
SeeBeyond Proprietary and Confidential

e*Way Intelligent Adapter for
COM/DCOM User’s Guide

Release 4.5.4

Java Version

e*Way Intelligent Adapter for COM/DCOM User’s Guide 2 SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBI, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 1999–2002 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20030113122058.

Contents

e*Way Intelligent Adapter for COM/DCOM User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents

Chapter 1

Introduction 7
COM/DCOM Overview 7

Intended Reader 7

Supported Operating Systems 8

System Requirements 8
External Application Requirements 9

Chapter 2

Installation 10
Windows NT and Windows 2000 Installation 10

Pre-installation 10
Installation Procedure 10

Files/Directories Created by the Installation 11

Chapter 3

Multi-Mode e*Way Configuration 12
Multi-Mode e*Way 12

JVM Settings 12
JNI DLL Absolute Pathname 13
CLASSPATH Prepend 14
CLASSPATH Override 14
CLASSPATH Append From Environment Variable 14
Initial Heap Size 15
Maximum Heap Size 15
Maximum Stack Size for Native Threads 15
Maximum Stack Size for JVM Threads 15
Disable JIT 15
Remote Debugging port number 16
Suspend option for debugging 16
Auxiliary JVM Configuration File 16

General Settings 16
Rollback Wait Interval 16
Standard IQ FIFO 17

Contents

e*Way Intelligent Adapter for COM/DCOM User’s Guide 4 SeeBeyond Proprietary and Confidential

Chapter 4

e*Way Connection Configuration 18
Configuring e*Way Connections 18

Connector 18
Type 19
Class 19

COM/DCOM Configuration 19
ProgID 19
Hostname 20

Chapter 5

Implementation 21
Implementation Notes 21

Considerations 22

COM/DCOM Sample Implementation Overview 22
Importing the Sample Schema 23

Creating the Sample Schema Manually 24

Creating Event Type Definitions 24
Creating an Event Type Definition Using an Existing .xsc 24
Creating an Event Type Definition Using the COM ETD Wizard 26

Creating and Configuring the Component e*Ways 28
To Create the Trigger e*Way 28
To Create the COM/DCOM e*Way (Multi-Mode) 29

Creating the e*Way Connection 30
To Create and Configure a New e*Way Connection 31

Creating Intelligent Queues (IQs) 32
To Create and Modify an Intelligent Queue for the COM/DCOM e*Way 32

Creating the Collaboration Rules 32
To Create the Pass Through Collaboration Rules 33
To Create the Java Collaboration Rules 34

Using the Collaboration Rules Editor 35

Creating Collaborations 41
To Create the trigger e*Way Collaboration 42
To Create the COM_Multi_Mode Collaboration 43

Configuring the DCOM Server 45

Sample Schema 49
Completing the Configuration of the COMtest Schema 49
Executing the Schema 49

COM/DCOM Run-Time Exceptions 50

Contents

e*Way Intelligent Adapter for COM/DCOM User’s Guide 5 SeeBeyond Proprietary and Confidential

Chapter 6

Java Methods 51
The COMETDVariant Class 51

Methods of the COMETDVariant Class 51
COMETDVariant 52
getType 53
getValue 53
setbool 54
getbool 54
setshort 54
getshort 55
setbyte 55
getbyte 56
setint 56
getint 56
seterror 57
geterror 57
setstring 58
getstring 58
setfloat 58
getfloat 59
setdouble 59
getdouble 60
getarray 60
setarray 60

The COMETDWrapper Class 61
Methods of the COMETDWrapper Class 61
COMETDWrapper 62
COMETDWrapper_Init 62
setParam 63
getByteArray 68
getByte2DArray 69
getBooleanArray 69
getBoolean2DArray 70
getShortArray 70
getShort2DArray 71
getIntArray 71
getInt2DArray 72
getFloatArray 72
getFloat2DArray 73
getDoubleArray 73
getDouble2DArray 74
getStringArray 74
getString2DArray 75
getVariantParam 75
getRetVal 76
setdisphandler 76
invoke 76

The STCComException Class 77
Methods of the STCComException Class 77
Fields of the STCComException Class 78
STCComException 78
getMessage 78
getErrorCode 79
getSystemErrorText 79

Contents

e*Way Intelligent Adapter for COM/DCOM User’s Guide 6 SeeBeyond Proprietary and Confidential

Index 80

e*Way Intelligent Adapter for COM/DCOM User’s Guide 7 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

The e*Way Intelligent Adapter for COM/DCOM enables the e*Gate system to exchange
data with server side COM/DCOM-enabled applications and components. This
document describes how the Java™-enabled COM/DCOM e*Way is installed,
configured, and implemented.

1.1 COM/DCOM Overview
The Microsoft™ Component Object Model (COM) is a component software architecture
that allows applications and systems to be built using separate components. COM is the
underlying architecture that forms the foundation for higher-level software services,
like those provided by OLE (Object Linking and Embedding). OLE services span
various aspects of component software, including compound documents, custom
controls, inter-application scripting, data transfer, and other software interactions.
Using COM allows software objects to be reused for a variety of applications. Because
of its binary standard, COM allows any two components to communicate regardless of
the language in which they were written.

The Microsoft Distributed Component Object Model (DCOM) is an extension of COM, and
supports communication among objects residing on different computers; LANs,
WANs, and the Internet. With DCOM, these software objects can be reused over a
distributed environment.

COM objects or components are individual modular software routines that can be
reused within applications. COM objects are reusable compiled binary objects, as
opposed to reusable sections of code. The COM objects create handles that provide
access to the COM-enabled applications.

The COM/DCOM e*Way enables configurable transparent data exchange with
COM/DCOM enabled applications and components.

1.2 Intended Reader
The reader of this guide is presumed:

! to be a developer or system administrator with responsibility for maintaining the
e*Gate system.

Chapter 1 Section 1.3
Introduction Supported Operating Systems

e*Way Intelligent Adapter for COM/DCOM User’s Guide 8 SeeBeyond Proprietary and Confidential

! to have a working knowledge of Windows NT™ or Windows 2000™ operations
and administration.

! to be thoroughly familiar with COM/DCOM, Java, and Windows-style GUI
operations.

1.3 Supported Operating Systems
The Java-enabled COM/DCOM e*Way is available on the following operating systems:

! Windows 2000, Windows 2000 SP1, Windows 2000 SP2, and Windows 2000 SP3

! Windows NT 4 SP6a

Note: If you intend to install e*Gate onto a totally clean Windows NT computer, you must
first download a patch from Microsoft. If you do not perform the download, the
installation of the SeeBeyond Editors (MSI Installer) fails. Download the patch
from: http://www.microsoft.com/data/download_250rtm.htm

To confirm that Windows NT SP6a is installed

1 At the command prompt, type Winver.

2 The About Window NT (R) window appears (this is the same window that appears when
you choose Help on the Menu bar and click About Windows NT with Microsoft
Explorer open). However, by using the command prompt, a line with Revised
Service Pack displays on the window with the correct version listed.

1.4 System Requirements
To use the COM/DCOM e*Way, you need the following:

! An e*Gate Participating Host, version 4.5.1 or later.

! A TCP/IP network connection

! Additional disk space for e*Way executable, configuration, library, and script files.
The disk space is required on both the Participating and the Registry Host.
Additional disk space is required to process and queue the data that this e*Way
processes; the amount necessary varies based on the type and size of the data being
processed, and any external applications performing the processing.

The client components of the external systems with which the e*Way interfaces, have
their own requirements; see those systems’ documentation for more details.

Note: Open and review the Readme.txt for the COM/DCOM e*Way regarding any
additional requirements prior to installation. The Readme.txt is located on the
Installation CD_ROM at setup\addons\ewims.

http://www.microsoft.com/data/download_250rtm.htm

Chapter 1 Section 1.4
Introduction System Requirements

e*Way Intelligent Adapter for COM/DCOM User’s Guide 9 SeeBeyond Proprietary and Confidential

1.4.1. External Application Requirements
The COM/DCOM e*Way requires an existing COM/DCOM-compliant application or
component.

e*Way Intelligent Adapter for COM/DCOM User’s Guide 10 SeeBeyond Proprietary and Confidential

Chapter 2

Installation

This chapter contains pre-installation requirements and the procedures for installing
the Java-enabled COM/DCOM e*Way. In addition, a list of installed files is provided,
along with the directories where these files are located.

2.1 Windows NT and Windows 2000 Installation

2.1.1. Pre-installation
! Quit all Windows programs before running the setup program, including any

anti-virus applications.

! You must have Administrator privileges to install this e*Way.

2.1.2. Installation Procedure
To install the COM/DCOM e*Way on Windows

1 Log in as an Administrator to the workstation on which you are installing the
e*Way.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s Autorun feature is enabled, the setup application launches
automatically; skip ahead to step 4. Otherwise, use Windows Explorer or the
Control Panel’s Add/Remove Applications feature to launch the file setup.exe on
the CD-ROM drive.

4 The InstallShield setup application launches. Follow the installation instructions
until you come to the Please choose the product to install dialog box.

5 Select e*Gate Integrator, then click Next.

6 Follow the on-screen instructions until you come to the second Please choose the
product to install dialog box.

7 Clear the check boxes for all selections except Add-ons, and then click Next.

8 Follow the on-screen instructions until you come to the Select Components dialog
box.

Chapter 2 Section 2.2
Installation Files/Directories Created by the Installation

e*Way Intelligent Adapter for COM/DCOM User’s Guide 11 SeeBeyond Proprietary and Confidential

9 Highlight (but do not check) e*Ways, and then click the Change button. The
SelectSub-components dialog box appears.

10 Select the COM/DCOM e*Way. Click the continue button to return to the Select
Components dialog box, then click Next.

11 Follow the rest of the on-screen instructions to install the Java-enabled
COM/DCOM e*Way. Be sure to install the e*Way files in the suggested client
installation directory. The installation utility detects and suggests the appropriate
installation directory. Unless you are directed to do so by SeeBeyond support personnel,
do not change the suggested installation directory setting.

Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions. For
more information about any of these procedures, please see the online Help.

Note: For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.

2.2 Files/Directories Created by the Installation
The Java-enabled COM/DCOM e*Way installation process installs the following files
within the e*Gate “client” directory tree. Files are installed within the “egate/client”
tree on the Participating Host and committed to the “default” schema on the Registry
Host.

Table 1 Files Created by the Installation

e*Gate Directory File(s)

bin\ stccombuilder.exe
stccomjavabuilder.exe
stccomutil.dll
COMWizard.dll

bin\WizardIcons COM_Wizard.bmp

classes\ ewmscom.jar

configs\MSCOM\ com.def

etd\ com.ctl
comwizard.ctl

Server\registry\repository\default stcewmscom.ctl

e*Way Intelligent Adapter for COM/DCOM User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 3

Multi-Mode e*Way Configuration

This chapter describes how to configure the Multi-Mode e*Way.

3.1 Multi-Mode e*Way
Multi-Mode e*Way properties are set using the Enterprise Manager.

To create and configure a New Multi-Mode e*Way

1 Select the Navigator’s Components tab.

2 Open the host on which you want to create the e*Way.

3 On the Palette, click on the Create a New e*Way button.

4 The New e*Way Component window opens. Enter the name of the new e*Way,
then click OK.

5 Right-click the new e*Way and select Properties to open the Properties dialog box.

6 The Executable File field defaults to stceway.exe. (stceway.exe is located in the
“bin\” directory).

7 Under the Configuration File field, click on the New button. When the Settings
page opens, set the configuration parameters for this configuration file.

8 After selecting the desired parameters, save the configuration file. Close the .cfg file
and select OK to close the e*Way Properties Window.

