
e*Way Intelligent Adapter for
CICS User’s Guide

Release 4.5.3

Monk Version
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBI, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 1999–2002 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20020513120346.
e*Way Intelligent Adapter for CICS User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents
Contents

Chapter 1

Introduction 6
Overview 6

Intended Reader 6
Components 7

Supported Operating Systems 7

System Requirements 7

External System Requirements 8
OS/390 Configuration Requirements for the CICS Server 8

Chapter 2

Installation 9
Windows NT and Windows 2000 9

Pre-installation 9
Installation Procedure 9

UNIX 10
Pre-installation 10
Installation Procedure 10

Files/Directories Created by the Installation 11

Chapter 3

Configuration 12
e*Way Configuration Parameters 12

General Settings 12
Journal File Name 13
Max Resends Per Message 13
Max Failed Messages 13
Forward External Errors 13
Communication Setup 14
Start Exchange Data Schedule 14
Stop Exchange Data Schedule 14
Exchange Data Interval 15
DownTimeout 15
e*Way Intelligent Adapter for CICS User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents
Up Timeout 15
Resend Timeout 16
Zero Wait Between Successful Exchanges 16

Monk Configuration 16
Operational Details 17
How to Specify Function Names or File Names 25
Additional Path 25
Auxiliary Library Directories 25
Monk Environment Initialization File 26
Startup Function 26
Process Outgoing Message Function 27
Exchange Data with External Function 27
External Connection Establishment Function 28
External Connection Verification Function 29
External Connection Shutdown Function 29
Positive Acknowledgment Function 30
Negative Acknowledgment Function 30
Shutdown Command Notification Function 31

CICS Settings 31
CICS User 31
CICS User Password 31

Environment Configuration 32

Chapter 4

Implementation 33
Implementation Overview 33

Modes of Operation 34
Outbound-to-CICS Mode 34
Inbound-from-CICS Mode 35
Request/reply Mode 35

Using the Cobol Copybook Converter 36

ECI Error Codes 39

Chapter 5

CICS e*Way Functions 43
Basic Functions 43

event-send-to-egate 44
get-logical-name 45
send-external-down 46
send-external-up 47
shutdown-request 48
start-schedule 49
stop-schedule 50

CICS Functions 50
EciListSystems 51
ExternalCall 52
e*Way Intelligent Adapter for CICS User’s Guide 4 SeeBeyond Proprietary and Confidential

Contents
Index 56
e*Way Intelligent Adapter for CICS User’s Guide 5 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This chapter includes a brief description of IBM’s Customer Information Control
System (CICS), an overview of SeeBeyondTM Technology Corporation’s (SeeBeyondTM)
e*Way Intelligent Adapter for CICS, as well as system requirements for using the
e*Way.

1.1 Overview
The CICS e*Way is an interface that makes bidirectional calls to CICS transactional
programs remotely. CICS is a transaction processor supporting a real-time distributed
processing environment and also supports online transaction processing (OLTP).

IBM provides a CICS Client Gateway that has an API (the External Call Interface or
ECI) to call CICS transactions on the mainframe. The ECI allows a non-CICS
application program to call a CICS program in a CICS server. SeeBeyond’s CICS e*Way
uses this ECI method to connect to CICS.

The CICS e*Way includes a build tool, the Cobol Copybook Converter. This feature
takes as input a Cobol Copybook file and creates e*Gate Event Type Definitions (ETDs)
for use within the Monk environment. These Copybook file structures are passed into
the CICS environment as the data buffer (COMMAREA).

The CICS e*Way has the following modes of operation:

! Inbound

! Outbound

! Request/reply

For more information, see “Implementation” on page 33. This user’s guide explains
how to install and configure the CICS e*Way.

1.1.1 Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the e*Gate system; to have expert-level knowledge of
Windows operations and administration; to be thoroughly familiar with CICS and with
Windows-style GUI operations.
e*Way Intelligent Adapter for CICS User’s Guide 6 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction Supported Operating Systems
1.1.2 Components
The CICS e*Way is comprised of the following components:

! The stcewgenericmonk.exe file, the executable component

! Configuration files, which the e*Way Editor uses to define configuration parameters

! Monk function scripts discussed in CICS Functions on page 50.

A complete list of installed files appears in Table 1 on page 11.

1.2 Supported Operating Systems
The CICS e*Way is available on the following operating systems:

! Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

! Windows NT 4.0 SP6a

! Solaris 2.6, 7, and 8

! AIX 4.3.3

! HP-UX 11.0 and HP-UX 11i (Java only)

! OS/390 V2R10 (Java only)

! Japanese Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

! Japanese Windows NT 4.0 SP6a

! Japanese Solaris 2.6, 7, and 8

! Japanese HP-UX 11.0 (Java only)

! Korean HP-UX 11.0 (Java only)

1.3 System Requirements
To use the CICS e*Way, you need the following:

! An e*Gate Participating Host, version 4.5.1 or later.

! IBM's CICS Universal Client, version 3.0 or later, or CICS Transaction Gateway
version 4.0 or greater, with APAR PQ57730 applied.

! Either a TCP/IP or SNA connection:

" CTG 4.0 supports TCP/IP connectivity via TCP62 for all platforms.

" UC 3.x requires SNA communications software if running on AIX or Sun/
Solaris.

! Additional disk space for e*Way executable, configuration, library, and script files.
The disk space is required on both the Participating and the Registry Host.
e*Way Intelligent Adapter for CICS User’s Guide 7 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction External System Requirements
Additional disk space is required to process and queue the data that this e*Way
processes; the amount necessary varies based on the type and size of the data being
processed, and any external applications performing the processing.

The client components of the CICS have their own requirements; see that system’s
documentation for more details.

1.4 External System Requirements
To enable the e*Way to communicate correctly with CICS, you need the following
external requirements:

1.4.1 OS/390 Configuration Requirements for the CICS Server
Full details on configuring OS/390 for connection via TCP62 are available in the CICS
Transaction Gateway, Client Administration manual for any specified platforms. These
details are found in the chapter on “Setting Up Client/Server Communications.”

The summarized requirements are as follows:

! Any of the VTAM AnyNet® releases must be installed.

! Install a TCP major node, which defines the AnyNet interface between TCP/IP and
VTAM. For further information about how to do this, see the Guide to SNA over
TCP/IP book, SC31-6527.

! Install a CDRSC major node, which defines the remote Client device and instructs
VTAM to route any session requests through the TCP/IP Physical Unit (ALSLIST).

! Check that the Physical Unit (PU) for the AnyNet interface is active.

! On CICS, you must define an APPC connection to the client workstation. (The
connection can be statically defined, or autoinstalled.)

! Add an entry to the VTAM logon mode (LOGMODE) table for the modename
specified on the SESSIONS definition. This entry specifies the class of service
required for the group of sessions.
e*Way Intelligent Adapter for CICS User’s Guide 8 SeeBeyond Proprietary and Confidential

Chapter 2

Installation

This chapter explains procedures for installing the CICS e*Way.

2.1 Windows NT and Windows 2000

2.1.1 Pre-installation
! Exit all Windows programs before running the setup program, including any

anti-virus applications.

! You must have Administrator privileges to install this e*Way.

2.1.2 Installation Procedure
To install the CICS e*Way on a Windows system

1 Log in as an Administrator on the workstation on which you want to install the
e*Way.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s Autorun feature is enabled, the setup application launches
automatically; skip ahead to step 4. Otherwise, use the Windows Explorer or the
Control Panel’s Add/Remove Applications feature to launch the file setup.exe on
the CD-ROM drive.

4 The InstallShield setup application launches. Follow the on-screen instructions to
install the e*Way.

Be sure to install the e*Way files in the suggested client installation directory. The
installation utility detects and suggests the appropriate installation directory. Unless
you are directed to do so by SeeBeyond support personnel, do not change the
suggested “installation directory” setting.

Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, Intelligent Queues (IQs), and Event Types before this e*Way can perform its
intended functions. For more information about any of these procedures, please see the
online Help system.
e*Way Intelligent Adapter for CICS User’s Guide 9 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Installation UNIX
2.2 UNIX

2.2.1 Pre-installation
You do not require root privileges to install this e*Way. Log in under the user name that
you wish to own the e*Way files. Be sure that this user has sufficient privileges to create
files in the e*Gate directory tree.

