
e*Way Intelligent Adapter for
MQSeries User’s Guide

Release 4.5.4

Monk Version
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBI, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 1999–2003 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20030210110741.
e*Way Intelligent Adapter for MQSeries User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents
Contents

Chapter 1

Introduction 6
Overview 6

Intelligent Queues and IQ Managers 6
Intended Reader 7
Components 7

Supported Operating Systems 7

System Requirements 8

External System Requirements 8

Chapter 2

Installation 9
Windows NT and Windows 2000 9

Pre-installation 9
Installation Procedure 9

UNIX 10
Pre-installation 10
Installation Procedure 10
AIX Systems 11

Files/Directories Created by the Installation 11

Chapter 3

Configuration 13
e*Way Configuration Parameters 13

General Settings 13
Journal File Name 14
Max Resends Per Message 14
Max Failed Messages 14
Forward External Errors 14

Communication Setup 15
Start Exchange Data Schedule 15
Stop Exchange Data Schedule 15
Exchange Data Interval 16
e*Way Intelligent Adapter for MQSeries User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents
Down Timeout 16
Up Timeout 16
Resend Timeout 17
Zero Wait Between Successful Exchanges 17

Monk Configuration 17
Operational Details 19
How to Specify Function Names or File Names 25
Additional Path 26
Auxiliary Library Directories 26
Monk Environment Initialization File 27
Startup Function 27
Process Outgoing Message Function 28
Exchange Data with External Function 28
External Connection Establishment Function 29
External Connection Verification Function 30
External Connection Shutdown Function 30
Positive Acknowledgment Function 31
Negative Acknowledgment Function 31
Shutdown Command Notification Function 32

MQ Settings 32
Local MQ Install 33
Qmanager 33
Queue Name 33
MQ Get Buffer Length 33
Enable Connection Test 34
Connection Test Queue Name 34

Environment Variable 34

Environment Configuration 34

External Configuration Requirements 35

Chapter 4

Implementation 36
Implementation Notes 36

Connecting to a Remote Queue 37

Error Handling 37

Installing the MQSeries (Monk) Sample Schema 37
Install the Sample Schema on the Registry Host 38

Chapter 5

MQSeries e*Way Functions 39
Basic Functions 39

MQSeries e*Way External Init Functions 43

MQSeries Monk Functions 50
e*Way Intelligent Adapter for MQSeries User’s Guide 4 SeeBeyond Proprietary and Confidential

Contents
MQSeries Auxiliary Functions 58

MQSeries Structures 68

MQSeries Structure Related Functions 72

Index 74
e*Way Intelligent Adapter for MQSeries User’s Guide 5 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This chapter introduces you to SeeBeyondTM Technology Corporation’s (SeeBeyondTM)
e*Way Intelligent Adapter for the MQSeries. It includes an overview of this manual,
and a list of system requirements for installation.

1.1 Overview
The MQSeries e*Way (Monk version) enables the e*Gate system to exchange data with
IBM’s MQSeries versions 5.0, 5.1, 5.2 and 5.3 (WebSphere MQ V5.3). IBM MQSeries is
“middleware” that provides commercial messaging and queuing services. Messaging
enables programs to communicate with each other via messages instead of direct
connection. Placing these messages in queues for temporary storage frees up programs
to continue to work independently. This process also allows communication across a
network of unlike components, processors, operating systems, and protocols.

1.1.1. Intelligent Queues and IQ Managers
A key component within e*Gate is the Intelligent Queue, which provides storage for
data while inside the e*Gate system. Data from Event Types are inserted and retrieved
when the Control Broker invokes an e*Way. The IQ Manager controls the different IQs.
The MQSeries e*Way allows e*Gate to seamlessly exchange data with applications that
are MQSeries enabled.

The MQSeries IQ allows e*Gate to leverage existing MQSeries operational and
management infrastructure for its underlying persistent storage. The MQSeries IQ
makes use of queuing capability, but does not make use of MQSeries channels.

Queuing allows applications to run independently of one another, at different speeds
and times. Applications can send messages to a queue and get messages from a queue
at any time.

The MQSeries e*Way is configurable and transparently integrates existing systems and
databases to the MQSeries, through e*Gate. This document explains how to install and
configure the MQSeries e*Way.
e*Way Intelligent Adapter for MQSeries User’s Guide 6 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction Supported Operating Systems
1.1.2. Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the e*Gate system; to have a high level of experience
with Windows or UNIX operations and administration; to be thoroughly familiar with
IBM’s MQSeries and with Windows-style GUI operations.

1.1.3. Components
The MQSeries e*Way comprises the following:

! stcewgenericmonk.exe, the executable component

! Configuration files, which the e*Way Editor uses to define configuration parameters

! Monk functions (discussed in Chapter 5)

! Dynamic Link Library (DLL) files

A complete list of installed files appears in Table 1 on page 12.

1.2 Supported Operating Systems
The MQSeries e*Way is available on the following operating systems:

! Windows 2000, Windows 2000 SP1, Windows 2000 SP2, and Windows 2000 SP3

! Windows NT 4.0 SP6a

! Solaris 2.6, 7, and 8

! AIX 4.3.3 and 5.1

! HP-UX 11 and HP-UX 11i

! OS/390 V2 R10 (Java only)

! z/OS 1.2, 1.3, and 1.4 (Java only)

Note: Solaris 2.6 is not supported by MQSeries, version 5.3 (WebSphere MQ V5.3).
MQSeries, version 5.2 does support Solaris 2.6, but requires the installation of
patches 105210-13 and 105568-10 available from Sun Microsystems at:

http://sunsolve.sun.com/pub-cgi/show.pl?target=patches/patch-access
e*Way Intelligent Adapter for MQSeries User’s Guide 7 SeeBeyond Proprietary and Confidential

http://sunsolve.sun.com/pub-cgi/show.pl?target=patches/patch-access

Chapter 1 Section 1.3
Introduction System Requirements
1.3 System Requirements
To use the MQSeries e*Way, you need the following:

! e*Gate version 4.5.1 or later, except in the case of the following operating systems:

" The OS/390 V2 R10 and z/OS 1.2, 1.3, and 1.4 operating systems are supported
with e*Gate version 4.5.2 and 4.5.3.

! A TCP/IP network connection.

! Additional disk space for e*Way executable, configuration, library, and script files.
The disk space is required on both the Participating and the Registry Host.
Additional disk space is required to process and queue the data that this e*Way
processes; the amount necessary varies based on the type and size of the data being
processed, and any external applications performing the processing.

1.4 External System Requirements
IBM MQSeries version 5.0, 5.1, 5.2 or 5.3 (WebSphere MQ V5.3).

For AIX systems, MQSeries requires a patch, available from IBM at:

ftp://ftp.software.ibm.com/software/mqseries/fixes/aix51

The README.TXT file contains information to help you determine which patches are
applicable to your specific system.

It is recommended that AIX users install the U471218.tar.Z patch, if it has not already
been applied.
e*Way Intelligent Adapter for MQSeries User’s Guide 8 SeeBeyond Proprietary and Confidential

ftp://ftp.software.ibm.com/software/mqseries/fixes/aix51/U471218

Chapter 2

Installation

This chapter explains how to install the MQSeries e*Way.

2.1 Windows NT and Windows 2000

2.1.1. Pre-installation
1 Exit all Windows programs before running the setup program, including any

anti-virus applications.

2 You must have Administrator privileges to install this e*Way.

2.1.2. Installation Procedure
To install the MQSeries e*Way on a Windows system

1 Log in as an Administrator to the workstation on which you want to install the
e*Way.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s Autorun feature is enabled, the setup application should
launch automatically; skip ahead to step 4. Otherwise, use the Windows Explorer or
the Control Panel’s Add/Remove Applications feature to launch the file setup.exe
on the CD-ROM drive.

4 The InstallShield setup application launches. Follow the on-screen instructions to
install the e*Way.

Note: Be sure to install the e*Way files in the suggested client installation directory. The
installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not change the
suggested installation directory setting.

5 After the installation is complete, exit the install utility and launch the Enterprise
Manager.

6 In the Component editor, create a new e*Way.

7 Display the new e*Way’s properties.
e*Way Intelligent Adapter for MQSeries User’s Guide 9 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Installation UNIX
8 On the General tab, under Executable File, click Find.

9 Select the file stcewgenericmonk.exe.

10 Click OK to close the properties sheet, or continue to configure the e*Way.
Configuration parameters are discussed in Chapter 3.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, please see the online Help
system.

For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.

2.2 UNIX

2.2.1. Pre-installation
You do not require root privileges to install this e*Way. Log in under the user name
that you wish to own the e*Way files. Be sure that this user has sufficient privilege to
create files in the e*Gate directory tree.

2.2.2. Installation Procedure
To install the MQSeries e*Way on a UNIX system

1 Log in on the workstation containing the CD-ROM drive, and insert the CD-ROM
into the drive.

2 If necessary, mount the CD-ROM drive.

3 At the shell prompt, type:

cd /cdrom/setup

4 Start the installation script by typing:

setup.sh

5 A menu of options will appear. Select the Install e*Way option. Then, follow any
additional on-screen directions.

Note: Be sure to install the e*Way files in the suggested client installation directory. The
installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not change the
suggested installation directory setting.

6 After installation is complete, exit the installation utility and launch the Enterprise
Manager.
e*Way Intelligent Adapter for MQSeries User’s Guide 10 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation
7 In the Component editor, create a new e*Way.

8 Display the new e*Way’s properties.

9 On the General tab, under Executable File, click Find.

10 Select the file stcewgenericmonk.

11 Click OK to close the properties sheet, or continue to configure the e*Way.
Configuration parameters are discussed in Chapter 3.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, Intelligent Queues (IQs), and Event Types before this e*Way can perform its
intended functions. For more information about any of these procedures, please see
the online Help system.

For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.

2.2.3. AIX Systems
For AIX systems, MQSeries requires a patch, available from IBM at:

ftp://ftp.software.ibm.com/software/mqseries/fixes/aix51/U471218.

There are three files at that location:

! IY17668.tar.Z

! U471218.tar.Z

! README.TXT

The README.TXT file contains information that will help you determine which of the
two patches are applicable to your specific system.

It is recommended that AIX users install the U471218.tar.Z patch, if it has not already
been applied.

2.3 Files/Directories Created by the Installation
The MQSeries e*Way installation process will install the files shown in Table 1 below
within the e*Gate client directory tree. Files will be installed within the egate\client\
tree on the Participating Host and committed to the default schema on the Registry
Host.
e*Way Intelligent Adapter for MQSeries User’s Guide 11 SeeBeyond Proprietary and Confidential

ftp://ftp.software.ibm.com/software/mqseries/fixes/aix51/U471218

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation
Select the appropriate .dll file based on whether the installed MQSeries e*Way will be
in server or client mode. The same applies to selecting the appropriate *.monk file to
use. All other files displayed apply to both client and server modes.

Caution: The monk_MQclient.dll and monk_MQserver.dll files cannot be run
simultaneously by the same executable file. Trying to do so will cause run-time
conflicts.

Table 1 Files Created by the Installation

Install Directory Files

bin\ stcewgenericmonk.exe
stc_monkmqclient.dll
stc_monkmqserver.dll

configs\stcewgenericmonk\ stcewmq.def

monk_library\MQ\ MQclient.monk
MQserver.monk
mq-stdver-eway-funcs.monk
e*Way Intelligent Adapter for MQSeries User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 3

Configuration

This chapter provides instructions for configuring the MQSeries e*Way. Information on
configuration parameters for standard file-based e*Ways is available in the Standard
e*Way Intelligent Adapter User’s Guide.

3.1 e*Way Configuration Parameters
The component e*Way configuration parameters are set, using the e*Way Editor. The
MQSeries e*Way requires two component e*Ways to communicate to and from
MQSeries. The e*Ways

To edit component e*Way configuration parameters

1 In the Enterprise Manager’s Component editor, select the e*Way you want to
configure and display its properties.

2 Under Configuration File, click New to create a new file, Find to select an existing
configuration file, or Edit to edit the currently selected file.