Multi-Mode e*Way Configuration Parameters

The Multi-Mode e*Way configuration parameters are arranged in the following
sections:

! JVM Settings on page 12

! General Settings on page 16

3.1.1. JVM Settings
The JVM Settings control basic Java Virtual Machine settings.

! JNI DLL Absolute Pathname on page 13

! CLASSPATH Prepend on page 14

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way

e*Way Intelligent Adapter for COM/DCOM User’s Guide 13 SeeBeyond Proprietary and Confidential

! CLASSPATH Override on page 14

! CLASSPATH Append From Environment Variable on page 14

! Initial Heap Size on page 15

! Maximum Heap Size on page 15

! Maximum Stack Size for Native Threads on page 15

! Maximum Stack Size for JVM Threads on page 15

! Disable JIT on page 15

! Remote Debugging port number on page 16

! Suspend option for debugging on page 16

! Auxiliary JVM Configuration File on page 16

JNI DLL Absolute Pathname

Description

Specifies the absolute pathname to where the JNI DLL installed by the Java 2 SDK
1.3.1_02 is located on the Participating Host.

Required Values

A valid pathname.

Additional Information

The JNI dll name varies on different O/S platforms:

The value assigned may contain a reference to an environment variable. To do this,
enclose the variable name within a pair of % symbols. For example:

%MY_JNIDLL%

Such variables are used when multiple Participating Hosts are used on different
platforms.

Note: To ensure that the JNI DLL loads successfully, the Dynamic Load Library search
path environment variable must be set appropriately to include all the directories
under the Java 2 SDK (or JDK) installation directory that contain shared libraries
(UNIX) or DLLs (NT).

OS Java 2 JNI DLL Name

Windows NT 4.0/ Windows 2000 jvm.dll

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way

e*Way Intelligent Adapter for COM/DCOM User’s Guide 14 SeeBeyond Proprietary and Confidential

CLASSPATH Prepend

Description

Specifies the paths to be prepended to the CLASSPATH environment variable for the
JVM.

Required Values

An absolute path or an environmental variable. This parameter is optional.

Additional Information

If left unset, no paths are prepended to the CLASSPATH environment variable.

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_PRECLASSPATH%

CLASSPATH Override

Description

Specifies the complete CLASSPATH variable to be used by the JVM. This parameter is
optional. If left unset, an appropriate CLASSPATH environment variable (consisting of
required e*Gate components concatenated with the system version of CLASSPATH) is
set.

Note: All necessary JAR and ZIP files needed by both e*Gate and the JVM must be
included. It is advised that the CLASSPATH Prepend parameter be used.

Required Values

An absolute path or an environmental variable. This parameter is optional.

Additional Information

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_CLASSPATH%

CLASSPATH Append From Environment Variable

Description

Specifies whether the path is appended for the CLASSPATH environmental variable to
jar and zip files needed by the JVM.

Required Values

YES or NO. The configured default is YES.

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way

e*Way Intelligent Adapter for COM/DCOM User’s Guide 15 SeeBeyond Proprietary and Confidential

Initial Heap Size

Description

Specifies the value for the initial heap size in bytes. If set to 0 (zero), the preferred value
for the initial heap size of the JVM is used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Heap Size

Description

Specifies the value of the maximum heap size in bytes. If set to 0 (zero), the preferred
value for the maximum heap size of the JVM is used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Stack Size for Native Threads

Description

Specifies the value of the maximum stack size in bytes for native threads. If set to 0
(zero), the default value is used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Stack Size for JVM Threads

Description

Specifies the value of the maximum stack size in bytes for JVM threads. If set to 0 (zero),
the preferred value for the maximum heap size of the JVM is used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Disable JIT

Description

Specifies whether the Just-In-Time (JIT) compiler is disabled.

Required Values

YES or NO.

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way

e*Way Intelligent Adapter for COM/DCOM User’s Guide 16 SeeBeyond Proprietary and Confidential

Note: This parameter is not supported for Java Release 1.

Remote Debugging port number

Description

Specifies the port number by which the e*Gate Java Debugger can connect with the
JVM to allow remote debugging.

Required Values

An unused port number in the range 2000 through 65535. If not specified, the e*Gate
Java Debugger is not able to connect to this e*Way.

Suspend option for debugging

Description

Allows you to specify that the e*Way should do no processing until an e*Gate Java
Debugger has successfully connected to it.

Required Values

YES or No. YES suspends e*Way processing until a Debugger connects to it. NO
enables e*Way processing immediately upon startup.

Auxiliary JVM Configuration File

Description

Specifies an auxiliary JVM configuration file for additional parameters.

Required Values

The location of the auxiliary JVM configuration file.

3.1.2. General Settings
For more information on the General Settings configuration parameters see the e*Gate
Integrator User's Guide. The General Settings section contains the following parameters:

! Rollback Wait Interval on page 16

! Standard IQ FIFO on page 17

Rollback Wait Interval

Description

Specifies the time interval to wait before rolling back the transaction.

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way

e*Way Intelligent Adapter for COM/DCOM User’s Guide 17 SeeBeyond Proprietary and Confidential

Required Values

A number within the range of 0 to 99999999, representing the time interval in
milliseconds.

Standard IQ FIFO

Description

Specifies whether the highest priority messages from all STC_Standard IQs will be
delivered in the first-in-first-out (FIFO) order.

Required Values

Select YES or NO. YES indicates that the e*Way will retrieve messages from all
STC_Standard IQs in the first-in-first-out (FIFO) order. NO indicates that this feature is
disabled. NO is the configured default.

e*Way Intelligent Adapter for COM/DCOM User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 4

e*Way Connection Configuration

This chapter describes how to configure the COM/DCOM e*Way Connection.

4.1 Configuring e*Way Connections
e*Way Connections are set using the Enterprise Manager.

To create and configure e*Way Connections

1 In the Enterprise Manager’s Component editor, select the e*Way Connections
folder.

2 On the palette, click on the icon to create a new e*Way Connection.

3 The New e*Way Connection Component dialog box opens, enter a name for the
e*Way Connection. Click OK.

4 Double-click on the new e*Way Connection. For this example, the connection has
been defined as com_connector.

5 The e*Way Connection Properties dialog box opens.

6 From the e*Way Connection Type drop-down box, select COM/DCOM.

7 Enter the Event Type “get” interval in the dialog box provided. The configured
default is 100 milliseconds. The “get interval is the intervening period at which the
e*Way connection is polled.

8 From the e*Way Connection Configuration File, click New to create a new
Configuration File for this e*Way Connection. (To use an existing file, click Find.)

The COM/DCOM e*Way Connection configuration parameters are organized into the
following sections:

! Connector on page 18

! COM/DCOM Configuration on page 19

4.1.1. Connector
This section contains a set of top level parameters.

! Type on page 19

! Class on page 19

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections

e*Way Intelligent Adapter for COM/DCOM User’s Guide 19 SeeBeyond Proprietary and Confidential

Type

Description

String-set. Specifies the connector type. Retain the default (COM) value for COM
connections.

Required Values

COM. The value defaults to COM.

Class

Description

String-set. Specifies the class name of the COM/DCOM connector object.

Required Values

Retain the default value. The default is com.stc.eways.com.ComEWayConnector.

4.1.2. COM/DCOM Configuration
This section contains a set of top level parameters.

! ProgID on page 19

! Hostname on page 20

ProgID

Description

String-set. Specifies the programmatic ID that identifies the component to be used (for
example: Excel.Application). Changes to this parameter in the ETD Editor Properties
take presidence over the e*Way Connection parameter.

The ProgID is a Windows registry entry that uniquely identifies a program or a COM
object. Unlike a Globally Unique Identifier (GUID), the ProgID is a humanly-readable
alphanumeric string. The ProgID consists of three parts in this format:

vendor.component.version

The vendor parameter is the control’s library, the component, it’s class, and the version
number, which is optional. If no version is given, the latest version of the application
object is assumed. Each parameter is separated by periods and no spaces; for example
the Visual Basic Command Button object’s ProgID is:

VB.CommandButton

The ProgID for most objects can be determined by checking, for example, the Visual
Basic Object Browser. The Windows registry entry reads as follows:

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\ProgID =

Chapter 4 Section 4.1
e*Way Connection Configuration Configuring e*Way Connections

e*Way Intelligent Adapter for COM/DCOM User’s Guide 20 SeeBeyond Proprietary and Confidential

Required Values

A valid programmatic ID to be used by the component.

Hostname

Description

String-set. Specifies the name the remote server on which the DCOM object resides.
Changes to this parameter in the ETD Editor Properties take presidence over the e*Way
Connection parameter.

Required Values

A valid host name.

Note: Hostname is only relevant to DCOM components (that is .EXEs). Do not use the
Hostname value for .DLLs.

e*Way Intelligent Adapter for COM/DCOM User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 5

Implementation

This chapter includes information pertinent to implementing the Java-enabled COM/
DCOM e*Way in a production environment. Information on implementing the sample
schema is included.

The following assumptions are applicable to this implementation:

! The COM/DCOM e*Way has been successfully installed.

! The executable and the configuration files have been appropriately assigned.

! All necessary .jar files are accessible.

! The user has a working understanding of COM/DCOM concepts.

5.1 Implementation Notes
The COM/DCOM e*Way supports the following data types:

Table 2 Supported Data Types

OLE Data Types Description

VT_I2 2-byte signed int

VT_I4 4-byte signed int

VT_R4 4-byte real

VT_R8 8-byte real

VT_BSTR Binary string

VT_DISPATCH IDispatch (1 dimentional array only)

VT_ERROR 4-byte error code

VT_BOOL Boolean

VT_UI1 Unsigned char

VT_DATE The standard COM DATE data type (8-
byte real).

Chapter 5 Section 5.2
Implementation Considerations

e*Way Intelligent Adapter for COM/DCOM User’s Guide 22 SeeBeyond Proprietary and Confidential

All of the above types are supported for In and Out parameters.

The COM/DCOM e*Way does not supports the following data types:

Important: The code processes one dimensional SAFEARRAYs only. The number of
elements in all rows are expected to be equal. VT_SAFEARRAY has specific, limited
functionality as used in the COM/DCOM e*Way.

5.2 Considerations
! Currently the Java e*Way Intelligent Adapter for COM/DCOM does not support

accessing a range of cells from Excel. Each cells must be accessed one by one.

! The method names used for created custom Com objects, must not match a method
name on the Java Object class. Duplicate names will result in compile-time errors
indicating that a name collision has occurred. It is also recommended that you
avoid methods names that are similar to those of any other Java object that may be
used in your Collaboration.

5.3 COM/DCOM Sample Implementation Overview
During installation, the host and Control Broker are automatically created and
configured. The default name of each is the name of the host on which you are
installing the e*Gate Enterprise Manager GUI. To complete the implementation of the
Java-enabled COM/DCOM e*Way, do the following:

! Make sure that the Control Broker is activated.

VT_SAFEARRAY
VT_I2
VT_I4
VT_R4
VT_R8
VT_BSTR
VT_DISPATCH
VT_ERROR
VT_BOOL
VT_UI1
VT_DATE
VT_VARIANT

1 dimensional array
(VT_VARIANT can support a 2
dimensional array)

Table 3 Non-Supported Data Types

OLE Data Types Description

VT_CY currency

Table 2 Supported Data Types (Continued)

OLE Data Types Description

Chapter 5 Section 5.3
Implementation COM/DCOM Sample Implementation Overview

e*Way Intelligent Adapter for COM/DCOM User’s Guide 23 SeeBeyond Proprietary and Confidential

! In the e*Gate Enterprise Manager, define and configure the following as necessary:

" Trigger e*Way using stcewfile.exe.

" The Multi-Mode e*Way component as described in Chapter 3.

" Event Type Definitions used to package the data to be exchanged with the
external system.

" Collaboration Rules to process Events.

" The e*Way Connection as described in Chapter 4.

" Collaborations, to be associated with each e*Way component, to apply the
required Collaboration Rules.

" The destination to which data is published prior to being sent to the external
system.

The following sections describe how to define and associate each of the above
components, and Sample Schema on page 49, provides the details necessary to create
the components of a sample schema consisting of three e*Ways, three Event Types, one
Collaboration Rule, one Intelligent Queue and three Collaborations.

