
e*Way Intelligent Adapter for
Jacada Enterprise/Access
User’s Guide

Release 4.5.3

Java Version
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBI, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 2001-2002 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20021113084314.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents
Contents

Chapter 1

Introduction 6
Overview 6

Jacada Services 7
Anatomy of a Service ETD 8
Intended Reader 10

Supported Operating Systems 11

System Requirements 11
External System Requirements 11

Chapter 2

Installation 12
Windows NT 4.0 and Windows 2000 12

Pre-installation 12
Installation Procedure 12

UNIX 13
Pre-installation 13
Installation Procedure 13

Files/Directories Created by the Installation 14

Chapter 3

Multi-Mode e*Way Configuration 15
Multi-Mode e*Way 15

Multi-Mode e*Way Configuration Parameters 15
JVM Settings 15
JVM Settings 16
.General Settings 19

Chapter 4

e*Way Connection Configuration 21
Configuring e*Way Connections 21
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents
Connector 22
Type 22
Class 22
Property.Tag 22

EnvironmentManager 22
Host 23
Port 23
ClientName 23

ServiceConnection 23
Timeout 23
InitialDelay 24
Slope 24
MaxRetries 24
ConnectPerInvoke 24

JC3Debug 24
Level 25
File 25

Chapter 5

Implementation 26
Sample Implementation Components 26

Step One–Install the Jacada Enterprise/Access Integrator 27
Step Two–Installing the Jacada Enterprise/Access e*Way and Creating a Schema 27

Importing the Sample Schema 28
Step Three–Creating and Configuring the e*Ways 28
Step Four–Create the e*Way Connection 31
Step Five–Creating Event Types 32

Creating an Event Type from the Custom ETD Wizard 33
Creating an Event Type Using the Jacada ETD Wizard 34
Creating an Event Type from an Existing XSC 36

Step Six–Intelligent Queues 37
Step Seven–Collaboration Rules 37
The Collaboration Rules Editor 41
Step Eight–Collaborations 48

Execute the Schema 52

Chapter 6

Java Methods 53
The JDK Classes 53
The Jacada Classes 53
The SeeBeyond Classes 53

The JacadaEAiJC3Builder Class 54
Methods of the JacadaEAiJC3Builder Class 54

The JacadaEAiJC3Connector Class 61
Methods of the JacadaEAiJC3Connector Class 62
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 4 SeeBeyond Proprietary and Confidential

Contents
Chapter 7

Frequently Asked Questions 66
Jacada e*Way Questions 66

Index 68
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 5 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

The e*Way Intelligent Adapter for Jacada Enterprise/Access provides automatic data
interchange with Enterprise Access applications running on external systems for which
APIs are not readily available. This document describes how to install and configure
the Jacada Enterprise/Access e*Way.

1.1 Overview
The Jacada Enterprise/Access e*Way provides data translation and manipulation of a
binary stream intended to interact with a person, in the form of a monitor screen and
keyboard, and matches the data content to the screen order.

Entering information into the application requires transmission of a serial data stream
that emulates keyboard entry in response to screen prompts. This transmission requires
specific knowledge of the nature of each data element as it relates to the screen position.
This process is referred to as screen scraping.

The Jacada Integrator application appears to read data from a user’s monitor during the
“screen scraping” process. In a typical application, (for example, a medical-records
database), data is displayed on the user’s monitor, while the user interacts with the
application using a keyboard. Each data element (for example, a patient name, an ID
number, or a service charge code) is displayed on the user’s monitor in a known
position. The “screen scraper” intercepts the data stream that sends information to the
monitor. It then uses the monitor-position information to locate and capture the data
being sent to the monitor from the data stream. Although the data is not literally read
from or displayed onto the screen, the result is the same.

Data flow between e*Gate, the Jacada Enterprise/Access e*Way, and the external
system performs in the following manner.

Figure 1 Data Flow

e*Gate
Jacada

Enterprise/Access
e*Way

External System

Meta
Message Send

ReceiveEvents
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 6 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.1
Introduction Overview
e*Gate initiates the session with the external system after creating a Meta Data
Structure (Event) and sending it to the e*Way as a trigger. This Event contains all the
information necessary for the e*Way to communicate with the external system. This
information can be used to initiate, respond to, or validate the data interchange.

The Jacada Enterprise/Access e*Way provides an invoke function that takes in
methods and parameters which in turn enable interaction with the E/A service object.

The E/A runtime environment acts as middleware between a client and the legacy
system. It facilitates client connections and resource accesses as well as providing an
objected-oriented interface for the client to run applications and gather data from
legacy systems. The following diagram shows the relationships between the SeeBeyond
products, the Jacada products, and the legacy systems.

Figure 2 The Jacada Runtime Environment.

1.1.1. Jacada Services
The business objects, called Services, encapsulate the legacy business processes. Each
Service has a number of methods. A method can be called to perform some business
process; it may or may not require input arguments and have output results. By
interfacing with a Service to perform processes, the user is unaware of the events that
occur between the E/A runtime environment and the legacy systems.

The SeeBeyond Jacada Enterprise/Access e*Way (e*Way Connection) uses the JClient3
API to access these Services. Moreover, the SeeBeyond Service ETD Builder allows the
user to interrogate the E/A runtime environment for a Service's metadata and construct
a SeeBeyond ETD representation of that Service. The builder constructs both an .xsc file
and the Java classes. The .xsc file is used by the Java Collaboration Editor for displaying
the Service so that the Service can be used with ease during the construction of a Java
collaboration. An example of a Service ETD, displayed in SeeBeyond's ETD Editor, is
shown in Figure 3.

EAi
JClient3
Con. PT.

e*Gate

Service
ETD

Builder

Enterprise
Access
2000

Services

Legacy
Data

Mainframe
Application

Runtime

Build Time JClient3 API

JClient3 API

Service
ETDs
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 7 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.1
Introduction Overview
Figure 3 Jacada Service ETD

1.1.2. Anatomy of a Service ETD
The Anatomy of a Service ETD can be described as follows. First, a Service is an object
with one or more methods. A method may require input arguments and produce
results. At runtime, each argument and result has a name value pairing. The name of
the argument or result is determined during the construction of the Service with
Jacada's MapMaker GUI.

There are several types of values for arguments and results. The simple types include
KIND_FLOAT, KIND_INT, and KIND_STRING. These are mapped to Java data types
float, int, and String respectively. The complex data types (currently there are two)
KIND_STRUCT and KIND_SEQUENCE, are supported by the e*Way. Both of these
complex types in turn contain one or more simple types. The e*Way does not support
nesting of these complex types. In relational database terms, a KIND_STRUCT can be
thought of as a row and a KIND_SEQUENCE is a row set. The builder will construct a
Java class to wrap a KIND_STRUCT or a KIND_SEQUENCE and the Java class will
provide methods for accessing the simple types contained by KIND_STRUCT or
KIND_SEQUENCE.

Second, to understand the structure of the ETD itself in relationship to the Service, look
at the sample generated Service ETD displayed in Figure 4.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 8 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.1
Introduction Overview
Figure 4 Sample Generated Service ETD

The root node for the ETD is the Service root node which has the same name as that of
the Service. As shown in the example, the Service called STC_CICSAMNU2 is the name
of the root node of the ETD. The builder constructs a Java class to represent a Service.
The methods of a Service are child nodes of the Service node. In turn, the builder
constructs a Java class for each method; an instance of a Service class will contain an
instance of each Service method as its attribute. The picture shows that this service has
four methods; CustInquire, CustBrowse, CustAdd, and CustUpdate. Each of these
methods allows a user to execute a CICS AMNU transaction to manage a customer
database.

Each Service method node has two child nodes called Input and Output. The Input
node contains the child nodes that map to the required input arguments for a Service
method. Here we see that the method CustInquire requires a String as an input (the
customer account number). The Output node contains the results for the method after
invoking the method. CustInquire has an output that is a KIND_STRUCT. As discussed
previously, a KIND_STRUCT or KIND_SEQUENCE data type is wrapped by a Java
class. Thus, the KIND_STRUCT data type in the ETD is a child node of the Output
node.

A KIND_STRUCT or KIND_SEQUENCE contains simple types as illustrated by the
following picture. A KIND_SEQUENCE is a little more complex in that it is represented
as a collection of row results. As shown in Figure 5, a KIND_SEQUENCE has a
repeating symbol next to its node to show the user that it may contain 0 or more row
results (see Figure 5).
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 9 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.1
Introduction Overview
Figure 5 Sample Generated Service ETD

In addition, a "count" method is available to the user to determine how many rows are
available in the result. For example, the CustBrowse method returns a
KIND_SEQUENCE called CustBrowseTT. A Java method called countCustBrowseTT
will be generated and exposed in the ETD.

Notice that each output in the ETD has a corresponding "has" method. This method can
be used to determine whether result is returned for the particular output. Taking the
CustBrowse method as an example, we see that there is a method called
"hasCustBrowseTT" in the Output node. The user can use this method to determine
whether data is returned for one or more of CustBrowseTT members. In addition, each
member of the sequence has a corresponding "has" method to determine whether data
is available for that member. For example, "hasCustAmountTTV" can be used to find
out whether a value for CustAmountTTV was returned for this customer. If the method
invocation does not return a particular result and the user tries to retrieve that result, a
CollabDataException will be thrown. No default values will be returned.

Overall, the ETD is constructed in such a way as to preserve the natural hierarchical
structure of a Service. The Service ETD is therefor, intuitive and simple to use.

1.1.3. Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the e*Gate system, to have a high level of experience in
Windows NT/2000 operations and administration, and to be thoroughly familiar with
Jacada Enterprise/Access Integrator applications and Windows-style GUI operations.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 10 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction Supported Operating Systems
1.2 Supported Operating Systems
The Jacada Enterprise/Access e*Way is available on the following operating systems:

! Windows 2000, Windows 2000 SP1, Windows 2000 SP2, and Windows 2000 SP3

! Windows NT 4.0 SP6a

! Solaris 2.6, 7, and 8

! AIX 4.3.3

! HP-UX 11.0 and HP-UX 11i

Note: Open and review the Readme.txt for the Jacada E/A e*Way for any additional
information or requirements, prior to installation. The Readme.txt is located on the
Installation CD_ROM at setup\addons\ewcntea.