3 In the Additional Command Line Arguments box, type any additional command
line arguments that the e*Way may require, taking care to insert them at the end of
the existing command-line string. Be careful not to change any of the default
arguments unless you have a specific need to do so.

For more information about how to use the e*Way Editor, see the e*Way Editor’s online
Help or the e*Gate Integrator User’s Guide.

The e*Way’s configuration parameters are organized into the following sections:

! General Settings

! Communication Setup

! Monk Configuration

! MQ Settings

3.1.1. General Settings
The General Settings control basic operational parameters.
e*Way Intelligent Adapter for MQSeries User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Journal File Name

Description

Specifies the name of the journal file.

Required Values

A valid file name, optionally including an absolute path (for example,
c:\temp\filename.txt). If an absolute path is not specified, the file will be stored in the
e*Gate SystemData directory. See the e*Gate Integrator System Administration and
Operations Guide for more information about file locations.

Additional Information

An Event (package of data) will be journaled for the following conditions:

! When the number of resends is exceeded (see Max Resends Per Message below)

! When its receipt is due to an external error, but Forward External Errors is set to
No. (See “Forward External Errors” on page 14 for more information.)

Max Resends Per Message

Description

Specifies the number of times the e*Way will attempt to resend an Event to the external
system after receiving an error.

Required Values

An integer between 1 and 1,024. The default is 5.

Max Failed Messages

Description

Specifies the maximum number of failed Events (messages) that the e*Way will allow.
When the specified number of failed messages is reached, the e*Way will shut down
and exit.

Required Values

An integer between 1 and 1,024. The default is 3.

Forward External Errors

Description

Selects whether error messages that begin with the string “DATAERR” that are received
from the external system will be queued to the e*Way’s configured queue. See
“Exchange Data with External Function” on page 28 for more information.

Required Values

Yes or No. The default value, No, specifies that error messages will not be forwarded.

See “Schedule-driven Data Exchange Functions” on page 22 for information about
how the e*Way uses this function.
e*Way Intelligent Adapter for MQSeries User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
3.1.2. Communication Setup
The Communication Setup parameters control the schedule by which the e*Way
obtains data from the external system.

Note: The schedule you set using the e*Way’s properties in the Enterprise Manager
controls when the e*Way executable will run. The schedule you set within the
parameters discussed in this section (using the e*Way Editor) determines when data
will be exchanged. Be sure you set the exchange data schedule to fall within the
run the executable schedule.

Start Exchange Data Schedule

Description

Establishes the schedule to invoke the e*Way’s Exchange Data with External function.

Required Values

One of the following:

! One or more specific dates/times

! A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Also Required - If you set a schedule using this parameter, you must also define all
three of the following functions:

! Exchange Data With External

! Positive Acknowledgment

! Negative Acknowledgment

If you do not do so, the e*Way will terminate execution when the schedule attempts to
start.

Additional Information

When the schedule starts, the e*Way determines whether it is waiting to send an ACK
or NAK to the external system (using the Positive and Negative Acknowledgment
functions) and whether the connection to the external system is active. If no ACK/NAK
is pending and the connection is active, the e*Way immediately executes the Exchange
Data with External function. Thereafter, the Exchange Data with External function
will be called according to the Exchange Data Interval parameter until the Stop
Exchange Data Schedule time is reached.

See “Exchange Data with External Function” on page 28, “Exchange Data Interval”
on page 16, and “Stop Exchange Data Schedule” on page 15 for more information.

Stop Exchange Data Schedule

Description

Establishes the schedule to stop data exchange.
e*Way Intelligent Adapter for MQSeries User’s Guide 15 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Required Values

One of the following:

! One or more specific dates/times

! A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Exchange Data Interval

Description

Specifies the number of seconds the e*Way waits between calls to the Exchange Data
with External function during scheduled data exchanges.

Required Values

An integer between 0 and 86,400. The default is 120.

Additional Information

If Zero Wait Between Successful Exchanges is set to Yes and the Exchange Data with
External Function returns data, The Exchange Data Interval setting will be ignored
and the e*Way will invoke the Exchange Data with External Function immediately.

If this parameter is set to zero, there will be no exchange data schedule set and the
Exchange Data with External Function will never be called.

See “Down Timeout” on page 16 and “Stop Exchange Data Schedule” on page 15 for
more information about the data-exchange schedule.

Down Timeout

Description

Specifies the number of seconds that the e*Way will wait between calls to the External
Connection Establishment function. See “External Connection Establishment
Function” on page 29 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.

Up Timeout

Description

Specifies the number of seconds the e*Way will wait between calls to the External
Connection Verification function. See “External Connection Verification Function”
on page 30 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.
e*Way Intelligent Adapter for MQSeries User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Resend Timeout

Description

Specifies the number of seconds the e*Way will wait between attempts to resend an
Event (message) to the external system, after receiving an error message from the
external system.

Required Values

An integer between 1 and 86,400. The default is 10.

Zero Wait Between Successful Exchanges

Description

Selects whether to initiate data exchange after the Exchange Data Interval or
immediately after a successful previous exchange.

Required Values

Yes or No. If this parameter is set to Yes, the e*Way will immediately invoke the
Exchange Data with External function if the previous exchange function returned data.
If this parameter is set to No, the e*Way will always wait the number of seconds
specified by Exchange Data Interval between invocations of the Exchange Data with
External function. The default is No.

See “Exchange Data with External Function” on page 28 for more information.

3.1.3. Monk Configuration
The parameters in this section help you set up the information required by the e*Way to
utilize Monk for communication with the external system.

Conceptually, an e*Way is divided into two halves. One half of the e*Way (shown on
the left in Figure 1 on page 18) handles communication with the external system; the
other half manages the Collaborations that process data and subscribe or publish to
other e*Gate components.
e*Way Intelligent Adapter for MQSeries User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 1 e*Way Internal Architecture

The communications side of the e*Way uses Monk functions to start and stop
scheduled operations, exchange data with the external system, package data as e*Gate
Events and send those Events to Collaborations, and manage the connection between
the e*Way and the external system. The Monk Configuration options discussed in this
section control the Monk environment and define the Monk functions used to perform
these basic e*Way operations. You may create and modify these functions using the
SeeBeyond Collaboration Rules Editor or a text editor (such as Notepad or UNIX vi).

The communications side of the e*Way is single-threaded. Functions run serially, and
only one function can be executed at a time. The business logic side of the e*Way is
multi-threaded, with one executable thread for each Collaboration. Each thread
maintains its own Monk environment; therefore, information such as variables,
functions, path information, and so on cannot be shared between threads.

Note: Two separate e*Ways are required when reading from and writing to MQSeries.
Sending e*Ways must be set as client, and receiving e*Ways must be set as server,
in accordance with the IBM standard for MQSeries and to use the appropriate
DLLs. The nature of the server is to receive, waiting for incoming connections and
data, whereas the nature of the client is to solicit data and send it out. IBM has
created separate libraries (DLLs) for sending and receiving. Function sets are
similar but the underlying behaviors are inherently different.

Communication
with the External
System

Business Logic and
Communication
within e*Gate

External
system

Other e*Gate
components

e*Gate Events

Datae*Way

Collaboration

Collaboration

Function

Function
e*Way Intelligent Adapter for MQSeries User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Operational Details

The Monk functions in the communications side of the e*Way fall into the following
groups:

A series of figures on the next several pages illustrates the interaction and operation of
these functions.

Type of Operation Name

Initialization Startup Function on page 27
(also see Monk Environment Initialization
File on page 27)

Connection External Connection Establishment Function
on page 29
External Connection Verification Function on
page 30
External Connection Shutdown Function on
page 30

Schedule-driven data
exchange

Exchange Data with External Function on
page 28
Positive Acknowledgment Function on
page 31
Negative Acknowledgment Function on
page 31

Shutdown Shutdown Command Notification Function
on page 32

Event-driven data exchange Process Outgoing Message Function on
page 28
e*Way Intelligent Adapter for MQSeries User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Initialization Functions

Figure 2 below illustrates how the e*Way executes its initialization functions.

Figure 2 Initialization Functions

Start e*Way

Load
"Monk Initialization"

file

Execute any Monk function
having the same name as

the initialization file

Load "Startup" file

Execute any Monk function
having the same name as

the startup file
e*Way Intelligent Adapter for MQSeries User’s Guide 20 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Connection Functions

Figure 3 below illustrates how the e*Way executes the connection establishment and
verification functions.

Figure 3 Connection Establishment and Verification Functions

Note: The e*Way selects the connection function based on an internal up/down flag
rather than a poll to the external system. See Figure 5 on page 23 and Figure 7 on
page 25 for examples of how different functions use this flag.

User functions can manually set this flag using Monk functions. See send-
external-up on page 42 and send-external-down on page 41 for more
information.

Connect e*Way to
external system

Internal
flag shows connection

active?

Wait for "Up Timeout"
schedule

Call External Connection
Verification function

Wait for "Down Timeout"
schedule

Call External Connection
Establishment function

Yes

No
e*Way Intelligent Adapter for MQSeries User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 4 below illustrates how the e*Way executes its connection shutdown function.

Figure 4 Connection Shutdown Function

Schedule-driven Data Exchange Functions

Figure 5 on page 23 illustrates how the e*Way performs schedule-driven data exchange
using the Exchange Data with External Function. The Positive Acknowledgement
Function and Negative Acknowledgement Function are also called during this
process.

“Start” can occur in any of the following ways:

! The Start Data Exchange time occurs

! Periodically during data-exchange schedule (after Start Data Exchange time, but
before Stop Data Exchange time), as set by the Exchange Data Interval

! The start-schedule Monk function is called

After the function exits, the e*Way waits for the next start schedule time or command.

Control Broker issues
"Suspend" command

Call External Connection Shutdown
function with parameter

"SUSPEND_NOTIFICATION"

e*Way closes connection

Return any value
e*Way Intelligent Adapter for MQSeries User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 5 Schedule-driven Data Exchange Functions

Increment "Failed
Message" counter

DATAERR plus
additional data

Null
string

Data
(other than

error strings)

Forward
external
errors?

No

Yes

Set interval flag
"Connection

Down"

CONNERR

Wait for Resend
Timeout period

Roll back Event to
its publishing IQ

Increment "Failed
Message" counter

DATAERR only

Journal
enabled?

Create journal
entry

Yes

No

Start

Function exits

Send Event to
e*Gate

All
subscribing

Collaborations return
TRUE

?

Call Positive
Acknowledgment

function

Zero
wait after successful

exchange?

Call Negative
Acknowledgment

function

Yes

No

YesNo

Call Exchange Data with
External function

Figure 12 on page 33
e*Way Intelligent Adapter for MQSeries User’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Shutdown Functions

Figure 6 below illustrates how the e*Way implements the shutdown request function.

Figure 6 Shutdown Functions

Event-driven Data Exchange Functions

Figure 7 on page 25 illustrates event-driven data-exchange using the Process Outgoing
Message Function.

Every two minutes, the e*Way checks the Failed Message counter against the value
specified by the Max Failed Messages parameter. When the Failed Message counter
exceeds the specified maximum value, the e*Way logs an error and shuts down.

After the function exits, the e*Way waits for the next outgoing Event.

Control Broker issues
"Shutdown" command

Call Shutdown Notification function
with parameter

"SHUTDOWN_NOTIFICATION"

e*Way shuts down

Wait for
shutdown-request

function

Return

Null string or
"SUCCESS"

any other value
e*Way Intelligent Adapter for MQSeries User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 7 Event-driven Data-exchange Functions

How to Specify Function Names or File Names

Parameters that require the name of a Monk function will accept either a function name
or a file name. If you specify a file name, be sure that the file has one of the following
extensions:

! *.monk

! *.tsc

! *.dsc

Collaboration publishes
to <EXTERNAL>

Call Process Outgoing
Message function

Set internal flag
"Connection

Down"

Maximum
Resends per Message

exceeded?

Yes

Return

CONNERR DATAERR

Increment "Failed
Message" counter

Create journal
entry

Null
string

No
Journal

enabled?

