
eIndex Global Identifier
Reference Guide

Release 5.0
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

SeeBeyond, e*Gate, and e*Way are the registered trademarks of SeeBeyond Technology Corporation in the United States and select
foreign countries; the SeeBeyond logo, e*Insight, and e*Xchange are trademarks of SeeBeyond Technology Corporation. The absence
of a trademark from this list does not constitute a waiver of SeeBeyond Technology Corporation's intellectual property rights
concerning that trademark. This document may contain references to other company, brand, and product names. These company,
brand, and product names are used herein for identification purposes only and may be the trademarks of their respective owners.

© 2003 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20031013145841.
eIndex Global Identifier Reference Guide 2 SeeBeyond Proprietary and Confidential

Contents
Contents

List of Tables 7

Chapter 1

Introduction 8
Document Purpose and Scope 8

Intended Audience 8
Using this Guide 9
Document Organization 9

Writing Conventions 9
Special Notation Conventions 9

Supporting Documents 10

Online Documents 11

SeeBeyond Web Site 11

Chapter 2

eIndex Global Identifier Overview 12
Introduction 12

eIndex Repository Components 12
Editors 13
Project Components 13

Configuration Files 14
Database Scripts 15
Custom Plug-ins 15
Match Engine Configuration Files 16
Outbound Object Type Definition (OTD) 16
Dynamic Java API 16
Connectivity Components 18
Deployment Profile 19

Environment Components 19

About the Runtime Environment 19
Functions of the Runtime Environment 19
Runtime Environment Components 20
Matching Service 21
eIndex Manager Service 21
Query Builder 21
eIndex Global Identifier Reference Guide 3 SeeBeyond Proprietary and Confidential

Contents
Query Manager 22
Update Manager 22
Object Persistence Service (OPS) 22
Database 22
Enterprise Data Manager 22

Chapter 3

Understanding Operational Processes 23
Learning About Message Processing 23

Inbound Message Processing 24
Outbound Message Processing 25
Inbound Message Processing Logic 26
About Outbound Messages 31

Chapter 4

The Database Structure 33
Overview of the eIndex Database 33

eIndex Database Description 33
Database Table Overview 33
Database Table Details 35

SBYN_<OBJECT_NAME> 35
SBYN_<OBJECT_NAME>SBR 36
SBYN_<CHILD_OBJECT> and SBYN_<CHILD_OBJECT>SBR 36
SBYN_APPL 37
SBYN_ASSUMEDMATCH 37
SBYN_AUDIT 38
SBYN_COMMON_DETAIL 38
SBYN_COMMON_HEADER 39
SBYN_ENTERPRISE 40
SBYN_MERGE 40
SBYN_OVERWRITE 41
SBYN_POTENTIALDUPLICATES 42
SBYN_SEQ_TABLE 42
SBYN_SYSTEMOBJECT 44
SBYN_SYSTEMS 45
SBYN_SYSTEMSBR 46
SBYN_TRANSACTION 47
SBYN_USER_CODE 48

Sample Database Model 49

Chapter 5

Working with the Java API 54
Overview 54

Java Class Types 54
eIndex Global Identifier Reference Guide 4 SeeBeyond Proprietary and Confidential

Contents
Static Classes 54
Dynamic Object Classes 55
Dynamic OTD Methods 55
Dynamic eInsight Integration Methods 55

Dynamic Object Classes 55
The Parent Object Class 55

<ObjectName>Object 56
add<Child> 56
addSecondaryObject 57
copy 57
dropSecondaryObject 58
get<ObjectName>Id 58
get<Field> 59
get<Child> 59
getChildTags 60
getMetaData 60
getSecondaryObject 60
getStatus 61
set<ObjectName>Id 61
set<Field> 62
setStatus 62
structCopy 63

Child Object Classes 63
<Child>Object 64
copy 64
get<Child>Id 64
get<Field> 65
getMetaData 65
getParentTag 66
set<Child>Id 66
set<Field> 67
structCopy 67

Dynamic OTD Methods 67
activateEnterpriseRecord 68
addSystemRecord 69
deactivateEnterpriseRecord 69
deactivateSystemRecord 70
executeMatch 70
getEnterpriseRecordByEUID 71
getEnterpriseRecordByLID 72
getEUID 72
getLIDs 73
getLIDsByStatus 74
getSBR 74
getSystemRecord 75
getSystemRecordsByEUID 75
getSystemRecordsByEUIDStatus 76
lookupLIDs 76
mergeEnterpriseRecord 77
mergeSystemRecord 78
searchBlock 79
searchExact 79
searchPhonetic 80
updateEnterpriseRecord 80
updateSystemRecord 81

Dynamic eInsight Integration Methods 81
eIndex Global Identifier Reference Guide 5 SeeBeyond Proprietary and Confidential

Contents
Glossary 83

Index 89
eIndex Global Identifier Reference Guide 6 SeeBeyond Proprietary and Confidential

List of Tables

eIndex Global Identifier Reference Guide 7 SeeBeyond Proprietary and Confidential

List of Tables

Table 1 Special Notation Conventions 9

Table 2 Outbound OTD SBR Node 32

Table 3 Master Index Database Tables 34

Table 4 SBYN_<OBJECT_NAME> Table Description 36

Table 5 SBYN_<OBJECT_NAME>SBR Table Description 36

Table 6 SBYN_<CHILD_OBJECT> and SBYN_<CHILD_OBJECT>SBR Table Description 36

Table 7 SBYN_APPL Table Description 37

Table 8 SBYN_ASSUMEDMATCH Table Description 37

Table 9 SBYN_AUDIT Table Description 38

Table 10 SBYN_COMMON_DETAIL Table Description 38

Table 11 SBYN_COMMON_HEADER Table Description 39

Table 12 SBYN_ENTERPRISE Table Description 40

Table 13 SBYN_MERGE Table Description 40

Table 14 SBYN_OVERWRITE Table Description 41

Table 15 SBYN_POTENTIALDUPLICATES Table Description 42

Table 16 SBYN_SEQ_TABLE Table Description 43

Table 17 Default Sequence Numbers 43

Table 18 SBYN_SYSTEMOBJECT Table Description 44

Table 19 SBYN_SYSTEMS Table Description 45

Table 20 SBYN_SYSTEMSBR Table Description 46

Table 21 SBYN_TRANSACTION Table Description 47

Table 22 SBYN_USER_CODE Table Description 48

Chapter 1

Introduction

This guide provides comprehensive information about the database structure, the Java
API, and message processing for the SeeBeyond® eIndex Global Identifier (eIndex). As a
component of SeeBeyond’s Integrated Composite Application Network (ICAN) Suite,
eIndex helps you integrate information from disparate systems throughout your
organization. This guide describes how messages are processed through the master
index, provides a reference for the dynamic Java API, and describes the database
structure. The master index is highly customizable, so your implementation may differ
from some of the descriptions contained in this guide. This guide is intended to be used
with the eIndex Global Identifier Configuration Guide and the eIndex Global Identifier User’s
Guide.

This chapter provides an overview of this guide and the conventions used throughout,
as well as a list of supporting documents and information about using this guide.

1.1 Document Purpose and Scope
This guide provides information about message processing in eIndex and about the
eIndex Java API. The API is designed to help you transform data and transfer the
information into and out of the eIndex database using eGate Collaborations, Services,
and eWays. This guide also provides an overview of the data processing flow, based on
the the sample Project, and describes the database structure.

This guide provides information about the Java API Library, but does not serve as a
complete reference. This is provided in the Javadocs for eIndex. This guide does not
explain how to install eIndex, or how to implement an eIndex Project. For a list of
publications that contain this information, see “Supporting Documents” on page 10.

1.1.1. Intended Audience
Any user who works with the connectivity components or uses the Java API should
read this guide. A thorough knowledge of eIndex is not needed to understand this
guide. It is presumed that the reader of this guide is familiar with the eGate
environment and GUIs, eGate Projects, Oracle database administration, and the Java
programming language. The reader should also be familiar with the data formats used
by the systems linked to eIndex, the operating system(s) on which eGate and the eIndex
database run, and current business processes and information system (IS) setup.
eIndex Global Identifier Reference Guide 8 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction Writing Conventions
1.1.2. Using this Guide
For best results, skim through the guide to familiarize yourself with the locations of
essential information you need. The beginning of each chapter provides introductory
information on the topics covered in that chapter. This introductory material contains
background and explanatory information you may need to understand before moving
into the more detailed information later in the chapter.

This guide compliments the eIndex Global Identifier User’s Guide, the eIndex Global
Identifier Configuration Guide, and the eIndex Javadocs. Once you understand the
default processing, you can configure eIndex for your custom data and processing
requirements.

1.1.3. Document Organization
This guide is divided into five chapters that cover the topics shown below.

Chapter 1 “Introduction” gives a general preview of this document—its purpose,
scope, and organization—and provides sources of additional information.

Chapter 2 “eIndex Global Identifier Overview” gives an overview of eIndex, and
discusses the architecture, integration servers, and the eIndex Project.

Chapter 3 “Understanding Operational Processes” gives an overview of how
inbound and outbound messages are processed, and includes information about
how certain configuration attributes affect processing.

Chapter 4 “The Database Structure” describes the database structure and how the
structure is defined based on the object structure definition. It also provides a
sample database diagram.

Chapter 5 “Working with the Java API” gives implementation information about
the eIndex Java API, and provides a reference of the dynamic methods created for
the method OTD and eInsight integration.

1.2 Writing Conventions
Before you start using this guide, it is important to understand the special notation and
mouse conventions observed throughout this document.

1.2.1. Special Notation Conventions
The following special notation conventions are used in this document.

Table 1 Special Notation Conventions

Text Convention Example

Titles of publications Title caps in italic
font

eIndex Global Identifier User’s Guide
eIndex Global Identifier Reference Guide 9 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction Supporting Documents
Additional Conventions

Windows Systems—The eIndex system is fully compliant with Windows NT,
Windows 2000, and Windows XP platforms. When this document refers to Windows,
such statements apply to all three Windows platforms.

UNIX Systems—This guide uses the backslash (\) as the separator within path names.
If you are working on a UNIX system, please make the appropriate substitutions.

1.3 Supporting Documents
SeeBeyond has developed a suite of user's guides and related publications that are
distributed in an electronic library. The following documents may provide information
useful in creating your customized index. In addition, complete documentation of the
eIndex Java API is provided in Javadoc format.

eIndex Global Identifier User’s Guide

eIndex Global Identifier Configuration Guide

Implementing the SeeBeyond Match Engine with eIndex

Implementing Ascential INTEGRITY with eIndex

eGate Integrator User’s Guide

SeeBeyond ICAN Suite Deployment Guide

Button, Icon,
Command, Function,
and Menu Names

Bold text Click OK to save and close.
From the File menu, select Exit.

Parameter, Variable,
and Method Names

Bold text Use the executeMatch() method.
Enter the field-type value.

Command Line
Code and Code
Samples

Courier font
(variables are
shown in bold
italic)

bootstrap -p password
<tag>Person</tag>

Hypertext Links Blue text For more information, see “Writing Conventions”
on page 9.

File Names and Paths Bold text To install eIndex, upload the eIndex.sar file.

Notes Bold Italic text Note: If a toolbar button is dimmed, you
cannot use it with the selected
component.

Table 1 Special Notation Conventions (Continued)

Text Convention Example
eIndex Global Identifier Reference Guide 10 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction Online Documents
1.4 Online Documents
The documentation for the SeeBeyond ICAN Suite is distributed as a collection of
online documents. These documents are viewable with the Acrobat Reader application
from Adobe Systems. Acrobat Reader can be downloaded from:

http://www.adobe.com

1.5 SeeBeyond Web Site
The SeeBeyond Web site is your best source for up-to-the-minute product news and
technical support information. The site’s URL is:

http://www.SeeBeyond.com
eIndex Global Identifier Reference Guide 11 SeeBeyond Proprietary and Confidential

http://www.adobe.com
http://www.seebeyond.com

Chapter 2

eIndex Global Identifier Overview

eIndex is a highly configurable master person index that allows you to define the data
structure and processing logic for the records stored in the eIndex database. This
chapter provides overview information about eIndex and how the Project defines the
master person index.

2.1 Introduction
eIndex provides a flexible framework to design and configure an enterprise-wide
person master index that creates a single view of person information. eIndex maintains
the most current information about the people who participate throughout your
organization and links information from different locations and computer systems.
eIndex provides accurate identification of members throughout your healthcare
enterprise, and cross-references a member's local IDs using an enterprise-wide unique
identification number (EUID). eIndex also ensures accurate member data by identifying
potential duplicate records and providing the ability to merge or resolve duplicate
records. All member information is centralized in one shared index. Maintaining a
centralized database for multiple systems enables eIndex to integrate data throughout
the enterprise while allowing local systems to continue operating independently.

In eIndex, you define the data structure of the information to be stored and cross-
referenced. In addition, you define the logic that determines how data is updated,
standardized, weighted, and matched. The structure and logic you define is stored in a
group of XML configuration files, which are predefined but can be customized to meet
your processing requirements. These files are defined within the context of an eGate
Project and can be modified using the XML editor provided in the Enterprise Designer.

2.2 eIndex Repository Components
eIndex has two types of components: Repository and runtime. The Repository
components of eIndex are designed to work within the eGate Enterprise Designer to
create and configure eIndex, and to define connectivity between external systems and
eIndex. This section describes the Repository components; the runtime components are
described in “Runtime Environment Components” on page 20.
eIndex Global Identifier Reference Guide 12 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
eIndex Global Identifier Overview eIndex Repository Components
The primary Repository components of eIndex are:

Editors

Project Components

Environment Components

2.2.1. Editors
eIndex provides the following editors to help you customize the files in the eIndex
Project.

XML Editor—allows you to review and customize the XML configuration files. This
editor provides verification services for XML syntax (schema validation is provided
through eIndex). The XML editor is automatically launched when you open an
eIndex configuration file.

Text Editor—allows you to review and customize the database scripts. This editor is
very similar to the XML editor but without the verification services. The text editor
is automatically launched when you open an eIndex database script.

Java Source Editor—allows you to create and customize custom plug-in classes for
eIndex. This editor is a simple text editor, similar to the Java Source Editor in the
Java Collaboration Editor. The Java source editor is automatically launched when
you open a custom plug-in file.

2.2.2. Project Components
eIndex is implemented within a Project in Enterprise Designer. The eIndex Project
includes configuration files, database scripts, and custom plug-ins that you can
customize. When you generate the Project, additional components are updated,
including a method OTD, an outbound OTD, eInsight web page methods, and the
necessary .jar files. To complete the Project, you create a Connectivity Map and
Deployment Profile.

Additional eGate components must be added to the client Projects that share data with
eIndex, including Services, Collaborations, OTDs, Web Connectors, eWays, JMS
Queues, JMS Topics, and so on. You can use the standard Enterprise Designer editors,
such as the OTD or Collaboration editors, to create these components.

Following is a list of eIndex Project components.

Configuration Files

Database Scripts

Custom Plug-ins

Match Engine Configuration Files

Object Type Definitions

Dynamic Java Methods

Connectivity Components
eIndex Global Identifier Reference Guide 13 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
eIndex Global Identifier Overview eIndex Repository Components
Deployment Profile

Figure 1 on page 14 illustrates the Project and Environment components of eIndex
Studio.

Figure 1 eIndex Project and Environment Components

Configuration Files

Several XML files together determine certain characteristics of eIndex, such as how data
is processed, queried, and matched. These files configure runtime components of
eIndex, which are listed in “Runtime Environment Components” on page 20.

Object Definition—Defines the data structure of eIndex.

