
e*Way Intelligent Adapter for
Commerce One
MarketSite User’s Guide

Release 4.5.4
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBI, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 2001-2002 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20021113085317.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents
Contents

Chapter 1

Introduction 7
Overview 7

Intended Reader 7
Components 7

Operational Overview 8
Basic Operations 8

Transmitting Documents Using the Commerce One e*Way Transmitter ETD 8
Receiving Documents Using XPC Server 9
Sending Documents Using XPC Server 9
Help in Java Collaborations Through the xCBL ETD Library and Commerce One XPC Helper
ETD 9

Considerations 11
Authentication with MarketSite and Security 11

Supported Operating Systems 11

System Requirements 12

External System Requirements 12

SeeBeyond Web Site 13

Supporting Documents 13

Chapter 2

Installation 14
Installing XPC 14

Windows NT or Windows 2000 14
Pre-installation 14
Installation Procedure 15
XPC 4.0 and 4.1 Installation 15
Configuring XML Portal Connector 4.1 17
Configuring XPC Manager 18

Loading XPC Manager 18
Configuring the Synchronous Document Support Samples for Commerce One XPC. 19

Files/Directories Created by the Installation 20
Post Installation 23
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents
Chapter 3

Configuration 24
Multi-Mode e*Way Configuration 24

JVM Settings 24
JNI DLL Absolute Pathname 25
CLASSPATH Prepend 26
CLASSPATH Override 26
CLASSPATH Append From Environment Variable 26
Initial Heap Size 27
Maximum Heap Size 27
Maximum Stack Size for Native Threads 27
Maximum Stack Size for JVM Threads 27
Disable JIT 27
Remote Debugging port number 28
Suspend option for debugging 28
Auxiliary JVM Configuration File 28

e*Way Connection Configuration Parameters 28

e*Way Connection for XPC Server Based Modules 29
Connector 29

Type 29
Class 29
Property Tag 29

XPC Config Settings 30
XPC Config Root 30
Default Property File Path 30
Default Property File Name 30

Additional XCBL Processing 30
Soxtype Namespace Processing Instruction 31
Import Namespace Processing Instruction 31

e*Way Connection for Transmitter API Based Modules 31
Connector 31

Type 31
Class 32
Property Tag 32

XPC Settings 32
Document Type 32
Sender 32
Recipient 32
Destination 33
XPC Root 33
client.prop File Path 33
Debug Level 33
Timeout 33
Schema Path 34

Chapter 4

Implementation 35
Implementation Process: Overview 35
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 4 SeeBeyond Proprietary and Confidential

Contents
Considerations 36

Event Types 36
TransmitterAPI : c1mxpc.xsc 36
XPC Server: c1mxpcconfig.xsc 37

Creating the Sample Schema 38
Installing a Sample Schema 39
The buyerorderXPC Sample Schema 40

Configuring the buyerorderXPC Sample 41
ProcessCIn_java Collaboration Rule 43
dump_payload_cr Collaboration Rule 47
dump_payload_eater_cr Collaboration Rule 49
processC1out_java Collaboration Rule 51
send_feeder_cr Collaboration Rule 56

The supplierorderXPC Sample Schema 56
Configuring the SupplierOrder Sample 59
dump_payload_eater_cr Collaboration Rule 61

The TransmitterAsync Sample Schema 62
Configuring the AsyncTransmitter Sample 64
c1collabrule 65

The TransmitterSync Sample Schema 66
Configuring the TransmitterSync Sample 68
cr_Marketsite Collaboration Rule 69

The buyerorderxpcftp Sample Schema 70
The supplierxpc Sample Schema 71
The buyerxpc Sample Schema 72
The supplierxpcsync Sample Schema 73

Configuring the supplierxpcsync Sample 75
JMS Considerations 76

Order_Template 76
Supporting Documents 76

Chapter 5

Commerce One MarketSite e*Way Methods 78
com.stc.eways.c1mxpc.C1MXPC 78

Class C1MXP 78
C1MXPC 79
getDestination 79
getDocumentType 79
getPassword 80
getRecipient 80
getSender 80
getSyncResponseString 81
getUserName 81
getXmlString 81
initialize 82
reset 82
sendToMarketSite 83
setDestination 83
setDocumentType 84
setPassword 84
setRecipient 85
setSender 85
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 5 SeeBeyond Proprietary and Confidential

Contents
setUsername 85
setXmlString 86

Class C1MXPCConfigHelper 86
C1MXPCConfigHelper 87
getDocFileName 87
getErrorHandlerConfig 87
getErrorStoreConfig 88
getFileStoreConfig 88
getOrderStoreConfig 88
getOriginalMessageStoreConfig 89
getPlanningScheduleStoreConfig 89
getTransferMode 89
loadXPCServicesConfig 90
main 90
setDocFileName 90
setErrorStoreConfig 91
setFileStoreConfig 91
setOrderStoreConfig 92
setOriginalMessageStoreConfig 92
setPlanningScheduleStoreConfig 93
setTransferMode 93

Class FileProperties 93
FileProperties 94
close 94
load 94
save 95

Class eGateRequestor 95
eGateRequestor 95
setJMSTopicName 96
getJMSTopicName 96
setJMSHostName 96
getJMSHostName 97
setJMSPort 97
getJMSPort 97
initializeEGateJMS 98
publishToEGate 98
closeEGateJMS 99
main 99
onException 99

Class eGateRequestor.eGateRequestorException 100
eGateRequestor.eGateRequestorException 100

Index 101
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 6 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This document describes how to install, configure, and implement the e*Way
Intelligent Adapter for Commerce One™ MarketSite™ (Commerce One MarketSite
e*Way) using the XML Portal Connector (XPC) framework.

1.1 Overview
The Commerce One MarketSite e*Way provides a method of exchanging data across an
enterprise that incorporates the Commerce One MarketSite application and a variety of
other applications. The e*Way provides both buy-side and sell-side solutions and
utilizes the Commerce One Portal Connector (XPC). By leveraging MarketSite’s
automated procurement cycle and XML technology, the e*Way transfers information
between MarketSite and e*Gate Integrator, enabling information to be disseminated
throughout the enterprise.

Synchronous and Asynchronous document submission is performed by the e*Way
using the Commerce One Application Programming Interface (API) referred to as the
Transmitter API, as well as the XPC server.

1.1.1. Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the e*Gate system; to have moderate to advanced-level
knowledge of Windows operations and administration; and to be thoroughly familiar
with the Commerce One MarketSite XPC application framework, and Windows-style
GUI operations.

1.1.2. Components
The following components comprise the Commerce One MarketSite e*Way:

! Configuration files, which the e*Way Editor uses to define configuration
parameters

A complete list of installed files appears in Table 1 on page 20.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 7 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction Operational Overview
1.2 Operational Overview

1.2.1. Basic Operations
Commerce One provides buyers and suppliers with the ability to come together in the
electronic marketplace. Commerce One’s solutions are based on a suite of products,
services and standards that provide organizations with the vehicle to extend existing
internal systems real-time access to the Internet trading communities.

The Commerce One MarketSite e*Way supports both MarketSite 3.2 and MarketSite
4.0. Both versions of MarketSite implement the XML Common Business Library (xCBL)
messaging standard. xCBL has been specifically designed for e-commerce. (For more
information on xCBL, see http://www.xcbl.org/.)

Figure 1 on page 10 portrays the relationship between the Commerce One MarketSite
e*Way and MarketSite.

The Commerce One MarketSite e*Way provides the ability to exchange documents
between a trading partner using e*Gate and the CommerceOne XPC platform with
another trading partner registered with MarketSite. The trading partner may be acting
as either a buyer sending documents, such as orders, to a supplier registered on
MarketSite, or a supplier processing orders or other requests, and sending back order
responses to the buyer via MarketSite. These documents are exchanged in xCBL format.

The e*Way utilizes two different interfaces provided by CommerceOne for XPC users
communicating with MarketSite:

! Transmitter Application Programming Interface (API): allows users to create
applications that send documents directly to MarketSite (asynchronous) or send
and receive documents (synchronous) without the XPC server.

! XPC Server: provides an extendable environment for processing documents
exchanged with MarketSite. The XPC server may be used with pre-configured
services or with services configured with the user’s custom XPC components. The
XPC server’s main interface for sending and receiving documents is the file system.
Document files are polled from inbound and outbound directories. It has two types
of configurable services; document services and timed services. Document services
handle incoming documents from MarketSite, while Timed services handle sending
documents to MarketSite.

Transmitting Documents Using the Commerce One e*Way Transmitter
ETD

An e*Way Connection and the associated e*Way interface ETD may be used in a Java™
Collaboration to send documents synchronously or asynchronously directly to
MarketSite via the Transmitter API. The Transmitter API also supports dynamic
transmission to different suppliers. The XPC server interface supports asynchronous
exchange only. Response to documents sent synchronously may be obtained via this
Transmitter ETD. Responses for documents sent asynchronously must be received via
the XPC server.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 8 SeeBeyond Proprietary and Confidential

http://www.xcbl.org/

Chapter 1 Section 1.2
Introduction Operational Overview
Note: Among the advantages of using the Transmitter API is the ability to send
documents that must be sent synchronously to MarketSite. It also allows you to
send documents to multiple suppliers.

The Transmitter ETD component is primarily used by buyers for sending orders
asynchronously, or price checks and availability checks sent synchronously.

Receiving Documents Using XPC Server

Documents may be received from MarketSite via XPC Document Services. The
Commerce One e*Way utilizes the pre-configured Trading Partner Configuration.
When installing XPC, you must run the Configure GUI and select the Pre-configure
Trading Partner Configuration button to ensure that the pre-configured services are
installed. The pre-configured services provide a simple interface for obtaining and
sending documents to MarketSite through inbound and outbound directories.

The Batch e*Way is used to exchange these documents in e*Gate. Collaborations in
e*Gate, are used to process documents and generate the appropriate responses and
document error-handling.

The XPC server may be used by a buyer to receive response documents or request
documents sent by the supplier. It may also be used by a supplier receiving request
documents from a buyer.

Sending Documents Using XPC Server

Documents may be generated in an e*Gate Java Collaboration and sent to MarketSite
via the Batch e*Way to “drop” them into the configured XPC server outbound
directory. The XPC server must simply have the appropriate Timed service for the
documents enabled. As files appear in the outbound directory, the XPC server picks
them up and sends them to MarketSite. The supplier information for these outbound
documents are specified in a text file located in the XPC root directory
($XPCROOTDIR/tpid_map/map.txt).

This component may be used by a buyer to send request documents to a supplier. It
may also be used by a supplier to send request documents to a buyer or response
documents for request documents received from the buyer.

Help in Java Collaborations Through the xCBL ETD Library and
Commerce One XPC Helper ETD

Java Collaboration used for processing xCBL documents must use the xCBL ETD
library, which is installed as a separate add-on component. This library was generated
from DTDs obtained from www.xcbl.org.

Note: Commerce One expects the two lines prepended to these documents, specifying that
they are SOX based documents. For example, for xCBL version 3:

<?soxtype urn:x-
commerceone:document:com:commerone:XCBL30:XCBL30.sox$1.0?>
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 9 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction Operational Overview
<?import urn:x-
commerceone:document:com:commerceone:XCBL30:XCBL30:sox$1.0?>

For Collaborations involving the XPC services, an ETD that can be loaded in the e*Gate
Java Collaboration Editor called “c1mxpcconfig” is provided to help the user determine
where inbound files must be obtained by the Batch e*Way, where outbound files must
be stored by the Batch e*Way, what file name prefix is associated with specific
document types, where the supplier map file is located. The class associated with this
ETD is com.stc.eways.c1mxpc.C1MXPCConfigHelper. The associated XSC file for this
interface ETD is c1mxpcconfig.xsc

The following diagram provides a more detailed view of the Commerce One
MarketSite e*Way components.

Figure 1 Commerce One MarketSite Information Flow

XPC server

MarketSite

doc
svc

timed
svc

Inbound xCBL document

XPC
Inound

directory

XPC
Outbound
directory

Outbound xCBL document

Internet

 C1 Transmitter API ETD
 (c1mxpc.xsc)

Dynamic Batch e*Way
configured based on XPC

Config Helper ETD

XPC Config Helper
ETD

(c1mxpcconfig.xsc}

SAP e*Way
(for example)

SAP system

SAP e*Way
(for example)

e*
G

at
e

C
ol

la
bo

ra
tio

n

Database e*Way
(for example)

e*
G

at
e

C
ol

la
bo

ra
tio

n

Database

e*
G

at
e

C
ol

la
bo

ra
tio

n

XPC services
configuration

ge
tX

P
C

se
rv

ic
e

co
nf

ig

JMS message service
(an option for persisting

events)

IQs or
JMS connection

IQs or
JMS connection

Supplier
info

tpid_map/
map.txt

MarketSite
Parameters

Sender
Account

Info
(client.prop)

Via HTTPS or Sonic
MQ

e*Gate

Via HTTPS

Sync
Doc

Handler

Synchronous
Doc Response

Response
Template

Synchronous
Doc Request
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 10 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction Supported Operating Systems
1.2.2. Considerations
The classes are located in stcc1mxpc.jar installed in ..\eGate\client\classes and ..
eGate\Server\registry\...\classes.

Use a Multimode e*Way (stceway.exe) to create the Collaboration Rule for data
mapping and for sending documents to MarketSite.

xCBL documents sent to MarketSite must contain SOX headers.

1.2.3. Authentication with MarketSite and Security
The MarketSite Administrator defines the exact requirements for correctly configuring
Authentication and Security.
Transmitter API

Authentication and security is based on configuration parameters specified by the
user (usually in the client.prop file). The e*Way must be informed where this file is
located to enable the successful retrieval of information, when communicating with
MarketSite. For more information see Chapter 3, Configuring the Commerce One
MarketSite e*Way, client.prop File Path on page 33

Note: CommerceOne stores the encrypted password in the configuration file. The
passwords are then decrypted by the appropriate CommerceOne API call.

XPC Server
Authentication and security is based on configuration information specified in the
Configure GUI. This information is stored in an XPC configuration file also. Since
communication with MarketSite performed by the XPC server, no authentication
configuration information needs to be specified on the e*Gate side. The XPC
Security Manager is used.

Note: XPC may use username/password authentication or certificates. If communicating
with MarketSite 3.2, HTTP SSL is used with client authentication. You are then
acting as a client to the MarketSite HTTP server. In MarketSite 4.0, support is
provided for HTTPs or Sonic MQ for transport. Sonic MQ uses username/
password for authentication.

1.3 Supported Operating Systems
The Commerce One MarketSite e*Way is available on the following operating systems:

! Windows 2000, Windows 2000 SP1, Windows 2000 SP2, and Window 2000 SP3

! Windows NT 4.0 SP6a

Note: Open and review the Readme.txt for the Commerce One MarketSite e*Way
regarding any additional requirements prior to installation. The Readme.txt is
located on the Installation CD_ROM at setup\addons\ewc1.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 11 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction System Requirements
1.4 System Requirements
To use the Commerce One MarketSite e*Way, you need the following:

! 170 MB of disk space is required for installation. Additional disk space may be
required for e*Way executable, configuration, library, and script files. This disk
space is required on both the Participating and the Registry Host. Additional disk
space is required to process and queue the data that this e*Way processes; the
amount necessary varies based on the type and size of the data being processed,
and any external applications performing the processing. XPC also requires
additional disk space for document processing and envelope/message storage. 2
GB of available disk space is recommended.

Note: The disk space noted above is dependent upon the number of processors used and the
expected load (message size and frequency). See the XML Portal Connector
(XPC) Installation and Administration Guide for Windows for more
information on hardware and disk space requirements.

! An e*Gate Participating Host, version 4.5.1 or later.

! The Batch e*Way (installed with this e*Way).

! xCBL ETD Library 3.0 (installed separately).

! Open and review the Readme.txt for the Commerce One MarketSite e*Way for any
additional requirements prior to installation. The Readme.txt is located on the
Installation CD_ROM at setup\addons\ewc1.

! The e*Gate API Kit (JMS).

1.5 External System Requirements
The Commerce One MarketSite e*Way requires the following external applications:

! XML Portal Connector (XPC) 4.0 and 4.1. This is included in the e*Way Intelligent
Adapter for Commerce One MarketSite installation.

! Commerce One MarketSite XPC server.

! Java 2 Runtime Environment or JRE v 1.2.2. This is required for the installation of
XML Portal Connector (XPC) 4.0.

! Java 2 Runtime Environment or JRE 1.3.0_002 with HotSpot is required for the
installation of Sonic MQ Broker.

! Java 2 Runtime Environment or JRE v 1.3.1. This is required for the installation of
XML Portal Connector (XPC) 4.1.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.6
Introduction SeeBeyond Web Site
1.6 SeeBeyond Web Site
The SeeBeyond Web site is your best source for up-to-the-minute product news and
technical support information. The site’s URL is

http://www.SeeBeyond.com

1.7 Supporting Documents
The following SeeBeyond documents provide additional information about the
functionality explained in this guide:

See the e*Xchange eBusiness Integration Suite Primer for a complete list of e*Xchange eBI
Suite-related documentation. Refer also, to the appropriate Microsoft Windows or
UNIX documents, if necessary.