The sample schema provided on the Installation CD-ROM is, for the most part,
complete, once it is imported. The e*Way component implementation is provided for
the purpose of explaining how each of these components are created manually.

5.3.1. Importing the Sample Schema
The first task in deploying the sample implementation is to create a new schema name.
While it is possible to use the default schema for the sample implementation, it is
recommended that you create a separate schema for testing purposes. After you install
the COM/DCOM e*Way, do the following:

1 Start the e*Gate Enterprise Manager GUI.

2 When prompted to log in, select the host specified during installation, and enter the
password.

3 When prompted to select a schema, click New.

4 Enter a name for the new schema. In this case, enter COMtest, or any appropriate
name as desired.

5 Select Create from export, locate the ExcelSample.zip on the CD, and click Open.

The e*Gate Enterprise Manager opens to the new schema. It is also necessary to create
the file test.xls in C:\temp. To create this file do the following:

1 Open Microsoft Excel.

2 Create a new worksheet called test.xls.

3 Save this file to the c:\temp directory and close Excel.

Chapter 5 Section 5.4
Implementation Creating the Sample Schema Manually

e*Way Intelligent Adapter for COM/DCOM User’s Guide 24 SeeBeyond Proprietary and Confidential

5.4 Creating the Sample Schema Manually
The following sections explain how to manually configure the e*Way components to
create the same sample schema that is created when the sample is imported.

5.5 Creating Event Type Definitions
An ETD is a structural representation of an Event (that is, the blueprint of an
Event).The COM/DCOM e*Way installation includes the COM Event Type Definition
Wizard to assist in the quick creation for COM specific ETDs. In addition, if you have
imported the sample schema, you have existing .xsc files that can be opened in the ETD
Editor.

In COM, the Event Type corresponds to the object being used (it's methods). These
methods are exposed in the Collaboration to allow the user to get and set the properties
or call one or more methods. In addition, methods are made available to get and set the
objects properties.

5.5.1. Creating an Event Type Definition Using an Existing .xsc
For the purpose of this example, the following procedure shows how to edit an Event
Type from an existing .xsc file using com.xsc as the input file.

1 Select the Event Types folder on the Components tab of the e*Gate Navigator.

2 On the palette, click the Create a New Event Type button.

3 Enter the name of the Event Type in the New Event Type Component window,
then click OK (for this sample, the Event Type is defined as Excel).

Chapter 5 Section 5.5
Implementation Creating Event Type Definitions

e*Way Intelligent Adapter for COM/DCOM User’s Guide 25 SeeBeyond Proprietary and Confidential

4 Double-click the new Event Type to edit its properties. The Event Type Properties
window opens (see Figure 1).

Figure 1 Event Type - Properties

5 Click Find under the Event Type Definition field. Find and select Excel.xsc.

Chapter 5 Section 5.5
Implementation Creating Event Type Definitions

e*Way Intelligent Adapter for COM/DCOM User’s Guide 26 SeeBeyond Proprietary and Confidential

6 Click the Edit button to open the xsc file in the ETD Editor (see Figure 2). This is a
large file and may take more than a few minutes to open.

Figure 2 Event Type Definition Editor - Excel

7 On the File menu, click Compile and Save. This should be done after any
modifications are made to the file.

8 On the File menu, click Promote to Run Time to promote the file from the sandbox
to run time. A dialog box opens listing the files that have been successfully
promoted.

9 Close the ETD Editor. Click OK to close the Event Type Properties Dialog box.

5.5.2. Creating an Event Type Definition Using the COM ETD Wizard
The COM ETD Wizard is used to create a ETD structure specific to the COM, with
corresponding nodes and methods. For the purpose of this example, the following
procedure shows how to create an Event Type Definition (ETD) using the COM ETD
Wizard. This ETD is not used in the sample schema included with the CD.

1 Select the Event Types folder on the Components tab of the e*Gate Navigator.

Chapter 5 Section 5.5
Implementation Creating Event Type Definitions

e*Way Intelligent Adapter for COM/DCOM User’s Guide 27 SeeBeyond Proprietary and Confidential

2 On the palette, click the Create a New Event Type button.

3 Enter the name of the Event Type in the New Event Type Component window,
then click OK (for this sample, the Event Type is defined as Excel).

4 Double-click the new Event Type to edit its properties.

5 When the Properties window opens, click the New button. The ETD Editor opens.

6 Select File, New to open the New Event Type Definition window (see Figure 3).

7 Select the COM/DCOMWizard.

Figure 3 New Event Type Definition - COM/DCOMWizard

8 Enter a Package Name where the ETD builder can place all the generated Java
classes associated with the created ETD (for this sample, com.stc.COMtest).

9 Enter the COM Type library file from which the .xsc file is created. TypeLib files are
*.tlb, *.olb, *.dll, *.ocx, and *.exe files. For the purpose of this sample the selected file
is Excel9.olb at C:\Program Files\Microsoft Office\Office. Click OK and Finish.

Note: COM type library files describe the methods exposed from an automation compatible
component. Com type library typically have the file extension .tlb or .olb. However,
most components embed the type library file in the DLL, OCX or EXE that houses
the component.

10 The EDT Editor generates an Event Type structured for the specific COM/DCOM
application file. The ETD is read-only, allowing for no further configuration from
the ETD Editor (see Figure 4).

Chapter 5 Section 5.6
Implementation Creating and Configuring the Component e*Ways

e*Way Intelligent Adapter for COM/DCOM User’s Guide 28 SeeBeyond Proprietary and Confidential

Figure 4 Event Type Definition Editor

11 From the File menu click Compile and Save.

12 Once the file has compiled, from the File menu, click Promote to Run Time. The file
is promoted to the run time environment.

13 Close the ETD Editor.

5.6 Creating and Configuring the Component e*Ways
e*Ways connect with external systems to poll or send data. They also transform and
route data. Multi-Mode e*Ways are used to run Java Collaborations that utilize e*Way
Connections to send and receive Events to and from multiple external systems.

To Create the Trigger e*Way

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the e*Ways.

3 Select the Control Broker that manages the new e*Ways.

4 On the palette, click the Create a New e*Way button.

5 Enter the name of the new e*Way (in this case “trigger”), then click OK.

6 Right-click the new e*Way and select Properties to edit its properties.

Chapter 5 Section 5.6
Implementation Creating and Configuring the Component e*Ways

e*Way Intelligent Adapter for COM/DCOM User’s Guide 29 SeeBeyond Proprietary and Confidential

7 The e*Way Properties window opens. Click the Find button beneath the Executable
File field, and select stcewfile.exe as the executable file.

8 Under the Configuration File field, click the New button. The Edit Settings
window opens. Select the settings as displayed in Table 4 for this configuration file.

9 After selecting the desired parameters, save the configuration file (as “trigger.cfg”).

10 From the File menu, click Promote to Run Time. This closes the .cfg file.

11 In the e*Way - Properties window, use the Startup, Advanced, and Security tabs to
modify the default settings for each e*Way you configure.

A Use the Startup tab to specify whether the e*Way starts automatically, or
restarts after abnormal termination or due to scheduling, and so forth.

B Use the Advanced tab to specify or view the activity and error logging levels, as
well as the Event threshold information.

C Use Security to view or set privilege assignments.

12 Select OK to close the e*Way Properties window.

To Create the COM/DCOM e*Way (Multi-Mode)

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the e*Way.

3 Select the Control Broker that manages the new e*Way.

4 On the palette, click the Create a New e*Way button.

5 Enter the name of the new e*Way (in this case, “excel_gate”), then click OK.

Table 4 Configuration Parameters for the trigger e*Way

Parameter Value

General Settings (unless otherwise stated, leave settings as default)

AllowIncoming YES

AllowOutgoing NO

Outbound Settings Default

Poller Inbound Settings

PollDirectory C:\Indata (input file folder)

InputFileExtension *.fin (input file extension)

PollMilliseconds 1000

Remove EOL YES

MultipleRecordsPerFile YES

MaxBytesPerLine 4096

BytesPerLineIsFixed NO

File Records Per eGate Event 1

Performance Testing Default

Chapter 5 Section 5.7
Implementation Creating the e*Way Connection

e*Way Intelligent Adapter for COM/DCOM User’s Guide 30 SeeBeyond Proprietary and Confidential

6 Right-click the new e*Way and select Properties to edit its properties.

7 When the e*Way Properties window opens, click the Find button beneath the
Executable File field, and select stceway.exe as the executable file (see Figure 5).

Figure 5 Multi-Mode e*Way Properties

8 To edit the JVM Settings, select New under Configuration file. For information on
setting the parameters for the Multi-Mode e*Way see Multi-Mode e*Way
Configuration on page 11.

9 Save the .cfg file, and promote to run time to close the Edit Settings window.

10 In the e*Way Properties window, use the Startup, Advanced, and Security tabs to
modify the default settings for each.

A Use the Startup tab to specify whether the e*Way starts automatically, restarts
after abnormal termination or due to scheduling, etc.

B Use the Advanced tab to specify or view the activity and error logging levels, as
well as the Event threshold information.

C Use Security to view or set privilege assignments.

11 Click OK to close e*Way Properties window.

5.7 Creating the e*Way Connection
The e*Way Connection configuration file contains connection information along with
the information needed to communicate using COM/DCOM.

Chapter 5 Section 5.7
Implementation Creating the e*Way Connection

e*Way Intelligent Adapter for COM/DCOM User’s Guide 31 SeeBeyond Proprietary and Confidential

5.7.1. To Create and Configure a New e*Way Connection
1 Select the e*Way Connection folder on the Components tab of the e*Gate

Navigator.

2 On the palette, click the Create a New e*Way Connection button.

3 Enter the name of the e*Way Connection (for this sample, “excel_connector”), then
click OK.

4 Double-click the new e*Way Connection to edit its properties.

5 The e*Way Connection Properties window opens. Select COM/DCOM from the
e*Way Connection Type drop-down menu (see Figure 6).

6 Enter the Event Type “get” interval in the dialog box provided. 10000 milliseconds
is the configured default. The “get interval is the intervening period at which, when
subscribed to, the e*Way connection is polled.

Figure 6 e*Way Connection Properties

7 Under e*Way Connection Configuration File, click the New button.

8 The e*Way Connection editor opens. Select the necessary parameters. For
information on the COM/DCOM e*Way Connection parameters, see Configuring
e*Way Connections on page 17.

9 Save the .cfg file. From the File menu, click Promote to Run Time. The Settings
Editor closes.

10 Close the e*Way Connection Properties dialog box.

Chapter 5 Section 5.8
Implementation Creating Intelligent Queues (IQs)

e*Way Intelligent Adapter for COM/DCOM User’s Guide 32 SeeBeyond Proprietary and Confidential

5.8 Creating Intelligent Queues (IQs)
The next step is to create and associate Intelligent Queues (IQs). IQs manage the
exchange of information between components within the e*Gate system, providing
non-volatile storage for data as it passes from one component to another. IQs use IQ
Services to transport data. IQ Services provide the mechanism for moving Events
between IQs, handling the low-level implementation of data exchange (such as system
calls to initialize or reorganize a database).

To Create and Modify an Intelligent Queue for the COM/DCOM
e*Way

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the IQ.

3 Open a Control Broker.

4 Select an IQ Manager.

5 On the palette, click the Create a New IQ button.

6 Enter the name of the new IQ (in this case “test_iq”), then click OK.

7 Double-click the new IQ to edit its properties.

8 On the General tab, specify the Service and the Event Type Get Interval.

The STC_Standard IQ Service provides sufficient functionality for most
applications. If specialized services are required, custom IQ Service DLLs may be
created.

The default Event Type Get Interval of 100 Milliseconds is satisfactory for the
purposes of this initial implementation.