Enterprise Data Manager—Configures the search functions and appearance of the
EDM, along with debug information and security information.

Candidate Select—Configures the Query Builder component of eIndex, and
defines the available queries.

Match Field—Configures the Matching Service, and defines the fields to be
standardized and the fields to use for matching. It also specifies the match and
standardization engines to use.

Threshold—Configures the eIndex Manager Service, and defines certain system
parameters, such as match thresholds, EUID attributes, and update modes. It also
specifies the query from the Query Builder to use for matching queries.

eIndex Project

eGate Repository

Configuration

Configuration Files:
Object Definition
Runtime Configuration

Database Scripts
Systems
Code List
Create

Deployment
Profile

OTDs
Outbound
Method
eInsight

eIndex Environment

Logical
Host

Message
Server

Custom
Plug-ins

Integration
ServerConnectivity

Client Projects

External Systems

eInsight Business Process

eVision Web Interfaces
eIndex Global Identifier Reference Guide 14 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
eIndex Global Identifier Overview eIndex Repository Components
Best Record—Configures the Update Manager and defines the strategies used by
the survivor calculator to determine the field values for the SBR.

Field Validation—Defines rules for validating field values. Rules are predefined for
validating the local ID field, and you can create custom validation rules to plug in to
this file.

Security—This file is a placeholder to be used in future versions.

Database Scripts

Several database scripts are included in the eIndex Project to allow you to create the
eIndex table structure, indexes, and custom start-up data. Additional scripts are
provided for testing purposes that drop the tables and indexes you created.

Systems—Contains a sample SQL insert statement for adding information about an
external system to the database. You can modify this script to define you own
systems.

Code List—Contains the SQL statements to insert processing codes and drop-down
list values into the database. You might need to customize this file to match the
processing codes used by your external systems.

Create Person database—Defines the structure of the eIndex database based on the
Object Definition file, and defines indexes against standard database tables. You can
customize this script, and then run it against an Oracle database to create a
customized database.

Create User Indexes—Defines indexes against the fields that are defined for the
blocking query in the Candidate Select file. You can define additional indexes if
needed.

Create User Code Data—Provides a sample “insert” script for adding data to the
sbyn_user_code table.

Drop Person database—Used primarily in testing, when you need to drop existing
database tables and create new ones. The delete script removes all tables related to
eIndex so you can recreate a fresh database for your Project.

Drop User Indexes—Used primarily in testing, when you need to drop existing
indexes, or for loading large batches of data, when indexes can slow down the
process. This script removes all indexes defined in the Create User Indexes script.

You can also create custom scripts to store in the eIndex Project and run against the
database.

Custom Plug-ins

eIndex provides a method by which you can create custom processing logic for the
master index. To do this, you need to define and name a custom plug-in, which is a Java
class that performs the required functions. Once you create a custom plug-in, you
incorporate it into eIndex by adding it to the appropriate configuration file. You can
create custom update procedures and field validations. Update procedures must be
referenced in the update policies of the Best Record file, and field validations must be
eIndex Global Identifier Reference Guide 15 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
eIndex Global Identifier Overview eIndex Repository Components
referenced in the Field Validation file. Custom plug-ins can also be used to create
custom eIndex components, such as a custom query builder or block picker.

Match Engine Configuration Files

If you are using the SeeBeyond Match Engine, several configuration files for the engine
are stored in the eIndex Project. The configuration files under the Match Engine node
define certain weighting characteristics and constants for the match engine. The
configuration files under the Standardization Engine node define how to standardize
names, business names, and address fields. You can customize any of these fields as
necessary. For more information, refer to Implementing the SeeBeyond Match Engine with
eIndex.

Outbound Object Type Definition (OTD)

eIndex includes an outbound OTD based on the object structure defined in the Object
Definition file. This OTD is used for distributing information that has been added or
updated in eIndex to the external systems that share data with eIndex. It includes the
objects and fields defined in the Object Definition file plus additional SBR information
(such as the create date and create user) and additional system object information (such
as the local ID and system code). If you plan to use this OTD to make eIndex data
available to external systems, you must define a JMS Topic in the eIndex Connectivity
Map to which eIndex can publish transactions.

Dynamic Java API

Due to the flexibility of the object structure, eIndex includes several dynamic Java
methods for use in Collaborations and in Web services. One set is provided in a method
OTD for use in Collaborations and one set is provided for Web services. The names,
parameter types, and return types of these methods vary based on whether you modify
the object structure in the Object Definition file. These methods are described in
Chapter 5, “Working with the Java API”.

Method OTD

The method OTD contains Java functions you can use to define data processing rules in
Collaborations for external systems. These functions allow you to define how messages
received from external systems are processed by the Service. You can define rules for
inserting new records, retrieving record information, updating existing records,
performing match processing on incoming records, and so on.
eIndex Global Identifier Reference Guide 16 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
eIndex Global Identifier Overview eIndex Repository Components
Figure 2 eIndex Method OTD

Web Services Java Methods

In addition to the method OTD, which can be used in Collaborations, eIndex includes a
set of Java methods that can be incorporated into an eInsight Business Process for
eVision Web services. These methods are a subset of those defined for the method OTD,
providing the ability to view, retrieve, and match information in the eIndex database
from eInsight Web pages.
eIndex Global Identifier Reference Guide 17 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
eIndex Global Identifier Overview eIndex Repository Components
Figure 3 Outbound OTD

Connectivity Components

The eIndex Project Connectivity Map only consists of two components: the Web
application file and the application file. However, in client Projects you can use any of
the standard Project components to define connectivity and data flow for eIndex. Client
Projects include those created for the external systems sharing data with the index and
those created for eVision Web pages. The eIndex Connectivity Map may include one
additional component, a JMS Topic, to which eIndex can publish all processed
messages for broadcasting to external systems.

For the client Projects, you can use connectivity components from the eIndex server
Project and create any standard eGate connectivity components, such as OTDs,
Services, Collaborations, JMS Queues and Topics, and eWays. Client Project
components transform and route incoming data into the eIndex database according to
the rules contained in the Collaborations. They can also route the processed data back
to the appropriate local systems through eWays.
eIndex Global Identifier Reference Guide 18 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
eIndex Global Identifier Overview About the Runtime Environment
Deployment Profile

The Deployment Profile defines information about the production environment of
eIndex. It contains information about the assignment of Services and message
destinations to integration servers and JMS IQ Managers within the eIndex system.
Each eIndex Project must have at least one Deployment Profile, and can have several,
depending on the Project requirements and the number of Environments used. You
must activate the deployment before you can use the eIndex runtime environment.

2.2.3. Environment Components
The eIndex Environments define the configuration of the deployment environment of
the runtime environment, including the Logical Host and application server. If eIndex
client Projects use the same Environment, it may also include a JMS IQ Manager,
constants, Web Connectors, and External Systems. Each Environment represents a unit
of software that implements eIndex. You must define and configure at least one
Environment for eIndex before you can deploy the application. The integration server
hosting eIndex is configured within the Environment in the Enterprise Designer.
Security is defined through the Environment configuration.

For more information about Environments, see the eGate Integrator User’s Guide.

2.3 About the Runtime Environment
In today’s business environment, important information about certain business objects
in your organization may exist in many disparate information systems. It is vital that
this information flow seamlessly and rapidly between departments and systems
throughout the entire business network. As organizations grow, merge, and form
affiliations, sharing data between different information systems becomes a complicated
task. eIndex can help you manage this data, and ensure that the data you have is the
most current and accurate information available.

Regardless of how you define the data structure and configure the runtime
environment for eIndex, the final product provides a cross-reference of centralized
information that is kept current by the logic you define for unique identification,
matching, and update transactions.

2.3.1. Functions of the Runtime Environment
eIndex in the runtime environment provides the following functions to help you
monitor and maintain the data shared throughout the index system.

Transaction History—The system provides a complete history of each member by
recording all changes to each member's data. This history is maintained for both the
local system records and the SBR.

Data Maintenance—The web-based user interface supports all the necessary
features for maintaining data records. It allows you to add new records; view,
update, deactivate, or reactivate existing records; and compare records for
eIndex Global Identifier Reference Guide 19 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
eIndex Global Identifier Overview About the Runtime Environment
similarities and differences. You can perform these functions against each local
system record or SBR associated with a member record.

Search—The information contained in each SBR or system record can be obtained
from the database using a variety of search criteria. You can perform searches
against the database for a specific member or a set of members. For certain searches,
the results are assigned a matching weight that indicates the probability of a match.

Potential Duplicate Detection and Handling—One of the most important features
of the eIndex system is its ability to match records and identify possible duplicates.
Using matching algorithm logic, eIndex identifies potential duplicate records, and
provides the functionality to correct the duplication. Potential duplicate records are
easily corrected by either merging the records in question or marking the records as
“resolved”.

Merge and Unmerge—You can compare potential duplicate records and then
merge the records (at either the EUID or system-record level) if you find them to be
actual duplicates of one another. At the EUID level, you can determine which
record to retain as the active record. At the system level, you can determine which
record to retain, and which information from each record to preserve in the
resulting record.

2.3.2. Runtime Environment Components
The eIndex runtime environment is made up of several components that work together
to form a complete indexing system. The primary components of the runtime
environment are:

eIndex Manager Service

Matching Service

Query Builder

Query Manager

Update Manager

Object Persistence Service

Database

Enterprise Data Manager

In addition, eIndex uses the connectivity components defined in the eIndex server and
client Projects to route data between external systems and the eIndex database.

The eGate Repository stores information about the configuration and structure of the
runtime environment. Because eIndex is deployed within eGate, it can be implemented
in a distributed environment. The eIndex system requires the SeeBeyond Integration
Server to enable Web service connectivity.

The components of the eIndex runtime environment are illustrated in Figure 4.
eIndex Global Identifier Reference Guide 20 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
eIndex Global Identifier Overview About the Runtime Environment
Figure 4 eIndex Runtime Environment Architecture

2.3.3. Matching Service
The Matching Service stores the logic for standardization (which includes data parsing
and normalization), phonetic encoding, and matching. It includes the specified
standardization and match engines, along with the configuration you defined for each.
The Matching Service also contains the data standardization tables and configuration
files for the match engine, such as the configuration files for the SeeBeyond Match
Engine or the rule set files for INTEGRITY. The configuration of the Matching Service is
defined in the Match Field file.

2.3.4. eIndex Manager Service
The eIndex Manager Service provides a session bean to all components of the runtime
environment, such as the Enterprise Data Manager, Query Builder, and Update
Manager. The service also provides connectivity to the database. The configuration of
the eIndex Manager Service specifies the query to use for matching, and defines system
parameters that control EUID generation, matching thresholds, and update modes. The
configuration of the eIndex Manager Service is defined in the Threshold file.

2.3.5. Query Builder
The Query Builder defines all queries available to eIndex. This includes the queries
performed automatically by eIndex when searching for possible matches to an
incoming record. It also includes the queries performed manually through the
Enterprise Data Manager (EDM). The EDM queries can be either alphanumeric or

Integration Server

eIndex Manager Service
(Master Controller Session Bean)

Matching Service

Match and
Standardization

Engine

Query
Builder

Query
Manager

Update
Manager

Object
Persistence

Service (OPS)

Enterprise Data
Manager Workstations

eIndex Runtime Components

eIndex Database
eIndex Global Identifier Reference Guide 21 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
eIndex Global Identifier Overview About the Runtime Environment
phonetic, and have the option of using wildcard characters. The configuration of the
Query Builder is defined in the Candidate Select file.

2.3.6. Query Manager
The Query Manager is a service that performs queries against the eIndex database and
returns a list of objects that match or closely match the query criteria. The Query
Manager uses classes specified in the Match Field file to determine how to perform a
query for match processing. All queries performed in the eIndex system are executed
through the Query Manager.

2.3.7. Update Manager
The Update Manager controls how updates are made to a member’s SBR by defining a
survivor strategy for each field. The survivor calculator in the Update Manager uses
these strategies to determine the relative reliability of the data from external systems
and to determine which value for each field is populated into the SBR. The Update
Manager also manages certain update policies, allowing you to define additional
processing to be performed against incoming data. The configuration of the Update
Manager is defined in the Best Record file.

2.3.8. Object Persistence Service (OPS)
OPS is a database service that translates high-level and descriptive object requests into
actual JDBC calls. The service provides mapping from the Java object to the database
and from the database to the Java object.

2.3.9. Database
eIndex uses an Oracle database to store the types of information you specify for
member records. The database stores local system records, the SBR for each member
record, and certain administrative information, such as drop-down menu lists,
processing codes, and information about the systems from which data originates. The
script used to create the eIndex database structure is based on the object structure
defined in the Object Definition file.

2.3.10.Enterprise Data Manager
The Enterprise Data Manager (EDM) is a web-based interface that allows you to
monitor and maintain the data in the eIndex database. The configurable attributes of
the EDM are defined in the Enterprise Data Manager file, which you can modify after
you generate the eIndex application. The EDM provides the ability to manually search
for records; update, add, deactivate, and reactivate records; merge and unmerge
records; view potential duplicates; and view comparisons of member records.
eIndex Global Identifier Reference Guide 22 SeeBeyond Proprietary and Confidential

Chapter 3

Understanding Operational Processes

eIndex uses a custom Java API library and the eGate Integrator to transform and route
data into and out of the eIndex database. In order to customize the way the Java
methods transform the data, it is helpful to understand the logic of the primary
processing function (executeMatch) and how messages are typically processed through
the eIndex system.

This chapter describes and illustrates the processing flow of messages to and from
eIndex, providing background information to help design and create custom
processing rules for your implementation.

3.1 Learning About Message Processing
This section of the chapter provides a summary of how inbound and outbound
messages can be processed in an eIndex environment. eIndex cross-references records
stored in various computer systems in an organization, and identifies records that
might represent or do represent the same person. eIndex uses the eGate Integrator,
along with the connectivity components available through eGate, to connect to and
share data with these external systems.

Figure 5 on page 24 illustrates the flow of information through eIndex.
eIndex Global Identifier Reference Guide 23 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Understanding Operational Processes Learning About Message Processing
Figure 5 Master Index Processing Flow

3.1.1. Inbound Message Processing
An inbound message refers to the transmission of data from external systems to the
eGate Integrator and then to the eIndex database. These messages may be sent into the
database via a number of Services. Inbound messages are stored and tracked in the
eGate log files. The steps below describe how inbound messages are processed.

1 Messages are created in an external system, and the enveloped message is
transmitted to eGate via that system's eWay.

2 eGate identifies the message and the appropriate Service to which the message
should be sent. The message is then routed to the appropriate Service for
processing.

Master Index
Database

When the database is updated, the
Event is sent back out through the
Outbound Service with the EUID
attached.

Manual queries and
updates to the database

Entering new
address

information

Enterprise
Data

Manager

original
Event

translated
Event

outbound
Event

outbound
Event

Source eWay Destination
eWay

eGate
Integrator

Inbound
Service

Outbound
Service

Accessing
new address

information
eIndex Global Identifier Reference Guide 24 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Understanding Operational Processes Learning About Message Processing
3 The message is modified into the appropriate format for the eIndex database, and
validations are performed against the data elements of the message to ensure
accurate delivery. The message is validated using the Java code in the Service’s
Collaboration and other information stored in the eIndex configuration files.

4 If the message was successfully transmitted to the database, the appropriate
changes to the database are processed.

5 After eIndex processes the message, an EUID is returned (for either a new or
updated record). That EUID can be sent back out through a different Service to the
external system. Alternatively, the entire updated message can be published using
the outbound OTD (see “Outbound Message Processing” on page 25 next).

Figure 6 below illustrates the flow of a message inbound to eIndex.