2.2.2 Installation Procedure
To install the CICS e*Way on a UNIX system

1 Log in on the workstation containing the CD-ROM drive, and insert the CD-ROM
into the drive.

2 If necessary, mount the CD-ROM drive.

3 At the shell prompt, type

cd /cdrom

4 Start the installation script by typing

setup.sh

5 A menu of options will appear. Select the Install e*Way option. Then, follow the
additional on-screen directions.

Be sure to install the e*Way files in the suggested client installation directory. The
installation utility detects and suggests the appropriate installation directory. Unless
you are directed to do so by SeeBeyond support personnel, do not change the
suggested “installation directory” setting.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, please see the online Help
system.
e*Way Intelligent Adapter for CICS User’s Guide 10 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation
2.3 Files/Directories Created by the Installation
The CICS e*Way installation process will install the following files, see the table “Files
Created by the Installation” on page 11, within the e*Gate directory tree. Files will be
installed within the egate\client tree on the Participating Host and committed to the
default schema on the Registry Host.

Table 1 Files Created by the Installation

e*Gate Directory File(s)

\bin\ stcewgenericmonk.exe
stc_monkcics.dll

\configs\stcewgenericmonk\ stcewcics.def

\monk_library\ewcics\ cics-ack.monk
cics-connect.monk
cics-conn-shutdown.monk
cics-exchange.monk
cics-init.monk
cics-nack.monk
cics-notify.monk
cics-outgoing.monk
cics-shutdown.monk
cics-startup.monk
cics-verify.monk
e*Way Intelligent Adapter for CICS User’s Guide 11 SeeBeyond Proprietary and Confidential

Chapter 3

Configuration

You must configure the CICS e*Way before use. This chapter lists all the configuration
parameters used by the e*Way together with all supporting information needed,
including Monk configuration for connection to the external system.

3.1 e*Way Configuration Parameters
Set the e*Way configuration parameters, using the e*Way Editor.

To change e*Way configuration parameters

1 In the Enterprise Manager’s Navigator/Component pane, select the e*Way you
want to configure and display its properties.

2 Under Configuration File, click New to create a new file, Find to select an existing
configuration file, or Edit to edit the currently selected file.

3 In the Additional Command Line Arguments text box, type any additional
command line arguments that the e*Way may require, taking care to insert them at
the end of the existing command-line string. Be careful not to change any of the
default arguments unless you have a specific need to do so.

For more information about how to use the e*Way Editor, see the e*Way Editor’s online
Help or the e*Gate Integrator User’s Guide.

This chapter explains the e*Way’s configuration parameters under the following
sections:

! General Settings

! Communication Setup

! Monk Configuration

! CICS Settings

3.1.1 General Settings
The General Settings control basic operational parameters.
e*Way Intelligent Adapter for CICS User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Journal File Name

Description

Specifies the name of the journal file.

Required Values

A valid file name, optionally including an absolute path (for example,
c:\temp\filename.txt). If an absolute path is not specified, the file is stored in the
e*Gate SystemData directory. See the e*Gate Integrator System Administration and
Operations Guide for more information about file locations.

Additional Information

An Event is journaled for the following conditions:

! When the number of resends is exceeded (see Max Resends Per Message below)

! When its receipt is due to an external error, but Forward External Errors is set to No.
(See “Forward External Errors” on page 13 for more information.)

Max Resends Per Message

Description

Specifies the number of times the e*Way attempts to resend an Event to the external
system after receiving an error.

Required Values

An integer between 1 and 1,024. The default is 5.

Max Failed Messages

Description

Specifies the maximum number of failed Events that the e*Way allows. When the
specified number of failed messages is reached, the e*Way shuts down and exits.

Required Values

An integer between 1 and 1,024. The default is 3.

Forward External Errors

Description

Selects whether error messages that begin with the string “DATAERR,” which are
received from the external system is queued to the e*Way’s configured queue. See
“Exchange Data with External Function” on page 27 for more information.

Required Values

Yes or No. The default value, No, specifies that error messages are not forwarded. See
“Schedule-driven Data Exchange Functions” on page 21 for more information about
how the e*Way uses this function.
e*Way Intelligent Adapter for CICS User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Communication Setup

The Communication Setup parameters control the schedule by which the e*Way
obtains data from the external system.

The schedule you set using the e*Way’s properties in the Enterprise Manager controls
when the e*Way executable file runs. The schedule you set within the parameters
discussed in this section, using the e*Way Editor, determines when data is exchanged.
Be sure you set the “exchange data” schedule to fall within the “run the executable”
schedule.

Start Exchange Data Schedule

Description

Establishes the schedule to invoke the e*Way’s Exchange Data with External function.

Required Values

One of the following values:

! One or more specific dates/times

! A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

! Also Required — If you set a schedule using this parameter, you must also define
all three of the following functions:

" Exchange Data With External

" Positive Acknowledgment

" Negative Acknowledgment

If you do not do so, the e*Way terminates execution when the schedule attempts to
start.

Additional Information

When the schedule starts, the e*Way determines whether it is waiting to send a positive
or negative acknowledgment to the external system (using the Positive
Acknowledgment and Negative Acknowledgment functions) and whether the
connection to the external system is active.

If no acknowledgment function is pending, and the connection is active, the e*Way
immediately executes the Exchange Data with External function. Thereafter, the
Exchange Data with External function is called according to the Exchange Data
Interval parameter until the Stop Exchange Data Schedule time is reached.

See “Exchange Data with External Function” on page 27, “Exchange Data Interval”
on page 15, and “Stop Exchange Data Schedule” on page 14 for more information.

Stop Exchange Data Schedule

Description

Establishes the schedule to stop data exchange.
e*Way Intelligent Adapter for CICS User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Required Values

One of the following values:

! One or more specific dates/times

! A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Exchange Data Interval

Description

Specifies the number of seconds the e*Way waits between calls to the Exchange Data
with External function during scheduled data exchanges.

Required Values

An integer between 0 and 86,400. The default is 120.

Additional Information

If Zero Wait Between Successful Exchanges is set to Yes and the Exchange Data with
External Function returns data, the Exchange Data Interval setting is ignored, and the
e*Way invokes the Exchange Data with External Function immediately.

If this parameter is set to zero, there is no exchange data schedule set and the Exchange
Data with External Function is never called.

See “DownTimeout” on page 15 and “Stop Exchange Data Schedule” on page 14 for
more information about the data-exchange schedule.

DownTimeout

Description

Specifies the number of seconds that the e*Way waits between calls to the External
Connection Establishment function. See “External Connection Establishment
Function” on page 28 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.

Up Timeout

Description

Specifies the number of seconds the e*Way waits between calls to the External
Connection Verification function. See “External Connection Verification Function”
on page 29 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.
e*Way Intelligent Adapter for CICS User’s Guide 15 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Resend Timeout

Description

Specifies the number of seconds the e*Way waits between attempts to resend a Event
(message) to the external system, after receiving an error message from the external
system.

Required Values

An integer between 1 and 86,400. The default is 10.

Zero Wait Between Successful Exchanges

Description

Selects whether to initiate data exchange after the Exchange Data Interval or
immediately after a successful previous exchange.

Required Values

Yes or No. If this parameter is set to Yes, the e*Way immediately invokes the Exchange
Data with External function if the previous exchange function returned data. If this
parameter is set to No, the e*Way always waits the number of seconds specified by
Exchange Data Interval between invocations of the Exchange Data with External
function. The default is No.

See “Exchange Data with External Function” on page 27 for more information.

3.1.2 Monk Configuration
The parameters in this section help to set up information required by the e*Way to
utilize Monk for communication with the external system.

Conceptually, an e*Way is divided into two halves. One half of the e*Way (shown on
the left in Figure 1 on page 17) handles communication with the external system; the
other half manages the Collaborations that process data and subscribe or publish to
other e*Gate components.
e*Way Intelligent Adapter for CICS User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 1 e*Way Internal Architecture

The communications side of the e*Way uses Monk functions to start and stop scheduled
operations, exchange data with the external system, package data as e*Gate Events and
send those Events to Collaborations, and manage the connection between the e*Way
and the external system. The Monk Configuration options discussed in this section
control the Monk environment and define the Monk functions used to perform these
basic e*Way operations. You may create and modify these functions using the
SeeBeyond Collaboration Rules Editor or a text editor (such as Notepad or UNIX vi).

