
SeeBeyond Proprietary and Confidential

Java Generic e*Way
Extension Kit

Release 4.5.3

Java Generic e*Way Extension Kit 2 SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBI, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 1999–2003 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20030219102857.

Contents

Java Generic e*Way Extension Kit 3 SeeBeyond Proprietary and Confidential

Contents

Chapter 1

Introduction 9
Intended Reader 9

Supporting Documents 10

Supported Operating Systems 10

System Requirements 11

Introducing the Java Virtual Machine 11

Chapter 2

Installation 12
Installing on Windows NT 4.0 or Windows 2000 12

Pre-installation 12
Installation Procedure 12

Installing on UNIX 13
Pre-installation 13
Installation Procedure 15

Installing on OS/390 or z/OS 16

Defining e*Way Components 16
Creating a Java Generic e*Way 16
Creating a Java Monk Extension e*Way 16

Files/Directories Created by the Installation 18

Chapter 3

Introducing the Java Generic e*Way 19
Java Generic e*Way Components 19

stcewgenericjava.exe 19
stcewgenericjava.def 20
Exchanger.java and Java Template Methods 20

e*Way Extensions and External Applications 20
Basics Steps to Extend a Java Generic e*Way 21

Contents

Java Generic e*Way Extension Kit 4 SeeBeyond Proprietary and Confidential

Chapter 4

Extending the .def File 23
Introduction 23

Layout 24

.def file Keywords: General Information 24
White Space 24
Integer Parameters 25
Floating-point Parameters 25
String and Character Parameters 25
Path Parameters 25
Comments 26
“Header” Information 26

Defining a New Section 26
Section Syntax 27
Parameter Syntax 28

Order of Keywords 28
Parameter Types 29
Parameters Requiring Single Values 29
Parameters Accepting a Single Value From a Set 30
Parameters Accepting Multiple Values From a Set 31

Specifying Ranges 33
Specifying Units 34
Displaying Options in ASCII, Octal, Hex, or Decimal 36

Factor 37
Encrypting Strings 38

Configuration Keyword Reference 38
Schedule Syntax 42

Defining Default Schedules 43

Configuration Parameters and the Configuration Files 44
Examples 44

Testing and Debugging the .def File 46
Common Error Messages 47

Accessing Configuration Parameters Within the JVM Environment 48
Property-name Format 48
Getting Property Values 49

Sample .def File 49
Sample Code for FileExchange.java 51
e*Gate Registry Configuration Properties 54
Accessing e*Gate Participating Host Installation Information 55
Accessing e*Gate Registry Files 56
Decoding configuration File Encrypted Passwords 57

Contents

Java Generic e*Way Extension Kit 5 SeeBeyond Proprietary and Confidential

Chapter 5

Configuring the Java Generic e*Way 58
Considerations 58

Required e*Way Configuration Parameters 58
General Settings 59

Journal File Name 59
Max Resends Per Message 59
Max Failed Messages 59
Forward External Errors 60

Communication Setup 60
Exchange Data Interval 60
Zero Wait Between Successful Exchanges 60
Start Exchange Data Schedule 61
Stop Exchange Data Schedule 61
Down Timeout 62
Up Timeout 62
Resend Timeout 62

Java VM Configuration 62
Operational Details 63
Java Release 65
JNI DLL 66
Exchanger Java Class 66
Runtime Dependency 67
Enable Custom Data Error Handling 67
Initial Heap Size 68
Maximum Heap Size 68
CLASSPATH Override 68
CLASSPATH Prepend 68
Disable Class Garbage Collection 69
Enable Garbage Collection Activity Reporting 69
Report Java VM Class Loads 69
Disable JIT 69
DLL Load Path Prepend 70

Methods Required by the Exchanger Interface 71
ACK() 71
connectionEstablish() 71
connectionShutdown() 72
connectionVerify() 72
exchangeData() 73
NAK() 73
processOutgoing() 74
shutdown() 74
startUp() 75

CollabConnException Class 75
CollabConnException 75
CollabConnException 76

CollabDataException Class 76
CollabDataException 76
CollabDataException 77

CollabResendException Class 77
CollabResendException 77
CollabResendException 77

Contents

Java Generic e*Way Extension Kit 6 SeeBeyond Proprietary and Confidential

Exchanger Interface 78

Methods Required by the DataErrorHandler Interface 79
dataErrorHandled() 80

DataErrorHandler Interface 80

Configuring the Java Generic e*Way with the Enterprise Manager 81
Step 1: Commit files to the schema 81
Step 2: Create an e*Way Component 82
Step 3: Configure the e*Way 82
Editing a .def File Within a Schema 83

Developing the Java Business Logic Class 85
Sample Java Business Logic 85

Chapter 6

Core Java Generic e*Way Methods 91
Core Functions 91

eventSendToEgate 92
getEwayConfigProp 92
getLogicalName 93
sendExternalDown 93
sendExternalUp 94
shutdownRequest 94
startSchedule 95
stopSchedule 95
traceln 96
traceln 96

Chapter 7

Introducing the Java Monk Extension e*Way 98
Components 98

Chapter 8

Java Monk Extension e*Way Functions 99
Basic Functions 99

start-schedule 99
stop-schedule 100
send-external-up 100
send-external-down 101
get-logical-name 101
event-send-to-egate 101
shutdown-request 102

Standard e*Way Functions 103
java-ack 103
java-exchange 104
java-extconnect 104
java-init 105
java-nack 105

Contents

Java Generic e*Way Extension Kit 7 SeeBeyond Proprietary and Confidential

java-notify 106
java-outgoing 106
java-shutdown 107
java-startup 108
java-verify 109

Java Monk Extension e*Way Native Functions 109
Accessing Java Methods 109
Java Data Types 109
Type Signatures 110
Method Signatures 110

Signature and Constructors 111
java-call-method 112
java-call-method-with-params 112
java-call-static-class-method-with-params 113
java-call-static-method-with-params 114
java-call-method-with-1-int-param 115
java-call-method-with-1-double-param 116
java-call-method-with-1-string-param 116
java-call-method-with-1-object-param 117
java-call-method-with-int-return 118
java-call-method-with-double-return 118
java-call-method-with-string-return 119
java-call-method-with-object-return 119
java-create-vm 120
java-create-vm-with-parameters 121
java-create-class-instance 122
java-create-class-instance-with-params 123
java-create-string 124
java-destroy-class-instance 125
java-destroy-vm 126
java-get-property 126
java-get-property-int 127
java-get-property-string 127
java-get-property-object 128
java-get-static-property 128
java-get-string-value 129
java-release-string 130
java-set-property 130
java-set-static-property 131
java-set-property-int 132
java-set-property-string 132
java-set-property-object 133

Chapter 9

Configuring the Java Monk Extension e*Way 134
e*Way Configuration Parameters 134

General Settings 134
Journal File Name 134
Max Resends Per Message 135
Max Failed Messages 135
Forward External Errors 135

Communication Setup 136
Start Exchange Data Schedule 136
Stop Exchange Data Schedule 136
Exchange Data Interval 137
Down Timeout 137

Contents

Java Generic e*Way Extension Kit 8 SeeBeyond Proprietary and Confidential

Up Timeout 137
Resend Timeout 138
Zero Wait Between Successful Exchanges 138

Monk Configuration 138
Operational Details 140
How to Specify Function Names or File Names 145
Additional Path 146
Auxiliary Library Directories 146
Monk Environment Initialization File 146
Startup Function 147
Process Outgoing Message Function 148
Exchange Data with External Function 148
External Connection Establishment Function 149
External Connection Verification Function 150
External Connection Shutdown Function 150
Positive Acknowledgment Function 150
Negative Acknowledgment Function 151
Shutdown Command Notification Function 152

Java VM Configuration 152
JVMVersion 152
JVMClasspath 152
Native Stack Size 153
Java Stack Size 153
Initial Heap Size 153
Max Heap Size 154
Enable Class GC 154
Enable Verbose GC 154
Disable Async GC 154

Index 155

Java Generic e*Way Extension Kit Developer’s Guide 9 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

The Java Generic e*Way Extension Kit Developer’s Guide enables you to develop e*Ways or
other e*Gate applications using Java. This document describes how to install, extend,
and configure the Java Generic e*Way and the Java Monk Extension e*Way.

The Extension Kit is comprised of two components:

! The Java Generic e*Way, an executable component that manipulates Events or other
data using instructions written in Java.

! An extension to SeeBeyond’s Monk programming language, which a developer can
use to access Java methods or objects from within Monk code.

1.1 Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the e*Gate system; to have expert-level knowledge of
Windows 2000/NT and UNIX operations and administration, and to be thoroughly
familiar with Windows-style GUI operations. We also recommend that the reader have
a thorough understanding of the following:

! C and C++ programming languages, Java, Java Native Interface (JNI).

! Basic knowledge of SeeBeyond’s Monk programming language.

! The external application for which the extension is being written.

Chapter 1 Section 1.2
Introduction Supporting Documents

Java Generic e*Way Extension Kit Developer’s Guide 10 SeeBeyond Proprietary and Confidential

1.2 Supporting Documents
The following SeeBeyond documents are designed to work in conjunction with the Java
Generic e*Way Extension Kit Developer’s Guide and to provide additional information that
may be useful to you:

1.3 Supported Operating Systems
The Java Generic e*Way is available on the following operating systems:

! Windows 2000, Windows 2000 SP1, Windows 2000 SP2, and Windows 2000 SP3

! Windows NT 4.0 SP6a

! Solaris 2.6, 7, and 8

! AIX 4.3.3 and AIX 5.1

! HP-UX 11.0 and HP-UX 11i

! Compaq Tru64 V4.0F and V5.0A

! Red Hat Linux 6.2

! Traditional Chinese Windows 2000, Windows 2000 SP1, Windows 2000 SP2, and
Windows 2000 SP3

! Traditional Chinese Windows NT 4.0 SP6a

! Traditional Chinese Solaris 8

! OS/390 V2R10

! z/OS V1.2, V1.3, and V1.4

! Creating an End-to-end Scenario with e*Gate Integrator

! e*Gate Integrator Alert Agent User’s Guide

! e*Gate Integrator Alert and Log File Reference Guide

! e*Gate Integrator Collaboration Services Reference Guide

! e*Gate Integrator Installation Guide

! e*Gate Integrator Intelligent Queue Services Reference Guide

! e*Gate Integrator SNMP Agent User’s Guide

! e*Gate Integrator System Administration and Operations Guide

! e*Gate Integrator User’s Guide

! Standard e*Way Intelligent Adapters User’s Guide

! Readme.txt file on the e*Gate installation CD-ROM.

Chapter 1 Section 1.4
Introduction System Requirements

Java Generic e*Way Extension Kit Developer’s Guide 11 SeeBeyond Proprietary and Confidential

1.4 System Requirements
To use the Java Generic e*Way, you need the following:

! An e*Gate Participating Host, version 4.5.1 or later, except for the following
operating systems:

" The OS/390 V2 R10 operating system is supported by e*Gate versions 4.5.2 and
4.5.3.

" The z/OS 1.2, 1.3, and 1.4 operating systems are supported by e*Gate versions
4.5.2 and 4.5.3.

! A TCP/IP network connection.

! Java JDK version 1.3.1._02 or later.

! Additional disk space for e*Way executable, configuration, library, and script files.
The disk space is required on both the Participating and the Registry Host.
Additional disk space is required to process and queue the data that this e*Way
processes. The amount necessary varies based on the type and size of the data being
processed and any external applications performing the processing.

! Open and review the Readme.txt for the C Generic e*Way regarding any additional
requirements prior to installation. The Readme.txt is located on the Installation
CD_ROM at setup\addons\ewjava.

1.5 Introducing the Java Virtual Machine
The Java Virtual Machine (JVM) is an abstract computing machine. Like a physical
machine, it has an instruction set and manipulates various memory areas at run-time.
The JVM is the software implementation of a CPU (Central Processing Unit) designed
to run compiled Java code. This includes stand-alone Java applications, as well as
“applets” that are downloaded and run in Web browsers.

Code for the JVM is contained within .class files. Each .class file contains the code for a
public class. The JVM format uses byte code. Byte code resembles machine code, but is
not limited to any one processor. It is executable on any operating system that supports
the Java run-time system. As a run-time system, JVM links, initializes and executes Java
classes.

The JVM automatically performs garbage collection. If the JVM can verify that a given
Java object will not be accessed again during the execution of the Java program, the
garbage collector can free the memory consumed by that object for reuse. This contrasts
with other languages that require the programmer to track run-time memory usage and
de-allocate memory that is no longer in use.

Java Generic e*Way Extension Kit Developer’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 2

Installation

This chapter explains procedures for installing the Java Generic e*Way.

! Installing on Windows NT 4.0 or Windows 2000 on page 12

! Installing on UNIX on page 13

! Installing on OS/390 or z/OS on page 16

! Files/Directories Created by the Installation on page 18

2.1 Installing on Windows NT 4.0 or Windows 2000

2.1.1. Pre-installation
! Exit all Windows programs before running the setup program, including any

anti-virus applications.

! You must have Administrator privileges to install this e*Way.

2.1.2. Installation Procedure
To install the Java Generic e*Way on a Windows system

1 Log in as an Administrator to the workstation on which you are installing the
e*Way.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s Autorun feature is enabled, the setup application launches
automatically; skip ahead to step 4. Otherwise, use the Windows Explorer or the
Control Panel’s Add/Remove Applications feature to launch the file setup.exe on
the CD-ROM drive.

4 The InstallShield setup application launches. Follow the installation instructions
until you come to the Please choose the product to install dialog box.

5 Select e*Gate Integrator, then click Next.

6 Follow the on-screen instructions until you come to the second Please choose the
product to install dialog box.

7 Clear the check boxes for all selections except Add-ons, and then click Next.

Chapter 2 Section 2.2
Installation Installing on UNIX

Java Generic e*Way Extension Kit Developer’s Guide 13 SeeBeyond Proprietary and Confidential

8 Follow the on-screen instructions until you come to the Select Components dialog
box.

9 Highlight (but do not check) e*Ways, and then click the Change button. The Select
Sub-components dialog box appears.

10 Select the Java Generic e*Way. Click the continue button to return to the Select
Components dialog box, then click Next.

11 Follow the rest of the on-screen instructions to install the Java Generic e*Way. Be
sure to install the e*Way files in the suggested client installation directory. The
installation utility detects and suggests the appropriate installation directory. Unless
you are directed to do so by SeeBeyond support personnel, do not change the suggested
installation directory setting.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, please see the online Help.

For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.

2.2 Installing on UNIX

2.2.1. Pre-installation
You do not require root privileges to install this e*Way. Log in under the user name that
you wish to own the e*Way files. Be sure that this user has sufficient privileges to create
files in the e*Gate directory tree.

Important Requirements for the Java 2 SDK on UNIX Systems

! Do not move Java 2 SDK to any other location than where it was installed by the
installation process. Upon installation, the location of the Java 2 SDK was entered
into the operating system’s Online Database Management (ODM). Changing the
location prevents the proper execution of the Java JNI DLL needed by the JCS.

! The user environment on the Participating Host must have the DLL search path
environment variable (actual names vary according to the OS) set appropriately to
include all directories of the Java 2 SDK installation that contain shared libraries
(extensions vary according to OS). See the table below for more information.

OS
DLL Search Path

Environment Variable
Extension

AIX LIBPATH .a

Solaris, Linux,
Compaq Tru64

LD_LIBRARY_PATH .so

Chapter 2 Section 2.2
Installation Installing on UNIX

Java Generic e*Way Extension Kit Developer’s Guide 14 SeeBeyond Proprietary and Confidential

For AIX Participating hosts only:

To prevent any problems with the Java 2 SDK please apply the following Program
Temporary Fixes (PTFs):

In the event the above PTFs are not installed, the LIBPATH environment variable must
be set to the following:

! The jre/bin directory first, followed by the jre/bin/classic directory, followed by the
directories of other software as needed.

For example, if Java 2 SDK 1.2.2 was installed under /usr/java_dev2, then:

for Bourne Shell or Korn Shell users:

LIBPATH=/usr/java_dev2/jre/bin:/usr/java_dev2/jre/bin/
classic:$LIBPATH

should be added into the egateclient.sh file, immediately prior to the "export
LIBPATH" statement.

For C-shell users:

setenv LIBPATH /usr/java_dev2/jre/bin:/usr/java_dev2/jre/bin/
classic:`printenv LIBPATH`

should be added after the current statements that set LIBPATH.

This intervention is necessary because the Java 1.2.2 JNI DLL will cause a core unless
the LIBPATH is set as described above.

Important Requirements for the Java JDK 1.1.7 on UNIX Systems

! The user environment on the Participating Host must have the DLL search path
environment variable (actual names vary according to the OS) set appropriately to
include all directories of the Java JDK 1.1.7 installation that contain shared libraries
(extensions vary according to OS). See the table below for more information.

HP-UX11 SHLIB_PATH .sl

PTF# APAR#

PTF 1 IYO8084

PTF 2 IY09226

PTF 3 IY10020

PTF 4 IY10427

PTF 5 IY11206

OS
DLL Search Path

Environment Variable
Extension

AIX LIBPATH .a

OS
DLL Search Path

Environment Variable
Extension

Chapter 2 Section 2.2
Installation Installing on UNIX

Java Generic e*Way Extension Kit Developer’s Guide 15 SeeBeyond Proprietary and Confidential

! For Solaris, the “native_threads” version of the JNI DLL, libjava.so, must be
used.

! For HP-UX, the “green_threads” version of the JNI DLL, libjava.sl, must be
used.

2.2.2. Installation Procedure
To install the Java Generic e*Way on a UNIX system

1 Log in on the workstation containing the CD-ROM drive, and insert the CD-ROM
into the drive.

2 If necessary, mount the CD-ROM drive.

3 At the shell prompt, type

cd /cdrom

4 Start the installation script by typing

setup.sh

5 A menu of options will appear. Select the Install e*Way option. Then, follow the
additional on-screen directions.

Note: Be sure to install the e*Way files in the suggested client installation directory. The
installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not
change the suggested “installation directory” setting.

6 After installation is complete, exit the installation utility and launch the Enterprise
Manager.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, please see the online Help
system.

For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.

Solaris, Linux,
Compaq Tru64

LD_LIBRARY_PATH .so

HP-UX11 SHLIB_PATH .sl

OS
DLL Search Path

Environment Variable
Extension

Chapter 2 Section 2.3
Installation Installing on OS/390 or z/OS

Java Generic e*Way Extension Kit Developer’s Guide 16 SeeBeyond Proprietary and Confidential

2.3 Installing on OS/390 or z/OS
See the e*Gate Integrator Installation Guide for procedures on how to install this e*Way on
the OS/390 or z/OS operating systems.

2.4 Defining e*Way Components

2.4.1. Creating a Java Generic e*Way
To create and configure a new Java Generic e*Way:

1 Launch the Enterprise Manager.

2 In the Component editor, create a new e*Way.

3 Display the new e*Way’s properties.

4 On the General tab, under Executable File, click Find.

5 Select the file stcewgenericjava.exe.

6 Under Configuration file, click New.

7 The e*Way Editor will launch. Make any necessary changes, then save the
configuration file.

8 You will return to the e*Way’s property sheet. Click OK to close the properties
sheet, or continue to configure the e*Way.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, please see the online Help
system.

For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.

2.4.2. Creating a Java Monk Extension e*Way
To create and configure a new Java Monk Extension e*Way:

1 Launch the Enterprise Manager.

2 In the Component editor, create a new e*Way.

3 Display the new e*Way’s properties.

4 On the General tab, under Executable File, click Find.

5 Select the file stcewgenericmonk.exe.

Chapter 2 Section 2.4
Installation Defining e*Way Components

Java Generic e*Way Extension Kit Developer’s Guide 17 SeeBeyond Proprietary and Confidential

6 Under Configuration file, click New.

7 From the Select an e*Way template list, select stcewjava and click OK.

8 The e*Way Editor will launch. Make any necessary changes, then save the
configuration file.

9 You will return to the e*Way’s property sheet. Click OK to close the properties
sheet, or continue to configure the e*Way.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, please see the online Help
system.

For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.

Chapter 2 Section 2.5
Installation Files/Directories Created by the Installation

Java Generic e*Way Extension Kit Developer’s Guide 18 SeeBeyond Proprietary and Confidential

2.5 Files/Directories Created by the Installation
The Java Generic Extension Kit includes the following files, which are stored within the
e*Gate directory tree. Files will be stored within the “egate\client” tree on the
Participating Host and committed to the “default” schema on the Registry Host.

Table 1 Files created by the installation

e*Gate Directory File(s)

bin\ stcewgenericjava.exe
stcewgenericmonk.exe
stc_monkjava.dll
stc_monkjava2.dll

configs\stcgenericmonk\ stcewgenericjava.def
stcewjava.def

monk_library\ ewjava.gui

monk_library\ewjava\ java-verify.monk
java-startup.monk
java-shutdown.monk
java-outgoing.monk
java-notify.monk
java-nack.monk
java-init.monk
java-extconnect.monk
java-exchange.monk
java-ack.monk

Java Generic e*Way Extension Kit Developer’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 3

Introducing the Java Generic e*Way

This Java Generic e*Way Extension Kit allows the developer to use either the Java Generic
e*Way or the Java Monk Extension e*Way to interchange data with external
applications. The Java Generic e*Way uses Java exclusively to exchange data, while the
Java Monk Extension e*Way uses Monk to access Java objects and to call Java methods.
The first seven chapters of this manual include instructions on how to:

! Create a .def file for use with your extended Java Generic e*Way configuration
window.

! Implement Java methods to control the data transmission to/from the Java Generic
e*Way.

Programming through the Exchanger Interface framework enables you to create a
bridge between the e*Gate system and external applications, using Java methods to
perform a wide range of operations such as wrapping legacy applications.

3.1 Java Generic e*Way Components
The Java Generic e*Way connects the e*Gate system to an external system or database,
using the appropriate communication protocol and applicable libraries.

The Java Generic e*Way contains the following components:

! stcewgenericjava.exe, an executable file

! stcewgenericjava.def, an executable configuration definition file

! Exchanger.java Interface, an interface containing Java methods that are required to
be implemented by a class file in order to access e*Gate Collaborations

stcewgenericjava.exe

This executable component, stcewgenericjava.exe, is the core of the e*Way that
communicates and manipulates Events traveling between an external system and
e*Gate, and loads and interprets the configuration file used by the e*Way to determine
how to deal with data to and from the external system. Communication between the
external system is implemented by methods as specified by the Exchanger Java
Interface.

Chapter 3 Section 3.2
Introducing the Java Generic e*Way e*Way Extensions and External Applications

Java Generic e*Way Extension Kit Developer’s Guide 20 SeeBeyond Proprietary and Confidential

stcewgenericjava.def

The configuration definition file, stcewgenericjava.def, contains all the configuration
parameters used by the e*Way executable. Some of these parameters form the basic
characteristics for the e*Way itself, while others specify the Java code that allows the
e*Way to communicate with a specific external system. The remaining parameters
control specific characteristics of the Java Virtual Machine (JVM). These configuration
parameters are set using the e*Way Editor.

Exchanger.java and Java Template Methods

e*Ways call Java methods to perform such basic operations as startup, data exchange,
positive and negative acknowledgment, and establish and shut down the connection to
the external system. The Java Generic e*Way kit includes a sample that illustrates the
required input and return values for each basic function. For example, the
exhangeData() method that reads data from a file will be different from a function
written to obtain that data from a database.

3.2 e*Way Extensions and External Applications
The following diagram illustrates how the Java Generic e*Way accesses an external
application.

Chapter 3 Section 3.2
Introducing the Java Generic e*Way e*Way Extensions and External Applications

Java Generic e*Way Extension Kit Developer’s Guide 21 SeeBeyond Proprietary and Confidential

Figure 1 Extending the Java Generic e*Way

1 The Java Native Interface (JNI) dynamic link libraries (on NT) or shared libraries (on
UNIX) are created from user-created C or C++ source code to extend the standard
Java capability.

2 The Java Generic e*Way is configured to use the Java class implemented by the
Exchanger Interface.

3 A user-written Java class uses the JNI and the user-created library to access the
external application.

3.2.1. Basics Steps to Extend a Java Generic e*Way
To extend the Java Generic e*Way for access to an external application, follow these
basic steps:

1 If necessary, create a JNI dynamic link library or shared library for the Java Generic
e*Way to use at run-time to access the external application. To do this, create source
code in C or C++ using JNI to “wrap” the external application’s API calls; then,
compile and link the source code to create the dynamic or shared library.

User Defined Extended Java Generic e*Way

JNI ExtensionsJava Generic e*Way External Application

EXT
APP
API

Java Virtual Machine (JVM)

Java
Class

User Created
JNI DLL

Extending the Java Generic e*Way to an External Application

3.
3.

2.

1.

Chapter 3 Section 3.2
Introducing the Java Generic e*Way e*Way Extensions and External Applications

Java Generic e*Way Extension Kit Developer’s Guide 22 SeeBeyond Proprietary and Confidential

2 Modify the stcewgenericjava.def file template as needed to allow proper
configuring of the Java Generic e*Way with the Configuration Window. If you do
modify the file template, you must import the changed template to the appropriate
schema.

3 Write Java Exchanger Interface class methods that invoke the JNI “wrapped”
external application API calls.

4 Run the extended Java Generic e*Way in your e*Gate environment.

Java Generic e*Way Extension Kit Developer’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 4

Extending the .def File

This chapter describes how to extend the .def file and discusses the .def file keywords
and their arguments. In addition, it discusses how to test and debug the .def file and
lists some of the common error messages. It also provides information on configuration
parameters and the .cfg file.

4.1 Introduction
The Java Generic e*Way is configured using the e*Way Editor. It enables you to change
configuration parameters quickly and easily. A definition file (.def) configures the
e*Way Editor to gather those parameters by specifying the name and type of each
parameter, as well as other information (such as the range of permissible options for a
given parameter).

The e*Way Editor stores the values that you assign to those parameters within two
configuration files, the .cfg file and the .sc file. The configuration files contain similar
information but are formatted differently. The .cfg file contains the parameter values in
delimited records and is parsed by the e*Way at run time. The .sc file contains the
parameter values and additional information. The e*Way Editor loads the .sc file—not
the .cfg file— when you edit the configuration settings for an e*Way. Both configuration
files are generated automatically by the e*Way Editor whenever the configuration
settings are saved.

The .def file for the Java Generic e*Way contains a set of parameters that are required
and may not be modified. You can extend the .def file if your modifications to the Java
Generic e*Way require the definition of user-defined parameters. This chapter discusses
the structure of the .def and the configuration files and the syntax of the keywords used
to configure the e*Way Editor to gather the desired configuration parameters. The
e*Way Editor itself is discussed elsewhere; for more information, see the e*Gate
Integrator User’s Guide or the e*Way Editor’s online Help.

Important

We strongly recommend that you make no changes whatsoever to the default
stcewgenericjava.def file. However, you should use that file as a base from which you
create your extensions. Save a copy of the file under a unique name and make your
changes to the copy.

Chapter 4 Section 4.2
Extending the .def File .def file Keywords: General Information

Java Generic e*Way Extension Kit Developer’s Guide 24 SeeBeyond Proprietary and Confidential

4.1.1. Layout
The .def file has three major divisions:

! The header describes basic information about the file itself, such as version number,
modification history, and comments.

! The sub-header contains several read-only variables that are for internal use only
and must not be modified from their default values.