In addition to the above SeeBeyond documents, additional information on using
CommerceOne can be found in the following documents:

! Batch e*Way Intelligent Adapter User’s Guide

! Creating an End-to-end Scenario with e*Gate Integrator

! e*Gate Integrator Collaboration Services Reference Guide

! e*Gate Integrator Installation Guide

! e*Gate Integrator Intelligent Queue Transport User’s Guide

! e*Gate Integrator System Administration and Operations Guide

! e*Gate Integrator User’s Guide

! SeeBeyond JMS IQ User’s Guide

! Standard e*Way Intelligent Adapters User’s Guide

! XML Portal Connector Developer Guide and API Reference

! XML Portal Connector (XPC) Installation and Administration Guides for Windows or
Solaris.

! XML Portal Connector (XPC) 4.0/4.1 FAQ
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 13 SeeBeyond Proprietary and Confidential

http://www.seebeyond.com/

Chapter 2

Installation

This chapter covers how to install the Commerce One MarketSite e*Way. It also
includes a list of the files and directories the installation process creates.

2.0.1. Installing XPC
Documents are received from MarketSite via XPC Document Services. The Commerce
One MarketSite e*Way utilizes the pre-configured Trading Partner Configuration.
When installing XPC, you must run the Configure GUI and select the Pre-configure
Trading Partner Configuration button to ensure that the pre-configured services are
installed. Pre-configured services provide a simple interface for obtaining and sending
documents to MarketSite through inbound and outbound directories.

Documents can be generated in an e*Gate Java Collaboration and sent to MarketSite,
via the Batch e*Way, and “dropped” into the configured XPC server outbound
directory. The XPC Server must simply have the appropriate Timed service for the
documents enabled. As files appear in the outbound directory, the XPC server picks
them up and sends them to MarketSite. Supplier information for these outbound
documents is specified in a text file located in the XPC root directory ($XPCROOTDIR/
tpid_map/map.txt).

XPC 4.0 and XPC 4.1 are installed during the Commerce One MarketSite e*Way
installation for Windows For Windows NT and Windows 2000 (XPC 4.1 must be
installed over an existing XPC 4.0 installation).

2.1 Windows NT or Windows 2000

2.1.1. Pre-installation
1 Open and review the Readme.txt for the Commerce One MarketSite e*Way for any

additional requirements prior to the installation. The Readme.txt is located on the
Installation CD_ROM at setup\addons\ewc1.

2 XPC 4.0, 4.1 and MQ Broker require JRE 1.2.2, 1.3.0, and 1.3.1 installed on the
system prior to prior to installation. JRE 1.2.2, 1.3.0 and 1.3.1 are available on the
installation CD ROM in the ..\setup\addons\ewc1\jre\win32 or \sparc26
directories.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.1
Installation Windows NT or Windows 2000
3 Exit all Windows programs before running the setup program, including any anti-
virus applications.

4 It is recommended that write caching for arrayed drives where SonicMQ Broker is
to be installed be turned off. Write caching increases the possibility for messages to
be lost when a broker machine fails. For more information on SonicMQ Broker and
write cashing see the XPC Installation and Administration Guide.

5 Administrator privileges are required to install this e*Way.

2.1.2. Installation Procedure
To install Commerce One MarketSite e*Way and XPC 4.1 on a Windows NT/2000 system

1 Log in as an Administrator to the workstation on which the e*Way is to be installed.

2 Insert the installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s “Autorun” feature is enabled, the setup application should
launch automatically; skip ahead to step 4. Otherwise, use Windows Explorer or the
Control Panel’s Add/Remove Applications feature to launch the file setup.exe on
the CD-ROM drive.

4 The InstallShield setup application launches. Follow the on-screen instructions to
begin installation of the e*Way.

Note: Be sure to install the e*Way files in the suggested “client” installation directory.
The installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not
change the suggested “installation directory” setting.

5 Prior to installing XPC 4.0, installation searches for an installed version of Java
Virtual Machine JRE 1.2.2. If it is not found, it is automatically installed at this point.

2.1.3. XPC 4.0 and 4.1 Installation
6 Install XPC 4.0. When asked, during installation, to select the required version of

the Java Virtual Machine (see Figure 2) it is essential that even though the correct
version may be listed in the selection window, the user must click on the Browse
button and specify the absolute path of the correct JRE (JVM) java.exe. XPC 4.0
requires JRE 1.2.2 (See Figure 2).
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 15 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.1
Installation Windows NT or Windows 2000
Figure 2 XPC Installation, Select JRE (JVM)

7 Enter the XPC Server name. This can be left as defaultserver.

8 Select the install destination folder. The default can be used if appropriate.

9 At this point XPC installation is ready to start copying program files. Sonic MQ is
also installed at this time. Click Next to proceed.

10 When the install wizard is finished installing XML Portal Connector 4.0, the user is
prompted to restart the computer. Select No, and click Finish to proceed with the
installation.

11 The XPC 4.1 installation wizard begins. Continue with the installation. When
prompted for a password enter Admin.

12 Prior to installing XPC 4.1, installation searches for an installed version of (JVM)
JRE 1.3.1. If JRE 1.3.1. is not found, it is automatically installed at this point.

13 As in step 1, When asked during installation to select the required version of the
Java Virtual Machine it is essential that even though the correct version may be
listed in the selection window, the user must click on the Browse button and specify
the absolute path of the correct JRE (JVM) java.exe. XPC 4.1 requires JRE 1.3.1.

14 Again, when the installation wizard has finished installing XML Portal Connector
4.1 the user is prompted to restart the computer. Select No, and click Finish to
proceed with the Commerce One MarketSite e*Way installation.

15 When the e*Way installation is complete, reboot the computer. The computer must
be restarted before XPC can be configured.

Note: The e*Way Configuration parameters are discussed in Chapter 3. Once you have
installed and configured this e*Way, you must incorporate it into a schema by
defining and associating the appropriate Collaborations, Collaboration Rules, IQs,
and Event Types before this e*Way can perform its intended functions. For more
information about any of these procedures, please see the online Help system.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.1
Installation Windows NT or Windows 2000
For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.

2.1.4. Configuring XML Portal Connector 4.1
1 You must use Start-> XML Portal Connector -> Configure to specify the

MarketSite configuration. This may be obtained during MarketSite registration. For
MarketSite 3.2, you must specify the correct certificate and use HTTPS (see Figure 3)

2 Run Start->XML Portal Connect-> Invoker. Using Invoker, perform a ping test. A
successful ping test receives a got pong! response.

Note: Make sure the XPC Server is started before you begin these steps. If XPC Server is
not running, the Configure XPC tool will not work.

Figure 3 .Configure XPC Dialog Box
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.1
Installation Windows NT or Windows 2000
3 When the Configure XPC Dialog Box is launched, click on Preconfigure Trading
Partner. Stop the XPC server, then restart it and wait for about 5 minutes until all of
the Java process are done. This preconfigures the services that can be viewed using
the XPC Manager

4 The Supplier information is specified in the file %xpcroot%\tpid_map\map.txt for
the XPC server. For the transmitter ETD component of the e*Way, use the
setSupplier method. This allows you to set multiple suppliers.

2.1.5. Configuring XPC Manager
The XPC configuration can be performed by accessing the XPC Manager via the
browser, located on the XPC machine.

Loading XPC Manager

Before running the XPC Manager, first load XPC’s self-signed certificate into the
browser. This certificate is automatically created when you install XPC. To load the self-
signed certificate on Internet Explorer 5, do the following:

1 Select Tools, Internet Options, Content Tab, Certificates, Import.

2 Select <%XPCROOT%>/bin/client.p12.

Load XPC Manager as follows:

1 Start the XPC server.

2 Browse to the following URL:

https://localhost:4433/servlet/XPCManager (case sensitive)

Note: If Configure XPC is used to change the port that the XPC server is listening on from
the default of 4433, the URL also needs to be suitably modified. If you cannot load
XPC Manager, restart XPC from the command line and check the logs.

The following services must be enabled:

! XPCAvailability CheckRequest30Inbound

! XPCOrder30Inbound

! XPCOrderResponseFromOrder30Outbound

! XPCOrderStatusRequest30Inbound

! XPCPriceCheckRequest30Inbound

! XPCOrder30Outbound

! XPCOrderResponse30Inbound

To support AdvancedShipNotice, Invoice, and Change Order XCBL docs, and other
doc types, the following services should also be enabled (depending on the role of
buyer or supplier):

! XPCAdvanceShipmentNotice30Inbound
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.1
Installation Windows NT or Windows 2000
! XPCAdvanceShipmentNotice30Outbound

! XPCChangeOrder30Inbound

! XPCChangeOrder30Outbound

! XPCInvoice30Inbound

! XPCInvoice30Outbound

! XPCOrderResponseFromChangeOrder30Outbound

More services can be enabled if necessary. The above list contains the minimum set
recommended by the XPC 4.1 FAQ

Note: Before updating your services in the XPC Manager, it is recommended to backup
the following directory:

<rootdir>:\commerceone\Xpc\runtime\servers\defaultserver\config\service

2.1.6. Configuring the Synchronous Document Support Samples for
Commerce One XPC.

To configure the Document Support Samples for the sample schemas do the following:

1 Extract supplierxpcsync_MyIntegrator_Java.zip from the ewc1 sample directory to
a temporary directory.

2 Back up all existing files in the following directories:

<%XPCROOT%>\sample\com\commerceone\sample\xpc\my_integrators
<%XPCROOT%>\lib\com\commerceone\xpc\my_integrators
<%XPCROOT%>\sample\classes\com\commerceone\xpc\my_integrators
<%XPCROOT%>\etc\classpath

3 Copy the following precompiled class files extracted from the .zip file:

myAvailabilityCheckIntegrator30.class
myOrderStatusIntegrator30.class
myPriceCheckIntegrator30.class

copying these files to the following location:

<%XPCROOT%>\lib\com\commerceone\xpc\my_integrators

4 Copy the e*Gate property file egateservice.properties that is included in the
supplierxpcsync_MyIntegrator_Java.zip file to the following location:

<%XPCROOT%>\runtime\servers\defaultserver\config\egateservice.
properties

(For further information refer to the Readme.txt, step B, included with
supplierxpcsync_MyIntegrator_Java.zip.)

5 Append the following two lines:

<%XPCROOT%>:/eGate/client/classes/stcc1mxpc.jar
<%XPCROOT%>:/eGate/client/classes/stcjms.jar

to the following file on the XPC machine:

<%XPCROOT%>\etc\classpath\default
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Installation Files/Directories Created by the Installation
Note: If e*Gate is installed on the machine then simply append the lines to the above file. If
e*Gate is not installed on this machine, copy these from the e*Gate machine and add
them to the respective path, then append the files to the above file. (For further
information refer to the Readme.txt, step D, included with
supplierxpcsync_MyIntegrator_Java.zip.)

6 Restart XPC after completing the above in order for the changes to take place.

7 This is sufficient for the purposes of the sample schemas. Developers interested in
further configuration of the samples may consult the Readme.txt file included in the
supplierxpcsync_MyIntegrator_Java.zip file.

2.2 Files/Directories Created by the Installation
The Commerce One MarketSite e*Way installation process installs the following files
within the e*Gate directory tree. Files are installed within the “egate\client” tree on the
Participating Host and committed to the “default” schema on the Registry Host.

Table 1 Files created by the Participating Host installation

e*Gate Directory File(s)

configs\c1mxpc stcc1mxpc.def
stcc1mxpcconfig.def

configs\stcewgenericjava\ stecewc1.def

classes\ stcc1mxpc.jar

etd\ c1mxpc.ctl
c1mxpcconfig.ctl

etd\c1mxpc\ c1mxpc.xsc
c1mxpcconfig.xsc

ThirdParty\jdom\jdom-b6\ ant.jar
collections.jar
jdom-jdk11.jar
jdom.jar
xerces.jar
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 20 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Installation Files/Directories Created by the Installation
ThirdParty\xpc41 activation.jar
broker.jar
bussdocs.jar
ccs_all.jar
ccs_dir.jar
ccs_event.jar
ccs_install.jar
ccs_server.jar
ccs_util.jar
ccs_xdk.jar
ccs_xdkdir.jar
client.jar
enhydra.jar
fscontext.jar
hotFS.jar
iaik.jar
jdbc2_0-stdext.jar
jigsawlite.jar
jmail.jar
jms.jar
jndi.jar
jsdk.jar
ldap.jar
mail.jar
mspconfig.class
Opta2000.zip
Oracle.zip
providerutil.jar
sax.jar
servlet.jar
siswrapper.jar
stcc1mxpc.jar
swingall.jar
vgateway.jar
xcbl30.jar
xmlc.jar
xpc.jar

Table 2 Files Created in Conjunction with the Batch e*Way

e*Gate Directory File(s)

bin\ stcewgenericmonk.exe
stc_ewftp.dll
stc_monkfilesys.dll

configs\stcewgenericmonk\ batch.def

Table 1 Files created by the Participating Host installation

e*Gate Directory File(s)
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Installation Files/Directories Created by the Installation
monk_library\batch\ batch-dynamic-init-c1.monk
batch-dynamic-proc-out-c1.monk
batch-dynamic-send-to-egate-c1.monk
batch-exchange-data-c1.monk

eGate\client\monk_scripts\common batch_eway_data.jar
batch_eway_error.jar
batch_eway_order.jar
batch_eway_data.xsc
batch_eway_error.xsc
batch_eway_order.xsc

\eGate\client\etd\batchclient\ FtpFileETD.xsc

batch-ack.monk
batch-dynamic-init.monk
batch-dynamic-proc-out.monk
batch-dynamic-send-to-egate.monk
batch-exchange-data.monk
batch-exchange-utils.monk
batch-ext-connect.monk
batch-ext-shutdown.monk
batch-ext-verify.monk
batch-fetch-files-from-remote.monk
batch-fetch-named-files.monk
batch-init.monk
batch-nak.monk
batch-persist.monk
batch-post-transfer.monk
batch-proc-out.monk
batch-regular-init.monk
batch-regular-proc-out
batch-send-path-file.monk
batch-shutdown-notify.monk
batch-startup.monk
batch-utils.monk
batch-validate-params.monk
file-ext-connect.monk
file-ext-shutdown.monk
file-ext-verify.monk
file-fetch.monk
file-fetch-path.monk
file-init.monk
file-remote-path-list.monk

Table 2 Files Created in Conjunction with the Batch e*Way

e*Gate Directory File(s)
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Installation Files/Directories Created by the Installation
2.2.1. Post Installation
After installing the Commerce One MarketSite e*Way, run the following command:

java com.stc.eways.clmxpc.InstallJCSRC

to update the .jcsrc file, which affects the behavior of the xCBL ETD and XML Builder.

stcc1mxpc.jar (the e*Way’s jar file) must be in your classpath.

file-remote-post-transfer.monk
file-rmt-list.monk
file-rmt-post-transfer.monk
file-send.monk
file-send-path-file.monk
file-startup.monk
file-vaildate-params.monk
ftp-connect.monk
ftp-disconnect.monk
ftp-ext-connect.monk
ftp-ext-shutdown.monk
ftp-ext-verify.monk
ftp-fetch.monk
ftp-fetch-path.monk
ftp-init.monk
ftp-pre-post-commands.monk
ftp-remote-path-list.monk
ftp-remote-post-transfer.monk
ftp-rmt-list.monk
ftp-rmt-post-transfer.monk
ftp-send.monk
ftp-send-path-file.monk
ftp-startup.monk
ftp-validate-params.monk
local-post-transfer.monk

Table 2 Files Created in Conjunction with the Batch e*Way

e*Gate Directory File(s)
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 3

Configuration

This chapter describes how to configure the Multi-Mode e*Way and the Commerce One
MarketSite e*Way Connection.

3.1 Multi-Mode e*Way Configuration
A Multi-Mode e*Way is a multi-threaded component used to route and transform data
within e*Gate. Unlike traditional e*Ways, Multi-Mode e*Ways can use multiple
simultaneous e*Way Connections to communicate with several external systems, as
well as IQs or JMS IQ Managers. Multi-Mode e*Way properties are set using the
Enterprise Manager.

To create and configure a New Multi-Mode e*Way:

1 Select the Navigator’s Components tab.

2 Open the host and control broker on which you want to create the e*Way.

3 On the Palette, click on the Create a New e*Way button.

4 The New e*Way Component window opens. Enter the name of the new e*Way, then
click OK.

5 Right-click the new e*Way and select Properties edit its properties.

6 When the e*Way Properties window opens, click on the Find button beneath the
Executable File field, and select an executable file. For the purposes of the sample
select stceway.exe (stceway.exe is located in the “bin\” directory).

7 Under the Configuration File field, click on the New button. When the Settings
page opens, set the configuration parameters for this configuration file.

8 After selecting the desired parameters, save the current configuration. Close the .cfg
file and select OK to close the e*Way Properties Window.

For more information on using the Configuration Editor, see the Configuration Editor’s
online Help or see the e*Gate Integrator User’s Guide.

Multi-Mode e*Way Configuration Parameters

3.1.1. JVM Settings
The JVM Settings control basic Java Virtual Machine settings.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration Multi-Mode e*Way Configuration
! JNI DLL Absolute Pathname on page 25

! CLASSPATH Prepend on page 26

! CLASSPATH Override on page 26

! CLASSPATH Append From Environment Variable on page 26

! Initial Heap Size on page 27

! Maximum Heap Size on page 27

! Maximum Stack Size for Native Threads on page 27

! Maximum Stack Size for JVM Threads on page 27

! Disable JIT on page 27

! Remote Debugging port number on page 28

! Suspend option for debugging on page 28

! Auxiliary JVM Configuration File on page 28

JNI DLL Absolute Pathname

Description

Specifies the absolute pathname to where the JNI DLL installed by the Java 2 SDK
1.3.1_02 is located on the Participating Host.