The communications side of the e*Way is single-threaded. Functions run serially, and
only one function can be executed at a time. The business logic side of the e*Way is
multi-threaded, with one executable thread for each Collaboration. Each thread
maintains its own Monk environment; therefore, information such as variables,
functions, path information, and so on cannot be shared between threads.

Operational Details

The Monk functions in the communications side of the e*Way fall into the groups
shown in Table 2 on page 18. A series of figures following the table illustrates the
interaction and operation of these functions.

Communication
with the External
System

Business Logic and
Communication
within e*Gate

External
system

Other e*Gate
components

e*Gate Events

Data
e*Way

Collaboration

Collaboration

Function

Function
e*Way Intelligent Adapter for CICS User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Initialization Functions

Figure 2 on page 19 illustrates how the e*Way executes its initialization functions.

Table 2 Monk Functions, Communications Side

Type of Operation Name

Initialization Startup Function on page 26
(also see Monk Environment Initialization
File on page 26)

Connection External Connection Establishment Function
on page 28
External Connection Verification Function on
page 29
External Connection Shutdown Function on
page 29

Schedule-driven Data
Exchange

Exchange Data with External Function on
page 27
Positive Acknowledgment Function on
page 30
Negative Acknowledgment Function on
page 30

Shutdown Shutdown Command Notification Function
on page 31

Event-driven Data
Exchange

Process Outgoing Message Function on
page 27
e*Way Intelligent Adapter for CICS User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 2 Initialization Functions

Connection Functions

Figure 3 on page 20 illustrates how the e*Way executes the connection establishment
and verification functions.

Start e*Way

Load
"Monk Initialization"

file

Execute any Monk function
having the same name as

the initialization file

Load "Startup" file

Execute any Monk function
having the same name as

the startup file
e*Way Intelligent Adapter for CICS User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 3 Connection Establishment and Verification Functions

Note: The e*Way selects the connection function based on an internal up/down flag
rather than a poll to the external system. See Figure 5 on page 22 and Figure 7 on
page 24 for examples of how different functions use this flag.

User functions can manually set this flag using Monk functions. See send-
external-up on page 47 and send-external-down on page 46 for more
information.

Connect e*Way to
external system

Internal
flag shows connection

active?

Wait for "Up Timeout"
schedule

Call External Connection
Verification function

Wait for "Down Timeout"
schedule

Call External Connection
Establishment function

Yes

No
e*Way Intelligent Adapter for CICS User’s Guide 20 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 4 illustrates how the e*Way executes its connection shutdown function.

Figure 4 Connection Shutdown Function

Schedule-driven Data Exchange Functions

Figure 5 on page 22 illustrates how the e*Way performs schedule-driven data exchange
using the Exchange Data with External Function. The Positive Acknowledgment
Function and Negative Acknowledgment Function are also called during this process.

“Start” can occur in any of the following ways:

! The Start Data Exchange time occurs

! Periodically during data-exchange schedule (after Start Data Exchange time, but
before Start Data Exchange time), as set by the Exchange Data Interval

! The start-schedule Monk function is called

After the function exits, the e*Way waits for the next start schedule time or command.

Control Broker issues
"Suspend" command

Call External Connection Shutdown
function with parameter

"SUSPEND_NOTIFICATION"

e*Way closes connection

Return any value
e*Way Intelligent Adapter for CICS User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 5 Schedule-driven Data Exchange Functions

Increment "Failed
Message" counter

DATAERR plus
additional data

Null
string

Data
(other than

error strings)

Forward
external
errors?

No

Yes

Set interval flag
"Connection

Down"

CONNERR

Wait for Resend
Timeout period

Roll back Event to
its publishing IQ

Increment "Failed
Message" counter

DATAERR only

Journal
enabled?

Create journal
entry

Yes

No

Start

Function exits

Send Event to
e*Gate

All
subscribing

Collaborations return
TRUE

?

Call Positive
Acknowledgment

function

Zero
wait after successful

exchange?

Call Negative
Acknowledgment

function

Yes

No

YesNo

Call Exchange Data with
External function

Figure 12 on page 33
e*Way Intelligent Adapter for CICS User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Shutdown Functions

Figure 6 below illustrates how the e*Way implements the shutdown-request function.

Figure 6 Shutdown Functions

Control Broker issues
"Shutdown" command

Call Shutdown Notification function
with parameter

"SHUTDOWN_NOTIFICATION"

e*Way shuts down

Wait for
shutdown-request

function

Return

Null string or
"SUCCESS"

any other value
e*Way Intelligent Adapter for CICS User’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Event-driven Data Exchange Functions

Figure 7 below illustrates Event-driven Data Exchange using the Process Outgoing
Message function.

Every two minutes, the e*Way checks the Failed Message counter against the value
specified by the Max Failed Messages parameter. When the Failed Message counter
exceeds the specified maximum value, the e*Way logs an error and shuts down.

After the function exits, the e*Way waits for the next outgoing Event.

Figure 7 Event-driven Data Exchange Functions

Collaboration publishes
to <EXTERNAL>

Call Process Outgoing
Message function

Set internal flag
"Connection

Down"

Maximum
Resends per Message

exceeded?

Yes

Return

CONNERR DATAERR

Increment "Failed
Message" counter

Create journal
entry

Null
string

No
Journal

enabled?

No

Function exits

Wait for Resend
Timeout period

Roll back Event to
its publishing IQ

Yes

Wait for Resend
Timeout period

Increment
"Resend" counter

RESEND
e*Way Intelligent Adapter for CICS User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
How to Specify Function Names or File Names

Parameters requiring the name of a Monk function accept either a function name or a
file name. If you specify a file name, be sure that the file has one of the following
extensions:

! .monk

! .tsc

! .dsc

Additional Path

Description

Specifies a path to be appended to the load path, the path Monk uses to locate files and
data (set internally within Monk). The directory specified in Additional Path is
searched after the default load paths.

Required Values

A path name, or a series of paths separated by semicolons. This parameter is optional
and may be left blank.

Additional Information

The default load paths are determined by the bin and Shared Data settings in the
.egate.store file. See the e*Gate Integrator System Administration and Operations Guide for
more information about this file.

To specify multiple directories, manually enter the directory names rather than
selecting them with the File Selection button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths, for example:

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

Auxiliary Library Directories

Description

Specifies a path to auxiliary library directories. Any .monk files found within those
directories are automatically loaded into the e*Way’s Monk environment. This
parameter is optional and may be left blank.

Required Values

A path name, or a series of paths separated by semicolons.

Additional Information

To specify multiple directories, manually enter the directory names rather than
selecting them with the File Selection button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths, for example:

monk_scripts\my_dir;c:\my_directory
e*Way Intelligent Adapter for CICS User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

The default is monk_library/ewcics.

This parameter is optional and may be left blank.

Monk Environment Initialization File

Specifies a file that contains environment initialization functions, which are loaded
after the auxiliary library directories are loaded. Use this feature to initialize the
e*Way’s Monk environment (for example, to define Monk variables that are used by the
e*Way’s function scripts).

Required Values

A file name within the load path, or file name plus path information (relative or
absolute). If path information is specified, that path is appended to the load path. See
“Additional Path” on page 25 for more information about the load path.

Additional Information

Any environment-initialization functions called by this file accept no input, and must
return a string. The e*Way loads this file and tries to invoke a function of the same base
name as the file name (for example, for a file named my-init.monk, the e*Way would
attempt to execute the function my-init).

Typically, it is a good practice to initialize any global Monk variables that may be used
by any other Monk Extension scripts.

The internal function that loads this file is called once when the e*Way first starts up
(see Figure 2 on page 19).

Startup Function

Description

Specifies a Monk function that the e*Way loads and invokes upon startup or whenever
the e*Way’s configuration is reloaded. This function should be used to initialize the
external system before data exchange starts.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is optional and may be left
blank.

Additional Information

The function accepts no input, and must return a string.

The string “FAILURE” indicates that the function failed; any other string (including a
null string) indicates success.

This function is called after the e*Way loads the specified Monk Environment
Initialization file and any files within the specified auxiliary directories.
e*Way Intelligent Adapter for CICS User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
The e*Way loads this file and try to invoke a function of the same base name as the file
name (see Figure 2 on page 19). For example, for a file named my-startup.monk, the
e*Way would attempt to execute the function my-startup.

