SeeBeyond™ eBusiness Integration Suite

e*Way Intelligent Adapter for
COM/DCOM
User’s Guide

Release 4.5.4

Monk Version

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBl, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 1999-2002 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.
Version 20021204111854.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents

Contents

Chapter 1
Introduction 6
Intended Reader 6
Components 6
Supported Operating Systems 6
System Requirements 7
External System Requirements 7

Chapter 2
Installation 8
Windows NT and Windows 2000 Installation 8
Installation Procedure 8
Files/Directories Created by the Installation 9

Chapter 3
Functional Overview 11
Typical e¥*Way Architecture 11
Basic e*Way Processes 12
How to Specify Function Names or File Names 18
COM/DCOM Basics 19
COM/DCOM e*Way Overview 19
The Executable and Configuration Files 19
COM/DCOM e*Way Interaction with the External System 20
Outbound COM/DCOM e*Way 20
Inbound COM/DCOM e*Way 21
COM/DCOM e*Way Functions 22
ProglD 23
Invoking Methods from a COM Object Interface using Monk 25

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents

Chapter 4

Configuration 27
e*Way Configuration Parameters 27
General Settings 28
Journal File Name 28

Max Resends Per Message 28

Max Failed Messages 28
Forward External Errors 29
Communication Setup 29
Start Exchange Data Schedule 29

Stop Exchange Data Schedule 30
Exchange Data Interval 30

Down Timeout 30

Up Timeout 31

Resend Timeout 31

Zero Wait Between Successful Exchanges 31

Monk Configuration 31
Additional Path 32
Auxiliary Library Directories 32

Monk Environment Initialization File 32
Startup Function 33
Process Outgoing Message Function 33
Exchange Data with External Function 34
External Connection Establishment Function 35
External Connection Verification Function 35
External Connection Shutdown Function 36
Positive Acknowledgment Function 36
Negative Acknowledgment Function 37
Shutdown Command Notification Function 37

COM Settings 38
ProglD 38

Server 38

Chapter 5

Implementation 39
Implementation Notes 39
Appropriate SAFEARRAY Use 40
Using the ETD Editor’s Build Tool 41
The Sample Implementation 43
Sample Schema Overview 43
Installing the Sample Schema 44
Importing the Sample Schema 44
Configuring the DCOM Server 46
Importing the Sample Schema 49
Running the Sample Schema 50

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 4

SeeBeyond Proprietary and Confidential

Contents

Chapter 6

COM/DCOM e*Way Functions

Basic Functions

event-send-to-egate
get-logical-name
send-external-down
send-external-up
shutdown-request
start-schedule
stop-schedule

COM/DCOM Functions

co-create-instance
com-invoke
com-startup
com-struct-call

Index

e*Way Intelligent Adapter for COM/DCOM

User’s Guide

SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

The e*Way Intelligent Adapter for COM/DCOM enables the e*Gate system to
exchange data with the server side of COM/DCOM-enabled applications. This
document describes how to install, configure and implement the COM/DCOM e*Way.

This Chapter Explains:
* “Intended Reader” on page 6
= “Components” on page 6
= “Supported Operating Systems” on page 6

= “System Requirements” on page 7

11 Intended Reader

The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the e*Gate system; to have expert-level knowledge of
Windows or Windows 2000 operations and administration; to be thoroughly familiar
with COM/DCOM; and to be thoroughly familiar with Windows-style GUI operations.

12 Components
The COM/DCOM e*Way comprises the following:

= stcewgenericmonk.exe, the executable component.

= Configuration files, which the e*Way Editor uses to define configuration
parameters.

= Monk function scripts, discussed in “COM/DCOM e*Way Functions” on page 51.
A complete list of installed files appears in Table 1 on page 10.

13 Supported Operating Systems

The COM/DCOM e*Way is available on the following operating systems:

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 6 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction System Requirements

= Windows 2000, Windows 2000 SP1, Windows 2000 SP2, and Windows 2000 SP3
= Windows NT 4 SP6a

14 System Requirements

To use the COM/DCOM e*Way, you need the following;:
= An e*Gate Participating Host, version 4.5.1 or 4.5.2.
= A TCP/IP network connection.

= Additional disk space for e*Way executable, configuration, library, and script files.
The disk space is required on both the Participating and the Registry Host.
Additional disk space is required to process and queue the data that this e*Way
processes; the amount necessary varies based on the type and size of the data being
processed, and any external applications performing the processing.

15 External System Requirements

= The COM/DCOM e*Way requires an existing automation compatible
COM/DCOM-compliant application or component.

Note: One of the standard interfaces exposed by many applications and user-created
objects is the IDispatch or "automation” interface. Windows NT and Windows
2000 expose many system services via the automation interface as do several of the
Microsoft Office products like Excel. Additionally, the user can also create their own
objects using programming languages like C, C++, java, Visual Basic, COBOL, etc.
The COM/DCOM e*Way provides access to these objects using the IDispatch
interface and semantics. The e*Way can dynamically create an instance of one of
these components and then call methods on it.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 7 SeeBeyond Proprietary and Confidential

Chapter 2
Installation

This chapter contains information on pre-installation requirements and the procedures
for installing the COM/DCOM e*Way. In addition, a list of installed files is provided,
along with the directories these files are located in.

This Chapter Explains:
* “Windows NT and Windows 2000 Installation” on page 8
= “Files/Directories Created by the Installation” on page 9

21 Windows NT and Windows 2000 Installation

Pre-installation

1 Exit all Windows programs before running the setup program, including any anti-
virus applications.

2 You must have Administrator privileges to install this e*Way.

21.1. Installation Procedure
To install the COM/DCOM e*Way on Windows NT or Windows 2000 systems:

1 Login as an Administrator on the workstation on which you want to install the
e*Way.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s “Autorun” feature is enabled, the setup application should
launch automatically; skip ahead to step 4. Otherwise, use the Windows Explorer or
the Control Panel’s Add/Remove Applications feature to launch the file setup.exe on
the CD-ROM drive.

4 The InstallShield setup application launches. Follow the on-screen instructions to
install the e*Way.

Note: Be sure to install the e*Way files in the suggested “client” installation directory.
The installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond™ support personnel, do not change
the suggested “installation directory” setting.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 8 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Installation Files/Directories Created by the Installation

5 After the installation is complete, exit the install utility and launch the Enterprise
Manager.

In the Component editor, create a new e*Way.

Display the new e*Way’s properties.

On the General tab, under Executable File, click Find.
Select the file stcewgenericmonk.exe.

Under Configuration file, click New.

- O © oo N o

—

From the e*Way Template Selection list, select stcewmscom e*Way and click OK.

Figure 1 e*Way Template Selection

e*Way Template Selection ﬂ

Select an e*ay Templste

hatch
stoewvgenericmonk
stoewvhitp
stoewvhittpnoss|

StCevmscom
stoesvicpipest

Cancel |

12 The e*Way Editor launches. Make any necessary changes, then save the
configuration file.

13 You return to the e*Way’s property sheet. Click OK to close the properties sheet, or
continue to configure the e*Way. Configuration parameters are discussed in
Chapter 4.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, please see the online Help
system.

For more information about configuring e*Ways or how to use the e*Way Editor, see
the Working with e*Ways chapter in the e*Gate Integrator User’s Guide.

22 Files/Directories Created by the Installation

The COM/DCOM e*Way installation process installs the following files within the
e*Gate “client” directory tree. Files are installed within the “egate/client” tree on the
Participating Host and committed to the “default” schema on the Registry Host.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 9 SeeBeyond Proprietary and Confidential

Chapter 2
Installation

Section 2.2
Files/Directories Created by the Installation

Table 1 Files Created by the Installation

e*Gate “Client” Directory

File(s)

eGate\Server\registry\repository\default\bin\

stcewgenericmonk.exe

configs\stcewgenericmonk\

stcewmscom.def

client\bin\

server\registry\repository\default\bin\win32

stc_monkcom.dll
stccombuilder.exe

monk_library\

monkcom.gui

monk_library\ewmscom\

com-startup.monk
com-struct-call.monk

e*Way Intelligent Adapter for COM/DCOM

User’s Guide

10

SeeBeyond Proprietary and Confidential

Chapter 3

Functional Overview

This chapter describes the basic operation of a typical e*Way based on the Generic
e*Way Kernel. Additionally, basic information regarding the functionality of
COM/DCOM is given.

This Chapter Explains:
= “Typical e*Way Architecture” on page 11
= “COM/DCOM Basics” on page 19

31 Typical e*Way Architecture

Architecturally, an e*Way can be viewed as a multi-layered structure, consisting of one
or more layers that handle communication with the external application, built upon an
e*Way Kernel layer that manages the processing of data and subscribing or publishing
to other e*Gate components (see Figure 2).