Required Values

A valid pathname.

Additional Information

The JNI dll name varies on different O/S platforms:

The value assigned may contain a reference to an environment variable. To do this,
enclose the variable name within a pair of % symbols. For example:

%MY_JNIDLL%

Such variables are used when multiple Participating Hosts are used on different
platforms.

Note: To ensure that the JNI DLL loads successfully, the Dynamic Load Library search
path environment variable must be set appropriately to include all the directories
under the Java 2 SDK (or JDK) installation directory that contain shared libraries
(UNIX) or DLLs (NT).

OS Java 2 JNI DLL Name

Windows NT 4.0/ Windows 2000 jvm.dll

Solaris libjvm.so
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration Multi-Mode e*Way Configuration
CLASSPATH Prepend

Description

Specifies the paths to be prepended to the CLASSPATH environment variable for the
JVM.

Required Values

An absolute path or an environmental variable. This parameter is optional.

Additional Information

If left unset, no paths are prepended to the CLASSPATH environment variable.

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_PRECLASSPATH%

CLASSPATH Override

Description

Specifies the complete CLASSPATH variable to be used by the JVM. This parameter is
optional. If left unset, an appropriate CLASSPATH environment variable (consisting of
required e*Gate components concatenated with the system version of CLASSPATH) is
set.

Note: All necessary JAR and ZIP files needed by both e*Gate and the JVM must be
included. It is advised that the CLASSPATH Prepend parameter be used.

Required Values

An absolute path or an environmental variable. This parameter is optional.

Additional Information

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_CLASSPATH%

CLASSPATH Append From Environment Variable

Description

Specifies whether the path is appended for the CLASSPATH environmental variable to
jar and zip files needed by the JVM.

Required Values

YES or NO. The configured default is YES.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration Multi-Mode e*Way Configuration
Initial Heap Size

Description

Specifies the value for the initial heap size in bytes. If set to 0 (zero), the preferred value
for the initial heap size of the JVM is used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Heap Size

Description

Specifies the value of the maximum heap size in bytes. If set to 0 (zero), the preferred
value for the maximum heap size of the JVM is used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Stack Size for Native Threads

Description

Specifies the value of the maximum stack size in bytes for native threads. If set to 0
(zero), the default value is used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Stack Size for JVM Threads

Description

Specifies the value of the maximum stack size in bytes for JVM threads. If set to 0 (zero),
the preferred value for the maximum heap size of the JVM is used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Disable JIT

Description

Specifies whether the Just-In-Time (JIT) compiler is disabled.

Required Values

YES or NO.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Configuration e*Way Connection Configuration Parameters
Note: This parameter is not supported for Java Release 1.

Remote Debugging port number

Description

Specifies the port number by which the e*Gate Java Debugger can connect with the
JVM to allow remote debugging.

Required Values

An unused port number in the range 2000 through 65535. If not specified, the e*Gate
Java Debugger is not able to connect to this e*Way.

Suspend option for debugging

Description

Allows you to specify that the e*Way should do no processing until an e*Gate Java
Debugger has successfully connected to it.

Required Values

YES or No. YES suspends e*Way processing until a Debugger connects to it. NO
enables e*Way processing immediately upon startup.

Auxiliary JVM Configuration File

Description

Specifies an auxiliary JVM configuration file for additional parameters.

Required Values

The location of the auxiliary JVM configuration file.

3.2 e*Way Connection Configuration Parameters
e*Way configuration parameters are set using the Configuration Editor.

To change e*Way Connection configuration parameters

1 In the Enterprise Manager’s Component editor, select the e*Way Connection you
want to configure and display its properties.

2 Under Configuration File, click New to create a new file, Find to select an existing
configuration file, or Edit to edit the currently selected file.

3 In the Additional Command Line Arguments box, type any additional command
line arguments that the e*Way may require, taking care to insert them at the end of
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Configuration e*Way Connection for XPC Server Based Modules
the existing command-line string. Be careful not to change any of the default
arguments unless you have a specific need to do so.

For more information about how to use the Configuration Editor, see the Configuration
Editor’s online Help or see the e*Gate Integrator User’s Guide.

3.3 e*Way Connection for XPC Server Based Modules
When creating an XPC e*Way connection, the c1mxpcconfig.def file is used. The
following parameters are used to configure the e*Way Connection’s configuration
parameters necessary to facilitate communication with the XPC Server and are
organized into the following sections:

! Connector on page 31

! XPC Settings on page 32

3.3.1. Connector
The Connector Settings control basic operational parameters.

Type

Description

Specifies the type of connection.

Required Values

c1mxpcconfig is the default value for Commerce One MarketSite XPC configuration
connection.

Class

Description

Specifies the class name of the Commerce One MarketSite XPC connector object.

Required Values

com.stc.eways.c1mxpc.C1MXPCConnector is the default value.

Property Tag

Description

Specifies data source identity value required by EBobConnectorFactory.

Required Values

A string.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Configuration e*Way Connection for XPC Server Based Modules
3.3.2. XPC Config Settings
The XPC Config Settings parameters contain the information needed to access XPC.

XPC Config Root

Description

Specifies the root directory where XPC is accessible locally (file system) to e*Gate. For
example, the network drive letter for NT/Win2K systems or mount point for NFS
share. This XPC Root directory is prepended to the XPC ”default property file path” to
obtain the full path for the XPC default property file associated with the underlying
inbound or outbound services. The path is normally modified/configured via the XPC
user interface

Required Values

The valid XPC root directory.

Default Property File Path

Description

Specifies the location of the default property file which contains information about
inbound and outbound services. This file path is concatenated with the “XPC Root
directory” to obtain the full path for the XPC default property file.

Required Values

A string.

Default Property File Name

Description

Specifies the name of your default property file, which contains information about
inbound and outbound services. The “XPC Root directory” is concatenated with the
“XPC default property file path” to obtain the full path for this XPC default property
file. Always ensue a current copy of this property file is available to e*Gate. After a
configuration change using the XPC interface tool, this file must be copied to the e*Gate
system.

Required Values

A string.

3.3.3. Additional XCBL Processing
The parameters in this section are used to specify additional XCBL processing
information.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Configuration e*Way Connection for Transmitter API Based Modules
Soxtype Namespace Processing Instruction

Description

An optional processing instruction with a soxtype target, indicating the complete sox
namespace, (CBL or XCBL30) with version information ($1.0). It may be used by the
Java Collaboration Editor to prepend to the underlying xCBL data. This can also be
accomplished by hardcoding this PI string to prepend to the XCBL data in the Java
Collaboration Service.

Required Values

A string. For example,

"<?soxtype urn:x-
commerceone:document:com:commerceone:XCBL30:XCBL30.sox$1.0?>"

Import Namespace Processing Instruction

Description

An optional processing instruction with a soxtype target, indicating the complete sox
namespace, (CBL or XCBL30) with version information ($1.0). It may be used by the
Java Collaboration Editor to prepend to the underlying xCBL data. This can also be
accomplished by hardcoding this PI string to prepend to the XCBL data in the Java
Collaboration Service.

Required Values

A string. For example,

"<?import urn:x-
commerceone:document:com:commerceone:XCBL30:XCBL30.sox$1.0?>"

3.4 e*Way Connection for Transmitter API Based Modules
When creating an XPC e*Way connection, the c1mxpc.def file is used. The following
parameters are used to configure the e*Way Connection’s configuration parameters
necessary to facilitate communication with the Transmitter API and are organized into
the following sections:

! Connector

! XPC Settings

3.4.1. Connector
The Connector Settings control basic operational parameters.

Type

Description

Specifies the type of connection.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Configuration e*Way Connection for Transmitter API Based Modules
Required Values

c1mxpc is the default value for Commerce One MarketSite XPC configuration
connection.

Class

Description

Specifies the class name of the Commerce One MarketSite XPC connector object.

Required Values

com.stc.eways.c1mxpc.C1MXPCConnector is the default value.

Property Tag

Description

Specifies data source identity value required by EBobConnectorFactory.

Required Values

A string.

3.4.2. XPC Settings
The XPC Settings parameters contain the information needed to access XPC.

Document Type

Description

Specifies the document type for the messages being sent to MarketSite for a particular
Collaboration.

Required Values

PurchaseOrder, OrderStatus, PriceCheck, Request or AvailabilityCheck.

Sender

Description

Specifies the MPID (MarketSite Participant ID, also referred to as Trading Partner ID or
TPID) for the MarketSite sender.

Required Values

A valid MPID. Enter your MarketSite MPID since you are the sender.

Recipient

Description

Specifies the MPID for the MarketSite recipient.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Configuration e*Way Connection for Transmitter API Based Modules
Required Values

A valid MPID. Enter the MarketSite MPID for your supplier when running as a buyer.

Destination

Description

Specifies the destination for documents sent to MarketSite.

Required Values

A valid MarketSite destination. See the XPC documentation for more information.

XPC Root

Description

Specifies the root directory where XPC is installed.

Required Values

A valid root directory.

client.prop File Path

Description

Specifies the explicit location of your client.prop file. This is normally located under
$XPCRootDirectory/bin.

Authentication and security is based on configuration parameters specified by the user
(usually in the client.prop file). The e*Way must be informed where this file is located to
enable the successful retrieval of information, when communicating with MarketSite.

Required Values

A valid path location.

Debug Level

Description

Specifies the level for debug logging information.

Required Values

debug, info, warning, error, critical, or fatal, .

Timeout

Description

Specifies the default timeout in milliseconds when sending documents to MarketSite.

Required Values

A integer.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Configuration e*Way Connection for Transmitter API Based Modules
Schema Path

Description

Specifies the schema path location.

Required Values

A valid path location.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 4

Implementation

This chapter discusses how to implement the Commerce One MarketSite e*Way in a
production environment.

4.1 Implementation Process: Overview
To implement the Commerce One MarketSite e*Way within an e*Gate system, do the
following:

! Define Event Type Definitions (ETDs) to package the data being exchanged with
the ERP system(s).

Note: See the default.prop file and XPC documents to find ETD values.

! In the e*Gate Enterprise Manager, do the following:

" Define Event Types for the ERP system.

" Define Collaboration Rules to process Event data.

" Configure the IQ Manager to suit your needs.

" Define any IQs to which Event data is published prior to sending it to the
external system.

" Create one or more new e*Way components and configure their properties.

" Within the e*Way component, configure the Collaborations to apply the
required Collaboration Rules.

" Define the necessary e*Way Connections.

! Use the e*Way Editor to set the e*Way’s configuration parameters.

! Be sure that any other e*Gate components are configured as necessary to complete
the schema.

! Test the schema and make any necessary corrections.

See “Creating the Sample Schema” on page 38 for examples of how the above steps
are combined to create a working implementation.

Note: For more information about creating or modifying any component within the e*Gate
Enterprise Manager, see the e*Gate Enterprise Manager’s online Help system.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation Event Types
4.1.1. Considerations
The classes are located in stcc1marketsie.jar installed in ..\eGate\client\classes and ..
eGate\Server\registry\repository\default\classes.

For the Commerce One MarketSite XPC service samples, each C1Config e*Way
Connection corresponds to a C1 XPC service (inbound or outbound).

For the File e*Way (used as a feeder), ensure that the “MultipleRecordsPerFile” field is
set to No, ensuring that XML content with carriage returns are not misinterpreted as
multiple records, limiting the file input to one-per-file. This applies to the following
containers:

! “send_feeder” in the buyerorderxpc schema

! “ChangeOrderTemplateFeeder” in the buyerxpc schema

! “AdvShipNoticeTemplateFeeder”, “InvoiceTemplateFeeder” in supplierxpc
schema

4.2 Event Types
The installation includes two Event Types created based on the xCBL libraries. Unless
further customization is required, these Event Types should suffice.

4.2.1. TransmitterAPI : c1mxpc.xsc
The Event Type supplied for use with the Transmitter API is referred to as c1mxpc.xsc.
It resides in the Default Schema, etd\c1mxpc\ (see Figure 4).
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation Event Types
Figure 4 c1mxpc.xsc

4.2.2. XPC Server: c1mxpcconfig.xsc
The Event Type supplied for use with the XPC Server is referred to as
c1mxpcconfig.xsc. It resides in the Default Schema, etd\c1mxpc\ (seeFigure 5).
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
Figure 5 c1mxpcconfig.xsc

4.3 Creating the Sample Schema
There are eight separate samples available on the installation CD.

! The buyerorderXPC Sample Schema on page 40, demonstrates the use of the
Commerce One e*Way in implementing simple handling of outbound order XCBL
documents and incoming order response documents. This schema relies on the Batch
e*Way and File e*Way.

! The supplierorderXPC Sample Schema on page 56, demonstrates the use of the
Commerce One e*Way in implementing handling of inbound order and outbound
order response XCBL documents. This schema relies on the Batch e*Way and File
e*Way

! The TransmitterAsync Sample Schema on page 62, demonstrates the use of the
Commerce One e*Way in implementing the transmitter ETD component to send
xCBL documents asynchronously to MarketSite.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
! The TransmitterSync Sample Schema on page 66, demonstrates the use of the
Commerce One e*Way in implementing the transmitter ETD component to send
xCBL documents synchronously to MarketSite.

! The buyerorderxpcftp Sample Schema on page 70, demonstrates the use of the
Commerce One e*Way in implementing FTP support for e*Gate to interface with
the Commerce One XPC installed on another machine (as the counterpart for the
buyerorderxpc sample schema for the simple buyer case). This schema also relies
on Batch e*Way, File e*Way, and a running FTP server on the XPC machine.

! The supplierxpc Sample Schema on page 71, demonstrates the use of the
Commerce One e*Way in implementing the handling of inbound order, change
order, and outbound order response / invoice / advance shipment notice XCBL
documents. This schema relies on the Batch e*Way and File e*Way.

! The buyerxpc Sample Schema on page 72, demonstrates the handling of not just
outbound orders but also outbound change orders, as well as accepting and archiving
inbound ASN (Advance Shipment Notice) and inbound invoice XCBL documents.
This schema relies on the Batch e*Way and File e*Way.

! The supplierxpcsync Sample Schema on page 73, demonstrates the use of the
Commerce One e*Way in implementing the simple handling of inbound and
outbound XCBL synchronous documents (price check, order status, and availability
check). This schema relies on e*Gate JMS and the File e*Way.

4.3.1. Installing a Sample Schema
If you are using e*Gate 4.5.1 or later, you can import the schema at the startup of the
e*Gate Enterprise Manager, or by selecting “New Schema” from the File menu, once
the e*Gate Enterprise manager has opened. For either case, select “Create from export:”
and navigate to the .zip file containing the necessary sample.

e*Gate 4.5.0 does not support importing the schemas directly from the .zip file. You
must unzip the file containing the schema to a temporary directory. Contained within
the .zip file is a .exp file. Use the .exp file to import the schema at startup of the e*Gate
Enterprise Manager. After the import is completed, you must commit the schema files
into the e*Gate registry. Using the .ctl file provided within the .zip file, issue the
following command from the directory containing the control file:

stcregutil -rh <localhost> -rs <schema_name> -un <username> -up
<password> -fc . -ctl <ctl_file_name>

where the arguments contained within the brackets (“< >”) must be replaced with
values appropriate to your system.

If the .zip file does not contain a .ctl file, create the following directory :

server/registry/repository/schema_name/

on your e*Gate registry host, and copy the runtime directory that is contained within
the .zip file for the schema, to the newly created directory. When creating the directory,
you must use the actual schema name specified when importing the schema.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
4.3.2. The buyerorderXPC Sample Schema
The buyerorderXPC sample schema demonstrates the use of the Commerce One e*Way
in implementing simple handling of outbound order XCBL documents and incoming
order response documents. This schema relies on the Batch e*Way and File e*Way.
After installing the sample schema, it must be configured before running. Each schema
described in this document has a section of configuration instructions.

Table 3 Contents of the buyerorderXPC Sample Schema .zip

Directory File(s)

buyeroderxpc.ctl
buyerorderxpc.exp

buyerorderxpc\runtime\collaboration_rules\ dump_payload_cr.class
dump_payload_cr.ctl
dump_payload_cr.java
dump_payload_cr.xpr
dump_payload_cr.xts
dump_payload_crBase.class
dump_payload_eater_cr.class
dump_payload_eater_cr.ctl
dump_payload_eater_cr.java
dump_payload_eater_cr.xpr
dump_payload_eater_cr.xts
dump_payload_eater_crBase.class
ProcessC1In_java.class
ProcessC1In_java.java
ProcessC1In_java.ctl
ProcessC1In_java.java
ProcessC1In_java.xpr
ProcessC1In_java.xts
ProcessC1In_javaBase.class
processC1out_java.class
processC1out_java.ctl
processC1out_java.java
processC1out_java.xpr
processC1out_java.xts
processC1out_javaBase.class
send_feeder_cr.class
send_feeder_cr.ctl
send_feeder_cr.java
send_feeder_cr.xpr
send_feeder_cr.xts
send_feeder_crBase.class

buyerorderxpc\runtime\configs\c1mxpc\ C1ConfigInfo_order.cfg
C1ConfigInfo_order.sc
C1ConfigInfo_order_response.cfg
C1ConfigInfo_order_response.sc
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
Configuring the buyerorderXPC Sample

Once the sample has been successfully imported into e*Gate, the user must configure it
to correspond to the information as necessary. The following items should be
examined:

! Each of the configuration files associated with the three e*Ways must be configured,
as needed, saved, and promoted to runtime. Specifically, the following parameters
must be addressed:

! The e*Way Connection configuration must be adjusted to suit the systems involved.