Figure 6 Inbound Message Processing Data Flow

3.1.2. Outbound Message Processing
An outbound message refers to the transmission of data from the eIndex database to
any external system. Messages can be transmitted from eIndex in two ways. The first
way is by transmitting the output of executeMatch (an EUID). This is described earlier
in “Inbound Message Processing” on page 24, and is only used for messages received
from external systems.

The second way is by publishing messages to a JMS Topic and publishing complete,
updated records to any system subscribing to that topic. Outbound messages are
generated in the format of the outbound OTD when updates are made to the database
from either external systems or the Enterprise Data Manager. This section describes
how the second type of outbound message is processed.

1 When a message is received and processed by eIndex, an XML message is
generated and sent to a JMS Topic, which is configured to publish messages from
eIndex.

2 Messages published by the JMS Topic are processed through a Service whose
Collaboration uses the eIndex outbound OTD. This Service modifies the message
into the appropriate format.

3 eGate identifies the message and the external systems to which it should be sent,
and then routes the message for processing via an external system eWay.

Master Index
Database

External
System

eView
Service

eGate

eGate
eIndex Global Identifier Reference Guide 25 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Understanding Operational Processes Learning About Message Processing
Note: Outbound messages are stored and tracked in the eGate log files.

Figure 7 below illustrates the flow of data for a message outbound from eIndex.

Figure 7 Outbound Message Processing Data Flow

3.1.3. Inbound Message Processing Logic
When records are transmitted to eIndex, executeMatch is called and a series of
processes are performed to ensure that accurate and current data is maintained in the
database. In the sample Project configuration, these processes are defined in the
Collaboration using the functions defined in the customized method OTD. The steps
performed by executeMatch are outlined below, and the diagrams on the following
pages illustrate the message processing flow. The processing steps performed in your
environment may vary from this depending on how you customize the Collaboration
and Connectivity Map.

The following steps refer to the following parameters and element in the eIndex
Threshold file (these are described in the eIndex Global Identifier Configuration Guide):

OneExactMatch parameter

SameSystemMatch parameter

MatchThreshold parameter

DuplicateThreshold parameter

update-mode element

1 When a message is received by eIndex, a search is performed for any existing
records with the same local ID and system as those contained in the message. This
search only includes records with a status of A, meaning only active records are
included. If a matching record is found, an existing EUID is returned.

2 If an existing record is found with the same system and local ID as the incoming
message, it is assumed that the two records represent the same person. Using the
EUID of the existing record, eIndex performs an update of the record’s information
in the database.

If the update does not make any changes to the person’s information, no further
processing is required and the existing EUID is returned.

If there are changes to the person’s information, the updated record is inserted
into database, and the changes are recorded in the sbyn_transaction table.

If there are changes to key fields (that is, fields used for matching or for the
blocking query) and the update mode is set to pessimistic, potential duplicates
are re-evaluated for the updated record.

eGateJMS TopicMaster Index
Database

External
System

eView
Service
eIndex Global Identifier Reference Guide 26 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Understanding Operational Processes Learning About Message Processing
3 If no records are found that match the record’s system and local identifier, a second
search is performed using the blocking query. A search is performed on each of the
defined query blocks to retrieve a candidate pool of potential matches.

Each record returned from the search is weighted using the fields defined for
matching in the inbound message.

4 After the search is performed, the number of resulting records is calculated.

If a record or records are returned from the search with a matching probability
weight above the match threshold, eIndex performs exact match processing (see
Step 5).

If no matching records are found, the inbound message is treated as a new
record. A new EUID is generated and a new record is inserted into the database.

5 If records were found within the high match probability range, exact match
processing is performed as follows:

If only one record is returned from this search with a matching probability that
is equal to or greater than the match threshold, additional checking is
performed to verify whether the records originated from the same system (see
Step 6).

If more than one record is returned with a matching probability that is equal to
or greater than the match threshold and exact matching is set to false, then the
record with the highest matching probability is checked against the incoming
message to see if they originated from the same system (see Step 6).

If more than one record is returned with a matching probability that is equal to
or greater than the match threshold and exact matching is true, a new EUID is
generated and a new record is inserted into the database.

If no record is returned from the database search, or if none of the matching
records have a weight in the exact match range, a new EUID is generated and a
new record is inserted into the database.

Note: Exact matching is determined by the OneExactMatch parameter, and the match
threshold is defined by the MatchThreshold parameter. For more information about
these parameters, see the eIndex Global Identifier Configuration Guide.

6 When records are checked for same system entries, eIndex tries to retrieve an
existing local ID using the system of the new record and the EUID of the record that
has the highest match weight.

If a local ID is found and same system matching is set to true, a new record is
inserted, and the two records are considered to be potential duplicates. These
records are marked as same system potential duplicates.

If a local ID is found and same system matching is set to false, it is assumed that
the two records represent the same person. Using the EUID of the existing
record, eIndex performs an update, following the process described in Step 2
earlier.
eIndex Global Identifier Reference Guide 27 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Understanding Operational Processes Learning About Message Processing
If no local ID is found, it is assumed that the two records represent the same
person and an assumed match occurs. Using the EUID of the existing record,
eIndex performs an update, following the process described in Step 2 earlier.

7 If a new record is inserted, all records that were returned from the blocking query
are weighed against the new record using the matching algorithm. If a record is
updated and the update mode is pessimistic, the same occurs for the updated
record. If the matching probability weight of a record is greater than or equal to the
potential duplicate threshold, the record is flagged as a potential duplicate (for
more information about thresholds, see the eIndex Global Identifier Configuration
Guide).

The flow charts on the following pages provide a visual representation of the processes
performed by the default sample Project. Figures 8 and 9 represent the primary flow of
information. Figure 10 expands on update procedures illustrated in Figures 8 and 9.
eIndex Global Identifier Reference Guide 28 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Understanding Operational Processes Learning About Message Processing
Figure 8 Inbound Message Processing in the Sample Project

Message
containing a

system and local
ID, plus relevant
data, is received

Lookup system and
local ID in the

sbyn_enterprise
table

Perform update on
the existing record

(see Figure 10
expansion)

Yes

No

Are records
found with

matching weights equal to or
greater than the duplicate

threshold?

No Perform a new
record insert

Go to A

Yes

Perform
matching

algorithm search

Processing
complete

Are the
system and local ID

pair found?
eIndex Global Identifier Reference Guide 29 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Understanding Operational Processes Learning About Message Processing
Figure 9 Inbound Message Processing (cont'd)

1 record found

A

Perform new
record insert

0 records found

More than 1
record found

Is exact
matching set

to true?

Yes

No

Process potential
duplicates for
records above

and equal to the
duplicate
threshold

Processing
complete

Perform update
on matching

record (see Figure
10 expansion)

No

Yes

Perform update
on matching
record (see
Figure 10

expansion)

No

Yes

Perform new
record insert

Process potential
duplicates for
records above

and equal to the
duplicate
threshold

Processing
complete

Is same
system matching

set to true?

 Did highest
matching record

originate from the
same system?

No

 Did matching
 records originate

from the same
system?

Yes

 Were records
 found with matching

weights above or equal
to the match
threshold?
eIndex Global Identifier Reference Guide 30 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Understanding Operational Processes Learning About Message Processing
Figure 10 Record Update Expansion

3.1.4. About Outbound Messages
When you customize the object definition and generate the eIndex application, an
outbound OTD is created, the structure of which is based on the object definition. This
OTD is used to publish changes in the eIndex database to external systems via a JMS
Topic. The output of the executeMatch process described earlier is an EUID of the new
or updated record. You can use this EUID to obtain additional information and
configure a Collaboration and Service to output the data, or you can process all updates
in eIndex through a JMS Topic using the outbound OTD.

The outbound OTD is named after the application name of eIndex (for example,
OUTCompany or OUTPerson). The outbound OTD for eIndex is named “OUTPerson”.
This OTD contains seven primary nodes: Event, SBR, and the standard Java methods
unmarshalFromString, reset, marshalToString, marshal, and unmarshal. The portion

Find the existing
record using the

EUID

Are there
changes

 to the entity's
data?

Update
existing recordYes

Insert changes
into the

sbyn_transaction
table

Is update
mode

pessimistic?

Yes

Perform
potential
duplicate

processing

No

Were
changes made
to significant*

fields?

Yes

No

* Significant fields for potential duplicate processing include those defined for
matching and those included in the blocking query used for matching

No

Processing
complete
eIndex Global Identifier Reference Guide 31 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Understanding Operational Processes Learning About Message Processing
of the OTD created from the Object Definition file is the SBR portion. Table 2 describes
the components of the SBR portion of the outbound OTD.

Table 2 Outbound OTD SBR Node

Node Descriptions

EUID The EUID of the record that was inserted or
modified.

Status The status of the record.

CreateFunction The date the record was first created.

CreateUser The logon ID of the user who created the record.

UpdateSystem The processing code of the external system from
which the updates to an existing record originated.

ChildType The name of the parent object.

CreateSystem The processing code of the external system from
which the record originated.

UpdateDateTime The date and time the record was last updated.

CreateDateTime The date and time the record was created.

UpdateFunction The type of function that caused the record to be
modified.

RevisionNumber The revision number of the record.

UpdateUser The logon ID of the user who last updated the
record.

SystemObject The fields in this node contain local ID and system
information.

SystemCode The processing code of the system that created the
new record or caused an existing record to be
updated.

LID The local ID associated with the above system for
the published record.

Status The status of the system record.

Person The fields in this node are defined by the object
structure (as defined in the Object Definition file). It
is named by the parent object and contains all fields
and child objects defined in the structure. This
section varies depending on your customizations.
eIndex Global Identifier Reference Guide 32 SeeBeyond Proprietary and Confidential

Chapter 4

The Database Structure

This chapter provides information about the eIndex database, including descriptions of
each table and a sample entity relationship diagram. All information in this chapter
pertains to the default version of the database. Your implementation may vary
depending on the customizations made to the Object Definition and to the scripts used
to create the eIndex database.

4.1 Overview of the eIndex Database
The eIndex database stores information about the members being indexed. The
database stores records from local systems in their original form, and also stores a
record for each person that is considered to be the single best record (SBR).

The structure of the database tables that store person information is dependent on the
information specified in the Object Definition file. eIndex includes a script to create the
tables and fields in the eIndex database based on the information in the Object
Definition file. If you update the Object Definition file, generating the application
updates the database scripts accordingly. This allows you to define the database as you
define the object structure.

4.2 eIndex Database Description
While most of the structures created in the database are based on information in the
Object Definition file, some of the tables, such as sbyn_seq_table and
sbyn_common_detail, are standard for all implementations. This section describes both
types of tables and the fields contained in each table.

4.2.1. Database Table Overview
The eIndex database includes tables that store common maintenance information,
transactional information, external system information, and information about the
objects stored in the database. The database includes the tables listed in Table 3 on the
following page.
eIndex Global Identifier Reference Guide 33 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
The Database Structure eIndex Database Description
Table 3 Master Index Database Tables

Table Name Description

SBYN_<OBJECT_NAME> Stores information for the parent objects
associated with local system records (by
default, Person objects). This database table is
named by the parent object name. Only one
table stores parent object information for
system records.

SBYN_<OBJECT_NAME>SBR Stores information for the parent objects
associated with single best records (by default,
Person objects). This database table is named
by the parent object name followed by “SBR”.
Only one table stores parent object
information for SBRs.

SBYN_<CHILD_OBJECT> Stores information for child objects associated
with local system records. These database
tables are named by their object name. For
example, a table storing address objects is
named sbyn_address; a table storing comment
objects is named sbyn_comment. There may
be several tables storing child object
information for system records.

SBYN_<CHILD_OBJECT>SBR Stores information for child objects associated
with a single best record. These database
tables are named by their object name
followed by “SBR”. For example, a table storing
address objects is named sbyn_addresssbr; a
table storing comment objects is named
sbyn_commentsbr. There may be several tables
storing child object information for SBRs.

SBYN_APPL Lists the applications with which each item in
stc_common_header is associated. Currently
the only item in this table is eView.

SBYN_ASSUMEDMATCH Stores information about records that were
automatically merged by eIndex.

SBYN_AUDIT Stores audit information about each time
person information is accessed in the eIndex
database.

SBYN_COMMON_DETAIL Contains all of the processing codes associated
with the items listed in sbyn_common_header.

SBYN_COMMON_HEADER Contains a list of the different types of
processing codes used by eIndex. These types
are also associated with the drop-down lists
you can specify for the EDM.

SBYN_ENTERPRISE Stores the local ID and system pairs, along with
their associated EUID.
eIndex Global Identifier Reference Guide 34 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
The Database Structure eIndex Database Description
4.2.2. Database Table Details
The tables on the following pages describe each column in the default eIndex database
tables.

SBYN_<OBJECT_NAME>

This table stores the parent object in each system record received by eIndex. By default,
the table is named SBYN_PERSON. It is linked to the tables that store each child object
in the system record by the <object_name>id column (where <object_name> is the name
of the parent object). This table contains the columns listed below regardless of the
design of the object structure, and also contains a column for each field you defined for
the parent object in the Object Definition file.

SBYN_MERGE Stores information about all merge and
unmerge transactions processed from either
external systems or the EDM.

SBYN_OVERWRITE Stores information about fields that are locked
for updates in an SBR.

SBYN_POTENTIALDUPLICATES Stores a list of potential duplicate records and
flags potential duplicate pairs that have been
resolved.

SBYN_SEQ_TABLE Stores the sequential codes that are used in
other tables in the eIndex database, such as
EUIDs, transaction numbers, and so on.

SBYN_SYSTEMOBJECT Stores information about the system objects in
the database, including the local ID and
system, create date and user, status, and so on.

SBYN_SYSTEMS Stores a list of systems in your organization,
along with defining information.

SBYN_SYSTEMSBR Stores transaction information about an SBR,
such as the create or update date, status, and
so on.

SBYN_TRANSACTION Stores a history of changes to each record
stored in the database.

SBYN_USER_CODE Like the sbyn_common_detail table, this table
stores processing codes and drop-down list
values. This table contains additional validation
information that allows you to validate
information in a dependent field (for example,
to validate cities against the entered postal
code).

Table 3 Master Index Database Tables

Table Name Description
eIndex Global Identifier Reference Guide 35 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
The Database Structure eIndex Database Description
Table 4 SBYN_<OBJECT_NAME> Table Description

SBYN_<OBJECT_NAME>SBR

This table stores the parent object of the SBR for each enterprise object in the master
index database. By default, the table is named SBYN_PERSONSBR. It is linked to the
tables that store each child object in the SBR by the <object_name>id column (where
<object_name> is the name of the parent object). This table contains the columns listed
below regardless of the design of the object structure, and also contains a column for
each field defined for the parent object in the Object Definition file.

Table 5 SBYN_<OBJECT_NAME>SBR Table Description

SBYN_<CHILD_OBJECT> and SBYN_<CHILD_OBJECT>SBR

The sbyn_<child_object> tables (where <child_object> is the name of a child object in the
object structure) store information about the child objects associated with a system
record in eIndex. The sbyn_<child_object>sbr tables store information about the child
objects associated with an SBR. All tables storing child object information contain the
columns listed below. The remaining columns are defined by the fields you specify for
each child object in the object structure definition file, including any standardized or
phonetic fields.

Column Name Data Type Column Description

SYSTEMCODE VARCHAR2(20) The system code for the system that
produced the EUID record.

LID VARCHAR2(25) A local identification code assigned
by the specified system.

<OBJECT_NAME>ID Varies A unique ID for the parent object in
a system record. This is named
according to the parent object. For
example, “personid”.

Column Name Data Type Column Description

EUID VARCHAR2(20) The enterprise unique identifier
assigned by eIndex.

