trading_Partner Collaboration 57
	eX_Sent_Batch_to_Trading_Partner Collaboration 53
	eX_SMTP_to_Trading_Partner Collaboration 58
	eX_SMTP_to_Trading_Partner e*Way, configuring 58
	eX-count-TP-attribute 221
	eX-get-TP_EVENT 219
	eX-get-TP-attribute 222
	eX-ROS20-Ack-Type 354
	eX-ROS20-Create-0A1Notification.dsc 375
	eX-ROS20-Create-Except.dsc 377
	eX-ROS20-Create-ReceiptAck.dsc 376
	eX-ROS20-decrypt-msg 388
	eX-ROS20-encrypt-msg 389
	eX-ROS20-Generic-To-String 342
	eX-ROS20-Get-ActId 367
	eX-ROS20-Get-InitPartnerId 373
	eX-ROS20-Get-InReplyTo-ActCode 371
	eX-ROS20-Get-InReplyTo-MsgId 369
	eX-ROS20-Get-PipCode 357
	eX-ROS20-Get-PipId 365
	eX-ROS20-Get-PipVerId 363
	eX-ROS20-Get-SigActCode 359
	eX-ROS20-Get-SigActVerId 361
	eX-ROS20-get-ssl-keys 393
	eX-ROS20-IsResponse? 355
	eX-ROS20-IsSignal? 356
	eX-ROS20-Pack-RNBM 344
	eX-ROS20-Populate-Preamble 349
	eX-ROS20-Populate-ServiceHeader 350, 351
	eX-ROS20-Request-ID 353
	eX-ROS20-Set-ActId 368
	eX-ROS20-Set-InitPartnerId 374
	eX-ROS20-Set-InReplyTo-ActCode 372
	eX-ROS20-Set-InReplyTo-MsgId 370
	eX-ROS20-Set-PipCode 358
	eX-ROS20-Set-PipId 366
	eX-ROS20-Set-PipVerId 364
	eX-ROS20-Set-SigActCode 360
	eX-ROS20-Set-SigActVerId 362
	eX-ROS20-sign-msg 390
	eX-ROS20-Unique-ID 352
	eX-ROS20-Unpack-RNBM 345
	eX-ROS20-Validate-DeliveryHeader 348
	eX-ROS20-Validate-Preamble 346
	eX-ROS20-Validate-ServiceHeader 347
	eX-ROS20-verify-sig 391
	eX-RSO20-Parse-Generic 343
	eXSchema 34
	eXSchema, copying 85
	eX-security-get-keys-certs 387
	eX-set-Activity 397
	eX-set-all-BP_EVENT 400
	eX-set-Payload 220
	eX-set-TP_EVENT 218
	eX-set-TP-attribute 223

	F
	Fast Batch, Event requirements for 45
	functions

	G
	getCommProt 430
	getDirection 431
	getInternalName 432
	getMessageID 433
	getMessageIndex 434
	getNameValuePair 420, 421
	getOrigEventClass 435
	getPartnerName 436
	getPayload 437
	getSSLClientCertFileName 438
	getTPAttribute 442
	getURL 443
	getUsageIndicator 444
	glossary 495–499
	graphical user interface 29
	GUI 29

	H
	hasCommProt 445
	hasDirection 446
	hasInternalName 447
	hasMessageID 448
	hasMessageIndex 449
	hasOrigEventClass 450
	hasPartnerName 451
	hasPayload 452
	hasSSLClientCertFileName 453
	hasSSLClientCertFileType 454
	hasSSLClientKeyFileName 455
	hasSSLClientKeyFileType 456
	hasTPAttribute 457
	hasUrl 458
	hasUsageIndicator 459

	I
	implementation
	inner envelope
	IQ Intelligent Queues 31
	IQ Managers 31
	IQ Services 31
	IQs 31

