
e*Way Intelligent Adapter for
Sybase User’s Guide

Release 4.5.4

Monk Version
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

e*Gate, e*Insight, e*Way, e*Xchange, e*Xpressway, eBI, iBridge, Intelligent Bridge, IQ, SeeBeyond, and the SeeBeyond logo are
trademarks and service marks of SeeBeyond Technology Corporation. All other brands or product names are trademarks of their
respective companies.

© 1999–2003 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20030530143744.
e*Way Intelligent Adapter for Sybase User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents
Contents

Chapter 1

Introduction 7
Overview 7

Intended Reader 7
Sybase e*Way Components 7

Monk Extensions 8

System Requirements 8
External System Requirements 9

Chapter 2

Installation 10
Installation Decisions 10

Installing the Sybase e*Way on Windows 11
Pre-installation 11
Installation Procedure 11

Installation Directories and Files on Windows 11

Installing the Sybase e*Way on UNIX 12
Pre-installation 12
Installation Procedure 12

Chapter 3

Configuration 14
e*Way Configuration Parameters 14

General Settings 14
Journal File Name 15
Max Resends Per Message 15
Max Failed Messages 15
Forward External Errors 15

Communication Setup 16
Start Exchange Data Schedule 16
Stop Exchange Data Schedule 17
Exchange Data Interval 17
Down Timeout 17
Up Timeout 18
e*Way Intelligent Adapter for Sybase User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents
Resend Timeout 18
Zero Wait Between Successful Exchanges 18

Monk Configuration 18
Operational Details 19
How to Specify Function Names or File Names 26
Additional Path 27
Auxiliary Library Directories 27
Monk Environment Initialization File 27
Startup Function 28
Process Outgoing Event Function 28
Exchange Data with External Function 29
External Connection Establishment Function 30
External Connection Verification Function 30
External Connection Shutdown Function 31
Positive Acknowledgment Function 31
Negative Acknowledgment Function 32
Shutdown Command Notification Function 33

Database Setup 33
Database Type 33
Database Name 33
User Name 34
Encrypted Password 34

Chapter 4

Implementation 35
Using the ETD Editor’s Build Tool 35

The Event Type Definition Files 38
Table or View 38
Dynamic SQL Statement 41
Stored Procedure 43

Sample One – Event Driven 45
Creating the New Schema 47
Creating the Event Types 47

FileInEvent 47
db_rcv_in 48
db_rcv_struct 49

Creating and Configuring the e*Ways 49
FileIn 50
dart_rcv 50

Create the Collaboration Rules 56
db_rcv 56
no_xlate 57

Create the Intelligent Queue 57
Create the Collaborations 58

Pub 58
Sub 59

Execute the Schema 59

Sample Two – Schedule Driven Database Access 61
Overview 61
Create and Configure e*Ways 61
e*Way Intelligent Adapter for Sybase User’s Guide 4 SeeBeyond Proprietary and Confidential

Contents
Configuring the “FileOut” e*Way 61
Configuring the “DBPoll” e*Way 62

Create Event Type Definitions 63
Create Collaboration Rules 63
Create the Queue 64
Create the Collaboration 64
Create Monk functions 64

Sample Monk Scripts 65
Initializing Monk Extensions 66
Supporting Functions for Sample Scripts 66
Logging In 69
Calling Stored Procedures 70
Using Dynamic SQL Statements 71

Inserting Records with Dynamic SQL Statements 71
Updating Records with Dynamic SQL Statements 73
Selecting Records with Dynamic SQL Statements 74
Deleting Records with Dynamic SQL Statements 75

Inserting a Binary Image to a Database 77
Retrieving an Image from a Database 79

Chapter 5

Sybase e*Way Functions 82
Standard e*Way Functions 82

db-stdver-init 83
db-stdver-startup 84
db-stdver-conn-estab 85
db-stdver-conn-ver 87
db-stdver-conn-shutdown 88
db-stdver-pos-ack 89
db-stdver-neg-ack 90
db-stdver-shutdown 91
db-stdver-proc-outgoing 92
db-stdver-proc-outgoing-stub 94
db-stdver-data-exchg 96
db-stdver-data-exchg-stub 97

Generic e*Way Built-in Functions 97
start-schedule 99
stop-schedule 100
send-external-up 101
send-external-down 102
get-logical-name 103
event-send-to-egate 104
shutdown-request 105

Database Access Functions 105
General Connection Functions 106

make-connection-handle 107
connection-handle? 108
db-login 109
db-logout 111
db-alive 112
db-std-timestamp-format 114
db-max-long-data-size 115
db-commit 116
e*Way Intelligent Adapter for Sybase User’s Guide 5 SeeBeyond Proprietary and Confidential

Contents
db-rollback 117
statement-handle? 118
db-get-error-str 119

Sybase SQL Type Support 120
Static SQL Functions 121

db-sql-format 122
db-sql-execute 124
db-sql-select 125
db-sql-fetch 126
db-sql-fetch-cancel 127
db-sql-column-names 128
db-sql-column-types 130
db-sql-column-values 132

Dynamic SQL Functions 133
Benefits of Dynamic SQL 134
Limitations of Dynamic SQL 134
db-stmt-bind 138
db-stmt-bind-binary 139
db-stmt-param-count 140
db-stmt-param-type 141
db-stmt-param-assign 142
db-stmt-execute 143
db-stmt-fetch 144
db-stmt-fetch-cancel 145
db-stmt-column-count 146
db-stmt-column-name 147
db-stmt-column-type 148
db-stmt-row-count 149

Stored Procedure Functions 149
db-proc-bind 151
db-proc-bind-binary 152
db-proc-param-count 153
db-proc-param-name 155
db-proc-param-type 156
db-proc-param-io 157
db-proc-param-assign 158
db-proc-param-value 160
db-proc-execute 162
db-proc-fetch 164
db-proc-fetch-cancel 166
db-proc-column-count 168
db-proc-column-name 170
db-proc-column-type 172
db-proc-return-exist 174
db-proc-return-type 176
db-proc-return-value 178

Message Event Functions 179
db-struct-bulk-insert 181
db-struct-execute 182
db-struct-call 183
db-struct-insert 184
db-struct-update 186
db-struct-select 188
db-struct-fetch 190

Index 192
e*Way Intelligent Adapter for Sybase User’s Guide 6 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

SeeBeyond™ developed the e*Way Intelligent Adapter for Sybase as a graphically-
configurable e*Way. The Sybase e*Way implements the logic that sends Events (data) to
e*Gate and queues the next Event for processing and transport to the database.

A Monk database access library is available to log into the database, issue Structured
Query Language (SQL) statements, and call stored procedures. The Sybase e*Way uses
Monk to execute user-supplied database access Monk scripts to retrieve information
from or send information to a database. The fetched data (information) can be returned
in a Monk Collaboration which simplifies the accessibility of each column in the
database table. This document describes how to install and configure the Sybase e*Way.

1.1 Overview
The e*Way Intelligent Adapter for Sybase provides for data exchange between the
e*Gate system and one or more Sybase databases.

The e*Gate System consists of a set of e*Ways, BOBs and Intelligent Queues, interacting
with each other and configured to meet the requirements of a business application.

The Sybase e*Way can be one of many e*Ways that comprise the e*Gate System. Using
one or more Sybase e*Ways, e*Gate can link Sybase-based applications with other
software applications.

1.1.1 Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the e*Gate system.

The reader should have expert-level knowledge of Windows NT and/or UNIX
operations and administration, be thoroughly familiar with Sybase and SQL and be
thoroughly familiar with Windows-style GUI operations.

1.1.2 Sybase e*Way Components
The Sybase e*Way is comprised of the following:

! stcewgenericmonk.exe, the executable component.

! Configuration file, which the e*Way Editor uses to define configuration parameters.
e*Way Intelligent Adapter for Sybase User’s Guide 7 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction System Requirements
! Monk external function scripts.

! Monk extension library for Sybase database.

! e*Way Monk functions.

A complete list of installed files appears in Figure 1 on page 12 and Table 1 on page 13.

Monk Extensions

A Monk extension library provides for SQL calls. The Monk library contains functions
which initialize connections (“login”) to a database. Other Monk functions process SQL
statements or return data from the database to the Sybase e*Way.

The Monk functions supporting Sybase are not part of the basic Monk system. To obtain
this functionality a Monk extension library, provided as part of the Sybase e*Way
product, is automatically loaded when the Sybase e*Way is initialized.

The system developer should understand and be able to write valid Monk code.

1.2 System Requirements
The Sybase e*Way is available on the following operating systems:

! Windows XP with e*Gate 4.5.3

! Windows 2000, Windows 2000 SP1, Windows 2000 SP2, and Windows 2000 SP3

! Windows NT 4.0 SP6a

! Solaris 2.6, 7, and 8

! AIX 4.3.3 and 5.1

! HP-UX 11.0 and HP-UX 11i

! Compaq Tru64 V4.0F, V5.0A, and V5.1A

Note: HP-UX 11.0, HP-UX 11i, and AIX 4.3.3 and 5.1 do not support Sybase database
12.5 and Sybase Open Client 12.5.

! Japanese Windows XP with e*Gate 4.5.3

! Japanese Windows 2000, Windows 2000 SP1, and Windows 2000 SP2

! Japanese Windows NT 4.0 SP6a

! Japanese Solaris 2.6, 7, and 8

! Japanese HP-UX 11.0

To use the Sybase e*Way, you need the following:

! An e*Gate Participating Host, version 4.5.1 or later. For Windows XP operating
system, you need an e*Gate Participating Host, version 4.5.3.

! A TCP/IP network connection.
e*Way Intelligent Adapter for Sybase User’s Guide 8 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction System Requirements
The client components of the databases with which the e*Way interfaces have their own
requirements; see that system’s documentation for more details.

Note: Open and review the Readme.txt for any additional requirements prior to
installation. The Readme.txt is located on the Installation CD_ROM .

1.2.1 External System Requirements
To enable the e*Way to communicate properly with the external system, the following
are required:

! An external Sybase database (version 11.9, 12, or 12.5).

! A Sybase Open Client (version 11.1.1, 12, or 12.5).

Note: For Compaq Tru64, Sybase Open Client version 12.0, or 12.5 is required.

! Although the Sybase e*Way can function with a Registry Host on a UNIX platform,
the e*Gate Enterprise Manager must be installed on a Windows operating system.
e*Way Intelligent Adapter for Sybase User’s Guide 9 SeeBeyond Proprietary and Confidential

Chapter 2

Installation

The installation procedure depends upon the operating system of the Participating
Host on which you are installing the Sybase e*Way. This chapter discusses the decisions
you must make prior to installation, and the procedures for installing the Sybase e*Way
on either Windows or UNIX. This chapter assumes that the Sybase Open Client is
installed and configured. For details about installing the Sybase Open Client for
Windows or UNIX, refer to the respective installation guides from Sybase.

Note: Open and review the Readme.txt for any additional requirements prior to
installation. The Readme.txt is located on the Installation CD_ROM.

2.1 Installation Decisions
This section presents decisions to be made before beginning the installation. These
decisions apply to both UNIX and Windows installations:

! Determine the operating system/platform on which the Sybase e*Way will operate.

! Ensure that the required version of Sybase Open Client is installed on your system.

Note: Sybase Open Client must also be installed on a Windows unit that is running the
e*Gate Enterprise Manager for an e*Gate Registry Host on a UNIX platform.

On UNIX:

1 Issue the command below to determine the version of Sybase Open Client installed:

isql -v

2 The following output shows that version 11.1 is installed.

Sybase CTISQL Utility/11.1/GA/sun_svr4/SPARC Solaris 2.4/1/EBF
7353/OPT/Fri Jun 6 11:09:18 1997

1 Or, issue these commands:

cd $SYBASE/lib
strings libct.a|grep Sybase

2 The following output shows that version 11.1 is installed.

Sybase Client-Library/11.1/GA/sun_svr4/SPARC Solaris 2.4/1/EBF
7353/OPT/Fri Jun 6 11:09:18 1997
e*Way Intelligent Adapter for Sybase User’s Guide 10 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Installation Installing the Sybase e*Way on Windows
On Windows:

1 Issue the command below to determine the version of Sybase Open Client installed:

cd %SYBASE%\bin
dir

2.2 Installing the Sybase e*Way on Windows

2.2.1 Pre-installation
1 Exit all Windows programs before running the setup program, including any anti-

virus applications.

2 You must have Administrator privileges to install this e*Way.

2.2.2 Installation Procedure
To install the Sybase e*Way on a Windows system:

1 Log in as an Administrator on the workstation on which you want to install the
e*Way.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s “Autorun” feature is enabled, the setup application should
launch automatically; skip ahead to step 4. Otherwise, use the Windows NT
Explorer or the Control Panel’s Add/Remove Applications feature to launch the file
setup.exe on the CD-ROM drive.

4 The InstallShield setup application will launch. Follow the on-screen instructions to
install the e*Way.

Note: Be sure to install the e*Way files in the suggested “client” installation directory. The
installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not
change the suggested “installation directory” setting.

2.3 Installation Directories and Files on Windows
The Sybase e*Way CD-ROM contains the following files, which the InstallShield
Wizard copies to the indicated directories on your computer, creating them if necessary.

These files are installed in the Registry during your initial installation. The first time
you access the e*Way to configure it, the following files (with the exception of all the
Monk files) move to the Client directory.
e*Way Intelligent Adapter for Sybase User’s Guide 11 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
Installation Installing the Sybase e*Way on UNIX
2.4 Installing the Sybase e*Way on UNIX

2.4.1 Pre-installation
! You do not require root privileges to install this e*Way. Log in under the user name

that you wish to own the e*Way files. Be sure that this user has sufficient privilege
to create files in the e*Gate directory tree.

2.4.2 Installation Procedure
To install the Sybase e*Way on a UNIX system:

1 Log in on the workstation containing the CD-ROM drive, and insert the CD-ROM
into the drive.

2 If necessary, mount the CD-ROM drive.

Figure 1 Installation Directories and Files on Windows

Install Directory Files

bin\ stcstruct.exe
stc_dbapps.dll
stc_dbmonkext.dll
stc_dbsy11.dll
stc_dbsy12.dll

configs\stcewgenericmonk\ dart.def

monk_library dart.gui

monk_library\dart\ db-struct-bulk-insert.monk
db-struct-call.monk
db-struct-execute.monk
db-struct-fetch.monk
db-struct-insert.monk
db-struct-select.monk
db-struct-update.monk
db-stdver-eway-funcs.monk
db_bind.monk
db-stdver-eway-funcs.monk
db-sanitize-symbol.monk
db_bind.monk
db2msg-display.monk
db2msg.ssc
sybmsg-display.monk
sybmsg.ssc
oramsg-display.monk
oramsg.ssc
odbcmsg-display.monk
odbcmsg.ssc
e*Way Intelligent Adapter for Sybase User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
Installation Installing the Sybase e*Way on UNIX
3 At the shell prompt, type

cd /cdrom

4 Start the installation script by typing:

setup.sh

5 A menu of options will appear. Select the “install e*Way” option. Then, follow any
additional on-screen directions.

Note: Be sure to install the e*Way files in the suggested “client” installation directory. The
installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not
change the suggested “installation directory” setting.

The CD-ROM contains the following files, which are copied to the indicated path on
your computer. The files and directories are under EGate/Server/registry/repository/
default/

Table 1 Installation Directories and Files (UNIX)

Install Directory Files

bin/ stc_dbapps.dll
stc_dbmonkext.dll
stc_dbsy11.dll
stc_dbsyb12.dll
stcstruct.exe

configs/stcewgenericmonk/ dart.def

monk_library dart.gui

monk_library/dart/ db-struct-bulk-insert.monk
db-struct-call.monk
db-struct-execute.monk
db-struct-fetch.monk
db-struct-insert.monk
db-struct-select.monk
db-struct-update.monk
db-stdver-eway-funcs.monk
db_bind.monk
db-stdver-eway-funcs.monk
db-sanitize-symbol.monk
db_bind.monk
db2msg-display.monk
db2msg.ssc
sybmsg-display.monk
sybmsg.ssc
oramsg-display.monk
oramsg.ssc
odbcmsg-display.monk
odbcmsg.ssc
e*Way Intelligent Adapter for Sybase User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 3

Configuration

Before you can run the Sybase e*Way, you must configure it using the e*Way Editor,
which is accessed from the e*Gate Enterprise Manager GUI. The Sybase e*Way package
includes a default configuration file which you can modify using this window.

This chapter describes the procedure for configuring a new e*Way. You can also edit an
existing e*Way and rename an e*Way. Procedures for creating and editing e*Gate
components are provided in the Enterprise Manager’s online help.

3.1 e*Way Configuration Parameters
e*Way configuration parameters are set using the e*Way Editor.

To change e*Way configuration parameters:

1 In the Enterprise Manager’s Component editor, select the e*Way you want to
configure and display its properties.

2 Under Configuration File, click New to create a new file, Find to select an existing
configuration file, or Edit to edit the currently selected file.

3 In the Additional Command Line Arguments box, type any additional command
line arguments that the e*Way may require, taking care to insert them at the end of
the existing command-line string. Be careful not to change any of the default
arguments unless you have a specific need to do so.

For more information about how to use the e*Way Editor, see the e*Way Editor’s online
Help or the Working with e*Ways chapter in the e*Gate Integrator’s User’s Guide.

The e*Way’s configuration parameters are organized into the following sections:

! General Settings

! Communication Setup

! Monk Configuration

! Database Setup

3.1.1 General Settings
The General Settings control basic operational parameters.
e*Way Intelligent Adapter for Sybase User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Journal File Name

Description

Specifies the name of the journal file, which stores messages that are not picked up from
the queue.

Required Values

A valid filename, optionally including an absolute path (for example,
c:\temp\filename.txt). If an absolute path is not specified, the file is stored in the
e*Gate “SystemData” directory. See the e*Gate Integrator System Administration and Operations
Guide for more information about file locations. If the directory does not exist, the e*Way
creates it.

Additional Information

The Journal File is used for the following conditions:

! Journal a message when it exceeds the number of retries.

! When its receipt is due to an external error, but Forward External Errors is set to No.
(See “Forward External Errors” on page 15 for more information.)

Max Resends Per Message

Description

Specifies the maximum number of times the e*Way attempts to resend a message to the
external system after receiving an error. When this maximum number is reached, the
message is considered “failed” and is written to the journal file.

Required Values

An integer between 1 and 1,024. The default is 5.

Max Failed Messages

Description

Specifies the maximum number of failed messages the e*Way allows. When the
specified number of failed messages is reached and journaled, the e*Way shut downs
and exits.

Required Values

An integer between 1 and 1,024. The default is 3.

Forward External Errors

Description

Selects whether error messages, that begin with the string DATAERR and are received
from the external system, are queued to the e*Way’s configured queue. See “Exchange
Data with External Function” on page 29 for more information.
e*Way Intelligent Adapter for Sybase User’s Guide 15 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Required Values

Yes or No. The default value, No, specifies that error messages are not forwarded.

3.1.2 Communication Setup
The Communication Setup parameters control the schedule by which the e*Way
obtains data from the external system.

Note: The schedule that you set using the e*Way’s properties in the Enterprise Manager
controls when the e*Way executable runs. The schedule that you set within the
e*Way Editor determines when data is exchanged. Be sure that you set the
"exchange data" schedule to fall within the "run the executable" schedule.

Start Exchange Data Schedule

Description

Establishes the schedule to invoke the e*Way’s Exchange Data with External function.

Required Values

One of the following:

! One or more specific dates/times

! A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Since months do not all contain equal numbers of days, be sure not to provide
boundaries that cause an invalid date selection (i.e. the 30th of every month does not
include February).

Also required: If you set a schedule using this parameter, you must also define all three
of the following:

! Exchange Data with External Function on page 29

! Positive Acknowledgment Function on page 31

! Negative Acknowledgment Function on page 32

If you do not define these parameters, the e*Way terminates execution when the
schedule attempts to start.

Additional Information

When the schedule starts, the e*Way determines whether it is waiting to send an ACK
or NAK to the external system (using the Positive and Negative Acknowledgment
functions), and whether the connection to the external system is active. If no ACK/
NAK is pending and the connection is active, the e*Way immediately executes the
Exchange Data with External function. Thereafter, the Exchange Data with External
function is called according to the Exchange Data Interval parameter until the Stop
Exchange Data Schedule time is reached.

See “Exchange Data with External Function” on page 29, “Exchange Data Interval”
on page 17, and “Stop Exchange Data Schedule” on page 17 for more information.
e*Way Intelligent Adapter for Sybase User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Stop Exchange Data Schedule

Description

Establishes the schedule to stop data exchange.

Required Values

One of the following:

! One or more specific dates/times

! A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Since months do not all contain equal number of days, be sure not to provide
boundaries that cause an invalid date selection (i.e. the 30th of every month does not
include February).

Exchange Data Interval

Description

Specifies the number of seconds the e*Way waits between calls to the Exchange Data
with External function during scheduled data exchanges.

Required Values

An integer between 0 and 86,400. The default is 120.

Additional Information

If Zero Wait Between Successful Exchanges is set to Yes and the Exchange Data with
External Function returns data, The Exchange Data Interval setting is ignored and the
e*Way invokes the Exchange Data with External Function immediately.

If this parameter is set to zero, there is no exchange data schedule set and the Exchange
Data with External Function is never called.

See “Start Exchange Data Schedule” on page 16 and “Stop Exchange Data Schedule”
on page 17 for more information about the data-exchange schedule.

Down Timeout

Description

Specifies the number of seconds that the e*Way waits between calls to the External
Connection Establishment function. See “External Connection Establishment
Function” on page 30 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.
e*Way Intelligent Adapter for Sybase User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Up Timeout

Description

Specifies the number of seconds that the e*Way waits between calls to the External
Connection Verification function to verify that the connection is still up. See “External
Connection Verification Function” on page 30 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.

Resend Timeout

Description

Specifies the number of seconds the e*Way waits between attempts to resend a message
to the external system, after receiving an error message from the external.

Required Values

An integer between 1 and 86,400. The default is 10.

Zero Wait Between Successful Exchanges

Description

Selects whether to initiate data exchange after the Exchange Data Interval or
immediately after a successful previous exchange.

Required Values

Yes or No. If this parameter is set to Yes, the e*Way immediately invokes the Exchange
Data with External function if the previous exchange function returned data. If this
parameter is set to No, the e*Way always waits the number of seconds specified by
Exchange Data Interval between invocations of the Exchange Data with External
function. The default is No.

See “Exchange Data with External Function” on page 29 for more information.

3.1.3 Monk Configuration
The parameters in this section help you set up the information required by the e*Way to
utilize Monk for communication with the external system.

Conceptually, an e*Way is divided into two halves. One half of the e*Way (shown on
the left in Figure 2 below) handles communication with the external system; the other
half manages the Collaborations that process data and subscribe or publish to other
e*Gate components.
e*Way Intelligent Adapter for Sybase User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 2 e*Way Internal Architecture

The “communications half” of the e*Way uses Monk functions to start and stop
scheduled operations, exchange data with the external system, package data as e*Gate
“Events” and send those Events to Collaborations, and manage the connection between
the e*Way and the external system. The Monk Configuration options discussed in this
section control the Monk environment and define the Monk functions used to perform
these basic e*Way operations. You can create and modify these functions using the
SeeBeyond Collaboration Rules Editor or a text editor (such as write, notepad, or UNIX
vi).

The “communications half” of the e*Way is single-threaded. Functions run serially, and
only one function can be executed at a time. The “business logic” side of the e*Way is
multi-threaded, with one executable thread for each Collaboration. Each thread
maintains its own Monk environment; therefore, information such as variables,
functions, path information, and so on cannot be shared between threads.

Operational Details

The Monk functions in the “communications half” of the e*Way fall into the following
groups:

Type of Operation Name

Initialization Startup Function on page 28
(also see Monk Environment Initialization
File on page 27)

Communication
with external
system

Business logic and
communication
within e*Gate

External
system

Other e*Gate
components

e*Gate Events

Data
e*Way

Collaboratio

Collaboratio

Function

Functio
e*Way Intelligent Adapter for Sybase User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
A series of figures on the next several pages illustrates the interaction and operation of
these functions.

Initialization Functions

Figure 3 illustrates how the e*Way executes its initialization functions.

Connection External Connection Establishment Function
on page 30
External Connection Verification Function on
page 30
External Connection Shutdown Function on
page 31

Schedule-driven data
exchange

Exchange Data with External Function on
page 29
Positive Acknowledgment Function on
page 31
Negative Acknowledgment Function on
page 32

Shutdown Shutdown Command Notification Function
on page 33

Event-driven data exchange Process Outgoing Event Function on page 28

Type of Operation Name
e*Way Intelligent Adapter for Sybase User’s Guide 20 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 3 Initialization Functions

Connection Functions

Figure 4 illustrates how the e*Way executes the connection establishment and
verification functions.