<OBJECT_NAME>ID VARCHAR2(20) A unique ID for the parent object in
a system record. This is named
according to the parent object. For
example, “personid”.

Table 6 SBYN_<CHILD_OBJECT> and SBYN_<CHILD_OBJECT>SBR Table Description

Column Name Data Type Column Description

<OBJECT_NAME>ID VARCHAR2(20) The unique identification code for the
parent object associated with the child
object.

<CHILD_OBJECT>ID VARCHAR2(20) The unique identification code for each
record in the child object table. This
column cannot be null.
eIndex Global Identifier Reference Guide 36 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
The Database Structure eIndex Database Description
SBYN_APPL

This table stores information about the applications used in the eIndex system.
Currently, there is only one entry, “eView”.

SBYN_ASSUMEDMATCH

This table maintains a record of each assumed match transaction that occurs in eIndex,
allowing you to review these transactions and, if necessary, reverse an assumed match.
This table can grow quite large over time; it is recommended that the table be archived
periodically.

Table 7 SBYN_APPL Table Description

Column Name Data Type Description

APPL_ID NUMBER(10) The unique sequence number code
for the listed application.

CODE VARCHAR2(8) A unique code for the application.

DESCR VARCHAR2(30) A brief description of the
application.

READ_ONLY CHAR(1) An indicator of whether the current
entry can be modified. If the value of
this column is “Y”, the entry cannot
be modified.

CREATE_DATE DATE The date the application entry was
created.

CREATE_USERID VARCHAR2(20) The logon ID of the user who
created the application entry.

Table 8 SBYN_ASSUMEDMATCH Table Description

Column Name Data Type Description

ASSUMEDMATCHID VARCHAR2(20) The unique ID for the assumed
match transaction.

EUID VARCHAR2(20) The EUID into which the incoming
record was merged.

SYSTEMCODE VARCHAR2(20) The processing code of the system
from which the incoming record
originated.

LID VARCHAR2(25) The local ID of the record in the
source system.

WEIGHT VARCHAR2(20) The matching weight between the
incoming record and the EUID
record into which it was merged.

TRANSACTION NUMBER VARCHAR2(20) The transaction number associated
with the assumed match transaction.
eIndex Global Identifier Reference Guide 37 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
The Database Structure eIndex Database Description
SBYN_AUDIT

This table maintains a log of each instance in which any of the eIndex tables are
accessed in the eIndex database through the EDM. This includes each time a record
appears on a search results page, a comparison page, the View/Edit page, and so on.
This log is only maintained if the EDM is configured for it.

SBYN_COMMON_DETAIL

This table stores the processing codes and description for all of the common
maintenance data elements. This is the detail table for sbyn_common_header. Each data
element in sbyn_common_detail is associated with a data type in
sbyn_common_header by the common_header_id column. None of the columns in this
table can be null.

Table 9 SBYN_AUDIT Table Description

Column Name Data Type Description

AUDIT_ID VARCHAR2(20) The unique identification code for
the audit record. This column
cannot be null.

PRIMARY_OBJECT_TYPE VARCHAR2(20) The name of the parent object as
defined in the Object Definition file.

EUID VARCHAR2(15) The EUID whose information was
accessed during an EDM transaction.

EUID_AUX VARCHAR2(15) The second EUID whose information
was accessed during an EDM
transaction. A second EUID appears
when viewing information about
merge and unmerge transactions,
comparisons, and so on.

FUNCTION VARCHAR2(32) The type of transaction that caused
the audit record to be written. This
column cannot be null.

DETAIL VARCHAR2(120) A brief description of the transaction
that caused the audit record to be
written.

CREATE_DATE DATE The date the transaction that created
the audit record was performed.
This column cannot be null.

CREATE_BY VARCHAR2(20) The user ID of the person who
performed the transaction that
caused the audit log. This column
cannot be null.

Table 10 SBYN_COMMON_DETAIL Table Description

Column Name Data Type Description

COMMON_DETAIL_ID NUMBER(10) The unique identification code of
the common table data element.
eIndex Global Identifier Reference Guide 38 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
The Database Structure eIndex Database Description
SBYN_COMMON_HEADER

This table stores a description of each type of common maintenance data, and is the
header table for sbyn_common_detail. Together, these tables store the processing codes
and drop-down menu descriptions for each common table data type. Common table
data types might include Religion, Language, Marital Status, and so on. None of the
columns in this table can be null.

COMMON_HEADER_ID NUMBER(10) The unique identification code of
the common table data type
associated with the data element (as
stored in the common_header_id
column of the
sbyn_common_header table).

CODE VARCHAR2(20) The processing code for the
common table data element.

DESCR VARCHAR2(50) A description of the common table
data element.

READ_ONLY CHAR(1) An indicator of whether the
common table data element can be
modified.

CREATE_DATE DATE The date the data element record
was created.

CREATE_USERID VARCHAR2(20) The user ID of the person who
created the data element record.

Table 11 SBYN_COMMON_HEADER Table Description

Column Name Data Type Description

COMMON_HEADER_ID VARCHAR2(10) The unique identification code of
the common table data type.

APPL_ID VARCHAR2(10) The application ID from sbyn_appl
that corresponds to the application
for which the common table data
type is used.

CODE VARCHAR2(8) A unique processing code for the
common table data type.

DESCR VARCHAR2(50) A description of the common table
data type.

READ_ONLY CHAR(1) An indicator of whether an entry in
the table is read-only (if this column
is set to “Y”, the entry is read-only).

MAX_INPUT_LEN NUMBER(10) The maximum number of characters
allowed in the code column for the
common table data type.

Table 10 SBYN_COMMON_DETAIL Table Description

Column Name Data Type Description
eIndex Global Identifier Reference Guide 39 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
The Database Structure eIndex Database Description
SBYN_ENTERPRISE

This table stores a list of all the system and local ID pairs assigned to the person records
in the eIndex database, along with the associated EUID for each pair. This table is
linked to sbyn_systemobject by the systemcode and lid columns, and is linked to
sbyn_systemsbr by the euid column. This table maintains links between the SBR and its
associated system objects. None of the columns in this table can be null.

SBYN_MERGE

This table maintains a record of each merge transaction that occurs in eIndex, both
through the EDM and the eGate Project. It also records any unmerges that occur.

TYP_TABLE_CODE VARCHAR2(3) This column is not currently used.

CREATE_DATE DATE The date the common table data
type record was created.

CREATE_USERID VARCHAR2(20) The user ID of the person who
created the common table data type
record.

Table 12 SBYN_ENTERPRISE Table Description

Column Name Data Type Description

SYSTEMCODE VARCHAR2(20) The processing code of the system
associated with the local ID.

LID VARCHAR2(25) The local ID associated with the
system and EUID.

EUID VARCHAR2(20) The EUID associated with the local
ID and system.

Table 13 SBYN_MERGE Table Description

Column Name Data Type Description

MERGE_ID VARCHAR2(20) The unique, sequential
identification code of merge record.
This column cannot be null.

KEPT_EUID VARCHAR2(20) The EUID of the record that was
retained after the merge transaction.
This column cannot be null.

MERGED_EUID VARCHAR2(20) The EUID of the record that was not
retained after the merge transaction.

MERGE_TRANSACTIONNUM VARCHAR2(20) The transaction number associated
with the merge transaction. This
column cannot be null.

Table 11 SBYN_COMMON_HEADER Table Description

Column Name Data Type Description
eIndex Global Identifier Reference Guide 40 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
The Database Structure eIndex Database Description
SBYN_OVERWRITE

This table stores information about the fields that are locked for updates in the SBRs. It
stores the EUID of the SBR, the ePath to the field, and the current locked value of the
field.

UNMERGE_TRANSACTIONNUM VARCHAR2(20) The transaction number associated
with the unmerge transaction.

Table 14 SBYN_OVERWRITE Table Description

Column Name Data Type Description

EUID VARCHAR2(20) The EUID of an SBR containing fields
for which the overwrite lock is set.

PATH VARCHAR2(200) The ePath to a field that is locked in
an SBR from the EDM.

TYPE VARCHAR2(20) The data type of a field that is locked
in an SBR.

INTEGERDATA NUMBER(38) The data that is locked for overwrite
in an integer field.

BOOLEANDATA NUMBER(38) The data that is locked for overwrite
in a boolean field.

STRINGDATA VARCHAR2(200) The data that is locked for overwrite
in a string field.

BYTEDATA CHAR(2) The data that is locked for overwrite
in a byte field.

LONGDATA LONG The data that is locked for overwrite
in a long integer field.

DATEDATA DATE The data that is locked for overwrite
in a date field.

FLOATDATA NUMBER(38,4) The data that is locked for overwrite
in a floating integer field.

TIMESTAMPDATA DATE The data that is locked for overwrite
in a timestamp field.

Table 13 SBYN_MERGE Table Description

Column Name Data Type Description
eIndex Global Identifier Reference Guide 41 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
The Database Structure eIndex Database Description
SBYN_POTENTIALDUPLICATES

This table maintains a list of all records that are potential duplicates of one another. It
also maintains a record of whether a potential duplicate pair has been resolved or
permanently resolved.

SBYN_SEQ_TABLE

This table controls and maintains a record of the sequential identification numbers used
in various tables in the database, ensuring that each number is unique and assigned in
order. Several of the ID numbers maintained in this table are determined by the object
structure. The numbers are assigned sequentially, but are allocated in chunks of 1000
numbers for optimization (so the index does not need to query the sbyn_seq_table table
for each transaction). The chunk size for the EUID sequence is configurable. If the
Repository server is reset before all allocated numbers are used, the unused numbers

Table 15 SBYN_POTENTIALDUPLICATES Table Description

Column Name Data Type Description

POTENTIALDUPLICATEID VARCHAR2(20) The unique identification number of
the potential duplicate transaction.

WEIGHT VARCHAR2(20) The matching weight of the potential
duplicate pair.

TYPE VARCHAR2(15) This column is reserved for future
use.

DESCRIPTION VARCHAR2(120) A description of what caused the
potential duplicate flag.

STATUS VARCHAR2(15) The status of the potential duplicate
pair. The possible values are:

U—Unresolved
R—Resolved
A—Resolved permanently

HIGHMATCHFLAG VARCHAR2(15) This column is reserved for future
use.

RESOLVEDUSER VARCHAR2(30) The user ID of the person who
resolved the potential duplicate
status.

RESOLVEDDATE DATE The date the potential duplicate
status was resolved.

RESOLVEDCOMMENT VARCHAR2(120) Comments regarding the resolution
of the duplicate status.

EUID2 VARCHAR2(20) The EUID of the second record in
the potential duplicate pair.

TRANSACTIONNUMBER VARCHAR2(20) The transaction number associated
with the transaction that produced
the potential duplicate flag.

EUID1 VARCHAR2(20) The EUID of the first record in the
potential duplicate pair.
eIndex Global Identifier Reference Guide 42 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
The Database Structure eIndex Database Description
are discarded and never used, and numbering is restarted at the beginning of the next
1000-number chunk.

The default sequence numbers are listed in Table 17.

Table 16 SBYN_SEQ_TABLE Table Description

Column Name Data Type Description

SEQ_NAME VARCHAR2(20) The name of the object for which the
sequential ID is stored.

SEQ_COUNT NUMBER(38) The current value of the sequence.
The next record will be assigned the
current value plus one.

Table 17 Default Sequence Numbers

Sequence Name Description

EUID The sequence number that determines how EUIDs are
assigned to new records. The chunk size for the EUID
sequence number is configurable in the eIndex Project
Threshold file.

POTENTIALDUPLICATE The sequence number assigned each potential duplicate
transaction record in sbyn_potentialduplicates (column
name “potentialduplicateid”).

TRANSACTIONNUMBER The sequence number assigned to each transaction in
eIndex. This number is stored in sbyn_transaction
(column name “transactionnumber”).

ASSUMEDMATCH The sequence number assigned to each assumed match
transaction record in sbyn_assumedmatch (column
name “assumedmatchid”).

AUDIT The sequence number assigned to each audit log record
in sbyn_audit (column name “audit_id”).

MERGE The sequence number assigned to each merge
transaction in sbyn_merge (column name “merge_id”).

SBYN_APPL The sequence number assigned to each application
listed in sbyn_appl (column name “appl_id”)

SBYN_COMMON_HEADER The sequence number assigned to each common table
data type listed in sbyn_common_header (column name
“common_header_id”).

SBYN_COMMON_DETAIL The sequence number assigned to each common table
data element listed in sbyn_common_detail (column
name “common_detail_id”).

<OBJECT_NAME> Each parent and child object system record table is
assigned a sequential ID. The column names are named
after the object (for example, sbyn_address has a
sequential column named “addressid”). The parent
object ID is included in each child object table.
eIndex Global Identifier Reference Guide 43 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
The Database Structure eIndex Database Description
SBYN_SYSTEMOBJECT

This table stores information about the system records in the database, including their
local ID and source system pairs. It also stores transactional information, such as the
create or update date and function.

<OBJECT_NAME>SBR Each parent and child object SBR table is assigned a
sequential ID. The column names are named after the
object (for example, sbyn_addresssbr has a sequential
column named “addressid”). The parent object ID is
included in each child object SBR table.

Table 18 SBYN_SYSTEMOBJECT Table Description

Column Name Data Type Description

SYSTEMCODE VARCHAR2(20) The processing code of the system
associated with the local ID. This
column cannot be null.

LID VARCHAR2(25) The local ID associated with the
system and EUID (the associated
EUID is found in sbyn_enterprise).
This column cannot be null.

CHILDTYPE VARCHAR2(20) The type of object being processed
(currently only the name of the
parent object). This column is
reserved for future use.

CREATEUSER VARCHAR2(30) The user ID of the person who
created the system record.

CREATEFUNCTION VARCHAR2(20) The type of transaction that created
the system record.

CREATEDATE DATE The date the system record was
created.

UPDATEUSER VARCHAR2(30) The user ID of the person who last
updated the system record.

UPDATEFUNCTION VARCHAR2(20) The type of transaction that last
updated the system record.

UPDATEDATE DATE The date the system record was last
updated.

STATUS VARCHAR2(15) The status of the system record. The
status can be one of these values:

A—Active
D—Deactivated
M—Merged

Table 17 Default Sequence Numbers

Sequence Name Description
eIndex Global Identifier Reference Guide 44 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
The Database Structure eIndex Database Description
SBYN_SYSTEMS

This table stores information about each system integrated into the eIndex
environment, including the system’s processing code and name, a brief description, the
format of the local IDs, and whether any of the system information should be masked.

Table 19 SBYN_SYSTEMS Table Description

Column Name Data Type Description

SYSTEMCODE VARCHAR2(20) The unique processing code of the
system.

DESCRIPTION VARCHAR2(120) A brief description of the system, or
the system name.

STATUS CHAR(1) The status of the system in eIndex.
“A” indicates active and “D”
indicates deactivated.

ID_LENGTH NUMBER The length of the local identifiers
assigned by the system. This length
does not include any additional
characters added by the input mask.

FORMAT VARCHAR2(60) The required data pattern for the
local IDs assigned by the system. For
more information about possible
values and using Java patterns, see
“Patterns” in the class list for
java.util.regex in the Javadocs
provided with Java 2Software
Development Kit (SDK).

INPUT_MASK VARCHAR2(60) A mask used by the EDM to add
punctuation to the local ID. For
example, the input mask DD-DDD-
DDD inserts a hyphen after the
second and fifth characters in an 8-
digit ID. These character types can
be used.