Figure 2 Typical e*Way Architecture

Typical e*Way

Additional Layer
such as API Model

External Communications .
Application Layer e*Gate
RFC such as Remote
Function Call (RFC)
Transport

e*Way Kernel Layer

Each layer contains Monk scripts and / or functions, and makes use of lower-level Monk
functions residing in the layer beneath. You, as user, primarily use the highest-level
functions, which reside in the upper layer(s).

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 11 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Functional Overview Typical e*Way Architecture

The upper layers of the e*Way use Monk functions to start and stop scheduled
operations, exchange data with the external system, package data as e*Gate “Events,”
send those Events to Collaborations, and manage the connection between the e*Way
and the external system (see Figure 3).

Figure 3 Basic e*Way Operations

Communications Layer

External — (=)
Application

(cCollaboration)&—

e*Way Kernel Layer

Configuration options that control the Monk environment and define the Monk
functions used to perform these basic e*Way operations are discussed in Chapter 4.
You can create and modify these functions using the SeeBeyond Collaboration Rules
Editor or a text editor (such as Microsoft WordPad or Notepad).

The upper layers of the e*Way are single-threaded. Functions run serially, and only one
function can be executed at a time. The e*Way Kernel is multi-threaded, with one
executable thread for each Collaboration. Each thread maintains its own Monk
environment; therefore, information such as variables, functions, path information, and
so on cannot be shared between threads.

The basic set of e*Way Kernel Monk functions is described in Chapter 6. Generally,
e*Way Kernel Monk functions should be called directly only when there is a specific
need not addressed by higher-level Monk functions, and should be used only by
experienced developers.

Basic e*Way Processes

The Monk functions in the “communications half” of the e*Way fall into the following

groups:
Type of Operation Name

Initialization “Startup Function” on page 33
(also see “Monk Environment Initialization File” on
page 32)

Connection “External Connection Establishment Function” on
page 35
“External Connection Verification Function” on page 35
“External Connection Shutdown Function” on page 36

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Functional Overview Typical e*Way Architecture

Type of Operation Name

Schedule-driven data | “Exchange Data with External Function” on page 34
exchange “Positive Acknowledgment Function” on page 36
“Negative Acknowledgment Function” on page 37

Shutdown “Shutdown Command Notification Function” on
page 37

Event-driven data “Process Outgoing Message Function” on page 33

exchange

A series of figures on the next several pages illustrate the interaction and operation of
these functions.

Initialization Functions

Figure 4 illustrates how the e*Way executes its initialization functions.

Figure 4 Initialization Functions

Start e*Way

Load
"Auxiliary Library Directories"
files

Load
"Monk Initialization"
file

Execute any Monk function
having the same name as
the initialization file

Load "Startup"” file

Execute any Monk function
having the same name as
the startup file

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 3
Functional Overview

Connection Functions

Section 3.1
Typical e*Way Architecture

Figure 5 illustrates how the e*Way executes the connection establishment and

verification functions.

Figure 5 Connection Establishment and Verification Functions

Connect e*Way to
external system

Internal
flag shows connection
active?

Yes

v

Wait for "Up Timeout"
schedule

Call External Connection
Verification function

No-P»

Wait for "Down Timeout"
schedule

Call External Connection
Establishment function

Note: The e*Way selects the connection function based on an internal “up/down” flag
rather than a poll to the external system. See Figure 7 on page 16 and Figure 9 on
page 18 for examples of how different functions use this flag.

User functions can manually set this flag using Monk functions. See send-
external-up on page 55 and send-external-down on page 54 for more

information.

Figure 6 illustrates how the e*Way executes its “connection shutdown” function.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide

14

SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Functional Overview Typical e*Way Architecture

Figure 6 Connection Shutdown Function
Control Broker issues
"Suspend" command

Call External Connection Shutdown
function with parameter
"SUSPEND_NOTIFICATION"

Return any value

G*Way closes connectioD

Schedule-driven Data Exchange Functions

Figure 7 (on the next page) illustrates how the e*Way performs schedule-driven data
exchange using the Exchange Data with External Function. The Positive
Acknowledgement Function and Negative Acknowledgement Function are also
called during this process.

“Start” can occur in any of the following ways:
= The “Start Data Exchange” time occurs.

= Periodically during data-exchange schedule (after “Start Data Exchange” time, but
before “Stop Data Exchange” time), as set by the Exchange Data Interval.

= The start-schedule Monk function is called.

After the function exits, the e*Way waits for the next “start schedule” time or
command.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 15 SeeBeyond Proprietary and Confidential

Chapter 3
Functional Overview

Section 3.1
Typical e*Way Architecture

Figure 7 Schedule-driven Data Exchange Functions

Call Exchange Data with

External function

|
Return

h 4

|
DATAERR plus

CONNERR DATAERR only additional data
4 4 v
S?t |nterva! flag Increment "Failed Increment "Failed
Connection " "
N Message" counter Message" counter
Down
<
Journal Forward
l4——No enabled? No external
errors?
Yes Yes
A 4 A 4
¢ Create journal Send Event to
entry e*Gate
All
subscribing
No Collaborations return
TRUE
?
Yes
A 4
Call Negative Call Positive
Acknowledgment Acknowledgment
function function

Zero

Function exits

<4—— No

exchange?

Shutdown Functions

wait after successful

I
Null
string

I
Data
(other than
error strings)

Yes

Figure 8 illustrates how the e*Way implements the shutdown request function.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 16

SeeBeyond Proprietary and Confidential

Chapter 3
Functional Overview

Figure 8 Shutdown Functions

)

Control Broker issues
"Shutdown" command

Call Shutdown Notification function
with parameter
"SHUTDOWN_NOTIFICATION"

Return

v
I 1

Null string or any other value
"SUCCESS" +
Wait for
shutdown-request
function

C e*Way shuts down)

Event-driven Data Exchange Functions

Section 3.1
Typical e*Way Architecture

Figure 9 on the next page illustrates event-driven data-exchange using the Process
Outgoing Message Function.

Every two minutes, the e¥*Way checks the “Failed Message” counter against the value
specified by the Max Failed Messages parameter. When the “Failed Message” counter
exceeds the specified maximum value, the e*Way logs an error and shuts down.

After the function exits, the e*Way waits for the next outgoing Event.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide

17

SeeBeyond Proprietary and Confidential

Chapter 3
Functional Overview

Section 3.1

Typical e*Way Architecture

Figure 9 Event-driven Data-exchange Functions

Collaboration publishes
to <EXTERNAL>

'

Call Process Outgoing
Message function

Increment

I
Null
string

CONNERR

v

Set internal flag
"Connection
Down"

DATAERR

v

Increment "Failed
Message" counter

Journal
enabled?

No

Yes

4

Create journal
entry

I

Roll back Event

P to its publishing |«

RESEND

Maximum

exceeded?

Yes

Q

How to Specify Function Names or File Names

End

Resends per Message

"Resend"
counter

Wait for Resend
Timeout period

1

No

Parameters that require the name of a Monk function accepts either a function name or
a file name. If you specify a file name, be sure that the file has one of the following

extensions:

= monk

= .tsc

= dsc

e*Way Intelligent Adapter for COM/DCOM

User’s Guide

18

SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Functional Overview COM/DCOM Basics

32 COM/DCOM Basics

The Microsoft Component Object Model (COM) is a component software architecture that
allows applications and systems to be built using separate components. COM is the
underlying architecture that forms the foundation for higher-level software services,
like those provided by OLE (Object Linking and Embedding). OLE services span
various aspects of component software, including compound documents, custom
controls, inter-application scripting, data transfer, and other software interactions. By
using COM, software objects can be reused for a variety of applications. Because of its
binary standard, COM allows any two components to communicate regardless of the
language the components are written in.

The Microsoft Distributed Component Object Model (DCOM) is an extension of COM, and
supports communication among objects on different computers: LANs, WANSs, and the
Internet. With DCOM, these software objects can be reused over a distributed
environment.

Components, or COM objects, are individual modular software routines that can be
reused within applications. COM objects are reusable compiled binary objects, as
opposed to reusable sections of code. The COM objects create handles that provide
access to the COM-enabled applications.

One of the standard interfaces exposed by many applications and user-created objects
is the IDispatch or "automation" interface. Windows NT and Windows 2000 expose
many system services via the automation interface as do several of the Microsoft Office
products like Excel. Additionally, the user can also create their own objects using
programming languages like C, C++, java, Visual Basic, COBOL, etc. The COM/DCOM
e*Way provides access to these objects using the IDispatch interface and semantics. The
e*Way can dynamically create an instance of one of these components and then call
methods on it.

321. COM/DCOM e*Way Overview

The COM/DCOM e*Way enables the e*Gate system to exchange data with the server
side of COM-enabled applications. The basic architecture of the COM/DCOM e*Way
matches the description of a typical e*Way in Figure 2 on page 11, with two exceptions:

= Operation System Implementation - the COM e*Way is only available for
Windows NT.