No

Function exits

Wait for Resend
Timeout period

Roll back Event to
its publishing IQ

Yes

Wait for Resend
Timeout period

Increment
"Resend" counter

RESEND
e*Way Intelligent Adapter for MQSeries User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Additional Path

Description

Specifies a path to be appended to the load path, the path Monk uses to locate files and
data (set internally within Monk). The directory specified in Additional Path will be
searched after the default load paths.

Required Values

A path name, or a series of paths separated by semicolons. This parameter is optional
and may be left blank.

Additional Information

The default load paths are determined by the bin and Shared Data settings in the
*.egate.store file. See the e*Gate Integrator System Administration and Operations Guide for
more information about this file.

To specify multiple directories, manually enter the directory names rather than
selecting them with the File Selection button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths. For example,

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

Auxiliary Library Directories

Description

Specifies a path to auxiliary library directories. Any *.monk files found within those
directories will automatically be loaded into the e*Way’s Monk environment. This
parameter is optional and may be left blank.

Required Values

A path name, or a series of paths separated by semicolons.

Additional Information

To specify multiple directories, manually enter the directory names rather than
selecting them with the File Selection button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths. For example,

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

The default is monk_library/MQ.

This parameter is optional and may be left blank.
e*Way Intelligent Adapter for MQSeries User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Monk Environment Initialization File

Specifies a file that contains environment initialization functions, which will be loaded
after the auxiliary library directories are loaded. Use this feature to initialize the
e*Way’s Monk environment (for example, to define Monk variables that are used by the
e*Way’s function scripts).

Required Values

A file name within the load path, or file name plus path information (relative or
absolute). If path information is specified, that path will be appended to the load path.
See “Additional Path” on page 26 for more information about the load path.

Additional information

Any environment-initialization functions called by this file accept no input, and must
return a string. The e*Way will load this file and try to invoke a function of the same
base name as the file name (for example, for a file named my-init.monk, the e*Way
would attempt to execute the function my-init).

Typically, it is a good practice to initialize any global Monk variables that may be used
by any other Monk Extension scripts.

The default is MQ-stdver-init.

The internal function that loads this file is called once when the e*Way first starts up
(see Figure 2 on page 20).

Startup Function

Description

Specifies a Monk function that the e*Way will load and invoke upon startup or
whenever the e*Way’s configuration is reloaded. This function should be used to
initialize the external system before data exchange starts.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is optional and may be left
blank.

Additional Information

The function accepts no input, and must return a string.

The string “FAILURE” indicates that the function failed; any other string (including a
null string) indicates success.

This function will be called after the e*Way loads the specified Monk Environment
Initialization file and any files within the specified Auxiliary Directories.

The e*Way will load this file and try to invoke a function of the same base name as the
file name (see Figure 2 on page 20). For example, for a file named my-startup.monk,
the e*Way would attempt to execute the function my-startup.

The default is MQ-stdver-startup.
e*Way Intelligent Adapter for MQSeries User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Process Outgoing Message Function

Description

Specifies the Monk function responsible for sending outgoing Events (messages) from
the e*Way to the external system. This function is event-driven (unlike the Exchange
Data with External function, which is schedule-driven).

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. You may not leave this field blank.

Additional Information

The function requires a non-null string as input (the outgoing Event to be sent) and
must return a string.

The e*Way invokes this function when one of its Collaborations publishes an Event to
an <EXTERNAL> destination (as specified within the Enterprise Manager). The
function returns one of the following (see Figure 7 on page 25 for more details):

! Null string - Indicates that the Event was published successfully to the external
system.

! “RESEND” - Indicates that the Event should be resent.

! “CONNERR” - Indicates that there is a problem communicating with the external
system.

! “DATAERR” - Indicates that there is a problem with the message (Event) data itself.

! If a string other than the following is returned, the e*Way will create an entry in the
log file indicating that an attempt has been made to access an unsupported
function.

Note: If you wish to use event-send-to-egate to enqueue failed Events in a separate IQ,
the e*Way must have an inbound Collaboration (with appropriate IQs) configured
to process those Events.

Exchange Data with External Function

Description

Specifies a Monk function that initiates the transmission of data from the external
system to the e*Gate system and forwards that data as an inbound Event to one or more
e*Gate Collaborations. This function is called according to a schedule (unlike the
Process Outgoing Message Function, which is event-driven).

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is optional and may be left
blank.
e*Way Intelligent Adapter for MQSeries User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Additional Information

The function accepts no input and must return a string (see Figure 5 on page 23 for
more details):

! Null string - Indicates that the data exchange was completed successfully. No
information will be sent into the e*Gate system.

! “CONNERR” - Indicates that a problem with the connection to the external system
has occurred.

! “DATAERR” - Indicates that a problem with the data itself has occurred. The
e*Way handles the string “DATAERR” and “DATAERR” plus additional data
differently; see Figure 5 on page 23 for more details.

! Any other string - The contents of the string are packaged as an inbound Event. The
e*Way must have at least one Collaboration configured suitably to process the
inbound Event, as well as any required IQs.

The default is MQ-stdver-data-exchg.

This function is initially triggered by the Start Data Exchange schedule or manually by
the Monk function start-schedule. After the function has returned true and the data
received by this function has been acknowledged or not acknowledged (by the Positive
Acknowledgment Function or Negative Acknowledgment Function, respectively),
the e*Way checks the Zero Wait Between Successful Exchanges parameter.

If this parameter is set to Yes, the e*Way will immediately call the Exchange Data with
External function again; otherwise, the e*Way will not call the function until the next
scheduled start exchange time or the schedule is manually invoked using the Monk
function start-schedule (see start-schedule on page 44 for more information).

External Connection Establishment Function

Description

Specifies a Monk function that the e*Way will call when it has determined that the
connection to the external system is down.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This field cannot be left blank.

Additional Information

The function accepts no input and must return a string:

! “SUCCESS” or “UP” - Indicates that the connection was established successfully.

! Any other string (including the null string) - Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Down Timeout
parameter, and is only called according to this schedule.

The default is MQ-stdver-conn-estab.
e*Way Intelligent Adapter for MQSeries User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
The External Connection Verification function (see below) is called when the e*Way
has determined that its connection to the external system is up.

External Connection Verification Function

Description

Specifies a Monk function that the e*Way will call when its internal variables show that
the connection to the external system is up.

Required Values

The name of a Monk function. This function is optional; if no External Connection
Verification function is specified, the e*Way will execute the External Connection
Establishment function in its place.

Additional Information

The function accepts no input and must return a string:

! “SUCCESS” or “UP” - Indicates that the connection was established successfully.

! Any other string (including the null string) - Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Up Timeout
parameter, and is only called according to this schedule.

The default is MQ-stdver-conn-ver.

The External Connection Establishment function (see above) is called when the e*Way
has determined that its connection to the external system is down.

External Connection Shutdown Function

Description

Specifies a Monk function that the e*Way will call to shut down the connection to the
external system.

Required Values

The name of a Monk function. This parameter is optional.

Additional Information

This function requires a string as input, and may return a string.

This function will only be invoked when the e*Way receives a suspend command from
a Control Broker. When the suspend command is received, the e*Way will invoke this
function, passing the string “SUSPEND_NOTIFICATION” as an argument.

Any return value indicates that the “suspend” command can proceed and that the
connection to the external system can be broken immediately.

The default is MQ-stdver-conn-shutdown.
e*Way Intelligent Adapter for MQSeries User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Positive Acknowledgment Function

Description

Specifies a Monk function that the e*Way will call when all the Collaborations to which
the e*Way sent data have processed and enqueued that data successfully.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External function is defined.

Additional Information

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string:

! “CONNERR” - Indicates a problem with the connection to the external system.
When the connection is re-established, the Positive Acknowledgment function will
be called again, with the same input data.

! Null string - The function completed execution successfully.

After the Exchange Data with External function returns a string that is transformed
into an inbound Event, the Event is handed off to one or more Collaborations for
further processing. If the Event’s processing is completed successfully by all the
Collaborations to which it was sent, the e*Way executes the Positive Acknowledgment
function (otherwise, the e*Way executes the Negative Acknowledgment function).

The default is MQ-stdver-pos-ack.

Negative Acknowledgment Function

Description

Specifies a Monk function that the e*Way will call when the e*Way fails to process and
queue Events from the external system.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External function is defined.

Additional Information

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string:

! “CONNERR” - Indicates a problem with the connection to the external system.
When the connection is re-established, the function will be called again.

! Null string - The function completed execution successfully.

This function is only called during the processing of inbound Events. After the
Exchange Data with External function returns a string that is transformed into an
inbound Event, the Event is handed off to one or more Collaborations for further
processing. If the Event’s processing is not completed successfully by all the
e*Way Intelligent Adapter for MQSeries User’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Collaborations to which it was sent, the e*Way executes the Negative
Acknowledgment function (otherwise, the e*Way executes the Positive
Acknowledgment function).

The default is MQ-stdver-neg-ack.

Shutdown Command Notification Function

Description

Specifies a Monk function that will be called when the e*Way receives a shut down
command from the Control Broker. This parameter is optional.

Required Values

The name of a Monk function.

Additional Information

When the Control Broker issues a shutdown command to the e*Way, the e*Way will
call this function with the string “SHUTDOWN_NOTIFICATION” passed as a
parameter.

The function accepts a string as input and must return a string:

! A null string or “SUCCESS” - Indicates that the shutdown can occur immediately.

! Any other string - Indicates that shutdown must be postponed. Once postponed,
shutdown will not proceed until the Monk function shutdown-request is executed
(see shutdown-request on page 43).

The default is MQ-stdver-shutdown.

Note: If you postpone a shutdown using this function, be sure to use the
(shutdown-request) function to complete the process in a timely manner.

3.1.4. MQ Settings
The MQ Settings section enables you to configure the parameters that support queuing
and the connection to the IBM MQSeries. A message queue is a named destination to
which messages can be sent. A message is a string of bytes that has meaning to the
applications that use the message. MQSeries messages consist of two parts, a message
descriptor and application data. The content and structure of the application data are
defined by the application programs that use them. The message descriptor identifies
the message and contains other control information or attributes, such as data, the time
the message was created, type of message, and the priority assigned to the message.

Messages accumulate on queues until they are retrieved by programs that service those
queues. A queue can be either a buffer area in the memory of a computer or a data set
on a permanent storage device such as a disk.
e*Way Intelligent Adapter for MQSeries User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Before an application can send messages, a queue manager and some queues must be
created. Queues reside in, and are managed by, a queue manager. Queue managers
have the responsibility for monitoring that

! Attributes are changed according to commands received.

! Events, such as trigger events are generated when the appropriate conditions are
met.

! Messages are put into the correct queue, as requested by the application, or routed
to another queue manager. When this cannot be accomplished, the application is
informed and an appropriate error message code is provided.

Applications access queues only through the external services of the queue manager.
These applications can open a queue, put messages on it, get messages from it, and
close the queue.

Local MQ Install

Description

Use this setting to configure the e*Way as either client or server. If the MQSeries server
software was installed on the host running this e*Way, set this parameter to server. If
the MQSeries client software was installed on the host running this e*Way, set this
parameter to client.

Required Values

The type of installation, either client or server. The default is server.

Qmanager

Description

Specifies the name of the IBM MQSeries queue manager.

Required Values

A queue manager’s name.

Queue Name

Description

Specifies the MQSeries message queue name.

Required Values

A queue name.

MQ Get Buffer Length

Description

Specifies the maximum size of the MQSeries receive buffer.
e*Way Intelligent Adapter for MQSeries User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Configuration Environment Variable
Required Values

An integer between l,024 and 4,194,304. The default is 8192.

Enable Connection Test

Description

Specifies whether or not the e*Way should attempt a connection to the Connection Test
Queue at a regular interval to verify the connection is still alive.

Required Values

When set to enable, the e*Way will attempt the connection. If set to disable, no
connection attempt will be made.

Connection Test Queue Name

Description

Specifies the name of the MQSeries Connection Test Queue.

Required Values

A name that identifies the Test Queue Connection.

