
SeeBeyond Proprietary and Confidential

Secure Messaging Extension
User’s Guide

Release 4.5.3

Java Version

Secure Messaging Extension User’s Guide 2 SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBI, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 2001-2002 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20021113090324.

Contents

Secure Messaging Extension User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents

Preface 7
Intended Reader 7

Nomenclature 7

Organization 7

Chapter 1

Introduction 8
Overview 8

Components 8

Introducing Secure Messaging Extension (SME) 8

Introducing Multipurpose Internet Mail Extension (MIME) and Secure Multipurpose
Internet Mail Extension (S/MIME) 9

Secure Messaging Extension Process 10

Supported Operating Systems 13

System Requirements 13

Chapter 2

Installation 14
Installing SME on Windows NT 4.0 and Windows 2000 14

Pre-installation 14
Installation Procedure 14

Installing SME on UNIX 15
Pre-installation 15
Installation Procedure 15

Files/Directories Created by the Installation 16

Contents

Secure Messaging Extension User’s Guide 4 SeeBeyond Proprietary and Confidential

Chapter 3

Encrypted Message Formats, Digital Signature Formats, and
Certificate Formats 17
Encrypted Message Formats 17

Digital Signature Formats 18

Signing and Attaching Signatures 22

Certificate Formats 23

Private Key Format 26

Chapter 4

e*Way Connection Configuration 27
Configuring the Multi-Mode e*Way 27

Creating a Multi-Mode e*Way 27
Multi-Mode e*Way Configuration Parameters 28
JVM Settings 28

JNI DLL Absolute Pathname 29
CLASSPATH Prepend 29
CLASSPATH Override 30
CLASSPATH Append From Environment Variable 30
Initial Heap Size 30
Maximum Heap Size 30
Maximum Stack Size for Native Threads 31
Maximum Stack Size for JVM Threads 31
Disable JIT 31
Remote debugging port number 31
Suspend option for debugging 31
Auxiliary JVM Configuration File 32

General Settings 32
Rollback Wait Interval 32
Standard IQ FIFO 32

Configuring e*Way Connections 32
Creating an e*Way Connection 33

Connector 34
Type 34
Class 35
Property.Tag 35

Encrypt 35
Certificate 35
Format 35
Algorithm 36
MessageFormat 36
EncodingFormat 36

Decrypt 37
MessageFormat 37

Contents

Secure Messaging Extension User’s Guide 5 SeeBeyond Proprietary and Confidential

EncodingFormat 37
PKCS12 37
PassPhrase 37

Sign 38
Algorithm 38
Detached 38
MessageFormat 38
EncodingFormat 39
PKCS12 39
PassPhrase 39

Verify 39
MessageFormat 39
EncodingFormat 40
Certificate 40
Format 40

Certificate 40
Checking 40
TrustedCA 41
Format 41

CRL 41
Filename 42
CACRLCertificate 42
CACRLformat 42
CACertificate 42
Format 42

Chapter 5

ETD Structure 44
Understanding the Structure of the SME ETD 44

SMEMessageApp Root Node 45

Chapter 6

Implementation 47
Overview 47

Pre-Implementation Tasks 47
Implementation Sequence 48
Using the e*Gate Enterprise Manager 48

SME Sample Implementations 49
Creating Schemas 50

Sample Schemas 50
Creating Event Types 51

Creating an Event Type and Associating an Existing .xsc 52
Creating and Configuring the e*Ways 52
Creating the e*Way Connection 57
Creating and Modifying Intelligent Queues 59
Creating Collaboration Rules 59

Creating the Collaboration Rules Class 63

Contents

Secure Messaging Extension User’s Guide 6 SeeBeyond Proprietary and Confidential

Creating the Sample Schema Collaborations 65

Creating and Executing the Sample Schemas 68
SMEstatic Sample Schema 68

Executing the SMEstatic Sample Schema 70
SMEdynamic Sample Schema 70

Dynamic Configuration in the Collaboration Rules Editor 71
Executing the SMEdynamic Sample Schema 72

Chapter 7

Secure Messaging Extension Methods 74
SME Methods: Overview 74

SMEMessage Methods Used with Static Configuration 74
Methods of the SMEMessage Class 74
base64Decode 75
base64Encode 75
encrypt 76
encrypt 76
decrypt 77
decrypt 77
getMD5Hash 77
getSHA1Hash 78
sign 78
sign 79
verify 79
verify 80
verify 80

SMEMessage Methods Used with Dynamic Configuration 81
Methods of the SMEMessage Class 81
setCertificate 82
setAlgorithm 82
setMessageFormat 83
setEncodingFormat 83
setMessageFormat 83
setEncodingFormat 84
setPKCS12Name 84
setPassphrase 85
setAlgorithm 85
setDetachedSignature 86
setMessageFormat 86
setEncodingFormat 87
setPKCS12Name 87
setPassphrase 88
setCertificate 88
setMessageFormat 89
setEncodingFormat 89
setChecking 90
addTrustedCAs 90
addCRL 91
addLDAPService 91
setAllowSelfSignedCertificate 92

Index 93

Secure Messaging Extension User’s Guide
7

SeeBeyond Proprietary and Confidential

Preface

This Preface contains information regarding the Secure Messaging Extension User’s
Guide.

P.1 Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the SeeBeyond™ e*Gate™ Integrator system, and have a
working knowledge of:

! Windows NT/Windows 2000 and/or UNIX operations and administration

! Windows-style GUI operations

! Public Key Infrastructure (PKI)

P.2 Nomenclature
For purposes of brevity, Secure Messaging Extension is referred to as SME throughout
the User’s Guide.

P.3 Organization
This User’s Guide is organized into two parts. The first part, consisting of Chapters 1-2,
introduces SME and describes the procedures for installing, setting up, and
implementing a working system incorporating SME. This part should be of particular
interest to a System Administrator or other user charged with the task of getting the
system up and running.

The second part, consisting of Chapters 3-6, describes the details of SME operation and
configuration, including descriptions of the exposed Java methods. This part should be
of particular interest to a Developer involved in customizing SME for a specific
purpose. The information in this part that is required for the initial setup of SME is
cross-referenced in the first part of the guide.

Secure Messaging Extension User’s Guide 8 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This document describes how to install and configure SME.

1.1 Overview
SME enables e*Gate to process Events utilizing the S/MIME (Secure Multipurpose
Internet Mail Extensions) message format. This format is the IETF RFC 2311
specification for encrypting and/or signing types of data.

SME supports encryption, decryption and authentication of messages and is
interoperable with any other client applications that support the S/MIME standard.

SME adds the following features to transactions:

! privacy

! message (Event) authentication

! sender authentication

! nonrepudiation

1.1.1 Components
The following components comprise SME:

! stcsme.jar

! smime.jar

! Java collaborations that load and run the Java methods

A complete list of the installed files appears in Table 1 on page 16.

1.2 Introducing Secure Messaging Extension (SME)
SME provides security features, allowing the protected transmission of exchanges over
public domains such as the Internet. SME enables using Public Key Infrastructure (PKI)
technology to ensure the confidentiality of exchanges. This is done by digitally signing

Chapter 1 Section 1.3
Introduction Introducing Multipurpose Internet Mail Extension (MIME) and Secure Multipurpose Internet Mail Extension (S/
MIME)

Secure Messaging Extension User’s Guide 9 SeeBeyond Proprietary and Confidential

and encrypting messages as they are sent, and decrypting and authenticating messages
when they are received.

SME performs the encryption and decryption of messages using the S/MIME format.
This format’s one-way hash algorithms ensure data integrity by verifying that no
modifications are made to the message while in transit. In addition, the message
sender’s identity is verified through the use of digital signatures, proving that the
message actually originated from the entity who claims to have sent it.

The S/MIME format is described in detail in the following section.

1.3 Introducing Multipurpose Internet Mail Extension
(MIME) and Secure Multipurpose Internet Mail
Extension (S/MIME)

S/MIME is based on the Public Key Cryptography Standards (PKCS), which specify
how the RSA public-key cryptographic algorithm should be used to implement
enveloped encryption and digital signatures.

The RSA public-key system makes use of two related keys to perform the mathematical
algorithms necessary to encrypt or decrypt data: a public key, which may be made
available to any prospective correspondent, and a private key known only to the key's
owner. A public key can be published openly, thereby assuring the ability of anyone to
send secure messages that can only be decrypted by the owner of the respective private
key.

Encryption can also be performed using one's private key, and decrypted with the
corresponding public key. In this case, the encryption result is known as a digital
signature, which guarantees to the intended recipient that the signed message is
authentic and genuinely came from the stated originator of the message.

Digital signatures provide data integrity, authentication and non-repudiation of an
electronic document. Successful verification of a digital signature ensures the recipient
that the "document received" is identical to the "document sent" (data integrity) and
confirms the identity of the sender (authentication). It also prevents any subsequent
denial by the sender that the document originated with them (non-repudiation).

In practice, public keys are stored as certificates that comply with the X.509 standard. In
addition to the public key, a certificate also contains information about the key owner's
identity, the key's validity, and the issuer of the certificate, also known as a Certificate
Authority.

MIME Message Format

MIME-compliant messages may contain any type of data, including the following:

! Text messages in US-ASCII

! Messages of unlimited length

! Binary files

Chapter 1 Section 1.4
Introduction Secure Messaging Extension Process

Secure Messaging Extension User’s Guide 10 SeeBeyond Proprietary and Confidential

! Character sets other than US-ASCII

! Multi-media: Image, Audio, and Video objects

! Multiple, nested objects in a single message

When later sent over a protocol such as HTTP or FTP, which provide a "binary clean"
data path, MIME messages may be left in binary format. However, if the MIME
message is sent via SMTP (email) or other text-only protocols, binary objects must be
encoded using the Base64 content transfer encoding format, which produces a textual
representation of the original binary data.

Messages in MIME format consist of two parts: the header and the body. The header
forms a collection of metadata in the form of keyword/value pairs structured to
provide information necessary for the transmission and interpretation of the message.
The body of the message contains the bulk data to be transferred. In turn, S/MIME
defines the security services, adding digital signatures and encryption, thus preventing
forgery and interception.

For more information regarding MIME, see the Internet Engineering Task Force Text
Messages specification (RFC 822) and the MIME Message Body Format (RFC 2045), at
http://www.ietf.org.

The S/MIME Version 2 specification (RFC 2311) is also found at http://www.ietf.org.

1.4 Secure Messaging Extension Process
This section illustrates the internal and external flow of the SME's S/MIME processing
methods. On the following pages, Figure 1 shows the processing of an inbound signed
and/or encrypted message; Figure 2 shows the processing of the data for an outbound
signed and/or encrypted message.

Chapter 1 Section 1.4
Introduction Secure Messaging Extension Process

Secure Messaging Extension User’s Guide 11 SeeBeyond Proprietary and Confidential

Figure 1 Inbound Signed/Encrypted Message

Receives an Inbound
Message

Retrieve Receiver's Private
Key from PKI Database

Signed Event?PKI Database

Forward Event body to
destination

Hash Event body

Decrypt digital signature
 using Public Key

Separate the digital signature and
originator's Public Key

from the body of the Event

Decrypted
digital signature = hashed

Event body.

Retrieve Public Key
from PKI Database

Raise
exception

Encrypted Event?

Encryption
required for this

Event?

Raise
exception

Yes

No

No

Yes

Separate Block encrypted Event
from PKI encrypted Session Key

Decrypt Session Key
using Private Key

Decrypt Event using Session Key

Yes

No

Encryption
required for this

Event?

Raise
exception

Yes

No

Yes

No

Chapter 1 Section 1.4
Introduction Secure Messaging Extension Process

Secure Messaging Extension User’s Guide 12 SeeBeyond Proprietary and Confidential

Figure 2 Outbound Signed/Encrypted Message

Receives Outbound
 Event/Message

Hash
Event

Retrieve Private Key from
PKCS12 file provided

Sign
Event?

Encrypt Event?

Retrieve recipient's Public
Key from user

Encrypt Session Key with
Partner's Public Key Certificate

Encrypt hashed Event
 using originator's Private Key

to create a digital signature

Add digital signature &
originator's Public Key to

Outbound Event

Forward Outbound Event to
destination

Randomly generate Session Key

Use Session Key to
block encrypted Event

Add PKI encrypted Session
Key to Block encrypted Event

No

No

Yes

Yes

PKCS12
file

by the user

provided certificates

Chapter 1 Section 1.5
Introduction Supported Operating Systems

Secure Messaging Extension User’s Guide 13 SeeBeyond Proprietary and Confidential

1.5 Supported Operating Systems
Secure Messaging Extension is supported on the following operating systems:

! Windows 2000, Windows 2000 SP1, Windows 2000 SP2, and Windows 2000 SP3

! Windows NT 4.0 SP6a

! Solaris 2.6, 7, and 8

! AIX 4.3.3

! HP-UX 11.0 and HP-UX 11i

1.6 System Requirements
To use SME, the following are required:

! An e*Gate Participating Host, version 4.5.1 or later

! A TCP/IP network connection

! A computer running Windows, to allow you to use the e*Gate Enterprise Manager
and ETD Editor

! Additional disk space for the Add-on executable, configuration, library, and script
files. The disk space is required on both the Participating and the Registry Host.
Additional disk space is required to process and queue the data that this Add-on
processes; the amount necessary varies based on the type and size of the data being
processed, and any external applications performing the processing.

! Open and review the Readme.txt for SME for any additional requirements prior to
installation. The Readme.txt is located on the Installation CD_ROM at
setup\addons\ewsme.

Installed on the Participating Host

! Java JDK version 1.3.1

Secure Messaging Extension User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 2

Installation

This chapter describes the procedures for installing SME.

! “Installing SME on Windows NT 4.0 and Windows 2000” on page 14

! “Installing SME on UNIX” on page 15

! “Files/Directories Created by the Installation” on page 16

2.1 Installing SME on Windows NT 4.0 and Windows 2000

2.1.1 Pre-installation
! Exit all Windows programs before running the setup program, including any

antivirus applications.

! You must have Administrator privileges to install this Add-on.

2.1.2 Installation Procedure
To install SME on a Windows system

1 Log in as an Administrator to the workstation on which you are installing the Add-
on.

2 Insert the installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s Autorun feature is enabled, the setup application launches
automatically; skip ahead to step 4. Otherwise, use the Windows Explorer or the
Control Panel’s Add/Remove Applications feature to launch the file setup.exe on
the CD-ROM drive.

4 The InstallShield setup application launches. Follow the installation instructions
until you come to the Please choose the product to install dialog box.

5 Select e*Gate Integrator, then click Next.

6 Follow the on-screen instructions until you come to the second Please choose the
product to install dialog box.

7 Clear the check boxes for all selections except Add-ons, and then click Next.

Chapter 2 Section 2.2
Installation Installing SME on UNIX

Secure Messaging Extension User’s Guide 15 SeeBeyond Proprietary and Confidential

8 Follow the on-screen instructions until you come to the Select Components dialog
box.

9 Select (but do not check) Agents, and then click Change. The SelectSub-
components dialog box appears.

10 Select SME. Click Continue to return to the Select Components dialog box, then
click Next.

11 Follow the rest of the on-screen instructions to install SME. Be sure to install the
SME files in the suggested client installation directory. The installation utility
detects and suggests the appropriate installation directory. Unless you are directed
to do so by SeeBeyond support personnel, do not change the suggested installation
directory setting.

Note: Once you have installed and configured SME, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before SME can perform its intended functions. For
more information about any of these procedures, see the online Help.

For more information about configuring SME, see the e*Gate Integrator User’s
Guide.

2.2 Installing SME on UNIX

2.2.1 Pre-installation
Root privileges are not required to install SME. Log in under the user name that you
wish to own the SME files. Be sure that this user has sufficient privileges to create files
in the e*Gate directory tree.

2.2.2 Installation Procedure
To install SME on a UNIX system

1 Log in on the workstation containing the CD-ROM drive, and insert the CD-ROM
into the drive.

2 If necessary, mount the CD-ROM drive.

3 At the shell prompt, type

cd /cdrom

4 Start the installation script by typing

setup.sh

5 A menu of options will appear. Select the Install e*Way option. Then, follow the
additional on-screen directions.

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation

Secure Messaging Extension User’s Guide 16 SeeBeyond Proprietary and Confidential

Note: Be sure to install the SME files in the suggested client installation directory. The
installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not
change the suggested “installation directory” setting.