1.3 System Requirements
To use the Jacada Enterprise/Access e*Way, you need the following:

! An e*Gate Participating Host, version 4.5.1 or later.

! The Jacada Enterprise/Access e*Way uses the JClient3 classes contained in
jclient3.jar. This jar file must be copied from the lib directory of the Jacada
Integrator server or client and copied to egate\client\ThirdParty\jacada\classes
and egate\server\registry\repository\default\ThirdParty\jacada\classes before
the builder or the e*Way can be used.

! A TCP/IP network connection.

! Additional disk space for e*Way executable, configuration, library, and script files.
The disk space is required on both the Participating and the Registry Host.
Additional disk space is required to process and queue the data that this e*Way
processes; the amount necessary varies based on the type and size of the data being
processed, and any external applications performing the processing.

The client components of Jacada Enterprise/Access Integrator have their own
requirements; see that system’s documentation for more details.

1.3.1. External System Requirements
The Java-enabled Jacada Enterprise/Access e*Way requires the following installed on
the participating host:

! Jacada Enterprise/Access Integrator 3.5.1.4

! Jacada Integrator 3.5.1.4 patch 9, available from Jacada.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 11 SeeBeyond Proprietary and Confidential

Chapter 2

Installation

This chapter describes the procedures for installing the Jacada Enterprise/Access
e*Way.

! “Windows NT 4.0 and Windows 2000” on page 12

! “UNIX” on page 13

! “Files Created by the Installation” on page 14

2.1 Windows NT 4.0 and Windows 2000

2.1.1. Pre-installation
! Exit all Windows programs before running the setup program, including any

antivirus applications.

! You must have Administrator privileges to install this e*Way.

2.1.2. Installation Procedure
To install the Jacada Enterprise/Access e*Way on a Windows system

1 Log in as an Administrator to the workstation on which you are installing the
e*Way.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s Autorun feature is enabled, the setup application launches
automatically; skip ahead to step 4. Otherwise, use the Windows Explorer or the
Control Panel’s Add/Remove Applications feature to launch the file setup.exe on
the CD-ROM drive.

4 The InstallShield setup application launches. Follow the installation instructions until you
come to the Please choose the product to install dialog box.

5 Select e*Gate Integrator, then click Next.

6 Follow the on-screen instructions until you come to the second Please choose the product
to install dialog box.

7 Clear the check boxes for all selections except Add-ons, and then click Next.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Installation UNIX
8 Follow the on-screen instructions until you come to the Select Components dialog
box.

9 Highlight (but do not check) e*Ways, and then click the Change button. The
SelectSub-components dialog box appears.

10 Select the Jacada Enterprise/Access e*Way. Click the continue button to return to
the Select Components dialog box, then click Next.

11 Follow the rest of the on-screen instructions to install the Java-enabled Jacada Enterprise/
Access e*Way. Be sure to install the e*Way files in the suggested client installation
directory. The installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not change the suggested
installation directory setting.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, please see the online Help.

For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.

2.2 UNIX

2.2.1. Pre-installation
You do not require root privileges to install this e*Way. Log in under the user name
that you wish to own the e*Way files. Be sure that this user has sufficient privileges to
create files in the e*Gate directory tree.

2.2.2. Installation Procedure
To install the Jacada Enterprise/Access e*Way on a UNIX system

1 Log in on the workstation containing the CD-ROM drive, and insert the CD-ROM
into the drive.

2 If necessary, mount the CD-ROM drive.

3 At the shell prompt, type

cd /cdrom

4 Start the installation script by typing

setup.sh

5 A menu of options will appear. Select the Install e*Way option. Then, follow the
additional on-screen directions.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation
Note: Be sure to install the e*Way files in the suggested client installation directory. The
installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not
change the suggested “installation directory” setting.

6 After installation is complete, exit the installation utility and launch the Enterprise
Manager.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, please see the online Help
system.

For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.

2.3 Files/Directories Created by the Installation
The Java-enabled Jacada Enterprise/Access e*Way installation process will install the
following files, see the table “Files Created by the Installation” on page 14, within the
e*Gate directory tree. Files will be installed within the egate\client tree on the
Participating Host and committed to the default schema on the Registry Host.

Table 1 Files Created by the Installation

e*Gate Directory File(s)

\classes\ stcjcs.jar
stcjc3conn.jar
stcjc3svcbldr.jar
stcutil.jar
stcexception.jar

configs\jacadaeaijc3\ jacadaeaijc3.def

etd\ jc3svcwizard.ctl
jacadaeaijc3.ctl

bin\java\ jcscomp.jar
stcjintegra.jar

ThirdParty\gnu-getopt\classes\ gnu-getopt.jar

ThirdParty\xml\Apache\classes\ xerces.jar
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 3

Multi-Mode e*Way Configuration

This chapter describes how to configure the Multi-Mode e*Way.

3.1 Multi-Mode e*Way
Multi-Mode e*Way properties are set using the Enterprise Manager.

To create and configure a New Multi-Mode e*Way:

1 Select the Navigator’s Components tab.

2 Open the host and control broker on which you want to create the e*Way.

3 On the Palette, click on the Create a New e*Way button.

4 The New e*Way Component window opens. Enter the name of the new e*Way,
then click OK.

5 Right-click the new e*Way and select Properties edit its properties.

6 When the e*Way Properties window opens, click on the Find button beneath the
Executable File field, and select an executable file. For the purposes of the sample
select stceway.exe (stceway.exe is located in the “bin\” directory).

7 Under the Configuration File field, click on the New button. When the Settings
page opens, set the configuration parameters for this configuration file.

8 After selecting the desired parameters, save the configuration file. Close the .cfg file
and select OK to close the e*Way Properties Window.

Multi-Mode e*Way Configuration Parameters

The Multi-Mode e*Way configuration parameters are arranged in the following
sections:

! JVM Settings on page 15

! .General Settings on page 19

3.1.1. JVM Settings
The JVM Settings control basic Java Virtual Machine settings.

! JNI DLL Absolute Pathname on page 16
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 15 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way
! CLASSPATH Prepend on page 17

! CLASSPATH Override on page 17

! CLASSPATH Append From Environment Variable on page 17

! Initial Heap Size on page 18

! Maximum Heap Size on page 18

! Maximum Stack Size for Native Threads on page 18

! Maximum Stack Size for JVM Threads on page 18

! Disable JIT on page 18

! Remote Debugging port number on page 19

! Suspend option for debugging on page 19

! Auxiliary JVM Configuration File on page 19

3.1.2. JVM Settings
The JVM Settings control basic Java Virtual Machine settings.

JNI DLL Absolute Pathname

Description

Specifies the absolute pathname to where the JNI DLL installed by the Java 2 SDK
1.3.1_02 is located on the Participating Host.

Required Values

A valid pathname.

Additional Information

The JNI dll name varies on different O/S platforms:

The value assigned can contain a reference to an environment variable, by enclosing the
variable name within a pair of % symbols. For example:

%MY_JNIDLL%

Such variables can be used when multiple Participating Hosts are used on different
platforms.

OS Java 2 JNI DLL Name

NT 4.0/ Windows jvm.dll

Solaris libjvm.so

HP-UX libjvm.sl

AIX libjvm.a
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way
To ensure that the JNI DLL loads successfully, the Dynamic Load Library search path
environment variable must be set appropriately to include all the directories under the Java 2
SDK (or JDK) installation directory that contain shared libraries (UNIX) or DLLs (NT).

CLASSPATH Prepend

Description

Specifies the paths to be prepended to the CLASSPATH environment variable for the
JVM.

Required Values

An absolute path or an environmental variable. This parameter is optional.

Additional Information

If left unset, no paths are prepended to the CLASSPATH environment variable.

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_PRECLASSPATH%

CLASSPATH Override

Description

Specifies the complete CLASSPATH variable to be used by the JVM. This parameter is
optional. If left unset, an appropriate CLASSPATH environment variable (consisting of
required e*Gate components concatenated with the system version of CLASSPATH) is
set.

Note: All necessary JAR and ZIP files needed by both e*Gate and the JVM must be
included. It is advised that the CLASSPATH Prepend parameter be used.

Required Values

An absolute path or an environmental variable. This parameter is optional.

Additional Information

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_CLASSPATH%

CLASSPATH Append From Environment Variable

Description

Specifies whether the path is appended for the CLASSPATH environmental variable to
jar and zip files needed by the JVM.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way
Required Values

YES or NO. The configured default is YES.

Initial Heap Size

Description

Specifies the value for the initial heap size in bytes. If set to 0 (zero), the preferred value
for the initial heap size of the JVM is used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Heap Size

Description

Specifies the value of the maximum heap size in bytes. If set to 0 (zero), the preferred
value for the maximum heap size of the JVM is used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Stack Size for Native Threads

Description

Specifies the value of the maximum stack size in bytes for native threads. If set to 0
(zero), the default value is used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Stack Size for JVM Threads

Description

Specifies the value of the maximum stack size in bytes for JVM threads. If set to 0 (zero),
the preferred value for the maximum heap size of the JVM is used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Disable JIT

Description

Specifies whether the Just-In-Time (JIT) compiler is disabled.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way
Required Values

YES or NO.

Note: This parameter is not supported for Java Release 1.

Remote Debugging port number

Description

Specifies the port number by which the e*Gate Java Debugger can connect with the
JVM to allow remote debugging.

Required Values

An unused port number in the range 2000 through 65535. If not specified, the e*Gate
Java Debugger is not able to connect to this e*Way.

Suspend option for debugging

Description

Allows you to specify that the e*Way should do no processing until an e*Gate Java
Debugger has successfully connected to it.

Required Values

YES or No. YES suspends e*Way processing until a Debugger connects to it. NO
enables e*Way processing immediately upon startup.

Auxiliary JVM Configuration File

Description

Specifies an auxiliary JVM configuration file for additional parameters.

Required Values

The location of the auxiliary JVM configuration file

3.1.3. .General Settings
For more information on the General Settings configuration parameters see the e*Gate
Integrator User's Guide. The General Settings section contains the following parameters:

! Rollback Wait Interval on page 20

! Standard IQ FIFO on page 20
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way
Rollback Wait Interval

Description

Specifies the time interval to wait before rolling back the transaction.