3.2 Environment Variable
When connecting to IBM MQSeries in Client mode, the MQServer environment
variable must be set as follows:

! For UNIX enter the following:

setenv MQServer CHANNEL#/TCP/'<hostname>' or '<hostname(port
number)>' or '<server IP address>'

Where # is the channel number.

For example:

setenv MQServer CHANNEL2/TCP/'mainserver(3843)'

! For Windows open the Command Prompt window and enter the following:

set MQServer=CHANNEL#/TCP/'<hostname>' or '<hostname(port
number)>' or '<server IP address>'

For example:

set MQServer=CHANNEL3/TCP/'192.168.0.2'

3.3 Environment Configuration
To support the operation of this e*Way, no changes are necessary
e*Way Intelligent Adapter for MQSeries User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Configuration External Configuration Requirements
! In the Participating Host’s operating environment

! In the e*Gate system

Note: Changes to Monk files can be made using the Collaboration Rules Editor (available
from within the Enterprise Manager) or with a text editor. However, if you use a
text editor to edit Monk files directly, you must commit these changed files to the
e*Gate Registry or your changes will not be implemented.

For more information about committing files to the e*Gate Registry, see the
Enterprise Manager’s online Help system, or the stcregutil command-line utility
in the e*Gate Integrator System Administration and Operations Guide.

3.4 External Configuration Requirements
There are no configuration changes required in the external system. All necessary
configuration changes can be made within e*Gate.
e*Way Intelligent Adapter for MQSeries User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 4

Implementation

This chapter discusses how to implement the MQSeries e*Way in a production
environment.

4.1 Implementation Notes
Follow these steps to use the MQSeries e*Way:

1 Install the software required in this order. Follow the procedures for installing
e*Gate as outlined in the e*Gate Integrator Installation Guide.

2 Install the MQSeries e*Way from the Add-Ons folder on the CD.

3 Check to ensure the MQ Manager is up and running. Refer to the MQ Quick Start
Guide (supplied by IBM) for instructions.

4 Ensure that the MQ Administrator creates a queue for the appropriate MQ
Manager.

5 Configure the MQSeries e*Ways, as explained in Chapter 3.

Two separate e*Ways are required when reading from and writing to MQSeries.
Sending e*Ways must be set as client and receiving e*Ways must be set as server,
in accordance with the IBM standard for MQSeries and to use the appropriate
DLLs. The nature of the server is to receive, waiting for incoming connections and
data, whereas the nature of the client is to solicit data and send it out. IBM has
created separate libraries (DLLs) for sending and receiving. Function sets are
similar but the underlying behaviors are inherently different.

6 Make sure that MQCONN is stored in the start-up file connection establishment
function (see MQCONN on page 64). MQCONNX can be used in place of
MQCONN and provides additional options when checking compatibility issues.

7 If you are working with only one MQ Manager, the MQ-connect function will be
issued only once. However, if you’re working with multiple MQ Managers, put this
function in the start-up file so you can issue it as needed.

8 Select the MQSeries functions you will use and configure them (see “MQSeries
e*Way External Init Functions” on page 46)

9 Open a queue using the MQOPEN function (see MQOPEN on page 68).

10 Perform an MQGET function (see MQGET on page 67) or an MQPUT function
(see MQPUT on page 69). This will be determined by whether or not you want to
e*Way Intelligent Adapter for MQSeries User’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation Error Handling
read from the queue (get) or write to the queue (put). Two e*Ways must be created
to communicate to and from MQSeries.

11 Add an option to close to your finished script.

12 Disconnect from the MQ Manager.

4.1.1. Connecting to a Remote Queue
When accessing an MQSeries remote queue, the INPUT_SHARED option is not
allowed. The mq-stdver-eway-functs.monk file must be amended as follows:

In the MQ-stdver-conn-estab function, in the line

("MQOO_FAIL_IF_QUIESCING" "MQOO_INPUT_SHARED" "MQOO_OUTPUT"))))

remove the parameter ''MQOO_INPUT_SHARED'' for remote queue access.

4.2 Error Handling
The MQ *.dll file checks the execution status of its underlying MQ API functions. In
case of a failed operation, this file reports the error code and the reason for the failed
call via its internal string variables MQ-errno and MQ-error.

MQ-errno contains the numeric value associated with the failed call (similar to errno
for C-library calls). And MQ-error is the verbose explanation for the failure.

All the Monk functions in the *.dll file have been created to return a Boolean false (#f),
if the call to an underlying MQ API function that fails. In such cases, examine the
contents of MQ-errno and MQ-error to see what caused the failure.

There are 230 error codes (called reason codes in MQ). Look up these codes in the
MQSeries online documentation in the following section:

MQSeries Application Programming Reference, Chapter 5, “Return Codes”

You can take action, as determined by the nature of the error.

Note: The MQSeries e*Way displays a warning if it receives a message that is larger than
the configured message size.

4.3 Installing the MQSeries (Monk) Sample Schema
The e*Gate Installation CD contains a sample schema, MQ_monk_sample.zip, located
in the ../samples/ewmq/ directory. The schema demonstrate a simple scenario using
the Monk version of the e*Way Intelligent Adapter for MQSeries.
e*Way Intelligent Adapter for MQSeries User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Installing the MQSeries (Monk) Sample Schema
4.3.1. Install the Sample Schema on the Registry Host
If you are using e*Gate 4.5.1 or later, you can import the schema at the startup of the
e*Gate Enterprise Manager, or by selecting “New Schema” from the File menu once the
e*Gate Enterprise manager has opened. For either case, select “Create from export:”
and navigate to the .zip file containing the necessary sample.

e*Gate 4.5.0 does not support importing the schemas directly from the .zip file. You
must unzip the file containing the schema to a temporary directory. Contained within
the .zip file is a .exp file. Use the .exp file to import the schema at startup of the e*Gate
Enterprise Manager. After the import is completed, you must commit the schema files
into the e*Gate registry. Using the .ctl file provided within the .zip file, issue the
following command from the directory containing the control file:

stcregutil -rh <localhost> -rs <schema_name> -un <username> -up
<password> -fc . -ctl <ctl_file_name>

where the arguments contained within the brackets (“< >”) must be replaced with
values appropriate to your system.

If the .zip file does not contain a .ctl file, create the following directory :

server/registry/repository/schema_name/

on your e*Gate registry host, and copy the runtime directory that is contained within
the .zip file for the schema, to the newly created directory. When creating the directory,
you must use the actual schema name specified when importing the schema.
e*Way Intelligent Adapter for MQSeries User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 5

MQSeries e*Way Functions

The MQSeries e*Way’s functions fall into the following categories:

! Basic Functions on page 39

! MQSeries e*Way External Init Functions on page 43

! MQSeries Monk Functions on page 50

! MQSeries Auxiliary Functions on page 58

! MQSeries Structure Related Functions on page 72

In addition, MQ data structures that can be modified using the MQ *,dll files are
documented in a table located at:

! MQSeries Structures on page 68

Note: The functions described in this section can only be used by the functions defined
within the e*Way’s configuration file. None of the functions are available to
Collaboration Rules scripts executed by the e*Way.

5.1 Basic Functions
The functions in this category control the e*Way’s most basic operations.

The basic functions are

event-send-to-egate on page 40

get-logical-name on page 40

send-external-down on page 41

send-external-up on page 41

shutdown-request on page 41

start-schedule on page 42

stop-schedule on page 42
e*Way Intelligent Adapter for MQSeries User’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
MQSeries e*Way Functions Basic Functions
event-send-to-egate

Syntax

(event-send-to-egate string)

Description

event-send-to-egate sends data that the e*Way has already received from the external
system into the e*Gate system as an Event.

Parameters

Return Values

Boolean
Returns true (#t) if the data is sent successfully; otherwise, returns false (#f).

Throws

None.

Additional information

This function can be called by any e*Way function when it is necessary to send data to
the e*Gate system in a blocking fashion.

get-logical-name

Syntax

(get-logical-name)

Description

get-logical-name returns the logical name of the e*Way.

Parameters

None.

Return Values

string
Returns the name of the e*Way (as defined by the Enterprise Manager).

Throws

None.

Name Type Description

string String Data to be sent to the e*Gate system.
e*Way Intelligent Adapter for MQSeries User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
MQSeries e*Way Functions Basic Functions
send-external-down

Syntax

(send-external-down)

Description

send-external down tells the e*Way that the connection to the external system is down.

Parameters

None.

Return Values

None.

Throws

None.

send-external-up

Syntax

(send-external-up)

Description

send-external-up tells the e*Way that the connection to the external system is up.

Parameters

None.

Return Values

None.

Throws

None.

shutdown-request

Syntax

(shutdown-request)

Description

shutdown request requests the e*Way to perform the shutdown procedure when there
is no outstanding incoming/outgoing event. When the e*Way is ready to act on the
shutdown request, in invokes the Shutdown Command Notification Function
(see“Shutdown Command Notification Function” on page 32). Once this function is
called, the shutdown proceeds immediately.
e*Way Intelligent Adapter for MQSeries User’s Guide 41 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
MQSeries e*Way Functions Basic Functions
Once interrupted, the e*Way’s shutdown cannot proceed until this Monk function is
called. If you do interrupt an e*Way shutdown, we recommend that you complete the
process in a timely fashion.

Parameters

None.

Return Values

None.

Throws

None.

start-schedule

Syntax

(start-schedule)

Description

start-schedule requests that the e*Way execute Exchange Events with External
specified within the e*Way’s configuration file. Does not effect any defined schedules.

Parameters

None.

Return Values

None.

Throws

None.

stop-schedule

Syntax

(stop-schedule)

Description

stop-schedule requests that the e*Way halt execution of Exchange Events with
External specified within the e*Way’s configuration file. Execution will be stopped
when the e*Way concludes any open transaction. Does not effect any defined
schedules, and does not halt the e*Way process itself.

Parameters

None.

Return Values

None.
e*Way Intelligent Adapter for MQSeries User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
MQSeries e*Way Functions MQSeries e*Way External Init Functions
Throws

None.

5.2 MQSeries e*Way External Init Functions
Access the external init functions from monk_library\Mq\mq-stdver-eway-
funcs.monk. They provide entry points into the *.def file.

The following are examples of default functions for the e*Way’s configuration:

MQ-stdver-conn-estab

Syntax

(MQ-stdver-conn-estab)

Description

MQ-stdver-conn-estab is used to connect to the external system. This function expects
no input.

Parameters

None.

Return Values

This function must return up or success when the connection is established. Any other
return indicates the connection was not established.

Throws

None.

MQ-stdver-conn-estab on page 43

MQ-stdver-conn-shutdown on page 44

MQ-stdver-conn-ver on page 44

MQ-stdver-data-exchg on page 45

MQ-stdver-data-exchg-stub on page 45

MQ-stdver-init on page 46

MQ-stdver-neg-ack on page 46

MQ-stdver-pos-ack on page 47

MQ-stdver-proc-outgoing on page 48

MQ-stdver-proc-outgoing-stub on page 48

MQ-stdver-shutdown on page 49

MQ-stdver-startup on page 46
e*Way Intelligent Adapter for MQSeries User’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
MQSeries e*Way Functions MQSeries e*Way External Init Functions
MQ-stdver-conn-shutdown

Syntax

(MQ-stdver-conn-shutdown string)

Description

MQ-stdver-conn-shutdown is called by the e*Gate system to request that the interface
disconnect from the external system, when e*Gate is preparing for a suspend/reload
cycle.

Parameters

Return Values

string

Any return indicates that the suspend can occur immediately, which puts the e*Way
into a down state. The user can choose to define the return string as success, #t (true) or
simply a null string.

Throws

None.

MQ-stdver-conn-ver

Syntax

(MQ-stdver-conn-ver)

Description

MQ-stdver-conn-ver is used to verify the connection with the external system. This
function expects no input.

Parameters

None.

Return Values

This function must return up or success when the connection is established. Any other
return indicates the connection was not established.

Throws

None.