6 After installation is complete, exit the installation utility and launch the Enterprise
Manager.

Note: Once you have installed and configured SME, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before SME can perform its intended functions. For
more information about any of these procedures, see the online Help system.

For more information about configuring SME, see the e*Gate Integrator User’s
Guide.

2.3 Files/Directories Created by the Installation
The SME installation process installs the files shown in Table 1 within the e*Gate
directory tree. Files are installed within the egate\client tree on the Participating Host
and committed to the default schema on the Registry Host.

.

Table 1 Files Created by the Installation

e*Gate Directories File(s)

\classes\ stcsme.jar

\etd\ sme.ctl

\etd\smeclient\ smeinputmsg.dtd
smemessage.xsc

\client\ThirdParty\baltimore\classes KeyToolsPro_All1.2.jar
smime.jar

Secure Messaging Extension User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 3

Encrypted Message Formats, Digital
Signature Formats, and Certificate Formats

This chapter provides an overview of the encrypted message formats, digital signatures
and certificates that are handled by SME. In addition, this chapter describes how to use
Windows 2000 and Microsoft Internet Explorer tools to transfer certificate formats
accepted by the SMIME/C library

3.1 Encrypted Message Formats
This section provides examples of encrypted message formats.

PKCS#7 encrypted message format

The PKCS#7 format, as specified by RFC 2315, is used for basic digitally signed and/or
encrypted data. This format does not provide a MIME header, and produces mostly
binary data, except for a few character strings in an embedded certificate, as shown in
the following example:

0 *†H†÷ 0 1‚ $0‚ 0ˆ 0‚ 10UUS10\U

California1\0/UMonrovia1

0

U

STC10UDevelopment1'0%USTC Test Certificate Authority0*†H†÷
V<±ïíà»‚¯‡¾ l-êÒTâž|g®<êÆ<õ¢\)Ç‰‡îQt£rµ»Ÿ½TûRP[Myß÷ ×ÚÚh-Íá–Ù¾—áô)Ã|bF©[_ˆ HESM†2?k_

z¸ ~½ ï /ÈÕ+¶>æ³G¨š XK8yÃ!·Â yá—œB4U0 *†H†÷0*†H†÷b

4˜ mDY jE¯††‚ë -]2žI¯e´ G®†Ö¤ŸQÜ&ZÈX‚¶Ê !4`RK”ÆE«9ýìÂ PÝ Q- ní \=(-÷þÚï L

Chapter 3 Section 3.2
Encrypted Message Formats, Digital Signature Formats, and Certificate Formats Digital Signature Formats

Secure Messaging Extension User’s Guide 18 SeeBeyond Proprietary and Confidential

S/MIME2 encrypted message format (base64)

The S/MIME2 format is also used to represent digitally signed and/or encrypted data.
This format provides a MIME header and encrypted results, with the binary data
encoded as printable characters using the base64 method, as shown in the following
example:

Content-Type: application/pkcs7-mime; name = "smime.p7m"

Content-Transfer-Encoding:base64

MIAGCSqGSIb3DQEHA6CAMIACAQAxggEkMIIBIAIBADCBiDCBgjELMAkGA1UEBhMCVVMxEzARBgNV

BAgTCkNhbGlmb3JuaWExETAPBgNVBAcTCE1vbnJvdmlhMQwwCgYDVQQKEwNTVEMxFDASBgNVBAsT

C0RldmVsb3BtZW50MScwJQYDVQQDEx5TVEMgVGVzdCBDZXJ0aWZpY2F0ZSBBdXRob3JpdHkCARMw

DQYJKoZIhvcNAQEBBQAEgYBR3Hwe+1JB2pZuR2XdNFS1DISYbgWHaXcmmpRZE+r35Ar5iaNlfRAj

ipc1RBW0HmidnWz3zBGYOml91btVjy2z6dmoDknnksgTI77YX727hESHgjCpxxcs+1kRzzI5ZUlU

WvvXeX/7wNkx3ZgJOrtIiXjfs6t8zW4edd1/13fQgjCABgkqhkiG9w0BBwEwFAYIKoZIhvcNAwcE

CBUeyy6UZb4koIAECOpD8MyUjNZ/BAjB0O2dStz8HgQIiPOI1H4tpfsECARjsNRDbMpqBAgtC3S1

7FnAWQQI8ymbLzoB4kUECF38LESRhXN2BAhcGnYwRqQDMgAAAAAAAAAAAAA=

S/MIME2 encryption message format (binary)

This format represents a message as binary, non-printable data, with appropriate MIME
headers, as shown in the following example:

Content-Type: application/pkcs7-mime; name = "smime.p7m"

Content-Transfer-Encoding:binary

0 *†H†÷ 0 1‚ $0‚ 0ˆ 0‚ 10UUS10\U

California1\0/UMonrovia10

U

STC10UDevelopment1'0%USTC Test Certificate Authority0*†H†÷

V<±ïíà»‚¯ Qt£rµ»Ÿ½TûRP[Myß÷ ×ÚÚh-Íá–Ù¾—áô)Ã|bF©[_ˆ HESM†2?k …Bmm_t1Gòz

~½ ï /ÈÕ+¶>æ³G¨š XK8yÃ!·Â yá—œB4U0 *†H†÷0*†H†÷b

4˜ mDY jE¯††‚ë -]2žI¯e´ G®†Ö¤ŸQÜ&ZÈX‚¶Ê !4`RK”ÆE«9ýìÂ PÝ Q- ní \=(-÷þÚï L

3.2 Digital Signature Formats
Although signatures normally are found attached to the message or file that they sign,
detached signatures are also supported. A detached signature may be stored and
transmitted separately from the message it signs.

Chapter 3 Section 3.2
Encrypted Message Formats, Digital Signature Formats, and Certificate Formats Digital Signature Formats

Secure Messaging Extension User’s Guide 19 SeeBeyond Proprietary and Confidential

Table 2 lists the features of each encrypted message format for attached signatures.

Table 2 Formats for attached signatures

PKCS#7 Format S/MIME2 Format

! Includes original document in plain text,
digital signature, and certificates involved,
encapsulated, and encoded in Abstract
Syntax Notation One (ASN.1) standard
format.

Note: ASN.1 is an ISO/IEC standard
for encoding rules used in
ANSI X.509 certificates and
PKCS documents.

Example

0 *†H†÷ 0 10+
 0 *†H†÷ $:
This is only a test message!
 ‚ m0‚ i0‚Ò 0*†H†÷ 0‚ 10UUS10\U
California1\0/UMonrovia10
U
STC10UDevelopment1'0%USTC Test Certificate
Authority0020509184633Z030509184633Z0w10UUS10\U
California1\0/UMonrovia10-U
SeeBeyond1
0
URAD10USeeBeyond Test User 10Ÿ0*†H†÷ • 0‰
®ŠGk•Éƒ w¯¥S®¢_{!0Õ¢„ &KÇéL›Ä ,″ 1Än§lÏ»¶Õï¬ ©¥$lym´žÏ—
Í oÑLsuÉA#šk^#
ü³ÅÅ§]ñsJAm£8ófsoU¢&mUþ„ g,″ >©k£ÄXqÜ±Q½êÔú9Pº KÍ ~’ú“ /
0*†H†÷ _bšFï o7r
ç¦« HêAßl“ "zgÛæAÌœXú,‘Õ :Þˆ =› P}°æå·Ì Z§R˜øüÅÌ (àØIãµ ÷Ñj
#›ò R1/″ Œ80@ìûÍ‚ -/a†ÛZýý¥· s!ß¿ayS‘ ″ #}
…÷üç_"ëµÐÉµ4½¦1‚ -0‚)0ˆ 0‚ 10UUS10\U
California1\0/UMonrovia10
U
STC10UDevelopment1'0%USTC Test Certificate
Authority0+
 0*†H†÷ ″ Ö>»/éR8¶ZaÖ” ¡Ý XS*¿£uõURÑˆ©pCËŸÂÍ,•Ÿ¶ I/’ {–
ªÓIÊF62žSð ‡/ñI² e^ü#â„àð f· n(″ aE±cÓ,Å¥>Ì°]2ÅpÆ2*Ì
|êÏË {lÊ—0%#t‹¥Œåœ ô› VÝ¹ k

! Includes:

! MIME headers

! PKCS#7 attached signature
object

Example

Content-Type: application/pkcs7-mime; name =
"smime.p7m"
Content-Transfer-Encoding:binary
0 *†H†÷ 0 10+
 0 *†H†÷ $:
This is only a test message!
 ‚ m0‚ i0‚Ò 0*†H†÷ 0‚ 10UUS10\U
California1\0/UMonrovia10
U
STC10UDevelopment1'0%USTC Test Certificate
Authority0020509184633Z030509184633Z0w10UUS10\U
California1\0/UMonrovia10-U
SeeBeyond1
0
URAD10USeeBeyond Test User 10Ÿ0*†H†÷ • 0‰
®ŠGk•Éƒ w¯¥S®¢_{!0Õ¢„ &KÇéL›Ä ,″ 1Än§lÏ»¶Õï¬ ©¥$lym´žÏ—
Í oÑLsuÉA#šk^#
ü³ÅÅ§]ñsJAm£8ófsoU¢&mUþ„ g,″ >©k£ÄXqÜ±Q½êÔú9Pº KÍ ~’ú“ /
0*†H†÷ _bšFï o7r
ç¦« HêAßl“ "zgÛæAÌœXú,‘Õ :Þˆ =› P}°æå·Ì Z§R˜øüÅÌ (àØIãµ ÷Ñj
#›ò R1/″ Œ80@ìûÍ‚ -/a†ÛZýý¥· s!ß¿ayS‘ ″ #}
…÷üç_"ëµÐÉµ4½¦1‚ -0‚)0ˆ 0‚ 10UUS10\U
California1\0/UMonrovia10
U
STC10UDevelopment1'0%USTC Test Certificate
Authority0+
 0*†H†÷ ″ Ö>»/éR8¶ZaÖ” ¡Ý XS*¿£uõURÑˆ©pCËŸÂÍ,•Ÿ¶ I/’ {–
ªÓIÊF62žSð ‡/ñI² e^ü#â„àð f· n(″ aE±cÓ,Å¥>Ì°]2ÅpÆ2*Ì
|êÏË {lÊ—0%#t‹¥Œåœ ô› VÝ¹ k

Chapter 3 Section 3.2
Encrypted Message Formats, Digital Signature Formats, and Certificate Formats Digital Signature Formats

Secure Messaging Extension User’s Guide 20 SeeBeyond Proprietary and Confidential

Table 3 lists the features of each encrypted message format for detached signatures.

Table 3 Formats for detached signatures

PKCS#7 Format S/MIME2 Format

! Includes signature and certificate without the
signed data.

Note: RNIF1.1 uses PKCS#7 and
detached format

Example

0 *†H†÷ 0 10+
 0 *†H†÷ ‚ m0‚ i0‚Ò 0*†H†÷ 0‚ 10UUS10\U
California1\0/UMonrovia10
U
STC10UDevelopment1'0%USTC Test Certificate
Authority0020509184633Z030509184633Z0w10UUS10\U
California1\0/UMonrovia10-U
SeeBeyond1
0
URAD10USeeBeyond Test User 10Ÿ0*†H†÷ • 0‰
®ŠGk•Éƒ w¯¥S®¢_{!0Õ¢„ &KÇéL›Ä ,″ 1Än§lÏ»¶Õï¬ ©¥$lym´žÏ—
Í oÑLsuÉA#šk^#
ü³ÅÅ§]ñsJAm£8ófsoU¢&mUþ„ g,″ >©k£ÄXqÜ±Q½êÔú9Pº KÍ ~’ú“ /
0*†H†÷ _bšFï o7r
ç¦« HêAßl“ "zgÛæAÌœXú,‘Õ :Þˆ =› P}°æå·Ì Z§R˜øüÅÌ (àØIãµ ÷Ñj
#›ò R1/″ Œ80@ìûÍ‚ -/a†ÛZýý¥· s!ß¿ayS‘ ″ #}
…÷üç_"ëµÐÉµ4½¦1‚ -0‚)0ˆ 0‚ 10UUS10\U
California1\0/UMonrovia1
0
U
STC10UDevelopment1'0%USTC Test Certificate
Authority0+
 0*†H†÷ ″ Ö>»/éR8¶ZaÖ” ¡Ý XS*¿£uõURÑˆ©pCËŸÂÍ,•Ÿ¶ I/’ {–
ªÓIÊF62žSð ‡/ñI² e^ü#â„àð f· n(″ aE±cÓ,Å¥>Ì°]2ÅpÆ2*Ì
|êÏË {lÊ—0%#t‹¥Œåœ ô› VÝ¹ k .

! Includes a MIME multipart message
consisting of the original data in one
segment, and the binary format signature in a
second segment.

Example

Content-Type: multipart/signed;
protocol="application/pkcs7-signature";
micalg="SHA1"; boundary="Boundary_12e4421e_NOEWUDYA"

--Boundary_12e4421e_NOEWUDYA
Content-Type: text/plain

This is only a test message!

--Boundary_12e4421e_NOEWUDYA
Content-Type: application/pkcs7-signature;
name="smime.p7s"
Content-Transfer-Encoding: binary
Content-Disposition: attachment; filename=smime.p7s

0 *†H†÷ 0 10+
 0 *†H†÷ ‚ m0‚ i0‚Ò 0*†H†÷ 0‚ 10UUS10\U
California1\0/UMonrovia1
0
U
STC10UDevelopment1'0%USTC Test Certificate
Authority0020509184633Z030509184633Z0w10UUS10\U
California1\0/UMonrovia10-U
SeeBeyond1
0
URAD10USeeBeyond Test User 10Ÿ0*†H†÷ • 0‰
®ŠGk•Éƒ w¯¥S®¢_{!0Õ¢„ &KÇéL›Ä ,″ 1Än§lÏ»¶Õï¬ ©¥$lym´žÏ—
Í oÑLsuÉA#šk^#
ü³ÅÅ§]ñsJAm£8ófsoU¢&mUþ„ g,″ >©k£ÄXqÜ±Q½êÔú9Pº KÍ ~’ú“ /
0*†H†÷ _bšFï o7r
ç¦« HêAßl“ "zgÛæAÌœXú,‘Õ :Þˆ =› P}°æå·Ì Z§R˜øüÅÌ (àØIãµ ÷Ñj
#›ò R1/″ Œ80@ìûÍ‚ -/a†ÛZýý¥· s!ß¿ayS‘ ″ #}
…÷üç_"ëµÐÉµ4½¦1‚ -0‚)0ˆ 0‚ 10UUS10\U
California1\0/UMonrovia1
0
U
STC10UDevelopment1'0%USTC Test Certificate
Authority0+
 0*†H†÷ ″ Ö>»/éR8¶ZaÖ” ¡Ý XS*¿£uõURÑˆ©pCËŸÂÍ,•Ÿ¶ I/’ {–
ªÓIÊF62žSð ‡/ñI² e^ü#â„àð f· n(″ aE±cÓ,Å¥>Ì°]2ÅpÆ2*Ì
|êÏË {lÊ—0%#t‹¥Œåœ ô› VÝ¹ k

--Boundary_12e4421e_NOEWUDYA--

Chapter 3 Section 3.2
Encrypted Message Formats, Digital Signature Formats, and Certificate Formats Digital Signature Formats

Secure Messaging Extension User’s Guide 21 SeeBeyond Proprietary and Confidential

! Includes a MIME multipart message
consisting of the original data in one
segment, and the base64-encoded signature
in a second segment

Example

Content-Type: multipart/signed;
protocol="application/pkcs7-signature";
micalg="SHA1"; boundary="Boundary_12e4421e_FNGBRNRI"

--Boundary_12e4421e_FNGBRNRI
Content-Type: text/plain

This is only a test message!