9 On the Advanced tab, make sure that Simple publish/subscribe is checked under
the IQ behavior section.

10 Click OK to close the IQ Properties window

5.9 Creating the Collaboration Rules
The next step is to create the Collaboration Rules that extract and process selected
information from the source Event Type defined above, according to its associated
Collaboration Service. The Default Editor can be set to either Monk or Java.

From the Enterprise Manager Task Bar, select Options and click Default Editor. Make
sure editor is set to Java.

The sample schema calls for the creation of two Collaboration Rules files.

! trigger_collab (Pass Through)

! excel_gate_collab (Java)

Chapter 5 Section 5.9
Implementation Creating the Collaboration Rules

e*Way Intelligent Adapter for COM/DCOM User’s Guide 33 SeeBeyond Proprietary and Confidential

To Create the Pass Through Collaboration Rules

1 Select the Navigator's Components tab in the e*Gate Enterprise Manager.

2 In the Navigator, select the Collaboration Rules folder.

3 On the palette, click the Create New Collaboration Rules button.

4 Enter the name of the new Collaboration Rule Component (for this case
“trigger_collab”), then click OK.

5 Double-click the new Collaboration Rules Component. The Collaboration Rules
Properties dialog box opens (seeFigure 7).

Figure 7 Collaboration Properties - Pass Through

6 The Service field defaults to Pass Through.

7 Go to the Publications tab. Select Trigger under Available Output Event Types,
and click the right arrow to move it to Selected Output Event Types. Make sure the
Default option is be enabled.

8 Go to the Subscriptions tab. Select Trigger under Available Input Event Types,
and click the right arrow to move it to Selected Input Event Types. Make sure the
checkbox under Triggering Event is selected (see Figure 8).

Chapter 5 Section 5.9
Implementation Creating the Collaboration Rules

e*Way Intelligent Adapter for COM/DCOM User’s Guide 34 SeeBeyond Proprietary and Confidential

Figure 8 Collaboration Properties - Subscriptions

9 Click OK to close the Collaboration Rules Properties dialog box.

To Create the Java Collaboration Rules

1 Select the Navigator's Components tab in the e*Gate Enterprise Manager.

2 In the Navigator, select the Collaboration Rules folder.

3 On the palette, click the Create New Collaboration Rules button.

4 Enter the name of the new Collaboration Rule, then click OK (for this case,
“excel_gate_collab”).

5 Double-click the new Collaboration Rules Component to edit its properties. The
Collaboration Rules Properties dialog box opens.

6 From the Service field drop-down list box, select Java. The Collaboration Mapping
tab is now enabled, and the Subscriptions and Publications tabs are disabled.

7 In the Initialization string field, enter any required initialization string that the
Collaboration Service may require. This field can be left blank.

8 Select the Collaboration Mapping tab.

9 Using the Add Instance button, create instances to coincide with the Event Types.
For this sample, do the following:

A In the Instance Name column, enter trigger for the instance name.

B Click Find, navigate to Trigger.xsc, and double-click to select. Input.xsc is
added to the ETD column for this instance.

C In the Mode column, select In from the drop–down menu available.

D In the Trigger column, select the box to enable trigger mechanism.

10 Repeat steps 9–13 using the following values:

Chapter 5 Section 5.9
Implementation Creating the Collaboration Rules

e*Way Intelligent Adapter for COM/DCOM User’s Guide 35 SeeBeyond Proprietary and Confidential

" Instance Name — excel

" ETD — Excel.xsc

" Mode — In/Out

" Trigger — clear

" Manual Publish – clear

Figure 9 Collaboration Rules - Collaboration Mapping Properties

11 Select the General tab, under the Collaboration Rule box, select New to open the
Collaboration Rules Editor. Click OK to close the Collaboration Rules dialog box
or click New or Edit under the Collaboration Rules field to open the Collaboration
Rules Editor.

5.9.1. Using the Collaboration Rules Editor
This section contains an example of how the business logic was defined for the sample
schema using the Java Collaboration Rules Editor. The required logic is defined by
selecting the desired command and dragging and dropping the nodes (Source or
Event) into the corresponding Properties Box, or onto the corresponding node. The
resulting code is displayed in the Business Rules pane of the Collaboration Rules
Editor.

Each new rule is created by clicking the rule button on the Business Rules toolbar. For
additional information on using the Java Collaboration Rules Editor, see the e*Gate
Integrator User’s Guide. The excel_gate_collab business rules are created as follows:

1 To open the Collaboration Rules Editor to the excel_gate_collab Collaboration
Rules, click New or Edit under the Collaboration Rules field in the Properties
dialog box (see above section.) The Collaboration Rules Editor opens. Expand the

Chapter 5 Section 5.9
Implementation Creating the Collaboration Rules

e*Way Intelligent Adapter for COM/DCOM User’s Guide 36 SeeBeyond Proprietary and Confidential

Editor to full size for optimum viewing and expand the Source and Destination
Events as well.

2 Select retBoolean in the Business Rules pane. All of the user-defined business rules
are added as part of this method.

3 The set Visible property of _Application object rule is created by dragging Visible,
under excel, Application, on the Destination Events command node, into the Rule
Properties, Rule field (see Figure 10). Place the curser in the last set of parentheses
and enter true as the value. This creates the following code:

getexcel().get_Application().setVisible(true)

Figure 10 Collaboration Rules Editor

4 Type “set Visible property of _Application object” in the Rule Properties,
Description field. This replaces “rule” as the expression for this rule in the Business
Rules pane.

Chapter 5 Section 5.9
Implementation Creating the Collaboration Rules

e*Way Intelligent Adapter for COM/DCOM User’s Guide 37 SeeBeyond Proprietary and Confidential

5 To create the set 'Workbooks' handle rule, drag stcdisphandler under excel,
Workbooks, on the Destination Events command node into the Rule Properties,
Rule field. From the Source Events command node, select Workbooks under excel,
Application. Drag-and-drop it into the last set of parentheses in the Rule Properties,
Rule field (see Figure 11), to create the following code:

getexcel().getWorkbooks().setstcdisphandler(getexcel().get_Applica
tion().getWorkbooks())

stcdisphandler is the node where dispatch handles are stored.

Figure 11 Collaboration Rules Editor

6 To create the set Filename argument for 'Open' rule, drag Filename, under excel,
Workbooks, Open, on the Destination Events command node, into the Rule
Properties, Rule field. Place the cursor in the last set of parentheses and type
''c\\temp\\test.xls'' as the value. This creates the following code:

getexcel().getWorkbooks().getOpen().setFilename(“c\\temp\\test.xls
”)

7 To create the set UpdateLinks for 'Open' rule, drag error, under excel, Workbooks,
Open, UpdateLinks, on the Destination Events command node, into the Rule
Properties, Rule field. Place the cursor in the last set of parentheses and enter -
2147352572 as the value. This creates the following code:

Chapter 5 Section 5.9
Implementation Creating the Collaboration Rules

e*Way Intelligent Adapter for COM/DCOM User’s Guide 38 SeeBeyond Proprietary and Confidential

getexcel().getWorkbooks().getOpen().getUpdateLinks().seterror(-
2147352572)

Note: A VT-error of -2147352572 indicates that the parameters of the function are unset.

8 To create the set ReadOnly for 'Open' rule, drag error, under excel, Workbooks,
Open, ReadOnly, on the Destination Events command node, into the Rule
Properties, Rule field. Place the cursor in the last set of parentheses and enter -
2147352572 as the value. This creates the following code:

getexcel().getWorkbooks().getOpen().getReadOnly().seterror(-
2147352572)

9 To create the set Format for 'Open' rule, drag error, under excel, Workbooks, Open,
Format, on the Destination Events command node, into the Rule Properties, Rule
field. Place the cursor in the last set of parentheses and enter -2147352572 as the
value. This creates the following code:

getexcel().getWorkbooks().getOpen().getFormat().seterror(-
2147352572)

10 The set Password for 'Open' rule is created by dragging error, under excel,
Workbooks, Open, Password, on the Destination Events command node, into the
Rule Properties, Rule field. Place the cursor in the last set of parentheses and enter -
2147352572 as the value. This creates the following code:

getexcel().getWorkbooks().getOpen().getPassword().seterror(-
2147352572)

11 The set WriteResPassword for 'Open' rule is created by dragging error, under
excel, Workbooks, Open, WriteResPassword, on the Destination Events command
node, into the Rule Properties, Rule field. Place the cursor in the last set of
parentheses and enter -2147352572 as the value. This creates the following code:

getexcel().getWorkbooks().getOpen().getWriteResPassword().seterror
(-2147352572)

12 To create the set IgnoreReadOnlyRecommended for 'Open' rule, drag error, under
excel, Workbooks, Open, IgnoreReadOnlyRecommended, on the Destination
Events command node, into the Rule Properties, Rule field. Place the cursor in the
last set of parentheses and enter -2147352572 as the value. This creates the following
code:

getexcel().getWorkbooks().getOpen().getIgnoreReadOnlyRecommended()
.seterror(-2147352572)

13 To create the set Origin for 'Open' rule, drag error, under excel, Workbooks, Open,
Origin, on the Destination Events command node, into the Rule Properties, Rule
field. Place the cursor in the last set of parentheses and enter -2147352572 as the
value. This creates the following code:

getexcel().getWorkbooks().getOpen().getOrigin().seterror(-
2147352572)

14 The set Delimiter for 'Open' rule is created by dragging error, under excel,
Workbooks, Open, Delimiter, on the Destination Events command node, into the
Rule Properties, Rule field. Place the cursor in the last set of parentheses and enter -
2147352572 as the value. This creates the following code:

Chapter 5 Section 5.9
Implementation Creating the Collaboration Rules

e*Way Intelligent Adapter for COM/DCOM User’s Guide 39 SeeBeyond Proprietary and Confidential

getexcel().getWorkbooks().getOpen().getDelimiter().seterror(-
2147352572)

15 The set Editable for 'Open' rule is created by dragging error, under excel,
Workbooks, Open, Editable, on the Destination Events command node, into the
Rule Properties, Rule field. Place the cursor in the last set of parentheses and enter -
2147352572 as the value. This creates the following code:

getexcel().getWorkbooks().getOpen().getEditable().seterror(-
2147352572)

16 To create the set Notify for 'Open' rule, drag error, under excel, Workbooks, Open,
Notify, on the Destination Events command node, into the Rule Properties, Rule
field. Place the cursor in the last set of parentheses and enter -2147352572 as the
value. This creates the following code:

getexcel().getWorkbooks().getOpen().getNotify().seterror(-
2147352572)

17 To create the set Converter for 'Open' rule, drag error, under excel, Workbooks,
Open, Converter, on the Destination Events command node, into the Rule
Properties, Rule field. Place the cursor in the last set of parentheses and enter -
2147352572 as the value. This creates the following code:

getexcel().getWorkbooks().getOpen().getConverter().seterror(-
2147352572)

18 The set AddToMru for 'Open' rule is created by dragging error, under excel,
Workbooks, Open, AddToMru, on the Destination Events command node, into the
Rule Properties, Rule field. Place the cursor in the last set of parentheses and enter -
2147352572 as the value. This creates the following code:

getexcel().getWorkbooks().getOpen().getAddToMru().seterror(-
2147352572)

19 The invoke 'Open' to get _Workbook rule is created by dragging invoke, under
excel, Workbooks, Open, on the Source Events command node, into the Rule
Properties, Rule field to create the following code:

getexcel().getWorkbooks().getOpen().invoke()

20 The set _Workbook handle rule is created by dragging stcdisphandler, under excel,
Workbook, on the Source Events command node, into the Rule Properties, Rule
field. Drag retval, under excel, Workbooks, Open, on the Source Events command
node, into the last set of parentheses to create the following code:

getexcel().get_Workbook().setstcdisphandler(getexcel().getWorkbook
s().getOpen().getretval())