" Root XPC, see “XPC Config Root” on page 30

" Path for XPC Service use, see “Default Property File Path” on page 30

" Additional XPC processing, xCBL 3.0 or xCBL 1.0, see “Soxtype Namespace
Processing Instruction” on page 31

! Do not set Publish Status Record on Success, for the dynamic Batch based e*Way to
Yes. If set to yes, the Batch-based e*Way publishes a “good error” record to e*Gate,
with the format of batch_eway_error.dtd, when the payload has been successfully
sent to the remote host. This can cause an exception to be thrown by the JCS,
resulting from unexpected XML error message format. Sample error messages such
as the following may be observed in the log file for the corresponding Batch e*Way:

<batch_eWay_Data>, found ‘<batch_eWay_error>’

buyerorderxpc\runtime\configs\stewfile\ dump_payload_eater.cfg
dump_payload_eater.sc
feeder.cfg
feeder.sc

buyerorderxpc\runtime\configs\stcewgeneric
monk

dynamicBatchIn.cfg
dynamicBatchIn.sc
dynamicBatchOut.cfg
dynamicBatchOut.sc

buyerorderxpc\runtime\etd\ dynamicBatchReceiveData.jar
dynamicBatchReceiveData.xsc
dynamicBatchReceiveOrder.jar
dynamicBatchReceiveOrder.jar
dynamicBatchSendOrder.jar
dynamicBatchSendOrder.xsc
outputblob.jar
outputblob.ssc
outputblob.xsc

buyerorderxpc\runtime\etd\c1mxpc\ c1mxpcconfig.xsc

buyerorderxpc\runtime\etd\templates\xcbl\V3
0r2\lib\

Order.jar
Order.xsc
OrderResponse.jar
OrderResponse.xsc

Directory File(s)
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 41 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
! Verify that the following is embedded in each new CommerceOne Java
Collaboration that parses xCBL data types to suppress the inclusion of default
namespaces (i.e., xmlns=”...”) as there is a #FIXED attribute for every element in the
xCBL DTD as published:

java.lang.System.setProperty(“xml.marshal.noDefaultNamespace”,
“true”);

The XPC server deviates from this xCBL DTD convention.

! Set the Process Outgoing Message Function under Monk configuration for the
Batch e*Way configuration to batch-proc-out-c1, not the default batch-proc-out.

! Set the Exchange Data with External Function under Monk configuration for the
Batch e*Way configuration to batch-exchange-data-c1, not the default batch-
exchange-data.

! Set the File Transfer Method under External Host Setup for the Batch e*Way
configuration to FTP (even in the case that e*Gate and XPC are installed on the
same machine, and no FTP is actually involved).

! Set Enable Message Configuration under Dynamic Configuration for the Batch
e*Way configuration to Yes to enable dynamic Batch operation for the
CommerceOne schema.

! Modify the “account code” information for the order_template file provided as part
of the sample. For example:

<AccountCode>
<Reference>
<RefNum>Fill_in_your_account_code_here</RefNum>

<RefDate>20001215T09:52:25</RefDate>
</Reference>

</AccountCode>

Alternately, the user can programmatically update the “account code” of the xCBL
data within the processC1out_java Collaboration (after the order_template file is
read as xCBL data).

! The archive directory for inbound xCBL files, after they are processed, is hardcoded
in the Collaboration as:

“incoming_orderresponse_archived”

This archive directory is placed in the user-created subdirectory:

<root>:\commerceone\Xpc\filestore\inbound
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
ProcessCIn_java Collaboration Rule

The ProcessCIn_java Collaboration Rule appears in Figure 6.

Figure 6 ProcessCIn_java Collaboration Rule

1 Each new rule is created by clicking the rule - as an expression button in the center
of the Collaboration Rules Editor. For more information about using the Java
Collaboration Rules Editor, see the e*Gate Integrator User’s Guide.

2 “Setup batch command to receive to get file“ is created by dragging the $text field,
located under the Destination Event command node to the rule dialog box, selecting
a set command, and entering “RECEIVE” as the parameter.

3 “Setup file transfer method using local file copy only“ is created by dragging the
$text field, located under BatchOrder\order_record\external_host_setup\
file_transfer_method, selecting a set command, and entering “File Copy” as the
parameter.

4 “Setup host type“ is created by dragging the host_type field located under
BatchOrder\external_host_setup\creating a set command, and entering "NT 4.0" as
the parameter.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
5 “Setup target host name to localhost / local machine“ is created by dragging the
external_host_name field, located under BatchOrder\external_host_setup, creating
a set command, and entering "localhost" as the parameter.

6 “Setup user name to bogus value“ is created by dragging the user_name field,
located under BatchOrder\external_host_setup, creating a set command, and
entering "guest" as the parameter.

7 “Setup password to bogus value“ is created by dragging the encrypted_password
field, located under BatchOrder\external_host_setup, creating a set command, and
entering "0123456789" as the parameter.

8 “Setup bogus payload“ (not really needed for “receive files”, but Batch e*Ways
requires a value to get files) is created by dragging the $text field, located under the
payload node, creating a set command, and entering "Place holder only!" as the
parameter.

9 “Setup remote directory name“ is created by dragging the remote_directory_name
field, located under the BatchOrder, order_record\$1\subscribe_to_external\,
creating a set command, and dragging the RootDirectory field, located under
OrderResponseConfig\FileStoreConfig, creating a get function, and dropping it
into the previously created setRemoteDirectoryName function as the parameter. In
this case the sample then include + “/” + , drag the EnvelopeDocumentDirectory
field also located under OrderResponseConfig\FileStoreConfig, creating a get
function, and dropping it after the second plus sign (+).

10 “Setup remote file name“ is created by dragging the remote_file_regexp field,
located under the BatchOrder\order_record\$1\subscribe_to_external, creating a
set command, and entering "Place holder only!" as the parameter and dragging the
EnvelopeDocumentPrefix field, located under
OrderResponseConfig\FileStoreConfig, creating a get function, and dropping it
into the previously created setRemoteFileRegexp function. In this case the sample
then include + "[a-zA-Z0-9-]*.xml”.

Note: Allow for hyphens and alphanumeric for file name suffix.

11 “Setup archive directory name“ is created by dragging the
remote_rename_or_archive_name field, located under
BatchOrder\order_record\$1\subscribe_to_external\remote_command_after_tran
sfer, creating a set command, and dragging the RootDirectory field, located under
OrderResponseConfig\FileStoreConfig, creating a get function, and dropping it
into the previously created setRemoteRenameOrArchive function. In this case the
sample then includes + “/” + "envelope_archive”.

Note: The sample hardcodes the archive directory for now (not really covered by XPC
configuration)

12 For debugging purposes, the “testing c1mxpcconfig only!“ rule was created by
including the following code in the Rule Dialog box:

/*
System.err.println("--------------FileStoreConfig-----------------");
System.err.println("RootDirectory="+getOrderResponseConfig().getFileStoreConfig().getRootDirec
tory());
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 44 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
System.err.println("DocumentPrefix="+getOrderResponseConfig().getFileStoreConfig().getDocument
Prefix());
System.err.println("DocumentDirectory="
+getOrderResponseConfig().getFileStoreConfig().getDocumentDirectory());
System.err.println("DocumentArchiveDirectory=" +
getOrderResponseConfig().getFileStoreConfig().getDocumentArchiveDirectory());
System.err.println("AttachmentDirectory="+getOrderResponseConfig().getFileStoreConfig().getAtt
achmentDirectory());
System.err.println("AttachmentPrefix="+getOrderResponseConfig().getFileStoreConfig().getAttach
mentPrefix());
System.err.println("EnvelopeDirectory=" +
getOrderResponseConfig().getFileStoreConfig().getEnvelopeDirectory());
System.err.println("EnvelopePrefix=" +
getOrderResponseConfig().getFileStoreConfig().getEnvelopePrefix());
System.err.println("EnvelopeDocumentDirectory="+getOrderResponseConfig().getFileStoreConfig().
getEnvelopeDocumentDirectory());
System.err.println("EnvelopeDocumentPrefix="+getOrderResponseConfig().getFileStoreConfig().get
EnvelopeDocumentPrefix());
System.err.println("EnvelopeAttachmentDescriptionDirectory="+getOrderResponseConfig().getFileS
toreConfig().getEnvelopeAttachmentDescriptionDirectory());
System.err.println("EnvelopeAttachmentDescriptionPrefix="+getOrderResponseConfig().getFileStor
eConfig().getEnvelopeAttachmentDescriptionPrefix());
System.err.println("EnvelopeArchiveDirectory="+getOrderResponseConfig().getFileStoreConfig().g
etEnvelopeArchiveDirectory());
System.err.println("StreamDirectory="+getOrderResponseConfig().getFileStoreConfig().getStreamD
irectory());
System.err.println("StreamPrefix="+getOrderResponseConfig().getFileStoreConfig().getStreamPref
ix());
System.err.println("StreamExtension="+getOrderResponseConfig().getFileStoreConfig().getStreamE
xtension());
System.err.println("StreamArchiveDirectory="+getOrderResponseConfig().getFileStoreConfig().get
StreamArchiveDirectory());
System.err.println("----------------ErrorHandlerConfig----------------------");
System.err.println("RootDirectory="+getOrderResponseConfig().getErrorHandlerConfig().getRootDi
rectory());
System.err.println("FileSourceDirectory="+getOrderResponseConfig().getErrorHandlerConfig().get
FileSourceDirectory());
System.err.println("FileTargetDirectory="+getOrderResponseConfig().getErrorHandlerConfig().get
FileTargetDirectory());
System.err.println("FilePrefix="+getOrderResponseConfig().getErrorHandlerConfig().getFilePrefi
x());
System.err.println("FileExtension="+getOrderResponseConfig().getErrorHandlerConfig().getFileEx
tension());
System.err.println("----------------ErrorStoreConfig----------------------");
System.err.println("RootDirectory="+getOrderResponseConfig().getErrorStoreConfig().getRootDire
ctory());
System.err.println("DocumentDirectory="+getOrderResponseConfig().getErrorStoreConfig().getDocu
mentDirectory());
System.err.println("DocumentPrefix="+getOrderResponseConfig().getErrorStoreConfig().getDocumen
tPrefix());
System.err.println("----------------OrderStoreConfig----------------------");
System.err.println("RootDirectory="+getOrderResponseConfig().getOrderStoreConfig().getRootDire
ctory());
System.err.println("DocumentDirectory="+getOrderResponseConfig().getOrderStoreConfig().getDocu
mentDirectory());
System.err.println("DocumentPrefix="+getOrderResponseConfig().getOrderStoreConfig().getDocumen
tPrefix());
System.err.println("DocumentExtension="+getOrderResponseConfig().getOrderStoreConfig().getDocu
mentExtension());
System.err.println("----------------OriginalMessageStoreConfig----------------------");
System.err.println("RootDirectory="+getOrderResponseConfig().getOriginalMessageStoreConfig().g
etRootDirectory());
System.err.println("DocumentDirectory="+getOrderResponseConfig().getOriginalMessageStoreConfig
().getDocumentDirectory());
System.err.println("DocumentPrefix="+getOrderResponseConfig().getOriginalMessageStoreConfig().
getDocumentPrefix());
System.err.println("DocumentExtension="+getOrderResponseConfig().getOriginalMessageStoreConfig
().getDocumentExtension());
System.err.println("----------------PlanningScheduleStoreConfig----------------------");
System.err.println("RootDirectory="+getOrderResponseConfig().getPlanningScheduleStoreConfig().
getRootDirectory());
System.err.println("DocumentDirectory="+getOrderResponseConfig().getPlanningScheduleStoreConfi
g().getDocumentDirectory());
System.err.println("DocumentPrefix="+getOrderResponseConfig().getPlanningScheduleStoreConfig()
.getDocumentPrefix());
System.err.println("DocumentExtension="+getOrderResponseConfig().getPlanningScheduleStoreConfi
g().getDocumentExtension());
*/
retBoolean = true

Note: Uncomment to turn on debugging!
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
Collaboration Rule Mapping

The Collaboration Mapping associated with the ProcessCIn_java Collaboration Rule is
set as displayed in Figure 7.

Figure 7 ProcessCIn_java Collaboration Mapping
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 46 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
dump_payload_cr Collaboration Rule

The dump_payload_cr Collaboration Rule appears in Figure 8.

Figure 8 dump_payload_cr Collaboration Rule

1 Each new rule is created by clicking the rule button on the toolbar in the center of
the Collaboration Rules Editor. For more information about using the Java
Collaboration Rules Editor, see the e*Gate Integrator User’s Guide.

2 The first rule is created by using Java Imports under the Tools menu. It can also be
created by entering the following in the Rule dialog box:

payloadString = new String(Base64Utils.base64DecodeToByte()

3 The second rule is created by dragging the setOutputBlob_x0 function to the Rule
Dialog Box, entering the string “payloadString” to be passed in as the parameter
value.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
dump_payload_cr Collaboration Mapping

The Collaboration mapping associated with the dump_payload_cr Collaboration Rule
is set as displayed in Figure 9.

Figure 9 dump_payload_cr Properties
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 48 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
dump_payload_eater_cr Collaboration Rule

The dump_payload_eater_cr Collaboration Rule appears in Figure 10.

Figure 10 dump_payload_eater_cr

1 Each new rule is created by clicking the rule button on the toolbar in the center of
the Collaboration Rules Editor. For more information about using the Java
Collaboration Rules Editor, see the e*Gate Integrator User’s Guide.

2 “To prevent xmlns from appearing in the (un)marshalling of XCBL data“ is
created by entering the following in the Rule Dialog box:

java.lang.System.setProperty("xml.marshal.noDefaultNamespace",
"true")

3 The “Suppress the XML version/encoding declarations“ rule is created by entering
the following in the Rule Dialog box:

getxcbl_order().includeXmlDeclaration(false);

This is necessary because the XML declaration is not compatible with XPC server.

4 “Unmarshal plain data blob into XCBL info“ is created by dragging the
unmarshall function to the Rule Dialog box, and dragging the outputblob field,
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
located under the extract node, into the dialog box that appears. (Click ok to
continue)

dump_payload_eater_cr Collaboration Mapping

The Collaboration mapping associated with the dump_payload_eater_cr Collaboration
Rule is set as displayed in Figure 11.

Figure 11 dump_payload_eater_cr
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 50 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
processC1out_java Collaboration Rule

The processC1out_java Collaboration Rule appears in Figure 11.

Figure 12 processC1out_java

1 Each new rule is created by clicking the rule button on the toolbar in the center of
the Collaboration Rules Editor. For more information about using the Java
Collaboration Rules Editor, see the e*Gate Integrator User’s Guide.

2 Each variable is created in the same manner as the above mentioned rules. For more
information about using the Java Collaboration Rules Editor, see the e*Gate
Integrator User’s Guide.

3 “Qname1“ is created by dragging the SoxNamespacePI field, located below the
PlanningScheduleStoreConfig node, selecting a get function, into the Initial Value
Dialog box.

4 “Qname2“ is created by dragging the ImportNamespacePI field, located below the
PlanningScheduleStoreConfig node, selecting a get function, into the Initial Value
Dialog box.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 51 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
5 “formatter_issuedate“ is created by clicking the var button on the toolbar and
entering formatter_issuedate” in the Variable Properties Dialog box as the
description and name. java.text.SimpleDateFormat is selected as the type. The
following text is entered in the Initial Value field:

new java.text.SimpleDateFormat ("yyyyMMdd'T'HH:mm:ss")

The following documentation is entered into the Documentation field:

1) Notice that MM (month, 1 thru 12) is specified to 2 count so that only number is displayed.

2) Notice that HH is specified to display 24 hour clock (0-23) to match that of the "SDateTime" class in
the ''com.commerceone.xdk.maplibs.jbschema.jbdatatypes" package.

3) 'T' is the separator as specified for "SDateTime" class.

6 “formatter_filesuffix“ is created by clicking the var button on the toolbar and
entering formatter_filesuffix” in the Variable Properties Dialog box as the
description and name. java.text.SimpleDateFormat is selected as the type. The
following text is entered in the Initial Value field:

new java.text.SimpleDateFormat ("yyyyMMdd'T'HH:mm:ss")

The following documentation is entered into the Documentation field:

1) Notice that MM (month, 1 thru 12) is specified to 2 count so that only number is displayed.

2) Notice that HH is specified to display 24 hour clock (0-23) to match that of the "SDateTime" class in
the 'com.commerceone.xdk.maplibs.jbschema.jbdatatypes" package.

3) 'T' is the separator as specified for "SDateTime" class.

4) Removed the colon separator (":") for time (hour/minute/second) because colon cannot be used as
any part of file name in most O/S.

For Access Modifiers, (none) is selected.

7 “dateString“ is included as a constant variable for the sample. It is created by
clicking the var button on the toolbar and entering “dateString” in the Variable
Properties Dialog box as the description and name. The type defaults to String.

8 “issueDateString“ is included as a constant variable for the sample. It is created in
the same manner as “dateString” variable.

9 “orderNumberString“ is included as a constant variable for the sample. It is created
in the same manner as “dateString” variable.

10 “Debug“ It is created by clicking the var button on the toolbar and entering
“Debug” in the Variable Properties Dialog box as the description and name. For
Type, boolean is selected and “false” is entered in the Initial Value field.