! The body contains configuration parameters grouped into sections. Three sections
(General Settings, Communications Parameters, and Java VM Configuration) must
be included in all Java Generic e*Way .def files; additional sections can be added as
needed to support user-created methods.

4.2 .def file Keywords: General Information
All keywords and their arguments are enclosed in balanced parenthesis. Keyword
arguments can be a quoted string, a quoted character, an integer, a parenthesis-
bounded list, a keyword modifier, or additional keywords.

Examples:

(name “TCP Port Number“)

(eway-type
(direction "<ANY">)

)

(set
(value (1 2 3))
(config-default (1 2 3))

)

(range
 (value (const 1 const 1024)
)

4.2.1. White Space
White space that is not contained within double-quotation marks, including tabs and
newlines, is ignored except as a separator between keywords.

For example, the following are equivalent:

! (user-comment (value "") (config-default ""))

! (user-comment
(value "")
(config-default "")

)

Chapter 4 Section 4.2
Extending the .def File .def file Keywords: General Information

Java Generic e*Way Extension Kit Developer’s Guide 25 SeeBeyond Proprietary and Confidential

Whitespace within quotation marks is interpreted literally. For example, (name
“Extra Spaces”) will display as:

Extra Spaces

in the e*Way Editor’s list of names.

4.2.2. Integer Parameters
The maximum value for integer parameters ranges from approximately -2 billion to 2
billion (specifically, -2,147,483,648 to 2,147,483,647). Most ranges will be smaller, such as
“1 to 10” or “1 to 1,000.”

4.2.3. Floating-point Parameters
Floating-point parameters and floating-point arithmetic are not supported.

4.2.4. String and Character Parameters
String and character parameters may contain all 255 ASCII characters. The “extended”
characters are entered using an escaped format:

! Characters such as tab, newline, and carriage return can be entered as \t, \n, and
\c, respectively.

! Characters may also be entered in octal or hexadecimal format using \o or \x,
respectively (for example, \x020 for ASCII character 32).

Strings are delimited by double quotes, characters by single quotes. Examples:

! Strings: "abc" "Administrator"

! Characters: '0' '\n'

Single quotation marks, double-quotation marks, and backslashes that are not used as
delimiters (for example, when used within the text of a description) must be escaped
with a backslash, as shown respectively below:

! \'

! \"

! \\

4.2.5. Path Parameters
Path parameters can contain the same characters as other string parameters; however,
the characters entered should be valid for pathnames within the operating system on
which the e*Way runs.

Backslashes in DOS pathnames must be escaped (as in c:\\home\\egate).

Chapter 4 Section 4.3
Extending the .def File Defining a New Section

Java Generic e*Way Extension Kit Developer’s Guide 26 SeeBeyond Proprietary and Confidential

4.2.6. Comments
Comments within the .def file begin with a semi-colon (;). Any semi-colon that appears
in column 1, or that is preceded by at least one space character and that does not appear
within quotation marks, is interpreted as a comment character.

Examples

; this is a valid comment, because it begins in column 1
(name "Section name") ; this is also a valid comment, because it is
separated by a space

4.2.7. “Header” Information
“Header” information that developers may use to maintain a revision history for
the .def file is stored within the (general-info) section. All the information in this
section is maintained by the user; no e*Gate product modifies this information.

Table 2 describes the user-editable parameters in the (general-info) section. The use of
these fields is not required and they may be left blank, but all the fields must be present.
The format and contents of these fields is completely at the developer’s discretion, as
long as rules for escaped characters are observed (see “String and Character
Parameters” on page 25 for more information). Any (general-info) parameters that are
not shown in the table below are reserved and should not be modified except by
direction of SeeBeyond support personnel.

4.3 Defining a New Section
The (section) keyword defines a section within the .def file. The syntax of the new
section is described immediately below. Each section requires at least one parameter;
see “Parameter Syntax” on page 28 for more information on defining parameters.

Table 2 User-editable (general-info) parameters

Parameter name Describes

version The version number

revision The revision number

user The user who last edited the file

modified The modification date

creation The creation date

description A description for this .def file, displayed within the e*Way Editor from
the File menu’s Tips option. Quotation marks within the description
must be escaped (\").

user-comment Comments left by the user (rather than the developer), accessed within
the e*Way Editor from the File menu’s User Notes option. Unless you
wish to provide a default set of “user notes,” we recommend you leave
this field blank.

Chapter 4 Section 4.3
Extending the .def File Defining a New Section

Java Generic e*Way Extension Kit Developer’s Guide 27 SeeBeyond Proprietary and Confidential

Note: Section names and parameter names within a section must be unique.

4.3.1. Section Syntax
Sections within the .def file have the following syntax:

(section
(name "section name")

... at least one parameter definition ...

(description "description text”)
(user-comment

(value "")
(config-default "")

) ; end of user comment
) ; end of section

The section name, description text, and user-comment “value” will appear in the e*Way
Editor, as shown in Figure 2.

Figure 2 e*Way Editor main controls

Notes

1 The user-comment feature enables users to make notes about a section or parameter
that will be stored along with the configuration settings and save those notes along
with the configuration settings. Under most circumstances, we recommend that
developers leave the User Notes field blank, but you can enter information in the
User Notes field if you want to ensure that all user notes for a given section begin
with preset information.

2 The description is displayed when the user clicks the Tips button. Use this field to
create online Help for a section or parameter. We recommend that you provide a
description for every section and every parameter that you create.

Section name

User Notes (see
Note 1 below)

Tips (see Note 2
below)

Parameter name

Chapter 4 Section 4.3
Extending the .def File Defining a New Section

Java Generic e*Way Extension Kit Developer’s Guide 28 SeeBeyond Proprietary and Confidential

4.3.2. Parameter Syntax
Parameters within the .def file use the following basic structure:

(param-keyword
(name "Parameter name goes here")
(value val)
(config-default val)

...additional keywords (range, units, set) as required...

(description "description text”)
(user-comment

(value "")
(config-default "")

)
) ; end of parameter definition

The keywords that are invariably required to define a parameter are

! A parameter keyword, discussed below

! The parameter’s name: (name)

! The initial default value: (value)

! The “configuration default”: (config-default), which the user can restore by clicking

. This value can be overridden by the config-default keyword specified within
a (set) command; see “Parameters Accepting a Single Value From a Set” on
page 30 and “Parameters Accepting Multiple Values From a Set” on page 31 for
more information.

Note: The (value) keyword is always followed immediately by the (config-default)
keyword.

! The “description” (see the Notes for “Section Syntax” on page 27 for additional
information)

! The “user comment” (see the Notes for “Section Syntax” on page 27 for additional
information), which has its own value and configuration default.

Additional keywords may be required, based upon the parameter keyword and user
requirements; these will be discussed in later sections.

Order of Keywords

Keywords must appear in this order:

1 parameter definition*

2 name*

3 value*

4 config-default*

5 set

Chapter 4 Section 4.3
Extending the .def File Defining a New Section

Java Generic e*Way Extension Kit Developer’s Guide 29 SeeBeyond Proprietary and Confidential

6 range

7 units

8 show-as

9 factor

10 description*

11 user-comment*

Note: Keywords marked with * are mandatory for all parameters. The set keyword is
mandatory for -set and -set-multi parameters. The remaining keywords (items 6
through 9) are optional and depending on developer requirements may appear in any
combination, but they must appear in the above order.

Parameter Types

There are eight types of parameters. The table below lists the types of parameters that
can be defined, the keyword required to define them, and the values that the keyword
can accept for the (value) and (config-default) keywords.

Parameters Requiring Single Values

Parameters requiring single values are defined within the basic structure shown in
“Parameter Syntax” on page 28.

Table 3 Basic parameter keywords

Type
Parameter
keyword

Values Accepted Example

Integer int integer 7500

Character char single-quoted character 'a'
'!'
'\o123' (octal)

String string double-quoted string “Hello, world”

Date date comma-delimited date
in MMM,dd,yyyy format

AUG,13,2000

Time time colon-delimited time in
24-hour hh:mm:ss
format

15:30:00

Path path path; DOS pathnames
should use escaped
backslashes

/home/egate/client (UNIX)
c:\\home\\egate\\client (DOS)

Schedule schedule schedule See “Schedule Syntax” on page 42

Chapter 4 Section 4.3
Extending the .def File Defining a New Section

Java Generic e*Way Extension Kit Developer’s Guide 30 SeeBeyond Proprietary and Confidential

Figure 3 A parameter requiring a single value

The parameter is defined using a parameter keyword, as listed in Table 3 on page 29.

Example

To create a parameter that accepts a single integer as input, and to specify “3” as the
default and configuration-default value, enter the following:

(int
(name "Parameter requiring a single integer")
(value 3)
(config-default 3)
(description "This parameter requires a single integer as

input.")
(user-comment

(value "")
(config-default "")

)
) ; end of parameter definition

If you want to limit the values that the user may enter, you may include the optional
(range) keyword; see “Specifying Ranges” on page 33 for more information.

Parameters Accepting a Single Value From a Set

Adding the suffix -set to the basic parameter keyword (int-set, string-set, path-set, and
so on) defines a parameter that accepts one of a given list of values.

Figure 4 A parameter requiring one of a set of values

Sets require modifications to the basic parameter syntax (shown in “Parameter Syntax”
on page 28):

! An additional required keyword, (set), defines the elements of the set.

! Within the (set) keyword, (value) and (config-default) require arguments within
parenthesis-bound lists, as in the following:

(value (1 2 3))
(config-default (1 2 3))

! To prevent a user from to adding or removing choices from the list you provide, add
the const keyword to the “value” declaration:

(value const (1 2 3))
(config-default (1 2 3))

Chapter 4 Section 4.3
Extending the .def File Defining a New Section

Java Generic e*Way Extension Kit Developer’s Guide 31 SeeBeyond Proprietary and Confidential

! To specify an empty set, enter the keyword none, as below:

(value none)
(config-default none)

“-set-multi” keywords use a different syntax to define an empty
set; see “Parameters Accepting Multiple Values From a Set” on page 31 for
more information.

Other important considerations:

! The value specified as the initial (value) for the parameter must match at least one
of the values specified for (config-default) within the (set) keyword.

! The initial value within the (set) keyword’s (config-default) list must be within the
(set) keyword’s (value) list. However, we strongly recommend that you simply
make the two lists identical.

Example

To create a parameter that accepts one of a fixed set of integers (like the one shown in
Figure 4 above), enter the following:

(int-set
(name "Single-choice set (int-set)")
(value 1)
(config-default 1)
(set

(value const (1 2 3))
(config-default (1 2 3))

)
(description "Provides a single choice from a list of integers.”)
(user-comment

(value "")
(config-default "")

)
) ; end of int-set

Note: The values specified by the (set) keyword must be within any values specified by the
(range) keyword. See “Specifying Ranges” on page 33 for more information.

Parameters Accepting Multiple Values From a Set

Adding the suffix -set-multi to the basic parameter keyword (int-set-multi, string-set-
multi, path-set-multi, and so on) defines a parameter that accepts one or more options
from a given list of values.

Chapter 4 Section 4.3
Extending the .def File Defining a New Section

Java Generic e*Way Extension Kit Developer’s Guide 32 SeeBeyond Proprietary and Confidential

Figure 5 A parameter requiring one of a set of values

Sets require modifications to the basic parameter syntax (shown in “Parameter Syntax”
on page 28):

! An additional required keyword, (set), defines the elements of the set.

! Within the (set) keyword, (value) and (config-default) require arguments within
parenthesis-bound lists, as in the following:

(value (1 2 3))
(config-default (1 2 3))

! To prevent a user from to adding or removing choices from the list you provide, add
the const keyword to the “value” declaration:

(value const (1 2 3))
(config-default (1 2 3))

! To specify an empty set, enter an empty pair of parentheses “()”, as below:

(value ())
(config-default ())

“-set” keywords use a different syntax to define an empty set; see “Parameters
Accepting a Single Value From a Set” on page 30 for more information.

Other important considerations:

! The value specified as the initial (value) for the parameter must match at least one
of the values specified for (config-default) within the (set) keyword.

! The initial value within the (set) keyword’s (config-default) list must be within the
(set) keyword’s (value) list. However, we strongly recommend that you simply
make the two lists identical.

Chapter 4 Section 4.3
Extending the .def File Defining a New Section

Java Generic e*Way Extension Kit Developer’s Guide 33 SeeBeyond Proprietary and Confidential

Examples

To create a parameter that accepts one of a fixed set of integers (like the one shown in
Figure 5 above), enter the following:

(int-set-multi
(name "Multiple-choice set (int-set-multi)")
(value (1 3))
(config-default (1 3))
(set

(value (1 2 3 4 5))
(config-default (1 2 3 4 5))

)
(description "Integer with a modifiable multiple-option set")
(user-comment

(value "")
(config-default "")

)
) ; end of int-set-multi

Note: The order in which keywords appear is very important. See “Order of Keywords”
on page 28 for more information.

4.3.3. Specifying Ranges
The (range) keyword enables you to limit the range of options that the user may input
as a parameter value for int and char parameters. You may specify a fixed range, or
allow the user to modify the upper limit, the lower limit, or both limits. Range limits are
inclusive. The values you specify as limits indicate the lowest or highest acceptable
value.

The syntax of (range) is as follows:

(range
(value ([const] lower-limit [const] upper-limit))
(config-default (lower-limit upper-limit))

)

The optional const keyword specifies that the limit is fixed; if the keyword is omitted,
the limit can be modified by the user. The const keyword must precede each limit if
both limits are to be fixed.

Chapter 4 Section 4.3
Extending the .def File Defining a New Section

Java Generic e*Way Extension Kit Developer’s Guide 34 SeeBeyond Proprietary and Confidential

Example

This example illustrates how to define a parameter that accepts an integer as input and
limits the range of legal values from zero to ten.

(int
(name "Single integer with fixed range")
(value 5)
(config-default 5)
(range

(value (const 0 const 10))
(config-default (0 10))

)
(description "Accepts a single integer, limited to a fixed
range.")

(user-comment
(value "")
(config-default "")

)
) ; end of int parameter

You may also use (range) to specify a character range; for example, a range of “A to Z”
would limit input to uppercase letters, and a range of “! to ~” limits input to the
standard printable ASCII character set (excluding space).

Note: You may also specify ranges for -set and -set-multi parameters (int-set, char-set,
and so on).

4.3.4. Specifying Units
The (units) keyword enables int parameters to accept input and display the list of
available options in different units, provided that each unit is an integer multiple of a
base unit.

Figure 6 A parameter that performs unit conversion

Acceptable groups of units include:

! Seconds, minutes, hours, days

! Bytes, kilobytes, megabytes

Unit conversions that require floating-point arithmetic are not supported.

The syntax of the (units) keyword is

(units
("base-unit":1 "first-unit":a "second-unit":b ... "nth-unit":n)

(value "default-unit")
(config-default "default-unit")

)

Units selector

Chapter 4 Section 4.3
Extending the .def File Defining a New Section

Java Generic e*Way Extension Kit Developer’s Guide 35 SeeBeyond Proprietary and Confidential

where a, b, and n are the numbers by which the base unit size should be multiplied to
perform the conversion to the respective units. The base unit should normally have a
value of 1, as shown above; while the e*Way Editor will permit other values, it is highly
unlikely that an application would require any other number. The units themselves
have no meaning to the e*Way Editor other than the relationships you define (in other
words, the Editor does not identify or process “seconds” or other common units as
such).

Example

To specify a set of time units (seconds, minutes, hours, and days), enter the following:

(units
("Seconds":1 "Minutes":60 "Hours":3600 "Days":86400)

(value "Seconds")
(config-default "Seconds")

)

Units, Default Values, and Ranges

Any time you use the (units) keyword within a parameter, you must make sure that the
default values can be expressed as integer values of each unit. Observing this principle
prevents end users from receiving error messages when changing e*Way Editor values
in a specific order. For example, if you specified the time units in the example above,
but assigned the parameter a default value of “65 seconds,” any user who selects the
minutes unit without changing the default value will receive an error message, because the
e*Way Editor cannot convert 65 seconds to an integral number of minutes. Ranges,
however, will be rounded to the nearest integer.

Note: No matter what default value you specify, a user will always see an error message if
an inconvertible value is entered and the unit selector is changed. We recommend
that you design your parameters so that error messages are not displayed when
default values are entered.

Example

To define a time parameter that displays values in seconds or minutes, with a default of
120 seconds and a fixed range of 60 to 3600 seconds (1 minute to 60 minutes), enter the
following:

(int
(name "Single integer with fixed range")
(value 120)
(config-default 120)
(range

(value (const 60 const 3600))
(config-default (60 3600))

)
(units

("Seconds":1 "Minutes":60)
(value "Seconds")
(config-default "Seconds")

)
(description "Accepts a value between 1 and 60 minutes, with a

default units value in seconds.")
(user-comment

(value "")
(config-default "")

)

Chapter 4 Section 4.3
Extending the .def File Defining a New Section

Java Generic e*Way Extension Kit Developer’s Guide 36 SeeBeyond Proprietary and Confidential

) ; end parameter

Note: The order in which keywords appear is very important. See “Order of Keywords”
on page 28 for more information.

4.3.5. Displaying Options in ASCII, Octal, Hex, or Decimal
The (show-as) keyword enables you to create int or char parameters that a user can
display in ASCII, octal, hexadecimal, or decimal formats.

The syntax of the (show-as) keyword is

(show-as
(format-keyword1 [format-keyword2 ... format-keywordn])
(value format-keyword)
(config-default format-keyword)

)

where format-keyword is one of the following:

! ascii

! octal

! hex

! decimal

Format keywords are case-insensitive, and may be used in any combination and in any
order.

Be sure that any default values you specify for a parameter that uses (show-as) can be
represented in each of the (show-as) formats. For example, if you are using (show-as) to
show an integer parameter in both decimal and hex formats, the default value must be
non-negative.

Example

To create a parameter that accepts a single character in the character-code range
between 32 and 127 and that can display the character value in ASCII, hex, or octal,
enter the following:

(char
(name "A single ASCII character")
(value '\o100')
(config-default '\o100')
(range

(value (const '\o040' const '\o177'))
(config-default ('\o040' '\o177'))

)
(show-as

(Ascii Octal Hex)
(value Octal)
(config-default Octal)

)
(description "Accepts a single character between ASCII 32 and
ASCII 127.")

(user-comment
(value "")
(config-default "")

Chapter 4 Section 4.3
Extending the .def File Defining a New Section

Java Generic e*Way Extension Kit Developer’s Guide 37 SeeBeyond Proprietary and Confidential

)
) ; end char parameter

Note: The order in which keywords appear is very important. See “Order of Keywords”
on page 28 for more information.

Factor

The (factor) keyword enables users to enter an arithmetic operator (+, –, *, or /) as part
of an int parameter; for example, to indicate that a value should increase by five units,
the user would enter the integer “5” and the factor “+”.

Figure 7 A parameter using (factor)

The syntax of the (factor) keyword is

(factor
('operator1' ['operator2'... 'operatorN'])
(value 'operator'
(config-default 'operator')

)

where operator is one of the four arithmetic operators +, –, *, or / (forward slash).

Example

To define a parameter that accepts an integer between 1 and 5 with a factor of + or – (as
in Figure 7 above), enter the following:

(int
(name "Integer with factor")
(value 1)
(config-default 1)
(range

(value (const 1 const 5))
(config-default (1 5))

)
(factor

('+' '-')
(value '+')
(config-default '+')

)
(description "Enter an integer between 1 and 5 and a factor of +
or -.")

(user-comment
(value "")
(config-default "")

)
); end int parameter

Note: The (factor) keyword must be the final keyword before the (description) keyword.
See “Order of Keywords” on page 28 for more information.

Chapter 4 Section 4.4
Extending the .def File Configuration Keyword Reference

Java Generic e*Way Extension Kit Developer’s Guide 38 SeeBeyond Proprietary and Confidential

Encrypting Strings

Encrypted strings (such as for passwords) are stored in string parameters; to specify
encryption, use the encrypt keyword, as in the following:

(string encrypt
...additional keywords follow...

The e*Way Editor uses the parameter that immediately precedes the encrypted
parameter as its encryption key; therefore, be sure that the parameter that prompts for
the encrypted data is not the first parameter in a section. The easiest way to accomplish
this is to define a “username” parameter that immediately precedes the encrypted
“password” parameter. If you need to specify an encryption key other than the user
name, you must define a separate parameter for this purpose.

Text entered into an encrypted-string parameter is displayed as asterisks (“***”).

Example

To create a password parameter, enter the following immediately following the parameter
definition for the corresponding user name (not shown):

(string encrypt
(name "Password")
(value "")
(config-default "")
(description "The e*Way Editor will encrypt this value.")
(user-comment

(value "")
(config-default "")

)
)

Note: The encrypt keyword can only follow the string keyword. The only parameter type
that can be encrypted is string; integer, character, path, time, date, or schedule
parameters cannot be encrypted.

4.4 Configuration Keyword Reference
Table 4 lists the keywords that may appear in the .def file.

Table 4 .def-file keywords

Keyword Purpose
For more information,

see this section

app-protocol Reserved; do not change from the default “<ANY>”.

cfg-icon Reserved; do not change from the default “” (null string).

char Declares a character parameter “Parameter Types” on
page 29

char-set Declares a set of characters, one of
which must be selected (via radio
button)

“Parameters Accepting a
Single Value From a Set” on
page 30

Chapter 4 Section 4.4
Extending the .def File Configuration Keyword Reference

Java Generic e*Way Extension Kit Developer’s Guide 39 SeeBeyond Proprietary and Confidential

char-set-multi Declares a set of characters, any of
which may be selected (via check
boxes)

“Parameters Accepting
Multiple Values From a Set”
on page 31

config-default Specifies the values that will be restored
when the user clicks the e*Way Editor’s

 button

“Parameter Syntax” on
page 28

const Specifies that a value cannot be
changed by the user

“Specifying Ranges” on
page 33

creation Records creation date or other
information.

““Header” Information” on
page 26

date Declares a date parameter “Parameter Types” on
page 29

date-set Declares a set of dates, one of which
must be selected (via radio button)

“Parameters Accepting a
Single Value From a Set” on
page 30

date-set-multi Declares a set of dates, one of which
must be selected (via radio button)

“Parameters Accepting
Multiple Values From a Set”
on page 31

delim1 Defines the line-separator delimiter
used within .cfg files. We recommend
that you do not modify this value.

delim2 Defines the parameter-name delimiter
used within .cfg files. We recommend
that you do not modify this value.

delim3 Defines the value-separating delimiter
used within .cfg files. We recommend
that you do not modify this value.

delim4 Defines the list-item-separating
delimiter used within .cfg files. We
recommend that you do not modify this
value.

description A description for the entry (displayed

using the e*Way Editor’s button

“Notes” on page 27

direction Reserved; do not change from the default “<ANY>”.

encrypt Encrypts a string, such as for passwords.
Valid only after the string keyword.

“Encrypting Strings” on
page 38

factor Defines an arithmetic operator to be
associated with an integer parameter

“Factor” on page 37

Table 4 .def-file keywords

Keyword Purpose
For more information,

see this section

Chapter 4 Section 4.4
Extending the .def File Configuration Keyword Reference

Java Generic e*Way Extension Kit Developer’s Guide 40 SeeBeyond Proprietary and Confidential

general-info Defines the “general information”
division of the .def file

““Header” Information” on
page 26

generated-cfg-path Specifies the path in which the .cfg file
will be stored. We recommend that you
do not modify this field.

int Declares an integer parameter “Parameter Types” on
page 29

int-set Declares a set of integers, one of which
must be selected (via radio button)

“Parameters Accepting a
Single Value From a Set” on
page 30

int-set-multi Declares a set of integers, any of which
may be selected (via check boxes)

“Parameters Accepting
Multiple Values From a Set”
on page 31

modified Records modification date or other
information

““Header” Information” on
page 26

name Specifies the name of a parameter or a
section

“Parameter Syntax” on
page 28

network-protocol Reserved; do not change from the default “<ANY>”.

os-platform Reserved; do not change from the default “<ANY>”.

path Declares a path parameter “Parameter Types” on
page 29

path-set Declares a set of paths, one of which
must be selected (via radio button)

“Parameters Accepting a
Single Value From a Set” on
page 30

path-set-multi Declares a set of paths, any of which
may be selected (via check boxes)

“Parameters Accepting
Multiple Values From a Set”
on page 31

protocol-api-
version

Reserved; do not change from the default “<ANY>”.

range Specifies a range of values that
represent the upper and lower limits of
acceptable user input

“Specifying Ranges” on
page 33

revision Records revision numbering or other
information (entered manually by the
developer)

““Header” Information” on
page 26

schedule Declares a schedule parameter “Parameter Types” on
page 29 and “Schedule
Syntax” on page 42

Table 4 .def-file keywords

Keyword Purpose
For more information,

see this section

Chapter 4 Section 4.4
Extending the .def File Configuration Keyword Reference

Java Generic e*Way Extension Kit Developer’s Guide 41 SeeBeyond Proprietary and Confidential

schedule-set Declares a set of schedules, one of
which must be selected (via radio
button)

“Parameters Accepting a
Single Value From a Set” on
page 30 and “Schedule
Syntax” on page 42

schedule-set-multi Declares a set of schedules, any of
which may be selected (via check
boxes)

“Parameters Accepting
Multiple Values From a Set”
on page 31 and “Schedule
Syntax” on page 42

section Defines a “section” of the .def file See “Section Syntax” on
page 27

set Defines the elements in a set “Parameters Accepting a
Single Value From a Set” on
page 30 and “Parameters
Accepting Multiple Values
From a Set” on page 31

show-as Selects the format in which character or
integer parameters will be displayed

“Displaying Options in
ASCII, Octal, Hex, or
Decimal” on page 36

string Declares a string parameter “Parameter Types” on
page 29

string-set Declares a set of strings, one of which
must be selected (via radio button)

“Parameters Accepting a
Single Value From a Set” on
page 30

string-set-multi Declares a set of strings, any of which
may be selected (via check boxes)

“Parameters Accepting
Multiple Values From a Set”
on page 31

super-client-type Reserved; do not change from the default “<ANY>”.

time Declares a time parameter “Parameter Types” on
page 29

time-set Declares a set of times, one of which
must be selected (via radio button)

“Parameters Accepting a
Single Value From a Set” on
page 30

time-set-multi Declares a set of times, any of which
may be selected (via check boxes)

“Parameters Accepting
Multiple Values From a Set”
on page 31

units Determines in which units a parameter
will be displayed

“Specifying Units” on
page 34

user Records the name of the user who last
edited the file (entered manually by the
developer)

““Header” Information” on
page 26

Table 4 .def-file keywords

Keyword Purpose
For more information,

see this section

Chapter 4 Section 4.4
Extending the .def File Configuration Keyword Reference

Java Generic e*Way Extension Kit Developer’s Guide 42 SeeBeyond Proprietary and Confidential

4.4.1. Schedule Syntax
Schedules can be time-based (as in “every ten minutes” or “every hour”), or calendar-
based (for a daily, weekly, monthly, or yearly schedule). The syntax for specifying
schedules as values and configuration defaults appears in the table below (all times are
specified in 24-hour format):

user-comment Records a general comment to be
applied to the file (accessible via the
e*Way editor)

“Notes” on page 27

value Defines the initial value for a parameter “Parameter Syntax” on
page 28

version Records the name of the user who last
edited the file (entered manually by the
developer)

““Header” Information” on
page 26

Table 5 Schedule syntax

For this schedule... ...use this syntax Example

Every s seconds s
(s=seconds)

1800
(every 1800 seconds, or every 30
minutes)

Number of seconds after
the minute

:::::s
(s=seconds)

:::::10
(every ten seconds after the
minute)

Number of minutes and
seconds past the hour

::::m:s
(m=minutes; s=seconds)

::::15:00
(every fifteen minutes and zero
seconds after the hour)

Daily at time :::hh:mm:ss :::12:00:00
(daily at noon)

Weekly at day-of-week at
time

::DD:hh:mm:ss
(DD=day of week)

::Su:12:00:00
(weekly, Sundays at noon)

Monthly, every nth day-of-
week at time

::DDn:hh:mm:ss
(DD=day of week; n=1, 2, 3, 4,
or 5)

::Su1:12:00:00
(monthly, the first Sunday, at
noon)

Monthly, every nth day at
time

::n:hh:mm:ss
(n=day of month)

::3:12:00:00
(monthly, the third day of the
month, at noon)

Yearly, at a given date at
time

:MM:dd:hh:mm:ss
(MM=month; dd=day)

:08:13:04:00:00
(every August 13th at 4:00 AM)

Yearly, every nth day of
month at time

:MM:DDn:hh:mm:ss
(MM=month; DD=day of
week; n=1, 2, 3, 4, or 5)

:05:We3:12:00:00
(yearly, every third Wednesday of
May, at noon)

Table 4 .def-file keywords

Keyword Purpose
For more information,

see this section

Chapter 4 Section 4.4
Extending the .def File Configuration Keyword Reference

Java Generic e*Way Extension Kit Developer’s Guide 43 SeeBeyond Proprietary and Confidential

Defining Default Schedules

It is significantly simpler to define schedules using the e*Way Editor than it is to create
schedule entries manually within the .def file, especially for complex schedules. The
only reason to define a schedule within a .def file is to establish a default schedule. If
you want to create a default schedule entry, and do not want to construct the entry
manually, use this procedure:

1 Define a schedule parameter with a blank (““) default.

2 Commit the .def file to a schema, and use the e*Gate Editor to define an entry for
the Start Exchange Data Schedule parameter. In this entry, create the schedule that
you eventually wish to use as a default. (Don’t be concerned if this is not the
parameter for which you want to define a default schedule; this is just a temporary
file.)