Start e*Way

Load
"Monk Initialization"

file

Execute any Monk function
having the same name as

the initialization file

Load "Startup" file

Execute any Monk function
having the same name as

the startup file
e*Way Intelligent Adapter for Sybase User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 4 Connection establishment and verification functions

Note: The e*Way selects the connection function based on an internal “up/down” flag
rather than a poll to the external system. See Figure 6 on page 24 and Figure 8 on
page 26 for examples of how different functions use this flag.

User functions can manually set this flag using Monk functions. See send-
external-up on page 101 and send-external-down on page 102 for more
information.

Figure 5 illustrates how the e*Way executes its “connection shutdown” function.

Figure 5 Connection shutdown function

Connect e*Way to
external system

Internal
flag shows connection

active?

Wait for "Up Timeout"
schedule

Call External Connection
Verification function

Wait for "Down Timeout"
schedule

Call External Connection
Establishment function

Yes

No

Control Broker issues
"Suspend" command

Call External Connection Shutdown
function with parameter

"SUSPEND_NOTIFICATION"

e*Way closes connection

Return any value
e*Way Intelligent Adapter for Sybase User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Schedule-driven Data Exchange Functions

Figure 6 (on the next page) illustrates how the e*Way performs schedule-driven data
exchange using the Exchange Data with External Function. The Positive
Acknowledgement Function and Negative Acknowledgement Function are also
called during this process.

“Start” can occur in any of the following ways:

! The “Start Data Exchange” time occurs

! Periodically during data-exchange schedule (after “Start Data Exchange” time, but
before “Stop Data Exchange” time), as set by the Exchange Data Interval

! The start-schedule Monk function is called

After the function exits, the e*Way waits for the next “start schedule” time or command.
e*Way Intelligent Adapter for Sybase User’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 6 Schedule-driven data exchange functions

Shutdown Functions

Figure 7 illustrates how the e*Way implements the shutdown request function.

Increment "Failed
Message" counter

DATAERR plus
additional data

Null
string

Data
(other than

error strings)

Forward
external
errors?

No

Yes

Set interval flag
"Connection

Down"

CONNERR

Wait for Resend
Timeout period

Roll back Event to
its publishing IQ

Increment "Failed
Message" counter

DATAERR only

Journal
enabled?

Create journal
entry

Yes

No

Start

Function exits

Send Event to
e*Gate

All
subscribing

Collaborations return
TRUE

?

Call Positive
Acknowledgement

function

Zero
wait after successful

exchange?

Call Negative
Acknowledgement

function

Yes

No

YesNo

Call Exchange Data with
External function

Return
e*Way Intelligent Adapter for Sybase User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 7 Shutdown functions

Event-driven Data Exchange Functions

Figure 8 on the next page illustrates event-driven data-exchange using the Process
Outgoing Message Function.

Every two minutes, the e*Way checks the “Failed Message” counter against the value
specified by the Max Failed Messages parameter. When the “Failed Message” counter
exceeds the specified maximum value, the e*Way logs an error and shuts down.

Control Broker issues
"Shutdown" command

Call Shutdown Notification function
with parameter

"SHUTDOWN_NOTIFICATION"

e*Way shuts down

Wait for
shutdown-request

function

Return

Null string or
"SUCCESS"

any other value
e*Way Intelligent Adapter for Sybase User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Figure 8 Event-driven data-exchange functions

How to Specify Function Names or File Names

Parameters that require the name of a Monk function accepts either a function name or
a file name. If you specify a file name, be sure that the file has one of the following
extensions:

! .monk

! .tsc

! .dsc

Collaboration publishes
to <EXTERNAL>

Call Process Outgoing
Message function

Set internal flag
"Connection

Down"

Maximum
Resends per Message

exceeded?

Yes

Return

CONNERR DATAERR

Increment "Failed
Message" counter

Create journal
entry

Null
string

No
Journal

enabled?

No

Function exits

Wait for Resend
Timeout period

Roll back Event to
its publishing IQ

Yes

Wait for Resend
Timeout period

Increment
"Resend" counter

RESEND
e*Way Intelligent Adapter for Sybase User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Additional Path

Description

Specifies a path to be added to the “load path,” the path Monk uses to locate files and
data (set internally within Monk). The directory specified in Additional Path is
searched before the default load path.

Required Values

A pathname, or a series of paths separated by semicolons. This parameter is optional
and may be left blank.

Additional information

The default load paths are determined by the “bin” and “Shared Data” settings in the
.egate.store file. See the e*Gate Integrator System Administration and Operations Guide for
more information about this file.

To specify multiple directories, manually enter the directory names rather than
selecting them with the “file selection” button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths. For example:

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

Auxiliary Library Directories

Description

Specifies a path to auxiliary library directories. Any .monk files found within those
directories are automatically loaded into the e*Way’s Monk environment.

Required Values

A pathname, or a series of paths separated by semicolons. (The default is
monk_library/dart.)

Additional information

To specify multiple directories, manually enter the directory names rather than
selecting them with the “file selection” button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths. For example:

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

This parameter is optional and may be left blank.

Monk Environment Initialization File

Specifies a file that contains environment initialization functions, which are loaded
after the auxiliary library directories are loaded. Use this feature to initialize any global
Monk variables that are used by the Monk Extension scripts.
e*Way Intelligent Adapter for Sybase User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Required Values

A filename within the “load path”, or filename plus path information (relative or
absolute). If path information is specified, that path is appended to the “load path.” See
“Additional Path” on page 27 for more information about the “load path.”(The default
is db-stdver-init on page 83.)

Additional information

Any environment-initialization functions called by this file accept no input, and must
return a string. The e*Way loads this file and try to invoke a function of the same base
name as the file name (for example, for a file named my-init.monk, the e*Way attempts
to execute the function my-init).

Typically, it is a good practice to initialize any global Monk variables that may be used
by any other Monk Extension scripts.

The internal function that loads this file is called once when the e*Way first starts up
(see Figure 3 on page 21).

Startup Function

Description

Specifies a Monk function that the e*Way loads and invokes upon startup, or whenever
the e*Way’s configuration changes before it enters into its initial communication state.
This function is used so that the external system can be initialized before message
exchange starts.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. (The default is db-stdver-startup on
page 84.)

Additional information

The function accepts no input, and must return a string.

The string “FAILURE” indicates that the function failed; any other string (including a
null string) indicates success.

This function is called after the e*Way loads the specified “Monk Environment
Initialization file” and any files within the specified Auxiliary Directories.

The e*Way loads this file and tries to invoke a function of the same base name as the file
name (see Figure 3 on page 21). For example, for a file named my-startup.monk, the
e*Way attempts to execute the function my-startup.

Process Outgoing Event Function

Description

Specifies the Monk function responsible for processing outgoing Event information
from the e*Way to the external system when the e*Way is configured as outbound. This
function is used as an event driven function.
e*Way Intelligent Adapter for Sybase User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. You may not leave this field blank. (The
default is db-stdver-proc-outgoing on page 92 or db-stdver-proc-outgoing-stub on
page 94.)

Additional Information

The function requires a non-null string as input (the outgoing Event to be sent) and
must return a string.

The e*Way invokes this function when one of its Collaborations publishes an Event to
an <EXTERNAL> destination (as specified within the Enterprise Manager). The
function returns one of the following (see Figure 8 on page 26 for more details):

! Null string: Indicates that the Event was published successfully to the external
system.

! “RESEND”: Indicates that the Event should be resent.

! “CONNERR”: Indicates that there is a problem communicating with the external
system.

! “DATAERR”: Indicates that there is a problem with the message (Event) data itself.

! If a string other than the following is returned, the e*Way creates an entry in the log
file indicating that an attempt has been made to access an unsupported function.

Note: If you want to use event-send-to-egate to enqueue failed Events in a separate IQ,
the e*Way must have an inbound Collaboration (with appropriate IQs) configured
to process those Events. See the Monk Developer’s Reference for more information.

Exchange Data with External Function

Description

Specifies a Monk function that initiates an exchange of data with an external system
that can be either inbound or outbound. This function is called according to a schedule
(unlike the Process Outgoing Message Function, which is event-driven),
predominantly inbound.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. (The defaults are db-stdver-data-exchg on
page 96 or db-stdver-data-exchg-stub on page 97.)

Additional Information

The function accepts no input and must return a string (see Figure 6 on page 24 for
more details):

! Null string: Indicates that the data exchange was completed successfully. No
information is sent into the e*Gate system.

! “CONNERR”: Indicates that a problem with the connection to the external system
has occurred.
e*Way Intelligent Adapter for Sybase User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
! “DATAERR”: Indicates that a problem with the data itself has occurred. The e*Way
handles the string “DATAERR” and “DATAERR” plus additional data differently;
see Figure 6 on page 24 for more details.

! Any other string: The contents of the string are packaged as an inbound Event. The
e*Way must have at least one Collaboration configured suitably to process the
inbound Event, as well as any required IQs.

This function is initially triggered by the Start Data Exchange schedule or manually by
the Monk function start-schedule. After the function has returned true and the data
received by this function has been ACKed or NAKed (by the Positive
Acknowledgment Function or Negative Acknowledgment Function, respectively),
the e*Way checks the Zero Wait Between Successful Exchanges parameter. If this
parameter is set to Yes, the e*Way immediately calls the Exchange Data with External
function again; otherwise, the e*Way does not call the function until the next scheduled
“start exchange” time or the schedule is manually invoked using the Monk function
start-schedule (see start-schedule on page 99 for more information).

External Connection Establishment Function

Description

Specifies a Monk function that the e*Way calls when it has determined that the
connection to the external system is down.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This field cannot be left blank.(The default is
db-stdver-conn-estab on page 85.)

Additional Information

The function accepts no input and must return a string:

! “SUCCESS” or “UP”: Indicates that the connection was established successfully.

! Any other string (including the null string): Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Down Timeout
parameter, and is only called according to this schedule.

The External Connection Verification function (see below) is called when the e*Way
has determined that its connection to the external system is up.

External Connection Verification Function

Description

Specifies a Monk function that the e*Way calls to confirm that the external system is
operating and available.
e*Way Intelligent Adapter for Sybase User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Required Values

The name of a Monk function. This function is optional; if no External Connection
Verification function is specified, the e*Way executes the External Connection
Establishment function in its place. (The default is db-stdver-conn-ver on page 87.)

Additional Information

The function accepts no input and must return a string:

! “SUCCESS” or “UP”: Indicates that the connection was established successfully.

! Any other string (including the null string): Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Up Timeout
parameter, and is only called according to this schedule.

The External Connection Establishment function (see above) is called when the e*Way
has determined that its connection to the external system is down.

External Connection Shutdown Function

Description

Specifies a Monk function that the e*Way calls to shut down the connection to the
e*Way.

Required Values

The name of a Monk function. (The default is db-stdver-conn-shutdown on page 88.)

Additional Information

This function requires a string as input, and may return a string.

This function is only invoked when the e*Way receives a “suspend” command from a
Control Broker. When the “suspend” command is received, the e*Way invokes this
function, and passes the string “SUSPEND_NOTIFICATION” as an argument.

Any return value indicates that the “suspend” command can proceed and that the
connection to the external system can be broken immediately.

Note: Include in this function any required “clean up” that must be performed as part of
the shutdown procedure, but before the e*Way exits.

Positive Acknowledgment Function

Description

Specifies a Monk function that the e*Way calls when all the Collaborations to which the
e*Way sent data have processed and enqueued that data successfully.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External function is defined. (The default is db-stdver-pos-ack on page 89.)
e*Way Intelligent Adapter for Sybase User’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
Additional Information

The function requires a non-null string as input, and returns a string.

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string:

! “CONNERR”: Indicates a problem with the connection to the external system.
When the connection is re-established, the Positive Acknowledgment function is
called again, with the same input data.

! Null string: The function completed execution successfully.

After the Exchange Data with External function returns a string that is transformed
into an inbound Event, the Event is handed off to one or more Collaborations for
further processing. If the Event’s processing is completed successfully by all the
Collaborations to which it was sent, the e*Way executes the Positive Acknowledgment
function (otherwise, the e*Way executes the Negative Acknowledgment function).

Note: If you configure the acknowledgment function to return a non-null string, you must
configure a Collaboration (with appropriate IQs) to process the returned Event.

Negative Acknowledgment Function

Description

Specifies a Monk function the e*Way calls when the e*Way fails to process and queue
Events from the external system.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External function is defined. (The is default is db-stdver-neg-ack on
page 90.)

Additional Information

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string:

! “CONNERR”: Indicates a problem with the connection to the external system.
When the connection is re-established, the function is called again.

! Null string: The function completed execution successfully.

This function is only called during the processing of inbound Events. After the
Exchange Data with External function returns a string that is transformed into an
inbound Event, the Event is handed off to one or more Collaborations for further
processing. If the Event’s processing is not completed successfully by all the
Collaborations to which it was sent, the e*Way executes the Negative Acknowledgment
function (otherwise, the e*Way executes the Positive Acknowledgment function).

Note: If you configure the acknowledgment function to return a non-null string, you must
configure a Collaboration (with appropriate IQs) to process the returned Event.
e*Way Intelligent Adapter for Sybase User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
The e*Way exits if it fails its attempt to invoke this function, or this function returns a
FAILURE string.

Shutdown Command Notification Function

Description

Specifies a Monk function that is called when the e*Way receives a “shut down”
command from the Control Broker. This parameter is optional.

Required Values

The name of a Monk function. (The default is db-stdver-shutdown on page 91.)

Additional Information

When the Control Broker issues a shutdown command to the e*Way, the e*Way calls
this function with the string “SHUTDOWN_NOTIFICATION” passed as a parameter.

The function accepts a string as input and must return a string:

! A null string or “SUCCESS”: Indicates that the shutdown can occur immediately.

! Any other string: Indicates that shutdown must be postponed. Once postponed,
shutdown does not proceed until the Monk function shutdown-request is executed
(see shutdown-request on page 105).

Note: If you postpone a shutdown using this function, be sure to use the
(shutdown-request) function to complete the process in a timely manner.

3.1.4 Database Setup

Database Type

Description

Specifies the type of database.

Required Values

DB2, ODBC, ORACLE8, ORACLE8i, SYBASE11, or SYBASE12

Note: Any other value is effectively equal to ODBC.

Database Name

Description

This is the name of the Server entry name from the Sybase interfaces file. To access a
particular Sybase database, either make that database the default for the user on the
database server, or issue a “use database” from the Monk scripts.

Required Values

Any valid string.
e*Way Intelligent Adapter for Sybase User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuration e*Way Configuration Parameters
User Name

Description

The name used to access the database.

Required Values

Any valid string.

Encrypted Password

Description

The password that provides access to the database.

Required Values

Any valid string.

Note: Changes to Monk files can be made using the Collaboration Rules Editor (available
from within the Enterprise Manager) or with a text editor. However, if you use a
text editor to edit Monk files directly, you must commit these changed files to the
e*Gate Registry or your changes are not implemented.

For more information about committing files to the e*Gate Registry, see the
Enterprise Manager’s online Help system, or the “stcregutil” command-line utility
in the e*Gate Integrator System Administration and Operations Guide.
e*Way Intelligent Adapter for Sybase User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 4

Implementation

This chapter contains information explaining the use of the ETD Editor’s Build Tool as
well as two sample Sybase e*Way scenarios.

This Chapter Includes:

! “Using the ETD Editor’s Build Tool” on page 35

! “Sample One – Event Driven” on page 45

! “Sample Two – Schedule Driven Database Access” on page 61

! “Sample Monk Scripts” on page 65

4.1 Using the ETD Editor’s Build Tool
The Event Type Definition Editor’s Build tool automatically creates an Event Type
Definition file based on the tables in an existing database. The Event Type
Definition (ETD) can be created based on one of (or a combination of) the following
criteria:

! Table or View – Displays all of the columns in the specified table or view.

! Dynamic SQL Statement – Displays the format of the results of an SQL statement.
This can be used to return only a few of the columns in a table.

! Stored Procedure – Displays the format of the results of an SQL Stored Procedure.
This option is only available for Delimited messages. Please note that the Sybase
e*Way does not support user defined data types.

The results of these three types of message criteria are explained in “The Event Type
Definition Files” on page 38.

To create an Event Type Definition using the Build Tool:

1 Launch the ETD (Event Type Definition) Editor.

2 On the ETD Editor’s Toolbar, click Build.

The Build an Event Type Definition dialog box appears.

3 In the File name box, type the name of the ETD file you wish to build. Do not specify
any file extension—the Editor will supply an “ssc” extension for you.

4 Under Build From, select Library Converter.
e*Way Intelligent Adapter for Sybase User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Implementation Using the ETD Editor’s Build Tool
5 Under Select a Library Converter, select DART Converter.

6 Click OK.

7 The Converter Wizard launches.

Figure 9 Converter Wizard Subordinate Dialog Box

8 Enter the Data Source.

9 Enter the User Name.

10 Enter the Password.

11 Select the DART Library. Prior to selecting the appropriate library, you will need to
install the corresponding e*Way.

12 Select the correct Message Type.

If you select the Delimited Message Type, the following dialog box will appear.
e*Way Intelligent Adapter for Sybase User’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Implementation Using the ETD Editor’s Build Tool
Figure 10 Converter Wizard Delimited Message Type Dialog Box

13 Select or Add the correct Table or View.

14 Select or Add the correct SQL Statement.

15 Edit or Finish your selections.

If you select the Fixed-Length Message Type, the following dialog box will appear.
e*Way Intelligent Adapter for Sybase User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Implementation Using the ETD Editor’s Build Tool
Figure 11 Converter Wizard Fixed-Length Message Type Dialog Box

16 Select or Add the correct Table or View.

17 Select or Add the correct SQL Statement

18 Edit or Finish your selections.

Note: The (#) character cannot be used in the node name of the .ssc file. The Sybase e*Way
will be unable to generate the correct node name for the column name of a table that
contains the (#) character, as Monk will filter out the character.

4.1.1 The Event Type Definition Files
The DART Converter Build Tool will create a different ETD based on the criteria that
was specified in the Build Tool Wizard (see Figure 9 on page 36 and Figure 10 on
page 37).

Table or View

Entering a table or view name as a selection criteria will display all of the columns in
that table or view. This is useful when you want to access an entire record from the table
as an e*Gate Event. The criteria shown in Figure 12 generates the ETD shown in Figure
13.
e*Way Intelligent Adapter for Sybase User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Implementation Using the ETD Editor’s Build Tool
Figure 12 Table or View Selection

Selection criteria
e*Way Intelligent Adapter for Sybase User’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Implementation Using the ETD Editor’s Build Tool
Figure 13 Table or View ETD

The ETD that is generated by the DART Converter Build Tool using the Table or View
criteria contains the elements shown in the table below.

Table 2 Elements of the Table or View ETD

Element Description

ETD Name This is the root node of the Event Type Definition.

Table Name This node displays the name of the table or view.

Column Name This is the name of the column(s) in the selected table or view.

Field Value This is the value of the data in the column. This can be thought of as
the payload data for this column.

Data Type This node designates the type of data contained in the value field.

Constraint Code The constraint codes are based on the column constraints in the table.
The possible codes are:
! I – Insert operations are allowed in this column.
! U – Update operations are allowed in this column.
! N – Neither insert nor update operations are allowed in this column.
! B – Both insert and update operations are allowed in this column.

Table Name

ETD Name

Column Names

Data Type

Constraint Code

Field Value
e*Way Intelligent Adapter for Sybase User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Implementation Using the ETD Editor’s Build Tool
Dynamic SQL Statement

Entering an SQL statement as a selection criteria will display the format of the results of
that SQL statement. This is useful when you only want to access certain columns from
the table for a particular e*Gate Event.

To use this type of ETD, you should use the db-stmt-bind function to bind the dynamic
statement and db-struct-execute function to execute the SQL statement. For more
information, see db-stmt-bind on page 138 and db-struct-execute on page 182.

The SQL statement shown in Figure 14 generates an ETD that returns specific records
from the table based on the selection criteria (which is represented by a question
mark “?”). The resulting ETD is shown in Figure 15.

Note: It is not necessary to include the terminating semi-colon as part of the SQL
statement.

Figure 14 Dynamic SQL Statement Selection

Selection criteria
e*Way Intelligent Adapter for Sybase User’s Guide 41 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Implementation Using the ETD Editor’s Build Tool
Figure 15 Dynamic SQL Statement ETD

The PARAM0 node in the ETD shown in Figure 15 represents the criteria specified in
the SQL statement. Additional criteria would be represented in additional nodes
(PARAM1, PARAM2, and so forth). For example, using the following SQL statement:

SELECT * FROM db_employee WHERE last_name = ? AND first_name = ?

the Build Tool would generate an ETD with two input parameter nodes (PARAM0 and
PARAM1)—one for each of the criteria (?). The VALUE nodes of these input parameter
nodes are used to carry the payload of the selection statement.
e*Way Intelligent Adapter for Sybase User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Implementation Using the ETD Editor’s Build Tool
Stored Procedure

Entering a stored procedure name as a selection criteria will generate an ETD that will
access a stored procedure in the external database. This is useful when you want to
access the results of a stored procedure.

The stored procedure specified in Figure 16 generates an the ETD shown in Figure 17.
Below is the contents of the sample stored procedure:

procedure GET_EMPLOYEES
(
 dept_number in integer,
 batch_size in integer,
 found in out integer,
 done_fetch out integer,
 emp_name out charArrayTyp,
 job_title out charArrayTyp,
 salary out numArrayTyp
) is
begin
 if not get_emp%isopen then
 open get_emp(dept_number);
 end if;
 done_fetch := 0;
 found := 0;
 for i in 1..batch_size loop
 fetch get_emp into emp_name(i),
 job_title(i), salary(i);
 if get_emp%notfound then
 close get_emp;
 done_fetch := 1;
 exit;
 else
 found := found + 1;
 end if;
 end loop;
end get_employees;
e*Way Intelligent Adapter for Sybase User’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Implementation Using the ETD Editor’s Build Tool
Figure 16 Stored Procedure Selection

Note: Although periods can be entered in the selection criteria in the Build Tool, they are
not permitted in the node names of the ETD. Any periods in the selection criteria
will be converted to asterisks in the generated ETD. See Figure 17.

Selection criteria
e*Way Intelligent Adapter for Sybase User’s Guide 44 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation Sample One – Event Driven
Figure 17 Stored Procedure ETD

This Event Type Definition is used to pass certain input to the stored procedure. The
nodes with types of IN or INOUT are used as input. The nodes with types of OUT or
INOUT can be used for output. The results of the stored procedure are returned to the
RESULT_SET0 node. The Build Tool will create additional result set nodes
(RESULT_SET1, RESULT_SET2, and so forth) for stored procedures returning
multiple results.

4.2 Sample One – Event Driven
The previous sections provided the basics for implementing the Sybase e*Way. This
section describes how to use the Sybase e*Way within a sample schema. This sample
will read an input file, apply associated Collaborations and Rules, and then output the
results in a specified location. It is assumed that the Database is installed and
configured properly.

This implementation will consist of two e*Ways, three Event Types, two Collaboration
Rules, an Intelligent Queue (IQ), and two Collaborations, as follows:

! FileIn - This e*Way will read sample inbound data and copy it to the IQ.

! dart_rcv - This e*Way applies a Collaboration Rule to data, and transforms the data.

! db_rcv_in - This Event Type processes inbound data copied to an IQ.

Possible types of node values
are IN, INOUT, and OUT.

Result set returned by
the stored procedure
e*Way Intelligent Adapter for Sybase User’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation Sample One – Event Driven
! db_rcv_struct - This Event Type defines the format of data written out from a
Collaboration.

! FileInEvent - This Event Type describes data that is input from an external source
to a Collaboration.

! db_rcv - This Collaboration Rule is associated with db_rcv_struct for output Event
Types, and db_rcv_in for input Event Types.

! no_xlate - The Collaboration Rule is associated with FileInEvent Event Type for
input, and the db_rcv_in Event Type for output.

! IQ1 - This Intelligent Queue is a Standard STC IQ.

! Pub - This Collaboration will be a member of the FileIn e*Way, applying the no_xlate
Collaboration Rule, and will contain the FileInEvent and db_rcv_in Event Types for
input and output, respectively.

! Sub - This Collaboration will be a member of the dart_rcv e*Way, applying the
db_rcv Collaboration Rule, and will contain the db_rcv_in and db_rcv_struct Event
Types for input and output, respectively.

Figure 18 Sample Schema Data Flow

This sample schema will process data from a file, apply Collaboration Rules, and send
the data to the database. The sample will also serve to verify that the Sybase Intelligent
Adapter has been properly installed and configured. The following sections provide the
specifics for implementing the sample.
e*Way Intelligent Adapter for Sybase User’s Guide 46 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation Sample One – Event Driven
4.2.1 Creating the New Schema
The first task in deploying the sample implementation is to create a new Schema name.
While it is possible to use the default schema for the sample implementation, it is
recommended that you create a separate schema for testing purposes. After you install
the Sybase e*Way Intelligent Adapter, do the following:

1 Start the e*Gate Enterprise Manager GUI.

2 When the Enterprise Manager prompts you to login, select the host that you
specified during installation, and enter your password.