--Boundary_12e4421e_FNGBRNRI
Content-Type: application/pkcs7-signature;
name="smime.p7s"
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7s

MIAGCSqGSIb3DQEHAqCAMIACAQExCzAJBgUrDgMCGgUAMIAGCSqG
SIb3DQEHAQAAoIICbTCCAmkw
ggHSAgETMA0GCSqGSIb3DQEBBAUAMIGCMQswCQYDVQQGEwJVUzET
MBEGA1UECBMKQ2FsaWZvcm5p
YTERMA8GA1UEBxMITW9ucm92aWExDDAKBgNVBAoTA1NUQzEUMBIG
A1UECxMLRGV2ZWxvcG1lbnQx
JzAlBgNVBAMTHlNUQyBUZXN0IENlcnRpZmljYXRlIEF1dGhvcml0
eTAeFw0wMjA1MDkxODQ2MzNa
Fw0wMzA1MDkxODQ2MzNaMHcxCzAJBgNVBAYTAlVTMRMwEQYDVQQI
EwpDYWxpZm9ybmlhMREwDwYD
VQQHEwhNb25yb3ZpYTESMBAGA1UEChMJU2VlQmV5b25kMQwwCgYD
VQQLEwNSQUQxHjAcBgNVBAMT
FVNlZUJleW9uZCBUZXN0IFVzZXIgMTCBnzANBgkqhkiG9w0BAQEF
AAOBjQAwgYkCgYEAropHa5XJ
g3evpQFTrqJfeyEw1aKEJksfx+lMm8QsnTHEbqdsj8+7ttXvrKml
JGx5bbSezzkIl81v0Uwfc3XJ
QSOaA2teIxr8swvFDcWnXfFzSkFtkKM482Zzb1WiJhZtVf6EZywD
nT6pAmujxFhx3LFRverU+jlQ
ukvNfpL6ky8CAwEAATANBgkqhkiG9w0BAQQFAAOBgQBfE2IVmo9G
7xRvN3IZC+emq0jqE0HfbJMi
eg1nf9vmQcycWBT6LJHVOt6IPZtQfbDmf+W3zFqnUpj4/
MUGzCjg2EnjtYD30Y9qI5vyF1IxL52M
ODBA7PvNgq0vYYYY239a/f2lt3Mh378dYXlTkZ0jfQmF9/
znXyLrtdDJtTS9pjGCAS0wggEpAgEB
MIGIMIGCMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5p
YTERMA8GA1UEBxMITW9ucm92
aWExDDAKBgNVBAoTA1NUQzEUMBIGA1UECxMLRGV2ZWxvcG1lbnQx
JzAlBgNVBAMTHlNUQyBUZXN0
IENlcnRpZmljYXRlIEF1dGhvcml0eQIBEzAHBgUrDgMCGjANBgkq
hkiG9w0BAQEFAASBgJCd1gU+
uw/pUji2WmHWlCChE91YUyq/
o3X1VQVS0YipcEPLn8LNLI2ftkkvknuWqtNJykY2Mp5T8ICHFy/x
SbJlXvwj4oTg8Ga3bgUdKJ1hRbFj0yzFpT7MsF0yxXDGMirMCnzq
z8t7bMqBlzAlIw10i6WM5ZyA
9JsaH1bdE7lrAAAAAAAA
--Boundary_12e4421e_FNGBRNRI--

Table 3 Formats for detached signatures

PKCS#7 Format S/MIME2 Format

Chapter 3 Section 3.3
Encrypted Message Formats, Digital Signature Formats, and Certificate Formats Signing and Attaching Signatures

Secure Messaging Extension User’s Guide 22 SeeBeyond Proprietary and Confidential

3.3 Signing and Attaching Signatures
In an S/MIME message with a detached signature, the signature is calculated over on
the entire payload data, in addition to its MIME header(s). The default Content-Type
for such a MIME part is text/plain.

If signing a Content-Type other than text/plain, the user must generate a Content-Type
header line for the payload. All other MIME headers and boundaries, including those
of the detached signature part, are produced by SME.

An example XML message, digitally signed with a base64-encoded detached S/MIME
signature is shown below.

MIME-Version: 1.0
Content-Type: multipart/signed;
protocol="application/x-pkcs7-signature"; micalg=sha1;
 boundary="----FA4D3A12E6192B82B05284F061C7CE55"

This is an S/MIME signed message

------FA4D3A12E6192B82B05284F061C7CE55
Content-Type: application/xml

------FA4D3A12E6192B82B05284F061C7CE55
Content-Type: application/x-pkcs7-signature; name="smime.p7s"
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename="smime.p7s"

------FA4D3A12E6192B82B05284F061C7CE55--

p a y l o a d

S i g n a t u r e a n d c e r t i f i c a t e i n
b a s e 6 4 o r b i n a r y f o r m a t

Chapter 3 Section 3.4
Encrypted Message Formats, Digital Signature Formats, and Certificate Formats Certificate Formats

Secure Messaging Extension User’s Guide 23 SeeBeyond Proprietary and Confidential

3.4 Certificate Formats
SME accepts certificates in PKCS#7 format. In addition, DER encoded binary X.509 and
Base64 encoded X.509 format certificates are accepted.

Windows 2000 and Microsoft™ Internet Explorer provide a Certificate Wizard tool to
convert between formats.

To convert from one certificate format to another

1 Double-click the certificate file to open the certificate properties, as shown in Figure
3.

Figure 3 Certificate File

2 Select the Details tab, as shown in Figure 4.

Chapter 3 Section 3.4
Encrypted Message Formats, Digital Signature Formats, and Certificate Formats Certificate Formats

Secure Messaging Extension User’s Guide 24 SeeBeyond Proprietary and Confidential

Figure 4 Certificate Detail Tab

3 Click Copy to File. The Certificate Export Wizard appears, as shown in Figure 5.

Figure 5 Windows 2000 Certificate Export Wizard

4 Click Next to open the certificate export file format, as shown in Figure 6. Select the
format.

Chapter 3 Section 3.4
Encrypted Message Formats, Digital Signature Formats, and Certificate Formats Certificate Formats

Secure Messaging Extension User’s Guide 25 SeeBeyond Proprietary and Confidential

Figure 6 Certificate Export Wizard file format

To transfer the certificate formats using Microsoft™ Internet Explorer

1 From the Tools menu, click Internet Options.

2 Click the Content tab and then click Certificates. The Certificates dialog appears, as
shown in Figure 7.

Figure 7 Internet Explorer Certificates

3 Click Import, to import your certificate.

4 Click the Intermediate Certification Authorities tab. Select the certificate to import,
and then click Export. The Certificates properties dialog appears, as shown in
Figure 8.

Chapter 3 Section 3.5
Encrypted Message Formats, Digital Signature Formats, and Certificate Formats Private Key Format

Secure Messaging Extension User’s Guide 26 SeeBeyond Proprietary and Confidential

Figure 8 Internet Explorer Intermediate Certificate Authorities

5 Select the format, and save the file.

3.5 Private Key Format
Private keys, used by SME in the decryption and signing processes, are required to be
in PKCS#12 format. If a key has been generated through a browser-based process and
appears among your personal certificates in Microsoft Internet Explorer, it may be
exported to a PKCS#12 file for use by SME.

For the export procedure, refer to the previous section, choosing your key from the
Personal tab in the Internet Explorer Certificate Manager, making sure to select "Yes,
export the private key" and uncheck the "Enable strong protection" option.

Note: Remember the password you specify to encrypt the exported file; it is needed during
the SME configuration process, in order to allow decryption and use the key.

Secure Messaging Extension User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 4

e*Way Connection Configuration

This chapter describes how to configure the following components of SME.

! Configuring the Multi-Mode e*Way on page 27

! Configuring e*Way Connections on page 32

4.1 Configuring the Multi-Mode e*Way
A Multi-Mode e*Way is a multi-threaded component used to route and transform data
within e*Gate. Unlike traditional e*Ways, Multi-Mode e*Ways can use multiple
simultaneous e*Way Connections to communicate with several external systems, as
well as IQs or IQ Managers. The following section describes how to create and
configure the Multi-Mode e*Way component for SME.

Note: The Multi-Mode e*Way properties are set using the Enterprise Manager.

4.1.1 Creating a Multi-Mode e*Way
1 Select the Navigator’s Components tab.

2 Open the host on which you want to create the e*Way.

3 On the Palette, click on Create a New e*Way to create a new e*Way.

4 Enter the name of the new e*Way, then click OK.

5 Select the new e*Way component, right-click, and select Properties. The e*Way
Properties dialog box opens.

6 The Executable File field defaults to stceway.exe. (stceway.exe is located in the
“bin\” directory).

7 Type any additional command line arguments that the e*Way may require in the
Additional Command Line Arguments field, taking care to insert them at the end of
the existing command-line string. Be careful not to change any of the default
arguments unless you have specific need to do so.

8 Click New under the Configuration File field to create a new configuration file,
Find to select an existing configuration file, or Edit to edit the currently selected file.
The Editor opens to edit settings for the Multi-Mode e*Way. The Multi-Mode e*Way

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring the Multi-Mode e*Way

Secure Messaging Extension User’s Guide 28 SeeBeyond Proprietary and Confidential

Configuration Editor opens. The following section provides more information on
these parameters.

9 After selecting the desired parameters, Save the configuration file and select
Promote to Run Time. Click OK to close the e*Way Properties dialog.

Note: Although you can make changes to these configuration options while an e*Way is
running, the changes will not take effect until you stop and restart the e*Way.

For more information on Multi-Mode e*Way settings and properties see the e*Gate
Integrator User’s Guide, the Standard e*Way Intelligent Adapter User’s Guide, or consult the
e*Way Editor’s online Help.

4.1.2 Multi-Mode e*Way Configuration Parameters
The Multi-Mode e*Way configuration parameters are organized in two sections:

! JVM Settings on page 28

! General Settings on page 32

4.1.3 JVM Settings
The JVM Settings define the basic Java Virtual Machine configuration for the Multi-
Mode e*Way. The JVM Settings section contains the following parameters:

! JNI DLL Absolute Pathname on page 29

! CLASSPATH Prepend on page 29

! CLASSPATH Override on page 30

! CLASSPATH Append From Environment Variable on page 30

! Initial Heap Size on page 30

! Maximum Heap Size on page 30

! Maximum Stack Size for Native Threads on page 31

! Maximum Stack Size for JVM Threads on page 31

! Disable JIT on page 31

! Remote debugging port number on page 31

! Suspend option for debugging on page 31

! Auxiliary JVM Configuration File on page 32

These settings are listed in the Goto Parameter drop-down list box when you select
JVM Settings in the Goto Section list box on the Edit Settings window.

The following subsections describe the parameters available in JVM Settings.

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring the Multi-Mode e*Way

Secure Messaging Extension User’s Guide 29 SeeBeyond Proprietary and Confidential

JNI DLL Absolute Pathname

Description

Specifies the absolute pathname to where the JNI DLL installed by the Java 2 SDK 1.3 is
located on the Participating Host.

Required Values

A valid pathname.

Additional Information

The JNI dll name varies on different O/S platforms, as listed in the following table:

The value assigned can contain a reference to an environment variable, by enclosing the
variable name within a pair of % symbols. For example:

%MY_JNIDLL%

Such variables can be used when multiple Participating Hosts are used on different
platforms.

To ensure that the JNI DLL loads successfully, the Dynamic Load Library search path
environment variable must be set appropriately to include all the directories under the Java 2
SDK (or JDK) installation directory that contain shared libraries (UNIX) or DLLs (NT).

CLASSPATH Prepend

Description

Specifies the paths to be prepended to the CLASSPATH environment variable for the
JVM.

Required Values

An absolute path or an environmental variable. This parameter is optional.

Additional Information

If left unset, no paths will be prepended to the CLASSPATH environment variable.

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_PRECLASSPATH%

OS Java 2 JNI DLL Name

Windows 2000/NT 4.0 jvm.dll

Solaris libjvm.so

HP-UX libjvm.sl

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring the Multi-Mode e*Way

Secure Messaging Extension User’s Guide 30 SeeBeyond Proprietary and Confidential

CLASSPATH Override

Description

Specifies the complete CLASSPATH variable to be used by the JVM. This parameter is
optional. If left unset, an appropriate CLASSPATH environment variable (consisting of
required e*Gate components concatenated with the system version of CLASSPATH)
will be set.

Note: All necessary JAR and ZIP files needed by both e*Gate and the JVM must be
included. It is advised that the CLASSPATH Prepend parameter should be used.

Required Values

An absolute path or an environmental variable. This parameter is optional.

Additional Information

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_CLASSPATH%

CLASSPATH Append From Environment Variable

Description

Specifies whether the path is appended for the CLASSPATH environmental variable to
jar and zip files needed by the JVM.

Required Values

YES or NO. The configured default is YES.

Initial Heap Size

Description

Specifies the value for the initial heap size in bytes. If set to 0 (zero), the preferred value
for the initial heap size of the JVM is used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Heap Size

Description

Specifies the value of the maximum heap size in bytes. If set to 0 (zero), the preferred
value for the maximum heap size of the JVM is used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring the Multi-Mode e*Way

Secure Messaging Extension User’s Guide 31 SeeBeyond Proprietary and Confidential

Maximum Stack Size for Native Threads

Description

Specifies the value of the maximum stack size in bytes for native threads. If set to 0
(zero), the default value is used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Stack Size for JVM Threads

Description

Specifies the value of the maximum stack size in bytes for JVM threads. If set to 0 (zero),
the preferred value for the maximum heap size of the JVM is used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Disable JIT

Description

Specifies whether the Just-In-Time (JIT) compiler is disabled.

Required Values

YES or NO.

Note: This parameter is not supported for Java Release 1.

Remote debugging port number

Description

Specifies the port number for the remote debugging of the JVM.

Required Values

An integer between 2000 and 65536.

Suspend option for debugging

Description

Specifies whether the option for debugging is enabled or suspended upon JVM startup.

Required Values

YES or NO.

Chapter 4 Section 4.2
e*Way Connection Configuration Configuring e*Way Connections

Secure Messaging Extension User’s Guide 32 SeeBeyond Proprietary and Confidential

Auxiliary JVM Configuration File

Description

Specifies an auxiliary JVM configuration file for additional parameters.

Required Values

The location of the auxiliary JVM configuration file.

4.1.4 General Settings
The General Settings section contains the following parameters:

! Rollback Wait Interval on page 32

! Standard IQ FIFO on page 32

These settings are listed in the Goto Parameter drop-down list box when you select
General Settings in the Goto Section list box on the Edit Settings window.

The following subsections describe the parameters available in General Settings.

Rollback Wait Interval

Description

Specifies the time interval to wait before rolling back a transaction.

Required Values

An integer between 0 and 99999999, representing the time interval in milliseconds.

Standard IQ FIFO

Description

Specifies whether the highest priority messages from all STC_Standard IQs will be
delivered in the first-in-first-out (FIFO) order.

Required Values

Select YES or NO. YES indicates that the e*Way will retrieve messages from all
STC_Standard IQs in the first-in-first-out (FIFO) order. NO indicates that this feature is
disabled. NO is the configured default.

For more information on the STC_Standard IQ Service and FIFO processing, see the
e*Gate Integrator Intelligent Queue Services Reference Guide.

4.2 Configuring e*Way Connections
e*Way Connections are the encoding of access information for specific external
connections. The e*Way Connection configuration file contains the parameters
necessary for connecting with a specific external system.

Chapter 4 Section 4.2
e*Way Connection Configuration Configuring e*Way Connections

Secure Messaging Extension User’s Guide 33 SeeBeyond Proprietary and Confidential

Note: The e*Way Connection parameters are set using the Enterprise Manager.

Creating an e*Way Connection

1 In the Enterprise Manager’s Component editor, select the e*Way Connections
folder.

2 On the palette, click on Create a New e*Way Connection.

3 The New e*Way Connection Component dialog box opens. Enter a name for the
new e*Way Connection and click OK.

4 Double-click on the new e*Way Connection. The e*Way Connection Properties
dialog box opens, as shown in Figure 9.

Figure 9 e*Way Connection Properties

5 From the e*Way Connection Type drop-down box, select SME.

6 Enter the Event Type “get” interval in the dialog box provided. The configured
default is 10000 milliseconds.

7 Click New under the e*Way Connection Configuration File field to create a new
configuration file, Find to select an existing configuration file, or Edit to edit the
currently selected file. The e*Way Connection Configuration Editor opens. The
following section provides more information on these e*Way Connection
parameters.