Name Type Description

string String When the e*Way calls this function, e*Gate will pass
the string “SUSPEND_NOTIFICATION” as the
parameter.
e*Way Intelligent Adapter for MQSeries User’s Guide 44 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
MQSeries e*Way Functions MQSeries e*Way External Init Functions
MQ-stdver-data-exchg

Syntax

(MQ-stdver-data-exchg)

Description

MQ-stdver-data-exchg is used to send a message received from the external system to
e*Gate. This function expects no input.

Parameters

None.

Return Values

string
This function returns a null string, indicating a successful operation; nothing is sent to
e*Gate.

When a <message-string> is returned, an Event is sent to e*Gate.

<CONNERR> is used if the connection to the external system was lost, and sets the
system state to down.

 Throws

None.

MQ-stdver-data-exchg-stub

Syntax

(MQ-stdver-data-exchg-stub)

Description

MQ-stdver-data-exchg-stub s used as a place holder for the function entry point for
sending a message received from the external system to e*Gate, when the interface is
configured as an outbound only connection. This function is used to catch
configuration problems. The function expects no input.

Parameters

None.

Return Values

string
This function returns a null string, indicating a successful operation; nothing is sent to
e*Gate.

When a <message-string> is returned, an Event is sent to e*Gate.

<CONNERR> is used if the connection to the external system was lost, and sets the
system state to down.
e*Way Intelligent Adapter for MQSeries User’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
MQSeries e*Way Functions MQSeries e*Way External Init Functions
 Throws

None.

MQ-stdver-init

Syntax

(MQ-stdver-init)

Description

MQ-stdver-init allows you to post Events into the e*Gate system from within a Monk
function. This function expects no input.

Parameters

None.

Return Values

string
<FAILURE> causes shutdown of the e*Way. Any other return indicates success.

Throws

None.

MQ-stdver-startup

Syntax

(MQ-stdver-startup)

Description

MQ-stdver-startup is used for instance specific function loads and environment setup.
This function does not expect input.

Parameters

None.

Return Values

string
<FAILURE> causes shutdown of the e*Way. Any other return indicates success.

Throws

None.

MQ-stdver-neg-ack

Syntax

(MQ-stdver-neg-ack)
e*Way Intelligent Adapter for MQSeries User’s Guide 46 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
MQSeries e*Way Functions MQSeries e*Way External Init Functions
Description

MQ-stdver-neg-ack is used to send a negative acknowledgment to the external system,
as well as for post processing after failing to send data to e*Gate. This function expects
input in the form of data sent to e*Gate.

Parameters

None.

Return Values

string
This function returns a null string, indicating a successful operation.

<CONNERR> indicates a loss of connection with the external. This puts the e*Way into
a down state. The e*Way will attempt to connect and upon successful reconnection, the
Negative Acknowledgement function will be re-executed.

Throws

None.

MQ-stdver-pos-ack

Syntax

(MQ-stdver-pos-ack)

Description

MQ-stdver-pos-ack is used to send a positive acknowledgment to the external system,
as well as for post processing after successfully sending data to e*Gate. This function
expects input in the form of data sent to e*Gate.

Parameters

None.

Return Values

string
This function returns null string, indicating a successful operation.

<CONNERR> indicates a loss of connection with the external. This puts the e*Way into
a down state. The e*Way will attempt to connect and upon successful reconnection the
Positive Acknowledgement function will be re-executed.

Throws

None.
e*Way Intelligent Adapter for MQSeries User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
MQSeries e*Way Functions MQSeries e*Way External Init Functions
MQ-stdver-proc-outgoing

Syntax

(MQ-stdver-proc-outgoing)

Description

MQ-stdver-proc-outgoing is used to send an Event from e*Gate to the external system.
This function expects an Event sent from e*Gate as the input.

Parameters

None.

Return Values

string
This function returns a null string, indicating a successful operation.

<RESEND> causes the Event to be immediately resent.

<CONNERR> indicates a loss of connection with the external. This puts the e*Way into
a down state. The e*Way will attempt to connect and upon successful reconnection, this
function will be re-executed with the same input Event.

<DATAERR> is used if the function experiences problems processing the data. If the
function is journaled enabled, the input Event is journaled and the failed Event count is
increased.

 Throws

None.

Additional Information

Use the event-send-to-egate function to place any bad Events into a bad-Event queue.

MQ-stdver-proc-outgoing-stub

Syntax

(MQ-stdver-proc-outgoing-stub)

Description

MQ-stdver-proc-outgoing-stub is used as a place holder for the function entry point
for sending an Event received from e*Gate to the external system, when the interface is
configured as an inbound-only connection. This function is used to catch configuration
problems. This function expects an Event sent from e*Gate as the input.

Parameters

None.
e*Way Intelligent Adapter for MQSeries User’s Guide 48 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
MQSeries e*Way Functions MQSeries e*Way External Init Functions
Return Values

string
This function returns a null string, indicating a successful operation.

<RESEND> causes the Event to be immediately resent.

<CONNERR> indicates a loss of connection with the external. This puts the e*Way into
a down state. The e*Way will attempt to connect and upon successful reconnection, this
function will be re-executed with the same input Event.

<DATAERR> is used if the function experiences problems processing the data. If the
function is journaled enabled, the input Event is journaled and the failed Event count is
increased.

 Throws

None.

Notes

Use the event-send-to-egate function to place any bad Events into a bad-Event queue.

MQ-stdver-shutdown

Syntax

(MQ-stdver-shutdown string)

Description

MQ-stdver-shutdown is called by the e*Gate system to request that the e*way
disconnect from the external system, in preparation for a suspend/reload cycle.

Parameters

Return Values

Any return value indicates that the suspend can occur immediately, which puts the
e*Way into a down state.

Throws

None.

Name Type Description

string String When the e*Way calls this function, e*Gate will pass
the string “SHUTDOWN_NOTIFICATION” as the
parameter.
e*Way Intelligent Adapter for MQSeries User’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
MQSeries e*Way Functions MQSeries Monk Functions
5.3 MQSeries Monk Functions
To better understand how the following functions are used, a discussion of the Message
Queue Interface (MQI) is needed. The MQI comprises the following items:

! Calls (APIs) through which applications can access the queue manager.

! Structures that applications use to pass data to, and get data from the queue
manager.

! Elementary data types for passing data to, and getting data from the queue
manager.

The MQSeries Monk functions are

MQBACK

Syntax

(MQBACK conn-handle)

Description

MQBACK tells the queue manager to back out of the queue all messages put on the
queue or retrieved from the queue as part of a single unit of work.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

MQBACK on page 50

MQBEGIN on page 51

MQCLOSE on page 51

MQCMIT on page 52

MQCONN on page 53

MQCONNX on page 53

MQDISC on page 54

MQGET on page 54

MQOPEN on page 55

MQPUT on page 56

MQPUT1 on page 57

Name Type Description

conn-handle Connection handle A connection handle.
e*Way Intelligent Adapter for MQSeries User’s Guide 50 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
MQSeries e*Way Functions MQSeries Monk Functions
Throws

None.

Example

(define hConn (MQCONN "Sample_QM"))
(define bool-ret (MQBACK hConn))
)

MQBEGIN

Syntax

(MQBEGIN conn-handle mqbo-ptr)

Description

MQBEGIN starts a unit of work only when MQSeries is acting as an XA transaction
coordinator. In all other cases, the start transaction is implicit in MQCONN,
MQBACK, or MQCMIT.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Example

(define hConn (MQCONN "Sample_QM"))
(define mqbo-ptr (init-MQBO-struct))
(define bool-ret (MQBEGIN hConn mqbo-ptr))

MQCLOSE

Syntax

(MQCLOSE conn-hdl obj-hdl option)

Description

MQCLOSE closes the queue.

Name Type Description

conn-handle Connection handle A connection handle.

mqbo-ptr String The definition of the MQBO data
structure.
e*Way Intelligent Adapter for MQSeries User’s Guide 51 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
MQSeries e*Way Functions MQSeries Monk Functions
Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Examples

(define hConn (MQCONN "Sample_QM"))
(define mqod-ptr (init-MQOD-struct))
(define open-option (MQ-create-config-value ‘#("MQOO_INPUT_SHARED"
"MQOO_OUTPUT" "MQOO_FAIL_IF_QUIESCING")))
(define hObj (MQOPEN hConn mqod-ptr open-option))
(define bool-ret (MQCLOSE hConn hObj 0))

MQCMIT

Syntax

(MQCMIT conn-handle)

Description

MQCMIT commits all changes made to the queue.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Examples

(define hConn (MQCONN "Sample_QM"))
(define bool-ret (MQCMIT hConn))

Name Type Description

conn-hdl Connection handle A connection handle.

obj-hdl Object handle The object handle.

option String The action performed by MQCLOSE.

Name Type Description

conn-handle Connection handle A connection handle.
e*Way Intelligent Adapter for MQSeries User’s Guide 52 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
MQSeries e*Way Functions MQSeries Monk Functions
MQCONN

Syntax

(MQCONN queue manager name)

Description

MQCONN provides a connection to the queue manager.

Parameters

Return Values

string
Returns a connection handle if successful; otherwise, returns #f (false).

Throws

None.

Examples

(define hConn (MQCONN “Sample_QM”)) where hConn is the connection
handle)

MQCONNX

Syntax

(MQCONNX queue-manager-name mqcno-ptr)

Description

MQCONNX connects the application to the queue manager.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Name Type Description

queue manager name String The name of the queue manager.

Name Type Description

queue-manager-name String The name of the queue manager.

mqcno-ptr String The definition of the MQCNO data
structure.
e*Way Intelligent Adapter for MQSeries User’s Guide 53 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
MQSeries e*Way Functions MQSeries Monk Functions
Examples

(define mqcno-ptr (init-MQCNO-struct))
(define hConn (MQCONNX "Sample_QM" mqcno-ptr))

Note: MQCONNX is identical in functionality to MQCONN, but provides the
additional parameter for specifying the MQCNO data structure.

MQDISC

Syntax

(MQDISC conn-hdl)

Description

MQDISC disconnects the application from the queue manager.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Examples

(define mqcno-ptr (init-MQCNO-struct))
(define hConn (MQCONNX "Sample_QM" mqcno-ptr))
(define bool-ret (MQDISC hConn))
)

MQGET

Syntax

(MQGET conn-hdl obj-hdl mqmd-ptr mqgmo-ptr buffer-length)

Description

MQGET retrieves the Event.

Parameters

Name Type Description

conn-hdl Connection handle The connection handle.

Name Type Description

conn-hdl Connection handle The connection handle.

obj-hdl Object handle The object handle.
e*Way Intelligent Adapter for MQSeries User’s Guide 54 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
MQSeries e*Way Functions MQSeries Monk Functions
Return Values

string
Returns a message string if successful, otherwise, returns #f (false).

Throws

None.

Examples

(define mqcno-ptr (init-MQCNO-struct))
(define hConn (MQCONNX "Sample_QM" mqcno-ptr))
(define mqod-ptr (init-MQOD-struct))
(define open-option (MQ-create-config-value ‘#("MQOO_INPUT_SHARED"
"MQOO_OUTPUT" "MQOO_FAIL_IF_QUIESCING")))
(define hObj (MQOPEN hConn mqod-ptr open-option))
(define mqmd-ptr (init-MQMD-struct))
(define mqgmo-ptr (init-MQGMO-struct))
(define message (MQGET hConn hObj mqmd-ptr mqgmo-ptr 1024))

MQOPEN

Syntax

(MQOPEN conn-handle mqod-ptr option)

Description

MQOPEN opens a message queue.

Parameters

Return Values

string
Returns an object handle if successful; otherwise, returns #f (false).

Throws

None.

mqmd-ptr String The definition of the MQMD data
structure.

mqgmo-ptr String The definition of the MQGMO data
structure.

buffer-length Integer The length in bytes of the buffer.

Name Type Description

conn-handle Connection handle A connection handle.

mqod-ptr String The definition of the MQOD data
structure.

option String The action performed by MQOPEN.