21 The set Worksheets handle rule is created by dragging stcdisphandler, under excel,
Sheets, on the Source Events command node, into the Rule Properties, Rule field.
Drag Worksheets, under excel, Workbook, on the Source Events command node,
into the last set of parentheses to create the following code:

getexcel().getSheets().setstcdisphandler(getexcel().get_Workbook()
.getWorksheets())

22 To create the set variant parameter of property 'Item' to 1 rule, drag short, under
excel, Sheets, propget_Item, Index, on the Destination Events command node, into
the Rule Properties, Rule field. Edit setshort() in the Rule Properties, Rule field, to
read setint(1). This creates the following code:

Chapter 5 Section 5.9
Implementation Creating the Collaboration Rules

e*Way Intelligent Adapter for COM/DCOM User’s Guide 40 SeeBeyond Proprietary and Confidential

getexcel().getSheets().getpropget_Item().getIndex().setint(1)

23 The invoke PROPERTYGET of 'Item' rule is created by dragging the invoke
method, under excel, Sheets, propget_Item, on the Destination Events command
node, into the Rule Properties, Rule field. This creates the following code:

getexcel().getSheets().getpropget_Item().invoke()

24 The set _Worksheet handle rule is created by dragging the stcdisphandler, under
excel, Worksheet, on the Destination Events command node, into the Rule
Properties, Rule field. Drag retval, under excel, Sheets, propget_Item, on the Source
Events command node, into the last set of parentheses to create the following code:

getexcel().get_Worksheet().setstcdisphandler(getexcel().getSheets(
).getpropget_Item().getretval())

25 The set 'Cell1' of Range rule is created by dragging String, under excel, Worksheet,
propget_Range, Cell1, on the Destination Events command node, into the Rule
Properties, Rule field. Place the cursor in the last set of parentheses and enter A1 as
the value to create the following code:

getexcel().get_Worksheet().getpropget_Range().getCell1().setstring
("A1")

26 The set 'Cell2' of Range rule is created by dragging String, under excel, Worksheet,
propget_Range, Cell2, on the Destination Events command node, into the Rule
Properties, Rule field. Place the cursor in the last set of parentheses and type A1 as
the value to create the following code:

getexcel().get_Worksheet().getpropget_Range().getCell2().setstring
("A1")

27 To create the invoke 'Range' rule, drag the invoke method, under excel, Worksheet,
propget_Range, on the Destination Events command node, into the Rule Properties,
Rule field. This creates the following code:

getexcel().get_Worksheet().getpropget_Range().invoke()

28 To create the set Range handle rule, drag the stcdisphandler method, under excel,
Range, on the Destination Events command node, into the Rule Properties, Rule
field. Drag retval, under excel, Worksheet, propget_Range, on the Source Events
command node, into the last set of parentheses to create the following code:

getexcel().getRange().setstcdisphandler(getexcel().get_Worksheet()
.getpropget_Range().getretval())

29 The output value from cell A1 rule is created by typing the following code, into the
Rule Properties, Rule field:

System.err.println("Cell(A1): " +
((COMETDVariant)getexcel().getRange().getValue()).getValue())

30 The Variant variable is created by clicking the variant (var) button on the Business
Rules toolbar. A variable appears in the Business Rules under the last-selected rule.
In the Variable Properties window, enter Variant as the description, variant as the
name, select com.stc.eways.com.COMETDVariant as the type, and enter new
COMETDVariant(''test value'') as the initial value.

31 To create the change Cell 'A1' rule, drag Value, under excel, Range, on the
Destination Events command node, into the Rule Properties, Rule field. Place the

Chapter 5 Section 5.10
Implementation Creating Collaborations

e*Way Intelligent Adapter for COM/DCOM User’s Guide 41 SeeBeyond Proprietary and Confidential

cursor in the last set of parentheses and type variant as the value to create the
following code:

getexcel().getRange().setValue(variant)

32 When the business logic has been completed, as displayed in Figure 12, compile
and save the Collaboration Rules. From the File menu, click Compile. The Save
menu opens, provide a name for the .xpr file (for this sample,
“excel_gate_collab.xpr”).

Note: The .xpr file, excel_gate_collab.xpr is included with the sample schema on the
Installation CD-ROM, and contains the completed version of this sample.

Figure 12 Collaboration Rules - Complete

5.10 Creating Collaborations
Collaborations are the components that receive and process Event Types, and then
forward the output to other e*Gate components or an external. Collaborations consist
of the Subscriber, which “listens” for Events of a known type (sometimes from a given

Chapter 5 Section 5.10
Implementation Creating Collaborations

e*Way Intelligent Adapter for COM/DCOM User’s Guide 42 SeeBeyond Proprietary and Confidential

source), and the Publisher, which distributes the transformed Event to a specified
recipient.

To Create the trigger e*Way Collaboration

1 In the e*Gate Enterprise Manager, select the Navigator's Components tab.

2 Open the host on which you want to create the Collaboration.

3 Select a Control Broker.

4 Select the trigger e*Way to assign the Collaboration.

5 On the palette, click the Create a New Collaboration button.

6 Enter the name of the new Collaboration (for the sample, “trigger”), then click OK.

7 Double-click the new Collaboration to edit its properties. The Collaboration -
trigger Properties dialog box appears (see Figure 13).

Figure 13 Collaboration Properties - trigger

8 From the Collaboration Rules list, select the Collaboration Rules file that you
created previously (for the sample, “trigger_collab”).

9 In the Subscriptions area, click Add to define the input Event Types to which this
Collaboration subscribes.

A From the Event Type list, select the Event Type that you previously defined
“Trigger”.

B Select the Source from the Source list. In this case, it should be <External>.

10 In the Publications area, click Add to define the output Event Types that this
Collaboration publishes.

Chapter 5 Section 5.10
Implementation Creating Collaborations

e*Way Intelligent Adapter for COM/DCOM User’s Guide 43 SeeBeyond Proprietary and Confidential

A From the Event Type list, select the Event Type that you previously defined
“Trigger.”

B Select the publication destination from the Destination list. In this case, it
should be “test_iq”.

C The Priority field defaults to 5.

11 Click OK to close.

To Create the COM_Multi_Mode Collaboration

1 In the e*Gate Enterprise Manager, select the Navigators Components tab.

2 Open the host on which you want to create the Collaboration.

3 Select a Control Broker.

4 Select the e*Way to assign the Collaboration (for this case, “excel_gate”).

5 On the palette, click the Create a New Collaboration button.

6 Enter the name of the new Collaboration, then click OK. (For the sample,
“excel_gate”)

7 Double-click the new Collaboration to edit its properties.

8 From the Collaboration Rules list, select the Collaboration Rules file that you
created previously (for the sample, “excel_gate_collab”).

9 In the Subscriptions area, click Add to define the input Event Types to which this
Collaboration subscribes (see Figure 13).

A From the Instance Name list, select the Instance Name that you previously
defined “trigger”.

B From the Event Type list, select the Event Type that you previously defined
“Trigger”.

C Select the Source from the Source list (in this case, it should be “trigger”).

10 In the Publications area, click Add to define the output Event Types that this
Collaboration publishes (see Figure 13).

A From the Instance Name list, select the Instance Name that you previously
defined “excel”.

B From the Event Types list, select the Event Type that you previously defined
“Trigger”.

C Select the publication destination from the Destination list (in this case,
“excel_connector”).

D The Priority field defaults to 5.

Chapter 5 Section 5.10
Implementation Creating Collaborations

e*Way Intelligent Adapter for COM/DCOM User’s Guide 44 SeeBeyond Proprietary and Confidential

Figure 14 Collaboration Properties

11 Click OK to close.

Chapter 5 Section 5.11
Implementation Configuring the DCOM Server

e*Way Intelligent Adapter for COM/DCOM User’s Guide 45 SeeBeyond Proprietary and Confidential

5.11 Configuring the DCOM Server
1 To configure the DCOM Server, select the Windows Run option. When the Run

dialog box opens, type dcomcnfg in the Open field, and click OK (see Figure 15).

Figure 15 Run Dialog

2 The Distributed COM Configuration Properties lists the registered applications.
Select the Microsoft Excel application (see Figure 16). Click Properties.

Figure 16 Distributed COM Configuration Properties

Chapter 5 Section 5.11
Implementation Configuring the DCOM Server

e*Way Intelligent Adapter for COM/DCOM User’s Guide 46 SeeBeyond Proprietary and Confidential

3 The Microsoft Excel Application Properties dialog box appears. Select the Security
tab (see Figure 17).

Figure 17 Application Properties - Security Tab

4 Select the Use custom access permission option button and click Edit. The Add
Users and Groups dialog box appears (see Figure 18).

Chapter 5 Section 5.11
Implementation Configuring the DCOM Server

e*Way Intelligent Adapter for COM/DCOM User’s Guide 47 SeeBeyond Proprietary and Confidential

Figure 18 Add Users and Groups - Access

5 Select the appropriate users to whom access is granted (for example, Authenticated
Users), and click Add.

6 In the Type of Access field, select Allow Access, and click OK.

7 In the Application Properties window (see Figure 17), select the Use custom launch
permission option button and click Edit.

8 Select the appropriate users to whom launch permission is granted (for example,
Authenticated Users), and click Add.

9 In the Type of Access field, select Allow Launch, and click OK.

10 In the Application Properties window (see Figure 17), select the Identity tab (see
Figure 19).

Chapter 5 Section 5.11
Implementation Configuring the DCOM Server

e*Way Intelligent Adapter for COM/DCOM User’s Guide 48 SeeBeyond Proprietary and Confidential

Figure 19 Application Properties - Identity Tab

11 Select The interactive user as the user account to use to run the application.

12 Click OK. The DCOM server is now configured for the sample schema.

Chapter 5 Section 5.12
Implementation Sample Schema

e*Way Intelligent Adapter for COM/DCOM User’s Guide 49 SeeBeyond Proprietary and Confidential

5.12 Sample Schema
A sample of the COM/DCOM e*Way is included on the Installation CD. The sample
demonstrates e*Gate’s interaction with a COM/DCOM enabled application. The
previous sections provided the basics for implementing the COM/DCOM e*Way. This
section describes how to implement the COM/DCOM e*Way within a sample schema.

This implementation consists of one file-based e*Way, one Multi-Mode e*Way, two
Event Types, two Collaboration Rules, one Intelligent Queues and two Collaborations,
as follows:

! trigger – This e*Way receives input from an external source, applies pass through
Collaboration Rules, and publish the information to an Intelligent Queue.

! excel_gate – This Multi-Mode e*Way applies extended Java Collaboration Rules to
an inbound Event to perform the desired business logic.

! Excel – This Event Type contains the methods and properties to be used to perform
the necessary transformation.

! Trigger – This Event Type describes an Event that is input to the extended Java
Collaboration Service.

! trigger_collab – This Collaboration Rule is associated with the trigger e*Way, and is
used for receiving the input Event.

! excel_gate_collab – The Collaboration Rule is associated with the excel_gate Multi-
Mode e*Way, and is used to perform the transformation process.

! test_iq – This Intelligent Queue is a STC_Standard IQ, and forwards data to the
ewMultiSME Multi-Mode e*Way.

5.12.1.Completing the Configuration of the COMtest Schema
The sample schema is nearly ready to use as it is presently configured. Check the e*Way
Connection settings to make sure that they are appropriate for your specific system.
Also do the following:

1 In the Multi-Mode e*Way configuration, mscom config, enter the ProgID for the
host (see “ProgID” on page 18). For DCOM the Host name also needs to be entered
(see “Hostname” on page 19).

2 Create two folders on the C: drive named DATA and INDATA.

5.12.2.Executing the Schema
To execute the COM/DCOM sample schema

1 Go to the command line prompt, and enter the following:

stccb -rh hostname -rs schemaname -un username -up user password
-ln hostname_cb

Substitute hostname, schemaname, username and user password as appropriate.