3 Save the configuration as temp (do not specify an extension) and exit the e*Way
Editor.

4 Pull down the Enterprise Manager’s File menu and select Edit File.

5 Use the file-selection controls to open the file /configs/stcewgenericjava/temp.cfg.

6 The Notepad editor will launch. Scroll down until you find the “Communications
Setup” section; a sample appears below.

7 Use “copy and paste” to copy the schedule-definition string (in the figure above,
“:::12:00:00”).

8 Exit the editor; there is no need to save the file.

9 Pull down the Enterprise Manager’s File menu and select Edit File.

10 Use the file-selection controls to open the file /configs/stcewgenericjava/
your_def_file (substituting the name of the .def file you want to modify).

11 Modify the (value) and (config-default) keywords within the desired schedule
parameter by pasting in the string that you copied in step 7 above.

12 Save the file and commit the modified file to the Registry (see “Editing a .def File
Within a Schema” on page 80 for more information).

--

Section:Communication Setup
--

#

Schedule definition

Chapter 4 Section 4.5
Extending the .def File Configuration Parameters and the Configuration Files

Java Generic e*Way Extension Kit Developer’s Guide 44 SeeBeyond Proprietary and Confidential

4.5 Configuration Parameters and the Configuration Files
Parameters defined within the .def file are stored within two “configuration” files (.cfg
and .sc), which are generated by the e*Way Editor’s “Save” command. The following
rules apply to both .cfg and .sc files:

! Keywords are not case sensitive, as they are converted to uppercase internally
before matching.

! Comments begin with the “#” character, which must appear in column one (see the
example in the section immediately below).

! Unlike the .def file, the .cfg and .sc files are sensitive to white space. White space
consists of single space characters, tabs, and newlines. Be careful not to insert extra
white space around delimiters or equal signs (for example “|value=3|” is legal, but
“|value = 3|” and “| value=3 |“ are illegal).

The following rule applies only to the .cfg file:

! Each line and each element in the .cfg file is separated using delimiters (see delim1,
delim2, delim3, and delim4 in Table 4 on page 38). We strongly recommend that
you do not modify any of the default delimiters.

Note: The e*Way Editor will create a .cfg and .sc file automatically when you save your
configuration changes in the e*Way Editor. You should not need to modify either file
manually unless directed to do so by SeeBeyond support personnel.

Although e*Ways are shipped with default .def files, no configuration files are
provided, because there is no “standard” configuration for any given e*Way. Users
must manually create a configuration profile using the e*Way Editor for every
e*Way component.

Examples

.cfg File

This example is excerpted from the “General Settings” section of a .cfg file that is
generated by the default stcewgenericjava.def file.

Section: General Settings

#
General Settings|Journal File Name|value=|set=
General Settings|Max Resends Per Message|value=5|set=5|range=1,1024
General Settings|Max Failed Messages|value=3|set=3|range=1,1024
General Settings|Forward External Errors|value=NO|set=NO,YES

.sc File

This example is excerpted from the “General Settings” section of a .sc file that is
generated by the default stcewgenericjava.def file. Notice the amount of additional
information as compared to the .cfg file example of the same section above.

; ---
; Section: "General Settings"

Chapter 4 Section 4.5
Extending the .def File Configuration Parameters and the Configuration Files

Java Generic e*Way Extension Kit Developer’s Guide 45 SeeBeyond Proprietary and Confidential

; ---
(section

(name "General Settings")
(string-set

(name "Journal File Name")
(value "")
(config-default "")
(set

(value (""))
(config-default (""))

)
(description "

 Journal File is used for the following conditions:
 - Journal a message when it exceeds the number of retries.
 - Journal an external error when it's not configured to
 forward to Egate.

 If an absolute path is not specified, the system data
 directory is prepended to the path.
")

(user-comment
(value "")
(config-default "")

)
)
(int-set

(name "Max Resends Per Message")
(value 5)
(config-default 5)
(set

(value (5))
(config-default (5))

)
(range

(value (const 1 const 1024))
(config-default (1 1024))

)
(description "Max Resends Per Message:

 This parameter is the maximum number of times the e*Way
 will attempt to resend a message to the extenal after
 receiving an error. When this maximum is reached, the
 message is considered a failed message and is written to
 a journal file.
")

(user-comment
(value "")
(config-default "")

)
)
(int-set

(name "Max Failed Messages")
(value 3)
(config-default 3)
(set

(value (3))
(config-default (3))

)
(range

(value (const 1 const 1024))
(config-default (1 1024))

)
(description "Max Failed Messages:

Chapter 4 Section 4.6
Extending the .def File Testing and Debugging the .def File

Java Generic e*Way Extension Kit Developer’s Guide 46 SeeBeyond Proprietary and Confidential

 This parameter is the maximum number of failed messages
 the e*Way will allow. If this many messages fail
 and are journaled, the e*Way will shutdown and exit.
")

(user-comment
(value "")
(config-default "")

)
)
(string-set

(name "Forward External Errors")
(value "NO")
(config-default "NO")
(set

(value const ("NO" "YES"))
(config-default ("NO" "YES"))

)
(description "Forward External Errors:

 If this parameter is set to YES then error messages that
 starts with DATAERR received from the external will be
 queued to the configured queue. If this parameter is set
 to NO then error messages will not be forward.
")

(user-comment
(value "")
(config-default "")

)
)
(description "General Settings:

 This section contains a set of top level parameters:

 o Journal File Name
 o Max Resends Per Message
 o Max Failed Messages
 o Forward External Errors
")

(user-comment
(value "")
(config-default "")

)
)

4.6 Testing and Debugging the .def File
Testing the .def file is very straightforward; simply open the file with the e*Way Editor.
If the syntax of all parameters is correct, the e*Way Editor will launch, and you can
confirm that your sections, parameters, ranges, and options are as you intended.

You may encounter the following error types:

! Logical errors: The e*Way Editor will load the .def file and will display no error
message, but the parameters are not defined as desired (for example, default
options are omitted, or a range was not properly defined). These errors are
corrected simply by replacing the undesired values with the desired ones.

Chapter 4 Section 4.6
Extending the .def File Testing and Debugging the .def File

Java Generic e*Way Extension Kit Developer’s Guide 47 SeeBeyond Proprietary and Confidential

! Syntax errors: These “mechanical” errors involve missing parentheses, invalid
keywords and similar problems. These errors will cause the e*Way Editor to display
an error message and exit. This section deals primarily with errors of this type.

Note: You may also encounter syntax errors if you try to edit an existing configuration
profile that contains a corrupted .sc file. You should not attempt to modify .sc or
.cfg files outside of the e*Way Editor unless specifically instructed to do so by

SeeBeyond personnel.

The e*Way Editor component that interprets the .def file provides only elementary
error messages when it encounters an error in the .def file. This section discusses the
most common errors you may encounter, and the steps you should take to debug a .def
file under development.

By far, the most common errors are:

! Missing parentheses: Proper indentation will help you catch most of these, and
some editors have features that find matching parentheses (such as the vi editor’s
SHIFT+% function).

! Missing quotation marks: Be sure that characters are delimited by single quotes
and strings/paths by double quotes.

! Quotation marks (that should be escaped but are not): This usually occurs in the
argument to the (description) keyword; double-check that all quotations within
descriptions use \"escaped\" quotation marks.

! Missing parameters: Refer to the examples in this chapter, or to the sample .def file
for the required parameters for each keyword.

! Keywords (out of order): See “Order of Keywords” on page 28.

Note: Using the templates provided in the sample .def file will help prevent many errors
before they occur; see “Sample .def File” on page 49 for more information.

4.6.1. Common Error Messages
The following section contains common error messages and their most common causes.
Each error message will contain the string L<nnn>, which indicates a line number (for
example, L<124> signifies “line 124”).

SCparse : parse error, expecting ‘LP_keyword-name’
The keyword-name was expected but not found. The keyword could be missing or out
of order, the keyword’s initial parenthesis could be missing, or the previous keyword
could have been terminated prematurely (for example, by an out-of-place parenthesis
or quote-parenthesis combination) or misspelled.

SCparse : parse error, expecting ‘RIGHT_PAREN’
The right parenthesis is missing, a close-quote is missing, as in (user-comment "), or
there is an extra (or unescaped) close-quote within a (description) keyword argument.

Chapter 4 Section 4.7
Extending the .def File Accessing Configuration Parameters Within the JVM Environment

Java Generic e*Way Extension Kit Developer’s Guide 48 SeeBeyond Proprietary and Confidential

SCparse : parse error, expecting `LEFT_PAREN’
This error appears under a very wide range of conditions. A keyword could be
misspelled, there could be extraneous or unbalanced quotes or parentheses, a keyword
could be missing a left parenthesis, or extraneous material may have been found
between parameter declarations. Sometimes this error appears in conjunction with
expecting `LP_keyword-name’.

Param-Type<keyword>: Value is not within the allowed range.
An argument to a keyword has exceeded the limits defined by its accompanying
(range) keyword. Change either the (value) argument or the (range) limit.

param-typeTypeSet<keyword> : "n" is not in this Set.
A default value for a parameter has been specified that does not appear within the
default value of the (set) keyword.

SCparse : parse error, expecting `arg-type’
One type of argument was expected, but another has been found (for example, an
integer where as string was expected). Errors expecting LITERAL_STRING are
commonly caused by missing quotation marks. Errors expecting TIME_VAL,
DATE_VAL, or SCHEDULE_VAL can also be due to invalid data (such as a time of
12:00:99), or missing/extra delimiters.

CharVal : "\sequence" is not legal character.
There is an error in an escape sequence.

SCparse : parse error
This “general” error can be caused by a number of problems, such as misspelled
arguments within keywords.

4.7 Accessing Configuration Parameters Within the JVM
Environment

The Java Generic e*Way automatically loads configuration parameters stored in the .cfg
file into a Java Properties object within the JVM.

4.7.1. Property-name Format
Property keys are named using the format

SECTION-NAME.PARAM-NAME

where SECTION-NAME is the name of the section and PARAM-NAME is the name of
the parameter. The value of the parameter is stored as the value of the variable.

Variable names are in all upper case, and are case-sensitive. The section and parameter
names are separated by a period (.), and any spaces contained within section or
parameter names are also converted into underscores.

Chapter 4 Section 4.8
Extending the .def File Sample .def File

Java Generic e*Way Extension Kit Developer’s Guide 49 SeeBeyond Proprietary and Confidential

Examples

The value of the parameter named “Password” within the section “Authentication”
would be stored under the property key “AUTHENTICATION.PASSWORD” (all
upper case).

The value of the parameter named “Gateway ID” within the section “Connection
Parameters” would be stored under:
“CONNECTION_PARAMETERS.GATEWAY_ID”.

4.7.2. Getting Property Values
Property values are read using the Java method (EGate.getEwayConfigProp()). The
(EGate.getEwayConfigProp() method requires the name of the Property key whose
value you wish to retrieve as an argument, and returns a string containing that value or
null if the specified variable does not exist.

Examples

EGate.getEwayConfigProp(“AUTHENTICATION.PASSWORD”);

EGate.getEwayConfigProp(“CONNECTION_PARAMETERS.GATEWAY_ID”);

4.8 Sample .def File
A .def file containing commented samples of a wide range of parameter definitions is
available on the e*Gate installation CD-ROM:

/samples/genjavaeway/FileExchange.def

Note: The stcewgenericjava.def file does not contain configuration options for any
specific e*Way, and cannot be used for that purpose. It merely provides working
templates from which you can build your own .def file.

You can use the FileExchange.def file as a sample from which you can build your own
extensions to your own .def file. Simply open the file with a text editor, select the
desired parameter-definition template, and “copy and paste” the template into your
own .def file, where you can modify it as needed.

To open the FileExchange .def file in the e*Way Editor:

1 Using the Enterprise Manager, commit the FileExchange.def file to the directory
/configs/stcewgenericjava/ within any desired schema. We recommend that you do
not commit the file to the default schema; rather, use a schema reserved for testing
and development.

2 Create or select an e*Way, and display its properties. Remember that this e*Way
cannot be used to manipulate data; it serves merely as a “placeholder” so you can
open the FileExchange.def file with the e*Way Editor.

3 On the e*Way property sheet’s General tab, under Executable file, click Find.

4 Select stcewgenericjava.exe and click OK.

Chapter 4 Section 4.8
Extending the .def File Sample .def File

Java Generic e*Way Extension Kit Developer’s Guide 50 SeeBeyond Proprietary and Confidential

5 Under Configuration file, click New.

6 From the list of e*Way templates, select FileExchange.

When the e*Way Editor launches, you will see several sections of sample parameters
(for example, “Single integer with modifiable lower limit,” “Single integer with
modifiable upper limit,” and so on), as shown in the Figure 8.

Figure 8 The FileExchange.def file in the e*Way Editor

After identifying the parameter you wish to copy, open sample.def in a text editor and
search for the parameter name. Then, simply copy the parameter and change the
sample values to the values you wish to use (as shown in Figure 9 on the next page).

Figure 9 The sample.def file in Wordpad

Copy the code
between the
comments

Change
the values
as desired

Chapter 4 Section 4.8
Extending the .def File Sample .def File

Java Generic e*Way Extension Kit Developer’s Guide 51 SeeBeyond Proprietary and Confidential

4.8.1. Sample Code for FileExchange.java
The FileExchange.java class file illustrates an implementation of the Exchanger
interface. The code is commented and straightforward.

/**
 * A sample class to illustrate implementation of the Exchanger interface.
 * A flat file is considered as the "external" system for both inbound and
 * outbound processing.
 *
 */

// Java specific package imports

import java.io.*;

// e*Gate specific package imports

import com.stc.common.collabService.*;
import com.stc.common.registry.*;
import com.stc.common.utils.*;

public class FileExchange implements Exchanger
{
 private String eGateLogsDir = null;
 private FileOutputStream outFos = null;
 private File outFile = null;
 private String customInputDir = null;

 // --

 /**
 * Zero-argument constructor is needed (Java will provide one if not
 * defined, but it's better to be explicit).
 *
 */
 public FileExchange()
 {
 super();
 }

 // --

 /**
 * This gets called when the Java e*Way initially starts up. Going to
 * use it to discover where the e*Gate client logs/ directory is and
 * to get the user customized configuration parameter "Inbound Directory"
 * under section "Sample Test".
 *
 * @exception com.stc.collabService.CollabConnException thrown if
 * problem encountered
 *
 */
 public void startUp() throws CollabConnException
 {
 // Determine from the e*Gate repository where the client logs/
 // directory is.

 RepositoryDirectories repDir = new RepositoryDirectories();
 if (repDir.readRepositoryDirectories())
 {
 eGateLogsDir = repDir.getLogs();
 EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,
 "startUp(): e*Gate client logs/ is at: " + eGateLogsDir);
 }
 else
 {
 EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_ERROR,
 "startUp(): Can't read repository directories");
 throw new CollabConnException("Can't read repository directories");
 }

 // Get the user customized configuration parameter

 customInputDir = EGate.getEwayConfigProp("SAMPLE_TEST.INBOUND_DIRECTORY");
 if (null == customInputDir)
 {
 EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_WARNING,
 "startUp(): No Inbound Directory defined in Sample Test");
 }
 else
 {
 File inputDir = new File(customInputDir);

 if (!inputDir.isAbsolute())
 {
 inputDir = new File(repDir.getSystemData(), customInputDir);
 customInputDir = inputDir.getAbsolutePath();

Chapter 4 Section 4.8
Extending the .def File Sample .def File

Java Generic e*Way Extension Kit Developer’s Guide 52 SeeBeyond Proprietary and Confidential

 }

 if (!inputDir.isDirectory())
 {
 EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_ERROR,
 "startUp(): Inbound Directory " +
 customInputDir + " doesn't exist!");
 throw new CollabConnException(customInputDir + " doesn't exist!");
 }
 }
 }

 // --

 /**
 * This gets called when there's an outbound event from e*Gate to the
 * external. We're simply going to write it out to the output file.
 *
 * @param outEvent output event data given as a byte array
 * @exception com.stc.common.collabService.CollabConnException thrown if
 * problem encountered with a connection
 * @exception com.stc.common.collabService.CollabDataException thrown if
 * problem encountered with data translation
 * @exception com.stc.common.collabService.CollabResendException thrown if
 * the outgoing event is to be resent
 *
 */
 public void processOutgoing(byte[] outEvent)
 throws CollabConnException, CollabDataException,
 CollabResendException
 {
 if (outFos != null && outEvent.length > 0)
 {
 try
 {
 outFos.write(outEvent);
 outFos.write(System.getProperty("line.separator").getBytes());
 outFos.flush();
 EGate.traceln(EGate.TRACE_EWAY_VERBOSE, EGate.TRACE_EVENT_TRACE,
 outEvent, "processOutgoing(): wrote to file");
 }
 catch (IOException e)
 {
 EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_ERROR,
 "processOutgoing(): Can't write to output file: " +
 e.getMessage());
 throw new CollabConnException(e.getMessage());
 }
 }
 }

 // --

 /**
 * This gets called when the Java e*Way's exchange data with external
 * schedule is due. We're just going to look for an input file in the
 * user customized configured inbound directory.
 *
 *
 * @return a byte array for the data received from the external
 * @exception com.stc.common.collabService.CollabConnException thrown if
 * problem encountered with a connection
 * @exception com.stc.common.collabService.CollabDataException thrown if
 * problem encountered with data translation
 *
 */
 public byte[] exchangeData()
 throws CollabConnException, CollabDataException
 {
 if (customInputDir != null)
 {
 File inputFile = new File(customInputDir, "TestIn.txt");
 long len;

 if (inputFile.exists() && (len = inputFile.length()) > 0)
 {
 FileInputStream fis = null;

 try
 {
 fis = new FileInputStream(inputFile);
 len = fis.available();
 byte[] retBytes = new byte[(int) len];
 fis.read(retBytes);

 EGate.traceln(EGate.TRACE_EWAY_VERBOSE, EGate.TRACE_EVENT_TRACE,
 retBytes, "exchangeData(): received from file");
 return retBytes;
 }
 catch (Exception e)
 {
 EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_ERROR,

Chapter 4 Section 4.8
Extending the .def File Sample .def File

Java Generic e*Way Extension Kit Developer’s Guide 53 SeeBeyond Proprietary and Confidential

 "exchangeData(): Input file problems: " +
 e.getMessage());
 throw new CollabConnException("Input file problems: " +
 e.getMessage());
 }
 finally
 {
 if (fis != null)
 {
 try
 {
 fis.close();
 }
 catch (Exception e)
 {
 }
 }

 inputFile.renameTo(new File(customInputDir, "TestIn.~xt"));
 }
 }
 }

 return null;
 }

 // --

 /**
 * This gets called to establish a connection with an external system.
 * We're simply going to open the output file here.
 *
 * @return a boolean <code>true</code> when successfully connected;
 * otherwise a <code>false</code>
 *
 */
 public boolean connectionEstablish()
 {
 // Open an output file in the logs/ directory

 try
 {
 outFile = new File(eGateLogsDir, "TestOut.txt");
 outFos = new FileOutputStream(outFile);
 EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,
 "connectionEstablish(): Successfully opened output file TestOut.txt");
 }
 catch (Exception e)
 {
 EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_WARNING,
 "connectionEstablish(): Failed to open output file TestOut.txt: " +
 e.getMessage());

 return false;
 }
 return true;
 }

 // --

 /**
 * This gets called to verify a connection with the external. We're
 * just going to test if the output file exists.
 *
 * @return a boolean <code>true</code> when connection is intact;
 * otherwise a <code>false</code>
 *
 */
 public boolean connectionVerify()
 {
 EGate.traceln(EGate.TRACE_EWAY_VERBOSE, EGate.TRACE_EVENT_TRACE,
 "connectionVerify(): test if output file exists?");
 return (outFile != null && outFile.exists());
 }

 // --

 /**
 * This gets called to shut down a connection with the external. We're
 * going to close the output file here.
 *
 * @param notif a notification string "SUSPEND_NOTIFICATION" will be
 * passed in to indicate the connection should be
 * shut down
 * @return a boolean <code>true</code> when connection has been severed;
 * otherwise a <code>false</code>
 *
 */
 public boolean connectionShutdown(String notif)
 {
 EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,
 "connectionShutdown(): got request: " + notif);

Chapter 4 Section 4.8
Extending the .def File Sample .def File

Java Generic e*Way Extension Kit Developer’s Guide 54 SeeBeyond Proprietary and Confidential

 if (outFos != null)
 {
 try
 {
 outFos.close();
 outFos = null;
 }
 catch (Exception e)
 {
 }
 }

 return true;
 }

 // --

 /**
 * Gets called to positively acknowledge an external when all the events
 * received have been processed successfully by all e*Way collaborations.
 *
 * @param ackevt an acknowledgment event to be sent to the external
 * @exception com.stc.common.collabService.CollabConnException thrown if
 * problem encountered with a connection
 *
 */
 public void ACK(byte[] ackevt)
 throws CollabConnException
 {
 EGate.traceln(EGate.TRACE_EWAY_VERBOSE, EGate.TRACE_EVENT_TRACE,
 ackevt, "ACK(): gotten for");
 }

 // --

 /**
 * Gets called to negatively acknowledge an external when not all the events
 * received have been processed successfully by all e*Way collaborations.
 *
 * @param nakevt an acknowledgment event to be sent to the external
 * @exception com.stc.common.collabService.CollabConnException thrown if
 * problem encountered with a connection
 *
 */
 public void NAK(byte[] nakevt)
 throws CollabConnException
 {
 EGate.traceln(EGate.TRACE_EWAY_VERBOSE, EGate.TRACE_EVENT_WARNING,
 nakevt, "NAK(): gotten for");
 }

 // --

 /**
 * Gets called to notify the Java exchange class that the e*Way is shutting
 * down.
 *
 * @param notif a notification string, "SHUTDOWN_NOTIFICATION", to
 * advise that the e*Way is about to shut down.
 * @return a boolean <code>true</code> if the shutdown process can
 * proceed; otherwise a <code>false</code>
 *
 */
 public boolean shutdown(String notif)
 {
 EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,
 "shutdown(): got request: " + notif);
 return true;
 }
}

4.8.2. e*Gate Registry Configuration Properties
There are additional configuration properties and utility functions that are pre-defined.
The table below lists the available properties.

Note: You cannot set these parameters. They are read only.

Chapter 4 Section 4.8
Extending the .def File Sample .def File

Java Generic e*Way Extension Kit Developer’s Guide 55 SeeBeyond Proprietary and Confidential

Note: EGATE_REGISTRY.PASSWORD is internally encrypted and a special method,
RegistryControlFile.intraDecrypt(), needs to be called to decrypt it:

For example:

String clearPass =
RegistryControlFile.intraDecrypt(regUPass);

4.8.3. Accessing e*Gate Participating Host Installation Information
In order to access e*Gate’s Participating Host installation information:

1 The following package must be imported by the Java code:

import com.stc.common.registry.*;

2 A RepositoryDirectories object must be instantiated:

RepositoryDirectories rpd = new RepositoryDirectories();

3 The .egate.store file must be read in by calling:

readRepositoryDirectories():boolean readRepositoryDirectories()

For example:

if (rpd.readRepositoryDirectories() ==true) {your code}

4 The object methods can be used to access the following:

Property Description Example

EGATE_REGISTRY.HOST Access the
e*Gate
Registry
Host

String regHost =
EGate.getEwayConfigProp(“EGATE_REGISTRY.HOST”);

EGATE_REGISTRY.SCHEMA Access the
e*Gate
Registry
Schema

String regSchema =
Egate.getEwayConfigProp(“EGATE_REGISTRY.SCHEMA”);

EGATE_REGISTRY.PORT Access the
e*Gate
Registry
Port

long regPort =
Long.parseLong(EGate.getEwayConfigProp(“EGATE_REGI
STRY_PORT”));

EGATE_REGISTRY.LOGICALNAME Access the
e*Gate
Registry
logical
name

String regLName =
EGate.getEwayConfigProp(“EGATE_REGISTRY.LOGICALN
AME”);

EGATE_REGISTRY.USERNAME Access the
e*Gate
Registry
user name

String regLName =
EGate.getEwayConfigProp(“EGATE_REGISTRY.USERNAME
”);

EGATE_REGISTRY.PASSWORD Access the
e*Gate
Registry
user
password

String regUPass =
EGate.getEwayConfigProp(“EGATE_REGISTRY.PASSWORD
”);

Chapter 4 Section 4.8
Extending the .def File Sample .def File

Java Generic e*Way Extension Kit Developer’s Guide 56 SeeBeyond Proprietary and Confidential

4.8.4. Accessing e*Gate Registry Files
In order to access the e*Gate Registry Files:

1 The following package must be imported by the Java code:

import com.stc.common.registry

2 A connection to the e*Gate registry must be made by:

! Instantiating and initializing a CallerID object, for example by:
CallerID callerID = new CallerID();
callerID.setLogicalName(“MyApp”);
callerID.setRegistryHost(EGate.getEwayConfigProp(“EGATE_REGISTRY.HOST”));
callerID.setRegistryPort(Long.parseLong(EGate.getEwayConfigProp(“EGATE_REGISTRY.PORT”)));
callerID.setUserName(EGate.getEwayConfigProp(“EGATE_REGISTRY.USERNAME”));
callerID.setPassword(RegistryControlFile.intraDecrypt(EGate.getEwayConfigProp(“EGATE_REGISTRY.PASS
WORD”)));

! Acquiring a provider context with the e*Gate Registry, for example by:

Registry reg = new Registry(false);
if (reg.acquireProvider(reg, callerID) == true)
{

your code to access the e*Gate registry
}

3 To retrieve a file, such as classes/MyTest.class, from the e*Gate registry, you’ll need
to do the following:

! Instantiate and initialize a FileRef object:

FileRef fr = new FileRef();
fr.setDirectory(“class”);
fr.setFile(“MyTest.class”);
fr.setFileType(RegistryControlFile.FILETYPE_BINTEXT);

! Call the Registry method retrieveFile() after you’ve acquired the provider
context:

String regFile = reg.retrievFile (fr,
Registry.RETRIEVE_BYPASSANDBOX);

where regFile will be the absolute pathname from which the file was retrieved.