Name Type Description
e*Way Intelligent Adapter for MQSeries User’s Guide 55 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
MQSeries e*Way Functions MQSeries Monk Functions
Examples

((define hConn (MQCONN "Sample_QM"))
(define mqod-ptr (init-MQOD-struct))
(define open-option (MQ-create-config-value ‘#("MQOO_INPUT_SHARED"
"MQOO_OUTPUT" "MQOO_FAIL_IF_QUIESCING")))
(define hObj (MQOPEN hConn mqod-ptr open-option)))

MQPUT

Syntax

(MQPUT conn-hdl obj-hdl mqmd-ptr mqpmo-ptr buffer)

Description

MQPUT puts the Event in the queue.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Examples

(define mqcno-ptr (init-MQCNO-struct))
(define hConn (MQCONNX "Sample_QM" mqcno-ptr))
(define mqod-ptr (init-MQOD-struct))
(define open-option (MQ-create-config-value ‘#("MQOO_INPUT_SHARED"
"MQOO_OUTPUT" "MQOO_FAIL_IF_QUIESCING")))
(define hObj (MQOPEN hConn mqod-ptr open-option))
(define mqmd-ptr (init-MQMD-struct))
(define mqpmo-ptr (init-MQPMO-struct))
(define message (MQPUT hConn hObj mqmd-ptr mqpmo-ptr "my testing
message"))

Name Type Description

conn-hdl Connection handle The connection handle.

obj-hdl Object handle The object handle

mqmd-ptr String The definition of the MQMD data
structure.

mqpmo-ptr String The definition of the MQPMO data
structure.

buffer String The data contained in the Event.
e*Way Intelligent Adapter for MQSeries User’s Guide 56 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
MQSeries e*Way Functions MQSeries Monk Functions
MQPUT1

Syntax

(MQPUT1 conn-hdl mqod-ptr mqmd-ptr mqpmo-ptr buffer)

Description

MQPUT1 puts the Event in the queue. It is functionally equivalent to calling MQOPEN
followed by MQPUT, followed by MQCLOSE. The only difference in the syntax for the
MQPUT and MQPUT1 calls is that for MQPUT you must specify an object handle,
whereas for MQPUT1 you must specify an object descriptor structure (MQOD) as
defined in MQOPEN. Use the MQPUT1 call when you want to close the queue
immediately after you have put a single message on it.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Examples

(define mqcno-ptr (init-MQCNO-struct))
(define hConn (MQCONNX "Sample_QM" mqcno-ptr))
(define mqod-ptr (init-MQOD-struct))
(define mqmd-ptr (init-MQMD-struct))
(define mqpmo-ptr (init-MQPMO-struct))
(define message (MQPUT1 hConn mqod-ptr mqmd-ptr mqpmo-ptr "my testing
message"))

Name Type Description

conn-hdl Connection handle The connection handle.

mqod-ptr String The definition of the MQOD data
structure.

mqmd-ptr String The definition of the MQMD data
structure.

mqpmo-ptr String The definition of the MQPMO data
structure.

buffer String The data contained in the Event.
e*Way Intelligent Adapter for MQSeries User’s Guide 57 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
MQSeries e*Way Functions MQSeries Auxiliary Functions
5.4 MQSeries Auxiliary Functions
The functions explained in this section rely on the information presented under
“MQSeries Structures” on page 68. The structure names and their field names must be
used as input arguments when using these auxiliary functions and must be an exact
match of the table entries. The data types for the individual fields specify how they are
used in Monk.

The MQSeries Auxiliary Functions are

MQ-check-type

Syntax

(MQ-check-type MQtype MQobject)

Description

MQ-check-type checks to see if the MQobject is of type MQtype.

Parameters

Return Values

Boolean
Returns #t (true) if MQobject is of type MQtype; otherwise, returns #f (false).

Throws

None.

MQ-check-type on page 58

MQ-configure-close-options on page 59

MQ-configure-get-options on page 59

MQ-configure-open-options on page 61

MQ-configure-options on page 62

MQ-configure-put-options on page 63

MQ-create-config-value on page 64

MQ-get-field on page 64

MQ-init-type on page 65

MQ-reset-type on page 66

MQ-set-field on page 66

Name Type Description

MQtype String The string containing the name of an
MQ data structure.

MQobject String A Monk object used to represent
type MQtype.
e*Way Intelligent Adapter for MQSeries User’s Guide 58 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
MQSeries e*Way Functions MQSeries Auxiliary Functions
Examples

(define Object_Descriptor (MQ-init-type "MQOD"))
(define result (MQ-check-type "MQOD" Object_Descriptor))

Note: This function fails if any mismatches appear between the input arguments to this
function.

MQ-configure-close-options

MQ-configure-get-options

Parameter Name Description

MQCO_NONE An option that tells the queue manager no optional close
processing is required. This must be specified for
! Objects other than queues
! Predefined queues
! Temporary dynamic queues (but only in those cases where Hobj

is not the handle returned by the MQOPEN call that created the
queue)

! Distribution lists
In all of the above cases, the object is retained and not deleted.

MQCO_DELETE An option that tells the queue manager to delete the queue. The
queue is deleted if either of the following is true:
! It is a permanent dynamic queue, and there are no Events on the

queue and no uncommitted get or put requests outstanding for
the queue (either for the current task or any other task).

! It is the temporary dynamic queue that was created by the
MQOPEN call that returned Hobj. In this case, all the Events on
the queue are purged.

MQCO_DELETE_
PURGE

An option that tells the queue manager to delete the queue,
purging any messages. The queue is deleted if either of the
following is true:
! It is a permanent dynamic queue and there are no uncommitted

get or put requests outstanding for the queue (either for the
current task or any other task).

! It is the temporary dynamic queue that was created by the
MQOPEN call that returned Hobj.

Parameter Name Description

MQGMO_NONE An option used when no options are specified.

MQGMO_NO_WAIT An option that tells the queue manager to return immediately
when no acceptable Events are available. This is the opposite
of the MQGMO_WAIT option, and is defined to aid program
documentation. This is the default if neither option is
specified.

MQGMO_WAIT An option that tells the queue manager to wait for an
acceptable Event to arrive. The maximum time for waiting is
specified in the WaitInterval parameter.
e*Way Intelligent Adapter for MQSeries User’s Guide 59 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
MQSeries e*Way Functions MQSeries Auxiliary Functions
MQGMO_SYNCPOINT An option that tells the queue manager to get the Event using
syncpoint control. The request is to operate within the normal
unit of work protocols. This marks the Event as unavailable to
other applications, but it is deleted from the queue only when
the unit of work is committed. The Event is made available
again after the unit of work is backed out.

MQGMO_NO_
SYNCPOINT

An option that tells the queue manager to get the Event
without using syncpoint control. The request is to operate
within the normal unit of work protocols. The Event is deleted
from the queue immediately (unless this is a browse request).
The Event can not be made available again by backing out a
unit of work.

MQGMO_SET_SIGNAL An option that requests a signal is to be set. This option is
used in conjunction with the Signal1 and Signal2 fields to
allow applications to proceed with other work while waiting
for an Event to arrive, and also (if suitable operating system
facilities are available) to wait for Events arriving on more than
one queue.

MQGMO_BROWSE_FIRST An option that tells the queue manager to browse from the
beginning of the queue.

MQGMO_BROWSE_NEXT An option that tells the queue manager to browse from its
current position on the queue. The browse cursor is
advanced to the next message on the queue that satisfies the
selection criteria specified on the MQGET call. The message is
returned to the application, but remains on the queue.

MQGMO_ACCEPT_
TRUNCATED_MSG

An option that allows truncation of Event data. If the Event
buffer is insufficient to hold the complete Event, this option
allows the MQGET call to fill the buffer with as much of the
Event as the buffer can hold, issue a warning completion
code, and complete its processing.

MQGMO_MARK_SKIP_
BACKOUT

An option that allows a unit of work to be backed out from
the queue, without reinstating the Event marked with this
option.

MQGMO_MSG_UNDER_
CURSOR

An option that causes the Event pointed to by the browse
cursor to be retrieved, regardless of the MQMO_* options
specified in the MatchOptions field in MQGMO. The
message is removed from the queue.

MQGMO_LOCK An option that locks the Event being browsed, to prevent the
Event from being visible to any other handle open for the
queue. The option can be specified only if one of the
following options is also specified:
! MQGMO_BROWSE_FIRST
! MQGMO_BROWSE_NEXT
! MQGMO_BROWSE_MSG_ UNDER_CURSOR

MQGMO_UNLOCK An option that unlocks the Event. The Event must have been
previously locked by an MQGET call with the
MQGMO_LOCK option.

Parameter Name Description (Continued)
e*Way Intelligent Adapter for MQSeries User’s Guide 60 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
MQSeries e*Way Functions MQSeries Auxiliary Functions
MQ-configure-open-options

MQGMO_BROWSE_MSG_
UNDER_CURSOR

An option that causes the Event pointed to by the browser
cursor to be retrieved nondestructively, regardless of the
MQMO_* options specified in the MatchOptions field in
MQGMO.

MQGMO_SYNCPOINT_IF_
PERSISTENT

An option that tells the queue manager to get the Event using
syncpoint control if the Event is persistent. A persistent Event
has the value MQPER_PERSISTENT in the Persistence field in
MQMD.

MQGMO_FAIL_IF_
QUIESCING

An option that tells the queue manager to fail when it is in a
quiet state.

MQGMO_CONVERT An option that requests that the application data in the
message be converted, to conform to the CodedCharSetId
and Encoding values specified in the MsgDesc parameter on
the MQGET call, before the data is copied to the buffer
parameter.

MQGMO_LOGICAL_
ORDER

An option that controls the order in which Events are
returned by successive MQGET calls for the queue handle.
The option must be specified on each of those calls in order
to have an effect.

MQGMO_COMPLETE_
MSG

An option that specifies that only a complete logical Event can
be returned by the MQGET call.

MQGMO_ALL_MSGS_
AVAILABLE

An option that specifies that Events in a group become
available for retrieval only when all Events in the group are
available.

MQGMO_ALL_
SEGMENTS_AVAILABLE

An option that specifies that segments in a logical Event
become available for retrieval only when all segments in the
logical Event are available.

Parameter Name Description

MQOO_INPUT_AS_Q_DEF An open queue used to get Events using the queue-
defined default.

MQOO_INPUT_SHARED An open queue used to get Events with shared access.

MQOO_INPUT_EXCLUSIVE An open queue used to get Events with exclusive
access.

MQOO_BROWSE An open queue used to browse messages. The queue
is opened for use with subsequent MQGET calls with
one of the following options:
! MQGMO_BROWSE_ FIRST
! MQGMO_BROWSE_ NEXT
! MQGMO_BROWSE_MSG_UNDER_CURSOR

MQOO_OUTPUT An open queue to put Events into.

Parameter Name Description (Continued)
e*Way Intelligent Adapter for MQSeries User’s Guide 61 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
MQSeries e*Way Functions MQSeries Auxiliary Functions
MQ-configure-options

Syntax

(MQ-configure-options options)

Description

MQ-configure-options merges the long integer values in the passed-in vector into one
long integer-option value.

Parameters

Return Values

integer
Returns an option value consisting of a long integer.

Boolean
Returns #f (false) if unsuccessful.

MQOO_SAVE_ALL_CONTEXT A Save context used when an Event is retrieved.
Context information is associated with this queue
handle.

MQOO_PASS_IDENTITY_
CONTEXT

An option which allows MQPMO_PASS_
IDENTITY_CONTEXT option to be specified in the
PutMsgOpts parameter, which allows all identity
context to be passed when an Event is put on a queue.

MQOO_PASS_ALL_CONTEXT An option which allows MQPMO_PASS_
ALL_CONTEXT option to be specified in the
PutMsgOpts parameter, which allows all context to be
passed when an Event is put on a queue.

MQOO_SET_IDENTITY_
CONTEXT

An option which allows MQPMO_SET_
IDENTITY_CONTEXT option to be specified in the
PutMsgOpts parameter, which allows the identity
context to be set when an Event is put on a queue.