8 After selecting the desired parameters, Save the configuration file and select
Promote to Run Time. Click OK to close the e*Way Connection Properties dialog.

Chapter 4 Section 4.2
e*Way Connection Configuration Configuring e*Way Connections

Secure Messaging Extension User’s Guide 34 SeeBeyond Proprietary and Confidential

Note: If changes are made to an existing e*Way Connection file, any e*Ways using the
revised e*Way Connection must be restarted.

e*Way Connections are set using the Enterprise Manager.

To create and configure e*Way Connections

1 In the Enterprise Manager’s Component editor, select the e*Way Connections
folder.

2 On the palette, click on the icon to create a new e*Way Connection.

3 The New e*Way Connection Component dialog box opens, enter a name for the
e*Way Connection. Click OK.

4 Double-click on the new e*Way Connection. For this example, the connection has
been defined as con_SME.

5 The e*Way Connection Properties dialog box opens.

6 From the e*Way Connection Type drop-down box, select SME.

7 Enter the Event Type “get” interval in the dialog box provided.

8 From the e*Way Connection Configuration File, click New to create a new
Configuration File for this e*Way Connection. (To use an existing file, click Find.)

The SME e*Way Connection configuration parameters are organized into the following
sections:

! Connector on page 34

! Encrypt on page 35

! Decrypt on page 37

! Sign on page 38

! Verify on page 39

! Certificate on page 40

! CRL on page 41

4.2.1 Connector
This section contains the following top level parameters:

! type

! class

! Property.Tag

Type

Description

Specifies the type of connection.

Chapter 4 Section 4.2
e*Way Connection Configuration Configuring e*Way Connections

Secure Messaging Extension User’s Guide 35 SeeBeyond Proprietary and Confidential

Required Values

SME. The value defaults to SME.

Class

Description

Specifies the class name of the SME Client connector object.

Required Values

A valid package name. The default is com.stc.sme.eway.SMEClientConnector.

Property.Tag

Description

Specifies the data source identity. This parameter is required by the current
EBobConnectorFactory.

Required Values

A valid data source package name.

4.2.2 Encrypt
This section contains the following top level parameters:

! Certificate

! format

! algorithm

! MessageFormat

! EncodingFormat

Certificate

Description

Specifies the certificate of the partner to which encrypted messages is sent.

A certificate is the binding between an individual or an organization, and a public key.
It contains identity information, the subjects’s public key, the identity of the issuing
Certificate Authority, and the digital signature performed by the Certificate Authority.

Required Values

A valid certificate.

Format

Description

Specifies the certificate format.

Chapter 4 Section 4.2
e*Way Connection Configuration Configuring e*Way Connections

Secure Messaging Extension User’s Guide 36 SeeBeyond Proprietary and Confidential

Required Values

The appropriate certificate format. One of three provided: DER, PEM, or PK7. The
default is DER.

Note: The user should be aware of the certificate format being used, since the certificate
format specifies the input format. Table 4 defines each of the accepted certificate
formats.

Algorithm

Description

Specifies the algorithm used for encryption.

Required Values

A string. The appropriate encryption algorithm. One of four provided:
DES_EDE3_CBC, RC2_CBC_40, RC2_CBC_64, RC2_CBC_128. The default is
DES_EDE3_CBC.

MessageFormat

Description

Specifies the format used for the encrypted message.

Required Values

The appropriate message format. One of two provided: PKCS7, or SMIME2. The
default is SMIME2.

See “Encrypted Message Formats” on page 17 for more information on message
formats.

EncodingFormat

Description

Specifies the format used to encode the output message. This setting is only applied if
MessageFormat is set to SMIME2.

Required Values

The appropriate encoding format. One of two provided: Base64 or Binary.

The default is Base64.

Table 4 Accepted Certificate Formats

Distinguished Encoding
Rules (DER) format

Privacy Enhanced Mail (PEM)
format

PKCS#7 (PK7) format

DER encoded Certificate
Revocation List (CRL)
structure.

Base64 encoded version of
the DER format with header
and footer lines.

A PKCS#7 format message
which contains only the
user’s certificate (no data).

Chapter 4 Section 4.2
e*Way Connection Configuration Configuring e*Way Connections

Secure Messaging Extension User’s Guide 37 SeeBeyond Proprietary and Confidential

4.2.3 Decrypt
This section contains the following top level parameters:

! Message Format

! Encoding Format

! PKCS12

! PassPhrase

MessageFormat

Description

Specifies the format used for encrypting the message.

Required Values

The appropriate encryption format. One of two provided: PKCS7 or SMIME2.

The default is SMIME2.

EncodingFormat

Description

Specifies the encoding format for the output message. This setting is only applied if
MessageFormat is set to SMIME2.

Required Values

The appropriate encoding format. One of two provided: Base64 or Binary.

The default is Base64.

PKCS12

Description

Specifies the PKCS12 file. The PKCS12 format is used for storage of private keys. The
PKCS12 file is where the private key is stored.

Required Values

The valid path and PKCS12 file.

Note: SME supports only PKCS12-formatted private key storage files. Other formats can
be converted to PKCS12 by using Microsoft™ Internet Explorer or Netscape™
Navigator.

PassPhrase

Description

Specifies the PassPhrase (password) used to protect/access the PKCS12 file.

Chapter 4 Section 4.2
e*Way Connection Configuration Configuring e*Way Connections

Secure Messaging Extension User’s Guide 38 SeeBeyond Proprietary and Confidential

Required Values

A valid PassPhrase.

4.2.4 Sign
This section contains the following top level parameters:

! algorithm

! detached

! MessageFormat

! EncodingFormat

! PKCS12

! PassPhrase

Algorithm

Description

Specifies the signing algorithm, the algorithm used to sign the message.

Required Values

The appropriate algorithm type. One of two provided, RSA_MD5 or RSA_SHA1, as
defined in the following table.

The default is RSA_SHA1.

Detached

Description

Specifies whether the signature is separated from the original message.

Required Values

Yes or No. Yes detaches the signature.

MessageFormat

Description

Specifies the format used for encrypting the message.

Required Values

The appropriate encryption format. One of two provided: PKCS7 or SMIME2.

RSA_MD5 RSA_SHA1

Rivest-Shamir-Adelman (RSA). MD5 is a
message digest algorithm.

Rivest-Shamir-Adelman (RSA). Secure
Hash Algorithm1 (SHA1), an NIST FIPS 180-
1 standard message digest algorithm.

Chapter 4 Section 4.2
e*Way Connection Configuration Configuring e*Way Connections

Secure Messaging Extension User’s Guide 39 SeeBeyond Proprietary and Confidential

The default is SMIME2.

EncodingFormat

Description

Specifies the encoding format for the output message. This setting is only applied if
MessageFormat is set to SMIME2.

Required Values

The appropriate encoding format. One of two provided: Base64 or Binary.

The default is Base64.

PKCS12

Description

Specifies the PKCS12 file. The PKCS12 file is where the private key is stored.

Required Values

The valid path and PKCS12 file.

PassPhrase

Description

Specifies the PassPhrase (password) used to protect/access the PKCS12 file.

Required Values

A valid PassPhrase.

4.2.5 Verify
This section contains the following top level parameters:

! MessageFormat

! EncodingFormat

! Certificate

! format

MessageFormat

Description

Specifies the format used for encrypting the message.

Required Values

The appropriate encryption format. One of two provided: PKCS7 or SMIME2.

The default is SMIME2.

Chapter 4 Section 4.2
e*Way Connection Configuration Configuring e*Way Connections

Secure Messaging Extension User’s Guide 40 SeeBeyond Proprietary and Confidential

EncodingFormat

Description

Specifies the encoding format for the output message. This setting is only applied if
MessageFormat is set to SMIME2.

Required Values

The appropriate encoding format. One of two provided: Base64 or Binary.

The default is Base64.

Certificate

Description

Specifies the certificate used to verify the signed message. If not set, the certificate
attached to the signed message is used to verify the signed message.

Required Values

A valid certificate.

Format

Description

Specifies the certificate format.

Required Values

The appropriate certificate format. One of three provided: DER, PEM, or PK7. For more
information, see Table 4 on page 36.

The default is DER.

4.2.6 Certificate
This section contains the following top level parameters:

! Checking

! TrustedCA

! format

Checking

Description

Specifies the method used to assess trustworthiness of a certificate. Three options are
available for certificate trust checking:

! Direct: The certificate used in the program has been received through trusted
means. Or, the certificate’s authenticity has been directly verified with its owner
and should be trusted regardless of its issuer. The Direct option must be used for
self-signed certificates, and may be used for other, CA-issued certificates.

Chapter 4 Section 4.2
e*Way Connection Configuration Configuring e*Way Connections

Secure Messaging Extension User’s Guide 41 SeeBeyond Proprietary and Confidential

! CA: If this option is selected, only those certificates issued by one of the trusted CAs
can be used in the program. This option requires that one or more CA certificates be
specified under the TrustedCA parameter.

! CA_CRL: As with the CA option, only certificates issued by the trusted CAs are
allowed. In addition, certificates are verified against Certificate Revocation Lists
(CRLs). If selected, this requires that a CRL be configured (see Trusted CA below).

Required Values

The appropriate trust verification method. One of three options provided: DIRECT, CA,
or CA_CRL.

The default is CA.

TrustedCA

Description

Specifies the certificates belonging to the trusted CAs. Certificates entered here are used
to verify whether or not other certificates are to be trusted for use within the program.
Multiple CAs may be selected. This parameter is required if either CA or CA_CRL trust
checking method is chosen above.

Note: This parameter is not required if the Direct option is set for the Checking parameter.

Required Values

One or more trusted CA certificates.

Format

Description

Specifies the format of the CA’s certificate. If PK7 is selected, the end entity is regarded
as the CA’s Certificate.

Required Values

The appropriate certificate format. One of three provided: DER, PEM, or PK7. For more
information, see Table 4 on page 36.

The default is DER.

4.2.7 CRL
CRL is the acronym for Certificate Revocation List, a time stamped list identifying
revoked certificates. It is signed by a Certification Authority (CA) and made freely
available for download by HTTP in a public repository.

This section contains the following top level parameters:

! filename

! CACRLCertifciate

! CACRLformat

Chapter 4 Section 4.2
e*Way Connection Configuration Configuring e*Way Connections

Secure Messaging Extension User’s Guide 42 SeeBeyond Proprietary and Confidential

! CACertifciate

! format

Filename

Description

Specifies the file name of the stored CRL.

DER is the required format.

Required Values

The path and file name of the stored CRL.

CACRLCertificate

Description

Specifies the certificate of the CA that was used to sign the CRL.

Required Values

A valid certificate name.

CACRLformat

Specifies the format of the CA’s certificate. If PK7 is selected, the end entity is regarded
as the CA’s Certificate.

Required Values

The appropriate certificate format. One of three provided: DER, PEM, or PK7. For more
information, see Table 4 on page 36.

The default is DER.

CACertificate

Description

Specifies the certificate of the CA that was used to sign user's certificate. This certificate
is regarded as the trusted CA certificate. If it is the same as the one used to sign the
CRL, leave this parameter blank.

Required Values

A valid certificate name.

Format

Description

Specifies the format of the CA’s certificate. If PK7 is selected, the end entity is regarded
as the CA’s Certificate.

Chapter 4 Section 4.2
e*Way Connection Configuration Configuring e*Way Connections

Secure Messaging Extension User’s Guide 43 SeeBeyond Proprietary and Confidential

Required Values

The appropriate certificate format. One of three provided: DER, PEM, or PK7. For more
information, see Table 4 on page 36.

The default is DER.

Secure Messaging Extension User’s Guide 44 SeeBeyond Proprietary and Confidential

Chapter 5

ETD Structure

This chapter describes the structure of the SME ETD.

5.1 Understanding the Structure of the SME ETD
The SME Event Type Definition (ETD) exposes the APIs used in the e*Gate Java
Collaboration environment. There are two components to the SME ETD: the
smemessage.xsc file, which exposes the structures and methods, and the Java classes,
which implement those structures and methods.

The SME installation includes the file smemessage.xsc. This file represents an ETD to
use for encryption, decryption, signing, and verify. The following section describes the
SMEMessageApp ETD, as shown in Figure 10 on page 45.

Chapter 5 Section 5.1
ETD Structure Understanding the Structure of the SME ETD

Secure Messaging Extension User’s Guide 45 SeeBeyond Proprietary and Confidential

Figure 10 SMEMessageApp ETD in the ETD Editor

5.1.1 SMEMessageApp Root Node
SMEMessageApp is the root node and provides a graphical representation of the
interface. Expanding the node reveals all the methods and attributes on the interface,
which are themselves represented as nodes. A node representing a method is normally
expandable and reveals all the parameters for the method, as well as the return value (if
present).

Note: The SMEMessageApp ETD methods are described in detail in Chapter 7.

Chapter 5 Section 5.1
ETD Structure Understanding the Structure of the SME ETD

Secure Messaging Extension User’s Guide 46 SeeBeyond Proprietary and Confidential

Figure 11 shows a detailed close-up of the nodes and methods of the SMEMessageApp
ETD in the e*Gate Enterprise Manager ETD Editor Main dialog.

Figure 11 SMEMessagAppETD Nodes and Methods

Important: The Input field of the SMEMessageApp ETD must be set to the filename which
contains the message.

Fields that specify input
and output for the encrypt,
decrypt, sign, and verify
methods (as indicated by
the bracket).

This encrypt method does
not require input
parameters.

This encrypt method does
require input parameters.

These methods are not
specified by Input, Output,
or Signature fields.

These nodes support
dynamic configuration in
the ETD. The methods set
for these nodes will
override any static
configuration parameters
set in the e*Way
Connection for encryption,
decryption, signing, and
verifying.

Secure Messaging Extension User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 6

Implementation

This chapter summarizes the procedures required for implementing a working system
incorporating SME. It also provides instructions on creating sample schemas. The
sample schemas will enhance your understanding of how to implement SME in a
production environment.

The following assumptions apply to this implementation: 1) SME has been successfully
installed. 2) The executable and the configuration files have been appropriately
assigned. 3) All necessary .jar files are accessible.

See the e*Gate Integrator User’s Guide for additional information.

6.1 Overview
This chapter takes you through each step required to implement the SME sample
schemas. The sample schemas contain Collaborations, which link different data or
Event types and Intelligent Queues. Other e*Way types are also used as components of
the schemas.

The sample schemas can be used to test your system following installation and, if
appropriate, as a template that you can modify to produce your own schema.

6.1.1 Pre-Implementation Tasks
Installing SeeBeyond Software

The first task is to install the SeeBeyond software as described in Chapter 2.

Importing the Sample Schemas

To use the sample schemas supplied with the SME Add-on, the schema files must
be imported from the installation CD-ROM (see “Sample Schemas” on page 50).

Note: It is highly recommended that you make use of the sample schemas to familiarize
yourself with the operation of SME, test your system, and use as templates for your
working schemas.

Chapter 6 Section 6.1
Implementation Overview

Secure Messaging Extension User’s Guide 48 SeeBeyond Proprietary and Confidential

6.1.2 Implementation Sequence

6.1.3 Using the e*Gate Enterprise Manager

Note: The e*Gate Enterprise Manager GUI runs only on the Windows operating system.

This section provides an overview of the e*Gate Enterprise Manager. The general
features of the e*Gate Enterprise Manager dialog are shown in Figure 12. See the e*Gate
Integrator User’s Guide for a detailed description of the features and use of the Enterprise
Manager.

1 The first step is to create a new schema—the
subsequent steps apply only to this schema (see
Creating Schemas on page 50).

2 The second step is to define the Event Types you
are transporting and processing within the
schema (see Creating Event Types on page 51).

3 The third step is to create and configure the
required e*Ways (see Creating and Configuring
the e*Ways on page 52).

4 The fourth step is to configure the e*Way
Connections (see Creating the e*Way
Connection on page 57).

5 The fifth step is to create Intelligent Queues to
hold published Events (see Creating and
Modifying Intelligent Queues on page 59).

6 Next you need to define and configure the
Collaborations between Event Types (see
Creating Collaboration Rules on page 59).

