
e*Way Intelligent Adapter for
CICS User’s Guide

Release 4.5.4

Java Version
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBI, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 1999–2003 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20030219095929.
e*Way Intelligent Adapter for CICS User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents
Contents

Chapter 1

Introduction 9
Intended Reader 9

Overview 9
CICS Transaction Server 9
The e*Way Intelligent Adapter for CICS 10

OS/390 and z/OS CICS Security Considerations 12
Security Considerations for SeeBeyond CICS Listener 12
Security Considerations for IBM CICS Transaction Gateway 14

Supported Operating System 14

System Requirements 16

External System Requirements 17
CICS Server Requirements for the IBM CICS Transaction Gateway Implementation 17
CICS Server Requirements for the SeeBeyond CICS Listener Implementation. 18

Chapter 2

Installation 19
Windows NT 4.0, Windows 2000, and Windows XP 19

Pre-installation 19
Installation Procedure 19

UNIX 20
Pre-installation 20
Installation Procedure 20

OS/390 and z/OS 21

Files/Directories Created by the Installation 22

SeeBeyond CICS Listener Installation for OS/390 and
z/OS 22

Installing the SeeBeyond CICS Listener from CD to OS/390 and z/OS 22
Installing the SeeBeyond CICS Listener from 3480 Tape 23

Copying the Tape Contents to Disk 23
Installing the CICS CEDA Definitions 24
Adding the CICS e*Way Load Modules to CICS DFHRPL Concatenation 24
The SeeBeyond CICS Listener Monitor Screen for OS/390 and
z/OS 25
e*Way Intelligent Adapter for CICS User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents
CICS Transaction Gateway 4.0 and 5.0 Configuration 36

Chapter 3

CICSClient ETD Overview 37
The CICSClient ETD 37

CICSClient ETD Layout 37
Node Descriptions 38

Synchronous and Asynchronous Call Handling 43
Asychronous Call Handling 43
CICSClient ETD Asynchronous Configuration 47
ETD Nodes Associated with Asynchronous Call Handling 48
Connection Management and Asynchronous Call Handling 51

Chapter 4

e*Way Configuration 53
Multi-Mode e*Way Configuration 53

JVM Settings 54
JNI DLL Absolute Pathname 54
CLASSPATH Prepend 55
CLASSPATH Override 55
CLASSPATH Append From Environment Variable 56
Initial Heap Size 56
Maximum Heap Size 56
Maximum Stack Size for Native Threads 56
Maximum Stack Size for JVM Threads 57
Disable JIT 57
Remote Debugging port number 57
Suspend option for debugging 57
Auxiliary JVM Configuration File 57

General Settings 58
Rollback Wait Interval 58
Standard IQ FIFO 58

e*Way Connection Configuration 59
Connector 60

Type 60
Connection Transport 60
Connection Establishment Mode 61
Connection Inactivity Timeout 61
Connection Verification Interval 61
Class 62
Property.Tag 62

CICS Gateway 62
Url 62
Port 62
SSL KeyRing Class 63
SSL KeyRing Password 63

SeeBeyond CICS Listener 63
Host 63
Port 64
SeeBeyond CICS Listener TransId 64
Start Type 64
e*Way Intelligent Adapter for CICS User’s Guide 4 SeeBeyond Proprietary and Confidential

Contents
Start Delay 64
Listener Timeout 65
TP Timeout 65
Polling Rate 65
Transport Timeout 65
COMMAREA Padding Character 66
SendBufSize 66
ReceiveBufSize 66
NoDelay 66
KeepAlive 67

CICS Client 67
Cics UserId 67
Cics Password 68
ECI call type 68
CICS Program 68
CICS TransId 68
COMMAREA length 69
ECI extend mode 69
ECI LUW token 69
Message qualifier 70
Async Response Topic 70
Async Call JMS Server Host 70
Async Call JMS Server Port 70
Encoding 70

Tracing 71
Level 71
Filename 71
Truncation Size 72
Dump Offset 72
Timing 72

Chapter 5

Implementation 73
Using the Cobol Copybook Converter 73

Sample Schemas 73

Importing the Sample Schemas 74
Configuring the Connection Transport for a Sample Schema 75

CICS Sample Implementation 75

e*Way Components 76
Event Types 76

Creating an Event Type Using the Custom ETD Wizard 76
Creating an Event Type Associated with an Existing ETD 78

Creating and Configuring the Component e*Ways 78
Creating the e*Way Connection 81
Creating Intelligent Queues 82
Creating Collaboration Rules 84

cr_PassThru (Pass Through) 84
cr_CICSClient (Java) 85
Creating the Collaboration Rules Class 87

Creating Collaborations 89

CICS Sample Schemas 93

The CICS_Client_Sample Schema 93
e*Way Intelligent Adapter for CICS User’s Guide 5 SeeBeyond Proprietary and Confidential

Contents
Creating the e*Ways 93
Configuring the Multi-Mode e*Way 95

Creating the ETDs 95
Configuring the IQs 95
Creating the e*Way Connections 95
Creating the Collaboration Rules 97
Business Rules for the cr_CICSClient.class 98
Creating the Collaborations 100

The CICSJava_os390 and CICS_Client_Sample_os390 Schemas for OS/390 and z/OS
102

The CICS_Client_SubCollab_Sample Schema 103
Creating the Collaboration Rules 103
Creating the Business Rules 104

Creating the cr_CICSClient.class Collaboration Rules 105

Asynchronous Call Handling Samples 107
The CICS_Async_Sample Schemas 108
Creating the e*Ways 110

Configuring the Multi-Mode e*Way 111
Creating the ETDs 111
Creating the IQs 113
Creating the async_topic (IQ Manager) 113
Creating the e*Way Connections 113
Creating the Collaboration Rules 115
Collaboration Rules Editor 117

The cr_CICSClient_3.class Collaboration Rules 118
The cr_eater_3.class Collaboration Rules 124
The cr_feeder_3.class Collaboration Rules 125
The cr_feeder_1 Collaboration Rules, cr_feeder_3.class file is displayed in Figure 65. 125
The cr_async_sub_3.class Collaboration Rules 126

Creating the Collaborations 126

Executing the Schemas 129

Running CTG on Multiple CICS Servers 130

Chapter 6

Java Methods 131
The CicsClient Class 131

Methods of the CicsClient Class 131
CicsClient 133
commAreaToPackedDecimal 133
commAreaZonedToString 134
commAreaZonedToString 134
connect 135
disconnect 135
execute 136
execute 136
getCommArea 138
getCommAreaLength 138
getCommAreaString 139
getCommAreaString 139
getCommAreaString 140
e*Way Intelligent Adapter for CICS User’s Guide 6 SeeBeyond Proprietary and Confidential

Contents
getCommAreaString 140
getEciCallbackable 141
getEciExtend 142
getEciLuwToken 142
getEciSync 143
getEncodedCommAreaString 143
getEncodedCommAreaString 143
getEncoding 144
getListenerTimeout 145
getMessageQualifier 145
getPaddingCharacter 146
getPassword 146
getPollingRate 147
getPort 147
getProgram 147
getProgramName 148
getRequestCode 148
getREQUESTCODES 149
getRequestDesc 149
getResponse 150
getResponse 150
getReturnCode 151
getRETURNCODES 151
getReturnMessage 152
getSBYNDCicsProxyConfig 152
getSBYNDListenerTransID 153
getServer 153
getServerList 153
getSslClass 154
getSslPassword 154
getStartDelay 155
getStartType 155
getTPTimeout 156
getTraceDumpOffset 156
getTraceFilename 157
getTraceLevel 157
getTraceTiming 158
getTraceTruncationSize 158
getTransId 159
getTransportTimeout 159
getUrl 159
getUserId 160
isConnected 160
packedDecimalToString 161
prepareAPCRecord 161
returnCodeIs 162
returnOK 162
sendRequest 163
setCommArea 164
setCommAreaLength 164
setEciCallbackable 165
setEciExtend 165
setEciLuwToken 165
setEciSync 166
setEncoding 166
setListenerTimeout 167
setMessageQualifier 167
setPaddingCharacter 168
setPassword 168
setPollingRate 169
setPort 169
setProgram 170
setSBYNDListenerTransID 170
setServer 171
e*Way Intelligent Adapter for CICS User’s Guide 7 SeeBeyond Proprietary and Confidential

Contents
setSslClass 171
setSslPassword 172
setStartDelay 172
setStartType 172
setTPTimeout 173
setTraceDumpOffset 173
setTraceFilename 174
setTraceLevel 174
setTraceTiming 175
setTraceTruncationSize 175
setTransId 176
setTransportTimeout 176
setUrl 176
setUserId 177
toPackedDecimal 177
toZoned 178
toZoned 179
zonedToString 179
zonedToString 180

Packed Decimal Java Helper Methods 180
ContainerExists 181
CopyBack 181
CopyTo 182
GiveElem 182
SetElem 183

Index 184
e*Way Intelligent Adapter for CICS User’s Guide 8 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This chapter includes a brief description of IBM’s Customer Information Control
System™ (CICS™), an overview of the SeeBeyond e*Way Intelligent Adapter for CICS,
as well as system requirements for using the CICS e*Way.

1.1 Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the e*Gate system, to have a working knowledge of
Windows operations and administration, and to be thoroughly familiar with CICS.

1.2 Overview

CICS Transaction Server

IBM’s Customer Information Control System (CICS), is IBM’s most widely used
proprietary, transaction monitor. CICS provides connectivity and online transaction
management for mission-critical applications. It supports real-time distributed
processing environments and online transaction processing (OLTP). According to IBM,
CICS handles more than thirty billion transactions, processing more than one trillion
dollars, per day.

CICS is the premier OLTP (On-Line Transaction Processing) product from IBM. It is
used to access many file systems and databases including third party products. For IBM
product, it interfaces with DB2, VSAM and IMS/DB. For non-IBM products, it
interfaces with IDMS, ADABAS, DATACOM, to name a few. Most applications in CICS
are written in COBOL, although it supports other languages such as PL/1.

OLTP systems provide accurate, up-to-date information within seconds, from terminals
that give direct access to data held as either files or databases. CICS provides a
company with numerous transaction processing and resource management functions,
allowing the user to concentrate on developing application programs that meet that
organization's specific business needs. CICS controls OLTP application programs in a
distributed transaction processing (DTP) environment. CICS handles interactions
between the terminal user and the application programs. Programs gain access to the
CICS facilities with straightforward, high-level commands.
e*Way Intelligent Adapter for CICS User’s Guide 9 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction Overview
CICS provides:

! Communicationfunctions to terminals and systems required by application
programs

! Control of concurrently running programs serving online users

! Facilities for accessing databases and files

! The ability to communicate with other CICS family members using Transmission
Control Protocol/Internet Protocol (TCP/IP)

! Interactive facilities to configure specific systems

! Recovery processing and data protection, should a problem occur

The e*Way Intelligent Adapter for CICS

The e*Way Intelligent Adapter for CICS is an interface that enables remote bidirectional
calls to CICS transactional programs. The CICS e*Way includes a build tool, the Cobol
Copybook Converter, that creates an Event Type Definition (ETD) from a Cobol
Copybook file and generates e*Gate Event Type Definitions (ETDs) for use within the
e*Gate environment. The Copybook file structures are passed into the CICS
environment as the data buffer (Commarea). The ETD files (.ssc) are converted into .xsc
files that are compatible with the Java Collaboration Editor.

A fixed Event Type Definition, the CICSClient ETD (cicsclient.xsc), designed to expose
various essential portions of the CICS Java API, provides available methods and
properties, as well as access to all message attributes.

The e*Way enables both Synchronous and Asynchronous CICS program call handling
using the CICSClient ETD.

The e*Way uses either the IBM CICS Transaction Gateway (IBM CICS Transaction
Gateway (CTG) on page 10), or the SeeBeyond CICS Listener supported by the Java
version of the CICS e*Way (SeeBeyond CICS Listener (STCL) on page 11), as the
underlying connection transport for accessing OS/390 or z/OS CICS transactions:

IBM CICS Transaction Gateway (CTG)

CTG provides an API (the External Call Interface or ECI) to call CICS transactions on
the mainframe. The ECI allows a non-CICS application program to call a CICS program
in a CICS server. SeeBeyond’s CICS e*Way uses this ECI method to connect to CICS.
The CICS e*Way connects to CICS with CTG running on a local-host (Figure 2), on a
second computer (Figure 1), or on the mainframe (Figure 3).
e*Way Intelligent Adapter for CICS User’s Guide 10 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction Overview
Figure 1 e*Gate and CTG running on the same host

Figure 2 Remote connection with CTG on a UNIX or Windows host

Figure 3 e*Gate connects with CTG running on the mainframe

SeeBeyond CICS Listener (STCL)

The CICS e*Way, running on a Windows 2000 or UNIX platform, or OS/390 UNIX
System Services, connects to the IBM CICS Listener running on the OS390 or z/OS via
the TCP/IP Sockets. The Listener accepts the incoming request and spawns a new
process handing the socket connection off to the newly created process via TCP/IP
givesocket()/takesocket() function calls. The spawned process invokes the user
written CICS application program through an EXEC CICS LINK. The available
methods in this version of the CICS e*Way are identical to the methods available when
using the CICS Transaction Gateway, and provide compatibility with existing schemas.
This provides the user with a means of accessing OS/390 CICS transactions through
TCP/IP without purchasing IBM's CICS Transaction Gateway product. The SeeBeyond
CICS Listener is only available with the Java version of the CICS e*Way.

CICS
e*Way

OS/390

TCP62

CICS
Transaction

Program

COMMAREA

CICS Region

CICS
Transaction

Gateway

Windows NT/2000

CICS
e*Way

OS/390

TCP62

CICS
Transaction

Program

COMMAREA

CICS Region

CICS
Transaction

Gateway

SolarisWindows NT/2000

CICS
e*Way

OS/390

CICS
Transaction

Program

COMMAREA

CICS Region

CICS
Transaction

Gateway

Windows NT/2000
e*Way Intelligent Adapter for CICS User’s Guide 11 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction Overview
Figure 4 Using the SeeBeyond CICS Listener for Synchronous Transactions

The CICS e*Way (Java version) communicates with SeeBeyond CICS Listener for
Synchronous Transactions (See Figure 4) as follows:

1 An incoming Connect request is handled by the IBM CICS Socket Listener, which
starts the SeeBeyond CICS Listener Transaction STCL and hands off the incoming
connection via the IBM TCP/IP Give Socket and Take Socket interface.

2 The SeeBeyond CICS Listener allocates a CICS COMMAREA and copies
information from the CICS e*Way COMMAREA to the actual CICS COMMAREA.

3 The SeeBeyond CICS Listener issues an EXEC CICS LINK to requested CICS
Transaction Program passing it the newly allocated COMMAREA.

4 The requested CICS Transaction obtains data from the COMMAREA, performs
typical business rule processing and then returns its results in the COMMAREA
and returns control back to the SeeBeyond CICS Listener.

5 The SeeBeyond CICS Listener copies information from the CICS COMMAREA back
to the CICS e*Way COMMAREA.

6 The SeeBeyond CICS Listener goes into a listen mode and waits for the next
incoming Transaction Program request.

The process continues until the SeeBeyond CICS Listener Timeout is exceeded or a
disconnect request is received from the CICS e*Way.

1.2.1. OS/390 and z/OS CICS Security Considerations

Security Considerations for SeeBeyond CICS Listener

The CICS e*Way, using the SeeBeyond CICS Listener as the underlying connection
transport, utilizes three modes of security with OS/390 or z/OS: Connection Logic,
Request Link to Program, and Request Start Transaction. The userID and password are
defined in the e*Way Connection configuration file. The connection manager uses the
userID and password in the configuration file to start the SeeBeyond CICS Listener on
OS/390 or z/OS. During Business Rules processing, requests that flow into the
SeeBeyond CICS Listener can use the userID and password from the configuration file,
or can be overwritten in the Collaborations.

CICS
e*Way

OS/390

TCP/IP

CICS
Socket
Listener

CICS
Transaction

Program

COMMAREA

S
T
C
L 2

1

CICS Region

3

4 5

1

e*Way Intelligent Adapter for CICS User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction Overview
Figure 5 Connection Logic

Connection Logic

For the Connection Logic mode (Figure 5), the userID and password, passed from the
CICS e*Way through the IBM CICS listener and into the SeeBeyond CICS Listener, must
be defined for the OS/390 security system (RACF, for example). The userID must be
authorized by the OS/390 security system to run CICS transaction “xxxx” inside of
CICS. The default value for “xxxx” is STCL, and can be changed in the configuration of
the Connection Manager in the CICS e*Way.

Figure 6 Business Rules Request to Program

Request Link to Program

For the Request Link to Program mode (Figure 6), the userID and password passed
from the CICS e*Way to the SeeBeyond CICS Listener must be defined for the OS/390
security system (RACF, for example). The userID must be authorized by the OS/390
security system to run CICS program “prog1” inside of CICS. The default value for
“prog1” is set in the configuration of the CICS e*Way, and can be overridden in the
Collaboration for each request sent into the SeeBeyond CICS Listener.

IBM CICS
Listener

CICS e*Way

Connect

Business
Rules

UserID1 |
Password

SeeBeyond CICS
Listener

Verify
User ID / Password

Is UserID1 defined to security? Is
the password valid?

Query Security
Is the UserID1 authorized to run
the SeeBeyond CICS Listener?

UserID1 |
Password

CICS e*Way

Connect

Business
Rules

UserID2 | Password | Link |
Prog1 | COMMAREA

SeeBeyond CICS
Listener

TCP/IP Socket
Receive

COMMAREA TCP/IP Socket
Send (Ack)

Prog1Execute CICS Link
COMMAREA

COMMAREA

Query Security
Is UserID2 authorized to link

to program Prog1?

Verify
UserID & Password

Is UserID2 defined to security?
Is the password valid?
e*Way Intelligent Adapter for CICS User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction Supported Operating System
Figure 7 Business Rules Request Start Transaction

Request Start Transaction

For the Request Start Transaction mode (Figure 7), the userID and password passed
from the CICS e*Way to the SeeBeyond CICS Listener must be defined for the OS/390
security system (RACF, for example). The userID must be authorized by the OS/390
security system to start CICS transaction “TRN1” inside of CICS. The default value for
“TRN1” is set in the configuration of the CICS e*Way, and can be overridden in the
Collaboration for each request sent into the SeeBeyond CICS listener.

Security Considerations for IBM CICS Transaction Gateway

Security validation is not supported for IBM CICS Transaction Gateway 4.0.

For information on CICS Transaction Gateway 5.0 security validation refer to the
following:

! Readme.txt for CTG 5.0 provided on the CTG 5.0 installation CD_ROM.

! APAR II12217 and APAR OW55570.

! The CICS Transaction Gateway Administration Guide for your specific operating
system, provided on the CICS Transaction Gateway Installation CD_ROM.

1.3 Supported Operating System
The CICS e*Way is available on the following operating systems:

! Windows XP

! Windows 2000, Windows 2000 SP1, Windows 2000 SP2, and Windows 2000 SP3

! Windows NT 4.0 SP6a

! Solaris 2.6, 7, and 8

UserID3 | Password | Start |
 Tran1 | COMMAREA

TRN1
Ack Only

No COMMAREA

COMMAREA

SeeBeyond CICS
Listener

TCP/IP Socket
Receive

TCP/IP Socket Send
(Ack)

Query Security
Is UserID3 authorized to
start transaction Tran1?

Verify
UserID & Password

Is UserID3 defined to security?
Is the password valid?

Start Trans ID

CICS e*Way

Connect

Business
Rules
e*Way Intelligent Adapter for CICS User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction Supported Operating System
! AIX 4.3.3 and 5.1

! HP-UX 11.0 and HP-UX 11i (Java only)

! OS/390 V2 R10 (Java only)

! z/OS 1.2, 1.3, and 1.4 (Java only)

! Japanese Windows 2000, Windows 2000 SP1, Windows 2000 SP2, and
Windows 2000 SP3

! Japanese Windows NT 4.0 SP6a

! Japanese Solaris 2.6, 7, and 8

! Japanese HP-UX 11.0 (Java only)

! Korean Windows 2000, Windows 2000 SP1, Windows 2000 SP2, and
Windows 2000 SP3

! Korean Windows NT 4.0 SP6a

! Korean HP-UX 11.0 (Java only)

Important: Open and review the Readme.txt for the CICS e*Way for any additional
information or requirements, prior to installation. The Readme.txt is located on the
Installation CD_ROM at setup\addons\ewcics.

Note: Solaris 2.6, AIX 5.1, and HP-UX 11i are not supported by CICS Transaction
Gateway 4.0.

When using HP-UX with CICS Transaction Gateway 4.0, append the following
path to the SHLIB PATH: SHLIB_PATH=$(SHLIB_PATH}:<e*Gate>/client/
ThirdParty/IBMctg/lib/Hpux32. (“e*Gate” denotes where e*Gate has been
installed.)

When using Solaris 7, the LC_ALL environment variable must be set to either
en_GB (Great Britain) or en_US (United States) for the CP500 code page (Java
1.3.1). Set the LC_ALL environmental variable as follows: export LC_ALL=en_GB
or export LC_ALL=en_US.

For OS/390 V2 R10 and z/OS see System Requirements on page 16, as well as
OS/390 and z/OS Configuration Requirements for the CICS Server and
CICS Transaction Gateway on page 17.

Table 1 displays the operating systems as they are supported by the Java and Monk
versions of the CICS e*Way, CICS Transaction Gateway, SeeBeyond CICS Listener, and
CICS Universal Client.
e*Way Intelligent Adapter for CICS User’s Guide 15 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction System Requirements
Table 1 Supported Operating Systems for the CICS e*Way

1.4 System Requirements
To use the CICS e*Way, you need the following:

! e*Gate version 4.5.1 or later, except in the case of the following operating systems:

" The Windows XP operating system is supported with e*Gate version 4.5.3.

" The OS/390 V2 R10 and z/OS 1.2, 1.3, and 1.4 operating systems are supported
with e*Gate version 4.5.2 and 4.5.3.

! A TCP/IP network connection.

Platforms
CICS e*Way

Java
CICS e*Way

Monk
CTG
4.0

CTG
5.0

STC
Listener

(Java only)

U/C 5.0
(Monk only)

Windows XP X X X X X

Windows 2000 X X X X X X

Windows NT 4.0 X X X X X X

Solaris 2.6 X X X X

Solaris 7 X X X X X X

Solaris 8 X X X X X X

AIX 4.3.3 X X X X X X

AIX 5.1 X X X X X

HP-UX 11.0 X X X X

HP-UX 11i X X X

OS/390 V2 R10 X X X X

z/OS 1.2 X X X X

z/OS 1.3 X X X X

z/OS 1.4 X X X X

Win 2000 Japanese X X X X X X

Win NT 4.0 Japanese X X X X X X

Solaris 2.6 Japanese X X X

Solaris 7 Japanese X X X X X X

Solaris 8 Japanese X X X X X X

HP-UX 11.0 Japanese X X X X

Win 2000 Korean X X X X X X

Win NT 4.0 Korean X X X X X X

HP-UX 11.0 Korean X X X X
e*Way Intelligent Adapter for CICS User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.5
Introduction External System Requirements
! Additional disk space for e*Way executable, configuration, library, and script files.
The disk space is required on both the Participating and the Registry Host.
Additional disk space is required to process and queue the data that this e*Way
processes. The amount necessary varies based on the type and size of the data being
processed and any external applications performing the processing.

! Open and review the Readme.txt for the CICS e*Way regarding any additional
requirements prior to installation. The Readme.txt is located on the Installation
CD_ROM at setup\addons\ewcics.

1.5 External System Requirements
The CICS e*Way connects to CICS using either the IBM CICS Transaction Gateway
(CTG) or the SeeBeyond CICS Listener. External requirements depend on which is
implemented.

1.5.1. CICS Server Requirements for the IBM CICS Transaction
Gateway Implementation

To enable the e*Way to communicate correctly with CICS using CICS Transaction
Gateway (CTG) the following are required:

! CICS Transaction Server V1.3 or greater.

! IBM CICS Transaction Gateway version 4.0 with the application of APAR PQ57730,
or CICS Transaction Gateway 5.0.

! The CICS e*Way running on OS/390 or z/OS, requires that the CTG files,
libCTGJNI.so and libCTGJNI_g.so be copied to the egate/client/bin directory.
These files are located on the computer where CTG is installed, in the following
directory:

../usr/lpp/ctg50(or 40)/ctg/bin/..

OS/390 and z/OS Configuration Requirements for the CICS Server and CICS Transaction
Gateway

For detailed directions on configuring OS/390 and z/OS to connect via TCP62, see the
CICS Transaction Gateway, Client Administration manual for your specific platform.
These details are found in the chapter “Setting Up Client/Server Communications.”

The summarized requirements are as follows:

! Install any of the VTAM AnyNet® releases.

! Install a TCP major node, which defines the AnyNet interface between TCP/IP and
VTAM. For further information about this, see the IBM’s Guide to SNA over TCP/IP.

! Install a CDRSC major node, which defines the remote Client device and instructs
VTAM to route any session requests through the TCP/IP Physical Unit (ALSLIST).

! Check that the Physical Unit (PU) for the AnyNet interface is active.
e*Way Intelligent Adapter for CICS User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.5
Introduction External System Requirements
! On CICS, you must define an APPC connection to the client workstation. (The
connection can be statically defined, or autoinstalled.)

! Add an entry to the VTAM logon mode (LOGMODE) table for the modename
specified on the SESSIONS definition. This entry specifies the class of service
required for the group of sessions.

1.5.2. CICS Server Requirements for the SeeBeyond CICS Listener
Implementation.

To enable the e*Way to communicate correctly with CICS using the SeeBeyond CICS
Listener the following are required:

! OS/390 V2 R10, or z/OS 1.2, 1.3, or 1.4 (see System Requirements on page 16).

! Resource Access Control Facility (RACF) or an equivalent security product.

! CICS Transaction Server V1.3 or greater.

! IBM MVS TCP/IP socket runtime libraries, installed and configured for each CICS
region in which the SeeBeyond CICS Listener will be run. For more information
please refer to IBM’s TCP/IP V3R2 for MVS: CICS TCP/IP Socket Interface Guide.

! COBOL for OS/390 and Language Environment.
e*Way Intelligent Adapter for CICS User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 2

Installation

This chapter contains installation information for the CICS e*Way, SeeBeyond CICS
Listener, and IBM CICS Transaction Gateway in the following sections:

! Windows NT 4.0, Windows 2000, and Windows XP on page 19

! UNIX on page 20

! OS/390 and z/OS on page 21

! Files/Directories Created by the Installation on page 22

! SeeBeyond CICS Listener Installation for OS/390 and z/OS on page 22

! CICS Transaction Gateway 4.0 and 5.0 Configuration on page 36

Important: Open and review the Readme.txt for the CICS e*Way for any additional
information or requirements, prior to installation. The Readme.txt is located on the
Installation CD_ROM at setup\addons\ewcics.

2.1 Windows NT 4.0, Windows 2000, and Windows XP

2.1.1. Pre-installation
! Exit all Windows programs before running the setup program, including any

anti-virus applications.

! You must have Administrator privileges to install this e*Way.

2.1.2. Installation Procedure
To install the CICS e*Way on a Windows system

1 Log in as an Administrator to the workstation on which you are installing the
e*Way.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s Autorun feature is enabled, the setup application launches
automatically; skip ahead to step 4. Otherwise, use the Windows Explorer or the
Control Panel’s Add/Remove Applications feature to launch the file setup.exe on
the CD-ROM drive.
e*Way Intelligent Adapter for CICS User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Installation UNIX
4 The InstallShield setup application launches. Follow the installation instructions
until you come to the Please choose the product to install dialog box.

5 Select e*Gate Integrator, then click Next.

6 Follow the on-screen instructions until you come to the second Please choose the
product to install dialog box.

7 Clear the check boxes for all selections except Add-ons, and then click Next.

8 Follow the on-screen instructions until you come to the Select Components dialog
box.

9 Highlight (but do not check) e*Ways, and then click the Change button. The Select
Sub-components dialog box appears.

10 Select the CICS e*Way. Click the continue button to return to the Select Components
dialog box, then click Next.

11 Follow the rest of the on-screen instructions to install the Java-enabled CICS e*Way. Be sure
to install the e*Way files in the suggested client installation directory. The installation utility
detects and suggests the appropriate installation directory. Unless you are directed to do so by
SeeBeyond support personnel, do not change the suggested installation directory setting.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, see the online Help.

For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.

2.2 UNIX

2.2.1. Pre-installation
You do not require root privileges to install this e*Way. Log in under the user name that
you wish to own the e*Way files. Be sure that this user has sufficient privileges to create
files in the e*Gate directory tree.

2.2.2. Installation Procedure
To install the CICS e*Way on a UNIX system

1 Log in on the workstation containing the CD-ROM drive, and insert the CD-ROM
into the drive.

2 If necessary, mount the CD-ROM drive.

3 At the shell prompt, type

cd /cdrom/setup
e*Way Intelligent Adapter for CICS User’s Guide 20 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Installation OS/390 and z/OS
4 Start the installation script by typing

setup.sh

5 A menu of options will appear. Select the Install e*Way option. Then, follow the
additional on-screen directions.

Note: Be sure to install the e*Way files in the suggested client installation directory. The
installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not
change the suggested “installation directory” setting.

6 After installation is complete, exit the installation utility and launch the Enterprise
Manager.

Important: For HP-UX systems with CICS Transaction Gateway 4.0 append the following path
to the SHLIB PATH: SHLIB_PATH=$(SHLIB_PATH}:<e*Gate>/client/ThirdParty/
IBMctg/lib/Hpux32. ("e*Gate" is where e*Gate has been installed)

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, see the online Help system.
For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.

2.3 OS/390 and z/OS
e*Way installation notes for OS/390 V2 R10 and z/OS 12, 13, and 14, can be found in
the e*Gate Integrator Installation Guide.
e*Way Intelligent Adapter for CICS User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
Installation Files/Directories Created by the Installation
2.4 Files/Directories Created by the Installation
The Java-enabled CICS e*Way installation process will install the following files, see
Table 2, within the e*Gate directory tree. Files are installed within the egate\client tree
on the participating host and committed to the default schema on the Registry Host.

2.5 SeeBeyond CICS Listener Installation for OS/390 and
z/OS

The following section provides directions for installing the SeeBeyond CICS Listener to
an OS/390 or z/OS operating system from the installation CD-ROM or from a 3480
Tape. Directions are also included for installing CICS CEDA definitions, adding the
CICS e*Way load modules to the CICS DFHRPL concatenation, and using the
SeeBeyond CICS Listener monitoring screen to verify that all components are properly
installed and working correctly.

2.5.1. Installing the SeeBeyond CICS Listener from CD to OS/390
and z/OS

These instructions show how to restore the SeeBeyond CICS Listener files from the
installation CD_ROM (setup\addons\ewcics\SBYN_Listner.zip) to your MVS system
in a usable state. The files are packaged on MVS for transfer using the TSO transmit
(XMIT) command to transmit them into a data set. This is done to turn a PDS into FB 80
files which can be sent by FTP. These files are downloaded to a PC and then compressed
with PKZIP.