D—Numeric character
L—Alphabetic character
A—Alphanumeric character

VALUE_MASK VARCHAR2(60) A mask used to strip any extra
characters that were added by the
input mask for database storage. The
value mask is the same as the input
mask, but with an “x” in place of
each punctuation mark. Using the
input mask described above, the
value mask is DDxDDDxDDD. This
strips the hyphens before storing
the ID.

CREATE_DATE DATE The date the system information was
inserted into the database.
eIndex Global Identifier Reference Guide 45 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
The Database Structure eIndex Database Description
SBYN_SYSTEMSBR

This table stores transactional information about the system records for the SBR, such as
the create or update date and function. The sbyn_systemsbr table is indirectly linked to
the sbyn_systemobjects table through sbyn_enterprise.

CREATE_USERID VARCHAR2(20) The logon ID of the user who
inserted the system information into
the database.

UPDATE_DATE DATE The most recent date the system’s
information was updated.

UPDATE_USERID VARCHAR2(20) The logon ID of the user who last
updated the system’s information.

Table 20 SBYN_SYSTEMSBR Table Description

Column Name Data Type Description

EUID VARCHAR2(20) The EUID associated with system
record (the associated system and
local ID are found in
sbyn_enterprise). This column
cannot be null.

CHILDTYPE VARCHAR2(20) The type of object being processed
(currently only the name of the
parent object). This column is
reserved for future use.

CREATESYSTEM VARCHAR2(20) The system in which the system
record was created.

CREATEUSER VARCHAR2(30) The user ID of the person who
created the system record.

CREATEFUNCTION VARCHAR2(20) The type of transaction that created
the system record.

CREATEDATE DATE The date the system object was
created.

UPDATEUSER VARCHAR2(30) The user ID of the person who last
updated the system record.

UPDATEFUNCTION VARCHAR2(20) The type of transaction that last
updated the system record.

UPDATEDATE DATE The date the system object was last
updated.

Table 19 SBYN_SYSTEMS Table Description

Column Name Data Type Description
eIndex Global Identifier Reference Guide 46 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
The Database Structure eIndex Database Description
SBYN_TRANSACTION

This table stores a history of changes made to each record in eIndex, allowing you to
view a transaction history and to undo certain actions, such as merging two person
profiles.

STATUS VARCHAR2(15) The status of the enterprise record.
The status can be one of these
values:

A—Active
D—Deactivated
M—Merged

REVISIONNUMBER NUMBER(38) The revision number of the SBR. This
is used for version control.

Table 21 SBYN_TRANSACTION Table Description

Column Name Data Type Description

TRANSACTIONNUMBER VARCHAR2(20) The unique number of the
transaction.

LID1 VARCHAR2(25) This column is reserved for future
use.

LID2 VARCHAR2(25) The local ID of the second system
record involved in the transaction.

EUID1 VARCHAR2(20) This column is reserved for future
use.

EUID2 VARCHAR2(20) The EUID of the second person
profile involved in the transaction.

FUNCTION VARCHAR2(20) The type of transaction that
occurred, such as update, add,
merge, and so on.

SYSTEMUSER VARCHAR2(30) The logon ID of the user who
performed the transaction.

TIMESTAMP DATE The date and time the transaction
occurred.

DELTA LONG RAW A list of the changes that occurred to
system records as a result of the
transaction.

SYSTEMCODE VARCHAR2(20) The processing code of the source
system in which the transaction
originated.

LID VARCHAR2(25) The local ID of the system record
involved in the transaction.

Table 20 SBYN_SYSTEMSBR Table Description

Column Name Data Type Description
eIndex Global Identifier Reference Guide 47 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
The Database Structure eIndex Database Description
SBYN_USER_CODE

This table is similar to the sbyn_common_header and sbyn_common_detail tables in
that it stores processing codes and drop-down list values. This table is used when the
value of one field is dependent on the value of another. For example, if you store credit
card information, you could list each credit card type and specify a required format for
the credit card number field. The data stored in this table includes the processing code,
a brief description, and the format of the dependent fields.

EUID VARCHAR2(20) The EUID of the enterprise record
involved in the transaction.

Table 22 SBYN_USER_CODE Table Description

Column Name Data Type Description

CODE_LIST VARCHAR2(20) The code list name of the user code
type (using the credit card example
above, this might be similar to
“CREDCARD”). This column links
the values for each list.

CODE VARCHAR2(20) The processing code of each user
code element.

DESCRIPTION VARCHAR2(50) A brief description or name for the
user code. This is the value that
appears in the drop-down list.

FORMAT VARCHAR2(60) The required data pattern for the
field that is constrained by the user
code. For more information about
possible values and using Java
patterns, see “Patterns” in the class
list for java.util.regex in the Javadocs
provided with Java 2Software
Development Kit (SDK).

INPUT_MASK VARCHAR2(60) A mask used by the EDM to add
punctuation to the constrained field.
For example, the input mask DD-
DDD-DDD inserts a hyphen after
the second and fifth characters in an
8-digit ID. These character types can
be used.

D—Numeric character
L—Alphabetic character
A—Alphanumeric character

Table 21 SBYN_TRANSACTION Table Description

Column Name Data Type Description
eIndex Global Identifier Reference Guide 48 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
The Database Structure Sample Database Model
4.3 Sample Database Model
The diagrams on the following pages illustrate the table structure and relationships for
a sample eIndex master index database designed for storing information about
companies. The diagrams display attributes for each database column, such as the field
name, data type, whether the field can be null, and primary keys. They also show
directional relationships between tables and the keys by which the tables are related.

VALUE_MASK VARCHAR2(60) A mask used to strip any extra
characters that were added by the
input mask for database storage. The
value mask is the same as the input
mask, but with an “x” in place of
each punctuation mark. Using the
input mask described above, the
value mask is DDxDDDxDDD. This
strips the hyphens before storing
the ID.

Table 22 SBYN_USER_CODE Table Description

Column Name Data Type Description
eIndex Global Identifier Reference Guide 49 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
The Database Structure Sample Database Model
FK_ADDRESS_PERSONID

FK_ALIAS_PERSONID

FK_AUXID_PERSONID

FK_COMMENT_PERSONID

FK_PERSON_SYSTEMCODE_LID

FK_PHONE_PERSONID

SBYN_ADDRESS

PERSONID
ADDRESSID
ADDRESSTYPE
ADDRESSLINE1
ADDRESSLINE2
ADDRESSLINE3
ADDRESSLINE4
CITY
STATECODE
POSTALCODE
POSTALCODEEXT
COUNTY
COUNTRYCODE
HOUSENUMBER
STREETDIR
STREETNAME
STREETNAMEPHONETICCODE
STREETTYPE

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(8)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(30)
VARCHAR2(10)
VARCHAR2(8)
VARCHAR2(4)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(10)
VARCHAR2(5)
VARCHAR2(40)
VARCHAR2(8)
VARCHAR2(5)

<ak,fk>
<pk>
<ak>

SBYN_ALIAS

PERSONID
ALIASID
LASTNAME
FIRSTNAME
MIDDLENAME
LNAMEPHONETICCODE
FNAMEPHONETICCODE
MNAMEPHONETICCODE
STDFIRSTNAME
STDLASTNAME
STDMIDDLENAME

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(30)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(30)

<ak,fk>
<pk>
<ak>
<ak>
<ak>

SBYN_AUXID

PERSONID
AUXIDID
AUXIDDEF
ID

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(10)
VARCHAR2(40)

<ak,fk>
<pk>
<ak>
<ak>

SBYN_COMMENT

PERSONID
COMMENTID
COMMENTCODE
ENTERDATE
COMMENTTEXT

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(8)
DATE
VARCHAR2(1000)

<ak,fk>
<pk>
<ak>

SBYN_PERSON

SYSTEMCODE
LID
PERSONID
PERSONCATCODE
LASTNAME
FIRSTNAME
MIDDLENAME
SUFFIX
TITLE
DOB
DEATH
GENDER
MSTATUS
SSN
RACE
ETHNIC
RELIGION
LANGUAGE
SPOUSENAME
MOTHERNAME
MOTHERMN
FATHERNAME
MAIDEN
POBCITY
POBSTATE
POBCOUNTRY
VIPFLAG
VETSTATUS
FNAMEPHONETICCODE
LNAMEPHONETICCODE
MNAMEPHONETICCODE
MOTHERMNPHONETICCODE
MAIDENPHONETICCODE
SPOUSEPHONETICCODE
MOTHERPHONETICCODE
FATHERPHONETICCODE
DRIVERSLICENSE
DRIVERSLICENSEST
DOD
DEATHCERTIFICATE
NATIONALITY
CITIZENSHIP
PENSIONNO
PENSIONEXPDATE
REPATRIATIONNO
DISTRICTOFRESIDENCE
LGACODE
MILITARYBRANCH
MILITARYRANK
MILITARYSTATUS
DUMMYDATE
CLASS1
CLASS2
CLASS3
CLASS4
CLASS5
STRING1
STRING2
STRING3
STRING4
STRING5
STRING6
STRING7
STRING8
STRING9
STRING10
DATE1
DATE2
DATE3
DATE4
DATE5
STDFIRSTNAME
STDLASTNAME
STDMIDDLENAME

VARCHAR2(20)
VARCHAR2(25)
VARCHAR2(20)
VARCHAR2(8)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(30)
VARCHAR2(10)
VARCHAR2(8)
DATE
VARCHAR2(1)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(16)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(100)
VARCHAR2(100)
VARCHAR2(40)
VARCHAR2(100)
VARCHAR2(40)
VARCHAR2(30)
VARCHAR2(10)
VARCHAR2(20)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(20)
VARCHAR2(10)
DATE
VARCHAR2(10)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(15)
DATE
VARCHAR2(16)
VARCHAR2(8)
VARCHAR2(4)
VARCHAR2(4)
VARCHAR2(4)
VARCHAR2(4)
DATE
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(100)
VARCHAR2(100)
VARCHAR2(100)
VARCHAR2(255)
DATE
DATE
DATE
DATE
DATE
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(30)

<ak,fk>
<ak,fk>
<pk>

SBYN_PHONE

PERSONID
PHONEID
PHONETYPE
PHONE
PHONEEXT

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(8)
VARCHAR2(20)
VARCHAR2(6)

<ak,fk>
<pk>
<ak>

SBYN_SYSTEMOBJECT

SYSTEMCODE
LID
CHILDTYPE
CREATEUSER
CREATEFUNCTION
CREATEDATE
UPDATEUSER
UPDATEFUNCTION
UPDATEDATE
STATUS

VARCHAR2(20)
VARCHAR2(25)
VARCHAR2(20)
VARCHAR2(30)
VARCHAR2(20)
DATE
VARCHAR2(30)
VARCHAR2(20)
DATE
VARCHAR2(15)

<pk,fk>
<pk>

From SBYN_ENTERPRISE
by FK_ENTERPRISE
_SYSTEMCODE_LID

To SBYN_SYSTEMS by
FK_SYSTEMOBJECT_SYSTEMCODE
eIndex Global Identifier Reference Guide 50 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
The Database Structure Sample Database Model
FK_ENTERPRISE_EUID

To SBYN_SYSTEMOBJECT by
FK_ENTERPRISE_SYSTEMCODE_LID

FK_SYSTEMSBR_EUID

FK_PERSONSBR_EUID

From SBYN_SYSTEMOBJECT by
FK_SYSTEMOBJECT_SYSTEMCODE

SBYN_APPL

APPL_ID
CODE
DESCR
READ_ONLY
CREATE_DATE
CREATE_USERID

NUMBER(10)
VARCHAR2(8)
VARCHAR2(30)
CHAR
DATE
VARCHAR2(20)

<pk>

SBYN_ENTERPRISE

SYSTEMCODE
LID
EUID

VARCHAR2(20)
VARCHAR2(25)
VARCHAR2(20)

<pk,fk2>
<pk,fk2>
<pk,fk1>

SBYN_OVERWRITE

EUID
PATH
TYPE
INTEGERDATA
BOOLEANDATA
STRINGDATA
BYTEDATA
LONGDATA
DATEDATA
FLOATDATA
TIMESTAMPDATA

VARCHAR2(20)
VARCHAR2(200)
VARCHAR2(20)
NUMBER(38)
NUMBER(38)
VARCHAR2(200)
CHAR(2)
LONG
DATE
NUMBER(38,4)
DATE

<pk,fk>
<pk>

SBYN_POTENTIALDUPLICATES

POTENTIALDUPLICATEID
WEIGHT
TYPE
DESCRIPTION
STATUS
HIGHMATCHFLAG
RESOLVEDUSER
RESOLVEDDATE
RESOLVEDCOMMENT
EUID2
TRANSACTIONNUMBER
EUID1

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(15)
VARCHAR2(120)
VARCHAR2(15)
VARCHAR2(15)
VARCHAR2(30)
DATE
VARCHAR2(120)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)

<pk>

SBYN_SEQ_TABLE

SEQ_NAME
SEQ_COUNT

VARCHAR2(20)
NUMBER(38)

<ak>

SBYN_SYSTEMS

SYSTEMCODE
DESCRIPTION
STATUS
ID_LENGTH
FORMAT
INPUT_MASK
VALUE_MASK
CREATE_DATE
CREATE_USERID
UPDATE_DATE
UPDATE_USERID

VARCHAR2(20)
VARCHAR2(50)
CHAR
NUMBER
VARCHAR2(60)
VARCHAR2(60)
VARCHAR2(60)
DATE
VARCHAR2(20)
DATE
VARCHAR2(20)

<pk>

SBYN_SYSTEMSBR

EUID
CHILDTYPE
CREATESYSTEM
CREATEUSER
CREATEFUNCTION
CREATEDATE
UPDATESYSTEM
UPDATEUSER
UPDATEFUNCTION
UPDATEDATE
STATUS
REVISIONNUMBER

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(30)
VARCHAR2(20)
DATE
VARCHAR2(20)
VARCHAR2(30)
VARCHAR2(20)
DATE
VARCHAR2(15)
NUMBER(38)

<pk>
eIndex Global Identifier Reference Guide 51 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
The Database Structure Sample Database Model
FK_ADDRESSSBR_PERSONID

FK_ALIASSBR_PERSONID

FK_AUXIDSBR_PERSONID

FK_COMMENTSBR_PERSONID

FK_PHONESBR_PERSONID

SBYN_ADDRESSSBR

PERSONID
ADDRESSID
ADDRESSTYPE
ADDRESSLINE1
ADDRESSLINE2
ADDRESSLINE3
ADDRESSLINE4
CITY
STATECODE
POSTALCODE
POSTALCODEEXT
COUNTY
COUNTRYCODE
HOUSENUMBER
STREETDIR
STREETNAME
STREETNAMEPHONETICCODE
STREETTYPE

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(8)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(30)
VARCHAR2(10)
VARCHAR2(8)
VARCHAR2(4)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(10)
VARCHAR2(5)
VARCHAR2(40)
VARCHAR2(8)
VARCHAR2(5)

<ak,fk>
<pk>
<ak>

SBYN_ALIASSBR

PERSONID
ALIASID
LASTNAME
FIRSTNAME
MIDDLENAME
LNAMEPHONETICCODE
FNAMEPHONETICCODE
MNAMEPHONETICCODE
STDFIRSTNAME
STDLASTNAME
STDMIDDLENAME

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(30)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(30)

<ak,fk>
<pk>
<ak>
<ak>
<ak>

SBYN_AUXIDSBR

PERSONID
AUXIDID
AUXIDDEF
ID

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(10)
VARCHAR2(40)

<ak,fk>
<pk>
<ak>
<ak>

SBYN_COMMENTSBR

PERSONID
COMMENTID
COMMENTCODE
ENTERDATE
COMMENTTEXT

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(8)
DATE
VARCHAR2(1000)