7 Finally, test your schema. Once you have verified
that it is working correctly, you may deploy it to
your production environment.

Create
Intelligent Queues

Create & Configure
e*Way Connections

Define Event Types

Create Schema

Create & Configure
e*Ways

Test & Deploy

Generate Event Type
Definitions

Define & Configure
Collaborations

Chapter 6 Section 6.2
Implementation SME Sample Implementations

Secure Messaging Extension User’s Guide 49 SeeBeyond Proprietary and Confidential

Figure 12 e*Gate Enterprise Manager dialog (Components View)

Use the Navigator and Editor panes to view the e*Gate components. You may only
view components of a single schema at one time, and all operations apply only to the
current schema. All procedures in this chapter should be performed while displaying
the Components Navigator pane.

6.2 SME Sample Implementations
During installation, the host and Control Broker are automatically created and
configured. The default name of each is the name of the host on which you are
installing the e*Gate Enterprise Manager GUI. To complete the implementation of SME,
do the following:

! Make sure that the Control Broker is activated.

! In the e*Gate Enterprise Manager, define and configure the following as necessary:

" Inbound e*Way using stcewfile.exe

" Outbound e*Way using stcewfile.exe

" The Multi-Mode e*Way component as described in “Multi-Mode e*Way
Configuration” on page 52

" Event Type Definitions used to package the data to be exchanged with the
external system.

" Collaboration Rules to process Events.

" The e*Way Connection as described in Chapter 4.

" Collaborations, to be associated with each e*Way component, to apply the
required Collaboration Rules.

Editor
Pane

Navigator
Pane

Palette

Chapter 6 Section 6.2
Implementation SME Sample Implementations

Secure Messaging Extension User’s Guide 50 SeeBeyond Proprietary and Confidential

" The destination to which data will be published prior to being sent to the
external system.

Note: If you planning to customize the smeinputmsg.dtd file, you will need to use the
XML Tool Kit to convert the file to an .xml format. If you chose to use Customer
ETDs, do not use the included .xml formatted data as your input data.

The following sections describe how to define and associate each of the above
components.

6.2.1 Creating Schemas
A schema is the structure that defines e*Gate system parameters and the relationships
between components within the e*Gate system. Schemas can span multiple hosts.

All setup and configuration operations take place within an e*Gate schema. A new
schema must be created, or an existing one must be started before using the system.
Schemas store all their configuration parameters in the e*Gate Registry.

Sample Schemas

The sample schemas .zip files are provided for SME in the ..\samples\ewsme\..
directory on the Installation CD-ROM. Table 5 lists the filenames and purpose of each
sample.

For each of the sample schemas, the components are created when each schema is
imported. The only changes required are changes to the configuration parameters of the
e*Ways and e*Way Connections for your specific system. However, to help you learn
how to implement SME, the rest of this chapter describes how the sample components
are created manually.

The SMEstatic sample schema (SMEstatic.zip) is used as an example in all of the
following sections. This sample schema demonstrates static configuration, where the
parameters for encryption, decryption, signing, and verifying are set in the e*Way
Connection.

The SMEdynamic sample schema (SMEdynamic.zip) is similar to the SMEstatic
sample schema and contains all the same components. However, the SMEdynamic
schema demonstrates dynamic configuration, where the parameters for encryption,
decryption, signing, and verifying are set in the Collaboration Rules Editor.

Table 5 SME Sample Schemas

File name Purpose

SMEstatic.zip Demonstrates static configuration parameters, as set in the
e*Way Connection.

SMEdynamic.zip Demonstrates dynamic configuration parameters, as set in
the Collaboration ETD Editor.

Chapter 6 Section 6.2
Implementation SME Sample Implementations

Secure Messaging Extension User’s Guide 51 SeeBeyond Proprietary and Confidential

To implement the SMEdynamic sample schema, follow the same steps described in the
rest of this chapter and see “Dynamic Configuration in the Collaboration Rules
Editor” on page 71 for information specific to using dynamic configuration.

The following sections explain how the components for both of the SME sample
schemas are created.

To create a new schema

The first task in deploying the sample implementation is to create a new schema name.
While it is possible to use the default schema for the sample implementation, it is
recommended that you create a separate schema for testing purposes. After you install
SME, do the following:

1 Start the e*Gate Enterprise Manager GUI.

2 When the Enterprise Manager prompts you to log in, select the host that you
specified during installation, and enter your password.

3 You will then be prompted to select a schema, as shown in Figure 13. Click New.

Figure 13 Open Schema Dialog

4 Enter a name for the new schema. In this case, enter SMEdynamic, or any name as
desired.

5 To import the sample schema select Create from Export, and use Find to locate and
select the sample .zip file on the CD-ROM.

6 Click Open.

The e*Gate Enterprise Manager opens under your new schema. You are now ready to
begin creating the necessary components for this sample schema.

6.2.2 Creating Event Types
Within e*Gate, messages and/or packages of data are defined as Events. Each Event
must be categorized into a specific Event Type within the schema.

The SME installation includes the file smemessage.xsc which represents a standard
SME Event Type Definition template.

Chapter 6 Section 6.2
Implementation SME Sample Implementations

Secure Messaging Extension User’s Guide 52 SeeBeyond Proprietary and Confidential

As the name implies, an Event Type Definition (ETD) defines the structure of the Event
Types employed in your schema. Any one ETD can be associated with more than one
Event Type within the schema.

Creating an Event Type and Associating an Existing .xsc

For the purpose of this example, the following procedure shows how to associate an
Event Type with an existing .xsc file using smemessage.xsc. The smemessage.xsc
comes with SME and is used when creating all schemas.

1 Select the Event Types folder on the Components tab of the e*Gate Navigator.

2 On the palette, click Create a New Event Type.

3 Enter the name of the Event Type in the New Event Type Component dialog, then
click OK. (For this sample, the Event Type is defined as “smemessage”).

4 Double-click the new Event Type to edit its properties.

5 When the Properties dialog opens, click Find.

6 Browse to and select smemessage.xsc (provided as the default destination .xsc file).

7 Click Apply and OK to close the Event Type Properties dialog box.

6.2.3 Creating and Configuring the e*Ways
The first components to be created are the following e*Ways.

! “Creating the Inbound e*Way” on page 52

! “Creating the Outbound e*Way” on page 54

! “Creating the Multi-Mode e*Way (ew_java)” on page 55

The SMEstatic sample contains three e*Ways, two of which are pass-through (inbound
and outbound) and one Multi-Mode (ew_java).

The following sections provide instructions for creating each e*Way.

Creating the Inbound e*Way

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the e*Ways.

3 Select the Control Broker that will manage the new e*Ways.

4 On the palette, click Create a New e*Way.

5 Enter the name of the new e*Way (in this case “inbound”), then click OK.

6 Right-click the new e*Way and select Properties to edit its properties.

7 The e*Way Properties dialog opens, as shown in Figure 14.

Chapter 6 Section 6.2
Implementation SME Sample Implementations

Secure Messaging Extension User’s Guide 53 SeeBeyond Proprietary and Confidential

Figure 14 e*Way Properties - inbound

8 Click Find beneath the Executable File field, and select stcewfile.exe as the
executable file.

9 Under the Configuration File field, click New. The dialog opens. Select the settings
shown in Table 6 for this configuration file.

:

Table 6 Configuration Parameters for the Inbound e*Way

Parameter Value

General Settings (unless otherwise stated, leave settings as default)

AllowIncoming YES

AllowOutgoing NO

Outbound Settings Default

Poller Inbound Settings

PollDirectory C:\egate\client\data\input

InputFileExtension *.fin (input file extension)

PollMilliseconds 1000

Remove EOL YES

MultipleRecordsPerFile NO

MaxBytesPerLine 4096

BytesPerLineIsFixed NO

File Records Per eGate Event 1

Performance Testing Default

Chapter 6 Section 6.2
Implementation SME Sample Implementations

Secure Messaging Extension User’s Guide 54 SeeBeyond Proprietary and Confidential

10 After selecting the desired parameters, save the configuration file (as
“inbound.cfg”).

11 From the File menu, click Promote to Run Time. This closes the .cfg file.

12 In the e*Way - Properties dialog, use the Startup, Advanced, and Security tabs to
modify the default settings for each e*Way you configure.

A Use the Startup tab to specify whether the e*Way starts automatically, or restarts
after abnormal termination or due to scheduling, and so forth.

B Use the Advanced tab to specify or view the activity and error logging levels, as
well as the Event threshold information.

C Use Security to view or set privilege assignments.

13 Select OK to close the e*Way Properties dialog.

Creating the Outbound e*Way

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the e*Ways.

3 Select the Control Broker that will manage the new e*Ways.

4 On the palette, click Create a New e*Way.

5 Enter the name of the new e*Way (in this case “outbound”), then click OK.

6 Select the new e*Way, right-click and select Properties to edit its properties.

7 The e*Way Properties dialog opens, as shown in Figure 15.

Figure 15 e*Way Properties - outbound

Chapter 6 Section 6.2
Implementation SME Sample Implementations

Secure Messaging Extension User’s Guide 55 SeeBeyond Proprietary and Confidential

8 Click Find beneath the Executable File field. Select stcewfile.exe as the executable
file.

9 Under the Configuration File field, click New. The Edit Settings dialog opens.
Select the settings shown in Table 7 for this configuration file.

:

10 Save the .cfg file (outbound.cfg), and from the File menu, click Promote to Run
Time to close the Edit Settings dialog.

11 In the e*Way - Properties dialog, use the Startup, Advanced, and Security tabs to
modify the default settings for the e*Way.

12 Use Security to view or set privilege assignments.

13 Click OK to close the e*Way Properties dialog.

Creating the Multi-Mode e*Way (ew_java)

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the e*Way.

3 Select the Control Broker that will manage the new e*Way.

4 On the palette, click Create a New e*Way.

5 Enter the name of the new e*Way (in this case, “ew_java”), then click OK.

6 Right-click the new e*Way and select Properties to edit its properties.

7 The e*Way Properties dialog opens, as shown in Figure 16.

Table 7 Configuration Parameters for the Outbound e*Way

Parameter Value

General Settings (unless otherwise stated, leave settings as default)

AllowIncoming NO

AllowOutgoing YES

Outbound Settings

OutputDirectory C:\egate\client\data\output

OutputFileName output%d.dat

MultipleRecordsPerFile NO

MaxRecordsPerFile 10000

AddEOL YES

Poller Inbound Settings Default

Performance Testing Default

Chapter 6 Section 6.2
Implementation SME Sample Implementations

Secure Messaging Extension User’s Guide 56 SeeBeyond Proprietary and Confidential

Figure 16 e*Way Properties - ew_java

8 Click Find beneath the Executable File field, and select stceway.exe as the
executable file.

9 To edit the JVM Settings, select New (or Edit if you are editing the existing .cfg file)
under Configuration file.

Table 8 lists the parameters and values for the Multi-Mode e*Way. See “Multi-Mode
e*Way Configuration” on page 15 for details on the parameters associated with the
Multi-Mode e*Way.
:

10 Save the .cfg file (mux_ew.cfg), and from the File menu, click Promote to Run
Time.

11 In the e*Way Properties dialog, use the Startup, Advanced, and Security tabs to
modify the default settings for each.

Table 8 Configuration Parameters for the Multi-Mode e*Way

Parameter Value

JVM Settings (unless otherwise stated, leave settings as default)

JNI DLL absolute
pathname

C:\eGate\client\bin\Jre\jvm.dll (or absolute path to proper JNI DLL)

CLASSPATH
Prepend

C:\eGate\client\classes\stcsme.jar
C:\eGate\client\classes\ThirdParty\baltimore\classes\smime.jar
C:\eGate\client\classesThirdParty\baltimore\classes\KeyToolsPro_All_1.2.jar
(or absolute path to stcsme.jar, smime.jar, and KeyToolsPro_All1.2.jar)

Chapter 6 Section 6.2
Implementation SME Sample Implementations

Secure Messaging Extension User’s Guide 57 SeeBeyond Proprietary and Confidential

A Use the Startup tab to specify whether the e*Way starts automatically, restarts
after abnormal termination or due to scheduling, etc.

B Use the Advanced tab to specify or view the activity and error logging levels, as
well as the Event threshold information.

C Use Security to view or set privilege assignments.

12 Click OK to close e*Way Properties dialog.

For more information on the Multi-Mode e*Way configuration settings see the e*Gate
Integrator User’s Guide.

6.2.4. Creating the e*Way Connection
The e*Way Connection configuration file contains the connection information along
with the information needed to communicate using SME.

To create and configure a new e*Way Connection

1 Select the e*Way Connection folder on the Components tab of the e*Gate
Navigator.

2 On the palette, click Create a New e*Way Connection.

3 Enter the name of the e*Way Connection (for this sample, “con_sme”), then click
OK.

4 Double-click the new e*Way Connection to edit its properties.

5 The e*Way Connection Properties dialog opens. Select SME from the e*Way
Connection Type drop-down menu.

6 Enter the Event Type “get” interval in the dialog box provided. 10000 milliseconds
is the configured default. The “get interval is the intervening period at which, when
subscribed to, the e*Way Connection is polled.

7 Under e*Way Connection Configuration File, click New.

8 The e*Way Connection Editor opens. Select the following parameters listed in Table
9. For more information on SME Connection parameters, see “e*Way Connection
Configuration” on page 27.

Table 9 e*Way Connection Configuration Parameters

Parameter Value

connector (unless otherwise stated, leave settings as default)

type SME

class com.stc.eway.SMEClientConnector

encrypt

Certificate C:\egate\client\certs\seebeyond-test-user-2-
cert.der

format DER

algorithm DES_EDE3_CBC

Chapter 6 Section 6.2
Implementation SME Sample Implementations

Secure Messaging Extension User’s Guide 58 SeeBeyond Proprietary and Confidential

9 Save the .cfg file (con_sme.cfg)and click File, Promote to Run Time.

MessageFormat SMIME2

EncodingFormat BASE64

decrypt

MessageFormat SMIME2

EncodingFormat BASE64

PKCS12 C:\egate\client\keys\seebeyond-test-user-2-
3des.p12

PassPhrase ****

sign

algorithm RSA_SHA1

detached YES

MessageFormat SMIME2

EncodingFormat BASE64

PKCS12 C:\egate\client\keys\seebeyond-test-user-1-
3des.p12

PassPhrase ****

verify

MessageFormat SMIM2

EncodingFormat BASE64

Certificate C:\egate\client\certs\seebeyond-test-user-1-
cert.der

format DER

Certificate

Checking CA

TrustedCA C:\egate\client\certs\CA\stc-test-ca.cer

format PEM

CRL

filename

CACRLCertificate

CACRLformat DER

CACertificate

format DER

Table 9 e*Way Connection Configuration Parameters

Parameter Value

Chapter 6 Section 6.2
Implementation SME Sample Implementations

Secure Messaging Extension User’s Guide 59 SeeBeyond Proprietary and Confidential

6.2.5 Creating and Modifying Intelligent Queues
The next step is to create and modify Intelligent Queues (IQs). IQs manage the
exchange of information between components within the e*Gate system, providing
non-volatile storage for data as it passes from one component to another.

IQs use IQ Services to transport data. IQ Services provide the mechanism for moving
Events between IQs, handling the low-level implementation of data exchange (such as
system calls to initialize or reorganize a database).

For more information on how to add and configure IQs and IQ Managers, see the e*Gate
Integrator System Administration and Operations Guide.

To create and modify an Intelligent Queue for SME

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the IQ.

3 Open a Control Broker.

4 Select an IQ Manager.

5 On the palette, click Create a New IQ.

6 Enter the name of the new IQ (in this case iq1), then click OK.

7 Double-click the new IQ to edit its properties.

8 On the General tab, specify the Service and the Event Type Get Interval.

The SeeBeyond Standard IQ Service provides sufficient functionality for most
applications. If specialized services are required, custom IQ Service DLLs may be
created.

The default Event Type Get Interval of 100 Milliseconds is satisfactory for the
purposes of this initial implementation.

9 On the Advanced tab, make sure that Simple publish/subscribe is checked under
the IQ behavior section.

10 Click OK to close the IQ Properties dialog

11 For this schema, repeat steps 1 through 10 to create an additional IQ (iq2).

6.2.6 Creating Collaboration Rules
The next step is to create the Collaboration Rules that will extract and process selected
information from the source Event Type defined above, according to its associated
Collaboration Service.