11 “To prevent xmlns from appearing in the XCBL after marshalling“ is created by
entering the following in the Rule Dialog box:

java.lang.System.setProperty("xml.marshal.noDefaultNamespace",
"true")

12 The “Suppress the XML version/encoding declarations“ rule is created by entering
the following in the Rule Dialog box:

getxcbl_order().includeXmlDeclaration(false);

This is necessary because the XML declaration is not compatible with XPC server.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 52 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
13 “Setup batch command to send to send/copy file” is created by dragging the $text
field, located under BatchOrder\command, creating a set function, to the Rule
Dialog box, and entering “SEND” as the parameter.

14 “Setup file transfer method using local file copy only” is created by dragging the
$text field, located under
BatchOrder\order_record\external_host_setup\file_transfer_method, creating a
set function, to the Rule Dialog box, and entering “File Copy” as the parameter.

15 “Setup host type” is created by dragging the host_name field, located under
BatchOrder\order_record\external_host_setup, to the Rule Dialog box, and
entering “NT 4.0”.

16 “Setup target host name to localhost / local machine” is created by dragging the
external_host_name field, located under
BatchOrder\order_record\external_host_setup, to the Rule Dialog box, and
entering “localhost”.

17 “Setup user name to bogus value” is created by dragging the user_name field,
located under BatchOrder\order_record\external_host_setup, to the Rule Dialog
box, and entering “guest”.

18 “Setup password to bogus value” is created by dragging the encrypted_password
field, located under BatchOrder\order_record\external_host_setup, to the Rule
Dialog box, and entering “0123456789”.

19 “format an order number string for file suffix” is created by entering the
following:

orderNumberString = new Integer(counter).toString()

20 “increment the internal order number for next outgoing order” is created by
entering the following:

counter = counter + 1

21 “Set the xCBL buyer order number” is created by dragging the OrderIssueDate
field, located under xCBLOrder\OrderHeader, creating a set function, and entering
issueDateString as the parameter.

22 “format an order number string for file suffix” is created by defining
orderNumberString = by dragging the BuyerOrderNumber field, located under
xCBLOrder\OrderHeader\$1\OrderNumber, and

23 “increment the internal order number for next outgoing order” is created by
entering:

counter = counter + 1

24 “Set the xCBL buyer order number” is created by dragging the
BuyerOrderNumber field, located under
xCBLOrder\OrderHeader\$1\OrderNumber, creating a set function, and entering
orderNumberString as the parameter.

25 “Set the xCBL seller order number” is created by dragging the SellerOrderNumber
field, located under xCBLOrder\OrderHeader\$1\OrderNumber, creating a set
function, and entering orderNumberString + “s” as the parameter.

26 “format a timestamp string for file suffix” is created by entering:
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 53 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
dateString = (String) formatter_filesuffix.format(new
java.util.Date())

27 “format a timestamp string for xCBL issue date” is created by entering:

issueDateString = (String) formatter_issuedate.format(new
java.util.Date())

28 “Set the time stamp for xCBL issue date” is created by dragging the
OrderIssueDate field, located under xCBLOrder\OrderHeader, creating a set
function, and entering issueDateString as the parameter.

29 “format an order number string for file suffix” is created by defining
orderNumberString =, and dragging the BuyerOrderNumber field, located under
xCBLOrder\OrderHeader\$1\OrderNumber, creating a get function, and
dropping it following the orderNumberString =.

30 “Setup remote file name” is created by dragging the remote_file_name field,
located under BatchOrder\order_record\$1\publish_to_external, creating a set
function, and dragging DocumentPrefix, located under c1config\FileStoreConfig,
dropping it as the parameter into the setSetupRemoteFileName function, creating a
get function. In this case, + "-" + dateString + ".xml was also added.

31 “Setup remote directory name” is created by dragging the remote_directory_name
field, located under BatchOrder\order_record\$1\publish_to_external, creating a
set function, and dragging RootDirectory, located under c1config\FileStoreConfig,
dropping it as the parameter into the setSetupRemoteDirectoryName function,
creating a get function. In this case, + "-" + was entered, dragging
DocumentDirectory, located under
BatchOrder\order_record\$1\publish_to_external, creating a get function, directly
after the + “/” +.

32 “Setup payload after changes (if any)” is created by dragging the $text field,
located under BatchOrder\Payload, creating a set function, followed by:

Base64Utils.byteToBase64String((Qname1 + Qname2 +
getxCBLOrder().toString()).getBytes()))

33 “testing c1mxpcconfig only!” is created by adding the following code:

/*
System.err.println("----------------FileStoreConfig---------------
-------");
System.err.println("RootDirectory="+getc1config().getFileStoreConf
ig().getRootDirectory());
System.err.println("DocumentPrefix="+getc1config().getFileStoreCon
fig().getDocumentPrefix());
System.err.println("DocumentDirectory="
+getc1config().getFileStoreConfig().getDocumentDirectory());
System.err.println("DocumentArchiveDirectory=" +
getc1config().getFileStoreConfig().getDocumentArchiveDirectory());
System.err.println("AttachmentDirectory="+getc1config().getFileSto
reConfig().getAttachmentDirectory());
System.err.println("AttachmentPrefix="+getc1config().getFileStoreC
onfig().getAttachmentPrefix());
System.err.println("EnvelopeDirectory=" +
getc1config().getFileStoreConfig().getEnvelopeDirectory());
System.err.println("EnvelopePrefix=" +
getc1config().getFileStoreConfig().getEnvelopePrefix());
System.err.println("EnvelopeDocumentDirectory="+getc1config().getF
ileStoreConfig().getEnvelopeDocumentDirectory());
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 54 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
System.err.println("EnvelopeDocumentPrefix="+getc1config().getFile
StoreConfig().getEnvelopeDocumentPrefix());
System.err.println("EnvelopeAttachmentDescriptionDirectory="+getc1
config().getFileStoreConfig().getEnvelopeAttachmentDescriptionDire
ctory());
System.err.println("EnvelopeAttachmentDescriptionPrefix="+getc1con
fig().getFileStoreConfig().getEnvelopeAttachmentDescriptionPrefix(
));
System.err.println("EnvelopeArchiveDirectory="+getc1config().getFi
leStoreConfig().getEnvelopeArchiveDirectory());
System.err.println("StreamDirectory="+getc1config().getFileStoreCo
nfig().getStreamDirectory());
System.err.println("StreamPrefix="+getc1config().getFileStoreConfi
g().getStreamPrefix());
System.err.println("StreamExtension="+getc1config().getFileStoreCo
nfig().getStreamExtension());
System.err.println("StreamArchiveDirectory="+getc1config().getFile
StoreConfig().getStreamArchiveDirectory());
System.err.println("----------------ErrorHandlerConfig------------
----------");
System.err.println("RootDirectory="+getc1config().getErrorHandlerC
onfig().getRootDirectory());
System.err.println("FileSourceDirectory="+getc1config().getErrorHa
ndlerConfig().getFileSourceDirectory());
System.err.println("FileTargetDirectory="+getc1config().getErrorHa
ndlerConfig().getFileTargetDirectory());
System.err.println("FilePrefix="+getc1config().getErrorHandlerConf
ig().getFilePrefix());
System.err.println("FileExtension="+getc1config().getErrorHandlerC
onfig().getFileExtension());
System.err.println("----------------ErrorStoreConfig--------------
--------");
System.err.println("RootDirectory="+getc1config().getErrorStoreCon
fig().getRootDirectory());
System.err.println("DocumentDirectory="+getc1config().getErrorStor
eConfig().getDocumentDirectory());
System.err.println("DocumentPrefix="+getc1config().getErrorStoreCo
nfig().getDocumentPrefix());
System.err.println("----------------OrderStoreConfig--------------
--------");
System.err.println("RootDirectory="+getc1config().getOrderStoreCon
fig().getRootDirectory());
System.err.println("DocumentDirectory="+getc1config().getOrderStor
eConfig().getDocumentDirectory());
System.err.println("DocumentPrefix="+getc1config().getOrderStoreCo
nfig().getDocumentPrefix());
System.err.println("DocumentExtension="+getc1config().getOrderStor
eConfig().getDocumentExtension());
System.err.println("----------------OriginalMessageStoreConfig----
------------------");
System.err.println("RootDirectory="+getc1config().getOriginalMessa
geStoreConfig().getRootDirectory());
System.err.println("DocumentDirectory="+getc1config().getOriginalM
essageStoreConfig().getDocumentDirectory());
System.err.println("DocumentPrefix="+getc1config().getOriginalMess
ageStoreConfig().getDocumentPrefix());
System.err.println("DocumentExtension="+getc1config().getOriginalM
essageStoreConfig().getDocumentExtension());
System.err.println("----------------PlanningScheduleStoreConfig---
-------------------");
System.err.println("RootDirectory="+getc1config().getPlanningSched
uleStoreConfig().getRootDirectory());
System.err.println("DocumentDirectory="+getc1config().getPlanningS
cheduleStoreConfig().getDocumentDirectory());
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 55 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
System.err.println("DocumentPrefix="+getc1config().getPlanningSche
duleStoreConfig().getDocumentPrefix());
System.err.println("DocumentExtension="+getc1config().getPlanningS
cheduleStoreConfig().getDocumentExtension());
*/
retBoolean = true

Note: Uncomment to turn on debugging!

processC1out_java Collaboration Mapping

The Collaboration Mapping associated with the processC1out_java Collaboration Rule
set as displayed in Figure 13.

Figure 13 processC1out_java

send_feeder_cr Collaboration Rule

The send_feed_cr Collaboration Rule is created as basic pass through Collaboration
Rule, which both publishes to and subscribes to an xCBL_event (configured using the
Order.xsc definition). For more information on default Collaboration Rules, see the
e*Gate Integrator Collaboration Services Reference Guide.

4.3.3. The supplierorderXPC Sample Schema
The supplierorderXPC sample schema demonstrates the use of the Commerce One
e*Way in implementing handling of inbound order and outbound order response XCBL
documents. This schema relies on the Batch e*Way and File e*Way
After installing the sample schema, it must be configured before running.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 56 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
Table 4 Contents of the supplierorderXPC.zip file

Directory File(s)

supplierorderxpc.ctl
supplierorderxpc.exp

supplierorderxpc\runtime\configs\c1mxpc\ C1ConfigInfo_defaultOrderResponse.cfg
C1ConfigInfo_defaultOrderResponse.sc
C1ConfigInfo_order.cfg
C1ConfigInfo_order.sc
C1ConfigInfo_order_response.cfg
C1ConfigInfo_order_response.sc

supplierorderxpc\runtime\configs\stcewfile\ dump_payload_eater.cfg
dump_payload_eater.sc
feeder.cfg
feeder.sc

suppplierorderxpc\runtime\configs\stcewgen
ericmonk\

dynamicBatchIn.cfg
dynamicBatchIn.sc
dynamicBatchOut.cfg
dynamicBatchOut.sc

supplierorderxpc\runtime\etd\ dynamicBatchReceiveData.jar
dynamicBatchReceiveData.xsc
dynamicBatchReceiveOrder.jar
dynamicBatchReceiveOrder.xsc
dynamicBatchSendOrder.jar
dynamicBatchSendOrder.xsc
outputblob.jar
outputblob.xsc
outputblob.ssc
RxcFileName.jar
RxcFileName.ssc
RxcFileName.xsc

supplierorderxpc\runtime\etd\c1mxpc\ c1mxpcconfig.xsc

supplierorderxpc\runtime\etd\templates\xcbl\
V30r2\lib\

Order.jar
Order.xsc
OrderResponse.jar
OrderResponse.xsc
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 57 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
Figure 14 shows the Components view of the SupplierOrder Sample schema.

supplierorderxpc\runtime\collaboration_rules dump_payload_cr.class
dump_payload_cr.ctl
dump_payload_cr.java
dump_payload_cr.xpr
dump_payload_cr.xts
dump_payload_crBase.class
dump_payload_eater_cr.class
dump_payload_eater_cr.ctl
dump_payload_eater_cr.java
dump_payload_eater_cr.xpr
dump_payload_eater_cr.xts
dump_payload_eater_crBase.class
ProcessC1DefaultOrderResponse.class
ProcessC1DefaultOrderResponse.ctl
ProcessC1DefaultOrderResponse.java
ProcessC1DefaultOrderResponse.xpr
ProcessC1DefaultOrderResponse.xts
ProcessC1DefaultOrderResponseBase.class
ProcessC1In_java.class
ProcessC1In_java.ctl
ProcessC1In_java.java
ProcessC1In_java.xpr
ProcessC1In_java.xts
ProcessC1In_javaBase.class
processC1out_java.class
processC1out_java.ctl
processC1out_java.java
processC1out_java.xpr
processC1out_java.xts
processC1out_javaBase.class
ProcessC1PayloadDefaultOrderResponse_Ja
va.class
ProcessC1PayloadDefaultOrderResponse_Ja
va.ctl
ProcessC1PayloadDefaultOrderResponse_Ja
va.java
ProcessC1PayloadDefaultOrderResponse_Ja
va.xpr
ProcessC1PayloadDefaultOrderResponse_Ja
va.xts
ProcessC1PayloadDefaultOrderResponse_Ja
vaBase.class
send_feeder_cr.class
send_feeder_cr.ctl
send_feeder_cr.java
send_feeder_cr.xpr
send_feeder_cr.xts
send_feeder_crBase.class

Directory File(s)
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 58 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
Figure 14 SupplierOrder Sample Schema

Configuring the SupplierOrder Sample

Once the sample has been successfully imported into e*Gate, the user must configure it
to correspond to the information as necessary. The following items should be
examined:

! Each of the configuration files associated with the three e*Ways must be configured,
as needed, saved, and promoted to runtime. Specifically, the following parameters
must be addressed:

! The e*Way Connection configuration must be adjusted to suit the systems involved.

" Drive letter/prefix, see “XPC Config Root” on page 30

" Path for XPC Service use, see “Default Property File Path” on page 30

" Additional XPC processing, xCBL 3.0 or xCBL 1.0, see “Soxtype Namespace
Processing Instruction” on page 31

! Do not set Publish Status Record on Success, for the dynamic Batch based e*Way to
Yes. If set to yes, the Batch-based e*Way publishes a “good error” record to e*Gate,
with the format of batch_eway_error.dtd, when the payload has been successfully
sent to the remote host. This can cause an exception to be thrown by the JCS,
resulting from unexpected XML error message format. Sample error messages such
as the following may be observed in the log file for the corresponding Batch e*Way:
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 59 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
<batch_eWay_Data>, found ‘<batch_eWay_error>’

! Verify that the following is embedded in each new CommerceOne Java
Collaboration that parses xCBL data types to suppress the inclusion of default
namespaces (i.e., xmlns=”...”) as there is a #FIXED attribute for every element in the
xCBL DTD as published:

java.lang.System.setProperty(“xml.marshal.noDefaultNamespace”,
“true”);

The XPC server deviates from this xCBL DTD convention.

! Set the Process Outgoing Message Function under Monk configuration for the
Batch e*Way configuration to batch-proc-out-c1, not the default batch-proc-out.

! Set the Exchange Data with External Function under Monk configuration for the
Batch e*Way configuration to batch-exchange-data-c1, not the default batch-
exchange-data.

! Set the File Transfer Method under External Host Setup for the Batch e*Way
configuration to FTP (even in the case that e*Gate and XPC are installed on the
same machine, and no FTP is actually involved).

! Set Enable Message Configuration under Dynamic Configuration for the Batch
e*Way configuration to Yes to enable dynamic Batch operation for the
CommerceOne schema.

! The archive directory for inbound xCBL files after they are processed within the JCS
as:

“incoming_order_archived”

It must be created manually in the:

<root directory>:\commerceone\Xpc\filestore\inbound subdirectory

! For the supplier application, there is a default order response xCBL file created by
the XPC for every incoming order. This schema picks up this file and places it in the
appropriate outbound directory, without archiving the default order response file.
There is no processing of the corresponding xCBL (such as changing the date/
time).
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 60 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
dump_payload_eater_cr Collaboration Rule

The dump_payload_eater_cr Collaboration Rule appears in the Figure 15:

Figure 15 dump_payload_eater_cr Collaboration Rule

1 Each new rule is created by clicking the rule - as an expression button in the center
of the Collaboration Rules Editor. For more information about using the Java
Collaboration Rules Editor, see the e*Gate Integrator User’s Guide.

2 Each variable is created in the same manner as the above mentioned rules. For more
information about using the Java Collaboration Rules Editor, see the e*Gate
Integrator User’s Guide.

3 “Debug” is created by clicking on the var button on the center toolbar, and
selecting boolean as the type value.

4 “To prevent xmlns from appearing in the (un)marshalling of XCBL data” is
created by entering the following:

java.lang.System.setProperty("xml.marshal.noDefaultNamespace",
"true")

5 The “Suppress the XML version/encoding declarations” rule is created by entering
the following in the Rule Dialog box:

getxcbl_order().includeXmlDeclaration(false);
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 61 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
6 The next rule, which creates a debug if statement, is created by entering the
following:

if (Debug)
{
System.err.println("------------dump_payload_eater_cr.java--------
-------------");
System.err.println("getextract().getOutputblob_x0()=" +
getextract().getOutputblob_x0());
}

In the sample, the if statement is self contained, although the if - conditional
statement button could have been used as well.

7 “Unmarshal plain data blob into XCBL info” is created by dragging the
unmarshall method, located under xcbl_Order, dragging the outputblob field,
located under extract into the Parameters dialog box that opens.

dump_payload_eater_cr Collaboration Rule Mapping

The Collaboration Mapping associated with the dump_payload_eater_cr Collaboration
Rule is set as displayed in Figure 16.