Required Values

A number within the range of 0 to 99999999, representing the time interval in
milliseconds.

Standard IQ FIFO

Description

Specifies whether the highest priority messages from all STC_Standard IQs will be
delivered in the first-in-first-out (FIFO) order.

Required Values

Select YES or NO. YES indicates that the e*Way will retrieve messages from all
STC_Standard IQs in the first-in-first-out (FIFO) order. NO indicates that this feature is
disabled. NO is the configured default.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 20 SeeBeyond Proprietary and Confidential

Chapter 4

e*Way Connection Configuration

This chapter describes how to configure the e*Way Connection using the JacadaEAi/
JClient3 e*Way Connection type.

4.1 Configuring e*Way Connections
e*Way Connections are set using the Enterprise Manager.

To create and configure e*Way Connections:

1 In the Enterprise Manager’s Component editor, select the e*Way Connections
folder.

2 On the palette, click the Create a New e*Way Connection button.

3 The New e*Way Connection Component dialog box opens, enter a name for the
new e*Way Connection. Click OK.

4 Double-click on the new e*Way Connection. For this example, the connection has
been defined as ec_Jacada

5 The e*Way Connection Properties dialog box opens.

6 From the e*Way Connection Type drop-down box, select JacadaEAi/JClient3.

7 Enter the Event Type “get” interval in the dialog box provided. The configured
default is 10000 milliseconds.

8 From the e*Way Connection Configuration File, click New to create a new
Configuration File for this e*Way Connection. (To use an existing file, click Find.)

9 The e*Way Connection Edit Settings window opens. Make any necessary changes
to the Jacada Enterprise/Access e*Way Connection parameters.

10 Go to File, Save to save settings.

11 Click on File, Promote to Run Time.

Note: If changes are made to an existing e*Way Connection file, any e*Ways using the
revised e*Way Connection must be restarted.

The Jacada Enterprise/Access e*Way Connection configuration parameters are
organized into the following sections:

! Connector on page 22
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections
! EnvironmentManager on page 22

! ServiceConnection on page 23

! JC3Debug on page 24

4.1.1. Connector
This section contains a set of top level parameters:

! type

! class

! Property.Tag

Type

Description

Specifies the connector type.

Required Values

String-set. The value is always defaulted to Jacada EAi JClient3 for Jacada EAi JClient3
connections.

Class

Description

Specifies the class name of the Jacada EAi JClient3 connector object.

Required Values

String-set. A valid package name. The default is
com.stc.eways.cics.jacadaeaijc3.runtime.JacadaEAiJC3Connector.

Property.Tag

Description

Specifies the data source identity. This parameter is required by the current
EBobConnectorFactory.

Required Values

String-set. A valid data source package name.

4.1.2. EnvironmentManager
This section contains a set of top level parameters:

! Host

! Port

! ClientName
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections
Host

Description

Specifies the name or IP address of the host on which the EA Environment

Manager is running.

Required Values

String-set. A valid host name or IP address. This parameter is mandatory

Port

Description

Specifies the port at which the EA Environment Manager listening for client
connections.

Required Values

Integer-set. An integer ranging from 1 to 65535. This parameter is mandatory. The
configured default is 30001.

ClientName

Description

Specifies the client name for the Environment Manager.

Required Values

String-set. A valid client name. This parameter is optional.

4.1.3. ServiceConnection
This section contains the following parameters:

! Timeout

! InitialDelay

! Slope

! MaxRetries

! ConnectPerInvoke

Timeout

Description

Specifies the timeout value to be used for a service connection. The timeout value is set
in seconds. If timeout is not set, then the default timeout, set by EA, will be used.

Required Values

Integer-set. The determined number of seconds to timeout. This parameter is optional.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections
InitialDelay

Description

Specifies the initial delay between service connection retries. The InitialDelay value is
set in seconds. If the initial delay is not set, then the default initial delay, set by EA, will
be used.

Required Values

Integer-set. The determined number of seconds for the initial delay. This parameter is
optional.

Slope

Description

Specifies the rate for the delay between service connection retries. The Slope value is set
in seconds. If the slope is not set, then the default slope, set by EA, will be used.

Required Values

Integer-set. The number of seconds to increase the delay between service connection
retries. This parameter is optional..

MaxRetries

Description

Specifies the maximum number of times to retry service connections. If the maximum
retries is not set, then the default maximum retries set by EA will be used.

Required Values

Integer-set. A valid number. This parameter is optional.

ConnectPerInvoke

Description

Specifies whether to force a recondition attempt to a service every time a method is
invoked. If this parameter is set to FALSE, then once a connection to the service has
been established the connection is kept for subsequent method invocations. An attempt
to reconnect only happens if the connection to the service is lost (is not alive). If this
parameter is set to TRUE, then a new connection to a service is established prior to a
method invocation and closed after a method invocation.

Required Values

String-set. TRUE or FALSE. FALSE is the configured default.

4.1.4. JC3Debug
This section contains a set of top level parameters:

! Level
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections
! File

Level

Description

Specifies the level of debugging that the debug feature of the JClient3 will use. If NONE
is selected, then a DebugController will not be used. Otherwise, the level of debugging
ranges from 0 to 3. 0 being minimum and 3 being maximum. If debugging is turned on,
debug messages will be logged to the file specified by the File parameter (below). If
debugging is turned on and the log file is not specified by the File parameter, then a
default file jacadaeai.log will be created in the logs directory under eGate client.

Required Values

Select one of five options, 0 to 3 and NONE. NONE is the configured default.

File

Description

Specify the full path to the debug file. Sets the file name to use for logging JClient3
debug messages. See the Level parameter in this section.

Required Values

A valid output path and file name.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 5

Implementation

This chapter contains basic information for implementing the Java-enabled Jacada
Enterprise/Access e*Way in a production environment. Examples are given for creating
and configuring the necessary components for a Jacada Enterprise/Access schema. A
sample schema is not included for the implementation of the e*Way. For more
information on creating and configuring e*Way components see the e*Gate Integrator
User’s Guide.

5.1 Sample Implementation Components
The Java-enabled Jacada Enterprise/Access e*Way is an application specific e*Way which
allows e*Gate to connect with Jacada Integrator applications. When the Jacada
Enterprise/Access e*Way is installed along with the e*Gate Integrator, schema’s can be
created and configured using the e*Gate Enterprise Manager. A schema is an
organization scheme that contains the parameters of all the components that control,
route, and transform data as it moves through e*Gate in a predefined system
configuration.

The following pages contain a sample implementation which serves to explain how the
components for a Jacada Enterprise/Access e*Way schema are created. The Host and
Control Broker are automatically created and configured during the e*Gate installation.
The default name for each is the name of the host on which you are installing the e*Gate
Enterprise Manager GUI. To complete the sample implementation of the Java-enabled
Jacada Enterprise/Access e*Way requires the following:

! Install the Jacada Enterprise/Access Integrator: On the e*Gate Server, copy
jclient3.jar from the lib directory of the Jacada Integrator Server or Client and copy
it to egate\server\ThirdParty\jacada\classes and
egate\client\ThirdParty\jacada\classes.

! Install the Jacada Enterprise/Access e*Way: The Jacada Enterprise/Access e*Way
is installed as an Add-on to the E*Gate integrator system. For directions on
installing the Jacada Enterprise/Access e*Way from CD-ROM on your specific
operating system, see Installation on page 12.

! Create the e*Ways: e*Ways connect with external systems to poll or send data. They
also transform and route data. Multi-Mode e*Ways are used to run Java
Collaborations that utilize e*Way Connections to send and receive Events to and
from multiple external systems.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Sample Implementation Components
! Configure the e*Way Connections: An e*Way Connection is the encoding of access
information for a specific external connection. The e*Way Connection configuration
file contains the parameters necessary for communicating with Jacada Enterprise/
Access Integrator.

! Create Event Types: Each packet of data within e*Gate is referred to as an Event.
Event Types are data labels that allow e*Gate to process and route specific Events
differently. Data is not routed in e*Gate without an Event Type.

! Create Intelligent Queues: Non-volatile storage for data traveling through the
e*Gate system is provided by creating Intelligent Queues (IQs). The IQ Manager
oversees the activities of the individual storage locations. The exact behavior of
each IQ is determined by the IQ Service configuration.

! Create Collaboration Rules: Collaboration Rules determine how input Event Types
are modified to the format of specific output Event Types. A Collaboration Rule
defines what type of data is received, how it will be transformed and what type of
data will be published.

! Create Collaborations: A Collaboration is a message bus in e*Gate that specifies the
name and source of the incoming Event Types, the Collaboration Rules that will be
applied to the Event, and the name, destination and expiration date of the outgoing
Event Types. A Collaboration designates the Subscriber, which “listens” for Events
of a known type from a given source, and the Publisher, which distributes the
transformed Event to a specified recipient.

5.1.1. Step One–Install the Jacada Enterprise/Access Integrator
Step one in creating the Jacada Enterprise/Access e*Way is to install and configure the
Jacada Enterprise/Access Integrator. It is assumed that the reader is experienced in the
use of the Jacada Integrator.

5.1.2. Step Two–Installing the Jacada Enterprise/Access e*Way and
Creating a Schema

Step two is to install the Jacada Enterprise/Access e*Way on the e*Gate server. For
directions on installing the Jacada Enterprise/Access e*Way on your specific operating
system, see Installation on page 12. Also see Supported Operating Systems on
page 11.

Note: Copy jclient3.jar from the lib directory of the Jacada Integrator Server or Client and
copy it to egate\server\ThirdParty\jacada\classes and
egate\client\ThirdParty\jacada\classes.

Once the Jacada Enterprise/Access e*Way is installed, a new schema must be created.
While it is possible to use the default schema for the sample implementation, it is
recommended that you create a separate schema for testing purposes. After you install
the Jacada Enterprise/Access e*Way, do the following:

1 Start the e*Gate Enterprise Manager GUI.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Sample Implementation Components
2 When the Enterprise Manager prompts you to log in, select the host that you
specified during installation and enter your password.

3 You will then be prompted to select a schema. Click on New.

4 Enter a name for the new Schema. In this case, for the sample implementation, enter
JacadaSample, or any appropriate name. Click Open to create a new schema or to
import the sample schema do the following:

Importing the Sample Schema

A sample schema, sample .xml file and Readme file are included on the installation CD-
ROM.