= No ACK/NAK to External System - Although the e*Way generates ACKs and NAKs
to be queued in e*Gate, the COM/DCOM e*Way does not ACK/NAK the external
system.

322. The Executable and Configuration Files

The executable file for the COM/DCOM e*Way is stcewgenericmonk.exe. The default
parameter settings for the COM/DCOM e*Way configuration files are contained in the
file stcewmscom.def, which is stored in the configs\stcewgenericmonk\ directory.
This .def file should not be modified, since it provides the template for each new

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Functional Overview COM/DCOM Basics

configuration. When choosing a template during the e*Way configuration process,
choose stcewmscom.

323. COM/DCOM e*Way Interaction with the External System

The COM e*Way acts like a client to a COM-enabled application or component. While
the COM/DCOM e*Way makes a call to the external system, it is directing a request to
the specific COM application specified in the e*Way’s configuration file by the program
identifier (ProgID). Refer to “ProgID” on page 23. The external COM application
returns a COM object handle used to “plug in” the COM application. This handle is used
for the remainder of the data exchange session and released upon completion.

Figure 10 Interaction with the External System

e*Gate
COM/DCOM Object External
e*Way Handle O—— Com
Interface

Once the connection to the external COM application has been established, the
COM/DCOM e*Way can take advantage of all the functionality that has been made
available by the COM application. This makes it possible to access features that are
native to the external application, such as worksheet or document functions. This type
of access to the external COM application makes it possible to perform virtually any
function that you could do within the application itself.

Outbound COM/DCOM e*Way

Figure 11 on the next page and the numbered steps illustrate how an outbound
COM/DCOM e*Way interacts with e*Gate and the external COM application.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 20 SeeBeyond Proprietary and Confidential

Chapter 3
Functional Overview

Figure 11 Outbound COM/DCOM e*Way

Collaboration

Q

Outbound COM/
DCOM e*Way

e*Way's 1Q

1. Publishes Event to the | |

2. Queues the data for the
e*Way

. Receives the Event

G K W N =

=)}

9. Queues the ACK/NAK
from the e*Way

. Validates the data

Section 3.2
COM/DCOM Basics

A

. Translates the data

External System

. Sends Event to to

External COM client

7. Receives data from the

e*Way

The Event is published to the IQ.

. Reports success or

failure to 1Q

The IQ stores the data to be used by the other e*Gate components.
The outbound COM/DCOM e*Way receives the Event from the IQ.
The e*Way ensures that the Event is a valid COM event.

The e*Way translates the Event into data that is compatible with the external COM
client.

The e*Way sends the translated data to the external COM client.

7 The external COM client receives the data from the COM/DCOM e*Way. The
communication with the e*Way is synchronous, so errors can be negotiated
between the e*Way and the COM client as the data is transferred. This eliminates

the need for an ACK/NAK scenario.

8 The e*Way reports the success or failure of the interchange with the COM client to

the IQ.

9 The e*Way queues the ACK/NAK reporting the success or failure of the data

exchange between the e*Way and the external COM client.

Inbound COM/DCOM e*Way
The following graphic and numbered steps illustrate how an inbound COM/DCOM

e*Way interacts with e*Gate and the external COM application.

e*Way Intelligent Adapter for COM/DCOM

User’s Guide

21

SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Functional Overview COM/DCOM Basics
Figure 12 Inbound COM/DCOM e*Way
Inbound COM/
External System DCOM e*Way
1. Furnishes data for the 2. Validates incoming
e*Way data
3. Translates the data 1Q e*Gate
4. Forwards the data to 5. Queues the Event for 6. Receives data from the
the 1Q ™ ecate "
S ;ng?fs'\:r;&aent to 8. Queues ACKINAK '« 7. Returns ACK/NAK
10. If unsuccessful,
forwards the Event to
Journal File
1 The external system is polled by the inbound COM e*Way at configured intervals.
The external system furnishes the data to the inbound COM e*Way.
2 The inbound COM e*Way ensures that the data furnished by the COM client is
valid.
3 The inbound COM e*Way then performs any necessary translations to ensure that
the data will be useful to the receiving clients.
4 The data is then published to the 1Q.
5 The IQ stores the data for receiving e*Ways or Business Object Brokers (BOBs).
6 e*Gate receives the data from the IQ.
7 e*Gate returns either an ACK or a NAK to signal to the inbound COM e*Way that
the data was received successfully.
8 The IQ stores the ACKs or NAKS.
9 For a NAK, the inbound COM/DCOM e*Way re-sends the Event to the 1Q.
10 If the inbound COM/DCOM e*Way detects excessive NAKSs, the Event is written to

the Journal File.

3.24. COM/DCOM e*Way Functions

Specific Monk functions are available for use in creating and calling COM objects.
These functions include:

co-create-instance on page 59
com-invoke on page 60
com-struct-call on page 62

com-startup on page 61

e*Way Intelligent Adapter for COM/DCOM

User’s Guide

22 SeeBeyond Proprietary and Confidential

Functional Overview

Section 3.2
COM/DCOM Basics

In order to make the initial connection, you must know the name of the server if you are
connecting to a DCOM application that does not reside on the local host. Additionally,
you must know the program identifier (ProgID) for the application.

ProgID

The ProglID is a Windows registry entry that uniquely identifies a program or a COM
object. Unlike a Globally Unique Identifier (GUID), the ProgID is a humanly-readable
alphanumeric string. The ProgID consists of three parts in this format:

vendor . conponent . ver si on

The vendor parameter is the control’s library, the component, it’s class, and the version
number, which is optional. If no version is given, the latest version of the application
object is assumed. Each parameter is separated by periods and no spaces; for example
the Visual Basic Command Button object’s ProgID is:

VB. CommandBut t on

The ProgID for most objects can be determined by checking, for example, the Visual
Basic Object Browser. The Windows registry entry reads as follows:

HKEY LOCAL_MACHI NE\ SOFTWARE\ Cl asses\ Progl D =

The following tables lists standardized ProgIDs for ActiveX Controls and Microsoft

applications:
Table 2 ActiveX Standard ProgIDs
Control Identifier

CheckBox Forms.CheckBox.1
ComboBox Forms.ComboBox.1
CommandButton Forms.CommandButton.1
Frame Forms.Frame.1
Image Forms.Image.1
Label Forms.Label.1
ListBox Forms.ListBox.1
MultiPage Forms.MultiPage.1

OptionButton

Forms.OptionButton.1

ScrollBar Forms.ScrollBar.1
SpinButton Forms.SpinButton.1
TabStrip Forms.TabStrip.1
TextBox Forms.TextBox.1

ToggleButton

Forms.ToggleButton.1

Table 3 Microsoft Access Standard ProglDs

Object

Identifier

Application

Access.Application, Access.Application.9

e*Way Intelligent Adapter for COM/DCOM
User’s Guide

23

SeeBeyond Proprietary and Confidential

Chapter 3
Functional Overview

Section 3.2
COM/DCOM Basics

Table 3 Microsoft Access Standard ProglDs

Object Identifier
CurrentData Access.CodeData, Access.CurrentData
CurrentProject Access.CodeProject, Access.CurrentProject
DefaultWebOptions Access.DefaultWebOptions
Table 4 Microsoft Excel Standard ProglDs
Object Identifier Comments
Application Excel.Application,
Excel.Application.9
Workbook Excel.AddIn
Workbook Excel.Chart, Excel.Chart.8 | Returns a workbook containing two
worksheets; one for the chart and one
for its data. The chart worksheet is the
active worksheet.
Workbook Excel.Sheet, Excel.Sheet.8 | Returns a workbook with one
worksheet.
Table 5 Microsoft Graph Standard ProglIDs
Object Identifier
Application MSGraph.Application, MSGraph.Application.8
Chart MSGraph.Chart, MSGraph.Chart.8
Table 6 Microsoft Office Web Components Standard ProglDs
Object Identifier
ChartSpace OWC.Chart, OWC.Chart.9
DataSourceControl OWC.DataSourceControl,
OWC.DataSourceControl.9
ExpandControl OWC.ExpandControl, OWC.ExpandControl.9
PivotTable OWC.PivotTable, OWC.PivotTable.9

RecordNavigationControl

OWC.RecordNavigationControl,
OWC.RecordNavigationControl.9

Spreadsheet OWC.Spreadsheet, OWC.Spreadsheet.9
Table 7 Microsoft Outlook Standard ProglDs
Object Identifier
Application Outlook.Application, Outlook.Application.9

e*Way Intelligent Adapter for COM/DCOM
User’s Guide

24

SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Functional Overview COM/DCOM Basics

Table 8 Microsoft PowerPoint Standard ProglIDs

Object Identifier

Application PowerPoint.Application,

PowerPoint.Application.9

Table 9 Microsoft Word Standard ProgIDs

Object Identifier
Application Word.Application, Word.Application.9
Document Word.Document, Word.Document.9,

Word.Template.8

Global Word.Global

Invoking Methods from a COM Obiject Interface using Monk

Once a COM object or program is called, the object interface methods associated with
that object are available for use. Refer to the documentation for application you are
connecting to for a list of exposed methods.