Process Outgoing Message Function

Description

Specifies the Monk function responsible for sending outgoing Events (messages) from
the e*Way to the external system. This function is Event-driven (unlike the Exchange
Data with External function, which is schedule-driven).

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. You may not leave this field blank.

Additional Information

The e*Way invokes this function when one of its Collaborations publishes an Event to
an <EXTERNAL> destination, as specified within the Enterprise Manager (see Figure 7
on page 24 for more details).

This function requires a non-null string as input (the outgoing Event to be sent) and
must return a string as follows:

! Null string — Indicates that the Event was published successfully to the external
system.

! “RESEND” — Indicates that the Event should be resent.

! “CONNERR” — Indicates that there is a problem communicating with the external
system.

! “DATAERR” — Indicates that there is a problem with the Event (message) data
itself.

! If a string other than the following is returned, the e*Way creates an entry in the log
file indicating that an attempt has been made to access an unsupported function.

Note: If you wish to use event-send-to-egate to enqueue failed Events in a separate
Intelligent Queue (IQ), the e*Way must have an inbound Collaboration (with
appropriate IQs) configured to process those Events. See “event-send-to-egate”
on page 44 for more information.

Exchange Data with External Function

Description

Specifies a Monk function that initiates the transmission of data from the external
system to the e*Gate system and forwards that data as an inbound Event to one or more
e*Gate Collaborations. This function is called according to a schedule (unlike the
Process Outgoing Message function, which is Event-driven).
e*Way Intelligent Adapter for CICS User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is optional and may be left
blank.

Additional Information

The function accepts no input and must return a string (see Figure 5 on page 22 for
more details) as follows:

! Null string — Indicates that the data exchange was completed successfully. No
information is sent into the e*Gate system.

! “CONNERR” — Indicates that a problem with the connection to the external
system has occurred.

! “DATAERR” — Indicates that a problem with the data itself has occurred. The
e*Way handles the string “DATAERR” and “DATAERR” plus additional data
differently; see Figure 5 on page 22 for more details.

! Any other string — The contents of the string are packaged as an inbound Event.
The e*Way must have at least one Collaboration configured suitably to process the
inbound Event, as well as any required IQs.

This function is initially triggered by the Start Data Exchange schedule or manually by
the Monk function start-schedule. After the function has returned true, and the data
received by this function has been acknowledged by the Positive Acknowledgment
function or Negative Acknowledgment function respectively, the e*Way checks the
Zero Wait Between Successful Exchanges parameter.

If this parameter is set to Yes, the e*Way immediately calls the Exchange Data with
External function again; otherwise, the e*Way does not call the function until the next
scheduled start exchange time or the schedule is manually invoked using the Monk
function start-schedule (see start-schedule on page 49 for more information).

External Connection Establishment Function

Description

Specifies a Monk function that the e*Way calls when it has determined that the
connection to the external system is down.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This field cannot be left blank.

Additional Information

The function accepts no input and must return a string as follows:

! “SUCCESS” or “UP” — Indicates that the connection was established successfully.

! Any other string (including the null string) — Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Down Timeout
parameter, and is only called according to this schedule.
e*Way Intelligent Adapter for CICS User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
The External Connection Verification function (see below) is called when the e*Way
has determined that its connection to the external system is up.

External Connection Verification Function

Description

Specifies a Monk function that the e*Way calls when its internal variables show that the
connection to the external system is up.

Required Values

The name of a Monk function. This function is optional; if no External Connection
Verification function is specified, the e*Way executes the External Connection
Establishment function in its place.

Additional Information

The function accepts no input and must return a string as follows:

! “SUCCESS” or “UP” — Indicates that the connection was established successfully.

! Any other string (including the null string) — Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Up Timeout
parameter, and is only called according to this schedule.

The External Connection Establishment function (see above) is called when the e*Way
has determined that its connection to the external system is down.

External Connection Shutdown Function

Description

Specifies a Monk function that the e*Way calls to shut down the connection to the
external system.

Required Values

The name of a Monk function. This parameter is optional.

Additional Information

This function requires a string as input, and may return a string.

This function is only invoked when the e*Way receives a suspend command from a
Control Broker. When the suspend command is received, the e*Way invokes this
function, passing the string “SUSPEND_NOTIFICATION” as an argument.

Any return value indicates that the suspend command can proceed and that the
connection to the external system can be broken immediately.
e*Way Intelligent Adapter for CICS User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Positive Acknowledgment Function

Description

Specifies a Monk function that the e*Way calls when all the Collaborations to which the
e*Way sent data have processed and enqueued that data successfully.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External function is defined.

Additional Information

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string as follows:

! “CONNERR” — Indicates a problem with the connection to the external system.
When the connection is re-established, the Positive Acknowledgment function is
called again, with the same input data.

! Null string — The function completed execution successfully.

After the Exchange Data with External function returns a string that is transformed
into an inbound Event, the Event is handed off to one or more Collaborations for
further processing. If the Event’s processing is completed successfully by all the
Collaborations to which it was sent, the e*Way executes the Positive Acknowledgment
function (otherwise, the e*Way executes the Negative Acknowledgment function).

Negative Acknowledgment Function

Description

Specifies a Monk function that the e*Way calls when the e*Way fails to process and
queue Events from the external system.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External function is defined.

Additional Information

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string as follows:

! “CONNERR” — Indicates a problem with the connection to the external system.
When the connection is re-established, the function is called again.

! Null string — The function completed execution successfully.

This function is only called during the processing of inbound Events. After the
Exchange Data with External function returns a string that is transformed into an
inbound Event, the Event is handed off to one or more Collaborations for further
processing.
e*Way Intelligent Adapter for CICS User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
If the Event’s processing is not completed successfully by all the Collaborations to
which it was sent, the e*Way executes the Negative Acknowledgment function
(otherwise, the e*Way executes the Positive Acknowledgment function).

Shutdown Command Notification Function

Description

Specifies a Monk function that is called when the e*Way receives a shutdown command
from the Control Broker. This parameter is optional.

Required Values

The name of a Monk function.

Additional Information

When the Control Broker issues a shutdown command to the e*Way, the e*Way calls
this function with the string “SHUTDOWN_NOTIFICATION” passed as a parameter.

The function accepts a string as input and must return a string as follows:

! A null string or “SUCCESS” — Indicates that the shutdown can occur immediately.

! Any other string — Indicates that shutdown must be postponed. Once postponed,
shutdown does not proceed until the Monk function shutdown-request is executed
(see “shutdown-request” on page 48).

Note: If you postpone a shutdown using this function, be sure to use the
(shutdown-request) function to complete the process in a timely manner.

3.1.3 CICS Settings
The parameters in this section help you set up the information required by the CICS
e*Way.

CICS User

Description

The name of the user on the default CICS system defined in the Universal Client
configuration.

CICS User Password

Description

The password of the user on the default CICS system defined in the Universal Client
configuration.
e*Way Intelligent Adapter for CICS User’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Configuration Environment Configuration
3.2 Environment Configuration
To support the operation of this e*Way, no changes are necessary

! In the Participating Host’s operating environment

! In the e*Gate system

Note: Changes to Monk files can be made using the Collaboration Rules Editor (available
from within the Enterprise Manager) or with a text editor. However, if you use a
text editor to edit Monk files directly, you must commit these changed files to the
e*Gate Registry or your changes are not implemented.

For more information about committing files to the e*Gate Registry, see the
Enterprise Manager’s online Help system, or the stcregutil command-line utility in
the e*Gate Integrator System Administration and Operations Guide.
e*Way Intelligent Adapter for CICS User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 4

Implementation

This chapter covers the modes of operation for the CICS e*Way and instructions for
using the Cobol Copybook Converter, a build tool that takes a copybook specification
as input and creates an Event Type Definition (ETD).

4.1 Implementation Overview
The ECI is an application programming interface (API) to call CICS programs running
on a CICS server thereby allowing a non-CICS program to call a CICS program. The
calls are the same as if made to a CICS program through the EXEC CICS LINK.

The application does not issue any CICS commands itself; the CICS commands are
issued by the called program running in the server. The called program thus appears to
have been called by the EXEC CICS LINK with the COMMAREA option, a shared-
memory data structure passed between the CICS client application and the CICS
transactional program.

The ECI requires that IBM’s CICS Universal Client be running on the same computer.
The CICS Universal Client version 3 provides the API to the Monk extension .dll.