MQOO_SET_ALL_CONTEXT An option which allows the
MQPMO_SET_ALL_CONTEXT option to be specified in
the PutMsgOpts parameter, which allows all context to
be set when an Event is put on a queue.

MQOO_ALTERNATE_USER_
AUTHORITY

A method to validate that the AlternateUserId field in
the ObjDesc parameter contains a user identifier.

MQOO_FAIL_IF_QUIESCING An option that tells the queue manager to fail when it is
in a quiet state (inactive).

Name Type Description

options Integer The action of MQ-configure-options
is controlled with this function.

Parameter Name Description
e*Way Intelligent Adapter for MQSeries User’s Guide 62 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
MQSeries e*Way Functions MQSeries Auxiliary Functions
Throws

None.

Examples

(define INPUT_SHARED 2)
(define OUTPUT 16)
(define FAIL_IF_QUIESCING 8192)
(MQ-configure-options ‘#(INPUT_SHARED OUTPUT FAIL_IF_QUIESCING))

MQ-configure-put-options
Parameter Name Description

MQPMO_NONE An option used when no options are specified.

MQPMO_SYNCPOINT An option that tells the queue manager to put the Event
into the queue using syncpoint control. The request is to
operate within the normal unit of work protocols. The
Event is not visible outside the unit of work until the unit
of work is committed. If the unit of work is backed out,
the Event is deleted.

MQPMO_NO_SYNCPOINT An option that tells the queue manager to put the Event
into the queue without using syncpoint control. The
request is to operate outside the normal unit of work
protocols. The Event is available immediately and can not
be deleted by backing out a unit of work.

MQPMO_DEFAULT_CONTEXT An option that tells the queue manager to use default
context. An Event is to have default context information
associated with it, for both identity and origin.

MQPMO_NEW_MSG_ID An option that causes the queue manager to replace the
contents of the MsgId field in MQMD with a new
identifier.

MQPMO_NEW_CORREL_ID An option that causes the queue manager to replace the
contents of the CorrelId field in MQMD with a new
identifier.

MQPMO_PASS_IDENTITY_
CONTEXT

An option used to pass the identity context from an input
queue handle.

MQPMO_PASS_ALL_CONTEXT An option used to pass all context from an input queue
handle.

MQPMO_SET_IDENTITY_
CONTEXT

An option used to set identity context from the
application.

MQPMO_SET_ALL_CONTEXT An option used to set all context from the application.

MQPMO_ALTERNATE_USER_
AUTHORITY

An option that tells the queue manager to validate the
Event using a specified user identifier.

MQPMO_FAIL_IF_QUIESCING An option that tells the queue manager to fail if the
queue manager is quiet (that is, an inactive state).

MQPMO_NO_CONTEXT An option that tells the e*Way that no context is to be
associated with the Event.
e*Way Intelligent Adapter for MQSeries User’s Guide 63 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
MQSeries e*Way Functions MQSeries Auxiliary Functions
MQ-create-config-value

Syntax

(MQ-create-config-value options)

Description

MQ-create-config-value converts the strings in the input vector to integer equivalents
in a vector of integers and passes that vector to the MQ-configure-options function.

Parameters

Return Values

integer
Returns an option value consisting of a long integer.

Throws

None.

Examples

(define MQ-create-config-value
 (lambda (values)
 (let ((options 0)(len 0))
 (set! len (vector-length values))
 (set! options (make-vector len 0))
 (do ((i 0 (+ i 1))) ((>= i len))
 (vector-set! options i (cadr (assoc (string->symbol (vector-ref
values i)) $MQ-ASSOCS$)))
)
 (MQ-configure-options options)
)))

Note: This function fails if a string that is not a part of the supported list is passed to it.

MQ-get-field

Syntax

(MQ-get-field MQtype field_name MQobject)

MQPMO_LOGICAL_ORDER An option that tells the queue manager in what order the
application will put Events in groups and segments of
logical Events.

Name Type Description

options String A vector of strings to be converted to
integers.

Parameter Name Description
e*Way Intelligent Adapter for MQSeries User’s Guide 64 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
MQSeries e*Way Functions MQSeries Auxiliary Functions
Description

MQ-get-field returns the value of the specified field in MQobject.

Parameters

Return Values

string
Returns the basic MQ-data-type of the field.

Throws

None.

Examples

(define MQGMO (MQ-init-type "mqgmo"))
(define GetOption (MQ-create-config-value ‘#("MQGMO_SYNCPOINT"))
(MQ-set-field "MQGMO" "Options" MQGMO GetOption)
(define value (MQ-get-field "MQGMO" "Options" MQGMO))

Note: This function fails if any mismatches appear between the input arguments to this
function.

MQ-init-type

Syntax

(MQ-init-type MQtype)

Description

MQ-init-type creates the specified MQobject and initializes it with default values.

Parameters

Return Values

string
Returns an MQobject of type string.

Name Type Description

MQtype String The string containing the name of an
MQ-data structure.

field_name String A Monk object used to represent
type MQtype.

MQobject String A Monk object used to represent
type MQtype.

Name Type Description

MQtype String The string containing the name of an
MQ-data structure.
e*Way Intelligent Adapter for MQSeries User’s Guide 65 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
MQSeries e*Way Functions MQSeries Auxiliary Functions
Throws

None.

Examples

(define Object_Descriptor (MQ-init-type "MQOD"))

Note: This function fails if the input argument to this function is not supported by the
monk_MQclient.dll or monk_MQserver.dll files.

MQ-reset-type

Syntax

(MQ-reset-type MQtype MQobject)

Description

MQ-reset-type takes an MQobject of type MQtype and resets its contents to their
default values.

Parameters

Return Values

Boolean
Returns #t (true) if MQobject is of type MQtype; otherwise, returns #f (false).

Throws

None.

Examples

(define Object_Descriptor (MQ-init-type "MQOD"))
...
(MQ-reset-type "MQOD" Object_Descriptor)

Note: This function fails if any mismatches appear between the input arguments to this
function.

MQ-set-field

Syntax

(MQ-set-field MQtype field_name MQobject value)

Name Type Description

MQtype String The string containing the name of an
MQ-data structure.

MQobject String A Monk object used to represent
type MQtype.
e*Way Intelligent Adapter for MQSeries User’s Guide 66 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
MQSeries e*Way Functions MQSeries Auxiliary Functions
Description

MQ-set-field takes an MQobject of type MQtype and sets the value of its internal field
(as specified in field_name) to the given value.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Examples

(define MQGMO (MQ-init-type "mqgmo"))
(define GetOption (MQ-create-config-value ‘#("MQGMO_SYNCPOINT"))
(MQ-set-field "MQGMO" "Options" MQGMO GetOption)

Note: This function fails if any mismatches appear between the input arguments to this
function.

Name Type Description

MQtype String The string containing the name of an
MQ-data structure.

field_name String A string containing the name of the
member field in MQtype.

MQobject String A Monk object used to represent
type MQtype.

value String The value assigned to field_name.
e*Way Intelligent Adapter for MQSeries User’s Guide 67 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
MQSeries e*Way Functions MQSeries Structures
5.5 MQSeries Structures
The table, starting below, documents the MQ data structures that the MQ *.dll files
allow you to modify. The first column contains the name of the structure, the second
column shows a subset of the fields within that structure, which you can modify, and
the third column shows the basic data types for the individual fields.

Structure Field Name Data Type

MQBO Options
Version

MQLONG
MQLONG

MQCNO Options
Version

MQLONG
MQLONG

MQDH CodedCharSetId
Encoding
Flags
Format
ObjectRecOffset
PutMsgRecFields
PutMsgRecOffset
RecsPresent
StrucLength
Version

MQLONG
MQLONG
MQLONG
STRING
MQLONG
MQLONG
MQLONG
MQLONG
MQLONG
MQLONG

MQDLH CodedCharSetId
DestQMgrName
DesQName
Encoding
Format
PutApplName
PutApplType
PutDate
PutTime
Reason
Version

MQLONG
STRING
STRING
MQLONG
STRING
STRING
STRING
STRING
STRING
MQLONG
MQLONG

MQGMO GroupStatus
MatchOptions
Options
Reserved1
ResolvedQName
SegmentStatus
Segmentation
Signa11
Signa12
Version
WaitInterval

MQCHAR
MQLONG
MQLONG
MQCHAR
STRING
MQCHAR
MQCHAR
MQLONG
MQLONG
MQLONG
MQLONG
e*Way Intelligent Adapter for MQSeries User’s Guide 68 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
MQSeries e*Way Functions MQSeries Structures
MQIIH Authenticator
CodedCharSetId
CommitMode
Encoding
Flags
Format
LTermOverride
MFSMapName
ReplyToFormat
Reserved
SecurityScope
StrucLength
TranInstanceId
TranState
Version

STRING
MQLONG
MQCHAR
MQLONG
MQLONG
STRING
STRING
STRING
STRING
MQCHAR
MQCHAR
MQLONG
STRING
MQCHAR
MQLONG

MQMD AccountingToken
ApplIdentityData
ApplOriginData
BackoutCount
CodedCharSetId

STRING
STRING
STRING
MQLONG
MQLONG

CorrelId
Encoding
Expiry
Feedback
Format
GroupId
MsgFlags
MsgId
MsgSeqNumber
MsgType
Offset
OriginalLength
Persistence
Priority
PutApplName
PutApplType
PutDate
PutTime
ReplyToQ
ReplyToQMgr
Report
UserIdentifier
Version

STRING
MQLONG
MQLONG
MQLONG
STRING
STRING
MQLONG
STRING
MQLONG
MQLONG
MQLONG
MQLONG
MQLONG
MQLONG
STRING
MQLONG
STRING
STRING
STRING
STRING
MQLONG
STRING
MQLONG

Structure (Continued) Field Name Data Type
e*Way Intelligent Adapter for MQSeries User’s Guide 69 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
MQSeries e*Way Functions MQSeries Structures
MQMD1 AccountingToken
ApplIdentityData
ApplOriginData
BackoutCount
CodedCharSetId
CorrelId
Encoding
Expiry
Feedback
Format

STRING
STRING
STRING
MQLONG
MQLONG
STRING
MQLONG
MQLONG
MQLONG
STRING

MsgId
MsgType
Persistence
Priority
PutApplName
PutApplType
PutDate
PutTime
ReplyToQ
ReplyToQMgr
Report
UserIdentifier
Version

STRING
MQLONG
MQLONG
MQLONG
STRING
MQLONG
STRING
STRING
STRING
STRING
MQLONG
STRING
MQLONG

MQMDE CodedCharSetId
Encoding
Flags
Format
GroupId
MsgFlags
MsgSeqNumber
Offset
OriginalLength
StrucLength
Version

MQLONG
MQLONG
MQLONG
STRING
STRING
MQLONG
MQLONG
MQLONG
MQLONG
MQLONG
MQLONG

MQOD AlternateUsrId
DynamicQName
InvalidDestCount
KnownDestCount
ObjectName
ObjectQMgrName
ObjectRecOffset
ObjectType
RecsPresent
ResponseRecOffset
UnknownDestCount
Version

STRING
STRING
MQLONG
MQLONG
STRING
STRING
MQLONG
MQLONG
MQLONG
MQLONG
MQLONG
MQLONG

MQOR ObjectName
ObjectQMgrName

STRING
STRING

Structure (Continued) Field Name Data Type
e*Way Intelligent Adapter for MQSeries User’s Guide 70 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
MQSeries e*Way Functions MQSeries Structures
MQPMO Context
InvalidDestCount
KnownDestCount
Options
Put6MsgRecFields
PutMsgRecOffset
RecsPresent
ResolvedQMgrName
ResolvedQName
ResponseRecOffset
Timeout
UnknownDestCount
Version

MQLONG
MQLONG
MQLONG
MQLONG
MQLONG
MQLONG
MQLONG
STRING
STRING
MQLONG
MQLONG
MQLONG
MQLONG

MQRMH CodedCharSetId
DataLogicalLength
DataLogicalOffset
DataLogicalOffset2
DestEnvLength
DestEnvOffset
DestNameLength
DestNameOffset
Encoding
Flags
Format
ObjectInstanceId
ObjectType
SrcEnvLength
SrcEnvOffset
SrcNameLength
SrcNameOffset
StrucLength
Version

MQLONG
MQLONG
MQLONG
MQLONG
MQLONG
MQLONG
MQLONG
MQLONG
MQLONG
MQLONG
STRING
STRING
STRING
MQLONG
MQLONG
MQLONG
MQLONG
MQLONG
MQLONG

MQRR CompCode
Reason

MQLONG
MQLONG

MQTM ApplId
ApplType
EnvData
ProcessName
QName
TriggerData
UsrData
Version

STRING
MQLONG
STRING
STRING
STRING
STRING
STRING
MQLONG

Structure (Continued) Field Name Data Type
e*Way Intelligent Adapter for MQSeries User’s Guide 71 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
MQSeries e*Way Functions MQSeries Structure Related Functions
5.6 MQSeries Structure Related Functions

MQMD-struct-get-Contents

Syntax

(MQMD-struct-get-Contents MQMDpointer)

Description

MQMD-struct-get-Contents creates a binary image of all the fields in one action.