1 Download the SBYN_Listener.zip file to your PC.

2 Unzip the files using WinZip or the Zip program of your choice.

3 Create two MVS datasets to receive the files, as follows:

//DD1 DD DSN=USER.XMIT.CICSLOAD,

Table 2 Files Created by the Installation

e*Gate Directory File(s)

\classes\ stccics.jar
stcutil.jar

\configs\cicsclient\ cicsclient.def

etd cics.ctl

\etd\cicsclient cicsclient.xsc

\ThirdParty\ibmctg\classes ctgclient.jar
ctgserver.jar

\ThirdParty\gnu-getopt\classes gnu-getopt.jar
e*Way Intelligent Adapter for CICS User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation SeeBeyond CICS Listener Installation for OS/390 and z/OS
// DISP=(NEW,CATLG,DELETE),
// RECFM=FB,LRECL=80,BLKSIZE=3120,DSORG=PS,
// SPACE=(3120,(48,5)),
// UNIT=diskunit

//DD2 DD DSN=USER.XMIT.JCLLIB,
// DISP=(NEW,CATLG,DELETE),
// RECFM=FB,LRECL=80,BLKSIZE=3120,DSORG=PS,
// SPACE=(3120,(30,5)),
// UNIT=diskunit

4 Upload (FTP, IND$FILE) the unzipped files to MVS using a binary file transfer
method (no CRLF or ASCII translation).

5 Restore the files to PDS by using the Receive command on MVS.

6 Issue command: TSO RECEIVE INDATASET(uploaded.dataset)

7 When prompted by the message:

INMR906A Enter restore parameters or 'DELETE' or 'END' +

enter:

DA(name.of.your.library) UNIT(unit) VOLUME(volume)

Note: The UNIT() and VOLUME() operands are optional but shown in case your
installation requires them.

We suggest using the following names for your received datasets:

STC.XMIT.CICS.CICSLOAD
STC.XMIT.CICS.JCLLIB

These names match our documentation, but you may change them as your facility
requires.

2.5.2. Installing the SeeBeyond CICS Listener from 3480 Tape
The SeeBeyond CICS Listener installation for OS/390 or z/OS is provided on an
installation tape containing the following datasets (Table 3):

Copying the Tape Contents to Disk

1 Create and submit the following job to copy the RESTORE JCL to disk:

Table 3 OS/390 Datasets

Dataset Name Contents

TAPE.STC.RESTORE.JCL Physical sequential datasets
containing the JCL for this tape.

TAPE.STC.CICS.JCLLIB Partition dataset that contains
installation jobs and control cards for

the CICS e*Way.

TAPE.STC.CICS.CICLOAD Load library that contains the CICS
load modules for the CICS e*Way.
e*Way Intelligent Adapter for CICS User’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation SeeBeyond CICS Listener Installation for OS/390 and z/OS
//JOB CARD
//IEBGENER EXEC PGM-IEBGENER
//*
//*COPY RESTORE JCL TO DISK
//*
//SYSUT1 DD DSN=TAPE.STC.RESTORE.JCL,DISP=OLD,UNIT=TAPE,
// VOL=(,RETAIN,SER=STC390),LABEL=(1,SL)
//SYSUT2 DD DSN=customers.pds(restore),DISP=SHR
//SYSIN DD DUMMY
//

2 Customize and submit the RESTORE job to copy the entire contents of the
Installation tape to disk.

2.5.3. Installing the CICS CEDA Definitions
Customize and submit job STCLCEDA to create CICS CEDA definitions for the CICS
e*Way.

2.5.4. Adding the CICS e*Way Load Modules to CICS DFHRPL
Concatenation

Add the following data set to the DFHRPL concatenation under CICS:

// DD DSN=&PREFIX..STC.CICS.CICSLOAD,DISP=SHR
e*Way Intelligent Adapter for CICS User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation SeeBeyond CICS Listener Installation for OS/390 and z/OS
2.5.5. The SeeBeyond CICS Listener Monitor Screen for OS/390 and
z/OS

After the components are installed, use the SeeBeyond CICS Listener monitoring screen
to verify that all components are properly installed and working correctly.

1 Logon to the CICS region that the SeeBeyond Listener is running in, clear the
screen, and type in stlm as shown in Figure 8 and hit Enter.

Figure 8

2 The menu screen (Figure 9) appears.
e*Way Intelligent Adapter for CICS User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation SeeBeyond CICS Listener Installation for OS/390 and z/OS
Figure 9

3 The pfkeys for this screen, and all of the monitor screens shown in this document,
are as follows:

PF4 - display the LPAT (Listener Program Area Table)
PF13 - display the LPA counts and polling rates
PF14 - display the LPA performance statistics
PF15 - display the LPA last request header received from the CICS e*Way
PF16 - display the LPA last request payload received from the CICS e*Way
PF17 - display the LPA last response header sent to the CICS e*Way
PF18 - display the LPA last response payload sent to the CICS e*Way
PF19 - display the LPA initial record sent from the IBM Listener (EZACIC02)
PF20 - display the LPA status
PF21 - display the LPA last error message sent to the CICS e*Way

Hit PF4, and the screen (Figure 10) appears:
e*Way Intelligent Adapter for CICS User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation SeeBeyond CICS Listener Installation for OS/390 and z/OS
Figure 10

4 This screen displays the Listener Program Area Table (LPAT). Each line contains
information about a Listener Program Area (LPA). There is one LPA associated with
each instance of the SeeBeyond CICS Listener Program that is running or has run in
this CICS region. The fields on the screen are:

" CLPAT-status-flag: shows the current status of the LPAT entry.
E: Exists
N: Never used
C: Corrupted

" CLPAT-lpa-pointer: shows the address of the most recent LPA in this entry.

" Listener Program Status: shows the last status of the Listener Program that is
usingthis LPA.

Hit PF13, and the screen (Figure 11) appears:
e*Way Intelligent Adapter for CICS User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation SeeBeyond CICS Listener Installation for OS/390 and z/OS
Figure 11

5 This screen shows counts and polling rate information for each LPA. Each line
shows one LPA (one for each instance of the SeeBeyond Listener Program).

The fields on the screen are:

" program link: the number of program links that have been requested.

" start trans: the number of transaction starts that have been requested

" avg poll rate: the average number of receives per polling cycle to satisfy a full
message receive from the CICS e*Way.

" non-max cnt: the 'high water mark' of receives within a polling cycle without
reaching the polling rate (polling rate is sent in from the CICS e*Way when it
initializes connection with the CICS Listener program).

" highest poll: the 'high water mark' of receives within a polling cycle that can
include reaching the maximum allowed polling rate.

" receive delay cnt: the number of one second delays that occurred due to the
Comm Timeout limit being reached (Comm. Timeout is sent in from the CICS
e*Way when it initializes connection with the CICS Listener program).

" listener delay cnt: number of one second delays that occur due to the Listener
Timeout limit being reached (Listener Timeout is sent in from the CICS e*Way
when it initializes connection with the CICS Listener program).

Hit pf14, and the screen (Figure 12) appears:
e*Way Intelligent Adapter for CICS User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation SeeBeyond CICS Listener Installation for OS/390 and z/OS
Figure 12

6 This screen (Figure 12) shows performance statistics for each LPA. Each line shows
one LPA (one for each instance of the SeeBeyond Listener Program).

All times shown are in sss.mmm format (sss = seconds, mmm=milliseconds). The
fields on the screen are:

" peek request: the average time spent peeking for the next incoming application
request message.

" receive request: the average time spent receiving the next incoming application
request message.

" send ack: the average time spent sending an ack for an incoming application
request message.

" link program: the average time spent link to requested application programs.

" start tran: the average time spent starting requested application transactions.

" send response: the average time spent sending the application response
(including the updated COMMAREA for program links) back to the e*Way.

" peek ack: the average time spent peeking for the incoming ack to the preceding
send response.

" receive ack: the average time spent receiving the incoming ack to the preceding
send response.

Hit pf15, and the screen (Figure 13) appears:
e*Way Intelligent Adapter for CICS User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation SeeBeyond CICS Listener Installation for OS/390 and z/OS
Figure 13

7 This screen (Figure 13) shows the last application request header received from the
CICS e*Way for each LPA. Each line shows one LPA (one for each instance of the
SeeBeyond Listener Program). The fields on the screen are:

" message length: the entire length of the incoming message including the header
and payload.

" program or tran: the requested application program or transaction.

" appl timeout: (reserved for future development)

" request code: which action is being requested.

0010 = link to application program.

0020 = start application transaction.

0111 = ack for a link response.

0121 = ack for a start response.

9000 = shutdown the Listener program.

" response code: always set to zero from the CICS e*Way.

" pad char: padding character for the COMMAREA if the payload length is less
than the COMMAREA length.

" commarea length: the length of the data to pass to the application program
(link) or the application transaction (start).

" payload length: the length of the payload portion of the incoming message.

Hit pf16, and the screen (Figure 14) appears:
e*Way Intelligent Adapter for CICS User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation SeeBeyond CICS Listener Installation for OS/390 and z/OS
Figure 14

8 This screen (Figure 14) shows the last application request payload received from the
CICS e*Way for each LPA. Each line shows one LPA (one for each instance of the
SeeBeyond Listener Program). There is one field on the screen:

" Payload Received: the incoming payload from the CICS e*Way.

Hit pf17, and the screen (Figure 15) appears:

Figure 15
e*Way Intelligent Adapter for CICS User’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation SeeBeyond CICS Listener Installation for OS/390 and z/OS
9 This screen (Figure 15) shows the last application response header sent to the CICS
e*Way for each LPA. Each line shows one LPA (one for each instance of the
SeeBeyond Listener Program). The fields on the screen are:

" message length: the entire length of the outgoing message including the header
and payload.

" program or tran: the application program or transaction that was executed or
started.

" appl timeout: (reserved for future development)

" request code: what action is being requested.

0001 = ack the init request

0011 = ack for a link program request

0021 = ack for a start trans response

0110 = response from a linked application program (including
COMMAREA)

0120 = response from starting an application transaction (no COMMAREA
included)

9001 = ack for a shutdown request

" response code: response code indicating what occurred while processing the
previous incoming request from the e*Way.

0000 = ok

0011 = bad startcode during initialization

0012 = bad password on init record

0013 = bad comm timeout on init record

0014 = bad appl timeout on init record

0015 = bad Listener timeout on init record

0016 = error reading the init record from transient data queue

0017 = error retrieving the init record from the start data

0018 = error while setting blocking mode

0051 = bad payload length

0052 = error while linking to a program

0053 = error while starting a transaction

0054 = bad request code

0055 = bad response code

0056 = partial message received

0057 = bad program name

0058 = bad message length
e*Way Intelligent Adapter for CICS User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation SeeBeyond CICS Listener Installation for OS/390 and z/OS
0059 = bad commarea length

" pad char: padding char that was sent in from the CICS e*Way.

" commarea length: COMMAREA length that was sent in from the CICS e*Way.

" payload length: payload length that was sent in from the CICS e*Way (the
Listener sets this to zero if this is a response to a start transaction request).

Hit pf18, and the screen (Figure 16) appears:

Figure 16

10 This screen (Figure 16) shows the last application response payload sent to the CICS
e*Way for each LPA. Each line shows one LPA (one for each instance of the
SeeBeyond Listener Program). There is one field on the screen:

" Payload sent: the outgoing payload being sent to the CICS e*Way.

Hit pf19, and the screen (Figure 17) appears:
e*Way Intelligent Adapter for CICS User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation SeeBeyond CICS Listener Installation for OS/390 and z/OS
Figure 17

11 This screen shows the init record that was passed to the SeeBeyond Listener
program from the IBM Listener program (ezacic02) for each LPA. Each line shows
one LPA (one for each instance of the SeeBeyond Listener program). The fields on
the screen are:

" sckt nbr: the socket number that is passed to the SeeBeyond Listener.

" Listener applid: the applid of the CICS region that the IBM Listener is executing
in that started this instance of the SeeBeyond Listener.

" Listener tasked: the CICS taskid for the IBM Listener program that started this
instance of the SeeBeyond Listener.

" userid: userid passed in from the CICS e*Way.

" password: user password passed in from the CICS e*Way.

" comm. Timeout: this timeout value is the threshold limit for waiting for all the
bytes of an incoming message.

" Listener timeout: this timeout value is the threshold limit for waiting for a new
incoming message.

" poll rate: how many times the SeeBeyond Listener will perform a receive loop
to satisfy a complete message receive, after which it will wait one second before
trying again.

" socket family: the TCP/IP family to which this socket belongs.

" socket port: the port this instance of the SeeBeyond Listener is using.

Hit pf20, and the screen (Figure 18) appears:
e*Way Intelligent Adapter for CICS User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installation SeeBeyond CICS Listener Installation for OS/390 and z/OS
Figure 18

12 This screen (Figure 18) shows the status information for each LPA. Each line shows
one LPA (one for each instance of the SeeBeyond Listener program). The fields on
the screen are:

" Current status: the current status of an active SeeBeyond Listener program, or
the last known status of a previously executing SeeBeyond Listener program.

C = LPA is initialized.

E = about to get ezacic02 data.

G = about to take socket from IBM Listener program.

I = about to set mode to blocking.

K = about to send ack for init request.

M = peeking for length of next incoming request.

O = peeking for entire incoming request.

Q = receiving full incoming request message.

S = sending ack for application request.

U = linking to requested application program.

W = starting a request application transaction.

Y = sending a application response.

0 = peeking for application response ack.

2 = receiving an application response ack.

4 = a shutdown request has been received.

6 = sending an ack for the shutdown request.
e*Way Intelligent Adapter for CICS User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.6
Installation CICS Transaction Gateway 4.0 and 5.0 Configuration
7 = shutdown is complete, this LPA is now available for reuse.

8 = SeeBeyond Listener program appended.

" Current Status date: date for this status.

" Current Status time: time for this status.

" Initial Startup date: date this instance of the SeeBeyond Listener was started.

" Initial Startup time: time this instance of the SeeBeyond Listener was started.

" cics task nbr: the CICS eibtaskn for this instance of the SeeBeyond Listener.

Hit pf21, and the screen (Figure 19) appears:

Figure 19

13 This screen (Figure 19) shows the last error message sent to the CICS e*Way for each
LPA. Each line shows one LPA (one for each instance of the SeeBeyond Listener
program). There is one field on the screen:

" Error Message Sent: the last error message sent to the CICS e*Way for this
instance of the SeeBeyond Listener program.

2.6 CICS Transaction Gateway 4.0 and 5.0 Configuration
IBM CICS Transaction Gateway properties are set using the CTG Configuration Tool.
The Configuration Tool is located under the CICS Transaction Gateway program menu.

For system specific settings consult the CICS Transaction Gateway Documentation or
visit the IBM CICS Library Website at http://www-4.ibm.com/software/ts/cics/library/
manuals/ctg40dl.html#configs for information on CTG 4.0, or http://www-3.ibm.com/
software/ts/cics/library/cicstgv5.html for CTG 5.0.
e*Way Intelligent Adapter for CICS User’s Guide 36 SeeBeyond Proprietary and Confidential

http://www-4.ibm.com/software/ts/cics/library/manuals/ctg40dl.html#configs
http://www-4.ibm.com/software/ts/cics/library/manuals/ctg40dl.html#configs
http://www-3.ibm.com/software/ts/cics/library/cicstgv5.html
http://www-3.ibm.com/software/ts/cics/library/cicstgv5.html
http://www-3.ibm.com/software/ts/cics/library/cicstgv5.html
http://www-3.ibm.com/software/ts/cics/library/cicstgv5.html

Chapter 3

CICSClient ETD Overview

This chapter provides an overview of the CICSClient ETD (cicsclient.xsc) hierarchy
structure, including available methods, properties, and their application.

3.1 The CICSClient ETD
The CICSClient ETD (cicsclient.xsc), used within a request/reply schema is shown in
Figure 20. The ETD is designed to be read only. A “top level” view of the ETD illustrates
methods and attributes that assist the Collaboration writer in composing Business
Rules to invoke the CICS program. Two Connection Establishment Transport modes are
provided to communicate between the e*Way client and the CICS server with
synchronous or asychronous calls, the CICS Transaction Gateway and the SeeBeyond
CICS Listener.

3.1.1. CICSClient ETD Layout
CICS Communication Methods

connect on page 135
isConnected on page 160
disconnect on page 135
getServerList on page 153
execute on page 136
sendRequest on page 163

CICS Data Conversion Methods

getCommAreaString on page 139
getEncodedCommAreaString on page 143
toPackedDecimal on page 177
commAreaToPackedDecimal on page 133
packedDecimalToString on page 161
commAreaZonedToString on page 134
zonedToString on page 179
toZoned on page 178

Payload Nodes

CommArea on page 38
CommAreaLength on page 38
e*Way Intelligent Adapter for CICS User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
CICSClient ETD Overview The CICSClient ETD
Asynchronous Call Handling Nodes and Methods

AsyncResponseTopic on page 40
AsyncRspNotifServer on page 40
AsyncRspNotifPort on page 41
AsyncCalls on page 41
createAsyncCallHandler() on page 48

Node Descriptions

The nodes take their initial value from the e*Way Connection configuration parameters,
but can be changed in the Collaboration using the Collaboration Rules Editor and
calling the execute methods.

Url
CTG specific. The Url node contains the URL of the CICS Transaction Gateway.

Port
CTG specific. The Port node contains the port number necessary to communicate
with the CICS Transaction Gateway.

SslClass
CTG specific. Specifies the full classname of the SSL KeyRing class.

SslPassword
CTG specific. Specifies the password for the encrypted KeyRing class.

EciSync
Specifies whether a call is synchronous (true) or asynchronous (false).

UserId
Used to authenticate access to the CICS program. The UserId node contains the
CICS Userid under which that CICS program runs. under.

Password
Used to authenticate access to the CICS program. The Password node contains the
CICS Userid that the CICS program runs under. The password gets encrypted when
it is stored in the configuration file.

Program
The Program node contains the name of CICS program to be executed.

TransId
The TransId node contains the name of the CICS Transaction that the CICS program
is executed under.

CommArea
CommArea is a payload node.

CommAreaLength
CommAreaLength is a payload node. Specifies the length (in bytes) of the
Commarea passed to the ECI.
e*Way Intelligent Adapter for CICS User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
CICSClient ETD Overview The CICSClient ETD
Figure 20 The CICSClient ETD
e*Way Intelligent Adapter for CICS User’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
CICSClient ETD Overview The CICSClient ETD
EciExtend
The EciExtend node is Boolean flag that sets the ECI mode to extended. True sets
the mode to extended.

EciLuwToken
The EciLuwToken node contains the ECI logical unit of work token value.

MessageQualifier
The MessageQualifier node contains the Message Qualifier associated with a
request.

SBYNDListenerTransID
Specifies the TransId of the SeeBeyond CICS Listener on the mainframe host. This is
the CICS Transaction that the SeeBeyond CICS Listener is installed under.

StartType
Specifies the startup type. This can be either IC for CICS interval control or TD for
CICS transient data. This is the CICS Startup type for the program being executed.

StartDelay
Specifies the hours, minutes and seconds (interval of time) to delay starting the
transaction program (TP) on the CICS server for the IC Start Type. This field is
optional but must specify all 6 digits (HHMMSS) if used.

ListenerTimeout
Specifies the estimated amount of time (in milliseconds) for the SeeBeyond CICS
Listener to wait for the next incoming transaction program request from the CICS
e*Way.

TPTimeout
Specifies the amount of time the CICS e*Way will wait for the SeeBeyond CICS
Listener to return results for a current transaction program request.

PollingRate
Specifies the polling rate. This is the number of times the SeeBeyond CICS Listener
will query the current TCP connection for incoming traffic before issuing an EXEC
CICS DELAY for one second.

TransportTimeout
Specifies the timeout used by both the local and host side for receive on the socket.

PaddingCharacter
SeeBeyond CICS Listener Specific.The EBCDIC character used to pad the
COMMAREA when the CICS program is called. The value must be coded in
Hexadecimal. For example, 40 for Blanks, 00 for Low Values, FF for High Values,
and so forth.

AsyncResponseTopic
Specifies a topic name for the response Event of an asynchronous CICS program
call.

AsyncRspNotifServer
Specifies the host where the JMS server for asynchronous call completion event
publishing and subscribing is running.
e*Way Intelligent Adapter for CICS User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
CICSClient ETD Overview The CICSClient ETD
AsyncRspNotifPort
The port where the JMS server for asynchronous call completion event publishing
and subscribing is listening.

Encoding
The Encoding node contains the default encoding used for the various
COMMAREA methods.

TraceLevel
CTG specific. The TraceLevel node contains the debugging trace level.

TraceFilename
CTG specific. The TraceFilename node contains the name of the trace file to be used
when TraceLevel has been set.

TraceTruncationSize
CTG specific. The TraceTruncationSize node contains the trace truncation size of the
trace file that is written when TraceLevel and TraceFilename are set.

TraceDumpOffset
CTG specific. The TraceTruncationSize node contains the offset value for the trace
dumping.

TraceTiming
CTG specific. The TraceTiming node contains the debugging trace timing.

Server
The Server node contains the server identity on which the CICS program is
running. This is ignored when the Connection Transport is set to SeeBeyond CICS
LISTENER.

EciCallbackable
The EciCallbackable node contains the asynchronous call handler. For CTG this is
com.stc.eways.CICS.CTGReplyHandler. For SeeBeyond CICS Listener this is
com.stc.eways.CICS.SBYNDListenerReplyHandle. This is used with
createAsyncCallHandler() to create an appropriate asynchronous call handler and
set it into this node (See EciCallbackable on page 49.)

AsyncCalls
Acts as a list of “AsyncCall” objects representing all of the outstanding calls
initiated from the ETD instance. (See AsyncCalls on page 49.)

ASYNCCALLRETURNCODES
This node contains the return code or primary return code for a completed
asynchronous call. It contains two values, CALL_OK, and CALL_ERROR. If it is the
primary return code, it is represented by the sub-node ReturnCode in the
AsyncCalls node. (See ASYNCCALLRETURNCODES on page 51.)

ECIERRORS
The ECIERRORS node contains all of the error codes in
com.ibm.ctg.client.ECIReturncode.

ECI_NO_ERROR
ECI_ERR_INVALID_DATA_LENGTH
ECI_ERR_INVALID_EXTEND_MODE
ECI_ERR_NO_CICS
e*Way Intelligent Adapter for CICS User’s Guide 41 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
CICSClient ETD Overview The CICSClient ETD
ECI_ERR_REQUEST_TIMEOUT
ECI_ERR_NO_REPLY
ECI_ERR_RESPONSE_TIMEOUT
ECI_ERR_TRANSACTION_ABEND
ECI_ERR_EXEC_NOT_RESIDENT
ECI_ERRLUW_TOKEN
ECI_ERR_SYSTEM_ERROR
ECI_ERR_NULL_WIN_HANDLE
ECI_ERR_THREAD_CREATE_ERROR
ECI_ERR_INVALID_CALL_TYPE
ECI_ERR_ALREADY_ACTIVE
ECI_ERR_RESOURCE_SHORTAGE
ECI_ERR_NO_SESSIONS
ECI_ERR_NULL_SEM_HANDLE
ECI_ERR_INVALID_DATA_AREA
ECI_ERR_INVALID_VERSION
ECI_ERR_UNKNOWN_SERVER
ECI_ERR_CALL_FROM_CALLBACK
ECI_ERR_INVALID_TRANSID
ECI_ERR_MORE_SYSTEMS
ECI_ERR_NO_SYSTEMS
ECI_ERR_SECURITY_ERRORS
ECI_ERR_MAX_SYSTEMS
ECI_ERR_MAX_SESSIONS
ECI_ERR_ROLLEDBACK
ECI_ERR_NO_MSG_QUALS
ECI_ERR_MSG_QUAL_IN_USE

These error codes are used with the secondaryReturnCodeIs
(secondaryReturnCode) method in the AsyncCalls node, and allow the user to
“drag & drop” code to generate Collaboration Rules for checking the error code of a
completed asynchronous call. (See ECIERRORS on page 51.)

ReturnCode
The top level return code for a synchronous call. This node is checked for the return
status of a synchronous call. This value should be checked against the constant
values in RETURNCODES.

RETURNCODES
Provides the following ReturnCodes used to check the ReturnCode field in regard
to synchronous calls:

SBYND_LISTENER_RC_OK
SBYND_LISTENER_RC_BAD_COMMAREA
SBYND_LISTENER_RC_CANNOT_GET_INIT_PARAM
SBYND_LISTENER_RC_PASSWD_ENCRYPT_ERROR
SBYND_LISTENER_RC_INVALID_TRANSPORT_TIMEOUT
SBYND_LISTENER_RC_INVALID_APPL_TIMEOUT
SBYND_LISTENER_RC_INVALID_LISTENER_TIMEOUT
SBYND_LISTENER_RC_LINK_ERROR
SBYND_LISTENER_RC_TRANS_START_ERROR
SBYND_LISTENER_RC_INVALID_REQCODE
SBYND_LISTENER_RC_INVALID_RSPCODE
SBYND_LISTENER_RC_PARTIAL_MSG
SBYND_LISTENER_RC_INVALID_PROGNAME
e*Way Intelligent Adapter for CICS User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
CICSClient ETD Overview Synchronous and Asynchronous Call Handling
SBYND_LISTENER_RC_INVALID_MSG_LENGTH
SBYND_LISTENER_RC_INVALID_CA_LENGTH
SBYND_LISTENER_RC_BAD_COMMAREA
SBYND_LISTENER_RC_INIT_ERR_STARTUP_TYPE_TD
SBYND_LISTENER_RC_INIT_ERR_STARTUP_TYPE_IC
SBYND_LISTENER_RC_ERR_SET_NON_BLOCKING

ReturnMessage
Error text for the corresponding return code.

ProgramName
The name of the CICS program to be run in the CICS region.

RequestCode
The request code of the response.

REQUESTCODES
Provides the following RequestCodes used to populate the RequestCode field:

setSBYND_LISTENER_REQCODE_LSTNR_RSP4INIT
setSBYND_LISTENER_REQCODE_REQ_SYNC
setSBYND_LISTENER_REQCODE_LSTNR_RSP4SYNC
setSBYND_LISTENER_REQCODE_REQ_ASYNC
setSBYND_LISTENER_REQCODE_LSTNR_RSP4ASYNC
setSBYND_LISTENER_REQCODE_LSTNR_RETURN4SYNC
setSBYND_LISTENER_REQCODE_RSP4RETURN
setSBYND_LISTENER_REQCODE_REQ4SHUTDOWN
setSBYND_LISTENER_REQCODE_LSTNR_RSP4SHUTDOWN
setSBYND_LISTENER_REQCODE_LSTNR_RSP4ASYNCSTART
setSBYND_LISTENER_REQCODE_RSP4ASYNCLINKRSP

RequestDesc
The description for the request code.

3.2 Synchronous and Asynchronous Call Handling
Two underlying connection transport modes are provided to communicate between the
e*Way client and the CICS server with synchronous or asychronous calls, the CICS
Transaction Gateway and the SeeBeyond CICS Listener.

! Synchronous mode, in which the e*Way waits for the transaction to complete, and
return the contents of the specified program's COMMAREA. Any data passed to
the transaction will be inserted into the COMMAREA. This can be thought of as
analogous to a phone call in which the caller makes the call and waits for a
response.

! Asynchronous mode, in which a request is sent by the e*Way, but the sender does
not wait for a response. The e*Way is able to move on to other tasks until the
transaction is complete. This can be thought of as analogous to a mail message in
which mail is sent and forgotten until sometime later when a response is received.

Asychronous Call Handling

The CICS Client ETD is designed to accommodate both connection transport options,
IBM CICS Transaction Gateway (CTG), and the server side program, SeeBeyond CICS
e*Way Intelligent Adapter for CICS User’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
CICSClient ETD Overview Synchronous and Asynchronous Call Handling
Listener (STCL). The Asynchronous call notification mechanism differs between the
two. The following section illustrates how the ETD is notified when an asynchronous
call completes (Call Completion Event).

The Sub/Pub Model of the Call Completion Event

Collaborations that do asychronous call handling subscribe to a topic,
AsyncResponseTopic, created in the schema for specific calls that are issued by
Collaborations in the schema. The Collaboration that issues the call is called the “Call
Initiator.” The Collaboration that subscribes to the Call Completion Event for a specific
call is called the “Call Subscriber.” There can be multiple Collaborations subscribing to
a Call Completion Event, including the Call Initiator.

Call completion events are generated by the underlying ETD implementation using
interfaces provided by the underlying connection transport components, CTG or
SeeBeyond CICS Listener. The components of the sub/pub model are:

1 A Call Completion Event (Event Type) must be created for each specific
asynchronous call, to distinguish each.

2 A Call Subscriber must subscribe to the Call Completion Events in which it has
interest.

3 A Call Initiator must provide the topic name that the Call Completion Event will be
published to, prior to making the call (this must be the same as the Event Type
name created in step 1). This information is obtained from the ETD node,
AsyncResponseTopic, whose value can be set from the Collaboration.

4 The Call Initiator makes the call (for example, by calling execute() on the CICS
ETD). The underlying ETD implementation registers the call in the ETD node,
AsyncCalls, which acts as a list of “AsyncCall” objects representing all of the
outstanding calls initiated from the ETD instance. The information encapsulated in
each of the AsyncCall objects include Program, StartTime, ReturnTime,
ReturnCode, SecondaryReturnCode, ReturnMessage, CommArea,
CommAreaLength, and Topic.

5 When a call completes, the underlying ETD implementation populates the call’s
information into the corresponding “AsyncCall” instance in the ETD node
AsyncCalls. This information includes (as listed in step 4) status information such
as ReturnCode, SecondaryReturnCode, ReturnMessage (text indicating the nature
of an error), ReturnTime, CommArea, and CommAreaLength. The ETD
implementation also publishes the CommArea, the payload returned from the CICS
program as a message, to the Topic, so that subscribers are notified. Additional
information, such as ReturnCode, SecondaryReturnCode, and ReturnMessage are
attached to the message as properties.

6 The Call Completion Event is “consumed” by the Call Initiator, directly from the
instance in the AsyncCalls list, or by the Call Subscribers, triggered by an
asynchronous event, from AsyncResponsTopic. When the Completion Event is
consumed directly from the AsyncCall instance, several of the methods and nodes
are available to facilitate “harvesting” the information. The method isDone() can be
used to test whether the outstanding call has completed. If “True” is returned
(completed), navigation methods, such as hasNext(), next(), and remove() allow
e*Way Intelligent Adapter for CICS User’s Guide 44 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
CICSClient ETD Overview Synchronous and Asynchronous Call Handling
the Collaboration to search the pool, check outstanding calls, and harvest results or
status information as needed.

Figure 21 Asynchronous Call Handling - Completion Event

Figure 21 illustrates how Collaborations interact with the asychronous calls Completion
Event in the context of a schema.

Asynchronous Call Handling Using CICS Transaction Gateway

With CICS Transaction Gateway as the underlying connection transport, the
CICSClient ETD instance instantiates and keeps a reference of the
com.stc.eways.cics.CTGReplyHandler (implements com.ibm.ctg.client.CallBackable
and java.lang.Runnable) which contains reply handling logic running in its own thread.
This is started at the completion of an asynchronous call. The reply logic is as follows:

! Check the status information in the com.ibm.ctg.client.GatewayRequest object,
and populate this information in the AsyncCall object in the AsyncCalls pool.