Chapter 5 Section 5.13
Implementation COM/DCOM Run-Time Exceptions

e*Way Intelligent Adapter for COM/DCOM User’s Guide 50 SeeBeyond Proprietary and Confidential

2 Start the e*Gate Monitor. Specify the server that contains the Control Broker you
started in Step 1 above.

3 Select the COM/DCOM sample schema.

4 Verify that the Control Broker is connected. To do this, select and right-click the
Control Broker in the e*Gate Monitor, and select Status. (The message in the
Control tab of the console will indicate command succeeded and status as up.)

5 Select the IQ Manager, hostname_igmgr, then right-click and select Start. (This will
already be started if Start automatically is selected in the IQ Manager properties.)

6 Select each of the e*Ways, right-click select Start. (These will already be started if
Start automatically is selected in the e*Way’s properties.)

7 To view the output, copy the output file (specified in the Outbound e*Way
configuration file). Save to a convenient location, open.

Note: Opening the destination file while the schema is running will cause errors.

5.13 COM/DCOM Run-Time Exceptions
The e*Way Intelligent Adapter for COM/DCOM can be conceptually divided into two
layers. The low-level JNI code that wraps the COM IDispatch interface and the higher-
level ETD code that is generated by the builder.

At the lower level, all methods accessed via the IDispatch interface return an HRESULT
error code. In C Programming Language, this type is a long. In Java, it is an integer. In
general, a value of zero indicates success, greater than zero indicates a warning, and
less than zero indicates an error.

The low level JNI code has always returned this HRESULT to the builder-generated
code. However, the builder-generated ETD code does nothing with the HRESULT. It
was possible, then, that the Collaboration could fail to create an instance of the
component or a method on the component could fail, and the error may never be
caught.

To provide the user with more control over this type of situation, an exception type,
STCComException, has been added to the low level JNI code. This exception class is
derived from the java.lang.RuntimeException. If a method fails on the component (or
if the creation of the component fails) an exception of this type is thrown. The exception
is passed up through the builder generated ETD code (because the ETD code does not
catch it), up to the Collaboration code where the user can catch the exception if desired.
Access to the underlying HRESULT is provided. The getMessage method has been
overridden and provides a brief contextual string indicating the operation that failed.

For more information on the methods of the STCComException Class see The
STCComException Class on page 77.

e*Way Intelligent Adapter for COM/DCOM User’s Guide 51 SeeBeyond Proprietary and Confidential

Chapter 6

Java Methods

A number of Java methods have been added to make it easier to set information in the
e*Way ETD Editor and to get information from it. These methods are contained in
classes:

! The COMETDVariant Class on page 51

! The COMETDWrapper Class on page 61

! The STCComException Class on page 77

6.1 The COMETDVariant Class
interface com.stc.eways.com.COMETDVariant

public class COMETDVariant
Java.lang.Object

|
+ -- com.stc.eways.com.COMETDVariant

The COMETDVariant Class allows passing variant information in the Collaboration via
an opaque object wrapper. It is similar to the COM Variant and includes methods for
getting and setting the “contained” data. The COMETDVariant Class extends
java.lang.Object.

Methods of the COMETDVariant Class

These methods are described in detail on the following pages:

COMETDVariant on page 52 seterror on page 57

getType on page 53 geterror on page 57

getValue on page 53 setstring on page 58

setbool on page 54 getstring on page 58

getbool on page 54 setfloat on page 58

setshort on page 54 getfloat on page 59

getshort on page 55 setdouble on page 59

setbyte on page 55 getdouble on page 60

Chapter 6 Section 6.1
Java Methods The COMETDVariant Class

e*Way Intelligent Adapter for COM/DCOM User’s Guide 52 SeeBeyond Proprietary and Confidential

COMETDVariant

Description

Constructor. Constructs the COMETDVariant.

Syntax

public COMETDVariant()

public COMETDVariant(java.lang.Object obj)

public COMETDVariant(boolean b)

public COMETDVariant(java.lang.String s)

public COMETDVariant(int i)

public COMETDVariant(byte b)

public COMETDVariant(short s)

public COMETDVariant(float f)

public COMETDVariant(double d)

Parameters

Return Values

None.

Throws

None.

getbyte on page 56 getarray on page 60

setint on page 56 setarray on page 60

getint on page 56

Name Type Description

obj java.lang.Object An object of Boolean, integer, short,
byte, double, or string.

b Boolean Java Boolean type value.

s java.lang.String Java string type value.

i int Java integer type value.

b byte Java byte type value.

s short Java short type value.

f float Java float type value.

d double Java double type value.

Chapter 6 Section 6.1
Java Methods The COMETDVariant Class

e*Way Intelligent Adapter for COM/DCOM User’s Guide 53 SeeBeyond Proprietary and Confidential

getType

Description

Returns the type of the variant as an integer.

Syntax

public int getType()

Parameters

None.

Return Values

int
Returns the type of the variant as follows:

0: COMETD_EVARIENT_UNKNOWN
1: ISBOOLVALUE
2: ISSHORTVALUE
3: ISINTVALUE
4: ISSTRINGVALUE
5: ISFLOATVALUE
6: ISDOUBLEVALUE
7: ISVARIANTVALUE
8: ISERRORVALUE
9: ISBYTEVALUE

Throws

None.

getValue

Description

Returns a java.lang.Object as the value of the variant.

Syntax

public java.lang.Object getValue()

Parameters

None.

Return Values

java.lang.Object

Throws

None.

Chapter 6 Section 6.1
Java Methods The COMETDVariant Class

e*Way Intelligent Adapter for COM/DCOM User’s Guide 54 SeeBeyond Proprietary and Confidential

setbool

Description

Sets the variant’s value to the passed Boolean value and sets the type to Boolean.

Syntax

public void setbool(boolean b)

Parameters

Return Values

None.

Throws

None.

getbool

Description

Returns the Boolean value of the variant.

Syntax

public boolean getbool()

Parameters

None.

Return Values

Boolean

Throws

None.

setshort

Description

Sets the variant’s value to the passed short and sets the type to short.

Syntax

public void setshort(short s)

Name Type Description

b Boolean Java Boolean value.

Chapter 6 Section 6.1
Java Methods The COMETDVariant Class

e*Way Intelligent Adapter for COM/DCOM User’s Guide 55 SeeBeyond Proprietary and Confidential

Parameters

Return Values

None.

Throws

None.

getshort

Description

Returns the short value of the variant.

Syntax

public short getshort()

Parameters

None.

Return Values

short

Throws

None.

setbyte

Description

Sets the variant’s value to the passed byte and sets the type to byte.

Syntax

public void setbyte(byte b)

Parameters

Return Values

None.

Throws

None.

Name Type Description

s short Java short value.

Name Type Description

b byte Java byte value.

Chapter 6 Section 6.1
Java Methods The COMETDVariant Class

e*Way Intelligent Adapter for COM/DCOM User’s Guide 56 SeeBeyond Proprietary and Confidential

getbyte

Description

Returns the byte value of the variant.

Syntax

public byte getbyte()

Parameters

None.

Return Values

byte

Throws

None.

setint

Description

Sets the variant’s value to the passed integer and sets the type to int.

Syntax

public void setint(int i)

Parameters

Return Values

None.

Throws

None.

getint

Description

Returns the integer value of the variant.

Syntax

public int getint()

Parameters

None.

Name Type Description

i int Java integer value.

Chapter 6 Section 6.1
Java Methods The COMETDVariant Class

e*Way Intelligent Adapter for COM/DCOM User’s Guide 57 SeeBeyond Proprietary and Confidential

Return Values

int

Throws

None.

seterror

Description

Sets the variant’s value to the passed error value and sets the type to integer.

Syntax

public void seterror(int i)

Parameters

Return Values

None.

Throws

None.

geterror

Description

Returns the error integer value of the variant.

Syntax

public int geterror()

Parameters

None.

Return Values

int

Throws

None.

Name Type Description

i int Java (error) integer value.

Chapter 6 Section 6.1
Java Methods The COMETDVariant Class

e*Way Intelligent Adapter for COM/DCOM User’s Guide 58 SeeBeyond Proprietary and Confidential

setstring

Description

Sets the variant’s value to the passed string and sets the type to java.lang.String.

Syntax

public void setstring(java.lang.String s)
Parameters

Return Values

None.

Throws

None.

getstring

Description

Returns the string value of the variant.

Syntax

public java.lang.String getstring()

Parameters

None.

Return Values

java.lang.String

Throws

None.

setfloat

Description

Sets the variant’s value to the passed float value and sets the type to float.

Syntax

public void setfloat(float f)

Name Type Description

s java.lang.String java.land.String value.

Chapter 6 Section 6.1
Java Methods The COMETDVariant Class

e*Way Intelligent Adapter for COM/DCOM User’s Guide 59 SeeBeyond Proprietary and Confidential

Parameters

Return Values

None.

Throws

None.

getfloat

Description

Returns the float value of the variant.

Syntax

public float getfloat()

Parameters

None.

Return Values

float

Throws

None.

setdouble

Description

Sets the variant’s value to the passed double value and sets the type to double.

Syntax

public void setdouble(double d)

Parameters

Return Values

None.

Throws

None.

Name Type Description

f float Java float value.

Name Type Description

d double Java double value.

Chapter 6 Section 6.1
Java Methods The COMETDVariant Class

e*Way Intelligent Adapter for COM/DCOM User’s Guide 60 SeeBeyond Proprietary and Confidential

getdouble

Description

Returns the double value of the variant.

Syntax

public double getdouble()

Parameters

None.

Return Values

double

Throws

None.

getarray

Description

Returs the specified item on the array.

Syntax

public COMETDVariant getarray(int index)

Parameters

Return Values

COMETDVariant

Throws

None.

setarray

Description

Set the specified item on the array to passed byte, Boolean, short, int, java.lang.String,
float, or double value.

Syntax

public void setarray(int index, byte b)

public void setarray(int index, boolean b)

Name Type Description

index int Java int value.

Chapter 6 Section 6.2
Java Methods The COMETDWrapper Class

e*Way Intelligent Adapter for COM/DCOM User’s Guide 61 SeeBeyond Proprietary and Confidential

public void setarray(int index, short s)

public void setarray(int index, int i)

public void setarray(int index, java.lang.String s)

public void setarray(int index, float f)

public void setarray(int index, double d)

Parameters

Return Values

None.

Throws

None.

6.2 The COMETDWrapper Class
class com.stc.eways.com.COMETDWrapper

public class COMETDWrapper

Java.lang.Object
|
+ -- com.stc.eways.com.COMETDWrapper

The COMETDWrapper Class extends java.lang.Object

Methods of the COMETDWrapper Class

These methods are described in detail on the following pages:

Name Type Description

index int Java integer value.

b byte Java byte value.

b Boolean Java Boolean value.

s short Java short value.

i int Java integer value.

s java.lang.String Java string value.

f float Java float value.

d double Java double value.

! COMETDWrapper on page 62 ! getFloatArray on page 72

! COMETDWrapper_Init on page 62 ! getFloat2DArray on page 73

! setParam on page 63 ! getDoubleArray on page 73

Chapter 6 Section 6.2
Java Methods The COMETDWrapper Class

e*Way Intelligent Adapter for COM/DCOM User’s Guide 62 SeeBeyond Proprietary and Confidential

COMETDWrapper

Description

Constructor. Constructs the COMETDWrapper.

Syntax

public COMETDWrapper()

Parameters

None.

Return Values

None.

Throws

None.

COMETDWrapper_Init

Description

Initializes the COMETD_Wrapper instance, sets the default STCDispatchDriver
instance, sets the invoke type, sets the parameter matrix and sets the method name.