5 After completing steps 1 through 4 above, select Create from export and locate the
JacadaSample.zip on the CD-ROM.

6 Click Open. The e*Gate Enterprise Manager opens to the Jacada sample schema.

7 To complete the Jacada sample schema implementation follow the directions in the
Readme.txt file included with the sample. This includes details on how to compile
and deploy the banking service (GetLoanTrans-Out.xml included with the sample)
and use the Jacada MapPlayer to play the bankplay map.

After importing the sample schema and following the directions included in the
Readme.txt file the sample schema is complete. The following steps are included to
demonstrate how the components of the sample schema are created.

5.1.3. Step Three–Creating and Configuring the e*Ways
Step three is to create the e*Ways. e*Ways are used components for transporting and
transforming data. They always interface with at least one external system, and Multi-
Mode e*Ways can use e*Way Connections to interface with many external systems. For
the sample implementation three e*Ways are required.

! Inbound_eWay

! Outbound_eWay

! Multi-Mode_eWay

The following sections provide instructions for creating each e*Way.

Inbound e*Way

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the e*Ways.

3 Select the Control Broker that will manage the new e*Ways.

4 On the palette, click the Create a New e*Way button.

5 Enter the name of the new e*Way. In this case, ewFeeder. Click OK.

6 Right-click ewFeeder, and select Properties to edit its properties.

7 When the e*Way Properties window opens, click on the Find button beneath the
Executable File field and select stcewfile.exe as the executable file.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Sample Implementation Components
Figure 6 e*Way Properties Dialog Box

8 Under the Configuration File field, click on the New button. The Edit Settings
dialog box opens. Set the following for this configuration file.

Table 2 Configuration Parameters for the Inbound e*Way

Parameter Value

General Settings (unless otherwise stated, leave settings as default)

AllowIncoming YES

AllowOutgoing NO

PerformanceTesting NO

Outbound Settings Use default

Poller Inbound Settings

PollDirectory C:\INDATA (input file folder)

InputFileExtension *.xml (input file extension)

PollMilliseconds 1000 (default)

Remove EOL YES

MultipleRecordsPerFile NO

MaxBytesPerLine 4096 (default)

BytesPerLineIsFixed NO

File Records Per eGate Event 1 (default)

Performance Testing Default
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Sample Implementation Components
9 After selecting the desired parameters, save the configuration file (ewFeeder.cfg)
and Promote to Run Time. Close the .cfg file.

10 Use the Startup, Advanced, and Security tabs to modify the default settings for each
e*Way you configure.

A Use the Startup tab to specify whether the e*Way starts automatically, or restarts
after abnormal termination or due to scheduling and so forth.

B Use the Advanced tab to specify or view the activity and error logging levels as
well as the Event threshold information.

C Use Security to view or set privilege assignments.

11 Select OK to close the e*Way Properties window.

Outbound e*Way

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the e*Ways.

3 Select the Control Broker that will manage the new e*Ways.

4 On the palette, click the Create a New e*Way button.

5 Enter the name of the new e*Way, (in this case, ewEater), then click OK.

6 Select ewEater, then right-click and select Properties to edit its properties.

7 When the e*Way Properties window opens, click the Find button beneath the
Executable File field, and select stcewfile.exe as the executable file.

8 Under the Configuration File field, click the New button. When the Settings page
opens, set the following for this configuration file:

:

9 Save the .cfg file (MQOut.cfg), and promote to run time.

Table 3 Configuration Parameters for the Outbound e*Way

Parameter Value

General Settings (unless otherwise stated, leave settings as default)

AllowIncoming NO

AllowOutgoing YES

PerformanceTesting NO

Outbound Settings

OutputDirectory C:\DATA (use appropriate drive)

OutputFileName banking%d.xml

MultipleRecordsPerFile YES

MaxRecordsPerFile 10000

AddEOL YES (add end-of-line character)

Poller Inbound Settings Default

Performance Testing Default
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Sample Implementation Components
10 Click OK to close e*Way Properties window.

Multi-Mode e*Way

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the e*Way.

3 Select the Control Broker that will manage the new e*Way.

4 On the palette, click the Create a New e*Way button.

5 Enter the name of the new e*Way (in this case, ewJacadaIntegrator), then click OK.

6 Right-click the new e*Way and select Properties to edit its properties.

7 When the e*Way Properties window opens, click the Find button beneath the
Executable File field, and select stceway.exe as the executable file.

8 To edit the JVM Settings, select New under Configuration file.

See “Multi-Mode e*Way Configuration” on page 15 for details on the parameters
associated with the Multi-Mode e*Way.

9 Save the .cfg file (ewJacadaIntegrator.cfg).

10 In the e*Way Properties window, use the Startup, Advanced, and Security tabs to
modify the default settings for each.

D Use the Startup tab to specify whether the e*Way starts automatically, restarts
after abnormal termination or due to scheduling, etc.

E Use the Advanced tab to specify or view the activity and error logging levels, as
well as the Event threshold information.

F Use Security to view or set privilege assignments.

11 Go to File and click Promote to Run Time.

12 Click OK to close e*Way Properties window.

5.1.4. Step Four–Create the e*Way Connection
Step four is to create and configure the e*Way Connection. The e*Way Connection
configuration file contains the settings necessary for communicating with Jacada
Enterprise/Access Integrator and specifying the Jacada Queue Manager.

To create and configure a New e*Way Connection

1 Select the e*Way Connection folder on the e*Gate Navigator.

2 On the palette, click the Create a New e*Way Connection button.

3 Enter the name of the e*Way Connection, then click OK. (For the purpose of this
sample, the e*Way Connection is defined as “conJacadaIntegrator”.)
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Sample Implementation Components
4 Double-click the new e*Way Connection to edit its properties. The e*Way
Connection Properties dialog box opens.

Figure 7 e*Way Connection Properties

5 In the e*Way Connection Type field, select JacadaEAi/JClient3 from the drop-down
list box.

6 Enter the Event Type “get” interval in the dialog box provided. 10000 milliseconds
is the configured default. The “get interval is the intervening period at which, when
subscribed to, the e*Way connection is polled.

7 Under e*Way Connection Configuration File, click the New button.

8 The e*Way Connection editor opens, select the necessary parameters. For more
information on the Jacada Enterprise/Access e*Way Connection Type parameters,
see Configuring e*Way Connections on page 21.

9 Save the conJacadaIntegrator.cfg file

10 From the File menu select Promote to Run Time to move the file to the e*Way’s run
time environment.

5.1.5. Step Five–Creating Event Types
Step five is to create the Event Types. An Event Type is a class of Events with a common
data structure. The e*Gate system packages data within Events and categorizes them
into Event Types. What these Events have in common defines the Event Type and
comprises the ETD.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Sample Implementation Components
Creating an Event Type from the Custom ETD Wizard

The following procedures show how to create an ETD (Event Type Definition) using the
Custom ETD Wizard.

1 Highlight the Event Types folder on the Components tab of the e*Gate Navigator.

2 On the palette, click the Create a New Event Type button.

3 Enter the name of the Event, then click OK. For the purpose of this sample the
Event Type is defined as BankingInput .

4 Double-click the new Event Type to edit its properties. The Event Type Properties
dialog box opens.

5 Under the Event Type Definition field, click the New button. The ETD Editor opens.

6 Select New from the File menu. The New Event Type Definition window opens.

7 Select the Custom ETD Wizard from the New Event Type Window.

Figure 8 Event Type Definition Wizards

8 When the Custom ETD Wizard opens enter the Root Node Name (BankingInput
for this sample) and the Package Name (test.jacada.banking for this sample) where
all of the Java source files will be generated. Click Next and Finish to close the
Custom e*Way Wizard.

9 Right click BankingInput in the Event Type Definition pane, and select Add Field,
as Child Node. Repeat this to create Field1 and Field2.

10 Triple-click on Field1, and rename it MethodToInvoke.

11 Triple-click on Field2, and rename it InputData.

12 Click on the Global Delimiters button on the tool bar. When the Global Delimiters
dialog box open enter “/” for the endDelim (end delimiter). Click OK to close the
dialog box.

13 From the File menu select Compile And Save. Save the file as BankingInput.xsc. If
the file fails to compile, errors are displayed in the Compile message box in the
Editor. If the file compiles without error the title bar displays the name of the .xsc
file and (Sandbox).
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Sample Implementation Components
Figure 9 Event Type Definition Editor

14 To move the file from the “Sandbox” to the runtime environment, select Promote to
Run Time from the File menu.

15 Close the ETD Editor.

Creating an Event Type Using the Jacada ETD Wizard

The following procedures show how to create an ETD (Event Type Definition) using the
JacadaWizard ETD Wizard.

1 Highlight the Event Types folder on the Components tab of the e*Gate Navigator.

2 On the palette, click the Create a New Event Type button.

3 Enter the name of the Event, then click OK. For the purpose of this sample the
Event Type is defined as BankingService.

4 Double-click the new Event Type to edit its properties. The Event Type Properties
dialog box opens.

5 Under the Event Type Definition field, click the New button. The ETD Editor opens.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Sample Implementation Components
6 Select New from the File menu. The New Event Type Definition window opens.

Figure 10 Event Type Definition Wizards

7 Select the JACADAWizard ETD wizard.

8 When the JACADAWizard opens enter the host name (the name of the machine
running the Jacada Server) and port number (the number of the port the server is
running on) to connect to Jacada.

9 Select Enable Debug and enter the path for the Debug File to enable the Debug
option.

10 Specify the Package Name or service to be used to create the .xsc file. (For this
sample, use test.jacada.banking as the package name.)

11 Select a Jacada service that will be used to create the .xsc file (for the sample select
banking as the service) and click OK.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Sample Implementation Components
Figure 11 Event Type Definition Editor

12 From the File menu, click Save. Save the .xsc file as BankingService.xsc.

13 From the File menu, click Promote to Run Time to move the file to the run time
environment.

14 Close the ETD Editor.

Creating an Event Type from an Existing XSC

The following procedures show how to create an Event Type using an existing .xsc file.