Figure 8 below provides an overview of the architecture.

Figure 8 Architectural Overview

C IC S E C I E *W a y

M o n k S c rip ts
s tc _ m o n k c ic s .d ll
(C IC S U n ive rs a l C lie n t
V 3 .0 M o n k In te rfa c e)

E C I

C IC S S e rv e r

N o n -
te rm in a l

a p p lic a tio n
e*Way Intelligent Adapter for CICS User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation Modes of Operation
Data Flow

An inbound Event may be sent into the e*Gate environment requesting that a CICS
program be called. The input is provided in either a prebuilt Cobol Copybook structure
or a proprietary structure. The data is then transformed into an appropriate format and
sent to the ECI.

The call returns with the reply from the CICS transaction program. If data is returned, it
may be transformed into the necessary structure required by the requester. Finally the
transformed data may be presented to the outbound Event.

The CICS e*Way is now ready to process the next request.

4.2 Modes of Operation
The CICS e*Way operates in one of the following modes:

! Outbound to CICS only

! Inbound from CICS only

! Request/reply

This section explains the details of these modes.

Outbound-to-CICS Mode

The outbound e*Way operates in one direction, out of the e*Gate environment and into
the CICS environment. No data is expected from the CICS side. See Figure 9 below.

Figure 9 Outbound Mode Example

The e*Gate Business Object Broker (BOB) may take an Event from the e*Gate
environment and convert it to the Cobol Copybook Event that was generated by Cobol
Copybook Converter. The converted Event is then delivered via an Intelligent Queue
(IQ) to the e*Way that inserts the copybook Event into the COMMAREA and executes
the CICS transaction program. No output from CICS is generated or expected.

IQ CICSIQ

BOB

X

CICS ECI e*Way

Exec
CICS

ECI
e*Way Intelligent Adapter for CICS User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation Modes of Operation
Inbound-from-CICS Mode

The inbound only mode uses a time-based polling mechanism to invoke the CICS
transaction program. There is no outbound Event coming from the e*Gate environment
in this scenario. See Figure 10 below.

Figure 10 Inbound Mode Example

The timer Event triggers from within the e*Way which then signals the invocation of
the CICS transaction program. If input was produced, the data is delivered to the
inbound BOB via the IQ. The inbound BOB takes the Event and converts it to another
format (if necessary) and then forwards the Event to the e*Gate environment.

Request/reply Mode

The request/reply mode is a combination of the inbound and outbound modes. It
issues a call to the CICS transaction program then returns the response to the e*Gate
environment. See Figure 11 below.

Figure 11 Request/reply Mode Example

IQ CICSIQ

BOB

X

CICS ECI e*Way

Exec
CICS

ECI Poll

IQ

CICS

IQ

BOB

X

CICS ECI e*Way

request

reply

Exec CICS ECI

IQ IQ

BOB

X

e*Way Intelligent Adapter for CICS User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Using the Cobol Copybook Converter
This mode operates as follows:

! The outbound BOB takes the Event from the e*Gate environment and may convert
it to a layout appropriate to the CICS program being used.

! The Event is sent via IQ to the e*Way that inserts it into the COMMAREA.

! The CICS transaction program is invoked.

! The input is delivered to the inbound BOB via the IQ.

! The inbound BOB takes the Event and converts it (if necessary) before sending it to
the e*Gate environment.

4.3 Using the Cobol Copybook Converter
The Cobol Copybook Converter is a build tool that takes a Cobol copybook
specification file as input and creates an ETD file, that is, an .ssc file. This feature has the
following properties:

! You may run this command via the ETD Editor or from the command line.

! The system presents the copybook specification to the Cobol Copybook Converter
in a flat file. The converter feature uses the 01 segment of the Cobol copybook as the
root node of the ETD.

Note: For this reason, the input Cobol file must have an 01 segment to operate correctly
with the Cobol Copybook Converter.

For example, after you have generated an ETD file, the e*Gate system can populate the
file and present it into the COMMAREA for CICS calls. Similarly, the system can parse
the output COMMAREA from CICS into ETDs created by the Cobol Copybook
Converter feature.

Cobol Syntax

The input to the Cobol Copybook Converter must conform to standard Cobol syntax
rules. Since Cobol’s record and field definitions are column-dependent, you must
download the input files as text files and preserve their column integrity when editing
them with a text editor.

You may access the Cobol Copybook Converter feature via the ETD Editor. Use the
procedure below to create an ETD based on the data your installation requires.

To create ETD files using the ETD Editor

1 On the ETD Editor window’s Toolbar, click Build.

The first Build an Event Type Definition dialog box appears (see Figure 12 on
page 37).
e*Way Intelligent Adapter for CICS User’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Using the Cobol Copybook Converter
Figure 12 Build an Event Type Definition Dialog Box (Initial)

2 In the File Name box, type the name of the ETD file you wish to build. Do not specify
any file extension. The Editor supplies the .ssc extension for you.

3 Under Files of Type, leave Event Type Definition selected.

4 Click Next.

The second Build an Event Type Definition dialog box appears (see Figure 13 on
page 38).
e*Way Intelligent Adapter for CICS User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Using the Cobol Copybook Converter
Figure 13 Build an Event Type Definition Dialog Box (Second)

5 Type the Input File name and path or click the Browse button and navigate to the
Input File.

6 Under Build From, select Library Converter.

7 Under Select a Library Converter, select Cobol Copy Book Converter.

8 Click Finish.

The dialog box closes, and the new ETD appears in the Workspace pane of the
ETD Editor window. The conversion process is automatic.

9 Click Save to save the new ETD.
e*Way Intelligent Adapter for CICS User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation ECI Error Codes
To create ETD files using the command line

To run the Cobol Copybook Converter from the command line, as a batch utility, enter:

stccococo [-I] [-d] -i <copybook_file> <etd>.ssc

The following table explains these command options:

Note: If you enter stccococo -h at the command line, seeking help, you get the following
message:

USAGE: stccococo [-I] [-d] [-c control [-s section]] [-nls <character set>] -i
copybook_file <etd> .ssc

-I indicates ICL data origin. -d indicates DBCS mode. Ignore references to the -c and
-s flags. They are for future use only and do not operate in the current system.

For more information on how to use this feature, see the Cobol Copybook Converter User’s
Guide.

4.4 ECI Error Codes
Table 3 on page 40 contains a list of the possible error codes returned by the ECI. These
codes are defined in the file cics-init.monk which is loaded when the CICS e*Way is
initialized. For more information, see “Monk Environment Initialization File” on
page 26.

For more information on the CICS ECI error codes, see CICS Family: Client/Server
Programming by IBM Corp. (document number SC33-1435-03). This can be found at
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/DFHZAD13/.

Command Type Description

-I string An optional parameter that indicates ICL data
origin.

-d string An optional parameter that indicates DBCS input
data mode.

-nls string Allows the conversion of Cobol files written in
Japanese; currently the only string supported is
SJIS (Japanese character set). Use of any other (or
no) parameter defaults to English/ASCII.

-i string A mandatory parameter.

copybook_file path The relative path of the file to be used as the
input (mandatory).

etd string The name of the ETD file you wish to create
(mandatory).
e*Way Intelligent Adapter for CICS User’s Guide 39 SeeBeyond Proprietary and Confidential

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/DFHZAD13/

Chapter 4 Section 4.4
Implementation ECI Error Codes
Note: The file cics-init.monk also initializes other values in addition to the error codes
listed below. For a complete list of the values initialized by this function, use a text
editor to view the cics-init.monk file.

Table 3 ECI Error Codes

ECI Return Value Error Description

0 ECI_NO_ERROR The call completed successfully.

-1 ECI_ERR_INVALID_DATA_LENGTH The value in eci_commarea_length
field is outside the valid range, or is
inconsistent with the value in
eci_commarea, being zero for a non-
null eci_commarea pointer, or non-
zero for a null eci_commarea pointer.

-2 ECI_ERR_INVALID_EXTEND_MODE The value in eci_extend_mode field is
not valid.

-3 ECI_ERR_NO_CICS The client is unavailable, the server
implementation is unavailable, or a
logical unit of work was to be started
(but the CICS server specified in
eci_system_name is not available). No
resources have been updated.