Syntax

public void COMETDWrapper_Init(com.stc.eways.com.STCDispatchDriver
driver, int invoke_type,
java.lang.String func_name,
java.util.ArrayList param_name,
java.util.ArrayList param_type
java.util.ArrayList param_direction,
java.lang.String ret_type)

Parameters

! getByteArray on page 68 ! getDouble2DArray on page 74

! getByte2DArray on page 69 ! getStringArray on page 74

! getBooleanArray on page 69 ! getString2DArray on page 75

! getBoolean2DArray on page 70 ! getVariantParam on page 75

! getShortArray on page 70 ! getRetVal on page 76

! getShort2DArray on page 71 ! setdisphandler on page 76

! getIntArray on page 71 ! invoke on page 76

! getInt2DArray on page 72

Name Type Description

driver com.stc.eways.com.ST
CDispatchDriver

An instance of STCDispatchDriver
object.

Chapter 6 Section 6.2
Java Methods The COMETDWrapper Class

e*Way Intelligent Adapter for COM/DCOM User’s Guide 63 SeeBeyond Proprietary and Confidential

Return Values

None.

Throws

None.

setParam

Description

Sets the parameter’s values.

Syntax

public void setParam(java.lang.String name,
com.stc.eways.com.COMETDVariant value)

public void setParam(java.lang.String name, int value)

public void setParam(java.lang.String name, int index, int value)

public void setParam(java.lang.String name, int[] value)

public void setParam(java.lang.String name, int[][] value)

public void setParam(java.lang.String name, java.lang.String value)

public void setParam(java.lang.String name, int index,
java.lang.String value)

public void setParam(java.lang.String name,java.lang.String[] value)

public void setParam(java.lang.String name, java.lang.String[][]
value)

public void setParam(java.lang.String name, boolean value)

public void setParam(java.lang.String name, int index, boolean value)

public void setParam(java.lang.String name, boolean[] value)

public void setParam(java.lang.String name, boolean[][] value)

invoke_type int int

func_name java.lang.String String function name.

param_name java.util.ArrayList An array of strings for parameter
names.

param_type java.util.ArrayList An array of strings for parameter
type.

param_direction java.util.ArrayList An array of strings for parameter
direction.

ret_type java.lang.String String value for the returned value
type.

Name Type Description

Chapter 6 Section 6.2
Java Methods The COMETDWrapper Class

e*Way Intelligent Adapter for COM/DCOM User’s Guide 64 SeeBeyond Proprietary and Confidential

public void setParam(java.lang.String name, byte value)

public void setParam(java.lang.String name, int index, byte value)

public void setParam(java.lang.String name, byte[] value)

public void setParam(java.lang.String name, byte[][] value)

public void setParam(java.lang.String name, short value)

public void setParam(java.lang.String name, int index, short value)

public void setParam(java.lang.String name, short[] value)

public void setParam(java.lang.String name, short[][] value)

public void setParam(java.lang.String name, float value)

public void setParam(java.lang.String name, int index, float value)

public void setParam(java.lang.String name, float[] value)

public void setParam(java.lang.String name, float[][] value)

public void setParam(java.lang.String name, double value)

public void setParam(java.lang.String name, int index, double value)

public void setParam(java.lang.String name, double[] value)

public void setParam(java.lang.String name, double[][] value)

public void setParam(java.lang.String name, java.lang.Object value)

public void setParam(java.lang.String name, int index,
java.lang.Object value)

Parameters

Name Type Description

name java.lang.String String name.

value com.stc.eways.com.
COMETDVariant

An instance of the COMETDVariant
object.

Name Type Description

name java.lang.String String name.

value int Java int value

Name Type Description

name java.lang.String String name.

index int Int

value int Java int value

Chapter 6 Section 6.2
Java Methods The COMETDWrapper Class

e*Way Intelligent Adapter for COM/DCOM User’s Guide 65 SeeBeyond Proprietary and Confidential

Name Type Description

name java.lang.String String name.

value int[] One-dimensional array of the
integer.

Name Type Description

name java.lang.String String name.

value int[][] Two-dimensional array of the
integer.

Name Type Description

name java.lang.String String name.

value java.lang.String Java java.lang.String value.

Name Type Description

name java.lang.String String name.

index int Int

value java.lang.String Java java.lang.String value.

Name Type Description

name java.lang.String String name.

value java.lang.String[] One-dimensional array of the
java.lang.String.

Name Type Description

name java.lang.String String name.

value java.lang.String[][] Two-dimensional array of the
java.lang.String.

Name Type Description

name java.lang.String String name.

value Boolean Java Boolean value.

Name Type Description

name java.lang.String String name.

index int Int

Chapter 6 Section 6.2
Java Methods The COMETDWrapper Class

e*Way Intelligent Adapter for COM/DCOM User’s Guide 66 SeeBeyond Proprietary and Confidential

value Boolean Java Boolean value.

Name Type Description

name java.lang.String String name.

value Boolean[] One-dimensional array of the
Boolean.

Name Type Description

name java.lang.String String name.

value Boolean[][] Two-dimensional array of the
Boolean.

Name Type Description

name java.lang.String String name.

value byte Java byte value.

Name Type Description

name java.lang.String String name.

value int Java int value

value byte Java byte value.

Name Type Description

name java.lang.String String name.

value byte[] One-dimensional array of the byte.

Name Type Description

name java.lang.String String name.

value byte[][] Two-dimensional array of the byte.

Name Type Description

name java.lang.String String name.

value short Java short value.

Name Type Description

Chapter 6 Section 6.2
Java Methods The COMETDWrapper Class

e*Way Intelligent Adapter for COM/DCOM User’s Guide 67 SeeBeyond Proprietary and Confidential

Name Type Description

name java.lang.String String name.

value int Java int value

value short Java short value.

Name Type Description

name java.lang.String String name.

value short[] One-dimensional array of the short.

Name Type Description

name java.lang.String String name.

value short[][] Two-dimensional array of the short.

Name Type Description

name java.lang.String String name.

value float Java float value.

Name Type Description

name java.lang.String String name.

value int Java int value

value float Java float value.

Name Type Description

name java.lang.String String name.

value float[] One-dimensional array of the float.

Name Type Description

name java.lang.String String name.

value float[][] Two-dimensional array of the float.

Name Type Description

name java.lang.String String name.

value double Java double value.

Chapter 6 Section 6.2
Java Methods The COMETDWrapper Class

e*Way Intelligent Adapter for COM/DCOM User’s Guide 68 SeeBeyond Proprietary and Confidential

Return Values

None.

Throws

None.

getByteArray

Description

If the passed object is of the ArrayList type, the method converts the array to a byte
array. It returns a byte if an index is specified.

Syntax

public byte[] getByteArray(java.lang.Object obj)

Name Type Description

name java.lang.String String name.

value int Java int value

value double Java double value.

Name Type Description

name java.lang.String String name.

value double[] One-dimensional array of the
double.

Name Type Description

name java.lang.String String name.

value double[][] Two-dimensional array of the
double.

Name Type Description

name java.lang.String String name.

value java.lang.Object java.lang.object value.

Name Type Description

name java.lang.String String name

index int Int

value java.lang.Object java.lang.object value.

Chapter 6 Section 6.2
Java Methods The COMETDWrapper Class

e*Way Intelligent Adapter for COM/DCOM User’s Guide 69 SeeBeyond Proprietary and Confidential

public byte getByteArray(int index, java.lang.Object obj)
Parameters

Return Values

byte[]
byte

Throws

None.

getByte2DArray

Description

If the object contains a two-dimensional ArrayList the method converts the array to a
byte[][].

Syntax

public byte[][] getByte2DArray(java.lang.Object obj)

Parameters

Return Values

byte[][]

Throws

None.

getBooleanArray

Description

If the passed object is of the ArrayList type, the method converts the array to a Boolean
array. It returns a Boolean if an index is specified.

Syntax

public boolean[] getBooleanArray(java.lang.Object obj)

public boolean getBooleanArray(int index, java.lang.Object obj)

Name Type Description

obj java.lang.Object java.lang.Object value.

index int Java integer value.

Name Type Description

obj java.lang.Object java.lang.Object value.

Chapter 6 Section 6.2
Java Methods The COMETDWrapper Class

e*Way Intelligent Adapter for COM/DCOM User’s Guide 70 SeeBeyond Proprietary and Confidential

Parameters

Return Values

Boolean

Throws

None.

getBoolean2DArray

Description

If the object contains a two-dimensional ArrayList the method converts the array to a
byte[][].

Syntax

public boolean[][] getBoolean2DArray(java.lang.Object obj)

Parameters

Return Values

Boolean[][]

Throws

None.

getShortArray

Description

If the passed object is of the ArrayList type, the method converts the array to a short
array. It returns short if an index is specified.

Syntax

public short[] getShortArray(java.lang.Object obj)

public short getShortArray(int index, java.lang.Object obj)

Parameters

Name Type Description

index int Java integer value.

obj java.lang.Object java.lang.Object value.

Name Type Description

obj java.util.Object java.lang.Object value.

Name Type Description

obj java.lang.Object java.lang.Object value.

Chapter 6 Section 6.2
Java Methods The COMETDWrapper Class

e*Way Intelligent Adapter for COM/DCOM User’s Guide 71 SeeBeyond Proprietary and Confidential

Return Values

short

Throws

None.

getShort2DArray

Description

If the object contains a two-dimensional ArrayList the method converts the array to a
short[][].

Syntax

public short[][] getShort2DArray(java.lang.Object obj)

Return Values

short[][]

Throws

None.

getIntArray

Description

If the passed object is of the ArrayList type, the method converts the array to an int
array. It returns an int if an index is specified.

Syntax

public int[] getIntArray(java.lang.Object obj)

public int getIntArray(int index, java.lang.Object obj)

Parameters

index int Java integer value.

Name Type Description

obj java.lang.Object java.lang.Object value.

Name Type Description

obj java.lang.Object java.lang.Object value.

index int Java integer value.

Name Type Description

Chapter 6 Section 6.2
Java Methods The COMETDWrapper Class

e*Way Intelligent Adapter for COM/DCOM User’s Guide 72 SeeBeyond Proprietary and Confidential

Return Values

int[]
int

Returns an integer for the array if an index is specified.

Throws

None.

getInt2DArray

Description

If the object contains a two-dimensional ArrayList the method converts the array to an
int[][].

Syntax

public int[][] getInt2DArray(java.lang.Object obj)

Parameters

Return Values

int[][]

Throws

None.

getFloatArray

Description

If the passed object is of the ArrayList type, the method converts the array to a float
array. It returns a float if an index is specified.

Syntax

public float[] getFloatArray(java.lang.Object obj)

public float getFloatArray(int index, java.lang.Object obj)

Parameters

Name Type Description

obj java.lang.Object java.lang.Object value.

Name Type Description

obj java.lang.Object java.lang.Object value.

index int Java integer value.

Chapter 6 Section 6.2
Java Methods The COMETDWrapper Class

e*Way Intelligent Adapter for COM/DCOM User’s Guide 73 SeeBeyond Proprietary and Confidential

Return Values

float[]
float

Throws

None.

getFloat2DArray

Description

If the object contains a two-dimensional ArrayList the method converts the array to a
float[][].

Syntax

public float[][] getFloat2DArray(java.lang.Object obj)

Parameters

Return Values

float[][]

Throws

None.

getDoubleArray

Description

If the passed object is of the ArrayList type, the method converts the array to a double
array. It returns a double if an index is specified.

Syntax

public double[] getDoubleArray(java.lang.Object obj)

public double getDoubleArray(int index, java.lang.Object obj)

Parameters

Name Type Description

obj java.lang.Object java.lang.Object value.

Name Type Description

obj java.lang.Object java.lang.Object value.

index int Java integer value.

Chapter 6 Section 6.2
Java Methods The COMETDWrapper Class

e*Way Intelligent Adapter for COM/DCOM User’s Guide 74 SeeBeyond Proprietary and Confidential

Return Values

double[]
double

Throws

None.

getDouble2DArray

Description

If the object contains a two-dimensional ArrayList the method converts the array to a
double[][].

Syntax

public double[][] getDouble2DArray(java.lang.Object obj)

Parameters

Return Values

double[][]

Throws

None.

getStringArray

Description

If the passed object is of the ArrayList type, the method converts the array to a string
array. It returns a string if an index is specified.