1 Select the Event Types folder on the Components tab of the e*Gate Navigator.

2 On the palette, click the Create a New Event Type button.

3 Enter the name of the Event Type in the New Event Type Component window,
then click OK. (For this sample, the Event Type is defined as “BankingOutput.”)

4 Double-click the new Event Type to edit its properties. The Event Type Properties
dialog box opens.

5 Click the Find button under the Event Type Definition field.

6 Browse to and select BankingOutput.xsc.

7 Click OK to close the Event Type Properties dialog box.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Sample Implementation Components
5.1.6. Step Six–Intelligent Queues
Step Six in configuring the Jacada Enterprise/Access e*Way is to create the IQs. IQs
manage the exchange of information between components within the e*Gate system,
providing non-volatile storage for data as it passes from one component to another. IQs
use IQ Services to transport data. IQ Services provide the mechanism for moving
Events between IQs, handling the low-level implementation of data exchange (such as
system calls to initialize or reorganize a database).

To create and modify an Intelligent Queue for the Jacada Enterprise/Access e*Way

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the IQ.

3 Open a Control Broker.

4 Select an IQ Manager.

5 On the palette, click the Create a New IQ button.

6 Enter the name of the new IQ, then click OK. (For this case, iqFeeder.)

7 Double-click the new IQ to edit its properties.

8 On the General tab, specify the Service and the Event Type Get Interval.

! From the service field, select STC_Standard. The Stc_Standard IQ Service provides
sufficient functionality for most applications. If specialized services are required,
custom IQ Service DLLs may be created.

! The default Event Type Get Interval of 100 Milliseconds is satisfactory for the
purposes of this initial implementation.

9 On the Advanced tab, make sure that Simple publish/subscribe is checked under
the IQ behavior section.

10 Click OK to close the IQ Properties window

11 For this purpose of this implementation, repeat steps 1 through 10 to create an
additional IQ (iqEater).

5.1.7. Step Seven–Collaboration Rules
Step seven in creating the Jacada Enterprise/Access e*Way is to create the
Collaboration Rules that will extract and process selected information from the source
Event Type defined earlier, according to its associated Collaboration Service. The
Default Editor can be set to either Monk or Java. From the Enterprise Manager Task
Bar, select Options and click Default Editor. Make sure that the default is set to Java.

Creating Pass Through Collaboration Rules

1 Select the Navigator's Components tab in the e*Gate Enterprise Manager.

2 In the Navigator, select the Collaboration Rules folder.

3 On the palette, click the Create New Collaboration Rules button.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Sample Implementation Components
4 Enter the name of the new Collaboration Rule Component, then click OK (in this
case, use crInputPassThru).

5 Double-click the new Collaboration Rules Component. The Collaboration Rules
Properties window opens.

6 Select Pass Through from the Service field drop-down box (see Figure 12).

Figure 12 Pass Through Collaboration Properties

7 Click on the Subscriptions tab. Select BankingInput under Available Input Event
Types, and click the right arrow to move it to Selected Input Event Types. The box
under Triggering Event should be checked.

Figure 13 Pass Through Collaboration Properties, Publications Tab
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Sample Implementation Components
8 Go to the Publications tab. Select BankingInput under Available Output Event
Types, and click the right arrow to move it to Selected Output Event Types. The
Radio button under Default will be enabled.

9 Click OK to close the Collaboration Rules, Pass Properties window.

10 For the purpose of this sample repeat steps 1-9 above substituting
crOutputPassThru as the name in step 4, and BankingOutput as the Available
Input and Output Event Types in steps 7 and 8.

Creating Java Collaboration Rules

1 Select the Navigator's Components tab in the e*Gate Enterprise Manager.

2 In the Navigator, select the Collaboration Rules folder.

3 On the palette, click the Create New Collaboration Rules button.

4 Enter the name of the new Collaboration Rule, then click OK (for this case, use
crBankingInvokeMethod).

5 Double-click the new Collaboration Rules Component to edit its properties. The
Collaboration Rules Properties window opens.

6 The Service field defaults to Java. The Collaboration Mapping tab is enabled, and
the Subscriptions and Publications tabs are disabled.

Figure 14 Collaboration Rules - Java Properties

7 In the Initialization string field, enter any required initialization string for the
collaboration.

8 Select the Collaboration Mapping tab.

9 Using the Add Instance button, create instances to coincide with the Event Types.

For this sample, do the following:
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Sample Implementation Components
10 In the Instance Name column, enter BankingOutput for the instance name.

11 Click Find, navigate to etd\BankingOutput.xsc, double-click to select.
BankingOutput.xsc is added to the ETD column of the instance row.

12 In the Mode column, select Out from the drop–down menu available.

13 The Trigger column value is N/A.

14 The Manual Publish column is clear.

15 Repeat steps 9–13 using the following values:

" Instance Name — BankingService

" ETD — Banking.xsc

" Mode — Out

" Manual Publish — unselected

16 Repeat steps 9–13 once more using the following values:

" Instance Name — BankingInput

" ETD — BankingInput.xsc

" Mode — In

" Trigger — selected

Note: At least one of the ETD instances used by the Collaboration must be checked as the
trigger. For specific information on creating and configuring Collaboration Rules,
see the e*Gate Integrator User’s Guide.

Figure 15 Collaboration Rules - Collaboration Mapping Properties

17 Select the General tab. Under the Collaboration Rule field, select New. The
Collaboration Rules Editor opens.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Sample Implementation Components
18 Expand to full size for optimum viewing, expanding the Source and Destination
Events as well.

5.1.8. The Collaboration Rules Editor
Part two of step seven is to define the business logic using the Collaboration Rules
Editor. The Java Collaboration Rules Editor is the GUI used to create and modify Java
Collaboration Rules. A Java Collaboration Rule is created by designating one or more
source Events and one or more destination Events and then setting up rules governing
the relationship between fields in the Event instances.

The crBankingInvokeMethod.class that comes as part of the sample schema is an
extensive set of collaboration rules. To view the various business rules go to the
Business rules window and highlight a rule. Code for the specific rule is displayed in
the Rule Properties, Rules window. For detailed information on creating Collaboration
Rules using the Java Collaboration Rules Editor see the e*Gate Integrator User’s
Guide.

Figure 16 Collaboration Rules — Collaboration Rules Editor

For the purpose of demonstrating how the sample’s Collaboration Rules were
generated, the following partial implementation describes how to create a number of
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 41 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Sample Implementation Components
the collaboration rules, starting with line 9 under retboolean in the Business Rules pane.

1 Beginning at the Else check to see if request to invoke another method, assuming
that this line is selected, click on the if button on the toolbar. An if expression is
added to the Business Rules pane.

Figure 17 Collaboration Rules — Business Rules Pane

2 Place the curser in the If Properties, Condition window and type
''GetCustInfo''equalsIgnoreCase().

3 From the Source Events pane drag and drop MethodToInvoke into the parenthesis
in the If Properties, Condition window. When prompted for type of function to
insert for this node select get. The code in the Condition window should appear as
follows:

"GetChecking".equalsIgnoreCase(getBankingInput().getMethodToInvoke
())

4 Type If request to invoke the GetCustInfo method in the If Properties,
Description field. The description is added to the rule in the Business Rules pane.
(This line checks to see if the customer has data.)

5 Select the then expression in the Business Rules pane. Type Then invoke the
GetCustInfo in the Then Properties, Description field. The description is added to
the rule in the Business Rules pane.

6 Click the var button (variable) on the toolbar. a variable is added to the Business
Rules pane.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Sample Implementation Components
Figure 18 Collaboration Rules Editor - Variable Properties

7 Type Template index in the Variable Properties, Description field. Also, type
nIndex in the Name field, select int as the type and enter 0 as the Initial Value (see
Figure 18).

8 From the Source Events pane drag and drop InputData to ssn (under GetCustInfo,
Input) in the Destination Events. The new rule is added to the Business Rules pane.
A line is displayed between the two events and the associated code is displayed in
the Rule Properties, Rule window.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Sample Implementation Components
Figure 19 Collaboration Rules Editor

9 In the Description field type First, set the social security number for GetCustInfo
input.

10 Click the rule button on the toolbar. A rule expression appears.

11 Type the following in the Rule Properties, Rule window:

EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,
"Invoking the Init method.");

12 In the Description field type EGate trace invoke GetCustInfo.

13 Click the rule button on the toolbar again.

14 From the Destination Events pane, Drag and drop the invoke method (under
BankingService, GetCustInfo, Output), into the Rule Properties, Rule window
(seeFigure 20).
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 44 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Sample Implementation Components
Figure 20 Collaboration Rules Editor

15 In the Description field type Invoke GetCustInfo().

16 Click the rule button on the toolbar to add another rule expression.

17 Type the following in the Rule Properties, Rule window:

EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,
"Successfully invoked GetCustInfo.");

18 In the Description field type EGate trace invoke GetCustInfo successful.

19 Click the if button again to add another if expression.

20 From the Destination Events pane, Drag and drop the hascustom_table method
(under BankingService, GetCustInfo, Output), into the If Properties, Condition
window. The associated code appears in the Condition window.

21 In the Description field type If custom_table has data. (This line checks to see if the
custom table contains data. If there is data present it continues to the next step.)

22 Select the then expression in the Business Rules pane. Type Then iterate through
each row and populate XML in the Then Properties, Description field. The
description is added to the rule in the Business Rules pane.

23 Click the rule button on the toolbar to add another rule expression.

24 Type the following in the Rule Properties, Rule window:

EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,
"custom_table row count : " +
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Sample Implementation Components
getBankingService().getGetCustInfo().getOutput().countcustom_table
());

25 In the Description field type EGate trace custom_table row count.

26 Click the rule button again to add another rule expression.

27 Drag and drop Name (under BankingOutput, Template) from the Destination pane
into the Rule Properties, Rule window. When prompted for type of function to
insert for this node select set.

28 The Select Repetition Instance dialog box appears. Enter nIndex in the Template
field.

29 Place the curser in the last set of parenthesis and type in “custom_table”. (This line
sets the output template name to customer info template.)

30 In the Description field type Get data from custom_table and populate output
XML.

Figure 21 Collaboration Rules Editor

31 Click the for button on the toolbar to add a for loop. When prompted as to whether
to create the rule as a sibling or child, select Sibling.