! Generate a byteMessage with appropriate status information as its properties and
publish the message to the topic (as an attribute of the AsyncCall object).

ETD instance of
AsyncResponseTopic

CICS ETD w ith
AsyncCall pool

Collaboration
Call Initiator

Collaboration
Call Subscriber

JMS Server
AsyncResponseTopic

e*Way e*Way

ETD instance of
AsyncResponseTopic

Collaboration
Call Subscriber

ETD instance of
AsyncResponseTopic

Collaboration
Call Subscriber

Publish
Subscribe
e*Way Intelligent Adapter for CICS User’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
CICSClient ETD Overview Synchronous and Asynchronous Call Handling
Figure 22 Asynchronous Call Handling - CICS Transaction Gateway

Figure 22 illustrates how CICSClient ETD communicates with the underlying transport,
IBM CICS Transaction Gateway, to make a call and get notification when the call
completes.

Asynchronous Call Handling Using the SeeBeyond CICS Listener

When using the SeeBeyond CICS Listener as the underlying connection transport, a
worker thread is created using com.stc.eways.cics.ListenerReplyHandler as the target.
The corresponding AsyncCall object keeps a reference of this worker thread, which is
started by the ETD logic (Collab thread) when an asynchronous call is issued. To the
Collaboration, the call is asynchronous, but “under the hood” of the CICSClient ETD
the call to the CICS program is actually issued as a synchronous call. The main thread,
that is, the Collaboration thread, spawns a worker thread which is blocked by the
getResponse() method for a response (for this asynchronous call). After the
Collaboration thread spawns the worker thread it proceeds to execute other
Collaboration logic, achieving the asynchronous call effect. (See Figure 23.)

CICS ETD

AsyncCall pool

CTGReplyHandler

Async
Response

Topic

Collaboration

Call Initiator

CICS Server

CICS Programs

AsyncCall

CTG

CTG
Client

JMS Client
e*Way Intelligent Adapter for CICS User’s Guide 46 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
CICSClient ETD Overview Synchronous and Asynchronous Call Handling
Figure 23 Asynchronous Call Handling - SeeBeyond CICS Listener

Figure 23 illustrates how the CICSClient ETD communicates with the underlying
transport, SeeBeyond CICS Listener, to make a call and get notification when the call
completes. Figure 24 presents a thread diagram showing how an asynchronous call is
implemented when the SeeBeyond CICS Listener is used as the connection transport.

Figure 24 Asynchronous Call Handling - Thread Diagram

CICSClient ETD Asynchronous Configuration

The configuration parameter, Async Response Topic, located in CICS e*Way
Connection configuration, CICS Client section, is a JMS topic. The CICSClient ETD’s
Asynchronous call handling logic publishes a call to the topic when completes. The
topic is subscribed to by any Collaboration that wants to be notified when an
asynchronous program call is returned. The default value for the Async Response Topic
parameter is blank, which means that JMS messaging is not used for asynchronous call

CICS ETD

AsyncCall pool

ListenerReplyHandler
(a worker thread spawned by the

Collab Thread)

Async
Response

Topic

Collaboration

Call Initiator

CICS Server

CICS Programs

AsyncCall object

JMS Client

IBM CICS Listener

SeeBeyond CICS
Listener

Async Call

Response

TCP/IP

connect()

execute(sync)

disconnect()

populate result

publish Completion
Event (message)
through JMS API

end thread

Collab Thread ListenerReplyHandler
Thread

Collab logic
- - - - - - - -
execute (async)
- - - - - - - -
Collab logic
e*Way Intelligent Adapter for CICS User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
CICSClient ETD Overview Synchronous and Asynchronous Call Handling
handling, but the Call Initiator can still harvest asynchronous call results by iterating
through the AsyncCalls pool (see Asychronous Call Handling on page 43 for details).

ETD Nodes Associated with Asynchronous Call Handling

The Async Response Topic, Async Call JMS Server Host, and Async Call JMS Server
Port, configuration parameters provide the initial settings for the CICSClient ETD
nodes AsyncResponseTopic, AsyncRspNotifServer, AsyncRspNotifPort (see Figure
25). The settings for these nodes can be changed in the Collaboration by calling their
corresponding set methods. If a Collaboration is making a specific asynchronous call,
and other Collaborations are interested in the result of the call, an Event Type with a
name such as “XYZ” can be created in the schema, and interested parties can subscribe
to “XYZ.” Before the call is issued, the Call Initiator (the Collaboration issuing the call)
sets the AsyncResponseTopic as “XYZ,” and sets AsyncRspNotifServer and
AsyncRspNotifPort accordingly.

Figure 25 CICSClient ETD - Asynchronous Response Topic

Additional nodes and methods used specifically for asynchronous call handling
include AsyncCalls, ASYNCCALLRETURNCODES, ECIERRORS, and
createAsyncCallHandler(). The EciCallbackable node is used to hold an
AsyncCallHandler object used by the subsequent asynchronous call. Each
asynchronous call has its own instance of an AsyncCallHandler object. The following
section defines how each of these nodes and methods are used in an asynchronous call.

createAsyncCallHandler()

Each time the createAsyncCallHandler() method is called, it returns an instance of a
proper handler class, depending on whether CTG or the SeeBeyond CICS Listener is
used.

! When CTG is used - an instance of com.stc.eways.cics.CTGReplyHandler is
instantiated and returned.

! When SBYND Listener is used - an instance of
com.stc.eways.cics.SBYNDListenerReplyHandler is instantiated and returned.

This object is runnable, executed in a separate thread when the asynchronous call
returns.
e*Way Intelligent Adapter for CICS User’s Guide 48 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
CICSClient ETD Overview Synchronous and Asynchronous Call Handling
EciCallbackable

The EciCallbackable node is used to hold the current asynchronous call handler. It is
typically generated by invoking createAsyncCallHandler(). When set with an instance
of AsyncCallHandler, the handler instance will be used by the subsequent execute().

In addition, the Collaboration can call another execute(…… asyncCallhandler) and
feed the asynchronous call handler directly from the EciCallbackable node or invoking
the method createAsyncCallHandler().

The Collaboration uses the following gestures to tell the ETD how to handle an
asynchronous call.

When execute() or execute(... ... asyncCallHandler) is called:

IF AsyncCallHandler is NULL
{

 // no async call completion handling
 // is needed on eway side, just launch
 // the CICS program

}
ELSE {

 // async call completion handling
 // is needed, a AsyncCall object
 // will be put into the outstanding
 // async call pool (AsyncCalls)
 // with a reference to its
 // AsyncCallHandler:
 // either:
 // com.stc.eways.cics.CTGReplyHandler
 // or
 // com.stc.eways.cics.SBYNDListenerReplyHandler
 //
 IF AsyncResponseTopic is NULL
 {

 // This means though async call
 // completion needs to be
 // handled but no need to publish
 // it - only populate the result
 // and status information into
 // the pool, and can be harvested
 // by the same collaboration later

 }
 ELSE {

 // This means when async call
 // completes, the result and status
 // are populated into the pool
 // and also the completion event
 // is published to the topic;

 }
}

AsyncCalls

The AsyncCalls node represents a pool of outstanding asynchronous calls issued via
the ETD instance.

The methods used to navigate the asynchronous calls pool are:

hasNext()
Checks to see if there is next call object in the iterator.
e*Way Intelligent Adapter for CICS User’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
CICSClient ETD Overview Synchronous and Asynchronous Call Handling
next()
Makes the next call object in the iterator the current call object.

remove()
Removes the current call object from the iterator. Typically this is called after a call is
completed and the result has been harvested.

The following methods are used to probe for the call status and result. These are all
implicitly applied to the current AsyncCall object in the pool:

isDone()
Returns true when the asynchronous call is returned.

needReply()
Returns true when the asynchronous call has a handler registered. A non-null
asynchronous call handler in an AsyncCall node is a gesture from the Collaboration
that the asynchronous call completion needs to be handled.

returnCodeIs(code)
Checks the primary return code for the current call object. This is valid only when
isDone() returns true.

secondaryReturnCodeIs(code)
Checks the secondary return code for the current call object. This is valid only when
isDone() returns true.

The following attributes (sub nodes of AsyncCalls) are provided as properties for the
current call object:

Topic
The event type name (JMS topic) that the ETD publishes to when the call completes.

Program
The name of the invoked CICS program.

StartTime
The time when the call request was issued by the Collaboration.

CommArea
The COMMAREA for this specific asynchronous call. Typically, it contains the data
passed to the CICS program before the call completes, and contains the data passed
back from the CICS program after the call completes.

CommAreaLength
The length of the COMMAREA for this specific asynchronous call.

ReturnTime
The time when the call completed.

ReturnCode
The primary return code for the current call. If it is CALL_ERROR, check
SecondaryReturnCode for more details.

SecondaryReturnCode
When CTG is used, the value must be in ECIERRORS. Otherwise, the value is in
RETURNCODES.
e*Way Intelligent Adapter for CICS User’s Guide 50 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
CICSClient ETD Overview Synchronous and Asynchronous Call Handling
ReturnMessage
The corresponding text message for the SecondaryReturnCode.

ASYNCCALLRETURNCODES
This node contains the return code or primary return code for a completed
asynchronous call. It contains two values, CALL_OK, and CALL_ERROR. If it is
the primary return code, it is represented by the sub-node ReturnCode in the
AsyncCalls node.

ECIERRORS
The ECIERRORS node contains all of the error codes in
com.ibm.ctg.client.ECIReturncode. These error codes are used with the
secondaryReturnCodeIs(secondaryReturnCode) method in the AsyncCalls node,
and allow the user to “drag & drop” code to generate Collaboration Rules for
checking the error code of a completed asynchronous call.

Connection Management and Asynchronous Call Handling

When issuing asynchronous calls through a CICS e*Way Connection, the ETD
implementation treats asynchronous (and synchronous) calls differently depending on
whether CTG or SeeBeyond Listener is used.

CICS Transaction Gateway

With the CICS Transaction Gateway, every time an asynchronous call is issued, a new
instance of com.ibm.ctg.client.JavaGateway is created and used to send the request
(asynchronous call). The CTGReplyHandler instance (implements
com.ibm.ctg.client.Callbackable), registered with the request, is responsible for closing
the gateway object and releasing all the resources.

SeeBeyond CICS Listener

With the SeeBeyond CICS Listener, a separate TCP/IP socket connection is created
whenever an asynchronous call is issued, and a new session of the SBYND CICS
listener (a new instance of the listener) is created. The request is issued over this session
as a synchronous call. This is done by an instance of a ListenerReplyHandler associated
with the asynchronous call. After the call is returned, the session is closed.

For an asynchronous call, the connection to the CICS server is established for the call,
and disconnected and released after the asynchronous call completes. This connection
is independent of the connection for the ETD which is managed by Connection
Management. In other words, the connection for an asynchronous call is not managed
by the Connection Management mechanism.

The following illustrates the relationship between the connection in the ETD (the
primary connection), and connections for asynchronous calls (outstanding).

Automatic Connection Establishment Mode

When the primary connection’s Connection Establishment Mode is set as Automatic,
the primary connection and possible asynchronous call connections co-exist in parallel.
The Collaboration can initiate additional asynchronous calls that establish their own
connections until their completion, and at the same time, do synchronous calls on the
primary connection (as illustrated in Figure 26).
e*Way Intelligent Adapter for CICS User’s Guide 51 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
CICSClient ETD Overview Synchronous and Asynchronous Call Handling
Figure 26 Connection Establishment Mode - Automatic

On Demand Connection Establishment Mode

When set as On Demand, the primary connection is established whenever there is a
demand (invoking executeBusinessRules()) and released after it is used.

The Collaboration can initiate additional asynchronous calls that establish their own
connection to the CICS server until their completion, and at the same time, do
synchronous calls over the primary connection (as illustrated in Figure 27).

Figure 27 Connection Establishment Mode - On Demand

Manual Connection Establishment Mode

The Manual connection mode is similar to the On Demand mode, except that if there is
a primary connection it is established by the Collaboration business logic.

Primary connection (established at the ETD initialization time until inactive time out or the e*Way is down).

Connection for async call 1

Connection for async call 2

Connection for async call 3

Primary connection

Connection for async call 1

Connection for async call 2

Primary connection Primary connection
e*Way Intelligent Adapter for CICS User’s Guide 52 SeeBeyond Proprietary and Confidential

Chapter 4

e*Way Configuration

This chapter describes how to configure the following components of the CICS e*Way:

! Multi-Mode e*Way Configuration on page 53

! e*Way Connection Configuration on page 59

4.1 Multi-Mode e*Way Configuration
Multi-Mode e*Way properties are set using the Enterprise Manager.

To create and configure a New Multi-Mode e*Way:

1 Select the Navigator’s Components tab.

2 Open the host and control broker on which you want to create the e*Way.

3 On the Palette, click on the Create a New e*Way button.

4 The New e*Way Component window opens. Enter the name of the new e*Way, then
click OK.

5 Right-click the new e*Way and select Properties edit its properties.

Figure 28 Multi-Mode e*Way Properties
e*Way Intelligent Adapter for CICS User’s Guide 53 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Configuration Multi-Mode e*Way Configuration
6 When the e*Way Properties window opens, click on the Find button beneath the
Executable File field, and select an executable file. For the purposes of the sample
select stceway.exe (stceway.exe is located in the “bin\” directory).

7 Under the Configuration File field, click on the New button. When the Settings
page opens, set the configuration parameters for this configuration file.

8 After selecting the desired parameters, save the current configuration. Close the .cfg
file and select OK to close the e*Way Properties Window.

Multi-Mode e*Way Configuration Parameters

The Multi-Mode e*Way configuration parameters are arranged in the following
sections:

! JVM Settings on page 54

! General Settings on page 58

4.1.1. JVM Settings
The JVM Settings control basic Java Virtual Machine settings.

! JNI DLL Absolute Pathname on page 54

! CLASSPATH Prepend on page 55

! CLASSPATH Override on page 55

! CLASSPATH Append From Environment Variable on page 56

! Initial Heap Size on page 56

! Maximum Heap Size on page 56

! Maximum Stack Size for Native Threads on page 56

! Maximum Stack Size for JVM Threads on page 57

! Disable JIT on page 57

! Remote Debugging port number on page 57

! Suspend option for debugging on page 57

! Auxiliary JVM Configuration File on page 57

JNI DLL Absolute Pathname

Description

Specifies the absolute pathname to where the JNI DLL installed by the Java 2 SDK
1.3.1_02 is located on the Participating Host.

Required Values

A valid pathname.

Additional Information

The JNI dll name varies on different O/S platforms:
e*Way Intelligent Adapter for CICS User’s Guide 54 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Configuration Multi-Mode e*Way Configuration
The value assigned may contain a reference to an environment variable. To do this,
enclose the variable name within a pair of % symbols. For example:

%MY_JNIDLL%

Such variables are used when multiple Participating Hosts are used on different
platforms.

Note: To ensure that the JNI DLL loads successfully, the Dynamic Load Library search
path environment variable must be set appropriately to include all the directories
under the Java 2 SDK (or JDK) installation directory that contain shared libraries
(UNIX) or DLLs (NT).

CLASSPATH Prepend

Description

Specifies the paths to be prepended to the CLASSPATH environment variable for the
JVM.

Required Values

An absolute path or an environmental variable. This parameter is optional.

Additional Information

If left unset, no paths are prepended to the CLASSPATH environment variable.

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_PRECLASSPATH%

CLASSPATH Override

Description

Specifies the complete CLASSPATH variable to be used by the JVM. This parameter is
optional. If left unset, an appropriate CLASSPATH environment variable (consisting of
required e*Gate components concatenated with the system version of CLASSPATH) is
set.

Note: All necessary JAR and ZIP files needed by both e*Gate and the JVM must be
included. It is advised that the CLASSPATH Prepend parameter be used.

OS Java 2 JNI DLL Name

Windows NT 4.0/ Windows 2000 jvm.dll

Solaris 2.6, 2.7, 2.8 libjvm.so

OS/390, z/OS libjvm.so

HP-UX libjvm.sl

AIX 4.3.3 and 5.1 libjvm.a
e*Way Intelligent Adapter for CICS User’s Guide 55 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Configuration Multi-Mode e*Way Configuration
Required Values

An absolute path or an environmental variable. This parameter is optional.

Additional Information

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_CLASSPATH%

CLASSPATH Append From Environment Variable

Description

Specifies whether the path is appended for the CLASSPATH environmental variable to
jar and zip files needed by the JVM.

Required Values

YES or NO. The configured default is YES.

Initial Heap Size

Description

Specifies the value for the initial heap size in bytes. If set to 0 (zero), the preferred value
for the initial heap size of the JVM is used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Heap Size

Description

Specifies the value of the maximum heap size in bytes. If set to 0 (zero), the preferred
value for the maximum heap size of the JVM is used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Stack Size for Native Threads

Description

Specifies the value of the maximum stack size in bytes for native threads. If set to 0
(zero), the default value is used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.
e*Way Intelligent Adapter for CICS User’s Guide 56 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Configuration Multi-Mode e*Way Configuration
Maximum Stack Size for JVM Threads

Description

Specifies the value of the maximum stack size in bytes for JVM threads. If set to 0 (zero),
the preferred value for the maximum heap size of the JVM is used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Disable JIT

Description

Specifies whether the Just-In-Time (JIT) compiler is disabled.

Required Values

YES or NO.

Note: This parameter is not supported for Java Release 1.

Remote Debugging port number

Description

Specifies the port number by which the e*Gate Java Debugger can connect with the
JVM to allow remote debugging.

Required Values

An unused port number in the range 2000 through 65535. If not specified, the e*Gate
Java Debugger is not able to connect to this e*Way.

Suspend option for debugging

Description

Allows you to specify that the e*Way should do no processing until an e*Gate Java
Debugger has successfully connected to it.

Required Values

YES or No. YES suspends e*Way processing until a Debugger connects to it. NO
enables e*Way processing immediately upon startup.

Auxiliary JVM Configuration File

Description

Specifies an auxiliary JVM configuration file for additional parameters.
e*Way Intelligent Adapter for CICS User’s Guide 57 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Configuration Multi-Mode e*Way Configuration
Required Values

The location of the auxiliary JVM configuration file.

4.1.2. General Settings
For more information on the General Settings configuration parameters see the e*Gate
Integrator User's Guide. The General Settings section contains the following parameters:

! Rollback Wait Interval on page 58

! Standard IQ FIFO on page 58

Rollback Wait Interval

Description

Specifies the time interval to wait before rolling back the transaction.

Required Values

A number within the range of 0 to 99999999, representing the time interval in
milliseconds.

Standard IQ FIFO

Description

Specifies whether the highest priority messages from all STC_Standard IQs will be
delivered in the first-in-first-out (FIFO) order.

Required Values

Select YES or NO. YES indicates that the e*Way will retrieve messages from all
STC_Standard IQs in the first-in-first-out (FIFO) order. NO indicates that this feature is
disabled. NO is the configured default.
e*Way Intelligent Adapter for CICS User’s Guide 58 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
e*Way Configuration e*Way Connection Configuration
4.2 e*Way Connection Configuration
e*Way Connections are set using the Enterprise Manager.

To create and configure a CICS e*Way Connection:

1 In the Enterprise Manager’s Component editor, select the e*Way Connections
folder.

2 On the palette, click the Create a New e*Way Connection button. The New e*Way
Connection Component dialog box opens. Enter a name for the new e*Way
Connection and click OK.

3 Double-click on the new e*Way Connection. The e*Way Connection Properties
dialog box opens.

Figure 29 e*Way Connection Properties

4 From the e*Way Connection Type drop-down box, select CICS.

5 Enter the Event Type “get” interval in the dialog box provided. The configured
default is 10000 milliseconds.

6 From the e*Way Connection Configuration File, click New to create a new
Configuration File for this e*Way Connection. (To use an existing file, click Find.)

7 The e*Way Connection Configuration Editor opens. Make any necessary changes
to the CICS e*Way Connection parameters.

8 From the File menu, click Save to save settings, and click Promote to Run Time to
move the file to the Run Time environment.

Note: If changes are made to an existing e*Way Connection file, any e*Ways using the
revised e*Way Connection must be restarted.
e*Way Intelligent Adapter for CICS User’s Guide 59 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
e*Way Configuration e*Way Connection Configuration
The CICS e*Way Connection configuration parameters are organized into the following
sections:

! Connector on page 60

! CICS Gateway on page 62

! SeeBeyond CICS Listener on page 63

! CICS Client on page 67

! Tracing on page 71

4.2.1. Connector
This section contains a set of top level parameters:

! Type on page 60

! Connection Transport on page 60

! Connection Establishment Mode on page 61

! Connection Inactivity Timeout on page 61

! Connection Verification Interval on page 61

! Class on page 62

! Property.Tag on page 62

Type

Description

Specifies the connector type.

Required Values

CICS. The value always defaults to CICS for CICS connections.

Connection Transport

Description

Specifies whether the CICS e*Way will use the SeeBeyond CICS Listener or the IBM
CICS Transaction Gateway as the underlying transport to send requests to and get
responses from a CICS region.

Required Values

Select SeeBeyond CICS Listener or Transaction Gateway. Transaction Gateway is the
default.
e*Way Intelligent Adapter for CICS User’s Guide 60 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
e*Way Configuration e*Way Connection Configuration
Connection Establishment Mode

Description

Specifies how the connection to CICS is established and closed.

! Automatic indicates that the connection is automatically established when the
Collaboration is started, and maintains the connection as needed.

! OnDemand indicates that the connection is established on demand as business
rules requiring a connection to the external system are performed. The connection is
closed once the methods are complete.

! Manual indicates that the user will explicitly call the connection open and close
methods in the Collaboration as business rules. Properties specified in the
configuration file are loaded as default properties.

Required Values

Automatic, OnDemand, or Manual. Automatic is the default.

Connection Inactivity Timeout

Description

Specifies the timeout in milliseconds for the Automatic Connection Establishment
Mode. If it is not set, or set to zero, the continuous connection will not timeout due to
inactivity. However if the connection goes down, it will automatically attempt to
reestablish the connection. If a nonzero value is specified, the connection manager
monitors for any inactivity and stops the connection if it reaches the specified value.

Required Values

An integer between 0 and 864000, representing milliseconds (for example, 120000
milliseconds equals 2 minutes). The default value is 50000.

Connection Verification Interval

Description

Specifies the timeout (in milliseconds) for the Automatic option for the Connection
Establishment Mode parameter.

! If the value is left blank or set to 0 the connection will not timeout (be brought
down) due to inactivity. The connection is always kept alive. If the connection goes
down, re-establishing connection is attempted automatically.

! If a non-zero value is specified, the connection manager attempts to monitor for
inactivity and the connection is ended when the specified timeout value is reached.

Required Values

An integer between 0 and 864000, representing milliseconds (for example, 120000
milliseconds equals 2 minutes). The default value is 10000.
e*Way Intelligent Adapter for CICS User’s Guide 61 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
e*Way Configuration e*Way Connection Configuration
Class

Description

Specifies the class name of the CICS Client connector object.

Required Values

A valid package name. The default is com.stc.eways.cics.CicsClientConnector.

Property.Tag

Description

Specifies the data source identity. This parameter is required by the current
EBobConnectorFactory.

Required Values

A valid data source package name.

4.2.2. CICS Gateway
These parameters are specific to the CICS Transaction Gateway (CTG). This section
contains the following parameters for CICS Java Gateway setup:

! Url on page 62

! Port on page 62

! SSL KeyRing Class on page 63

! SSL KeyRing Password on page 63

Url

Description

Specifies the remote or local Gateway with which to connect.

Required Values

A valid remote or local Gateway (node name or IP address).

Port

Description

Specifies the TCP/IP port with which to connect, that is, the port where CTG is
running.

Required Values

An integer ranging from 1 to 864000. The default value is 2006.
e*Way Intelligent Adapter for CICS User’s Guide 62 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
e*Way Configuration e*Way Connection Configuration
SSL KeyRing Class

Description

Specifies the full classname of the SSL KeyRing class.

Required Values

A valid full classname.

SSL KeyRing Password

Description

Specifies the PASSWORD for the encrypted KeyRing class.

Required Values

A valid password for the SSL KeyRing class.

4.2.3. SeeBeyond CICS Listener
These parameters are specific to the SeeBeyond CICS Listener. This section contains a
set of top level parameters:

! Host on page 63

! Port on page 64

! SeeBeyond CICS Listener TransId on page 64

! Start Type on page 64

! Start Delay on page 64

! Listener Timeout on page 65

! TP Timeout on page 65

! Polling Rate on page 65

! Transport Timeout on page 65

! COMMAREA Padding Character on page 66

! SendBufSize on page 66

! ReceiveBufSize on page 66

! NoDelay on page 66

! KeepAlive on page 67

Host

Description

Specifies the name of the mainframe host with which to connect. This is always CICS.
e*Way Intelligent Adapter for CICS User’s Guide 63 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
e*Way Configuration e*Way Connection Configuration
Required Values

CICS. The value always defaults to CICS for CICS connections. The default is CICS.

Port

Description

Specifies the TCP/IP port where the SeeBeyond CICS Listener is listening. This is the
port to which the CICS e*Way will connect.

Required Values

The TCP/IP port to which SeeBeyond CICS Listener is listening. The default is 3001.

SeeBeyond CICS Listener TransId

Description

Specifies the TransId of the SeeBeyond CICS Listener on the mainframe host. This is the
CICS Transaction that the SeeBeyond CICS Listener is installed under.

Required Values

The valid TransId of the SeeBeyond Cics Listener

Start Type

Description

Specifies the startup type. This can be either IC for CICS interval control or TD for CICS
transient data. This is the CICS Startup type for the program being executed.

Required Values

Select IC or TD.

Start Delay

Description

Specifies the hours, minutes and seconds (interval of time) to delay starting the
transaction program (TP) on the CICS server for the IC Start Type. This field is optional
but must specify all 6 digits if used.

Required Values

A 6 digit integer. All 6 digits must be given if this is specified (for example, 000000).
e*Way Intelligent Adapter for CICS User’s Guide 64 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
e*Way Configuration e*Way Connection Configuration
Listener Timeout

Description

Specifies the estimated amount of time (in milliseconds) for the SeeBeyond CICS
Listener to wait for the next incoming transaction program request from the CICS
e*Way.

Required Values

An integer between 1 and 864000 representing milliseconds (for example, 120000
milliseconds equals 2 minutes). The default value is 5000.

TP Timeout

Description

Specifies the amount of time the CICS e*Way will wait for the SeeBeyond CICS Listener
to return results for a current transaction program request.

Required Values

An integer between 1 and 864000 representing milliseconds (for example, 120000
milliseconds equals 2 minutes). The default value is 50000.

Polling Rate

Description

Specifies the polling rate. This is the number of times the SeeBeyond CICS Listener will
query the current TCP connection for incoming traffic before issuing an EXEC CICS
DELAY for one second.

Required Values

! An integer between 1 and 255 representing . The default value is 5.

Transport Timeout

Description

Specifies the timeout used by both the local and host side for receive on the socket.

Required Values

An integer between 1 and 864000 representing milliseconds (for example, 120000
milliseconds equals 2 minutes). The default value is 5000.
e*Way Intelligent Adapter for CICS User’s Guide 65 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
e*Way Configuration e*Way Connection Configuration
COMMAREA Padding Character

Description

Specifies the EBCDIC code for the character used by the SBYND listener to pad the
COMMAREA at the CICS server when the actual length of the payload in the COMMAREA is
shorter than the length given by CommAreaLength. The default value is hexadecimal 40 -
EBCDIC space.

Required Values

A charactor value coded in Hexadecimal. For example: 40 for Blanks, 00 for Low
Values, FF for High Values, and so forth.

SendBufSize

Description

Specifies the Send Buffer Size for the underlying socket.

Required Values

An integer between 1 and 864000 representing bytes (for example, 10240 bytes equals
10 kilobytes). The default value is 4096.

ReceiveBufSize

Description

Specifies the Receive Buffer Size (in bytes) for the underlying socket, this is a hint.

Required Values

An integer between 1 and 864000 representing bytes (for example, 10240 bytes equals
10 kilobytes). The default value is 4096.

NoDelay

Description

Specifies whether the system can delay connections or requests. Generally, NoDelay/
True is necessary for high-volume and/or critical transactions. In cases of low-volume
and/or noncritical transactions, you can use NoDelay/False. Required Values

Select TRUE or FALSE. TRUE is the default.
e*Way Intelligent Adapter for CICS User’s Guide 66 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
e*Way Configuration e*Way Connection Configuration
KeepAlive

Description

Specifies whether to enable socket keep-alive checking. A setting of TRUE enables an
implementation specific time period when a probe is sent to peer. The purpose of this
option is to detect if the peer host has crashed.

One of three responses is expected:

1. The peer responds with the expected ACK. The application is not notified (since
everything is OK). TCP will send another probe following another 2 hours of inactivity.

2. The peer responds with an RST, which tells the local TCP that the peer host has
crashed and rebooted. The socket is closed.

3. There is no response from the peer. The socket is closed.

Required Values

Select TRUE or FALSE. TRUE is the default.

4.2.4. CICS Client
This section contains the following parameters for CICS Client setup:

! Cics UserId on page 67

! Cics Password on page 68

! ECI call type on page 68

! CICS Program on page 68

! CICS TransId on page 68

! COMMAREA length on page 69

! ECI extend mode on page 69

! ECI LUW token on page 69

! Message qualifier on page 70

! Async Response Topic on page 70

! Async Call JMS Server Host on page 70

! Async Call JMS Server Port on page 70

! Encoding on page 70

Cics UserId

Description

Specifies the ID of the CICS user. Maximum length is eight characters.
e*Way Intelligent Adapter for CICS User’s Guide 67 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
e*Way Configuration e*Way Connection Configuration
Required Values

A valid CICS user ID, eight characters or less.

Cics Password

Description

Specifies the password for the CICS user. Maximum length is eight characters.

Required Values

A valid password for the user ID, eight characters or less.

ECI call type

Description

Specifies whether the ECI call type is Asynchronous or Synchronous.

! Synchronous Calls will wait for the transaction to complete, then return the
contents of the COMMAREA.

! Asynchronous calls will not wait for the transaction to complete, so no data is
returned.

For further detail, see the IBM publication “CICS Family: Client/Server Programming”
(document number SC33-1435-03).

Required Values

Asynchronous or Synchronous. Synchronous is the configured default.

CICS Program

Description

Specifies the CICS program to be run on the server. Maximum length is eight
characters.

Required Values

A valid CICS program name, eight characters or less.

CICS TransId

Description

Specifies the CICS TransId to be run on the server. Maximum length is four characters.

Required Values

A valid CICS TransId, four characters or less.
e*Way Intelligent Adapter for CICS User’s Guide 68 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
e*Way Configuration e*Way Connection Configuration
COMMAREA length

Description

Specifies the length (in bytes) of the communication area (COMMAREA) passed to the
ECI.

Required Values

An integer in the range of 1 to 32659. The configured default is 1000.

ECI extend mode

Description

CTG specific. Specifies whether a logical unit of work is terminated at the end of a call.