The following pseudo code example shows how to connect to an object, obtain object
handles, and invoke methods using Monk. See “COM/DCOM Functions” on page 58
for a complete description of the Monk functions used. Figure 13 on page 26 illustrates
the process.

1. Make Connection to the Application Object
(define Appl _HDL (co-create-instance progid))

The result is a handle to the application object. All application methods are now
available for use.

2. Invoke the Business Object Handle

(define BO HDL (cominvoke Appl HDL “GetBusObject” “FUNC' ‘#()))

The result is a handle to the business object. Methods on the object represented by
progid are now available.

3. Invoke the Business Component Object

(define BC HDL (cominvoke BO HDL “Get BusConi “FUNC' ‘#()))

The result is a handle to the business component object. All business component object
methods are now available for use.

4. Invoke the Business Component Object Method
(cominvoke BC HDL “setFiel dval ue” “FUNC’ Param)

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Functional Overview COM/DCOM Basics

Figure 13 COM Object Methods and Handles

Appl_HDL

|3 Appl Methods
Application "GetBusObject"

BO_HDL
Business
Business [Object Methods
Object "GetBusCom"
BC_HDL

Business
Business Component

c t Methods
omponen "SetFieldValue”

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 4
Configuration

This chapter describes how to configure the COM/DCOM e*Way by setting the
configuration parameters using the e*Way Editor.

This Chapter Explains:
= “General Settings” on page 28
* “Communication Setup” on page 29
= “Monk Configuration” on page 31
= “COM Settings” on page 38

21 e*Way Configuration Parameters

COM/DCOM e*Way configuration parameters are set using the e*Way Editor.
To change e*Way configuration parameters:

1 In the Enterprise Manager’s Component editor, select the e*Way you want to
configure and display its properties.

2 Under Configuration File, click New to create a new file, Find to select an existing
configuration file, or Edit to edit the currently selected file.

Note: When creating a new e*Way, you must also select the stcewmscom template file
from the e*Way Template Selection list.

3 In the Additional Command Line Arguments box, type any additional command
line arguments that the e*Way may require, taking care to insert them at the end of
the existing command-line string. Be careful not to change any of the default
arguments unless you have a specific need to do so.

For more information about how to use the e*Way Editor, see the e*Way Editor’s online
Help or the Working with e*Ways chapter in the e*Gate Integrator User’s Guide.

The e*Way’s configuration parameters are organized into the following four sections:
= General Settings
= Communication Setup

= Monk Configuration

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Configuration e*Way Configuration Parameters

= COM Settings

411. General Settings

The General Settings control basic operational parameters.

Journal File Name

Description
Specifies the name of the journal file.
Required Values

A valid filename, optionally including an absolute path (for example,

c:\temp \filename.txt). If an absolute path is not specified, the file is stored in the
e*Gate “SystemData” directory. See the e*Gate Integrator System Administration and
Operations Guide for more information about file locations.

Additional Information
An Event is journaled for the following conditions:
= When the number of resends is exceeded (see Max Resends Per Message below).

= When its receipt is due to an external error, but Forward External Errors is set to
No. (See “Forward External Errors” on page 29 for more information.)

Max Resends Per Message
Description

Specifies the number of times the e*Way attempts to resend a message (Event) to the
external system after receiving an error.

Required Values

An integer between 1 and 1,024. The default is 5.

Max Failed Messages
Description

Specifies the maximum number of failed messages (Events) that the e*Way allows.
When the specified number of failed messages is reached, the e*Way shut downs and
exits.

Required Values

An integer between 1 and 1,024. The default is 3.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Configuration e*Way Configuration Parameters

Forward External Errors

Description

Selects whether error messages that begin with the string “DATAERR” that are
received from the external system is queued to the e*Way’s configured queue. If this
parameter is set to No, then error messages will be ignored. See “Exchange Data with
External Function” on page 34 for more information.

Required Values

Yes or No. The default value, No, specifies that error messages is not forwarded. See
Figure 7 on page 16 for more information about how the e*Way uses this function.

412. Communication Setup

The Communication Setup parameters control the schedule by which the e*Way
obtains data from the external system.

Note: The schedule you set using the e*Way'’s properties (Start Up tab) in the Enterprise
Manager controls when the e*Way executable runs. The schedule you set within the
parameters discussed in this section (using the e*Way Editor) determines when data
is exchanged. Be sure you set the "exchange data” schedule to fall within the "run
the executable” schedule.

Start Exchange Data Schedule

Description
Establishes the schedule to invoke the e*Way’s Exchange Data with External Function.
Required Values
One of the following:
= One or more specific dates/times.

= A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Also required: If you set a schedule using this parameter, you must also define all three
of the following:

= Exchange Data With External Function
= Positive Acknowledgment Function
= Negative Acknowledgment Function

If you do not do so, the e*Way terminates execution when the schedule attempts to
start.

Additional Information

When the schedule starts, the e*Way determines whether it is waiting to send an ACK
or NAK to the external system (using the Positive Acknowledgement Function and
Negative Acknowledgement Function) and whether the connection to the external

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Configuration e*Way Configuration Parameters

system is active. If no ACK/NAK is pending and the connection is active, the e*Way
immediately executes the Exchange Data with External Function. Thereafter, the
Exchange Data with External Function is called according to the Exchange Data
Interval parameter until the Stop Exchange Data Schedule time is reached.

See “Exchange Data with External Function” on page 34, “Exchange Data Interval”
on page 30, and “Stop Exchange Data Schedule” on page 30 for more information.

Stop Exchange Data Schedule

Description
Establishes the schedule to stop data exchange.
Required Values
One of the following:
= One or more specific dates/times.

= A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Exchange Data Interval

Description

Specifies the number of seconds the e*Way waits between calls to the Exchange Data
with External Function during scheduled data exchanges.

Required Values
An integer between 0 and 86,400. The default is 120.
Additional Information

If Zero Wait Between Successful Exchanges is set to Yes and the Exchange Data with
External Function returns data, the Exchange Data Interval setting is ignored and the
e*Way invokes the Exchange Data with External Function immediately.

If this parameter is set to zero, there is no exchange data schedule set and the Exchange
Data with External Function is never called.

See “Down Timeout” on page 30 and “Stop Exchange Data Schedule” on page 30 for
more information about the data-exchange schedule.

Down Timeout

Description

Specifies the number of seconds that the e*Way waits between calls to the External
Connection Establishment Function. See “External Connection Establishment
Function” on page 35 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Configuration e*Way Configuration Parameters

Up Timeout
Description

Specifies the number of seconds the e*Way waits between calls to the External
Connection Verification Function. See “External Connection Verification Function”
on page 35 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.

Resend Timeout

Description

Specifies the number of seconds the e*Way waits between attempts to resend a message
(Event) to the external system, after receiving an error message from the external
system.

Required Values

An integer between 1 and 86,400. The default is 10.

Zero Wait Between Successful Exchanges

Description

Selects whether to initiate data exchange after the Exchange Data Interval or
immediately after a successful previous exchange.

Required Values
Yes or No. The default is No.
Additional Information

If this parameter is set to Yes and the previous exchange function returned data, then
the e*Way immediately invokes the Exchange Data With External Function. If this
parameter is set to No, the e*Way always waits the number of seconds specified by
Exchange Data Interval between invocations of the Exchange Data with External
Function.

See “Exchange Data with External Function” on page 34 for more information.

A series of figures in Chapter 3 illustrate the interaction and operation of these
functions.

413. Monk Configuration

The parameters in this section help you set up the information required by the e*Way to
utilize Monk for communication with the external system.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Configuration e*Way Configuration Parameters

Additional Path

Description

Specifies a path to be appended to the “load path,” the path Monk uses to locate files
and data (set internally within Monk). The directory specified in Additional Path is
searched after the default load path.

Required Values

A path name, or a series of paths separated by semicolons. This parameter is optional
and may be left blank.

Additional information

The default load paths are determined by the “bin” and “Shared Data” settings in the
.egate.store file. See the e*Gate Integrator System Administration and Operations Guide for
more information about this file.

To specify multiple directories, manually enter the directory names rather than
selecting them with the “file selection” button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths. For example:

nmonk_scripts\ny_dir;c:\ny_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

Auxiliary Library Directories
Description

Specifies a path to auxiliary library directories. Any .monk files found within those
directories are automatically loaded into the e*Way’s Monk environment. This
parameter is optional and may be left blank.

Required Values
A path name, or a series of paths separated by semicolons.