Method Description Example

String getSystemData() Access the System
Data Directory

String systemData = rpd.getSystemData();

String getIqueueIndex Access the IQ Index
Directory

String iqueueIndex = rpd.getIqueueIndex()

String getIqueueData() Access the IQ Data
Directory

String iqueueData = rpd.getIqueueData();

String getLogs() Access the Logs
Directory

String logs = rpd.getLogs()

String getShareExe() Access the Shared
Exe Directory

String sharedExe = rpd.getSharedExe()

Chapter 4 Section 4.8
Extending the .def File Sample .def File

Java Generic e*Way Extension Kit Developer’s Guide 57 SeeBeyond Proprietary and Confidential

4.8.5. Decoding configuration File Encrypted Passwords
In order to decode configuration file encrypted passwords:

1 The following package must be imported by the Java code:

import com.stc.common.utils.*;

2 To decrypt the encrypted password, (such as parameter “Password”) for user name
(such as parameter “User Name”) in the “My Test” section in the e*Way
configuration file, call the ScEncrypt.decrypt() method:

String clearPass;
try
{

clearPass =
ScEncrypt.decrypt(EGate.getEwayConfigProp(“MY_TEST.USER_NAME”),EGate.
getEwayConfigProp(“MY_TEST.PASSWORD”));
}
catch (Exception e)
{

can decrypt this password???
}

Java Generic e*Way Extension Kit Developer’s Guide 58 SeeBeyond Proprietary and Confidential

Chapter 5

Configuring the Java Generic e*Way

This chapter describes how to set the required e*Way configuration parameters for
stcewgenericjava.def.

5.0.1. Considerations

Note: Current Java Native Interface technology prescribed by Sun only allows for one
JVM to be associated with a single process. therefore, if a particular instance of the
Java Generic e*Way is to be configured to utilize the JCS, that JVM must be 1.3 to
prevent conflict with the JVM required by the JCS (JCS requires a 1.3 JVM).

If the JVM associated with the Java Generic e*Way is other than 1.3, the JCS can not be
run from the collaboration rule associated with the e*Way’s collaboration. It is however,
possible to run the 1.3 JCS from another e*Way (such as a file e*Way) publish to a queue
and pass the translated information to the Java Generic e*Way via a queue.

5.1 Required e*Way Configuration Parameters
The e*Way configuration parameters discussed in this section are required by the Java
Generic e*Way. The configuration parameters themselves are set using the e*Way
Editor.

To change e*Way configuration parameters:

1 In the Enterprise Manager’s Component editor, select the e*Way you want to
configure and display its properties.

2 Under Configuration File, click New to create a new file, Find to select an existing
configuration file, or Edit to edit the currently selected file.

3 In the Additional Command Line Arguments box, type any additional command
line arguments that the e*Way may require, taking care to insert them at the end of
the existing command-line string. Be careful not to change any of the default
arguments unless you have a specific need to do so.

For more information about how to use the e*Way Editor, see the e*Way Editor’s online
Help or the e*Gate Integrator User’s Guide.

The e*Way’s configuration parameters are organized into the following sections:

Chapter 5 Section 5.1
Configuring the Java Generic e*Way Required e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 59 SeeBeyond Proprietary and Confidential

! General Settings

! Communication Setup

! Java VM Configuration

5.1.1. General Settings
The General Settings control basic operational parameters.

Journal File Name

Description

Specifies the name of the journal file.

Required Values

A valid filename, optionally including an absolute path (for example,
c:\temp\filename.txt). If an absolute path is not specified, the file will be stored in the
e*Gate “SystemData” directory. See the e*Gate Integrator System Administration and
Operations Guide for more information about file locations.

Additional Information

An Event will be journaled for the following conditions:

! When the number of resends is exceeded (see Max Resends Per Message below).

! When its receipt is due to an external error, but Forward External Errors is set to No.
(See “Forward External Errors” on page 60 for more information.)

Max Resends Per Message

Description

Specifies the number of times the e*Way will attempt to resend a message (Event) to the
external system after receiving an error. When this maximum is reached, the message is
considered “Failed” and is written to the journal file.

Required Values

An integer between 1 and 1,024. The default is 5.

Max Failed Messages

Description

Specifies the maximum number of failed messages (Events) that the e*Way will allow.
When the specified number of failed messages is reached, the e*Way will shut down
and exit.

Required Values

An integer between 1 and 1,024. The default is 3.

Chapter 5 Section 5.1
Configuring the Java Generic e*Way Required e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 60 SeeBeyond Proprietary and Confidential

Forward External Errors

Description

Selects whether data translation errors indicated by a CollabDataException thrown by
the exchangeData() method will be queued to the e*Way’s configured queue. See
exchangeData() on page 73 for more information.

Required Values

Yes or No. The default value, No, specifies that error messages will not be forwarded.

5.1.2. Communication Setup
The Communication Setup parameters control the schedule by which the e*Way
obtains data from the external system.

Note: The schedule you set using the e*Way’s properties in the Enterprise Manager
controls when the e*Way executable will run. The schedule you set within the
parameters discussed in this section (using the e*Way Editor) determines when data
will be exchanged. Be sure you set the "exchange data" schedule to fall within the
"run the executable" schedule.

Exchange Data Interval

Description

Specifies the number of seconds the e*Way waits between calls to the
exchangeData() method during scheduled data exchanges.

Required Values

An integer between 0 and 86,400. The default is 120.

Additional Information

If Zero Wait Between Successful Exchanges is set to Yes and the exchangeData()
method returns data, The Exchange Data Interval setting will be ignored and the
e*Way will invoke the exchangeData() method immediately.

If this parameter is set to zero, there will be no exchange data schedule set and the
exchangeData() will never be called.

See “Down Timeout” on page 62 and “Stop Exchange Data Schedule” on page 61 for
more information about the data-exchange schedule.

Zero Wait Between Successful Exchanges

Description

Selects whether to initiate data exchange after the Exchange Data Interval or
immediately after a successful previous exchange.

Chapter 5 Section 5.1
Configuring the Java Generic e*Way Required e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 61 SeeBeyond Proprietary and Confidential

Required Values

Yes or No. If this parameter is set to Yes, the e*Way will immediately invoke the
exchangeData() method if the previous exchange method returned data. If this
parameter is set to No, the e*Way will always wait the number of seconds specified by
Exchange Data Interval between invocations of the exchangeData method. The default
is No.

See exchangeData() for more information.

Start Exchange Data Schedule

Description

Establishes the schedule to invoke the e*Way’s exchangeData() method.

Required Values

One of the following:

! One or more specific dates/times

! A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Also required: If you set a schedule using this parameter, you must also implement all
three of the following com.stc.common.collabService.Exchanger interface
methods:

! exchangeData() on page 73

! ACK() on page 71

! NAK() on page 73

If you do not do so, the e*Way will not start.

Additional Information

When the schedule starts, the e*Way determines whether it is waiting to send an ACK
or NAK to the external system (using the ACK() and NACK() methods) and whether
the connection to the external system is active. If no ACK/NAK is pending and the
connection is active, the e*Way immediately executes the exchangeData() method.
Thereafter, the exchangeData() method will be called according to the Exchange
Data Interval parameter until the Stop Exchange Data Schedule time is reached.

See exchangeData() on page 73, “Exchange Data Interval” on page 60, and “Stop
Exchange Data Schedule” on page 61 for more information.

Stop Exchange Data Schedule

Description

Establishes the schedule to stop data exchange.

Required Values

One of the following:

! One or more specific dates/times

Chapter 5 Section 5.1
Configuring the Java Generic e*Way Required e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 62 SeeBeyond Proprietary and Confidential

! A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Down Timeout

Description

Specifies the number of seconds that the e*Way will wait between calls to the
connectionEstablish() method. See connectionEstablish() method for more
information.

Required Values

An integer between 1 and 86,400. The default is 15.

Up Timeout

Description

Specifies the number of seconds the e*Way will wait between calls to the External
Connection Verification method. See connectionVerify() on page 72 for more
information.

Required Values

An integer between 1 and 86,400. The default is 15.

Resend Timeout

Description

Specifies the number of seconds the e*Way will wait between attempts to resend a
message (Event) to the external system, after receiving an error message from the
external system.

Required Values

An integer between 1 and 86,400. The default is 10.

5.1.3. Java VM Configuration
The parameters in this section help you set up the information required by the e*Way to
utilize the Java VM.

Conceptually, an e*Way is divided into two halves. One half of the e*Way (shown on
the left in Figure 10) handles communication with the external system; the other half
manages the Collaborations that process data and subscribe or publish to other e*Gate
components.

Chapter 5 Section 5.1
Configuring the Java Generic e*Way Required e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 63 SeeBeyond Proprietary and Confidential

Figure 10 e*Way internal architecture

The “communications half” of the e*Way uses Java methods to start and stop scheduled
operations, exchange data with the external system, package data as e*Gate “Events”
and send those Events to Collaborations, and manage the connection between the
e*Way and the external system. The Java VM Configuration options discussed in this
section control the Java VM environment and define the Java methods used to perform
these basic e*Way operations.

Operational Details

The Java methods in the “communications half” of the e*Way fall into the following
groups:

A series of figures on the next several pages illustrate the interaction and operation of
these methods.

Type of Operation Name

Initialization startUp() on page 75
(also see Exchanger Java Class on page 66)

Connection connectionEstablish() on page 71
connectionVerify() on page 72
connectionShutdown() on page 72

Schedule-driven data
exchange

exchangeData() on page 73
ACK() on page 71
NAK() on page 73

Shutdown shutdown() on page 74

Event-driven data exchange processOutgoing() on page 74

Communication
with external
system

Business logic and
communication
within e*Gate

External
system

Other e*Gate
components

e*Gate Events

Data
Java Generic
e*Way

Collaboration

Collaboration

Method

Method

Chapter 5 Section 5.1
Configuring the Java Generic e*Way Required e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 64 SeeBeyond Proprietary and Confidential

Initialization methods

Figure 11 illustrates how the e*Way executes its initialization methods.

Figure 11 Initialization Methods

Connection Methods

Figure 12 illustrates how the e*Way executes the connection establishment and
verification methods.

Figure 12 Connection establishment and verification methods

Start e*Way

Load
"Java Runtime Dependency"

files

Call the startUp() function

Connect e*Way to
external system

Internal
flag shows connection

active?

Wait for "Up Timeout"
schedule

Call connectionVerify()
function

Wait for "Down Timeout"
schedule

Call connectionEstablish()
function

Yes

No

Chapter 5 Section 5.1
Configuring the Java Generic e*Way Required e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 65 SeeBeyond Proprietary and Confidential

Note: The e*Way selects the connection method based on an internal “up/down” flag
rather than a poll to the external system.
User methods can manually set this flag using Java methods. See sendExternalUp
on page 94 and sendExternalDown on page 93 for more information.

Figure 13 illustrates how the e*Way executes its connectionShutdown() method.

Figure 13 Connection shutdown method

Java Release

Description

Specifies the Java Release this e*Way will use. This parameter is mandatory.

Note: If Java 1 is selected, some of the following parameters may not pertain and their
corresponding functionality may not be available as well.

Required Values

A string. The configured default values are 1, 1.1.7B and higher, 2, 1.2.2 and higher.

Additional Information

Although Java byte codes for classes and methods, common to both Java 1 and Java 2,
are typically forward and backward compatible, it is recommended that this e*Way be
set to the Java release appropriate to the version of the javac compiler used to compile
the Java source code that is used.

See also:

! JNI DLL on page 66

! Disable JIT on page 69

! DLL Load Path Prepend on page 70

Control Broker issues
"Suspend" command

Call connectionShutdown() function
with parameter

"SUSPEND_NOTIFICATION"

e*Way closes connection

Return any value

Chapter 5 Section 5.1
Configuring the Java Generic e*Way Required e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 66 SeeBeyond Proprietary and Confidential

JNI DLL

Description

Specifies the absolute pathname to where the JNI DLL installed by the Java 2 SDK 1.2.2
(Java 1 JDK 1.1.7B) or JRE 1.2.2 (JRE 1.1.7B) is located on the Participating Host. This
parameter is mandatory.

Required Values

A valid pathname.

Additional Information

The JNI dll name varies on different O/S platforms:

The value assigned can contain a reference to an environment variable, by enclosing the
variable name within a pair of % symbols. For example:

%MY_JNIDLL%

Such variables can be used when multiple Participating Hosts are used on different
platforms.

See also Java Release on page 65.

Note: To ensure that the JNI DLL loads successfully, the DLL search path environment
variable must be set appropriately to include all the directories under the Java 2
SDK (or JDK) installation directory that contain shared libraries (UNIX) or DLLs
(NT). See page 14 for more information.

Exchanger Java Class

Description

Specifies the location, relative to the e*Gate Registry, of the Java class which
implements the Exchanger interface: com.stc.common.collabService.Exchanger.

Required Values

A pathname. This parameter is mandatory. For example:

classes\com\mystc\collabpkg\MyExchanger.class

OS Java 2 JNI DLL Name Java 1 JNI DLL Name

NT / Windows jvm.dll javai.dll

Solaris libjvm.so libjava.so

Linux libjvm.so libjava.so

Compaq libjvm.so libjava.so

HP-UX libjvm.sl libjava.sl

AIX libjvm.a libjava.a

Chapter 5 Section 5.1
Configuring the Java Generic e*Way Required e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 67 SeeBeyond Proprietary and Confidential

Additional information

Alternatively, if the implementing Java class resides inside a .jar or .zip file specified
below as a Runtime Dependency, enter the class name with periods.

For example:

com.mystc.collabpkg.MyExchange

Runtime Dependency

Description

Specifies a .jar, .zip, or .class file that needs to be downloaded from the e*Gate
Registry before the above specified Exchanger Java Class can run. If multiple
dependencies exist, place all necessary references within an e*Gate Registry Control file
(ends with a .ctl suffix), which itself is checked into the e*Gate Registry, and specify the
Control file instead.

Required Values

A valid .jar, .zip, .class or .ctl file. This parameter is optional.

Enable Custom Data Error Handling

Description

Specifies whether data errors that occur during the execution of the
processOutgoing() method are to be handled in a customized way.

Required Values

Yes or No.

Additional Information

When data errors occur during the transmission of an outgoing Event, an exception is
thrown by the processOutgoing() method. The dataErrorHandled() method of
the Exchanger Java Class will be called, and provided with the Event for which the
exception was thrown and the exception.

The Event and the exception received by dataErrorHandled() can optionally be
forwarded to a “dead-letter” IQ and a boolean true returned to indicate that the data
error has been handled successfully. This allows the e*Way to continue with the next
outbound Event.

If the data error cannot be handled, a boolean false must be returned. The e*Way will
follow the standard recourse of resending the outbound Event as specified in Max
Failed Messages, before shutting down.

Note: To use the Enable Custom Data Error Handling parameter, the Exchanger Java
Class must implement the com.stc.common.collabService.DataErrorHandler
interface.

See also :

! “Exchanger Java Class” on page 66

Chapter 5 Section 5.1
Configuring the Java Generic e*Way Required e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 68 SeeBeyond Proprietary and Confidential

! “Max Failed Messages” on page 59

Initial Heap Size

Description

Specifies the value for the initial heap size in bytes. If set to 0 (zero), the preferred value
for the initial heap size of the Java VM will be used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Heap Size

Description

Specifies the value of the maximum heap size in bytes. If set to 0 (zero), the preferred
value for the maximum heap size of the Java VM will be used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

CLASSPATH Override

Description

Specifies the complete CLASSPATH variable to be used by the Java VM. This parameter
is optional. If left empty, an appropriate CLASSPATH environment variable (consisting
of required e*Gate components concatenated with the system version of CLASSPATH)
will be set.

Note: All necessary .jar and .zip files needed by both e*Gate and the Java VM must be
included. It is advised that the CLASSPATH Prepend parameter should be used.

Required Values

An absolute path or an environmental variable. This parameter is optional.

Additional Information

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_CLASSPATH%

See also CLASSPATH Prepend on page 68.

CLASSPATH Prepend

Description

Specifies the paths to be prepended to the CLASSPATH environment variable for the
Java VM.

Chapter 5 Section 5.1
Configuring the Java Generic e*Way Required e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 69 SeeBeyond Proprietary and Confidential

Required Values

An absolute path or an environmental variable. This parameter is optional.

Additional Information

If left unset, no paths will be prepended to the CLASSPATH environment variable.

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_PRECLASSPATH%

See also CLASSPATH Override on page 68.

Disable Class Garbage Collection

Description

Specifies whether the Class Garbage Collection will be done automatically by the Java
VM. The selection affects performance issues.

Required Values

YES or NO.

Additional Information

If set to NO, the size of the Java VM and this e*Way will grow uncontrollably larger
unless the executed Java code calls the garbage collector, System.gc(), itself.

Enable Garbage Collection Activity Reporting

Description

Specifies whether garbage collection activity will be reported for debugging purposes.

Required Values

YES, or NO.

Report Java VM Class Loads

Description

Specifies whether the Java VM information and all class loads will be reported for
debugging purposes.

Required Values

YES, or NO.

Disable JIT

Description

Specifies whether the Just-In-Time (JIT) compiler will be disabled.

Chapter 5 Section 5.1
Configuring the Java Generic e*Way Required e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 70 SeeBeyond Proprietary and Confidential

Required Values

YES or NO.

Note: This parameter is not supported for Java Release 1.

See also Java Release on page 65.

DLL Load Path Prepend

Description

Specifies any paths to be prepended to the dll load path used by the Java VM.

Required Values

An absolute path or an environmental variable. This parameter is optional.

Additional Information

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_PRELOADPATH%

Note: This parameter is not supported for Java Release 1.

See also Java Release on page 65.

Chapter 5 Section 5.2
Configuring the Java Generic e*Way Methods Required by the Exchanger Interface

Java Generic e*Way Extension Kit Developer’s Guide 71 SeeBeyond Proprietary and Confidential

5.2 Methods Required by the Exchanger Interface
The following methods are required by the Exchanger interface that the class file must
implement in order for the e*Way to operate.

ACK() on page 71

connectionEstablish() on page 71

connectionShutdown() on page 72

connectionVerify() on page 72

exchangeData() on page 73

NAK() on page 73

processOutgoing() on page 74

shutdown() on page 74

startUp() on page 75

See Exchanger Java Class on page 66 for more information.

ACK()

Description

This method is called when the e*Way succeeds to process and queue data from
external.

Parameters

Return Values

void
Returns a void, if successful; otherwise

Exception
com.stc.common.collabService.CollabConnException, indicating that a problem with
the connection occurred.

connectionEstablish()

Description

This method is called repeatedly at the set interval whenever the connection to the
external is down or in a down state, to attempt to establish the connection.

Name Type Description

ackevt byte array An acknowledgment event to be sent to the
external.

Chapter 5 Section 5.2
Configuring the Java Generic e*Way Methods Required by the Exchanger Interface

Java Generic e*Way Extension Kit Developer’s Guide 72 SeeBeyond Proprietary and Confidential

Parameters

None

Return Values

Boolean
Returns true if successful; otherwise, returns false.

connectionShutdown()

Description

This method shuts down the connection to external.

Parameters

Return Values

Boolean
Returns true if successful; otherwise, returns false.

Additional Information

This method will only be invoked when the e*Way receives a “suspend” command
from a Control Broker. When the “suspend” command is received, the e*Way will
invoke this method, passing the string “SUSPEND_NOTIFICATION” as an argument.

connectionVerify()

Description

This method is called repeatedly at the set interval whenever the connection to the
external is thought to be up, and either confirms that it is still up or discovers that it has
gone down.

Parameters

None

Return Values

Boolean
Returns true if successful; otherwise, returns false.

Name Type Description

notif string A notification string “SUSPEND_NOTIFICATION”
will be passed in to indicate the connection should
be shut down.

Chapter 5 Section 5.2
Configuring the Java Generic e*Way Methods Required by the Exchanger Interface

Java Generic e*Way Extension Kit Developer’s Guide 73 SeeBeyond Proprietary and Confidential

exchangeData()

Description

This method will be invoked at the Exchange Data Interval schedule as long as the
exchange schedules are defined. If this method returns data, it will be queued up for
e*Gate. This method will not be invoked if the Exchange Data Interval is set to 0 (zero).

See also:

! Start Exchange Data Schedule on page 61

! Stop Exchange Data Schedule on page 61

Parameters

None

Return Values

byte array
if successful, otherwise,

exception

" com.stc.common.collabService.CollabConnException, if a problem with the
connection occurred, or

" com.stc.common.collabService.CollabDataException, if a problem with the
data occurred.

Additional Information

The method may return an empty byte array or NULL which is not considered an error.

NAK()

Description

This method is called when the e*Way fails to process and queue data from external.

Parameters

Return Values

void
Returns a void if successful; otherwise,

exception
com.stc.common.collabService.CollabConnException, indicating that a problem with
the connection occurred.

Name Type Description

nakevt byte array A negative acknowledgment event to be sent
to the external.

Chapter 5 Section 5.2
Configuring the Java Generic e*Way Methods Required by the Exchanger Interface

Java Generic e*Way Extension Kit Developer’s Guide 74 SeeBeyond Proprietary and Confidential

processOutgoing()

Description

This method sends outgoing Events from e*Gate to the external. When the e*Way has
an Event to send to the external, it will invoke this method.

Parameters

Return Value

void
Returns a void if successful; otherwise,

exception

! com.stc.common.collabService.CollabConnException indicates that there is a
problem communicating with the external system.

! com.stc.common.collabService.CollabDataException indicates that there is a
problem with the Event data itself.

! com.stc.common.collbService.CollabResendException indicates that the Event
can be resent.

Note: To return the data back to the e*Gate system, the method should call
EGate.eventSendToEgate() method. See eventSendToEgate on page 92
for more information.

shutdown()

Description

This method is called to shut down the e*Way, and thus notifies the Java exchange class
that it is about to shut down. This method can be used to shutdown the connection with
external.

Parameters

Return Values

Boolean
Returns true if successful; otherwise, returns false.

Name Type Description

inputEvent byte array The Event to be sent.

Name Type Description

notif string A notification string,
“SHUTDOWN_NOTIFICATION” will be passed
in to indicate the e*Way is shutting down.

Chapter 5 Section 5.2
Configuring the Java Generic e*Way Methods Required by the Exchanger Interface

Java Generic e*Way Extension Kit Developer’s Guide 75 SeeBeyond Proprietary and Confidential

Additional Information

If this method returns Boolean false, the e*Way will assume that the method will call
the EGate.shutdownRequest method when it is ready to shut down.

Note: If the method is going to control the shutdown, it must do so in a timely manner.
The rest of the system is expecting the e*Way to exit.

startUp()

Description

This method should be used to initialize the external system before data exchange
starts. The startUp method is invoked by the e*Way at the startup time and when the
configuration changes before it enters into its initial Communication State. This method
is called after the e*Way will exit if it fails to invoke this method or this method throws
a com.stc.common.collabService.CollabConnException.

Parameters

None

Return Values

void
Returns a void if successful; otherwise,

exception
com.stc.common.collabService.CollabConnException, indicating that a problem with
the connection occurred.

Additional Information

This method is called after the e*Way loads any Runtime Dependency.

5.2.1. CollabConnException Class
The CollabConnException class implements an Exception to be thrown when a
Connection Error occurs in an e*Gate Collaboration. The CollabConnException class
extends java.lang.Exception.

The interface is located in:

com.stc.common.collabService

CollabConnException

Description

CollabConnException constructs an Exception due to Collaboration Connection errors.

Syntax

public CollabConnException()

Chapter 5 Section 5.2
Configuring the Java Generic e*Way Methods Required by the Exchanger Interface

Java Generic e*Way Extension Kit Developer’s Guide 76 SeeBeyond Proprietary and Confidential

Parameters

None.

Return Value

None.

CollabConnException

Description

CollabConnException constructs an Exception due to Collaboration Connection errors.

Syntax

public CollabConnException(java.lang.String s)
Parameters

Return Value

None.

5.2.2. CollabDataException Class
The CollabDataException class implements an Exception to be thrown when a Data
translation Error occurs in an e*Gate Collaboration. The CollabDataException class
extends java.lang.Exception.

The interface is located in:

com.stc.common.collabService

CollabDataException

Description

CollabDataException constructs an Exception due to Collaboration Data errors.

Syntax

public CollabDataException()

Parameters

None.

Return Value

None.

Name Type Description

s String The associated exception message string.

Chapter 5 Section 5.2
Configuring the Java Generic e*Way Methods Required by the Exchanger Interface

Java Generic e*Way Extension Kit Developer’s Guide 77 SeeBeyond Proprietary and Confidential

CollabDataException

Description

CollabDataException constructs an Exception due to Collaboration Data errors.

Syntax

public CollabDataException(java.lang.String s)
Parameters

Return Value

None.

5.2.3. CollabResendException Class
The CollabResendException class implements an Exception to be thrown when a
Connection Error occurs in an e*Gate Collaboration. The CollabResendException class
extends java.lang.Exception.

The interface is located in:

com.stc.common.collabService

CollabResendException

Description

CollabResendException constructs an Exception for resending due to Collaboration
Connection errors.

Syntax

public CollabResendException()

Parameters

None.

Return Value

None.

CollabResendException

Description

CollabResendException constructs an Exception for resending due to Collaboration
Connection errors.

Name Type Description

s String The associated exception message string.

Chapter 5 Section 5.3
Configuring the Java Generic e*Way Exchanger Interface

Java Generic e*Way Extension Kit Developer’s Guide 78 SeeBeyond Proprietary and Confidential

Syntax

public CollabResendException(java.lang.String s)
Parameters

Return Value

None.