3 You will then be prompted to select a schema. Click on New.

4 Enter a name for the new Schema; In this case, enter Sybase_Test, or similar name as
desired.

The e*Gate Enterprise Manager opens under your new schema. You are now ready to
begin creating the necessary components for this sample schema.

4.2.2 Creating the Event Types
The next step is creating the three event types mentioned previously. To create an Event
Type, you may use the ETD Editor build tool (See the section “Using the ETD Editor’s
Build Tool” on page 35), or you can open the ETD Editor and add the root node and
subnodes as needed.

The three Event Types in this sample are:

! FileInEvent

! db_rcv_in

! db_rcv_struct

Before creating the Collaboration Rules, assure your default Collaboration Editor is set
to Java. To do this do the following:

1 From the e*Gate Enterprise Manager toolbar, click Options.

2 Click Default Editor...

3 Select Monk.

4 Click OK.

FileInEvent

This Event Type will process inbound data from an external file. FileInEvent will use the
EventMsg.ssc file that is included with the Sybase Intelligent Adapter e*Way installation
and located at the default e*Gate /monk_scripts/common directory. To create FileInEvent,
do the following:

1 Highlight the Event Types folder on the Components tab of the e*Gate Navigator.

2 On the Palette, click .
e*Way Intelligent Adapter for Sybase User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation Sample One – Event Driven
3 Enter FileInEvent as the name, then click OK.

4 Select the FileInEvent, then click to edit its properties.

5 When the Properties window opens, click on the Find button, and select
EventMsg.ssc.

6 Click OK.

db_rcv_in

This Event Type represents the data transported by the FileIn e*Way and processed by
the Pub Collaboration. To create this Event Type do the following:

1 Highlight the Event Types folder on the Components tab of the e*Gate Navigator.

2 On the Palette, click .

3 Enter db_rcv_in as the name, then click OK.

4 Select db_rcv_in, then click to edit its properties.

5 When the Properties window opens, click on the New button.

When the ETD Editor opens, add the root node and the subnodes. When you are
finished, the file should be similar to the following:

Figure 19 Sample ETD for db_rcv_in

6 Save this file as db_rcv_in.ssc, and promote it to runtime, and exit from the ETD
Editor.

7 Click OK in the Event Type Properties window to return to the e*Gate Enterprise
Manager GUI.
e*Way Intelligent Adapter for Sybase User’s Guide 48 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation Sample One – Event Driven
db_rcv_struct

This Event Type represents the transformed data from the db_rcv_in Event Type, and
transported through the dart_rcv e*Way to the external Sybase database.

1 Highlight the Event Types folder on the Components tab of the e*Gate Navigator.

2 On the Palette, click .

3 Enter db_rcv_struct as the name, then click OK.

4 Select db_rcv_struct, then click to edit its properties.

5 When the Properties window opens, click on the New button.

When the ETD Editor opens, add the root node and the subnodes. When you are
finished, the file should be similar to the following:

Figure 20 Sample EDT for db_rcv_struct

4.2.3 Creating and Configuring the e*Ways
The next step in implementing this sample schema is to create two e*Ways:

! FileIn

! dart_rcv

Details for creating each are provided in the following sections.
e*Way Intelligent Adapter for Sybase User’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation Sample One – Event Driven
FileIn

This e*Way will receive data from an external file, apply a Collaboration Rule to
transform the data, and then publish it to the IQ1 Intelligent Queue. To create FileIn, do
the following:

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the e*Ways.

3 Select the Control Broker that will manage the new e*Way.

4 On the Palette, click .

5 Enter the name of the new e*Way, (in this case, FileIn), then click OK.

6 Select FileIn, then click to edit its properties.

7 When the e*Way Properties window opens, click on the Find button beneath the
Executable File field, and select stcewfile.exe for the executable file.

8 Under the Configuration File field, click on the New button. When the Settings page
opens, set the following for this configuration file:

9 Exit from Settings, then save and promote the file as dart_inbound.cfg.

dart_rcv

This e*Way will receive the transformed data from IQ1, then forward it to the Sybase
database. Before you can use the e*Gate Enterprise Manager GUI to create dart_rcv, it is
required that you first compose a DART (*.dsc) script file. You may use any ASCII text
editor, or you may use the E*Gate Enterprise Manager’s Collaboration Rules Editor.

Table 3 Configuration Parameters for FileIn e*Way

Parameter Value

General Settings

AllowIncoming Yes

AllowOutgoing No

Outbound Settings Default

Poller Inbound Settings

PollDirectory /egate/data (input file folder)

InputFileExtension *.demodat (input file extension)

PollMilliseconds Default

Remove EOL Default

MultipleRecordsPerFile Default

MaxBytesPerLine Default

BytesPerLineIsFixed Default
e*Way Intelligent Adapter for Sybase User’s Guide 50 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation Sample One – Event Driven
Using an ASCII Text Editor

If you use an ASCII text editor, the file you create should be similar to the sample
shown as follows:

;;
DART-mode: RECEIVE
;; source-event-path: monk_scripts/common/db_rcv_in.ssc
;; destination-event-path: monk_scripts/common/db_rcv_struct.ssc
(define usercomment ““)
(define version “3.1”)
(define xlate-name “db_rcv”)
(define input-message-format-file-name “db_rcv_in.ssc”)
(define output-message-format-file-name “db_rcv_struct.ssc”)
(load “db_rcv_in.ssc”)
(load “db_rcv_struct.ssc”)
(define src-collapsed-nodes ‘(
))
(define dest-collapsed-nodes ‘(
))
(define collapsed-rules ‘(
))
(define db_rcv
 (let ((input ($make-event-map db_rcv_in-delm db_rcv_in-struct))
 (output ($make-event-map db_rcv_struct-delm db_rcv_struct-
struct))
)
 (lambda (message-string)
 ($event-parse input message-string)
 ($event-clear output)
 (begin
 (display “LOAD PATH: “)
 (display load-path) (newline)
 (newline)
 (copy-strip ~input%db_rcv_in.number
~output%db_rcv_struct.db_employee.EMP_NO.VALUE ““)
 (copy-strip ~input%db_rcv_in.last_name
~output%db_rcv_struct.db_employee.LAST_NAME.VALUE ““)
 (copy-strip ~input%db_rcv_in.first_name
~output%db_rcv_struct.db_employee.FIRST_NAME.VALUE ““)
 (copy-strip ~input%db_rcv_in.rate
~output%db_rcv_struct.db_employee.RATE.VALUE ““)
 (copy-strip ~input%db_rcv_in.date
~output%db_rcv_struct.db_employee.LAST_UPDATE.VALUE ““)
 (display ~output%db_rcv_struct)
 (display “READY to INSERT into DATABASE”) (newline)
 (if (db-struct-insert connection-handle
~output%db_rcv_struct.db_employee)
 (begin
 (db-commit connection-handle)
 (display “Record Inserted”) (newline)
)
 (begin
 (display “Structure insert failed: “)
 (display (db-get-error-str connection-handle)) (newline)
 (if (db-check-connect)
 (begin
 (event-dataerr (get ~input%db_rcv_in))
)
 (begin
 (event-connerr ““)
)
)
)
e*Way Intelligent Adapter for Sybase User’s Guide 51 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation Sample One – Event Driven
)
)
 (let ((result ““))
 ($event-clear input)
 ($event-clear output)
 result)
)))

When you complete the DART Script, do the following:

! Save the file as db_rcv.dsc into the egate/client/monk_scripts/common directory.

! From the e*Gate Enterprise Manager GUI, select File, Commit to Sandbox..., and
specify db_rcv.dsc so that it will be available for use by e*Gate.

Using the Collaboration Rules Editor

Alternatively, you can use the Collaboration Rules Editor to create the DART Script. To
do so, follow these steps:

1 From the e*Gate Enterprise Manager GUI, click on to open the Collaboration
Rules Editor.

2 From the Collaboration Rules Editor, click on .

3 When the New file dialog box opens, enter the following information in the
corresponding fields as follows:

Figure 21 Collaboration Rules Editor New file dialog box

A File name: db_rcv.dsc
e*Way Intelligent Adapter for Sybase User’s Guide 52 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation Sample One – Event Driven
B Files of type: DART Send - takes input, creates a message (.dsc).

Click on to open the drop down list menu, and select DART Send - takes input,
creates a message (.dsc).

C Source Event Type Definition: db_rcv_in.ssc

Click on to open the list of ETD files, and select db_rcv_in.ssc.

D Destination Event Type Definition: db_rcv_struct.ssc

Click on to open the list of ETD files, and select db_rcv_struct.ssc.

E Click on OK to return to the Collaboration Rules Editor. Your new DART script
file should appear similar to the sample below.

Figure 22 Creating a DART Script with Collaboration Rules Editor

4 You need to create the rules for this file.

A Use the copy function to transform data from the source to the destination for
each node.

For example, select the number subnode in the Source pane; then select the

EMP_NO.VALUE subnode, and click on .
e*Way Intelligent Adapter for Sybase User’s Guide 53 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation Sample One – Event Driven
Use the Copy function for each of the source subnodes to transform data to the
destination source as follows:

B You also need to add DISPLAY, FUNCTION, and IF-ELSE rules. Details about
Functions to use can be found in “Sybase e*Way Functions” on page 82.
Information about using the Collaboration Rules Editor is available in the On-
line Help.

When you have finished creating the rules for this file, the Rules window in the
Collaboration Rules Editor should be similar to the following example:

Figure 23 db_rcv.dsc Rules

In its totality, the db_rcv.dsc file within the Collaboration Rules Editor will be similar to
the following:

Table 4 Copy Function in db_rcv.dsc

Source Subnode Destination Subnode

number EMP_NO.VALUE

last_name LAST_NAME.VALUE

first_name FIRST_NAME.VALUE

rate RATE.VALUE

date LAST_UPDATE.VALUE
e*Way Intelligent Adapter for Sybase User’s Guide 54 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation Sample One – Event Driven
Figure 24 db_rcv.dsc in the Collaboration Rules Editor

5 Select File, Save, and exit from the Collaborations Rules Editor to return to the
e*Gate Enterprise Manager GUI.

Creating the dart_rcv e*Way

Next, create the dart_rcv e*Way as follows:

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the e*Ways.

3 Select the Control Broker that will manage the new e*Way.

4 On the Palette, click .

5 Enter the name of the new e*Way, (in this case, Dart_rcv), then click OK.

6 Select Dart_rcv, then click to edit its properties.

7 When the e*Way Properties window opens, click on the Find button beneath the
Executable File field, and select stcewgenericmonk.exe for the executable file.

8 Click on New under the Configuration File field, and select Dart in the e*Way
Template Selection window. When the Settings page opens, set the following for
this configuration file:

Table 5 Parameter Settings for dart_rcv e*Way

Parameter Value

General Settings Default

Communication Setup

Start Exchange Data Schedule Repeatedly, every 1 minute

Stop Exchange Data Schedule None
e*Way Intelligent Adapter for Sybase User’s Guide 55 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation Sample One – Event Driven
9 Save this file and exit from the Settings page to return to the e*Gate Enterprise GUI.

4.2.4 Create the Collaboration Rules
The next step is creating the Collaboration Rules that will be associated with the
Event Types in this schema. There are two Collaboration Rules for this sample
schema, as follows:

! db_rcv

! no_xlate

Details for creating and configuring both are in the sections that follow.

db_rcv

This Collaboration Rule is associated with db_rcv_struct for output Event Types, and
db_rcv_in for input Event Types. To create db_rcv, do the following:

1 Select the Navigator's Components tab in the e*Gate Enterprise Manager.

Exchange Data Interval 120

Down Timeout Default

Up Timeout Default

Resend timeout Default

Zero Wait between successful Exchanges Default

Monk Configuration

Additional Path Blank

Auxiliary Library Directories monk_library/dart

Monk Environment Initialization File db-stdver-init

Startup Function db- stdver-startup

Process Outgoing Message Function monk_scripts/common/db_rcv.dsc

Exchange Data With External Function monk_scripts/common/db_rcv.dsc

External Connection Establishment Function db- stdver-conn-estab

External Connection Verification Function db-stdver-conn-ver

External Connection Shutdown Function db-stdver-conn-shutdown

Positive Acknowledgment Function db-stdver-pos-ack

Negative Acknowledgment Function db-stdver-neg-ack

Shutdown command notification function db-stdver-shutdown

Database Setup (Fill in the information for
these fields. See “Database Setup” on
page 33 for details.)

Database Type:
Database name:
User name:
Encrypted Password:

Table 5 Parameter Settings for dart_rcv e*Way

Parameter Value
e*Way Intelligent Adapter for Sybase User’s Guide 56 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation Sample One – Event Driven
2 In the Navigator, select the Collaboration Rules folder.

3 On the Palette, click

4 Enter db_rcv as the name of the new Collaboration Rule, then click OK.

5 Select db_rcv, then click to edit its properties.

6 In the Service field on the General tab, select the Copy as the Collaboration Service.

7 On the Subscriptions tab, select db_rcv_in as the required input Event Type.

8 On the Publications tab, select db_struct as the default output Event Type.

9 Click on OK.

no_xlate

This Collaboration Rule is associated with FileInEvent Event Type for input, and the
db_rcv_in Event Type for output. To create no_xlate, do the following:

1 Select the Navigator's Components tab in the e*Gate Enterprise Manager.

2 In the Navigator, select the Collaboration Rules folder.

3 On the Palette, click

4 Enter no_xlate as the name of the new Collaboration Rule, then click OK.

5 Select no_xlate, then click to edit its properties.

6 In the Service field on the General tab, select Pass Through as the Collaboration
Service.

7 On the Subscriptions tab, select FileInEvent as the required input Event Type.

8 On the Publications tab, select db_rcv_in as the default output Event Type.

9 Click on OK.

4.2.5 Create the Intelligent Queue
This sample schema uses one Intelligent Queue (IQ), which receives the db_rcv_in Event
Type, and forwards it to the dart_rcv e*Way. To create this IQ, do the following:

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the IQ.

3 Open the Control Broker.

4 Select the IQ Manager.
e*Way Intelligent Adapter for Sybase User’s Guide 57 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation Sample One – Event Driven
5 On the Palette, click .

6 Enter IQ1 as the name of the new IQ, then click OK.

7 Select IQ1, then click to edit its properties.

8 On the General Tab, select SeeBeyond Standard as the Service. The default Event Type
Get Interval of 100 Milliseconds is satisfactory.

9 On the Advanced tab, make sure that Simple publish/subscribe is checked under the
IQ behavior section.

10 Click OK.

4.2.6 Create the Collaborations
The final steps entail creating two collaborations and assigning them to the e*Ways.
These Collaborations are:

! Pub

! Sub

The following sections provide the details for creating and modifying these
Collaborations.

Pub

This Collaboration is a member of the FileIn e*Way, and applies the no_xlate
Collaboration Rule. To create this Collaboration, do the following:

1 In the e*Gate Enterprise Manager, select the Navigator's Components tab.

2 Open the host on which you want to create the Collaboration.

3 Select the Control Broker.

4 Select the FileIn e*Way to assign the Collaboration.

5 On the Palette, click .

6 Enter Pub as the name of the new Collaboration, then click OK.

7 Select Pub, then click to edit its properties.

8 From the Collaboration Rules list, select no_xlate.

9 In the Subscriptions area, click Add to define the input Event Type and source to
which this Collaboration will subscribe.

A From the Event Type list, select the FileInEvent Event Type.

B From the Source list, select <EXTERNAL>.
e*Way Intelligent Adapter for Sybase User’s Guide 58 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation Sample One – Event Driven
10 In the Publications area, click Add to define the output Event Type and destination
to which this Collaboration will publish.

A From the Event Types list, select the db_rcv_in Event Type.

B From the Destination list, select the IQ1 Intelligent Queue.

11 Click on OK.

Sub

This Collaboration will be a member of the dart_rcv e*Way, and applies the db_rcv
Collaboration Rule. To create this Collaboration, do the following

1 In the e*Gate Enterprise Manager, select the Navigator's Components tab.

2 Open the host on which you want to create the Collaboration.

3 Select the Control Broker.

4 Select the Dart_rcv e*Way to assign the Collaboration.

5 On the Palette, click .

6 Enter Sub as the name of the new Collaboration, then click OK.

7 Select Sub, then click to edit its properties.

8 From the Collaboration Rules list, select db_rcv.

9 In the Subscriptions area, click Add to define the input Event Type and source to
which this Collaboration will subscribe.

A From the Event Type list, select the db_rcv_in Event Type.

B From the Source list, select Pub.

10 In the Publications area, click Add to define the output Event Type and destination
to which this Collaboration will publish.

A From the Event Types list, select the db_rcv_struct Event Type.

B From the Destination list, select <External>.

11 Click on OK.

4.2.7 Execute the Schema
To execute the Sybase_Test schema, do the following:

1 Go to the command line prompt, and enter the following:

stccb -rh hostname -rs Sybase_Test -un username -up user password
-ln hostname_cb

Substitute hostname, username and user password as appropriate.

2 Exit from the command line prompt, and start the e*Gate Monitor GUI.
e*Way Intelligent Adapter for Sybase User’s Guide 59 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Implementation Sample One – Event Driven
3 When prompted, specify the hostname which contains the Control Broker you
started in step 1 above.

4 Select the Sybase_Test schema.

5 After you verify that the Control Broker is connected (the message in the Control
tab of the console will indicate command succeeded and status as up), highlight the
IQ Manager, hostname_igmgr, then click on the right button of the mouse, and select
Start.

6 Highlight each of the e*Ways, right click the mouse, and select Start.
e*Way Intelligent Adapter for Sybase User’s Guide 60 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Sample Two – Schedule Driven Database Access
4.3 Sample Two – Schedule Driven Database Access
This section presents a complete worked example of accessing the database on a
schedule.

In this example, you will see how to set up

! The Exchange Data with External function which queries the database and sends
the data to the Collaboration

! The Collaboration which passes the data onto the FileOut e*Way.

! The File e*Way which receives data from the Collaboration and writes it to a file.

To execute this example, you must be familiar with the e*Gate GUI so that you can:

! Create Event Type Definitions

! Create Collaborations

! Create and configure e*Ways

4.3.1 Overview
You will create a schema call “DatabasePoll”. In this schema, you will create the
following e*Ways, Event Types, Collaborations and Collaboration Rules:

e*Ways:

! DBPoll

! FileOut

Event Types:

! db_poll

! db_poll_struct

Collaborations

Collaboration Rules

4.3.2 Create and Configure e*Ways
Create a new schema called “DatabasePoll.” In this schema, create these two e*Ways

! DBPoll

! FileOut

You will configure these e*Ways in the following sections.

Configuring the “FileOut” e*Way

For the FileOut e*Way, select “stcewfile.exe” for the executable file.
e*Way Intelligent Adapter for Sybase User’s Guide 61 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Sample Two – Schedule Driven Database Access
Edit or create a new configuration parameter set and call it “FileOut.cfg”. Give the
configuration parameters the values shown in the following table. Note that several
parameters specify “Default” as their value. You do not need to change these when
configuration the FileOut e*Way.

Configuring the “DBPoll” e*Way

For the “DBPoll” e*Way, select “stcgenericmonk.exe” for the executable file.

Edit or create a new configuration set and call it “DBPoll.cfg”. Select “DART” when
choosing the e*Way template.

Fill in the following configuration parameters according to Table 7 on page 62

Notice that the default values are correct for the General settings. For the Database
settings, you must enter values that match the installed database that you wish to test
against. Finally note that you specify the Monk function db_poll.dsc, but that this
function is not created yet. You will create it in a later section.

Table 6 Configuration Parameters for FileOut e*Way

Parameter Name Value

General settings

AllowingIncoming NO

AllowingOutgoing YES

Performance Testing Default

Poller (inbound) settings: Default

Outbound (send) settings:

OutputDirectory c:\egate\output (output file folder)

OutputFileName Default

MultipleRecordsPerFile Default

MaxRecordsPerFile Default

Add EOL Default

Performance Testing Default

Table 7 Configuration Parameters for DBPoll

Parameter Name Value

Communications Settings

Start Exchange Data Schedule Repeatedly, every 1 hour

Stop Exchange Data Schedule None

Exchange Data Interval 10

Down Timeout Default

Up Timeout Default

Resend timeout Default

Zero Wait between successful Exchanges No
e*Way Intelligent Adapter for Sybase User’s Guide 62 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Sample Two – Schedule Driven Database Access
4.3.3 Create Event Type Definitions
Create two Event Types:

4.3.4 Create Collaboration Rules
Create two Collaboration Rules with these specifications:

Monk Configuration Settings

Additional Path <leave blank>

Auxiliary Library Directories monk_library\dart

Monk Environment Initialization File db-stdver-init

Startup Function db- stdver-startup

Process Outgoing Message function <leave blank>

Exchange Data With External function monk_scripts/common/db_poll.dsc

External Connection Establishment function db- stdver-conn-estab

External Connection Verification function db-stdver-conn-ver

External Connection Shutdown function db-stdver-conn-shutdown

Positive Acknowledgment function db-stdver-pos-ack

Negative Acknowledgment Fuction db-stdver-neg-ack

Shutdown command notification function db-stdver-shutdown

Database Settings

Type Choose ORACLE8, or ORACLE8i

Database name defined by developer

User name testuser

Encrypted Password testuser

Event Type Name Event Type Definition File

 “db_poll_out” db_poll_out.ssc

 “db_poll_struct” db_poll_struct.ssc

Collaboration Rule Name db_poll

Service Pass Through.

Subscription db_poll_struct

Publication db_poll_out

Collaboration Rule Name xlate

Service Monk.

Subscription db_poll_out

Table 7 Configuration Parameters for DBPoll

Parameter Name Value
e*Way Intelligent Adapter for Sybase User’s Guide 63 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Implementation Sample Two – Schedule Driven Database Access
4.3.5 Create the Queue
Create one queue named queue1. Set the iq_service to STC_standard.

4.3.6 Create the Collaboration
Create two collaborations, one for DatPoll and one for FileOut.

4.3.7 Create Monk functions
Create the Monk function “db_poll.dsc” as follows:

(load "db_poll_struct.ssc")
(load "db_poll_out.ssc")
(define dart_poll
 (let ((input ($make-event-map db_poll_struct-delm

db_poll_struct-struct))
 (output ($make-event-map db_poll_out-delm

db_poll_out-struct))
)
 (lambda ()
 ($event-clear output)
 (begin
 (if (db-struct-select connection-handle

~input%db_poll_struct.db_employee "EMP_NO > 10")
 (begin
 (let ((fetch_stat ""))
 (do ((i 0 (+ i 1))) ((or (boolean? fetch_stat)))
 (set! fetch_stat (db-struct-fetch connection-handle

~input%db_poll_struct.db_employee))
 (if (not (boolean? fetch_stat))
 (begin
 (copy-strip

Publication db_poll_struct

Collaboration Rules Script \monk_scripts\common\xlateput.tsc

Collaboration Name dart_poll_coll

Collaboration Rule db_poll

Subscriptions db_poll_struct (event type)

EXTERNAL (publication)

Publications db_poll_out (event type)

q1 (destination)

Collaboration Name FileOut_coll

Collaboration Rule xlate

Subscriptions db_poll_out (event type)

Dart_poll_coll (source)

Publications db_poll_struct (event type)

EXTERNAL(destination)
e*Way Intelligent Adapter for Sybase User’s Guide 64 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Monk Scripts
~input%db_poll_struct.db_employee.EMP_NO.VALUE
~output%db_poll_out.db_employee[<i>].number "")

 (copy-strip
~input%db_poll_struct.db_employee.LAST_NAME.VALUE
~output%db_poll_out.db_employee[<i>].last_name "")

 (copy-strip
~input%db_poll_struct.db_employee.FIRST_NAME.VALUE
~output%db_poll_out.db_employee[<i>].first_name "")

 (copy-strip
~input%db_poll_struct.db_employee.RATE.VALUE
~output%db_poll_out.db_employee[<i>].rate "")

 (copy-strip
~input%db_poll_struct.db_employee.LAST_UPDATE.VALUE
~output%db_poll_out.db_employee[<i>].date "")

 (display "Fetched ")
 (display ~output%db_poll_out.db_employee[<i>])
 (newline)
)
 (begin
)
)
)
 (if (eq? fetch_stat #f)
 (begin
 (display "db-struct-fetch failed: ")
 (display (db-get-error-str connection-handle))
 (newline)
 (if (db-check-connect)
 (begin
)
 (begin
)
)
)
 (begin
)
)
)
)
 (begin
 (display "db-struct-select failed: ")
 (display (db-get-error-str connection-handle))
 (newline)
)
)
)
 (let ((result ($event->string output)))
 ($event-clear input)
 ($event-clear output)
 result)
)))

4.4 Sample Monk Scripts
These sample scripts demonstrate how use the Monk functions. The samples work
together to:

1 Initialize the Monk extensions.

2 Define and Bind Stored procedures.
e*Way Intelligent Adapter for Sybase User’s Guide 65 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Monk Scripts
3 Call Stored Procedures.