Additional information
To specify multiple directories, manually enter the directory names rather than

selecting them with the “file selection” button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths. For example:

nonk_scripts\ny_dir;c:\ny_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

This parameter is optional and may be left blank.

Monk Environment Initialization File

Specifies a file that contains environment initialization functions, which are loaded
after the Auxiliary Library Directories are loaded. Use this feature to initialize the
e*Way’s Monk environment (for example, to define Monk variables that are used by the
e*Way’s function scripts).

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Configuration e*Way Configuration Parameters
Required Values

A filename within the “load path”, or filename plus path information (relative or
absolute). If path information is specified, that path is appended to the “load path.” See
“Additional Path” on page 32 for more information about the “load path.”

Additional information

Any environment-initialization functions called by this file accept no input, and must
return a string. The e*Way loads this file and tries to invoke a function of the same base
name as the file name (for example, for a file named my-init.monk, the e*Way would
attempt to execute the function my-init).

Typically, it is a good practice to initialize any global Monk variables that may be used
by any other Monk Extension scripts.

The internal function that loads this file is called once when the e*Way first starts up
(see Figure 4 on page 13).

Startup Function
Description

Specifies a Monk function that the e*Way loads and invokes upon startup or whenever
the e*Way’s configuration is reloaded. This function should be used to initialize the
external system before data exchange starts.

Required Values

The name of a Monk function, or the name of a file (optionally including path

information) containing a Monk function. This parameter is optional and may be left
blank.

Additional information
The function accepts no input, and must return a string.

The string “FAILURE” indicates that the function failed; any other string (including a
null string) indicates success.

This function is called after the e*Way loads the specified Monk Environment
Initialization File and any files within the specified Auxiliary Library Directories.

The e*Way loads this file and tries to invoke a function of the same base name as the file
name (see Figure 4 on page 13). For example, for a file named my-startup.monk, the
e*Way would attempt to execute the function my-startup.

Process Outgoing Message Function
Description

Specifies the Monk function responsible for sending outgoing messages (Events) from
the e*Way to the external system. This function is event-driven (unlike the Exchange
Data with External Function, which is schedule-driven).

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Configuration e*Way Configuration Parameters
Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. You may not leave this field blank.

Additional Information

The function requires a non-null string as input (the outgoing Event to be sent) and
must return a string.

The e*Way invokes this function when one of its Collaborations publishes an Event to
an <EXTERNAL> destination (as specified within the Enterprise Manager). The
function returns one of the following (see Figure 7 on page 16 for more details):

= Null string: Indicates that the Event was published successfully to the external
system.

= “RESEND”: Indicates that the Event should be resent.

= “CONNERR”: Indicates that there is a problem communicating with the external
system.

= “DATAERR”: Indicates that there is a problem with the message (Event) data itself.

Note: If you wish to use event-send-to-egate to enqueue failed Events in a separate 1Q,
the e*Way must have an inbound Collaboration (with appropriate IQs) configured
to process those Events. See “event-send-to-egate” on page 52 for more
information.

Exchange Data with External Function
Description

Specifies a Monk function that initiates the transmission of data from the external
system to the e*Gate system and forwards that data as an inbound Event to one or more
e*Gate Collaborations. This function is called according to a schedule (unlike the
Process Outgoing Message Function, which is event-driven).

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is optional and may be left
blank. However, this parameter is required if a schedule was set using the Start
Exchange Data Schedule parameter. If so, you must also define the following;:

= Positive Acknowledgement Function
= Negative Acknowledgement Function
Additional Information

The function accepts no input and must return a string (see Figure 9 on page 18 for
more details):

= Null string: Indicates that the data exchange was completed successfully. No
information is sent into the e*Gate system.

= “CONNERR": Indicates that a problem with the connection to the external system
has occurred.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Configuration e*Way Configuration Parameters

= “DATAERR”: Indicates that a problem with the data itself has occurred.

= Any other string: The contents of the string are packaged as an inbound Event. The
e*Way must have at least one Collaboration configured suitably to process the
inbound Event, as well as any required 1Qs.

This function is initially triggered by the Start Exchange Data Schedule or manually by
the Monk function start-schedule. After the function has returned true and the data
received by this function has been ACKed or NAKed (by the Positive
Acknowledgment Function or Negative Acknowledgment Function, respectively),
the e*Way checks the Zero Wait Between Successful Exchanges parameter. If this
parameter is set to Yes, the e*Way immediately calls the Exchange Data with External
Function again; otherwise, the e*Way does not call the function until the next
scheduled “start exchange” time or the schedule is manually invoked using the Monk
function start-schedule (see start-schedule on page 57 for more information).

External Connection Establishment Function

Description

Specifies a Monk function that the e*Way calls when it has determined that the
connection to the external system is down (or is unknown).

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This field cannot be left blank.

Additional Information
The function accepts no input and must return a string:
= “SUCCESS” or “UP”: Indicates that the connection was established successfully.

= Any other string (including the null string): Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Down Timeout
parameter, and is only called according to this schedule.

The External Connection Verification Function (see below) is called when the e*Way
has determined that its connection to the external system is up.

External Connection Verification Function

Description

Specifies a Monk function that the e*Way calls when its internal variables show that the
connection to the external system is up.

Required Values

The name of a Monk function. This function is optional; if no External Connection
Verification Function is specified, the e*Way executes the External Connection
Establishment Function in its place.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Configuration e*Way Configuration Parameters
Additional Information
The function accepts no input and must return a string:
= “SUCCESS” or “UP”: Indicates that the connection was established successfully.

= Any other string (including the null string): Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Up Timeout
parameter, and is only called according to this schedule.

The External Connection Establishment Function is called when the e*Way has
determined that its connection to the external system is down or is unknown.

External Connection Shutdown Function

Description

Specifies a Monk function that the e*Way calls to shut down the connection to the
external system.

Required Values

The name of a Monk function. This parameter is optional.
Additional Information

This function requires a string as input, and may return a string.

This function is only invoked when the e*Way receives a “suspend” command from a
Control Broker. When the “suspend” command is received, the e*Way invokes this
function, and passes the string “SUSPEND_NOTIFICATION” as an argument.

Any return value indicates that the “suspend” command can proceed and that the
connection to the external system can be broken immediately.

Positive Acknowledgment Function

Description

Specifies a Monk function that the e*Way calls when all the Collaborations to which the
e*Way sent data have processed and enqueued that data successfully.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External Function is defined.

Additional Information

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string:

= “CONNERR”: Indicates a problem with the connection to the external system.
When the connection is re-established, the Positive Acknowledgment Function is
called again, with the same input data.

= Null string: The function completed execution successfully.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Configuration e*Way Configuration Parameters

After the Exchange Data with External Function returns a string that is transformed
into an inbound Event, the Event is handed off to one or more Collaborations for
further processing. If the Event’s processing is completed successfully by all the
Collaborations to which it was sent, the e*Way executes the Positive Acknowledgment
Function (otherwise, the e*Way executes the Negative Acknowledgment Function).

Negative Acknowledgment Function

Description

Specifies a Monk function that the e*Way calls when the e*Way fails to process and
queue Events from the external system.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External Function is defined.

Additional Information

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string:

= “CONNERR”: Indicates a problem with the connection to the external system.
When the connection is re-established, the function is called again.

= Null string: The function completed execution successfully.

This function is only called during the processing of inbound Events. After the
Exchange Data with External Function returns a string that is transformed into an
inbound Event, the Event is handed off to one or more Collaborations for further
processing. If the Event’s processing is not completed successfully by all the
Collaborations to which it was sent, the e*Way executes the Negative
Acknowledgment Function (otherwise, the e*Way executes the Positive
Acknowledgment Function).

Shutdown Command Notification Function

Description

Specifies a Monk function that is called when the e*Way receives a “shut down”
command from the Control Broker. This parameter is optional.

Required Values
The name of a Monk function.
Additional Information

When the Control Broker issues a shutdown command to the e*Way, the e*Way calls
this function with the string “SHUTDOWN_NOTIFICATION” passed as a parameter.

The function accepts a string as input and must return a string;:

= A null string or “SUCCESS”: Indicates that the shutdown can occur immediately.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Configuration e*Way Configuration Parameters

4.1.4.

= Any other string: Indicates that shutdown must be postponed. Once postponed,
shutdown does not proceed until the Monk function shutdown-request is executed
(see shutdown-request on page 56).

Note: If you postpone a shutdown using this function, be sure to use
the (shutdown-request) function to complete the process in a timely manner.

COM Settings

The parameters in this section help you to set up the required information for the
COM/DCOM e*Way.

ProgID

Description

Specifies the Program ID of the COM-enabled application to connect to. Refer to
“ProgID” on page 23 for more information on application-specific identifiers.

Required Values

A program ID.

Server

Description

Specifies the server name (hostname) where the COM object resides. Only required if
the COM object does not reside on the local host. This is only applicable to EXEs.