	J
	Java Helper Methods 395–492

	M
	marshal 460
	Monk functions see functions

	N
	nodes

	O
	omitCommProt 461
	omitDirection 462
	omitInternalName 463
	omitMessageID 464
	omitMessageIndex 465
	omitOrigEventClass 466
	omitPartnerName 467
	omitPayload 468
	omitSSLClientCertFileName 469
	omitSSLClientCertFileType 470
	omitSSLClientKeyFileName 471
	omitSSLClientKeyFileType 472
	omitTPAttribute 473
	omitUrl 474
	omitUsageIndicator 475
	outer envelope, creating 95, 113, 150, 158

	P
	Participating Host components 29
	payload, in e*Xchange 74, 81
	payload, in ePM 167
	populating the required e*Xchange nodes 74, 81
	public domain 27

	R
	Receive_from_ePM Collaboration 61
	Receive_from_ePM e*Way 61
	Registry Host components 29
	RosettaNet
	RosettaNet acknowledgment handling 43
	running and testing the e*Xchange-only scenario 105

	S
	schema, copying 85
	SeeBeyond Collaboration Rules Editor 29
	SeeBeyond Collaboration-ID Rules Editor 30
	SeeBeyond eBusiness Integration Suite 19–22
	SEF file, creating 91
	Send_to_ePM Collaboration 60
	Send_to_ePM e*Way 59
	setCommProt 476
	setDirection 477
	setInternalName 478
	setMessageID 479
	setMessageIndex 480
	setNameValuePair 425
	setOrigEventClass 481
	setPartnerName 482
	setPayload 483
	setSSLClientCertFileName 484
	setSSLClientCertFileType 485
	setSSLClientKeyFileName 486
	setSSLClientKeyFileType 487
	setTPAttribute 488
	setUrl 489
	setUsageIndicator 490
	string-alpha 328
	string-alphanumeric 329
	string-numeric 330
	supporting documents 18

	T
	TP 428
	trading partner profiles, creating 93
	trading partner, creating 94, 113, 150, 158

	U
	UN/EDIFACT
	understanding the e*Xchange ETD 64–72, 76–80
	Using Java with e*Xchange 76, 395–492
	using the ETD in e*Xchange 69, 77
	util-mime-get-header-value 334
	util-mime-get-par-value 335
	util-mime-make-mime-message 336
	util-mime-map-event 337
	util-mime-pack-encrypted-msg 338
	util-mime-pack-signed-msg 339
	util-mime-unpack-signed-message 340
	util-security-decrypt-msg 383
	util-security-encrypt-msg 384
	util-security-sign-msg 385
	util-security-verify-sig 386
	ux-ack-handler 225
	ux-ack-monitor 229
	ux-check-shutdown-uid 232
	ux-control-check 233
	ux-dbproc-ros-inb 235
	ux-dbproc-ros-outb 239
	ux-dequeue 243
	ux-duplicate-check 245
	ux-func-ack-handler 247
	ux-get-error-str 250
	ux-get-fb-count 251
	ux-get-header 252
	ux-get-key-cert 257
	ux-get-mtrk-attrib 260, 261
	ux-get-seq-value 263
	ux-incr-control-num 264
	ux-init-exdb 266
	ux-init-ic 268
	ux-init-trans 273
	ux-init-ts 278
	ux-md5-digest 282
	ux-ret-edf-batch-ts-msgs 283
	ux-ret-edf-fb-ts-msgs 285
	ux-retrieve-997-error 291
	ux-retrieve-997-error-tail 294
	ux-retrieve-message 296
	ux-return-receipt 298
	ux-ret-X12-fb-ts-msgs 287, 289
	ux-set-fb-overdue 300
	ux-store-msg 301
	ux-store-msg-errors 305
	ux-store-msg-ext 306
	ux-store-shutdown-uid 310
	ux-track-997-errors 311
	ux-update-batch-imm 313
	ux-update-control-num 314
	ux-update-last-batch-send-time 316
	ux-upd-mtrk-element 317, 318, 319
	ux-wait-for-ack 320

	V
	validation Collaboration, creating 91
	Validation Rules Builder APIs
	Validation Rules Builder Monk functions 322–394
	Validation Rules Builder, creating Collaboration with 91
	valid-date-yyyy 331
	valid-time 332
	Value Added Network 27
	VAN 27

	X
	X12
	XML