Parameters

Return Values

blob
Returns the binary image of all fields.

Throws

None.

Additional Information

The MQMD structure is composed of several fields. In order to grab an image of the
MQMD (and avoid doing multiple “gets” and “puts”) use the function MQMD-struct-
get-Contents, which provides a binary image of all the fields in one action. The inverse
function, MQMD-struct-set-Contents takes this binary image and superimposes it on
the outgoing message. (These same functions exists for every supported MQ structure

MQTMC2 ApplId
ApplType
EnvData
ProcessName
QMgrName
QName
Trigger Data
UsrData
Version

STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING

MQXQH MsgDesc
RemoteQMgrName
RemoteQName
Version

MQMD1
STRING
STRING
MQLONG

Name Type Description

MQMDpointer Opaque handle Handle or pointer to the MQMD
structure.

Structure (Continued) Field Name Data Type
e*Way Intelligent Adapter for MQSeries User’s Guide 72 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
MQSeries e*Way Functions MQSeries Structure Related Functions
that the .dll supports; XXX-struct-get-Contents or XXX-struct-set-Contents, substituting
the structure name for XXX.)

MQMD-struct-set-Contents

Syntax

(MQMD-struct-set-contents MQMDpointer blob)

Description

MQMD-struct-set-Contents takes the binary image created by MQMD-struct-set-
Contents and superimposes it on the outgoing message.

Parameters

Return Values

Boolean
Returns #t (true)

Throws

None.

Additional Information

The MQMD structure is composed of several fields. In order to grab an image of the
MQMD (and avoid doing multiple “gets” and “puts”) use the function MQMD-struct-
get-Contents, which provides a binary image of all the fields in one action. The inverse
function, MQMD-struct-set-Contents takes this binary image and superimposes it on
the outgoing message. (These same functions exists for every supported MQ structure
that the .dll supports; XXX-struct-get-Contents or XXX-struct-set-Contents, substituting
the structure name for XXX.)

Name Type Description

MQMDpointer Opaque handle Handle or pointer to the MQMD
structure.

blob Blob The binary image that is being set.
e*Way Intelligent Adapter for MQSeries User’s Guide 73 SeeBeyond Proprietary and Confidential

Index
Index

A
Additional Path parameter 26
AIX 8

patch 11
Auxiliary Library Directories parameter 26

C
components 7
configuration parameters 13

Additional Path 26
Auxiliary Library Directories 26
Down Timeout 16
Exchange Data Interval 16
Exchange Data With External Function 28
External Connection Establishment Function 29
External Connection Shutdown Function 30
External Connection Verification Function 30
Forward External Errors 14
Journal File Name 14
Max Failed Messages 14
Max Resends Per Message 14
Monk Environment Initialization File 27
Negative Acknowledgment Function 31
Positive Acknowledgement Function 31
Process Outgoing Message Function 28
Resend Timeout 17
Shutdown Command Notification Function 32
Start Exchange Data Schedule 16
Startup Function 27
Stop Exchange Data Schedule 15
Up Timeout 16
Zero Wait Between Successful Exchanges 17

connection test queue name 34

D
Down Timeout parameter 16

E
enable connection test 34
environment variables

Client mode 34

for UNIX 34
for Windows 34

error handling 37
Exchange Data Interval parameter 16
Exchange Data with External Function parameter 28
External Connection Establishment Function
parameter 29
External Connection Shutdown Function parameter
30
External Connection Verification Function
parameter 30
external system requirements 8

F
Forward External Errors parameter 14
Functions

get-logical-name 40
start-schedule 42
stop-schedule 42

functions 57
MQBACK 50
MQBEGIN 51
MQ-check-type 58
MQCLOSE 51
MQCMIT 52
MQ-configure-close-options 59
MQ-configure-get-options 59
MQ-configure-open-options 61
MQ-configure-options 62
MQ-configure-put-options 63
MQCONN 53
MQCONNX 53
MQ-create-config-value 64
MQDISC 54
MQGET 54
MQ-get-field 64
MQ-init-type 65
MQOPEN 55
MQPUT 56
MQ-reset-type 66
MQSeries 50
MQSeries auxiliary 58
MQSeries structures 68
MQ-set-field 66
MQ-stdver-conn-estab 43
MQ-stdver-conn-shutdown 44
MQ-stdver-data-exchg 45
MQ-stdver-data-exchg-stub 45
MQ-stdver-init 46
MQ-stdver-neg-ack 46
MQ-stdver-pos-ack 47
MQ-stdver-proc-outgoing 48
MQ-stdver-proc-outgoing-stub 48
e*Way Intelligent Adapter for MQSeries User’s Guide 74 SeeBeyond Proprietary and Confidential

Index
MQ-stdver-shutdown 49
MQ-stdver-startup 46

G
get-logical-name 40

I
implementation notes 36
installation 9

AIX 11
Lotus Notes sample schema 37
Windows NT and Windows 2000 9

installation procedure
UNIX 10
Windows NT and Windows 2000 9

intended reader 7

J
Journal File Name parameter 14

L
local MQ install 33

M
Max Failed Messages parameter 14
Max Resends Per Message parameter 14
message queue 32
Monk Environment Initialization File parameter 27
MQ get buffer length 33
MQ settings parameter 32
MQBACK 50, 51
MQBEGIN 51
MQ-check-type 58
MQCLOSE 51
MQCMIT 52
MQ-configure-close-options 59
MQ-configure-get-options 59
MQ-configure-open-options 61
MQ-configure-options 62
MQ-configure-put-options 63
MQCONN 53
MQCONNX 53
MQ-create-config-value 64
MQDISC 54
MQGET 54
MQ-get-field 64
MQ-init-type 65
MQOPEN 55

MQPUT 56
MQPUT1 57
MQ-reset-type 66
MQSeries auxiliary functions 58
MQSeries DataGateWay

set up 36
MQSeries monk functions 50
MQSeries structures 68
MQ-set-field 66
MQ-stdver-conn-estab 43
MQ-stdver-conn-shutdown 44
MQ-stdver-data-exchg 45
MQ-stdver-data-exchg-stub 45
MQ-stdver-init 46
MQ-stdver-neg-ack 46
MQ-stdver-pos-ack 47
MQ-stdver-proc-outgoing 48
MQ-stdver-proc-outgoing-stub 48
MQ-stdver-shutdown 49
MQ-stdver-startup 46

N
Negative Acknowledgment Function parameter 31

O
Overview 6

P
parameters

connection test queue 34
enable connection test 34
local MQ install 33
MQ get buffer length 33
MQ settings 32
queue manager name 33
queue name 33

Positive Acknowledgment Function parameter 31
Process Outgoing Message Function parameter 28

Q
queue manager 33
queue manager name 33
queue name 33

R
remote queue

connecting to 37
necessary modifications 37
e*Way Intelligent Adapter for MQSeries User’s Guide 75 SeeBeyond Proprietary and Confidential

Index
Resend Timeout parameter 17

S
Schedules 42
Shutdown Command Notification Function
parameter 32
Start Exchange Data Schedule parameter 16
start-schedule 42
Startup Function parameter 27
stcewgenericmonk.exe 7
Stop Exchange Data Schedule parameter 15
stop-schedule 42
system requirements 8

AIX 8
external 8

U
UNIX

installation 10
Up Timeout parameter 16

W
Windows NT and Windows 2000

pre-installation 9

Z
Zero Wait Between Successful Exchanges parameter
17
e*Way Intelligent Adapter for MQSeries User’s Guide 76 SeeBeyond Proprietary and Confidential

	e*Way Intelligent Adapter for MQSeries User’s Guide
	Contents
	Introduction
	1.1 Overview
	1.1.1. Intelligent Queues and IQ Managers
	1.1.2. Intended Reader
	1.1.3. Components

	1.2 Supported Operating Systems
	1.3 System Requirements
	1.4 External System Requirements

	Installation
	2.1 Windows NT and Windows 2000
	2.1.1. Pre-installation
	2.1.2. Installation Procedure

	2.2 UNIX
	2.2.1. Pre-installation
	2.2.2. Installation Procedure
	2.2.3. AIX Systems

	2.3 Files/Directories Created by the Installation

	Configuration
	3.1 e*Way Configuration Parameters
	3.1.1. General Settings
	Journal File Name
	Max Resends Per Message
	Max Failed Messages
	Forward External Errors

	3.1.2. Communication Setup
	Start Exchange Data Schedule
	Stop Exchange Data Schedule
	Exchange Data Interval
	Down Timeout
	Up Timeout
	Resend Timeout
	Zero Wait Between Successful Exchanges

	3.1.3. Monk Configuration
	Operational Details
	How to Specify Function Names or File Names
	Additional Path
	Auxiliary Library Directories
	Monk Environment Initialization File
	Startup Function
	Process Outgoing Message Function
	Exchange Data with External Function
	External Connection Establishment Function
	External Connection Verification Function
	External Connection Shutdown Function
	Positive Acknowledgment Function
	Negative Acknowledgment Function
	Shutdown Command Notification Function

	3.1.4. MQ Settings
	Local MQ Install
	Qmanager
	Queue Name
	MQ Get Buffer Length
	Enable Connection Test
	Connection Test Queue Name

	3.2 Environment Variable
	3.3 Environment Configuration
	3.4 External Configuration Requirements

	Implementation
	4.1 Implementation Notes
	4.1.1. Connecting to a Remote Queue

	4.2 Error Handling
	4.3 Installing the MQSeries (Monk) Sample Schema
	4.3.1. Install the Sample Schema on the Registry Host

	MQSeries e*Way Functions
	5.1 Basic Functions
	event-send-to-egate
	get-logical-name
	send-external-down
	send-external-up
	shutdown-request
	start-schedule
	stop-schedule

	5.2 MQSeries e*Way External Init Functions
	MQ-stdver-conn-estab
	MQ-stdver-conn-shutdown
	MQ-stdver-conn-ver
	MQ-stdver-data-exchg
	MQ-stdver-data-exchg-stub
	MQ-stdver-init
	MQ-stdver-startup
	MQ-stdver-neg-ack
	MQ-stdver-pos-ack
	MQ-stdver-proc-outgoing
	MQ-stdver-proc-outgoing-stub
	MQ-stdver-shutdown

	5.3 MQSeries Monk Functions
	MQBACK
	MQBEGIN
	MQCLOSE
	MQCMIT
	MQCONN
	MQCONNX
	MQDISC
	MQGET
	MQOPEN
	MQPUT
	MQPUT1

	5.4 MQSeries Auxiliary Functions
	MQ-check-type
	MQ-configure-close-options
	MQ-configure-get-options
	MQ-configure-open-options
	MQ-configure-options
	MQ-configure-put-options
	MQ-create-config-value
	MQ-get-field
	MQ-init-type
	MQ-reset-type
	MQ-set-field

	5.5 MQSeries Structures
	5.6 MQSeries Structure Related Functions
	MQMD-struct-get-Contents
	MQMD-struct-set-Contents

	Index
	A
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	U
	W
	Z