4 Login to a Database.

5 Insert, Update, Select, and Delete records in a database using dynamic SQL
Statements.

6 Insert a binary image file into a database.

7 Retrieve an image from a database.

Details for the functions used in the samples can be found in “Database Access
Functions” on page 105

4.4.1 Initializing Monk Extensions
The sample script shows how to initialize the Monk extensions.

(define EGATE "/eGate/client")

; routine to load DART Monk extension
(define (load-library extension)
 (define filename (string-append EGATE "/bin/" extension))
 (if (file-exists? filename)
 (load-extension filename)
 (begin
 (display (string-append "File " filename " does not
exist.\n"))
 (abort filename)
)
)
)

(load-library "stc_monkext.dll")

;;
;; define database variables, data source, user ID, and password
;;

(define database "SYBASE")

(load-library "stc_dbmonkext.dll")

(define dsn "database")
(define uid "Administrator")
(define pwd (encrypt-password uid "password"))

4.4.2 Supporting Functions for Sample Scripts
This sample script displays and defines values and parameters for stored procedures.
For more details about functions used in this script, see “Stored Procedure Functions”
on page 149

;;
;; stored procedure auxiliary functions
;;

; display parameter properties of the stored procedure
(define (display-proc-parameter-property hdbc hstmt prm-count)
 (display "parameter count = ") (display prm-count) (newline)
 (do ((i 0 (+ i 1))) ((= i prm-count))
e*Way Intelligent Adapter for Sybase User’s Guide 66 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Monk Scripts
 (display "parameter ")
 (display (db-proc-param-name hdbc hstmt i))
 (display ": type = ")
 (display (db-proc-param-type hdbc hstmt i))
 (display ", io = ")
 (display (db-proc-param-io hdbc hstmt i))
 (newline)
)
)

; display value of output parameters from stored procedure
(define (display-proc-parameter-output-value hdbc hstmt prm-count)
 (do ((i 0 (+ i 1))) ((= i prm-count))
 (if (not (equal? (db-proc-param-io hdbc hstmt i) "IN"))
 (begin
 (display "output parameter ")
 (display (db-proc-param-name hdbc hstmt i))
 (display " = ")
 (display (db-proc-param-value hdbc hstmt i))
 (newline)
)
)
)
)

; display column properties of the return result set
(define (display-proc-column-property hdbc hstmt col-count)
 (display "column count = ") (display col-count) (newline)
 (do ((i 0 (+ i 1))) ((= i col-count))
 (display "column ")
 (display (db-proc-column-name hdbc hstmt i))
 (display ": type = ")
 (display (db-proc-column-type hdbc hstmt i))
 (newline)
)
 (newline)
)

; display column value of the return result set of the stored
procedure
(define (display-proc-column-value hdbc hstmt col-count)
 (define (fetch-next)
 (let ((result (db-proc-fetch hdbc hstmt)))
 (if (boolean? result)
 result
 (begin (display result) (newline) (fetch-next))
)
)
)
 (fetch-next)
 (newline)
)

; bind stored procedure and display parameter properties
(define (bind-procedure hdbc proc)
 (let ((hstmt (db-proc-bind hdbc proc)))
 (if (statement-handle? hstmt)
 (begin
 (display (string-append "bind stored procedure : " proc
"\n"))
 (define prm-count (db-proc-param-count hdbc hstmt))
 (display-proc-parameter-property hdbc hstmt prm-count)
 (newline)
 (if (db-proc-return-exist hdbc hstmt)
e*Way Intelligent Adapter for Sybase User’s Guide 67 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Monk Scripts
 (begin
 (display "return: type = ")
 (display (db-proc-return-type hdbc hstmt))
 (newline)
)
)
 (newline)
)
 (display (db-get-error-str hdbc))
)
 hstmt
)
)

;;
;; dynamic statement auxiliary functions
;;

; display parameter properties of the SQL statement
(define (display-stmt-parameter-property hdbc hstmt prm-count)
 (display "parameter count = ") (display prm-count) (newline)
 (do ((i 0 (+ i 1))) ((= i prm-count))
 (display "parameter #")
 (display i)
 (display ": type = ")
 (display (db-stmt-param-type hdbc hstmt i))
 (newline)
)
 (newline)
)

; display column properties of the SQL statement
(define (display-stmt-column-property hdbc hstmt col-count)
 (display "column count = ") (display col-count) (newline)
 (do ((i 0 (+ i 1))) ((= i col-count))
 (display "column ")
 (display (db-stmt-column-name hdbc hstmt i))
 (display ": type = ")
 (display (db-stmt-column-type hdbc hstmt i))
 (newline)
)
 (newline)
)

; display column value of the return result set of the SQL statement
(define (display-stmt-column-value hdbc hstmt)
 (define (fetch-next)
 (let ((result (db-stmt-fetch hdbc hstmt)))
 (if (boolean? result)
 result
 (begin (display result) (newline) (fetch-next))
)
)
)
 (fetch-next)
 (newline)
)

; display row count affected by the execution of the SQL statement
(define (display-stmt-row-count hdbc hstmt)
 (let ((row-count (db-stmt-row-count hdbc hstmt)))
e*Way Intelligent Adapter for Sybase User’s Guide 68 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Monk Scripts
 (cond
 ((= row-count 0) (display "\n(no row affected)\n"))
 ((= row-count 1) (display "\n(1 row affected)\n"))
 (else (display (string-append "\n(" (number->string row-
count) " rows affected)\n")))
)
)
)

; bind dynamic statement and display paramters and column properties
(define (bind-statement hdbc stmt)
 (let ((hstmt (db-stmt-bind hdbc stmt)))
 (display (string-append "\nDynamic statement : " stmt "\n"))
 (if (statement-handle? hstmt)
 (begin
 (define prm-count (db-stmt-param-count hdbc hstmt))
 (display-stmt-parameter-property hdbc hstmt prm-count)

 (define col-count (db-stmt-column-count hdbc hstmt))
 (display-stmt-column-property hdbc hstmt col-count)
)
 (display (db-get-error-str hdbc))
)
 hstmt
)
)

; bind dynamic statement to input/output raw binary data
(define (bind-binary-statement hdbc stmt)
 (let ((hstmt (db-stmt-bind-binary hdbc stmt)))
 (display (string-append "\nDynamic statement : " stmt "\n"))
 (if (statement-handle? hstmt)
 (begin
 (define prm-count (db-stmt-param-count hdbc hstmt))
 (display-stmt-parameter-property hdbc hstmt prm-count)

 (define col-count (db-stmt-column-count hdbc hstmt))
 (display-stmt-column-property hdbc hstmt col-count)
)
 (display (db-get-error-str hdbc))
)
 hstmt
)
)

4.4.3 Logging In
This scripts provides a sample of a login script. For details about functions in this script,
see “General Connection Functions” on page 106.

; define eGate path
(define EGATE "/eGate/client")

; load Monk basic extension
(define MONKLIB (string-append EGATE "/bin/stc_monkext.dll"))
(load-extension MONKLIB)

; load Monk database extension
(define database "SYBASE")
(define DARTLIB (string-append EGATE "/bin/stc_dbmonkext.dll"))
(load-extension DARTLIB)

; define data source, user ID, and password
e*Way Intelligent Adapter for Sybase User’s Guide 69 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Monk Scripts
(define dsn "database")
(define uid "Administrator")
(define pwd (encrypt-password uid "password"))

(define hdbc (make-connection-handle))
(display (string-append "\nDART Login " dsn " ...\n"))
(if (db-login hdbc dsn uid pwd)
 (begin
 (display "database login succeed !\n")
 (db-logout hdbc)
)
 (display (db-get-error-str hdbc))
)

4.4.4 Calling Stored Procedures
This script gives an example of calling Stored Procedures. See “Stored Procedure
Functions” on page 149 for more details.

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

; call stored procedure and display results
(define (execute-procedure hdbc hstmt)
 (let ((prm-count (db-proc-param-count hdbc hstmt)))
 (if (db-proc-execute hdbc hstmt)
 (begin
 (do ((col-count (db-proc-column-count hdbc hstmt) (db-
proc-column-count hdbc hstmt)))
 ((or (not (number? col-count)) (= col-count 0)))
 (display-proc-column-property hdbc hstmt col-count)
 (display-proc-column-value hdbc hstmt col-count)
)
 (display-proc-parameter-output-value hdbc hstmt prm-count)
 (if (db-proc-return-exist hdbc hstmt)
 (begin
 (display "return: value = ")
 (display (db-proc-return-value hdbc hstmt))
 (newline)
)
)
)
 (display (db-get-error-str hdbc))
)
)
)

; make new connection handle
(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "database login succeed !\n")

 ; bind the stored procedures
 (define hstmt1 (bind-procedure hdbc "pubs2.dbo.titleid_proc"))
 (define hstmt2 (bind-procedure hdbc "pubs2.dbo.history_proc"))

 ; call the stored procedure if the binding is successful
e*Way Intelligent Adapter for Sybase User’s Guide 70 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Monk Scripts
 (display "\nGet information of book with title_id = PC8888\n")
 (if (statement-handle? hstmt1)
 (begin
 (display "call stored procedure titleid_proc ...\n\n")
 (if (db-proc-param-assign hdbc hstmt1 0 "PC8888")
 (execute-procedure hdbc hstmt1)
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

 (display "\nGet sales history of store with stor_id = 8042\n")
 (if (statement-handle? hstmt2)
 (begin
 (display "call stored procedure history_proc ...\n\n")
 (if (db-proc-param-assign hdbc hstmt2 0 "8042")
 (execute-procedure hdbc hstmt2)
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

4.4.5 Using Dynamic SQL Statements
At this point in the sample, a user has connected to the Database and has successfully
logged in. This section will show how to use Dynamic SQL statements to do the
following:

! Insert Records

! Update Records

! Select Records

! Delete Records

For more details about the functions used in the following sample scripts see,
“Dynamic SQL Functions” on page 133.

Inserting Records with Dynamic SQL Statements
; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

; execute dynamic statement and display results
(define (execute-statement hdbc hstmt)
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (display-stmt-row-count hdbc hstmt)
 #t
)
 #f
e*Way Intelligent Adapter for Sybase User’s Guide 71 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Monk Scripts
)
)

; make new connection handle
(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

(define stmt1 "insert into publishers values (?, ?, ?, ?)")
(define stmt2 "insert into titleauthor select au_id, 'no_id', null,
null from authors where au_id not in (select au_id from titleauthor)")

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")
 ; change to pubs2 database
 (if (db-sql-execute hdbc "use pubs2")
 (begin
 ; bind the dynamic statements
 (define hstmt1 (bind-statement hdbc stmt1))
 (define hstmt2 (bind-statement hdbc stmt2))

 ; assign parameter and execute the dynamic statement
 (if (statement-handle? hstmt1)
 (begin
 (display "\nInsert record pub_id = 1756 into
publishers table ...\n")
 (if
 (and
 (db-stmt-param-assign hdbc hstmt1 0 "1756")
 (db-stmt-param-assign hdbc hstmt1 1 "The Heath
Center")
 (db-stmt-param-assign hdbc hstmt1 2 "Oakland")
 (db-stmt-param-assign hdbc hstmt1 3 "CA")
)
 (if (execute-statement hdbc hstmt1)
 (begin
 (display "\nCommit the insertion ...\n")
 (if (not (db-commit hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
)
)

 (if (statement-handle? hstmt2)
 (begin
 (display "\nInsert records into titleauthor table
...\n")
 (if (execute-statement hdbc hstmt2)
 (begin
 (display "\nCommit the insertion ...\n")
 (if (not (db-commit hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)
)
e*Way Intelligent Adapter for Sybase User’s Guide 72 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Monk Scripts
)
)
 (display (db-get-error-str hdbc))
)
 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

Updating Records with Dynamic SQL Statements
; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

; execute dynamic statement and display results
(define (execute-statement hdbc hstmt)
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (display-stmt-row-count hdbc hstmt)
 #t
)
 #f
)
)

; make new connection handle
(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

(define stmt1 "update publishers set city = ?, state = ? where pub_id
= ?")
(define stmt2 "update titleauthor set title_id = titles.title_id from
titleauthor, titles, authors where titles.title = ? and authors.au_id
= titleauthor.au_id and au_lname = ?")

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")
 ; change to pubs2 database
 (if (db-sql-execute hdbc "use pubs2")
 (begin
 ; bind the dynamic statements
 (define hstmt1 (bind-statement hdbc stmt1))
 (define hstmt2 (bind-statement hdbc stmt2))

 ; assign parameter and execute the dynamic statement
 (if (statement-handle? hstmt1)
 (begin
 (display "\nUpdate record pub_id = 1756 into
publishers table ...\n")
 (if (and
 (db-stmt-param-assign hdbc hstmt1 0 "Atlanta")
 (db-stmt-param-assign hdbc hstmt1 1 "GA")
 (db-stmt-param-assign hdbc hstmt1 2 "1756")
)
 (if (execute-statement hdbc hstmt1)
 (begin
 (display "\nCommit the update ...\n")
 (if (not (db-commit hdbc))
e*Way Intelligent Adapter for Sybase User’s Guide 73 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Monk Scripts
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
)
)

 (if (statement-handle? hstmt2)
 (begin
 (display "\nUpdate records in titleauthor table
...\n")
 (if (and
 (db-stmt-param-assign hdbc hstmt2 0 "The
Psychology of Computer Cooking")
 (db-stmt-param-assign hdbc hstmt2 1 "Stringer")
)
 (if (execute-statement hdbc hstmt2)
 (begin
 (display "\nCommit the updates ...\n")
 (if (not (db-commit hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
)
)
)
 (display (db-get-error-str hdbc))
)
 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

Selecting Records with Dynamic SQL Statements
; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

; execute dynamic statement and display results
(define (execute-statement hdbc hstmt)
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (display-stmt-column-value hdbc hstmt)
 #t
)
 #f
)
)

; make new connection handle
(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
e*Way Intelligent Adapter for Sybase User’s Guide 74 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Monk Scripts
 (display (db-get-error-str hdbc))
)

(define stmt1 "select au_fname, au_lname, phone from authors where
city = ?")
(define stmt2 "select distinct title, price from titles, salesdetail
where titles.title_id = salesdetail.title_id and discount = ?")

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")
 ; change to pubs2 database
 (if (db-sql-execute hdbc "use pubs2")
 (begin
 ; bind the dynamic statements
 (define hstmt1 (bind-statement hdbc stmt1))
 (define hstmt2 (bind-statement hdbc stmt2))

 ; assign parameter and execute the dynamic statement
 (if (statement-handle? hstmt1)
 (begin
 (display "\nList author in Oakland ...\n\n")
 (if (db-stmt-param-assign hdbc hstmt1 0 "Oakland")
 (execute-statement hdbc hstmt1)
 (display (db-get-error-str hdbc))
)
 (display "\nList author in Salt Lake City ...\n\n")
 (if (db-stmt-param-assign hdbc hstmt1 0 "Salt Lake
City")
 (execute-statement hdbc hstmt1)
 (display (db-get-error-str hdbc))
)
)
)

 (if (statement-handle? hstmt2)
 (begin
 (display "\nList book title and price with 40 percent
discount ...\n\n")
 (if (db-stmt-param-assign hdbc hstmt2 0 "40")
 (execute-statement hdbc hstmt2)
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)
 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

Deleting Records with Dynamic SQL Statements
; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

; execute dynamic statement and display results
(define (execute-statement hdbc hstmt)
e*Way Intelligent Adapter for Sybase User’s Guide 75 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Monk Scripts
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (display-stmt-row-count hdbc hstmt)
 #t
)
 #f
)
)

; make new connection handle
(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

(define stmt1 "delete from publishers where pub_id = ?")
(define stmt2 "delete from titleauthor where title_id = ? or au_ord =
null")

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")
 ; change to pubs2 database
 (if (db-sql-execute hdbc "use pubs2")
 (begin
 ; bind the dynamic statements
 (define hstmt1 (bind-statement hdbc stmt1))
 (define hstmt2 (bind-statement hdbc stmt2))

 ; assign parameter and execute the dynamic statement
 (if (statement-handle? hstmt1)
 (begin
 (display "\nDelete record with pub_id = 1756 from
publishers table ...\n")
 (if (db-stmt-param-assign hdbc hstmt1 0 "1756")
 (if (execute-statement hdbc hstmt1)
 (begin
 (display "\nCommit the deletion ...\n")
 (if (not (db-commit hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
)
)

 (if (statement-handle? hstmt2)
 (begin
 (display "\nDelete records from titleauthor table
...\n")
 (if (db-stmt-param-assign hdbc hstmt2 0 "no_id")
 (if (execute-statement hdbc hstmt2)
 (begin
 (display "\nCommit the deletion ...\n")
 (if (not (db-commit hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
e*Way Intelligent Adapter for Sybase User’s Guide 76 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Monk Scripts
)
)
)
)
 (display (db-get-error-str hdbc))
)
 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

4.4.6 Inserting a Binary Image to a Database
This sample shows how to insert a Binary Image into a Database. It uses both Static and
Dynamic SQL functions. See “Database Access Functions” on page 105 for more
details.

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")
(load-library "stc_monkutils.dll")

(define (query-exist hdbc hstmt id)
 (let ((rec-count 0) (result '#()))
 (if (db-stmt-param-assign hdbc hstmt 0 id)
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (set! result (vector-ref (db-stmt-fetch hdbc hstmt) 0))
 (set! rec-count (string->number result))
 (set! result (db-stmt-fetch-cancel hdbc hstmt))
 (if (> rec-count 0)
 (begin
 (display "author image already exist\n")
 #t
)
 #f
)
)
 (begin
 (display (db-get-error-str hdbc))
 #f
)
)
 (begin
 (display (db-get-error-str hdbc))
 #f
)
)
)
)

(define (execute-statement hdbc hstmt)
 (let ((col-count (db-stmt-column-count hdbc hstmt)) (row-count 0))
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (if (> col-count 0)
 (if (not (stmt-display-column-value hdbc hstmt col-
count))
 (display (db-get-error-str hdbc))
)
e*Way Intelligent Adapter for Sybase User’s Guide 77 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Monk Scripts
)
 (set! row-count (db-stmt-row-count hdbc hstmt))
 (if (boolean? row-count)
 (display (db-get-error-str hdbc))
 (display (string-append "number of image insert = "
(number->string row-count) "\n"))
)
 (newline)
 #t
)
 #f
)
)
)

(define author-id "756-30-7391")
(define image-file "webbie.jpg")
(define image-type "JPEG")
(define image-width "1024")
(define image-height "768")

(define image-port (open-input-file image-file))
(define image (read image-port 1048576))
(close-port image-port)
(define bytesize (number->string (string-length image)))
(define image-hex (string->hexdump image))

(define hdbc (make-connection-handle))
(display (connection-handle? hdbc)) (newline)

(define stmt0 "select count(0) from au_pix where au_id = ?")
(define stmt1 "insert into au_pix (au_id, format_type, bytesize,
pixwidth_hor, pixwidth_vert) values (?, ?, ?, ?, ?)")
(define stmt2 (string-append "update au_pix set pic = 0x00 where au_id
= '" author-id "'"))
(define stmt3 (string-append "declare @val varbinary(16)\nselect @val
= textptr(pic) from au_pix where au_id = '" author-id "'\nwritetext
au_pix.pic @val 0x" image-hex))
(define stmt4 "delete from au_pix where au_id = ?")

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed\n")
 (display (db-dbms hdbc)) (newline)
 (display (db-std-timestamp-format hdbc)) (newline)
 (display (db-sql-execute hdbc "use pubs2")) (newline)
 (define hquery (bind-statement hdbc stmt0))
 (define hinsert (bind-statement hdbc stmt1))
 (define hdelete (bind-statement hdbc stmt4))

 (if (and
 (statement-handle? hquery)
 (statement-handle? hdelete)
)
 (if (query-exist hdbc hquery author-id)
 (begin
 (display "delete existing author image record\n")
 (if (db-stmt-param-assign hdbc hdelete 0 author-id)
 (if (db-stmt-execute hdbc hdelete)
 (db-commit hdbc)
 (begin
 (display (db-get-error-str hdbc))
 (abort "failed to delete existing record")
)
e*Way Intelligent Adapter for Sybase User’s Guide 78 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Monk Scripts
)
 (display (db-get-error-str hdbc))
)
)
)
)

 (if (statement-handle? hinsert)
 (begin
 (display "insert author image record\n")
 (if (and
 (db-stmt-param-assign hdbc hinsert 0 author-id)
 (db-stmt-param-assign hdbc hinsert 1 image-type)
 (db-stmt-param-assign hdbc hinsert 2 bytesize)
 (db-stmt-param-assign hdbc hinsert 3 image-width)
 (db-stmt-param-assign hdbc hinsert 4 image-height)
)
 (if (execute-statement hdbc hinsert)
 (begin
 (display "update author image data\n")
 (if (db-sql-execute hdbc stmt2)
 (if (db-sql-execute hdbc stmt3)
 (db-commit hdbc)
 (begin
 (display (db-get-error-str hdbc))
 (db-rollback hdbc)
)
)
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
)
)

 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

4.4.7 Retrieving an Image from a Database
This sample shows how to Retrieve an image from a Database. It uses both Static and
Dynamic SQL functions. See “Database Access Functions” on page 105 for more
details.

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

(define (get-image hdbc hstmt)
 (do (
 (result (db-stmt-fetch hdbc hstmt) (db-stmt-fetch hdbc
hstmt))
 (first_name "")
 (file_type "")
 (file_name "")
e*Way Intelligent Adapter for Sybase User’s Guide 79 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Monk Scripts
 (width "")
 (height "")
 (output_port '())
)
 ((boolean? result) result)
 (set! first_name (vector-ref result 0))
 (set! file_type (strip-trailing-whitespace (vector-ref result
1)))
 (set! width (strip-trailing-whitespace (vector-ref result 2)))
 (set! height (strip-trailing-whitespace (vector-ref result 3)))
 (cond
 ((string=? file_type "JPEG") (set! file_name (string-append
first_name ".jpg")))
 ((string=? file_type "GIF") (set! file_name (string-append
first_name ".gif")))
 ((string=? file_type "PICT") (set! file_name (string-append
first_name ".pct")))
 ((string=? file_type "TIF") (set! file_name (string-append
first_name ".tif")))
 ((string=? file_type "Sun raster") (set! file_name (string-
append first_name ".ras")))
 (else (set! file_name (string-append first_name ".raw")))
)
 (if (file-exists? file_name)
 (file-delete file_name)
)
 (display (string-append "picture name = " file_name "\n"))
 (display (string-append "picture size = " width " x " height
"\n\n"))
 (set! output_port (open-output-file file_name))
 (display (vector-ref result 4) output_port)
 (close-port output_port)
)
)

(define (execute-statement hdbc hstmt)
 (let ((col-count (db-stmt-column-count hdbc hstmt)) (row-count 0))
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (if (> col-count 0)
 (if (not (get-image hdbc hstmt))
 (display (db-get-error-str hdbc))
)
)
 (set! row-count (db-stmt-row-count hdbc hstmt))
 (if (boolean? row-count)
 (display (db-get-error-str hdbc))
 (display (string-append "number of image retrieved = "
(number->string row-count) "\n"))
)
 (newline)
 #t
)
 #f
)
)
)

(define hdbc (make-connection-handle))
(display (connection-handle? hdbc)) (newline)

(define author-id "756-30-7391")
e*Way Intelligent Adapter for Sybase User’s Guide 80 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Implementation Sample Monk Scripts
(define stmt "select au_fname, format_type, pixwidth_hor,
pixwidth_vert, pic from authors, au_pix where authors.au_id =
au_pix.au_id and au_pix.au_id = ?")

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")

 ; change to pubs2 database
 (if (db-sql-execute hdbc "use pubs2")
 (begin
 ; bind the select statement
 (define hselect (bind-binary-statement hdbc stmt))

 ; execute the dynamic statement
 (if (statement-handle? hselect)
 (begin
 (display "select author's picture\n")
 (if (db-stmt-param-assign hdbc hselect 0 author-id)
 (if (not (execute-statement hdbc hselect))
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
)
)
)
 (display (db-get-error-str hdbc))
)

 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

e*Way Intelligent Adapter for Sybase User’s Guide 81 SeeBeyond Proprietary and Confidential

Chapter 5

Sybase e*Way Functions

The functions described in this chapter control the Sybase e*Way’s basic operations as
well as those needed for database access.

The Sybase e*Way’s functions fall into the following categories:

! Standard e*Way Functions on page 82

! Generic e*Way Built-in Functions on page 97

! Database Access Functions on page 105

Specific examples and detailed sample scripts are provided in “Sample Monk Scripts”
on page 65.

