
e*Way Intelligent Adapter for
MQSeries User’s Guide

Release 4.5.4

Java Version
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBI, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 2001-2003 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20030218150026.
e*Way Intelligent Adapter for MQSeries User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents
Contents

Chapter 1

Introduction 9
Overview 9

MQSeries e*Way JMS and ETD 9
Intended Reader 10

Supported Operating Systems 10

System Requirements 11
External System Requirements 11

Requirements for the Topic Publish/Subscribe Connection Type 12
OS/390 and Configuration Requirements for MQSeries V5.2 12

Chapter 2

Installation 14
Windows NT and Windows 2000 14

Pre-installation 14
Installation Procedure 14

UNIX 15
Pre-installation 15
Installation Procedure 15

OS/390 and z/OS 16

Files/Directories Created by the Installation 16

Chapter 3

Multi-Mode e*Way Configuration 17
Multi-Mode e*Way 17

JVM Settings 18
JNI DLL Absolute Pathname 18
CLASSPATH Prepend 19
CLASSPATH Override 19
CLASSPATH Append From Environment Variable 20
Initial Heap Size 20
Maximum Heap Size 20
Maximum Stack Size for Native Threads 20
Maximum Stack Size for JVM Threads 20
e*Way Intelligent Adapter for MQSeries User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents
Disable JIT 21
Remote Debugging port number 21
Suspend option for debugging 21
Auxiliary JVM Configuration File 21

General Settings 21
Rollback Wait Interval 22
Standard IQ FIFO 22

Chapter 4

e*Way Connection Configuration (JMS) 23
Configuring e*Way Connections 23

General Settings 24
Connection Type 24
Transaction Type 24
Delivery Mode 25
Maximum Number of Bytes to read 25
Default Outgoing Message Type 25
Factory Class Name 25

MQSeries 26
Queue Manager Name 26
Transport Type 26
Host Name 26
Port Number 27
Channel 27
The valid name of the channel. 27

Chapter 5

Implementation (JMS) 28
MQSeries e*Way Implementation Overview 28

MQSeries Sample Schema Components 29

Step One: Create the IBM MQSeries Queue 30
Publishing Messages with MQSeriesJMS to a non-JMS conversant e*Way 31

Step Two: Install the MQSeries e*Way and Create a New Schema 31
Step Three: Create and Configure the e*Ways 32

Step Four: Create the e*Way Connection and Specify the Queue Manager 35

Step Five: Create Event Types and Specify the MQSeries Queue 36

Step Six: Create Intelligent Queues 38

Step Seven: Create Collaboration Rules 39
Using the Collaboration Rules Editor 42

Step Eight: Create Collaborations 44

Step Nine: Set the CLASSPATH Variable 48

Execute the Schema 49
e*Way Intelligent Adapter for MQSeries User’s Guide 4 SeeBeyond Proprietary and Confidential

Contents
Error Messages 50

Chapter 6

ETD Overview 51
The MQSeriesETD 51

The QueueManager Node 52
Current Queue Manager 52
The queueAccessOptions Node 52
Methods Under the QueueManager Node 52

The Queue Node 53
Current Queue 53
Get and Put Methods 54
The newMessage Method 54
Methods Under the Queue Node 55

The Message Node 55
The MsgHeader Child Node 55
The MsgBody Child Node 56
Calling Read Methods 56
The MQMessage Class 56
Methods Under the Message Node 56

Exception Handling 59

Chapter 7

e*Way Connection Configuration (ETD) 60
Configuring e*Way Connections 60

General Settings 61
Transaction Type 61

MQSeries 62
Queue Manager Name 62
Host Name 62
Port Number 63
Channel 63

Connector 63
type 63
class 63
Property.Tag 64

Default GetMessageOptions 64
Wait Timeout 64
Wait Interval 64

Chapter 8

Implementation (ETD) 66
MQSeries (ETD) Sample Implementation Components 66

The MQSeries (ETD) Sample Schema 67
e*Way Intelligent Adapter for MQSeries User’s Guide 5 SeeBeyond Proprietary and Confidential

Contents
Step One: Create the IBM MQSeries Queue 68

Step Two: Install the MQSeries e*Way and Create a New Schema 69
Importing the Sample Schema 69

Step Three: Create and Configure the e*Ways 69

Step Four: Create the e*Way Connection 73

Step Five: Create Event Types 75
Creating an Event Types Using the Custom ETD Wizard 76
Creating Event Types From an Existing XSC 77

Step Six: Create Intelligent Queues 78
To create and modify an Intelligent Queue for the MQSeries e*Way 78

Step Seven: Create Collaboration Rules 78
Creating Pass Through Collaboration Rules 78
Creating Java Collaboration Rules 80

Using the Collaboration Rules Editor 82

Step Eight: Create Collaborations 88
Creating the Inbound_eWay Collaboration 88
Creating the Multi Mode e*Way Collaboration 89

Step Nine: Set the CLASSPATH Variable 91

Execute the Schema 92

Error Messages 92

MQSeries (ETD) Sample Schema for OS/390 and z/OS 94

Chapter 9

Java Methods (ETD) 95
MQSeriesETD Class 95

Methods of the MQSeriesETD class 95
connectToQueueManager 96
selectQueueManager 96
isQueueMgrConnected 97
getCharacterSet 97
getMaximumPriority 98
commit 98
backout 98
queueAccessOptionsClearAll 99
accessQueue 99
selectQueue 100
get 100
getWithOptions 100
put 101
putWithOptions 101
getCurrentDepth 102
getMaximumDepth 102
getMaximumMessageLength 102
newMessage 103

GMO Class 103
Methods of the GMO class 103
optionsClearAll 103
e*Way Intelligent Adapter for MQSeries User’s Guide 6 SeeBeyond Proprietary and Confidential

Contents
setWaitValue 104
setUnlimitedWait 104
matchOptionsClearAll 105

PMO Class 105
Methods of the PMO class 105

Message Class 105
Methods of the Message class 105
getTotalMessageLength 106
getMessageLength 107
getDataLength 107
seek 108
setDataOffset 108
getDataOffset 109
clearMessage 109
getVersion 109
resizeBuffer 110
readBoolean 110
readChar 111
readDouble 111
readFloat 111
readFully 112
readInt 113
readInt4 113
readLine 113
readLong 114
readInt8 114
readObject 115
readShort 115
readInt2 116
readUTF 116
readUnsignedByte 116
readUnsignedShort 117
readUInt2 117
readString 118
readDecimal2 118
readDecimal4 119
readDecimal8 119
setVersion 120
skipBytes 120
write 121
writeBoolean 121
writeByte 122
writeBytes 122
writeChar 123
writeChars 123
writeDouble 124
writeFloat 124
writeInt 125
writeLong 125
writeObject 126
writeShort 126
writeDecimal2 127
writeDecimal4 127
writeDecimal8 128
writeUTF 128
writeString 129
e*Way Intelligent Adapter for MQSeries User’s Guide 7 SeeBeyond Proprietary and Confidential

Contents
Appendix A

Appendix A (JMS) 130
Mapping Between JMS Standard Header Items and MQSeries Header Fields 130

Index 133
e*Way Intelligent Adapter for MQSeries User’s Guide 8 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This chapter introduces you to SeeBeyondTM Technology Corporation’s (SeeBeyondTM)
Java™-enabled e*Way Intelligent Adapter for MQSeries™. It includes an overview of
this manual and a list of system requirements for installation.

1.1 Overview
MQSeries (WebSphere MQ) from IBM is a client-server message broker supporting an
open API (application programming interface), available on a variety of operating
systems, including AIX, Solaris, HP-UX, and Windows. MQSeries is “middleware” that
provides commercial messaging and queuing services. Messaging enables programs to
communicate with each other via messages rather than direct connection. Messages are
placed in queues for temporary storage, freeing up programs to continue to work
independently. This process also allows communication across a network of dissimilar
components, processors, operating systems, and protocols.

The Java-enabled MQSeries e*Way allows the e*Gate system to exchange data with
IBM’s MQSeries. The MQSeries e*Way applies business logic within Collaboration
Rules to perform any of e*Gate’s range of data identification, manipulation and
transformation operations. Messages are tailored to meet the communication
requirements of specific applications or protocols. Intelligent Queues (IQs) provide
non-volatile storage for data within the e*Gate system allowing applications to run
independently of one another at different speeds and times. Applications can freely
send messages to a queue or access messages from a queue at any time.

The MQSeries e*Way transparently integrates existing systems and databases to IBM
MQSeries through e*Gate. This document explains how to install and configure the
Java-enabled MQSeries e*Way.

1.1.1. MQSeries e*Way JMS and ETD
The MQSeries e*Way (Java) is equipped for two different configuration modes, JMS-
based and ETD-based. Each provides advantages for different applications.

! The JMS-based MQSeries e*Way schema uses the Java Messaging System (JMS)
e*Way connection and offers easy setup and high performance when connecting to
a single queue.
e*Way Intelligent Adapter for MQSeries User’s Guide 9 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction Supported Operating Systems
! The ETD-based MQSeries e*Way schema relies on a fixed Event Type Definition
(ETD) designed to expose various essential portions of the MQSeries Java API,
providing a wide range of available methods and properties, as well as access to all
message attributes. The ETD-based schema allows the e*Way to connect and switch
between multiple queue managers and their queues.

General implementation directions are provided for both in this document. Sections of
this user guide that relate specifically to JMS-based or ETD-based MQSeries e*Way
configuration and setup are marked with (JMS) or (ETD) in the chapter title.

1.1.2. Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the e*Gate system, to have a working knowledge of
Windows or UNIX operations and administration, and to be familiar with MQSeries,
Java, and Windows-style GUI operations.

1.2 Supported Operating Systems
The MQSeries e*Way is available on the following operating systems. See any notes
below regarding your specific operating system.

! Windows 2000, Windows 2000 SP1, Windows 2000 SP2, and Windows 2000 SP3

! Windows NT 4.0 SP6a

! Solaris 2.6, 7, and 8

! AIX 4.3.3 and 5.1

! HP-UX 11.0 and HP-UX 11i

! OS/390 V2 R10

! z/OS 1.2, 1.3, and 1.4

Note: Solaris 2.6 is not supported by MQSeries, version 5.3 (WebSphere MQ V5.3).
MQSeries, version 5.2 does support Solaris 2.6, but requires the installation of
patches 105210-13 and 105568-10 available from Sun Microsystems at:

http://sunsolve.sun.com/pub-cgi/show.pl?target=patches/patch-access

For AIX operating systems, the environmental variable LDR_CNTRL for JVM may need to
be adjusted in order to accommodate MQSeries shared memory. Java uses 8 segments by
default (this is the maximum value allowed; each segment is 256 MB). For example, the
following setting changes the number of segments to 3:

setenv LDR_CNTRL MAXDATA=0x30000000

This variable only applies to the MQSeries e*Way, Java version. Please consult with your
UNIX and MQSeries administrators to see what value is appropriate for your environment.
e*Way Intelligent Adapter for MQSeries User’s Guide 10 SeeBeyond Proprietary and Confidential

http://sunsolve.sun.com/pub-cgi/show.pl?target=patches/patch-access

Chapter 1 Section 1.3
Introduction System Requirements
For HP-UX 11 operating systems, HP-UX Java binding support is only available for
systems running the POSIX draft 10 threaded version of MQSeries. The HP-UX
Developers kit for Java 1.1.7, Release C.01.17.01 or above is also required.

OS/390 V2R10 and z/OS 1.2, 1.3, and 1.4 are only supportedby the MQSeries e*Way
using the Java ETD-based implementation.

1.3 System Requirements
To use the MQSeries e*Way, you need the following:

! An e*Gate Participating Host, version 4.5.1 or later, except for the following
operating systems:

" The OS/390 V2 R10 and z/OS 1.2, 1.3, and 1.4 operating systems are supported
with e*Gate version 4.5.2 and 4.5.3.

! A TCP/IP network connection.

! Additional disk space for e*Way executable, configuration, library, and script files.
The disk space is required on both the Participating and the Registry Host.
Additional disk space is required to process and queue the data that this e*Way
processes; the amount necessary varies based on the type and size of the data being
processed, and any external applications performing the processing.

Note: Open and review the Readme.txt for the MQSeries e*Way regarding any
additional requirements prior to installation. The Readme.txt is located on the
Installation CD_ROM at setup\addons\ewmq.

1.3.1. External System Requirements
The Java-enabled MQSeries e*Way requires the following installed on the participating
host:

! IBM MQSeries V5.2 or V5.3 (WebSphere MQ V5.3) with the following exceptions:

" The MQSeries e*Way only supports the OS/390 V2 R10 or z/OS 1.2, 1.3, or 1.4
operating systems with MQSeries V5.2.

Note: Install either the MQSeries server or the MQSeries client code. If the MQSeries
server is installed on the participating host, the e*Way connects to the server in
bindings mode. If the MQSeries client code is installed on the participating host, the
e*Way connects to the server in client mode. A client mode connection cannot
participate in XA transactions.

Install the following after installing IBM MQSeries V5.2:

! IBM MQSeries classes for Java 5.2.0.

! Classes for Java Message Service 5.2.0.0
e*Way Intelligent Adapter for MQSeries User’s Guide 11 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction System Requirements
MQSeries V5.3 (WebSphere MQ, V5.3) includes the MQSeries classes for Java and JMS.
The use of SupportPac MA88 with MQSeries V5.3 product is not supported. MQSeries
V5.2 requires the installation of SupportPac MA88 for all supported platforms.

The MA88 SupportPac download and installation information can be found at:
http://www-4.ibm.com/software/ts/mqseries/txppacs/ma88.html.

The MA88 patch includes updates for several jar files and DLL's/shared libraries.
Most notably, com.ibm.mq.jar, mqjbnd02.dll and mqxai01.dll. It is important that
the patch overwrites the existing versions of these files if they are present on your
machine. Alternatively, if they do not overwrite the existing versions, it is important
that the new versions of these files exist on your classpath and path before the old
versions. Once you have downloaded the SupportPac, make sure that all .jar files
installed as part of the SupportPac are included in the classpath.

Requirements for the Topic Publish/Subscribe Connection Type

IBM SupportPac MAOC is required by both MQSeries V5.2 and V5.3 to use the Topic
Publish/Subscribe Connection Type (see Connection Type on page 24). The
SupportPac MAOC installation information and download can be found at:
http://www-3.ibm.com/software/ts/mqseries/txppacs/ma0c.html

OS/390 and z/OS Configuration Requirements for MQSeries V5.2

The Java-enabled MQSeries e*Way requires the following when installed on an OS/390
system. For additional installation notes for OS/390 and z/OS, see the e*Gate
Integrator Installation Guide.

Note: The MQSeries e*Way on OS/390 or z/OS only supports MQSeries V5.2.
MQSeries V5.3 (WebSphere MQ V5.3) is not supported by the MQSeries e*Way
running on anOS/390 or z/OS operating system.

The summarized requirements are as follows:

! The following DLL and Links must be copied from the MA88 mqm/java/lib
directory to the e*Gate client/bin directory for use with MQSeries V5.2:

libwmqjbatch.so
libwmqjbatch_g.so -> libwmqjbatch.so
libwmqjbind.so
libwmqjbind_g.so -> libwmqjbind.so
libwmqjcics.so
libwmqjcics_g.so -> libwmqjcics.so
libwmqjrrs.so
libwmqjrrs_g.so -> libwmqjrrs.so

! The STEPLIB environment variable must be set prior to starting the MQ Series
e*Way. It must point to the MQM.SCSQAUTH and MQM.SCSQANLE load
libraries, as follows:

export STEPLIB=MQM.SCSQAUTH:MQM.SCSQANLE

Note: On some versions of OS/390, the high level qualifier of these datasets is CSQ (not
MQM).
e*Way Intelligent Adapter for MQSeries User’s Guide 12 SeeBeyond Proprietary and Confidential

http://www-4.ibm.com/software/ts/mqseries/txppacs/ma88.html
http://www-3.ibm.com/software/ts/mqseries/txppacs/ma0c.html

Chapter 1 Section 1.3
Introduction System Requirements
! The OS/390 version of com.ibm.mq.jar from the MA88 Support Pac must be
committed to the sandbox and promoted to runtime prior to running the MQSeries
e*Way on OS/390. The MQ Series sample schema expects it to be located in the
following directory:

../ThirdParty/mqseries/classes/

! The absolute path for the JNI DLL must be setup to point to the OS/390 JVM Shared
Object for all Java e*Ways running on OS/390. For example:

/usr/lpp/java/J1.3/bin/classic/libjvm.so
e*Way Intelligent Adapter for MQSeries User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 2

Installation

This chapter explains how to install the Java-enabled MQSeries e*Way.

Windows NT and Windows 2000 on page 14
UNIX on page 15
OS/390 and z/OS on page 16
Files/Directories Created by the Installation on page 16

2.1 Windows NT and Windows 2000

2.1.1. Pre-installation
1 Quit all Windows programs before running the setup program, including any

anti-virus applications.

2 You must have Administrator privileges to install this e*Way.

2.1.2. Installation Procedure
To install the MQSeries e*Way on a Windows system

1 Log in as Administrator to the work station on which the e*Way is to be installed.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

If Autorun is enabled, the setup program automatically starts. Otherwise:

" On the task bar, click the Start button, then click Run.

" In the Open field, type D:\setup\setup.exe where D: is your CD-ROM drive.

3 The InstallShield setup application launches. Follow the installation instructions
until you come to the Please choose the product to install dialog box.

4 Select e*Gate Integrator, then click Next.

5 Follow the on-screen instructions until you come to the second Please choose the
product to install dialog box.

6 Clear the check boxes for all selections except Add-ons, and then click Next.

7 Follow the on-screen instructions until you come to the Select Components dialog
box.
e*Way Intelligent Adapter for MQSeries User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Installation UNIX
8 Select (but do not check) e*Ways, and then click Change. The Select Sub-
components dialog box appears.

9 Select MQSeries e*Way as shown in figure 1. Click Continue to return to the Select
Components dialog box, then click Next.

10 Follow the rest of the on-screen instructions to install the MQSeries e*Way. For
details of e*Gate installation, refer to the e*Gate Integrator Installation Guide.
Be sure to install the e*Way files in the suggested client installation directory. The
installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not change
the suggested installation directory setting.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information on any of these procedures, see the online Help system.

For more information about configuring e*Ways or how to use the e*Way editors,
see the e*Gate Integrator User’s Guide.

2.2 UNIX

2.2.1. Pre-installation
Root privileges are not required when installing the MQSeries e*Way. Log in under the
name of the user who will oversee the e*Way files. Be sure that this user has sufficient
privilege to create files in the e*Gate directory tree.

2.2.2. Installation Procedure
To install the MQSeries e*Way on a UNIX system

1 Log onto the workstation containing the CD-ROM drive, and insert the CD-ROM
into the drive.

2 If necessary, mount the CD-ROM drive.

3 At the shell prompt, type:

cd /cdrom/setup

4 Start the installation script by typing:

setup.sh

5 A menu of options appears. Select the Install e*Ways option. Then, follow any
additional on-screen directions to install the MQSeries e*Way.

Note: Be sure to install all files in the suggested client installation directory. The
installation utility detects and suggests the appropriate installation directory.
e*Way Intelligent Adapter for MQSeries User’s Guide 15 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Installation OS/390 and z/OS
Unless you are directed to do so by SeeBeyond support personnel, do not change the
suggested installation directory setting.

6 After installation is complete, exit the installation utility and launch the Enterprise
Manager.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, Intelligent Queues (IQs), and Event Types before this e*Way can perform its
intended functions. For more information about any of these procedures, please see
the online Help system.

For more information about configuring e*Ways or how to use the e*Way editors,
see the e*Gate Integrator User’s Guide.

2.3 OS/390 and z/OS
e*Way installation notes for OS/390 and z/OS can be found in the e*Gate Integrator
Installation Guide.

2.4 Files/Directories Created by the Installation
The MQSeries e*Way installation process installs the files shown in Table 1 within the
e*Gate client directory tree. Files are installed within the egate\client\ tree on the
Participating Host and committed to the default schema on the Registry Host.

Table 1 Files Created by the Installation

Install Directory Files

configs\mqseries mqseries.def

etd\mqseriesetd\ MQSeriesETD.jar
MQSeriesETD.xsc

configs\mqseriesetd MQSeriesETD.def

etd\ mqseriesetd.ctl

ThirdParty\sun\ jta.jar
e*Way Intelligent Adapter for MQSeries User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 3

Multi-Mode e*Way Configuration

A Multi-Mode e*Way is a multi-threaded component used to route and transform data
within e*Gate. Unlike traditional e*Ways, Multi-Mode e*Ways can use multiple
simultaneous e*Way Connections to communicate with several external systems, as
well as IQs or JMS IQ Managers. This chapter describes how to configure the Multi-
Mode e*Way for the Java-enabled MQSeries e*Way.

3.1 Multi-Mode e*Way
Multi-Mode e*Way properties are set using the Enterprise Manager.

To create and configure a new Multi-Mode e*Way

1 Select the Navigator’s Components tab.

2 From the Navigator pane, select the appropriate host, then select the host’s Control
Broker.

3 On the Palette, click the Create a New e*Way button. The New e*Way Component
dialog box appears.

4 Enter the name of the new e*Way, then click OK.

5 From the Editor pane, Select the new component, then right-click and select
Properties. The e*Way Properties dialog box appears.

6 The Executable File field defaults to stceway.exe. (stceway.exe is located in the
“bin\” directory).

7 Under the Configuration File field, click New. When the Settings page opens, set the
configuration parameters for this configuration file.

8 Configure the parameters appropriate to your specific system and save the
configuration file. Close the .cfg file and click OK to close the e*Way Properties
Window.

Multi-Mode e*Way Configuration Parameters

The Multi-Mode e*Way configuration parameters are arranged in the following
sections:

! JVM Settings on page 18

! General Settings on page 21
e*Way Intelligent Adapter for MQSeries User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way
3.1.1. JVM Settings
The JVM Settings section controls basic Java Virtual Machine (JVM) settings.