Figure 16 dump_payload_eater_cr Mapping

4.3.4. The TransmitterAsync Sample Schema
The TransmitterAsync sample schema demonstrates the use of the Commerce One
e*Way in implementing the transmitter ETD component to send xCBL documents
asynchronously to MarketSite.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 62 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
After installing the sample schema, it must be configured before running. The
TransmitterAsync sample sends an Order to MarketSite. The response to that order can
be obtained at a later time using XPC , rather than the Transmitter API.

Table 5 Contents of the TransmitterAsync.zip file

Figure 17 shows the Components view of the TransmitterAsync Sample schema.

Directory File(s)

AsyncTransmitter.ctl
AsyncTransmitter.exp

AsyncTransmitter\runtime\collaboration_rules
\

c1collabrule.class
c1collabrule.ctl
c1collabrule.java
c1collabrule.xpr
c1collabrule.xts
c1collabruleBase.class

AsyncTransmitter\runtime\configs\c1mxpc\ c1mxpcConn.sc
c1mxpcConn.cfg
c1mxpcConn1.sc
c1mxpcConn1.cfg

AsyncTransmitter\runtime\configs\steway\ c1transmitter.cfg
c1transmitter.sc

AsyncTransmitter\runtime\configs\stcewfile\ eater.cfg
eater.sc
feeder.cfg
feeder.sc

AsyncTranmsitter\runtime\etd\ testblob.jar
testblob.ssc
testblob.xsc
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 63 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
Figure 17 TransmitterAsync Sample Schema

Configuring the AsyncTransmitter Sample

Once the sample has been successfully imported into e*Gate, the user must configure it
to correspond to the information as necessary. The following items should be
examined:

! Each of the configuration files associated with the three e*Ways must be configured,
as needed, saved, and promoted to runtime.

! The e*Way Connection configuration must be adjusted to suit the systems involved.

! Before executing the Java Collaborations that use the Transmitter ETD, the .ctl file
for their Collaboration Rule must be modified as follows:

Move the line containing the stcjcs.jar to the bottom of the import lines, but above
the Collaboration Rules Java files. Any CommerceOne .jar file must be listed before
stcjcs.jar.

Delete the file from the client directory, and place a copy of the modified .ctl in the
server directory.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 64 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
c1collabrule

The c1collabrule appears in Figure 18.

Figure 18 c1collabrule Collaboration Rule

1 Each new rule is created by clicking the rule button on the toolbar in the center of
the Collaboration Rules Editor. For more information about using the Java
Collaboration Rules Editor, see the e*Gate Integrator User’s Guide.

2 “set data” is created by dragging the data field, located under inBlob under the
Source Events, and dropping it on to the xmlString field, located under c1xpc under
Destination Events.

3 “set recipient” is created by dragging the recipient field, located beneath c1mxpc,
to the Rule dialog box, selecting set as the function-type. The Recipient TPID is then
entered. If left blank, the value entered in the configuration file defaults in.

4 “set sender” is created by dragging the sender field, located beneath c1mxpc, to the
Rule dialog box, selecting set as the function-type. The Recipient TPID is then
entered. If left blank, the value entered in the configuration file defaults in.

5 “set sox urn” information is created by dragging and dropping the soxURN from
the Destination Events, selecting set as the function-type. The correct
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 65 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
“SOX_URN_xCBL” is then dropped in as the parameter for the setSoxURN
method.

6 “send to Marketsite” is created by dragging and dropping the sendToMarketSite
method into the Rule dialog box.

7 “set output” is created by dragging the data field, located under the c1output node,
to the Rule dialog box, then entering the desired expression, for example "Data Sent
DONE!"

8 “send output” is created by dragging and dropping the send method into the Rule
dialog box.

9 “trace” is created by entering the following into the Rule dialog box:

EGate.traceln(EGate.TRACE_EWAY,EGate.TRACE_EVENT_TRACE,"Sent To
MarketSite")

c1collabrule Collaboration Rule Mapping

The Collaboration Mapping associated with the c1collabrule Collaboration Rules is set
as displayed in Figure 19.

Figure 19 c1collabrule Mapping

4.3.5. The TransmitterSync Sample Schema
The TransmitterSync sample schema demonstrates the use of the Commerce One
e*Way in implementing the transmitter ETD component to send xCBL documents
synchronously to MarketSite.
After installing the sample schema, it must be configured before running.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 66 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
Table 6 Contents of the TransmitterSync.zip file

Figure 20 shows the Components view of the TransmitterSync Sample schema.

Directory File(s)

TransSync.ctl
TransSync.exp

TransSync\runtime\collaboration_rules\ cr_MarketsiteBase.class
cr_Marketsite.xts
cr_Marketsite.xpr
cr_Marketsite.java
cr_Marketsite.ctl
cr_Marketsite.class
c1collabrule.class
c1collabrule.ctl
c1collabrule.java
c1collabrule.xpr
c1collabrule.xts
c1collabruleBase.class

TransSync\runtime\configs\c1mxpc c1mxpcConn.sc
c1mxpcConn1.cfg
c1mxpcConn1.sc

TransSync\runtime\configs\stceway\ c1transmitter.cfg
c1transmitter.sc

TransSync\runtime\configs\stcewfile\ eater.cfg
eater.sc
feeder.cfg
feeder.sc

TransSync\runtime\etd\ teestblob.jar
testblob.ssc
testblob.xsc

TransSync\runtime\etd\c1mxpc\ c1mxpc.xsc

TransSync\sandbox\collaboration_rules\ c1collabrule.xpr
c1collabrule.xts

TransSync\sandbox\etd\ rtjar.ctl
common.ctl
c1mxpc.xsc
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 67 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
Figure 20 TransmitterSync Sample Schema

Configuring the TransmitterSync Sample

Once the sample has been successfully imported into e*Gate, the user must configure it
to correspond to the information as necessary. The following items should be
examined:

! Each of the configuration files associated with the three e*Ways must be configured,
as needed, saved, and promoted to runtime.

! The e*Way Connection configuration must be adjusted to suit the systems involved.

! Before executing the Java Collaborations that use the Transmitter ETD, the .ctl file
for their Collaboration Rule must be modified as follows:

Move the line containing the stcjcs.jar to the bottom of the import lines, but above
the Collaboration Rules Java files. Any CommerceOne .jar file must be listed before
stcjcs.jar.

Delete the file from the client directory, and place a copy of the modified .ctl in the
server directory.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 68 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
cr_Marketsite Collaboration Rule

The cr_Marketsite Collaboration Rule appears in Figure 21.

Figure 21 cr_Marketsite Collaboration Rule

1 Each new rule is created by clicking the rule button on the toolbar in the center of
the Collaboration Rules Editor. For more information about using the Java
Collaboration Rules Editor, see the e*Gate Integrator User’s Guide.

2 “set data” is created by dragging the data field, located under inBlob under the
Source Events, and dropping it on to the xmlString field, located under c1xpc under
Destination Events.

3 “set Sox” is created by dragging the soxURN field, located under c1xpc to the Rule
dialog box, creating a set function, and dragging the SOX_URN_XCBL30 field,
located under c1xpc, creating a get function, and dropping it into setSoxURN as the
parameter.

4 “send to Marketsite” is created by dragging the sendtoMarketsite method under
c1xpc to the Rule dialog box.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 69 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
5 “trace” is created by entering the following into the Rule dialog box:

EGate.traceln(EGate.TRACE_EWAY,EGate.TRACE_EVENT_TRACE,"Event sent
to MarketSite

6 “put response to output” is created by dragging the data field, located under
c1output to the Rule dialog box, creating a set function, and dragging the
syncResponseString field, located under c1xpc, and dropping it into setData as the
parameter. The setSyncResponseString() is then changed to
getSyncResponseString().

7 “trace” is created by entering the following into the Rule dialog box:

EGate.traceln(EGate.TRACE_EWAY,EGate.TRACE_EVENT_TRACE,"Response
String Set")

8 “send output” is created by dragging the send, located under c1output, to the Rule
dialog box.

cr_Marketsite Collaboration Rule Mapping

The Collaboration Mapping associated with the cr_Marketsite Collaboration Rules is as
displayed in Figure 22.

Figure 22 cr_Marketsite Collaboration Mapping

4.3.6. The buyerorderxpcftp Sample Schema
The buyerorderxpcftp sample schema demonstrates the use of the Commerce One
e*Way in implementing FTP support for e*Gate to interface with the Commerce One
XPC installed on another machine (as the counterpart for the buyerorderxpc sample
schema for the simple buyer case). This schema also relies on Batch e*Way, File e*Way,
and a running FTP server on the XPC machine.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 70 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
As the counterpart for the buyerorderxpc sample schema for the simple buyer, this
sample demonstrates FTP support for e*Gate to interface with Commerce One XPC
installed on another machine.

There are two scenarios to consider:

! The user must copy all of the configuration default.props files in all of the
subdirectories, corresponding to all of the XPC inbound Document Service and
outbound Timed Services for:

<rootdir>:\commerceone\Xpc\runtime\servers\defaultserver\config\se
rvice

It is preferable to copy to a corresponding local directory in the machine for which
e*Gate is installed.

! If possible, the user can make use of a Win2K network-mounted network drive (or
NFS mount point in the case of Unix) capability to map the service configuration
default.prop files on the XPC machine for e*Gate to access these files. The “XPC
Config Root” entry for the associated e*Way Connection could be useful for the
mapping.

In the sample JCS, it is also assumed that a FTP server is running on the XPC
machine and the FTP root path for the XPC machine is pointed to:

<drive:>/commerceone/xpc/filestore

4.3.7. The supplierxpc Sample Schema
The supplierxpc sample schema demonstrates the use of the Commerce One e*Way in
implementing the handling of inbound order, change order, and outbound order response
/ invoice / advance shipment notice XCBL documents. This schema relies on the Batch
e*Way and File e*Way.
As the counterpart to the sample schema supplierorderxpc, which only handles order
and order response XCBL documents, this schema demonstrates the handling of
incoming order, outgoing invoice, outgoing advanced shipment notice (ASN), and
outgoing order response.

Follow the directions for preparing the template file for outbound documents (see Table
7).

Table 7

The name-TPID lookup table in the map.txt file (in the <
rootdir>\commerceone\xpc\tpid_map, e.g.) should be updated to provide a new
mapping entry for the recipient (i.e. buyer) ID to the recipient TPID. As mentioned in

Sample XCBL doc directories File Name Copy and Renamed

<rootdir>:\commerceone\Xpc\
sample\xpc\instances\Advance
ShipNotice

AdvanceShipmentNotice_
Sample.xml

AdvanceShipmentNotice_
xxx.asn

<rootdir>:\commerceone\Xpc\
sample\xpc\instances\Invoice

Invoice_Sample.xml Invoice_xxx.invoice
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 71 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
the XPC documentation, be sure to eliminate unnecessary blank spaces following the
TPID.

Edit according to the following entry:

GetStringFromDocument.config=xPath=</InvoiceHeader/InvoiceParty/
BuyerParty/Party/PartyID/Identifier/Ident>

in the default.prop file for the invoice outbound service as in:

<rootdir>\commerceone\Xpc\runtime\servers\defaultserver\config\servic
e\TimedService.XPCTimedService.XPCInvoice30Outbound.1_0

Be sure to update (either the invoice_template file or accomplish in JCS to modify the
XCBL data structure / ETD) the <Ident> field as follows:

 ...
 <InvoiceParty>
 <BuyerParty>
 <Party>
 <PartyID>
 <Identifier>

 ...
 <Ident>the_recipient_ID_as_in_the_map_file</Ident>
 </Identifier>
 </PartyID>
 ...

Similar measure shall be taken for the AdvanceShipmentNotice XCBL document.The
ASN outbound service default.prop file is located in:

<rootdir>:\commerceone\Xpc\runtime\servers\defaultserver\config\servi
ce\TimedService.XPCTimedService.XPCAdvanceShipmentNotice30Outbound.1_
0

4.3.8. The buyerxpc Sample Schema
The buyerxpc sample schema demonstrates the handling of outbound orders, and
accepting and archiving inbound ASN (Advance Shipment Notice) and inbound invoice
XCBL documents. This schema relies on the Batch e*Way and File e*Way.
As the counterpart to the sample schema buyerorderxpc, which only handles order and
order response XCBL documents, this schema demonstrates the handling of not just
outbound orders, but also outbound change orders. The schema also accepts and
archives inbound ASN and inbound invoice XCBL documents.

In order to send an order, change the order XCBL doc to a specific supplier.

The name-TPID lookup table in the map.txt file (in the < rootdir>\commerceone\xpc
\tpid_map, e.g.) should be updated to provide a new mapping entry for the recipient
(i.e. supplier) ID to the recipient TPID. As mentioned in the XPC documentation, be
sure to eliminate unnecessary blank spaces following the TPID.

Be sure to also update (either the Order_xxx.order file or accomplish in JCS to modify
the XCBL data structure / ETD) the <Ident> field as follows:

...
<SellerParty>

<Party>
<PartyID>
<Identifier>
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 72 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
...
<Ident>the_recipient_ID_as_in_the_map_file</Ident>

...
</Identifier>

</PartyID>

The user should copy the sample order temple file order_template.xml (unzipped from
order_template.zip) to the following directory:

<rootdir>:\commerceone\Xpc\sample\xpc\instance\Order

and rename the file extension to (.order).

Follow the directions for preparing all the template files for outbound documents (see
Table 8).

Table 8

4.3.9. The supplierxpcsync Sample Schema
The supplierxpcsync sample schema demonstrates the use of the Commerce One
e*Way in implementing the simple handling of inbound and outbound XCBL
synchronous documents (price check, order status, and availability check). This schema
relies on e*Gate JMS and the File e*Way.

After installing the sample schema, it must be configured before running.

Sample XCBL doc directories File Name Copy and Renamed

<rootdir>:\commerceone\Xpc\sa
mple\xpc\instances\Order

order_template.xml (provided
sample), different from the
default Order_Sample.xml

Order_xxx.order
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 73 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
Table 9 Contents of the supplierxpcsync.zip file

Figure 23 shows the Components view of the SupplierOrder Sample schema.

Directory File(s)

supplierxpcsync.ctl
supplierxpcsync.exp

supplierxpcsync\runtime\collaboration_rules supplierxpcsync
AvailabilityCheck_ReplyCollab.class
AvailabilityCheck_ReplyCollab.ctl
AvailabilityCheck_ReplyCollab.java
AvailabilityCheck_ReplyCollab.xpr
AvailabilityCheck_ReplyCollab.xts
AvailabilityCheck_ReplyCollabBase.class
OrderStatusResult_ReplyCollab.class
OrderStatusResult_ReplyCollab.ctl
OrderStatusResult_ReplyCollab.java
OrderStatusResult_ReplyCollab.xpr
OrderStatusResult_ReplyCollab.xts
OrderStatusResult_ReplyCollabBase.class
PriceCheckResult_ReplyCollab.class
PriceCheckResult_ReplyCollab.ctl
PriceCheckResult_ReplyCollab.java
PriceCheckResult_ReplyCollab.xpr
PriceCheckResult_ReplyCollab.xts
PriceCheckResult_ReplyCollabBase.class

supplierxpcsync\runtime\configs\messageser
vice\

jms.cfg
jms.sc
jmsQueuelocalhost_iqmr.cfg
jmsQueuelocalhost_iqmr.sc

supplierxpcsync\runtime\configs\stcewfile\ AvailabilityCheck_TopicRepliereWay.cfg
AvailabilityCheck_TopicRepliereWay.sc
PriceCheckResult_TopicRepliereWay.cfg
PriceCheckResult_TopicRepliereWay.sc
TopicRepliereWay.cfg
TopicRepliereWay.sc

supplierxpcsync\runtime\configs\stcmsagent localhost_iqmgr.cfg
localhost_iqmgr.sc

supplierxpcsync\runtime\etd\ root.jar
root.ssc
root.xsc

supplierxpcsync\sandbox\collaboration_rules\ OrderStatusResult_ReplyCollab.xpr
OrderStatusResult_ReplyCollab.xts
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 74 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
Figure 23 supplierxpcsync Sample Schema

Configuring the supplierxpcsync Sample

Once the sample has been successfully imported into e*Gate, the user must configure it
to correspond to the specific systems. The following items should be examined:

! Each of the configuration files associated with the three e*Ways must be configured,
as needed, saved, and promoted to runtime. Specifically, the following parameters
must be addressed:

" The e*Way Connection configuration must be adjusted to suit the systems
involved.

" Drive letter/prefix, see “XPC Config Root” on page 30

" Path for XPC Service use, see “Default Property File Path” on page 30

" Additional XPC processing, xCBL 3.0 or xCBL 1.0, see “Soxtype Namespace
Processing Instruction” on page 31

! The File e*Way eater (simulating backend data sink) directory and file name for the
incoming XCBL synchronous document (price check, order status, and availability
check) should be tailored accordingly.

! Document support samples must be configured for the supplierxpcsync schema.
See Configuring the Synchronous Document Support Samples for Commerce
One XPC. on page 19 for directions.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 75 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
JMS Considerations

The supplierxpcsync Sample utilizes the e*Gate Java Message Service (JMS). To enable
the client system to communicate with the e*Gate API Kit, you must do the following:

! The JMS Topic/Queue names and the e*Gate Event Types names must coincide.

! The individual writing any external JMS code must know the expected data format,
the name of the Topic/Queue, and the name of host and port number of the JMS
server.