5.1 Standard e*Way Functions
The functions described in this section can only be used by the functions defined within
the e*Way’s configuration file. None of the functions are available to Collaboration
Rules scripts executed by the e*Way. The current suite of Standard e*Way functions
included are:

db-stdver-init on page 83

db-stdver-startup on page 84

db-stdver-conn-estab on page 85

db-stdver-conn-ver on page 87

db-stdver-conn-shutdown on page 88

db-stdver-pos-ack on page 89

db-stdver-neg-ack on page 90

db-stdver-shutdown on page 91

db-stdver-proc-outgoing on page 92

db-stdver-proc-outgoing-stub on page 94

db-stdver-data-exchg on page 96

db-stdver-data-exchg-stub on page 97
e*Way Intelligent Adapter for Sybase User’s Guide 82 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Sybase e*Way Functions Standard e*Way Functions
db-stdver-init

Syntax

(db-stdver-init)

Description

db-stdver-init begins the initialization process for the e*Way. The function loads all
monk extension libraries used by other e*Way functions.

Parameters

None.

Return Values

string
If a FAILURE string is returned, the e*Way shutdowns. Any other return indicates
success.

Throws

None.
e*Way Intelligent Adapter for Sybase User’s Guide 83 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Sybase e*Way Functions Standard e*Way Functions
db-stdver-startup

Syntax

(db-stdver-startup)

Description

db-stdver-startup is used for instance specific function loads and “env” setup.

Parameters

None.

Return Values

string
FAILURE causes shutdown of the e*Way. Any other return indicates success.

Throws

None.

Examples

(define db-stdver-startup
 (lambda ()
 (let ((result "SUCCESS"))
 (display "[++] Executing e*Way external startup function.")
 result
)
))
e*Way Intelligent Adapter for Sybase User’s Guide 84 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Sybase e*Way Functions Standard e*Way Functions
db-stdver-conn-estab

Syntax

(db-stdver-conn-estab)

Description

db-stdver-conn-estab is used to establish external system connection.This function will

! construct a new connection handle

! call db-long to connect to database

! set up timestamp format if required

! set up maximum long data buffer limit if required

! bind dynamic SQL statement and stored procedures.

Parameters

None.

Return Values

string
UP or SUCCESS if connection established, anything else if connection not established.

Throws

None.

Additional Information

To use standard database time format, add the following function call to this function:
(db-std-timestamp-format connection-handle) after the (db-bind) call.

For "Maximum Long Data Size" the library allocates an internal buffer for each
SQL_LONGVARCHAR and SQL_LONGVARBINARY data, when the SQL statement
or stored procedure that contains these datatypes are bound. The default size of each
internal data buffer is 1024K(1048576) bytes. If the user needs to handle long data larger
than this default value, add the following function call to specify the maximum data
size:

(db-max-long-data-size connection-handle maximum-data-size)

See db-max-long-data-size on page 115 for more information.

Examples

(define db-stdver-conn-estab
 (lambda ()
 (let ((result "DOWN")(last_dberr ""))
 (display "[++] Executing e*Way external connection establishment
function.")
 (display "db-stdver-conn-estab: logging into the database with:\n")
 (display "DATABASE NAME = ")
 (display DATABASE_SETUP_DATABASE_NAME)
 (newline)
 (display "USER NAME = ")
 (display DATABASE_SETUP_USER_NAME)
 (newline)
 (set! connection-handle (make-connection-handle))
e*Way Intelligent Adapter for Sybase User’s Guide 85 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Sybase e*Way Functions Standard e*Way Functions
 (if (connection-handle? connection-handle)
 (begin
 (if (db-login connection-handle DATABASE_SETUP_DATABASE_NAME
DATABASE_SETUP_USER_NAME DATABASE_SETUP_ENCRYPTED_PASSWORD)
 (begin
 (db-bind)
 (set! result "UP")
)
 (begin
 (set! last_dberr (db-get-error-str connection-handle))
 (display last_dberr)
 (event-send "ALERTCAT_OPERATIONAL" "ALERTSUBCAT_CANTCONN"
"ALERTINFO_FATAL" "0" "Cannot connect to database" (string-append
"Failed to connect to database: " DATABASE_SETUP_DATABASE_NAME "with
error" last_dberr) 0 (list))
 (newline)
 (db-logout connection-handle)
 (set! result "DOWN")
)
)
)
 (begin
 (set! result "DOWN")
 (display "Failed to create connection handle.")
 (event-send "ALERTCAT_OPERATIONAL" "ALERTSUBCAT_UNUSABLE"
"ALERTINFO_FATAL" "0" "database connection handle creation error"
"Failed to create database connection handle" 0 (list))
)
)
 result
)
))
e*Way Intelligent Adapter for Sybase User’s Guide 86 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Sybase e*Way Functions Standard e*Way Functions
db-stdver-conn-ver

Syntax

(db-stdver-conn-ver)

Description

db-stdver-conn-ver is used to verify whether external system connection is established.

Parameters

None.

Return Values

string
UP or SUCCESS if connection established, anything else if connection not established.

Throws

None.

Additional Information

To use standard database time format, add the following function call to this function:
(db-std-timestamp-format connection-handle) after the (db-bind) call.

Examples

(define db-stdver-conn-ver
 (lambda ()
 (let ((result "DOWN")(last_dberr ""))
 (display "[++] Executing e*Way external connection verification
function.")
 (display "db-stdver-conn-ver: checking connection status...\n")
 (cond ((string=? STCDB "SYBASE") (db-sql-select connection-handle
"verify" "select getdate()")) ((string=? STCDB "ORACLE8i") (db-sql-
select connection-handle "verify" "select sysdate from dual"))
((string=? STCDB "ORACLE8") (db-sql-select connection-handle "verify"
"select sysdate from dual")) ((string=? STCDB "ORACLE7") (db-sql-
select connection-handle "verify" "select sysdate from dual")) (else
(db-sql-select connection-handle "verify" "select {fn NOW()}")))
 (if (db-alive connection-handle)
 (begin
 (db-sql-fetch-cancel connection-handle "verify")
 (set! result "UP")
)
 (begin
 (set! last_dberr (db-get-error-str connection-handle))
 (display last_dberr)
 (event-send "ALERTCAT_OPERATIONAL" "ALERTSUBCAT_LOSTCONN"
"ALERTINFO_FATAL" "0" "Lost connection to database" (string-append
"Lost connection to database: " DATABASE_SETUP_DATABASE_NAME "with
error" last_dberr) 0 (list))
 (set! result "DOWN")
)
)
 result
)
))
e*Way Intelligent Adapter for Sybase User’s Guide 87 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Sybase e*Way Functions Standard e*Way Functions
db-stdver-conn-shutdown

Syntax

(db-stdver-conn-shutdown string)

Description

db-stdver-conn-shutdown is called by the system to request that the interface
disconnect from the external system, preparing for a suspend/reload cycle. Any return
value indicates that the suspend can occur immediately, and the interface is placed in
the down state.

Parameters

Return Values

string
Any return indicates that the external is ready to suspend. The user may choose to
define the return string as SUCCESS, #t (true), or simply and empty string.

Throws

None.

Examples

(define db-stdver-conn-shutdown
 (lambda (message-string)
 (let ((result "SUCCESS"))
 (comment "Std e*Way connection shutdown function" "[++] Usage:
Function called by system to request that the interface disconnect
from the external system, preparing for a suspend/reload cycle. Any
return value indicates that the suspend can occur immediately, and the
interface is placed in the down state. [++] Input to expect: Function
should not expect input. [++] Expected return values: anything
indicates that the external is ready to suspend.n")
 (comment "db-stdver-conn-shutdown [++] Implementation specific
comment" "none")
 (display "[++] Executing e*Way external connection shutdown
function.")
 (display message-string)
 (db-logout connection-handle)
 result
)
))

Name Type Description

string string When the e*Way calls this function, it passes the
string "SUSPEND_NOTIFICATION" as the parameter.
e*Way Intelligent Adapter for Sybase User’s Guide 88 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Sybase e*Way Functions Standard e*Way Functions
db-stdver-pos-ack

Syntax

(db-stdver-pos-ack message-string)

Description

db-stdver-pos-ack is used to send a positive acknowledgment to the external system,
and for post processing after successfully sending data to e*Gate.

Parameters

Return Values

string
An empty string indicates a successful operation. The e*Way is then able to proceed
with the next request.

CONNERR indicates a loss of connection with the external, client moves to a down
state and attempts to connect, on reconnect pos-ack function is re executed.

Throws

None.

Examples

(define db-stdver-pos-ack
 (lambda (message-string)
 (let ((result ""))
 (display "[++] Executing e*Way external positive acknowledgement
function.")
 (display message-string)
 result
)
))

Name Type Description

message-string string The Event for which an acknowledgment is
sent.
e*Way Intelligent Adapter for Sybase User’s Guide 89 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Sybase e*Way Functions Standard e*Way Functions
db-stdver-neg-ack

Syntax

(db-stdver-neg-ack message-string)

Description

db-stdver-neg-ack is used to send a negative acknowledgment to the external system,
and for post processing after failing to send data to e*Gate.

Parameters

Return Values

string
An empty string indicates a successful operation.

CONNERR indicates a loss of connection with the external, client moves to a down
state and attempts to connect, on reconnect neg-ack function is re-executed.

Throws

None.

Examples

(define db-stdver-neg-ack
 (lambda (message-string)
 (let ((result ""))
 ((display "[++] Executing e*Way external negative acknowledgement
function.")
 (display message-string)
 result
)
))

Name Description

message-string The Event for which a negative acknowledgment is sent.
e*Way Intelligent Adapter for Sybase User’s Guide 90 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Sybase e*Way Functions Standard e*Way Functions
db-stdver-shutdown

Syntax

(db-stdver-shutdown shutdown_notification)

Description

db-stdver-shutdown is called by the system to request that the external shutdown, a
return value of SUCCESS indicates that the shutdown can occur immediately, any other
return value indicates that the shutdown Event must be delayed. The user is then
required to execute a shutdown-request call from within a monk function to allow the
requested shutdown process to continue.

Parameters

Return Values

string
SUCCESS allows an immediate shutdown to occur, anything else delays shutdown
until a shutdown-request is executed successfully.

Throws

None.

Examples

(define db-stdver-shutdown
 (lambda (message-string)
 (let ((result "SUCCESS"))
 (display "[++] Executing e*Way external shutdown command
notification function.")
 result
)
))

Name Type Description

shutdown_notification string When the e*Way calls this function, it passes the
string "SHUTDOWN_NOTIFICATION" as the
parameter.
e*Way Intelligent Adapter for Sybase User’s Guide 91 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Sybase e*Way Functions Standard e*Way Functions
db-stdver-proc-outgoing

Syntax

(db-stdver-proc-outgoing message-string)

Description

db-stdver-proc-outgoing is used for sending a received message (Event) from e*Gate to
the external system.

Parameters

Return Values

string
An empty string indicates a successful operation.

RESEND causes the message to be immediately resent. The e*Way compares the
number of attempts made to send the Event to the number specified in the Max
Resends per Messages parameter, and does one of the following:

! If the number of attempts does not exceed the maximum, the e*Way pauses the
number of seconds specified by the Resend Timeout parameter, increments the
“resend attempts” counter for that message, then repeats the attempt to send the
message.

! If the number of attempts exceeds the maximum, the function returns false and rolls
back the message to the e*Gate IQ from which it was obtained.

CONNERR indicates that there is a problem communicating with the external system.
First, the e*Way pauses the number of seconds specified by the Resend Timeout
parameter. Then, the e*Way calls the External Connection Establishment function
according to the Down Timeout schedule, and rolls back the message (Event) to the IQ
from which it was obtained.

DATAERR indicates that there is a problem with the message (Event) data itself. First,
the e*Way pauses the number of seconds specified by the Resend Timeout parameter.
Then, the e*Way increments its “failed message (Event)” counter, and rolls back the
message (Event) to the IQ from which it was obtained. If the e*Way’s journal is enabled
(see Journal File Name on page 15), the message (Event) is journaled.

If a string other than the following is returned, the e*Way creates an entry in the log file
indicating that an attempt has been made to access an unsupported function.

Throws

None.

Examples

(define db-stdver-proc-outgoing

Name Type Description

message-string string The Event to be processed.
e*Way Intelligent Adapter for Sybase User’s Guide 92 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Sybase e*Way Functions Standard e*Way Functions
 (lambda (message-string)
 (let ((result ""))
 (display "[++] Executing e*Way external process outgoing message
function.")
 (display message-string)
 result
)
))
e*Way Intelligent Adapter for Sybase User’s Guide 93 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Sybase e*Way Functions Standard e*Way Functions
db-stdver-proc-outgoing-stub

Syntax

(db-stdver-proc-outgoing-stub message-string)

Description

db-stdver-proc-outgoing-stub is used as a place holder for the function entry point for
sending an Event received from e*Gate to the external system. When the interface is
configured as an inbound only connection, this function should not be used. This
function is used to catch configuration problems.

Parameters

Return Values

string
An empty string indicates a successful operation.

RESEND causes the message to be immediately resent. The e*Way compares the
number of attempts it has made to send the Event to the number specified in the Max
Resends per Messages parameter, and does one of the following:

! If the number of attempts does not exceed the maximum, the e*Way pauses the
number of seconds specified by the Resend Timeout parameter, increments the
“resend attempts” counter for that message, then repeats the attempt to send the
message.

! If the number of attempts exceeds the maximum, the function returns false and rolls
back the message to the e*Gate IQ from which it was obtained.

CONNERR indicates that there is a problem communicating with the external system.
First, the e*Way pauses the number of seconds specified by the Resend Timeout
parameter. Then, the e*Way calls the External Connection Establishment function
according to the Down Timeout schedule, and rolls back the message (Event) to the IQ
from which it was obtained.

DATAERR indicates that there is a problem with the message (Event) data itself. First,
the e*Way pauses the number of seconds specified by the Resend Timeout parameter.
Then, the e*Way increments its “failed message (Event)” counter, and rolls back the
message (Event) to the IQ from which it was obtained. If the e*Way’s journal is enabled
(see Journal File Name on page 15) the message (Event) is journaled.

If a string other than the following is returned, the e*Way creates an entry in the log file
indicating that an attempt has been made to access an unsupported function.

Throws

None.

Name Type Description

message-string string The Event to be processed.
e*Way Intelligent Adapter for Sybase User’s Guide 94 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Sybase e*Way Functions Standard e*Way Functions
Examples

(define db-stdver-proc-outgoing-stub
 (lambda (message-string)
 (let ((result ""))
 (display "[++] Executing e*Way external process outgoing message
function stub.")
 (display message-string)
 (event-send "ALERTCAT_OPERATIONAL" "ALERTSUBCAT_INTEREST"
"ALERTINFO_NONE" "0" "Possible configuration error." (string-append
"Default eway process outgoing msg function passed following message:
" msg) 0 (list))
 result
)
))
e*Way Intelligent Adapter for Sybase User’s Guide 95 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Sybase e*Way Functions Standard e*Way Functions
db-stdver-data-exchg

Syntax

(db-stdver-data-exchg)

Description

db-stdver-data-exchg is used for sending a received Event from the external system to
e*Gate. The function expects no input.

Parameters

None.

Return Values

string
An empty string indicates a successful operation; nothing is sent to e*Gate.

A message-string indicates successful operation and the Event is sent to e*Gate.

CONNERR indicates the loss of connection with the external, client moves to a down
state and attempts to connect, on reconnect this function is re-executed with the same
input message.

Throws

None.

Examples

(define db-stdver-data-exchg
 (lambda ()
 (let ((result ""))
 (display "[++] Executing e*Way external data exchange function.")
 result
)
))
e*Way Intelligent Adapter for Sybase User’s Guide 96 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Sybase e*Way Functions Generic e*Way Built-in Functions
db-stdver-data-exchg-stub

Syntax

(db-stdver-data-exchg-stub)

Description

db-stdver-data-exchg-stub is used as a place holder for the function entry point for
sending an Event from the external system to e*Gate. When the interface is configured
as an outbound only connection, this function should not be called. The function
expects no input.

Parameters

None.

Return Values

string
An empty string indicates a successful operation; nothing is sent to e*Gate.

A message-string indicates a successful operation and the Event is sent to e*Gate.

CONNERR indicates the loss of connection with the external, and the client moves to a
down state. Any attempts to connect, or reconnect are re-executed with the same input
message.

Throws

None.

Examples

(define db-stdver-data-exchg-stub
 (lambda ()
 (let ((result ""))
 (event-send "ALERTCAT_OPERATIONAL" "ALERTSUBCAT_INTEREST"
"ALERTINFO_NONE" "0" "Possible configuration error." "Default eway
data exchange function called." 0 (list))
 result
)
))

5.2 Generic e*Way Built-in Functions
The Generic e*Way Functions are general purpose functions available to most e*Ways.
They are available to Collaboration Rules scripts executed by the e*Way. The functions
in this category control the user-defined operations. The Built-in functions are:

start-schedule on page 99

stop-schedule on page 100

send-external-up on page 101

send-external-down on page 102
e*Way Intelligent Adapter for Sybase User’s Guide 97 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Sybase e*Way Functions Generic e*Way Built-in Functions
get-logical-name on page 103

event-send-to-egate on page 104

shutdown-request on page 105
e*Way Intelligent Adapter for Sybase User’s Guide 98 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Sybase e*Way Functions Generic e*Way Built-in Functions
start-schedule

Syntax

(start-schedule)

Description

start-schedule requests that the e*Way execute the “Exchange Data with External”
function specified within the e*Way’s configuration file. Does not effect any defined
schedules.

Parameters

None.

Return Values

None.

Throws

None.
e*Way Intelligent Adapter for Sybase User’s Guide 99 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Sybase e*Way Functions Generic e*Way Built-in Functions
stop-schedule

Syntax

(stop-schedule)

Description

stop-schedule requests that the e*Way halt execution of the “Exchange Data with
External” function specified within the e*Way’s configuration file. Execution is stopped
when the e*Way concludes any open transaction. Does not effect any defined schedules,
and does not halt the e*Way process itself.

Parameters

None.

Return Values

None.

Throws

None.
e*Way Intelligent Adapter for Sybase User’s Guide 100 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Sybase e*Way Functions Generic e*Way Built-in Functions
send-external-up

Syntax

(send-external-up)

Description

send-external-up instructs the e*Way that the connection to the external system is up.

Parameters

None.

Return Values

None.

Throws

None.
e*Way Intelligent Adapter for Sybase User’s Guide 101 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Sybase e*Way Functions Generic e*Way Built-in Functions
send-external-down

Syntax

(send-external-down)

Description

send-external down instructs the e*Way that the connection to the external system is
down.

Parameters

None.

Return Values

None.

Throws

None.
e*Way Intelligent Adapter for Sybase User’s Guide 102 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Sybase e*Way Functions Generic e*Way Built-in Functions
get-logical-name

Syntax

(get-logical-name)

Description

get-logical-name returns the logical name of the e*Way.

Parameters

None.

Return Values

string
Returns the name of the e*Way (as defined by the Enterprise Manager).

Throws

None.
e*Way Intelligent Adapter for Sybase User’s Guide 103 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Sybase e*Way Functions Generic e*Way Built-in Functions
event-send-to-egate

Syntax

(event-send-to-egate string)

Description

event-send-to-egate sends an Event from the e*Way. If the external collaboration(s) is
successful in publishing the Event to the outbound queue, the function returns #t (true);
otherwise #f (false) is returned.

Parameters

Return Values

Boolean
Returns #t (true) when successful; otherwise, #f (false) when an error occurs.

Throws

None.

Additional information

This function can be called by any e*Way function when it is necessary to send data to
the e*Gate system in a blocking fashion.

Name Type Description

string string The data to be sent to the e*Gate
system
e*Way Intelligent Adapter for Sybase User’s Guide 104 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
shutdown-request

Syntax

(shutdown-request)

Description

shutdown-request completes the e*Gate shutdown procedure that was initiated by the
Control Broker but was interrupted by returning a non-null value within the Shutdown
Command Notification Function (see “Shutdown Command Notification Function”
on page 33). Once this function is called, shutdown proceeds immediately.

Once interrupted, the e*Way’s shutdown cannot proceed until this Monk function is
called. If you do interrupt an e*Way shutdown, we recommend that you complete the
process in a timely fashion.

Parameters

None.

Return Values

None.

Throws

None.

5.3 Database Access Functions
The Database Access Functions permit data to be manipulated using SQL insert,
update and delete statements as well as procedure calls within the connected database.
These functions are available to Collaboration Rules scripts executed by the e*Way.

These Monk functions are used to interface with the application database, and are
divided into five categories, as follows:

! General Connection Functions on page 106

! Static SQL Functions on page 121:

! Dynamic SQL Functions on page 133:

! Stored Procedure Functions on page 149:

! Message Event Functions on page 179
e*Way Intelligent Adapter for Sybase User’s Guide 105 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
5.3.1 General Connection Functions
The functions provide for basic operations such as logging in/out of the database,
connecting to the database, and generating error messages.

! make-connection-handle on page 107

! connection-handle? on page 108

! db-login on page 109

! db-logout on page 111

! db-alive on page 112

! db-std-timestamp-format on page 114

! db-max-long-data-size on page 115

! db-commit on page 116

! db-rollback on page 117

! statement-handle? on page 118

! db-get-error-str on page 119
e*Way Intelligent Adapter for Sybase User’s Guide 106 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
make-connection-handle

Syntax

(make-connection-handle)

Description

This function constructs the connection handle.

Parameters

None.

Return Values

Boolean
Returns #t (true) if a Monk object of type connection-handle is returned; otherwise,
returns #f (false) if the function fails to create a connection-handle. Use db-get-error-str
to retrieve the error message.

Throws

None.

Examples

(define hdbc (make-connection-handle))

Explanation

The above example creates a connection handle variable called hdbc.
e*Way Intelligent Adapter for Sybase User’s Guide 107 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
connection-handle?

Syntax

(connection-handle? any-variable)

Description

connection-handle? determines whether or not the input argument is a connection-
handle datatype.

Parameters

Return Values

Boolean
Returns #t (true) when the end of the fetch cycle is reached; otherwise, returns #f (false).
Use db-get-err-str to retrieve the error message.

Throws

None.

Examples

(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

Explanation

The above example creates a connection handle called hdbc. An error message is
displayed if the newly defined hdbc is not a connection handle.

Name Type Description

any-variable variable A single variable of any data type is
required.
e*Way Intelligent Adapter for Sybase User’s Guide 108 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-login

Syntax

(db-login connection-handle data-source user-name password)

Description

db-login allocates the resources and performs login to a database system.

db-login requires an encrypted password. If a password was specified in the Database
Setup section of the e*Way Editor, it has already been encrypted. (See “Database
Setup” on page 33.)

If a password was defined within a Monk function (which is not encrypted), you must
use the monk function encrypt-password found in the e*Gate Monk extension library
stc_monkext.dll:

encrypt-password encryption key plain password

where encryption key is public knowledge, i.e., in this case user id, and plain password
is the password to be encrypted.

The encrypt-password API returns an encrypted password string to be used with db-
login.

 Parameters

Note: The data_source, user_name, and password must not be an empty string.

Return Values

Boolean
Returns #t when the end of the fetch cycle is reached; otherwise, returns #f. Use db-get-
err-str to retrieve the error message.

Throws

None.

Examples

...
(define hdbc (make-connection-handle))
(define uid "James")
(define pwd (encrypt-password uid "12345"))
(if (db-login hdbc ”Payroll” “James” “12345”)
 ...
)

Name Type Description

connection-handle connection handle A connection handle to the database.

data-source string The name of the data source.

user-name string The database user login name.

password string The database user login password.
e*Way Intelligent Adapter for Sybase User’s Guide 109 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
Explanation

The above example shows how to use the connection handle (hdbc) to log into the data
source “Payroll” as “James” with the password “12345.”
e*Way Intelligent Adapter for Sybase User’s Guide 110 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-logout

Syntax

(db-logout connection-handle)

Description

db-logout performs a disconnect from the database system and releases the connection
handle resources.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

...
(define hdbc (make-connection handle))
(if (db-login hdbc “dsn” “uid” “pwd”)
 ...
 (db-logout hdbc)
)
...

Explanation

The above example shows how to disconnect from a database. For every db-login,
there should be a corresponding db-logout.

Notes

Roll back or commit a transaction before you call db-logout. If a transaction is neither
committed nor rolled back, it is automatically rolled back before logout.

Name Type Description

connection-handle connection handle A connection handle to the database.
e*Way Intelligent Adapter for Sybase User’s Guide 111 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-alive

Syntax

(db-alive connection-handle)

Description

db-alive is used to determine if the cause of a failing Sybase e*Way operation is due to a
broken connection. It returns whether or not the database connection was alive during
the last call to any Sybase e*Way procedure that sends commands to the database
server.