! JNI DLL Absolute Pathname on page 18

! CLASSPATH Prepend on page 19

! CLASSPATH Override on page 19

! CLASSPATH Append From Environment Variable on page 20

! Initial Heap Size on page 20

! Maximum Heap Size on page 20

! Maximum Stack Size for Native Threads on page 20

! Maximum Stack Size for JVM Threads on page 20

! Disable JIT on page 21

! Remote Debugging port number on page 21

! Suspend option for debugging on page 21

! Auxiliary JVM Configuration File on page 21

JNI DLL Absolute Pathname

Description

Specifies the absolute pathname to where the JNI .dll (installed by the Java 2 SDK
1.3.1_02) is located on the Participating Host. (for example,
c:\egate\client\bin\jre\1.3\bin\hotspot\jvm.dll or C:\jdk\jre\bin\server). This
parameter is mandatory.

Required Values

A valid pathname.

Additional Information

The JNI .dll name varies on different operating systems.

Environment variables may be referenced in this parameter by enclosing the variable
name in a pair of % signs. For example:

%MY_JNIDLL%

OS Java 2 JNI DLL Name

 Windows jvm.dll

Solaris libjvm.so

OS/390, z/OS libjvm.so

HP-UX libjvm.sl

AIX libjvm.a
e*Way Intelligent Adapter for MQSeries User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way
This can be used for the purpose of clarity when working with multiple Participating
Hosts.

To ensure that the JNI DLL loads successfully, the Dynamic Load Library search path
environment variable must be set appropriately to include all the directories under the Java 2
SDK (or JDK) installation directory that contain shared libraries (UNIX) or DLLs (NT).

CLASSPATH Prepend

Description

Specifies the paths to be prepended to the CLASSPATH environment variable for the
JVM.

Required Values

An absolute path or an environmental variable. This parameter is optional.

Additional Information

If left unset, no paths are prepended to the CLASSPATH environment variable. Existing
environment variables may be referenced in this parameter by enclosing the variable
name in a pair of % signs. For example:

%MY_PRECLASSPATH%

CLASSPATH Override

Description

Specifies the complete CLASSPATH variable to be used by the JVM. This parameter is
optional. If left unset, an appropriate CLASSPATH environment variable (consisting of
required e*Gate components concatenated with the system version of CLASSPATH) is
set.

Note: All necessary JAR and ZIP files needed by both e*Gate and the JVM must be
included. It is recommended that the CLASSPATH Prepend parameter be used.

Required Values

An absolute path or an environmental variable. This parameter is optional.

Additional Information

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_CLASSPATH%
e*Way Intelligent Adapter for MQSeries User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way
CLASSPATH Append From Environment Variable

Description

Specifies whether the path is appended for the CLASSPATH environmental variable to
jar and zip files needed by the JVM.

Required Values

YES or NO. The configured default is YES.

Initial Heap Size

Description

Specifies the value for the initial heap size in bytes. If set to 0 (zero), the preferred value
for the initial heap size of the JVM is used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Heap Size

Description

Specifies the value of the maximum heap size in bytes. If set to 0 (zero), the preferred
value for the maximum heap size of the JVM is used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Stack Size for Native Threads

Description

Specifies the value of the maximum stack size in bytes for native threads. If set to 0
(zero), the default value is used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Stack Size for JVM Threads

Description

Specifies the value of the maximum stack size in bytes for JVM threads. If set to 0 (zero),
the preferred value for the maximum heap size of the JVM is used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.
e*Way Intelligent Adapter for MQSeries User’s Guide 20 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way
Disable JIT

Description

Specifies whether the Just-In-Time (JIT) compiler is disabled.

Required Values

YES or NO.

Note: This parameter is not supported for Java Release 1.

Remote Debugging port number

Description

Specifies the port number by which the e*Gate Java Debugger can connect with the
JVM to allow remote debugging.

Required Values

An unused port number in the range 2000 through 65535. If not specified, the e*Gate
Java Debugger is not able to connect to this e*Way.

Suspend option for debugging

Description

Allows you to specify that the e*Way should do no processing until an e*Gate Java
Debugger has successfully connected to it.

Required Values

YES or No. YES suspends e*Way processing until a Debugger connects to it. NO
enables e*Way processing immediately upon startup.

Auxiliary JVM Configuration File

Description

Specifies an auxiliary JVM configuration file for additional parameters.

Required Values

The location of the auxiliary JVM configuration file.

3.1.2. General Settings
For more information on the General Settings configuration parameters see the e*Gate
Integrator User's Guide. The General Settings section contains the following parameters:

! Rollback Wait Interval on page 22

! Standard IQ FIFO on page 22
e*Way Intelligent Adapter for MQSeries User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Multi-Mode e*Way Configuration Multi-Mode e*Way
Rollback Wait Interval

Description

Specifies the time interval to wait before rolling back the transaction.

Required Values

A number within the range of 0 to 99999999, representing the time interval in
milliseconds.

Standard IQ FIFO

Description

Specifies whether the highest priority messages from all STC_Standard IQs will be
delivered in first-in-first-out (FIFO) order.

Required Values

Select YES or NO. YES indicates that the e*Way will retrieve messages from all
STC_Standard IQs in first-in-first-out (FIFO) order. NO indicates that this feature is
disabled. NO is the configured default.
e*Way Intelligent Adapter for MQSeries User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 4

e*Way Connection Configuration (JMS)

This chapter defines the configuration options for the Java-enabled MQSeries e*Way
Connection using the MQSeries JMS connection type.

4.1 Configuring e*Way Connections
e*Way Connections are set using the Enterprise Manager.

To create and configure e*Way Connections

1 In the Enterprise Manager’s Component editor, select the e*Way Connections
directory.

2 On the palette, click the Create a New e*Way Connection button. The New e*Way
Connection Component dialog box appears.

3 Enter a name for the e*Way Connection. For the purposes of the sample
implementation enter MQ_conn1 as the name.

4 Double-click the new e*Way Connection. The e*Way Connection Properties dialog
box appears.

5 From the e*Way Connection Type drop-down box, select MQSeries JMS.

6 Enter the Event Type ''get'' interval in the provided dialog box. 10000 milliseconds
is the configured default. The “get” interval is the intervening period at which,
when subscribed to, the e*Way connection is polled.

7 Click the New button under the e*Way Connection Configuration File field to
create a new configuration file for this e*Way Connection. (To use an existing file,
click Find, and select a file.) The Configuration Editor appears.

8 Enter the correct parameters for your e*Way Connection as defined on the following
pages. When all parameters have been entered, from the File menu, click Save and
Promote to Run Time to move the file to the run time environment.

The MQSeries e*Way Connection configuration parameters are organized in the
following sections.

! General Settings on page 24

! MQSeries on page 26
e*Way Intelligent Adapter for MQSeries User’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration (JMS) Configuring e*Way Connections
4.1.1. General Settings
This section contains a set of top level parameters:

! Connection Type on page 24

! Transaction Type on page 24

! Delivery Mode on page 25

! Maximum Number of Bytes to read on page 25

! Default Outgoing Message Type on page 25

! Factory Class Name on page 25

Connection Type

Description

String-set. Specifies the JMS Messaging Model. Two connections types are supported.

! Queue: Point-to-point behavior, where each message is delivered to only one
recipient in the pool.

! Topic: Publish/subscribe behavior, where each message is delivered to all current
subscribers to the Topic.

Required Values

Select one of two options, Queue or Topic. Queue is the configured default.

Note: The Topic Publish/Subscribe connection type option requires the installation of the
IBM SupportPac MAOC (see Requirements for the Topic Publish/Subscribe
Connection Type on page 12).

Transaction Type

Description

String-set. Specifies the Transaction Type. There are three transaction types.

! Internal: Provides protection for transactions sent internally between IBM
MQSeries and e*Way queues. In the event of a system error, messages in transit are
rolled back, restoring the message. When the send() method is called the transaction
takes place at the end of the Collaboration.

! Non-Transactional: Provides the highest level of performance with the minimum
level of message protection. No rollback is available during the send and receive
period, which may mean the possible loss of data in the case of a system error.
When the send() method is called the transaction is immediate.

! XA-compliant: (two-phase transactional behavior) Highest level of transaction
protection, providing rollback for internal and XA compliant transactions. The
transaction is also extended to other XA supported data exchange applications,
such as Oracle, DB2, and MQSeries. When the send() method is called the
transaction takes place at the end of the Collaboration.
e*Way Intelligent Adapter for MQSeries User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration (JMS) Configuring e*Way Connections
Required Values

A valid transaction type. One of three provided: Internal, Non-Transactional, or XA-
compliant. Internal is the configured default.

Note: Consult the XA Transaction Processing section of the e*Gate Integrator User's
Guide for information on XA use and restrictions.

Delivery Mode

Description

String-set. Specifies the message delivery mode. There are two delivery mode options.

! Non-Persistent. Provides the highest performance. The message is cashed in
memory during the transaction.

! Persistent. Provides the highest level of protection. Ensuring that the message is
saved to a reliable persistent store by the Message Server before the publish
method returns.

This setting must match the setting in the IBM MQSeries queue manager.

Required Values

Non-Persistent or Persistent. Persistent is the configured default.

Maximum Number of Bytes to read

Description

Integer-set. Specifies the maximum number of bytes to read at a time from the received
Bytes Message.

Required Values

An integer in the range of 1 to 104,857,600. The configured default is 8192.

Default Outgoing Message Type

Description

String-set. Specifies the message type to create during publish/send. The outgoing
message type is published within the message header. This is only relevant to sending,
providing information for the receiver.

Required Values

Bytes or Text. The configured default is Bytes.

Factory Class Name

Description

String-set. Specifies the factory class used to connect to the JMS IQ Manager. This is
advanced configuration to be utilized in future development, and should not be
changed from the default.
e*Way Intelligent Adapter for MQSeries User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration (JMS) Configuring e*Way Connections
Required Values

The valid factory class name. The configured default is
com.stc.common.collabService.MQJMSFactory. Retain the default setting.

4.1.2. MQSeries
This section contains a set of top level parameters:

! Queue Manager Name on page 26

! Transport Type on page 26

! Host Name on page 26

! Port Number on page 27

! Channel on page 27

Queue Manager Name

Description

String-set. Specifies the name of the IBM MQSeries queue manager.

Required Values

Enter the name of the IBM MQSeries queue manager.

Transport Type

Description

String-set. Specifies the Transport Type:

! Client

! Binding

JMS can communicate with MQSeries using either the client or bindings transports. Use
of Java binding requires that the JMS application and the MQSeries queue manager be
located on the same machine. Client permits the queue manager to be on a different
machine from the application. Binding has a performance advantage but requires a
local queue manager.

Required Values

Select Client or Binding. The configured default is Client.

Host Name

Description

String-set. Specifies the name of the host on which the queue manager resides. This
option is only relevant with transport type “Client” and is ignored for transport type
“Bindings”. As for “Bindings”, the queue manager must be on the same host.
e*Way Intelligent Adapter for MQSeries User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
e*Way Connection Configuration (JMS) Configuring e*Way Connections
Required Values

Enter the name of the queue manager host.

Port Number

Description

Integer-set. Specifies the number of the port to connect to. This option is only relevant
with a transport type 'Client' and is ignored for transport type 'Bindings'. If this option
is left empty the default port is used.

Required Values

Enter the port number, in the range of 1000 and 65536. The configured default is 1414.

Channel

Description

String-set. Specifies the name of the channel being used. This option is only relevant
with transport type 'Client' and is ignored for transport type 'Bindings'. If no channel is
specified the default channel is used.

Required Values

The valid name of the channel.
e*Way Intelligent Adapter for MQSeries User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 5

Implementation (JMS)

This chapter contains basic information for implementing the Java-enabled MQSeries
e*Way using MQSeries JMS mode, in a production environment. Examples are given
for creating and configuring the necessary components to implement the sample
MQSeries schema included on the CD-ROM. For more information on creating and
configuring e*Way components see the e*Gate Integrator User’s Guide.

5.1 MQSeries e*Way Implementation Overview
The Java enabled MQSeries e*Way is an application specific e*Way that enables e*Gate to
connect with IBM’s MQSeries applications. When the MQSeries e*Way is installed
along with the e*Gate Integrator, schema’s can be created and configured using the
e*Gate Enterprise Manager. A schema is an organization scheme that contains the
parameters of all the components that control, route, and transform data as it moves
through e*Gate in a predefined system configuration. To create an e*Gate schema for
MQSeries you must do the following:

! Install IBM’s MQSeries Server and MQSeries Queue Manager: The MQSeries
Server and MQSeries Queue Manager are installed on the localhost.

! Install the MQSeries e*Way: The MQSeries e*Way is installed as an Add-on to the
e*Gate Integrator. For directions on installing the MQSeries e*Way from CD-ROM
on your specific operating system. (See Installation on page 14.)

! Create e*Ways: e*Ways connect with external systems to poll or send data. They
also transform and route data. Multi-Mode e*Ways are used to run Java
Collaborations that utilize e*Way Connections to send and receive Events to and
from multiple external systems.

! Configure e*Way Connections: An e*Way Connection is the encoding of access
information for a particular external connection. The e*Way Connection
configuration file contains the parameters necessary for communicating with IBM’s
MQSeries and specifying the MQSeries Queue Manager.

! Create Event Type: Each packet of data within e*Gate is referred to as an Event.
Event Types are data labels that allow e*Gate to process and route specific Events
differently. The Event Type specifies the MQSeries Queue (the Event Type must
have the same name as the IBM’s MQSeries Queue). Data is not routed in e*Gate
without an Event Type.
e*Way Intelligent Adapter for MQSeries User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementation (JMS) MQSeries Sample Schema Components
! Create Intelligent Queues: Intelligent Queues (IQs) provide non-volatile storage
for data traveling through the e*Gate system. The IQ Manager oversees the
activities of the individual storage locations. The exact behavior of each IQ is
determined by the IQ Service configuration. The MQSeries e*Way uses the
MQSeries IQ Service.

! Create Collaboration Rules: Collaboration Rules determine how input Event Types
are modified for the format of specific output Event Types. A Collaboration Rule
defines what type of data is received, how it is transformed and what type of data is
published.

! Create Collaborations: A Collaboration is a message bus in e*Gate that specifies the
name and source of the incoming Event Types, the Collaboration Rules that are
applied to the Event, and the name, destination and expiration date of the outgoing
Event Types. A Collaboration designates the Subscriber, which “listens” for Events
of a known type from a given source, and the Publisher, which distributes the
transformed Event to a specified recipient.

! Set the CLASSPATH Variable: The Final Step in creating and configuring the
MQSeries e*Way is to set the IBM MQSeries Java .jar files in the environment
CLASSPATH variable.

5.2 MQSeries Sample Schema Components
A sample schema for MQSeries is available in the samples folder on the CD-ROM. In
addition, the following pages explain how the components for the MQSeries sample
schema were created. The Host and Control Broker are automatically created and
configured during the e*Gate installation. The default name for each is the name of the
host on which you are installing the e*Gate Enterprise Manager GUI. To complete the
sample implementation of the Java-enabled MQSeries e*Way requires the following
components:

! IBM MQSeries Server and the MQSeries Queue Manager.

! Java Classes for MQSeries.

! Install the MQSeries e*Way Add-on. Make sure that the Control Broker is activated

! In the e*Gate Enterprise Manager, define and configure the following as necessary:

" Inbound e*Way using stcewfile.exe as the executable file.

" Outbound e*Way using stcewfile.exe as the executable file.

" The Multi-Mode e*Way component using stceway.exe as the executable file.

" Event Type Definitions used to package the data to be exchanged with the
external system.

" Intelligent Queues (IQs) to provide non-volatile storage Events

" Collaboration Rules to process Events.

" The e*Way Connection to be created as described in Chapter 4.
e*Way Intelligent Adapter for MQSeries User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Implementation (JMS) Step One: Create the IBM MQSeries Queue
" Collaborations, to be associated with each e*Way component, to apply the
required Collaboration Rules.

" The destination to which data is published prior to being sent to the external
system.

The following sections describe how to define and associate each of the above
components. This sample implementation demonstrates how the Java-enabled
MQSeries e*Way intercepts, stores, manipulates, and manages data in association with
IBM MQSeries.

Figure 1 The MQSeries (JMS) Sample Implementation

5.3 Step One: Create the IBM MQSeries Queue
Step one in creating the MQSeries e*Way is to install and configure IBM MQSeries (see
External System Requirements on page 11) and the IBM MQSeries Queue Manager
on the localhost. Also install Java Classes for MQSeries. It is assumed that the reader is
experienced in the use of IBM MQSeries Queue Manager. For more information on IBM
MQSeries Queue Manager, see MQSeries Queue Related Commands, Chapter 9, in the
e*Gate Integrator Intelligent Queue Services Reference Guide. For the sample
implementation do the following:

1 Open IBM MQSeries Explorer.

2 Create a new queue manager named Java_On.

3 From the Java_On Queue Manager create a new queue named Ev_1.

Important: The MQSeries Queue name and the Event Type name must be the same.

IBM MQSeries Server and Queue Manager Limits and Settings

! When using MQSeries Queue Manager on UNIX, the user must be a member of the
mqm group to create and start MQ Series Queue Manager.

! It is essential that the MQSeries Administrator regularly monitor the number of
messages in the queue. Message expiration settings should be set to allow for
extended storage.

! MQseries is limited in the number of messages that can be sent before a commit is
executed, and the number of physical messages that can exist on the queue at any
one time. This may result in exception errors when the upper limit for these

IQ2

Inbound
e*Way

FileIn_PassThru IQ1

Multi-Mode
e*Way

ToMQSeries_CR Outbound
e*Way

FileOut_PassThru

Local File
System

Local File
System

IBM
MQSeries

Queue Mgr.

FromMQSeries_CR
e*Way Intelligent Adapter for MQSeries User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
Implementation (JMS) Step Two: Install the MQSeries e*Way and Create a New Schema
numbers is exceeded. Memory and performance a the specific server may also effect
the results.

Publishing Messages with MQSeriesJMS to a non-JMS conversant
e*Way

The JMS standard specifies a header which includes encoding and reply information.
This header is prepended to any message published by the IBM JMS classes. Non-JMS
subscribers (that is, those using a non JMS API to MQSeries, such as the IBM C API) is
not able to separate the JMS header from the body. To remedy this, the user is advised
to suppress the publication of the JMS header, if publishing to non-JMS subscribers,
using the following mechanism.

To send messages to a non-JMS MQ (Monk MQSeries) e*Way, call send() manually
from within the Collaboration rules containing the following URI:

"queue://<QMGR_NAME>/<QNAME>?targetClient=1"

For example:

"queue://EMEO2T/QR.EME01?targetClient=1"

If this is not done then a 200+ byte header is pre-appended to the payload and placed in
the MQ queue and could easily throw off the non JMS conversant MQ reader.

For more information see the IBM Corp. manual MQSeries Using Java, Chapter 10, at:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/manuals/
crosslatest.html

5.4 Step Two: Install the MQSeries e*Way and Create a
New Schema

Step two is to install the MQSeries e*Way. For directions on installing the MQSeries
e*Way on your specific operating system, see Chapter 2, Installation, on page 14.

Once the MQSeries e*Way is installed, a new schema must be created. While it is
possible to use the default schema for the sample implementation, it is recommended
that you create a separate schema for testing purposes. After you install the MQSeries
e*Way, do the following:

1 Start the e*Gate Enterprise Manager GUI.

2 When the Enterprise Manager prompts you to log in, select the host that you
specified during installation and enter your password.

3 You are then prompted to select a schema. Click New.

4 Enter a name for the new schema. In this case, for the sample implementation, enter
MQSSample, or any name as desired.

The e*Gate Enterprise Manager opens to your new schema. You are now ready to begin
creating the necessary components for this schema.
e*Way Intelligent Adapter for MQSeries User’s Guide 31 SeeBeyond Proprietary and Confidential

http://www-4.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html

Chapter 5 Section 5.4
Implementation (JMS) Step Two: Install the MQSeries e*Way and Create a New Schema
5.4.1. Step Three: Create and Configure the e*Ways
Step three is to create the e*Ways. These are used as components for transporting and
transforming data. They always interface with at least one external system, and Multi-
Mode e*Ways can use e*Way Connections to interface with many external systems. For
the sample implementation three e*Ways are required.

! Inbound_eWay

! Outbound_eWay

! Multi-Mode_eWay

The following sections provide instructions for creating each e*Way.

Inbound e*Way

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the e*Ways.

3 Select the Control Broker that manages the new e*Ways.

4 On the palette, click the Create a New e*Way button.

5 Enter the name of the new e*Way. In this case, ew_In. Click OK.

6 Right-click ew_In, and select Properties to edit its properties.

7 When the e*Way Properties window opens, click on the Find button beneath the
Executable File field and select stcewfile.exe as the executable file (see Figure 2).

Figure 2 e*Way Sample Implementation
e*Way Intelligent Adapter for MQSeries User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
Implementation (JMS) Step Two: Install the MQSeries e*Way and Create a New Schema
8 Under the Configuration File field, click on the New button. The Edit Settings
dialog box opens. Set the configuration file as displayed in Table 2.

Note: For information on configuring the specific parameters of the stcewfile e*Way see the
Standard e*Way Intelligent Adapter User’s Guide.

9 After selecting the desired parameters, save the configuration file (ew_In.cfg) and
promote to run time. Close the .cfg file.

10 Use the Startup, Advanced, and Security tabs to modify the default settings for each
e*Way you configure.

A Use the Startup tab to specify whether the e*Way starts automatically, or restarts
after abnormal termination or due to scheduling and so forth.

B Use the Advanced tab to specify or view the activity and error logging levels as
well as the Event threshold information.

C Use Security to view or set privilege assignments.

11 Select OK to close the e*Way Properties window.

Outbound e*Way

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the e*Ways.

3 Select the Control Broker that manages the new e*Ways.

4 On the palette, click the Create a New e*Way button.

5 Enter the name of the new e*Way, (in this case, ew_Out), then click OK.

Table 2 Configuration Parameters for the Inbound e*Way

Parameter Value

General Settings (unless otherwise stated, leave settings as default)

AllowIncoming Yes

AllowOutgoing No

Outbound Settings Default

Poller Inbound Settings

PollDirectory C:\Indata (input file folder)

InputFileMask *.fin (input file extension)

PollMilliseconds Default

Remove EOL Default

MultipleRecordsPerFile Yes

MaxBytesPerLine Default

BytesPerLineIsFixed Default

File Records Per eGate Event Default

Performance Testing Default
e*Way Intelligent Adapter for MQSeries User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
Implementation (JMS) Step Two: Install the MQSeries e*Way and Create a New Schema
6 Select ew_Out, then right-click and select Properties to edit its properties.