! No (ECI_NO_EXTEND). IF the input eci_luw_token field is zero, then this is the
only call for a logical unit of work. If the input eci_luw_token field is not zero, then
this is the last call for the specified logical unit of work. In either case, changes to
recoverable resources are committed by a CICS end-of-task syncpoint, and the
logical unit of work ends.

! Yes (ECI_EXTENDED). If the input eci_luw_token field is zero, then this is the first
call for a logical unit of work that is to be continued. If the input eci_luw_token field
is not zero, then this call continues the specified logical unit of work. In either case
the logical unit of work continues after the called program completes, and changes
to recoverable resources remain uncommitted.

Required Values

Yes or No. The configured default is No.

ECI LUW token

Description

CTG specific. Specifies the logical unit of work to which a call belongs. This must be set
to zero at the start of a logical work unit. The ECI will update the value on the first or
only call of the logical work unit. If the unit of work is to be extended, this value should
be used as input to all subsequent calls associated with the same logical work unit.

If the return code is not ECI_NO_ERROR and a call is ending or continuing an existing
logical work unit, then this field is used to report the state of the logical work unit. If it
is zero, the logical work unit has ended and updates have been backed out. If it is not
zero, the value is the same as the input value. The logical work unit is continuing, and
updates are still pending.

Required Values

A valid integer in the range of 0 to 1000. The configured default is 0. This is a required
input and output parameter.
e*Way Intelligent Adapter for CICS User’s Guide 69 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
e*Way Configuration e*Way Connection Configuration
Message qualifier

Description

CTG specific. The ECI Message Qualifier identifies each asynchronous call if more than
one call is made. This security feature-related ID is only used on the same JavaGateway
that created or assigned them.

Required Values

A valid integer in the range of 0 to 1000. This is an optional input parameter.

Async Response Topic

Description

CTG specific. Specifies the default JMS topic for response Events for the asynchronous
CICS program call.

Required Values

The valid name of the JMS topic.

Async Call JMS Server Host

Description

CTG specific. Specifies the host where the JMS server for the asynchronous call
completion Event publishing and subscribing is running.

Required Values

The valid name of the asynchronous call JMS server host.

Async Call JMS Server Port

Description

CTG specific. Specifies the port where the JMS server for the asynchronous call
completion Event publishing and subscribing is listening.

Required Values

The valid port number.

Encoding

Description

Specifies default encoding.
e*Way Intelligent Adapter for CICS User’s Guide 70 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
e*Way Configuration e*Way Connection Configuration
Required Values

The canonical name for any encoding set supported by Sun's Java Runtime
Environment 1.1.8 (contained in rt.jar and i18n.jar). Examples are ASCII and Cp500
(EBCDIC). When running the CICS e*Way on the OS/390 and z/OS platforms,
encoding should be set to "ISO-8859-1”.

4.2.5. Tracing
Tracing parameters are used with the CTG implementation only. This section contains a
set of top level parameters:

! Level on page 71

! Filename on page 71

! Truncation Size on page 72

! Dump Offset on page 72

! Timing on page 72

Level

Description

CTG specific. Specifies the level of trace information available. Options are:

! 0 - None: no CICS Java client application tracing.

! 1 - Standard: By default, it displays only the first 128 bytes of any data blocks (for
example the COMMAREA, or network flows). This trace level is equivalent to the
Gateway trace set by the ctgstart -trace option. (Can also set using System property
"gateway.T.trace=on".)

! 2 - Full Debug: By default, it traces out the whole of any data blocks. The trace
contains more information about CICS Transaction Gateway than the standard trace
level. This trace level is equivalent to the Gateway debug trace set by the ctgstart -x
option. (Can also set using System property "gateway.T=on".)

! 3 - Exception Stacks: It traces most Java exceptions, including exception which are
expected during normal operation of the CICS Transaction Gateway. No other
tracing is written. This trace level is equivalent to the Gateway stack trace set by the
ctgstart -stack option. (Can also set using System property "gateway.T.stack=on".)

Required Values

An integer in the range of 0 to 3.

Filename

Description

CTG specific. Integer-set. Specifies a file location for writing the trace output. This is as
an alternative to the default output on stderr. Long filenames must be surrounded by
e*Way Intelligent Adapter for CICS User’s Guide 71 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
e*Way Configuration e*Way Connection Configuration
quotation marks, for example: "trace output file.log". (Can also be set using System
property "gateway.T.setTFile=xxx" where xxx is a filename.)

Required Values

A valid output file name.

Truncation Size

Description

CTG specific. Specifies the maximum size of any data blocks that is written in the trace.
Specifying 0 will cause no data blocks to be written in the trace. Leave it blank if you do
not want to specify truncation size. (Can also be set using System property
"gateway.T.setTruncationSize=xxx" where xxx is a number.)

Required Values

An integer in the range of 0 to 864000. The configured default is 100.

Dump Offset

Description

CTG specific. Specifies the offset from which displays of any data blocks will start. If
the offset is greater than the total length of data to be displayed, an offset of 0 is used.
(Can also be set using System property "gateway.T.setDumpOffset=xxx" where xxx is a
number.)

Required Values

An integer in the range of 0 to 864000.

Timing

Description

CTG specific. Specifies whether or not to display time-stamps in the trace. (Can also be
set using System property "gateway.T.timing=on".)

Required Values

Off or On. The configured default is On.
e*Way Intelligent Adapter for CICS User’s Guide 72 SeeBeyond Proprietary and Confidential

Chapter 5

Implementation

This chapter includes information pertinent to implementing the Java-enabled CICS
e*Way in a production environment. Several sample schemas are provided to
demonstrate various implementation scenarios.

The following assumptions are applicable to this implementation: 1) The CICS e*Way
has been successfully installed. 2) The executable and the configuration files have been
appropriately assigned. 3) All necessary .jar files are accessible.

5.1 Using the Cobol Copybook Converter
The Cobol Copybook Converter is a build tool that takes a Cobol copybook as input
and creates an ETD .ssc file. The SSC Wizard feature of the ETD Editor can be used to
create Java ETDs. These ETDs can be used to map the contents of the CICS Commarea,
to allow parsing and data conversion as needed.

For complete instructions on using the Copybook Convertor, see the Cobol Copybook
Converter User's Guide.

5.2 Sample Schemas
A number of sample schemas are provided on the installation CD-ROM or tape in the
..\samples\ewcics directory. When imported into the e*Gate Enterprise Manager, each
sample is nearly complete with all the necessary components created for the sample.
Once the component parameters are configured for the specific system, the samples are
ready to run. These samples demonstrate the following:

! The CICSJava_Sample.zip: allocates a Commarea, issues a call to a program
named STCPROGB on the mainframe, and returns a buffer with sample data,
demonstrating a simple call to the program. The CICSJava_Sample schema is used
in the Implementation chapter as an example for the creation of the e*Way
components. These components are complete when the sample is imported, but for
the purpose of explaining how the various components are created manually, they
are presented from that perspective.
e*Way Intelligent Adapter for CICS User’s Guide 73 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Implementation Importing the Sample Schemas
! The CICSJava_os390.zip: is the OS/390 and z/OS platform version of the
CICSJava_Sample.zip. The sample demonstrates the CICSJava_Sample schema
with the addition of handling the OS/390 ASCII/EBCDIC encoding.

! The CICS_Client_Sample.zip: sends a data transaction to the Commarea, calls a
program named QAN3GLR1. The sample demonstrates a simple request/reply,
table lookup and returns a name and status or NOT FOUND if the information is
unavailable.

! The CICS_Client_Sample_os390.zip: is the OS/390 and z/OS platform version of
the CICS_Client_Sample.zip. The sample demonstrates the CICS_Client_Sample
schema with the addition of handling the OS/390 ASCII/EBCDIC encoding.

! The CICS_Client_SubCollab_Sample.zip: is similar to the CICS_Client_Sample
except that the transaction is done as a sub-routine, demonstrating how
Subcollaboration rules (sub-routines) can be called from the main Collaboration.
For more information on Subcollaborations see Subcollaboration Rules in the e*Gate
Integrator User’s Guide.

! CICS_Async_Sample_1.zip: is configured with CICS Transaction Gateway as the
underlying connection transport by default. It can be changed to use the SeeBeyond
CICS Listener by editing the settings in the e*Way Connection configuration file.
The sample simply demonstrates the Call Initiator (the Collaboration that makes
the asynchronous call) launching an asynchronous call on the mainframe.

! CICS_Async_Sample_2.zip: is also configured for CTG. This sample builds upon
the CICS_Async_Sample_1 schema. The sample demonstrates the Call Initiator
launching an asynchronous call on the mainframe and proceeding to other business
logic. The call is returned to the AsyncCalls pool and the result is harvested by the
Call Initiator.

! CICS_Async_Sample_3.zip: is also configured for CTG by default. This sample
builds upon the CICS_Async_Sample_2 schema. The sample demonstrates the Call
Initiator launching an asynchronous call on the mainframe and proceeding to other
business logic.The call is returned to the AsyncCalls pool and the result is harvested
by the Call Initiator. In addition the Call Initiator publishes the return Event to a
topic, making it available to other subscribers.

5.3 Importing the Sample Schemas
To import a sample schema do the following:

1 Start the e*Gate Enterprise Manager GUI.

2 When the Enterprise Manager prompts you to log in, select the host that you
specified during installation, and enter your password.

3 You are then prompted to select a schema. Click New. The New Schema dialog box
opens. (Schemas can also be imported or opened from the e*Gate File menu by
selecting New Schema or Open Schema.)
e*Way Intelligent Adapter for CICS User’s Guide 74 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
Implementation CICS Sample Implementation
4 Enter a name for the new schema, for example, CICSJava_Sample, or any name as
desired.

5 To import the sample schema select Create from Export, and use Find to locate and
select the sample .zip file on the CD-ROM.

The e*Gate Enterprise Manager opens to the new schema. You are now ready to make
any configuration changes that may be necessary for this sample schema to run on your
specific system.

5.3.1. Configuring the Connection Transport for a Sample Schema
To configure a sample schema to use either SeeBeyond CICS Listener or CICS
Transaction Gateway as the Connection Transport, import and open the schema in the
e*Gate Enterprise Manager and do the following:

1 From the Navigator pane select the Components tab and select the e*Way
Connections folder. All e*Way connections are now displayed in the Editor pane.

2 Select an e*Way Connection of type CICS. Double click the e*Way Connection to
open the Properties dialog box.

3 Click the Edit button under the e*Way Connection Configuration File field. The
Configuration Editor appears.

4 From the Connector section, Connection Transport parameter, select the
appropriate underlying transport mode, SeeBeyond CICS Listener or Transaction
Gateway (see Figure 30).

Figure 30 e*Way Connection Configuration Editor - Connection Transport

After selecting the desired parameters, save the current configuration. Close the .cfg file
and select OK to close the e*Way Properties Window.

5.4 CICS Sample Implementation
During installation, the host and Control Broker are automatically created and
configured. The default name of each is the name of the host on which you are
installing the e*Gate Enterprise Manager GUI. To complete the implementation of the
Java-enabled CICS e*Way, you will do the following:

! Make sure that the Control Broker is activated.

! In the e*Gate Enterprise Manager, define and configure the following as necessary:
e*Way Intelligent Adapter for CICS User’s Guide 75 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Implementation e*Way Components
" Inbound e*Way using stcewfile.exe

" Outbound e*Way using stcewfile.exe

" The Multi-Mode e*Way component as described in See “Multi-Mode e*Way
Configuration” on page 53.

" Event Type Definitions used to package the data to be exchanged with the
external system.

" Collaboration Rules to process Events.

" The e*Way Connection as described in e*Way Connection Configuration on
page 59.

" Collaborations, to be associated with each e*Way component, to apply the
required Collaboration Rules.

" The destination to which data will be published prior to being sent to the
external system.

5.5 e*Way Components
The following pages explain how the sample e*Way components are created manually,
first giving a walk-through of the components for the CICSJava_Sample schema, and
then defining the components of the other sample schemas. These components are
complete when the sample is imported, but are presented her for the purpose of
demonstrating their creation and configuration.

5.5.1. Event Types
The CICS e*Way installation includes the file “GenericBlob.xsc” which represents a
custom CICS Event Type template.

Creating an Event Type Using the Custom ETD Wizard

For the purpose of this example, the following procedure shows how to create an ETD
using the Custom ETD Wizard.

1 Highlight the Event Types folder on the Components tab of the e*Gate Navigator.

2 On the palette, click the Create a New Event Type button to create a new Event
Type.

3 Enter the name of the event type, then click OK. (For the purpose of this sample, the
first Event Type is defined as “etd_GenericBlob.”)

4 Double-click the new event type to edit its properties.

5 When the Properties window opens, click the New button. The ETD Editor opens.

6 Select New from the File menu on Task Manager.
e*Way Intelligent Adapter for CICS User’s Guide 76 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Implementation e*Way Components
7 The Event Type Definition Wizard opens.

Figure 31 The New Event Type Definition Wizard

8 Select the appropriate wizard. (For this Event Type, select Custom ETD Wizard.)

9 Enter a root node name. (For this example type GenericBlobIn.)

10 Enter a package name where the ETD Editor can place all the generated Java classes
associated with the created ETD. (For this sample, use com.stc.GenericBlob as the
package name.)

11 Click OK and Finish to accept the names and open the ETD Editor.

12 Select GenericBlob in the Event Type Definition pane. Change the structure value
under Properties from delim to fixed.

13 Right click the GenericBlob root node, and select Add Field, as Child Node. A
child node, Field1, is added. Triple click the Field1 node and rename it Data.

14 Select the Data node. Change the structure value under Properties from delim to
fixed, and the order value from sequence to any.
e*Way Intelligent Adapter for CICS User’s Guide 77 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Implementation e*Way Components
Figure 32 Event Type Definition Editor - GenericBlob.xsc

15 From the File menu, click Compile and Save, saving the file as GenericBlob.xsc.

16 From the File menu, click Promote to Run Time.

Creating an Event Type Associated with an Existing ETD

For the purpose of this example, the following procedure shows how to create an Event
Type Definition (ETD) from an existing .xsc file using cicsclient.xsc as the input file.
The cicsclient.xsc comes with the CICS e*Way and is used when creating all Schemas.

1 Select the Event Types folder on the Components tab of the e*Gate Navigator.

2 On the palette, click the Create a New Event Type button.

3 Enter the name of the Event Type in the New Event Type Component window,
then click OK. (For this sample, the Event Type is defined as “etd_CICSClient.”)

4 Double-click the new Event Type to open the ETD properties dialog box.

5 When the Properties dialog box opens, click the Find button. Browse to and select
cicsclient.xsc.

6 Click Apply and OK to close the Event Type Properties dialog box.

5.5.2. Creating and Configuring the Component e*Ways
The first components to be created are the following e*Ways.

! Creating the Inbound e*Way (Feeder) on page 79

! Creating the Outbound e*Way (Eater) on page 80
e*Way Intelligent Adapter for CICS User’s Guide 78 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Implementation e*Way Components
! Creating the Multi-Mode e*Way (CICSClient) on page 81

The following sections provide instructions for creating each e*Way.

Creating the Inbound e*Way (Feeder)

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the e*Ways.

3 Select the Control Broker that will manage the new e*Ways.

4 On the palette, click the Create a New e*Way button.

5 Enter the name of the new e*Way (in this case “Feeder”), then click OK.

6 Right-click the new e*Way and select Properties to edit its properties.

7 The e*Way Properties window opens. Click the Find button beneath the Executable
File field, and select stcewfile.exe as the executable file.

8 Under the Configuration File field, click the New button. The Edit Settings
window opens. Select the settings, as displayed in Table 4, for this configuration
file.

:

9 From the File menu, click Save, saving the configuration file as Feeder.cfg.

10 From the File menu, click Promote to Run Time. This closes the .cfg file.

11 In the e*Way - Properties window, use the Startup, Advanced, and Security tabs to
modify the default settings for each e*Way you configure.

A Use the Startup tab to specify whether the e*Way starts automatically, or restarts
after abnormal termination or due to scheduling, and so forth.

Table 4 Configuration Parameters for the Inbound e*Way

Parameter Value

General Settings (unless otherwise stated, leave settings as default)

AllowIncoming YES

AllowOutgoing NO

Outbound Settings Default

Poller Inbound Settings

PollDirectory C:Indata (input file folder)

InputFileExtension *.fin (input file extension)

PollMilliseconds 1000

Remove EOL YES

MultipleRecordsPerFile YES

MaxBytesPerLine 4096

BytesPerLineIsFixed NO

File Records Per eGate Event 1

Performance Testing Default
e*Way Intelligent Adapter for CICS User’s Guide 79 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Implementation e*Way Components
B Use the Advanced tab to specify or view the activity and error logging levels, as
well as the Event threshold information.

C Use Security to view or set privilege assignments.

12 Select OK to close the e*Way Properties window.

Creating the Outbound e*Way (Eater)

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the e*Ways.

3 Select the Control Broker that will manage the new e*Ways.

4 On the palette, click the Create a New e*Way button.

5 Enter the name of the new e*Way (in this case “Eater”), then click OK.

6 Select the new e*Way, right-click and select Properties to edit its properties.

7 When the e*Way Properties window opens, click the Find button beneath the
Executable File field. Select stcewfile.exe as the executable file.

8 Under the Configuration File field, click the New button. The Edit Settings
window opens. Select the following settings for this configuration file.

:

9 From the File menu, click Save, saving the file as Eater.cfg, and click Promote to
Run Time, to move the file to the run-time environment. This closes the Edit
Settings window.

10 In the e*Way - Properties window, use the Startup, Advanced, and Security tabs to
modify the default settings for the e*Way.

11 Use Security to view or set privilege assignments.

12 Click OK to close the e*Way Properties window.

Table 5 Configuration Parameters for the Outbound e*Way

Parameter Value

General Settings (unless otherwise stated, leave settings as default)

AllowIncoming NO

AllowOutgoing YES

Outbound Settings

OutputDirectory C:\DATA

OutputFileName output%d.dat

MultipleRecordsPerFile NO

MaxRecordsPerFile 10000

AddEOL YES

Poller Inbound Settings Default

Performance Testing Default
e*Way Intelligent Adapter for CICS User’s Guide 80 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Implementation e*Way Components
Creating the Multi-Mode e*Way (CICSClient)

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the e*Way.

3 Select the Control Broker that will manage the new e*Way.

4 On the palette, click the Create a New e*Way button.

5 Enter the name of the new e*Way (in this case, “CICSClient”), then click OK.

6 Right-click the new e*Way and select Properties to edit its properties.

7 When the e*Way Properties window opens, click the Find button beneath the
Executable File field, and select stceway.exe as the executable file.

8 To edit the JVM Settings, select New (or Edit if you are editing the existing .cfg file)
under Configuration file.

See Multi-Mode e*Way Configuration on page 53 for details on the parameters
associated with the Multi-Mode e*Way.

9 From the File menu, click Save to save the .cfg file as CICSClient.cfg, and click
Promote to Run Time to move the file to the run-time environment.

10 In the e*Way Properties window, use the Startup, Advanced, and Security tabs to
modify the default settings for each.

A Use the Startup tab to specify whether the e*Way starts automatically, restarts
after abnormal termination or due to scheduling, etc.

B Use the Advanced tab to specify or view the activity and error logging levels, as
well as the Event threshold information.

C Use Security to view or set privilege assignments.

11 Click OK to close e*Way Properties window.

5.5.3. Creating the e*Way Connection
The e*Way Connection configuration file contains the connection information along
with the information needed to communicate using CICS.

To create and configure a New e*Way Connection

1 Select the e*Way Connection folder on the Components tab of the e*Gate
Navigator.

2 On the palette, click the Create a New e*Way Connection button.

3 Enter the name of the e*Way Connection (for this sample, “eWc_CICSClient”), then
click OK.

4 Double-click the new e*Way Connection to edit its properties.

5 The e*Way Connection Properties window opens. Select CICS from the e*Way
Connection Type drop-down menu.
e*Way Intelligent Adapter for CICS User’s Guide 81 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Implementation e*Way Components
6 Enter the Event Type “get” interval in the dialog box provided. 10000 milliseconds
is the configured default. The “get” interval is the intervening period at which,
when subscribed to, the e*Way connection is polled.

7 Under e*Way Connection Configuration File, click the New button.

8 The e*Way Connection Editor opens. Select the following parameters listed in Table
4. For more information on the CICS e*Way Connection parameters, see e*Way
Connection Configuration on page 59.

9 Save the .cfg file (eWc_CICSClient.cfg), and from the File menu, click Promote to
Run Time.

5.5.4. Creating Intelligent Queues
The next step is to create and associate the IQ Manager for the CICS e*Way. The IQ
Manager governs the exchange of information between components within the e*Gate
system, providing non-volatile storage for data as it passes from one component to
another. IQs use IQ Services to transport data. IQ Services provide the mechanism for
moving Events between IQs, handling the low-level implementation of data exchange
(such as system calls to initialize or reorganize a database).

Table 6 e*Way Connection Configuration Parameters

Parameter Value

connector (unless otherwise stated, leave settings as default)

type CICS

class com.stc.eways.cics.CicsClientConnector

CICS Gateway

Port 8888

AddEOL YES

CICS Client Default

CICS Program STCPROGB

COMMAREA length 1000

ECI extend mode No

ECI LUW token 0

Message qualifier 0

Encoding cp500

Performance Testing

Level 0

Filename CICSJava_Trace.txt

Truncation Size 100

Dump Offset 0

Timing On
e*Way Intelligent Adapter for CICS User’s Guide 82 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Implementation e*Way Components
Typically, the IQ Manager is set to type SeeBeyond JMS and IQs use the STC_JMS_IQ
service. This is not an option when running the CICS e*Way on the OS/390 or z/OS
platform. The CICS e*Way, when running on OS/390 or z/OS, must use the SeeBeyond
Standard IQ Manager Type and the STC_Standard IQ Service.

The CICSJava_Sample schema uses the SeeBeyond JMS IQ Manager and the
STC_JMS_IQ IQ Service.

To create and modify the JMS IQ Manager for the CICS e*Way

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the JMS Queue Server.

3 Open a Control Broker.

4 Click the Create a New IQ Manager button. Enter a name for the IQ Manager (for
this case, “localhost_iqmgr”).

5 Right-click the IQ Manager and select Properties. The IQ Manager Properties
dialog box opens.

6 From the IQ Manager Type field drop-down list box select SeeBeyond JMS.

7 Click New under the Configuration File field to set parameters, or select the Use
Default Configuration option to accept default settings. For this schema select the
Use Default Configuration option.

8 On the Start Up tab select Start automatically and Restart after abnormal
termination. Set the Number of retries to 10 and set the Retry interval every value
to 10 minutes.

9 Click OK to close the IQ Manager Properties dialog box.

To create and modify an Intelligent Queue for the CICS e*Way

1 From the Navigator's Components pane, open the participating host.

1 Select the IQ Manager.

2 On the palette, click the Create a New IQ button.

3 Enter the name of the new IQ (in this case “IQ1”), then click OK.

4 Double-click the new IQ to edit its properties.

5 On the General tab, specify the Service and the Event Type Get Interval. When
using a SeeBeyond JMS Type IQ Manager the IQ Service defaults to STC_JMS_IQ.

The default Event Type Get Interval of 100 Milliseconds is satisfactory for the
purposes of this initial implementation.

6 On the Advanced tab, make sure that Simple publish/subscribe is checked under
the IQ behavior section.

7 Click OK to close the IQ Properties window

8 For this schema, repeat steps 1 through 8 to create an additional IQ (for this sample,
“IQ2”).
e*Way Intelligent Adapter for CICS User’s Guide 83 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Implementation e*Way Components
Note: When running the CICS e*Way on an OS/390 or z/OS platform, always select an
IQ Manager Type of SeeBeyond Standard. The SeeBeyond JMS IQ Manager is not
available for the OS/390or z/OS platform.

5.5.5. Creating Collaboration Rules
The next step is to create the Collaboration Rules that will extract and process selected
information from the source Event Type defined above, according to its associated
Collaboration Service. The Default Editor can be set to either Monk or Java.

From the Enterprise Manager Task Bar, select Options and click Default Editor. The
default should be set to Java.

The sample schema calls for the creation of two Collaboration Rules files.

! cr_PassThru (Pass Through)

! cr_CICSClient (Java)

cr_PassThru (Pass Through)

1 Select the Navigator's Components tab in the e*Gate Enterprise Manager.

2 In the Navigator, select the Collaboration Rules folder.

3 On the palette, click the Create New Collaboration Rules button.

4 Enter the name of the new Collaboration Rule Component (for this case
“PassThru”), then click OK.

5 Double-click the new Collaboration Rules Component. The Collaboration Rules
Properties window opens.

Figure 33 Collaboration Rules Properties - Pass Through

6 The Service field defaults to Pass Through.
e*Way Intelligent Adapter for CICS User’s Guide 84 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Implementation e*Way Components
7 Go to the Subscriptions tab. Select etd_GenericBlob (see Creating an Event Type
Using the Custom ETD Wizard on page 76 to see how the etd_GenericBlob was
created) under Available Input Event Types, and click the right arrow to move it to
Selected Input Event Types. The box under Triggering Event should be checked.

8 Go to the Publications tab. Select etd_GenericBlob under Available Output Event
Types, and click the right arrow to move it to Selected Output Event Types. Make
sure that etd_Blob is selected as the default.

Figure 34 Collaboration Properties

9 Click OK to close the Collaboration Rules - cr_PassThru Properties window.

cr_CICSClient (Java)

1 Select the Navigator's Components tab in the e*Gate Enterprise Manager.

2 In the Navigator, select the Collaboration Rules folder.

3 On the palette, click the Create New Collaboration Rules button.

4 Enter the name of the new Collaboration Rule, then click OK (for this case, use
CICSClient).

5 Double-click the new Collaboration Rules Component to edit its properties. The
Collaboration Rules Properties window opens.

6 From the Service field drop-down box, select Java. The Collaboration Mapping tab
is now enabled, and the Subscriptions and Publications tabs are disabled.

7 In the Initialization string field, enter any required initialization string that the
Collaboration Service may require. This field can be left blank.

8 Select the Collaboration Mapping tab.

9 Using the Add Instance button, create instances to coincide with the Event Types.
For this sample, do the following:

10 In the Instance Name column, enter CICSOut for the instance name.
e*Way Intelligent Adapter for CICS User’s Guide 85 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Implementation e*Way Components
11 Click Find, navigate to and double-click cicsclient.xsc. This adds cicsclient.xsc to
the ETD column for this instance.

12 In the Mode column, select In from the drop–down list box. To access the drop-
down list box, click the right portion of the Mode field for this instance.

13 In the Trigger column, make sure that the checkbox is cleared (no trigger).

14 In the Manual Publish column, make sure the checkbox is selected.

Figure 35 Collaboration Rules - Collaboration Mapping

15 Repeat steps 9–13 using the following values:

" Instance Name — GenericOut

" ETD — GenericBlob.xsc

" Mode — Out

" Trigger — clear

" Manual Publish - clear

16 Repeat steps 9–13 again using the following values:

" Instance Name — GenericIn

" ETD — GenericBlob.xsc

" Mode — In

" Trigger — select

" Manual Publish - clear

17 Select the General tab, under the Collaboration Rule box, select New. The
Collaboration Rules Editor opens.

18 Expand to full size for optimum viewing, expanding the Source and Destination
Events as well. The following section describes the setting up the Collaboration
rules for CICSClient using the Java Collaboration Rules Editor.
e*Way Intelligent Adapter for CICS User’s Guide 86 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Implementation e*Way Components
Creating the Collaboration Rules Class

The section is given as an example of how to create the Collaboration Rules Class using
the Java Collaboration Rules Editor. The completed Collaboration Rules .xpr file is
included with the sample schema on the CD. The following section gives a number of
examples that demonstrate how these rules were setup. Refer to the completed class,
CICSClient.class when completing the Collaboration Rules Properties.

Each rule is created by clicking the rule button on the Business Rules toolbar or by
“dragging and dropping” a node or method from the Source Events pane onto a node
or method in the Destination Events pane. For more information on using the Java
Collaboration Rules Editor, see the e*Gate Integrator User’s Guide.

1 The Java Collaboration Rules Editor opens from the Collaboration Rules Properties
dialog box when the Collaboration Rules field, New or Edit button is clicked.
Expand to full size for optimum viewing, expanding the Source and Destination
Events as well.

2 Select retBoolean in the Business Rules pane. All of the user–defined business
rules are added as part of this method.

Figure 36 The Collaboration Rules Editor
e*Way Intelligent Adapter for CICS User’s Guide 87 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Implementation e*Way Components
3 The first rule under retBoolean is created by dragging CommAreaLength from the
Destination Events command node into the Rule Properties, Rule field (see Figure
36). Place the Cursor in the last set of parentheses and enter 50 as the parameter to
create the following code:

getCICSClient().setCommAreaLength(50)

4 The second rule is created by dragging Data from the Source Events command
node into the Rule Properties, Rule field to create the following code:

getCICSClient().setCommArea()

Place the cursor in the last set of parentheses and enter the following:
new String (getGenericIn().getData().getBytes("cp500"), "ISO-8859-1").getBytes())

to create the following code:
getCICSClient().setCommArea(new String (getGenericIn().getData().getBytes("cp500"), "ISO-8859-
1").getBytes())

5 To create third rule under retBoolean, drag the getServerList method under
CICSClient on the Destination Events command node into the Rule Properties, Rule
field. When prompted for the maxNumSystems int (see Figure 37) enter 1 and click
OK to create the following code:

getCICSClient().getServerList(1)

Figure 37 Parameters for method - getServerList

6 The forth rule under retBoolean is created by dragging the execute method under
CICSClient on the Destination Events command node into the Rule Properties, Rule
field.

7 To create the fifth rule drag Data under GenericOut on the Destination Events
command node into the Rule Properties, Rule field. Drag the second
getCommAreaString method under CICSClient on the Destination Events
command node into the last set of parentheses. When prompted for the encoding
parameter value, enter ''cp500'' to create the following code:

getGenericOut().setData(getCICSClient().getCommAreaString("cp500"))

8 From the Tools menu, click Options. Add stccics.jar to the Classpath and verify that
all necessary .jar files are included.

9 When all the business logic has been defined (see Figure 38), the code can be
compiled by selecting Compile from the File menu. The Save menu opens, provide
a name for the .xpr file.
e*Way Intelligent Adapter for CICS User’s Guide 88 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Implementation e*Way Components
Figure 38 Business Rules - cr_CICSClient

5.5.6. Creating Collaborations
Collaborations are the components that receive and process Event Types and forward
the output to other e*Gate components or to an external. Collaborations consist of the
Subscriber, which “listens” for Events of a known type (sometimes from a given source)
and the Publisher, which distributes the transformed Event to a specified recipient.

To create the CICIS_Multi_Mode Collaboration

1 In the e*Gate Enterprise Manager, select the Navigator's Components tab.

2 Open the host on which you want to create the Collaboration.

3 Select a Control Broker.

4 Select an e*Way to assign the Collaboration (for this sample, “CICSClient”).

5 On the palette, click the Create a New Collaboration button.

6 Enter the name of the new Collaboration, then click OK. (For the sample,
“col_CICSclient”)

7 Double-click the new Collaboration to edit its properties. The Collaboration
Properties dialog box opens.

8 From the Collaboration Rules drop-down list box select the Collaboration Rules
file that you created previously (for the sample, “CICSclient”).