32 In the For Properties pane, Description field, type For each row in custom_table,
create row output for XML. In the Counter Initialization field, type int i=0.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 46 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Sample Implementation Components
33 Type i < in the Condition field, then drag and drop the countcustom_table method
from the Destination Events pane to the Condition field. The code in the Condition
field appears as follows:

i < getBankingService().getGetCustInfo().getOutput()
.countcustom_table()

34 In the Counter Update field, type i++.

35 Click the if button on the toolbar to add an if expression.

36 From the Destination Events pane, Drag and drop the hasacct method (under
BankingService, GetCustInfo, Output, custom_table), into the If Properties,
Condition window.

37 The Select Repetition Instance dialog box appears. Enter i in the custom_table
field and click OK.

38 In the Description field type If have acct in result. (Checks to see if the account has
any data. If it does it is copied to the output.)

39 Select the then expression and type Then get acct in the Then Properties,
Description field.

40 Click the rule button again to add another rule expression.

41 From the Destination Events pane, drag Name (under BankingOutput, Template,
Data, Row, Column) to the Rule Properties, Rule window. When prompted for type
of function to insert for this node select set.

42 The Select Repetition Instance dialog box appears. Enter nIndex in the Template
field, i in the Row field and 0 in the column field. Click OK.

43 Place the curser in the last set of parenthesis and type ''acct''.

44 In the Description field type Set acct column name for current row.

45 Click the rule button again to add another rule expression.

46 From the Destination Events pane, drag Value (under BankingOutput, Template,
Data, Row, Column) to the Rule Properties, Rule window. When prompted for type
of function to insert for this node select set.

47 The Select Repetition Instance dialog box appears. Enter nIndex in the Template
field, i in the Row field and 0 in the column field. Click OK.

48 Drag and drop acct (under BankingOutput, BankingService, GetCustInfo, Output,
custom_table) into the curser in the last set of parenthesis in the Rule Properties,
Rule window. When prompted for type of function to insert for this node select get.

49 The Select Repetition Instance dialog box appears. Enter i in the custom_table
field and click OK.

50 The code in the Rule window appears as follows:

getBankingOutput().getTemplate(nIndex).getData().getRow(i).getColu
mn(0).setValue(getBankingService().getGetCustInfo().getOutput().ge
tcustom_table(i).getacct())

51 In the Description field type Set acct column value for current row.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Sample Implementation Components
Figure 22 Collaboration Rules Editor

52 When all the business logic has been defined, the code can be compiled by selecting
Compile from the File menu. When the Save menu opens, provide a name for the
.xpr file. If the code compiles successfully, the message Compile Completed
appears. If the outcome is unsuccessful, a Java Compiler error message appears at
the bottom of the editor in a watch window.

53 Once the compilation is complete, click File, Promote to move the file to the run
time environment. Close the Collaboration Rules Editor.

54 Click OK to close the Properties dialog box.

55 For detailed information on creating Collaboration Rules using the Java Collaboration Rules
Editor see the e*Gate Integrator User’s Guide.

5.1.9. Step Eight–Collaborations
Step eight in creating the Jacada Enterprise/Access e*Way is to create the
Collaborations. Collaborations are the components that receive and process Event
Types, then forward the output to other e*Gate components or an external component.
Collaborations consist of the Subscriber, which “listens” for Events of a known type,
and the Publisher, which distributes the transformed Event to a specified recipient.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 48 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Sample Implementation Components
Creating the Inbound_eWay Collaboration

1 In the e*Gate Enterprise Manager, select the Navigator's Components tab.

2 Open the host on which you want to create the Collaboration.

3 Select a Control Broker.

4 Select the ewFeeder e*Way to assign the Collaboration.

5 On the palette, click the Create a New Collaboration button.

6 Enter the name of the new Collaboration, then click OK. (in this case, “coFeeder”.)

7 Double-click the new Collaboration to edit its properties.

8 From the Collaboration Rules list, select the Collaboration Rules file that you
created previously. (For the sample, “crInputPassThru”.)

9 In the Subscriptions area, click Add to define the input Event Types to which this
Collaboration will subscribe.

A From the Event Type list, select the Event Type that you previously defined
BankingInput.

B Select the Source from the Source list. In this case, it should be <External>.

10 In the Publications area, click Add to define the output Event Types that this
Collaboration will publish.

A From the Event Types list, select the Event Type that you previously defined
BankingInput.

B Select the publication Destination from the Destination list. In this case, it
should be iqFeeder.

C The Priority column will default to 5 (which is fine for this sample).

Figure 23 Collaboration - Inbound e*Way Properties

11 Click OK to close the Collaboration Properties window.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Sample Implementation Components
Creating the Outbound_eWay Collaboration

1 In the e*Gate Enterprise Manager, select the Navigator's Components tab.

2 Open the host on which you want to create the Collaboration.

3 Select a Control Broker.

4 Select the ewEater e*Way to assign the Collaboration.

5 On the palette, click the Create a New Collaboration button.

6 Enter the name of the new Collaboration, then click OK. (in this case, “coEater”.)

7 Double-click the new Collaboration to edit its properties.

8 From the Collaboration Rules list, select the Collaboration Rules file that you
created previously. (For the sample, “crOutputPassThru”.)

9 In the Subscriptions area, click Add to define the input Event Types to which this
Collaboration will subscribe.

A From the Event Type list, select the Event Type that you previously defined
BankingOutput.

B Select the Source from the Source list. In this case, it should be
colInvokeBankingMethod.

10 In the Publications area, click Add to define the output Event Types that this
Collaboration will publish.

A From the Event Types list, select the Event Type that you previously defined
BankingOutput.

B Select the publication Destination from the Destination list. In this case, it
should be <EXTERNAL>.

C The Priority column will default to 5 (which is fine for this sample).

11 Click OK to close the Collaboration Properties window.

Creating the Multi Mode e*Way Collaborations

1 To create the ColInvokeBankingMethod Collaboration, Select the
ewJacadaIntegrator e*Way to assign a Collaboration.

2 On the palette, click the Create a New Collaboration button.

3 Enter the name of the new Collaboration, then click OK. (For the sample,
“colInvokeBankingMethod”.)

4 Double-click the new Collaboration to edit its properties.

5 From the Collaboration Rules field drop down list box, select the Collaboration
Rules file that you created previously. For the sample use
crBankingInvokeMethod.

6 In the Subscriptions field, click Add to define the input Event Types to which this
Collaboration will subscribe.

A From the Instance Name list, select the Instance Name that you previously
defined BankingInput.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 50 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Sample Implementation Components
B From the Event Type list, select the Event Type previously defined
BankingInput.

C Select the Source from the Source list. In this case, it should be colFeeder.

7 In the Publications area, click Add to define the output Event Types that this
Collaboration will publish.

A From the Instance Name list, select the Instance Name previously defined as
BankingService.

B From the Event Types list, select the Event Type that you previously defined
BankingService.

C Select the Destination from the Destination list. In this case select
conJacadaIntegrator.

D The Priority column will default to 5.

8 In the Publications area, click Add to define the output Event Types that this
Collaboration will publish.

A From the Instance Name list, select the Instance Name previously defined as
BankingOutput.

B From the Event Types list, select the Event Type that you previously defined
BankingOutput.

C Select the Destination from the Destination list. In this case select iqEater.

D The Priority column will default to 5 (which is fine for this sample).

Figure 24 Collaboration Properties - MQ_cr_out

9 Click OK to close the Properties window.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 51 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation Execute the Schema
5.2 Execute the Schema
To execute the schema, do the following:

1 Go to the command line prompt, and enter the following:

stccb -rh hostname -rs schemaname -un username -up user password
-ln hostname_cb

Substitute hostname, schemaname, username and user password as appropriate.

2 Exit from the command line prompt, and start the e*Gate Monitor GUI.

3 When prompted, specify the hostname which contains the Control Broker you
started in Step 1 above.

4 Select the schema.

5 After you verify that the Control Broker is connected (the message in the Control
tab of the console will indicate command succeeded and status as up), highlight the
IQ Manager, hostname_igmgr, then right-click and select Start.

6 Highlight each of the e*Ways, right-click the mouse, and select Start.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 52 SeeBeyond Proprietary and Confidential

Chapter 6

Java Methods

The Jacada Enterprise/Access e*Way’s Java Methods fall into the following categories.

The JDK Classes

SeeBeyond's Jacada Enterprise/Access e*Way uses JDK (SDK) 1.3.1_02 which is
installed as part of the e*Gate Enterprise Integrator installation.

The Jacada Classes

SeeBeyond's Jacada Enterprise/Access e*Way uses the JClient3 classes provided as part
of the E/A installation. The jar file containing these classes is jclient3.jar. This jar file
must be copied to eGate\client\ThirdParty\jacadaeaijc3\classes before the builder or
the e*Way can be used.

The SeeBeyond Classes

Builder Class

The builder is used to construct the Service ETD. Only one class implements the
builder. This class is called JacadaEAiJC3Builder.class and is in the jar file named
stcjc3svcbldr.jar. This jar file gets installed when the e*Way is installed (add-on).

The Service Wizard (GUI) is also installed as part of the e*Way. The Wizard guides a
user in a step-by-step process of generating an ETD for a Service. The Wizard provides
GUI interfaces for querying the following information : Environment Manager host and
port, package name, debugging options, and the Service name. The Wizard will then
provide that information to the builder to construct the Service ETD.

Runtime Class

What we referred to as the runtime is the implementation of the e*Way Connection for
Jacada EAi. JacadaEAiJC3Connector.class implements the EbobConnector interface to
provide connectivity with the Environment Manager on an E/A system. The
Environment Manager is a process on an E/A system whose tasks include facilitating
client connections. The connector class is in the jar file named stcjc3conn.jar. This jar file
also gets installed when the e*Way is installed (add-on).