<ak,fk>
<pk>
<ak>

SBYN_PERSONSBR

EUID
PERSONID
PERSONCATCODE
LASTNAME
FIRSTNAME
MIDDLENAME
SUFFIX
TITLE
DOB
DEATH
GENDER
MSTATUS
SSN
RACE
ETHNIC
RELIGION
LANGUAGE
SPOUSENAME
MOTHERNAME
MOTHERMN
FATHERNAME
MAIDEN
POBCITY
POBSTATE
POBCOUNTRY
VIPFLAG
VETSTATUS
FNAMEPHONETICCODE
LNAMEPHONETICCODE
MNAMEPHONETICCODE
MOTHERMNPHONETICCODE
MAIDENPHONETICCODE
SPOUSEPHONETICCODE
MOTHERPHONETICCODE
FATHERPHONETICCODE
DRIVERSLICENSE
DRIVERSLICENSEST
DOD
DEATHCERTIFICATE
NATIONALITY
CITIZENSHIP
PENSIONNO
PENSIONEXPDATE
REPATRIATIONNO
DISTRICTOFRESIDENCE
LGACODE
MILITARYBRANCH
MILITARYRANK
MILITARYSTATUS
DUMMYDATE
CLASS1
CLASS2
CLASS3
CLASS4
CLASS5
STRING1
STRING2
STRING3
STRING4
STRING5
STRING6
STRING7
STRING8
STRING9
STRING10
DATE1
DATE2
DATE3
DATE4
DATE5
STDFIRSTNAME
STDLASTNAME
STDMIDDLENAME

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(8)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(30)
VARCHAR2(10)
VARCHAR2(8)
DATE
VARCHAR2(1)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(16)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(100)
VARCHAR2(100)
VARCHAR2(40)
VARCHAR2(100)
VARCHAR2(40)
VARCHAR2(30)
VARCHAR2(10)
VARCHAR2(20)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(20)
VARCHAR2(10)
DATE
VARCHAR2(10)
VARCHAR2(8)
VARCHAR2(8)
VARCHAR2(15)
DATE
VARCHAR2(16)
VARCHAR2(8)
VARCHAR2(4)
VARCHAR2(4)
VARCHAR2(4)
VARCHAR2(4)
DATE
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(100)
VARCHAR2(100)
VARCHAR2(100)
VARCHAR2(255)
DATE
DATE
DATE
DATE
DATE
VARCHAR2(40)
VARCHAR2(40)
VARCHAR2(30)

<ak,fk>
<pk>

SBYN_PHONESBR

PERSONID
PHONEID
PHONETYPE
PHONE
PHONEEXT

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(8)
VARCHAR2(20)
VARCHAR2(6)

<ak,fk>
<pk>
<ak>

To SBYN_SYSTEMSBR
by

FK_PERSONSBR_EUID
eIndex Global Identifier Reference Guide 52 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
The Database Structure Sample Database Model
FK_AM_TRANSACTIONNUMBER

FK_COMM_DET_COMM_HEAD

FK_SBYN_MERGE

SBYN_ASSUMEDMATCH

ASSUMEDMATCHID
EUID
SYSTEMCODE
LID
WEIGHT
TRANSACTIONNUMBER

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(25)
VARCHAR2(20)
VARCHAR2(20) <fk>

SBYN_AUDIT

AUDIT_ID
PRIMARY_OBJECT_TYPE
EUID
EUID_AUX
FUNCTION
DETAIL
CREATE_DATE
CREATE_BY

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(15)
VARCHAR2(15)
VARCHAR2(32)
VARCHAR2(120)
DATE
VARCHAR2(20)

<pk>

SBYN_COMMON_DETAIL

COMMON_DETAIL_ID
COMMON_HEADER_ID
CODE
DESCR
READ_ONLY
CREATE_DATE
CREATE_USERID

NUMBER(10)
NUMBER(10)
VARCHAR2(20)
VARCHAR2(50)
CHAR
DATE
VARCHAR2(20)

<pk>
<fk>

SBYN_COMMON_HEADER

COMMON_HEADER_ID
APPL_ID
CODE
DESCR
READ_ONLY
MAX_INPUT_LEN
TYP_TABLE_CODE
CREATE_DATE
CREATE_USERID

NUMBER(10)
NUMBER(10)
VARCHAR2(8)
VARCHAR2(50)
CHAR
NUMBER(10)
VARCHAR2(3)
DATE
VARCHAR2(20)

<pk>

SBYN_MERGE

MERGE_ID
KEPT_EUID
MERGED_EUID
MERGE_TRANSACTIONNUM
UNMERGE_TRANSACTIONNUM

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)

<pk>
<fk>
<fk>
<fk>

SBYN_TRANSACTION

TRANSACTIONNUMBER
LID1
LID2
EUID1
EUID2
FUNCTION
SYSTEMUSER
TIMESTAMP
DELTA
SYSTEMCODE
LID
EUID

VARCHAR2(20)
VARCHAR2(25)
VARCHAR2(25)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(30)
DATE
LONG RAW
VARCHAR2(20)
VARCHAR2(25)
VARCHAR2(20)

<pk,ak>

<ak>

<ak>

SBYN_USER_CODE

CODE_LIST
CODE
DESCR
FORMAT
INPUT_MASK
VALUE_MASK

VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(50)
VARCHAR2(60)
VARCHAR2(60)
VARCHAR2(60)

<pk>
<pk>
eIndex Global Identifier Reference Guide 53 SeeBeyond Proprietary and Confidential

Chapter 5

Working with the Java API

eIndex provides several Java classes and methods to use in the Collaborations for an
eIndex Project. The eIndex API is specifically designed to help you maintain the
integrity of the data in the eIndex database by providing specific methods for updating,
adding, and merging records in the database.

5.1 Overview
This chapter provides an overview of the Java API for eIndex, and describes the
dynamic classes and methods that are generated based on the object structure of
eIndex. For detailed information about the static classes and methods, refer to the
eView Javadocs, provided as a download through the Enterprise Manager. Unless
otherwise noted, all classes and methods described in this chapter are public. Methods
inherited from classes other than those described in this chapter are listed, but not
described.

5.1.1. Java Class Types
eIndex provides a set of static API classes that can be used with any object structure.
eIndex also generates several dynamic API classes that are specific to the object
structure. The dynamic classes contain similar methods, but the number and names of
methods change depending on the object structure. In addition, several methods are
generated in an OTD for use in external system Collaborations and another set of
methods is generated for use within an eInsight Business Process.

Static Classes

Static classes provide the methods you need to perform basic data cleansing functions
against incoming data, such as performing searches, reviewing potential duplicates,
adding and updating records, and merging and unmerging records. The primary class
containing these functions is the MasterController class, which includes the
executeMatch method. Several classes support the MasterController class by defining
additional objects and functions. Documentation for the static methods is provided in
Javadoc format. The static classes are listed and described in the Javadocs provided
with eIndex.
eIndex Global Identifier Reference Guide 54 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Working with the Java API Dynamic Object Classes
Dynamic Object Classes

The eIndex Project provides several dynamic methods that are specific to the default
object structure. If the object structure is modified, regenerating the Project updates the
dynamic methods for the new structure. This includes classes that define each object in
the object structure and that allow you to work with the data in each object.

Dynamic OTD Methods

The eIndex Project provides a method OTD that contains Java methods to help you
define how records will be processed into the database from external systems. Like the
dynamic classes, these methods are based on the object structure. Regenerating a
Project updates these methods to reflect any changes to the object structure. These
methods rely on the dynamic object classes to create objects in eIndex and to define and
retrieve field values for those objects.

Dynamic eInsight Integration Methods

The eIndex Project includes several methods under the method OTD folder that are
designed for use within an eInsight Business Process. These methods are a subset of the
eIndex API and can be used to query eIndex using a web-based interface. These
methods are also based on the defined object structure. Regenerating a Project updates
these methods to reflect any changes to the object structure.

5.2 Dynamic Object Classes
Two types of dynamic object classes, parent and child, are included in an eIndex
Project. This includes one parent class; the number of child classes depends on the
number of child objects defined in the object structure.

5.2.1. The Parent Object Class
One Java class is created to represent the parent object defined in the object definition of
eIndex. The methods in this class provide the ability to create the parent object, and to
set or retrieve the field values for that object.

The name of the parent object class is the same as the name of the parent object, with the
word “Object” appended (by default, PersonObject). The methods in this class include
a constructor method for the parent object, and get and set methods for each field
defined for the parent object. Most methods have dynamic names based on the name of
the parent object and the fields and child objects defined for that object. In the following
methods described for the parent object, <ObjectName> indicates the name of the parent
object, <Child> indicates the name of a child object, and <Field> indicates the name of a
field defined for the parent object.

Definition

public class <ObjectName>Object
eIndex Global Identifier Reference Guide 55 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Working with the Java API Dynamic Object Classes
Methods

<ObjectName>Object

Description

<ObjectName>Object is the user-defined object name class. You can instantiate this
class to create a new instance of the parent object class.

Syntax

new <ObjectName>Object()

Parameters

None.

Returns

An instance of the parent object.

Throws

ObjectException

add<Child>

Description

add<Child> associates a new child object with the parent object. The new child object is
of the type specified in the method name. For example, to associate a new address
object with a parent object, call “addAddress”.

Syntax

public void add<Child>(<Child>Object <child>)

Note: The type of object passed as a parameter depends on the child object to associate with
the parent object. For example, the syntax for associating an address object is as
follows: public void addAddress(AddressObject address).

<ObjectName>Object on page 56 getChildTags on page 60

add<Child> on page 56 getMetaData on page 60

addSecondaryObject on page 57 getSecondaryObject on page 60

copy on page 57 getStatus on page 61

dropSecondaryObject on page 58 set<ObjectName>Id on page 61

get<ObjectName>Id on page 58 set<Field> on page 62

get<Child> on page 59 setStatus on page 62

get<Field> on page 59 structCopy on page 63
eIndex Global Identifier Reference Guide 56 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Working with the Java API Dynamic Object Classes
Parameters

Returns

None.

Throws

None.

addSecondaryObject

Description

addSecondaryObject associates a new child object with the parent object. The object
node passed as the parameter defines the child object type.

Syntax

public void addSecondaryObject(ObjectNode obj)

Parameters

Returns

None.

Throws

SystemObjectException

copy

Description

copy copies the structure and field values of the specified object node.

Syntax

public ObjectNode copy()

Parameters

None.

Name Type Description

<child> <Child>Object A child object to associate with the
parent object. The name and type of
the parameter is specified by the child
object name.

Name Type Description

obj ObjectNode An ObjectNode representing the child
object to associate with the parent
object.
eIndex Global Identifier Reference Guide 57 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Working with the Java API Dynamic Object Classes
Returns

A copy of the object node.

Throws

ObjectException

dropSecondaryObject

Description

dropSecondaryObject removes a child object associated with the parent object (in the
memory copy of the object). The object node passed in as the parameter defines the
child object type. Use this method to remove a child object before it has been committed
to the database. This method is similar to ObjectNode.removeChild. Use
ObjectNode.deleteChild to remove the child object permanently from the database.

Syntax

public void dropSecondaryObject(ObjectNode obj)

Parameters

Returns

None.

Throws

SystemObjectException

get<ObjectName>Id

Description

get<ObjectName>Id retrieves the unique identification code (primary key) of the
object, as assigned by eIndex.

Syntax

public String get<ObjectName>Id()

Parameters

None.

Returns

A string containing the unique ID of the parent object.

Throws

ObjectException

Name Type Description

obj ObjectNode An ObjectNode representing the child
object to drop from the parent object.
eIndex Global Identifier Reference Guide 58 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Working with the Java API Dynamic Object Classes
get<Field>

Description

get<Field> retrieves the value of the field specified in the method name. Each getter
method is named according to the fields defined for the parent object. For example, if
the parent object contains a field named “FirstName”, the getter method for this field is
named “getFirstName”.

Syntax

public String get<Field>()

Note: The syntax for the getter methods depends of the type of data specified for the field in
the object structure. For example, the getter method for a date field would have the
following syntax: public Date get<Field>.

Parameters

None.

Returns

The value of the specified field. The type of data returned depends on the data type
defined in the object definition.

Throws

ObjectException

get<Child>

Description

get<Child> retrieves all child objects associated with the parent object that are of the
type specified in the method name. For example, to retrieve all address objects
associated with a parent object, call “getAddress”.

Syntax

public Collection get<Child>()

Parameters

None.

Returns

A collection of child objects of the type specified in the method name.

Throws

None.
eIndex Global Identifier Reference Guide 59 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Working with the Java API Dynamic Object Classes
getChildTags

Description

getChildTags retrieves a list of the names of all child object types defined for the object
structure.

Syntax

public ArrayList getChildTags()

Parameters

None.

Returns

An array of child object names.

Throws

SystemObjectException

getMetaData

Description

getMetaData retrieves the metadata for the parent object.

Syntax

public AttributeMetaData getMetaData()

Parameters

None.

Returns

An AttributeMetaData object containing the parent object’s metadata.

Throws

None.

getSecondaryObject

Description

getSecondaryObject retrieves all child objects that are associated with the parent object
and are of the specified type.

Syntax

public Collection getSecondaryObject(String type)
eIndex Global Identifier Reference Guide 60 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Working with the Java API Dynamic Object Classes
Parameters

Returns

A collection of child objects of the specified type.

Throws

SystemObjectException

getStatus

Description

getStatus retrieves the status of the object.

Syntax

public String getStatus()

Parameters

None.

Returns

A string containing the status of the object.

Throws

ObjectException

set<ObjectName>Id

Description

set<ObjectName>Id sets the value of the <ObjectName>Id field in the parent object.

Syntax

public void set<ObjectName>Id(Object value)

Parameters

Returns

None.

Name Type Description

type String The child type of the objects to
retrieve.

Name Type Description

value Object An object containing the value of the
<ObjectName>Id field.
eIndex Global Identifier Reference Guide 61 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Working with the Java API Dynamic Object Classes
Throws

ObjectException

set<Field>

Description

set<Field> sets the value of the field specified in the method name. Each setter method
is named according to the fields defined for the parent object. For example, if the parent
object contains a field named “DateOfBirth”, the setter method for this field is named
“setDateOfBirth”. A setter method is created for each field in the parent object,
including any fields containing standardized or phonetic data.

Syntax

public void set<Field>(Object value)

Parameters

Returns

None.

Throws

ObjectException

setStatus

Description

setStatus sets the status of the parent object.

Syntax

public void setStatus(Object value)

Parameters

Returns

None.

Throws

ObjectException

Name Type Description

value Object An object containing the value of the
field specified by the method name.

Name Type Description

value Object An object containing the value of the
status field.
eIndex Global Identifier Reference Guide 62 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Working with the Java API Dynamic Object Classes
structCopy

Description

structCopy copies the structure of the specified object node.

Syntax

public ObjectNode structCopy()

Parameters

None.

Returns

A copy of the structure of the object node.

Throws

ObjectException

5.2.2. Child Object Classes
One Java class is created for each child object defined in the object definition of eIndex.
If the object definition contains three child objects, three child object classes are created.
The methods in these classes provide the ability to create the child objects and to set or
retrieve the field values for those objects.

The name of each child object class is the same as the name of the child object, with the
word “Object” appended. For example, if a child object in your object structure is
named “Address”, the name of the corresponding child class is “AddressObject”. The
methods in these classes include a constructor method for the child object, and get and
set methods for each field defined for the child object. Most methods have dynamic
names based on the name of the child object and the fields defined for that object. In the
following methods described for the child objects, <Child> indicates the name of the
child object and <Field> indicates the names of a field defined for that object.