5.3 Exchanger Interface
The Exchanger.class Interface required for the e*Way to operate is located in the
following package of the stcjcs.jar file:

com.stc.common.collabService

The code is fully commented. The primary methods are discussed in “Methods
Required by the Exchanger Interface” on page 71. The core methods will be discussed
in greater detail in the following chapter.

package com.stc.common.collabService;

/**
 * An interface a class must implement in order to serve as an e*Gate
 * Collaboration.
 * <p>
 * The implementing class must ALSO have a no-argument constructor so that
 * the class can be dynamically instantiated.
 *
*/

public interface Exchanger
{
 // ==
 // Abstract Methods
 // ==

 /**
 * Called at start up of a Java exchange class
 *
 * @exception com.stc.common.collabService.CollabConnException thrown if
 * problem encountered with a connection
 *
 */
 public void startUp()
 throws CollabConnException;

 /**
 * Called to process an outgoing event from e*Gate
 *
 * @param outEvent output event data given as a byte array
 * @exception com.stc.common.collabService.CollabConnException thrown if
 * problem encountered with a connection
 * @exception com.stc.common.collabService.CollabDataException thrown if
 * problem encountered with data translation
 * @exception com.stc.common.collabService.CollabResendException thrown if
 * the outgoing event is to be resent
 *
 */
 public void processOutgoing(byte[] inputEvent)
 throws CollabConnException, CollabDataException,
 CollabResendException;

 /**
 * Called to exchange data from an external with e*Gate on a predefined
 * schedule.
 *
 * @return a byte array for the data received from the external
 * @exception com.stc.common.collabService.CollabConnException thrown if
 * problem encountered with a connection
 * @exception com.stc.common.collabService.CollabDataException thrown if

Name Type Description

s String The associated exception message string.

Chapter 5 Section 5.4
Configuring the Java Generic e*Way Methods Required by the DataErrorHandler Interface

Java Generic e*Way Extension Kit Developer’s Guide 79 SeeBeyond Proprietary and Confidential

 * problem encountered with data translation
 *
 */
 public byte[] exchangeData()
 throws CollabConnException, CollabDataException;

 /**
 * Called to establish a connection with the external.
 *
 * @return a boolean <code>true</code> when successfully connected;
 * otherwise a <code>false</code>
 *
 */
 public boolean connectionEstablish();

 /**
 * Called to verify a connection with the external.
 *
 * @return a boolean <code>true</code> when connection is intact;
 * otherwise a <code>false</code>
 *
 */
 public boolean connectionVerify();

 /**
 * Called to shut down a connection with the external.
 *
 * @param notif a notification string "SUSPEND_NOTIFICATION" will be
 * passed in to indicate the connection should be
 * shut down
 * @return a boolean <code>true</code> when connection has been severed;
 * otherwise a <code>false</code>
 *
 */
 public boolean connectionShutdown(String notif);

 /**
 * Called to positively acknowledge an external when all the events
 * received have been processed successfully by all e*Way collaborations.
 *
 * @param ackevt an acknowledgment event to be sent to the external
 * @exception com.stc.common.collabService.CollabConnException thrown if
 * problem encountered with a connection
 *
 */
 public void ACK(byte[] ackevt)
 throws CollabConnException;

 /**
 * Called to negatively acknowledge an external when not all the events
 * received have been processed successfully by all e*Way collaborations.
 *
 * @param nakevt an acknowledgment event to be sent to the external
 * @exception com.stc.common.collabService.CollabConnException thrown if
 * problem encountered with a connection
 *
 */
 public void NAK(byte[] nakevt)
 throws CollabConnException;

 /**
 * Called to notify the Java exchange class that the e*Way is shutting
 * down.
 *
 * @param notif a notification string, "SHUTDOWN_NOTIFICATION", to
 * advise that the e*Way is about to shut down.
 * @return a boolean <code>true</code> if the shutdown process can
 * proceed; otherwise a <code>false</code>
 *
 */
 public boolean shutdown(String notif);
}

5.4 Methods Required by the DataErrorHandler Interface
When data errors occur during the transmission of an outgoing Event(s) to external, an
exception is thrown by the processOutgoing() method. The dataErrorHandled()
method of the Exchanger Java Class will be called and provided with the offending
Event along with the associated exception.

Chapter 5 Section 5.5
Configuring the Java Generic e*Way DataErrorHandler Interface

Java Generic e*Way Extension Kit Developer’s Guide 80 SeeBeyond Proprietary and Confidential

The following methods are required by the DataErrorHandler Interface that the class
file must implement in order for the e*Way to operate.

dataErrorHandled() on page 80

dataErrorHandled()

Description

This method is called when a CollabDataException is thrown by the collaboration.

Parameters

Return Value

Boolean
Returns a true if the Data Exception was handled and the e*Way can continue
processing the next Event; otherwise, returns false.

5.5 DataErrorHandler Interface
The DataErrorHandler.class Interface must be implemented for the e*Way if custom
data error handling is enabled (See Enable Custom Data Error Handling on page 67 for
more information). The interface is located in the following package of the stcjcs.jar file:

com.stc.common.collabService

The code is fully commented. The primary methods are discussed in “Methods
Required by the DataErrorHandler Interface” on page 79.

package com.stc.common.collabService;

import com.stc.common.utils.StcCorp;

/**
 * An interface to handle Data Error from an e*Way processing of an outgoing
 * event.
 *
*/

public interface DataErrorHandler
{
 /**
 * Called when a CollabDataException is thrown by the collaboration.
 *
 * @param event the offending event as a byte array
 * @param e the Exception thrown
 *
 * @return <code>true</code> if the Data Exception was handled and the
 * e*Way can continue processing the next event;
 * <code>false</code> otherwise
 *
 */
 public boolean dataErrorHandled(byte[] event, CollabDataException e);
}

Name Type Description

Event byte array The offending Event as a byte array.

e The exception thrown

Chapter 5 Section 5.6
Configuring the Java Generic e*Way Configuring the Java Generic e*Way with the Enterprise Manager

Java Generic e*Way Extension Kit Developer’s Guide 81 SeeBeyond Proprietary and Confidential

5.6 Configuring the Java Generic e*Way with the Enterprise
Manager

The instructions in this section discuss how to implement the Java Generic e*Way using
the Enterprise Manager.

After you have created the extension DLL, any required Java methods, and the .def file
(if necessary) for the new e*Way, you must do the following:

1 Commit any files you have created to the appropriate directories within a schema.

2 Create an e*Way component within the schema.

3 Configure the e*Way as required.

5.6.1. Step 1: Commit files to the schema

Note: Do not commit files to the default schema unless you want those files to be
inherited by all new schemas. Even if this is the desired outcome, we recommend
that you always commit files to a non-default schema during testing and
development of new e*Way components.

1 Make sure the files you wish to commit to the e*Gate schema are accessible from the
same system as the Enterprise Manager, either from a local file system or from a
mapped network drive (you cannot commit files to the schema using a UNC path).

2 Using the Enterprise Manager, log in to the schema that will support the new
e*Way.

3 Pull down the File menu and select Commit to Sandbox.

4 The Select Local File to Commit dialog appears. Use the file-selection controls to
locate the file you want to commit and click Open.

5 The Select Directory for Committed File dialog appears. Use the directory-
selection controls to locate the directory to which you want to commit the file and
click Select. Select the directory according to the table below:

Note: Remember that committing files to the Sandbox makes them available for testing.
Files must be promoted to the run-time schema before they can be used in the
working “production” environment. For more information, see the Team Registry
User’s Guide or the Enterprise Manager’s online Help.

Table 6 Schema directories

For a file of this type... ...commit to this directory

.def /configs/stcewgenericjava

.java

.jar
Or any other Java files

classes/eway_name
(We recommend that you create a separate
directory for your custom e*Way scripts.)

.dll or other library files /bin

Chapter 5 Section 5.6
Configuring the Java Generic e*Way Configuring the Java Generic e*Way with the Enterprise Manager

Java Generic e*Way Extension Kit Developer’s Guide 82 SeeBeyond Proprietary and Confidential

5.6.2. Step 2: Create an e*Way Component
After all the required files have been committed to the schema, you can create the
e*Way component.

1 In the Component editor, create a new e*Way.

2 Display the new e*Way’s properties.

3 On the General tab, under Executable File, click Find.

4 Select the file stcewgenericjava.exe.

5 Under Configuration file, click New.

6 The e*Way Template Selection dialog box appears. From the list, select the .def file
that you created for this e*Way and click OK. The name will be listed without the
“.def” extension. For example, if you created the file my_eway.def, the file will be
listed as my_eway.

7 The e*Way Editor will launch. You are ready to configure the e*Way; continue with
the next section.

5.6.3. Step 3: Configure the e*Way
Once you have selected your e*Way template, you are ready to use the e*Way Editor to
configure this e*Way component.

1 If you followed the instructions in the previous two sections, the e*Way Editor has
now launched, as shown in Figure 14.

Chapter 5 Section 5.6
Configuring the Java Generic e*Way Configuring the Java Generic e*Way with the Enterprise Manager

Java Generic e*Way Extension Kit Developer’s Guide 83 SeeBeyond Proprietary and Confidential

Figure 14 e*Way Editor

Use the e*Way Editor to make any configuration changes you require. For more
information about configuring e*Ways or how to use the e*Way Editor, see the
e*Gate Integrator User’s Guide.

2 When you have finished making configuration changes, pull down the File menu
and select Save.

3 Enter a name for the configuration file and click OK.

4 Exit the e*Way Editor. You will return to the e*Way’s property sheet. Click OK to
close the properties sheet, or continue to make other changes to the e*Way
component’s properties.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, please see the Enterprise
Manager’s online Help.

5.6.4. Editing a .def File Within a Schema
To edit a .def file that has already been committed to a schema:

1 Launch the Enterprise Manager and log in to the schema containing the .def file
that you want to edit.

2 Pull down the File menu and select Edit File.

3 Use the file-selection controls to open the .def file. The Notepad editor will launch
and open the file you have selected.

Chapter 5 Section 5.6
Configuring the Java Generic e*Way Configuring the Java Generic e*Way with the Enterprise Manager

Java Generic e*Way Extension Kit Developer’s Guide 84 SeeBeyond Proprietary and Confidential

4 Save any changes and exit the editor.

5 Commit the edited file back to the schema (the Enterprise Manager will
automatically prompt you to perform this procedure).

See the Enterprise Manager’s online Help for more information.

Chapter 5 Section 5.7
Configuring the Java Generic e*Way Developing the Java Business Logic Class

Java Generic e*Way Extension Kit Developer’s Guide 85 SeeBeyond Proprietary and Confidential

5.7 Developing the Java Business Logic Class
In the sample code in this section, FileExchange.java is the Java class you have
created. The *.class file must be imported into the schema in which the Java Exchanger
Interface runs. See the following Samples folder on the e*Gate installation CD-ROM to
obtain a copy of the sample:

samples\genjavaeway\FileExchange.java

5.7.1. Sample Java Business Logic
Java Business Logic Classes use the following basic format as illustrated by the
following sample.
/**

 * A sample class to illustrate implementation of the Exchanger interface.

 * A flat file is considered as the "external" system for both inbound and

 * outbound processing.

 *

 */

// Java specific package imports

import java.io.*;

// e*Gate specific package imports

import com.stc.common.collabService.*;

import com.stc.common.registry.*;

import com.stc.common.utils.*;

public class FileExchange implements Exchanger

{

 private String eGateLogsDir = null;

 private FileOutputStream outFos = null;

 private File outFile = null;

 private String customInputDir = null;

 // --

 /**

 * Zero-argument constructor is needed (Java will provide one if not

 * defined, but it's better to be explicit).

 *

 */

 public FileExchange()

 {

 super();

 }

 // --

 /**

 * This gets called when the Java e*Way initially starts up. Going to

 * use it to discover where the e*Gate client logs/ directory is and

 * to get the user customized configuration parameter "Inbound Directory"

Chapter 5 Section 5.7
Configuring the Java Generic e*Way Developing the Java Business Logic Class

Java Generic e*Way Extension Kit Developer’s Guide 86 SeeBeyond Proprietary and Confidential

 * under section "Sample Test".

 *

 * @exception com.stc.collabService.CollabConnException thrown if

 * problem encountered

 *

 */

 public void startUp() throws CollabConnException

 {

 // Determine from the e*Gate repository where the client logs/

 // directory is.

 RepositoryDirectories repDir = new RepositoryDirectories();

 if (repDir.readRepositoryDirectories())

 {

 eGateLogsDir = repDir.getLogs();

 EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,

 "startUp(): e*Gate client logs/ is at: " + eGateLogsDir);

 }

 else

 {

 EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_ERROR,

 "startUp(): Can't read repository directories");

 throw new CollabConnException("Can't read repository directories");

 }

 // Get the user customized configuration parameter

 customInputDir = EGate.getEwayConfigProp("SAMPLE_TEST.INBOUND_DIRECTORY");

 if (null == customInputDir)

 {

 EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_WARNING,

 "startUp(): No Inbound Directory defined in Sample Test");

 }

 else

 {

 File inputDir = new File(customInputDir);

 if (!inputDir.isAbsolute())

 {

 inputDir = new File(repDir.getSystemData(), customInputDir);

 customInputDir = inputDir.getAbsolutePath();

 }

 if (!inputDir.isDirectory())

 {

 EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_ERROR,

 "startUp(): Inbound Directory " +

 customInputDir + " doesn't exist!");

 throw new CollabConnException(customInputDir + " doesn't exist!");

 }

 }

 }

 // --

 /**

 * This gets called when there's an outbound event from e*Gate to the

 * external. We're simply going to write it out to the output file.

 *

Chapter 5 Section 5.7
Configuring the Java Generic e*Way Developing the Java Business Logic Class

Java Generic e*Way Extension Kit Developer’s Guide 87 SeeBeyond Proprietary and Confidential

 * @param outEvent output event data given as a byte array

 * @exception com.stc.common.collabService.CollabConnException thrown if

 * problem encountered with a connection

 * @exception com.stc.common.collabService.CollabDataException thrown if

 * problem encountered with data translation

 * @exception com.stc.common.collabService.CollabResendException thrown if

 * the outgoing event is to be resent

 *

 */

 public void processOutgoing(byte[] outEvent)

 throws CollabConnException, CollabDataException,

 CollabResendException

 {

 if (outFos != null && outEvent.length > 0)

 {

 try

 {

 outFos.write(outEvent);

 outFos.write(System.getProperty("line.separator").getBytes());

 outFos.flush();

 EGate.traceln(EGate.TRACE_EWAY_VERBOSE, EGate.TRACE_EVENT_TRACE,

 outEvent, "processOutgoing(): wrote to file");

 }

 catch (IOException e)

 {

 EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_ERROR,

 "processOutgoing(): Can't write to output file: " +

 e.getMessage());

 throw new CollabConnException(e.getMessage());

 }

 }

 }

 // --

 /**

 * This gets called when the Java e*Way's exchange data with external

 * schedule is due. We're just going to look for an input file in the

 * user customized configured inbound directory.

 *

 *

 * @return a byte array for the data received from the external

 * @exception com.stc.common.collabService.CollabConnException thrown if

 * problem encountered with a connection

 * @exception com.stc.common.collabService.CollabDataException thrown if

 * problem encountered with data translation

 *

 */

 public byte[] exchangeData()

 throws CollabConnException, CollabDataException

 {

 if (customInputDir != null)

 {

 File inputFile = new File(customInputDir, "TestIn.txt");

 long len;

 if (inputFile.exists() && (len = inputFile.length()) > 0)

 {

 FileInputStream fis = null;

Chapter 5 Section 5.7
Configuring the Java Generic e*Way Developing the Java Business Logic Class

Java Generic e*Way Extension Kit Developer’s Guide 88 SeeBeyond Proprietary and Confidential

 try

 {

 fis = new FileInputStream(inputFile);

 len = fis.available();

 byte[] retBytes = new byte[(int) len];

 fis.read(retBytes);

 EGate.traceln(EGate.TRACE_EWAY_VERBOSE, EGate.TRACE_EVENT_TRACE,

 retBytes, "exchangeData(): received from file");

 return retBytes;

 }

 catch (Exception e)

 {

 EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_ERROR,

 "exchangeData(): Input file problems: " +

 e.getMessage());

 throw new CollabConnException("Input file problems: " +

 e.getMessage());

 }

 finally

 {

 if (fis != null)

 {

 try

 {

 fis.close();

 }

 catch (Exception e)

 {

 }

 }

 inputFile.renameTo(new File(customInputDir, "TestIn.~xt"));

 }

 }

 }

 return null;

 }

 // --

 /**

 * This gets called to establish a connection with an external system.

 * We're simply going to open the output file here.

 *

 * @return a boolean <code>true</code> when successfully connected;

 * otherwise a <code>false</code>

 *

 */

 public boolean connectionEstablish()

 {

 // Open an output file in the logs/ directory

 try

 {

 outFile = new File(eGateLogsDir, "TestOut.txt");

 outFos = new FileOutputStream(outFile);

Chapter 5 Section 5.7
Configuring the Java Generic e*Way Developing the Java Business Logic Class

Java Generic e*Way Extension Kit Developer’s Guide 89 SeeBeyond Proprietary and Confidential

 EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,

 "connectionEstablish(): Successfully opened output file TestOut.txt");

 }

 catch (Exception e)

 {

 EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_WARNING,

 "connectionEstablish(): Failed to open output file TestOut.txt: " +

 e.getMessage());

 return false;

 }

 return true;

 }

 // --

 /**

 * This gets called to verify a connection with the external. We're

 * just going to test if the output file exists.

 *

 * @return a boolean <code>true</code> when connection is intact;

 * otherwise a <code>false</code>

 *

 */

 public boolean connectionVerify()

 {

 EGate.traceln(EGate.TRACE_EWAY_VERBOSE, EGate.TRACE_EVENT_TRACE,

 "connectionVerify(): test if output file exists?");

 return (outFile != null && outFile.exists());

 }

 // --

 /**

 * This gets called to shut down a connection with the external. We're

 * going to close the output file here.

 *

 * @param notif a notification string "SUSPEND_NOTIFICATION" will be

 * passed in to indicate the connection should be

 * shut down

 * @return a boolean <code>true</code> when connection has been severed;

 * otherwise a <code>false</code>

 *

 */

 public boolean connectionShutdown(String notif)

 {

 EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,

 "connectionShutdown(): got request: " + notif);

 if (outFos != null)

 {

 try

 {

 outFos.close();

 outFos = null;

 }

 catch (Exception e)

 {

 }

 }

Chapter 5 Section 5.7
Configuring the Java Generic e*Way Developing the Java Business Logic Class

Java Generic e*Way Extension Kit Developer’s Guide 90 SeeBeyond Proprietary and Confidential

 return true;

 }

 // --

 /**

 * Gets called to positively acknowledge an external when all the events

 * received have been processed successfully by all e*Way collaborations.

 *

 * @param ackevt an acknowledgment event to be sent to the external

 * @exception com.stc.common.collabService.CollabConnException thrown if

 * problem encountered with a connection

 *

 */

 public void ACK(byte[] ackevt)

 throws CollabConnException

 {

 EGate.traceln(EGate.TRACE_EWAY_VERBOSE, EGate.TRACE_EVENT_TRACE,

 ackevt, "ACK(): gotten for");

 }

 // --

 /**

 * Gets called to negatively acknowledge an external when not all the events

 * received have been processed successfully by all e*Way collaborations.

 *

 * @param nakevt an acknowledgment event to be sent to the external

 * @exception com.stc.common.collabService.CollabConnException thrown if

 * problem encountered with a connection

 *

 */

 public void NAK(byte[] nakevt)

 throws CollabConnException

 {

 EGate.traceln(EGate.TRACE_EWAY_VERBOSE, EGate.TRACE_EVENT_WARNING,

 nakevt, "NAK(): gotten for");

 }

 // --

 /**

 * Gets called to notify the Java exchange class that the e*Way is shutting

 * down.

 *

 * @param notif a notification string, "SHUTDOWN_NOTIFICATION", to

 * advise that the e*Way is about to shut down.

 * @return a boolean <code>true</code> if the shutdown process can

 * proceed; otherwise a <code>false</code>

 *

 */

 public boolean shutdown(String notif)

 {

 EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,

 "shutdown(): got request: " + notif);

 return true;

 }

}

Java Generic e*Way Extension Kit Developer’s Guide 91 SeeBeyond Proprietary and Confidential

Chapter 6

Core Java Generic e*Way Methods

This chapter describes the core methods used within the Java Generic e*Way.

6.1 Core Functions
The following static methods of the EGate class are available to all Java Generic
e*Ways. The EGate class is found in the com.stc.common.collabService package.

! eventSendToEgate on page 92

! getEwayConfigProp on page 92

! getLogicalName on page 93

! sendExternalDown on page 93

! sendExternalUp on page 94

! shutdownRequest on page 94

! startSchedule on page 95

! stopSchedule on page 95

! traceln on page 96

! traceln on page 96

Chapter 6 Section 6.1
Core Java Generic e*Way Methods Core Functions

Java Generic e*Way Extension Kit Developer’s Guide 92 SeeBeyond Proprietary and Confidential

eventSendToEgate

Syntax

boolean eventSendToEgate(byte[] event);

Description

eventSendToEgate sends data that the e*Way has already received from the external
system into the e*Gate system as an Event.

Parameters

Return Values

Boolean
Returns true if the data is sent successfully; otherwise, returns false.

Throws

None.

Additional information

This method can be called by any e*Way method when it is necessary to send data to
the e*Gate system in a blocking fashion, that is, when the Event has been appropriately
processed by a configured inbound collaboration and posted if necessary to an IQ.

Examples

EGate.eventSendToEgate(“Test event”);

getEwayConfigProp

Syntax

string getEwayConfigProp(String key);

Description

getEwayConfigProp() returns the string corresponding to key used to identify the
property requested.

Parameters

Name Type Description

event byte array The data to be sent to the e*Gate
system expressed as byte array.

Name Type Description

key String The property key used to identify the
configuration value requested.

Chapter 6 Section 6.1
Core Java Generic e*Way Methods Core Functions

Java Generic e*Way Extension Kit Developer’s Guide 93 SeeBeyond Proprietary and Confidential

Return Values

String
Returns a string containing the configuration property requested; otherwise,
returns a null string.

Examples

EGate.getEwayConfigProp(“AUTHENTICATION.PASSWORD”);

EGate.getEwayConfigProp(“CONNECTION_PARAMETERS.GATEWAY_ID”);

getLogicalName

Syntax

string getLogicalName();

Description

getLogicalName() returns the logical name of the e*Way.

Parameters

None.

Return Values

String
Returns the name of the e*Way (as defined by the Enterprise Manager).

Throws

None.

Examples

EGate.getLogicalName();

sendExternalDown

Syntax

void sendExternalDown();

Description

sendExternalDown() instructs the e*Way that the connection to the external system is
down.

Parameters

None.

Return Values

None.

Throws

None.

Chapter 6 Section 6.1
Core Java Generic e*Way Methods Core Functions

Java Generic e*Way Extension Kit Developer’s Guide 94 SeeBeyond Proprietary and Confidential

Examples

EGate.sendExternalDown();

sendExternalUp

Syntax

void sendExternalUp();

Description

sendExternalUp() instructs the e*Way that the connection to the external system is up.

Parameters

None.

Return Values

None.

Throws

None.

Examples

EGate.sendExternalUp();

shutdownRequest

Syntax

void shutdownRequest();

Description

shutdownRequest completes the e*Gate shutdown procedure that was initiated by the Control
Broker but was interrupted by returning a false value within the Shutdown Command
Notification Method (see connectionShutdown() on page 72). Once this method is called,
shutdown proceeds immediately.

Once interrupted, the e*Way’s shutdown cannot proceed until this Java method is
called. If you do interrupt an e*Way shutdown, we recommend that you complete the
process in a timely fashion.

Parameters

None.

Return Values

None.

Throws

None.

Chapter 6 Section 6.1
Core Java Generic e*Way Methods Core Functions

Java Generic e*Way Extension Kit Developer’s Guide 95 SeeBeyond Proprietary and Confidential

Examples

EGate.shutdownRequest();

startSchedule

Syntax

void startSchedule();

Description

startSchedule requests that the e*Way execute the exchangeData() method specified
within the e*Way’s configuration file. Does not effect any defined schedules.

Parameters

None.

Return Values

None.

Throws

None.

Examples

EGate.startSchedule();

stopSchedule

Syntax

void stopSchedule();

Description

stopSchedule requests that the e*Way halt execution of the exchangeData() method
specified within the e*Way’s configuration file. Execution will be stopped when the
e*Way concludes any open transaction. Does not affect any defined schedules, and does
not halt the e*Way process itself.

Parameters

None.

Return Values

None.

Throws

None.

Examples

EGate.stopSchedule();

Chapter 6 Section 6.1
Core Java Generic e*Way Methods Core Functions

Java Generic e*Way Extension Kit Developer’s Guide 96 SeeBeyond Proprietary and Confidential

traceln

Syntax

void traceln (long tid, long event, String message);

Description

traceln adds a trace entry into the e*Way’s log file. The end of line is automatically
appended.

Parameters

Return Values

None.

Examples

EGate.traceln(EGate.TRACE_EWAY,EGate.TRACE_EVENT_TRACE,
“This goes to the e*Way log file”);

traceln

Syntax

void traceln(long tid, long event, byte[] blob, String tracestr);

Description

traceln adds a trace entry for a blob in hex-dump format into the e*Way’s log file. The
end of line is automatically appended.

Parameters

Name Type Description

tid long The trace id code. Two possibilities are:
EGate.TRACE_EWAY
EGate.TRACE_EWAY_VERBOSE

event long The Event upon which the trace is set. The
possibilities are:
EGate.TRACE_EVENT_TRACE
EGate.TRACE_EVENT_ERROR
EGate.TRACE_EVENT_WARNING
EGate.TRACE_EVENT_DEBUG
EGate.TRACE_EVENT_INFORMATION

message String The message to appended to the log file
data.

Name Type Description

tid long The trace id code. Two possibilities are:
EGate.TRACE_EWAY
EGate.TRACE_EWAY_VERBOSE

Chapter 6 Section 6.1
Core Java Generic e*Way Methods Core Functions

Java Generic e*Way Extension Kit Developer’s Guide 97 SeeBeyond Proprietary and Confidential

Return Values

None.

Examples

byte[] hugeByteArray;
EGate.traceln(EGate.TRACE_EWAY_VERBOSE,EGate.TRACE_EVENT_DEBUG,

hugeByteArray, “This is a huge byte array”);

Note: For more information on trace flags, see e*Gate Integrator System
Administration and Operations Guide.

event long The Event upon which the trace is set. For
example:
EGate.TRACE_EVENT_INFORMATION

blob byte array The blob. For example:
byte[]

tracestr String The message to appended to the log file data. For
example:
String

Name Type Description

Java Generic e*Way Extension Kit Developer’s Guide 98 SeeBeyond Proprietary and Confidential

Chapter 7

Introducing the Java Monk Extension e*Way

The Java Monk Extension e*Way enables the e*Gate system to interchange data with an
external application by using Monk to access Java objects and call their methods. This
portion of the document describes how to configure the e*Way Intelligent Adapter for
Java.

7.0.1. Components
The following components comprise the Java Monk Extension e*Way:

! stcewgenericmonk.exe, the executable component

! Configuration files, which the e*Way Editor uses to define configuration parameters

! Monk function scripts

! Library files

A complete list of installed files appears in Table 1 on page 18.

Java Generic e*Way Extension Kit Developer’s Guide 99 SeeBeyond Proprietary and Confidential

Chapter 8

Java Monk Extension e*Way Functions

The Java Monk Extension e*Way functions fall into the following categories:

! Basic Functions on page 99

! Standard e*Way Functions on page 103

! Java Monk Extension e*Way Native Functions on page 109

8.1 Basic Functions
The functions in this category control the e*Way’s most basic operations.

The basic functions are

start-schedule on page 99

stop-schedule on page 100

send-external-up on page 100

send-external-down on page 101

get-logical-name on page 101

event-send-to-egate on page 101

shutdown-request on page 102

start-schedule

Syntax

(start-schedule)

Description

start-schedule requests that the e*Way execute the “Exchange Data with External”
function specified within the e*Way’s configuration file. Does not effect any defined
schedules.