Required Values
A server name.
Additional Information

Either an alias or IP addresses.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 5

Implementation

This chapter provides information on how to implement the COM/DCOM e*Way
using the ETD Editor. Also included is a sample implementation represented by an
output file.

This Chapter Explains:
= “Implementation Notes” on page 39
= “Using the ETD Editor’s Build Tool” on page 41

= “The Sample Implementation” on page 43

51 Implementation Notes
The COM/DCOM e*Way supports the following data types:

Table 10 Supported Data Types

OLE Data Types Description Return Value
VT_I2 2-byte signed int Yes
VT_l4 4-byte signed int Yes
VT_R4 4-byte real Yes
VT_R8 8-byte real Yes
VT_BSTR Binary string Yes
VT_DISPATCH IDispatch Yes
VT_ERROR 4-byte error code Yes
VT_BOOL Boolean Yes
VT_I1 1-byte Yes
VT_UI1 Unsigned char Yes
VT_UI2 Unsigned short Yes
VT_Ul4 Unsigned int Yes
VT_INT Int Yes
VT_UINT Unsigned int Yes

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Implementation Implementation Notes

Table 10 Supported Data Types (Continued)

OLE Data Types Description Return Value

VT_SAFEARRAY See Note below. Yes
= VT_I2

= VT_l4

= VI_R4

= VT_BSTR

= VT_DISPATCH
= VT_ERROR

= VI_BOOL

= VT_UI

All OLE data types are supported by "in" behavior and all OLE data types except for
VT_SAFEARRAY are supported by "out" behavior.

Note: The code will process one or two dimensional SAFEARRAYSs only! The

number of elements in all rows is expected to be equal! VT_SAFEARRAY has
specific, limited functionality as used in the COM/DCOM e*Way--see the following
subsection for appropriate SAFEARRAY use.

5.1.1. Appropriate SAFEARRAY Use

In COM, the SAFEARRAY type can be multi-dimensional (e.g.: int array[5][10][15], an
array of arrays of arrays) and, further, the different arrays may have differing lower
bounds indices. The COM/DCOM e*Way, however, must follow these conventions:

= The e*Way can only support a maximum of two dimensions (e.g.: int array[2][5]).
= Each array (if two dimensions) must have the same number of subarrays.
= The index numbering must be identical.

Using zero-based indices, the SAFEARRAY type can be graphically viewed as:

array[0]
subarray
subarray
subarray
subarray
subarray

array[1]
subarray
subarray
subarray
subarray
subarray

A WN O A WNEFEO

The above illustrates the requirement that arrays be limited to a maximum of two
dimensions, that the number of subarrays be equal, and that the index numbering for
both arrays be identical.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation Using the ETD Editor’s Build Tool

s Using the ETD Editor’s Build Tool

In COM, the event type corresponds to the object being used; it's properties and
methods. These properties and methods are exposed in the collaboration so you can
get/set the property or call one or more methods.

The Event Type Definition Editor’s Build tool automatically creates an Event Type
Definition file based upon sample data. Use this procedure to create an Event Type
Definition based upon the data your installation requires.

To create an Event Type Definition using the Build tool:
1 Launch the Event Type Definition Editor.
2 On the ETD Editor’s Toolbar, click Build.
The Build an Event Type Definition dialog box appears.

Figure 14 Build an Event Type

»¢ Build an Event Type Definition x|
Look in: fmank_scripts/commaon _fl Ii‘ll |“_’f‘|
- ofm Eventhdsy ssc of Ge
EventBody.ssc ofs excel.ssc ofz M
EventHeader.ssc =fs GeneticinEvent ssc ofs M
I~ I =
File hame:

Files of type: Ewvent Type Definition (ssc _f_

[ext }}l Cancel | Help |

3 In the File Name box, type the name of the ETD file to build. Do not specify any file
extension—the Editor supplies an "ssc" extension for you.

4 Click Next.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 4 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation Using the ETD Editor’s Build Tool

Figure 15 Build an Event Type (continued)

»¢ Build an Event Type Definition x|

File name: mnnk_scriptsfcnmmnnfexcel.ssc:j

Input file : JcwProgram Filesiicrosort Office/Of @l

— Build From
4 Library Converter + Delimited Data Converter

—Select a Library Converter

HTML Converer A

ot

- =]

— &dditiohal Command Line Arguments

<< Elackl Finish | Cancel Help |

5 In the Input file box, type the name of the input file, using an .olb or .tlb extension.

Note: Note: COM type library files describe the methods and properties exposed from an
automation compatible component. Com type library typically have the file
extension .tlb or .olb. However, most components embed the type library file in the
DLL, OCX or EXE that houses the component.
6 Under Build From, select Library Converter.
7 Under Select a Library Converter, select COM Builder.
8 In the Additional Command Line Arguments box, type any additional arguments.
9 Click Finish.
To create an Event Type Definition from the command line:

Create an Event Type Definition file using stccombuilder.exe by typing the following
at the command prompt:

stcconbuil der -eg -rh registry -rp port -un usernanme -up password
-rs schema -tf tenp file -i input _file output file

where
registry is the name of the Registry Host
port is a valid port number (such as 4000)
username and password are a valid e*Gate username/password combination

schema is the name of the schema you wish to register the ETD file to

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 5

Section 5.3
Implementation

The Sample Implementation

temp_file is the name of a temporary file created and deleted by stccombuilder.exe
input_file is the name of the .olb or .tlb input library file, and

output_file is the name of the .ssc file where the Event Type Definition is written.

53 The Sample Implementation

A sample of the COM e*Way is included on the Installation CD-ROM. The sample
demonstrates e*Gate’s interaction with a COM enabled application—Microsoft Excel.

53.1. Sample Schema Overview

The sample provided on the Installation CD is called “ComSample.zip”. This sample
schema opens a Microsoft Excel worksheet and populates the first three rows with text
strings. This schema requires Excel to be present on the local machine.

The sample includes an inbound file e*Way, an IQ, an outbound COM e*Way, and all
of the components required to run the scenario. The input file e*Way reads an input file
as a way of generating the initial Event; the content of the input file is irrelevant to the
schema. The outbound COM e*Way writes the output to a worksheet: c:\temp \test.xls
using the logic written into excel.tsc. (See Figure 16 on page 43).

Figure 16 Sample Schema

e*Gate
Input File COM
e*Way e*Way
Feeder COM
€ Sub
Input Input File OUél:;)hl:Ind @
File Sub=r= Collaboration) L rb
External feedersp) Collaboration e
COMSP est,xls
Input.dat = Pub
_loj x|

A B C o | E
1 |string11 lstring12 string13 string14 | stringl15
| 2 |string21 stringdd stringZ23 string24 string2h
| 3 |string31 stringd2 string33 string34 string3h

4

14| 4 » [M["5heet1 ¢ sheetz f sheets ||

e*Way Intelligent Adapter for COM/DCOM

User’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Implementation The Sample Implementation

532. Installing the Sample Schema

The ComSample.zip sample files are located on the Installation CD-ROM in the
\samples\ewmscom directory.

Importing the Sample Schema

The first task in deploying the sample implementation is to create a new schema name.
While it is possible to use the default schema for the sample implementation, it is
recommended that you create a separate schema for testing purposes. After you install
the COM/DCOM e*Way, do the following:

1 Start the e*Gate Enterprise Manager GUIL

2 When the Enterprise Manager prompts you to log in, select the host that you
specified during installation, and enter your password.

3 You will then be prompted to select a schema. Click New.

4 Enter a name for the new Schema. In this case, enter ComSample, or any
appropriate name as desired.

5 Select Create from export, locate the ComSample.zip on the CD and click Open.
The e*Gate Enterprise Manager opens to the sample schema.

Complete the Configuration of the Sample Schema

The ComSample schema is nearly ready to use as it is presently configured. The only
change to be made is to update the settings of the Feeder e*Way.

To change the configuration of the Feeder e*Way:

1 From the e*Gate Enterprise Manager, navigate to the Feeder e*Way.

Click to display the e*Way’s properties.
Click Edit to open the e*Way Editor.

Select Poller (inbound) settings from the list of parameter sections.

a Hh W N

Select InputFileMask from the list of parameters.

6 Enter *.dat and click El to add the item.
7 From the File menu, choose Promote to Run Time...
8 Click OK to promote the file and OK again to close the editor.
9 Click OK to close the e*Way Properties.
Prepare the Input and Output Files

The sample schema requires two files in order to run: c:\temp \InputFile.dat (the input
file) and c:\temp \test.xls (the output file).

To create the input file
1 Open any text editor, such as Windows Notepad.
2 Create a new file called InputFile.dat

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 4 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Implementation The Sample Implementation
3 Save this file to the c:\temp directory and close the text editor.
To create the output file
1 Open Microsoft Excel.
2 Create a new worksheet called test.xIs.