9 In the Subscriptions area, click Add to define the input Event Types to which this
Collaboration will subscribe.

A From the Instance Name field drop-down list box, select the Instance Name that
you previously defined “GenericIn.”

B From the Event Type drop-down list box, select the Event Type that you
previously defined “etd_Blob.”

C From the Source drop-down list box, select the source (for this sample
“eWc_CICSClient”).

10 In the Publications area, click Add to define the output Event Types that this
Collaboration will publish.
e*Way Intelligent Adapter for CICS User’s Guide 89 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Implementation e*Way Components
A From the Instance Name drop-down list box, select the Instance Name that you
previously defined “GenericOut.”

B From the Event Types drop-down list box, select the Event Type that you
previously defined “etd_Blob.”

C Select the publication destination from the Destination drop-down list box. In
this case, it should be “IQ2.”

D The value in the Priority column defaults to 5.

11 In the Publications area, click Add to add an additional instance.

A From the Instance Name drop-down list box, select the Instance Name that you
previously defined “CICSOut.”

B From the Event Types drop-down list box, select the Event Type that you
previously defined “etd_CICSClient.”

C Select the publication destination from the Destination drop-down list box. In
this case, it should be “eWc_CICSClient.”

D The value in the Priority column defaults to 5.

Figure 39 Collaboration Properties - col_CICSClient

12 Click the Apply button and click OK to close the Collaboration Properties dialog
box.

To create the Inbound e*Way Collaboration

1 In the e*Gate Enterprise Manager, select the Navigator's Components tab.

2 Open the host on which you want to create the Collaboration.

3 Select a Control Broker.

4 Select the Feeder e*Way to assign its Collaboration.
e*Way Intelligent Adapter for CICS User’s Guide 90 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Implementation e*Way Components
5 On the palette, click the Create a New Collaboration button.

6 Enter the name of the new Collaboration (for the sample, “col_Feeder”) then click
OK.

7 Double-click the new Collaboration to edit its properties. The Collaboration
Properties dialog box opens.

8 From the Collaboration Rules drop-down list box, select the Collaboration Rules
file that you created previously (for the sample, “PassThru”).

9 In the Subscriptions area, click Add to define the input Event Types to which this
Collaboration will subscribe.

A From the Event Type drop-down list box, select the Event Type that you
previously defined “etd_Blob.”

B Select the Source from the Source drop-down list box. In this case, it should be
<External>.

10 In the Publications area, click Add to define the output Event Types that this
Collaboration will publish.

A From the Event Types list, select the Event Type that you previously defined
“etd_Blob.”

B Select the publication destination from the Destination list. In this case, it
should be “IQ1.”

C The value in the Priority column defaults to 5.

Figure 40 Collaboration Properties_col_Feeder

11 Click the Apply button and click OK to close the Collaboration Properties dialog
box.
e*Way Intelligent Adapter for CICS User’s Guide 91 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Implementation e*Way Components
To create the Outbound e*Way Collaboration

1 In the e*Gate Enterprise Manager, select the Navigator's Components tab.

2 Open the host on which you want to create the Collaboration.

3 Select a Control Broker.

4 Select the Eater e*Way to assign its Collaboration.

5 On the palette, click the Create a New Collaboration button.

6 Enter the name of the new Collaboration (for this sample, “col_Eater”), then click
OK.

7 Double-click the new Collaboration to edit its properties.

8 From the Collaboration Rules drop-down list box, select the Collaboration Rules
file that you created previously (for the sample, “PassThru”).

9 In the Subscriptions area, click Add to define the input Event Types to which this
Collaboration will subscribe.

A From the Event Type drop-down list box, select the Event Type that you
previously defined “etd_Blob.”

B Select the Source from the Source list. In this case, it should be
“col_CICSClient.”

10 In the Publications area, click Add to define the output Event Types that this
Collaboration will publish.

A From the Event Types list box, select the Event Type that you previously
defined “etd_Blob.”

B Select the publication destination from the Destination list. In this case, it
should be <External>.

C The value in the Priority column defaults to 5.

Figure 41 Collaboration Properties_col_Feeder
e*Way Intelligent Adapter for CICS User’s Guide 92 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
Implementation CICS Sample Schemas
11 Click the Apply button and click OK to close the Collaboration Properties dialog
box.

5.6 CICS Sample Schemas
The following sections defines the components of the remaining sample schemas. It is
assumed that the reader has a basic understanding of the e*Way components and how
they are created. For more information on creating and configuring e*Way components
see the e*Gate Integrator User’s Guide. The following sections describe the various CICS
sample schemas:

! The CICSJava_Sample Schema on page 73

! The CICS_Client_Sample Schema on page 93

! The CICSJava_os390 and CICS_Client_Sample_os390 Schemas for OS/390 and z/
OS on page 102

! The CICS_Client_SubCollab_Sample Schema on page 103

! Asynchronous Call Handling Samples on page 107

5.7 The CICS_Client_Sample Schema
The CICS_Client_Sample demonstrates a simple request/reply, table lookup, and
returns a name and status or NOT FOUND if information is unavailable. The sample
sends a data transaction to the Commarea and calls a program named QAN3GLR1.

Note: The components of the sample schema are created when the schema is imported and
only require changes to the configuration parameters of the e*Ways and e*Way
Connections for your specific system. The following section describes how the
sample components are created manually.

5.7.1 Creating the e*Ways
The CICS_Client_Sample uses three e*Ways, Feeder (Inbound - stcewfile.exe), Eater
(outbound - stcewfile.exe) and CICSClient (Multi-mode - stceway.exe).

Configuring the File e*Ways

The File e*Ways, Feeder and Eater use the executable file “stcewfile”, set in the e*Way
properties. The Configuration file for the e*Way is set as displayed in Table 7and Table
8.
e*Way Intelligent Adapter for CICS User’s Guide 93 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Implementation The CICS_Client_Sample Schema
Table 7 Feeder e*Way Parameters

Table 8 Eater e*Way Parameters

e*Way Configuration
Parameters

Feeder

General Settings - Set as directed, otherwise leave as default.

AllowIncoming YES

AllowOutgoing NO

Outbound (send) settings - Set as directed, otherwise leave as
default.

Poller (inbound) settings - Set as directed, otherwise leave as
default.

PollDirectory C:\INDATA\CICS_Sample

InputFileMask *.fin

PollMilliseconds 1000

RemoveEOL YES

MultipleRecordsPerFile YES

MaxBytesPerLine 4096

BytesPerLineIsFixed NO

File Records Per eGate Event 1

Performance Testing - Set as directed, otherwise leave as
default.

e*Way Configuration
Parameters

Feeder

General Settings - Set as directed, otherwise leave as default.

AllowIncoming NO

AllowOutgoing YES

Outbound (send) settings - Set as directed, otherwise leave as
default.

OutputDirectory C:\DATA\CICS_Sample

OutputFileName CICS_output%d.dat

MultipleRecordsPerFile YES

MaxRecordsPerFile 10000

AddEOL YES

Poller (inbound) settings - Set as directed, otherwise leave as
default.

Performance Testing - Set as directed, otherwise leave as
default.
e*Way Intelligent Adapter for CICS User’s Guide 94 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Implementation The CICS_Client_Sample Schema
Configuring the Multi-Mode e*Way

The Multi-Mode e*Way, CICSClient, uses the executable file “stceway”, set in the
e*Way’s properties.

For the purposes of this sample the configuration file for the Multi-Mode e*Way can be
saved as default.

For more information on the Multi-Mode e*Way configuration settings see the e*Gate
Integrator User’s Guide.

5.7.2 Creating the ETDs
The CICS_Client_Sample uses two Event Types, etd_CICSClient using cicsclient.xsc
(see The CICSClient ETD on page 39), and etd_GenericBlob (GenericBlob.xsc) as seen
in Figure 42.

Figure 42 ETD Editor - etd_GenericBlob

5.7.3 Configuring the IQs
Open the IQ Manager Properties and select SeeBeyond Standard as the IQ Manager
Type. Create two STC_Standard IQs, IQ1 and IQ2, both set for Simple publish and
subscribe (see Creating Intelligent Queues on page 82 for more information).

5.7.4 Creating the e*Way Connections
e*Way Intelligent Adapter for CICS User’s Guide 95 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Implementation The CICS_Client_Sample Schema
One e*Way Connection, eWc_CICSClient is created for the CICS_Client_Sample. The
e*Way Connection Type, viewed in the e*Way Connection Properties, is CICS. The
default Event Type “get” interval setting of 100 milliseconds is sufficient for this
sample. To set the Configuration parameters for the eWc_CICSClient e*Way
Connection (see Table 9), click on the New/Edit button under the e*Way Connection
Configuration File field. Edit the settings specific to your system (see Creating the
e*Way Connections on page 95 and e*Way Connection Configuration on page 59).
From the File menu, click Save, and Promote to Run Time.

Table 9 eWc_CICSClient e*Way Connection Parameters

e*Way Configuration Parameters Feeder

connector Settings - Set as directed, otherwise leave as default.

type CICS

Connection Transport SeeBeyond CICS Listener

Connection Establishment Mode Automatic

Connection Inactivity Mode 3000

Connection Verification Interval 10000

class

Property.Tag

CICS Gateway - Set as directed, otherwise leave as default.

URL

Port

SSL KeyRingClass

SSL KeyRing Password

SeeBeyond CICS Listener - Set as directed, otherwise leave as default.

Host

Port 3009

SeeBeyond CICS Listener TransId STCL

Start Type IC

Start Delay 000000

Listener Timeout 5000

TP Timeout 50000

Polling Rate 25

Transport Timeout 5000

COMMAREA Padding Character 40

SendBufSize 4096

ReceiveBufSize 4096

NoDelay TRUE

KeepAlive TRUE

CICS Client - Set as directed, otherwise leave as default.

CICS UserId
e*Way Intelligent Adapter for CICS User’s Guide 96 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Implementation The CICS_Client_Sample Schema
5.7.5 Creating the Collaboration Rules
The CICS_Client_Sample includes the cr_PassThru (Pass Through) and crCICSClient
(Java) Collaboration Rules. Create the Collaboration Rules as displayed. Business logic
for the Java Collaboration Rules is defined using the Collaboration Rules Editor. See
Creating Collaboration Rules on page 84 for more information.

The cr_PassThru Collaboration Rules Properties dialog box Subscriptions and
Publications tabs appear as they do in Figure 43 when complete.

Figure 43 Collaboration Rules Properties - cr_PassThru

CICS Password

ECI call type Synchronous

CICS Program QAN3GLR1

CICS TransId

COMMAREA Length 50

ECI extend mode No

ECI LUW token 0

Message qualifier 0

Encoding cp500

e*Way Configuration Parameters Feeder
e*Way Intelligent Adapter for CICS User’s Guide 97 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Implementation The CICS_Client_Sample Schema
The cr_CICSClient Collaboration Rules Properties dialog box General and
Collaboration Mapping tabs appear as they do in Figure 44 when complete.

Figure 44 Collaboration Rules Properties - cr_CICSClient

From the General tab of the cr_CICSClient Collaboration Rules Properties dialog box,
click Edit or New under the Collaboration Rules field. The Collaboration Rules Editor
opens.

5.7.6 Business Rules for the cr_CICSClient.class
The business logic of the Collaboration is defined using the Collaboration Rules Editor
(see Figure 46). A Java Collaboration Rule is created by designating one or more source
Events and one or more destination Events and then setting up rules governing the
relationship between fields in the Event instances.

Each rule is created by clicking the rule button on the Business Rules toolbar or by
“dragging and dropping” a node or method from the Source Events pane onto a node
or method in the Destination Events pane. For more information on using the Java
Collaboration Rules Editor, see the e*Gate Integrator User’s Guide.

The cr_CICSClient Collaboration Rules (see Figure 45) are created as follows:

Figure 45 cr_CICSClient.class Business Rules
e*Way Intelligent Adapter for CICS User’s Guide 98 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Implementation The CICS_Client_Sample Schema
Figure 46 Collaboration Rules Editor - cr_CICSClient.class

1 The first rule, under retBoolean in the Business Rules window (see Figure 46), is
created by “dragging and dropping” CommAreaLength under CICSClient on the
Destination Events command node into the Rule Properties, Rule field. Place the
cursor in the last set of parentheses and type 50 to create the following code:

getCICSClient().setCommAreaLength(50)

2 To create the second rule drag CommArea under CICSClient on the Destination
Events command node, into the Rule Properties, Rule field. Place the cursor in the
last set of parentheses and type in the following:

new String (getGenericIn().getData().getBytes("cp037"), "ISO-8859-1").getBytes("ISO-8859-1")

The completed code for the second rule should appear as follows:
getCICSClient().setCommArea(new String (getGenericIn().getData().getBytes("cp037"), "ISO-8859-
1").getBytes("ISO-8859-1"))
e*Way Intelligent Adapter for CICS User’s Guide 99 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Implementation The CICS_Client_Sample Schema
3 For the third rule, drag the getServerList method under CICSClient, on the
Destination Events command node into the Rule Properties, Rule window. When
prompted for a MaxNumSystems Int enter ''1''.

4 For the forth rule, drag the execute method under CICSClient, on the Destination
Events command node into the Rule Properties, Rule window.

5 To create the fifth rule drag Data, under GenericOut on the Destination Events
command node, into the Rule Properties, Rule field. Drag the getCommAreaString
method with only the encoding parameter into the last set of parentheses. When
prompted for an encoding parameter value, type ''cp037'' and click OK, to create the
following code:

getGenericOut().setData(getCICSClient().getCommAreaString("cp037"))

6 When the business logic is complete, select Save and Compile from the File menu.
If the file compiles successfully, select Promote from the File menu to promote the
file to the run-time environment.

5.7.7 Creating the Collaborations
The Feeder e*Way Collaboration, named col_Feeder, appears as it is displayed in
Figure 47 when complete.

Figure 47 Collaboration Properties - col_Feeder

The Collaboration for the Eater e*Way, named col_Eater, appears as it is displayed in
Figure 48 when complete.
e*Way Intelligent Adapter for CICS User’s Guide 100 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Implementation The CICS_Client_Sample Schema
Figure 48 Collaboration Properties - col_Eater

The CICSClient e*Way Collaboration, named col_CICSClient, appears as it is
displayed in Figure 49 when complete.

Figure 49 Collaboration Properties - col_CICSClient
e*Way Intelligent Adapter for CICS User’s Guide 101 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.8
Implementation The CICSJava_os390 and CICS_Client_Sample_os390 Schemas for OS/390 and z/OS
5.8 The CICSJava_os390 and CICS_Client_Sample_os390
Schemas for OS/390 and z/OS

The CICSJava_os390 and CICS_Client_Sample_os390 schemas are nearly identical to
the non-OS/390 platform versions, with a few exceptions.

1 Both the CICS Java_os390 and the CICS_Client_Sample_os390 schemas use the
SeeBeyond Standard IQ Manager rather than the SeeBeyond JMS IQ Manager.
Therefore the IQs for the OS/390 samples are STC_Standard rather than
STC_JMS_IQ. The CICS e*Way on the OS/390 platform must use the SeeBeyond
Standard IQ Manager type. (See Creating Intelligent Queues on page 82 for more
information regarding IQs.)

2 For the CICS_Client_Sample_os390 has two additional Business Rules have been
added in the OS/390 version of the Collaboration (see Figure 50) to provide
inbound and outbound encoding for OS/390.

For Java Collaborations to compile properly on OS/390, the following actions must
be performed in the userInitialize section in the Business Rules pane of the Java
Collaboration. Perform these initializations once and only once.

Converting incoming EBCDIC data to ASCII

To convert incoming EBCDIC data (Java codepage “cp037”) to ASCII (Java
codepage “ISO-8859-1”), code the jCollabController in the userInitialize section as:

jCollabController.setIncomingEncoding("In1","cp037");

Converting outgoing ASCII data to EBCDIC

To convert outgoing ASCII data (Java codepage “ISO-8859-1”) to EBCDIC (Java

codepage “cp037”), code the jCollabController in the userInitialize section as:

jCollabController.setOutgoingEncoding("In2","cp037");

Figure 50 Business Rules - CICS_Client_Sample_os390

For further information on Java Collaborations on OS/390 or z/OS, see the e*Gate
Integrators Installation Guide.
e*Way Intelligent Adapter for CICS User’s Guide 102 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.9
Implementation The CICS_Client_SubCollab_Sample Schema
5.9 The CICS_Client_SubCollab_Sample Schema
Depending on how it is used, every Collaboration Rules file is either a Root
Collaboration Rule, invoked by e*Gate itself, or a Subcollaboration Rule, invoked by
another Collaboration Rule. Prior to release 4.5.2, Collaboration Rules could only be
used as Root Collaboration Rules.

A Collaboration Rule, when used as a Root Collaboration Rule, is like a main program.
When used as a Subcollaboration Rule, it is like a subroutine. A Subcollaboration Rule
allows you to reuse a valuable piece of work in another context without having to
reinvent it or reconstruct it from scratch.Typically, a Subcollaboration Rule takes care of
details or special-purpose parsings and transformations, allowing the parent
Collaboration Rule to be simpler and more general.

Subcollaboration Rules can nest to indefinite depth, limited only by system resources
(memory, stack, and so forth). A Subcollaboration Rule is invoked programmatically,
whereas a Root Collaboration Rule, like a main program, is called by the e*Way itself.

The CICS_Client_SubCollab_Sample executes the same operations as the
CICS_Client_Sample, except that the Business Rules are carried out as a
Subcollaboration. The components of the CICS_Client_SubCollab_Sample are identical
to the CICS_Client_Sample presented previously, with the exception of the components
presented in the following sections. For more information on creating and using
Subcollaborations see the Subcollaboration Rules section of the e*Gate Integrator User’s
Guide.

5.9.1 Creating the Collaboration Rules
The CICS_Client_SubCollab_Sample includes the cr_PassThru (Pass Through),
crCICSClient (Java) and crCICSClient_Tran (Java) Collaboration Rules. Create the
Collaboration Rules as displayed. Business logic for the Java Collaboration Rules is
defined using the Collaboration Rules Editor. See “Creating Collaboration Rules” on
page 84 for more information.

The cr_PassThru Collaboration Rules Properties dialog box Subscriptions and
Publications tabs appear as they do in Figure 51 when complete.
e*Way Intelligent Adapter for CICS User’s Guide 103 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.9
Implementation The CICS_Client_SubCollab_Sample Schema
Figure 51 Collaboration Rules Properties - cr_PassThru

The cr_CICSClient Collaboration Rules Properties dialog box General and
Collaboration Mapping tabs appear as they do in Figure 52 when complete.

Figure 52 Collaboration Rules Properties - cr_CICSClient_Tran

From the General tab of the cr_CICSClient_Tran Collaboration Rules Properties dialog
box, click Edit or New under the Collaboration Rules field. The Collaboration Rules
Editor opens.

5.9.2 Creating the Business Rules
The Business Logic of the Collaboration is defined using the Collaboration Rules Editor.
To create and use cr_CICSClient_Tran as a Subcollaboration, create
cr_CICSClient_Tran.class using the Collaboration Rules Editor.
cr_CICSClient_Tran.class is similar to cr_CICSClient.class created for the
CICS_Client_Sample (see Business Rules for the cr_CICSClient.class on page 98).
e*Way Intelligent Adapter for CICS User’s Guide 104 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.9
Implementation The CICS_Client_SubCollab_Sample Schema
Figure 53 cr_CICSClient_Tran.class Business Rules

Creating the cr_CICSClient.class Collaboration Rules

The cr_CICSClient_Tran Collaboration Rule is called from the parent Collaboration
Rule file, cr_CICSClient.class as a Subcollaboration (see Figure 54 on page 106). The
cr_CICSClient.class Collaboration Rules are created as follows:

Each rule is created by clicking the rule button on the Business Rules toolbar or by
“dragging and dropping” a node or method from the Source Events pane onto a node
or method in the Destination Events pane. For more information on using the Java
Collaboration Rules Editor and creating Subcollaborations, see the e*Gate Integrator
User’s Guide.

1 Start the Collaboration Rules Editor for cr_CICSClient by clicking the Edit or New
button under the Collaboration Rules field in the cr_CICSClient Collaboration
Rules Properties dialog box. The Collaboration Rules Editor opens.

2 Select the cr_CICSClient node and click the var button on the Business Rules
toolbar to add a variable. In the Variable Properties pane, select
JSubCollabMapInfo as the Type. Enter SubCollabMapInfo as the Name, and null
as the Initial Value. This variable keeps track of the mapping information of the
Subcollaboration Rule.

3 Select retBoolean in the Business Rules pane and click the rule button on the toolbar. The
first rule, under retBoolean in the Business Rules window, is a trace statement used for
debugging purposes. To create the trace statement type the following in the Rule Properties,
Rule field:

EGate.traceln(EGate.TRACE_COLLABSERVICE,EGate.TRACE_EVENT_INFORMATION,">>>>> Inside Main
Collaboration cr_CICSClient ...")

4 To create the second rule, Invoke subCollaboration, type the following code in the
Rule Properties, Rule field:

this.subCICSTranMethod()

Type Invoke subCollaboration into the Rule Properties Description field. This rule
is used to call the method that is defined in step 6.

5 Within the userInitialize() method, add a rule and type the following code into the
Rule Properties, Rule field:

SubCollabMapInfo = this.jCollabController.createSubCollabMapInfo("cr_CICSClient_Tran", this)
e*Way Intelligent Adapter for CICS User’s Guide 105 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.9
Implementation The CICS_Client_SubCollab_Sample Schema
This creates the mapping information for the Subcollaboration Rule and assigns it
to the variable added in step 2.

6 Select the userTerminate() method in the Business Rules pane and click the method
button to add a new method. In the Method Properties, enter subCICSTranMethod
as the description and name, and void as the return type.

7 Add a variable of type boolean, name retOK, and initial value false. This variable
checks on the Subcollaboration Rule's success.

8 Add a variable of type byte (Array selected), name dataArray, and initial value
null. This variable harvests the output from the Subcollaboration Rule.

Figure 54 CICS_Client_SubCollab_Sample cr_CICSClient.class Business Rules

9 The next rule is a trace statement, created by typing the following code into the
Rule Properties, Rule field:

EGate.traceln(EGate.TRACE_COLLABSERVICE,EGate.TRACE_EVENT_INFORMATION,">>>>> Inside Method
subCICSTranMethod ...")

10 The next rule is created by typing the following into the Rule Properties, Rule field:

dataArray =

and dragging marshal(), under GenericIn on the Source Events command node,
into the Rule Properties, Rule field to create the following code:

dataArray = getGenericIn().marshal()

11 The next rule calls setInstanceMap() for the Subcollaboration Rule's inbound Event
Type instance to populate the instance. To create the rule, type the following code into
the Rule Properties, Rule field:

SubCollabMapInfo.setInstanceMap("GenericIn", getGenericIn(), dataArray, null)
e*Way Intelligent Adapter for CICS User’s Guide 106 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.10
Implementation Asynchronous Call Handling Samples
12 The next two rules call setInstanceMap() for each of the Subcollaboration Rule's
harvestable outbound Event Type instances, to harvest the instance.

A To create the first of these rules, type the following code into the Rule Properties,
Rule field:

SubCollabMapInfo.setInstanceMap("CICSClient", getCICSClient(), null, null)

B To create the second of these rules, type the following code into the Rule
Properties, Rule field:

SubCollabMapInfo.setInstanceMap("GenericOut", getGenericOut(), null, null)

13 The next rule assigns a value to the variable defined in step 7. Type the following
code into the Rule Properties, Rule field:

retOK = this.jCollabController.invoke(SubCollabMapInfo)

14 To create the if expression, click the if button. Type retOK in the if Properties,
Condition field.

15 To create the next rule, select the then expression and click the rule button. Type the
following code into the Rule Properties, Rule field:

dataArray = SubCollabMapInfo.getOutputData("GenericOut");

16 Create another if expression. Type dataArray != null in the if Properties, Condition
field.

17 To create the next rule, select the next then expression and click the rule button.
Type the following trace statement into the Rule Properties, Rule field:

EGate.collabTrace("DATA RETURNED = " + STCTypeConverter.toString(dataArray));

getGenericOut().setData(STCTypeConverter.toString(dataArray));

18 To create the next rule, select the else expression, click the rule button, and type the
following trace statement into the Rule Properties, Rule field:

EGate.traceln(EGate.TRACE_EWAY,EGate.TRACE_EVENT_TRACE,"***Data returned was null ***")

19 To create the next rule, select the first if expressions else expression, click the rule
button and type the following trace statement into the Rule Properties, Rule field:

EGate.traceln(EGate.TRACE_EWAY,EGate.TRACE_EVENT_TRACE,"***No Data Returned ***")

20 The last rule is created by selecting the first if expression and clicking the rule
button. Type the following trace statement into the Rule Properties, Rule field:

EGate.traceln(EGate.TRACE_COLLABSERVICE,EGate.TRACE_EVENT_INFORMATION,">>>>> retOK: " + retOK)

21 When the business logic is complete, select Save from the File menu, an then select
Compile from the File menu. If the file compiles successfully, select Promote from
the File menu to promote the file to the run-time environment.

5.10 Asynchronous Call Handling Samples
The CICS_Async_Sample_1, CICS_Async_Sample_2, and CICS_Async_Sample_3
sample schemas demonstrate asynchronous call handling. The samples increment upon
each other, with sample 2 building upon sample 1 and sample 3 building upon sample
2. The components of the CICS_Async_Sample_3 are presented in the following
e*Way Intelligent Adapter for CICS User’s Guide 107 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.10
Implementation Asynchronous Call Handling Samples
sections and can be referred to for the components of samples 1 and 2. These sample
schemas are configured with CICS Transaction Gateway as the underlying connection
transport by default. To use the samples with SeeBeyond CICS Listener as the
underlying transport the e*Way Connection configuration parameters must be edited
for the sample (see Configuring the Connection Transport for a Sample Schema on
page 75).

! CICS_Async_Sample_1: demonstrates the Call Initiator (the Collaboration that
makes the asynchronous call) launching an asynchronous call on the mainframe
and proceeding to other business logic.

! CICS_Async_Sample_2: demonstrates the Call Initiator launching an
asynchronous call on the mainframe and proceeding to other business logic. The
call is returned to the AsyncCalls pool and the result is harvested by the Call
Initiator.

! CICS_Async_Sample_3: demonstrates the Call Initiator launching an
asynchronous call on the mainframe and proceeding to other business logic.The call
is returned to the AsyncCalls pool and the result is harvested by the Call Initiator. In
addition the Call Initiator publishes the return Event to a topic, making it available
to other subscribers.

5.10.1.The CICS_Async_Sample Schemas
The CICS_Async_Sample_1 Schema

In the CICS_Async_Sample_1 schema, the inbound (feeder) e*Way picks up either a
data message or command message from a local folder and publishes it to a JMS IQ
(IQ1). The CICSClient e*Way subscribes to IQ1 and tests whether the message is a data
message or command message. If it is a command message then the command is
followed. If it is a data message, it launches an asynchronous call to a remote CICS
program. This program (EC01, a time stamp program on the mainframe) has been
configured in the e*Way Connection configuration file. The CICSClient e*Way also
sends a string message to the JMS IQ (IQ2), saying that an asynchronous call has been
launched. This message is picked up by the outbound (eater) e*Way and published to a
local file.

The CICS_Async_Sample_2 Schema

The CICS_Async_Sample_2 schema builds upon the first sample. The incoming Event
is picked up by the incoming (feeder) e*Way and published to IQ1. The message
(incoming Event) triggers the Collaboration and is converted into a string called
message. If the message is a command message it is effected. If it is a data message it is
launched to the CICS program on the remote host.

These are manually driven schemas. The user chooses which message to send. Three
sample data messages are provided in the samples file (Async_SampleData.zip) on the
installation CD-ROM: cics_cleanup (the CLEANUP command message), cics_harvest
(the HARVEST command message), and cicstran1 (the data message).

The command messages:

! CLEANUP: If the incoming message is CLEANUP, a REWIND is done and
resetList() is called. This scans the elements in the asynchronous call pool, five at a
e*Way Intelligent Adapter for CICS User’s Guide 108 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.10
Implementation Asynchronous Call Handling Samples
time, for results. If something is found in the pool, the call object is checked to see if
it has completed. After all elements in the pool are checked the pool is wiped out.

! HARVEST: If the incoming message is HARVEST, a REWIND is done, resetList() is
called, and the pool is scanned. All information is printed out, collected, put in a
string, and published to the output file.

When the incoming call is a data message, the Commarea is set to 18 white spaces, and
EC01 is executed. An asynchronous call is launched to the CICS program on the remote
host (), and a string message stating that an asynchronous call has been launched, is
sent to IQ2, where is picked up by the outbound (eater) e*Way and published to a local
file. EciCallbackable is set. The EciCallbackable node is used to hold an
AsyncCallHandler object for the subsequent asynchronous call. Each asynchronous
call has its own instance of an AsyncCallHandler object. When the call is returned it is
placed in an asynchronous call pool, AsyncCalls, that holds and lists all of the
outstanding calls. For the CICS_Async_Sample_2 schema, the handler is registered but
no topic is given and the return message is not published. It is only place in the local
asynchronous call pool. The output folder receives “asynchronous call sent” messages
as well as a long string consisting of all the returned messages.

Note: When the CICS Transaction Gateway is used as the underlying connection
transport, all of the Trace parameters in the e*Way Connection configuration are
available for monitoring performance and for debugging.

The CICS_Async_Sample_3 Schema

The CICS_Async_Sample_3 schema does everything that samples 1 and 2 do. In
addition, the CICSClient e*Way publishes the asynchronous call results to the topic
async_topic. The async_subscriber e*Way picks up these messages and publishes them
to a local file.

Figure 55 CICS_Async_Sample_3 Schema

Inbound
(feeder)

File e*Way

Async
Subscriber

Outbound
(eater)

File e*Way

CICSClient
Multi-Mode

e*Way

Connector
Connector

cr_CICSClient Collaboration

cr_async_Sub Collaboration

IQ1

IQ2

Async
Topic

CICS
Server

File

File

File
e*Way Intelligent Adapter for CICS User’s Guide 109 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.10
Implementation Asynchronous Call Handling Samples
5.10.2 Creating the e*Ways
The CICS_Async_Sample_3 uses four e*Ways: feeder (Inbound - stcewfile.exe), eater
(outbound - stcewfile.exe), async_subscriber (outbound - stcewfile.exe), and
CICSClient (Multi-mode - stceway.exe).

Configuring the File e*Ways

The File e*Ways, feeder, eater, and async_subscriber, use the executable file
“stcewfile”, set in the e*Way properties. The Configuration files for the e*Ways are set
as displayed in Table 10, Table 11, and Table 12.

Table 10 feeder e*Way Parameters

Table 11 eater e*Way Parameters

e*Way Configuration
Parameters

Feeder

General Settings - Set as directed, otherwise leave as default.

AllowIncoming YES

AllowOutgoing NO

Outbound (send) settings - Set as directed, otherwise leave as default.

Poller (inbound) settings - Set as directed, otherwise leave as default.