-4 ECI_ERR_CICS_DIED A logical unit of work was to be started
or continued, but the CICS server was
no longer available. If
eci_extend_mode was ECI_EXTENDED,
the changes are rolled back, and the
logical unit of work ends. If
eci_extend_mode was
ECI_NO_EXTEND, ECI_COMMIT, or
ECI_BACKOUT, the application cannot
determine whether the changes have
been committed or rolled back, and
must log this condition to aid future
manual recovery.

-5 ECI_ERR_REQUEST_TIMEOUT The time-out interval expired before
the request could be processed, or the
specified interval was negative.

-5 ECI_ERR_NO_REPLY There was no outstanding reply.

-6 ECI_ERR_RESPONSE_TIMEOUT The time-out interval expired while the
program was running.

-7 ECI_ERR_TRANSACTION_ABEND The CICS transaction that executed the
requested program abended (ended
abnormally). The abend code will be
found in eci_abend_code. For
information about abend codes and
their meaning, consult the
documentation for the server system to
which the request was directed.
e*Way Intelligent Adapter for CICS User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation ECI Error Codes
-8 ECI_ERR_EXEC_NOT_RESIDENT and
ECI_ERR_LUW_TOKEN

The value supplied in eci_luw_token is
invalid.

-9 ECI_ERR_SYSTEM_ERROR An internal system error occurred. The
error might have been in the client or
in the server. The programmer should
save the information returned in the
eci_sys_return_code field, as this will
help service personnel to diagnose the
error

-10 ECI_ERR_NULL_WIN_HANDLE An asynchronous call was specified
with the window handle set to 0.

-12 ECI_ERR_NULL_MESSAGE_ID An asynchronous call was specified
with the message identifier set to 0.

-13 ECI_ERR_THREAD_CREATE_ERROR The server implementation or the
client failed to create a thread to
process the request.

-14 ECI_ERR_INVALID_CALL_TYPE The call type was not one of the valid
call types.

-15 ECI_ERR_ALREADY_ACTIVE An attempt was made to continue an
existing logical unit of work, but there
was an outstanding asynchronous call
for the same logical unit of work.

-16 ECI_ERR_RESOURCE_SHORTAGE The server implementation or the
client did not have enough resources
to complete the request.

-17 ECI_ERR_NO_SESSIONS A new logical unit of work was being
created, but the application already has
as many outstanding logical units of
work as the configuration will support.

-18 ECI_ERR_NULL_SEM_HANDLE A null semaphore handle was passed
when a valid handle was required.

-19 ECI_ERR_INVALID_DATA_AREA Either the pointer to the ECI parameter
block is invalid, or the pointer supplied
in eci_commarea is invalid.

-21 ECI_ERR_INVALID_VERSION The value supplied for eci_version was
invalid.

-22 ECI_ERR_UNKNOWN_SERVER The requested server could not be
located. Only servers returned by
CICS_EciListSystems are acceptable.

-23 ECI_ERR_CALL_FROM_CALLBACK The call was made from a callback
routine.

Table 3 ECI Error Codes

ECI Return Value Error Description
e*Way Intelligent Adapter for CICS User’s Guide 41 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation ECI Error Codes
-24 ECI_ERR_INVALID_TRANSID A logical unit of work was being
extended, but the value supplied in
eci_transid differed from the value
used when the logical unit of work was
started.

-25 ECI_ERR_MORE_SYSTEMS There was not enough space in the List
array to store the information. The
supplied array has been filled and the
systems parameter has been updated
to contain the total number of systems
found so that an array of suitable size
can be allocated and the function can
be retried.

-26 ECI_ERR_NO_SYSTEMS No CICS servers can be located. In this
case, the value returned in Systems is
zero.

-27 ECI_ERR_SECURITY_ERROR An invalid combination of user ID and
password was supplied.

-28 ECI_ERR_MAX_SYSTEMS Requests were made to more servers
than the configuration allows. Consult
the documentation for your client or
server for information on controlling
the number of servers that can be used.

-29 ECI_ERR_MAX_SESSIONS There were not enough
communication resources to satisfy the
request. Consult the documentation
for your client or server for information
on controlling communication
resources.

-30 ECI_ERR_ROLLEDBACK An attempt was made to commit a
logical unit of work, but the server was
unable to commit the changes and
backed them out instead.

Table 3 ECI Error Codes

ECI Return Value Error Description
e*Way Intelligent Adapter for CICS User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 5

CICS e*Way Functions

The CICS e*Way’s functions fall into the following categories:

! Basic Functions on page 43

! CICS Functions on page 50

The functions explained in this chapter control the CICS e*Ways basic operations, as
well as those needed to interface with the CICS application.

Note: These functions can only be used by the functions defined within the e*Way’s
configuration file. None of the functions are available to Collaboration Rules scripts
executed by the e*Way.

5.1 Basic Functions
The functions in this category control the e*Way’s most basic operations.

The basic functions are:

event-send-to-egate on page 44

get-logical-name on page 45

send-external-down on page 46

send-external-up on page 47

shutdown-request on page 48

start-schedule on page 49

stop-schedule on page 50
e*Way Intelligent Adapter for CICS User’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
CICS e*Way Functions Basic Functions
event-send-to-egate

Syntax

(event-send-to-egate string)

Description

event-send-to-egate sends data that the e*Way has already received from the external
system into the e*Gate system as an Event.

Parameters

Return Values

Boolean
Returns true (#t) if the data is sent successfully; otherwise, returns false (#f).

Throws

None.

Additional information

This function can be called by any e*Way function when it is necessary to send data to
the e*Gate system in a blocking fashion.

Name Type Description

string String The data to be sent to the e*Gate
system.
e*Way Intelligent Adapter for CICS User’s Guide 44 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
CICS e*Way Functions Basic Functions
get-logical-name

Syntax

(get-logical-name)

Description

get-logical-name returns the logical name of the e*Way.

Parameters

None.

Return Values

string
Returns the name of the e*Way (as defined by the Enterprise Manager).

Throws

None.
e*Way Intelligent Adapter for CICS User’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
CICS e*Way Functions Basic Functions
send-external-down

Syntax

(send-external-down)

Description

send-external down instructs the e*Way that the connection to the external system is
down.

Parameters

None.

Return Values

None.

Throws

None.
e*Way Intelligent Adapter for CICS User’s Guide 46 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
CICS e*Way Functions Basic Functions
send-external-up

Syntax

(send-external-up)

Description

send-external-up instructs the e*Way that the connection to the external system is up.

Parameters

None.

Return Values

None.

Throws

None.
e*Way Intelligent Adapter for CICS User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
CICS e*Way Functions Basic Functions
shutdown-request

Syntax

(shutdown-request)

Description

shutdown request requests the e*Way to perform the shutdown procedure when there
is no outstanding incoming/outgoing event. When the e*Way is ready to act on the
shutdown request, in invokes the Shutdown Command Notification Function
(see“Shutdown Command Notification Function” on page 31). Once this function is
called, the shutdown proceeds immediately.

Once interrupted, the e*Way’s shutdown cannot proceed until this Monk function is
called. If you do interrupt an e*Way shutdown, we recommend that you complete the
process in a timely fashion.

Parameters

None.

Return Values

None.

Throws

None.
e*Way Intelligent Adapter for CICS User’s Guide 48 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
CICS e*Way Functions Basic Functions
start-schedule

Syntax

(start-schedule)

Description

start-schedule requests that the e*Way execute the Exchange Events with External
function specified within the e*Way’s configuration file. Does not affect any defined
schedules.

Parameters

None.

Return Values

None.

Throws

None.
e*Way Intelligent Adapter for CICS User’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
CICS e*Way Functions CICS Functions
stop-schedule

Syntax

(stop-schedule)

Description

stop-schedule requests that the e*Way halt execution of the Exchange Events with
External function specified within the e*Way’s configuration file. Execution is stopped
when the e*Way concludes any open transaction. Does not affect any defined
schedules, and does not halt the e*Way process itself.

Parameters

None.

Return Values

None.

Throws

None.

5.2 CICS Functions
The two functions in the .dll file that can be invoked from Monk are:

EciListSystems on page 51

ExternalCall on page 52
e*Way Intelligent Adapter for CICS User’s Guide 50 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
CICS e*Way Functions CICS Functions
EciListSystems

Syntax

(invoke obj "EciListSystems")

Description

EciListSystems determines which CICS servers are defined in the Universal Client
configuration; obj is the Monk object returned from load-interface. See the example
below.