Parameters

Return Values

Boolean
Returns #t (true) when the end of the fetch cycle is reached; otherwise, returns #f (false).
Use db-get-err-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc “dsn” “uid” “pwd”)
 (begin
 (define sql_statement “select * from person where sex = ‘M’”)
 (do ((status #t)) ((not status))
 (if (db-sql-select hdbc “male” sql_statement)
 (begin
 ...
)
 (begin
 (display (db-get-error-str hdbc))
 (set! status (db-alive hdbc))
)
)
)
 (display “lost database connection !\n”))
 (db-logout hdbc))
)
)

Explanation

The example above illustrates an application that is looking for a certain record in the
“person” table of the “Payroll” database. The function exits the loop only if it loses the
connection to the database.

Notes

! Most procedures can detect a dead connection handle except db-commit and db-
rollback. Therefore, when the procedure returns false, users must check for loss of
connection.

Name Type Description

connection-handle connection handle A connection handle to the database.
e*Way Intelligent Adapter for Sybase User’s Guide 112 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
! Once the db-alive returns #f (false) to indicate either a dead connection handle or
an un-available database server, all the subsequent Sybase e*Way function calls
associated with that connection handle will not be executed, with the exception of
db-logout. Each of these procedures returns false with a “lost database connection”
error message.

! Once determined the connection handle is not alive, the only course of action the
user can take is to log out from that connection handle, redefine a new connection
handle, and try to reconnect to the database.
e*Way Intelligent Adapter for Sybase User’s Guide 113 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-std-timestamp-format

Syntax

(db-std-timestamp-format connection-handle)

Description

db-std-timestamp-format sets the date to SQL92 standard format--”YYYY-MM-DD
HH:MI:SS.SSS”--at the connection level and must be called immediately after login.

Parameters

Return Values

Boolean
Returns #t (true) when the end of the fetch cycle is reached; otherwise, returns #f (false).
Use db-get-err-str to retrieve the error message.

Throws

None.

Notes

! When the user logs into the database, the database server has a default timestamp
format set. The default format can be any non-standard format.

! The db-std-timestamp-format API forces the input and output of the timestamp
format to the standard SQL92 standard format. Using standard format frees the
user from reformatting each time data is exchanged with other applications.

Name Type Description

connection-handle connection handle A connection handle to the database.
e*Way Intelligent Adapter for Sybase User’s Guide 114 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-max-long-data-size

Syntax

(db-max-long-data-size connection-handle size)

Description

db-max-long-data specifies the maximum buffer size for the long data allowing the
data to be larger than one megabyte. Long data may have a range in size up to two
gigabytes (2x109). In order to limit the memory consumption of the library, it is
necessary to use this function to specify the maximum data size expected. Long data
larger than the specified size is truncated. This data size is used for buffer allocation for
both long data columns as well as long data parameters.

Parameters

Return Values

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Additional Information

The default maximum buffer size for long data type is one megabyte (1048576). It is not
necessary to call this function unless the long data is in excess of one megabyte.

Name Type Description

connection-handle connection handle A connection handle to the database.

size integer This parameter is used to identify the
buffer size of the specified long
datatype. Note: The default buffer size
is one megabyte.
e*Way Intelligent Adapter for Sybase User’s Guide 115 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-commit

Syntax

(db-commit connection-handle)

Description

db-commit performs all transactions specified by the connection.

Parameters

Return Values

Boolean
Returns #t (true) when the end of the fetch cycle is reached; otherwise, returns #f (false).
Use db-get-err-str to retrieve the error message.

Throws

None.

Examples

...
(if
 (and
 (db-sql-execute hdbc “delete from employee where first_name =
‘John’”)
 (db-sql-execute hdbc “update employee set first_name = ‘Mary’
where ssn = 123456789”)
)
 (db-commit hdbc)
 (begin
 (display (db-get-error-str hdbc))
 (db-rollback hdbc)
)
)
...

Explanation

This example shows that if the application can successfully delete “John’s record” and
update “Mary’s record” it commits the transaction specified by the connection.
Otherwise, it prints out the error message and rolls back the transaction.

Name Type Description

connection-handle connection handle A connection handle to the database.
e*Way Intelligent Adapter for Sybase User’s Guide 116 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-rollback

Syntax

(db-rollback connection-handle)

Description

db-rollback rolls back the entire transaction for the connection.

Parameters

Return Values

Boolean
Returns #t (true) when the end of the fetch cycle is reached; otherwise, returns #f (false).
Use db-get-err-str to retrieve the error message.

Throws

None.

Examples

...
(if
 (and
 (db-sql-execute hdbc “delete from employee where first_name =
‘John’”)
 (db-sql-execute hdbc “update employee set first_name = ‘Mary’
where ssn = 123456789”)
)
 (db-commit hdbc)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
 (db-rollback hdbc)
)
)
...

Explanation

This example shows that if the application can successfully delete “John’s record” and
update “Mary’s record,” it commits the transaction specified by the connection.
Otherwise, it prints out the error message and rolls back the transaction.

Name Type Description

connection-handle connection handle A connection handle to the database.
e*Way Intelligent Adapter for Sybase User’s Guide 117 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
statement-handle?

Syntax

(statement-handle? any-variable)

Description

statement-handle? determines whether or not the input argument is a statement
handle datatype.

Parameters

Return Values

Boolean
Returns #t (true) when the end of the fetch cycle is reached; otherwise, returns #f (false).
Use db-get-err-str to retrieve the error message.

Throws

None.

Examples

(define hstmt (db-proc-bind hdbc “test”))
(if (not (statement-handle? hstmt))
 (display (db-get-error-str hdbc))
)

Explanation

The above example creates a statement handle called hstmt, then it displays an error
message if the newly defined hstmt is not a statement handle.

Name Type Description

any-variable variable A single variable of any datatype is
required.
e*Way Intelligent Adapter for Sybase User’s Guide 118 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-get-error-str

Syntax

(db-get-error-str connection-handle)

Description

db-get-error-str returns the last error message, and is used when a value of #f (false) is
returned.

Parameters

Return Values

string
A simple error message is returned. To parse the return error message when it contains
an error, use the two standard files that define the error message structure and display
the contents of each component of the error message.

SYBASE - sybmsg.ssc, sybmsg_display.monk

Throws

None.

Examples

...
(if (db-sql-execute hdbc “delete from employee where
first_name=‘John’)
 (db-commit hdbc)
 (display (db-get-error-str hdbc))
)
...

Explanation

This example shows that if the application can successfully delete “John’s record” it
commits the transaction. Otherwise, the application prints out the error message and
rolls back the same transaction. Each commit begins a new transaction automatically.

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "database login succeed !\n")
 (if (db-sql-execute hdbc "INSERT INTO UNKNOWN VALUES (NULL)")
 (db-commit hdbc)
 (sybmsg-display (db-get-error-str hdbc))
)
 (if (not (db-logout hdbc))
 (sybmsg-display (db-get-error-str hdbc))
)
)
 (sybmsg-display (db-get-error-str hdbc))
)

Output of the above example (db-get-error-str hdbc)

Name Type Description

connection-handle connection handle A connection handle to the database.
e*Way Intelligent Adapter for Sybase User’s Guide 119 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
SERVER|208|16|42000|1||UNKNOWN not found. Specify owner.objectname or
use sp_help to check whether the object exists (sp_help may produce
lots of output). DART|63|STCDB_X_conn_sql_exec_len||unable to execute
SQL statement

Output of the above example (sybmsg-display (db-get-error-str hdbc)

SERVER message #0:
msg_source : SERVER
msg_number : 208
severity : 16
sql_state : 42000
line_number : 1
proc_name :
msg_string : UNKNOWN not found. Specify owner.objectname or use
sp_help to check whether the object exists (sp_help may produce lots
of output).

DART message #0:
msg_source : DART
msg_number : 63
function : STCDB_X_conn_sql_exec_len
msg_target :
msg_string : unable to execute SQL statement

5.3.2 Sybase SQL Type Support
The following table shows the supported SQL datatypes and the corresponding native
datatype for the Sybase database.

Table 8 Sybase SQL Type Support

SQL Type Name SQL Datatype Sybase Datatype

SQL_BIT BIT bit

SQL_BINARY BINARY (n) binary (n)

SQL_VARBINARY VARBINARY (n) varbinary (n)

SQL_CHAR CHAR (n) char (n)

SQL_VARCHAR VARCHAR (n) varchar (n)

SQL_DECIMAL DECIMAL (p, s) decimal (p,s)

SQL_NUMERIC NUMERIC (p, s) numeric (p, s)

SQL_TINYINT TINYINT tinyint

SQL_BIGINT BIGINT N/A

SQL_SMALLINT SMALLINT smallint

SQL_INTEGER INTEGER int

SQL_REAL REAL real

SQL_FLOAT FLOAT(p) FLOAT(p)

SQL_DOUBLE DOUBLE PRECISION double precision

SQL_DATE DATE N/A

SQL_TIME TIME N/A

SQL_TIMESTAMP TIMESTAMP datetime
e*Way Intelligent Adapter for Sybase User’s Guide 120 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
*Sybase float (p) specifies a floating point number with precision range from 1 to 126.

Note: All variable precision datatypes require precision values.

5.3.3 Static SQL Functions
These SQL functions represent statements that are embedded in the program source
code.

! db-sql-format on page 122

! db-sql-execute on page 124

! db-sql-select on page 125

! db-sql-fetch on page 126

! db-sql-fetch-cancel on page 127

! db-sql-column-names on page 128

! db-sql-column-types on page 130

! db-sql-column-values on page 132

SQL_LONGVARCHAR LONG VARCHAR text

SQL_LONGVARBINARY LONG VARBINARY image

Table 8 Sybase SQL Type Support

SQL Type Name SQL Datatype Sybase Datatype
e*Way Intelligent Adapter for Sybase User’s Guide 121 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-sql-format

Syntax

(db-sql-format data-string SQL-type)

Description

db-sql-format returns a formatted string of the data-string, so it can be used in an SQL
statement as a literal value of a corresponding SQL-type.

In the current implementation, only the SQL_CHAR, SQL_VARCHAR, SQL_DATE,
SQL_TIME, and SQL_TIMESTAMP SQL-types is formatted. If the <data-string> is an
empty string, the procedure returns a NULL value for all SQL data types except
SQL_CHAR and SQL_VARCHAR.

Parameters

Return Values

string
Returns a formatted string used as a data value in an SQL statement.

Throws

None.

Examples

(define last-name (db-sql-format “O’Reilly” “SQL_VARCHAR”))
(define timestamp (db-sql-format “1998-02-19 12:34:56”
SQL_TIMESTAMP”))
(define sql-stmt (string-append “update employee set lastname =
“last-name “, MODIFYTIME = “timestamp “WHERE SSN = 123456789”))
(if (db-login hdbc “Payroll” “user” “password”)
 (begin
 (if (db-sql-execute hdbc sql-stmt)
 (db-commit hdbc)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
 (db-rollback hdbc)
)
)
 ...
 (db-logout hdbc)
)
)

Explanation

The example above illustrates how the program uses db-sql-format to format the last
name and the timestamp and use the results as part of an SQL statement.

Name Type Description

data-string string A data string to be used as a literal
value in an SQL statement.

SQL-type string The SQL data type string, i.e.,
SQL_VARCHAR.
e*Way Intelligent Adapter for Sybase User’s Guide 122 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
Remarks

! For SQL_CHAR and SQL_VARCHAR (SQL datatypes) db-sql-format places a
single quotation mark (‘) before and after the data-string, and expand each single
quotation mark in the data-string to two single quotation mark characters.

! If you use the (timestamp) Monk built-in function to insert the timestamp to an
Event Type Definition, you should specify the following format for it to be accepted
by the db-sql-format function: “%Y-%m-%d %H:%M:%S”

! This function only works with the db-std-timestamp-format because the db-sql-
format API handles only standard timestamp format.

The following table shows the typical <data-string> and the corresponding results of
the formatting for an SQL statement.

Table 9 SQL Statement Formats

SQL_type Value Data_string Value Formatted Result String

SQL_CHAR This is a string ‘This is a string.’

SQL_VARCHAR O’Reilly ‘O’ ‘Reilly’

SQL_TIMESTAMP 1998-02-19 12:34:56.789 ‘1998-02-19 12:34:56.789’
e*Way Intelligent Adapter for Sybase User’s Guide 123 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-sql-execute

Syntax

(db-sql-execute connection-handle SQL-stmt)

Description

db-sql-execute carries out the specified SQL statement.

Parameters

Return Values

Boolean
Returns #t (true) when the end of the fetch cycle is reached; otherwise, returns #f (false).
Use db-get-err-str to retrieve the error message.

Throws

None.

Examples

...
(if (db-login hdbc "Payroll" "James" "12345")
 (begin
 ...
 (if (db-sql-execute hdbc "insert into employee values(‘John’...)")
 (db-commit hdbc)
)

)
 (display (db-get-error-str hdbc))
)
...

Explanation

This example shows that if the application can successfully log into the data source
“Payroll,” it inserts a record into the table “employee.”

Notes

! Use the db-sql-select function to execute a select statement.

Use this function to execute either a DDL (data definition language) statement, i.e.,
create a table, alter a table, delete a table, or a DML (data manipulation language)
statement, i.e., select a table, insert a value into a database, update a table.

All DML transactions must be closed, or an error occurs, before using a DDL
statement.

! Use db-commit or db-rollback to commit and roll back transactions.

Name Type Description

connection-handle connection handle A connection handle to the database.

SQL-stmt string The SQL statement being executed
e*Way Intelligent Adapter for Sybase User’s Guide 124 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-sql-select

Syntax

(db-sql-select connection-handle selection-name SQL-statement)

Description

db-sql-select executes an SQL SELECT statement.

Parameters

Return Values

Boolean
Returns #t (true) when the end of the fetch cycle is reached; otherwise, returns #f (false).
Use db-get-err-str to retrieve the error message.

Throws

None.

Examples

...
(if (db-sql-select hdbc “GreaterThan25” “select * employee where age
> 25”)
 (begin
 (display (db-sql-fetch hdbc “GreaterThan25”))
 (newline)
 (db-sql-fetch-cancel hdbc “GreaterThan25”)
)
 (display (db-get-error-str hdbc))
)
...

Explanation

This example shows that the application selects the first record of employees who are
older than age 25, by fetching the records one at a time and cancelling the remainder of
the return records.

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the selection.

SQL-statement string The SELECT statement.
e*Way Intelligent Adapter for Sybase User’s Guide 125 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-sql-fetch

Syntax

(db-sql-fetch connection-handle selection-name)

Description

db-sql-fetch “fetches” the result of a SELECT statement. The statement handle is “free”
after the function fetches the last record.

Parameters

Return Values

string
Returns a comma, delimited string containing all the column values for the record.

Boolean
Returns #t (true) at the end of the “fetch cycle,” when no more records are available to
“fetch"; otherwise, returns #f (false).Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

...
(if (db-sql-select hdbc “GreaterThan25” “select * employee where age
> 25”)
 (begin
 (display (db-sql-fetch hdbc “GreaterThan25”))
 (newline)
 (db-sql-fetch-cancel hdbc “GreaterThan25”)
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
...

Explanation

This example shows that the application selects the first record of employees who are
older than age 25, by fetching the record once and cancelling the rest of the records.

Notes

The return result is temporarily stored in RAM. The buffer is allocated when db-sql-
select is called. The maximum size of the buffer is determined by the operating system.

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the selection.
e*Way Intelligent Adapter for Sybase User’s Guide 126 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-sql-fetch-cancel

Syntax

(db-sql-fetch-cancel connection-handle selection-name)

Description

db-sql-fetch-cancel closes the cursor associated with an SQL SELECT statement and
cancels the fetch command. It also frees up the memory allocation for the selection.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

...
(if (db-sql-select hdbc “GreaterThan25” “select * employee where age
> 25”)
 (begin
 (define result (db-sql-fetch hdbc “GreaterThan25”))
 (if (not (boolean? result))
 (db-sql-fetch-cancel hdbc “GreaterThan25”)
 (if (not result)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
)
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
...

Explanation

This example shows that the application selects the first record of employees who are
older than age 25, by fetching the record once and cancelling the rest of the records.

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the selection.
e*Way Intelligent Adapter for Sybase User’s Guide 127 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-sql-column-names

Syntax

(db-sql-column-names connection-handle selection-name)

Description

db-sql-column-names returns a vector of column names which are the result of an SQL
SELECT statement identified by the parameter selection-name. This procedure can be
called after a SQL SELECT statement has been issued successfully.

Parameters

Return Values

string
This function returns a vector of column names in string format if successful.

Boolean
Returns #t (true) when the end of the fetch cycle is reached; otherwise, returns #f (false).
Use db-get-err-str to retrieve the error message.

Throws

None.

Examples

(define selection “select * from person where title=’manager’”)
(if (db-login hdbc “dsn” “uid” “pwd”)
 (begin
 (if (db-sql-select hdbc “manager” selection)
 (begin
 (define name-array (db-sql-column-names hdbc “manager”))
 (if (vector? name-array)
 (begin
 (display “name of the first column: ”)
 (display (vector-ref name-array 0))
 (newline)
 ...
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
 (display (db-get-error-str hdbc))
 (newline)
)
)
 (if (db-alive hdbc)
 (begin
 ...

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the selection.
e*Way Intelligent Adapter for Sybase User’s Guide 128 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
)
)
 (db-logout hdbc)
)
)

Explanation

This example shows that after issuing a successful SQL SELECT statement, the program
displays the name of the first column.
e*Way Intelligent Adapter for Sybase User’s Guide 129 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-sql-column-types

Syntax

(db-sql-column-types connection-handle selection-name)

Description

db-sql-column-types returns a vector of column types which are the result of an SQL
SELECT statement identified by the parameter selection-name. This procedure can be
called after a SQL SELECT statement has been issued successfully. Refer to the
description for db-bind-proc for a list of SQL-type names.

Parameters

Return Values

string
This function returns a vector of column types in string format if successful.

Boolean
If the string type is unavailable for any reason, this function returns a #f (false). Use db-
get-error-str to retrieve the error message.

Throws

None.

Examples

(define selection “select * from person where title= ‘manager’”)
 (if (db-sql-select hdbc “manager” selection)
 (begin
 (define type-array (db-sql-column-types hdbc “manager”))
 (if (vector? type-array)
 (begin
 (display “type of the first column:”)
 (display (vector-ref type-array 0))
 (newline)
 ...
 ...
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
 (display (db-get-error-str hdbc))
)
)
 (if (db-alive hdbc)
 (begin
 ...
)
)

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the selection.
e*Way Intelligent Adapter for Sybase User’s Guide 130 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
 Explanation

This example shows that after issuing a successful SQL SELECT statement, the program
displays the first column type.
e*Way Intelligent Adapter for Sybase User’s Guide 131 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-sql-column-values

Syntax

(db-sql-column-values connection-handle selection-name)

Description

db-sql-column-values returns a vector of column values, which is the result of an SQL
FETCH statement identified by the parameter selection-name. This procedure can be
called after a SQL FETCH statement has been issued successfully.

Parameters

Return Values

string
Returns a vector of SQL values in string format if successful.

Boolean
If the values string is unavailable for any reason, this function returns a #f (false). Use
db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define selection “select * from person where title= ‘manager’”)
 (if (db-sql-select hdbc “manager” selection)
 (do ((result ””) (value-array #())) ((boolean? result))
 (set! result (db-sql-fetch hdbc “manager”))
 (if (not (boolean? reslt))
 (begin
 (set! value-array (db-sql-column-values hdbc “manager”))
 (do ((index 0 (+ index 1)) (count (vector-length value-
array))
 ((= index count))
 (display (vector-ref value-array index))
 (display “\t”)
)
 (newline)
)
 (if (not result) (display (db-get-error-str hdbc)))
)
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
 (if (db-alive hdbc)
 (begin
 ...

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the selection.
e*Way Intelligent Adapter for Sybase User’s Guide 132 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
)
)

Explanation

This example shows that after issuing a successful SQL SELECT statement, the program
loops through a fetch cycle. Within each fetch loop, the program displays the value of
each column in the same line, separated by a tab character.

Notes

! A successful db-sql-fetch call returns a string which contains the concatenation of
all column values with the comma (,) character as the separator. Although this
single string is suitable for display purposes, the user must parse the result string to
retrieve the value of each column.

! If the value of the column contains the comma (,) character, the user is unable to
differentiate the comma data from the comma separator. Therefore, db-sql-column-
values returns the result as a vector of values in string type to allow the user to
make use of the vector-ref function to retrieve the value of each column and avoid
any parsing problem.

5.3.4 Dynamic SQL Functions
Dynamic SQL statements are built and executed at run time versus Static SQL
statements that are embedded within the program source code. The dynamic SQL
functions supported by the Sybase e*Way are:

! db-stmt-bind on page 138

! db-stmt-bind-binary on page 139

! db-stmt-param-count on page 140

! db-stmt-param-type on page 141

! db-stmt-param-assign on page 142

! db-stmt-execute on page 143

! db-stmt-fetch on page 144

! db-stmt-fetch-cancel on page 145

! db-stmt-column-count on page 146

! db-stmt-column-name on page 147

! db-stmt-column-type on page 148

! db-stmt-row-count on page 149

Dynamic statements do not require knowledge of the complete structure of an SQL
statement before building the application. This allows for run time input to provide
information about the database objects to query.

The application can be written so that it prompts the user or scans a file for information
that is not available at compilation time.
e*Way Intelligent Adapter for Sybase User’s Guide 133 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
In Dynamic statements, the four steps of processing an SQL statement take place at run
time, but they are performed only once. Execution of the plan takes place only when
EXECUTE is called. Figure 26 on page 137 shows the difference between Dynamic SQL
with immediate execution, and Dynamic SQL with prepared execution.

The dynamic statement functions have been developed to support Long Raw and/or
Long data. Use of the Long Raw format, allows the buffer size to be increased to two
gigabytes from the default of one megabyte for standard data.

Benefits of Dynamic SQL

Using dynamic SQL commands, an application can prepare a "generic" SQL statement
once and execute it multiple time. Statements can also contain markers for parameter
values to be supplied at execution time, so that the statement can be executed with
varying inputs.

Limitations of Dynamic SQL

Dynamic SQL has some significant limitations. They are

1 Performance of Dynamic SQL Commands

A dynamic SQL implementation of an application generally performs worse than
an implementation where permanent stored procedures are created and the client
program invokes them with RPC (remote procedure call) commands.

When an stored procedure is created for an application, SQL statement compilation
and optimization are performed once when the procedure is created. With a
dynamic SQL application, compilation and optimization are performed every time
the client program runs. A dynamic SQL implementation also incurs database space
overhead because each instance of the client program must create separate
compiled versions of the application’s prepared statements. When you design an
application to use stored procedures and RPC commands, all instances of the client
program can share the same stored procedures.

2 SQL Server Restrictions and Database Requirements

SQL Server implements dynamic SQL using temporary stored procedures. A
temporary stored procedure is created when an SQL statement is prepared, and
destroyed when that prepared statement is deallocated.

As a result of this implementation, an application accessing SQL Server and using
dynamic SQL is subject to the restrictions of SQL Server stored procedures. Some of
the implications of this are:

" Temporary tables are destroyed when the prepared statement is deallocated.

" Parameters of text and image datatypes are not supported.

" The maximum number of parameters supported is 255.

" If the dynamic SQL statement itself executes a stored procedure (with a
Transact-SQL execute statement), output parameter values and the return status
are unavailable to the client application.
e*Way Intelligent Adapter for Sybase User’s Guide 134 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
Note: See the Transact-SQL User’s Guide for a complete discussion of stored procedures.

3 Retrieving a text or image column

Using ct_get_data to Fetch text and image Values

Only columns that follow the last column bound with the bind call are available for
use with ct_get_data.

For example, if an application selects for columns, all of which are text, and binds
the first and third columns to program variables, then the application cannot use
ct_get_data to retrieve the text contained in the second column. However, it can use
ct_get_data to retrieve the text in the fourth column. Applications that control the
select statement can reorder the select list so that the text and image columns come
at the end.

4 Updating a text or image Column

Text or image columns can be updated two ways:

Embed the new value in the text of language command that sends an update
statement. The advantage of this method is simplicity. The disadvantage is that the
application must send the entire value at once. This method may not be appropriate
for very large columns (that is, larger than that for which the program can allocate).
Note that SQL Server requires the value to be embedded in the command text, and
not passed as a command parameter. SQL Server does not allow parameters of type
text or image.
e*Way Intelligent Adapter for Sybase User’s Guide 135 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
Figure 25 Dynamic Statement Functions Flow Chart

db-stmt-bind-binary
or

db-stmt-bind

db-stmt-param-assign

db-stmt-execute

db-stmt-param-count
db-stmt-param-type

db-stmt-column-count
db-stmt-column-name
db-stmt-column-type

db-stmt-column-count
> 0?

db-stmt-fetch

Is result
a boolean?

db-stmt-fetch-cancel

End of
execution cycle Yes

No

Yes
No

OR
e*Way Intelligent Adapter for Sybase User’s Guide 136 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
Figure 26 Example of Dynamic SQL processing

Select A,B,C
From X, Y
Where A<500
AND C = 'EFG'

Parse Statement

Validate
Statement

Optimize
Statement

Generate access
plan

Execute access
plan

SQL Statement Dynamic SQL

Runtime
PREPARE statement

EXECUTE
IMMEDIATE
statement

EXECUTE
IMMEDIATE
statement

db-sql-execute

db-stmt-bind

db-stmt-execute
e*Way Intelligent Adapter for Sybase User’s Guide 137 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-stmt-bind

Syntax

(db-stmt-bind connection-handle dynamic-SQL-statement)

Description

db-stmt-bind binds the dynamic statement specified. The binary data type requires
input or output parameters in hexadecimal format.