7 When the e*Way Properties window opens, click Find beneath the Executable File
field, and select stcewfile.exe as the executable file.

8 Under the Configuration File field, click New. Set the configuration file as
displayed in Table 3.

9 Save the .cfg file (ew_Out.cfg), and promote to run time.

10 Click OK to close e*Way Properties window.

Multi-Mode e*Way

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the e*Way.

3 Select the Control Broker that manages the new e*Way.

4 On the palette, click the Create a New e*Way button.

5 Enter the name of the new e*Way (in this case, MQ_stceway), then click OK.

6 Right-click the new e*Way and select Properties to edit its properties.

7 When the e*Way Properties window opens, click Find beneath the Executable File
field, and select stceway.exe as the executable file.

8 To edit the JVM Settings, click New under Configuration file. Set the configuration
file as displayed in Table 4

See “Multi-Mode e*Way Configuration” on page 17 for details on the parameters
associated with the Multi-Mode e*Way.

Table 3 Configuration Parameters for the Outbound e*Way

Parameter Value

General Settings (unless otherwise stated, leave settings as default)

AllowIncoming No

AllowOutgoing Yes

Outbound Settings

OutputDirectory C:\DATA

OutputFileName output%d.dat

MultipleRecordsPerFile No

MaxRecordsPerFile 10000

AddEOL Yes

Poller Inbound Settings Default

Performance Testing Default
e*Way Intelligent Adapter for MQSeries User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Implementation (JMS) Step Four: Create the e*Way Connection and Specify the Queue Manager
9 Save the .cfg file (MQ_stceway).

10 From the File menu, click Promote to Run Time.

11 In the e*Way Properties window, use the Startup, Advanced, and Security tabs to
modify the default settings for each.

D Use the Startup tab to specify whether the e*Way starts automatically, restarts
after abnormal termination or due to scheduling, etc.

E Use the Advanced tab to specify or view the activity and error logging levels, as
well as the Event threshold information.

F Use Security to view or set privilege assignments.

12 Click OK to close e*Way Properties window.

5.5 Step Four: Create the e*Way Connection and Specify
the Queue Manager

Step four is to create and configure the e*Way Connection. The e*Way Connection
configuration file contains the connection settings necessary for communicating with
IBM MQSeries and specifying the MQSeries Queue Manager.

To create and configure a New e*Way Connection

1 Select the e*Way Connection folder on the Components tab of the e*Gate
Navigator.

2 On the palette, click the Create a New e*Way Connection button.

3 Enter the name of the e*Way Connection, then click OK. (For the purpose of this
sample, the e*Way Connection is defined as “MQ_conn1”.)

Table 4 Configuration Parameters for the MultiMode e*Way

Parameter Value

JVM Settings (unless otherwise stated, leave settings as default)

JNI DLL absolute pathname C:\eGate\client\bin\Jre\jvm.dll (or
absolute path to proper JNI DLL)

CLASSPATH Append From Environmental
Variable

Yes
e*Way Intelligent Adapter for MQSeries User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
Implementation (JMS) Step Five: Create Event Types and Specify the MQSeries Queue
4 Double-click the new e*Way Connection to edit its properties. The e*Way
Connection Properties dialog box opens.

5 Select MQSeries JMS from the drop-down list box of the e*Way Connection Type
field.

Figure 3 e*Way Connection Properties

6 Enter the Event Type “get” interval in the dialog box provided. 10000 milliseconds
is the configured default. The “get” interval is the intervening period at which,
when subscribed to, the e*Way connection is polled.

7 Under e*Way Connection Configuration File, click New.

8 The e*Way Connection editor opens, select the necessary parameters. For more
information on the MQSeries e*Way Connection Type parameters, see
“Configuring e*Way Connections” on page 23.

9 Save the MQ_conn1.cfg file.

10 From the File menu, select Promote to Run Time to promote the file to the e*Way’s
run time environment.

5.6 Step Five: Create Event Types and Specify the
MQSeries Queue

Step five is to create the Event Type. This also specifies the MQSeries queue (the Event
Type must have the same name as the IBM MQSeries queue). An Event Type is a class
e*Way Intelligent Adapter for MQSeries User’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
Implementation (JMS) Step Five: Create Event Types and Specify the MQSeries Queue
of Events with a common data structure. The e*Gate system packages data within
Events and categorizes them into Event Types. What these Events have in common
defines the Event Type and comprises the ETD. The following procedures show how to
create an ETD (Event Type Definition) using the Custom ETD Wizard.

1 Highlight the Event Types folder on the Components tab of the e*Gate Navigator.

2 On the palette, click the Create a New Event Type button.

3 Enter the name of the Event, then click OK. For the purpose of this sample the first
Event Type is defined as Ev_1.

Important: The Event Type must have the same name as the IBM MQSeries Queue.

4 Double-click the new Event Type to edit its properties. The Event Type Properties
dialog box opens.

5 Click New. The ETD Editor appears.

6 Click New from the File menu. The New Event Type Definition window opens (see
Figure 4).

Figure 4 Event Type Definition Wizards

7 Select the appropriate wizard. (For this Event Type, select the Custom ETD wizard.)

8 Enter the Root Node Name (for this case, “Record”).

9 Enter a package name where the ETD Editor can place all the generated Java classes
associated with the created ETD (for this sample, com.stc.eway.mqseries) and click
OK. The ETD Editor appears (see Figure 5).

10 Right click Record in the Event Type Definition pane, and select Add Field, as
Child Node. Repeat this to create Field1, Field2, and Field3.

11 Triple-click on Field1, and rename it Order.

12 Select the Order node. The properties for the Order node are displayed in the
Properties pane. Change the endDelim property to “|” (pipe, without the quotes).

13 Triple-click on Field2, and rename it LineItem.
e*Way Intelligent Adapter for MQSeries User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Implementation (JMS) Step Six: Create Intelligent Queues
14 In the LineItem node Properties, endDelim field, enter “|” (pipe).

15 Triple-click on Field3, and rename it Total.

16 In the Total node Properties, endDelim field, enter “|” (pipe).

Figure 5 Event Type Definition Editor

17 From the File menu, click Compile and Save. Save the .xsc file as Record.xsc.

18 From the File menu, click Promote to Run Time to promote the file to the run time
environment.

19 Close the ETD Editor.

5.7 Step Six: Create Intelligent Queues
Step six in configuring the MQSeries e*Way is to create the IQs. IQs manage the
exchange of information between components within the e*Gate system, providing
non-volatile storage for data as it passes from one component to another. IQs use IQ
Services to transport data. IQ Services provide the mechanism for moving Events
between IQs, handling the low-level implementation of data exchange (such as system
calls to initialize or reorganize a database).
e*Way Intelligent Adapter for MQSeries User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.8
Implementation (JMS) Step Seven: Create Collaboration Rules
To create and modify an Intelligent Queue for the MQSeries e*Way

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the IQ.

3 Open a Control Broker.

4 Select an IQ Manager.

5 On the palette, click the Create a New IQ button.

6 Enter the name of the new IQ (in this case, iq_1), then click OK (see Figure 6).

7 Double-click the new IQ to edit its properties (see Figure 7).

8 On the General tab, specify the Service and the Event Type Get Interval.

The STC_Standard IQ Service provides sufficient functionality for most
applications. If specialized services are required, custom IQ Service DLLs may be
created.

The default Event Type Get Interval of 100 milliseconds is satisfactory for the
purposes of this initial implementation.

9 On the Advanced tab, make sure that Simple publish/subscribe is checked under
the IQ behavior section.

10 Click OK to close the IQ Properties window.

11 For this schema, repeat steps 1 through 10 to create an additional IQ (IQ_2).

5.8 Step Seven: Create Collaboration Rules
Step seven in creating the MQSeries e*Way is to create the Collaboration Rules that
extract and process selected information from the source Event Type defined earlier,
according to its associated Collaboration Service. The Default Editor can be set to either
Monk or Java. From the Enterprise Manager Task Bar, select Options and click
Default Editor. The default should be set to Java.

The sample schema requires the creation of two Collaboration Rules files

! “To Create Pass Through Collaboration Rules” on page 39

! “To Create Java Collaboration Rules” on page 40

To Create Pass Through Collaboration Rules

1 Select the Navigator's Components tab in the e*Gate Enterprise Manager.

2 In the Navigator, select the Collaboration Rules folder.

3 On the palette, click the Create New Collaboration Rules button.

4 Enter the name of the new Collaboration Rule Component, then click OK (for this
case, use Pass).

5 Double-click the new Collaboration Rules Component. The Collaboration Rules
Properties window opens.
e*Way Intelligent Adapter for MQSeries User’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.8
Implementation (JMS) Step Seven: Create Collaboration Rules
6 The Service field defaults to Pass Through.

Figure 6 Collaboration Properties

7 Go to the Subscriptions tab. Select GenericInEvent under Available Input Event
Types, and click the right arrow to move it to Selected Input Event Types. The box
under Triggering Event should be checked.

8 Go to the Publications tab. Select GenericInEvent under Available Output Event
Types, and click the right arrow to move it to Selected Output Event Types. The
Radio button under Default is enabled.

9 Click OK to close the Collaboration Rules, Pass Properties window.

To Create Java Collaboration Rules

1 Select the Navigator's Components tab in the e*Gate Enterprise Manager.

2 In the Navigator, select the Collaboration Rules folder.

3 On the palette, click the Create New Collaboration Rules button.

4 Enter the name of the new Collaboration Rule, then click OK (for this case, use
JavaCollab).

5 Double-click the new Collaboration Rules Component to edit its properties. The
Collaboration Rules Properties window opens (see Figure 7).

6 From the Service field drop-down box, select Java. The Collaboration Mapping tab
is now enabled, and the Subscriptions and Publications tabs are disabled.

7 In the Initialization string field, enter any required initialization string for the
Collaboration.
e*Way Intelligent Adapter for MQSeries User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.8
Implementation (JMS) Step Seven: Create Collaboration Rules
Figure 7 Collaboration Rules - JavaCollab Properties

8 Select the Collaboration Mapping tab (see Figure 8).

9 Using the Add Instance button, create instances to coincide with the Event Types.

For this sample, do the following:

10 In the Instance Name column, enter In for the instance name.

11 Click Find, navigate to etd\Record.xsc, double-click to select. Record.xsc is added
to the ETD column of the instance row.

12 In the Mode column, select In from the drop–down menu available.

13 In the Trigger column, click the box to enable trigger mechanism.

14 Repeat steps 9–13 using the following values:

" Instance Name — Out

" ETD — Record.xsc

" Mode — Out

Note: At least one of the ETD instances used by the Collaboration must be checked as the
trigger.

For specific information on creating and configuring Collaboration Rules, see the
e*Gate Integrator User’s Guide.
e*Way Intelligent Adapter for MQSeries User’s Guide 41 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.8
Implementation (JMS) Step Seven: Create Collaboration Rules
Figure 8 Collaboration Rules - Collaboration Mapping Properties

The “Read from MQSeries” is carried out by the following processes.

A The Event Type “Get” interval polls for available messages at the prescribed
interval.

B The receive() method for an ETD associated with an MQSeries e*Way
Connection is invoked, initiating a “read” on MQSeries.

15 Select the General tab, and under the Collaboration Rule box, click New. The
Collaboration Rules Editor opens.

16 Expand to full size for optimum viewing, expanding the Source and Destination
Events as well.

5.8.1. Using the Collaboration Rules Editor
Part two of step seven is to define the business logic using the Collaboration Rules
Editor (see Figure 9). The Java Collaboration Rules Editor is the GUI used to create and
modify Java Collaboration Rules. A Java Collaboration Rule is created by designating
one or more source Events and one or more destination Events and then setting up
rules governing the relationship between fields in the Event instances.

To Create the Collaboration Rules Class

1 Highlight retBoolean in the Business Rules pane.

All of the user–defined business rules are added as part of this method.

2 Select Order from the Source Events pane. Drag–and–drop onto Order in the
Destination Events pane. A connecting line appears between the properties objects.

3 In the Business Rules pane, a rule expression appears, with the properties of that
rule displayed in the Rule Properties pane.
e*Way Intelligent Adapter for MQSeries User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.8
Implementation (JMS) Step Seven: Create Collaboration Rules
4 Select LineItem from the Source Events pane. Drag–and–drop onto LineItem in the
Destination Events pane.

5 Select Total from the Source Events pane. Drag–and–drop onto Total in the
Destination Events pane.

Figure 9 Collaboration Rules — Collaboration Rules Editor

6 When all the business logic has been defined, the code can be compiled by selecting
Compile from the File menu. The Save menu opens, provide a name for the .xpr
file. For the sample, use MQSSample.xpr.

If the code compiles successfully, the message Compile Completed appears. If the
outcome is unsuccessful, a Java Compiler error message appears.

Once the compilation is complete, save the file and exit.

7 Under the Collaboration Rules, the path for the .class file created appears. (For the
sample, the path “Collaboration_rules\JavaCollab.class “appears.)

8 Under Initialization file, the path for the .ctl file created appears. (For the sample
the path “Collaboration_rules\JavaCollab.ctl” appears.)

9 Click OK to exit the Properties Box.
e*Way Intelligent Adapter for MQSeries User’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.9
Implementation (JMS) Step Eight: Create Collaborations
Note: For detailed information on creating Collaboration Rules using the Java
Collaboration Rules Editor see the e*Gate Integrator User’s Guide.

5.9 Step Eight: Create Collaborations
Step eight in creating the MQSeries e*Way is to create the Collaborations.
Collaborations are the components that receive and process Event Types, then forward
the output to other e*Gate components or an external component. Collaborations
consist of the Subscriber, which “listens” for Events of a known type (sometimes from a
given source), and the Publisher, which distributes the transformed Event to a specified
recipient.

To Create the Inbound e*Way Collaboration

1 In the e*Gate Enterprise Manager, select the Navigator's Components tab.

2 Open the host on which you want to create the Collaboration.

3 Select a Control Broker.

4 Select the ew_In e*Way to assign the Collaboration.

5 On the palette, click the Create a New Collaboration button.

6 Enter the name of the new Collaboration, then click OK. (For the sample, “In_cr”.)

7 Double-click the new Collaboration to edit its properties (see Figure 10).

8 From the Collaboration Rules list, select the Collaboration Rules file that you
created previously (for this sample, “Pass”).

9 In the Subscriptions area, click Add to define the input Event Types to which this
Collaboration subscribes.

A From the Event Type list, select the Event Type that you previously defined
GenericInEvent.

B Select the Source from the Source list. In this case, it should be <External>.

10 In the Publications area, click Add to define the output Event Types that this
Collaboration publishes.

A From the Event Types list, select the Event Type that you previously defined
GenericInEvent.

B Select the publication Destination from the Destination list. In this case, it
should be iq_1.

C The Priority column defaults to 5.
e*Way Intelligent Adapter for MQSeries User’s Guide 44 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.9
Implementation (JMS) Step Eight: Create Collaborations
Figure 10 Collaboration - Inbound e*Way Properties

11 Click OK to close the Collaboration Properties window.

To Create the MQ_stceway Multi Mode e*Way Collaborations

Two Collaborations are created for the Multi-Mode e*Way MQ_cr_out, and MQ_cr_in.

1 To create the MQ_cr_out Collaboration, Select the MQ_stceway e*Way to assign
another Collaboration.

2 On the palette, click the Create a New Collaboration button.

3 Enter the name of the new Collaboration, then click OK. (For the sample,
“MQ_cr_out”.)

4 Double -click the new Collaboration to edit its properties (see Figure 11).

5 From the Collaboration Rules list, select the Collaboration Rules file that you
created previously. For the sample use JavaCollab.

6 In the Subscriptions field, click Add to define the input Event Types to which this
Collaboration subscribes.

A From the Instance Name list, select the Instance Name that you previously
defined In.

B From the Event Type list, select the Event Type previously defined
GenericInEvent.

C Select the Source from the Source list. In this case, it should be In_cr.

7 In the Publications area, click Add to define the output Event Types that this
Collaboration publishes.

A From the Instance Name list, select the Instance Name previously defined Out.

B From the Event Types list, select the Event Type that you previously defined
Ev_1.
e*Way Intelligent Adapter for MQSeries User’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.9
Implementation (JMS) Step Eight: Create Collaborations
Important: The Event Type name must be the same as the IBM MQSeries queue name.

C Select the Destination from the Destination list. In this case, it should be
MQ_conn1.

D The Priority column defaults to 5.

Figure 11 Collaboration Properties - MQ_cr_out

8 Click OK to close the Properties window.

9 To create the MQ_cr_in Collaboration, select the Navigator's Components tabIn
the e*Gate Enterprise Manager.

10 Open the host on which you want to create the Collaboration.

11 Select a Control Broker.

12 Select the MQ_stceway e*Way to assign the Collaboration.

13 On the palette, click the Create a New Collaboration button.

14 Enter the name of the new Collaboration, then click OK. (For the sample,
“MQ_cr_in”.)

15 Double-click the new Collaboration to edit its properties (seeFigure 12).

16 From the Collaboration Rules list, select the Collaboration Rules file that you
created previously. For the sample use JavaCollab.

17 In the Subscriptions field, click Add to define the input Event Types to which this
Collaboration subscribes.

A From the Instance Name list, select the Instance Name that you previously
defined (In).

B From the Event Type list, select the Event Type previously defined Ev_1.
e*Way Intelligent Adapter for MQSeries User’s Guide 46 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.9
Implementation (JMS) Step Eight: Create Collaborations
C Select the Source from the Source list. In this case, it should be MQ_conn1.

18 In the Publications area, click Add to define the output Event Types that this
Collaboration publishes.

A From the Instance Name list, select the Instance Name previously defined Out.

B From the Event Types list, select the Event Type that you previously defined
(GenericInEvent).

C Select the publication destination from the Destination list. In this case, it
should be iq2.

19 Click OK to close the Collaboration window.

Figure 12 Collaboration Properties - MQ_cr_in

20 Click OK to exit.

to Create the Outbound_eWay Collaboration

1 In the e*Gate Enterprise Manager, select the Navigator's Components tab.

2 Open the host on which you want to create the Collaboration.

3 Select a Control Broker.

4 Select the ew_Out e*Way to assign the Collaboration.

5 On the palette, click the Create a New Collaboration button.

6 Enter the name of the new Collaboration, then click OK. (For the sample, “Out_cr”.)

7 Double-click the new Collaboration to edit its properties.

8 From the Collaboration Rules list, select the Collaboration Rules file that you
previously defined Pass.
e*Way Intelligent Adapter for MQSeries User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.10
Implementation (JMS) Step Nine: Set the CLASSPATH Variable
9 In the Subscriptions area, click Add to define the input Event Types to which this
Collaboration subscribes.

A From the Event Type list, select the Event Type that you previously defined
GenericInEvent.

B Select the Source from the Source list. In this case, it should be MQ_cr_in.

10 In the Publications area, click Add to define the output Event Types that this
Collaboration publishes.

A From the Event Types list, select the Event Type that you previously defined
GenericInEvent.

B Select the publication destination from the Destination list. In this case, it
should be <External>.

C Click OK to close the Collaboration Properties window.

5.10 Step Nine: Set the CLASSPATH Variable
The final step in creating and configuring the MQSeries e*Way is to set the IBM
MQSeries Java .jar files in the environment CLASSPATH variable. This includes the
following .jar files.

\MQSeries\Java\lib

\MQSeries\Java\lib\providerutil.jar

\MQSeries\Java\lib\ldap.jar

\MQSeries\Java\lib\jndi.jar

\MQSeries\Java\lib\com.ibm.fscontext.jar

\MQSeries\Java\lib\com.ibm.mqjms.jar

\MQSeries\Java\lib\com.ibm.mqbind.jar

\MQSeries\Java\lib\com.ibm.mq.jar

\MQSeries\Java\lib\com.ibm.mq.iiop.jar (com.ibm.mq.iiop.jar only applies for
Windows, not UNIX.)

Also set the \MQSeries\Java\lib in your PATH.

For UNIX, include /MQSeries/Java/lib in the library path as follows:

! Solaris: LD_LIBRARY_PATH

! HP-UX: SHLIB_PATH

! AIX: LIBPATH

If the CLASSPATH and PATH already exist, add the .jar files to the existing PATH and
CLASSPATH.
e*Way Intelligent Adapter for MQSeries User’s Guide 48 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.11
Implementation (JMS) Execute the Schema
Setting the CLASSPATH variable on Windows

To set the .jar files from Java classes in classpath do the following:

1 Right-click My Computer and select Properties. The System Properties window
opens.

2 Select the Advanced tab and click Environment Variables. The Environment
Variables window opens.

3 Under System Variables click New.

4 In the New System Variable window type ClassPath in the Variable Name field. In
the Variable Value field type the absolute path for the first .jar file (See Figure 13),
and click OK.

Figure 13 Set Environment Variables

5 Repeat steps 3 and 4 for each of the MQSeries .jar files.

6 Under System Variables click New.

7 In the New System Variable window type Path in the Variable Name field. In the
Variable Value field type the absolute path for \MQSeries\Java\lib and click OK.

8 Click OK to close the Environment Variables window and the System Properties
window.

5.11 Execute the Schema
To execute the MQSeries sample schema

1 Go to the command line prompt, and enter the following:

stccb -rh hostname -rs schemaname -un username -up user password
-ln hostname_cb

Substitute hostname, schemaname, username and user password as appropriate.

2 Exit from the command line prompt, and start the e*Gate Monitor GUI.

3 When prompted, specify the hostname which contains the Control Broker you
started in Step 1 above.

4 Select the MQSeries sample schema.
e*Way Intelligent Adapter for MQSeries User’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.12
Implementation (JMS) Error Messages
5 After you verify that the Control Broker is connected (the message in the Control
tab of the console indicates command as succeeded and status as up), select the IQ
Manager, hostname_igmgr, then right-click and select Start.