3 Save this file to the c:\temp directory and close Excel.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Implementation The Sample Implementation

533. Configuring the DCOM Server

1 To configure the DCOM Server, in the Run dialog type in the command dcomcnfg
and click OK.

Figure 17 Run Dialog

Aun |

Type the name af a pragram, falder, or document, and
Windows will oper it for pou.

[

I | EBurim Separate Meman: Space

k. I Canicel | Browse. .. |

The Distributed COM Configuration Properties dialog lists the registered
applications.

Figure 18 Distributed COM Configuration Properties

Distributed COM Configuration Properties HE |

Applications |Default Properties DefauItSecurityI Drefault F'ru:utnu:c:lsl

Applications:

Java/COM Local Server Surogate d
logagent

& PILogonB emaote

Media Player

Microsoft Access Databasze

Microgzoft Agent Server 2.0

Microzaft Clip Gallery

Microsoft Eguation 3.0
Microsoft Excel 97 Application

Microzoft Graph 37 Application

Microsoft Map

Microzaoft Office Binder

Microsoft Phaoto Editor 3.0 Photo

Microgzoft PowerPaoint Presentation

Microsoft Word B azic

icrozaoft Ward Document

MobSync

MSDAIMITIALIZE

bsi custom action zerver j

Properties... |

OF. I Cancel Samir

2 Select the Microsoft Excel application.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 46 SeeBeyond Proprietary and Confidential

Chapter 5

Section 5.3
Implementation

The Sample Implementation

3 Click Properties.
4 Select the Security tab.

Figure 19 Application Properties - Security Tab

Microsoft Excel 97 Application Properties H |

Generall Lacation Security | Identit_l,ll Endpn:-intsl

™ IUze default access permissions

— % Use custom access permissions

Y'ou may edit who can access thiz application.

Edit...
" Ize default launch permizzions
— % lse custom launch permissions
“ou may edit who can launch thiz application.
Edit...

" Use default configuration permissions

— 1% Usge custom configuration permizzions

You may edit who can chanage the confiquration infarmation for thiz
application.

Edit.. |

] 4 I Cancel | SEply |

5 Select the Use custom access permission option button and click Edit.

e*Way Intelligent Adapter for COM/DCOM

User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Implementation The Sample Implementation

Figure 20 Add Users and Groups - Access

Add Users and Groups |

List Mames Fron; I@, STC j

Architecture Competency Center

Al authenticated uzers

(A Lthenticated U sers
GBCan Publishers Enterprize certification and renewal ager
{ﬁ Contract Leqal & Contract Group [Samanthe Beck
{ﬁ Contractars PSFT Temp Group far Mark Nemets

{ﬁ Crefault Prafiles

GRDEVELOPMENT

{ﬁ Dineld pdateProsy DMS clients who are permitted ta perfn:-rn;l
Add Show Uzers Eembers... Search... |
Add Mames:
Type of Access: |Allow Access j
] 4 | Cancel | Help |

6 Select the appropriate users to whom you want to grant access; for example,
Authenticated Users.

7 Click Add.
8 For Type of Access, select Allow Access.
9 Click OK.

10 In the Application Properties window (see Figure 19), select the Use custom launch
permission option button and click Edit.

11 Select the appropriate users to whom you want to grant launch permission; for
example, Authenticated Users.

12 Click Add.
13 For Type of Access, select Allow Launch.

14 Click OK.
15 In the Application Properties window (see Figure 19), select the Identity tab.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 48 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Implementation The Sample Implementation

Figure 21 Application Properties - Identity Tab

Microsoft Excel 97 Application Properties [7] |

Eenerall Lu:u:atiu:unl Securty Identity | Endpnintsl

YWhich user account do vou want to use ta rn this application?

™ The launching uzer

¢ Thiz user
[zer Browse,. |
Eazstmnd)

[Eartirnm Easswond:

1 The System Sccount [zenices anl]

O, I Cancel Apply

16 Click The interactive user option button, then OK.

The DCOM server is now configured for the sample schema.

534 Importing the Sample Schema

The first task in deploying the sample implementation is to create a new schema name.
While it is possible to use the default schema for the sample implementation, it is
recommended that you create a separate schema for testing purposes. After you install
the COM/DCOM e*Way, do the following;:

1 Start the e*Gate Enterprise Manager GUI

2 When the Enterprise Manager prompts you to log in, select the host that you
specified during installation, and enter your password.

3 You will then be prompted to select a schema. Click New.

4 Enter a name for the new Schema. In this case, enter COMtest, or any appropriate
name as desired.

5 Select Create from export, locate the ComSample.zip on the CD and click Open.
The e*Gate Enterprise Manager opens to your new schema.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Implementation The Sample Implementation

535. Running the Sample Schema

To Run the ComSample Schema:
Type the following at the command prompt:

stccbh -In logical _name -rh registry -rs ConSanpl e -un user name
-up password

where
logical_name is the name of the Control Broker,
registry is the name of the Registry Host, and
username and password are a valid e*Gate username/password combination.

After a few moments, the input file will be loaded and queued as an e*Gate Event, the

COM e*Way will be executed, and a COM session with test.xls will be initiated. A few

moments later, test.xls will be displayed and first five columns of the first five rows will
be populated with text.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 50 SeeBeyond Proprietary and Confidential

Chapter 6
COM/DCOM e*Way Functions

This chapter describes the functions used by the COM/DCOM e*Way. These functions
can only be used by the functions defined within the e*Way’s configuration file. None
of the functions are available to Collaboration Rules scripts executed by the e*Way.

The COM/DCOM e*Way’s functions fall into the following categories:
= Basic Functions on page 51

= COM/DCOM Functions on page 58

61 Basic Functions

The functions in this category control the e*Way’s most basic operations.
The basic functions are:

event-send-to-egate on page 52

get-logical-name on page 53

send-external-down on page 54

send-external-up on page 55

shutdown-request on page 56

start-schedule on page 57

stop-schedule on page 58

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 51 SeeBeyond Proprietary and Confidential

Chapter 6
COM/DCOM e*Way Functions

event-send-to-egate

Syntax

(event-send-to-egate string)

Description

Section 6.1
Basic Functions

event-send-to-egate sends data that the e*Way has already received from the external

system into the e*Gate system as an Event.

Parameters

Name

Type

Description

string

string

The data to be sent to the e*Gate system

Return Values

Boolean

Returns #t if the data is sent successfully; otherwise, returns #f.

Throws
None.

Additional information

This function can be called by any e*Way function when it is necessary to send data to

the e*Gate system in a blocking fashion.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide

52

SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
COM/DCOM e*Way Functions Basic Functions

get-logical-name
Syntax
(get -1 ogi cal - nane)

Description

get-logical-name returns the logical name of the e*Way.
Parameters

None.
Return Values
string

Returns the name of the e*Way (as defined by the Enterprise Manager).
Throws

None.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 53 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
COM/DCOM e*Way Functions Basic Functions

send-external-down

Syntax

(send- ext er nal - down)
Description

send-external down instructs the e*Way that the connection to the external system is
down.

Parameters
None.
Return Values
None.

Throws

None.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 54 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
COM/DCOM e*Way Functions Basic Functions

send-external-up

Syntax

(send- ext er nal - up)
Description

send-external-up instructs the e*Way that the connection to the external system is up.
Parameters

None.
Return Values

None.
Throws

None.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 55 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
COM/DCOM e*Way Functions Basic Functions

shutdown-request

Syntax

(shut down- r equest)
Description

shutdown request requests the e*Way to perform the shutdown procedure when there
is no outstanding incoming/outgoing event. When the e*Way is ready to act on the
shutdown request, in invokes the Shutdown Command Notification Function (see
“Shutdown Command Notification Function” on page 37). Once this function is
called, the shutdown proceeds immediately.

Parameters
None.
Return Values
None.

Throws

None.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 56 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
COM/DCOM e*Way Functions Basic Functions

start-schedule

Syntax

(start-schedul e)
Description

start-schedule requests that the e*Way execute the “Exchange Data with External”
function specified within the e*Way’s configuration file. Does not effect any defined
schedules.

Parameters
None.
Return Values
None.

Throws

None.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 57 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
COM/DCOM e*Way Functions COM/DCOM Functions

stop-schedule

Syntax
(st op- schedul e)
Description

stop-schedule requests that the e*Way halt execution of the “Exchange Data with
External” function specified within the e*Way’s configuration file. Execution is stopped
when the e*Way concludes any open transaction. Does not affect any defined
schedules, and does not halt the e*Way process itself.

Parameters
None.
Return Values
None.

Throws

None.

62 COM/DCOM Functions

This section provides a summary of the COM/DCOM e*Way functions which are:
co-create-instance on page 59
com-invoke on page 60
com-startup on page 61

com-struct-call on page 62

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 58 SeeBeyond Proprietary and Confidential

Chapter 6
COM/DCOM e*Way Functions

co-create-instance

Syntax

(co-create-instance progid server)

or

(co-create-instance progid)

Description

Section 6.2
COM/DCOM Functions

co-create-instance creates an instance of a COM object as specified in the Registry.