Definition

public class <Child>Object

Methods

<Child>Object on page 64 getParentTag on page 66

copy on page 64 set<Child>Id on page 66

get<Child>Id on page 64 set<Field> on page 67

get<Field> on page 65 structCopy on page 67

getMetaData on page 65
eIndex Global Identifier Reference Guide 63 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Working with the Java API Dynamic Object Classes
<Child>Object

Description

<Child>Object is the child object class. This class can be instantiated to create a new
instance of a child object class.

Syntax

new <Child>Object()

Parameters

None.

Returns

An instance of the child object.

Throws

ObjectException

copy

Description

copy copies the structure and field values of the specified object node.

Syntax

public ObjectNode copy()

Parameters

None.

Returns

A copy of the object node.

Throws

ObjectException

get<Child>Id

Description

get<Child>Id retrieves the unique identification code (primary key) of the object, as
assigned by eIndex.

Syntax

public String get<Child>Id()

Parameters

None.
eIndex Global Identifier Reference Guide 64 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Working with the Java API Dynamic Object Classes
Returns

A string containing the unique ID of the child object.

Throws

ObjectException

get<Field>

Description

get<Field> retrieves the value of the field specified in the method name. Each getter
method is named according to the fields defined for the child object. For example, if the
child object contains a field named “TelephoneNumber”, the getter method for this
field is named “getTelephoneNumber”. A getter method is created for each field in the
object, including fields that store standardized or phonetic data.

Syntax

public String get<Field>()

Note: The syntax for the getter methods depends on the type of data specified for the field
in the object structure. For example, the getter method for a date field would have the
following syntax: public Date get<Field>.

Parameters

None.

Returns

The value of the specified field. The type of data returned depends on the data type
defined in the object definition.

Throws

ObjectException

getMetaData

Description

getMetaData retrieves the metadata for the child object.

Syntax

public AttributeMetaData getMetaData()

Parameters

None.

Returns

An AttributeMetaData object containing the child object’s metadata.
eIndex Global Identifier Reference Guide 65 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Working with the Java API Dynamic Object Classes
Throws

None.

getParentTag

Description

getParentTag retrieves the name of the parent object of the given child object.

Syntax

public String getParentTag()

Parameters

None.

Returns

A string containing the name of the parent object.

Throws

None.

set<Child>Id

Description

set<Child>Id sets the value of the <Child>Id field in the child object.

Syntax

public void set<Child>Id(Object value)

Parameters

Returns

None.

Throws

ObjectException

Name Type Description

value Object An object containing the value of the
<Child>Id field.
eIndex Global Identifier Reference Guide 66 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
set<Field>

Description

set<Field> sets the value of the field specified in the method name. Each setter method
is named according to the fields defined for the parent object. For example, if the parent
object contains a field named “DateOfBirth”, the setter method for this field is named
“setDateOfBirth”.

Syntax

public void set<Field>(Object value)

Parameters

Returns

None.

Throws

ObjectException

structCopy

Description

structCopy copies the structure of the specified object node.

Syntax

public ObjectNode structCopy()

Parameters

None.

Returns

A copy of the structure of the object node.

Throws

ObjectException

5.3 Dynamic OTD Methods
A set of Java methods are created in an OTD for use in the eIndex Collaborations. These
methods wrap static Java API methods, allowing them to work with the dynamic object
classes. Many OTD methods return objects of the dynamic object type, or they use these

Name Type Description

value Object An object containing the value of the
field specified by the method name.
eIndex Global Identifier Reference Guide 67 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
objects as parameters. In the following methods described for the OTD methods,
<ObjectName> indicates the name of the parent object.

activateEnterpriseRecord

Description

activateEnterpriseRecord changes the status of a deactivated enterprise object back to
active.

Syntax

void activateEnterpriseRecord(String euid)

Parameters

Returns

None.

Throws

RemoteException

ProcessingException

UserException

activateEnterpriseRecord on page 68 getSystemRecord on page 75

addSystemRecord on page 69 getSystemRecordsByEUID on page 75

deactivateEnterpriseRecord on page 69 getSystemRecordsByEUIDStatus on page 76

deactivateSystemRecord on page 70 lookupLIDs on page 76

executeMatch on page 70 mergeEnterpriseRecord on page 77

getEnterpriseRecordByEUID on page 71 mergeSystemRecord on page 78

getEnterpriseRecordByLID on page 72 searchBlock on page 79

getEUID on page 72 searchExact on page 79

getLIDs on page 73 searchPhonetic on page 80

getLIDsByStatus on page 74 updateEnterpriseRecord on page 80

getSBR on page 74 updateSystemRecord on page 81

Name Type Description

euid String The EUID of the enterprise object to
activate.
eIndex Global Identifier Reference Guide 68 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
addSystemRecord

Description

addSystemRecord adds the system object to the enterprise object associated with the
specified EUID.

Syntax

void addSystemRecord(String euid, System<ObjectName> systemObject)

Parameters

Returns

None.

Throws

RemoteException

ProcessingException

UserException

deactivateEnterpriseRecord

Description

deactivateEnterpriseRecord changes the status of an active enterprise object to
inactive.

Syntax

void deactivateEnterpriseRecord(String euid)

Parameters

Name Type Description

euid String The EUID of the enterprise object to
which you want to add the system
object.

systemObject System<ObjectName> The system object to be added to the
enterprise object.
Note: In the method OTD, “Object” in
the parameter name is changed to the
name of the parent object. For
example, if the parent object is
“Person”, the name of this parameter
will appear as “systemPerson”.

Name Type Description

euid String The EUID of the enterprise object to
deactivate.
eIndex Global Identifier Reference Guide 69 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
Returns

None.

Throws

RemoteException

ProcessingException

UserException

deactivateSystemRecord

Description

deactivateSystemRecord changes the status of an active system object to inactive.

Syntax

void deactivateSystemRecord(String euid)

Parameters

Returns

None.

Throws

RemoteException

ProcessingException

UserException

executeMatch

executeMatch processes the system object based on the configuration defined for the
eIndex Manager Service and associated runtime components. This process searches for
possible matches in the database and should be executed before inserting or updating a
record in the database.

The following runtime components configure executeMatch.

The Query Builder defines the blocking queries used for matching.

The Threshold file specifies which blocking query to use and specifies matching
parameters, including duplicate and match thresholds.

Name Type Description

system String The system code of the system object
to deactivate.

localid String The local ID of the system object to
deactivate.
eIndex Global Identifier Reference Guide 70 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
The pass controller and block picker classes specify how the blocking query is
executed.

Syntax

MatchColResult executeMatch(System<ObjectName> systemObject)

Parameters

Returns

A match result object containing the results of the matching process.

Throws

RemoteException

ProcessingException

UserException

getEnterpriseRecordByEUID

Description

getEnterpriseRecordByEUID returns the enterprise object associated with the specified
EUID.

Syntax

Enterprise<ObjectName> getEnterpriseRecordByEUID(String euid)

Parameters

Returns

An enterprise object associated with the specified EUID, or null if the enterprise object
is not found.

Throws

RemoteException

Name Type Description

systemObject System<ObjectName> The system object to be added to the
enterprise object.
Note: In the method OTD, “Object” in
the parameter name is changed to the
name of the parent object. For
example, if the parent object is
“Person”, the name of this parameter
will appear as “systemPerson”.

Name Type Description

euid String The EUID of the enterprise object you
want to retrieve.
eIndex Global Identifier Reference Guide 71 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
ProcessingException

UserException

getEnterpriseRecordByLID

Description

getEnterpriseRecordByLID returns the enterprise object associated with the specified
system code and local ID pair.

Syntax

Enterprise<ObjectName> getEnterpriseRecordByLID(String system, String
localid)

Parameters

Returns

An enterprise object, or null if the enterprise object is not found.

Throws

RemoteException

ProcessingException

UserException

getEUID

Description

getEUID returns the EUID of the enterprise object associated with the specified system
code and local ID.

Syntax

String getEUID(String system, String localid)

Name Type Description

system String The system code of a system
associated with the enterprise object
to find.

localid String A local ID associated with the
specified system.
eIndex Global Identifier Reference Guide 72 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
Parameters

Returns

A string containing an EUID, or null if the EUID is not found.

Throws

RemoteException

ProcessingException

UserException

getLIDs

Description

getLIDs retrieves the local ID and system pairs associated with the given EUID.

Syntax

System<ObjectName>PK[] getLIDs(String euid)

Parameters

Returns

An array of system object keys (System<ObjectName>PK objects) or null if no results
are found.

Throws

RemoteException

ProcessingException

UserException

Name Type Description

system String A known system code for the
enterprise object.

localid String The local ID corresponding with the
given system.

Name Type Description

euid String The EUID of the enterprise object
whose local ID and system pairs you
want to retrieve.
eIndex Global Identifier Reference Guide 73 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
getLIDsByStatus

Description

getLIDsByStatus retrieves the local ID and system pairs that are of the specified status
and that are associated with the given EUID.

Syntax

System<ObjectName>PK[] getLIDsByStatus(String euid, String status)

Parameters

Returns

An array of system object keys (System<ObjectName>PK objects), or null if no system
object keys are found.

Throws

RemoteException

ProcessingException

UserException

getSBR

Description

getSBR retrieves the single best record (SBR) associated with the specified EUID.

Syntax

SBR<ObjectName> getSBR(String euid)

Parameters

Returns

An SBR object, or null if no SBR associated with the specified EUID is found.

Throws

RemoteException

Name Type Description

euid String The EUID of the enterprise object
whose local ID and system pairs to
retrieve.

status String The status of the local ID and system
pairs to retrieve.

Name Type Description

euid String The EUID of the enterprise object
whose SBR you want to retrieve.
eIndex Global Identifier Reference Guide 74 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
ProcessingException

UserException

getSystemRecord

Description

getSystemRecord retrieves the system object associated with the given system code
and local ID pair.

Syntax

System<ObjectName> getSystemRecord(String system, String localid)

Parameters

Returns

A system object containing the results of the search, or null if no system objects are
found.

Throws

RemoteException

ProcessingException

UserException

getSystemRecordsByEUID

Description

getSystemRecordsByEUID returns the active system objects associated with the
specified EUID.

Syntax

System<ObjectName>[] getSystemRecordsByEUID(String euid)

Parameters

Name Type Description

system String The system code of the system object
to retrieve.

localid String The local ID of the system object to
retrieve.

Name Type Description

euid String The EUID of the enterprise object
whose system objects you want to
retrieve.
eIndex Global Identifier Reference Guide 75 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
Returns

An array of system objects associated with the specified EUID.

Throws

RemoteException

ProcessingException

UserException

getSystemRecordsByEUIDStatus

Description

getSystemRecordsByEUIDStatus returns the system objects of the specified status that
are associated with the given EUID.

Syntax

System<ObjectName>[] getSystemRecordsByEUIDStatus(String euid, String
status)

Parameters

Returns

An array of system objects associated with the specified EUID, or null if no system
objects are found.

Throws

RemoteException

ProcessingException

UserException

lookupLIDs

Description

lookupLIDs first looks up the EUID associated with the specified source system and
source local ID. It then retrieves the local ID and system pairs that are associated with
that EUID and are from the specified destination system.

Name Type Description

euid String The EUID of the enterprise object
whose system objects you want to
retrieve.

status String The status of the system objects you
want to retrieve.
eIndex Global Identifier Reference Guide 76 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
Syntax

System<ObjectName>PK[] lookupLIDs(String sourceSystem, String
sourceLID, String destSystem, String status)

Parameters

Returns

An array of system object keys (System<ObjectName>PK objects).

Throws

RemoteException

ProcessingException

UserException

mergeEnterpriseRecord

Description

mergeEnterpriseRecord merges two enterprise objects, specified by their EUIDs.

Syntax

Merge<ObjectName>Result mergeEnterpriseRecord(String fromEUID, String
toEUID, boolean calculateOnly)

Parameters

Name Type Description

sourceSystem String The system code of the known system
and local ID pair.

sourceLID String The local ID of the known system and
local ID pair.

destSystem String The system from which the local ID
and system pairs to retrieve originated.

status String The status of the local ID and system
pairs to retrieve.

Name Type Description

fromEUID String The EUID of the enterprise object that
will not survive the merge.

toEUID String The EUID of the enterprise object that
will not survive the merge.

calculateOnly boolean An indicator of whether to commit
changes to the database or to simply
compute the merge results. Specify
false to commit the changes.
eIndex Global Identifier Reference Guide 77 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
Returns

A merge result object containing the results of the merge.

Throws

RemoteException

ProcessingException

UserException

mergeSystemRecord

Description

mergeSystemRecord merges two system objects, specified by their local IDs, from the
specified system. The system objects can belong to a single enterprise object or to two
different enterprise objects.

Syntax

Merge<ObjectName>Result mergeSystemRecord(String sourceSystem, String
sourceLID, String destLID, boolean calculateOnly)

Parameters

Returns

A merge result object containing the results of the merge.

Throws

RemoteException

ProcessingException

UserException

Name Type Description

sourceSystem String The processing code of the system to
which the two system objects belong.

sourceLID String The local ID of the system object that
will not survive the merge.

destLID String The local ID of the system object that
will survive the merge.

calculateOnly boolean An indicator of whether to commit
changes to the database or to simply
compute the merge results. Specify
false to commit the changes.
eIndex Global Identifier Reference Guide 78 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
searchBlock

Description

searchBlock performs a blocking query against the database using the blocking query
specified in the Threshold file and the criteria contained in the specified object bean.

Syntax

Search<ObjectName>Result searchBlock(<ObjectName>Bean searchCriteria)

Parameters

Returns

The results of the search.

Throws

RemoteException

ProcessingException

UserException

searchExact

Description

searchExact performs an exact match search using the criteria specified in the object
bean. Only records that exactly match the search criteria are returned in the search
results object.

Syntax

Search<ObjectName>Result searchExact(<ObjectName>Bean searchCriteria)

Parameters

Returns

The results of the search stored in a Search<ObjectName>Result object.

Throws

RemoteException

ProcessingException

Name Type Description

searchCriteria <ObjectName>Bean The search criteria for the blocking
query.

Name Type Description

searchCriteria <ObjectName>Bean The search criteria for the exact match
search.
eIndex Global Identifier Reference Guide 79 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working with the Java API Dynamic OTD Methods
UserException

searchPhonetic

Description

searchPhonetic performs search using phonetic values for some of the criteria specified
in the object bean. This type of search allows for typos and misspellings.

Syntax

Search<ObjectName>Result searchPhonetic(<ObjectName>Bean
searchCriteria)

Parameters

Returns

The results of the search.

Throws

RemoteException

ProcessingException

UserException

updateEnterpriseRecord

Description

updateEnterpriseRecord updates an existing enterprise object in the eIndex database
with the new values of the specified enterprise object.

Syntax

void updateEnterpriseRecord(Enterprise<ObjectName> enterpriseObject)

Parameters

Returns

None.

Throws

RemoteException

Name Type Description

searchCriteria <ObjectName>Bean The search criteria for the phonetic
search.

Name Type Description

enterpriseObject Enterprise<ObjectName> The enterprise object to be updated.
eIndex Global Identifier Reference Guide 80 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
Working with the Java API Dynamic eInsight Integration Methods
ProcessingException

UserException

updateSystemRecord

Description

updateSystemRecord updates the existing system object in the database with the given
system object.

Syntax

void updateSystemRecord(System<ObjectName> systemObject)

Parameters

Returns

None.

Throws

RemoteException

ProcessingException

UserException

5.4 Dynamic eInsight Integration Methods
A set of Java methods are included in the eIndex Project for use in eInsight interfaces.
These methods include a subset of the dynamic OTD methods, which are documented
above. Many of these methods return objects of the dynamic object type, or they use
these objects as parameters. In the descriptions for these methods, <ObjectName>
indicates the name of the parent object.