PollDirectory C:\WORK_AREA\CICS_TEST

InputFileMask *.fin

PollMilliseconds 1000

RemoveEOL YES

MultipleRecordsPerFile YES

MaxBytesPerLine 4096

BytesPerLineIsFixed NO

File Records Per eGate Event 1

Performance Testing - Set as directed, otherwise leave as default.

e*Way Configuration
Parameters

Feeder

General Settings - Set as directed, otherwise leave as default.

AllowIncoming NO

AllowOutgoing YES

Outbound (send) settings - Set as directed, otherwise leave as default.

OutputDirectory C:\WORK_AREA\CICS_TEST

OutputFileName CICSAsyncTestoutput%d.dat

MultipleRecordsPerFile YES

MaxRecordsPerFile 10000

AddEOL YES

Poller (inbound) settings - Set as directed, otherwise leave as default.
e*Way Intelligent Adapter for CICS User’s Guide 110 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.10
Implementation Asynchronous Call Handling Samples
Table 12 async_subscriber e*Way Parameters

Configuring the Multi-Mode e*Way

The Multi-Mode e*Way, CICSClient, uses the executable file “stceway”, set in the
e*Way’s properties. For the purposes of this sample the configuration file for the Multi-
Mode e*Way can be saved as default. For more information on the Multi-Mode e*Way
configuration settings see the e*Gate Integrator User’s Guide.

5.10.3 Creating the ETDs
The CICS_Async_Sample_3 uses three Event Types (ETDs), etd_CICS using
cicsclient.xsc (see The CICSClient ETD on page 39), etd_Data (BlobData.xsc) as seen
in Figure 56, and ASYNCRESPONSETOPIC (AsyncEvent.xsc) as seen in Figure 57.

Performance Testing - Set as directed, otherwise leave as default.

e*Way Configuration
Parameters

Feeder

General Settings - Set as directed, otherwise leave as default.

AllowIncoming NO

AllowOutgoing YES

Outbound (send) settings - Set as directed, otherwise leave as default.

OutputDirectory C:\WORK_AREA\CICS_TEST

OutputFileName AsyncCallCompletionoutput%d.dat

MultipleRecordsPerFile YES

MaxRecordsPerFile 10000

AddEOL YES

Poller (inbound) settings - Set as directed, otherwise leave as default.

Performance Testing - Set as directed, otherwise leave as default.

e*Way Configuration
Parameters

Feeder
e*Way Intelligent Adapter for CICS User’s Guide 111 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.10
Implementation Asynchronous Call Handling Samples
Figure 56 ETD Editor - etd_Data (BlobData.xsc)

Figure 57 ETD Editor - etd_Data (BlobData.xsc)
e*Way Intelligent Adapter for CICS User’s Guide 112 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.10
Implementation Asynchronous Call Handling Samples
The Event Type Definitions (ETDs) BlobData.xsc and AsyncEvent.xsc, are created
using the Custom ETD Wizard. A field (child node to the root node) has been added in
both ETDs, with the Properties parameter javaType set to byte[].

5.10.4 Creating the IQs
Open the IQ Manager Properties and select SeeBeyond JMS as the IQ Manager Type.
Create two STC _JMS_ IQ service IQs, IQ1 and IQ2, both set for simple publish and
subscribe (see Creating Intelligent Queues on page 82 for more information).

5.10.5.Creating the async_topic (IQ Manager)
Topics are similar to queues, the difference being that all subscribers to a topic will
receive the same message when the message is published. Only one subscriber to a
queue receives a message when it is published. In the CICS_Async_Sample_3 schema,
the Call Initiator publishes the return Event to the topic, async_topic.

To creating the async_topic

1 From the Navigator’s Components tab, select the Control Broker and click the
Create a New IQ Manager button on the pallet.

2 Enter the name of the topic, for this sample “async_topic”, and click OK. The new
topic is added to the Editor pane.

3 Right-click the new topic to open its Properties dialog box. For this sample the
default properties can be saved. The IQ Manager Type is SeeBeyond JMS.

5.10.6 Creating the e*Way Connections
The CICS_Async_Sample schema contains two e*Way Connections: async_topic_eWc
of type SeeBeyond JMS, and conn_CICS_client of type CICS. The default Event Type
“get” interval setting of 10000 milliseconds is sufficient for this sample. Edit any
settings specific to your system. (see Creating the e*Way Connections on page 95 and
e*Way Connection Configuration on page 59).

async_topic_eWc e*Way Connection (SeeBeyond JMS) configuration parameters are set
as displayed in Table 13.

Table 13 async_topic_eWc.cfg Parameters

e*Way Configuration Parameters Feeder

General Settings - Set as directed, otherwise leave as default.

Connection Type Topic

Transaction Type Internal

Delivery Mode Persistent

Connection Inactivity Mode 3000

Maximum Number of Bytes to read 5000

Default Outgoing Message Type Bytes
e*Way Intelligent Adapter for CICS User’s Guide 113 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.10
Implementation Asynchronous Call Handling Samples
For more information on the SeeBeyond JMS e*Way Connection configuration
parameters see the SeeBeyond JMS Intelligent Queue User’s Guide.

conn_CICS_client e*Way Connection (CICS) configuration parameters are set as
displayed in Table 14.

Table 14 conn_CICS_client.cfg Parameters

Factory Class Name com.stc.common.collabService.
SBYNJMSFactory

Message Service - Set as directed, otherwise leave as default.

Server Name async_topic

Host Name localhost
Port Number 24053

Maximum Message Cache Size 100

e*Way Configuration Parameters Feeder

connector Settings - Set as directed, otherwise leave as default.

type CICS

Connection Transport SeeBeyond CICS Listener

Connection Establishment Mode Automatic

Connection Inactivity Mode 50000

Connection Verification Interval 10000

class com.stc.eways.cics.CicsClient
Connector

CICS Gateway - Set as directed, otherwise leave as default.

URL local

Port 2006

SSL KeyRing Class

SSL KeyRing Password

SeeBeyond CICS Listener - Set as directed, otherwise leave as default.

Host local

Port 3009

SeeBeyond CICS Listener TransId STCL

Start Type IC

Start Delay 000000

Listener Timeout 5000

TP Timeout 50000

Polling Rate 25

Transport Timeout 5000

COMMAREA Padding Character 40

SendBufSize 4096

e*Way Configuration Parameters Feeder
e*Way Intelligent Adapter for CICS User’s Guide 114 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.10
Implementation Asynchronous Call Handling Samples
For more information of CICS e*Way Connection configuration parameters see
Creating the e*Way Connections on page 95 and e*Way Connection Configuration on
page 59.

5.10.7 Creating the Collaboration Rules
The CICS_Async_Sample_3 includes four Java Collaboration Rules: cr_CICSClient_1,
cr_async_sub, cr_eater_1, and cr_feeder_1. Create the Collaboration Rules as
displayed. Business logic for the Java Collaboration Rules is defined using the
Collaboration Rules Editor. See Creating Collaboration Rules on page 84 for more
information.

The cr_CICSClient_1 Collaboration Rules Properties dialog box General and
Collaboration Mapping tabs are defined as they appear in Figure 58.

ReceiveBufSize 4096

NoDelay TRUE

KeepAlive TRUE

CICS Client - Set as directed, otherwise leave as default.

CICS UserId

CICS Password

ECI call type Asynchronous

CICS Program EC01

CICS TransId

COMMAREA Length 1000

ECI extend mode No

ECI LUW token 0

Message qualifier 0

Async Response Topic ASYNCRESPONSETOPIC

Async Call JMS Server Host localhost

Async Call JMS Server Port 24053

Encoding cp500

e*Way Configuration Parameters Feeder
e*Way Intelligent Adapter for CICS User’s Guide 115 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.10
Implementation Asynchronous Call Handling Samples
Figure 58 Collaboration Rules Properties - cr_CICSClient_1

The cr_async_sub Collaboration Rules Properties dialog box General and Collaboration
Mapping tabs are defined as they appear in Figure 59.

Figure 59 Collaboration Rules Properties - cr_async_sub

The cr_eater_1 Collaboration Rules Properties dialog box General and Collaboration
Mapping tabs are defined as they appear in Figure 60.
e*Way Intelligent Adapter for CICS User’s Guide 116 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.10
Implementation Asynchronous Call Handling Samples
Figure 60 Collaboration Rules Properties - cr_eater_1

The cr_feeder_1 Collaboration Rules Properties dialog box General and Collaboration
Mapping tabs are defined as they appear in Figure 61.

Figure 61 Collaboration Rules Properties - cr_feeder_1

From the General tab of the Collaboration Rules Properties dialog box, click Edit or
New under the Collaboration Rules field to open the Collaboration Rules Editor.

5.10.8 Collaboration Rules Editor
The Business Rules for the Collaboration are defined using the Collaboration Rules
Editor. The Java Collaboration Rules Editor is the graphical user interface (GUI) for
creating and modifying Java Collaboration Rules. A Java Collaboration Rule is created by
designating one or more source Events and one or more destination Events and then
setting up rules governing the relationship between fields in the Event instances. The
CICS_Async_Sample_3 schema contains four Java Collaboration Rules. The
Collaboration Rules files or .class files are cr_CICSClient_3.class, cr_eater_3.class,
e*Way Intelligent Adapter for CICS User’s Guide 117 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.10
Implementation Asynchronous Call Handling Samples
cr_feeder_3.class, and cr_async_sub.class. The cr_CICSClient_3.class Collaboration
Rules are presented in detail in the following section. The other Collaboration Rules are
presented as they appear in the schema.

The cr_CICSClient_3.class Collaboration Rules

The cr_CICSClient_1 Collaboration Rules use the cr_CICSClient_3.class Collaboration
Rules file (see Figure 63). The Business Rules for cr_CICSClient_3.class (see Figure 63
to see the completed Business Rules) are created as follows:

Each rule is created by clicking the rule button on the Editor’s Business Rules toolbar or
by “dragging and dropping” a node or method from the Source Events pane onto a
node or method in the Destination Events pane. When creating a Business Rule
“dragging and dropping” a node or method into the properties pane can be used as a
shortcut to writing code. For more information on using the Java Collaboration Rules
Editor, see the e*Gate Integrator User’s Guide.
e*Way Intelligent Adapter for CICS User’s Guide 118 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.10
Implementation Asynchronous Call Handling Samples
Figure 62 Collaboration Rules Editor - cr_CICSClient_3.class

1 The first rule under retBoolean in the Business Rules window, ENTER BIZ RULES,
is an available trace statement used for performance testing and debugging. It is
created by typing the following into the Rule Properties, Rule field:

EGate.traceln(EGate.TRACE_COLLABSERVICE_VERBOSE, EGate.TRACE_EVENT_TRACE, "ENTER BIZ RULE
ASYNC===")

Rule descriptions are created by typing the description in the Rule Properties,
Description field.

2 The GET IN MESSAGE rule is created by typing String msg = new String() in the
Rule Properties, Rule field. Drag Data, under data_in on the Source Events
command node, into the last set of parentheses to create the following code:

String msg = new String(getdata_in().get_Data())

3 To create the GIVE GESTURE NEED REPLY rule, drag and drop EciCallbackable
under CICSClient on the Destination Events command node, into the Rule
Properties, Rule field. Drag the createAsyncCallHandler method under
CICSClient, on the Destination Events command node, into the last set of
parentheses to create the following code:

getcics_data().setEciCallbackable(getcics_data().createAsyncCallHandler())
e*Way Intelligent Adapter for CICS User’s Guide 119 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.10
Implementation Asynchronous Call Handling Samples
4 Click the if button on the Business Rules toolbar to create an if statement. Type the
following in the If Properties, Condition field:

msg.equals("CLEANUP")

5 Create the TRACE CLEAN UP rule under the then statement by typing the
following code in the Rule Properties, Rule field:

EGate.traceln(EGate.TRACE_COLLABSERVICE_VERBOSE, EGate.TRACE_EVENT_TRACE, "CLEAN UP ASYNC
POOL====")

6 To create the REWIND rule, drag the resetList method under cics_data
[CicsClient], AsyncCalls on the Source Events command node, into the Rule
Properties, Rule field to create the following code:

getcics_data().getAsyncCalls().resetList()

7 Click the while button on the toolbar to create a while loop. Drag the hasNext
method under cics_data [CicsClient], AsyncCalls on the Source Events command
node, into the while Properties, Condition field to create the following code:

getcics_data().getAsyncCalls().hasNext()

8 The Next rule, under the while loop, is created by dragging the next method under
cics_data [CicsClient], AsyncCalls on the Source Events command node, into the
Rule Properties, Rule field to create the following code:

getcics_data().getAsyncCalls().next()

9 The TRACE PROGRAM NAME rule, under the while loop, is a trace statement
created by typing the following code in the Rules Properties, Rule field:

EGate.traceln(EGate.TRACE_COLLABSERVICE_VERBOSE, EGate.TRACE_EVENT_TRACE, "PROGNAME=" +
getcics_data().getAsyncCalls().getProgram())

10 The IS DONE rule, under the while loop, is created by typing the following code in
the Rules Properties, Rule field:

EGate.traceln(EGate.TRACE_COLLABSERVICE_VERBOSE, EGate.TRACE_EVENT_TRACE, "IS DONE=" +
getcics_data().getAsyncCalls().isDone())

11 The START TIME rule, under the while loop, is created by typing the following
code in the Rules Properties, Rule field:

EGate.traceln(EGate.TRACE_COLLABSERVICE_VERBOSE, EGate.TRACE_EVENT_TRACE, "START TIME=" +
getcics_data().getAsyncCalls().getStartTime())

12 The RETURN TIME rule, under the while loop, is created by typing the following
code in the Rules Properties, Rule field:

EGate.traceln(EGate.TRACE_COLLABSERVICE_VERBOSE, EGate.TRACE_EVENT_TRACE, "RETURN TIME=" +
getcics_data().getAsyncCalls().getReturnTime())

13 The first REMOVE rule, under the while loop, is created by typing the following
code in the Rules Properties, Rule field:

EGate.traceln(EGate.TRACE_COLLABSERVICE_VERBOSE, EGate.TRACE_EVENT_TRACE, "REMOVE ASYNC CALL
FROM POOL===")

14 The second REMOVE rule under the while loop, is created by dragging the remove
method under cics_data [CicsClient], AsyncCalls on the Source Events command
node, into the Rule Properties, Rule field to create the following code:

getcics_data().getAsyncCalls().remove()

15 Create a second if statement under the else statement and type the following in the
If Properties, Condition field:

msg.equals("HARVEST")
e*Way Intelligent Adapter for CICS User’s Guide 120 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.10
Implementation Asynchronous Call Handling Samples
16 Create the TRACE HARVEST rule under the second then statement by typing the
following code in the Rule Properties, Rule field:

EGate.traceln(EGate.TRACE_COLLABSERVICE_VERBOSE, EGate.TRACE_EVENT_TRACE, "HARVEST ASYNC
POOL====")

17 Create the HARVEST STR rule under the second then statement by typing the
following code in the Rule Properties, Rule field:

String harvestStr = ""

18 Create the Rewind rule under the second then statement by dragging the resetList
method under cics_data [CicsClient], AsyncCalls on the Source Events command
node, into the Rule Properties, Rule field to create the following code:

getcics_data().getAsyncCalls().resetList()

19 Click the while button on the toolbar to create a second while loop. Drag the
hasNext method under cics_data [CicsClient], AsyncCalls on the Source Events
command node, into the while Properties, Condition field to create the following
code:

getcics_data().getAsyncCalls().hasNext()

20 The Next rule, under the second while loop, is created by dragging the next method
under cics_data [CicsClient], AsyncCalls on the Source Events command node, into
the Rule Properties, Rule field to create the following code:

getcics_data().getAsyncCalls().next()

21 The TRACE PROGRAM NAME rule, under the second while loop, is a trace
statement created by typing the following code in the Rules Properties, Rule field:

EGate.traceln(EGate.TRACE_COLLABSERVICE_VERBOSE, EGate.TRACE_EVENT_TRACE, "PROGNAME=" +
getcics_data().getAsyncCalls().getProgram())

22 The IS DONE rule, under the second while loop, is created by typing the following
code in the Rules Properties, Rule field:

EGate.traceln(EGate.TRACE_COLLABSERVICE_VERBOSE, EGate.TRACE_EVENT_TRACE, "IS DONE=" +
getcics_data().getAsyncCalls().isDone())

23 The START TIME rule, under the second while loop, is created by typing the
following code in the Rules Properties, Rule field:

EGate.traceln(EGate.TRACE_COLLABSERVICE_VERBOSE, EGate.TRACE_EVENT_TRACE, "START TIME=" +
getcics_data().getAsyncCalls().getStartTime())

24 The RETURN TIME rule, under the second while loop, is created by typing the
following code in the Rules Properties, Rule field:

EGate.traceln(EGate.TRACE_COLLABSERVICE_VERBOSE, EGate.TRACE_EVENT_TRACE, "RETURN TIME=" +
getcics_data().getAsyncCalls().getReturnTime())

25 The COLLECT rule, under the second while loop, is created by typing the
following code in the Rules Properties, Rule field:

harvestStr += "Topic:" + getcics_data().getAsyncCalls().getTopic() + " PROGRAM:" +
getcics_data().getAsyncCalls().getProgram() + " START TIME:" +
getcics_data().getAsyncCalls().getStartTime() + " RETURN TIME: " +
getcics_data().getAsyncCalls().getReturnTime() + " IS DONE :" +
getcics_data().getAsyncCalls().isDone()

26 The PUB HARVEST STR rule, under the second then statement, is created by
dragging Data, under data_out on the Destination Events command node, into the
Rule Properties, Rule field. Place the cursor into the last set of parentheses and type
harvestStr.getBytes() to create the following code:

getdata_out().set_Data(harvestStr.getBytes())
e*Way Intelligent Adapter for CICS User’s Guide 121 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.10
Implementation Asynchronous Call Handling Samples
27 The SEND rule, under the second then statement, is created by dragging the send
method, under data_out on the Destination Events command node, into the Rule
Properties, Rule field to create the following code:

getdata_out().send()

28 The TRACE INVOKE rule, under the second else statement, is created by typing
the following code in the Rule Properties, Rule field:

EGate.traceln(EGate.TRACE_COLLABSERVICE_VERBOSE, EGate.TRACE_EVENT_TRACE, "INVOKE ASYNC CALL
====")

29 The SET COMM LEN rule, under the second else statement, is created by dragging
CommAreaLength, under data_out on the Destination Events command node, into
the Rule Properties, Rule field. Place the cursor into the last set of parentheses and
type 18 as the property, to create the following code:

getcics_data().setCommAreaLength(18)

30 The SET COMM AREA rule, under the second else statement, is created by
dragging CommArea, under data_out on the Destination Events command node,
into the Rule Properties, Rule field. Place the cursor into the last set of parentheses
and type " ".getBytes("cp500") with 18 spaces between the quotation
marks, to create the following code:

getcics_data().setCommArea(" ".getBytes("cp500"))

31 The GET SERVERS rule, under the second else statement, is created by typing
String[] servers = in the Rule Properties, Rule field. Drag the getServerList method,
under cics_data on the Source Events command node to the end of the statement in
the Rule Properties, Rule field. When prompted for the maxNumSystem parameter,
enter 1 and click OK. The following code is created:

String[] servers = getcics_data().getServerList(1)

32 The EXEC PROGRAM rule, under the second else statement, is created by
dragging the first execute method, under cics_data on the Source Events command
node, into the Rule Properties, Rule field to create following code:

getcics_data().execute()

33 The TRACE COMM AREA rule, under the second else statement, is created by
typing the following in the Rule Properties, Rule field:

EGate.traceln(EGate.TRACE_COLLABSERVICE_VERBOSE, EGate.TRACE_EVENT_TRACE, "AFTER EXECUTE()
====COMM AREA=" + getcics_data().getEncodedCommAreaString())

34 The COPY TO BUF rule, under the second else statement, is created by dragging
Data, under data_out on the Destination Events command node, into the Rule
Properties, Rule field. Place the cursor into the last set of parentheses and type
"PROGRAM ASYNC CALLED===".getBytes() to create following code:

getdata_out().set_Data("PROGRAM ASYNC CALLED===".getBytes())

35 The SEND rule, under the second else statement, is created by dragging the send
method, under data_out on the Destination Events command node, into the Rule
Properties, Rule field to create the following code:

getdata_out().send()

36 The EXIT BIZ RULES rule is created by typing the following in the Rule Properties,
Rule field:

EGate.traceln(EGate.TRACE_COLLABSERVICE_VERBOSE, EGate.TRACE_EVENT_TRACE, "EXIT BIZ RULE====")
e*Way Intelligent Adapter for CICS User’s Guide 122 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.10
Implementation Asynchronous Call Handling Samples
Figure 63 cr_CICSClient_3.class Business Rules

37 When the business logic is complete, select Save from the File menu, an then select
Compile from the File menu. If the file compiles successfully, select Promote from
the File menu to promote the file to the run-time environment.
e*Way Intelligent Adapter for CICS User’s Guide 123 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.10
Implementation Asynchronous Call Handling Samples
The cr_eater_3.class Collaboration Rules

The cr_eater_1 Collaboration Rules, cr_eater_3.class file is displayed in Figure 64.

Figure 64 Collaboration Rules Editor - cr_eater_3.class
e*Way Intelligent Adapter for CICS User’s Guide 124 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.10
Implementation Asynchronous Call Handling Samples
The cr_feeder_3.class Collaboration Rules

The cr_feeder_1 Collaboration Rules, cr_feeder_3.class file is displayed in Figure 65.

Figure 65 Collaboration Rules Editor - cr_feeder_3.class
e*Way Intelligent Adapter for CICS User’s Guide 125 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.10
Implementation Asynchronous Call Handling Samples
The cr_async_sub_3.class Collaboration Rules

The cr_async_sub_1 Collaboration Rules, cr_async_sub_3.class Business Rules are
displayed in Figure 66.

Figure 66 Business Rules - cr_async_sub_3.class

5.10.9 Creating the Collaborations
The CICS_Async_Sample_3 schema contains 4 Java Collaborations: col_CicsClient,
col_eater, col_feeder, and col_async_sub

The CICSClient e*Way Collaboration, named col_CicsClient, appears as it is displayed
in Figure 69 when complete.
e*Way Intelligent Adapter for CICS User’s Guide 126 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.10
Implementation Asynchronous Call Handling Samples
Figure 67 Collaboration Properties - col_async_sub

The outbound (eater) e*Way Collaboration, named col_eater, appears as it is displayed
in Figure 68 when complete.

Figure 68 Collaboration Properties - col_eater

The inbound (feeder) e*Way Collaboration, named col_feeder, appears as it is
displayed in Figure 69 when complete.
e*Way Intelligent Adapter for CICS User’s Guide 127 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.10
Implementation Asynchronous Call Handling Samples
Figure 69 Collaboration Properties - col_feeder

The Collaboration for the async_subscriber e*Way, named col_async_sub, appears as it
is displayed in Figure 70 when complete.
e*Way Intelligent Adapter for CICS User’s Guide 128 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.11
Implementation Executing the Schemas
Figure 70 Collaboration Properties - col_async_sub

5.11 Executing the Schemas
To execute the a sample schema, do the following:

1 Go to the command line prompt, and enter the following:

stccb -rh hostname -rs samplename -un username -up user password
-ln hostname_cb

Substitute hostname, samplename, username and user password as appropriate.

2 Start the e*Gate Monitor. Specify the server that contains the Control Broker you
started in Step 1 above.

3 Select the sample schema.

4 Verify that the Control Broker is connected. To do this, select and right-click the
Control Broker in the e*Gate Monitor, and select Status. (The message in the
Control tab of the console will indicate command succeeded and status as up.)

5 Select the IQ Manager, hostname_igmgr, then right-click and select Start. (This will
already be started if Start automatically is selected in the IQ Manager properties.)

6 Select each of the e*Ways, right-click select Start. (These will already be started if
Start automatically is selected in the e*Way’s properties.)

7 To view the output, copy the output file (specified in the Outbound e*Way
configuration file). Save to a convenient location, and open.

Note: Opening the destination file while the schema is running will cause errors.
e*Way Intelligent Adapter for CICS User’s Guide 129 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.12
Implementation Running CTG on Multiple CICS Servers
5.12 Running CTG on Multiple CICS Servers
To select specific CICS Servers when running CICS Transaction Gateway with multiple
CICS Servers configured, set the setServer() method to select the CICS region with
which to connect. The CICS e*Way always defaults to the first array element (CICS
server) that gets returned from the getServerList() method. To select a CICS server
other that the first server on the list the setServer() method must be used.

The following example shows two CICS servers that are available to CTG on a
Windows computer. The second CICS server (OS390R2A) has been set as the CICS
server with which to connect.

String [] CICS_List_Str = getCICSClient().getServerList(2);

System.err.println("CICS Server 1 " + CICS_List_Str[0]);

System.err.println("CICS Server 2 " + CICS_List_Str[1]);

System.err.println("CICS Server Default " +
getCICSClient().getServer());

getCICSClient().setServer(CICS_List_Str[1]);

System.err.println("Setting CICS Server to " +
getCICSClient().getServer());

Output for the above example:

CICS Server 1 OS390R29
CICS Server 2 OS390R2A
CICS Server Default OS390R29
Setting CICS Server to OS390R2A
e*Way Intelligent Adapter for CICS User’s Guide 130 SeeBeyond Proprietary and Confidential

Chapter 6

Java Methods

A number of Java methods have been added to make it easier to set information in the
e*Way ETD Editor and to get information from it. These methods are contained in the
CicsClient Class. In addition, helper methods used by with toPackedDecimal() are
documented at the end of this chapter.

6.1 The CicsClient Class
java.lang.Object

com.stc.jcsre.SimpleETDImpl(implements com.stc.jcsre.ETDExt)
com.stc.eways.cics.CicsClient

public class CicsClient extends com.stc.jcsre.

The CicsClient class represents an ETD through which a Collaboration can invoke
transaction programs on a CICS server. Nodes and methods are exposed so that the
Collaboration can conveniently prepare a request for a CICS program, invoke the
program, and get result from the program. There are two underlying transport
mechanisms that can be used to achieve the remote invoking of CICS programs: (1)
CTG, the IBM CICS Transaction Gateway, and (2) SBYND CICS Listener, the
SeeBeyond CICS Listener, a light weight proprietary protocol based on TCP/IP.
configuration parameters can be roughly categorized into CTG specific, SBYND CICS
Listener specific, or necessary for both CTG and SBYND CICS Listener. Also, the
exposed ETD methods are categorized as CTG specific (such as getServerList()),
SBYND CICS Listener specific (such as prepareAPCRecord(), returnCodeIs(),
returnOK(), and getResponse(...)) or common to both CTG and SBYND CICS Listener
(such as execute(), execute(....), and sendRequest(...)).

Methods of the CicsClient Class

These methods are described in detail on the following pages:

CicsClient on page 133 getTransId on page 159

commAreaToPackedDecimal on page 133 getTransportTimeout on page 159

commAreaZonedToString on page 134 getUrl on page 159

connect on page 135 getUserId on page 160

disconnect on page 135 isConnected on page 160
e*Way Intelligent Adapter for CICS User’s Guide 131 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
execute on page 136 packedDecimalToString on page 161

getCommArea on page 138 prepareAPCRecord on page 161

getCommAreaLength on page 138 returnCodeIs on page 162

getCommAreaString on page 139 returnOK on page 162

getEciCallbackable on page 141 sendRequest on page 163

getEciExtend on page 142 setCommArea on page 164

getEciLuwToken on page 142 setCommAreaLength on page 164

getEciSync on page 143 setEciCallbackable on page 165

getEncodedCommAreaString on page 143 setEciExtend on page 165

getEncoding on page 144 setEciLuwToken on page 165

getListenerTimeout on page 145 setEciSync on page 166

getMessageQualifier on page 145 setEncoding on page 166

getPaddingCharacter on page 146 setListenerTimeout on page 167

getPassword on page 146 setMessageQualifier on page 167

getPollingRate on page 147 setPaddingCharacter on page 168

getPort on page 147 setPassword on page 168

getProgram on page 147 setPollingRate on page 169

getProgramName on page 148 setPort on page 169

getRequestCode on page 148 setProgram on page 170

getREQUESTCODES on page 149 setSBYNDListenerTransID on page 170

getRequestDesc on page 149 setServer on page 171

getResponse on page 150 setSslClass on page 171

getReturnCode on page 151 setSslPassword on page 172

getRETURNCODES on page 151 setStartDelay on page 172

getReturnMessage on page 152 setStartType on page 172

getSBYNDCicsProxyConfig on page 152 setTPTimeout on page 173

getSBYNDListenerTransID on page 153 setTraceDumpOffset on page 173

getServer on page 153 setTraceFilename on page 174

getServerList on page 153 setTraceLevel on page 174

getSslClass on page 154 setTraceTiming on page 175

getSslPassword on page 154 setTraceTruncationSize on page 175

getStartDelay on page 155 setTransId on page 176

getStartType on page 155 setTransportTimeout on page 176

getTPTimeout on page 156 setUrl on page 176

getTraceDumpOffset on page 156 setUserId on page 177

getTraceFilename on page 157 toPackedDecimal on page 177
e*Way Intelligent Adapter for CICS User’s Guide 132 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
CicsClient

Description

Constructor for class com.stc.eways.cics.CicsClient

Syntax

public CicsClient()

Parameters

None.

Return Values

None.

Throws

None.

commAreaToPackedDecimal

Description

Builds a packed decimal from the payload in the Commarea section specified by (offset,
intSize, decSize).

Syntax

public com.stc.eways.cics.PackedDecimal commAreaToPackedDecimal(int
offset, int intSize, int decSize)

Parameters

Return Values

com.stc.eways.cics.PackedDecimal
Returns the packed decimal object.

getTraceLevel on page 157 toZoned on page 178

getTraceTiming on page 158 zonedToString on page 179

getTraceTruncationSize on page 158

Name Type Description

offset int Offset of the packed decimal field
relative to the start of the
Commarea (a field starting in byte 1
would have an offset of 0)

intSize int The number of integer digits in the
resulting object.

decSize int The number of decimal digits in the
resulting object.
e*Way Intelligent Adapter for CICS User’s Guide 133 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Throws

None

commAreaZonedToString

Description

Convert the zoned decimal (COBOL PIC S9) byte array Commarea field to a String
using current value of ETD node Encoding as encoding;

Syntax

public java.lang.String commAreaZonedToString(int offset, int length)

Parameters

Note: Methods that include an "encoding" parameter should specify encoding as "ISO-
8859-1" when the e*Way is run on the OS/390 platform.

Return Values

java.lang.String
Returns the resultant string.

Throws

None.

commAreaZonedToString

Description

Converts the zoned decimal (COBOL PIC S9) byte array Commarea field to a String.
Syntax

public java.lang.String commAreaZonedToString(int offset, int length,
java.lang.String encoding)

Parameters

Note: Methods that include an "encoding" parameter should specify encoding as "ISO-
8859-1" when the e*Way is run on the OS/390 platform.

Name Type Description

offset int Start of the zone.

length int The length of the zone.

Name Type Description

offset int Start of the zone.

length int The length of the zone.

encoding java.lang.String Encoding used for conversion.
e*Way Intelligent Adapter for CICS User’s Guide 134 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Return Values

java.lang.String
Returns the resultant string.