6 Highlight each of the e*Ways, right-click the mouse, and select Start.

5.12 Error Messages
If there is an error, such as a failed connection, an exception is thrown by the module
and logged to error log file at egate/client/logs. The error log appears similar to the
following:

11:59:34.091 EWY I 11 (initialize.cxx:1035): Exception thrown: Failed to access queue:
MQRC_UNKNOWN_OBJECT_NAMEc
om.ibm.mq.MQException: MQJE001: Completion Code 2, Reason 2085
 at com.ibm.mq.MQQueueManager.accessQueue(MQQueueManager.java:1151)
 at com.ibm.mq.MQQueueManager.accessQueue(MQQueueManager.java:1196)
 at com.stc.eways.MQSeriesETD.MQSeriesConnector.accessQueue(MQSeriesConnector.java:395)
 at com.stc.eways.MQSeriesETD.MQSeriesETD.accessQueue(MQSeriesETD.java:291)
 at MQ_EMECollab.executeBusinessRules(MQ_EMECollab.java:106)
 at com.stc.jcsre.JCollaboration.translate(JCollaboration.java:97)
 at com.stc.common.collabService.JCCollabControllerImpl.
translate(JCCollabControllerImpl.java:1096

The reason code parameter or MQRC, in this case Reason 2085, appears in the first few
lines of the error log. This reason code can be used in conjunction with IBMs online
document, MQSeries Messages, Chapter 9 at:

http://www-903.ibm.com/board/attach_files/mqseries/k1005706457257_messages.pdf

The chapter lists reason codes, exceptions, the associated errors and the corrective
actions to take. For the above example, the MQRC appears as follows:

.2085 .X'0825' .MQRC_UNKNOWN_OBJECT_NAME

.An MQOPEN or MQPUT1 call was issued, but the object identified by the

.ObjectName and ObjectQMgrName fields in the object descriptor MQOD

.cannot be found. One of the following applies:
! The ObjectQMgrName field is one of the following:
Blank
The name of the local queue manager
The name of a local definition of a remote queue (a queue-manager alias) in

which the RemoteQMgrName attribute is the name of the local queue
manager but no object with the specified ObjectName and ObjectType
exists on the local queue manager.

! The object being opened is a cluster queue that is hosted on a remote queue
manager, but the local queue manager does not have a defined route to the
remote queue manager.

! The object being opened is a queue definition that has QSGDISP(GROUP).
Such definitions cannot be used with the MQOPEN and MQPUT1 calls.

.Corrective action: Specify a valid object name. Ensure that the name is padded

.to the right with blanks if necessary. If this is correct, check the queue

.definitions.
e*Way Intelligent Adapter for MQSeries User’s Guide 50 SeeBeyond Proprietary and Confidential

http://www-903.ibm.com/board/attach_files/mqseries/k1005706457257_messages.pdf

Chapter 6

ETD Overview

This chapter gives an overall view of the MQSeriesETD hierarchy structure, including
available methods and properties, and their application. For a more detailed
description of each method see MQSeries Java Methods (ETD) on page 81

6.1 The MQSeriesETD
The following is the general outline of the ETD and the methods and properties
exposed on each node. Any methods noted with *, are methods or properties above and
beyond the exposed base MQSeries java API. Ellipses for the parameters indicate one or
more arguments for the method. The purpose of each is explained below.

+ QueueManager
void connectToQueueManager(...)*
void selectQueueManager(String name)*
boolean isQueueMgrConnected()
int getCharacterSet()
int getMaximumPriority()
void commit()
void backout()
queueAccessOptions*
accessQueue(name)*
+ Queue

+ GMO *
+ PMO *
selectQueue(name)*
void get()
void getWithOptions()*
void put()
void putWithOptions()*
int getCurrentDepth()
int getMaximumDepth()
int getMaximumMessageLength()
void newMessage()*
+ Message

+ MsgHeader*
all properties

+ MsgBody*
e*Way Intelligent Adapter for MQSeries User’s Guide 51 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
ETD Overview The MQSeriesETD
byte[] Data*
readData()*
writeData()*

all the methods on MQMessage

6.1.1. The QueueManager Node
QueueManager is the root node and represents the interface to the MQQueueManager
object in the MQSeries API. The name of the node, QueueManager as opposed to
MQSeriesETD is used as a descriptive way of conveying the exposed hierarchy.
Internally, it is actually implemented in the ETD implementation class
com.stc.eways.MQSeriesETD.

The ETD implementation class holds a collection of queue manager objects that allow
the user to connect to more than one queue manager and, once connections have been
established, to switch between them. An exception to this is when the e*Way is
configured as XA compliant. In this case, there can be exactly one queue manager
which is the one specified in the configuration.

Current Queue Manager

Connecting to a queue manager automatically selects it as the current queue manager.
If you have connected to more than one queue manager, you can switch between them
using the selectQueueManager method. Each queue manager is accessible via its
name. When the Collaboration is initialized, it automatically connects to the queue
manager specified in the configuration (which, again, selects it as the current queue
manager). Thus, if you do not connect to another queue manager in the Collaboration,
you need not ever call the selectQueueManager method.

The queueAccessOptions Node

The queueAccessOptions node and the accessQueue method are used to access a
queue on the current queue manager. First the desired queue access options are entered
(such as open for input or open for output, and so forth), and then the accessQueue
method is called. This method accesses the named queue on the current queue manager
and selects that queue as the current queue.

The remaining methods exposed on the queue manager route directly to the similarly
named method on the queue manager in the underlying MQSeries API.

Methods Under the QueueManager Node
Name Description

connectToQueueManager on
page 96

Create a connection to the another queue manager
using the specified parameters. A connection to the
queue manager specified in the configuration is
automatically done. You need only call this method
when connecting to another queue manager in the
Collaboration.

selectQueueManager on page 96 Select from one of the connected queue managers.
e*Way Intelligent Adapter for MQSeries User’s Guide 52 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
ETD Overview The MQSeriesETD
Note: It is important that all queue access options be set before attempting to access the
queue. The MQ Java code throws an exception if the options are not set first. You
can liken this to pressing the gas pedal in a car before putting it in a gear; it does not
go anywhere.

6.1.2. The Queue Node
The Queue node corresponds to operations that are performed on the MQQueue object
in the MQSeries API. In the ETD, it is shown as a child of the QueueManager node. This
is to enforce the concept that you access a queue from a queue manager. As in the
QueueManager node, the node name of Queue is a notational convenience for the user.
Internally, it is implemented in the MQSeriesETD class.

Current Queue

The ETD uses the concept of a current queue. This is not the same as the current queue
manager concept noted earlier. The ETD supports accessing one or more queues from
the current queue manager via the accessQueue function on the QueueManager node.
Calling this also selects that queue as the current queue. The user can also select
different queues (which have already been accessed from the queue manager) by using
the selectQueue function. Selecting a queue sets it as the current queue. Early in the
Collaboration code, it is typical for the user to call accessQueue to access the queue that
is used in the Collaboration. The ETD does not automatically access a queue at
initialization time as it does for the queue manager. It is important to remember that all
the methods take effect on whichever queue or queue manager is current. For example,
calling the put method to put a message on the queue takes effect on the current queue.

isQueueMgrConnected on
page 97

Determine if the current queue manager is still
connected.

getCharacterSet on page 97 Returns CCSID of the queue managers codeset for
the currently selected queue manager.

getMaximumPriority on page 98 Returns maximum message priority that can be
handled by the queue manager.

commit on page 98 Commit the operations on the currently selected
queue manager. Should only be called in Non-XA
mode.

backout on page 98 Roll back the operations on the currently selected
queue manager. Should only be called in Non-XA
mode.

queueAccessOptionsClearAll
on page 99

Clear all flags.

accessQueue on page 99 Access a queue on the current queue manager.

Name Description
e*Way Intelligent Adapter for MQSeries User’s Guide 53 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
ETD Overview The MQSeriesETD
Get and Put Methods

There are two versions of the get and put methods. Each operates on the message object
exposed in the ETD. Each routes directly to the corresponding underlying method on
the queue in the MQSeries API. One of the get and put methods take no arguments;
they use the default options in MQSeries, whatever these may be. The other uses the
GetMessageOptions (the GMO) or the PutMessageOptions (the PMO). These options
allow the user to set whatever options they wish (for example, the SET_ALL_
CONTEXT flag).

These classes contain options that control the action of the getWithOptions and
putWithOptions methods. The options are mostly bitfields in the MQSeries API. For
example, the MQC.MQGMO_WAIT and the MQC.MQGMO_SYNCPOINT are two
bitfields that can be set for the "options" member variable in the
MQGetMessageOptions class. To make it easier for the user, these bitfields have been
expanded into callable methods that take a Boolean parameter to set or clear the
particular option. For example, if you want to set a wait timeout value in the
GetMessageOptions, you call setMQGMO_WAIT(true) and then call the setWaitValue
method. If you want this message to be a syncpoint, call
setMQGMO_SYNCPOINT(true). Correspondingly, if you want to clear the syncpoint
flag, you call setMQGMO_SYNCPOINT(false) then call
setMQGMO_NO_SYNCPOINT(true).

The optionsClearAll (and matchOptionsClearAll and so forth) allows the user to clear
all previously set options with one method.

Whatever values are set in the GMO and PMO nodes remain in effect for the duration
of the Collaboration. That is, if you are putting more than one message, and they both
take the same PutMessageOptions, you only need to set the options once.

Notice, too, that some of these flags may be required in certain contexts. An example is
the SYNCPOINT flag when using transactions. In this case, calling commit in the ETD
(or when the XA transaction is committed by e*Gate) the SYNCPOINT flag MUST be
set.

Note: Some of the members of these classes may be shown as output fields in the API
documentation. In such cases, you should not attempt to set a value on them as they
are populated by the underlying API method.

Important: Some of the attributes of the message header, such as userId, are affected by the
SET_ALL_CONTEXT flag in the PutMessageOptions. Without SET_ALL_
CONTEXT set, MQSeries overwrites whatever value you might put in. If the flag is
set, however, MQSeries passes on the value you entered untouched.

The newMessage Method

The newMessage method allows the user to destroy and recreate a new Message object.
This is required when you want to call get multiple times in the Collaboration (such as
in a loop). If get is called again, passing a “dirty” message, the API throws an exception
indicating no message is available.
e*Way Intelligent Adapter for MQSeries User’s Guide 54 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
ETD Overview The MQSeriesETD
The remaining methods on the queue route directly to the similarly named method on
the underlying queue object in the MQSeries API. As a application note, be careful with
the "interrogative" type methods on the queue such as getCurrentDepth. In order to
call this, the queue must be accessed with MQOO_INQUIRE set.

Methods Under the Queue Node

6.1.3. The Message Node
The Message node corresponds to methods that are called on the message object in the
MQSeries API. It is shown as a child of the Queue node in the ETD to enforce the
concept that it is rather subservient to the queue. That is, you get and put messages
from and to a queue.

The MsgHeader Child Node

The MsgHeader child node of the Message wraps the concept of the attributes of the
MQMessage. There is no concept of a message header in the MQSeries API per se.
Rather, this is a notational convenience in the ETD. By using the nodes of the
MsgHeader, you can gain access to the attributes of the message (that is userId, msgId,
and so forth).

Name Description

optionsClearAll on page 103 Clears all option flags.

setWaitValue on page 104 Specifies a specific number of milliseconds to wait.

setUnlimitedWait on page 104 Sets the wait time to MQWI_UNLIMITED.

matchOptionsClearAll on
page 105

Clears all match options flags set so far and sets
match options to MQMO_NONE.

get on page 100 Gets a message off the queue using the default
options.

getWithOptions on page 100 Gets a message off the queue using the
GetMesageOptions (GMO).

put on page 101 Puts a message on the queue using the default
options.

putWithOptions on page 101 Puts a message on the queue using the
PutMesageOptions (PMO).

getCurrentDepth on page 102 Gets the number of messages currently in the queue.

getMaximumDepth on page 102 Gets the maximum number of messages that can
exist on the current queue.

getMaximumMessageLength
on page 102

Gets the maximum length of data that can exist in
any one message on the current queue.

newMessage on page 103 Destroys then recreates the Message object. After
doing a get, this must be called before doing another
get.
e*Way Intelligent Adapter for MQSeries User’s Guide 55 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
ETD Overview The MQSeriesETD
The MsgBody Child Node

The MsgBody child node of the Message wraps the concept of exposing the message
data as a byte array. There is no corresponding "body" concept in the MQSeries API.
That is, the only way to gain access to the data in the message is by calling one of the
read methods. MsgBody is a notational convenience for the user to allow them to access
the entire data of the message as a blob and have that blob stored in a node in the ETD.
To access the message data after doing a get, the readData method is called. This routes
down to the readFully method on the message. The Data node is then populated with
the entire contents of the message. The data is now available from the Data node so you
can drag it to somewhere else in the Collaboration. To put a blob on the queue, data is
“dragged and dropped” to the Data node and the writeData method on the MsgBody is
called. The writeData method on the MsgData node routes down to the write method
on the message.

Calling Read Methods

There are some important application caveats when dealing with the MQSeries API
when it comes to calling the read methods. As you call a read method (for example.
readUTF, readInt, and so forth) you are "consuming" the message data. Should you
continue to call them, you eventually exhaust the available data of the message and you
ultimately get an EOFException. This indicates you have reached the end of the data.
This exception is caught in the underlying implementation code of the e*Way and is re-
thrown as a CollabConnException but the EOFException is still available. The reason
for the exception is logged. Therefore, if you want to re-read a portion of the data you
need to call seek to put the current data offset back. For example, if readFully is called,
all data is consumed. If you want to call readFully again you need to do a seek(0).

The MQMessage Class

The remaining methods on the Message node all route down to the similarly named
methods on the MQMessage class. A brief description of each method is available in the
Properties field of the ETD Editor when the method is selected.

Methods Under the Message Node
Name Description

getTotalMessageLength on
page 106

If MQQueue.get() fails with a message-truncated
error code, report the total number of bytes in the
stored message on the queue.

getMessageLength on page 107 Reports the total number of bytes in the stored
message on the queue.

getDataLength on page 107 Reports the number of bytes of data remaining to be
read in the message.

seek on page 108 Relocates the cursor to the absolute position in the
message buffer given by pos.
e*Way Intelligent Adapter for MQSeries User’s Guide 56 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
ETD Overview The MQSeriesETD
setDataOffset on page 108 Relocates the cursor to the absolute position in the
message buffer. setDataOffset () is equivalent to
seek(), allowing for cross-language compatibility
with the other MQSeries APIs.

getDataOffset on page 109 Returns the current position of the cursor within the
message, that is the point at which read and write
operations take effect.

clearMessage on page 109 Discards data in the message buffer and resets the
data offset to zero.

getVersion on page 109 Return the version of the current structure.

resizeBuffer on page 110 Clues the MQMessage object as to the size of buffer
that may be necessary for subsequent get
operations. When a message contains message data,
and the new size is less than the current size, the
message data is truncated.

readBoolean on page 110 Reads a (signed) byte from the present position in
the message buffer.

readChar on page 111 Reads a Unicode character from the present position
in the message buffer.

readDouble on page 111 Reads a double from the present position in the
message buffer.

readFloat on page 111 Reads a float from the present position in the
message buffer.

readFully on page 112 Fills the byte array b with data from the message
buffer. Fills len elements of the byte array b with data
from the message buffer, starting at offset off.

readInt on page 113 Reads an integer from the present position in the
message buffer.

readInt4 on page 113 Equivalent to readInt(), provided for cross-language
MQSeries API compatibility.

readLine on page 113 Converts from the codeset defined in the
characterSet member variable to Unicode, then
reads in a line that has been terminated by \n, \r, \r\n,
or EOF.

readLong on page 114 Reads a long from the present position in the
message buffer.

readInt8 on page 114 Equivalent to readlong(), provided for cross-
language MQSeries API compatibility.

readObject on page 115 Reads an object, its class, class signature, and the
value of the non-transient and non-static fields of the
class.

readShort on page 115 Reads a short from the present position in the
message buffer.

Name Description
e*Way Intelligent Adapter for MQSeries User’s Guide 57 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
ETD Overview The MQSeriesETD
readInt2 on page 116 Equivalent to readshort(), provided for cross-
language MQSeries API compatibility.

readUTF on page 116 Reads a UTF string, prefixed by a 2-byte length field,
from the present position in the message buffer.

readUnsignedByte on page 116 Reads an unsigned byte from the present position in
the message buffer.

readUnsignedShort on page 117 Reads an unsigned short from the present position
in the message buffer.

readUInt2 on page 117 Equivalent to readUnsignedShort(), provided for
cross-language MQSeries API compatibility.

readString on page 118 Reads a string in the codeset defined by the
characterSet member variable. Convert the string
into Unicode.

readDecimal2 on page 118 Reads a 2-byte packed decimal number.

readDecimal4 on page 119 Reads a 4-byte packed decimal number.

readDecimal8 on page 119 Reads a 8-byte packed decimal number.

setVersion on page 120 Sets the version of the structure to be used.

skipBytes on page 120 Advances n bytes in the message buffer. Blocks until
all the bytes are skipped, the end of message buffer
is detected, or an exception is thrown.

write on page 121 Writes a byte, an array of bytes, or a series of bytes
into the message buffer at the present position. len
bytes are written, taken from offset off in the array b.

writeBoolean on page 121 Writes a Boolean into the message buffer at the
present position.

writeByte on page 122 Writes a byte into the message buffer at the present
position.

writeBytes on page 122 Writes the string to the message buffer as a
sequence of bytes. Each character is written out in
sequence by discarding its high eight bits.

writeChar on page 123 Writes a Unicode character into the message buffer
at the present position.

writeChars on page 123 Writes a string as a sequence of Unicode characters
into the message buffer at the current position.

writeDouble on page 124 Writes a double into the message buffer at the
present position.

writeFloat on page 124 Writes a float into the message buffer at the present
position.

writeInt on page 125 Writes an integer into the message buffer at the
present position.

writeLong on page 125 Writes a long into the message buffer at the present
position.

Name Description
e*Way Intelligent Adapter for MQSeries User’s Guide 58 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
ETD Overview The MQSeriesETD
6.1.4. Exception Handling
A general note on exception handling when using the ETD in a Collaboration:
Internally, the e*Way catches all of the MQExceptions thrown from the underlying
MQSeries API. It also catches all other possible exception types that can be thrown from
the MQSeries API methods (for instance, the EOFException on the message readXXX
methods). The reason for this is to prevent users from having to do multiple catch
clauses in their Collaboration. It is only necessary to catch a total of two possible types
of exceptions from the e*Way; the CollabConnException or the
EBobConnectionException. The only time the EBobConnectionException is thrown
by the eWay is in the initialization and shutdown phase of the eWay.

While the e*Way catches all MQExceptions internally, the original exception is still
available from the CollabConnException. Further, the MQExceptions "reasonCode" is
logged in a human readable format. That is, instead of a cryptic numeric ID, it logs
MQRC_NO_MESSAGE_AVAILABLE.

writeObject on page 126 Writes the specified object, object class, class
signature, and the values of the non-transient and
non-static fields of the class and all its supertypes.

writeShort on page 126 Writes a short into the message buffer at the present
position.

writeDecimal2 on page 127 Writes a 2-byte packed decimal format number into
the message buffer at the present position.

writeDecimal4 on page 127 Writes a 4-byte packed decimal format number into
the message buffer at the present position.

writeDecimal8 on page 128 Writes an 8-byte packed decimal format number into
the message buffer at the present position.

writeUTF on page 128 Writes a UTF string, prefixed by a 2-byte length field,
into the message buffer at the present position.

writeString on page 129 Writes a string into the message buffer at the present
position, converting it to the codeset identified by
the characterSet member variable.

Name Description
e*Way Intelligent Adapter for MQSeries User’s Guide 59 SeeBeyond Proprietary and Confidential

Chapter 7

e*Way Connection Configuration (ETD)

This chapter defines the configuration options for the Java-enabled MQSeries *Way
Connection using the MQSeriesETD connection type.

7.1 Configuring e*Way Connections
e*Way Connections are set using the Enterprise Manager.

To create and configure e*Way Connections

1 In the Enterprise Manager’s Component editor, select the e*Way Connections
folder.

2 On the palette, click on the Create a New e*Way Connection button. The New
e*Way Connection Component dialog box appears.

3 Enter a name for the new e*Way Connection and click OK.

4 Double-click the new e*Way Connection. The e*Way Connection Properties dialog
box appears.

5 From the e*Way Connection Type drop-down box, select MQSeriesETD.

6 Enter the Event Type ''get'' interval in the dialog box provided. 100 milliseconds is
the configured default. The “get” interval is the intervening period at which, when
subscribed to, the e*Way connection is polled.

7 Click the New button under the e*Way Connection Configuration File field to
create a new configuration file for this e*Way Connection. (To use an existing file,
click Find, and select a file.) The Configuration Editor appears (see Figure 14).

8 Enter the correct parameters for your e*Way Connection as defined on the following
pages. When all parameters have been entered, from the File menu, click Save and
Promote to Run Time to move the file to the run time environment.
e*Way Intelligent Adapter for MQSeries User’s Guide 60 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.1
e*Way Connection Configuration (ETD) Configuring e*Way Connections
Figure 14 Configuration Editor

The MQSeries e*Way Connection configuration parameters are organized into the
following sections.

! General Settings

! MQSeries

! Connector

! Default GetMessageOptions

7.1.1. General Settings
This section contains the following parameters:

! Transaction Type

Transaction Type

Description

String-set. Specifies the Transaction Type. There are two transaction types.

! Non-Transactional. Provides the highest level of performance, with the minimum
level of message protection. No rollback is available during the send and receive
period, causing the possible loss of data in the case of a system error. When the
send() method is called the transaction is immediate. Non-Transactional (single-
phase transaction) relys on the user to call the commit and backout methods.

! XA-compliant. (two-phase transactional behavior) Highest level of transaction
protection, providing rollback for internal and XA compliant transactions. The
transaction is also extended to other XA supported data exchange applications,
e*Way Intelligent Adapter for MQSeries User’s Guide 61 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.1
e*Way Connection Configuration (ETD) Configuring e*Way Connections
such as Oracle, DB2, and MQSeries. When the send() method is called the
transaction takes place at the end of the Collaboration.

XA can only be used in Binding mode. This means that a Host Name is not entered
in the configuration parameters. A Host Name in the configuration parameters
implies that the API is setup in Client mode. XA cannot be used in Client mode. In
addition, when using XA:

" There must be only one queue manager.

" The method connectToQueueManager cannot be called.

" The methods commit and backout cannot be called. In Bindings mode, e*Gate is
the transaction coordinator and is in control of these methods.

Note: Consult the XA Transaction Processing section of the e*Gate Integrator User's
Guide for information on XA use and restrictions.

Required Values

Select Non-Transactional or XA-compliant. Non-Transactional is the configured default.