Syntax

public java.lang.String[] getStringArray(java.lang.Object obj)

public java.lang.String getStringArray(int index,
 java.lang.Object obj)

Parameters

Name Type Description

obj java.lang.Object java.lang.Object value.

Name Type Description

obj java.lang.Object java.lang.Object value.

index int Java integer value.

Chapter 6 Section 6.2
Java Methods The COMETDWrapper Class

e*Way Intelligent Adapter for COM/DCOM User’s Guide 75 SeeBeyond Proprietary and Confidential

Return Values

java.lang.String[]

Throws

None.

getString2DArray

Description

If the object contains a two-dimensional ArrayList the method converts the array to a
java.lang.String[][].

Syntax

public java.lang.String[][] getString2DArray(java.lang.Object obj)

Parameters

Return Values

java.lang.String[][]

Throws

None.

getVariantParam

Description

When given the field name the method returns a COMETDVariant object.

Syntax

public java.lang.Object getParam(java.lang.String name)

Parameters

Return Values

java.lang.Object
Represents COMETDVariant.

Throws

None.

Name Type Description

obj java.lang.Object java.lang.Object value.

Name Type Description

name java.lang.String java.lang.String value.

Chapter 6 Section 6.2
Java Methods The COMETDWrapper Class

e*Way Intelligent Adapter for COM/DCOM User’s Guide 76 SeeBeyond Proprietary and Confidential

getRetVal

Description

After invoking the method, this method returns the result of the COM call in the form of
a java.lang.Object.

Syntax

public java.lang.Object getRetVal()

Parameters

None.

Return Values

java.lang.Object
Represents COMETDVariant.

Throws

None.

setdisphandler

Description

Sets the STCDispatchDriver instance.
Syntax

public void setdisphandler(java.lang.Object disp)

Parameters

Return Values

None.

Throws

None.

invoke

Description

Once the parameters are prepared these two methods invoke the COM call.
Syntax

public void invoke()

public void invoke(java.lang.Object disp)

Name Type Description

disp java.lang.Object java.lang.Object value.

Chapter 6 Section 6.3
Java Methods The STCComException Class

e*Way Intelligent Adapter for COM/DCOM User’s Guide 77 SeeBeyond Proprietary and Confidential

Parameters

Return Values

None.

Throws

None.

6.3 The STCComException Class
class com.stc.eways.com.STCComException

public class STCComException

java.lang.Object
|
+ -- java.lang.Throwable

|
+ -- java.lang.Exception

|
+ -- java.lang.RuntimeException

|
+ -- com.stc.eways.STCComException

The STCComException Class is a part of the low-level JNI layer of the COM/DCOM
e*Way. If one of the methods (invoke, getProp, or setProp) fails on the
STCDispatchDriver class, an exception of this type is thrown. Exceptions is not caught
by the builder-generated code. It is up to the user to catch an exception if desired.

This operation provides a mechanism for the Collaboration code to detect when and
why a failure occurs at the lower level. Access to the COM HRESULT is provided, as
well as a description of the HRESULT from the operating system if available. The
STCComException Class extends java.lang.RuntimeException.

Methods of the STCComException Class

These methods are described in detail on the following pages:

Name Type Description

disp java.lang.Object java.lang.Object value.

! STCComException on page 78 ! getErrorCode on page 79

! getMessage on page 78 ! getSystemErrorText on page 79

Chapter 6 Section 6.3
Java Methods The STCComException Class

e*Way Intelligent Adapter for COM/DCOM User’s Guide 78 SeeBeyond Proprietary and Confidential

Fields of the STCComException Class

STCComException

Description

Constructor. Pass in the HRESULT and a context string. The context string can be null,
but must be a string that indicates what is causing the exception to be thrown, for
example, invoking foo or getting property bar.

Syntax

public STCComException (int hr, java.lang.String sOp)

Parameters

Return Values

None.

Throws

None.

getMessage

Description

Overrides the base method. This method must be called for the e*Way to attempt to get
available error text from the OS.

Syntax

public java.lang.String getMessage()

Parameters

None.

Return Values

java.lang.String.
Returns a string formatted like the following: COM Exception: 0x8004002E -
Creating component of progid Some.Class: class not registered.

Name Type Description

m_nHR protected int m_nHR The HRESULT passed to the
constructor.

m_sOp protected java.lang.String m_sOp The context string passed to the c’tor.

Name Type Description

hr int The COM error code.

sOp java.lang.String The content string.

Chapter 6 Section 6.3
Java Methods The STCComException Class

e*Way Intelligent Adapter for COM/DCOM User’s Guide 79 SeeBeyond Proprietary and Confidential

Throws

None.

Overrides

getMessage in class java.lang.Throwable

getErrorCode

Description

Provides access to the HRESULT passed to the constructor.

Syntax

public int getErrorCode()

Parameters

None.

Return Values

int
Returns the error code.

Throws

None.

getSystemErrorText

Description

A convenience method exposed to allow the user to get the error text for an HRESULT.

Syntax

public java.lang.String getSystemErrorText(int hr)

Parameters

Return Values

java.lang.String
Returns the error text.

Throws

None.

Name Type Description

hr int HRESULT error code.

Index

e*Way Intelligent Adapter for COM/DCOM User’s Guide 80 SeeBeyond Proprietary and Confidential

Index

C
Classpath Override 14
Classpath Prepend 14
collaboration rules 32
collaborations 41

for the Multi-Mode e*Way 43
COM/DCOM

runtime exceptions 50
COMETDVariant Class 51

methods
COMETDVariant 52
getarray 60
getbool 54
getbyte 56
getdouble 60
geterror 57
getfloat 59
getint 56
getshort 55
getstring 58
getType 53
getValue 53
setarray 60
setbool 54
setbyte 55
setdouble 59
seterror 57
setfloat 58
setint 56
setstring 58

COMETDWrapper Class 61
methods

COMETDWrapper 62
COMETDWrapper_Init 62
getBoolean2DArray 70
getBooleanArray 69
getByte2DArray 69
getByteArray 68
getDouble2DArray 74
getDoubleArray 73
getFloat2DArray 73
getFloatArray 72
getInt2DArray 72
getIntArray 71

getRetVal 76
getShort2DArray 71
getShortArray 70
getString2DArray 75
getStringArray 74
getVariantParam 75
invoke 76
setdisphandler 76
setParam 63

D
Disable JIT 15

E
e*Way Connection

creating 30
parameters

SME 18
e*Way connection

configuration 18
e*Ways

creating and configuring 28
error messages 50
event type

creating from an existing .xsc 24
creating from the COMWizard 26

event types 24
exceptions 50
external application requirements 9

F
files/directories created by installation 11

I
implementation 21
Initial Heap Size 15
installation 10

directories created 11
files/directories 11
pre-installation 10
Windows NT 10
Windows NT and Windows 2000 10

intelligent queues 32
intended reader 7

J
JNI DLL Absolute Pathname 13
JVM settings 12

Index

e*Way Intelligent Adapter for COM/DCOM User’s Guide 81 SeeBeyond Proprietary and Confidential

M
Maximum Heap Size 15
Multi-Mode e*Way 12

configuration 12
configuration parameters 12

Auxiliary JVM Configuration File 16
CLASSPATH Append From Environment

Variable 14
CLASSPATH Override 14
CLASSPATH Prepend 14
Disable JIT 15
JNI DLL Absolute Pathname 13
Maximum Heap Size 15
Maximum Stack Size for JVM Threads 15
Maximum Stack Size for Native Threads 15
Remote Debugging port number 16
Suspend option for debugging 16

parameters 12

O
operating systems 8
overview

COM/DCOM 7
sample implementation 22

P
parameters

Class 19
connector 18
host 20
Multi-Mode e*Way

CLASSPATH prepend 14
Initial Heap Size 15
JNI DLL absolute pathname 13
JVM settings 12
Maximum Heap Size 15

progid 19
Type 19

R
runtime exceptions 50

S
sample schema 49
STCComException Class

methods
getErrorCode 79
getMessage 78
getSystemErrorText 79

system requirements 8
external 9
Windows 2000 8
Windows NT 8

T
test.xls

creating 23

U
ulti 12

W
Windows installation 10
Windows NT 10

	e*Way Intelligent Adapter for COM/DCOM User’s Guide
	Contents
	Introduction
	1.1 COM/DCOM Overview
	1.2 Intended Reader
	1.3 Supported Operating Systems
	1.4 System Requirements
	1.4.1. External Application Requirements

	Installation
	2.1 Windows NT and Windows 2000 Installation
	2.1.1. Pre-installation
	2.1.2. Installation Procedure

	2.2 Files/Directories Created by the Installation

	Multi-Mode e*Way Configuration
	3.1 Multi-Mode e*Way
	3.1.1. JVM Settings
	JNI DLL Absolute Pathname
	CLASSPATH Prepend
	CLASSPATH Override
	CLASSPATH Append From Environment Variable
	Initial Heap Size
	Maximum Heap Size
	Maximum Stack Size for Native Threads
	Maximum Stack Size for JVM Threads
	Disable JIT
	Remote Debugging port number
	Suspend option for debugging
	Auxiliary JVM Configuration File

	3.1.2. General Settings
	Rollback Wait Interval
	Standard IQ FIFO

	e*Way Connection Configuration
	4.1 Configuring e*Way Connections
	4.1.1. Connector
	Type
	Class

	4.1.2. COM/DCOM Configuration
	ProgID
	Hostname

	Implementation
	5.1 Implementation Notes
	5.2 Considerations
	5.3 COM/DCOM Sample Implementation Overview
	5.3.1. Importing the Sample Schema

	5.4 Creating the Sample Schema Manually
	5.5 Creating Event Type Definitions
	5.5.1. Creating an Event Type Definition Using an Existing .xsc
	5.5.2. Creating an Event Type Definition Using the COM ETD Wizard

	5.6 Creating and Configuring the Component e*Ways
	To Create the Trigger e*Way
	To Create the COM/DCOM e*Way (Multi-Mode)

	5.7 Creating the e*Way Connection
	5.7.1. To Create and Configure a New e*Way Connection

	5.8 Creating Intelligent Queues (IQs)
	To Create and Modify an Intelligent Queue for the COM/DCOM e*Way

	5.9 Creating the Collaboration Rules
	To Create the Pass Through Collaboration Rules
	To Create the Java Collaboration Rules
	5.9.1. Using the Collaboration Rules Editor

	5.10 Creating Collaborations
	To Create the trigger e*Way Collaboration
	To Create the COM_Multi_Mode Collaboration

	5.11 Configuring the DCOM Server
	5.12 Sample Schema
	5.12.1. Completing the Configuration of the COMtest Schema
	5.12.2. Executing the Schema

	5.13 COM/DCOM Run-Time Exceptions

	Java Methods
	6.1 The COMETDVariant Class
	Methods of the COMETDVariant Class
	COMETDVariant
	getType
	getValue
	setbool
	getbool
	setshort
	getshort
	setbyte
	getbyte
	setint
	getint
	seterror
	geterror
	setstring
	getstring
	setfloat
	getfloat
	setdouble
	getdouble
	getarray
	setarray

	6.2 The COMETDWrapper Class
	Methods of the COMETDWrapper Class
	COMETDWrapper
	COMETDWrapper_Init
	setParam
	getByteArray
	getByte2DArray
	getBooleanArray
	getBoolean2DArray
	getShortArray
	getShort2DArray
	getIntArray
	getInt2DArray
	getFloatArray
	getFloat2DArray
	getDoubleArray
	getDouble2DArray
	getStringArray
	getString2DArray
	getVariantParam
	getRetVal
	setdisphandler
	invoke

	6.3 The STCComException Class
	Methods of the STCComException Class
	Fields of the STCComException Class
	STCComException
	getMessage
	getErrorCode
	getSystemErrorText

	Index
	C
	D
	E
	F
	I
	J
	M
	O
	P
	R
	S
	T
	U
	W