Parameters

Name

Type

Description

progid

string

Programmatic identifier for the COM object
or application. See “ProgID” on page 23 for
more information.

server

string

Name of the server where the COM object
resides. Only required if the COM object is
an EXE and does not reside on the local host.

Return Value
handle

Returns a handle to an object upon success.

Boolean

Returns #f and displays the error message if the creation fails.

Throws
None.

Location
None.

Example

(define com appl -handl e (co-create-instance "obj.obj"))

e*Way Intelligent Adapter for COM/DCOM
User’s Guide

59

SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
COM/DCOM e*Way Functions COM/DCOM Functions

com-invoke

Syntax

(cominvoke obj-handle function-name function-type
vector-of-parameters)

Description

com-invoke calls the method of the object with the name of function-name and parses
the vector of parameters as input.

Parameters

Name Type Description

obj handle handle Handle returned by the co-create-
instance function or from another com-
invoke function.

function name string Name of the object.

function type string Types include:

FUNC - function.

PROPERTYGET - to obtain properties.
PROPERTYPUT - to send properties
directly.

PROPERTYPUTREF - to send properties
by reference

optional - as needed by Word, Excel, etc.

vector of parameters vector Function parameters presented as
vectors. Outside parenthesis represent
outer vectors. Inside parenthesis
represent inner vectors. Each inner
vector represents one parameter or
block. Each outer vector represents a set
of parameters.

Return Value

Boolean
Returns #f if the function fails; otherwise, returns #t if it succeeds. The output
parameters to the function call is set in the vector-of-parameters.

Throws
None.

Location
None.

Example

(cominvoke com appl - handl e " FUNCTI ON1" " FUNC' (VECTOR (VECTOR "in"
"VT_BSTR" "Text" "Testing String")))

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 60 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
COM/DCOM e*Way Functions COM/DCOM Functions

com-startup

Syntax

(comstartup "")
Description

com-startup calls the following if the global Monk variable com-appl-server is set by
the user:

(co-create-instance com appl -progi d com appl - server)

Otherwise, it calls:

(co-create-instance com appl - progi d)

Parameters
None (empty string).
Return Value
None.
Throws
None.
Location
None.
Example

(comstartup "")

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 61 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
COM/DCOM e*Way Functions COM/DCOM Functions

com-struct-call

Syntax
(comstruct-call obj-handl e nethod- path)
Description

com-struct-call calls the com-invoke function.

Parameters
Name Type Description
obj-handle Customized Monk object | Object handle.
method-path Message path Interface method node.

Return Value

Monk object
If successful, returns Monk objects representing supported OLE data types.

Boolean
Returns #f if failure.

Throws
None.

Location
None.

Example

(comstruct-call com appl - handl e ~out put %excel . _application. Vi si bl e-
PUT)
where com-appl-handle is the object handle to an Excel application, and
~outputYexcel._application.Visible-PUT is the node path for the COM interface method
on the Monk Structure.

Note: There are three primitives that are in the .dll file that are not normally used: com-
appl-handle, com-appl-progid, and com-appl-server.

e*Way Intelligent Adapter for COM/DCOM
User’s Guide 62 SeeBeyond Proprietary and Confidential

Index

Index

A

additional path 32
auxiliary library directories 32

C

co-create-instance 59

COM settings 38
COM/DCOM e*Way 19, 20, 21
com-invoke 60
communication setup 29
components 6

com-startup 61
com-struct-call 62
configuration 27
configuration files 19
configuration parameters 27

D

down timeout 30

E

e*Way configuration parameters 27
event-send-to-egate function 52

exchange data interval 30

exchange data with external function 34
executable file 19

external connection establishment function 35
external connection shutdown function 36
external connection verification function 35

F

files/ directories created by installation 9
forward external errors 29
functions
co-create-instance 59
com-invoke 60
com-startup 61
com-struct-call 62
event-send-to-egate 52
get-logical-name 53

e*Way Intelligent Adapter for COM/DCOM
User’s Guide

63

send-external-down 54
send-external-up 55
shutdown-request 56
start-schedule 57
stop-schedule 58

G

general settings 28
get-logical-name function 53

Inbound e*Way 21
installation 8
files/directories 9
Windows NT 8
installation procedure
NT 8
intended reader 6
Interaction with the External System 20

J

journal file name 28

M

max failed messages 28
max resends per message 28
monk
notes 32
monk environment initialization file 32

N

negative acknowledgment function 37
No ACK/NAK to External System 19
notes on monk 32

O

Operation System Implementation 19
Outbound e*Way 20
overview 19

P

parameters
additional path 32
auxiliary library directories 32
COM settings 38
communication setup 29

SeeBeyond Proprietary and Confidential

Index

configuration 27
down timeout 30
exchange data interval 30
exchange data with external function 34
external connection establishment function 35
external connection shutdown function 36
external connection verification function 35
forward external errors 29
general settings 28
journal file name 28
max failed messages 28
max resends per message 28
monk environment initialization file 32
negative acknowledgment function 37
positive acknowledgment function 36
process outgoing message function 33
proglID 38
resend timeout 31
server(hostname) 38
shutdown command notification function 37
start exchange data schedule 29
startup function 33
stop exchange data schedule 30
up timeout 31
zero wait between successful exchanges 31
positive acknowledgment function 36
Pre-installation 8
process outgoing message function 33
proglID 38

R

resend timeout 31

S

send-external-down function 54
send-external-up function 55
server(hostname) 38
shutdown command notification function 37
Shutdown Functions 17
shutdown-request function 56
specify file names 18
specify function names 18
start exchange data schedule 29
start-schedule function 57
startup function 33
stcewgenericmonk.exe 19
stcewmscom 20
stop exchange data schedule 30
stop-schedule function 58
supported operating systems 6
system requirements 7

external 7

e*Way Intelligent Adapter for COM/DCOM

User’s Guide 64

U

up timeout 31

W
Windows NT 8

V4

zero wait between successful exchanges 31

SeeBeyond Proprietary and Confidential

	e*Way Intelligent Adapter for COM/DCOM User’s Guide
	Contents
	Introduction
	1.1 Intended Reader
	1.2 Components
	1.3 Supported Operating Systems
	1.4 System Requirements
	1.5 External System Requirements

	Installation
	2.1 Windows NT and Windows 2000 Installation
	2.1.1. Installation Procedure

	2.2 Files/Directories Created by the Installation

	Functional Overview
	3.1 Typical e*Way Architecture
	Basic e*Way Processes
	How to Specify Function Names or File Names

	3.2 COM/DCOM Basics
	3.2.1. COM/DCOM e*Way Overview
	3.2.2. The Executable and Configuration Files
	3.2.3. COM/DCOM e*Way Interaction with the External System
	Outbound COM/DCOM e*Way
	Inbound COM/DCOM e*Way

	3.2.4. COM/DCOM e*Way Functions
	ProgID
	Invoking Methods from a COM Object Interface using Monk

	Configuration
	4.1 e*Way Configuration Parameters
	4.1.1. General Settings
	Journal File Name
	Max Resends Per Message
	Max Failed Messages
	Forward External Errors

	4.1.2. Communication Setup
	Start Exchange Data Schedule
	Stop Exchange Data Schedule
	Exchange Data Interval
	Down Timeout
	Up Timeout
	Resend Timeout
	Zero Wait Between Successful Exchanges

	4.1.3. Monk Configuration
	Additional Path
	Auxiliary Library Directories
	Monk Environment Initialization File
	Startup Function
	Process Outgoing Message Function
	Exchange Data with External Function
	External Connection Establishment Function
	External Connection Verification Function
	External Connection Shutdown Function
	Positive Acknowledgment Function
	Negative Acknowledgment Function
	Shutdown Command Notification Function

	4.1.4. COM Settings
	ProgID
	Server

	Implementation
	5.1 Implementation Notes
	5.1.1. Appropriate SAFEARRAY Use

	5.2 Using the ETD Editor’s Build Tool
	5.3 The Sample Implementation
	5.3.1. Sample Schema Overview
	5.3.2. Installing the Sample Schema
	Importing the Sample Schema

	5.3.3. Configuring the DCOM Server
	5.3.4 Importing the Sample Schema
	5.3.5. Running the Sample Schema

	COM/DCOM e*Way Functions
	6.1 Basic Functions
	event-send-to-egate
	get-logical-name
	send-external-down
	send-external-up
	shutdown-request
	start-schedule
	stop-schedule

	6.2 COM/DCOM Functions
	co-create-instance
	com-invoke
	com-startup
	com-struct-call

	Index
	A
	C
	D
	E
	F
	G
	I
	J
	M
	N
	O
	P
	R
	S
	U
	W
	Z