7.1.2. MQSeries
This section contains the following top level parameters:

! Queue Manager Name

! Host Name

! Port Number

! Channel

Queue Manager Name

Description

String-set. Specifies the name of the IBM MQSeries queue manager to which the e*Way
is to connect.

Required Values

Enter the name of the valid IBM MQSeries queue manager.

Host Name

Description

String-set. Specifies the name of the host on which the queue manager resides.

Note: If the Host Name field is left blank, the e*Way attempts to connect to MQSeries in
Bindings mode. The queue manager must be on the local machine.
e*Way Intelligent Adapter for MQSeries User’s Guide 62 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.1
e*Way Connection Configuration (ETD) Configuring e*Way Connections
Required Values

A valid host name.

Port Number

Description

Integer-set. Specifies the port number to which the queue manager is set to listen.

Required Values

An integer in the range of 1000 to 65536. The configured default is 1414.

Channel

Description

String-set. Specifies the name of the channel being used.

Required Values

The valid name of the channel.

7.1.3. Connector
This section contains the following top level parameters:

Note: These parameters are used internally by the e*Way and are for future expansion
potentialities. The default values should always be used.

! type

! class

! Property.Tag

type

Description

String-set. Specifies the connector type for MQSeriesETD. The default value should
always be used.

Required Values

A valid connector type. The default value should always be used. The configured
default is MQSeriesETD.

class

Description

String-set. Specifies the connector class for MQSeriesETD. The default value should
always be used.
e*Way Intelligent Adapter for MQSeries User’s Guide 63 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.1
e*Way Connection Configuration (ETD) Configuring e*Way Connections
Required Values

The configured default is com.stc.eways.MQSeriesETD.MQSeriesConnector.

Property.Tag

Description

Specifies the data source identity. This parameter is required by the current
EBobConnectorFactory.

Required Values

A valid data source package name.

7.1.4. Default GetMessageOptions
This section contains the following top level parameters:

! Wait Timeout

! Wait Interval

Wait Timeout

Description

String-set. Specifies the time to wait for a message to arrive on the queue when calling
getWithOptions.

! Unlimited. Wait forever.

! No-Wait. Return immediately if no message is available.

! Wait-Timed. Wait for specified number of milliseconds (see Wait Interval).

Though the Wait Timeout can also be set through the Collaboration, the advantage to
setting it as a parameter is that the setting becomes the default. The default parameter
value can still be overridden in the Collaboration. This parameter is only in effect when
the getWithOptions method (not the get method) is used.

Required Values

Select either Unlimited, No-Wait, or Wait-Timed. No-Wait is the configured default.

Wait Interval

Description

Integer-set. Specifies the number of milliseconds to wait for a message to arrive on the
queue when calling getWithOptions. This option only applies when the Wait-Timed
option has been selected for the Wait Timeout. If this is left blank, and Wait-Timed is
chosen, a value of 0 (zero) is used.

Though the Wait Interval can also be set through the Collaboration, the advantage to
setting it as a parameter is that the setting becomes the default. The default parameter
e*Way Intelligent Adapter for MQSeries User’s Guide 64 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.1
e*Way Connection Configuration (ETD) Configuring e*Way Connections
value can still be overridden in the Collaboration. This parameter is only in effect when
the getWithOptions method (not the get method) is used.

Required Values

An integer in the range of 0 to 200000000. The configured default is 0.
e*Way Intelligent Adapter for MQSeries User’s Guide 65 SeeBeyond Proprietary and Confidential

Chapter 8

Implementation (ETD)

This chapter contains basic information for implementing the ETD-based Java-enabled
MQSeries e*Way in a production environment. A sample schema is included on the
installation CD-ROM for the ETD-based implementation of the e*Way. In addition,
examples are provided detailing how the various components of the sample schema
were created. For more information on creating and configuring e*Way components see
the e*Gate Integrator User’s Guide.

An additional sample schema using the ETD-based implementation for OS/390 and
z/OS is also available at../samples/ewmq/MQSeriesETDSample_os390.zip on the
installation CD-ROM. For more information on the OS/390, z/OS sample schema see
MQSeries (ETD) Sample Schema for OS/390 and z/OS on page 94.

8.1 MQSeries (ETD) Sample Implementation Components
The Java ETD-based e*Way Intelligent Adapter for MQSeries is an application specific
e*Way which allows e*Gate to connect with IBM’s MQSeries applications. The e*Gate
Enterprise Manager and MQSeries e*Way are used to create schema’s to receive,
transform and route data through e*Gate in a predefined system configuration.

The following pages contain a sample implementation which serves to explain how the
components for an ETD-based MQSeries sample schema are created. The host and
Control Broker are automatically created and configured during the e*Gate installation.
The default name for each is the name of the host on which the e*Gate Enterprise
Manager GUI is installed. To create an e*Gate schema for MQSeries you must do the
following:

! Install IBM’s MQSeries (See External System Requirements on page 11) and
MQSeries Queue Manager: The MQSeries Server and MQSeries Queue Manager
are installed on the localhost.

! Install the MQSeries e*Way: The MQSeries e*Way is installed as an Add-on to the
e*Gate Integrator. For directions on installing the MQSeries e*Way from the CD-
ROM to your specific operating system, see Installation on page 14.

! Create e*Ways: e*Ways connect with external systems to poll or send data. They
also transform and route data. Multi-Mode e*Ways are used to run Java
Collaborations that utilize e*Way Connections to send and receive Events to and
from multiple external systems.
e*Way Intelligent Adapter for MQSeries User’s Guide 66 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.1
Implementation (ETD) MQSeries (ETD) Sample Implementation Components
! Configure e*Way Connections: An e*Way Connection is the encoding of access
information for a specific external connection. The e*Way Connection configuration
file contains the parameters necessary for communicating with IBM’s MQSeries and
specifying the MQSeries Queue Manager.

! Create Event Types: Each packet of data within e*Gate is referred to as an Event.
Event Types are data labels that allow e*Gate to process and route specific Events
differently. Data is not routed in e*Gate without an Event Type.

! Create Intelligent Queues: Non-volatile storage for data traveling through the
e*Gate system is provided by creating Intelligent Queues (IQs). The IQ Manager
oversees the activities of the individual storage locations. The exact behavior of
each IQ is determined by the IQ Service configuration. The MQSeries e*Way uses
the MQSeries IQ Service.

! Create Collaboration Rules: Collaboration Rules determine how input Event Types
are modified to the format of specific output Event Types. A Collaboration Rule
defines what type of data is received, how it is transformed and what type of data is
published.

! Create Collaborations: A Collaboration is a message bus in e*Gate that specifies the
name and source of the incoming Event Types, the Collaboration Rules that are
applied to the Event, and the name, destination and expiration date of the outgoing
Event Types. A Collaboration designates the Subscriber, which “listens” for Events
of a known type from a given source, and the Publisher, which distributes the
transformed Event to a specified recipient.

! Set the CLASSPATH Variable: The Final Step in creating and configuring the
MQSeries e*Way is to set the IBM MQSeries Java .jar files and the com.ibm.m9.jar
files in the environment CLASSPATH variable.

8.1.1. The MQSeries (ETD) Sample Schema
The following sections describe how to define and associate each of the above
components for the MQSeries ETD Sample (see Figure 15). This sample implementation
demonstrates how the Java-enabled MQSeries e*Way intercepts, stores, manipulates,
and manages data in association with IBM MQSeries.

Figure 15 The MQSeries (ETD) Sample Implementation.

Local File
System

Local File
System

IBM
MQSeries

Queue Mgr.

Feeder
PassThru

Inbound
e*Way

Outbound
e*way
Eater

PassThru
IQ

queue
IQ

queue

Multi-Mode
e*Way
MQ_Get

Non-Transactional
e*Way Connection

Multi-Mode
e*Way
MQ_Put

XA-compliant
e*Way Connection
e*Way Intelligent Adapter for MQSeries User’s Guide 67 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.2
Implementation (ETD) Step One: Create the IBM MQSeries Queue
8.2 Step One: Create the IBM MQSeries Queue
Step one in creating the MQSeries e*Way is to install and configure IBM MQSeries
Server and the IBM MQSeries Queue Manager on the localhost.

It is assumed that the reader is experienced in the use of IBM MQSeries Queue
Manager. For more information on IBM MQSeries Queue Manager please see MQSeries
Queue Related Commands, Chapter 9, in the e*Gate Integrator Intelligent Queue
Services Reference Guide. For the sample implementation do the following:

1 Open IBM MQSeries Explorer.

2 Create a new Queue Manager.

3 From the IBM MQSeries Queue Manager create a new queue.

Note: Unlike the JMS-based MQSeries e*Way schema, the ETD-based schema does not
require the MQSeries Queue name and the Event Type name to be the same.

Regarding IBM MQSeries Server and Queue Manager Limits and Settings

! When using MQSeries Queue Manager on UNIX, the user must be a member of the
mqm group to create and start MQ Series Queue Manager.

! It is essential that the MQSeries Administrator regularly monitor the number of
messages in the queue. Message expiration settings should be set to allow for
extended storage.

! MQseries is limited in the number of messages that can be sent before a commit is
executed, and the number of physical messages that can exist on the queue at any
one time. This can result in exception errors when upper limits for these numbers
are exceeded. Memory and performance of the specific server may also effect the
results.

Publishing Messages with MQSeriesJMS to a non-JMS conversant e*Way

The JMS standard specifies a header which includes encoding and reply information.
This header is prepended to any message published by the IBM JMS classes. Non-JMS
subscribers (that is, those using a non JMS API to MQSeries, such as the IBM C API) are
not able to separate the JMS header from the body. To remedy this, the user is advised
to suppress the publication of the JMS header, if publishing to non-JMS subscribers,
using the following mechanism.

To send messages to a non-JMS MQ (Monk MQSeries) e*Way, call send() manually from
within the Collaboration rules containing the following URI:

"queue://<QMGR_NAME>/<QNAME>?targetClient=1"

For example:

"queue://EMEO2T/QR.EME01?targetClient=1"

If this is not done then a 200+ byte header is pre-appended to the payload and placed in
the MQ queue and could easily throw off the non JMS conversant MQ reader.
e*Way Intelligent Adapter for MQSeries User’s Guide 68 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Implementation (ETD) Step Two: Install the MQSeries e*Way and Create a New Schema
For further information see the IBM manual MQSeries, Using Java, Chapter 10, at:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/manuals/
crosslatest.html

8.3 Step Two: Install the MQSeries e*Way and Create a
New Schema

Step two is to install the MQSeries e*Way. For directions on installing the MQSeries
e*Way on your specific operating system, see Chapter 2, Installation, on page 14.

Importing the Sample Schema

Once the MQSeries e*Way is installed, a new schema must be created. While it is
possible to use the default schema, it is recommended that you create a separate schema
for testing purposes. A sample schema, MQSeriesETDSample.zip, is included on the
CD-ROM. To import the sample schema once the MQSeries e*Way is installed, do the
following:

1 Start the e*Gate Enterprise Manager GUI.

2 When the Enterprise Manager prompts you to log in, select the host that you
specified during installation and enter your password.

3 You are then prompted to select a schema. Click New.

4 Enter a name for the new Schema. In this case, for the sample, enter
MQSeriesETDSample, or any name as desired.

5 Select Create from export. Click Find and navigate to following folder on the CD-
ROM \eGate\samples\ewmq and select MQSeriesETD.zip.

6 Click open to import the sample schema.

The e*Gate Enterprise Manager opens to the new schema. The schema must be
configured to match the specific system before it can run. See Multi-Mode e*Way
Configuration on page 17 and e*Way Connection Configuration (ETD) on page 60 for
directions on configuring the schema components for your system. Further information
on importing and configuring the sample schema is available on the Readme file
included with the sample

The following steps are included to demonstrate how the components of the sample
schema are created.

8.4 Step Three: Create and Configure the e*Ways
Step three is to create the e*Ways. e*Ways are components used for transporting and
transforming data. They always interface with at least one external system, and Multi-
e*Way Intelligent Adapter for MQSeries User’s Guide 69 SeeBeyond Proprietary and Confidential

http://www-4.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html

Chapter 8 Section 8.4
Implementation (ETD) Step Three: Create and Configure the e*Ways
Mode e*Ways can use e*Way Connections to interface with many external systems. For
the sample implementation four e*Ways are required.

! Inbound (Feeder)

! Outbound (Eater)

! Multi-Mode (MQ_Get)

! Multi-Mode (MQ_Put)

The following sections provide instructions for creating each e*Way.

To Create the Inbound e*Way (Feeder)

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the e*Ways.

3 Select the Control Broker that manages the new e*Ways.

4 On the palette, click the Create a New e*Way button.

5 Enter the name of the new e*Way (in this case, Feeder). Click OK.

6 Right-click the Feeder e*Way, and select Properties to edit its properties.

7 When the e*Way Properties window appears, click Find beneath the Executable
File field and select stcewfile.exe as the executable file (see Figure 16).

Figure 16 Inbound e*Way Properties

8 Under the Configuration File field, click on the New button. The Edit Settings
dialog box appears. Set the following for this configuration file (see Table 5).
e*Way Intelligent Adapter for MQSeries User’s Guide 70 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.4
Implementation (ETD) Step Three: Create and Configure the e*Ways
Note: For information on configuring the specific parameters of the stcewfile e*Way see the
Standard e*Way Intelligent Adapter User’s Guide.

9 Use the Startup, Advanced, and Security tabs to modify the default settings for
each e*Way configured.

D Use the Startup tab to specify whether the e*Way starts automatically, or restarts
after abnormal termination or due to scheduling and so forth.

E Use the Advanced tab to specify or view the activity and error logging levels as
well as the Event threshold information.

F Use Security to view or set privilege assignments.

10 After selecting the desired parameters, save the configuration file (Feeder.cfg) and
promote to run time.

11 Select OK to close the e*Way Properties window.

To Create the Outbound e*Way (Eater)

1 Repeat step 1-9 above to create the Outbound e*Way changing the name in steps 5
and 6 to Eater.

2 Replace the following parameters (see Table 6) for those in step 8.

Table 5 Configuration Parameters for the Inbound e*Way

Parameter Value

General Settings (unless otherwise stated, leave settings as default)

AllowIncoming YES

AllowOutgoing NO

PerformanceTesting NO

Outbound Settings Default

Poller Inbound Settings

PollDirectory C:\INDATA

InputFileExtension *.fin (input file extension)

PollMilliseconds 1000

Remove EOL YES

MultipleRecordsPerFile YES

MaxBytesPerLine 4096

BytesPerLineIsFixed NO

File Records Per eGate Event 1

Performance Testing Default
e*Way Intelligent Adapter for MQSeries User’s Guide 71 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.4
Implementation (ETD) Step Three: Create and Configure the e*Ways
3 After selecting the desired parameters, save the configuration file (Eater.cfg) and
promote to run time.

4 Click OK to close the e*Way Properties window.

To Create the Multi-Mode e*Way (MQ_Get)

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the e*Way.

3 Select the Control Broker that manages the new e*Way.

4 On the palette, click the Create a New e*Way button.

5 Enter the name of the new e*Way (in this case, MQ_Get), then click OK.

6 Right-click the MQ_Get e*Way and select Properties to edit its properties.

7 When the e*Way Properties window opens, click the Find button beneath the
Executable File field, and select stceway.exe as the executable file.

8 To configure the Multi-Mode e*Way’s parameters, click New under the
Configuration File field and enter the parameters as displayed in Table 7.

Table 6 Configuration Parameters for the Inbound e*Way

Parameter Value

General Settings (unless otherwise stated, leave settings as default)

AllowIncoming NO

AllowOutgoing YES

PerformanceTesting NO

Poller Outbound Settings

OutputDirectory C:\DATA

OutputFileName output%d.dat

MultipleRecordsPerFile YES

MaxRecordsPerFile 10000

AddEOL YES

Poller Inbound Settings Default

Performance Testing Default

Table 7 Configuration Parameters for the MQ_Get MultiMode e*Way

Parameter Value

JVM Settings (unless otherwise stated, leave settings as default)

JNI DLL absolute pathname C:\eGate\client\bin\Jre\jvm.dll (or
absolute path to proper JNI DLL)

CLASSPATH Append From Environmental
Variable

YES
e*Way Intelligent Adapter for MQSeries User’s Guide 72 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
Implementation (ETD) Step Four: Create the e*Way Connection
See Multi-Mode e*Way Configuration on page 17 for more information on Multi-
Mode e*Way parameters.

9 In the e*Way Properties window, use the Startup, Advanced, and Security tabs to
modify the default settings for each.

G Use the Startup tab to specify whether the e*Way starts automatically, restarts
after abnormal termination or due to scheduling, etc.

H Use the Advanced tab to specify or view the activity and error logging levels, as
well as the Event threshold information.

I Use Security to view or set privilege assignments.

10 After selecting the desired parameters, save the configuration file (MQ_Get.cfg)
and promote to run time.

11 Click OK to close e*Way Properties window.

To Create the Multi-Mode e*Way (MQ_Put)

1 Repeat step 1-9 above to create the MQ_Put Multi-Mode e*Way changing the name
in steps 5 and 6 to MQ_Put.

2 After selecting the desired parameters, Save the configuration file (MQ_Put.cfg)
and promote to run time.

3 Click OK to close e*Way Properties window.

8.5 Step Four: Create the e*Way Connection
Step four is to create and configure the e*Way Connections. The e*Way Connection
configuration file contains the settings necessary for communicating with IBM
MQSeries and specifying the MQSeries Queue Manager. For this sample two e*Way
Connections are created.

To Create the MQConn_Get e*Way Connection

1 Select the e*Way Connection folder on the Components tab of the e*Gate
Navigator.

2 On the palette, click the Create a New e*Way Connection button.

3 Enter the name of the e*Way Connection, then click OK. (For the purpose of this
sample, the e*Way Connection is defined as “MQconn_Get”.)

4 Double-click the new e*Way Connection to edit its properties. The e*Way
Connection Properties dialog box appears.
e*Way Intelligent Adapter for MQSeries User’s Guide 73 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.5
Implementation (ETD) Step Four: Create the e*Way Connection
5 In the e*Way Connection Type field, select MQSeriesETD from the drop-down list
box (see Figure 17).

Figure 17 e*Way Connection Properties

6 Enter the Event Type “get” Interval in the dialog box provided. 10000 milliseconds
(or 10 seconds) is the configured default. The “get interval is the intervening period
at which, when subscribed to, the e*Way connection is polled. For the purpose of
this sample set the “get interval to 100.

7 To configure the e*Way Connection parameters, click the New button under the
e*Way Connection Configuration File field.

8 The e*Way Connection editor appears, select the parameters as displayed in Table 8.

Table 8 Configuration Parameters for the MQConn_Get e*Way Connection

Parameter Value

General Settings (unless otherwise stated, leave settings as default)

Transaction Type Non-Transactional

MQSeries

Queue Manager Name MQ_mgr (a valid queue manager)

Port Number 1414 (a valid port number)

connector Default

Default GetMessageOptions
e*Way Intelligent Adapter for MQSeries User’s Guide 74 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.6
Implementation (ETD) Step Five: Create Event Types
For more information on the MQSeries e*Way Connection Type parameters, see
e*Way Connection Configuration (ETD) on page 60.

9 Save the MQConn_Get.cfg file.

10 From the File menu select Promote to Run Time to move the file to the e*Way’s run
time environment.

11 Click OK to close the Properties dialog box.

To Create the MQConn_PutXA e*Way Connection

1 Repeat step 1-8 above to create the MQConn_PutXA e*Way Connection changing
the name in step 3 to MQConn_PutXA.

2 Replace the following parameters displayed in Table 9 for those in step 8.

3 Save the MQConn_PutXA.cfg file.

4 From the File menu select Promote to Run Time to move the file to the e*Way’s run
time environment.

5 Click OK to close the Properties dialog box.

8.6 Step Five: Create Event Types
Step five is to create the Event Types. An Event Type is a class of Events with a common
data structure. The e*Gate system packages data within Events and categorizes them

Wait Timeout Wait-Timed

Wait Interval 10000

Table 9 Configuration Parameters for the MQConn_PutXA e*Way Connection

Parameter Value

General Settings (unless otherwise stated, leave settings as default)

Transaction Type XA-compliant

MQSeries

Queue Manager Name MQ_mgr (a valid queue manager)

Port Number 1415 (a valid port number)

Channel Channel2Test

connector Default

Default GetMessageOptions

Wait Timeout No-Wait

Wait Interval 0

Table 8 Configuration Parameters for the MQConn_Get e*Way Connection

Parameter Value
e*Way Intelligent Adapter for MQSeries User’s Guide 75 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.6
Implementation (ETD) Step Five: Create Event Types
into Event Types. What these Events have in common defines the Event Type and
comprises the ETD.

Creating an Event Types Using the Custom ETD Wizard

The following procedures show how to create an ETD (Event Type Definition) using the
Custom ETD Wizard.

1 Highlight the Event Types folder on the Components tab of the e*Gate Navigator.

2 On the palette, click the Create a New Event Type button.

3 Enter the name of the Event, then click OK. For the purpose of this sample the
Event Type is defined as DummyTrigger.

4 Double-click the new Event Type to edit its properties. The Event Type Properties
dialog box appears.

5 Click the New button. The ETD Editor appears.

6 Click New from the File menu. The New Event Type Definition window appears
(see Figure 18).

Figure 18 Event Type Definition Wizards

7 Select the Custom ETD wizard.

8 Enter the Root Node Name (for this case, “Blob”).

9 Enter a package name where the ETD Editor can place all the generated Java classes
associated with the created ETD. (For this sample, use DummyTrigger as the
package name.) Click Next and Finish. The ETD Editor appears (see Figure 19).

10 Right click Blob in the Event Type Definition pane of the ETD Editor, and select
Add Field, as Child Node.

11 Triple-click on Field1, and rename it Dummy.

12 Select the Dummy node. The properties for the Dummy node are displayed in the
Properties pane. Change the endDelim property to “|” (pipe).
e*Way Intelligent Adapter for MQSeries User’s Guide 76 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.6
Implementation (ETD) Step Five: Create Event Types
Figure 19 Event Type Definition Editor

13 From the File menu, click Compile and Save. Save the .xsc file as
DummyTrigger.xsc.

14 From the File menu, click Promote to Run Time to move the file to the run time
environment.

Creating Event Types From an Existing XSC

The following procedure shows how to create an Event Type Definition (ETD) from an
existing .xsc file.