Parameters

None.

Return Values

Vector of Monk strings
An IBM Universal client installation has a notion of a default CICS server, and this is
guaranteed to be the first item in the return vector.

Throws

If no servers can be found, an exception is generated.

Example

The following printout shows an example of how to list all CICS servers in the Universal
Client configuration:

(let ((cics (load-interface "stc_monkcics.dll" "init_cicsext"))) ;
Load DLL and initialize

(let ((sv (invoke cics "EciListSystems"))) ; Invoke
EciListSystems

(do ((i 0 (+ i 1))) ; Begin loop
((>= i (vector-length sv))) ; Loop control

(display (vector-ref sv i)) ; Display the specified
vector element

(newline) ; Write a newline character
)

)
)

Note: The existence of a CICS server does not guarantee that it can be contacted.
e*Way Intelligent Adapter for CICS User’s Guide 51 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
CICS e*Way Functions CICS Functions
ExternalCall

Syntax

(invoke obj “ExternalCall” eci_call_type eci_program_name eci_userid
eci_password eci_transid comm eci_extend_mode eci_luw_token
eci_version eci_system_name eci_tpn N)

Description

ExternalCall is the one and only interface to CICS using the External Call Interface
(ECI) API.

Parameters

Parameter Description Required Values

eci_call_type Specifies whether the ECI call type is
Asynchronous or Synchronous.
! Synchronous Calls will wait for the transaction to

complete, then return the contents of the
COMMAREA.

! Asynchronous calls will not wait for the
transaction to complete, so no data is returned.

Asynchronous or
Synchronous.
Synchronous is the
configured default.

eci_program_na
me

Specifies the CICS program to be run on the
server. Maximum length is eight characters.

An eight character or less
CICS program name.

eci_userid Specifies the ID of the CICS user. Maximum length
is eight characters.

A valid CICS user ID,
eight characters or less.

eci_password Specifies the password for the CICS user.
Maximum length is eight characters.

An eight character or less
password for the user ID.

eci_transid A four character optional field that specifies the
CICS transaction ID. This field is sent to the server
without conversion to uppercase. The purpose of
this field is dependent upon the client.
! For Open System clients, this is a transaction

name on the server associated with the
DFHMIRS program used to service the request.

! For other environments the called program runs
under the mirror transaction CPMI, but is linked
under the eci_transid transaction name. The
called program can use this name to query the
transaction ID. Some servers determine security
and performance attributes for the called
program using the transaction ID. For those
servers, use this parameter to control the
processing of the called programs

If this field is not used eci_tpn will be used instead
if specified, or the default server transaction is
used. If the ECI request is extended (see
eci_extend_mode), then eci_transid is only
significant for the first call in the unit of work.

A valid CICS transaction
ID of four characters or
less. If using less than
four characters add
spaces for the unused
characters.

comm - comm
area (send) data

A Monk object whose payload data (potentially
binary) will be transmitted to the specified CICS
program.
e*Way Intelligent Adapter for CICS User’s Guide 52 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
CICS e*Way Functions CICS Functions
eci_extend_mode Specifies the extended mode to be requested of
the CICS server.
! No (ECI_NO_EXTEND). IF the input

eci_luw_token field is zero, this will be the only
call for a logical unit of work. If the input
eci_luw_token field is not zero, this will be the
last call for the specified logical unit of work. In
either case, changes to recoverable resources
are committed by a CICS end-of-task syncpoint,
and the logical unit of work ends.

Yes (ECI_EXTENDED). If the input eci_luw_token
field is zero, this will be the first call for a logical
unit of work that is to be continued. If the input
eci_luw_token field is not zero, this call will
continue the specified logical unit of work. In
either case the logical unit of work continues after
the called program completes, and changes to
recoverable resources remain uncommitted.

Yes or No. The
configured default is No.

eci_luw_token Specifies the logical unit of work to which a call
belongs. This must be set to zero at the start of a
logical work unit. The ECI will update the value on
the first or only call of the logical work unit. If the
unit of work is to be extended, this value should be
used as input to all subsequent calls associated
with the same logical work unit. If the return code
is not ECI_NO_ERROR and a call is ending or
continuing an existing logical work unit, then this
field will be used to report the state of the logical
work unit. If it is zero, the logical work unit has
ended and updates have been backed out.If it is
not zero, the value is the same as the input value.
The logical work unit is continuing, and updates
are still pending.

A valid integer in the
range of 0 to 1000. The
configured default is 0.
This is a required input
and output parameter.

eci_version Version of ECI running on the CICS system in eci-
system_name.

eci_system_name The CICS system on which the program that you
want to send data to is running.

eci_tpn A four character field that specifies the identifier
(ID) of the transaction used to process the ECI in
the server. This must be defined in the server as a
CICS mirror transaction. If this field is not set, the
default mirror transaction, CPMI, is used. If the ECI
request is extended (see eci_extend_mode), then
this parameter is only significant for the first
request. This field is only available when
eci_version has the value ECI_VERSION_1A. IF this
field is used, the contents of eci_transid are
disregarded.

A valid CICS transaction
ID of four characters or
less. If using less than
four characters add
spaces for the unused
characters.

Parameters

Parameter Description Required Values
e*Way Intelligent Adapter for CICS User’s Guide 53 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
CICS e*Way Functions CICS Functions
Note: The online documents Client/Server Programming and the CICS Universal
Client Online Library are available at the following URL:

http://www.s390.ibm.com/bookmgr-cgi/bookmgr.exe/BOOKS/DFHZAD13/
CONTENTS

For information on CICS Transaction Gateway Version 4.0 visit:

http://www-4.ibm.com/software/ts/cics/library/manuals

This function has the following properties:

! The Comm area (send) data and the Comm area (receive) length have to be
specified separately because the behavior of the called program can only be known
by the caller. SeeBeyond’s implementation cannot determine whether a specified
program requires data to be sent to it, or if it returns data (as in the example given at
the end of this section) or possibly both.

! Internally, the Comm area is set to a size which is the larger of the value given in
Commarea length and the size of the object in Commarea (send) data. It is therefore
guaranteed to be large enough to accommodate both the data to be sent and any
data returned.

Return Values

Vector of Monk strings

The vector returned by ExternalCall comprises the following elements:

! The status code returned by the C API function CICS_ExternalCall.

If this value is equal to ECI_NO_ERROR the call has been successful. For detailed
analysis, the Monk programmer should consider making comparisons against the
other defined values with names beginning ECI_ERR_. For more information on
ECI return codes, see “ECI Error Codes” on page 39.

! An abend code of four characters (space padded).

! The contents of the comm area.

This may not be relevant; it depends on the behavior of the CICS program but it is
always returned.

! The contents of eci_sys_return_code.

This element only needs to be considered if the status code in element 1 is equal to
ECI_ERR_SYSTEM_ERROR.

! The contents of eci_luw_token.

N -
Comm area
length

Specifies the length (in bytes) of the
communication area (COMMAREA) passed to the
ECI.

An integer in the range of
1 to 32659. The
configured default is
1000.

Parameters

Parameter Description Required Values
e*Way Intelligent Adapter for CICS User’s Guide 54 SeeBeyond Proprietary and Confidential

http://www.s390.ibm.com/bookmgr-cgi/bookmgr.exe/BOOKS/DFHZAD13/CONTENTS
http://www.s390.ibm.com/bookmgr-cgi/bookmgr.exe/BOOKS/DFHZAD13/CONTENTS
http://www.s390.ibm.com/bookmgr-cgi/bookmgr.exe/BOOKS/DFHZAD13/CONTENTS
http://www-4.ibm.com/software/ts/cics/library/manuals

Chapter 5 Section 5.2
CICS e*Way Functions CICS Functions
If a transaction is started by the most recent invocation of ExternalCall, this value is
needed for subsequent calls within the same transaction.

Throws

An exception is thrown if:

! The number of parameters is incorrect

! Any parameters are of the wrong type or length

! If the size of the object in Comm area (send) data or the size specified in Comm area
length is larger than the maximum size of the comm area, that is, 32,500 characters.

! The maximum length of a user ID or password is exceeded. User names and
passwords are limited to eight characters in ECI_VERSION_0; otherwise they are
limited to 16 characters.

See the sample printout under Example on page 55.