Throws

None.

connect

Description

Establish a connection to the CICS server, used by the Collaboration to send requests
(CICS program calls) to the server. The underlying transport used can be CTG or
SBYND Listener, it is transparent to the Collaboration as far as the connect() is
concerned.

Syntax

public void connect()

Parameters

None.

Return Values

None.

Throws

com.stc.common.collabService.CollabConnException
Thrown when there's an external connection problem.

com.stc.common.collabService.CollabDataException
Thrown when there's a data problem.

disconnect

Description

Disconnect the connection established through connect(). The underlying transport used
can be CTG or SBYND Listener, it is transparent to the Collaboration as far as the
connect() is concerned.

Syntax

public void disconnect()

Parameters

None.

Return Values

None.
e*Way Intelligent Adapter for CICS User’s Guide 135 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Throws

com.stc.common.collabService.CollabConnException
Thrown when there's an external connection problem.

com.stc.common.collabService.CollabDataException
Thrown when there's a data problem.

execute

Description

Launches the CICS program. Uses the CICSClientETD node parameter values set in the
configuration file.

! For SBYND CICS Listener use SBYND CICS Listener host as the server name and
select the following to execute: (eciSync, server, userId, password, program,
transId,commArea, commAreaLength, eciExtend, eciLuwToken, messageQualifier,
eciCallbackable). Set irrelevant parameters to 0 or null. Only the following
parameters are still used by the SBYND CICS Listener: (1) eciSync (2) userId (3)
password (4) program (5) transId (6) commArea.

! For CTG select the following to execute: (eciSync, server, userId, password,
program, transId,commArea, commAreaLength, eciExtend, eciLuwToken,
messageQualifier, eciCallbackable).

Syntax

public void execute()

Parameters

None.

Return Values

None.

Throws

com.stc.common.collabService.CollabConnException
Indicating a connection error.

com.stc.common.collabService.CollabDataException
Indicating a data error.

execute

Description

Launches the CICS program. The CICSClientETD node parameter set for this method
override the values set in the configuration file. Values must be entered for all fields.

! For SBYND CICS Listener invoke the remote CICS program using the following
steps (defined by a proprietary protocol)
e*Way Intelligent Adapter for CICS User’s Guide 136 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
A Prepare an APC record (Application Control Record) with a request code of
SBYND_LISTENER_REQCODE_REQ_SYNC or
SBYND_LISTENER_REQCODE_REQ_ASYNC depending on the parameter
eciSynCall with byteArray as the payload; the prepare APC record is in the
outbound buffer in SBYNDCicsProxy.

B Send the request to SBYND CICS Listener.

C Get the response from SBYND CICS Listener.

D Further get returned data from the program if it is a sync call

E ACK or NACK accordingly

! For CTG: prepare an ECIRequest object with the data given via the parameters, call
method flow() to send the request and get result (synchronous) or proceed
(asynchronous).

Syntax

public void execute(boolean eciSynCall,
java.lang.String cicsServerName,
java.lang.String cicsUserId,
java.lang.String cicsPassword,
java.lang.String cicsProgram,
java.lang.String cicsTransId,
byte[] byteArray,
int length,
boolean eciExtendMode,
int eciLUWToken,
int msgQualifier,
com.stc.eways.cics.Callbackable eciCallbackableObj)

Parameters

Name Type Description

eciSynCall boolean A Boolean value indicating whether to use
ECI Synchronous Call. True invokes the
program synchronously, and false invokes
the program asynchronously.

 cicsServerName java.lang.String The CICS server name (CTG only).

 cicsUserId java.lang.String The CICS user Id.

 cicsPassword java.lang.String The CICS password.

 cicsProgram java.lang.String The CICS Program.

 cicsTransId java.lang.String The CICS transaction Id.

byteArray byte [] The payload area (INOUT & OUTPUT).

length int The length of the payload (CTG only).

 eciExtendMode boolean A Boolean value indicating whether to
implement ECI extend mode (CTG only).

eciLUWToken int An ECI LUW token (Logical Unit of Work
token) (CTG only).

msgQualifier int Application provided identifier (CTG only).
e*Way Intelligent Adapter for CICS User’s Guide 137 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Return Values

None.

Throws

com.stc.common.collabService.CollabConnException
Indicating a connection error.

com.stc.common.collabService.CollabDataException
Indicating a data error.

getCommArea

Description

"Get" method for the ETD node CommArea. Returns the COMMAREA, that is, the
current value in ETD node CommArea.

Syntax

public byte[] getCommArea()

Parameters

None.

Return Values

byte array
Returns the COMMAREA used when invoking CICS programs.

Throws

None.

getCommAreaLength

Description

"Get" method for ETD node CommAreaLength. Returns the CommAreaLength, that is,
the current value in ETD node CommAreaLength. The initial value is taken from the
parameter CommArea Length in the CICS Client section of the e*Way Connection
configuration.

Syntax

public int getCommAreaLength()

Parameters

None

 eciCallbackableObj com.stc.eways.cics.
Callbackable

ECI callbackable object. This may be null if
no callback is required (CTG only).

Name Type Description
e*Way Intelligent Adapter for CICS User’s Guide 138 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Return Values

int
Returns the COMMAREA length used when invoking CICS programs (not
necessarily the length of the byte array represented as COMMAREA).

Throws

None.

getCommAreaString

Description

Constructs a COMMAREA String by converting the COMMAREA array of bytes using
the platform's default character encoding.

Syntax

public java.lang.String getCommAreaString()

Parameters

None.

Return Values

java.lang.String
Returns the COMMAREA in String form.

Throws

None.

getCommAreaString

Description

Constructs a COMMAREA String by converting the COMMAREA array of bytes using
the character encoding specified as an argument.

Syntax

public java.lang.String getCommAreaString(java.lang.String enc)

Parameters

Note: Methods that include an "encoding" parameter should specify encoding as "ISO-
8859-1" when the e*Way is run on the OS/390 platform.

Name Type Description

enc java.lang.String The encoding used when
translating the COMMAREA byte
array into a String.
e*Way Intelligent Adapter for CICS User’s Guide 139 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Return Values

java.lang.String
Returns the COMMAREA as a String.

Throws

java.io.UnsupportedEncodingException

getCommAreaString

Description

Construct a COMMAREA String by converting the COMMAREA array of bytes with
offset and length using the character encoding specified as an argument.

Syntax

public java.lang.String getCommAreaString(int offset, int length)

Parameters

Return Values

java.lang.String
Returns the String instantiated from the COMMAREA section specified by (offset,
length) using system default encoding.

Throws

None.

getCommAreaString

Description

Constructs a COMMAREA String by converting the COMMAREA array of bytes with
offset and length using the platform's default character encoding.

Syntax

public java.lang.String getCommAreaString(int offset, int length,
java.lang.String enc)

Name Type Description

offset int Offset of the area to be converted
relative to the start of the
COMMAREA (a field starting in byte
1 would have an offset of 0).

length int The length of the area to be
converted.
e*Way Intelligent Adapter for CICS User’s Guide 140 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Parameters

Note: Methods that include an "encoding" parameter should specify encoding as "ISO-
8859-1" when the e*Way is run on the OS/390 platform.

Return Values

java.lang.String
Returns the String instantiated from COMMAREA section specified by (offset,
length) using encoding specified by parameter enc.

Throws

java.io.UnsupportedEncodingException

getEciCallbackable

Description

"Get" method for the ETD node EciExtend. Returns the EciExtend flag, that is, the
current value in ETD node EciExtend. The initial value is taken from the parameter ECI
extend mode in the CICS Client section of the e*Way Connection configuration.

Syntax

public com.stc.eways.cics.Callbackable getEciCallbackable()

Parameters

None.

Return Values

com.stc.eways.cics.Callbackable
Returns the ECI callbackable value.

Throws

None.

Name Type Description

offset int Offset of the area to be converted
relative to the start of the
COMMAREA (a field starting in byte
1 would have an offset of 0).

length int The length of the area to be
converted.

enc java.lang.String The encoding used when
translating the COMMAREA byte
array into a String.
e*Way Intelligent Adapter for CICS User’s Guide 141 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
getEciExtend

Description

CTG specific. “Get” method for the ETD node EciExtend. Returns the EciExtend flag,
that is, the current value in the ETD node EciExtend. The initial value is taken from the
parameter ECI extend mode in the CICS Client section of the e*Way Connection
configuration.

Syntax

public boolean getEciExtend()

Parameters

None

Return Values

Boolean
Returns true to indicate that the current call is and extension of a LUW; otherwise,
returns false.

Throws

None.

getEciLuwToken

Description

CTG specific. “Get” method for the ETD node EciLuwToken. Returns the ECI Luw
token, that is, the current value for the ETD node EciLuwToken. The initial value is
taken from the parameter ECI LUW token in the CICS Client section of the e*Way
Connection configuration.

Syntax

public int getEciLuwToken()

Parameters

None.

Return Values

int
Returns the current value of ECI Luw token.

Throws

None.
e*Way Intelligent Adapter for CICS User’s Guide 142 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
getEciSync

Description

"Get" method for the ETD node EciSync. Returns the ECI call type, that is, the current
value for the ETD node EciSync. The initial value is taken from the parameter ECI call
type in the CICS Client section of the e*Way Connection configuration.

Syntax

public boolean getEciSync()

Parameters

None.

Return Values

Boolean
Returns true to indicate that the call is synchronous.

Throws

None.

getEncodedCommAreaString

Description

Constructs a COMMAREA String by converting the COMMAREA array of bytes using
the character encoding specified earlier for the ETD.

Syntax

public java.lang.String getEncodedCommAreaString()

Parameters

None.

Return Values

java.lang.String
Returns the COMMAREA in String form using encoding to do the translation.

Throws

java.io.UnsupportedEncodingException
Indicating unsupported encoding.

getEncodedCommAreaString

Description

Construct a COMMAREA String by converting the COMMAREA array of bytes with
the offset and length using the platform's default character encoding.
e*Way Intelligent Adapter for CICS User’s Guide 143 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Syntax

public java.lang.String getEncodedCommAreaString(int offset, int
length)

Parameters

Return Values

java.lang.String
Returns the String instantiated from COMMAREA section specified by (offset,
length) using encoding indicated by the current value of the ETD node Encoding.

Throws

java.io.UnsupportedEncodingException
Indicating unsupported encoding.

getEncoding

Description

"Get" method for the ETD node Encoding. Returns the encoding which can be used to
translate the data to and from the CICS program, that is, the current value for the ETD
node Encoding. The initial value is taken from the parameter Encoding in the CICS
Client section of the e*Way Connection configuration.

Syntax

public java.lang.String getEncoding()

Parameters

None.

Return Values

java.lang.String
Returns the encoding type.

Throws

None.

Name Type Description

offset int Offset of the area to be converted
relative to the start of the
COMMAREA (a field starting in byte
1 would have an offset of 0).

length int The length of the area to be
converted.
e*Way Intelligent Adapter for CICS User’s Guide 144 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
getListenerTimeout

Description

SBYND CICS Listener specific. "Get" method for Listener time out ETD node
ListenerTimeout. The initial value is taken from the parameter Listener Timeout in the
SeeBeyond CICS Listener section of the e*Way Connection configuration.

Syntax

public int getListenerTimeout()

Parameters

None.

Return Values

int
Returns the timeout value in milliseconds. This is usually set to the time that
SBYND listener waits for the program invoking the request from the e*Way before it
closes the connection.

Throws

None.

getMessageQualifier

Description

"Get" method for ETD node MessageQualifier. Returns the MessageQualifier for ECI
call, that is, the current value for the ETD node MessageQualifier. The initial value is
taken from the parameter Message qualifier in the CICS Client section of the e*Way
Connection configuration.

Syntax

public int getMessageQualifier()

Parameters

None.

Return Values

int
Message qualifier.

Throws

None.
e*Way Intelligent Adapter for CICS User’s Guide 145 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
getPaddingCharacter

Description

SBYND CICS Listener specific. "Get" method for the padding character ETD node
PaddingCharacter. The initial value is from parameter COMMAREA Padding
Character in SeeBeyond CICS Listener section of the e*Way Connection configuration.

public java.lang.String getPaddingCharacter()

Parameters

None.

Return Values

java.lang.String
Returns the EBCDIC code for the character used by the SBYND listener to pad the
COMMAREA at the CICS server when the actual length of the payload in the
COMMAREA is shorter than the length given by COMMAREALength. The default
is hexadecimal 40 - EBCDIC space.

Throws

None.

getPassword

Description

"Get" method for the ETD node Password. Returns the CICS user password, that is, the
current value for the ETD node Password. The initial value is taken from the parameter
CICS Password in the CICS Client section of the e*Way Connection configuration.

Syntax

public java.lang.String getPassword()

Parameters

None.

Return Values

java.lang.String
Returns the CICS user password used when making a CICS call to a program on the
CICS server.

Throws

None.
e*Way Intelligent Adapter for CICS User’s Guide 146 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
getPollingRate

Description

SBYND CICS Listener specific. "Get" method for the Listener Polling Rate ETD node
PollingRate. The initial value is taken from parameter Polling Rate in the SeeBeyond
CICS Listener section of the e*Way Connection configuration.

Syntax

public int getPollingRate()

Parameters

None.

Return Values

int
Returns a 1-255 value used by listener internally.

Throws

None.

getPort

Description

"Get" method for ETD node Port. Returns the port of the host where CTG gateway is
connected, that is, the current value for the ETD node Port. The initial value is taken
from the parameter Port in the CICS Gateway section of the e*Way Connection
configuration.

Syntax

public int getPort()

Parameters

None.

Return Values

int
Returns the port number.

Throws

None.

getProgram

Description

"Get" method for the ETD node Program. Returns the CICS program name to be
invoked, that is, the current value for the ETD node Program. The initial value is taken
e*Way Intelligent Adapter for CICS User’s Guide 147 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
from the parameter CICS Program in the CICS Client section of the e*Way Connection
configuration.

Syntax

public java.lang.String getProgram()

Parameters

None.

Return Values

java.lang.String
Returns the CICS program to be invoked.

Throws

None.

getProgramName

Description

SBYND CICS Listener specific. Returns the program name of the response, assuming a
response is in the current inbound buffer. Should be called immediately after
getResponse();

Syntax

public java.lang.String getProgramName()

Parameters

None.

Return Values

java.lang.String
Returns the program name.

Throws

com.stc.common.collabService.CollabDataException
Thrown when there's a data error.

getRequestCode

Description

SBYND CICS Listener specific. Returns the request code of the response, assuming a
response is in the current inbound buffer. Should be called immediately after
getResponse().

Syntax

public int getRequestCode()
e*Way Intelligent Adapter for CICS User’s Guide 148 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Parameters

None.

Return Values

int
Returns the request code.

Throws

com.stc.common.collabService.CollabDataException
Thrown when there's a data error.

getREQUESTCODES

Description

SBYND CICS Listener specific. Returns a SBYNDAppControlRecordRequestCodes
object. This get method is for the ETD node REQUESTCODES.

Syntax

public com.stc.eways.cics.SBYNDAppControlRecordRequestCodes
getREQUESTCODES()

Parameters

None.

Return Values

com.stc.eways.cics.SBYNDAppControlRecordRequestCodes
Returns SBYNDAppControlRecordRequestCodes.

Throws

None.

getRequestDesc

Description

SBYND CICS Listener specific. Return a description for the request code, assuming a
response is in the current inbound buffer. Should be called immediately after
getResponse().

Syntax

public java.lang.String getRequestDesc()

Parameters

None.

Return Values

java.lang.String
Returns the description of the request code.
e*Way Intelligent Adapter for CICS User’s Guide 149 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Throws

com.stc.common.collabService.CollabDataException

Thrown when there's a data error.

getResponse

Description

SBYND CICS Listener specific. Read from the SBYND CICS Listener in blocking mode
until timed out or a response occurs.

Syntax

public boolean getResponse()

Parameters

None.

Return Values

Boolean
Returns true if get a good ACR otherwise, false. The SBYND CICS Listener
parameter: Transport Timeout is used for the timeout.

Throws

com.stc.common.collabService.CollabConnException
com.stc.common.collabService.CollabDataException
com.stc.eways.cics.SBYNDCicsProxyTimeoutException

getResponse

Description

SBYND CICS Listener specific. Read from the SBYND CICS Listener in blocking mode
until timed out or a response occurs.

Syntax

public boolean getResponse(int timeout)

Parameters

Name Type Description

timeout int Timeout in milli-seconds that the
e*Way will wait on a response (ACR)
from the listener. If the e*Way did
not get an ACR in that amount of
time, an exception
(SBYNDCicsProxyTimeoutException
) is thrown.
e*Way Intelligent Adapter for CICS User’s Guide 150 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Return Values

Boolean
Returns true for a good ACR, otherwise, returns false.

Throws

com.stc.common.collabService.CollabConnException
com.stc.common.collabService.CollabDataException
com.stc.eways.cics.SBYNDCicsProxyTimeoutException

getReturnCode

Description

SBYND CICS Listener specific. Returns the error code of the current response,
assuming a response is in the current inbound buffer. It should be called immediately
after getResponse().

Syntax

public int getReturnCode()

Parameters

None.

Return Values

int
Returns the error code.

Throws

com.stc.common.collabService.CollabDataException
Thrown when there's a data error.

getRETURNCODES

Description

SBYND CICS Listener specific. Returns a SBYNDAppControlRecordRequestCodes
object. This getter is for the ETD node REQUESTCODES.

Syntax

public com.stc.eways.cics.SBYNDAppControlRecordRequestCodes
getREQUESTCODES()

Parameters

None.

Return Values

com.stc.eways.cics.SBYNDAppControlRecordRequestCodes
Returns SBYNDAppControlRecordRequestCodes.
e*Way Intelligent Adapter for CICS User’s Guide 151 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Throws

None.

getReturnMessage

Description

SBYND CICS Listener specific. Returns the error text of the current response, assuming
a response is in the current inbound buffer. getReturnMessage should be called
immediately after getResponse().

Syntax

public java.lang.String getReturnMessage()

Parameters

None.

Return Values

java.lang.String
Returns the text of the error message.

Throws

com.stc.common.collabService.CollabDataException
Thrown when there's a data error.

getSBYNDCicsProxyConfig

Description

SBYND CICS Listener specific. Returns the SBYND CICS Listener specific
configuration parameters.

Syntax

public com.stc.eways.cics.SBYNDCicsProxyConfig
getSBYNDCicsProxyConfig()

Parameters

None.

Return Values

com.stc.eways.cics.SBYNDCicsProxyConfig
Returns SBYNDCicsProxyConfig.

Throws

None.
e*Way Intelligent Adapter for CICS User’s Guide 152 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
getSBYNDListenerTransID

Description

SBYND CICS Listener specific. "Get" method for the SBYND CICS Listener TransID
ETD node SBYNDListenerTransID. The initial value is taken from the parameter
SeeBeyond CICS Listener TransId in the SeeBeyond CICS Listener section of the
e*Way Connection configuration.

Syntax

public java.lang.String getSBYNDListenerTransID()

Parameters

None.

Return Values

java.lang.String
Returns the listener trans ID. The default value is "STCL".

Throws

None.

getServer

Description

"Get" method for ETD node Server. Returns the name of the CICS server where the
request is to be sent, that is, the current value in ETD node Server.

Syntax

public java.lang.String getServer()

Parameters

None

Return Values

java.lang.String
Returns the name of the CICS server.

Throws

None.

getServerList

Description

Obtains a list of CICS servers defined as name-description pairs with SBYND Listener
as the transport. Only one server is returned, that is, the SBYND Listener host (this
should be the same host as the CICS server).
e*Way Intelligent Adapter for CICS User’s Guide 153 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Syntax

public java.lang.String[] getServerList(int maxNumSystems)

Parameters

Return Values

java.lang.String[]
Returns a list of the available CICS servers to which CICS call can be issued.

Throws

com.stc.common.collabService.CollabConnException
Indicating a connection error.

com.stc.common.collabService.CollabDataException
Indicating a data error.

getSslClass

Description

CTG specific. "Get" method for the ETD node SslClass. Returns the SSL class for SSL
authentication, that is, the current value in the ETD node SslClass. The initial value is
taken from the parameter SSL KeyRing Class in the CICS Gateway section of the
e*Way Connection configuration.

Syntax

public java.lang.String getSslClass()

Parameters

None

Return Values

java.lang.String
Returns the full classname of the SSL KeyRing class.

Throws

None.

getSslPassword

Description

CTG specific. "Get" method for the ETD node SslPassword. Returns the password for
the encrypted KeyRing class, that is, the current value in the ETD node SslPassword.
The initial value is from the parameter SSL KeyRing Password in the CICS Gateway
section of the e*Way Connection configuration.

Name Type Description

maxNumSystems int The maximum number of systems.
e*Way Intelligent Adapter for CICS User’s Guide 154 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Syntax

public java.lang.String getSslPassword()

Parameters

None

Return Values

java.lang.String
Returns the SSL KeyRing Password.

Throws

None.

getStartDelay

Description

SBYND CICS Listener specific. "Get" method for the Startup delay ETD node
StartDelay. The initial value is taken from the parameter Start Delay in the SeeBeyond
CICS Listener section of the e*Way Connection configuration.

Syntax

public java.lang.String getStartDelay()

Parameters

None

Return Values

java.lang.String
Returns the IBM CICS Listener needed parameter Startup delay, a string in the
format of HHMMSS, indicating the time elapsed before the STCL (SBYND CICS
Listener) wakes up.

Throws

None.

getStartType

Description

SBYND CICS Listener specific. "Set" method for the Startup delay ETD node
StartType.

Syntax

public void setStartType(java.lang.String starttype)

Parameters

None
e*Way Intelligent Adapter for CICS User’s Guide 155 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Return Values

java.lang.String
Returns the startup type for the IBM CICS Listener. The possible values are IC or
TD.

Throws

None.

getTPTimeout

Description

SBYND CICS Listener specific. "Get" method for the CICS program time out ETD node
TPTimeout. The initial value is taken from the parameter TP Timeout in the
SeeBeyond CICS Listener section of the e*Way Connection configuration.

Syntax

public int getTPTimeout()

Parameters

None

Return Values

int
Returns the timeout value in milli-seconds. This is typically set to the maximum
estimated time it takes the CICS program to finish and come back to the inoker.

Throws

None.

getTraceDumpOffset

Description

CTG specific. "Get" method for the ETD node TraceDumpOffset. Returns the trace
dump offset for CTG client log, that is, the current value in ETD node
TraceDumpOffset. The initial value is taken from the parameter Dump Offset in the
Tracing section of the e*Way Connection configuration.

Syntax

public int getTraceDumpOffset()

Parameters

None.

Return Values

int
Returns the trace dump offset for CTG client logging.
e*Way Intelligent Adapter for CICS User’s Guide 156 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Throws

None.

getTraceFilename

Description

CTG specific. "Get" method for the ETD node TraceFilename. Returns the trace file
name for the CTG client log, that is, the current value in the ETD node TraceFilename.
The initial value is taken from the parameter Filename in the Tracing section of the
e*Way Connection configuration.

Syntax

public java.lang.String getTraceFilename()

Parameters

None.

Return Values

java.lang.String
Returns the trace filename for CTG.

Throws

None.

getTraceLevel

Description

CTG specific. "Get" method for the ETD node TraceLevel. Returns the trace level for the
CTG client log, that is, the current value in the ETD node Tracelevel. The initial value is
taken from the parameter Level in the Tracing section of the e*Way Connection
configuration.

Syntax

public int getTraceLevel()

Parameters

None.

Return Values

int
Returns the trace level for the CTG client.

Throws

None.
e*Way Intelligent Adapter for CICS User’s Guide 157 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
getTraceTiming

Description

CTG specific. "Get" method for the ETD node TraceTiming. Returns the trace timing
(time stamp) in the CTG client log, that is, the current value in the ETD node
TraceTiming. The initial value is taken from the parameter Timing in the Tracing
section of the e*Way Connection configuration.

Syntax

public boolean getTraceTiming()

Parameters

None

Return Values

Boolean
Returns true to indicate that the time stamp is included in the CTG client tracing,
otherwise false.

Throws

None.

getTraceTruncationSize

Description

CTG specific. "Get" method for the ETD node TraceTruncationSize. Returns the trace
truncation size for the CTG client log, that is, the current value in the ETD node
TraceTruncationSize. The initial value is taken from the parameter Truncation Size in
the Tracing section of the e*Way Connection configuration.

Syntax

public int getTraceTruncationSize()

Parameters

None.

Return Values

int
Returns the truncation size for CTG client logging.

Throws

None.
e*Way Intelligent Adapter for CICS User’s Guide 158 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
getTransId

Description

"Get" method for the ETD node TransId. Returns the CICS TransId to be invoked, that
is, the current value in the ETD node TransId. The initial value is taken from the
parameter CICS TransId in the CICS Client section of the e*Way Connection
configuration.

Syntax

public java.lang.String getTransId()

Parameters

None.

Return Values

java.lang.String
Returns the trans ID of the CICS program.

Throws

None.

getTransportTimeout

Description

SBYND CICS Listener specific. "Get" method for the TransportTimeout ETD node
TransportTimeout. The initial value is taken from the TransportTimeout parameter in
the SeeBeyond CICS Listener section of the e*Way Connection configuration.

Syntax

public int getTransportTimeout()

Parameters

None.

Return Values

int
Returns the time in milli-seconds used to timeout a blocking read on a socket
between the e*Way and the listener.

Throws

None.

getUrl

Description

CTG specific. "Get" method for the ETD node Url. Returns the URL pointing to the
remote or local CICS Transaction Gateway with which to connect, that is, the current
e*Way Intelligent Adapter for CICS User’s Guide 159 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
value in ETD node Url. The initial value is taken from the parameter URL in section
CICS Gateway section of the e*Way Connection configuration.

Syntax

public java.lang.String getUrl()

Parameters

None.

Return Values

java.lang.String
Returns the URL of the CICS Transaction Gateway.

Throws

None.

getUserId

Description

"Get" method for the ETD node UserId. Returns the CICS user Id, that is, the current
value in the ETD node UserId. The initial value is taken from the parameter CICS
UserId in CICS Client section of the e*Way Connection configuration.

Syntax

public java.lang.String getUserId()

Parameters

None.

Return Values

java.lang.String
Returns the CICS user Id used when making a CICS call to a program on the CICS
server.

Throws

None.

isConnected

Description

Checks to see if the connection is active.

Syntax

public boolean isConnected()

Parameters

None.
e*Way Intelligent Adapter for CICS User’s Guide 160 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Return Values

Boolean
Returns true when active, false otherwise.

Throws

com.stc.common.collabService.CollabDataException
Thrown when there's a data problem.

packedDecimalToString

Description

Gets the string from a packed decimal object.
Syntax

public static java.lang.String
packedDecimalToString(com.stc.eways.cics.PackedDecimal pd)

Parameters

Return Values

java.lang.String
Returns the String, applying toString() against the packed decimal object

Throws

None.

prepareAPCRecord

Description

SBYND CICS Listener specific. Prepares an APC Record in the outbound buffer of
SBYNDCicsProxy using the parameters. This can be sent out by invoking
sendRequest().

Syntax

public void prepareAPCRecord(java.lang.String progname,
int appltimeout,
int requestcode,
int errorcode,
java.lang.String errortext)

Name Type Description

 pd com.stc.eway.cics.Pack
edDecimal

The PackedDecimal object.
e*Way Intelligent Adapter for CICS User’s Guide 161 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Parameters

Return Values

None.

Throws

com.stc.common.collabService.CollabDataException
Throne when there is an error in data.

returnCodeIs

Description

SBYND CICS Listener specific. Check to see if the error code in the APC record is the
same as code.

Syntax

public boolean returnCodeIs(int code)

Parameters

Return Values

Boolean
Returns true if the error code is the same as code, otherwise false.

Throws

com.stc.common.collabService.CollabDataException
Indicating a data error.

returnOK

Description

SBYND CICS Listener specific. Checks to see if the error code in the APC record is
SBYND_LISTENER_RC_OK.

Name Type Description

 progname java.lang.String The transaction program name.

appltimeout int Application timeout not used
(reserved).

requestcode int Request code of the ACR.

errorcode int Error code of the ACR.

errortext java.lang.String Error message (usually used when
the ACR is a NACK).

Name Type Description

code int The code
e*Way Intelligent Adapter for CICS User’s Guide 162 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Syntax

public boolean returnOK()

Parameters

None

Return Values

Boolean
Returns true if the error code true error code is SBYND_LISTENER_RC_OK,
otherwise false.

Throws

None

sendRequest

Description

! For SBYND CICS Listener: Sends an ACR to the listener, assuming an ACR is
properly prepared and is in the outbound buffer. sendRequest() only sends an ACR
if a response is expected. Need to call getResponse() subsequently.

! For CTG: The sendRequest method flows data contained in the ECIRequest object
to the Gateway and determines whether send has been successful by checking the
return code. If an error has occurred, a CollabConnException is thrown.

Syntax

public void sendRequest(com.stc.eways.cics.ECIRequest request)

Parameters

Return Values

None.

Throws

com.stc.common.collabService.CollabConnException
Indicating a connection error.

com.stc.common.collabService.CollabDataException
Indicating a data error.

Name Type Description

request com.stc.eway.cics.ECIR
equest

ECIRequest object contains all the data needed
to invoke a CICS program through CTG. For the
SBYND CICS Listener this parameter is ignored.
e*Way Intelligent Adapter for CICS User’s Guide 163 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
setCommArea

Description

"Set" method for the ETD node CommArea. Sets the payload into the COMMAREA
usually used by the subsequent invoking program.

Note: When using CTG, the setCommArea method must have a byte array of the same size
as that specified in the setCommAreaLength method.

Syntax

public void setCommArea(byte[] byteArray)

Parameters

Return Values

None.

Throws

None.

setCommAreaLength

Description

Sets the COMMAREA length.

Syntax

public void setCommAreaLength(int i)

Parameters

Return Values

None.

Throws

None.

Name Type Description

byteArray byte[] The payload used by the program to
be invoked.

Name Type Description

i int COMMAREA length.
e*Way Intelligent Adapter for CICS User’s Guide 164 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
setEciCallbackable

Description

Sets the ECI callbackable value.

Syntax

public void setEciCallbackable(com.stc.eways.cics.Callbackable c)

Parameters

Return Values

None.

Throws

None.

setEciExtend

Description

CTG specific. "Set" method for ETD node EciExtend.

Syntax

public void setEciExtend(boolean b)

Parameters

Return Values

None.

Throws

None.

setEciLuwToken

Description

CTG specific. "Set" method for the ETD node EciLuwToken. An integer identifying an
LUW. The initial value is taken from the parameter ECI LUW token in the CICS Client
section of the e*Way Connection configuration.

Name Type Description

c com.stc.eway.cics.Callb
ackable

ECI callbackable value.

Name Type Description

b boolean true if the current call is an extension of a
LUW, false otherwise.
e*Way Intelligent Adapter for CICS User’s Guide 165 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Syntax

public void setEciLuwToken(int i)

Parameters

Return Values

None.

Throws

None.

setEciSync

Description

"Set" method for the ETD node EciSync. Indicates whether the call will be synchronous
or asynchronous.

Syntax

public void setEciSync(boolean b)

Parameters

Return Values

None.

Throws

None.

setEncoding

Description

"Set" method for the ETD node Encoding.