1 Select the Event Types folder on the Components tab of the e*Gate Navigator.

2 On the palette, click the Create a New Event Type button.

3 Enter the name of the Event Type in the New Event Type Component window,
then click OK. (For this sample, the Event Type is defined as “fromMQ.”)

4 Double-click the new Event Type to edit its properties. The Event Type Properties
dialog box appears.

5 Click Find under the Event Type Definition field.

6 Browse to and select DummyTrigger.xsc.

7 Click OK to close the Event Type Properties dialog box.
e*Way Intelligent Adapter for MQSeries User’s Guide 77 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.7
Implementation (ETD) Step Six: Create Intelligent Queues
8.7 Step Six: Create Intelligent Queues
Step Six in configuring the MQSeries e*Way is to create the Intelligent Queues (IQs).
IQs manage the exchange of information between components within the e*Gate
system, providing non-volatile storage for data as it passes from one component to
another. IQs use IQ Services to transport data. IQ Services provide the mechanism for
moving Events between IQs, handling the low-level implementation of data exchange
(such as system calls to initialize or reorganize a database).

To create and modify an Intelligent Queue for the MQSeries e*Way

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the IQ.

3 Open a Control Broker.

4 Select an IQ Manager.

5 On the palette, click the Create a New IQ button.

6 Enter the name of the new IQ, then click OK. (For this case, queue.)

7 Double-click the new IQ to edit its properties.

8 On the General tab, specify the Service (for this sample, STC_Standard). The
STC_Standard IQ Service provides sufficient functionality for most applications. If
specialized services are required, custom IQ Service DLLs may be created.

9 Specify and the Event Type Get Interval. The default Event Type Get Interval of
100 Milliseconds is satisfactory for the purposes of this initial implementation.

10 On the Advanced tab, make sure that Simple publish/subscribe is checked under
the IQ behavior section.

11 Click OK to close the IQ Properties window

8.8 Step Seven: Create Collaboration Rules
Step seven in creating the ETD-based MQSeries e*Way is to create the Collaboration
Rules that extract and process selected information from the source Event Type defined
earlier, according to its associated Collaboration Service. The Default Editor can be set
to either Monk or Java. From the Enterprise Manager Task Bar, From the Options
menu, click Default Editor. Make sure that the default is set to Java.

Creating Pass Through Collaboration Rules

1 Select the Navigator's Components tab in the e*Gate Enterprise Manager.

2 In the Navigator, select the Collaboration Rules folder.

3 On the palette, click the Create New Collaboration Rules button.
e*Way Intelligent Adapter for MQSeries User’s Guide 78 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.8
Implementation (ETD) Step Seven: Create Collaboration Rules
4 Enter the name of the new Collaboration Rule Component, then click OK (in this
case, use crDataIn).

5 Double-click the new Collaboration Rules Component. The Collaboration Rules
Properties window appears (see Figure 20).

6 Select Pass Through from the drop-down box for the Service field.

Figure 20 Pass Through Collaboration Properties

7 Go to the Subscriptions tab (seeFigure 21). Select DummyTrigger under Available
Input Event Types, and click the right arrow to move it to Selected Input Event
Types. The box under Triggering Event should be checked.

Figure 21 Pass Through Collaboration Properties, Subscriptions Tab
e*Way Intelligent Adapter for MQSeries User’s Guide 79 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.8
Implementation (ETD) Step Seven: Create Collaboration Rules
8 Go to the Publications tab. Select DummyTrigger under Available Output Event
Types, and click the right arrow to move it to Selected Output Event Types. The
Radio button under Default is enabled.

9 Click OK to close the Collaboration Rules, Pass Properties window.

10 Repeat steps 1-9 above to create the crDataOut Collaboration Rules, changing the
name in step 4 to crDataOut and the selected Input and Output Event Types in
steps 7 and 8 to fromMQ.

Creating Java Collaboration Rules

For the purpose of the sample schema two Java Collaboration Rules files are created.

To Create the MQCollab Collaboration Rules

1 Select the Navigator's Components tab in the e*Gate Enterprise Manager.

2 In the Navigator, select the Collaboration Rules folder.

3 On the palette, click the Create New Collaboration Rules button.

4 Enter the name of the new Collaboration Rule, then click OK (for this case, use
MQCollab).

5 Double-click the new Collaboration Rules Component to edit its properties. The
Collaboration Rules Properties window appears (see Figure 22).

6 The Service field defaults to Java. The Collaboration Mapping tab is enabled, and
the Subscriptions and Publications tabs are disabled.

7 In the Initialization string field, enter any required initialization string for the
Collaboration.

Figure 22 Collaboration Rules - Properties
e*Way Intelligent Adapter for MQSeries User’s Guide 80 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.8
Implementation (ETD) Step Seven: Create Collaboration Rules
8 Select the Collaboration Mapping tab (see Figure 23).

9 Using the Add Instance button, create instances to coincide with the Event Types.

For this sample, do the following:

10 In the Instance Name column, enter outbound for the instance name.

11 Click Find, navigate to etd\MQSeriesETD.xsc, double-click to select.
MQSeriesETD.xsc is added to the ETD column of the instance row.

12 In the Mode column, select Out from the drop–down menu available.

13 The Trigger setting defaults to N/A.

14 The Manual Publish setting is clear.

15 Repeat steps 9–13 using the following values:

" Instance Name: trigger

" ETD: DummyTrigger.xsc

" Mode: In

" Trigger: select

" Manual Publish: N/A

Note: At least one of the ETD instances used by the Collaboration must be checked as the
trigger.

For specific information on creating and configuring Collaboration Rules, see the
e*Gate Integrator User’s Guide.

Figure 23 Collaboration Rules - Collaboration Mapping Properties
e*Way Intelligent Adapter for MQSeries User’s Guide 81 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.8
Implementation (ETD) Step Seven: Create Collaboration Rules
16 Select the General tab. Under the Collaboration Rule field, select New. The
Collaboration Rules Editor appears.

17 Expand to full size for optimum viewing, expanding the Source and Destination
Events as well.

8.8.1. Using the Collaboration Rules Editor
Part two of step seven is to define the business logic using the Collaboration Rules
Editor. The Java Collaboration Rules Editor is the GUI used to create and modify Java
Collaboration Rules. A Java Collaboration Rule is created by designating one or more
source Events and one or more destination Events and then setting up rules governing
the relationship between fields in the Event instances.

Note: In order to compile the Collaboration that uses MQSeriesETD.xsc, first add
com.ibm.mq.jar to the User Classpath from Tools, Options in the Collaboration
Rules editor.

1 Highlight retBoolean in the Business Rules pane.

All of the user–defined business rules are added as part of this method.

2 Click the rule button on the Business Rules tool bar. A rule expression is added to
the business rules.

3 From the Destination Events pane, drag-and-drop MQOO_OUTPUT into the
Business Rules pane, Rules field. When prompted for type of function for this node
select set. Place the cursor between the last set of parentheses and type true.
e*Way Intelligent Adapter for MQSeries User’s Guide 82 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.8
Implementation (ETD) Step Seven: Create Collaboration Rules
Figure 24 Collaboration Rules Editor - Drag and Drop

4 In the Description field type set the queue access options. This description now
displays as the rule tag in the Business Rules pane.

5 Click the rule button on the Business Rules tool bar again. A rule expression is
added to the Business Rules pane under the previous rule.

6 From the Destination Events pane, drag-and-drop the accessQueue method into the
Business Rules pane, Rules field (see Figure 25). When prompted for the
queueName type in the name of the queue to which you have access.
e*Way Intelligent Adapter for MQSeries User’s Guide 83 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.8
Implementation (ETD) Step Seven: Create Collaboration Rules
Figure 25 Collaboration Rules Editor – accessQueue

7 In the Description field type access the queue. This description now displays as the
rule tag in the Business Rules pane.

8 Click the rule button to add another rule expression.

9 From the Destination Events pane, drag-and-drop MQPMO_NO_SYNCPOINT
under PMO into the Business Rules pane, Rules field. When prompted for type of
function to insert for this node select set. Place the cursor between the last set of
parentheses and type true.

10 In the Description field type set the PutMessageOptions. This description now
displays as the rule tag in the Business Rules pane.

11 Click the rule button to add another rule expression.

12 From the Destination Events pane, drag-and-drop the writeString method under
Message, MsgBody into the Business Rules pane, Rules field. When prompted for a
stringValue type your message into the field. The value (message) can also be
dragged and dropped to the write calls as appropriate, or to the MsgBody data
node and call writeData.

13 In the Description field type write a string to the message.

14 Once more, click the rule button to add another rule expression.
e*Way Intelligent Adapter for MQSeries User’s Guide 84 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.8
Implementation (ETD) Step Seven: Create Collaboration Rules
15 From the Destination Events pane, drag-and-drop the putWithOptions method
into the Business Rules pane, Rules field.

16 In the Description field type put the message on the queue.

17 When all the business logic has been defined, the code can be compiled by selecting
Compile from the File menu. In order to compile the Collaboration that uses
MQSeriesETD.xsc, first add com.ibm.mq.jar to the User Classpath from Tools,
Options in the Collaboration Rules editor. The Save menu appears, provide a name
for the .xpr file. For the sample, use MQCollab.xpr. If the code compiles
successfully, the message Compile Completed appears. If the outcome is
unsuccessful, a Java Compiler error message appears. Once the compilation is
complete, save the file and exit the Collaboration Rules editor.

18 Under the Collaboration Rules field in the Collaboration Rules Properties dialog
box, the path for the created .class file appears.

19 Under the Initialization file field, the path for the created .ctl file appears.

20 Click OK to close the Properties dialog box.

Note: For detailed information on creating Collaboration Rules using the Java
Collaboration Rules Editor see the e*Gate Integrator User’s Guide.

To Create the MQGetCollab Collaboration Rules

1 Click on the Create New Collaboration Rules button again. Name the new
Collaboration Rules MQGetCollab for this sample.

2 Double-click the new Collaboration Rules. The Services field defaults to Java. Enter
any required initialization string in the Initialization string field.

3 Select the Collaboration Mapping tab (see Figure 26) and create an instance and
settings for the following;

" Instance Name — inbound_MQ

" ETD — MQSeriesETD.xsc

" Mode — In

" Trigger – select

" Manual Publish — N/A

4 Create another instance and settings for the following:

" Instance Name — out

" ETD — DummyTrigger.xsc

" Mode — Out

" Trigger – N/A

" Manual Publish — Clear
e*Way Intelligent Adapter for MQSeries User’s Guide 85 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.8
Implementation (ETD) Step Seven: Create Collaboration Rules
Figure 26 Collaboration Rules - Collaboration Mapping Properties

5 Select the General tab. Under the Collaboration Rule field, select New. The
Collaboration Rules Editor appears. Expand to full size for optimum viewing,
expanding the Source and Destination Events as well.

6 Highlight retBoolean in the Business Rules pane.

7 Click the rule button on the Business Rules tool bar. A rule expression is added to
the business rules.

8 From the Source Events pane, drag-and-drop MQOO_INPUT_AS_Q_DEF into the
Business Rules pane, Rules field. When prompted for type of function for this node
select set. Place the cursor between the last set of parentheses and type true.

9 In the Description field type set the queue access options. This description now
displays as the rule tag in the Business Rules pane.

10 Click the rule button on the Business Rules tool bar again. A rule expression is
added to the Business Rules pane under the previous rule.

11 From the Source Events pane, drag-and-drop the accessQueue method into the
Business Rules pane, Rules field. When prompted for the queueName type in the
name of the queue to which you have access.

12 In the Description field type access the queue. This description now displays as the
rule tag in the Business Rules pane.

13 Click the rule button to add another rule expression.

14 From the Source Events pane, drag-and-drop MQPMO_NO_SYNCPOINT under
PMO into the Business Rules pane, Rules field. When prompted for type of function
to insert for this node select set. Place the cursor between the last set of parentheses
and type true.

15 In the Description field type set the PutMessageOptions if any. This description
now displays as the rule tag in the Business Rules pane.
e*Way Intelligent Adapter for MQSeries User’s Guide 86 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.8
Implementation (ETD) Step Seven: Create Collaboration Rules
16 Click the rule button to add another rule expression.

17 From the Source Events pane, drag-and-drop the getWithOptions method into the
Business Rules pane, Rules field.

18 In the Description field type Calling getWithOptions().

19 Click the rule button to add another rule expression.

20 From the Source Events pane, drag-and-drop the readData method under Message,
MsgBody into the Business Rules pane, Rules field.

21 In the Description field type Calling readData().

22 From the Source Events pane, drag-and-drop the Data method under Message,
MsgBody to Dummy in the Destination Events pane. A line appears between Data
and Dummy, and the created code appears in the Rule Properties, Rules field (see
Figure 27). If necessary, edit the code in the Rule Properties, Rules field to appear as
follows:

getout().setDummy(newString(getinbound_MQ().getQueue()
.getMessage().getMsgBody().getData()))

Figure 27 Collaboration Rules — Collaboration Rules Editor
e*Way Intelligent Adapter for MQSeries User’s Guide 87 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.9
Implementation (ETD) Step Eight: Create Collaborations
23 When all the business logic has been defined, the code can be compiled by selecting
Compile from the File menu. In order to compile the Collaboration that uses
MQSeriesETD.xsc, first add com.ibm.mq.jar to the User Classpath from Tools,
Options in the Collaboration Rules editor. The Save menu appears, provide a name
for the .xpr file. For the sample, use MQGetCollab.xpr. If the code compiles
successfully, the message Compile Completed appears. If the outcome is
unsuccessful, a Java Compiler error message appears. Once the compilation is
complete, save the file and exit the Collaboration Rules Editor.

24 Click OK to close the Properties dialog box.

Note: For detailed information on creating Collaboration Rules using the Java
Collaboration Rules Editor see the e*Gate Integrator User’s Guide.

8.9 Step Eight: Create Collaborations
Step eight in creating the ETD-based MQSeries e*Way is to create the Collaborations.
Collaborations are the components that receive and process Event Types, then forward
the output to other e*Gate components or an external component. Collaborations
consist of the Subscriber, which “listens” for Events of a known type (sometimes from a
given source), and the Publisher, which distributes the transformed Event to a specified
recipient.

Creating the Inbound_eWay Collaboration

1 Create another new Collaboration in the e*Gate Enterprise Manager, select the
Navigator's Components tab.

2 Open the host on which you want to create the Collaboration.

3 Select a Control Broker.

4 Select the Feeder e*Way to assign the Collaboration.

5 On the palette, click the Create New Collaboration button.

6 Enter the name of the new Collaboration, then click OK. (For the sample,
“FeederCollab”.)

7 Double-click the new Collaboration to edit its properties. The Collaboration
Properties dialog box appears (see Figure 28).

8 From the Collaboration Rules list, select the Collaboration Rules file that you
created previously. (For the sample, “crDataIn”.)

9 In the Subscriptions area, click Add to define the input Event Types to which this
Collaboration subscribes.

A From the Event Type list, select the Event Type that you previously defined
DummyTrigger.

B Select the Source from the Source list. In this case, it should be <External>.
e*Way Intelligent Adapter for MQSeries User’s Guide 88 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.9
Implementation (ETD) Step Eight: Create Collaborations
10 In the Publications area, click Add to define the output Event Types that this
Collaboration publishes.

A From the Event Types list, select the Event Type that you previously defined
DummyTrigger.

B Select the publication Destination from the Destination list. In this case, it
should be queue.

C The Priority column defaults to 5.

Figure 28 Inbound e*Way Collaboration Properties

11 Click OK to close the Collaboration Properties window.

Creating the Multi Mode e*Way Collaboration

Two Collaboration are created for the Multi-Mode e*Way MQGetCollab, and
colMQPutCollab.

To Create the MQGetCollab Collaboration

1 To create the MQGetCollab Collaboration, select the MQ_Get e*Way.

2 On the palette, click the Create a New Collaboration button.

3 Enter the name of the new Collaboration, then click OK. (For this sample,
“MQGetCollab”.)

4 Double-click the new Collaboration to edit its properties. The Collaboration
Properties dialog box appears (seeFigure 29).

5 From the Collaboration Rules drop-down list box, select the Collaboration Rules
file that you created previously. For the sample use MQGetCollab.
e*Way Intelligent Adapter for MQSeries User’s Guide 89 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.9
Implementation (ETD) Step Eight: Create Collaborations
6 In the Subscriptions field, click Add to define the input Event Types to which this
Collaboration subscribes.

A From the Instance Name list, select the Instance Name that you previously
defined inbound_MQ.

B From the Event Type list, select the Event Type previously defined
GenericOutEvent.

C Select the Source from the Source list. In this case, it should be MQConn_Get.

7 In the Publications area, click Add to define the output Event Types that this
Collaboration publishes.

A From the Instance Name list, select the Instance Name previously defined out.

B From the Event Types list, select the Event Type named GenericOutEvent.

C Select the Destination from the Destination list. In this case, it should be Queue.

D The Priority column defaults to 5.

Figure 29 Collaboration Properties - MQGetCollab

8 Click OK to close the Properties window.

To Create the MQPutCollab Collaboration

1 To create the MQPutCollab, repeat steps 1-6 above substituting the Collaboration
name to MQPutCollab.

2 In the Subscriptions field, click Add to define the input Event Types to which this
Collaboration subscribes.

A From the Instance Name list, select the Instance Name that you previously
defined trigger.
e*Way Intelligent Adapter for MQSeries User’s Guide 90 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.10
Implementation (ETD) Step Nine: Set the CLASSPATH Variable
B From the Event Type list, select the Event Type previously defined
DummyTrigger.

C Select the Source from the Source list. In this case, it should be FeederCollab.

3 In the Publications area, click Add to define the output Event Types that this
Collaboration publishes.

A From the Instance Name list, select the Instance Name previously defined
outbound.

B From the Event Types list, select the Event Type named GenericOutEvent.

C Select the Destination from the Destination list. In this case, it should be
MQConn_PutXA.

4 The Priority column defaults to 5.

5 Click OK to close the Properties window.

8.10 Step Nine: Set the CLASSPATH Variable
The final step in creating and configuring the MQSeries e*Way is to set the IBM
MQSeries Java .jar files in the environment CLASSPATH variable. This includes the
following .jar files.

\MQSeries\Java\lib

\MQSeries\Java\lib\com.ibm.mq.jar

Also set the \MQSeries\Java\lib in your PATH.

For UNIX, include /MQSeries/Java/lib in the library path as follows:

! Solaris: LD_LIBRARY_PATH

! HP-UX: SHLIB_PATH

! AIX: LIBPATH

If the CLASSPATH and PATH already exist, add the .jar files to the existing PATH and
CLASSPATH.

Setting the CLASSPATH variable on Windows

1 Right-click My Computer and select Properties. The System Properties window
appears.

2 Select the Advanced tab and Click on Environment Variables. The Environment
Variables window appears.

3 Under System Variables click New.

4 In the New System Variable window type ClassPath in the Variable Name field. In
the Variable Value field type the absolute path for the first .jar file (See Figure 30),
and click OK.
e*Way Intelligent Adapter for MQSeries User’s Guide 91 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.11
Implementation (ETD) Execute the Schema
Figure 30 Setting Environment Variables

5 Repeat steps 3 and 4 for each of the MQSeries .jar files.

6 Under System Variables click New.

7 In the New System Variable window type Path in the Variable Name field. In the
Variable Value field type the absolute path for \MQSeries\Java\lib and click OK.

8 Click OK to close the Environment Variables window and the System Properties
window.

8.11 Execute the Schema
To execute the schema

1 Go to the command line prompt, and enter the following:

stccb -rh hostname -rs schemaname -un username -up user password
-ln hostname_cb

Substitute hostname, schemaname, username and user password as appropriate.

2 Exit from the command line prompt, and start the e*Gate Monitor GUI.

3 When prompted, specify the hostname which contains the Control Broker you
started in Step 1 above.

4 Select the schema.

5 After you verify that the Control Broker is connected (the message in the Control
tab of the console indicates command as succeeded and status as up), highlight the IQ
Manager, hostname_igmgr, then right-click and select Start.

6 Highlight each of the e*Ways, right-click the mouse, and select Start.

8.12 Error Messages
If there is an error, such as a failed connection, an exception is thrown by the module
and logged to the error log file at egate/client/logs. The error log appears similar to the
following:

11:59:34.091 EWY I 11 (initialize.cxx:1035): Exception thrown: Failed to access queue:
MQRC_UNKNOWN_OBJECT_NAMEc
om.ibm.mq.MQException: MQJE001: Completion Code 2, Reason 2085
e*Way Intelligent Adapter for MQSeries User’s Guide 92 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.12
Implementation (ETD) Error Messages
 at com.ibm.mq.MQQueueManager.accessQueue(MQQueueManager.java:1151)
 at com.ibm.mq.MQQueueManager.accessQueue(MQQueueManager.java:1196)
 at com.stc.eways.MQSeriesETD.MQSeriesConnector.accessQueue(MQSeriesConnector.java:395)
 at com.stc.eways.MQSeriesETD.MQSeriesETD.accessQueue(MQSeriesETD.java:291)
 at MQ_EMECollab.executeBusinessRules(MQ_EMECollab.java:106)
 at com.stc.jcsre.JCollaboration.translate(JCollaboration.java:97)
 at com.stc.common.collabService.JCCollabControllerImpl.
translate(JCCollabControllerImpl.java:1096

The reason code parameter or MQRC, in this case Reason 2085, appears in the first few
lines of the error log. This reason code can be used in conjunction with IBMs online
document, MQSeries Messages, Chapter 9 at:

http://www-903.ibm.com/board/attach_files/mqseries/k1005706457257_messages.pdf

The chapter lists reason codes, exceptions, the associated errors and the corrective
actions to take. For the above example, the MQRC appears as follows:

.2085 .X'0825' .MQRC_UNKNOWN_OBJECT_NAME

.An MQOPEN or MQPUT1 call was issued, but the object identified by the

.ObjectName and ObjectQMgrName fields in the object descriptor MQOD

.cannot be found. One of the following applies:
! The ObjectQMgrName field is one of the following:
Blank
The name of the local queue manager
The name of a local definition of a remote queue (a queue-manager alias) in

which the RemoteQMgrName attribute is the name of the local queue
manager but no object with the specified ObjectName and ObjectType
exists on the local queue manager.

! The object being opened is a cluster queue that is hosted on a remote queue
manager, but the local queue manager does not have a defined route to the
remote queue manager.