Miscellaneous Classes

This e*Way also makes use of open source third party tools. These are GNU GetOpt
and Apache Xerces. The classes for these tools are also installed as part of the e*Way
installation (add-on).
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 53 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The JacadaEAiJC3Builder Class
These Java methods have been added to make it easier to set information in the e*Way
ETD Editor and to get information from it. These methods are contained in classes:

! The JacadaEAiJC3Builder Class on page 54

! The JacadaEAiJC3Connector Class on page 61

6.1 The JacadaEAiJC3Builder Class
This class extends the JCSCompiler to provide a Jacada EAi Service builder. This class
uses the Jacada EAi JClient3 APIs to query the metadata for a particular service. Using
the metadata of a service, this class will produce the corresponding XSC file and the
Java classes for that service.

java.lang.Object
com.stc.compilers.Compiler

com.stc.jcs.JCSCompiler
com.stc.eways.jacadaeaijc3.builder.JacadaEAiJC3Builder

public class JacadaEAiJC3Builder

Extends com.stc.jcs.JCSCompiler.

Methods of the JacadaEAiJC3Builder Class

These methods are described in detail on the following pages:

JacadaEAiJC3Builder

Description

Constructor. Constructs a JacadaEAiJC3Builder

Syntax

public JacadaEAiJC3Builder()

Parameters

None.

Return Values

None.

JacadaEAiJC3Builder on page 54 connect on page 58

setPrintDebug on page 55 close on page 59

getPrintDebug on page 55 getListOfServices on page 59

compile on page 55 getListOfMethods on page 60

setJC3Debug on page 58 main on page 61
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 54 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The JacadaEAiJC3Builder Class
Throws

None.

setPrintDebug

Description

Sets the print debug flag.

Syntax

public void setPrintDebug(boolean printDebug)

Parameters

Return Values

None.

Throws

None.

getPrintDebug

Description

Gets the print debug flag.

Syntax

public void getPrintDebug()

Parameters

None

Return Values

boolean.
The current value of the print debug flag.

Throws

None.

compile

Description

Creates the necessary files to process a Jacada EAi Service data.

Name Type Description

printDebug boolean Boolean flag to indicate print debug
to System.err.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 55 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The JacadaEAiJC3Builder Class
Creates the necessary files to process a Jacada EAi Service data. Must be connected to
an Environment Manager first before invoking this method.

Syntax

public void compile(java.lang.String inEnvmgrHost,
 int inEnvmgrPort,
 java.lang.String inServiceName,
 java.lang.String xscfname,
 java.lang.String pkg,
 boolean debug,
 java.lang.String debugFile,
 int secTimeout,
 int secSlope,
 int secInitDelay,
 int maxRetries)

public void compile(java.lang.String inEnvmgrHost,
 int inEnvmgrPort,
 java.lang.String inServiceName,
 java.lang.String xscfname,
 java.lang.String pkg,
 boolean debug,
 java.lang.String debugFile)

public void compile(java.lang.String inServiceName,
 java.lang.String xscfname,
 java.lang.String pkg)

Parameters

Name Type Description

inEnvmgrHost java.lang.String The host name or IP address on
which the Environment Manager is
running.

inEnvmgrPort integer The port at which the Environment
Manager is listening for
connections.

inServiceName java.lang.String The name of the service for which
the ETD is to be constructed.

xscfname java.lang.String Full path name of the e*Gate .xsc
file to generate.

pkg java.lang.String The Package name for the ETD to be
constructed.

debug boolean The flag to turn on print debugging.

debugFile java.lang.String The file used to write JClient3
debug messages. If null is provided
and debug is set to true, then a
default
egate\client\logs\jacadabuilder.log
file will be used. If debug is set to
false, then this parameter will not be
used.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 56 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The JacadaEAiJC3Builder Class
secTimeout integer Timeout value to be used for a
service connection (in seconds).

secSlope integer The rate at which to increase delay
between service connection retries
(in seconds).

secInitDelay integer The the initial delay between
service connection retries (in
seconds).

maxRetries integer The maximum number of times to
retry service connections.

Name Type Description

inEnvmgrHost java.lang.String The host name or IP address on
which the Environment Manager is
running.

inEnvmgrPort integer The port at which the Environment
Manager is listening for
connections.

inServiceName java.lang.String The name of the service for which
the ETD is to be constructed.

xscfname java.lang.String Full path name of the e*Gate .xsc
file to generate.

pkg java.lang.String The Package name for the ETD to be
constructed.

debug boolean The flag to turn on print debugging.

debugFile java.lang.String The file used to write JClient3
debug messages. If null is provided
and debug is set to true, then a
default
egate\client\logs\jacadabuilder.log
file will be used. If debug is set to
false, then this parameter will not be
used.

Name Type Description

inServiceName java.lang.String The name of the service for which
the ETD is to be constructed.

xscfname java.lang.String Full path name of the e*Gate .xsc
file to generate.

pkg java.lang.String The Package name for the ETD to be
constructed.

Name Type Description
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 57 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The JacadaEAiJC3Builder Class
Return Values

None.

Throws

com.stc.jcs.JCSException
Thrown upon error.

setJC3Debug

Description

Turn on debugging on the JClient3 API. To turn JClient 3 debugging, this method must
be called prior to connect.

Syntax

public void setJC3Debug(java.lang.String debugFile)

Parameters

Return Values

None.

Throws

com.stc.jcs.JCSException
Thrown upon error.

connect

Description

Connect to the EAi Environment Manager.
Syntax

public boolean connect(java.lang.String inEnvmgrHost, int
inEnvmgrPort)

Name Type Description

 debugFile java.lang.String The file used to write JClient3
debug messages. If this is set to null,
then a default file
"jacadabuilder.log" will be created
in egate\client\logs in an e*Gate
environment or in the current
working directory if no e*Gate
environment.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 58 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The JacadaEAiJC3Builder Class
Parameters

Return Values

boolean
True if connect is successful. False otherwise.

Throws

None.

close

Description

Close the connection to the EAi Environment Manager.
Syntax

public boolean close()

Parameters

None

Return Values

boolean
True if close is successful. False otherwise.

Throws

None.

getListOfServices

Description

Get a list of supported Services for a connection to an Environment Manager. (See
connect(java.lang.String, int))

Syntax

public java.lang.String[] getListOfServices()

Parameters

None.

Name Type Description

inEnvmgrHost java.lang.String The host name or IP address on
which the Environment Manager is
running.

 inEnvmgrPort integer The port at which the Environment
Manager is listening for
connections.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 59 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The JacadaEAiJC3Builder Class
Return Values

java.lang.String[]
An array of Service names supported on the connected Environment Manager. Null
if no services are supported.

Throws

com.stc.jcs.JCSException
Thrown upon error.

getListOfMethods

Description

Get a list of supported Methods for a Service. (See connect(java.lang.String, int),
getListOfServices(), and setService(java.lang.String, serviceName))

Syntax

public java.lang.String[] getListOfMethods()

public java.lang.String[] getListOfMethods(java.lang.String service)

Parameters

Return Values

java.lang.String[]
An array of method names supported on a given Service. Null will be returned if no
methods are supported on a given Service.

Throws

com.stc.jcs.JCSException
Thrown upon error.

setService

Description

Set the Name of the Service to use. (See getListOfMethods(java.lang.String))

Syntax

public void setService(java.lang.String serviceName)

Name Type Description

 service java.lang.String The PackedDecimal object to be
converted.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 60 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Methods The JacadaEAiJC3Connector Class
Parameters

Return Values

None.

Throws

None

main

Description

Resets the data content of an ETD.

Syntax

public static void main(java.lang.String[] args)

Parameters

Return Values

static void

Throws

None.

6.2 The JacadaEAiJC3Connector Class
This class implements the EBobConnector interface in order to provide a connector
object for the Jacada EAi ETDs. This class provides the properties set for the e*Way
Connection, and facilitates the connections to the Environment Manager as well as the
services managed by the Environment Manager.
java.lang.Object

com.stc.eways.jacadaeaijc3.runtime.JacadaEAiJC3Connector

public class JacadaEAiJC3Connector
The JacadaEAiJC3Connector Class extends java.lang.Object and implements
com.stc.jcsre.EBobConnector

Name Type Description

 serviceName java.lang.String The name of the Service.

Name Type Description

 args java.lang.String[]
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 61 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Methods The JacadaEAiJC3Connector Class
Methods of the JacadaEAiJC3Connector Class

These methods are described in detail on the following pages:

JacadaEAiJC3Connector

Description

Constructor. Constructs a JacadaEAiJC3Connector.
Syntax

public JacadaEAiJC3Connector(java.util.Properties props)

public JacadaEAiJC3Connector(java.lang.String host, java.lang.String
port, java.lang.String clientID, java.lang.String debugLevel,
java.lang.String debugFile)

Parameters

Return Values

None.

Throws

None.

JacadaEAiJC3Connector on page 62 getProperties on page 64

open on page 63 getServiceConnection on page 65

close on page 63 getEnvironmentManagerConnection on
page 65

isOpen on page 64

Name Type Description

props java.util.Properties A Properties object.

Name Type Description

host java.lang.String Environment Manager host.
Mandatory.

port java.lang.String Environment Manager port.
Mandatory.

clientID java.lang.String Client ID to use for Environment
Manager monitor. Optional.

debugLevel java.lang.String The E/A debug level to use for
debugging the JClient3 api.
Optional. Valid values are
"NONE","0","1","2","3".

debugFile java.lang.String Environment Manager host.
Optional.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 62 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Methods The JacadaEAiJC3Connector Class
open

Description

Opens the connector for accessing the external system. Specified by open in interface
com.stc.jcsre.EBobConnector. (Also see com.stc.jcsre.EbobConnector)

Syntax

public void open(boolean intoEgate)

Parameters

Return Values

None.

Throws

com.stc.jcsre.EBobConnectionException
Thrown when connection problems occur.

close

Description

Closes the connector for accessing the external system and releases resources. Specified by
close in interface com.stc.jcsre.EBobConnector. (Also see
com.stc.jcsre.EbobConnector)

Syntax

public void close()

Parameters

None.

Return Values

None.

Name Type Description

host java.lang.String Environment Manager host.
Mandatory.

port java.lang.String Environment Manager port.
Mandatory.

clientID java.lang.String Client ID to use for Environment
Manager monitor. Optional.

debugLevel java.lang.String The E/A debug level to use for
debugging the JClient3 api.
Optional. Valid values are
"NONE","0","1","2","3".

debugFile java.lang.String Environment Manager host.
Optional.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 63 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Methods The JacadaEAiJC3Connector Class
Throws

com.stc.jcsre.EBobConnectionException
Thrown when connection problems occur.

isOpen

Description

Verifies that the connector to the external system is still available. Specified by isOpen
in interface com.stc.jcsre.EBobConnector. (Also see com.stc.jcsre.EbobConnector)

Syntax

public boolean isOpen()

Parameters

None.