Syntax

public void setEncoding(java.lang.String s)

Name Type Description

i int The LUW identifier.

Name Type Description

b boolean The EciSync flag. True indicates that
the call will be a synchronous call,
false indicates asynchronous.
e*Way Intelligent Adapter for CICS User’s Guide 166 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Parameters

Return Values

None.

Throws

None.

setListenerTimeout

Description

SBYND CICS Listener specific. "Set" method for the Listener Timeout ETD node
ListenerTimeout.

Syntax

public void setListenerTimeout(int timeout)

Parameters

Return Values

None.

Throws

None.

setMessageQualifier

Description

CTG specific. "Set" method for the ETD node MessageQualifier.

Syntax

public void setMessageQualifier(int i)

Name Type Description

s java.lang.String The encoding used for payload
translation.

Name Type Description

Timeout int The time that the SBYND listener
will wait for program invoking
request from the e*Way before it
close the connection.
e*Way Intelligent Adapter for CICS User’s Guide 167 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Parameters

Return Values

None.

Throws

None.

setPaddingCharacter

Description

SBYND CICS Listener specific. "Set" method for padding character ETD node
PaddingCharacter.

Syntax

public void setPaddingCharacter(java.lang.String padcharhex)

Parameters

Return Values

None

Throws

None.

setPassword

Description

Sets the password associated with the terminal.

Syntax

public void setPassword(java.lang.String s)

Name Type Description

i int The message qualifier.

Name Type Description

padcharhex java.lang.String The EBCDIC code for the character used by the
SBYND listener to pad the COMMAREA at the
CICS server when the actual length of the
payload in the COMMAREA is shorter than the
length given by CommAreaLength. The default
value is hexadecimal 40 - EBCDIC space.
e*Way Intelligent Adapter for CICS User’s Guide 168 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Parameters

Return Values

None.

Throws

None.

Additional Information

Invoking this method automatically flags the terminal as an extended type of terminal.
The password will not be picked up until another send is completed or the terminal is
connected.

setPollingRate

Description

SBYND CICS Listener specific. "Set" method for the Polling Rate ETD node
PollingRate.

Syntax

public void setPollingRate(int rate)

Parameters

Return Values

None.

Throws

None.

setPort

Description

Sets the port number necessary to communicate with the Gateway.

Syntax

public void setPort(int i)

Name Type Description

s java.lang.String Description

Name Type Description

rate int A 1-255 value used by listener
internally.
e*Way Intelligent Adapter for CICS User’s Guide 169 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Parameters

Return Values

None.

Throws

None.

setProgram

Description

"Set" method for ETD node Program. The CICS program to be called.

Syntax

public void setProgram(java.lang.String s)

Parameters

Return Values

None.

Throws

None.

setSBYNDListenerTransID

Description

SBYND CICS Listener specific. "Set" method for the SBYND CICS Listener TransID ETD
node SBYNDListenerTransID.

Syntax

public void setSBYNDListenerTransID(java.lang.String transid)

Parameters

Return Values

None.

Name Type Description

i int The Gateway port number.

Name Type Description

s java.lang.String The name of the CICS program.

Name Type Description

transid java.lang.String The transaction ID of the SBYND
CICS Listener - STCL.
e*Way Intelligent Adapter for CICS User’s Guide 170 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Throws

None.

setServer

Description

"Set" method for ETD node Server.

Syntax

public void setServer(java.lang.String s)

Parameters

Return Values

None.

Throws

None.

setSslClass

Description

CTG specific. "Set" method for the ETD node SslClass.

Syntax

public void setSslClass(java.lang.String s)

Parameters

Return Values

None.

Throws

None.

Name Type Description

s java.lang.String The CICS server name.

Name Type Description

s java.lang.String The SSL class name.
e*Way Intelligent Adapter for CICS User’s Guide 171 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
setSslPassword

Description

CTG specific. "Set" method for the ETD node SslPassword. The PASSWORD for the
encrypted KeyRing class.

Syntax

public void setSslPassword(java.lang.String s)

Parameters

Return Values

None.

Throws

None.

setStartDelay

Description

SBYND CICS Listener specific. "Set" method for Startup delay ETD node StartDelay.

Syntax

public void setStartDelay(java.lang.String startdelay)

Parameters

Return Values

None.

Throws

None.

setStartType

Description

SBYND CICS Listener specific. "Set" method for the Startup delay ETD node StartType.

Name Type Description

s java.lang.String The SSL password.

Name Type Description

startdelay java.lang.String The delay value, in the format HHMMSS, used
by IBM CICS Listener to delay the wake up of
the SBYND listener. The default value is 000000.
e*Way Intelligent Adapter for CICS User’s Guide 172 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Syntax

public void setStartType(java.lang.String starttype)

Parameters

Return Values

None.

Throws

None.

setTPTimeout

Description

SBYND CICS Listener specific. "Set" method for the TP Timeout ETD node TPTimeout.

Syntax

public void setTPTimeout(int timeout)

Parameters

Return Values

None.

Throws

None.

setTraceDumpOffset

Description

CTG specific. "Set" method for the ETD node TraceDumpOffset.

Syntax

public void setTraceDumpOffset(int i)

Name Type Description

starttype java.lang.String The Startup type value, either IC or TD, used by
the IBM CICS Listener to decide how the
SBYND Listener will be waked up.

Name Type Description

timeout int The timeout value in milli-seconds. typically,
this is set to the maximum estimated time it
takes the CICS program to finish and come
back to the inoker.
e*Way Intelligent Adapter for CICS User’s Guide 173 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Parameters

Return Values

None.

Throws

None.

setTraceFilename

Description

CTG specific. "Set" method for the ETD node TraceFilename.

Syntax

public void setTraceFilename(java.lang.String s)

Parameters

Return Values

None.

Throws

None.

setTraceLevel

Description

CTG specific. "Set" method for the ETD node TraceLevel.

Syntax

public void setTraceLevel(int i)

Parameters

Return Values

None.

Name Type Description

i int The offset amount.

Name Type Description

s java.lang.String The CTG client tracing file name.

Name Type Description

i int The CTG client tracing level.
e*Way Intelligent Adapter for CICS User’s Guide 174 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Throws

None.

setTraceTiming

Description

CTG specific. "Set" method for the ETD node TraceTiming.

Syntax

public void setTraceTiming(boolean b)

Parameters

Return Values

None.

Throws

None.

setTraceTruncationSize

Description

CTG specific. "Set" method for the ETD node TraceTruncationSize.

Syntax

public void setTraceTruncationSize(int i)

Parameters

Return Values

None.

Throws

None.

Name Type Description

b boolean true includes the time stamp in CTG
client tracing, otherwise is false.

Name Type Description

i int The CTG client tracing truncation
size.
e*Way Intelligent Adapter for CICS User’s Guide 175 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
setTransId

Description

"Set" method for ETD node Program. The CICS program's trans ID to be called.

Syntax

public void setTransId(java.lang.String s)

Parameters

Return Values

None.

Throws

None.

setTransportTimeout

Description

SBYND CICS Listener specific. "Set" method for the Transport Timeout ETD node
TransportTimeout.

Syntax

public void setTransportTimeout(int timeout)

Parameters

Return Values

None.

Throws

None.

setUrl

Description

CTG specific. "Set" method for the ETD node Url. Set the URL pointing to the remote or
local CICS Transaction Gateway with which to connect.

Name Type Description

s java.lang.String The trans ID of the CICS program.

Name Type Description

timeout int The time in milli-seconds used to
timeout a blocking read on a socket
between the e*Way and the listener.
e*Way Intelligent Adapter for CICS User’s Guide 176 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Syntax

public void setUrl(java.lang.String s)

Parameters

Return Values

None.

Throws

None.

setUserId

Description

Sets the used ID associated with the terminal.

Syntax

public void setUserId(java.lang.String s)

Parameters

Return Values

None.

Throws

None.

toPackedDecimal

Description

Builds a packed decimal from a string number. Converts the in String +-99999.99 in a
packed decimal. IBM data Flow: each digit is a 0..9. Numerical value of the last digit is
the sign digit: A|C|E|F => + ; B|D => -. The decimal point is virtual. Its position is
defined in the second byte of dec_length.

Note: Helper methods for toPackedDecimal are provided with the CICS e*Way. For
information on these helper methods see Packed Decimal Java Helper Methods
on page 180.

Name Type Description

s java.lang.String The URL for the Transaction
Gateway.

Name Type Description

s java.lang.String The terminal user ID.
e*Way Intelligent Adapter for CICS User’s Guide 177 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
Syntax

public static com.stc.eways.cics.PackedDecimal
toPackedDecimal(java.lang.String number,

int intSize,
int decSize)

Parameters

Return Values

com.stc.eways.cics.PacedDecimal
Returns the packed decimal object.

Throws

java.lang.NumberFormatException

toZoned

Description

Converts a number in the form of a String to a zoned decimal (COBOL PIC S9) byte
array using the current value of the ETD node Encoding as the encoding.

Syntax

public static byte[] toZoned(java.lang.String number)

Parameters

Return Values

byte []
Returns the resultant byte array.

Throws

None.

Name Type Description

 number java.lang.String Decimal String representation to be
converted

intSize int The number of integer digits in the
resulting object.

decSize int The number of decimal digits in the
resulting object.

Name Type Description

number java.lang.String The number String.
e*Way Intelligent Adapter for CICS User’s Guide 178 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods The CicsClient Class
toZoned

Description

Converts a number in the form of a String to a zoned decimal (COBOL PIC S9) byte
array using the encoding specified by the parameter enc.

Syntax

public static byte[] toZoned(java.lang.String number,
java.lang.String enc)

Parameters

Return Values

byte []
Returns the resultant byte array.

Throws

None.

zonedToString

Description

Converts the zoned decimal (COBOL PIC S9) byte array specified by zoned to a String
using current value of the ETD node Encoding as encoding.

Syntax

public static java.lang.String zonedToString(byte[] zoned)

Parameters

Return Values

java.lang.String
Returns the resultant string.

Throws

java.lang.NumberFormatException

Name Type Description

number java.lang.String The number String.

 enc java.lang.String The encryption type.

Name Type Description

zoned byte[] Description
e*Way Intelligent Adapter for CICS User’s Guide 179 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Methods Packed Decimal Java Helper Methods
zonedToString

Description

Convert the zoned decimal (COBOL PIC S9) byte array specified by zoned to a String
using the specified encoding enc.

Syntax

public static java.lang.String zonedToString(byte[] zoned,
java.lang.String enc)

Parameters

Note: Methods that include an "encoding" parameter should specify encoding as "ISO-
8859-1" when the e*Way is run on the OS/390 platform.

Return Values

java.lang.String
Returns the resultant string.

Throws

java.lang.NumberFormatException

6.2 Packed Decimal Java Helper Methods
The Java helper methods for the toPackedDecimal class. These methods are not
exposed in the Collaboration but are available for use. For example, to use the CopyTo
method to obtain a Hex value in a byte array you would use the following code:

MyPacked.toPackedDecimal("327.00") ;
 System.out.println(" Decimal value is : " + MyPacked.toString()) ;
 byte[] work_buf = new byte[7];
 MyPacked.CopyTo(work_buf, 7);
 for (int Ii = 0 ; Ii < 7 ; Ii++)
 {
 int Ib = (int) new Byte(work_buf[Ii]).intValue();
 if (Ib < 16)
 {
 System.out.println(" Byte" + Ii + " Hexvalue = 0" + Integer.toHexString(Ib));
 }
 else
 {
 System.out.println(" Byte" + Ii + " Hexvalue = " + Integer.toHexString(Ib));
 }
 }

This produces the following output:
Decimal value is : 327.00
Byte0 Hexvalue = 00
Byte1 Hexvalue = 00
Byte2 Hexvalue = 00

Name Type Description

zoned byte[] The byte array contains zoned
decimal

 enc java.lang.String The encoding used for conversion.
e*Way Intelligent Adapter for CICS User’s Guide 180 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Methods Packed Decimal Java Helper Methods
Byte3 Hexvalue = 00
Byte4 Hexvalue = 32
Byte5 Hexvalue = 70
Byte6 Hexvalue = 0c

These methods are described in detail on the following pages:

ContainerExists

Description

Checks to see if contents of a packed decimal are available.

Syntax

public com.stc.eways.cics.PackedDecimal boolean ContainerExists()

Parameters

None.

Return Values

Boolean

Throws

None.

CopyBack

Description

Builds a packed decimal from the payload in a byte array. The byte array must contain a
valid packed decimal number.

Syntax

public com.stc.eways.cics.PackedDecimal void CopyBack(byte Origin[],
int Size)

Parameters

Return Values

None.

ContainerExists on page 181 GiveElem on page 182

CopyBack on page 181 SetElem on page 183

CopyTo on page 182

Name Type Description

Origin[] byte Payload containing a valid packed
decimal number.

 Size int Size of the payload that contains the
packed decimal number.
e*Way Intelligent Adapter for CICS User’s Guide 181 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Methods Packed Decimal Java Helper Methods
Throws

None.

CopyTo

Description

Copies a packed decimal number to a byte array.

Syntax

public com.stc.eways.cics.PackedDecimal void CopyTo(byte Dest[],
 int Size)

Parameters

Return Values

None.

Throws

None.

GiveElem
Description

Returns a specified byte of a packed decimal number.

Syntax

public com.stc.eways.cics.PackedDecimal int GiveElem(int Ii)

Parameters

Return Values

int
Returns the value of the position.

Throws

None.

Name Type Description

Dest[] byte A byte array that the packed decimal
number will be copied to.

 Size int Size of the payload that contains the
packed decimal number.

Name Type Description

 Ii int Position of the byte to be returned.
e*Way Intelligent Adapter for CICS User’s Guide 182 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Methods Packed Decimal Java Helper Methods
SetElem
Description

Sets the value of a specified byte in a packed decimal number.

Syntax

public com.stc.eways.cics.PackedDecimal void SetElem(int Ii,
 byte Value)

Parameters

Return Values

None.

Throws

None.

Name Type Description

 Ii int Position of the byte to be set.

 Value byte Value to set.
e*Way Intelligent Adapter for CICS User’s Guide 183 SeeBeyond Proprietary and Confidential

Index
Index

A
AsyncCalls 49
asynchronous call handling

CICSClient ETD 47
connection management 51
CTG 45
SeeBeyond CICS Listener 46

C
CICS

described 10
overview 9

CICS e*Way
overview 9
UNIX installation 20
Windows installation 19

CICS e*Way Connection
creating 59

CICS Transaction Gateway
configuration 36
OS/390 configuration requirements 17
overview 10
requirements 17
running CTG on multiple CICS servers 130

CICSClient ETD
asynchronous configuration 47
node description 38

AsyncResponseTopic 40
AsyncRspNotifPort 41
AsyncRspNotifServer 40
CommArea 38
CommAreaLength 38
EciCallbackable 41
EciExtend 40
EciLuwToken 40
EciSync 38
Encoding 41
ListenerTimeout 40
MessageQualifier 40
PaddingCharacter 40
Password 38
PollingRate 40
Port 38

Program 38
SBYNDListenerTransID 40
Server 41
SslClass 38
SslPassword 38
StartDelay 40
StartType 40
TPTimeout 40
TraceDumpOffset 41
TraceFilename 41
TraceLevel 41
TraceTiming 41
TraceTruncationSize 41
TransId 38
TransportTimeout 40
Url 38
UserId 38

overview 37
cicsclient.xsc

overview 37
CICSJava_Sample

components 76
Classpath Override 55
Classpath Prepend 55
Cobol Copybook Converter 73

function described 10
Collaboration

properties 90
Collaboration Rules 84

creating 84
editor 87

collaboration rules 84
Collaborations 89
collaborations 89

for the Multi-Mode e*Way 89
COMMAREA 10
connection management

asynchronous call handling 51
Automatic connection establishment mode 51
CICS Transaction Gateway 51
Manual connection establishment mode 52
On Demand connection establishment mode 52
SeeBeyond CICS Listener 51

connection transport
configuration 75

createAsyncCallHandler() 48
Customer Information Control System

described 10

D
directories

created by installation 22
Disable JIT 57
e*Way Intelligent Adapter for CICS User’s Guide 184 SeeBeyond Proprietary and Confidential

Index
E
e*Way Connection 81

configuration parameters
Async Call JMS Server Host 70
Async Call JMS Server Port 70
Async Response Topic 70
CICS Client 67
CICS Gateway 62
Cics Password 68
CICS Program 68
CICS TransId 68
Cics UserId 67
Class 62
COMMAREA length 69
COMMAREA Padding Character 66
Connection Establishment Mode 61
Connection Inactivity Timeout 61
Connection Transport 60
Connection Verification Interval 61
Connector 60
Dump Offset 72
ECI call type 68
ECI extend mode 69
ECI LUW token 69
Encoding 70
Filename 71
Host 63
KeepAlive 67
Level 71
Listener Timeout 65
Message qualifier 70
NoDelay 66
Polling Rate 65
Port 62, 64
Property.Tag 62
ReceiveBufSize 66
SeeBeyond CICS Listener 63
SeeBeyond CICS Listener TransId 64
SendBufSize 66
SSL KeyRing Class 63
SSL KeyRing Password 63
Start Delay 64
Start Type 64
Timing 72
TP Timeout 65
Tracing 71
Transport Timeout 65
Truncation Size 72
Type 60
Url 62

creating 81
e*Ways 78

creating 78

inbound 79
Multi-Mode 81
outbound 80

creating and configuring 78
Inbound e*Way 79
Multi-Mode 80
Multi-Mode e*Way 81
Outbound e*Way 80

EciCallbackable 49
event type

creating
from an existing .xsc 78
without an existing DTD 76

Event Types 76
Custom ETD Wizard 76

event types 76

F
files

created by installation 22

H
helper methods 180
HP-UX

required path append 15

I
Implementation 73
implementation 73

overview 75
importing the sample schema 74
Initial Heap Size 56
installation

directories created by 22
files created by 22
OS/390 21
UNIX 20
Windows 2000 19
Windows NT 4.0 19
Windows XP 19

Intelligent Queues
creating 82
SeeBeyond JMS 83
STC_JMS_IQ 83
STC_Standard 83

intelligent queues 82
IQ Manager

JMS 83
e*Way Intelligent Adapter for CICS User’s Guide 185 SeeBeyond Proprietary and Confidential

Index
J
Java methods 131

CicsClient Class 131
jCollabController 102
JNI DLL Absolute Pathname 54
JVM settings 54

M
Maximum Heap Size 56
methods

CicsClient 133
commAreaToPackedDecimal 133
commAreaZonedToString 134
connect 135
disconnect 135
execute 136
getCommArea 138
getCommAreaLength 138
getCommAreaString 139, 140
getEciCallbackable 141
getEciExtend 142
getEciLuwToken 142
getEciSync 143
getEncodedCommAreaString 143
getEncoding 144
getPaddingCharacter 146
getPassword 146
getPollingRate 147
getPort 147
getProgram 147
getProgramName 148
getRequestCode 148
getREQUESTCODES 149
getRequestDesc 149
getResponse 150
getReturnCode 151
getRETURNCODES 151
getReturnMessage 152
getSBYNDCicsProxyConfig 152
getSBYNDListenerTransID 153
getServer 153
getServerList 153
getSslClass 154
getSslPassword 154
getStartDelay 155
getTPTimeout 156
getTraceDumpOffset 156
getTraceFilename 157
getTraceLevel 157
getTraceTiming 158
getTraceTruncationSize 158
getTransId 159

getTransportTimeout 159
getUrl 159
getUserId 160
isConnected 160
packed decimal helper methods 180

ContainerExists 181
CopyBack 181
CopyTo 182
GiveElem 182
SetElem 183

packed decimal helper methods example 183
packedDecimalToString 161
prepareAPCRecord 161
returnCodeIs 162
returnOK 162
sendRequest 163
setCommArea 164
setCommAreaLength 164
setEciCallbackable 165
setEciExtend 165
setEciLuwToken 165
setEciSync 166
setEncoding 166
setListenerTimeout 167
setMessageQualifier 167
setPaddingCharacter 168
setPassword 168
setPollingRate 169
setPort 169
setProgram 170
setSBYNDListenerTransID 170
setServer 171
setSslClass 171
setSslPassword 172
setStartDelay 172
setTraceDumpOffset 173
setTraceFilename 174
setTraceLevel 174
setTraceTiming 175
setTraceTruncationSize 175
setTransId 176
setTransportTimeout 176
setUrl 176
setUserId 177
toPackedDecimal 177
toZoned 178, 179
zonedToString 179, 180

Multi-Mode e*Way
configuration 53
configuration parameters 54

Auxiliary JVM Configuration File 57
CLASSPATH Append From Environment

Variable 56
CLASSPATH Override 55
e*Way Intelligent Adapter for CICS User’s Guide 186 SeeBeyond Proprietary and Confidential

Index
CLASSPATH Prepend 55
Disable JIT 57
JNI DLL Absolute Pathname 54
Maximum Heap Size 56
Maximum Stack Size for JVM Threads 57
Maximum Stack Size for Native Threads 56
Remote Debugging port number 57
Suspend option for debugging 57

creating 53
parameters 54

O
operating systems

requirements 15
supported 14

OS/390
configuration requirements 17
configuration requirements for CTG 17
converting incomming EBCIDIC to ASCII 102
converting outgoing ASCII to EBCDIC 102
Java Collaborations 102

P
parameters

Connector 60
Class 62

Multi-Mode e*Way
CLASSPATH prepend 55
Initial Heap Size 56
JNI DLL absolute pathname 54
JVM settings 54
Maximum Heap Size 56

Property.Tag 62
pre-installation

UNIX 20
Windows 19

properties 36

S
sample schema

importing 74
sample schemas

CICS_Async_Sample_1 107
CICS_Async_Sample_2 107
CICS_Async_Sample_3 107
CICS_Client_Sample 93
CICS_Client_Sample_os390 102
CICS_Client_SubCollab_Sample 103
CICSJava_os390 102
executing 129

importing 74
overview 73
sample data 108

samples
AddNumbersSchema

Business Rules 98, 117
Collaboration Rules 97, 103, 115
Collaborations 100, 126
create the ETD 95, 111
Queue Manager 95

schema
importing 74

security validation
CICS Transaction Gateway 14
OS/390 CICS security 12
request start transaction mode 13
SeeBeyond Listener

business logic mode 13
request link to program mode 13
request start transaction mode 14

SeeBeyond CICS Listener
configuration requirements 18
installation

adding the CICS e*Way Load Module 24
CICS CEDA definitions 24
copying the tape contents to disk 23
verifying proper installation 24

installation from 3480 tape 23
installation from CD-ROM 22
monitor screen for OS/390 25
overview 11

Solaris 7
required environment variable 15

system requirements 16
external 17

U
UNIX

CICS e*Way installation 20
pre-installation 20

W
Windows

CICS e*Way installation 19
pre-installation 19
e*Way Intelligent Adapter for CICS User’s Guide 187 SeeBeyond Proprietary and Confidential

	e*Way Intelligent Adapter for CICS User’s Guide
	Contents
	Introduction
	1.1 Intended Reader
	1.2 Overview
	CICS Transaction Server
	The e*Way Intelligent Adapter for CICS
	1.2.1. OS/390 and z/OS CICS Security Considerations
	Security Considerations for SeeBeyond CICS Listener
	Security Considerations for IBM CICS Transaction Gateway

	1.3 Supported Operating System
	1.4 System Requirements
	1.5 External System Requirements
	1.5.1. CICS Server Requirements for the IBM CICS Transaction Gateway Implementation
	1.5.2. CICS Server Requirements for the SeeBeyond CICS Listener Implementation.

	Installation
	2.1 Windows NT 4.0, Windows 2000, and Windows XP
	2.1.1. Pre-installation
	2.1.2. Installation Procedure

	2.2 UNIX
	2.2.1. Pre-installation
	2.2.2. Installation Procedure

	2.3 OS/390 and z/OS
	2.4 Files/Directories Created by the Installation
	2.5 SeeBeyond CICS Listener Installation for OS/390 and z/OS
	2.5.1. Installing the SeeBeyond CICS Listener from CD to OS/390 and z/OS
	2.5.2. Installing the SeeBeyond CICS Listener from 3480 Tape
	Copying the Tape Contents to Disk

	2.5.3. Installing the CICS CEDA Definitions
	2.5.4. Adding the CICS e*Way Load Modules to CICS DFHRPL Concatenation
	2.5.5. The SeeBeyond CICS Listener Monitor Screen for OS/390 and z/OS

	2.6 CICS Transaction Gateway 4.0 and 5.0 Configuration

	CICSClient ETD Overview
	3.1 The CICSClient ETD
	3.1.1. CICSClient ETD Layout
	Node Descriptions

	3.2 Synchronous and Asynchronous Call Handling
	Asychronous Call Handling
	CICSClient ETD Asynchronous Configuration
	ETD Nodes Associated with Asynchronous Call Handling
	Connection Management and Asynchronous Call Handling

	e*Way Configuration
	4.1 Multi-Mode e*Way Configuration
	4.1.1. JVM Settings
	JNI DLL Absolute Pathname
	CLASSPATH Prepend
	CLASSPATH Override
	CLASSPATH Append From Environment Variable
	Initial Heap Size
	Maximum Heap Size
	Maximum Stack Size for Native Threads
	Maximum Stack Size for JVM Threads
	Disable JIT
	Remote Debugging port number
	Suspend option for debugging
	Auxiliary JVM Configuration File

	4.1.2. General Settings
	Rollback Wait Interval
	Standard IQ FIFO

	4.2 e*Way Connection Configuration
	4.2.1. Connector
	Type
	Connection Transport
	Connection Establishment Mode
	Connection Inactivity Timeout
	Connection Verification Interval
	Class
	Property.Tag

	4.2.2. CICS Gateway
	Url
	Port
	SSL KeyRing Class
	SSL KeyRing Password

	4.2.3. SeeBeyond CICS Listener
	Host
	Port
	SeeBeyond CICS Listener TransId
	Start Type
	Start Delay
	Listener Timeout
	TP Timeout
	Polling Rate
	Transport Timeout
	COMMAREA Padding Character
	SendBufSize
	ReceiveBufSize
	NoDelay
	KeepAlive

	4.2.4. CICS Client
	Cics UserId
	Cics Password
	ECI call type
	CICS Program
	CICS TransId
	COMMAREA length
	ECI extend mode
	ECI LUW token
	Message qualifier
	Async Response Topic
	Async Call JMS Server Host
	Async Call JMS Server Port
	Encoding

	4.2.5. Tracing
	Level
	Filename
	Truncation Size
	Dump Offset
	Timing

	Implementation
	5.1 Using the Cobol Copybook Converter
	5.2 Sample Schemas
	5.3 Importing the Sample Schemas
	5.3.1. Configuring the Connection Transport for a Sample Schema

	5.4 CICS Sample Implementation
	5.5 e*Way Components
	5.5.1. Event Types
	Creating an Event Type Using the Custom ETD Wizard
	Creating an Event Type Associated with an Existing ETD

	5.5.2. Creating and Configuring the Component e*Ways
	5.5.3. Creating the e*Way Connection
	5.5.4. Creating Intelligent Queues
	5.5.5. Creating Collaboration Rules
	cr_PassThru (Pass Through)
	cr_CICSClient (Java)
	Creating the Collaboration Rules Class

	5.5.6. Creating Collaborations

	5.6 CICS Sample Schemas
	5.7 The CICS_Client_Sample Schema
	5.7.1 Creating the e*Ways
	Configuring the Multi-Mode e*Way

	5.7.2 Creating the ETDs
	5.7.3 Configuring the IQs
	5.7.4 Creating the e*Way Connections
	5.7.5 Creating the Collaboration Rules
	5.7.6 Business Rules for the cr_CICSClient.class
	5.7.7 Creating the Collaborations

	5.8 The CICSJava_os390 and CICS_Client_Sample_os390 Schemas for OS/390 and z/OS
	5.9 The CICS_Client_SubCollab_Sample Schema
	5.9.1 Creating the Collaboration Rules
	5.9.2 Creating the Business Rules
	Creating the cr_CICSClient.class Collaboration Rules

	5.10 Asynchronous Call Handling Samples
	5.10.1. The CICS_Async_Sample Schemas
	5.10.2 Creating the e*Ways
	Configuring the Multi-Mode e*Way

	5.10.3 Creating the ETDs
	5.10.4 Creating the IQs
	5.10.5. Creating the async_topic (IQ Manager)
	5.10.6 Creating the e*Way Connections
	5.10.7 Creating the Collaboration Rules
	5.10.8 Collaboration Rules Editor
	The cr_CICSClient_3.class Collaboration Rules
	The cr_eater_3.class Collaboration Rules
	The cr_feeder_3.class Collaboration Rules
	The cr_feeder_1 Collaboration Rules, cr_feeder_3.class file is displayed in Figure 65.
	The cr_async_sub_3.class Collaboration Rules

	5.10.9 Creating the Collaborations

	5.11 Executing the Schemas
	5.12 Running CTG on Multiple CICS Servers

	Java Methods
	6.1 The CicsClient Class
	Methods of the CicsClient Class
	CicsClient
	commAreaToPackedDecimal
	commAreaZonedToString
	commAreaZonedToString
	connect
	disconnect
	execute
	execute
	getCommArea
	getCommAreaLength
	getCommAreaString
	getCommAreaString
	getCommAreaString
	getCommAreaString
	getEciCallbackable
	getEciExtend
	getEciLuwToken
	getEciSync
	getEncodedCommAreaString
	getEncodedCommAreaString
	getEncoding
	getListenerTimeout
	getMessageQualifier
	getPaddingCharacter
	getPassword
	getPollingRate
	getPort
	getProgram
	getProgramName
	getRequestCode
	getREQUESTCODES
	getRequestDesc
	getResponse
	getResponse
	getReturnCode
	getRETURNCODES
	getReturnMessage
	getSBYNDCicsProxyConfig
	getSBYNDListenerTransID
	getServer
	getServerList
	getSslClass
	getSslPassword
	getStartDelay
	getStartType
	getTPTimeout
	getTraceDumpOffset
	getTraceFilename
	getTraceLevel
	getTraceTiming
	getTraceTruncationSize
	getTransId
	getTransportTimeout
	getUrl
	getUserId
	isConnected
	packedDecimalToString
	prepareAPCRecord
	returnCodeIs
	returnOK
	sendRequest
	setCommArea
	setCommAreaLength
	setEciCallbackable
	setEciExtend
	setEciLuwToken
	setEciSync
	setEncoding
	setListenerTimeout
	setMessageQualifier
	setPaddingCharacter
	setPassword
	setPollingRate
	setPort
	setProgram
	setSBYNDListenerTransID
	setServer
	setSslClass
	setSslPassword
	setStartDelay
	setStartType
	setTPTimeout
	setTraceDumpOffset
	setTraceFilename
	setTraceLevel
	setTraceTiming
	setTraceTruncationSize
	setTransId
	setTransportTimeout
	setUrl
	setUserId
	toPackedDecimal
	toZoned
	toZoned
	zonedToString
	zonedToString

	6.2 Packed Decimal Java Helper Methods
	ContainerExists
	CopyBack
	CopyTo
	GiveElem
	SetElem

	Index
	A
	C
	D
	E
	F
	H
	I
	J
	M
	O
	P
	S
	U
	W