! The object being opened is a queue definition that has QSGDISP(GROUP).
Such definitions cannot be used with the MQOPEN and MQPUT1 calls.

.Corrective action: Specify a valid object name. Ensure that the name is padded

.to the right with blanks if necessary. If this is correct, check the queue

.definitions.
e*Way Intelligent Adapter for MQSeries User’s Guide 93 SeeBeyond Proprietary and Confidential

http://www-903.ibm.com/board/attach_files/mqseries/k1005706457257_messages.pdf

Chapter 8 Section 8.13
Implementation (ETD) MQSeries (ETD) Sample Schema for OS/390 and z/OS
8.13 MQSeries (ETD) Sample Schema for OS/390 and z/OS
A sample schema using the ETD-based implementation is available for OS/390 and
z/OS on the installation CD-ROM at ../samples/ewmq/
MQSeriesETDSample_os390.zip. The MQSeriesETDSample_os390 schema is similar
in configuration and operation to the MQSeriesETDSample described in this chapter,
with the addition of the outgoing encoder. All data within a Java Collaboration is
generally encoded in the ISO-8859-1 code page (see Figure 31. The Outgoing Encoder is
necessary in the OS/390 or z/OS environment to produce EBCDIC output ("cp037").

Figure 31 MQGetCollab Collaboration Rule with the Outgoing Encoder

To use the MQSeries (ETD) Sample Schema for OS/390 and z/OS, import the sample,
MQSeriesETDSample_os390.zip, and configure the components using the directions
included in this chapter for the MQSeries ETD sample schema.

Note: The MQSeries e*Way on OS/390 or z/OS only supports MQSeries V5.2. MQSeries
V5.3 (WebSphere MQ V5.3) is not supported by the MQSeries e*Way running on
anOS/390 or z/OS operating system.
e*Way Intelligent Adapter for MQSeries User’s Guide 94 SeeBeyond Proprietary and Confidential

Chapter 9

Java Methods (ETD)

The MQSeries e*Way contains Java methods that are used to extend the functionality of
the e*Way. These methods are contained in the following classes:

! MQSeriesETD Class on page 95

! GMO Class on page 103 (GetMessageOptions)

! PMO Class on page 105 (PutMessageOptions)

! Message Class on page 105

9.1 MQSeriesETD Class
MQSeriesETD class methods are located under the QueueManager node and Queue
node.

The MQSeriesETD class is defined as:

public class MQSeriesETD

The MQSeriesETD class extends com.stc.jcsre.SimpleETDImpl and implements
com.stc.jcsre.ETD and com.stc.jcsre.ETDConstants.

Methods of the MQSeriesETD class

These methods are described in detail on the following pages

connectToQueueManager on page 96 get on page 100

selectQueueManager on page 96 getWithOptions on page 100

isQueueMgrConnected on page 97 put on page 101

getCharacterSet on page 97 putWithOptions on page 101

getMaximumPriority on page 98 getCurrentDepth on page 102

commit on page 98 getMaximumDepth on page 102

backout on page 98 getMaximumMessageLength on page 102

queueAccessOptionsClearAll on page 99 newMessage on page 103

accessQueue on page 99
e*Way Intelligent Adapter for MQSeries User’s Guide 95 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
Java Methods (ETD) MQSeriesETD Class
connectToQueueManager

Description

Creates a connection to the queue manager using the specified parameters. As a by-
product it also selects as the current queue manager. This should only be called in Non-
Transactional mode.

Note: A connection to the queue manager specified in the configuration is automatically
done. You need not call this method unless you want to connect to another Queue
manager in the Collaboration.

Syntax

public void connectToQueueManager(java.lang.String sQueueMgrName,
java.lang.String Host,int Port, java.lang.String Channel, java.lang.String
UserID, java.lang.String Pwd)

Parameters

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

selectQueueManager

Description

Selects from one of the connected queue managers.

Syntax

public void selectQueueManager(java.lang.String queueMgrName)

Name Type Description

sQueueMgrName java.lang.String The queue manager name.

Host java.lang.String The host on which the QM resides.

Port int The port to which the host system
QM is listening.

Channel java.lang.String The channel to use.

UserID java.lang.String The user’s ID - if no ID is needed,
leave blank.

Pwd java.lang.String The user password - if no password
is needed, leave blank.
e*Way Intelligent Adapter for MQSeries User’s Guide 96 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
Java Methods (ETD) MQSeriesETD Class
Parameters

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

isQueueMgrConnected

Description

Determines if the current queue manager is still connected.

Syntax

public boolean isQueueMgrConnected()

Parameters

None

Return Values

Boolean
Returns true if still connected; otherwise false.

Throws

com.stc.jcsre.EBobConnectionException

getCharacterSet

Description

Returns CCSID of the queue manager’s codeset for the currently selected queue
manager.

Syntax

public int getCharacterSet()

Parameters

None

Return Values

int
Returns the CCSID of the queue manager’s codeset

Throws

Name Type Description

queueMgrName java.lang.String The name of the queue manager to
select.
e*Way Intelligent Adapter for MQSeries User’s Guide 97 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
Java Methods (ETD) MQSeriesETD Class
com.stc.common.collabService.CollabConnException

getMaximumPriority

Description

Returns the maximum message priority that can be handled by the queue manager.

Syntax

public int getMaximumPriority()

Parameters

None

Return Values

int
Returns the maximum message priority.

Throws

com.stc.common.collabService.CollabConnException

commit

Description

Commits the operations on the currently selected queue manager. It should only be
called in Non-XA mode.

Syntax

public void commit()

Parameters

None

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

backout

Description

Rolls back the operations on the currently selected queue manager. It should only be
called in Non-XA mode.

Syntax

public void backout()
e*Way Intelligent Adapter for MQSeries User’s Guide 98 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
Java Methods (ETD) MQSeriesETD Class
Parameters

None

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

queueAccessOptionsClearAll

Description

Clears all flags

Syntax

public queueAccessOptionsClearAll()

Parameters

None

Return Values

None

Throws

None

accessQueue

Description

Accesses a queue on the current queue manager. This routes down to the accessQueue
method on the queue manager. The user can access more than one queue on the current
queue manager. For each new queue accessed, add the queue to an internal collection
so they can be selected by name later (see selectQueue()). In addition, this method also
sets that queue as the "current queue". This is similar to the concept of the current
queue manager.

Syntax

public void accessQueue(java.lang.String queueName)

Parameters

Return Values

None

Name Type Description

queueName java.lang.String The name of the queue to access on
the current queue manager
e*Way Intelligent Adapter for MQSeries User’s Guide 99 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
Java Methods (ETD) MQSeriesETD Class
Throws

com.stc.common.collabService.CollabConnException

selectQueue

Description

Selects from one of the previously accessed queues.

Syntax

public void selectQueue(java.lang.String queueName)

Parameters

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

get
Description

Gets a message off the queue using the default options.

Syntax

public void get()

Parameters

None

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

getWithOptions

Description

Gets a message off the queue using the GetMesageOptions (GMO).

Name Type Description

queueName java.lang.String The name of the queue to select
e*Way Intelligent Adapter for MQSeries User’s Guide 100 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
Java Methods (ETD) MQSeriesETD Class
Syntax

public void getWithOptions()

Parameters

None

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

put

Description

Puts a message on the queue using the default options.

Syntax

public void put()

Parameters

None

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

putWithOptions

Description

Puts a message on the queue using the PutMesageOptions (PMO).

Syntax

public void putWithOptions()

Parameters

None

Return Values

None

Throws

com.stc.common.collabService.CollabConnException
e*Way Intelligent Adapter for MQSeries User’s Guide 101 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.1
Java Methods (ETD) MQSeriesETD Class
getCurrentDepth

Description

Gets the number of messages currently in the queue.

Syntax

public int getCurrentDepth()

Parameters

None

Return Values

int
Returns the number of messages currently in the queue.

Throws

com.stc.common.collabService.CollabConnException

getMaximumDepth

Description

Gets the maximum number of messages that can exist on the current queue.

Syntax

public int getMaximumDepth()

Parameters

None

Return Values

int
Returns the number of messages that can exist on the queue.

Throws

com.stc.common.collabService.CollabConnException

getMaximumMessageLength

Description

Gets the maximum length of data that can exist in any one message on the current
queue

Syntax

public int getMaximumMessageLength()

Parameters

None
e*Way Intelligent Adapter for MQSeries User’s Guide 102 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Java Methods (ETD) GMO Class
Return Values

int
Returns the maximum data limit for one message on the queue.

Throws

com.stc.common.collabService.CollabConnException

newMessage

Description

Destroys and then recreate the message object. After doing a get, this must be called
first, before doing another get. (See The newMessage Method on page 54.)

Syntax

public void newMessage()

Parameters

None

Return Values

None

Throws

None

9.2 GMO Class
GMO class methods are located under the Queue node.

The GMO class is defined as:

public class GMO

com.stc.eways.MQSeriesETD.GMO

Methods of the GMO class

These methods are described in detail on the following pages:

optionsClearAll

Description

Clears all option flags.

optionsClearAll on page 103 setUnlimitedWait on page 104

setWaitValue on page 104 matchOptionsClearAll on page 105
e*Way Intelligent Adapter for MQSeries User’s Guide 103 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.2
Java Methods (ETD) GMO Class
Syntax

public void optionsClearAll()

Parameters

None

Return Values

None

Throws

None

setWaitValue

Description

Specifies a specific number of milliseconds to wait.

Syntax

public void setWaitValue(int v)

Parameters

Return Values

None

Throws

None

setUnlimitedWait

Description

Sets the wait time to MQWI_UNLIMITED.

Syntax

public void setUnlimitedWait()

Parameters

None

Return Values

None

Throws

None

Name Type Description

v int The number of milliseconds.
e*Way Intelligent Adapter for MQSeries User’s Guide 104 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.3
Java Methods (ETD) PMO Class
matchOptionsClearAll

Description

Clears all match options flags set so far and set match options to MQMO_NONE.

Syntax

public void matchOptionsClearAll()

Parameters

None

Return Values

None

Throws

None

9.3 PMO Class
PMO class methods are located under the Queue node

The PMO class is defined as:

public class GMO

com.stc.eways.MQSeriesETD.PMO

Methods of the PMO class

These methods are described in detail on the following pages:

9.4 Message Class
Message class methods are located under the Message node.

The Message class is defined as:

public class Message

com.stc.eways.MQSeriesETD.Message

Methods of the Message class

These methods are described in detail on the following pages:

optionsClearAll on page 103

getTotalMessageLength on page 106 readUInt2 on page 117
e*Way Intelligent Adapter for MQSeries User’s Guide 105 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
getTotalMessageLength

Description

If MQQueue.get() fails with a message-truncated error code, getTotalMessageLength()
reports the total number of bytes in the stored message on the queue.

Syntax

public int getTotalMessageLength()

Parameters

None

getMessageLength on page 107 readString on page 118

getDataLength on page 107 readDecimal2 on page 118

seek on page 108 readDecimal4 on page 119

setDataOffset on page 108 readDecimal8 on page 119

getDataOffset on page 109 setVersion on page 120

clearMessage on page 109 skipBytes on page 120

getVersion on page 109 write on page 121

resizeBuffer on page 110 writeBoolean on page 121

readBoolean on page 110 writeByte on page 122

readChar on page 111 writeBytes on page 122

readDouble on page 111 writeChar on page 123

readFloat on page 111 writeChars on page 123

readFully on page 112 writeDouble on page 124

readInt on page 113 writeFloat on page 124

readInt4 on page 113 writeInt on page 125

readLine on page 113 writeLong on page 125

readLong on page 114 writeObject on page 126

readInt8 on page 114 writeShort on page 126

readObject on page 115 writeDecimal2 on page 127

readShort on page 115 writeDecimal4 on page 127

readInt2 on page 116 writeDecimal8 on page 128

readUTF on page 116 writeUTF on page 128

readUnsignedByte on page 116 writeString on page 129

readUnsignedShort on page 117
e*Way Intelligent Adapter for MQSeries User’s Guide 106 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
Return Values

int
Returns the number of bytes of the message as stored on the message queue.

Throws

None

getMessageLength

Description

Reports the total number of bytes in the stored message on the queue.
Syntax

public int getMessageLength()

Parameters

None

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

getDataLength

Description

Reports the number of bytes of data remaining to be read in the message.
Syntax

public int getDataLength()

Parameters

None

Return Values

int
Returns the number, in bytes, of message data remaining to be read.

Throws

com.stc.common.collabService.CollabConnException
e*Way Intelligent Adapter for MQSeries User’s Guide 107 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
seek

Description

Relocates the cursor to the absolute position in the message buffer given by pos.
Following reads and writes act at this position in the buffer.

Syntax

public void seek(int pos)

Parameters

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

setDataOffset

Description

Relocates the cursor to the absolute position in the message buffer. setDataOffset () is
equivalent to seek(), allowing for cross-language compatibility with the other MQSeries
APIs.

Syntax

public void setDataOffset(int offset)
Parameters

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

Name Type Description

pos int Gives the absolute position in the
message buffer.

Name Type Description

offset int Gives the absolute position in the
message buffer.
e*Way Intelligent Adapter for MQSeries User’s Guide 108 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
getDataOffset

Description

Returns the current position of the cursor within the message, that is the point at which
read and write operations take effect.

Syntax

public int getDataOffset()

Parameters

None

Return Values

int
Returns the current cursor position.

Throws

com.stc.common.collabService.CollabConnException

clearMessage

Description

Discards data in the message buffer and reset the data offset to zero.

Syntax

public void clearMessage()

Parameters

None

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

getVersion

Description

Returns the version of the current structure.

Syntax

public int getVersion()

Parameters

None
e*Way Intelligent Adapter for MQSeries User’s Guide 109 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
Return Values

int

Returns the version of the structure in use.

Throws

None

resizeBuffer

Description

Clues the MQMessage object as to the size of buffer that may be necessary for
subsequent get operations. When a message contains message data, and the new size is
less than the current size, the message data is truncated.

Syntax

public void resizeBuffer(int size)

Parameters

Return Values

int
Returns the new message size.

Throws

com.stc.common.collabService.CollabConnException

readBoolean

Description

Reads a (signed) byte from the present position in the message buffer.

Syntax

public boolean readBoolean()

Parameters

None

Return Values

Boolean
A byte from the current position in the message buffer

Throws

com.stc.common.collabService.CollabConnException

Name Type Description

size int The size of the buffer
e*Way Intelligent Adapter for MQSeries User’s Guide 110 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
readChar

Description

Reads a Unicode character from the present position in the message buffer.

Syntax

public char readChar()

Parameters

None

Return Values

character
Returns a unicode character from the current position in the message buffer.

Throws

com.stc.common.collabService.CollabConnException

readDouble

Description

Reads a double from the present position in the message buffer. Actions are determined
by the value of the encoding member variable. MQC.MQENC_FLOAT_S390 reads a
System/390 format floating point number. MQC.MQENC_FLOAT_IEEE_NORMAL
and MQC.MQENC_FLOAT_IEEE_REVERSED read IEEE standard doubles in big-
endian and little-endian formats respectively.

Syntax

public double readDouble()

Parameters

None

Return Values

double
Returns a double from the present position in the message buffer.

Throws

com.stc.common.collabService.CollabConnException

readFloat

Description

Reads a float from the present position in the message buffer. Actions are determined
by the value of the encoding member variable. MQC.MQENC_FLOAT_S390 reads a
System/390 format floating point number. MQC.MQENC_FLOAT_IEEE_NORMAL
e*Way Intelligent Adapter for MQSeries User’s Guide 111 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
and MQC.MQENC_FLOAT_IEEE_REVERSED read IEEE standard floats in big-endian
and little-endian formats respectively.

Syntax

public float readFloat()

Parameters

None

Return Values

float
Returns a float from the present position in the message buffer.

Throws

com.stc.common.collabService.CollabConnException

readFully

Description

Fills the byte array b with data from the message buffer.
Fills the len elements of the byte array b with data from the message buffer, starting at
offset off.

Syntax

public void readFully(byte b[])
public void readFully(byte b[], int off, int len)

Parameters

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

Name Type Description

b [] byte Fills the byte array b with data from
the message buffer.

Name Type Description

b [] byte Fills the byte array b with data from
the message buffer.

off int The offset at which the fill starts.

len int Fills len elements of the byte array b
with data from the message buffer.
e*Way Intelligent Adapter for MQSeries User’s Guide 112 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
readInt

Description

Reads an integer from the present position in the message buffer. Actions are
determined by the value of the encoding member variable. A value of
MQC.MQENC_INTEGER_NORMAL reads a big-endian integer, a value of
MQC.MQENC_INTEGER_REVERSED reads a little-endian integer.

Syntax

public int readInt()

Parameters

None

Return Values

int
Returns an integer from the current position in the message buffer

Throws

com.stc.common.collabService.CollabConnException

readInt4

Description

Equivalent to readInt(), readInt4 is provided for cross-language MQSeries API
compatibility.

Syntax

public int readInt4()
Parameters

None

Return Values

int
Returns an integer from the current position in the message buffer

Throws

com.stc.common.collabService.CollabConnException

readLine

Description

Converts from the codeset defined in the characterSet member variable to Unicode,
then reads in a line that has been terminated by \n, \r, \r\n, or EOF.
e*Way Intelligent Adapter for MQSeries User’s Guide 113 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
Syntax

public java.lang.String readLine()

Parameters

None

Return Values

java.lang.String
Returns the unicode characterSet.

Throws

com.stc.common.collabService.CollabConnException

readLong

Description

Reads a long from the present position in the message buffer. Actions are determined
by the value of the encoding member variable. A value of
MQC.MQENC_INTEGER_NORMAL reads a big-endian long, a value of
MQC.MQENC_INTEGER_REVERSED reads a little-endian long.

Syntax

public long readLong()

Parameters

None

Return Values

long
Returns a long from the present position in the message buffer.

Throws

com.stc.common.collabService.CollabConnException

readInt8
Description

Equivalent to readlong(), readInt8 is provided for cross-language MQSeries API
compatibility.

Syntax

public int readInt8()

Parameters

None
e*Way Intelligent Adapter for MQSeries User’s Guide 114 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
Return Values

long
Returns an int from the present position in the message buffer.

Throws

com.stc.common.collabService.CollabConnException

readObject

Description

Reads an object, its class, class signature, and the value of the non-transient and non-
static fields of the class.

Syntax

public object readObject()

Parameters

None

Return Values

object
Returns an object, its class, class signature, and vield value.

Throws

com.stc.common.collabService.CollabConnException

readShort

Description

Reads a short from the present position in the message buffer. Actions are determined
by the value of the encoding member variable. A value of
MQC.MQENC_INTEGER_NORMAL reads a big-endian short, a value of
MQC.MQENC_INTEGER_REVERSED reads a little-endian short.

Syntax

public short readShort()

Parameters

None

Return Values

short
Returns a short from the present position in the message buffer

Throws

com.stc.common.collabService.CollabConnException
e*Way Intelligent Adapter for MQSeries User’s Guide 115 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
readInt2

Description

Equivalent to readshort(), readInt2 is provided for cross-language MQSeries API
compatibility.

Syntax

public short readInt2()

Parameters

None

Return Values

short
Returns an int from the present position in the message buffer

Throws

com.stc.common.collabService.CollabConnException

readUTF

Description

Reads a UTF string, prefixed by a 2-byte length field, from the present position in the
message buffer.

Syntax

public String readUTF()
Parameters

None

Return Values

java.lang.String
Returns a UTF String, beginning with a 2-byte length field, from the present
position in the message buffer.

Throws

com.stc.common.collabService.CollabConnException

readUnsignedByte

Description

Reads an unsigned byte from the present position in the message buffer.

Syntax

public int readUnsignedByte()
e*Way Intelligent Adapter for MQSeries User’s Guide 116 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
Parameters

None

Return Values

int

Returns an unsigned byte from the present position in the message buffer.

Throws

com.stc.common.collabService.CollabConnException

readUnsignedShort

Description

Reads an unsigned short from the present position in the message buffer. Actions are
determined by the value of the encoding member variable. A value of
MQC.MQENC_INTEGER_NORMAL reads a big-endian unsigned short, a value of
MQC.MQENC_INTEGER_REVERSED reads a little-endian unsigned short.

Syntax

public int readUnsignedShort()

Parameters

None

Return Values

int
Returns an unsigned short from the present position in the message buffer.

Throws

com.stc.common.collabService.CollabConnException

readUInt2
Description

Equivalent to readUnsignedShort(), readUInt2 is provided for cross-language
MQSeries API compatibility.

Syntax

public int readUInt2()

Parameters

None

Return Values

int
Returns an unsigned int from the present position in the message buffer.
e*Way Intelligent Adapter for MQSeries User’s Guide 117 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
Throws

com.stc.common.collabService.CollabConnException

readString

Description

Reads a string in the codeset defined by the characterSet member variable. Convert the
string into Unicode.

Syntax

public java.lang.String readString(int length)

Parameters

Return Values

java.lang.String

Throws

com.stc.common.collabService.CollabConnException

readDecimal2

Description

Reads a 2-byte packed decimal number (-999 to 999). Actions are determined by the
value of the encoding member variable. A value of
MQC.MQENC_DECIMAL_NORMAL reads a big-endian packed decimal number, and
a value of MQC.MQENC_DECIMAL_REVERSED reads a little-endian packed decimal
number.

Syntax

public short readDecimal2()
Parameters

None

Return Values

short
Returns a 2-byte packed decimal number.

Throws

com.stc.common.collabService.CollabConnException

Name Type Description

length int The number of characters to read
(not the same as the number of
bytes)
e*Way Intelligent Adapter for MQSeries User’s Guide 118 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
readDecimal4

Description

Reads a 4-byte packed decimal number (-9999999 to 9999999). Actions are determined
by the value of the encoding member variable. A value of
MQC.MQENC_DECIMAL_NORMAL reads a big-endian packed decimal number, and
a value of MQC.MQENC_DECIMAL_REVERSED reads a little-endian packed decimal
number.

Syntax

public int readDecimal4()

Parameters

None

Return Values

int
Returns a 4-byte packed decimal number.

Throws

com.stc.common.collabService.CollabConnException

readDecimal8

Description

Reads an 8-byte packed decimal number (-999999999999999 to 999999999999999).
Actions are determined by the value of the encoding member variable. A value of
MQC.MQENC_DECIMAL_NORMAL reads a big-endian packed decimal number, and
a value of MQC.MQENC_DECIMAL_REVERSED reads a little-endian packed decimal
number.