To create Collaboration Rules files

1 From the Enterprise Manager Task Bar, select Options and click Default Editor.

2 Though the Default Editor can be set to either Monk or Java, the default should be
set to Java.

3 The sample schema requires creating three Collaboration Rules files:

" Passin (Pass Through)

Chapter 6 Section 6.2
Implementation SME Sample Implementations

Secure Messaging Extension User’s Guide 60 SeeBeyond Proprietary and Confidential

" Passout (Pass Through)

" cor_java (Java)

Pass Through (inbound)

1 Select the Navigator's Components tab in the e*Gate Enterprise Manager.

2 In the Navigator, select the Collaboration Rules folder.

3 On the palette, click Create New Collaboration Rules.

4 Enter the name of the new Collaboration Rule Component, then click OK (for this
case, use Passin).

5 Double-click the new Collaboration Rules Component. The Collaboration Rules
Properties dialog appears, as shown in Figure 17.

Figure 17 Collaboration Properties

6 The Service field defaults to Pass Through.

7 Go to the Subscriptions tab. Select input under Available Input Event Types, and
click the right arrow to move it to Selected Input Event Types. The box under
Triggering Event should be selected.

8 Go to the Publications tab. Select input under Available Output Event Types, and
click the right arrow to move it to Selected Output Event Types. The Option button
under Default is enabled.

9 Click OK to close the Collaboration Rules - passin Properties dialog.

Pass Through (outbound)

1 Select the Navigator's Components tab in the e*Gate Enterprise Manager.

Chapter 6 Section 6.2
Implementation SME Sample Implementations

Secure Messaging Extension User’s Guide 61 SeeBeyond Proprietary and Confidential

2 In the Navigator, select the Collaboration Rules folder.

3 On the palette, click Create New Collaboration Rules.

4 Enter the name of the new Collaboration Rule Component, then click OK (for this
case, use Passout).

5 Double-click the new Collaboration Rules Component. The Collaboration Rules
Properties dialog opens.

6 The Service field defaults to Pass Through.

7 Go to the Subscriptions tab. Select outevent under Available Input Event Types,
and click the right arrow to move it to Selected Input Event Types. The box under
Triggering Event should be selected.

8 Go to the Publications tab. Select outevent under Available Output Event Types,
and click the right arrow to move it to Selected Output Event Types. The Option
button under Default is enabled.

9 Click OK to close the Collaboration Rules - passin Properties dialog.

10 Click OK to close the Collaboration Properties dialog.

Java (cor_java)

1 Select the Navigator's Components tab in the e*Gate Enterprise Manager.

2 In the Navigator, select the Collaboration Rules folder.

3 On the palette, click Create New Collaboration Rules.

4 Enter the name of the new Collaboration Rule, then click OK (for this case, use
cor_java).

5 Double-click the new Collaboration Rules Component to edit its properties. The
Collaboration Rules Properties dialog opens.

6 From the Service field drop-down box, select Java. The Collaboration Mapping tab
is now enabled, and the Subscriptions and Publications tabs are disabled.

7 In the Initialization string box, enter any required initialization string that the
Collaboration Service may require. This field can be left blank.

8 Select the Collaboration Mapping tab, as shown in Figure 18.

Chapter 6 Section 6.2
Implementation SME Sample Implementations

Secure Messaging Extension User’s Guide 62 SeeBeyond Proprietary and Confidential

Figure 18 Collaboration Rules - Collaboration Mapping Properties

9 Using the Add Instance button, create instances to coincide with the Event Types.

For this sample, do the following:

10 In the Instance Name column, enter in1 for the instance name.

11 Click Find, navigate to etd\inputmsg.xsc, double-click to select.

inputmsg.xsc is added to the ETD column of the instance row.

12 In the Mode column, select In from the drop–down menu available.

13 In the Trigger column, select the box to enable trigger mechanism.

14 Repeat steps 9–13 using the following values:

" Instance Name — out1

" ETD — outevent.xsc

" Mode — Out

" Trigger — do not select

15 Repeat steps 9–13 again using the following values:

" Instance Name — out

" ETD — smemessage.xsc

" Mode — Out

" Trigger — do not select

Select the General tab, under the Collaboration Rule box, select New. The
Collaboration Rules Editor opens.

16 Expand to full size for optimum viewing, expanding the Source and Destination
Events as well.

Chapter 6 Section 6.2
Implementation SME Sample Implementations

Secure Messaging Extension User’s Guide 63 SeeBeyond Proprietary and Confidential

The following section describes the setting up the collaboration rules for SME using the
Java Collaboration Rules Editor.

Creating the Collaboration Rules Class

Java Collaborations are defined using the e*Gate Java Collaboration Rules Editor. The
file extension for Java Collaboration Rules is .xpr. See the e*Gate Integrator User’s Guide
for descriptions of the Java Collaboration Rules Editor and its use.

Note: The Java Collaboration environment supports multiple source and destination
ETDs.

This section provides an example of how to create the Collaboration Rules Class using
the Java Collaboration Rules Editor. The completed Collaboration Rules .xpr file is
included with the sample schema on the CD. The following section gives a number of
examples that demonstrate how these rules were setup. Refer to the completed class,
SME.class when completing the Collaboration Rules Properties.

Creating Business Rules for the Sample Schema using the Collaboration Rules Editor

cor_java

Each rule is created by clicking the rule button on the Business Rules toolbar or by
dragging and dropping an object from the Source Events pane to an object in the
Destination Events pane. Descriptions are added by typing the desired description in
the Description field of the Properties dialog.

The cor_java Collaboration Rules, shown in Figure 19 on page 64, are created as
follows:

1 When the Collaboration Rules Editor opens maximize the dialog and expand the
Source Events and Destination Events command nodes to display available nodes
and methods.

2 Select retBoolean in the Business Rules pane of the Collaboration Rules Editor. All
of the user–defined business rules are added as part of this method.

3 Select InputFile from the Source Events pane. Drag and drop onto Input in the
Destination Events pane. A connecting line appears between the properties objects.

4 In the Business Rules pane, a rule expression appears, with the properties of that
rule displayed in the Rule Properties pane.

5 Select OutputFile from the Source Events pane. Drag and drop onto Output in the
Destination Events pane.

6 Select Signature from the Source Events pane. Drag and drop onto Signature in the
Destination Events pane.

Chapter 6 Section 6.2
Implementation SME Sample Implementations

Secure Messaging Extension User’s Guide 64 SeeBeyond Proprietary and Confidential

Figure 19 Collaboration Rules Editor— cor_java

7 From the Collaboration Rules Editor toolbar, click on rule. This places a rule
“space” in the Business Rules pane, to which the user can add the Java expression.
A rule space is now available under retBoolean in the Business Rules dialog. Select
the new rule.

8 Choose the appropriate method (encrypt/sign/verify/decrypt) by dragging it to
the Rule panel. This enters the Java code in the Rule Properties, Rules dialog.

For example, to add an encryption rule, from the Destination Event:

getout1().setData(new String(getout().encrypt()))

9 When the Collaboration Rules are completed, from the File menu, click Compile to
compile the new collaboration.

10 Before compiling the code, from the Tools menu, click Options.

11 Verify that all necessary .jar files are included. Add stcsme.jar (see Figure 20).

Chapter 6 Section 6.2
Implementation SME Sample Implementations

Secure Messaging Extension User’s Guide 65 SeeBeyond Proprietary and Confidential

Figure 20 Business Rules

12 When all the business logic has been defined, the code can be compiled by selecting
Compile from the File menu. The Save dialog appears, provide a name for the .xpr
file. For the sample, use cor_java.xpr.

13 Click Promote to promote to runtime.

Important: This is not a complete Collaboration, but an example of how the various components
of the collaboration are setup. For the sample schema, select cor_java.class in the
Collaboration Rules - cor_java Client Properties dialog box to use the completed
cor_java xpr file. For further information on using the Collaboration Rules Editor
see the e*Gate Integrator User’s Guide.

6.2.7 Creating the Sample Schema Collaborations
Collaborations are the components that receive and process Event Types and forward
the output to other e*Gate components or to an external system. Collaborations consist
of the Subscriber, which “listens” for Events of a known type (sometimes from a given
source) and the Publisher, which distributes the transformed Event to a specified
recipient. The same Collaboration cannot be assigned to more than one e*Gate
component.

To create the SME_Multi_Mode Collaboration

1 In the e*Gate Enterprise Manager, select the Navigator's Components tab.

2 Open the host on which you want to create the Collaboration.

Chapter 6 Section 6.2
Implementation SME Sample Implementations

Secure Messaging Extension User’s Guide 66 SeeBeyond Proprietary and Confidential

3 Select a Control Broker.

4 Select the ew_java e*Way to assign the Collaboration.

5 On the palette, click Create a New Collaboration.

6 Enter the name of the new Collaboration, then click OK. (For the sample,
“cl_java”.)

7 Double click the new Collaboration to edit its properties.

8 From the Collaboration Rules list, select the Collaboration Rules file that you
created previously. (For the sample, “cor_java”.)

9 In the Subscriptions area, click Add to define the input Event Types to which this
Collaboration will subscribe.

A From the Instance Name list, select the Instance Name that you previously
defined in1.

B From the Event Type list, select the Event Type that you previously defined
(input).

C Select the Source from the Source list. In this case, it should be cl_inbound.

10 In the Publications area, click Add to define the output Event Types that this
Collaboration will publish.

A From the Instance Name list, select the Instance Name that you previously
defined out1.

B From the Event Types list, select the Event Type that you previously defined
(outevent).

C Select the publication destination from the Destination list. In this case, it
should be iq2.

11 In the Publications area, click Add again to define the output Event Types that this
Collaboration will publish.

A From the Instance Name list, select the Instance Name that you previously
defined out.

B From the Event Types list, select the Event Type that you previously defined
(smemessage).

C Select the publication destination from the Destination list. In this case, it
should be con_sme.

The Collaboration for the ew_java e*Way appears as follows when complete (see Figure
21 on page 67).

Chapter 6 Section 6.2
Implementation SME Sample Implementations

Secure Messaging Extension User’s Guide 67 SeeBeyond Proprietary and Confidential

Figure 21 Collaboration Properties

12 Click OK to exit.

To create the Inbound_eWay Collaboration

1 In the e*Gate Enterprise Manager, select the Navigator's Components tab.

2 Open the host on which you want to create the Collaboration.

3 Select a Control Broker.

4 Select the inbound e*Way to assign the Collaboration.

5 On the palette, click Create a New Collaboration.

6 Enter the name of the new Collaboration, then click OK. (For the sample, “Passin”.)

7 Double-click the new Collaboration to edit its properties.

8 From the Collaboration Rules list, select the Collaboration Rules file that you
created previously. (For the sample, “Passin”.)

9 In the Subscriptions area, click Add to define the input Event Types to which this
Collaboration will subscribe.

A From the Event Type list, select the Event Type that you previously defined
(input).

B Select the Source from the Source list. In this case, it should be <External>.

10 In the Publications area, click Add to define the output Event Types that this
Collaboration will publish.

Chapter 6 Section 6.3
Implementation Creating and Executing the Sample Schemas

Secure Messaging Extension User’s Guide 68 SeeBeyond Proprietary and Confidential

A From the Event Types list, select the Event Type that you previously defined
(input).

B Select the publication destination from the Destination list. In this case, it
should be iq1.

11 Click Apply and click OK to close the Collaboration Properties dialog box.

To create the Outbound_eWay Collaboration

1 In the e*Gate Enterprise Manager, select the Navigator's Components tab.

2 Open the host on which you want to create the Collaboration.

3 Select a Control Broker.

4 Select the Outbound_eWay to assign the Collaboration.

5 On the palette, click Create a New Collaboration.

6 Enter the name of the new Collaboration, then click OK. (For the sample,
“Passout”.)

7 Double-click the new Collaboration to edit its properties.

8 From the Collaboration Rules list, select the Collaboration Rules file that you
created previously. (For the sample, “Passout”.)

9 In the Subscriptions area, click Add to define the input Event Types to which this
Collaboration will subscribe.

A From the Event Type list, select the Event Type that you previously defined
(outevent).

B Select the Source from the Source list. In this case, it should be cl_java.

10 In the Publications area, click Add to define the output Event Types that this
Collaboration will publish.

A From the Event Types list, select the Event Type that you previously defined
(outevent).

B Select the publication destination from the Destination list. In this case, it
should be <External>.

11 Click Apply and click OK to close the Collaboration Properties dialog box.

6.3 Creating and Executing the Sample Schemas

6.3.1 SMEstatic Sample Schema
The previous sections provided the basics for implementing SME. This section
describes how to use SME within the SMEstatic sample schema using static
configuration. For a description of how the sample schema’s components are created in
dynamic configuration, see “Dynamic Configuration in the Collaboration Rules
Editor” on page 71.

Chapter 6 Section 6.3
Implementation Creating and Executing the Sample Schemas

Secure Messaging Extension User’s Guide 69 SeeBeyond Proprietary and Confidential

Note: It is assumed that SME has been installed properly, and that all of the necessary files
and scripts are located in the default location.

The SMEstatic sample uses the smemessage.xsc Event Type Definition (ETD), created
using the Custom ETD Wizard. For more information on creating Event Types and
ETDs see “Creating Event Types” on page 51.

The structure of the ETD used in this sample is shown as it appears in the ETD editor in
“Understanding the Structure of the SME ETD” on page 44.

! The inputmsg.xsc is an input message that is published to an inbound Intelligent
Queue.

! The smemessage.xsc assigns the functionality to encrypt, decrypt, sign, and verify
the input message.

! The outevent.xsc outputs a message that is published by the outbound e*Way.

This implementation consists of two file-based e*Ways, one Multi-Mode e*Way, three
Event Types, three Collaboration Rules, two Intelligent Queues and three
Collaborations, as follows:

! inbound - This e*Way receives input from an external source, apply pass through
Collaboration Rules, and publish the information to an Intelligent Queue.

! ew_java - This Multi-Mode e*Way applies extended Java Collaboration Rules to an
inbound Event to perform the desired business logic, in this case encryption and
decryption.

! outbound - This e*Way receives information from the Multi-Mode e*Way and
publish to the external system.

! smemessage - This Event Type contains the methods to be used to perform the
necessary transformation.

! input - This Event Type describes an Event that is input to the extended Java
Collaboration Service.

! outevent - This Event Type describes an Event that contains the transformed data.

! passin - This Collaboration Rule is associated with the inbound e*Way, and is used
for receiving the input Event.

! cor_java - The Collaboration Rule is associated with the ew_java Multi-Mode e*Way,
and is used to perform the transformation process.

! passout - This Collaboration Rule is associated with the outbound e*Way, and is used
to send the Event to an external file.

! iq1 - This Intelligent Queue is a STC_Standard IQ, and forwards data to the ew_java
Multi-Mode e*Way.

! iq2 - This Intelligent Queue is a STC_Standard IQ, and forwards data to the
outbound e*Way.

Chapter 6 Section 6.3
Implementation Creating and Executing the Sample Schemas

Secure Messaging Extension User’s Guide 70 SeeBeyond Proprietary and Confidential

Executing the SMEstatic Sample Schema

To execute the SME sample schema, do the following:

1 After configuring all of the e*Way components associated with the sample, start the
schema from the command line prompt, and enter the following:

stccb -ln localhost_cb -rh localhost -rs <schema name>-un
Administrator -up <password>

Substitute hostname, username, schema name, and user password as appropriate.

2 Exit from the command line prompt, and start the e*Gate Monitor GUI.

3 Start the component e*Ways (ew_java, inbound and outbound).

4 When prompted, specify the hostname which contains the Control Broker you
started in Step 1 above.

5 Select the SME schema.

6 After you verify that the Control Broker is connected (the message in the Control
tab of the console will indicate command succeeded and status as up), highlight the
IQ Manager, hostname_igmgr, then right-click, and select Start.

7 Highlight each of the e*Ways, right-click the mouse, and select Start.

8 To view the output, copy the output file (specified in the Outbound_eWay
configuration file). Save to a convenient location, open.

Note: While the schema is running, opening the destination file causes errors.