Parameters

None.

Chapter 8 Section 8.1
Java Monk Extension e*Way Functions Basic Functions

Java Generic e*Way Extension Kit Developer’s Guide 100 SeeBeyond Proprietary and Confidential

Return Values

None.

Throws

None.

stop-schedule

Syntax

(stop-schedule)

Description

stop-schedule requests that the e*Way halt execution of the “Exchange Data with
External” function specified within the e*Way’s configuration file. Execution will be
stopped when the e*Way concludes any open transaction. Does not affect any defined
schedules, and does not halt the e*Way process itself.

Parameters

None.

Return Values

None.

Throws

None.

send-external-up

Syntax

(send-external-up)

Description

send-external-up instructs the e*Way that the connection to the external system is up.

Parameters

None.

Return Values

None.

Throws

None.

Chapter 8 Section 8.1
Java Monk Extension e*Way Functions Basic Functions

Java Generic e*Way Extension Kit Developer’s Guide 101 SeeBeyond Proprietary and Confidential

send-external-down

Syntax

(send-external-down)

Description

send-external down instructs the e*Way that the connection to the external system is
down.

Parameters

None.

Return Values

None.

Throws

None.

get-logical-name

Syntax

(get-logical-name)

Description

get-logical-name returns the logical name of the e*Way.

Parameters

None.

Return Values

string
Returns the name of the e*Way (as defined by the Enterprise Manager).

Throws

None.

event-send-to-egate

Syntax

(event-send-to-egate string)

Description

event-send-to-egate sends data that the e*Way has already received from the external
system into the e*Gate system as an Event.

Chapter 8 Section 8.1
Java Monk Extension e*Way Functions Basic Functions

Java Generic e*Way Extension Kit Developer’s Guide 102 SeeBeyond Proprietary and Confidential

Parameters

Return Values

Boolean
Returns #t (true) if the data is sent successfully; otherwise, returns #f (false).

Throws

None.

Additional information

This function can be called by any e*Way function when it is necessary to send data to
the e*Gate system in a blocking fashion.

shutdown-request

Syntax

(shutdown-request)

Description

shutdown-request completes the e*Gate shutdown procedure that was initiated by the
Control Broker but was interrupted by returning a non-null value within the Shutdown
Command Notification Function (see “Shutdown Command Notification Function”
on page 152). Once this function is called, shutdown proceeds immediately.

Once interrupted, the e*Way’s shutdown cannot proceed until this Monk function is
called. If you do interrupt an e*Way shutdown, we recommend that you complete the
process in a timely fashion.

Parameters

None.

Return Values

None.

Throws

None.

Name Type Description

string string The data to be sent to the e*Gate
system

Chapter 8 Section 8.2
Java Monk Extension e*Way Functions Standard e*Way Functions

Java Generic e*Way Extension Kit Developer’s Guide 103 SeeBeyond Proprietary and Confidential

8.2 Standard e*Way Functions

Note: The functions described in this section can only be used by the functions defined
within the e*Way’s configuration file. None of the functions are available to
Collaboration Rules scripts executed by the e*Way.

The current suite of Java Monk Extension e*Way standard functions are:

java-ack on page 103

java-exchange on page 104

java-extconnect on page 104

java-init on page 105

java-nack on page 105

java-notify on page 106

java-outgoing on page 106

java-shutdown on page 107

java-startup on page 108

java-verify on page 109

java-ack

Syntax

(java-ack message-string)

Description

java-ack is used to send a positive acknowledgment to the external system, and for post
processing after successfully sending data to e*Gate.

Parameters

Return Values

string
Returns one of the following strings:

! An empty string indicates a successful operation. The e*Way will then be able to
proceed with the next request.

! “CONNERR” indicates a problem with the connection to the external system. When
the connection is re-established, the function will be called again.

Name Type Description

message-string string The Event for which an
acknowledgment is sent.

Chapter 8 Section 8.2
Java Monk Extension e*Way Functions Standard e*Way Functions

Java Generic e*Way Extension Kit Developer’s Guide 104 SeeBeyond Proprietary and Confidential

Additional Information

See “Positive Acknowledgment Function” on page 150 for more information.

java-exchange

Syntax

(java-exchange)

Description

java-exchange is used for sending a received Event from the external system to e*Gate.
The function expects no input.

Parameters

None.

Return Values

string
Returns one of the following strings:

! An empty string indicates a successful operation. Nothing is sent to e*Gate.

! A string containing Event data indicates successful operation, and the returned
Event is sent to e*Gate.

! “CONNERR” indicates a problem with the connection to the external system. When
the connection is re-established this function will be re-executed with the same
input Event.

Throws

None.

Additional Information

See “Exchange Data with External Function” on page 148 for more information.

java-extconnect

Syntax

(java-extconnect)

Description

java-extconnect is used to establish external system connection.

Parameters

None.

Return Values

string
“UP” indicates the connection is established. Anything else indicates no connection.

Chapter 8 Section 8.2
Java Monk Extension e*Way Functions Standard e*Way Functions

Java Generic e*Way Extension Kit Developer’s Guide 105 SeeBeyond Proprietary and Confidential

Throws

None.

Additional Information

See “External Connection Establishment Function” on page 149 for more information.

java-init

Syntax

(java-init)

Description

java-init begins the initialization process for the e*Way. This function loads the
stc_monkjava.dll or stc_monkjava2.dll file, based on the user’s choice of JVMVersion
setting, thereby making the function scripts available for future use.

Parameters

None.

Return Values

string
If a “FAILURE” string is returned, the e*Way will shutdown. Any other return value
indicates success.

Throws

None.

Additional Information

Within this function, any necessary global variables to be used by the function scripts
could be defined. The internal function that loads this file is called once when the
e*Way first starts up.

java-nack

Syntax

(java-nack message-string)

Description

java-nack is used to send a negative acknowledgment to the external system, and for
post processing after failing to send data to e*Gate.

Parameters

Name Type Description

message-string string The Event for which a
negative acknowledgment is
sent.

Chapter 8 Section 8.2
Java Monk Extension e*Way Functions Standard e*Way Functions

Java Generic e*Way Extension Kit Developer’s Guide 106 SeeBeyond Proprietary and Confidential

Return Values

string
Returns one of the following strings:

! An empty string indicates a successful operation.

! “CONNERR” indicates a problem with the connection to the external system. When
the connection is re-established, the function will be called again.

Throws

None.

Additional Information

See “Negative Acknowledgment Function” on page 151 for more information.

java-notify

Syntax

(java-notify)

Description

java-notify notifies the external system that the e*Way is shutting down.

Parameters

Return Values

string
Returns a null string.

Throws

None.

Additional Information

See “Shutdown Command Notification Function” on page 152 for more information.

java-outgoing

Syntax

(java-outgoing event-string)

Name Type Description

command string When the e*Way calls this function,
it will pass the string
"SHUTDOWN_NOTIFICATION" as
the parameter.

Chapter 8 Section 8.2
Java Monk Extension e*Way Functions Standard e*Way Functions

Java Generic e*Way Extension Kit Developer’s Guide 107 SeeBeyond Proprietary and Confidential

Description

java-outgoing is used for sending a received message from e*Gate to the external
system.

Parameters

Return Values

string
Returns one of the following strings:

! An empty string indicates a successful operation.

! “RESEND” causes the Event to be immediately resent.

! “CONNERR” indicates a problem with the connection to the external system. When
the connection is re-established this function will be re-executed with the same
input Event.

! “DATAERR” indicates the function had a problem processing data. If the e*Gate
journal is enabled, the Event is journaled and the failed Event count is increased.
(The input Event is essentially skipped in this process.) Use the event-send-to-egate
function to place bad events in a bad event queue. See event-send-to-egate on
page 101 for more information.

Throws

None.

Additional Information

See “Process Outgoing Message Function” on page 148 for more information.

java-shutdown

Syntax

(java-shutdown shutdown)

Description

java-shutdown requests that the external connection shut down. A return value of
“SUCCESS” indicates that the shutdown can occur immediately. Any other return
value indicates that the shutdown Event must be delayed. The user is then required to
execute a (“shutdown-request” on page 102) call from within a Monk function to
allow the requested shutdown to process to continue.

Name Type Description

event-string string The Event to be processed.

Chapter 8 Section 8.2
Java Monk Extension e*Way Functions Standard e*Way Functions

Java Generic e*Way Extension Kit Developer’s Guide 108 SeeBeyond Proprietary and Confidential

Parameters

Return Values

string
“SUCCESS” allows an immediate shutdown to occur. Any other return value causes the
e*Way to delay shutdown until the shutdown-request function is executed
successfully.

Throws

None.

Additional Information

See “External Connection Shutdown Function” on page 150 for more information.

java-startup

Syntax

(java-startup)

Description

java-startup is used for function loads that are specific to this e*Way and invokes
startup.

Parameters

None.

Return Values

string
“FAILURE” causes shutdown of the e*Way. Any other return value indicates success.

Throws

None.

Additional Information

This function should be used to initialize the external system before data exchange
starts. Any additional variables may be defined here.

See “Startup Function” on page 147 for more information.

Name Type Description

shutdown string When the e*Way calls this function, it will pass the
string "SUSPEND_NOTIFICATION" as the parameter.

Chapter 8 Section 8.3
Java Monk Extension e*Way Functions Java Monk Extension e*Way Native Functions

Java Generic e*Way Extension Kit Developer’s Guide 109 SeeBeyond Proprietary and Confidential

java-verify

Syntax

(java-verify)

Description

java-verify is used to verify whether the connection to the external system is
established.

Parameters

None.

Return Values

string
“UP” if the connection is established. Any other return value indicates that the
connection is not established.

Throws

None.

Additional Information

See “External Connection Verification Function” on page 150 for more information.

8.3 Java Monk Extension e*Way Native Functions
The Java Monk Extension Native functions adhere to the following rules as they pertain
to Java.

8.3.1. Accessing Java Methods
Before accessing the Java Monk Extension e*Way native functions it is important to
discuss issues relevant to accessing the Java Virtual Machine and its methods.

Within Java, it is possible for two methods to be referred to by the same name, while
each takes different parameters. Several of the following Monk APIs take references to
specified Java method names as arguments; they also take a vector of arguments that
refer to the type and number of arguments, and the expected return value of the
specified method. This reference (also known as a signature) provides a way of
identifying Java methods and data fields using a character string. The signatures used
within the following APIs are the same signatures used within the JNI (Java Native
Interface). The Java Native Interface further discusses the definition of a signature.

8.3.2. Java Data Types
Within the JVM, the various data types are defined to accommodate different
platforms. Java has two data types: primitive and reference. Primitive types are either

Chapter 8 Section 8.3
Java Monk Extension e*Way Functions Java Monk Extension e*Way Native Functions

Java Generic e*Way Extension Kit Developer’s Guide 110 SeeBeyond Proprietary and Confidential

numeric or boolean. The numeric types are byte, short, int, long, char, float and
double. The following table describes the format for these data types.

Figure 15 Size of Java Primitive Data Types

The Java Language Specification defines the primitive type boolean as either true or false.

Reference types specify either a class, an interface, or an array. The Java Language
Specification refers to these as pointers. The term “pointer” in Java refers to an object
reference, whereas in C/C++, pointers are addresses.

8.3.3. Type Signatures
Contained within the JNI type signature is a character string description of the
parameter. A signature identifies information about the number and type of arguments
to the method and the type of return value. Within a signature, the encoding of the
arguments appears within the parentheses. For example:

java string methodName (long l, string s, boolean b)
“(JLjava/lang/string;z)Ljava/lang/string;”

8.3.4. Method Signatures
Contained within the JNI method signature is a character string description of the
formal parameters to a method and its return value. A method signature identifies
information about the number and type of arguments to the method and the type of its
return value. Within a signature, the encoding of the arguments appears within the
parentheses. For example:

(<sigtype-list>)<return-sigtype> methodsignature

Figure 16 defines the output (return) types for use in signature encoding.

Figure 16 Signature Encoding

Type Name Description

btye 8-bit two’s-complement

short 16-bit two’s-complement

int 32-bit two’s-complement

long 64-bit two’s-complement

float 32-bit IEEE 754 floating point

double 64-bit IEEE 754 floating point

char 16-bit Unicode

Signature Description

B byte

C char

D double

Chapter 8 Section 8.3
Java Monk Extension e*Way Functions Java Monk Extension e*Way Native Functions

Java Generic e*Way Extension Kit Developer’s Guide 111 SeeBeyond Proprietary and Confidential

Note: It is important to note that the type signature encoding for Java long is ‘J’ not ‘L’.
Inserting the incorrect signature is a common error.
V (void) can only be used for return values and not input parameters.
When passing an object as a parameter, it is important not to neglect to include the
‘L’ at the beginning of the fully-qualified class and the semi-colon (;) at the end of the
fully-qualified class.

Signature and Constructors

Type signatures for constructors follow the same rules as those for instance or class
methods. Constructors type signatures must include a V, representing void, as the return
value. For example:

java myConstructor (String s)
“(Ljava/lang/string;)V”

The following functions are native to the Java Monk Extension e*Way.

F float

I int

J long

S short

V void

Z boolean

L<fully-qualified-class>; fully qualified class

java-call-method on page 112 java-create-string on page 124

java-call-method-with-params on page 112 java-destroy-class-instance on page 125

java-call-static-method-with-params on
page 114

java-destroy-vm on page 126

java-call-method-with-1-int-param on
page 115

java-get-property on page 126

java-call-method-with-1-double-param on
page 116

java-get-property-int on page 127

java-call-method-with-1-string-param on
page 116

java-get-property-string on page 127

java-call-method-with-1-object-param on
page 117

java-get-property-object on page 128

java-call-method-with-int-return on
page 118

java-get-static-property on page 128

java-call-method-with-double-return on
page 118

java-get-string-value on page 129

Signature Description

Chapter 8 Section 8.3
Java Monk Extension e*Way Functions Java Monk Extension e*Way Native Functions

Java Generic e*Way Extension Kit Developer’s Guide 112 SeeBeyond Proprietary and Confidential

java-call-method

Syntax

(java-call-method hJavaObj sMethodName)

Description

java-call-method invokes the specified method for the Java object.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Additional Information

The Java method defined as a parameters in this API, takes no input and has a return
type of void.

java-call-method-with-params

Syntax

(java-call-method-with-params hObj sMethodName pszMethodSignature
vector_of_parameters)

Description

java-call-method-with-params invokes the specified method for the Java object.

java-call-method-with-string-return on
page 119

java-release-string on page 130

java-call-method-with-object-return on
page 119

java-set-property on page 130

java-create-vm on page 120 java-set-static-property on page 131

java-create-vm-with-parameters on
page 121

java-set-property-int on page 132

java-create-class-instance on page 122 java-set-property-string on page 132

java-create-class-instance-with-params on
page 123

java-set-property-object on page 133

Name Type Description

hObj opaque handle The handle for an object

sMethodName string The name of the method to invoke.

Chapter 8 Section 8.3
Java Monk Extension e*Way Functions Java Monk Extension e*Way Native Functions

Java Generic e*Way Extension Kit Developer’s Guide 113 SeeBeyond Proprietary and Confidential

Parameters

Return Values

vector
Returns a vector that contains the return value and the signature to that return.

Throws

None.

Additional Information

To avoid memory leakage, java-call-method-with-params (if return string object)
should be used as a pair with java-get-string-value:

(set! buf (java-call-method-with-params hCLASS “callYantra3” “(Ljava/
lang/String;Ljava/util/Vector;)Ljava/lang/String;” args2))
(set! strvalres2 (java-get-string-value (vector-ref buf 1)))

Note: java-get-string-value can only be called once after the method call java-call-method-
with-params.

java-call-static-class-method-with-params

Syntax

(java-call-static-class-method-with-params hJVM hJavaObj sMethodName
pszMethodSignature vector_of_parameters)

Description

java-call-static-class-method-with-params invokes the specified static method for the
Java object.

Parameters

Name Type Description

hObj opaque handle The handle for an object

sMethodName string The name of the method to invoke.

pszMethodSignature string The string containing the formal
parameters to the specified method
and its return value.

vector_of_parameters vector An unspecified number of
parameters, dependant on the
parameters expected by the desired
method.

Name Type Description

hJVM opaque handle The handle for a JVM

hJavaObj opaque handle The handle to the Java Object

sMethodName string The name of the method to invoke

Chapter 8 Section 8.3
Java Monk Extension e*Way Functions Java Monk Extension e*Way Native Functions

Java Generic e*Way Extension Kit Developer’s Guide 114 SeeBeyond Proprietary and Confidential

Return Values

vector
Returns a vector that contains return value and its signature.

Throws

None.

Note: In calling this method, it is not necessary to precede the fully-qualified class with ‘L’
nor to end with the ‘;’ (semi-colon). For example:

(java-call-static-class-method-with-params hJVM hJavaObj “currentTimeMillis” “()J” ‘#())

java-call-static-method-with-params

Syntax

(java-call-static-method-with-params hJVM sClassName sMethodName
pszMethodSignature vector_of_parameters)

Description

java-call-static-method-with-params invokes the specified static method for the
specified Java class.

Parameters

pszMethodSignature string The string containing the formal
parameters to the specified method
and its return value.

vector_of_parameters vector An unspecified number of
parameters, dependant on the
parameters expected by the desired
method.

Name Type Description

hJVM opaque handle The handle for a JVM

sClassName string The fully-qualified class name

sMethodName string The name of the method to invoke

pszMethodSignature string The string containing the formal
parameters to the specified method
and its return value.

vector_of_parameters vector An unspecified number of
parameters, dependant on the
parameters expected by the desired
method.

Name Type Description

Chapter 8 Section 8.3
Java Monk Extension e*Way Functions Java Monk Extension e*Way Native Functions

Java Generic e*Way Extension Kit Developer’s Guide 115 SeeBeyond Proprietary and Confidential

Return Values

vector
Returns a vector that contains return value and its signature.

Throws

None.

Note: In calling this method, it is not necessary to precede the fully-qualified class with ‘L’
nor to end with the ‘;’ (semi-colon). For example:

(java-call-static-method-with-params hJVM “java/lang/System” “currentTimeMillis” “()J” ‘#())

java-call-method-with-1-int-param

Syntax

(java-call-method-with-1-int-param hObj sMethodName iValue)

Description

java-call-method-with-1-int-param invokes a Java method, passing to it the specified
integer value as a parameter.

Parameters

Return Values

Boolean
Returns #t (true) if successful, otherwise, returns #f (false).

Throws

None.

Additional Information

The Java method being called or invoked as a parameter in this Monk function, must
indicate a void (V) as it’s return type. For example:

java
void someMethod (int i)

Name Type Description

hObj opaque handle The handle for an object

sMethodName string The name of the method to invoke.

iValue integer The integer to be passed into the
method invocation.

Chapter 8 Section 8.3
Java Monk Extension e*Way Functions Java Monk Extension e*Way Native Functions

Java Generic e*Way Extension Kit Developer’s Guide 116 SeeBeyond Proprietary and Confidential

java-call-method-with-1-double-param

Syntax

(java-call-method-with-1-double-param hObj sMethodName dValue)

Description

java-call-method-with-1-double-param invokes a Java method, passing to it the
specified double value as a parameter.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Additional Information

The Java method being called or invoked as a parameter in this Monk function must
indicate a void (V) as its return type.

java-call-method-with-1-string-param

Syntax

(java-call-method-with-1-string-param hObj sMethodName sValue)

Description

java-call-method-with-1-string-param invokes a Java method, passing to it the
specified string as a parameter.

Parameters

Name Type Description

hObj opaque handle The handle to an object

sMethodName string The name of the method to invoke.

dValue double The double passed into the method
invocation.

Name Type Description

hObj opaque handle The object handle

sMethodName string The name of the method to invoke.

sValue string The string passed into the method
invocation.

Chapter 8 Section 8.3
Java Monk Extension e*Way Functions Java Monk Extension e*Way Native Functions

Java Generic e*Way Extension Kit Developer’s Guide 117 SeeBeyond Proprietary and Confidential

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Additional Information

The Java method being called or invoked as a parameter in this Monk function must
indicate a void (V) as its return type.

java-call-method-with-1-object-param

Syntax

(java-call-method-with-1-object-param hObj sMethodName hObj
sClassName)

Description

java-call-method-with-1-object param passes the specified object to the Java method at
invocation.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Additional Information

The Java method being called or invoked as a parameter in this Monk function must
indicate a void (V) as its return type.

Name Type Description

hObj opaque handle The handle of an object

sMethodName string The name of the method to invoke.

hObj opaque handle The handle to the object being
passed into the method invocation.

sClassName string The fully qualified class name of the
object being passed in.

Chapter 8 Section 8.3
Java Monk Extension e*Way Functions Java Monk Extension e*Way Native Functions

Java Generic e*Way Extension Kit Developer’s Guide 118 SeeBeyond Proprietary and Confidential

java-call-method-with-int-return

Syntax

(java-call-method-with-int-return hObj sMethodName)

Description

java-call-method-with-int-return invokes the specified Java method and returns an
integer.

Parameters

Return Values

integer
Returns an integer from the method invoked.

Throws

None.

Additional Information

The Java method being called as a parameter must take no input.

java-call-method-with-double-return

Syntax

(java-call-method-with-double-return hObj sMethodName)

Description

java-call-method-with-double-return invokes the specified Java method and returns a
double.

Parameters

Return Values

Double
Returns the double from the method invoked.

Name Type Description

hObj opaque handle The handle to an object

sMethodName string The name of the method to invoke.

Name Type Description

hObj opaque handle The handle to an object

sMethodName string The name of the method to invoke.

Chapter 8 Section 8.3
Java Monk Extension e*Way Functions Java Monk Extension e*Way Native Functions

Java Generic e*Way Extension Kit Developer’s Guide 119 SeeBeyond Proprietary and Confidential

Throws

None.

Additional Information

The Java method being called as a parameter must take no input.

java-call-method-with-string-return

Syntax

(java-call-method-with-string-return hObj sMethodName)

Description

java-call-method-with-string-return invokes the specified Java method and returns a
string.

Parameters

Return Values

string
Returns a string from the method invoked.

Throws

None.

Additional Information

The Java method being called as a parameter must take no input.

java-call-method-with-object-return

Syntax

(java-call-method-with-object-return hObj sMethodName sClassName)

Description

java-call-method-with-object-return invokes the specified Java method and returns an
object.

Parameters

Name Type Description

hObj opaque handle The handle to an object

sMethodName string The name of the metod to invoke.

Name Type Description

hObj opaque handle The handle to an object

sMethodName string The name of the method to invoke.

Chapter 8 Section 8.3
Java Monk Extension e*Way Functions Java Monk Extension e*Way Native Functions

Java Generic e*Way Extension Kit Developer’s Guide 120 SeeBeyond Proprietary and Confidential

Return Values

object
Returns an object from the method called.

Throws

None.

Additional Information

The Java method being called as a parameter must take no input.

java-create-vm

Syntax

(java-create-vm sClasspath)

Description

java-create-vm instantiates a new instance of the Java virtual machine and returns the
handle to that machine each time it is called.

Parameters

Return Values

handle
Returns the opaque handle to the Java virtual machine.

Throws

None.

Additional Information

If a Java vector is passed or retrieved using these methods, you must pass in the string
“java/util/Vector” as the fully qualified class name.

Note: The fully qualified name is case sensitive and it must use the’/’ character as the
separator instead of the usual ‘.’ character. Any ClassPath defined must end with
platform-specific CLASSPATH separators. For example, under DOS, use semi-
colons (;), and under UNIX, use colons (:). If the classpath is not defined correctly
the e*Way will fail.

sClassName string The fully qualified class name of the
object being returned.

Name Type Description

sClasspath string This parameter is prepended to the
environment variable “CLASSPATH”
used by the JVM.

Name Type Description

Chapter 8 Section 8.3
Java Monk Extension e*Way Functions Java Monk Extension e*Way Native Functions

Java Generic e*Way Extension Kit Developer’s Guide 121 SeeBeyond Proprietary and Confidential

The Java virtual machine must be created by calling java-create-vm before any other
methods may be called; otherwise, an error will occur.

java-create-vm-with-parameters

Syntax

(java-create-vm-with-parameters iVersion sClasspath iStackSize
iJavaStackSize iMinHeap iMaxHeap fVerboseGC fClassGC fDisableAsyncGC
fVerbose)

Description

java-create-vm-with-parameters instantiates a new instance of the JVM, returns a
handle to the JVM, and allows the user to override the virtual machine’s default
parameters. If this method is called all of the parameters must be defined.

Parameters

Name Type
Description

All values are entered as “bytes”.

iVersion integer Specifies the version of the JVM that
you want to run. The default is
1.1.*(see Note at end of section)

sClasspath string This parameter is prepended to the
environment variable “CLASSPATH”
used by the JVM.

iStackSize integer Specifies the maximum stack size in
bytes for native threads. The default
is 128KB.

iJavaStackSize integer Specifies the maximum stack size in
bytes for any JVM thread. The default
is 400KB.

iMinHeap integer Specifies the initial heap size in
bytes for the virtual machine. The
default is 1024 KB.

iMaxHeap integer Specifies the maximum heap size in
bytes for the virtual machine. The
default is 16384KB.

fVerboseGC TRUE or FALSE Specifies whether to turn on/off
reporting of garbage collection
activity. The default is FALSE.

fClassGC TRUE or FALSE Specifies whether to turn on/off
class garbage collection. The default
is TRUE.

fDisableAsynGC TRUE or FALSE Specifies whether to disable
asynchronous garbage collection.
Passing TRUE will disable, the default
is FALSE.

Chapter 8 Section 8.3
Java Monk Extension e*Way Functions Java Monk Extension e*Way Native Functions

Java Generic e*Way Extension Kit Developer’s Guide 122 SeeBeyond Proprietary and Confidential

Return Values

handle
Returns the opaque handle to the Java virtual machine.

Throws

None.

Additional Information

The number before the decimal point in a program version (i.e., 1.2) indicates the major
change in a program and is referred to as the major number. The release number to the
right of the decimal point indicates a minor change and is referred to as the minor
number.

This value (iVersion) encodes the major version of the virtual machine in the first 16
bytes of the integer, and stores the minor version in the lower 16 bytes. For example, to
run a virtual machine with

version 1.0, the value of iVersion would be 0x00010000
version 1.1 would be 0x00010001 and
version 2.0 would be 0x00020000.

Note: Any ClassPath defined must end with platform specific CLASSPATH separators.
For example, under DOS, use semi-colons (;), and under UNIX, use colons (:). If the
classpath is incorrectly defined, the e*Way will fail.

To avoid memory leakage, java-create-vm-with-parameters should be used as a pair
with java-destroy-vm:

(set!hJVM (java-creat-vm-with-parameters 131072 “.;” 131072 524288
8000000 16000000 #f #t #f #f))
;;use the JVM
(java-destroy-vm hJVM)

Note: Since current JDK 1.1 and JDK 1.2 don’t completely support the DestroyJavaVM()
in JNI, it is recommended that these two APIs not be put into a loop. For example,
java-create-vm-with-parameters should be called when the e*Way is up, and the
java-destroy-vm should be called when the e*Way is shut down.

java-create-class-instance

Syntax

(java-create-class-instance hJVM sClassName)

fVerbose TRUE or FALSE Specifies whether to turn on/off
reporting of classes loaded by the
virtual machine. The default is FALSE.

Name Type
Description

All values are entered as “bytes”.