Parameters

Return Values

statement handle
The statement handle that identifies the dynamic statement specified.

Boolean
If unsuccessful, returns #f. Use db-get-error-str to retrieve the error message.

Throws

None.

Additional Information

! Use db-stmt-bind-binary to input/output binary data in the raw format.

! The long column should appear at the end of the selection list when selecting the
long data type column.

Name Type Description

connection-handle connection handle A connection handle to the database.

dynamic SQL-statement string The dynamic statement to be bound.
e*Way Intelligent Adapter for Sybase User’s Guide 138 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-stmt-bind-binary

Syntax

(db-stmt-bind-binary connection-handle dynamic-SQL-statement)

Description

db-stmt-bind-binary binds the dynamic statement specified. The binary data type is
input and output with raw format.

Parameters

Return Values

statement handle
The statement handle that identifies the dynamic statement specified.

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

dynamic SQL-statement string The dynamic statement to be bound.
e*Way Intelligent Adapter for Sybase User’s Guide 139 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-stmt-param-count

Syntax

(db-stmt-param-count connection-handle statement-handle)

Description

db-stmt-param-count retrieves the number of parameters in the dynamic statement.

Parameters

Return Values

integer
Returns a number, which represents the number of parameters for the dynamic
statement specified, when successful.

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified. This
is the handle produced by db-proc-
bind.
e*Way Intelligent Adapter for Sybase User’s Guide 140 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-stmt-param-type

Syntax

(db-stmt-param-type connection-handle statement-handle index)

Description

db-stmt-param-type retrieves the SQL datatype of the specified parameter.

Parameters

Return Values

string
If successful, db-stmt-param-type returns a string which represents the SQL datatype.

Boolean
If an error occurred, returns #f (false). Use db-get-error-str to obtain the error message.

Throws

None.

Additional Information

The parameter datatype defaults to SQL-VARCHAR because the Sybase OCI API is
unable to report datatypes for each bound parameter in a dynamic statement. All
bound parameters default to the VARCHAR datatype. This allows Sybase to implicitly
convert the data string of each parameter into the correct data value of the parameter at
the execution of the dynamic statement.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified. This
is the handle produced by db-proc-
bind.

index integer The number between 0 and db-stmt-
param-count minus 1.
e*Way Intelligent Adapter for Sybase User’s Guide 141 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-stmt-param-assign

Syntax

(db-stmt-param-assign connection-handle statement-handle index value)

Description

db-stmt-param-assign assigns the parameter and executes the dynamic statement of a
specified parameter.

Parameters

Return Values

Boolean
If an error occurred, returns #f (false). Use db-get-error-str to obtain the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified. This
is the handle produced by db-proc-
bind.

index integer The number between 0 and db-stmt-
param-count minus 1.

value string The value to be assigned to the
parameter.
e*Way Intelligent Adapter for Sybase User’s Guide 142 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-stmt-execute

Syntax

(db-stmt-execute connection-handle statement-handle statement-node)

Description

db-stmt-execute assigns the parameter and executes the dynamic statement of a
specified parameter.

Parameters

Return Values

Boolean
If an error occurred, returns #f (false). Use db-get-error-str to obtain the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified. This
is the handle produced by db-proc-
bind.

statement-node string The Event path of a dynamic statement
structure node generated by the
stcstruct.exe program.
e*Way Intelligent Adapter for Sybase User’s Guide 143 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-stmt-fetch

Syntax

(db-stmt-fetch connection-handle statement-handle)

Description

db-stmt-fetch retrieves the column values of the record set.

Parameters

Return Values

A Vector and a Boolean
Returns a vector containing all the column values and at the end of the “fetch cycle”
returns #t (true) when there are no more records available. If an error occurred, returns
#f (false). Use db-get-error-str to obtain the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified. This
is the handle produced by db-stmt-
bind.
e*Way Intelligent Adapter for Sybase User’s Guide 144 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-stmt-fetch-cancel

Syntax

(db-stmt-fetch-cancel connection-handle statement-handle)

Description

db-stmt-fetch-cancel terminates the current “fetch” cycle.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified. This
is the handle produced by db-stmt-
bind.
e*Way Intelligent Adapter for Sybase User’s Guide 145 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-stmt-column-count

Syntax

(db-stmt-column-count connection-handle statement-handle)

Description

db-stmt-column-count returns the number of columns in the return result set.

Parameters

Return Values

number
Returns a number greater than zero (0) when the record set is available.

Boolean
If no record set is available, the return value is #f (false). Use db-get-error-str to retrieve
the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified. This
is the handle produced by db-stmt-
bind.
e*Way Intelligent Adapter for Sybase User’s Guide 146 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-stmt-column-name

Syntax

(db-stmt-column-name connection-handle statement-handle index)

Description

db-stmt-column-name returns the name string of the specified column in the result set.

Parameters

Return Values

string
Returns the name string if successful.

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified.

index integer An integer equal to -- 0 to db-stmt-
column-count minus 1.
e*Way Intelligent Adapter for Sybase User’s Guide 147 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-stmt-column-type

Syntax

(db-stmt-column-type connection-handle statement-handle index)

Description

db-stmt-column-type retrieves the SQL datatype of the specified column in the record
set.

Parameters

Return Values

string
Returns a string of SQL datatype when successful.

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified.

index integer The SQL datatype of the specified
column in the record set --0 to db-stmt-
column-count minus 1.
e*Way Intelligent Adapter for Sybase User’s Guide 148 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-stmt-row-count

Syntax

(db-stmt-row-count connection-handle statement-handle index)

Description

db-stmt-column-size retrieves the number of rows affected by the execution of the SQL
statement.

Parameters

Return Values

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

5.3.5 Stored Procedure Functions
These functions are executed only when called, and when specific criteria has been
satisfied, such as successful login, and valid connection to the database.

db-proc-bind on page 151

db-proc-bind-binary on page 152

db-proc-param-count on page 153

db-proc-param-name on page 155

db-proc-param-type on page 156

db-proc-param-io on page 157

db-proc-param-assign on page 158

db-proc-param-value on page 160

db-proc-execute on page 162

db-proc-fetch on page 164

db-proc-fetch-cancel on page 166

db-proc-column-count on page 168

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified.

index integer The SQL datatype of the specified
column in the record set --0 to db-stmt-
column-count minus 1.
e*Way Intelligent Adapter for Sybase User’s Guide 149 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-proc-column-name on page 170

db-proc-column-type on page 172

db-proc-return-exist on page 174

db-proc-return-type on page 176

db-proc-return-value on page 178
e*Way Intelligent Adapter for Sybase User’s Guide 150 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-proc-bind

Syntax

(db-proc-bind connection-handle procedure-name)

Description

db-proc-bind binds the input/output parameters of the stored procedure specified.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

Scenario #1 — Sample code for db-proc-bind

(define hstmt (db-proc-bind hdbc “test”)
(if (not (statement-handle? hstmt)
 (display “fail to bind stored procedure test\n”)
)

Scenario #2 — Sample code for db-proc-bind for
Sybase DBMS only

(db-sql-execute hdbc “use sybsystemprocs”)
(define hstmt (db-proc-bind hdbc “sp_help”)
(if (not (statement-handle? hstmt)
 (display “fail to bind stored procedure\n”)
)
(db-sql-execute hdbc “use my_db”)

Explanation

For Sybase DBMS only: When you want to bind the Sybase system procedure, such as
sp_help you must switch to the target database, in this case sybsystemprocs, before you
bind any system procedure. When binding is completed, you can return to the original
database.

Name Type Description

connection-handle connection handle A connection handle to the database.

procedure-name string The stored procedure to be bound.
e*Way Intelligent Adapter for Sybase User’s Guide 151 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-proc-bind-binary

Syntax

(db-proc-bind-binary connection-handle dynamic-SQL-statement)

Description

db-proc-bind-binary binds the dynamic statement specified. The binary data type is
input and output in binary format.

Parameters

Return Values

statement handle
The statement handle that identifies the dynamic statement specified.

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

dynamic SQL-statement string The dynamic statement to be bound.
e*Way Intelligent Adapter for Sybase User’s Guide 152 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-proc-param-count

Syntax

(db-proc-param-count connection-handle statement-handle)

Description

db-proc-param-count retrieves the number of parameters in the stored procedure.

Parameters

Return Values

number
Returns a number, which represents the number of parameters for the stored procedure
specified, when successful.

Boolean
If the number is unavailable due to a problem within one of the arguments, the function
returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (do ((i 0 (+ i 1))) ((= i (db-proc-param-count hdbc hstmt)))
 (display “parameter ”)
 (display (db-proc-param-name hdbc hstmt i))
 (display “: type = ”)
 (display (db-proc-param-type hdbc hstmt i))
 (display “, io = ”)
 (display (db-proc-param-io hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This is
the handle produced by db-proc-bind.
e*Way Intelligent Adapter for Sybase User’s Guide 153 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
Notes

The PL/SQL table type parameter is treated as a column rather than a parameter
because it contains multiple values; a parameter contains only one value. Subsequently,
the return value of this function is the number of non-table type parameters only. The
db-proc-column-count function returns the number of table type parameters.
e*Way Intelligent Adapter for Sybase User’s Guide 154 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-proc-param-name

Syntax

(db-proc-param-name connection-handle statement-handle param-index)

Description

db-proc-param-name retrieves the name of the specified parameter.

Parameters

Return Values

string
Returns the string containing the name of the parameter.

Boolean
Returns #f (false) if unable to return the string containing the name of the parameter.
Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (do ((i 0 (+ i 1))) ((= i (db-proc-param-count hdbc hstmt)))
 (display “parameter ”)
 (display (db-proc-param-name hdbc hstmt i))
 (display “: type = ”)
 (display (db-proc-param-type hdbc hstmt i))
 (display “, io = ”)
 (display (db-proc-param-io hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified. This
is the handle produced by db-stmt-
bind.

param-index integer The number between 0 and db-proc-
param-count minus 1.
e*Way Intelligent Adapter for Sybase User’s Guide 155 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-proc-param-type

Syntax

(db-proc-param-type connection-handle statement-handle param-index)

Description

db-proc-param-type retrieves the SQL datatype of the specified parameter.

Parameters

Return Values

string
If successful, db-proc-param-type returns a string which represents the SQL datatype.

Boolean
If an error occurred, returns #f (false). Use db-get-error-str to obtain the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (do ((i 0 (+ i 1))) ((= i (db-proc-param-count hdbc hstmt)))
 (display “parameter ”)
 (display (db-proc-param-name hdbc hstmt i))
 (display “: type = ”)
 (display (db-proc-param-type hdbc hstmt i))
 (display “, io = ”)
 (display (db-proc-param-io hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This is
the handle produced by db-proc-bind.

param-index integer The number between 0 and db-proc-
param-count minus 1.
e*Way Intelligent Adapter for Sybase User’s Guide 156 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-proc-param-io

Syntax

(db-proc-param-io connection-handle statement-handle param-index)

Description

db-proc-param-io retrieves the IO type for the specified parameter.

Parameters

Return Values

string
Returns an IO type string as IN, OUT, or INOUT

Boolean
Otherwise, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (do ((i 0 (+ i 1))) ((= i (db-proc-param-count hdbc hstmt)))
 (display “parameter ”)
 (display (db-proc-param-name hdbc hstmt i))
 (display “: type = ”)
 (display (db-proc-param-type hdbc hstmt i))
 (display “, io = ”)
 (display (db-proc-param-io hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This is
the handle produced by db-proc-bind.

param-index integer The number between 0 and db-proc-
param-count minus 1.
e*Way Intelligent Adapter for Sybase User’s Guide 157 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-proc-param-assign

Syntax

(db-proc-param-assign connection-handle statement-handle param-index
param-value)

Description

This function assigns the value of an IN or INOUT parameter and places that value into
internal storage.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

Scenario #1 — sample code for db-proc-param-assign

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 ...
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
 (db-logout hdbc)
)
 (display (db-get-error-str hdbc))
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This is
the handle produced by db-proc-bind.

param-index integer The number between 0 and db-proc-
param-count minus 1.

param-value string The input value of the IN or INOUT
parameter.
e*Way Intelligent Adapter for Sybase User’s Guide 158 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
Scenario #2 — sample code for db-proc-param-assign with
multiple input arguments

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (and
 (db-proc-param-assign hdbc hstmt 0 “5”)
 (db-proc-param-assign hdbc hstmt 2 “O’REILLY”)
 (db-proc-param-assign hdbc hstmt 7 “1998-11-22 12:34:56”)
 (db-proc-param-assign hdbc hstmt 8 “1A2B78F0”)
)
 (if (db-proc-execute hdbc hstmt)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)

Notes

! The value for the param-value argument should be entered as a string, without
enclosure in single quotation marks (‘) for SQL_CHAR and SQL_VARCHAR.

! The literal value for SQL_BINARY and SQL_VARBINARY should be a hexadecimal
string. Refer to Example #2 on the previous page.
e*Way Intelligent Adapter for Sybase User’s Guide 159 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-proc-param-value

Syntax

(db-proc-param-value connection-handle statement-handle param-index)

Description

db-proc-param-value retrieves the value of the OUT or INOUT parameter.

Parameters

Return Values

string
Returns a string which represents the value of the OUT or INOUT parameter.

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count hdbc hstmt))
 (if (and (number? col-count) (> col-count 0))
 (do ((result (db-proc-fetch hdbc hstmt) (db-proc-fetch hdbc
hstmt)))
 ((boolean? result))
 (display result)
 (newline)
)
)
 (define prm-count (db-proc-param-count hdbc hstmt))
 (do ((i 0 (+ i 1))) ((= i prm-count))
 (if (not (equal? (db-proc-param-io hdbc hstmt i) “IN”))
 (begin
 (display “output parameter ”)
 (display (db-proc-param-name hdbc hstmt i))
 (display “ = ”)
 (display (db-proc-param-value hdbc hstmt i))

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This is
the handle produced by db-proc-bind.

param-index integer The number between 0 and db-proc-
param-count minus 1.
e*Way Intelligent Adapter for Sybase User’s Guide 160 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
 (newline)
)
)
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Notes

The parameter value is unavailable until the user retrieves all the result sets returned
from the stored procedure.
e*Way Intelligent Adapter for Sybase User’s Guide 161 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-proc-execute

Syntax

(db-proc-execute connection-handle statement-handle)

Description

db-proc-execute executes a stored procedure.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 ...
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
 (db-logout hdbc)
)
 (display (db-get-error-str hdbc))
)

Notes

The default precision for number or real type is 38 for a column in the table. This is
important when executing a stored procedure that retrieves values from that column in
the table. The db-proc-execute function fails if the exponential part of the value is larger
than 38.

For example:

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This is
the handle produced by db-proc-bind.
e*Way Intelligent Adapter for Sybase User’s Guide 162 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
! 1.555E+38 is acceptable

! 1.55E+39 prevents the successful retrieval of the column values
e*Way Intelligent Adapter for Sybase User’s Guide 163 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-proc-fetch

Syntax

(db-proc-fetch connection-handle statement-handle)

Description

db-proc-fetch retrieves the column values of the record set.

Parameters

Return Values

vector and Boolean
Returns a vector containing all the column values and at the end of the “fetch cycle”
returns #t (true) when no more records are available to “fetch.”

Boolean
If unsuccessful, this function returns #f (false). Use db-get-error-str to retrieve the error
message.

Throws

None.

Examples

Scenario #1 — sample code for db-proc-fetch

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((result (db-proc-fetch hdbc hstmt) (db-proc-fetch hdbc
hstmt)))
 ((boolean? result) (begin (display result) (newline)))
 (display result
 (newline)
)
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)
 (display (db-get-error-str hdbc)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This is
the handle produced by db-proc-bind.
e*Way Intelligent Adapter for Sybase User’s Guide 164 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
)
 (display (db-get-error-str hdbc)
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Scenario #2 — Handling multiple result sets for db-proc-fetch

 (if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “MULTI_RESULT”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (do ((col-count (db-proc-column-count hdbc hstmt) (db-proc-
column-count hdbc hstmt)))
 ((or (not (number? col-count)) (= col-count 0)))
 (do ((result (db-proc-fetch hdbc hstmt) (db-proc-fetch hdbc
hstmt)))
 ((boolean? result)
 (display result)
 (newline)
)
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

e*Way Intelligent Adapter for Sybase User’s Guide 165 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-proc-fetch-cancel

Syntax

(db-proc-fetch-cancel connection-handle statement-handle)

Description

db-proc-fetch-cancel terminates the current “fetch” cycle.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

Scenario #1 — Sample code for db-proc-fetch-cancel

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (db-proc-fetch-cancel hdbc hstmt)
)
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)
 (display (db-get-error-str hdbc)
)
 (display (db-get-error-str hdbc)
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Scenario #2 — Handling multiple result sets for db-proc-fetch-cancel

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This is
the handle produced by db-proc-bind.
e*Way Intelligent Adapter for Sybase User’s Guide 166 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
 (if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “MULTI_RESULT”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (do ((col-count (db-proc-column-count hdbc hstmt)
 (db-proc-column-count hdbc hstmt)))
 ((or (not (number? col-count)) (= col-count 0)))
 (db-proc-fetch-cancel hdbc hstmt)
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Notes

Multiple result sets can be returned from a single stored procedure. However, each
db-proc-fetch-cancel call cancels only the current record set. If you want to cancel all
result sets, you must call this function for each result set. See example #2 on the
previous page.
e*Way Intelligent Adapter for Sybase User’s Guide 167 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-proc-column-count

Syntax

(db-proc-column-count connection-handle statement-handle)

Description

db-proc-column-count retrieves the number of columns in the return result set.

Parameters

Return Values

number
Returns a number greater than zero (0) when the record set is available.

Boolean
If no record set is available, the return value is #f (false). Use db-get-error-str to retrieve
the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((i 0 (+ i 1))) ((= i col-count))
 (display “column “)
 (display (db-proc-column-name hdbc hstmt i))
 (display “: type = ”)
 (display (db-proc-column-type hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This is
the handle produced by db-proc-bind.
e*Way Intelligent Adapter for Sybase User’s Guide 168 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Scenario #2 — Handling multiple result sets for db-proc-column-count

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “MULTI_RESULT”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (do ((col-count (db-proc-column-count hdbc hstmt)
 (db-proc-column-count hdbc hstmt)))
 ((or (not (number? col-count)) (= col-count 0)))
 (do ((result (db-proc-fetch hdbc hstmt) (db-proc-fetch hdbc
hstmt)))
 ((boolean? result)
 (display result)
 (newline)
)
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

e*Way Intelligent Adapter for Sybase User’s Guide 169 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-proc-column-name

Syntax

(db-proc-column-name connection-handle statement-handle column-index)

Description

db-proc-column-name retrieves the name string of the specified column in the result
set.

Parameters

Return Values

string
Returns the name string if successful.

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((i 0 (+ i 1))) ((= i col-count))
 (display “column “)
 (display (db-proc-column-name hdbc hstmt i))
 (display “: type = ”)
 (display (db-proc-column-type hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This is
the handle produced by db-proc-bind.

column-index string SQL datatype of the specified column
in the results set --0 to db-proc-
column-count minus 1.
e*Way Intelligent Adapter for Sybase User’s Guide 170 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

e*Way Intelligent Adapter for Sybase User’s Guide 171 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-proc-column-type

Syntax

(db-proc-column-type connection-handle statement-handle column-index)

Description

db-proc-column-type retrieves the SQL datatype of the specified column in the record
set.

Parameters

Return Values

string
Returns a string of SQL datatype when successful.

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((i 0 (+ i 1))) ((= i col-count))
 (display “column “)
 (display (db-proc-column-name hdbc hstmt i))
 (display “: type = ”)
 (display (db-proc-column-type hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This is
the handle produced by db-proc-bind.

column-index integer SQL datatype of the specified column
in the record set --0 to db-proc-
column-count minus 1.
e*Way Intelligent Adapter for Sybase User’s Guide 172 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

e*Way Intelligent Adapter for Sybase User’s Guide 173 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-proc-return-exist

Syntax

(db-proc-return-exist connection-handle statement-handle)

Description

db-proc-return-exist determines whether or not the stored procedure has a return
value.

Parameters

Return Values

Boolean
Returns #t (true) if a return value exists or #f (false) when no return value exists or an
error occurs. Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((result (db-proc-fetch hdbc hstmt) (db-proc-fetch hdbc
hstmt)))
 ((boolean? result))
 (display result)
 (newline)
)
)
 (if (db-proc-return-exist hdbc hstmt)
 (begin
 (display “return type = ”)
 (display (db-proc-return-type hdbc hstmt))
 (newline)
 (display “ return value = ”)
 (display (db-proc-return-value hdbc hstmt))
 (newline)
)
)
 ...
 ...

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This is
the handle produced by db-proc-bind.
e*Way Intelligent Adapter for Sybase User’s Guide 174 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)

Notes

Stored procedures always return an integer value called a return status. This status
indicates that the procedure completed successfully or shows the reason for failure. The
db-proc-return-exist function always returns #t (true).
e*Way Intelligent Adapter for Sybase User’s Guide 175 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-proc-return-type

Syntax

(db-proc-return-type connection-handle statement-handle)

Description

db-proc-return-type determines the SQL datatype for the return value.

Parameters

Return Values

string
Returns a SQL datatype string, i.e., SQL_VARCHAR.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((result (db-proc-fetch hdbc hstmt) (db-proc-fetch hdbc
hstmt)))
 ((boolean? result))
 (display result)
 (newline)
)
)
 (if (db-proc-return-exist hdbc hstmt)
 (begin
 (display “return type = ”)
 (display (db-proc-return-type hdbc hstmt))
 (newline)
 (display “ return value = ”)
 (display (db-proc-return-value hdbc hstmt))
 (newline)
)
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This is
the handle produced by db-proc-bind.
e*Way Intelligent Adapter for Sybase User’s Guide 176 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Notes

The return value is always an SQL_INTEGER datatype.
e*Way Intelligent Adapter for Sybase User’s Guide 177 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-proc-return-value

Syntax

(db-proc-return-value connection-handle statement-handle)

Description

db-proc-return-value retrieves the return value (return status) for the stored procedure.

Parameters

Return Values

string
Returns a string which represents the return value.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((result (db-proc-fetch hdbc hstmt) (db-proc-fetch hdbc
hstmt)))
 ((boolean? result))
 (display result)
 (newline)
)
)
 (if (db-proc-return-exist hdbc hstmt)
 (begin
 (display “return type = ”)
 (display (db-proc-return-type hdbc hstmt))
 (newline)
 (display “ return value = ”)
 (display (db-proc-return-value hdbc hstmt))
 (newline)
)
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This is
the handle produced by db-proc-bind.
e*Way Intelligent Adapter for Sybase User’s Guide 178 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Notes

! Stored procedures can return an integer value called a return status. This status
indicates that the procedure completed successfully or shows the reason for failure.
SQL Server has a defined set of return values; or users can define their own return
values.

! The SQL Server reserves 0 to indicate a successful return, and negative values in the
range of -1 to -99 are assigned to a list of reasons for failure. The Numbers 0 and -1
to -14 are in use currently.

5.3.6 Message Event Functions
This section contains descriptions of the APIs used to build and manage the DART
Event Type Definition. These functions are presented as a group, as they are the
functions most used in DART. The current suite of Monk structure functions included
within the library stc_monkfilesys.dll are:

! db-struct-bulk-insert on page 181

! db-struct-execute on page 182

Value Meaning

0 procedure executed without error

-1 missing object

-2 datatype error

-3 process was chosen as deadlock victim

-4 permission error

-5 syntax error

-6 miscellaneous user error

-7 resource error, such as out of space

-8 non-fatal internal problem

-9 system limit was reached

-10 fatal internal inconsistency

-11 fatal internal inconsistency

-12 table or index is corrupt

-13 database is corrupt

-14 hardware error
e*Way Intelligent Adapter for Sybase User’s Guide 179 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
! db-struct-call on page 183

! db-struct-insert on page 184

! db-struct-update on page 186

! db-struct-select on page 188

! db-struct-fetch on page 190
e*Way Intelligent Adapter for Sybase User’s Guide 180 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-struct-bulk-insert

Syntax

(db-struct-bulk-insert connection-handle table-path)

Description

db-struct-bulk-insert inserts an Event Type Definition with repeating nodes (e.g.,
multiple records) into a table.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Notes

! The Event type MUST be a fixed-length, which can be generated using dbstruct
with the -f option.