Example

(define ECI_VERSION_1A 2)
(define ECI_NO_EXTEND 0)
(define ECI_SYNC 516)

(let ((cics (load-interface "stc_monkcics.dll" "init_cicsext")))
(let ((sv (cics "EciListSystems")))

(display (cics "ExternalCall"
ECI_SYNC ; eci_call_type
"ECPROG" ; eci_program_name
"sysad" ; eci_userid
"sysad" ; eci_password
"EC01" ; eci_transid
"" ; Comm area (send) data
ECI_NO_EXTEND ; eci_extend_mode
0 ; eci_luw_token
ECI_VERSION_1A ; eci_version
(vector-ref sv 0) ; eci_system_name
"" ; eci_tpn
18)) ; Comm area (receive) length

(newline)
)

)

In practice, a start-up Monk file is set up with the three defined values at the beginning
of this example for all possible values needed to run in ECI mode.

Note: For further detail, see the IBM publication CICS Family: Client/Server
Programming (document number SC33-1435-03).
e*Way Intelligent Adapter for CICS User’s Guide 55 SeeBeyond Proprietary and Confidential

Index
Index

A
Additional Path

configuration parameter 25
Architectural Overview 33
Auxiliary Library Directories

configuration parameter 25

B
basic functions

event-send-to-egate 44
get-logical-name 45
listed 43
send-external-up 47
shutdown-request 48

chart of 23
start-schedule 49
stop-schedule 50

C
CICS

described 6
CICS e*Way

changing configuration parameters 12
components 7
defined 6
external system requirements 8
functions

basic functions listed 43
categories of 43
CICS functions listed 50
connection shutdown 21

modes of operation 34
inbound-from-CICS mode 35
outbound-to-CICS mode 34
request/reply mode 35

parameter settings 31
UNIX installation 10
Windows installation 9

CICS functions
EciListSystems 51
ExternalCall 52

CICS User ID

configuration parameter 31
CICS User Password

configuration parameter 31
Cobol 33
Cobol Copybook Converter

conform to Cobol syntax 36
function described 6
using 36

Cobol syntax 36
command line

creating ETD files 39
description of options 39

COMMAREA 6, 33
components

of CICS e*Way 7
configuration parameters 12–31

Additional Path 25
Auxiliary Library Directories 25
changing 12
CICS User ID 31
CICS User Password 31
Down Timeout 15
Exchange Data Interval 15
Exchange Data with External Function 27
External Connection Establishment Function 28
External Connection Shutdown Function 29
External Connection Verification Function 29
Forward External Errors 13
Journal File Name 13
Max Failed Messages 13
Max Resends Per Message 13
Monk Environment Initialization File 26
Negative Acknowledgment Function 30
Positive Acknowledgment Function 30
Process Outgoing Message Function 27
Resend Timeout 16
Shutdown Command Notification Function 31
Start Exchange Data Schedule 14
Startup Function 26
Stop Exchange Data Schedule 14
Up Timeout 15
Zero Wait Between Successful Exchanges 16

Connection functions
Establishment and Verification

chart of 20
listed

External Connection Establishment 18
External Connection Shutdown 18
External Connection Verification 18

Shutdown function
chart of 21

connection shutdown
CICS e*Way function 21

Customer Information Control System
e*Way Intelligent Adapter for CICS User’s Guide 56 SeeBeyond Proprietary and Confidential

Index
described 6

D
Data Exchange functions

Schedule-driven 21
chart of 21, 22

directories
created by installation 11

Down Timeout
configuration parameter 15

E
ECI

defined 33
EciListSystems

CICS function 51
ETD Editor

creating ETD files 36
ETD files

creating using the command line 39
creating with ETD Editor 36

Event-driven Data Exchange
Process Outgoing Message 18

Event-driven Data Exchange functions
chart of 24

event-send-to-egate
basic function 44

Exchange Data Interval
configuration parameter 15

Exchange Data with External Function
configuration parameter 27

External Connection Establishment Function
configuration parameter 28

External Connection Shutdown Function
configuration parameter 29

External Connection Verification Function
configuration parameter 29

external system requirements
CICS e*Way 8

ExternalCall
CICS function 52

F
file names

how to specify 25
files

created by installation 11
Forward External Errors

configuration parameter 13
function names

how to specify 25

G
get-logical-name

basic function 45

I
Initialization functions

chart of 19
listed

Startup 18
installation

directories created by 11
files created by 11

J
Journal File Name

configuration parameter 13

M
Max Failed Messages

configuration parameter 13
Max Resends Per Message

configuration parameter 13
modes of operation

CICS e*Way 34
inbound-from-CICS mode 35
outbound-to-CICS mode 34
request/reply mode 35

Monk Environment Initialization File
configuration parameter 26

Monk functions
communications side

types of operations listed 18

N
Negative Acknowledgment Function

configuration parameter 30

O
operating systems

requirements 7
external 8
OS/390 8

supported 7
OS/390

configuration requirements 8
e*Way Intelligent Adapter for CICS User’s Guide 57 SeeBeyond Proprietary and Confidential

Index
P
parameters - See configuration parameters.
Positive Acknowledgment Function

configuration parameter 30
pre-installation

UNIX 10
Windows NT and Windows 2000 9

Process Outgoing Message Function
configuration parameter 27

R
Resend Timeout

configuration parameter 16

S
Schedule-driven Data Exchange functions 21

chart of 21, 22
listed

Exchange Data with External 18
Negative Acknowledgment 18
Positive Acknowledgment 18

schedules 49, 50
send-external-up

basic function 47
Shutdown Command Notification Function

configuration parameter 31
Shutdown functions

chart of 23
listed

Shutdown Command Notification 18
shutdown-request

basic function 48
chart of 23

Start Exchange Data Schedule
configuration parameter 14

start-schedule
basic function 49

Startup Function
configuration parameter 26

Stop Exchange Data Schedule
configuration parameter 14

stop-schedule
basic function 50

U
UNIX

CICS e*Way installation 10
pre-installation 10

Up Timeout
configuration parameter 15

W
Windows NT

CICS e*Way installation 9
Windows NT and Windows 2000

pre-installation 9

Z
Zero Wait Between Successful Exchanges

configuration parameter 16
e*Way Intelligent Adapter for CICS User’s Guide 58 SeeBeyond Proprietary and Confidential

	e*Way Intelligent Adapter for CICS User’s Guide
	Contents
	Introduction
	1.1 Overview
	1.1.1 Intended Reader
	1.1.2 Components

	1.2 Supported Operating Systems
	1.3 System Requirements
	1.4 External System Requirements
	1.4.1 OS/390 Configuration Requirements for the CICS Server

	Installation
	2.1 Windows NT and Windows 2000
	2.1.1 Pre-installation
	2.1.2 Installation Procedure

	2.2 UNIX
	2.2.1 Pre-installation
	2.2.2 Installation Procedure

	2.3 Files/Directories Created by the Installation

	Configuration
	3.1 e*Way Configuration Parameters
	3.1.1 General Settings
	Journal File Name
	Max Resends Per Message
	Max Failed Messages
	Forward External Errors
	Communication Setup
	Start Exchange Data Schedule
	Stop Exchange Data Schedule
	Exchange Data Interval
	DownTimeout
	Up Timeout
	Resend Timeout
	Zero Wait Between Successful Exchanges

	3.1.2 Monk Configuration
	Operational Details
	How to Specify Function Names or File Names
	Additional Path
	Auxiliary Library Directories
	Monk Environment Initialization File
	Startup Function
	Process Outgoing Message Function
	Exchange Data with External Function
	External Connection Establishment Function
	External Connection Verification Function
	External Connection Shutdown Function
	Positive Acknowledgment Function
	Negative Acknowledgment Function
	Shutdown Command Notification Function

	3.1.3 CICS Settings
	CICS User
	CICS User Password

	3.2 Environment Configuration

	Implementation
	4.1 Implementation Overview
	4.2 Modes of Operation
	Outbound-to-CICS Mode
	Inbound-from-CICS Mode
	Request/reply Mode

	4.3 Using the Cobol Copybook Converter
	4.4 ECI Error Codes

	CICS e*Way Functions
	5.1 Basic Functions
	event-send-to-egate
	get-logical-name
	send-external-down
	send-external-up
	shutdown-request
	start-schedule
	stop-schedule

	5.2 CICS Functions
	EciListSystems
	ExternalCall

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	M
	N
	O
	P
	R
	S
	U
	W
	Z