Syntax

public long readDecimal8()

Parameters

None

Return Values

long
Returns an 8-byte packed decimal number.

Throws

com.stc.common.collabService.CollabConnException
e*Way Intelligent Adapter for MQSeries User’s Guide 119 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
setVersion

Description

Sets the version of the structure to be used. Values may include
MQC.MQMD_VERSION_1 or MQC.MQMD_VERSION_2. This method is used when it
is necessary to force a client to use a version 1 structure when connected to a queue
manager that is able to handling version 2 structures. In all other situations, the client
determines the correct version by querying the queue manager's capabilities.

Syntax

public void setVersion(int version)

Parameters

Return Values

None

Throws

None

skipBytes

Description

Advances n bytes in the message buffer. Block until all the bytes are skipped, the end of
message buffer is detected, or an exception is thrown.

Syntax

public int skipBytes(int n)

Parameters

Return Values

int
Returns the number of bytes skipped, which is always n.

Name Type Description

version int The version number

Name Type Description

n int Move forward n bytes in the
message buffer.
e*Way Intelligent Adapter for MQSeries User’s Guide 120 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
Throws

com.stc.common.collabService.CollabConnException

write

Description

Writes a byte, an array of bytes, or a series of bytes into the message buffer at the
present position. len bytes are written, taken from offset off in the array b.

Syntax

public void write(int b)
public void write(byte b[])
public void write(byte b[], int off, int len)

Parameters

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

writeBoolean

Description

Writes a Boolean into the message buffer at the present position.

Name Type Description

b int The number of characters to read
(not the same as the number of
bytes)

Name Type Description

b[] byte The number of characters to read
(not the same as the number of
bytes)

Name Type Description

b[] byte The number of characters to read
(not the same as the number of
bytes)

off int The offset in the array

len int The number of bytes to be written
e*Way Intelligent Adapter for MQSeries User’s Guide 121 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
Syntax

public void writeBoolean(boolean v)

Parameters

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

writeByte

Description

Writes a byte into the message buffer at the present position.

Syntax

public void writeByte(int v)

Parameters

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

writeBytes

Description

Writes the string to the message buffer as a sequence of bytes. Each character is written
out in sequence by discarding its high eight bits.

Syntax

public void writeBytes(java.lang.String s)

Name Type Description

v Boolean The Boolean value.

Name Type Description

v int The number of characters to read
(not the same as the number of
bytes).
e*Way Intelligent Adapter for MQSeries User’s Guide 122 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
Parameters

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

writeChar

Description

Writes a Unicode character into the message buffer at the present position.

Syntax

public void writeChar(int v)

Parameters

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

writeChars

Description

Writes a string as a sequence of Unicode characters into the message buffer at the
current position.

Syntax

public void writeChars(java.lang.String s)
Parameters

Name Type Description

s java.lang.String The string of bytes.

Name Type Description

v int The unicode value.

Name Type Description

s java.lang.String The string value.
e*Way Intelligent Adapter for MQSeries User’s Guide 123 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
Return Values

None

Throws

com.stc.common.collabService.CollabConnException

writeDouble

Description

Writes a double into the message buffer at the present position. The actions of this
method are determined by the value of the encoding member variable.

A Value of MQC.MQENC_FLOAT_IEEE_NORMAL or
MQC.MQENC_FLOAT_IEEE_REVERSED write IEEE standard floats in big-endian and
little-endian formats respectively.

A value of MQC.MQENC_FLOAT_S390 writes a System/390 format floating point
number. The range of IEEE doubles is greater than the range of S/390 double precision
floating point numbers. Very large numbers cannot be converted.

Syntax

public void writeDouble(double v)
Parameters

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

writeFloat

Description

Writes a float into the message buffer at the present position. The actions of this method
are determined by the value of the encoding member variable.

A Value of MQC.MQENC_FLOAT_IEEE_NORMAL or
MQC.MQENC_FLOAT_IEEE_REVERSED write IEEE standard floats in big-endian and
little-endian formats respectively.

A value of MQC.MQENC_FLOAT_S390 writes a System/390 format floating point
number.

Name Type Description

v double The number of characters to read
(not the same as the number of
bytes).
e*Way Intelligent Adapter for MQSeries User’s Guide 124 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
Syntax

public void writeFloat(float v)

Parameters

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

writeInt

Description

Writes an integer into the message buffer at the present position. The actions of this
method are determined by the value of the encoding member variable.

A value of MQC.MQENC_INTEGER_NORMAL writes a big-endian integer. A value of
MQC.MQENC_INTEGER_REVERSED writes a little-endian integer.

Syntax

public void writeInt(int v)

Parameters

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

writeLong

Description

Writes a long into the message buffer at the present position. The actions of this method
are determined by the value of the encoding member variable.

A value of MQC.MQENC_INTEGER_NORMAL writes a big-endian long. A value of
MQC.MQENC_INTEGER_REVERSED writes a little-endian long.

Name Type Description

length int The float value.

Name Type Description

v int The float value.
e*Way Intelligent Adapter for MQSeries User’s Guide 125 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
Syntax

public void writeLong(long v)

Parameters

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

writeObject

Description

Writes the specified object, object class, class signature, and the values of the non-
transient and non-static fields of the class and all its supertypes.

Syntax

public void writeObject(Object obj)

Parameters

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

writeShort

Description

Writes a short into the message buffer at the present position. The actions of this
method are determined by the value of the encoding member variable.

A value of MQC.MQENC_INTEGER_NORMAL writes a big-endian short. A value of
MQC.MQENC_INTEGER_REVERSED writes a little-endian short.

Syntax

public void writeShort(int v)

Name Type Description

v long The long value.

Name Type Description

obj object The object value.
e*Way Intelligent Adapter for MQSeries User’s Guide 126 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
Parameters

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

writeDecimal2

Description

Writes a 2-byte packed decimal format number into the message buffer at the present
position. The actions of this method are determined by the value of the encoding
member variable.

A value of MQC.MQENC_DECIMAL_NORMAL writes a big-endian packed decimal.
A value of MQC.MQENC_DECIMAL_REVERSED writes a little-endian packed
decimal.

Syntax

public void writeDecimal2(short v)

Parameters

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

writeDecimal4

Description

Writes a 4-byte packed decimal format number into the message buffer at the present
position. The actions of this method are determined by the value of the encoding
member variable.

A value of MQC.MQENC_DECIMAL_NORMAL writes a big-endian packed decimal.
A value of MQC.MQENC_DECIMAL_REVERSED writes a little-endian packed
decimal.

Name Type Description

v int The integer value.

Name Type Description

v short The 2-byte decimal value.
e*Way Intelligent Adapter for MQSeries User’s Guide 127 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
Syntax

public void writeDecimal4(int v)
Parameters

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

writeDecimal8

Description

Writes an 8-byte packed decimal format number into the message buffer at the present
position. The actions of this method are determined by the value of the encoding
member variable.

A value of MQC.MQENC_DECIMAL_NORMAL writes a big-endian packed decimal.
A value of MQC.MQENC_DECIMAL_REVERSED writes a little-endian packed
decimal.

Syntax

public void writeDecimal8(long v)
Parameters

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

writeUTF

Description

Writes a UTF string, prefixed by a 2-byte length field, into the message buffer at the
present position.

Name Type Description

v int The 4-byte decimal value.

Name Type Description

v long The 8-byte decimal value.
e*Way Intelligent Adapter for MQSeries User’s Guide 128 SeeBeyond Proprietary and Confidential

Chapter 9 Section 9.4
Java Methods (ETD) Message Class
Syntax

public void writeUTF(java.lang.String str)
Parameters

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

writeString

Description

Writes a string into the message buffer at the present position, converting it to the
codeset identified by the characterSet member variable.

Syntax

public void writeString(java.lang.String str)

Parameters

Return Values

None

Throws

com.stc.common.collabService.CollabConnException

Name Type Description

str java.lang.String The string value.

Name Type Description

str java.lang.String The string value.
e*Way Intelligent Adapter for MQSeries User’s Guide 129 SeeBeyond Proprietary and Confidential

Appendix A

Appendix A (JMS)

10.5 Mapping Between JMS Standard Header Items and
MQSeries Header Fields

JMS Standard header items and their equivalent MQSeries header fields can be set
using the Collaboration Rules Editor. For information on mapping between JMS header
items and MQSeries header fields see IBM MQSeries online documentation at:

http://www-4.ibm.com/software/ts/mqseries/library/manual01/csqzaw07/
csqzaw07tfrm.htm

Table 20, at the above Web site shows how JMS header fields are used to set or get
MQSeries header fields (only some of which are available using this procedure). The
Collaboration Rules Editor sets the header properties by calling readProperty() or
writeProperty(). To map these properties do the following:

1 In the Collaboration Rules Editor, click rule on the Business Rules toolbar to create a
rule at the appropriate place. Select the new rule.

2 Form the Source Events or Destination Events panes, drag-and-drop readProperty
into the Rule Properties, Rules field (seeFigure 32).
e*Way Intelligent Adapter for MQSeries User’s Guide 130 SeeBeyond Proprietary and Confidential

http://www-4.ibm.com/software/ts/mqseries/library/manual01/csqzaw07/csqzaw07tfrm.htm

Appendix A Section 10.5
Appendix A (JMS) Mapping Between JMS Standard Header Items and MQSeries Header Fields
Figure 32 Collaboration Rules Editor

3 A dialog box opens prompting for the property name. Enter the property as a string
with quotes. For example, “JMSDeliveryMode”. The following code displays in
the Rule Properties, Rule window:

getinst_out().readProperty(“JMSDeliveryMode”)

4 Click rule on the toolbar. A new rule expression appears in the Business Rules pane.

5 Form the Source Events or Destination Events panes, drag-and-drop writeProperty
into the Rule Properties, Rules field. A dialog box opens prompting for the property
name and the property value (see Figure 33).
e*Way Intelligent Adapter for MQSeries User’s Guide 131 SeeBeyond Proprietary and Confidential

Appendix A Section 10.5
Appendix A (JMS) Mapping Between JMS Standard Header Items and MQSeries Header Fields
Figure 33 Parameters for writeProperty()

6 Enter the property as a string with quotes. For example, “JMSReplyTo” as the
property name, and “OC Branch” as the property value. The following code
appears in the Rule window:

getinst_out().writeProperty(“JMSReplyTo”,“OC Branch”)

7 A description stating the purpose of this rule can be added in the Rule Properties,
Description field and displays in the Business Rules pane

Note: For detailed information on creating Collaboration Rules using the Java
Collaboration Rules Editor see the e*Gate Integrator User’s Guide.
e*Way Intelligent Adapter for MQSeries User’s Guide 132 SeeBeyond Proprietary and Confidential

Index
Index

C
Classpath Override 19
Classpath Prepend 19
CLASSPATH variables

for MQSeries jar files 48, 91
Collaboration Rules 39, 78
Collaborations 44, 88

for the Multi-Mode e*Way 45, 89
method order 52

Connection Type (JMS) 24
creating a new schema 31, 69

D
Disable JIT 21

E
e*Way Connection 35, 73

parameters 61
Connection Type (JMS) 24
Default Outgoing Message Type (JMS) 25
Factory Class Name (JMS) 25
Maximum Number of Bytes to read (JMS) 25
Transaction Type (JMS) 24

parameters (JMS) 23
e*Way connection configuration

JMS 23
e*Ways

creating and configuring 32, 69
Inbound e*Way 32, 70
Multi-Mode e*Way 34, 72, 73
Outbound e*Way 33

Error Messages 50
error messages 92

error log 92
MQRC 92
reason code 93

event type
from XSC 77

event types 36, 75
external system requirements 11

G
GMO Class 103

methods 103
matchOptionsClearAll 105
optionsClearAll 104
setUnlimitedWait 104
setWaitValue 104

H
Host Name (JMS) 26

I
IBM MQSeries jar files 48, 91
Initial Heap Size 20
installation 14

created files/directories 16
UNIX 15
Windows NT and Windows 2000 14

installation procedure
Unix 15
Windows NT and Windows 2000 14

intelligent queues 38, 78
intended reader 10

J
JNI DLL Absolute Pathname 18
JVM settings 18

M
MA88 patch 12
Maximum Heap Size 20
Maximum Number of Bytes to read (JMS) 25
Message 105
Message Class 105

methods 105
clearMessage 109
getDataLength 107
getDataOffset 109
getMessageLength 107
getTotalMessageLength 106
getVersion 109
readBoolean 110
readChar 111
readDecimal2 118
readDecimal4 119
readDecimal8 119
readDouble 111
readFloat 112
readFully 112
e*Way Intelligent Adapter for MQSeries User’s Guide 133 SeeBeyond Proprietary and Confidential

Index
readInt 113
readInt2 116
readInt4 113
readInt8 114
readLine 114
readLong 114
readObject 115
readShort 115
readString 118
readUInt2 117
readUnsignedByte 116
readUnsignedShort 117
readUTF 116
resizeBuffer 110
seek 108
setDataOffset 108
setVersion 120
skipBytes 120
write 121
writeBoolean 122
writeByte 122
writeBytes 122
writeChar 123
writeChars 123
writeDecimal2 127
writeDecimal4 128
writeDecimal8 128
writeDouble 124
writeFloat 125
writeInt 125
writeLong 126
writeObject 126
writeShort 126
writeString 129
writeUTF 129

method order in the collaboration 52
MQ_conn1.cfg 36
MQRC 50
MQSeriesETD Class 95

methods 95
accessQueue 99
backout 98
commit 98
connectToQueueManager 96
get 100
getCharacterSet 97
getCurrentDepth 102
getMaximumDepth 102
getMaximumMessageLength 102
getMaximumPriority 98
getWithOptions 101
isQueueMgrConnected 97
newMessage 103
put 101

putWithOptions 101
queueAccessOptionsClearAll 99
selectQueue 100
selectQueueManager 96

MQSeriesJMS to a non-JMS conversant e*Way 31
Multi-Mode e*Way 17

configuration 17
configuration parameters 17

Auxiliary JVM Configuration File 21
CLASSPATH Append From Environment

Variable 20
CLASSPATH Override 19
CLASSPATH Prepend 19
Disable JIT 21
Maximum Heap Size 20
Maximum Stack Size for JVM Threads 20
Maximum Stack Size for Native Threads 20
Remote Debugging port number 21
Suspend option for debugging 21

parameters 18

N
Non-Transactional transaction type 61

O
OS/390

configuration requirements 12
sample schema 94

Overview 9
overview

MQSeries 9
MQSeries e*Way 9

ETD-based 10
JMS-based 9

P
parameters

JNI DLL absolute pathname 18
Multi-Mode e*Way

CLASSPATH prepend 19
Initial Heap Size 20
JVM settings 18
Maximum Heap Size 20

PATH settings for MQSeriesJava ib
for UNIX 48, 91
for Windows 48, 91

PMO Class 105
methods 105

OptionsClearAll 104
Port Number (JMS) 27
e*Way Intelligent Adapter for MQSeries User’s Guide 134 SeeBeyond Proprietary and Confidential

Index
ptionsClearAll 104
publishing messages with MQSeriesJMS to a non-
JMS e*Way 31

Q
queue access 52
Queue Manager Name 62
Queue Manager Name (JMS) 26

R
readData 56
readFully 56
reason 93
reason code 50

S
sample schema 49, 92

OS/390 94
setting CLASSPATH variables 48, 91

for Windows 48, 91
system requirements

external system requirements 11
patches 12

T
Transaction Type 61
transaction type

Non-Transactional 61
XA-compliant. 61

Transaction Type (JMS) 24
Transport Type (JMS) 26

U
UNIX

installation 15

W
wait interval 64
wait timeout 64

X
XA 61
XA-compliant transaction type 61

Z
z/OS

sample schema 94
e*Way Intelligent Adapter for MQSeries User’s Guide 135 SeeBeyond Proprietary and Confidential

	e*Way Intelligent Adapter for MQSeries User’s Guide
	Contents
	Introduction
	1.1 Overview
	1.1.1. MQSeries e*Way JMS and ETD
	1.1.2. Intended Reader

	1.2 Supported Operating Systems
	1.3 System Requirements
	1.3.1. External System Requirements
	Requirements for the Topic Publish/Subscribe Connection Type
	OS/390 and z/OS Configuration Requirements for MQSeries V5.2

	Installation
	2.1 Windows NT and Windows 2000
	2.1.1. Pre-installation
	2.1.2. Installation Procedure

	2.2 UNIX
	2.2.1. Pre-installation
	2.2.2. Installation Procedure

	2.3 OS/390 and z/OS
	2.4 Files/Directories Created by the Installation

	Multi-Mode e*Way Configuration
	3.1 Multi-Mode e*Way
	3.1.1. JVM Settings
	JNI DLL Absolute Pathname
	CLASSPATH Prepend
	CLASSPATH Override
	CLASSPATH Append From Environment Variable
	Initial Heap Size
	Maximum Heap Size
	Maximum Stack Size for Native Threads
	Maximum Stack Size for JVM Threads
	Disable JIT
	Remote Debugging port number
	Suspend option for debugging
	Auxiliary JVM Configuration File

	3.1.2. General Settings
	Rollback Wait Interval
	Standard IQ FIFO

	e*Way Connection Configuration (JMS)
	4.1 Configuring e*Way Connections
	4.1.1. General Settings
	Connection Type
	Transaction Type
	Delivery Mode
	Maximum Number of Bytes to read
	Default Outgoing Message Type
	Factory Class Name

	4.1.2. MQSeries
	Queue Manager Name
	Transport Type
	Host Name
	Port Number
	Channel
	The valid name of the channel.

	Implementation (JMS)
	5.1 MQSeries e*Way Implementation Overview
	5.2 MQSeries Sample Schema Components
	5.3 Step One: Create the IBM MQSeries Queue
	Publishing Messages with MQSeriesJMS to a non-JMS conversant e*Way

	5.4 Step Two: Install the MQSeries e*Way and Create a New Schema
	5.4.1. Step Three: Create and Configure the e*Ways

	5.5 Step Four: Create the e*Way Connection and Specify the Queue Manager
	5.6 Step Five: Create Event Types and Specify the MQSeries Queue
	5.7 Step Six: Create Intelligent Queues
	5.8 Step Seven: Create Collaboration Rules
	5.8.1. Using the Collaboration Rules Editor

	5.9 Step Eight: Create Collaborations
	5.10 Step Nine: Set the CLASSPATH Variable
	5.11 Execute the Schema
	5.12 Error Messages

	ETD Overview
	6.1 The MQSeriesETD
	6.1.1. The QueueManager Node
	Current Queue Manager
	The queueAccessOptions Node
	Methods Under the QueueManager Node

	6.1.2. The Queue Node
	Current Queue
	Get and Put Methods
	The newMessage Method
	Methods Under the Queue Node

	6.1.3. The Message Node
	The MsgHeader Child Node
	The MsgBody Child Node
	Calling Read Methods
	The MQMessage Class
	Methods Under the Message Node

	6.1.4. Exception Handling

	e*Way Connection Configuration (ETD)
	7.1 Configuring e*Way Connections
	7.1.1. General Settings
	Transaction Type

	7.1.2. MQSeries
	Queue Manager Name
	Host Name
	Port Number
	Channel

	7.1.3. Connector
	type
	class
	Property.Tag

	7.1.4. Default GetMessageOptions
	Wait Timeout
	Wait Interval

	Implementation (ETD)
	8.1 MQSeries (ETD) Sample Implementation Components
	8.1.1. The MQSeries (ETD) Sample Schema

	8.2 Step One: Create the IBM MQSeries Queue
	8.3 Step Two: Install the MQSeries e*Way and Create a New Schema
	Importing the Sample Schema

	8.4 Step Three: Create and Configure the e*Ways
	8.5 Step Four: Create the e*Way Connection
	8.6 Step Five: Create Event Types
	Creating an Event Types Using the Custom ETD Wizard
	Creating Event Types From an Existing XSC

	8.7 Step Six: Create Intelligent Queues
	To create and modify an Intelligent Queue for the MQSeries e*Way

	8.8 Step Seven: Create Collaboration Rules
	Creating Pass Through Collaboration Rules
	Creating Java Collaboration Rules
	8.8.1. Using the Collaboration Rules Editor

	8.9 Step Eight: Create Collaborations
	Creating the Inbound_eWay Collaboration
	Creating the Multi Mode e*Way Collaboration

	8.10 Step Nine: Set the CLASSPATH Variable
	8.11 Execute the Schema
	8.12 Error Messages
	8.13 MQSeries (ETD) Sample Schema for OS/390 and z/OS

	Java Methods (ETD)
	9.1 MQSeriesETD Class
	Methods of the MQSeriesETD class
	connectToQueueManager
	selectQueueManager
	isQueueMgrConnected
	getCharacterSet
	getMaximumPriority
	commit
	backout
	queueAccessOptionsClearAll
	accessQueue
	selectQueue
	get
	getWithOptions
	put
	putWithOptions
	getCurrentDepth
	getMaximumDepth
	getMaximumMessageLength
	newMessage

	9.2 GMO Class
	Methods of the GMO class
	optionsClearAll
	setWaitValue
	setUnlimitedWait
	matchOptionsClearAll

	9.3 PMO Class
	Methods of the PMO class

	9.4 Message Class
	Methods of the Message class
	getTotalMessageLength
	getMessageLength
	getDataLength
	seek
	setDataOffset
	getDataOffset
	clearMessage
	getVersion
	resizeBuffer
	readBoolean
	readChar
	readDouble
	readFloat
	readFully
	readInt
	readInt4
	readLine
	readLong
	readInt8
	readObject
	readShort
	readInt2
	readUTF
	readUnsignedByte
	readUnsignedShort
	readUInt2
	readString
	readDecimal2
	readDecimal4
	readDecimal8
	setVersion
	skipBytes
	write
	writeBoolean
	writeByte
	writeBytes
	writeChar
	writeChars
	writeDouble
	writeFloat
	writeInt
	writeLong
	writeObject
	writeShort
	writeDecimal2
	writeDecimal4
	writeDecimal8
	writeUTF
	writeString

	Appendix A (JMS)
	10.5 Mapping Between JMS Standard Header Items and MQSeries Header Fields

	Index
	C
	D
	E
	G
	H
	I
	J
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	X
	Z