! The number of records that can be inserted into a table is dependent on the memory
available and cannot be greater than 32512.

! The format of the literal value of the SQL_DECIMAL and SQL_TIMESTAMP
datatype is dependent on the national language support parameter of the SQL
server. You can use the SQL statement ALTER SESSION to modify the date format
and the decimal character. For example:

" alter session set NLS_DATE_FORMAT= ‘DD-MON-YY’

" alter session set NLS_NUMERIC_CHARACTERS = ’.,’

Name Type Description

connection-handle connection handle A connection handle to the database.

table-path path A path which represents a table.
e*Way Intelligent Adapter for Sybase User’s Guide 181 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-struct-execute

Syntax

(db-struct-execute connection-handle statement-handle statement-path)

Description

db-struct-execute calls the dynamic statement using the value from the statement-path
node of the DART Event Type Definition, retrieves all dynamic statement output and
places this information into the DART Event Type Definition.

Parameters

Return Values

Boolean
Returns #t (true) when successful; otherwise #f (false).

 Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This is
the handle produced by db-proc-bind.

statement-path statement path The absolute path to the statement
nodes in the Event Type Definition.
e*Way Intelligent Adapter for Sybase User’s Guide 182 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-struct-call

Syntax

(db-struct-call connection-handle statement-handle procedure-path)

Description

db-struct-call calls the stored procedure using the value from the procedure-path node of
the Event Type Definition, retrieves all procedure output and places this information
into the Event Type Definition.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-err-str to retrieve
the error message.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This is
the handle produced by db-proc-bind.

procedure-path path The absolute path to the procedure
nodes in the Event Type Definition.
e*Way Intelligent Adapter for Sybase User’s Guide 183 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-struct-insert

Syntax

(db-struct-insert connection-handle table-path)

Description

db-struct-insert composes and executes an SQL INSERT statement according to the
information and data carried under the table-path node of an Event Type Definition.

Parameters

Return Values

Boolean
Returns #t (true) if the execution of the SQL INSERT statement is successful; otherwise,
returns #f (false). Use db-get-err-str to retrieve the error message.

Throws

None.

Examples

(define input-event-format-file-name “in.ssc”)
(define output-event-format-file-name “out.ssc”)
(load “in.ssc”)
(load “out.ssc”)
(define src-collapsed-nodes ‘())
(define dest-collapsed-nodes ‘())
(define collapsed-rules ‘())
(define xlate
 (let ((input ($make-event-map in-delm in-struct))
 (output ($make-event-map out-delm out-struct)))
 (lambda ($make-event-string)
 ($event-parse input $make-event-string)
 ($event-clear output)
 (begin
 (if (db-struct-insert hdbc ~input%in.dbo.table2)
 (begin
 ...
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
 ...
 (insert ”” ~output%out ””)
)
)
)
)

Name Type Description

connection-handle connection handle A connection handle to the database.

table-path event path A table node of an Event Type
Definition.
e*Way Intelligent Adapter for Sybase User’s Guide 184 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
Explanation

The example above shows a typical code segment of a Collaboration Rule that uses the
Event Type Definition. In this example, the input defined by in.ssc is an Event Type
Definition. After parsing the Input Event-string with the Input Event Definition, the
Collaboration procedure uses db-struct-insert to issue an SQL INSERT statement based
on the information carried under Event-path ~input%in.dbo.table2.
e*Way Intelligent Adapter for Sybase User’s Guide 185 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-struct-update

Syntax

(db-struct-update connection-handle table-path where-clause)

Description

db-struct-update composes and executes an SQL UPDATE statement according to the
information and data carried under the table-path node of an Event Type Definition.

Parameters

Return Values

Boolean
Returns #t (true) if the execution of the SQL UPDATE statement is successful, or #f
(false) if the execution of the SQL UPDATE statement fails. Use db-get-err-str to
retrieve the error message.

Throws

None.

Examples

(define input-event-format-file-name “in.ssc”)
(define output-event-format-file-name “out.ssc”)
(load “in.ssc”)
(load “out.ssc”)
(define src-collapsed-nodes ‘())
(define dest-collapsed-nodes ‘())
(define collapsed-rules ‘())
(define xlate
 (let ((input ($make-event-map in-delm in-struct))
 (output ($make-event-map out-delm out-struct)))
 (lambda ($make-event-string)
 ($event-parse input $make-event-string)
 ($event-clear output)
 (begin
 (if (db-struct-update hdbc ~input%in.dbo.table2 “ID = 5”)
 (begin
 ...
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
 ...
 (insert ”” ~output%out ””)
)

Name Type Description

connection-handle connection handle A connection handle to the database.

table-path event path A table node of an Event Type
Definition

where-clause string The where clause of the SQL SELECT
statement.
e*Way Intelligent Adapter for Sybase User’s Guide 186 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
)
)
)

Explanation

The example above shows a typical code segment of a Collaboration Rule that uses the
Event Type Definition. In this example, the input defined by in.ssc is an Event Type
Definition. After parsing the input Event-string with the Input Event Type Definition,
the Collaboration procedure uses db-struct-update to issue an SQL UPDATE statement
based on the information carried under the Event-path ~input%in.dbo.table2.
e*Way Intelligent Adapter for Sybase User’s Guide 187 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-struct-select

Syntax

(db-struct-select connection-handle table-path where-clause)

Description

db-struct-select composes and executes an SQL SELECT statement according to the
information and data carried under the table-path node of a DART Event Type
Definition.

Parameters

Return Values

Boolean
Returns #t (true) if the execution of the SQL SELECT statement is successful; otherwise,
returns #f (false). Use db-get-err-str to retrieve the error message.

Throws

None.

Remarks

! Both db-struct-select, and db-struct-fetch use the same algorithm to generate the
selection name for the db-sql-select and db-sql-fetch procedure call. If the table
path is a table node under an owner (schema) node the selection name will be
owner.table.

! If the table path does not have an owner node above it, the selection name will be
table. You must issue a db-sql-fetch-cancel call with either owner.table or table as
the selection name, if you want to cancel the selection.

Examples

(define input-event-format-file-name “in.ssc”)
(define output-event-format-file-name “out.ssc”)
(load “in.ssc”)
(load “out.ssc”)
(define src-collapsed-nodes ‘())
(define dest-collapsed-nodes ‘())
(define collapsed-rules ‘())
(define xlate
 (let ((input ($make-event-map in-delm in-struct))
 (output ($make-event-map out-delm out-struct)))
 (lambda ($make-event-string)
 ($event-parse input $make-event-string)
 ($event-clear output)
 ($event-parse output (event->string output))

Name Type Description

connection-handle connection handle A connection handle to the database.

table-path event path A table node of an Event Type
Definition

where-clause string The where clause of the SQL SELECT
statement.
e*Way Intelligent Adapter for Sybase User’s Guide 188 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
 (begin
 (if (db-struct-select hdbc ~output%out.dbo.table2 “ID = 5”)
 (begin
 (db-struct-fetch hdbc ~output%out.dbo.table2)
 ...
 (db-sql-fetch-cancel hdbc “dbo.table2”)
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
 ...
 (insert ”” ~output%out ””)
)
)
)
)

Explanation

The example above shows a typical code segment of a DART Collaboration Rules file
that uses the DART Event Type Definition. In this example, the output defined by
out.ssc is a DART Event Type Definition. After clearing the Output Event-string, the
Collaboration Service uses db-struct-select to issue an SQL SELECT statement based on
the information carried under the Event-path ~output%out.dbo.table2. The selection
was cancelled by db-sql-fetch-cancel with dbo.table2 as the selection name.
e*Way Intelligent Adapter for Sybase User’s Guide 189 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
db-struct-fetch

Syntax

(db-struct-fetch connection-handle table-path)

Description

db-struct-fetch composes and executes an SQL FETCH statement according to the
information and data carried under the table-path node of a DART Event Type
Definition, and stores the return column values inside each of the column nodes.

Parameters

Return Values

Path
Returns the table path if the execution of the SQL FETCH statement is successful, or

Boolean
Returns #t (true) when the end of the fetch cycle is reached; otherwise, returns #f (false).
Use db-get-err-str to retrieve the error message.

Examples

(define input-event-format-file-name “in.ssc”)
(define output-event-format-file-name “out.ssc”)
(load “in.ssc”)
(load “out.ssc”)
(define src-collapsed-nodes ‘())
(define dest-collapsed-nodes ‘())
(define collapsed-rules ‘())
(define xlate
 (let ((input ($make-event-map in-delm in-struct))
 (output ($make-event-map out-delm out-struct)))
 (lambda ($make-event-string)
 ($event-parse input $make-event-string)
 ($event-clear output)
 (begin
 (if (db-struct-select hdbc ~output%out.dbo.table2)
 (do ((result ““) ((boolean? result))
 (set! result (db-struct-fetch hdbc
~output%out.dbo.table2))
 (if (boolean? result))
 (if (not result)
 (begin
 (display “db-struct-fetch failed!\n”)
 (display (db-get-error-str hdbc))
 (newline)
)
 (begin
 ...
)
)

Name Type Description

connection-handle connection handle A connection handle to the database.

table-path event path A table node of an Event Type
Definition
e*Way Intelligent Adapter for Sybase User’s Guide 190 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Sybase e*Way Functions Database Access Functions
 (begin
 (display result)
 (newline)
)
)
)
)
 ...
 (insert ”” ~output%out ””)
)
)
)
)

Explanation

The example above shows a typical code segment of a Collaboration Rule that uses the
Event Type Definition. In this example, the output defined by out.ssc is an Event Type
Definition. After clearing the Output Event-string with the Output Event Type
Definition, the Collaboration procedure uses db-struct-select to issue an SQL SELECT
statement based on the information carried under Event- path
~output%out.dbo.table2.

It repeatedly uses db-struct-fetch to issue the SQL FETCH statement and store the
resulting column values inside each column node under the table path
~output%out.dbo.table2 until there are no more records to fetch.
e*Way Intelligent Adapter for Sybase User’s Guide 191 SeeBeyond Proprietary and Confidential

Index
Index

A
additional path 27
auxiliary library directories 27

B
basic functions

event-send-to-egate 104
shutdown-request 105

C
communication setup 16

down timeout 17
exchange data interval 17
resend timeout 18
start exchange data schedule 16
stop exchange data schedule 17
up timeout 18
zero wait between successful exchanges 18

Components 7
Configuration 14
configuration parameters 14
connection-handle? 108
Converter

DART 36

D
DART 27, 36, 45, 50, 52, 53, 62, 66, 120, 179, 182, 188,
189, 190
DART Converter 36
dart.def 12, 13
dart.gui 12, 13
data definition language statement 124
data manipulation language statement 124
database access functions 105

connection-handle? 108
db-alive 112
db-commit 116
db-get-error-str 119
db-login 109
db-logout 111
db-max-long-data-size 115

db-proc-bind 151
db-proc-bind-binary 152
db-proc-column-count 168
db-proc-column-name 170
db-proc-column-type 172
db-proc-execute 162
db-proc-fetch 164
db-proc-fetch-cancel 166
db-proc-param-assign 158
db-proc-param-count 153
db-proc-param-io 157
db-proc-param-name 155
db-proc-param-type 156
db-proc-param-value 160
db-proc-return-exist 174
db-proc-return-type 176
db-proc-return-value 178
db-rollback 117
db-sql-column-names 128
db-sql-column-types 130
db-sql-column-values 132
db-sql-execute 124
db-sql-fetch 126
db-sql-fetch-cancel 127
db-sql-format 122
db-sql-select 125
db-std-timestamp-format 114
db-stmt-bind 138
db-stmt-bind-binary 139
db-stmt-column-count 146
db-stmt-column-name 147
db-stmt-column-type 148
db-stmt-execute 143
db-stmt-fetch-cancel 145
db-stmt-param-assign 142
db-stmt-param-count 140
db-stmt-param-type 141
db-stmt-row-count 149
Dynamic SQL 133
General Connection 106
make-connection-handle 107
Message Event 179
statement handle? 118
Static SQL 121
Stored Procedures 149

database name 33
database setup 33

database type 33
encrypted password 34
user name 34

database type 33
db-alive 112
db-commit 116
db-get-error-str 119
e*Way Intelligent Adapter for Sybase User’s Guide 192 SeeBeyond Proprietary and Confidential

Index
db-login 109
db-logout 111
db-max-long-data-size 115
db-proc-bind 151
db-proc-bind-binary 152
db-proc-column-count 168
db-proc-column-name 170
db-proc-column-type 172
db-proc-execute 162
db-proc-fetch 164
db-proc-fetch-cancel 166
db-proc-param-assign 158
db-proc-param-count 153
db-proc-param-io 157
db-proc-param-name 155
db-proc-param-type 156
db-proc-param-value 160
db-proc-return-exist 174
db-proc-return-type 176
db-proc-return-value 178
db-rollback 117
db-sql-column-names 128
db-sql-column-types 130
db-sql-column-values 132
db-sql-execute 124
db-sql-fetch 126
db-sql-fetch-cancel 127
db-sql-format 122
db-sql-select 125
db-std-timestamp-format 114
db-stdver-conn-estab 85
db-stdver-conn-shutdown 88
db-stdver-conn-ver 87
db-stdver-data-exchg 96
db-stdver-data-exchg-stub 97
db-stdver-neg-ack 90
db-stdver-pos-ack 89
db-stdver-proc-outgoing 92
db-stdver-proc-outgoing-stub 94
db-stdver-shutdown 91
db-stdver-startup 84
db-stmt-bind 138
db-stmt-bind-binary 139
db-stmt-column-count 146
db-stmt-column-name 147
db-stmt-column-type 148
db-stmt-execute 143
db-stmt-fetch-cancel 145
db-stmt-param-assign 142
db-stmt-param-count 140
db-stmt-param-type 141
db-stmt-row-count 149
db-struct-bulk-insert 181
db-struct-call 183

db-struct-execute 182
db-struct-fetch 190
db-struct-insert 184
db-struct-select 188
db-struct-update 186
dbt-stdver-init 83
down timeout 17
Dynamic SQL Functions 133
dynamic statement support functions 133

E
encrypted password 34
event-send-to-egate 104
exchange data interval 17
exchange data with external 29
external connection shutdown function 31
external connection verification function 30

F
forward external errors 15
functions

connection-handle? 108
Database Access 105
db-alive 112
db-commit 116
db-get-error-str 119
db-login 109
db-logout 111
db-max-long-data-size 115
db-proc-bind 151
db-proc-bind-binary 152
db-proc-column-count 168
db-proc-column-name 170
db-proc-column-type 172
db-proc-execute 162
db-proc-fetch 164
db-proc-fetch-cancel 166
db-proc-param-assign 158
db-proc-param-count 153
db-proc-param-io 157
db-proc-param-name 155
db-proc-param-type 156
db-proc-param-value 160
db-proc-return-exist 174
db-proc-return-type 176
db-proc-return-value 178
db-rollback 117
db-sql-column-names 128
db-sql-column-types 130
db-sql-column-values 132
db-sql-execute 124
db-sql-fetch 126
e*Way Intelligent Adapter for Sybase User’s Guide 193 SeeBeyond Proprietary and Confidential

Index
db-sql-fetch-cancel 127
db-sql-format 122
db-sql-select 125
db-std-timestamp-format 114
db-stdver-conn-estab 85
db-stdver-conn-shutdown 88
db-stdver-conn-ver 87
db-stdver-data-exchg 96
db-stdver-data-exchg-stub 97
db-stdver-init 83
db-stdver-neg-ack 90
db-stdver-pos-ack 89
db-stdver-proc-outgoing 92
db-stdver-proc-outgoing-stub 94
db-stdver-shutdown 91
db-stdver-startup 84
db-stmt-bind 138
db-stmt-bind-binary 139
db-stmt-column-count 146
db-stmt-column-name 147
db-stmt-column-type 148
db-stmt-execute 143
db-stmt-fetch-cancel 145
db-stmt-param-assign 142
db-stmt-param-count 140
db-stmt-param-type 141
db-stmt-row-count 149
db-struct-bulk-insert 181
db-struct-call 183
db-struct-execute 182
db-struct-fetch 190
db-struct-insert 184
db-struct-select 188
db-struct-update 186
Dynamic SQL 133
e*Way standard 82
event-send-to-egate 104
General Connection 106
get-logical-name 103
make-connection-handle 107
Message Event 179
send-external-down 102
send-external-up 101
shutdown-request 105
start-schedule 99
statement-handle? 118
Static SQL 121
stop-schedule 100
Stored Procedures 149

G
General Connection Functions 106
general settings 14

forward external errors 15
journal file name 15
max failed messages 15
max resends per message 15

generic e*Way built-in functions 97
get-logical-name 103

I
Implementation 35
initialization functions (Monk) 27
Intended 7

J
journal file name 15

L
library directories 27
load path 27

M
make-connection-handle 107
max failed messages 15
max resends per message 15
Message Event Functions 179
monk configuration 18

additional path 27
auxiliary library directories 27
exchange data with external function 29
external connection shutdown function 31
external connection verification function 30
monk environment initialization file 27
negative acknowledgment function 32
positive acknowledgment function 31
process outgoing event function 28
shutdown command notification function 33
startup function 28

monk environment initialization file 27

N
negative acknowledgment function 32

P
parameters

additional path 27
auxiliary library directories 27
communication setup 16
database name 33
e*Way Intelligent Adapter for Sybase User’s Guide 194 SeeBeyond Proprietary and Confidential

Index
database setup 33
database type 33
down timeout 17
encrypted password 34
exchange data interval 17
exchange data with external 29
external connection shutdown function 31
external connection verification function 30
forward external errors 15
general settings 14
journal file name 15
max failed messages 15
max resends per message 15
monk configuration 18
monk environment initialization 27
negative acknowledgment function 32
positive acknowledgment function 31
process outgoing event function 28
resend timeout 18
shutdown command notification function 33
start exchange data schedule 16
startup function 28
stop exchange data schedule 17
up timeout 18
user name 34
zero wait between successful exchanges 18

positive acknowledgment function 31
process outgoing event function 28

R
resend timeout 18

S
send-external-down 102
send-external-up 101
shutdown command notification function 33
shutdown-request 105
SQL

Dynamic Functions 133
Static Functions 121

SQL92 standard format 114
standard e*Way functions 82

db-stdver-conn-estab 85
db-stdver-conn-ver 87
db-stdver-data-exchg 96
db-stdver-data-exchg-stub 97
db-stdver-init 83
db-stdver-neg-ack 90
db-stdver-pos-ack 89
db-stdver-proc-outgoing 92
db-stdver-proc-outgoing-stub 94
db-stdver-shutdown 91

db-stdver-startup 84
start exchange data schedule 16
start-schedule 99
startup function 28
statement-handle? 118
Static SQL Functions 121
stop exchange data schedule 17
stop-schedule 100
Stored Procedure Functions 149
supported variable SQL datatypes 120
sybmsg_display.monk 119

U
up timeout 18
user name 34

Z
zero wait between successful exchanges 18
e*Way Intelligent Adapter for Sybase User’s Guide 195 SeeBeyond Proprietary and Confidential

	e*Way Intelligent Adapter for Sybase User’s Guide
	Contents
	Introduction
	1.1 Overview
	1.1.1 Intended Reader
	1.1.2 Sybase e*Way Components
	Monk Extensions

	1.2 System Requirements
	1.2.1 External System Requirements

	Installation
	2.1 Installation Decisions
	2.2 Installing the Sybase e*Way on Windows
	2.2.1 Pre-installation
	2.2.2 Installation Procedure

	2.3 Installation Directories and Files on Windows
	2.4 Installing the Sybase e*Way on UNIX
	2.4.1 Pre-installation
	2.4.2 Installation Procedure

	Configuration
	3.1 e*Way Configuration Parameters
	3.1.1 General Settings
	Journal File Name
	Max Resends Per Message
	Max Failed Messages
	Forward External Errors

	3.1.2 Communication Setup
	Start Exchange Data Schedule
	Stop Exchange Data Schedule
	Exchange Data Interval
	Down Timeout
	Up Timeout
	Resend Timeout
	Zero Wait Between Successful Exchanges

	3.1.3 Monk Configuration
	Operational Details
	How to Specify Function Names or File Names
	Additional Path
	Auxiliary Library Directories
	Monk Environment Initialization File
	Startup Function
	Process Outgoing Event Function
	Exchange Data with External Function
	External Connection Establishment Function
	External Connection Verification Function
	External Connection Shutdown Function
	Positive Acknowledgment Function
	Negative Acknowledgment Function
	Shutdown Command Notification Function

	3.1.4 Database Setup
	Database Type
	Database Name
	User Name
	Encrypted Password

	Implementation
	4.1 Using the ETD Editor’s Build Tool
	4.1.1 The Event Type Definition Files
	Table or View
	Dynamic SQL Statement
	Stored Procedure

	4.2 Sample One - Event Driven
	4.2.1 Creating the New Schema
	4.2.2 Creating the Event Types
	FileInEvent
	db_rcv_in
	db_rcv_struct

	4.2.3 Creating and Configuring the e*Ways
	FileIn
	dart_rcv

	4.2.4 Create the Collaboration Rules
	db_rcv
	no_xlate

	4.2.5 Create the Intelligent Queue
	4.2.6 Create the Collaborations
	Pub
	Sub

	4.2.7 Execute the Schema

	4.3 Sample Two - Schedule Driven Database Access
	4.3.1 Overview
	4.3.2 Create and Configure e*Ways
	Configuring the “FileOut” e*Way
	Configuring the “DBPoll” e*Way

	4.3.3 Create Event Type Definitions
	4.3.4 Create Collaboration Rules
	4.3.5 Create the Queue
	4.3.6 Create the Collaboration
	4.3.7 Create Monk functions

	4.4 Sample Monk Scripts
	4.4.1 Initializing Monk Extensions
	4.4.2 Supporting Functions for Sample Scripts
	4.4.3 Logging In
	4.4.4 Calling Stored Procedures
	4.4.5 Using Dynamic SQL Statements
	Inserting Records with Dynamic SQL Statements
	Updating Records with Dynamic SQL Statements
	Selecting Records with Dynamic SQL Statements
	Deleting Records with Dynamic SQL Statements

	4.4.6 Inserting a Binary Image to a Database
	4.4.7 Retrieving an Image from a Database

	Sybase e*Way Functions
	5.1 Standard e*Way Functions
	db-stdver-init
	db-stdver-startup
	db-stdver-conn-estab
	db-stdver-conn-ver
	db-stdver-conn-shutdown
	db-stdver-pos-ack
	db-stdver-neg-ack
	db-stdver-shutdown
	db-stdver-proc-outgoing
	db-stdver-proc-outgoing-stub
	db-stdver-data-exchg
	db-stdver-data-exchg-stub

	5.2 Generic e*Way Built-in Functions
	start-schedule
	stop-schedule
	send-external-up
	send-external-down
	get-logical-name
	event-send-to-egate
	shutdown-request

	5.3 Database Access Functions
	5.3.1 General Connection Functions
	make-connection-handle
	connection-handle?
	db-login
	db-logout
	db-alive
	db-std-timestamp-format
	db-max-long-data-size
	db-commit
	db-rollback
	statement-handle?
	db-get-error-str

	5.3.2 Sybase SQL Type Support
	5.3.3 Static SQL Functions
	db-sql-format
	db-sql-execute
	db-sql-select
	db-sql-fetch
	db-sql-fetch-cancel
	db-sql-column-names
	db-sql-column-types
	db-sql-column-values

	5.3.4 Dynamic SQL Functions
	Benefits of Dynamic SQL
	Limitations of Dynamic SQL
	db-stmt-bind
	db-stmt-bind-binary
	db-stmt-param-count
	db-stmt-param-type
	db-stmt-param-assign
	db-stmt-execute
	db-stmt-fetch
	db-stmt-fetch-cancel
	db-stmt-column-count
	db-stmt-column-name
	db-stmt-column-type
	db-stmt-row-count

	5.3.5 Stored Procedure Functions
	db-proc-bind
	db-proc-bind-binary
	db-proc-param-count
	db-proc-param-name
	db-proc-param-type
	db-proc-param-io
	db-proc-param-assign
	db-proc-param-value
	db-proc-execute
	db-proc-fetch
	db-proc-fetch-cancel
	db-proc-column-count
	db-proc-column-name
	db-proc-column-type
	db-proc-return-exist
	db-proc-return-type
	db-proc-return-value

	5.3.6 Message Event Functions
	db-struct-bulk-insert
	db-struct-execute
	db-struct-call
	db-struct-insert
	db-struct-update
	db-struct-select
	db-struct-fetch

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	P
	R
	S
	U
	Z