! The methods used must correspond to the expected data format. For a list of e*Gate
supported Java classes, interfaces and methods, please see e*Gate API Kit User's
Guide, supported libraries for the e*Gate Message Service.

! The client code samples provided are intended to work directly with the sample
schema provided. These are only samples created as a demonstration of possible
behavior.

4.3.10.Order_Template
The Order_Template.zip file contains Order_Template.xml file. The first few lines of
which appear below:

<?soxtype urn:x-commerceone:document:com:commerceone:XCBL30:XCBL30.sox$1.0?>
<?import urn:x-commerceone:document:com:commerceone:XCBL30:XCBL30.sox$1.0?>
<Order>
 <OrderHeader>
 <OrderNumber>
 <BuyerOrderNumber>2001-1116-3</BuyerOrderNumber>
 <SellerOrderNumber>2001-1116F-3a</SellerOrderNumber>
 <ListOfMessageID>
 <MessageID>
 <IDNumber>kbrcymciuk</IDNumber>
 <IDAssignedBy>
 <IDAssignedByCoded>Non-ResidentBeneficiary</IDAssignedByCoded>
 <IDAssignedByCodedOther>itzihljne</IDAssignedByCodedOther>
 </IDAssignedBy>
 <IDAssignedDate>20001215T09:52:25</IDAssignedDate>
 </MessageID>
 <MessageID>
 <IDNumber>xtmxc</IDNumber>
 <IDAssignedBy>
 <IDAssignedByCoded>SubsidiaryDivision</IDAssignedByCoded>
 <IDAssignedByCodedOther>zxsuvby</IDAssignedByCodedOther>
 </IDAssignedBy>
 <IDAssignedDate>20001215T09:52:25</IDAssignedDate>
 </MessageID>
 </ListOfMessageID>
 </OrderNumber>

4.3.11.Supporting Documents
The following documents are designed to work in conjunction with the e*Way Intelligent
Adapter for Commerce One MarketSite User's Guide and to provide additional information
that may prove useful.

e*Gate Integrator Installation Guide.

e*Gate Integrator System Administration and Operations Guide.

e*Gate Integrator User's Guide.

e*Gate API Kit User's Guide.

SeeBeyond JMS Intelligent Queue User's Guide
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 76 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Creating the Sample Schema
SeeBeyond Master Index (SeeBeyond_Index.pdx; refer to e*Gate Integrator User's Guide for
instructions on how to access).

README.txt files on the e*Gate installation CD ROM.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 77 SeeBeyond Proprietary and Confidential

Chapter 5

Commerce One MarketSite e*Way
Methods

The Commerce One MarketSite e*Way methods fall into the following categories:

5.1 com.stc.eways.c1mxpc.C1MXPC
The hierarchy for all packages pertaining to the Commerce One MarketSite e*Way are
as follows:

class com.stc.eways.c1mxpc.C1MXPC
class java.lang.Object

class com.stc.eways.c1mxpc.C1MXPCConfigHelper.FileStoreConfigClass
class com.stc.eways.c1mxpc.C1MXPCConnector
class com.stc.eways.c1mxpc.C1MXPCContext
class com.stc.eways.c1mxpc.C1MXPCDefs
class com.stc.eways.c1mxpc.C1MXPCDocTransmitter
class com.stc.eways.c1mxpc.C1MXPCTester
class java.util.Dictionary

class java.util.Hashatable (implements java.lang.Cloneable, java.util.Map,
java.ioializable)

class java.util.Properties
class com.stc.eways.c1mxpc.FileProperties

class com.stc.jcsre.SimpleETDImpl (implements com.stc.jcsre.ETD)
class com.stc.eways.c1mxpc.C1MXPCConfigHelper
class com.stc.eways.c1mxpc.eGateRequestor

class com.stc.eways.c1mxpc.eGateRequestor.eGateRequestorException

The following classes are included in this document:

! Class C1MXP on page 78

! Class C1MXPCConfigHelper on page 86

! Class FileProperties on page 93

! Class eGateRequestor on page 95

! Class eGateRequestor.eGateRequestorException on page 100

5.1.1. Class C1MXP
The C1MXP class contains the following methods:

C1MXPC on page 79 reset on page 82

getDestination on page 79 sendToMarketSite on page 83

getDocumentType on page 79 setDestination on page 83
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 78 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Commerce One MarketSite e*Way Methods com.stc.eways.c1mxpc.C1MXPC
C1MXPC

Syntax

public C1MXPC()

Description

Constructor.

getDestination

Syntax

public java.lang.String getDestination()

Description

getDestination obtains the current value for MarketSite destination.

Parameters

None.

Return Values

java.lang.String
Returns a string containing the MarketSite destination value.

Additional information

This function can be accessed via the Collaboration. Refer to the CommerceOne XPC
documentation for details on valid values for destinations.

getDocumentType

Syntax

public java.lang.String getDocumentType()

Description

getDocumentType returns the document type of the document being sent to
MarketSite. The document is passed as an XML string.

getPassword on page 80 setDocumentType on page 84

getRecipient on page 80 setPassword on page 84

getSender on page 80 setSender on page 85

getSyncResponseString on page 81 setSender on page 85

getUserName on page 81 setUsername on page 85

getXmlString on page 81 setXmlString on page 86

initialize on page 82
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 79 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Commerce One MarketSite e*Way Methods com.stc.eways.c1mxpc.C1MXPC
Parameters

None.

Return Values

java.lang.String
Returns the document type.

getPassword

Syntax

public java.lang.String getPassword()

Description

getPassword obtains the MarketSite password used for authentication.

Parameters

None.

Return Values

java.lang.String
Returns the MarketSite password (unencrypted).

getRecipient

Syntax

public java.lang.String getRecipient()

Description

getRecipient obtains the current value for the MarketSite recipient. Refer to the
CommerceOne XPC documentation for details on valid values for recipients.

Parameters

None.

Return Values

java.lang.String
Returns the current value for the MarketSite recipient.

getSender

Syntax

public java.lang.String getSender()

Description

getSender obtains the current value for the MarketSite sender. Refer to the
CommerceOne XPC documentation for details on valid values for senders.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 80 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Commerce One MarketSite e*Way Methods com.stc.eways.c1mxpc.C1MXPC
Parameters

None.

Return Values

java.lang.String
Returns the current value for the MarketSite sender.

getSyncResponseString

Syntax

public java.lang.String getSyncResponseString()

Description

getSyncResponseString returns the last response string received from MarketSite from
a synchronous transmission of documents, usually the originated by the
sendToMarketSite method.

Parameters

None.

Return Values

java.lang.String
Returns the response string from synchronous transmissions (syncResponseString).

getUserName

Syntax

public java.lang.String getUserName()

Description

getUserName returns the MarketSite user name used for authentication with
MarketSite.

Parameters

None.

Return Values

java.lang.String
Returns the MarketSite user name (username).

getXmlString

Syntax

public java.lang.String getXmlString()
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 81 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Commerce One MarketSite e*Way Methods com.stc.eways.c1mxpc.C1MXPC
Description

getXmlString returns the current string value assigned to be sent to MarketSite using
the sendToMarketSite method.

Parameters

None.

Return Values

java.lang.String
Returns the string to be transmitted to MarketSite (xmlString).

initialize

Syntax

public void initialize(com.stc.common.collabService.JCollabController
cntrCollab, java.lang.String key, int mode)

Description

initialize reads the configuration information from the file, initializing the transmitter
context (called by the Collaboration service).

Parameters

Return Values

void

Throws

com.stc.common.collabService.CollabConnException
com.stc.common.collabService.CollabDataException

reset

Syntax

public boolean reset()

Description

reset clears the settings for document type, recipient, sender, destination, xmlString,
and syncResponseString.

Name Type Description

cntrCollab com.stc.common.collabServi
ce.JCollabcontroller

The Java Collaboration
Controller object.

key String

mode int
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 82 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Commerce One MarketSite e*Way Methods com.stc.eways.c1mxpc.C1MXPC
Parameters

None.

Return Values

boolean
Returns true if successful; otherwise, returns false.

sendToMarketSite

Syntax

public void sendToMarketSite()
public void sendToMarketSite(byte[] outEvent)
public void sendToMarketSite(java.lang.String inXmlString)

Description

sendToMarketSite is called from the Collaboration to send the current xmlString value
(first instance) or the passed byte array (second instance), or the passed xmlString
value, to MarketSite. The xmlString must be a valid xCBL document.

Parameters

Return Values

void

Throws

com.stc.common.collabService.CollabConnException
com.stc.common.collabService.CollabDataException
com.stc.common.collabService.CollabResendException

setDestination

Syntax

public void setDestination(java.lang.String destination)

Description

setDestination designates the MarketSite destination TPID (Trading Partner ID). Refer
to the CommerceOne XPC documentation for details on valid destination values.

Name Type Description

outEvent byte[] The xCBL document as a
byte array.

inXmlString java.lang.String The xCBL document string
to be passed to MarketSite.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 83 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Commerce One MarketSite e*Way Methods com.stc.eways.c1mxpc.C1MXPC
Parameters

Return Values

void

setDocumentType

Syntax

public void setDocumentType(java.lang.String documentType)

Description

setDocumentType specifies the document type being sent to MarketSite, passed as an
xmlString.

Parameters

Return Values

void

setPassword

Syntax

public void setPassword(java.lang.String password)

Description

setPassword designates the MarketSite password, called from the Collaboration. Refer
to the CommerceOne XPC documentation for details on configuring XPC
authentication.

Parameters

Name Type Description

destination java.lang.String A valid destination string
(MPID).

Name Type Description

documentType java.lang.String A valid document type string.

Name Type Description

password java.lang.String The unencrypted password
used for authentication with
MarketSite.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 84 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Commerce One MarketSite e*Way Methods com.stc.eways.c1mxpc.C1MXPC
Return Values

void

setRecipient

Syntax

public void setRecipient(java.lang.String recipient)

Description

setRecipient designates the MarketSite recipient TPID, called from the Collaboration.
Refer to the CommerceOne XPC documentation for details on valid recipient values.

Parameters

Return Values

void

setSender

Syntax

public void setSender(java.lang.String sender)

Description

setSender designates the MarketSite sender TPID, called from the Collaboration. Refer
to the CommerceOne XPC documentation for details on valid values for sender.

Parameters

Return Values

void

setUsername

Syntax

public void setUsername(java.lang.String username)

Name Type Description

recipient java.lang.String A valid recipient string (MPID).

Name Type Description

sender java.lang.String A valid sender string (MPID).
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 85 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Commerce One MarketSite e*Way Methods com.stc.eways.c1mxpc.C1MXPC
Description

setUsername designates the MarketSite username from the Collaboration. Refer to the
CommerceOne XPC documentation for details on configuring XPC authentication.

Parameters

Return Values

void

setXmlString

Syntax

public void setXmlString(java.lang.String xmlString)

Description

setXmlString specifies the xmlString to be transmitted to MarketSite. Refer to the
CommerceOne XPC documentation for details on valid xCBL documents that can be
transmitted to MarketSite.

Parameters

Return Values

void

5.1.2. Class C1MXPCConfigHelper
The C1MXPCConfigHelper class contains the following methods:

Name Type Description

username java.lang.String The username required by
MarketSite for authentication.

Name Type Description

xmlString java.lang.String An xmlString to be sent to
MarketSite.

C1MXPCConfigHelper on page 87 loadXPCServicesConfig on page 90

getDocFileName on page 87 main on page 90

getErrorHandlerConfig on page 87 setDocFileName on page 90

getErrorStoreConfig on page 88 setErrorStoreConfig on page 91

getFileStoreConfig on page 88 setFileStoreConfig on page 91

getOrderStoreConfig on page 88 setOrderStoreConfig on page 92

getOriginalMessageStoreConfig on page 89 setOriginalMessageStoreConfig on page 92
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 86 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Commerce One MarketSite e*Way Methods com.stc.eways.c1mxpc.C1MXPC
C1MXPCConfigHelper

Syntax

public C1MXPCConfigHelper()

Description

Constructor.

Parameters

None.

getDocFileName

Syntax

public java.lang.String getDocFileName()
Description

getDocFileName obtains the filename of the document to be sent.

Parameters

None.

Return Values

java.lang.String
Returns the filename, relative to the RootDirectory of the file to be sent to
MarketSite.

getErrorHandlerConfig

Syntax

public C1MXPCConfigHelper.ErrorHandlerConfigClass
getErrorHandlerConfig()

Description

getErrorHandlerConfig obtains the ErrorHandlerConfigClass object.

Parameters

None.

Return Values

C1MXPCConfigHelper.ErrorHandlerConfigClass
Returns the ErrorHandlerConfigClass object.

getPlanningScheduleStoreConfig on
page 89

setPlanningScheduleStoreConfig on
page 93

getTransferMode on page 89 setTransferMode on page 93
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 87 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Commerce One MarketSite e*Way Methods com.stc.eways.c1mxpc.C1MXPC
getErrorStoreConfig

Syntax

public C1MXPCConfigHelper.ErrorStoreConfigClass getErrorStoreConfig()

Description

getErrorStoreConfig obtains the ErrorStoreConfigClass object.

Parameters

None.

Return Values

C1MXPCConfigHelper.ErrorStoreConfigClass
Returns the ErrorStoreConfigClass object.

getFileStoreConfig

Syntax

public C1MXPCConfigHelper.FileStoreConfigClass getFileStoreConfig()

Description

getFileStoreConfig obtains the FileStoreConfigClass object.

Parameters

None.

Return Values

C1MXPCConfigHelper.FileStoreConfigClass
Returns the FileStoreConfigClass object.

getOrderStoreConfig

Syntax

public C1MXPCConfigHelper.OrderStoreConfigClass getOrderStoreConfig()

Description

getOrderStoreConfig obtains the OrderStoreConfigClass object.

Parameters

None.

Return Values

C1MXPCConfigHelper.OrderStoreConfigClass
Returns the OrderStoreConfigClass object.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 88 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Commerce One MarketSite e*Way Methods com.stc.eways.c1mxpc.C1MXPC
getOriginalMessageStoreConfig

Syntax

public C1MXPCConfigHelper.OriginalMessageStoreConfigClass
getOriginalMessageStoreConfig()

Description

getOriginalMessageStoreConfig obtains the OriginalMessageStoreConfigClass object.

Parameters

None.

Return Values

C1MXPCConfigHelper.OriginalMessageStoreConfigClass
Returns the OriginalMessageStoreConfigClass object.

getPlanningScheduleStoreConfig

Syntax

public C1MXPCConfigHelper.PlanningScheduleStoreConfigClass
getPlanningScheduleStoreConfig()

Description

getPlanningScheduleStoreConfig obtains the PlanningScheduleStoreConfigClass
object.

Parameters

None.

Return Values

C1MXPCConfigHelper.PlanningScheduleStoreConfigClass
Returns the PlanningScheduleStoreConfigClass object.

getTransferMode

Syntax

public java.lang.String getTransferMode()

Description

getTransferMode obtains the transfer mode information.

Parameters

None.

Return Values

java.lang.String
Returns the mode for transfer, indicating “inbound” or “outbound”.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 89 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Commerce One MarketSite e*Way Methods com.stc.eways.c1mxpc.C1MXPC
loadXPCServicesConfig

Syntax

public void loadXPCServicesConfig(java.lang.String propsFileName)

Description

loadXPCServicesConfig is called by external to load the XPC service configuration
form the associated properties file (normally called default.prop).

Parameters

Return Values

void

main

Syntax

public static void main(java.lang.String[] args)

Description

main is used for testing only (internal or command line).

Parameters

Return Values

void

Throws

java.lang.Exception

setDocFileName

Syntax

public void setDocFileName(java.lang.String filename)

Description

setDocFileName is used to set the filename of the document to be sent.

Name Type Description

propsFileName java.lang.String The name of XPC service
properties file.

Name Type Description

args java.lang.String[] An array of arguments
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 90 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Commerce One MarketSite e*Way Methods com.stc.eways.c1mxpc.C1MXPC
Parameters

Return Values

void

setErrorStoreConfig

Syntax

public void
setErrorStoreConfig(C1MXPCConfigHelper.ErrorStoreConfigClass
newErrorStoreConfigClass)

Description

setErrorStoreConfig is called by external to set the ErrorStoreConfigClass object.

Parameters

Return Values

void

setFileStoreConfig

Syntax

public void
setFileStoreConfig(C1MXPCConfigHelper.FileStoreConfigClass
newFileStoreConfig)

Description

setFileStoreConfig is called by external to set the FileStoreConfigClass object.

Parameters

Name Type Description

filename java.lang.String The name of the file to send
to MarketSite.

Name Type Description

newErrorStoreConfigClass C1MXPCConfigHelper.Error
StoreConfigClass

An ErrorStoreConfigClass
object to be set.

Name Type Description

newFileStoreConfigClass C1MXPCConfigHelper.FileSt
oreConfigClass

An FileStoreConfigClass
object to be set.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 91 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Commerce One MarketSite e*Way Methods com.stc.eways.c1mxpc.C1MXPC
Return Values

void

setOrderStoreConfig

Syntax

public void
setOrderStoreConfig(C1MXPCConfigHelper.OrderStoreConfigClass
newOrderStoreConfigClass)

Description

setOrderStoreConfig is called by external to set the OrderStoreConfigClass object.

Parameters

Return Values

void

setOriginalMessageStoreConfig

Syntax

public void
setOriginalMessageStoreConfig(C1MXPCConfigHelper.OriginalMessageStore
ConfigClass newOriginalMessageStoreConfigClass)

Description

setOriginalMessageStoreConfig is called by external to set the
OriginalMessageStoreConfigClass object.