Chapter 8 Section 8.3
Java Monk Extension e*Way Functions Java Monk Extension e*Way Native Functions

Java Generic e*Way Extension Kit Developer’s Guide 123 SeeBeyond Proprietary and Confidential

Description

java-create-class-instance instantiates the Java object and returns the handle to the
object created.

Parameters

Return Values

vector
Returns a vector that contains the return value and its signature.

Throws

None.

Additional Information

The fully qualified class name refers to the package name as well as the class name of a
Java class. As an example, if a Java Vector is passed or retrieved using these methods,
you must pass in the string “java/util/Vector” as the fully qualified class name.

Note: The fully qualified name is case sensitive and it must use the’/’ character as the
separator instead of the usual ‘.’ character.

The Java virtual machine must be created by calling java-create-vm before any other
methods may be called, otherwise, an error will occur.

Note: In creating the class instance, it is not necessary to begin the string with ‘L’ nor to
end it with the ‘;’ (semi-colon). For example:

(java-create-class-instance hJVM “java/lang/String”)

To avoid memory leakage, java-create-class-instance should be used as a pair with
java-destroy-class-instance:

(define myVec2 (java-create-class-instance hJVM “java/util/Vectory”))
;;usage of the vector class
(java-destroy-class-instance myVec2)

java-create-class-instance-with-params

Syntax

(java-create-class-instance-with-params hJVM sClassName
pszConstructorSignature vector_of_Parameters)

Name Type Description

hJVM opaque handle The handle a Java virtual machine
returned by java-create-vm.

sClassName string The fully qualified class name to
create.

Chapter 8 Section 8.3
Java Monk Extension e*Way Functions Java Monk Extension e*Way Native Functions

Java Generic e*Way Extension Kit Developer’s Guide 124 SeeBeyond Proprietary and Confidential

Description

java-create-class-instance-with-params instantiates the Java object and returns the
handle to object created.

Parameters

Return Values

vector
Returns a vector that contains the return value and its signature.

Throws

None.

Additional Information

The fully qualified class name refers to the package name as well as the class name of a
Java class. As an example, if a Java Vector is passed or retrieved using these methods,
you must pass in the string “java/util/Vector” as the fully qualified class name.

Note: The fully qualified name is case sensitive and it must use the’/’ character as the
separator instead of the usual ‘.’ character.

The Java virtual machine must be created by calling java-create-vm before any other
methods may be called, otherwise, an error will occur.

Note: In creating the class instance, it is not necessary to begin the fully-qualified class
with ‘L’ nor to end with the ‘;’ (semi-colon). For example:

(java-create-class-instance hJVM “java/util/Vector” ‘#(10))

java-create-string

Syntax

(java-create-string hJVM pszString)

Name Type Description

hJVM opaque handle The handle a Java virtual machine
returned by java-create-vm.

sClassName string The fully qualified class name to
create. (see note below)

pszConstructorSignature string The string containing the specified
signature of the constructor.

vector_of_parameters vector An unspecified number of
parameters, dependant on the
parameters expected by the desired
method.

Chapter 8 Section 8.3
Java Monk Extension e*Way Functions Java Monk Extension e*Way Native Functions

Java Generic e*Way Extension Kit Developer’s Guide 125 SeeBeyond Proprietary and Confidential

Description

java-create-string creates a Java string and returns a handle to that string.

Parameters

Return Values

handle
Returns an handle to the Java string.

Throws

None.

Additional Information

To avoid memory leakage, java-create-string should be used as a pair with java-release-
string:

(define s2 (java-create-string hJVM “SHIP_ADVICE”))
(java-call-method-with-1-object-param myVec2 “addElement” s2 “java/
lang/Object”)
(java-call-method-with-params-myVec2 “removeAllElements” “()V”
(quote#()))
(java-release-string hJVM s2)

Note: java-release-string must be called after the method call “removeAllElements” of
java.util.Vector class, since it is still used as one of the elements inside the Vector at
that time.

java-destroy-class-instance

Syntax

(java-destroy-class-instance hJavaObj)

Description

java-destroy-class-instance de-references the object reference.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

Name Type Description

hJVM opaque handle The handle to the JVM.

pszString string The text string to be created in Java.

Name Type Description

hJavaObj opaque handle The handle for an object

Chapter 8 Section 8.3
Java Monk Extension e*Way Functions Java Monk Extension e*Way Native Functions

Java Generic e*Way Extension Kit Developer’s Guide 126 SeeBeyond Proprietary and Confidential

Throws

None.

java-destroy-vm

Syntax

(java-destroy-vm hJVM)

Description

java-destroy-vm destroys the JVM and releases the handle associated with that JVM.
Before calling java-destroy-vm, all user threads pertinent to this JVM must be
destroyed.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Additional Information

To avoid memory leakage, java-create-vm-with-parameters should be used as a pair
with java-destroy-vm:

(set!hJVM (java-creat-vm-with-parameters 131072 “.;” 131072 524288
8000000 16000000 #f #t #f #f))
;;use the JVM
(java-destroy-vm hJVM)

Note: Since current JDK 1.1 and JDK 1.2 don’t completely support the DestroyJavaVM()
in JNI, it is recommended that these two APIs not be put into a loop. For example,
java-create-vm-with-parameters should be called when the e*Way is up, and the
java-destroy-vm should be called when the e*Way is shut down.

java-get-property

Syntax

(java-get-property hJavaObj sPropertyName sPropertySignature)

Name Type Description

hJVM opaque handle The handle to the Java virtual
machine to be destroyed.

Chapter 8 Section 8.3
Java Monk Extension e*Way Functions Java Monk Extension e*Way Native Functions

Java Generic e*Way Extension Kit Developer’s Guide 127 SeeBeyond Proprietary and Confidential

Description

java-get-property retrieves the specified property name for the corresponding Java
object.

Parameters

Return Values

vector
Returns the vector that contains the signature of the return value and the return value.

Throws

None.

java-get-property-int

Syntax

(java-get-property-int hObj sPropertyName)

Description

java-get-property-int retrieves the integer associated with the specified property name.

Parameters

Return Values

integer
Returns the integer associated with the property name.

Throws

None.

java-get-property-string

Syntax

(java-get-property-string hObj sPropertyName)

Name Type Description

hJavaObj opaque handle The handle to an object

sPropertyName string The name of the property to get.

sPropertySignature string The string containing the signatures
to the property being retrieved.

Name Type Description

hObj opaque handle The handle to an object

sPropertyName string The name of the property to get.

Chapter 8 Section 8.3
Java Monk Extension e*Way Functions Java Monk Extension e*Way Native Functions

Java Generic e*Way Extension Kit Developer’s Guide 128 SeeBeyond Proprietary and Confidential

Description

java-get-property-string retrieves the string associated with the specified property
name.

Parameters

Return Values

string
Returns the string associated with the property name.

Throws

None.

java-get-property-object

Syntax

(java-get-property-object hObj sPropertyName sClassName)

Description

java-get-property-object retrieves the property associated with the specified object.

Parameters

Return Values

handle
Returns the opaque handle to the retrieved object.

Throws

None.

java-get-static-property

Syntax

(java-get-static-property hJavaObj sPropertyName sPropertySignature)

Name Type Description

hObj opaque handle The handle of an object

sPropertyName string The name of the property to get.

Name Type Description

hObj opaque handle The handle of an object

sPropertyName string The name of the property to get.

sClassName string The fully qualified class name of the
specified object.

Chapter 8 Section 8.3
Java Monk Extension e*Way Functions Java Monk Extension e*Way Native Functions

Java Generic e*Way Extension Kit Developer’s Guide 129 SeeBeyond Proprietary and Confidential

Description

java-get-static-property retrieves the specified static property name for the
corresponding Java object.

Parameters

Return Values

vector
Returns the vector that contains the signature of the return value and the return value.

Throws

None.

java-get-string-value

Syntax

(java-get-string-value hJavaStringObj)

Description

java-get-string-value returns a string containing the value from a specified Java string.

Parameters

Return Values

string
Returns string containing the value of the specified Java string.

Throws

None.

Additional Information

To avoid memory leakage, java-call-method-with-params (if return string object)
should be used as a pair with java-get-string-value:

(set! buf (java-call-method-with-params hCLASS “callYantra3” “(Ljava/
lang/String;Ljava/util/Vector;)Ljava/lang/String;” args2))

Name Type Description

hJavaObj opaque handle The handle to an object

sPropertyName string The name of the property to get.

sPropertySignature string The string containing the signatures
to the static property being
retrieved.

Name Type Description

hJavaStringObj opaque handle The handle to a Java object.

Chapter 8 Section 8.3
Java Monk Extension e*Way Functions Java Monk Extension e*Way Native Functions

Java Generic e*Way Extension Kit Developer’s Guide 130 SeeBeyond Proprietary and Confidential

(set! strvalres2 (java-get-string-value (vector-ref buf 1)))

Note: java-get-string-value can only be called once after the method call java-call-method-
with-params.

java-release-string

Syntax

(java-release-string hJVM hObj)

Description

java-release-string releases the resource associated with the string object during
creation time.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Additional Information

java-release-string must be called after the created string is no longer needed or used.

To avoid memory leakage, java-create-string should be used as a pair with java-release-
string:

(define s2 (java-create-string hJVM “SHIP_ADVICE”))
(java-call-method-with-1-object-param myVec2 “addElement” s2 “java/
lang/Object”)
(java-call-method-with-params-myVec2 “removeAllElements” “()V”
(quote#()))
(java-release-string hJVM s2)

Note: java-release-string must be called after the method call “removeAllElements” of
java.util.Vector class, since it is still used as one of the elements inside the Vector at
that time.

java-set-property

Syntax

(java-set-property hJavaObj pszPropertyName pszPropertySignature
vector_of_parameters)

Name Type Description

hJVM opaque handle The handle to the JVM

hObj opaque handle The handle to the string object

Chapter 8 Section 8.3
Java Monk Extension e*Way Functions Java Monk Extension e*Way Native Functions

Java Generic e*Way Extension Kit Developer’s Guide 131 SeeBeyond Proprietary and Confidential

Description

java-set-property sets the property of a specified object to a specific value.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

Throws

None.

java-set-static-property

Syntax

(java-set-static-property hJavaObj pszPropertyName
pszPropertySignature vector_of_parameters)

Description

java-set-static-property sets the static property of a specified object to a specific value.

Parameters

Name Type Description

hJavaObj opaque handle The handle of an object

pszPropertyName string The name of property to set

pszPropertySignature string The string containing the signatures
to the property being set.

vector_of_parameters vector An unspecified number of
parameters, dependant on the
parameters expected by the desired
method.

Name Type Description

hJavaObj opaque handle The handle of an object

pszPropertyName string The name of property to set

pszPropertySignature string The string containing the signatures
to the static property being set.

vector_of_parameters string An unspecified number of
parameters, dependant on the
parameters expected by the desired
method.

Chapter 8 Section 8.3
Java Monk Extension e*Way Functions Java Monk Extension e*Way Native Functions

Java Generic e*Way Extension Kit Developer’s Guide 132 SeeBeyond Proprietary and Confidential

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

Throws

None.

java-set-property-int

Syntax

(java-set-property-int hObj sProperty iValue)

Description

java-set-property-int sets the property of a specified object to a specific integer value.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

Throws

None.

java-set-property-string

Syntax

(java-set-property-string hObj sProperty sValue)

Description

java-set-property-string sets the property of a specified object to a specified string.

Parameters

Name Type Description

hObj opaque handle The handle of an object

sProperty string The name of property to set

iValue integer The integer to which the property is
set.

Name Type Description

hObj opaque handle The handle of an object

sProperty string The name of the property to set.

Chapter 8 Section 8.3
Java Monk Extension e*Way Functions Java Monk Extension e*Way Native Functions

Java Generic e*Way Extension Kit Developer’s Guide 133 SeeBeyond Proprietary and Confidential

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

Throws

None.

java-set-property-object

Syntax

(java-set-property-object hObj sProperty hPassedObjj sClassName)

Description

java-set-property-object assigns a handle associated with an object to the property of a
specified object.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

Throws

None.

sValue string The string to which the property is
set.

Name Type Description

hObj opaque handle The handle of an object

sProperty string The name the property to set.

hPassedObj opaque handle The handle to the object being used
as a reference.

sClassName string The fully qualified class name of the
object being set.

Name Type Description

Java Generic e*Way Extension Kit Developer’s Guide 134 SeeBeyond Proprietary and Confidential

Chapter 9

Configuring the Java Monk Extension e*Way

This chapter describes how to configure the Java Monk Extension e*Way.

9.1 e*Way Configuration Parameters
e*Way configuration parameters are set using the e*Way Editor.

To change e*Way configuration parameters:

1 In the Enterprise Manager’s Component editor, select the e*Way you want to
configure and display its properties.

2 Under Configuration File, click New to create a new file, Find to select an existing
configuration file, or Edit to edit the currently selected file.

3 In the Additional Command Line Arguments box, type any additional command
line arguments that the e*Way may require, taking care to insert them at the end of
the existing command-line string. Be careful not to change any of the default
arguments unless you have a specific need to do so.

For more information about how to use the e*Way Editor, see the e*Way Editor’s online
Help or the e*Gate Integrator User’s Guide.

The e*Way’s configuration parameters are organized into the following sections:

! General Settings

! Communication Setup

! Monk Configuration

! Java VM Configuration

9.1.1. General Settings
The General Settings control basic operational parameters.

Journal File Name

Description

Specifies the name of the journal file.

Chapter 9 Section 9.1
Configuring the Java Monk Extension e*Way e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 135 SeeBeyond Proprietary and Confidential

Required Values

A valid filename, optionally including an absolute path (for example,
c:\temp\filename.txt). If an absolute path is not specified, the file will be stored in the
e*Gate “SystemData” directory. See the e*Gate Integrator User’s Guide for more
information about file locations.

Additional Information

An Event will be journaled for the following conditions:

! When the number of resends is exceeded (see Max Resends Per Message below)

! When its receipt is due to an external error, but Forward External Errors is set to No.
(See “Forward External Errors” on page 135 for more information.)

Max Resends Per Message

Description

Specifies the number of times the e*Way will attempt to resend a message (Event) to the
external system after receiving an error. When this maximum is reached, the message is
considered “Failed” and is written to the journal file.

Required Values

An integer between 1 and 1,024. The default is 5.

Max Failed Messages

Description

Specifies the maximum number of failed messages (Events) that the e*Way will allow.
When the specified number of failed messages is reached, the e*Way will shut down
and exit.

Required Values

An integer between 1 and 1,024. The default is 3.

Forward External Errors

Description

Selects whether error messages that begin with the string “DATAERR” that are received
from the external system will be queued to the e*Way’s configured queue. See
“Exchange Data with External Function” on page 148 for more information.

Required Values

Yes or No. The default value, No, specifies that error messages will not be forwarded.

See “Schedule-driven Data Exchange Functions” on page 142 for information about
how the e*Way uses this function.

Chapter 9 Section 9.1
Configuring the Java Monk Extension e*Way e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 136 SeeBeyond Proprietary and Confidential

9.1.2. Communication Setup
The Communication Setup parameters control the schedule by which the e*Way
obtains data from the external system.

Note: The schedule you set using the e*Way’s properties in the Enterprise Manager
controls when the e*Way executable will run. The schedule you set within the
parameters discussed in this section (using the e*Way Editor) determines when data
will be exchanged. Be sure you set the "exchange data" schedule to fall within the
"run the executable" schedule.

Start Exchange Data Schedule

Description

Establishes the schedule to invoke the e*Way’s Exchange Data with External function.

Required Values

One of the following:

! One or more specific dates/times

! A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Also required: If you set a schedule using this parameter, you must also define all three
of the following:

! Exchange Data With External Function

! Positive Acknowledgment Function

! Negative Acknowledgment Function

If you do not do so, the e*Way will terminate execution when the schedule attempts to
start.

Additional Information

When the schedule starts, the e*Way determines whether it is waiting to send an ACK
or NAK to the external system (using the Positive and Negative Acknowledgment
functions) and whether the connection to the external system is active. If no ACK/NAK
is pending and the connection is active, the e*Way immediately executes the Exchange
Data with External function. Thereafter, the Exchange Data with External function will
be called according to the Exchange Data Interval parameter until the Stop Exchange
Data Schedule time is reached.

See “Exchange Data with External Function” on page 148, “Exchange Data Interval”
on page 137, and “Stop Exchange Data Schedule” on page 136 for more information.

Stop Exchange Data Schedule

Description

Establishes the schedule to stop data exchange.

Chapter 9 Section 9.1
Configuring the Java Monk Extension e*Way e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 137 SeeBeyond Proprietary and Confidential

Required Values

One of the following:

! One or more specific dates/times

! A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Exchange Data Interval

Description

Specifies the number of seconds the e*Way waits between calls to the Exchange Data
with External function during scheduled data exchanges.

Required Values

An integer between 0 and 86,400. The default is 120.

Additional Information

If Zero Wait Between Successful Exchanges is set to Yes and the Exchange Data with
External Function returns data, The Exchange Data Interval setting will be ignored
and the e*Way will invoke the Exchange Data with External Function immediately.

If this parameter is set to zero, there will be no exchange data schedule set and the
Exchange Data with External Function will never be called.

See “Down Timeout” on page 137 and “Stop Exchange Data Schedule” on page 136
for more information about the data-exchange schedule.

Down Timeout

Description

Specifies the number of seconds that the e*Way will wait between calls to the External
Connection Establishment function. See “External Connection Establishment
Function” on page 149 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.

Up Timeout

Description

Specifies the number of seconds the e*Way will wait between calls to the External
Connection Verification function. See “External Connection Verification Function”
on page 150 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.

Chapter 9 Section 9.1
Configuring the Java Monk Extension e*Way e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 138 SeeBeyond Proprietary and Confidential

Resend Timeout

Description

Specifies the number of seconds the e*Way will wait between attempts to resend a
message (Event) to the external system, after receiving an error message from the
external system.

Required Values

An integer between 1 and 86,400. The default is 10.

Zero Wait Between Successful Exchanges

Description

Selects whether to initiate data exchange after the Exchange Data Interval or
immediately after a successful previous exchange.

Required Values

Yes or No. If this parameter is set to Yes, the e*Way will immediately invoke the
Exchange Data with External function if the previous exchange function returned data.
If this parameter is set to No, the e*Way will always wait the number of seconds
specified by Exchange Data Interval between invocations of the Exchange Data with
External function. The default is No.

See “Exchange Data with External Function” on page 148 for more information.

9.1.3. Monk Configuration
The parameters in this section help you set up the information required by the e*Way to
utilize Monk for communication with the external system.

Conceptually, an e*Way is divided into two halves. One half of the e*Way (shown on
the left in Figure 17 below) handles communication with the external system; the other
half manages the Collaborations that process data and subscribe or publish to other
e*Gate components.

Chapter 9 Section 9.1
Configuring the Java Monk Extension e*Way e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 139 SeeBeyond Proprietary and Confidential

Figure 17 e*Way internal architecture

The “communications half” of the e*Way uses Monk functions to start and stop
scheduled operations, exchange data with the external system, package data as e*Gate
“Events” and send those Events to Collaborations, and manage the connection between
the e*Way and the external system. The Monk Configuration options discussed in this
section control the Monk environment and define the Monk functions used to perform
these basic e*Way operations. You can create and modify these functions using the
SeeBeyond Collaboration Rules Editor or a text editor (such as Notepad, or UNIX vi).

The “communications half” of the e*Way is single-threaded. Functions run serially, and
only one function can be executed at a time. The “business logic” side of the e*Way is
multi-threaded, with one executable thread for each Collaboration. Each thread
maintains its own Monk environment; therefore, information such as variables,
functions, path information, and so on cannot be shared between threads.

Communication
with external
system

Business logic and
communication
within e*Gate

External
system

Other e*Gate
components

e*Gate Events

Data
e*Way

Collaboration

Collaboration

Function

Function

Chapter 9 Section 9.1
Configuring the Java Monk Extension e*Way e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 140 SeeBeyond Proprietary and Confidential

Operational Details

The Monk functions in the “communications half” of the e*Way fall into the following
groups:

A series of figures on the next several pages illustrate the interaction and operation of
these functions.

Initialization Functions

Figure 18 illustrates how the e*Way executes its initialization functions.

Type of Operation Name

Initialization Startup Function on page 147
(also see Monk Environment Initialization
File on page 146)

Connection External Connection Establishment Function
on page 149
External Connection Verification Function on
page 150
External Connection Shutdown Function on
page 150

Schedule-driven data
exchange

Exchange Data with External Function on
page 148
Positive Acknowledgment Function on
page 150
Negative Acknowledgment Function on
page 151

Shutdown Shutdown Command Notification Function
on page 152

Event-driven data exchange Process Outgoing Message Function on
page 148

Chapter 9 Section 9.1
Configuring the Java Monk Extension e*Way e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 141 SeeBeyond Proprietary and Confidential

Figure 18 Initialization Functions

Connection Functions

Figure 19 illustrates how the e*Way executes the connection establishment and
verification functions.

Figure 19 Connection establishment and verification functions

Note: The e*Way selects the connection function based on an internal “up/down” flag
rather than a poll to the external system. See Figure 21 on page 143 and Figure
23 on page 145 for examples of how different functions use this flag.

Start e*W ay

Load
"Java Runtime Dependency"

files

Call the startUp() function

Connect e*Way to
external system

Internal
flag shows connection

active?

Wait for "Up Timeout"
schedule

Call connectionVerify()
function

Wait for "Down Timeout"
schedule

Call connectionEstablish()
function

Yes

No

Chapter 9 Section 9.1
Configuring the Java Monk Extension e*Way e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 142 SeeBeyond Proprietary and Confidential

User functions can manually set this flag using Monk functions. send-external-
up on page 100 See and send-external-down on page 101 for more information.

Figure 20 illustrates how the e*Way executes its “connection shutdown” function.

Figure 20 Connection shutdown function

Schedule-driven Data Exchange Functions

Figure 21 (on the next page) illustrates how the e*Way performs schedule-driven data
exchange using the Exchange Data with External Function. The Positive
Acknowledgment Function and Negative Acknowledgment Function are also called
during this process.

“Start” can occur in any of the following ways:

! The “Start Data Exchange” time occurs

! Periodically during data-exchange schedule (after “Start Data Exchange” time, but
before “Stop Data Exchange” time), as set by the Exchange Data Interval

! The start-schedule Monk function is called

After the function exits, the e*Way waits for the next “start schedule” time or command.

Control Broker issues
"Suspend" command

Call connectionShutdown() function
with parameter

"SUSPEND_NOTIFICATION"

e*Way closes connection

Return any value

Chapter 9 Section 9.1
Configuring the Java Monk Extension e*Way e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 143 SeeBeyond Proprietary and Confidential

Figure 21 Schedule-driven data exchange functions

Shutdown Functions

Figure 22 illustrates how the e*Way implements the shutdown request function.

Increment "Failed
Message" counter

DATAERR plus
additional data

Null
string

Data
(other than

error strings)

Forward
external
errors?

No

Yes

Set interval flag
"Connection

Down"

CONNERR

Increment "Failed
Message" counter

DATAERR only

Journal
enabled?

Create journal
entry

Yes

No

Start

Function exits

Send Event to
e*Gate

All
subscribing

Collaborations return
TRUE

?

Call Positive
Acknowledgment

function

Zero
wait after successful

exchange?

Call Negative
Acknowledgment

function

Yes

No

YesNo

Call Exchange Data with
External function

Return

Chapter 9 Section 9.1
Configuring the Java Monk Extension e*Way e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 144 SeeBeyond Proprietary and Confidential

Figure 22 Shutdown functions

Event-driven Data Exchange Functions

Figure 23 on the next page illustrates event-driven data-exchange using the Process
Outgoing Message Function.

Every two minutes, the e*Way checks the “Failed Message” counter against the value
specified by the Max Failed Messages parameter. When the “Failed Message” counter
exceeds the specified maximum value, the e*Way logs an error and shuts down.

After the function exits, the e*Way waits for the next outgoing Event.

Control Broker issues
"Shutdown" command

Call Shutdown Notification function
with parameter

"SHUTDOWN_NOTIFICATION"

e*Way shuts down

Wait for
shutdown-request

function

Return

Null string or
"SUCCESS"

any other value

Chapter 9 Section 9.1
Configuring the Java Monk Extension e*Way e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 145 SeeBeyond Proprietary and Confidential

Figure 23 Event-driven data-exchange functions

How to Specify Function Names or File Names

Parameters that require the name of a Monk function will accept either a function name
or a file name. If you specify a file name, be sure that the file has one of the following
extensions:

! .monk

! .tsc

! .dsc

Collaboration publishes
to <EXTERNAL>

Call Process Outgoing
Message function

Set internal flag
"Connection Down"

Maximum
Resends per Message

exceeded?

Yes

Return

CONNERR DATAERR

Increment "Failed
Message" counter

Create journal
entry

Null
string

No

Journal
enabled?

No

Function exits

Wait for Resend
Timeout period

Roll back Event to
its publishing IQ

Yes

Wait for Resend
Timeout period

Increment
"Resend" counter

RESEND

Chapter 9 Section 9.1
Configuring the Java Monk Extension e*Way e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 146 SeeBeyond Proprietary and Confidential

Additional Path

Description

Specifies a path to be appended to the “load path,” the path Monk uses to locate files
and data (set internally within Monk). The directory specified in Additional Path will
be searched after the default load paths.

Required Values

A pathname, or a series of paths separated by semicolons. This parameter is optional
and may be left blank.

Additional information

The default load paths are determined by the “bin” and “Shared Data” settings in the
.egate.store file. See the e*Gate Integrator User’s Guide for more information about this
file.

To specify multiple directories, manually enter the directory names rather than
selecting them with the Find File selection button. Directory names must be separated
with semicolons, and you can mix absolute paths with relative e*Gate paths. For
example:

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

Auxiliary Library Directories

Description

Specifies a path to auxiliary library directories. Any .monk files found within those
directories will automatically be loaded into the e*Way’s Monk environment. This
parameter is optional and may be left blank.

Required Values

A pathname, or a series of paths separated by semicolons.

Additional information

To specify multiple directories, manually enter the directory names rather than
selecting them with the Find File selection button. Directory names must be separated
with semicolons, and you can mix absolute paths with relative e*Gate paths. For
example:

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

This parameter is optional and may be left blank.

Monk Environment Initialization File

Specifies a file that contains environment initialization functions, which will be loaded
after the auxiliary library directories are loaded. Use this feature to initialize the

Chapter 9 Section 9.1
Configuring the Java Monk Extension e*Way e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 147 SeeBeyond Proprietary and Confidential

e*Way’s Monk environment (for example, to define Monk variables that are used by the
e*Way’s function scripts).

Required Values

A filename within the “load path”, or filename plus path information (relative or
absolute). If path information is specified, that path will be appended to the “load
path.” See “Additional Path” on page 146 for more information about the “load path.”
The default is java-init.monk

Additional information

Any environment-initialization functions called by this file accept no input, and must
return a string. The e*Way will load this file and try to invoke a function of the same
base name as the file name (for example, for a file named my-init.monk, the e*Way
would attempt to execute the function my-init).

Typically, it is a good practice to initialize any global Monk variables that may be used
by any other Monk Extension scripts.

The internal function that loads this file is called once when the e*Way first starts up
(see Figure 18 on page 141).