6.3.2 SMEdynamic Sample Schema
The previous sections provided the basics for implementing SME. This section
describes how to use SME within the SMEdynamic schema using dynamic
configuration.

To implement the SMEdynamic schema, follow all the same steps in this chapter,
substituting the name of the schema when appropriate (SMEdynamic should replace
SME). Refer to “Dynamic Configuration in the Collaboration Rules Editor” on
page 71 for a description of how the SMEdynamic schema’s components are created
using dynamic configuration.

Note: It is assumed that SME has been installed properly, and that all of the necessary files
and scripts are located in the default location.

The SMEdynamic uses the smemessage.xsc Event Type Definition (ETD), created using
the Custom ETD Wizard. For more information on creating Event Types and ETDs see
“Creating Event Types” on page 51.

The structure of the ETD used in this sample is shown as it appears in the ETD editor in
“Understanding the Structure of the SME ETD” on page 44.

! The inputmsg.xsc is an input message.

Chapter 6 Section 6.3
Implementation Creating and Executing the Sample Schemas

Secure Messaging Extension User’s Guide 71 SeeBeyond Proprietary and Confidential

! The smemessage.xsc assigns the functionality to encrypt, decrypt, sign, and verify
the input message.

! The outevent.xsc outputs a message that is published by the outbound e*Way.

Note: It is assumed that SME has been installed properly, and that all of the necessary files
and scripts are located in the default location.

Like the SME sample, the implementation of the SMEdynamic schema consists of two
file-based e*Ways, one Multi-Mode e*Way, three Event Types, three Collaboration
Rules, two Intelligent Queues and three Collaborations, as follows:

! inbound - This e*Way receives input from an external source, apply pass through
Collaboration Rules, and publish the information to an Intelligent Queue.

! ew_java - This Multi-Mode e*Way applies extended Java Collaboration Rules to an
inbound Event to perform the desired business logic, in this case encryption and
decryption.

! outbound - This e*Way receives information from the Multi-Mode e*Way and
publish to the external system.

! smemessage - This Event Type contains the methods to be used to perform the
necessary transformation.

! input - This Event Type describes an Event that is input to the extended Java
Collaboration Service.

! outevent - This Event Type describes an Event that contains the transformed data.

! passin - This Collaboration Rule is associated with the inbound e*Way, and is used
for receiving the input Event.

! cor_java - The Collaboration Rule is associated with the ew_java Multi-Mode e*Way,
and is used to perform the transformation process.

! passout - This Collaboration Rule is associated with the outbound e*Way, and is used
to send the Event to an external file.

! iq1 - This Intelligent Queue is a STC_Standard IQ, and forwards data to the ew_java
Multi-Mode e*Way.

! iq2 - This Intelligent Queue is a STC_Standard IQ, and forwards data to the
outbound e*Way.

Dynamic Configuration in the Collaboration Rules Editor

The SMEdynamic schema configuration parameters were created using the
Collaboration Rules Editor. As discussed in “SMEMessageApp Root Node” on
page 45, the following nodes support dynamic configuration:

" EncryptObject

" DecryptObject

" SignObject

" VerifyObject

Chapter 6 Section 6.3
Implementation Creating and Executing the Sample Schemas

Secure Messaging Extension User’s Guide 72 SeeBeyond Proprietary and Confidential

When creating business rules in the Collaboration Rules Editor, be aware that the
methods set for these nodes will override any static configuration parameters set in the
e*Way Connection for encryption, decryption, signing, and verifying. Figure 22 shows
the nodes that support dynamic configuration in the Collaboration Rules Editor.

Figure 22 Collaboration Rules Editor— Dynamic Configuration Nodes

Executing the SMEdynamic Sample Schema

Once you have completed all the steps to manually create the SMEdynamic sample
schema, you will then execute the schema.

To execute the SMEdynamic schema

1 After configuring all of the e*Way components associated with the sample, start the
schema from the command line prompt, and enter the following:

stccb -ln localhost_cb -rh localhost -rs <schema name>-un
Administrator -up <password>

Substitute hostname, username, schema name, and user password as appropriate.

2 Exit from the command line prompt, and start the e*Gate Monitor GUI.

3 Start the component e*Ways (ew_java, inbound and outbound).

4 When prompted, specify the hostname which contains the Control Broker you
started in Step 1 above.

The methods set for these
nodes will override any
static configuration
parameters set in the
e*Way Connection for
encryption, decryption,
signing, and verifying.

Chapter 6 Section 6.3
Implementation Creating and Executing the Sample Schemas

Secure Messaging Extension User’s Guide 73 SeeBeyond Proprietary and Confidential

5 Select the SME schema.

6 After you verify that the Control Broker is connected (the message in the Control
tab of the console will indicate command succeeded and status as up), highlight the
IQ Manager, hostname_igmgr, then right-click, and select Start.

7 Highlight each of the e*Ways, right-click the mouse, and select Start.

8 To view the output, copy the output file (specified in the Outbound_eWay
configuration file). Save to a convenient location, open.

Note: While the schema is running, opening the destination file causes errors.

Secure Messaging Extension User’s Guide 74 SeeBeyond Proprietary and Confidential

Chapter 7

Secure Messaging Extension Methods

This chapter explains the Java class and methods contained in Secure Messaging
Extension.

7.1 SME Methods: Overview
Using Java Methods

SME contains Java methods that are used to extend functionality. Java methods make it
easy to set information in the SME Event Type Definition (ETD), as well as to get
information from it. The nature of this data transfer corresponds to either setting the
connection parameters in the e*Gate Enterprise Manager’s e*Way Editor (known as
static configuration), or setting the configuration parameters with methods in the SME
Collaboration Editor (known as dynamic configuration).

The Enterprise Manager’s Collaboration Rules Editor allows you to call Java methods
by dragging and dropping an ETD node into the Rules dialog box.

After you drag and drop, the actual conversion takes place in the smemessage.xsc file.
To view the smemessage.xsc file, use the Enterprise Manager’s ETD Editor and
Collaboration Rules Editor. See Chapter 5 for more information.

Note: Node names can be different from Java method names.

7.2 SMEMessage Methods Used with Static Configuration
Some of the methods in this section are used only when the configuration parameters
are set in the e*Way Editor (static configuration). For more information, see
“Configuring e*Way Connections” on page 32. The following methods of the
SMEMessage class are found in the com.stc.sme.eways package:

Methods of the SMEMessage Class

These methods are described in detail on the following pages:

base64Decode on page 75 decrypt on page 77

Chapter 7 Section 7.2
Secure Messaging Extension Methods SMEMessage Methods Used with Static Configuration

Secure Messaging Extension User’s Guide 75 SeeBeyond Proprietary and Confidential

base64Decode

Description

base64Decode is used obtain the base64 decoded result of the input message.

Syntax

public byte[] base64Decode(byte[] input)

Parameters

Return Values

byte array
Returns the signed message if successful.

Throws

com.stc.sme.exception.SMEException, indicating an error occurred during the signing
process.

base64Encode

Description

base64Encode is used obtain the base64 encoded result of the input message.

Syntax

public byte[] base64Encode(byte[] input)

Parameters

Return Values

byte array
Returns the signed message if successful.

base64Encode on page 75 sign on page 78

encrypt on page 76 verify on page 79

encrypt on page 76 verify on page 80

Parameter name Type Description

input byte array byte array of the message.

Parameter name Type Description

input byte array byte array of the message.

Chapter 7 Section 7.2
Secure Messaging Extension Methods SMEMessage Methods Used with Static Configuration

Secure Messaging Extension User’s Guide 76 SeeBeyond Proprietary and Confidential

Throws

com.stc.sme.exception.SMEException, indicating an error occurred during the signing
process.

encrypt

Description

encrypt is used to encrypt the message for the specified recipients. The input field of
SMEMessageAPP ETD needs to be set to the filename which contains the message.

Syntax

public byte[] encrypt()

Parameters

None.

Return Values

byte array
Returns an encrypted message, if successful.

Throws

com.stc.sme.exception.SMEException, indicating an error occurred during the
encryption process.

encrypt

Description

encrypt is used to encrypt the message for the specified recipients.

Syntax

public byte[] encrypt(byte[] input)

Parameters

Return Values

byte array
Returns an encrypted message if successful.

Throws

com.stc.sme.exception.SMEException, indicating an error occurred during the
encryption process.

Parameter name Type Description

input byte array The original message for encryption.

Chapter 7 Section 7.2
Secure Messaging Extension Methods SMEMessage Methods Used with Static Configuration

Secure Messaging Extension User’s Guide 77 SeeBeyond Proprietary and Confidential

decrypt

Description

decrypt is used to decrypt the encrypted input message. The input field of
SMEMessageAPP ETD needs to be set to the filename which contains the message.

Syntax

public byte[] decrypt()

Parameters

None.

Return Values

byte array
Returns the original message if successful.

Throws

com.stc.sme.exception.SMEException, indicating an error occurred during the
decryption process.

decrypt

Description

decrypt is used to decrypt the encrypted input message.

Syntax

public byte[] decrypt(byte[] input)

Parameters

Return Values

byte array
Returns the original message if successful.

Throws

com.stc.sme.exception.SMEException, indicating an error occurred during the
decryption process.

getMD5Hash

Description

getMD5Hash is used obtain the hash code of the input message using MD5.

Parameter name Type Description

input byte array The encrypted message.

Chapter 7 Section 7.2
Secure Messaging Extension Methods SMEMessage Methods Used with Static Configuration

Secure Messaging Extension User’s Guide 78 SeeBeyond Proprietary and Confidential

Syntax

public byte[] getMD5Hash(byte[] input)

Parameters

Return Values

byte array
Returns the signed message if successful.

Throws

com.stc.sme.exception.SMEException, indicating an error occurred during the signing
process.

getSHA1Hash

Description

getSHA1Hash is used obtain the hash code of the input message using SH1.

Syntax

public byte[] getSHA1Hash(byte[] input)

Parameters

Return Values

byte array
Returns the signed message if successful.

Throws

com.stc.sme.exception.SMEException, indicating an error occurred during the signing
process.

sign

Description

sign is used to sign a message with a detached or inline signature. The input field of
SMEMessageAPP ETD needs to be set to the filename which contains the message.

Syntax

public byte[] sign()

Parameter name Type Description

input byte array byte array of the message.

Parameter name Type Description

input byte array byte array of the message.

Chapter 7 Section 7.2
Secure Messaging Extension Methods SMEMessage Methods Used with Static Configuration

Secure Messaging Extension User’s Guide 79 SeeBeyond Proprietary and Confidential

Parameters

None.

Return Values

byte array
Returns the signed message if successful.

Throws

com.stc.sme.exception.SMEException, indicating an error occurred during the signing
process.

sign

Description

sign is used to sign a message with a detached or inline signature.

Syntax

public byte[] sign(byte[] input clearSign)

Parameters

Return Values

byte array
Returns the signed message if successful.

Throws

com.stc.sme.exception.SMEException, indicating an error occurred during the signing
process.

verify

Description

verify is used to verify the signed message and return the original message, provided
the signed message is verified. The content of the specified input field is used as the
byte array message that needs to be authenticated, if the message is in SMIME2 format
or in PKCS7 format with inline signature.

If the message to be verified is in PKCS7 format, and has a detached signature, the
input field is used to indicate the file that contains the original message, and the
Signature field is used to indicate that the file contains the detached signature.

Parameter name Type Description

input byte array The message used for signing.

clearSign boolean If true, signature is a detached signature.
If false, signature is an inline signature.

Chapter 7 Section 7.2
Secure Messaging Extension Methods SMEMessage Methods Used with Static Configuration

Secure Messaging Extension User’s Guide 80 SeeBeyond Proprietary and Confidential

Syntax

public byte[] verify()

Parameters

None.

Return Values

byte array
Returns the original message if successful.

Throws

com.stc.sme.exception.SMEException, indicating an error occurred during the
verification process.

verify

Description

verify is used for verification of the attached PKCS7 signature, in which case, the
signature portion and the original content are kept together.

Syntax

public byte[] verify(byte[] input1)

Parameters

Return Values

byte array
Returns the original message if successful.

Throws

com.stc.sme.exception.SMEException, indicating an error occurred during the
verification process.

verify

Description

verify is used for verification of the detached PKCS7 signature, in which case, the
signature portion and the original content is separated.

Syntax

public byte[] verify(byte[] input1 byte[] input2)

Parameter name Type Description

input1 byte[] Byte array for the attached message.

Chapter 7 Section 7.3
Secure Messaging Extension Methods SMEMessage Methods Used with Dynamic Configuration

Secure Messaging Extension User’s Guide 81 SeeBeyond Proprietary and Confidential

Parameters

Return Values

byte array
Returns the original message if successful.

Throws

com.stc.sme.exception.SMEException, indicating an error occurred during the
verification process.

7.3 SMEMessage Methods Used with Dynamic
Configuration

Some of these methods support setting the connection parameters by using the
Collaboration Editor (dynamic configuration). The following methods of the
SMEMessage class are found in the com.stc.sme.eways package:

Methods of the SMEMessage Class

These methods are described in detail on the following pages:

Parameter name Type Description

input1 byte[] Byte array for the original message.

input2 byte[] Byte array of the detached signature.

setCertificate on page 82 setEncodingFormat on page 87

setAlgorithm on page 82 setPKCS12Name on page 87

setMessageFormat on page 83 setPassphrase on page 88

setEncodingFormat on page 83 setCertificate on page 88

setMessageFormat on page 83 setMessageFormat on page 89

setEncodingFormat on page 84 setEncodingFormat on page 89

setPKCS12Name on page 84 setChecking on page 90

setPassphrase on page 85 addTrustedCAs on page 90

setAlgorithm on page 85 addCRL on page 91

setDetachedSignature on page 86 addLDAPService on page 91

setMessageFormat on page 86

Chapter 7 Section 7.3
Secure Messaging Extension Methods SMEMessage Methods Used with Dynamic Configuration

Secure Messaging Extension User’s Guide 82 SeeBeyond Proprietary and Confidential

setCertificate

Description

Sets the certificate that is used to encrypt the message.

Syntax

public void setCertificate(java.lang.java.lang.String certFileName,
java.lang.java.lang.String certFormat)

Parameters

Return Values

None.

Throws

None.

setAlgorithm

Description

Specifies the symmetric algorithm used for encryption.

Syntax

public void setAlgorithm(java.lang.java.lang.String algorithm)

Parameters

Return Values

None.

Throws

None.

Parameter name Type Description

certFileName java.lang.String File that contains the certificate.

certFormat java.lang.String Certificate format. Valid values are DER, PEM, and
PK7.

Parameter name Type Description

algorithm java.lang.String Valid values are DES_ED3_CBC, RC2_CBC_40,
RC2_CBC_64, and RC2_CBC_128.

Chapter 7 Section 7.3
Secure Messaging Extension Methods SMEMessage Methods Used with Dynamic Configuration

Secure Messaging Extension User’s Guide 83 SeeBeyond Proprietary and Confidential

setMessageFormat

Description

Specifies the message format for encrypted output.

Syntax

public void setMessageFormat(java.lang.String messageFormat)

Parameters

Return Values

None.

Throws

None.

setEncodingFormat

Description

Specifies the encoding format (used only for SMIME2 message format). If PKCS7
message format is used, the ouput is in binary format.

Syntax

public void setEncodingFormat(java.lang.String encodingFormat)

Parameters

Return Values

None.

Throws

None.

setMessageFormat

Description

Specifies the message format for encrypted output.

Parameter name Type Description

messageFormat java.lang.String Valid values are SMIME2 or PKCS7.

Parameter name Type Description

encodingFormat java.lang.String Valid values are BASE64 or BINARY.

Chapter 7 Section 7.3
Secure Messaging Extension Methods SMEMessage Methods Used with Dynamic Configuration

Secure Messaging Extension User’s Guide 84 SeeBeyond Proprietary and Confidential

Syntax

public void setMessageFormat(java.lang.String messageFormat)

Parameters

Return Values

None.

Throws

None.

setEncodingFormat

Description

Specifies the encoding format (used only for SMIME2 message format). If PKCS7
message format is used, the ouput is in binary format.

Syntax

public void setEncodingFormat(java.lang.String encodingFormat)

Parameters

Return Values

None.