Parameters

Return Values

void

Name Type Description

newOrderStoreConfigClass C1MXPCConfigHelper.Orde
rStoreConfigClass

An OrderStoreConfigClass
object to be set.

Name Type Description

newOriginalMessageStoreC
onfigClass

C1MXPCConfigHelper.Origi
nalMessageStoreConfigClass

An OriginalMessageStore
ConfigClass object to be set.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 92 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Commerce One MarketSite e*Way Methods com.stc.eways.c1mxpc.C1MXPC
setPlanningScheduleStoreConfig

Syntax

public void
setPlanningScheduleStoreConfig(C1MXPCConfigHelper.PlanningScheduleSto
reConfigClass newPlanningScheduleStoreConfigClass)

Description

setPlanningScheduleStoreConfig is called by external to set the
PlanningScheduleStoreConfigClass object.

Parameters

Return Values

void

setTransferMode

Syntax

public void setTransferMode(java.lang.String mode)

Description

setTransferMode is called by external to set transfer mode.

Parameters

Return Values

void

5.1.3. Class FileProperties
The C1MXPCFileProperties class contains the following methods:

FileProperties on page 94

close on page 94

load on page 94

save on page 95

Name Type Description

newPlanningScheduleStore
ConfigClass

C1MXPCConfigHelper.Plannin
gScheduleStoreConfigClass

A PlanningScheduleStore
ConfigClass object to be set.

Name Type Description

mode java.lang.String Either inbound or outbound.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 93 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Commerce One MarketSite e*Way Methods com.stc.eways.c1mxpc.C1MXPC
FileProperties

Syntax

public FileProperties(java.lang.String loadsaveFileName)

public FileProperties(java.lang.String loadsaveFileName,
java.util.Properties defProp)

Description

Constructor. The first instance, constructs a FileProperties object given a fileName. The
second instance, constructs a FileProperties object given a fileName and a list of default
properties.

Parameters

Return Values

void

Throws

java.io.IOException

close

Syntax

public void close()

Description

close .

Parameters

None.

Return Values

void

load

Syntax

public void load()

Description

load is used to load the properties from the saved filename. If that fails, retry, including
the .properties extension.

Name Type Description

loadsaveFileName java.lang.String The name of the file.

defProp java.util.Properties The default properties.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 94 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Commerce One MarketSite e*Way Methods com.stc.eways.c1mxpc.C1MXPC
Parameters

None.

Return Values

void

Throws

java.io.IOException

save

Syntax

public void save()

Description

save is used to save the properties for loading at a later time.

Parameters

None.

Return Values

void

Throws

java.io.IOException

5.1.4. Class eGateRequestor
The eGateRequestor class contains the following methods:

eGateRequestor

Syntax

public eGateRequestor()

Description

Constructor.

eGateRequestor on page 95 getJMSPort on page 97

setJMSTopicName on page 96 initializeEGateJMS on page 98

getJMSTopicName on page 96 publishToEGate on page 98

setJMSHostName on page 96 closeEGateJMS on page 99

getJMSHostName on page 97 main on page 99

setJMSPort on page 97 onException on page 99
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 95 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Commerce One MarketSite e*Way Methods com.stc.eways.c1mxpc.C1MXPC
Parameters

None.

setJMSTopicName

Syntax

public void setJMSTopicName(java.lang.String topicString)

Description

setJMSTopicName sets the JMS topic to which the requestor publishes messages.

Parameters

Return Values

void

getJMSTopicName

Syntax

public java.lang.String getJMSTopicName()

Description

getJMSTopicName gets the JMS topic to which the requestor publish messages.

Parameters

None.

Return Values

java.lang.String
Returns the topicString.

setJMSHostName

Syntax

public void setJMSHostName(java.lang.String hostName)

Description

setJMSHostName sets the JMS server host where JMS messages are sent and received.

Name Type Description

topicString java.lang.String The JMS topic name to
publish to.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 96 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Commerce One MarketSite e*Way Methods com.stc.eways.c1mxpc.C1MXPC
Parameters

Return Values

void

getJMSHostName

Syntax

public java.lang.String getJMSHostName()

Description

getJMSHostName gets the JMS server host where JMS messages are sent and received.

Parameters

None.

Return Values

java.lang.String
Returns the hostName.

setJMSPort

Syntax

public void setJMSPort(int port)

Description

setJMSPort sets the JMS server port where JMS messages are sent and received.

Parameters

Return Values

void

getJMSPort

Syntax

public int getJMSPort()

Name Type Description

hostName java.lang.String The JMS server host name to
be set.

Name Type Description

port int The JMS server port number
to be set.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 97 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Commerce One MarketSite e*Way Methods com.stc.eways.c1mxpc.C1MXPC
Description

getJMSPort gets the JMS server port where JMS messages are sent and received.

Parameters

None.

Return Values

int
Returns the port number.

initializeEGateJMS

Syntax

public void initializeEGateJMS()

Description

initializeEGateJMS initializes the JMS settings to be able to perform the requestor
function. This includes creating the connection and topic factories, and the actual
connection and topic used.

Parameters

None.

Return Values

void

Throws

eGateRequestor.eGateRequestorException

publishToEGate

Syntax

public java.lang.String publishToEGate(java.lang.String
messageToSend)

Description

publishToEGate publishes the messageToSend string to the eGate JMS server.

Parameters

Return Values

java.lang.String
Returns the replyMessage.

Name Type Description

messageToSend java.lang.String Any messages to send to
e*Gate via JMS (for example,
xCBL, XML string).
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 98 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Commerce One MarketSite e*Way Methods com.stc.eways.c1mxpc.C1MXPC
closeEGateJMS

Syntax

public void closeEGateJMS()

Description

closeEGateJMS closes the connection to the eGate JMS server.

Parameters

None.

Return Values

void

Throws

eGateRequestor.eGateRequestorException

main

Syntax

public static void main(java.lang.String[] args)

Description

eGateRequestor can be tested as a stand-alone program via the command line: java
com.stc.eways.c1mxpc.eGateRequestor topicName numOfMsgs

Parameters

Return Values

static void

onException

Syntax

public void onException(com.stc.eways.c1mxpc.JMSException e)

Description

onException is called when an exception occurs while waiting for a response.

Name Type Description

args java.lang.String[] 1. Publisher topic name.
2. Number of messages to
send.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 99 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Commerce One MarketSite e*Way Methods com.stc.eways.c1mxpc.C1MXPC
Parameters

Return Values

void

5.1.5. Class eGateRequestor.eGateRequestorException
The eGateRequestor.eGateRequestorException class contains the following methods:

eGateRequestor.eGateRequestorException on page 100

eGateRequestor.eGateRequestorException

Syntax

public eGateRequestor.eGateRequestorException()

public eGateRequestor.eGateRequestorException(java.lang.String msg)

Description

Constructor. eGateRequestor.eGateRequestorException extends java.lang.Exception,
and implements java.io.Serializable.

Parameters

Return Values

None.

Name Type Description

e com.stc.eways.c1mxpc.
JMSException

General exception error
thrown when there is a JMS
related error.

Name Type Description

msg java.lang.String Exception message.
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 100 SeeBeyond Proprietary and Confidential

Index
Index

A
Additional XCBL Processing 30

C
Class 29, 32
Classpath Override 26
Classpath Prepend 26
client.prop File Path 33
Connector 29

D
Debug Level 33
Default Property File Name 30
Default Property File Path 30
Destination 33
Disable JIT 27
Document Type 32

E
e*Way Connection for Transmitter API 31
e*Way Connection for Transmitter API parameters
31

Connector 31
Class 32
Property Tag 32
Type 31

XPC Settings 32
client.prop File Path 33
Debug Level 33
Destination 33
Document Type 32
Recipient 32
Schema Path 34
Sender 32
Timeout 33
XPC Root 33

e*Way Connection parameters 28
e*Way Connection parameters for XPC Server 29

Additional XCBL Processing 30
Import Namespace Processing Instruction 31
Soxtype Namespace Processing Instruction 31

Connector 29
Class 29
Property Tag 29
Type 29

XPC Config Settings 30
Default Property File Name 30
Default Property File Path 30
XPC Config Root 30

Event Types 36

F
files

installed 20
Batch e*Way 21

I
implementation 35
Import Namespace Processing Instruction 31
Initial Heap Size 27
installation

Windows 2000 14
Windows NT 14

installation procedure 15
installed files 20

Batch e*Way 21

J
Java classes

C1MXP 78
C1MXPCConfigHelper 86
eGateRequestor 95
eGateRequestor.eGateRequestorException 100
FileProperties 93

JNI DLL Absolute Pathname 25
JVM settings 24

M
Maximum Heap Size 27
methods

C1MXPC 79
C1MXPCConfigHelper 87
close 94
closeEGateJMS 99
eGateRequestor 95
eGateRequestor.eGateRequestorException 100
FileProperties 94
getDestination 79
getDocFileName 87
getDocumentType 79
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 101 SeeBeyond Proprietary and Confidential

Index
getErrorHandlerConfig 87
getErrorStoreConfig 88
getFileStoreConfig 88
getJMSHostName 97
getJMSPort 97
getJMSTopicName 96
getOrderStoreConfig 88
getOriginalMessageStoreConfig 89
getPassword 80
getPlanningScheduleStoreConfig 89
getRecipient 80
getSender 80
getSyncResponseString 81
getTransferMode 89
getUserName 81
getXmlString 81
initialize 82
initializeEGateJMS 98
load 94
loadXPCServicesConfig 90
main 90, 99
onException 99
publishToEGate 98
reset 82
save 95
sendToMarketSite 83
setDestination 83
setDocFileName 90
setDocumentType 84
setErrorStoreConfig 91
setFileStoreConfig 91
setJMSHostName 96
setJMSPort 97
setJMSTopicName 96
setOrderStoreConfig 92
setOriginalMessageStoreConfig 92
setPassword 84
setPlanningScheduleStoreConfig 93
setRecipient 85
setSender 85
setTransferMode 93
setUsername 85

Multi-Mode e*Way
configuration 24
configuration parameters 24

Auxiliary JVM Configuration File 28
CLASSPATH Append From Environment

Variable 26
CLASSPATH Override 26
CLASSPATH Prepend 26
Disable JIT 27
JNI DLL Absolute Pathname 25
Maximum Heap Size 27
Maximum Stack Size for JVM Threads 27

Maximum Stack Size for Native Threads 27
Remote Debugging port number 28
Suspend option for debugging 28

creating 24
parameters 24

O
Order_Template 76

P
parameters

Multi-Mode e*Way
CLASSPATH prepend 26
Initial Heap Size 27
JNI DLL absolute pathname 25
JVM settings 24
Maximum Heap Size 27

Property Tag 29, 32

R
Recipient 32

S
sample schemas

buyerorderXPC Sample Schema 40
Collaboration Rules 43
configuring 41

buyerorderxpcftp Sample Schema 70
buyerxpc Sample Schema 72
creating 38
installing 39
supplierorderXPC Sample Schema 56

Collaboration Rules 61
configuring 59

supplierxpc Sample Schema 71
supplierxpcsync Sample Schema 73

configuring 75
JMS considerations 76

TransmitterAsync Sample Schema 62
Collaboration Rules 65
configuring 64

TransmitterSync Sample Schema 66
configuring 68

Schema Path 34
SeeBeyond Web site

additional information
technical support 13

Sender 32
setXmlString 86
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 102 SeeBeyond Proprietary and Confidential

Index
Soxtype Namespace Processing Instruction 31
Supporting Documents 76
supporting documents 13
synchronous document handling

configuring 19

T
Timeout 33
Type 29, 31

W
Windows 2000 installation 14
Windows NT installation 14

X
XML Manager

configuring 15
XML Portal Connector 4.1

configuration 17
installation 15

XPC 4.1 installation 15
XPC Config Root 30
XPC Config Settings 30, 32
XPC Manager

configuring 18
services 18

XPC Root 33
e*Way Intelligent Adapter for Commerce One
MarketSite User’s Guide 103 SeeBeyond Proprietary and Confidential

	e*Way Intelligent Adapter for Commerce One MarketSite User’s Guide
	Contents
	Introduction
	1.1 Overview
	1.1.1. Intended Reader
	1.1.2. Components

	1.2 Operational Overview
	1.2.1. Basic Operations
	Transmitting Documents Using the Commerce One e*Way Transmitter ETD
	Receiving Documents Using XPC Server
	Sending Documents Using XPC Server
	Help in Java Collaborations Through the xCBL ETD Library and Commerce One XPC Helper ETD

	1.2.2. Considerations
	1.2.3. Authentication with MarketSite and Security

	1.3 Supported Operating Systems
	1.4 System Requirements
	1.5 External System Requirements
	1.6 SeeBeyond Web Site
	1.7 Supporting Documents

	Installation
	2.0.1. Installing XPC
	2.1 Windows NT or Windows 2000
	2.1.1. Pre-installation
	2.1.2. Installation Procedure
	2.1.3. XPC 4.0 and 4.1 Installation
	2.1.4. Configuring XML Portal Connector 4.1
	2.1.5. Configuring XPC Manager
	Loading XPC Manager

	2.1.6. Configuring the Synchronous Document Support Samples for Commerce One XPC.

	2.2 Files/Directories Created by the Installation
	2.2.1. Post Installation

	Configuration
	3.1 Multi-Mode e*Way Configuration
	3.1.1. JVM Settings
	JNI DLL Absolute Pathname
	CLASSPATH Prepend
	CLASSPATH Override
	CLASSPATH Append From Environment Variable
	Initial Heap Size
	Maximum Heap Size
	Maximum Stack Size for Native Threads
	Maximum Stack Size for JVM Threads
	Disable JIT
	Remote Debugging port number
	Suspend option for debugging
	Auxiliary JVM Configuration File

	3.2 e*Way Connection Configuration Parameters
	3.3 e*Way Connection for XPC Server Based Modules
	3.3.1. Connector
	Type
	Class
	Property Tag

	3.3.2. XPC Config Settings
	XPC Config Root
	Default Property File Path
	Default Property File Name

	3.3.3. Additional XCBL Processing
	Soxtype Namespace Processing Instruction
	Import Namespace Processing Instruction

	3.4 e*Way Connection for Transmitter API Based Modules
	3.4.1. Connector
	Type
	Class
	Property Tag

	3.4.2. XPC Settings
	Document Type
	Sender
	Recipient
	Destination
	XPC Root
	client.prop File Path
	Debug Level
	Timeout
	Schema Path

	Implementation
	4.1 Implementation Process: Overview
	4.1.1. Considerations

	4.2 Event Types
	4.2.1. TransmitterAPI : c1mxpc.xsc
	4.2.2. XPC Server: c1mxpcconfig.xsc

	4.3 Creating the Sample Schema
	4.3.1. Installing a Sample Schema
	4.3.2. The buyerorderXPC Sample Schema
	Configuring the buyerorderXPC Sample
	ProcessCIn_java Collaboration Rule
	dump_payload_cr Collaboration Rule
	dump_payload_eater_cr Collaboration Rule
	processC1out_java Collaboration Rule
	send_feeder_cr Collaboration Rule

	4.3.3. The supplierorderXPC Sample Schema
	Configuring the SupplierOrder Sample
	dump_payload_eater_cr Collaboration Rule

	4.3.4. The TransmitterAsync Sample Schema
	Configuring the AsyncTransmitter Sample
	c1collabrule

	4.3.5. The TransmitterSync Sample Schema
	Configuring the TransmitterSync Sample
	cr_Marketsite Collaboration Rule

	4.3.6. The buyerorderxpcftp Sample Schema
	4.3.7. The supplierxpc Sample Schema
	4.3.8. The buyerxpc Sample Schema
	4.3.9. The supplierxpcsync Sample Schema
	Configuring the supplierxpcsync Sample
	JMS Considerations

	4.3.10. Order_Template
	4.3.11. Supporting Documents

	Commerce One MarketSite e*Way Methods
	5.1 com.stc.eways.c1mxpc.C1MXPC
	5.1.1. Class C1MXP
	C1MXPC
	getDestination
	getDocumentType
	getPassword
	getRecipient
	getSender
	getSyncResponseString
	getUserName
	getXmlString
	initialize
	reset
	sendToMarketSite
	setDestination
	setDocumentType
	setPassword
	setRecipient
	setSender
	setUsername
	setXmlString

	5.1.2. Class C1MXPCConfigHelper
	C1MXPCConfigHelper
	getDocFileName
	getErrorHandlerConfig
	getErrorStoreConfig
	getFileStoreConfig
	getOrderStoreConfig
	getOriginalMessageStoreConfig
	getPlanningScheduleStoreConfig
	getTransferMode
	loadXPCServicesConfig
	main
	setDocFileName
	setErrorStoreConfig
	setFileStoreConfig
	setOrderStoreConfig
	setOriginalMessageStoreConfig
	setPlanningScheduleStoreConfig
	setTransferMode

	5.1.3. Class FileProperties
	FileProperties
	close
	load
	save

	5.1.4. Class eGateRequestor
	eGateRequestor
	setJMSTopicName
	getJMSTopicName
	setJMSHostName
	getJMSHostName
	setJMSPort
	getJMSPort
	initializeEGateJMS
	publishToEGate
	closeEGateJMS
	main
	onException

	5.1.5. Class eGateRequestor.eGateRequestorException
	eGateRequestor.eGateRequestorException

	Index
	A
	C
	D
	E
	F
	I
	J
	M
	O
	P
	R
	S
	T
	W
	X