Return Values

boolean.
True if the connector is still open and available; False otherwise.

Throws

com.stc.jcsre.EBobConnectionException
Thrown when connection problems occur.

getProperties

Description

Retrieves the connection properties (stored by the constructor) used by the connector to
access the external. Specified by getProperties in interface
com.stc.jcsre.EBobConnector. (Also see com.stc.jcsre.EbobConnector)

Syntax

public java.util.Properties getProperties()

Parameters

None.

Return Values

java.util.Properties
Connection properties of the external system.

Throws

None.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 64 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Methods The JacadaEAiJC3Connector Class
getServiceConnection

Description

Get a connection to a service.
Syntax

public com.cnt.ea.jclient3.ServiceConnection
getServiceConnection(java.lang.String serviceName)

Parameters

Return Values

com.cnt.ea.jclient3.ServiceConnection
A ServiceConnection object for a connection with the service that was specified.

Throws

com.stc.jcsre.EBobConnectionException
Thrown upon failure to open a connection to the service.

getEnvironmentManagerConnection

Description

Returns the Environment Manager connection object. If not connected to the
Environment Manager, then null is returned.

Syntax

public com.cnt.ea.jclient3.EnvironmentManagerConnection
getEnvironmentManagerConnection()

Parameters

None.

Return Values

com.cnt.ea.jclient3.EnvironmentManagerConnection
Connection properties of the external system.

Throws

None.

Name Type Description

serviceName java.lang.String The name of the Service to which a
connection is to be opened.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 65 SeeBeyond Proprietary and Confidential

Chapter 7

Frequently Asked Questions

The FAQ chapter lists common questions and answers in regard to running the Jacada
Integrator and the Jacada Enterprise/Access e*Way in a production environment.

7.1 Jacada e*Way Questions
1 Will the e*Way work if one or more screens of the application have changed on

the backend host?

No. The e*Way will not work without properly changing the Jacada Service to
which the e*Way is connecting. Use the Jacada Enterprise/Access 2000 MapMaker
tool to record a new trail for the modified screens and update the Service map with
the appropriate changes. See the Jacada Enterprise/Access 2000 Tutorial
(ea_tut.pdf) for details.

2 If there were changes made to the Jacada Service, will it require changes to the
e*Way?

The answer depends on what changes the changes were made. There are three
scenarios:

A If there were changes to the existing service method(s), such as changes to the
number of input arguments, then the e*Way will not work. The service ETD
must be rebuilt using the Jacada Service Wizard. The Java Collaboration Rule
will also require changes to use the modified service method(s).

B If there were no changes to the existing service method(s), then the e*Way will
not be affected by the changes. The e*Way will run without problems.

C If new method(s) were added to the service, then the e*Way will not be affected
by the addition of the new methods. However, to use the new methods, the
service ETD must be rebuilt using the Jacada Service Wizard. Likewise, to use
the new service methods, change the Java Collaboration Rule.

3 Why can't the Jacada Service Wizard and the e*Way find the jclient3.jar file?

We do not ship the e*Way with the jclient3.jar file. This JAR file contains the Java
client APIs for accessing Jacada Services. To get the jclient3.jar, install either the
client or a full install of Jacada Enterprise/Access. The file is located in
<EARoot>\lib, where <EARoot> is the full path to the directory where Enterprise/
Access is installed. Copy the jclient3.jar file to
<eGateRoot>\client\ThirdParty\jacada\classes and
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 66 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.1
Frequently Asked Questions Jacada e*Way Questions
<eGateRoot>\server\registry\repository\default\ThirdParty\jacada\classes,
where <eGateRoot> is the full path to the directory where e*Gate is installed. If
those directories do not exist, then create them first and then copy the jclient3.jar file
to those locations. The Jacada Service Wizard and the e*Way should now run
correctly.

4 Are multiple output templates supported?

Yes. The Jacada Service Wizard generates an ETD Element for each template. A data
template is generated as a record and a table template is generated as a collection of
records.
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 67 SeeBeyond Proprietary and Confidential

Index
Index

C
Classpath Override 17
Classpath Prepend 17
collaboration rules 37
collaborations 48

for the Multi-Mode e*Way 50
creating a new schema 27

D
directories

created by installation 14
Disable JIT 18

E
e*Way Connection 31

configuration 21
parameters

Connector 22
e*Ways

creating and configuring 28
Inbound e*Way 28
Multi-Mode e*Way 31
Outbound e*Way 30

EACIw32.DLL 11
event types 32
external system requirements 11

F
files

created by installation 14

I
Initial Heap Size 18
installation

directories created by 14
files created by 14

intelligent queues 37

J
Jacada Classes 53
JacadaEAiJC3Builder Class 54

methods
close 59
compile 56
connect 58
getListOfMethods 60
getListOfServices 59
getPrintDebug 55
JacadaEAiJC3Builder 54
main 61
setJC3Debug 58
setPrintDebug 55
setService 60

JacadaEAiJC3Connector Class
methods 61

close 63
getEnvironmentManagerConnection 65
getProperties 64
getServiceConnection 65
isOpen 64
JacadaEAiJC3Connector 62
open 63

jclient3.jar 66
JDK Classes 53
JNI DLL Absolute Pathname 16
JVM settings 15, 16

M
Maximum Heap Size 18
Multi-Mode e*Way 15

configuration 15
configuration parameters

Auxiliary JVM Configuration File 19
CLASSPATH Append From Environment

Variable 17
CLASSPATH Override 17
CLASSPATH Prepend 17
Disable JIT 18
Maximum Heap Size 18
Maximum Stack Size for JVM Threads 18
Maximum Stack Size for Native Threads 18
Remote Debugging port number 19
Suspend option for debugging 19

parameters 15, 16

P
parameters

Connector
Class 22
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 68 SeeBeyond Proprietary and Confidential

Index
Property.Tag 22
Type 22

EnvironmentManager
ClientName 23
Host 23
Port 23

JC3Debug 24
File 25
Level 25

Multi-Mode e*Way
CLASSPATH prepend 17
Initial Heap Size 18
JNI DLL absolute pathname 16
JVM settings 15, 16
Maximum Heap Size 18

ServiceConnection 23
ConnectPerInvoke 24
InitialDelay 24
MaxRetries 24
Slope 24
Timeout 23

pre-installation
UNIX 13
Windows NT 12

S
sample schema 52
SeeBeyond Classes 53

Builder Class 53
Miscellaneous Classes 53
Runtime Class 53

supported operating systems 11

U
UNIX

pre-installation 13

W
Windows NT 4.0

pre-installation 12
e*Way Intelligent Adapter for Jacada Enterprise/Access
User’s Guide 69 SeeBeyond Proprietary and Confidential

	e*Way Intelligent Adapter for Jacada Enterprise/Access User’s Guide
	Contents
	Introduction
	1.1 Overview
	1.1.1. Jacada Services
	1.1.2. Anatomy of a Service ETD
	1.1.3. Intended Reader

	1.2 Supported Operating Systems
	1.3 System Requirements
	1.3.1. External System Requirements

	Installation
	2.1 Windows�NT 4.0 and Windows 2000
	2.1.1. Pre-installation
	2.1.2. Installation Procedure

	2.2 UNIX
	2.2.1. Pre-installation
	2.2.2. Installation Procedure

	2.3 Files/Directories Created by the Installation

	Multi-Mode e*Way Configuration
	3.1 Multi-Mode e*Way
	Multi-Mode e*Way Configuration Parameters
	3.1.1. JVM Settings
	3.1.2. JVM Settings
	JNI DLL Absolute Pathname
	CLASSPATH Prepend
	CLASSPATH Override
	CLASSPATH Append From Environment Variable
	Initial Heap Size
	Maximum Heap Size
	Maximum Stack Size for Native Threads
	Maximum Stack Size for JVM Threads
	Disable JIT
	Remote Debugging port number
	Suspend option for debugging
	Auxiliary JVM Configuration File

	3.1.3. .General Settings
	Rollback Wait Interval
	Standard IQ FIFO

	e*Way Connection Configuration
	4.1 Configuring e*Way Connections
	4.1.1. Connector
	Type
	Class
	Property.Tag

	4.1.2. EnvironmentManager
	Host
	Port
	ClientName

	4.1.3. ServiceConnection
	Timeout
	InitialDelay
	Slope
	MaxRetries
	ConnectPerInvoke

	4.1.4. JC3Debug
	Level
	File

	Implementation
	5.1 Sample Implementation Components
	5.1.1. Step One–Install the Jacada Enterprise/Access Integrator
	5.1.2. Step Two–Installing the Jacada Enterprise/Access e*Way and Creating a Schema
	Importing the Sample Schema

	5.1.3. Step Three–Creating and Configuring the e*Ways
	5.1.4. Step Four–Create the e*Way Connection
	5.1.5. Step Five–Creating Event Types
	Creating an Event Type from the Custom ETD Wizard
	Creating an Event Type Using the Jacada ETD Wizard
	Creating an Event Type from an Existing XSC

	5.1.6. Step Six–Intelligent Queues
	5.1.7. Step Seven–Collaboration Rules
	5.1.8. The Collaboration Rules Editor
	5.1.9. Step Eight–Collaborations

	5.2 Execute the Schema

	Java Methods
	The JDK Classes
	The Jacada Classes
	The SeeBeyond Classes
	6.1 The JacadaEAiJC3Builder Class
	Methods of the JacadaEAiJC3Builder Class
	JacadaEAiJC3Builder
	setPrintDebug
	getPrintDebug
	compile
	setJC3Debug
	connect
	close
	getListOfServices
	getListOfMethods
	setService
	main

	6.2 The JacadaEAiJC3Connector Class
	Methods of the JacadaEAiJC3Connector Class
	JacadaEAiJC3Connector
	open
	close
	isOpen
	getProperties
	getServiceConnection
	getEnvironmentManagerConnection

	Frequently Asked Questions
	7.1 Jacada e*Way Questions

	Index
	C
	D
	E
	F
	I
	J
	M
	P
	S
	U
	W