Throws

None.

setPKCS12Name

Description

Sets the file name which contains the user’s private key.

Syntax

public void setPKCS12Name(java.lang.String pkcs12FileName)

Parameter name Type Description

messageFormat java.lang.String Valid values are SMIME2 or PKCS7.

Parameter name Type Description

encodingFormat java.lang.String Valid values are BASE64 or BINARY.

Chapter 7 Section 7.3
Secure Messaging Extension Methods SMEMessage Methods Used with Dynamic Configuration

Secure Messaging Extension User’s Guide 85 SeeBeyond Proprietary and Confidential

Parameters

Return Values

None.

Throws

None.

setPassphrase

Description

Sets the password for the pkcs12 file.

Syntax

public void setPassphrase(char[] passphrase)

Parameters

Return Values

None.

Throws

None.

Note: SeeBeyond does not recommend using this method. For password protection, set the
PKCS12 file and PassPhrase through the e*Way Connection. For more information,
see “PKCS12” on page 37, and “PassPhrase” on page 39.

setAlgorithm

Description

Specifies the signing algorithm used for encryption.

Syntax

public void setAlgorithm(java.lang.String algorithm)

Parameter name Type Description

pkcs12FileName java.lang.String Name of the file which contains the private key.

Parameter name Type Description

passphrase char Unencrypted password for the pkcs12 file.

Chapter 7 Section 7.3
Secure Messaging Extension Methods SMEMessage Methods Used with Dynamic Configuration

Secure Messaging Extension User’s Guide 86 SeeBeyond Proprietary and Confidential

Parameters

Return Values

None.

Throws

None.

setDetachedSignature

Description

Specifies whether the signature should be detached or not.

Syntax

public void setDetachedSignature(boolean isDetached)

Parameters

Return Values

None.

Throws

None.

setMessageFormat

Description

Specifies the message format used for encrypted output.

Syntax

public void setMessageFormat(java.lang.String messageFormat)

Parameters

Parameter name Type Description

algorithm java.lang.String Valid values are RSA_SHA1 and RSA_MD5

Parameter name Type Description

isDetached boolean Set to True if the signature should be detached;
false if otherwise.

Parameter name Type Description

messageFormat java.lang.String Valid values are SMIME2 and PKCS7.

Chapter 7 Section 7.3
Secure Messaging Extension Methods SMEMessage Methods Used with Dynamic Configuration

Secure Messaging Extension User’s Guide 87 SeeBeyond Proprietary and Confidential

Return Values

None.

Throws

None.

setEncodingFormat

Description

Specifies the encoding format (used only for SMIME2 message format). If PKCS7
message format is used, the ouput is in binary format.

Syntax

public void setEncodingFormat(java.lang.String encodingFormat)

Parameters

Return Values

None.

Throws

None.

setPKCS12Name

Description

Sets the file name which contains the user’s private key.

Syntax

public void setPKCS12Name(java.lang.String pkcs12FileName)

Parameters

Return Values

None.

Parameter name Type Description

encodingFormat java.lang.String Valid values are BASE64 and BINARY.

Parameter name Type Description

pkcs12FileName java.lang.String Name of the file which contains the private key.

Chapter 7 Section 7.3
Secure Messaging Extension Methods SMEMessage Methods Used with Dynamic Configuration

Secure Messaging Extension User’s Guide 88 SeeBeyond Proprietary and Confidential

Throws

None.

setPassphrase

Description

Sets the password for the pkcs12 file.

Syntax

public void setPassphrase(char[] passphrase)

Parameters

Return Values

None.

Throws

None.

Note: SeeBeyond does not recommend using this method. For password protection, set the
PKCS12 file and PassPhrase through the e*Way Connection. For more information,
see “PKCS12” on page 37, and “PassPhrase” on page 39.

setCertificate

Description

Sets the certificate that is used to encrypt the message.

Syntax

public void setCertificate(java.lang.String certFileName,
java.lang.String certFormat)

Parameters

Return Values

None.

Parameter name Type Description

passphrase char Unencrypted password for the pkcs12 file.

Parameter name Type Description

certFileName java.lang.String File that contains the certificate.

certFormat java.lang.String Certificate format. Valid values are DER, PEM, and
PK7.

Chapter 7 Section 7.3
Secure Messaging Extension Methods SMEMessage Methods Used with Dynamic Configuration

Secure Messaging Extension User’s Guide 89 SeeBeyond Proprietary and Confidential

Throws

None.

setMessageFormat

Description

Specifies the message format for encrypted output.

Syntax

public void setMessageFormat(java.lang.String messageFormat)

Parameters

Return Values

None.

Throws

None.

setEncodingFormat

Description

Specifies the encoding format (used only for SMIME2 message format). If PKCS7
message format is used, the ouput is in binary format.

Syntax

public void setEncodingFormat(java.lang.String encodingFormat)

Parameters

Return Values

None.

Throws

None.

Parameter name Type Description

messageFormat java.lang.String Valid values are SMIME2 or PKCS7.

Parameter name Type Description

encodingFormat java.lang.String Valid values are BASE64 or BINARY.

Chapter 7 Section 7.3
Secure Messaging Extension Methods SMEMessage Methods Used with Dynamic Configuration

Secure Messaging Extension User’s Guide 90 SeeBeyond Proprietary and Confidential

setChecking

Description

Specifies the checking method for the certificate.

Syntax

public void setChecking(java.lang.String checkingMethod)

Parameters

Return Values

None.

Throws

SMEException

addTrustedCAs

Description

Adds the trusted CA’s certificate. This method is used to insert the trusted CA’s
certificate if CA is selected as the checking method. Do not use this method if DIRECT
is selected.

Syntax

public void addTrustedCAs(java.lang.String CACertFile,
java.lang.String CACertFormat)

Parameters

Return Values

None.

Throws

SMEException

Parameter name Type Description

checkingMethod java.lang.String Valid values are DIRECT, CA, and CA_CRL.

Parameter name Type Description

CACertFile java.lang.String File that contains the CA’s certificate.

CACertFormat java.lang.String Certificate format. Valid values are DER, PEM, and
PK7.

Chapter 7 Section 7.3
Secure Messaging Extension Methods SMEMessage Methods Used with Dynamic Configuration

Secure Messaging Extension User’s Guide 91 SeeBeyond Proprietary and Confidential

addCRL

Description

Locates the CRLs. Use only if CACRL is selected for checking.

Syntax

public void addCRL(java.lang.String CRLFileName, java.lang.String
CACRLFileName, java.lang.String CACRLFormat, java.lang.String
CAFileName, java.lang.String CAFormat)

Parameters

Return Values

None.

Throws

SMEException

addLDAPService

Description

Locates the CRLs. Use only if CACRL is selected for checking.

Syntax

public void addLDAPService(java.lang.String hostname, int portNumber,
java.lang.String username, java.lang.String password,
java.lang.String CACRLCertFile, java.lang.String CACertFile,
java.lang.String hierarchy, java.lang.String localCRLFile)

Parameters

Parameter name Type Description

CRLFileName java.lang.String File that contains the CRL. File must be DER
encoded.

CACRLFileName java.lang.String CA’s certificate. The corresponding private key is
used to sign the CRL.

CACRLFormat java.lang.String Valid values are DER, PK7, and PEM.

CAFileName java.lang.String CA’s certificate used to verify the user’s certificate if
it is the same as the certificate used to verify the
CRL. If it is not the same, it is null.

CAFormat java.lang.String Valid values are DER, PK7, and PEM.

Parameter name Type Description

hostname java.lang.String Hostname for the LDAP server.

portNumber int Port number for LDAP server.

Chapter 7 Section 7.3
Secure Messaging Extension Methods SMEMessage Methods Used with Dynamic Configuration

Secure Messaging Extension User’s Guide 92 SeeBeyond Proprietary and Confidential

Return Values

None.

Throws

SMEException

setAllowSelfSignedCertificate

Description

Specifies whether the self signed certificate is allowed for use.

Syntax

public void setAllowSelfSignedCertificate(boolean allowable)

Parameters

Return Values

None.

Throws

None.

username java.lang.String Login name for the LDAP server. Set to null if not
required.

password java.lang.String Password for the login name of the LDAP server.
Set to null if not required.

CACRLCertFile java.lang.String File name for the CA’s certificate used to verify the
CRL. File content should be DER encoded.

CACertFile java.lang.String File name for the CA’s certificate used to verify the
user’s certificate. File content should be DER
encoded. If it is the same as the verified CACRL
CertFile, then set this parameter to null.

hierarchy java.lang.String LDAP hierarchy used to retrieve the CRL.

localCRLFile java.lang.String Local file name used to store retrieved CRL. If set
to null, then retrieved CRL is not stored.

Parameter name Type Description

allowable boolean Set to true if self signed certificate is allowed; false
if otherwise.

Parameter name Type Description

Index

Secure Messaging Extension User’s Guide 93 SeeBeyond Proprietary and Confidential

Index

B
Base64 23
base64Encode 75

C
Certificate Formats 70, 73
Classpath Override 30
Classpath Prepend 29
collaboration rules 59, 63

creating collaboration rules files 59
collaborations 65

for the Multi-Mode e*Way 65
components 8
creating a new schema 50
CRL 41

D
decrypt 77
DER 23
directories

created by installation 16
Disable JIT 31

E
e*Way Connection 57

parameters
SME 34

e*Ways
creating and configuring 52
Inbound e*Way 52
Multi-Mode e*Way 55
Outbound e*Way 54

encrypt 76
Enterprise Manager 48
event type

creating
from an existing .xsc 52

Event Type Definition structure 44
event types 51

F
files

created by installation 16

G
getMD5Hash 77
getSHA1Hash 78

I
implementation 47

overview 49
Initial Heap Size 30
installation

directories created by 16
files created by 16
Windows NT or 2000 14

intelligent queues 59, 63
intended reader 7

J
Java Methods 74
Java methods, using 74
JNI DLL Absolute Pathname 29
JVM settings 28

M
Maximum Heap Size 30
Multi-Mode e*Way

configuration parameters
Auxiliary JVM Configuration File 32

parameters 28

O
overview 8

P
parameters

Certificate 40
Checking 40
Format 41
TrustedCA 41

Connector 34
Class 35
Type 34

CRL 41
CACertificate 42
CACRLCertificate 42

Index

Secure Messaging Extension User’s Guide 94 SeeBeyond Proprietary and Confidential

CACRLformat 42
Filename 42
Format 42

Decrypt 37
EncodingFormat 37
MessageFormat 37
PassPhrase 37
PKCS12 37

Encrypt 35
Algorithm 36
Certificate 35
EncodingFormat 36
Format 35
MessageFormat 36

Multi-Mode e*Way
CLASSPATH Override 30
CLASSPATH prepend 29
Disable JIT 31
Initial Heap Size 30
JNI DLL absolute pathname 29
JVM settings 28
Maximum Heap Size 30

Sign 38
Algorithm 38
Detached 38
EncodingFormat 39
MessageFormat 38
PKCS12 39

Verify 39
Certificate 40
EncodingFormat 40
Format 40
MessageFormat 39

pre-installation
UNIX 15
Windows NT 14

S
S/MIME 9

introduction 9
sample schema 68, 70

executing the schema 70, 72
samples

AddNumbersSchema
Business Rules 63
Queue Manager 69, 70

Secure Messaging Extension
introduction 8

sign 78, 79
SME

introduction 8
system requirements 13

U
UNIX

pre-installation 15

V
verify 79, 80

W
Windows NT 4.0

pre-installation 14

X
X.509 23

	Secure Messaging Extension User’s Guide
	Contents
	Preface
	P.1 Intended Reader
	P.2 Nomenclature
	P.3 Organization

	Introduction
	1.1 Overview
	1.1.1 Components

	1.2 Introducing Secure Messaging Extension (SME)
	1.3 Introducing Multipurpose Internet Mail Extension (MIME) and Secure Multipurpose Internet Mail...
	1.4 Secure Messaging Extension Process
	1.5 Supported Operating Systems
	1.6 System Requirements

	Installation
	2.1 Installing SME on Windows�NT 4.0 and Windows 2000
	2.1.1 Pre-installation
	2.1.2 Installation Procedure

	2.2 Installing SME on UNIX
	2.2.1 Pre-installation
	2.2.2 Installation Procedure

	2.3 Files/Directories Created by the Installation

	Encrypted Message Formats, Digital Signature Formats, and Certificate Formats
	3.1 Encrypted Message Formats
	3.2 Digital Signature Formats
	3.3 Signing and Attaching Signatures
	3.4 Certificate Formats
	3.5 Private Key Format

	e*Way Connection Configuration
	4.1 Configuring the Multi-Mode e*Way
	4.1.1 Creating a Multi-Mode e*Way
	4.1.2 Multi-Mode e*Way Configuration Parameters
	4.1.3 JVM Settings
	JNI DLL Absolute Pathname
	CLASSPATH Prepend
	CLASSPATH Override
	CLASSPATH Append From Environment Variable
	Initial Heap Size
	Maximum Heap Size
	Maximum Stack Size for Native Threads
	Maximum Stack Size for JVM Threads
	Disable JIT
	Remote debugging port number
	Suspend option for debugging
	Auxiliary JVM Configuration File

	4.1.4 General Settings
	Rollback Wait Interval
	Standard IQ FIFO

	4.2 Configuring e*Way Connections
	Creating an e*Way Connection
	4.2.1 Connector
	Type
	Class
	Property.Tag

	4.2.2 Encrypt
	Certificate
	Format
	Algorithm
	MessageFormat
	EncodingFormat

	4.2.3 Decrypt
	MessageFormat
	EncodingFormat
	PKCS12
	PassPhrase

	4.2.4 Sign
	Algorithm
	Detached
	MessageFormat
	EncodingFormat
	PKCS12
	PassPhrase

	4.2.5 Verify
	MessageFormat
	EncodingFormat
	Certificate
	Format

	4.2.6 Certificate
	Checking
	TrustedCA
	Format

	4.2.7 CRL
	Filename
	CACRLCertificate
	CACRLformat
	CACertificate
	Format

	ETD Structure
	5.1 Understanding the Structure of the SME ETD
	5.1.1 SMEMessageApp Root Node

	Implementation
	6.1 Overview
	6.1.1 Pre-Implementation Tasks
	6.1.2 Implementation Sequence
	6.1.3 Using the e*Gate Enterprise Manager

	6.2 SME Sample Implementations
	6.2.1 Creating Schemas
	Sample Schemas

	6.2.2 Creating Event Types
	Creating an Event Type and Associating an Existing�.xsc

	6.2.3 Creating and Configuring the e*Ways
	6.2.4. Creating the e*Way Connection
	6.2.5 Creating and Modifying Intelligent Queues
	6.2.6 Creating Collaboration Rules
	Creating the Collaboration Rules Class

	6.2.7 Creating the Sample Schema Collaborations

	6.3 Creating and Executing the Sample Schemas
	6.3.1 SMEstatic Sample Schema
	Executing the SMEstatic Sample Schema

	6.3.2 SMEdynamic Sample Schema
	Dynamic Configuration in the Collaboration Rules Editor
	Executing the SMEdynamic Sample Schema

	Secure Messaging Extension Methods
	7.1 SME Methods: Overview
	7.2 SMEMessage Methods Used with Static Configuration
	Methods of the SMEMessage Class
	base64Decode
	base64Encode
	encrypt
	encrypt
	decrypt
	decrypt
	getMD5Hash
	getSHA1Hash
	sign
	sign
	verify
	verify
	verify

	7.3 SMEMessage Methods Used with Dynamic Configuration
	Methods of the SMEMessage Class
	setCertificate
	setAlgorithm
	setMessageFormat
	setEncodingFormat
	setMessageFormat
	setEncodingFormat
	setPKCS12Name
	setPassphrase
	setAlgorithm
	setDetachedSignature
	setMessageFormat
	setEncodingFormat
	setPKCS12Name
	setPassphrase
	setCertificate
	setMessageFormat
	setEncodingFormat
	setChecking
	addTrustedCAs
	addCRL
	addLDAPService
	setAllowSelfSignedCertificate

	Index
	B
	C
	D
	E
	F
	G
	I
	J
	M
	O
	P
	S
	U
	V
	W
	X