Startup Function

Description

Specifies a Monk function that the e*Way will load and invoke upon startup or
whenever the e*Way’s configuration is reloaded. This function should be used to
initialize the external system before data exchange starts.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is optional and may be left
blank. The default is java-startup on page 108.

Additional information

The function accepts no input, and must return a string.

The string “FAILURE” indicates that the function failed; any other string (including a
null string) indicates success.

This function will be called after the e*Way loads the specified “Monk Environment
Initialization file” and any files within the specified Auxiliary Directories.

The e*Way will load this file and try to invoke a function of the same base name as the
file name (see Figure 18 on page 141). For example, for a file named my-startup.monk,
the e*Way would attempt to execute the function my-startup.

Chapter 9 Section 9.1
Configuring the Java Monk Extension e*Way e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 148 SeeBeyond Proprietary and Confidential

Process Outgoing Message Function

Description

Specifies the Monk function responsible for sending outgoing messages (Events) from
the e*Way to the external system. This function is event-driven (unlike the Exchange
Data with External Function, which is schedule-driven).

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. You may not leave this field blank. The
default is java-outgoing on page 106.

Additional Information

The function requires a non-null string as input (the outgoing Event to be sent) and
must return a string.

The e*Way invokes this function when one of its Collaborations publishes an Event to
an <EXTERNAL> destination (as specified within the Enterprise Manager). The
function returns one of the following (see Figure 23 on page 145 for more details):

! Null string: Indicates that the Event was published successfully to the external
system.

! “RESEND”: Indicates that the Event should be resent.

! “CONNERR”: Indicates that there is a problem communicating with the external
system.

! “DATAERR”: Indicates that there is a problem with the message (Event) data itself.

! If a string other than the following is returned, the e*Way will create an entry in the
log file indicating that an attempt has been made to access an unsupported
function.

Note: If you wish to use event-send-to-egate to enqueue failed Events in a separate IQ,
the e*Way must have an inbound Collaboration (with appropriate IQs) configured
to process those Events. See event-send-to-egate on page 101 for more
information.

Exchange Data with External Function

Description

Specifies a Monk function that initiates the transmission of data from the external
system to the e*Gate system and forwards that data as an inbound Event to one or more
e*Gate Collaborations. This function is called according to a schedule (unlike the
Process Outgoing Message Function, which is event-driven).

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is optional and may be left
blank. The default is java-exchange on page 104.

Chapter 9 Section 9.1
Configuring the Java Monk Extension e*Way e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 149 SeeBeyond Proprietary and Confidential

Additional Information

The function accepts no input and must return a string (see Figure 21 on page 143 for
more details):

! Null string: Indicates that the data exchange was completed successfully. No
information will be sent into the e*Gate system.

! “CONNERR”: Indicates that a problem with the connection to the external system
has occurred.

! “DATAERR”: Indicates that a problem with the data itself has occurred. The e*Way
handles the string “DATAERR” and “DATAERR” plus additional data differently;
see Figure 21 on page 143 for more details.

! Any other string: The contents of the string are packaged as an inbound Event. The
e*Way must have at least one Collaboration configured suitably to process the
inbound Event, as well as any required IQs.

This function is initially triggered by the Start Data Exchange schedule or manually by
the Monk function start-schedule. After the function has returned true and the data
received by this function has been ACKed or NAKed (by the Positive
Acknowledgment Function or Negative Acknowledgment Function, respectively),
the e*Way checks the Zero Wait Between Successful Exchanges parameter. If this
parameter is set to Yes, the e*Way will immediately call the Exchange Data with
External function again; otherwise, the e*Way will not call the function until the next
scheduled “start exchange” time or the schedule is manually invoked using the Monk
function start-schedule (see start-schedule on page 99 for more information).

External Connection Establishment Function

Description

Specifies a Monk function that the e*Way will call when it has determined that the
connection to the external system is down.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This field cannot be left blank. The default is
java-extconnect on page 104.

Additional Information

The function accepts no input and must return a string:

! “SUCCESS” or “UP”: Indicates that the connection was established successfully.

! Any other string (including the null string): Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Down Timeout
parameter, and is only called according to this schedule.

The External Connection Verification function (see below) is called when the e*Way
has determined that its connection to the external system is up.

Chapter 9 Section 9.1
Configuring the Java Monk Extension e*Way e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 150 SeeBeyond Proprietary and Confidential

External Connection Verification Function

Description

Specifies a Monk function that the e*Way will call when its internal variables show that
the connection to the external system is up.

Required Values

The name of a Monk function. This function is optional; if no External Connection
Verification function is specified, the e*Way will execute the External Connection
Establishment function in its place. The default is java-verify on page 109.

Additional Information

The function accepts no input and must return a string:

! “SUCCESS” or “UP”: Indicates that the connection was established successfully.

! Any other string (including the null string): Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Up Timeout
parameter, and is only called according to this schedule.

The External Connection Establishment function (see above) is called when the e*Way
has determined that its connection to the external system is down.

External Connection Shutdown Function

Description

Specifies a Monk function that the e*Way will call to shut down the connection to the
external system.

Required Values

The name of a Monk function. This parameter is optional. The default is java-shutdown
on page 107.

Additional Information

This function requires a string as input, and may return a string.

This function will only be invoked when the e*Way receives a “suspend” command
from a Control Broker. When the “suspend” command is received, the e*Way will
invoke this function, passing the string “SUSPEND_NOTIFICATION” as an argument.

Any return value indicates that the “suspend” command can proceed and that the
connection to the external system can be broken immediately.

Positive Acknowledgment Function

Description

Specifies a Monk function that the e*Way will call when all the Collaborations to which
the e*Way sent data have processed and enqueued that data successfully.

Chapter 9 Section 9.1
Configuring the Java Monk Extension e*Way e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 151 SeeBeyond Proprietary and Confidential

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External function is defined. The default is java-ack on page 103.

Additional Information

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string:

! “CONNERR”: Indicates a problem with the connection to the external system.
When the connection is re-established, the Positive Acknowledgment function will
be called again, with the same input data.

! Null string: The function completed execution successfully.

After the Exchange Data with External function returns a string that is transformed
into an inbound Event, the Event is handed off to one or more Collaborations for
further processing. If the Event’s processing is completed successfully by all the
Collaborations to which it was sent, the e*Way executes the Positive Acknowledgment
function (otherwise, the e*Way executes the Negative Acknowledgment function).

Negative Acknowledgment Function

Description

Specifies a Monk function that the e*Way will call when the e*Way fails to process and
queue Events from the external system.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External function is defined. The default is java-nack on page 105.

Additional Information

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string:

! “CONNERR”: Indicates a problem with the connection to the external system.
When the connection is re-established, the function will be called again.

! Null string: The function completed execution successfully.

This function is only called during the processing of inbound Events. After the
Exchange Data with External function returns a string that is transformed into an
inbound Event, the Event is handed off to one or more Collaborations for further
processing. If the Event’s processing is not completed successfully by all the
Collaborations to which it was sent, the e*Way executes the Negative Acknowledgment
function (otherwise, the e*Way executes the Positive Acknowledgment function).

Chapter 9 Section 9.1
Configuring the Java Monk Extension e*Way e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 152 SeeBeyond Proprietary and Confidential

Shutdown Command Notification Function

Description

Specifies a Monk function that will be called when the e*Way receives a “shutdown”
command from the Control Broker. This parameter is optional.

Required Values

The name of a Monk function.

Additional Information

When the Control Broker issues a shutdown command to the e*Way, the e*Way will call
this function with the string “SHUTDOWN_NOTIFICATION” passed as a parameter.

The function accepts a string as input and must return a string:

! A null string or “SUCCESS”: Indicates that the shutdown can occur immediately.

! Any other string: Indicates that shutdown must be postponed. Once postponed,
shutdown will not proceed until the Monk function shutdown-request is executed
(see shutdown-request on page 102).

Note: If you postpone a shutdown using this function, be sure to use
the (shutdown-request) function to complete the process in a timely manner.

9.1.4. Java VM Configuration
The parameters in this section specify the required information for the e*Way to
configure the Java Virtual Machine.

JVMVersion

Description

Specifies the version of the JDK that is used.

Required Values

1 or 2. If using JDK 1.1.7B, choose 1.1, if using JDK 1.2+, choose 1.2. This parameter is
REQUIRED. Choose the Java Release you wish this e*Way to use. If "Java 1" is chosen,
some of the following parameters may not be pertinent, as such their corresponding
functionality will not be available. Although Java bytecodes for classes and methods,
common to both Java 1 and Java 2, are typically forward and backward compatible, it is
recommended that this e*Way be set to the Java release appropriate to the version of the
"javac" compiler used to compile the Java source code that is used.

Note: For Linux platform support, only JDK 1.2 is supported. If the JVM version
specified cannot be found in the library path, the e*Way fails.

JVMClasspath

Description

Specifies the classpath to use for the Java Virtual Machine. This field cannot be left blank.

Chapter 9 Section 9.1
Configuring the Java Monk Extension e*Way e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 153 SeeBeyond Proprietary and Confidential

Required Values

A pathname, or a series of paths separated by semicolons.

Note: For UNIX the paths are separated by a colon.

Additional Information

If the classpath is incorrectly defined the e*Way will fail.

Native Stack Size

Description

Specifies the maximum stack size in bytes for any JVM thread used to store items which
are retrieved in last-in first-out order (LIFO).

Required Values

An integer between a constant value of 2000 and a constant value of 1000000000. The
default is 131072.

Additional Information

A stack can be used to keep track of the sequence of subroutines called in a program.
Data is entered or retrieved by “pushing” a new item onto the stack or “popping” the
top item off the stack.

Java Stack Size

Description

An integer between a constant value of 2000 and a constant value of 1,000,000,000. The
default is 524,288.

Required Values

An integer between a constant 2000 and a constant value of

Initial Heap Size

Description

Specifies the initial size in bytes of the heap.

Required Values

An integer between a constant value of 2000 and a constant value of 1,000,000,000. The
default is 4,194,304.

Additional Information

The heap acts as a common pool of free memory usable by a program. A part of the
computer’s memory used for dynamic memory allocation, in which blocks of memory
are used in an arbitrary order.

Chapter 9 Section 9.1
Configuring the Java Monk Extension e*Way e*Way Configuration Parameters

Java Generic e*Way Extension Kit Developer’s Guide 154 SeeBeyond Proprietary and Confidential

Max Heap Size

Description

Specifies the maximum size in bytes of the heap.

Required Values

An integer between a constant value of 2000 and a constant value of 1,000,000,000. The
default is 16,777,216.

Additional Information

The heap acts as a common pool of free memory usable by a program. A part of the
computer’s memory used for dynamic memory allocation, in which blocks of memory
are used in an arbitrary order. If an OutOfMemory or StackOverflowError error occurs,
the JVM will be destroyed. This can be prevented by increasing the maximum heap
size.

Enable Class GC

Description

Specifies whether to “garbage collect” loaded classes that are no longer in use.

Required Values

Yes or No.

Additional Information

The garbage collector verifies that a given Java object will not be accessed again during
the execution of the Java program. The garbage collector can free the memory
consumed by that object for reuse. The programmer need not de-allocate objects
explicitly.

Enable Verbose GC

Description

Specifies whether or not to enable the garbage collector to print a message whenever
memory is freed.

Required Values

Yes or No.

Disable Async GC

Description

Specifies whether to “garbage collect” asynchronously.

Required Values

Yes or No.

Index

Java Generic e*Way Extension Kit 155 SeeBeyond Proprietary and Confidential

Index

A
Accessing e*Gate Participating Host Installation
Information 55
Accessing e*Gate Registry Files 56
accessing Java methods 109
accessing parameter values within Monk 48
ACK() 71
Additional Path parameter 146
AIX Participating Hosts 14
ASCII codes, displaying in different formats 36
Auxiliary Library Directories parameter 146

B
basic steps to extend a generic e*Way 21

C
.cfg file 44
(char) keyword 29
character parameter syntax 25
classpath 152
Classpath Override 68
Classpath Prepend 68
CollabConnException 75, 76
CollabDataException 76, 77
CollabResendException 77
comments

within the .def file 26
within the configuration file 44

Commit files to the schema 81
Communication Setup 60
components 19
configuration 44, 58
configuration definition file 20
configuration files 44
configuration parameters

accessing within Monk environment 48
Additional Path 146
Auxiliary Library Directories 146
Down Timeout 62, 137
Exchange Data Interval 60, 137
Exchange Data With External Function 148
External Connection Establishment Function 149

External Connection Shutdown Function 150
External Connection Verification Function 150
Forward External Errors 60, 135
Journal File Name 59, 134
Max Failed Messages 59, 135
Max Resends Per Message 59, 135
Monk Environment Initialization File 146
Negative Acknowledgment Function 151
Positive Acknowledgement Function 150
Process Outgoing Message Function 148
Resend Timeout 62, 138
Shutdown Command Notification Function 152
Start Exchange Data Schedule 62, 137
Startup Function 147
Stop Exchange Data Schedule 61, 136
Up Timeout 62, 137
Zero Wait Between Successful Exchanges 60, 138

Configure the e*Way 82
Configuring the Java Generic e*Way with the
Enterprise Manager 81
connectionEstablish() 71
connectionShutdown() 72
connectionVerify() 72
const keyword 33
Create an e*Way Component 82

D
DataErrorHandled Interface 80
dataErrorHandled() 80
DataErrorHandler Interface Methods 79
(date) keyword 29
debugging the .def file 46
Decoding configuration File Encrypted Passwords
57
delim keywords 39, 44
description keyword 27
developing the Java Business Logic Class 85
developing the Java business logic class 85
disable async gc 154
Disable Class Garbage Collection 69
Disable JIT 69
displaying ASCII codes 36
DLL Load Path Prepend 70
Down Timeout parameter 62, 137

E
e*Gate Registry Configuration Properties 54
Editing a .def File within a schema 83
enable class GC 154
Enable Custom Data Error Handling 67
Enable Garbage Collection Activity Reporting 69
enable verbose gc 154

Index

Java Generic e*Way Extension Kit 156 SeeBeyond Proprietary and Confidential

encrypting string parameters 38
error messages in .def file parsing 47
escape character, using 25
event-send-to-egate 101
Exchange Data Interval parameter 60, 137
Exchange Data with External Function parameter
148
exchangeData() 73
Exchanger Interface 78
Exchanger Interface Methods 71
Exchanger Java Class 66
Exchanger Methods

ACK() 71
External Connection Establishment Function
parameter 149
External Connection Shutdown Function parameter
150
External Connection Verification Function
parameter 150

F
(factor) keyword 37
floating-point numbers 25
formats, displaying parameters in varying 36
Forward External Errors parameter 60, 135
functions

event-send-to-egate 101
get-logical-name 101
java-ack 103
java-call-method 112, 113, 114
java-call-method-with-1-double-param 116
java-call-method-with-1-object-param 117
java-call-method-with-1-param 115
java-call-method-with-1-string-param 116
java-call-method-with-double-return 118
java-call-method-with-int-return 118
java-call-method-with-object-return 119
java-call-method-with-string-return 119
java-create-class-instance 122, 123
java-create-string 124
java-create-vm 120
java-create-vm-with-parameters 121
java-destroy-class-instance 125
java-destroy-vm 126
java-exchange 104
java-extconnect 104
java-get-property-int 126, 127, 128
java-get-property-object 128
java-get-property-string 127
java-get-string-value 129
java-init 105
java-nack 105
java-notify 106

java-outgoing 106
java-release-string 130
java-set-property-int 130, 131, 132
java-set-property-object 133
java-set-property-string 132
java-shutdown 107
java-startup 108
java-verify 109
send-external-down 101
send-external-up 100
shutdown-request 102
start-schedule 99
stop-schedule 100

G
garbage collector

disable async 154
enable 154
enable verbose 154

General Settings 59
get-logical-name function 101
Getting Property Values 49

H
heap size

initial 153
max 154

I
indentation 24
Initial Heap Size 68
initial heap size 153
(int) keyword 29
integer parameter, range of valid 25

J
Java 2 SDK on UNIX requirements 13
Java data types 109
Java JDK 1.1.7 requirements on UNIX 14
Java Release 65
java stack size 153
Java Virtual Machine 11
Java VM Configuration 62
java vm configuration 152
java-ack 103
java-call-method 112, 113, 114
java-call-method-with-1-double-param 116
java-call-method-with-1-object-param 117
java-call-method-with-1-param 115

Index

Java Generic e*Way Extension Kit 157 SeeBeyond Proprietary and Confidential

java-call-method-with-1-string-param 116
java-call-method-with-double-return 118
java-call-method-with-int-return 118
java-call-method-with-object-return 119
java-call-method-with-string-return 119
java-create-class-instance 122, 123
java-create-string 124
java-create-vm 120
java-create-vm-with-parameters 121
java-destroy-class-instance 125
java-destroy-vm 126
java-exchange 104
java-extconnect 104
java-get-property-int 126, 127, 128
java-get-property-object 128
java-get-property-string 127
java-get-string-value 129
java-init 105
java-nack 105
java-notify 106
java-outgoing 106
java-release-string 130
java-set-property-int 130, 131, 132
java-set-property-object 133
java-set-property-string 132
java-shutdown 107
java-startup 108
java-verify 109
javm classpath 152
JNI DLL 66
Journal File Name parameter 59, 134

K
keywords in .def file

reference 38–42

L
limiting ranges 33

M
Max Failed Messages parameter 59, 135
max heap size 154
Max Resends Per Message parameter 59, 135
Maximum Heap Size 68
method signatures 110

signatures and constructures 111
Methods

connectionEstablish() 71
connectionsShutdown() 72
connectionVerify() 72

dataErrorHandled() 80
exchangeData() 73
NAK() 73
processOutgoing() 74
shutdown() 74
startUp() 75

Methods required by DataErrorHandler Interface 79
Methods required by Exchanger Interface 71
Monk Environment Initialization File parameter 146
Monk environment variables, storing configuration
parameters 48
Monk functions

overview 20

N
NAK() 73
native stack size 153
Negative Acknowledgment Function parameter 151
newlines as whitespace 24

O
Operational Details 63
OS/390 11

P
parameter ranges 33
parameter sets 30, 31
parameter syntax, .def file

general 24
integer parameters 25
path parameters 25
string and character parameters 25

parameter types 29
parse errors 47
password parameters, defining 38
(path) keyword 29
path parameters 25
Positive Acknowledgment Function parameter 150
pre-installation

UNIX 13
Windows NT 12

Process Outgoing Message Function parameter 148
processOutgoing() 74
Property-name Format 48

Q
quotation marks in .def files, escaping 25

Index

Java Generic e*Way Extension Kit 158 SeeBeyond Proprietary and Confidential

R
(range) keyword 33
ranges

defining 33
fixing upper or lower limits 33
units and default values 35

Report Java VM Class Loads 69
Resend Timeout parameter 62, 138
Runtime Dependency 67

S
sample .def file 49
Sample Code for FileExchange.java 51
Sample Java Business Logic 85
sample Java business logic 85
.sc file 44
(schedule) keyword 29
schedule parameter syntax 42
SCparse error messages 47
section keyword 27
send-external-down function 101
send-external-up function 100
-set keyword suffix 30
(set) keyword, example 31, 33
-set-multi keyword suffix 31
(show-as) keyword 36
Shutdown Command Notification Function
parameter 152
shutdown() 74
shutdown-request 102
signature and constructors 111
Start Exchange Data Schedule parameter 62, 137
start-schedule function 99
Startup Function parameter 147
startup() 75
stcewgenericmonk.exe 19
Stop Exchange Data Schedule parameter 61, 136
stop-schedule function 100
(string) keyword 29
string parameter syntax 25
string parameters, encrypting 38
Supporting Documents 10

T
tabs as whitespace 24
(time) keyword 29
"Tips" button, text displayed 27
type signatures 110

U
(units) keyword 34
UNIX

pre-installation 13
Up Timeout parameter 62, 137
user-comment keyword 26, 27

V
value ranges, specifying 33
variables within Monk environment, storing
configuration parameters 48
virtual machine 11

W
whitespace 24
Windows NT 4.0

pre-installation 12

Z
z/OS 11
Zero Wait Between Successful Exchanges parameter
60, 138

	Java Generic e*Way Extension Kit
	Contents
	Introduction
	1.1 Intended Reader
	1.2 Supporting Documents
	1.3 Supported Operating Systems
	1.4 System Requirements
	1.5 Introducing the Java Virtual Machine

	Installation
	2.1 Installing on Windows NT 4.0 or Windows 2000
	2.1.1. Pre-installation
	2.1.2. Installation Procedure

	2.2 Installing on UNIX
	2.2.1. Pre-installation
	2.2.2. Installation Procedure

	2.3 Installing on OS/390 or z/OS
	2.4 Defining e*Way Components
	2.4.1. Creating a Java Generic e*Way
	2.4.2. Creating a Java Monk Extension e*Way

	2.5 Files/Directories Created by the Installation

	Introducing the Java Generic e*Way
	3.1 Java Generic e*Way Components
	stcewgenericjava.exe
	stcewgenericjava.def
	Exchanger.java and Java Template Methods

	3.2 e*Way Extensions and External Applications
	3.2.1. Basics Steps to Extend a Java Generic e*Way

	Extending the .def File
	4.1 Introduction
	4.1.1. Layout

	4.2 .def file Keywords: General Information
	4.2.1. White Space
	4.2.2. Integer Parameters
	4.2.3. Floating-point Parameters
	4.2.4. String and Character Parameters
	4.2.5. Path Parameters
	4.2.6. Comments
	4.2.7. “Header” Information

	4.3 Defining a New Section
	4.3.1. Section Syntax
	4.3.2. Parameter Syntax
	Order of Keywords
	Parameter Types
	Parameters Requiring Single Values
	Parameters Accepting a Single Value From a Set
	Parameters Accepting Multiple Values From a Set

	4.3.3. Specifying Ranges
	4.3.4. Specifying Units
	4.3.5. Displaying Options in ASCII, Octal, Hex, or Decimal
	Factor
	Encrypting Strings

	4.4 Configuration Keyword Reference
	4.4.1. Schedule Syntax
	Defining Default Schedules

	4.5 Configuration Parameters and the Configuration Files
	Examples

	4.6 Testing and Debugging the .def File
	4.6.1. Common Error Messages

	4.7 Accessing Configuration Parameters Within the JVM Environment
	4.7.1. Property-name Format
	4.7.2. Getting Property Values

	4.8 Sample .def File
	4.8.1. Sample Code for FileExchange.java
	4.8.2. e*Gate Registry Configuration Properties
	4.8.3. Accessing e*Gate Participating Host Installation Information
	4.8.4. Accessing e*Gate Registry Files
	4.8.5. Decoding configuration File Encrypted Passwords

	Configuring the Java Generic e*Way
	5.0.1. Considerations
	5.1 Required e*Way Configuration Parameters
	5.1.1. General Settings
	Journal File Name
	Max Resends Per Message
	Max Failed Messages
	Forward External Errors

	5.1.2. Communication Setup
	Exchange Data Interval
	Zero Wait Between Successful Exchanges
	Start Exchange Data Schedule
	Stop Exchange Data Schedule
	Down Timeout
	Up Timeout
	Resend Timeout

	5.1.3. Java VM Configuration
	Operational Details
	Java Release
	JNI DLL
	Exchanger Java Class
	Runtime Dependency
	Enable Custom Data Error Handling
	Initial Heap Size
	Maximum Heap Size
	CLASSPATH Override
	CLASSPATH Prepend
	Disable Class Garbage Collection
	Enable Garbage Collection Activity Reporting
	Report Java VM Class Loads
	Disable JIT
	DLL Load Path Prepend

	5.2 Methods Required by the Exchanger Interface
	ACK()
	connectionEstablish()
	connectionShutdown()
	connectionVerify()
	exchangeData()
	NAK()
	processOutgoing()
	shutdown()
	startUp()
	5.2.1. CollabConnException Class
	CollabConnException
	CollabConnException

	5.2.2. CollabDataException Class
	CollabDataException
	CollabDataException

	5.2.3. CollabResendException Class
	CollabResendException
	CollabResendException

	5.3 Exchanger Interface
	5.4 Methods Required by the DataErrorHandler Interface
	dataErrorHandled()

	5.5 DataErrorHandler Interface
	5.6 Configuring the Java Generic e*Way with the Enterprise Manager
	5.6.1. Step 1: Commit files to the schema
	5.6.2. Step 2: Create an e*Way Component
	5.6.3. Step 3: Configure the e*Way
	5.6.4. Editing a .def File Within a Schema

	5.7 Developing the Java Business Logic Class
	5.7.1. Sample Java Business Logic

	Core Java Generic e*Way Methods
	6.1 Core Functions
	eventSendToEgate
	getEwayConfigProp
	getLogicalName
	sendExternalDown
	sendExternalUp
	shutdownRequest
	startSchedule
	stopSchedule
	traceln
	traceln

	Introducing the Java Monk Extension e*Way
	7.0.1. Components

	Java Monk Extension e*Way Functions
	8.1 Basic Functions
	start-schedule
	stop-schedule
	send-external-up
	send-external-down
	get-logical-name
	event-send-to-egate
	shutdown-request

	8.2 Standard e*Way Functions
	java-ack
	java-exchange
	java-extconnect
	java-init
	java-nack
	java-notify
	java-outgoing
	java-shutdown
	java-startup
	java-verify

	8.3 Java Monk Extension e*Way Native Functions
	8.3.1. Accessing Java Methods
	8.3.2. Java Data Types
	8.3.3. Type Signatures
	8.3.4. Method Signatures
	Signature and Constructors
	java-call-method
	java-call-method-with-params
	java-call-static-class-method-with-params
	java-call-static-method-with-params
	java-call-method-with-1-int-param
	java-call-method-with-1-double-param
	java-call-method-with-1-string-param
	java-call-method-with-1-object-param
	java-call-method-with-int-return
	java-call-method-with-double-return
	java-call-method-with-string-return
	java-call-method-with-object-return
	java-create-vm
	java-create-vm-with-parameters
	java-create-class-instance
	java-create-class-instance-with-params
	java-create-string
	java-destroy-class-instance
	java-destroy-vm
	java-get-property
	java-get-property-int
	java-get-property-string
	java-get-property-object
	java-get-static-property
	java-get-string-value
	java-release-string
	java-set-property
	java-set-static-property
	java-set-property-int
	java-set-property-string
	java-set-property-object

	Configuring the Java Monk Extension e*Way
	9.1 e*Way Configuration Parameters
	9.1.1. General Settings
	Journal File Name
	Max Resends Per Message
	Max Failed Messages
	Forward External Errors

	9.1.2. Communication Setup
	Start Exchange Data Schedule
	Stop Exchange Data Schedule
	Exchange Data Interval
	Down Timeout
	Up Timeout
	Resend Timeout
	Zero Wait Between Successful Exchanges

	9.1.3. Monk Configuration
	Operational Details
	How to Specify Function Names or File Names
	Additional Path
	Auxiliary Library Directories
	Monk Environment Initialization File
	Startup Function
	Process Outgoing Message Function
	Exchange Data with External Function
	External Connection Establishment Function
	External Connection Verification Function
	External Connection Shutdown Function
	Positive Acknowledgment Function
	Negative Acknowledgment Function
	Shutdown Command Notification Function

	9.1.4. Java VM Configuration
	JVMVersion
	JVMClasspath
	Native Stack Size
	Java Stack Size
	Initial Heap Size
	Max Heap Size
	Enable Class GC
	Enable Verbose GC
	Disable Async GC

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