The following methods are available for eInsight interfaces. They are described in the
previous section, “Dynamic OTD Methods”.

Name Type Description

systemObject System<ObjectName> The system object to be updated to
the enterprise object.
Note: In the method OTD, “Object” in
the parameter name is changed to the
name of the parent object. For
example, if the parent object is
“Person”, the name of this parameter
will appear as “systemPerson”.
eIndex Global Identifier Reference Guide 81 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
Working with the Java API Dynamic eInsight Integration Methods
executeMatch on page 70 getSystemRecordsByEUID on page 75

getEnterpriseRecordByEUID on page 71 getSystemRecordsByEUIDStatus on
page 76

getEnterpriseRecordByLID on page 72 lookupLIDs on page 76

getEUID on page 72 searchBlock on page 79

getLIDs on page 73 searchExact on page 79

getLIDsByStatus on page 74 searchPhonetic on page 80

getSBR on page 74
eIndex Global Identifier Reference Guide 82 SeeBeyond Proprietary and Confidential

Glossary
Glossary

alphanumeric search
A type of search that looks for records that precisely match the specified criteria. This
type of search does not allow for misspellings or data entry errors, but does allow the
use of wildcard characters.

assumed match
When the matching weight between two records is at or above a weight you specify,
(depending on the configuration of matching parameters) the objects are an assumed
match and are merged automatically (see “Automatic Merge”).

automatic merge
When two records are assumed to be matches of one another (see “Assumed Match”),
the system performs an automatic merge to join the records rather than flagging them
as potential duplicates.

Blocking Query
The query used during matching to search the database for possible matches to a new
or updated record. This query makes multiple passes against the database using
different combinations of criteria. The criteria is defined in the Candidate Select file.

Candidate Select file
The eIndex configuration file that defines the queries you can perform from the
Enterprise Data Manager (EDM) and the queries that are performed for matching.

candidate selection
The process of performing the blocking query for match processing. See Blocking Query.

candidate selection pool
The group of possible matching records that are returned by the blocking query. These
records are weighed against the new or updated record to determine the probability of
a match.

checksum
A value added to the end of an EUID for validation purposes. The checksum for each
EUID is derived from a specific mathematical formula.

code list
A list of values in the sbyn_common_detail database table that is used to populate
values in the drop-down lists of the EDM.
eIndex Global Identifier Reference Guide 83 SeeBeyond Proprietary and Confidential

Glossary
code list type
A category of code list values, such as states or country codes. These are defined in the
sbyn_common_header database table.

duplicate threshold
The matching probability weight at or above which two records are considered to
potentially represent the same person.

EDM
See Enterprise Data Manager.

Enterprise Data Manager
Also known as the EDM, this is the web-based interface that allows monitoring and
manual control of the master index database. The configuration of the EDM is stored in
the Enterprise Data Manager file in the eIndex Project.

enterprise object
A complete object representing a specific entity, including the SBR and all associated
system objects.

ePath
A definition of the location of a field in an eIndex object. Also known as the element path.

EUID
The enterprise-wide unique identification number assigned to each member profile in
the master index. This number is used to cross-reference member profiles and to
uniquely identify each member throughout your organization.

eIndex Manager Service
An eIndex component that provides an interface to all eIndex components and includes
the primary functions of eIndex. This component is configured by the Threshold file.

field IDs
An identifier for each field that is defined in the standardization engine and referenced
from the Match Field file.

Field Validator
An eIndex component that specifies the Java classes containing field validation logic for
incoming data. This component is configured by the Field Validation file.

Field Validation file
The eIndex configuration file that specifies any default or custom Java classes that
perform field validations when data is processed.

local ID
A unique identification code assigned to an member in a specific local system. A
member profile may have several local IDs in different systems.
eIndex Global Identifier Reference Guide 84 SeeBeyond Proprietary and Confidential

Glossary
master person index
A database application that stores and cross-references information about the members
in a business organization, regardless of the computer system from which the
information originates.

Match Field File
An eIndex configuration file that defines normalization, parsing, phonetic encoding,
and the match string for an instance of eIndex. The information in this file is dependent
on the type of data being standardized and matched.

match pass
During matching several queries are performed in turn against the database to retrieve
a set of possible matches to an incoming record. Each query execution is called a match
pass.

match string
The data string that is sent to the match engine for probabilistic weighting. This string is
defined by the match system object defined in the Match Field file.

match type
An indicator specified in the MatchingConfig section of the Match Field configuration
file that tells the match engine which rules to use to match information.

matching probability weight
An indicator of how closely two records match one another. The weight is generated
using matching algorithm logic, and is used to determine whether two records
represent the same member.

Matching Service
An eIndex component that defines the matching process. This component is configured
by the Match Field file.

matching threshold
The lowest matching probability weight at which two records can be considered a
match of one another.

matching weight or match weight
See matching probability weight.

member
Any person who participates within your business enterprise. A member could be a
customer, employee, patient, and so on.

member profile
A set of information that describes characteristics of one member. A profile includes
demographic and identification information about a member and contains a single best
record and one or more system records.
eIndex Global Identifier Reference Guide 85 SeeBeyond Proprietary and Confidential

Glossary
merge
To join two member profiles or system records that represent the same person into one
member profile.

merged profile
See non-surviving profile.

non-surviving profile
A member profile that is no longer active because it has been merged into another
member profile. Also called a merged profile.

normalization
A component of the standardization process by which the value of a field is converted
to a standard version, such as changing a nickname to a common name.

object
A component of a member profile, such as a person object, which contains all of the
demographic data about a person, or an address object, which contains information
about a specific address type for a person.

parsing
A component of the standardization process by which a freeform text field is separated
into its individual components, such as separating a street address field into house
number, street name, and street type fields.

phonetic encoding
A standardization process by which the value of a field is converted to its phonetic
version.

phonetic search
A search that returns phonetic variations of the entered search criteria, allowing room
for misspellings and typographic errors.

potential duplicates
Two different enterprise objects that have a high probability of representing the same
entity. The probability is determined using matching algorithm logic.

probabilistic weighting
A process during which two records are compared for similarities and differences, and
a matching probability weight is assigned based on the fields in the match string. The
higher the weight, the higher the likelihood that two records match.

probability weight
See matching probability weight.

Query Builder
An eIndex component that defines how queries are processed. The user-configured
logic for this component is contained in the Candidate Select file.
eIndex Global Identifier Reference Guide 86 SeeBeyond Proprietary and Confidential

Glossary
SBR
See single best record.

single best record
Also known as the SBR, this is the best representation of a member’s information. The
SBR is populated with information from all source systems based on the survivor
strategies defined for each field. It is a part of a member’s enterprise object and is
recalculated each time a system record is updated.

standardization
The process of parsing, normalizing, or phonetically encoding data in an incoming or
updated record. Also see normalization, parsing, and phonetic encoding.

survivor calculator
The logic that determines which fields from which source systems should be used to
populate the SBR. This logic is a combination of Java classes and user-configured logic
contained in the Best Record file.

survivorship
Refers to the logic that determines which fields are used to populate the SBR. The
survivor calculator defines survivorship.

system
A computer application within your company where information is entered about the
members in eIndex and that shares this information with eIndex (such as a registration
system). Also known as “source system” or “external system”.

system object
A record received from a local system. The fields contained in system objects are used
in combination to populate the SBR. The system objects for one person are part of that
person’s enterprise object.

tab
A heading on an application window that, when clicked, displays a different type of
information. For example, click the EDM tab on the Define Enterprise Object window to
display the EDM attributes.

Threshold file
An eIndex configuration file that specifies duplicate and match thresholds, EUID
generator parameters, and which blocking query defined in the Candidate Select file to
use for matching.

transaction history
A stored history of an enterprise object. This history displays changes made to the
object’s information as well as merges, unmerges, and so on.

Update Manager
The component of the master index that contains the Java classes and logic that
determines how records are updated and how the SBR is populated. The user-
configured logic for this component is contained in the Best Record file.
eIndex Global Identifier Reference Guide 87 SeeBeyond Proprietary and Confidential

Glossary
eIndex Global Identifier Reference Guide 88 SeeBeyond Proprietary and Confidential

Index
Index

A
API classes 54
appl_id column 37, 39
application server 19
assumedmatch sequence number 43
assumedmatchid column 37
audience 8
audit sequence number 43
audit_id column 38

B
Best Record file 15
blocking query 27
booleandata column 41
bytedata column 41

C
candidate pool 27
Candidate Select file 14
child class methods 64–67
child objects 34
childtype column 44, 46
client Projects 18
code column 37, 39, 48
Code List script 15
common_detail_id column 38
common_header_id column 39
components

eIndex Project 13
eIndex Repository 12
Environment 19
runtime 20–22

connectivity components 18
conventions 9–10
creatdate column 44
Create database script 15
Create User Code Data 15
Create User Indexes 15
create_by column 38
create_date column 37, 38, 39, 40, 45
create_userid column 37, 39, 40, 46
createdate column 46

createfunction column 44, 46
createsystem column 46
createuser column 44, 46
cross-reference 19
Custom Plug-ins 15

D
data structure 12
database

diagram 49
tables 33–35

database scripts
Code List 15
Create database 15
Create User Code Data 15
Create User Indexes 15
Drop database 15
Drop User Indexes 15
Systems 15

datedata column 41
delta column 47
Deployment Profile 19
descr column 37, 39
description column 42, 45, 48
detail column 38
document conventions 10
documents, related 10
Drop database script 15
Drop User Indexes 15
DuplicateThreshold 26

E
editors

Java source 13
text 13
XML 13

eGate Integrator 24
eIndex

runtime components 20–22
eIndex Manager Service 14, 21
eIndex Projects

components 13
eIndex Repository

components 12
eInsight

Java methods for 17
eInsight Integration

methods 81–82
eInsight integration 55
Enterprise Data Manager file 14, 22
Enterprise Designer 12

Projects 13
eIndex Global Identifier Reference Guide 89 SeeBeyond Proprietary and Confidential

Index
Environment components 19
EUID column 36, 37, 38, 40, 41, 46, 48
EUID sequence number 43
euid_aux column 38
EUID1 column 42, 47
EUID2 column 42, 47
eVision Studio

Java methods for 17
exact match processing 27
executeMatch 26, 54
External Systems 19

method OTD for 16

F
Field Validation file 15, 16
floatdata column 41
format column 45, 48
function column 38, 47

H
highmatchflag column 42

I
id_length column 45
identification 19
inbound messages 24
input_mask column 45, 48
integerdata column 41

J
Java API 54
Java methods, dynamic 16
Java reference 54
Java source editor 13
JMS IQ Managers 19

K
kept_euid column 40

L
lid column 36, 37, 40, 44, 47
lid1 column 47
lid2 column 47
Logical Host 19
longdata column 41

M
MasterController 54
match engine 14
Match Engine node 16
Match Field file 14
match threshold 27
Matching Service 14, 21
MatchThreshold 26, 27
max_input_len column 39
merge 35
merge sequence number 43
merge_euid column 40
merge_id column 40
merge_transactionnum column 40
message processing 27

blocking query 27
candidate pool 27
exact match 27
match threshold 27
potential duplicates 27
same system 27–28

messages
inbound 24
inbound processing 26
origin 24
outbound 25
processing 23
routing 24
transformation 25

method OTD 16, 26, 55, 67–81
classes

child classes 63
parent class 55

O
Object Definition 33
Object Definition file 14
Object Persistence Service 22
object structure 16
Object Type Definition 16
OneExactMatch 26, 27
outbound messages 25

P
parent class methods 56–63
parent objects 34
parth column 41
potential duplicates 26, 35
potentialduplicate sequence number 43
potentialduplicateid column 42
primary_object_type column 38
eIndex Global Identifier Reference Guide 90 SeeBeyond Proprietary and Confidential

Index
processing logic 26
Project components

Custom Plug-ins 15
Deployment Profile 19
for connectivity 18
Match Engine node 16
outbound OTD 16
Standardization Engine node 16

Projects
client 18

Q
queries 27
Query Builder 14, 21
Query Manager 22

R
read_only column 37, 39
related publications 10
resolvedcomment column 42
resolveddate column 42
resolveduser 42
revisionnumber column 47
runtime environment

functions 19
overview 19

S
same system processing 27–28
SameSystemMatch 26
sbyn_(child_object) 34, 36
sbyn_(child_object)sbr 34, 36
sbyn_(object_name) 34, 35
sbyn_(object_name)sbr 34, 36
sbyn_appl 34, 37
sbyn_appl sequence number 43
sbyn_assumedmatch 34, 37
sbyn_audit 34, 38
sbyn_common_detail 34, 38
sbyn_common_detail sequence number 43
sbyn_common_header 34, 39
sbyn_common_header sequence number 43
sbyn_enterprise 34, 40
sbyn_merge 35, 40
sbyn_overwrite 35, 41
sbyn_potentialduplicates 35, 42
sbyn_seq_table 35, 42
sbyn_system 35
sbyn_systemobject 35, 44
sbyn_systems 45

sbyn_systemsbr 35, 46
sbyn_transaction 35, 47
sbyn_user_code 48
sbyn_user_table 35
Security 19

file 15
SeeBeyond Match Engine

configuration files 16
SeeBeyond Web site 11
seq_count column 43
seq_name column 43
sequence numbers

 43
assumedmatch 43
audit 43
EUID 43
merge 43
potentialduplicate 43
sbr 44
sbyn_appl 43
sbyn_common_detail 43
sbyn_common_header 43
transactionnumber 43

Services 19, 24
single best record 22, 33, 34
standardization engine 14
Standardization Engine node 16
STATUS column 44
status column 42, 45, 47
stringdata column 41
survivor calculator 15, 22
survivor strategy 22
system record 34
systemcode column 36, 37, 40, 44, 45, 47, 48
Systems script 15
systemuser column 47

T
text editor 13
Threshold file 14
timestamp column 47
timestampdata column 41
transaction history 19, 35
transactionnumber column 37, 42, 47
transactionnumber sequence number 43
typ_table_code column 40
type column 41, 42

U
unmerge_transactionnum column 41
update 26
Update Manager 15, 22
eIndex Global Identifier Reference Guide 91 SeeBeyond Proprietary and Confidential

Index
update policies 15
update_date column 46
update_userid column 46
UPDATEDATE column 44
updatedate column 46
updatefunction column 44, 46
update-mode 26
updateuser column 44, 46

V
value_mask column 45, 49

W
Web Connectors 19
weight column 37, 42

X
XML editor 13
eIndex Global Identifier Reference Guide 92 SeeBeyond Proprietary and Confidential

	eIndex Global Identifier Reference Guide
	Contents
	List of Tables
	Introduction
	1.1 Document Purpose and Scope
	1.1.1. Intended Audience
	1.1.2. Using this Guide
	1.1.3. Document Organization

	1.2 Writing Conventions
	1.2.1. Special Notation Conventions

	1.3 Supporting Documents
	1.4 Online Documents
	1.5 SeeBeyond Web Site

	eIndex Global Identifier Overview
	2.1 Introduction
	2.2 eIndex Repository Components
	2.2.1. Editors
	2.2.2. Project Components
	Configuration Files
	Database Scripts
	Custom Plug-ins
	Match Engine Configuration Files
	Outbound Object Type Definition (OTD)
	Dynamic Java API
	Connectivity Components
	Deployment Profile

	2.2.3. Environment Components

	2.3 About the Runtime Environment
	2.3.1. Functions of the Runtime Environment
	2.3.2. Runtime Environment Components
	2.3.3. Matching Service
	2.3.4. eIndex Manager Service
	2.3.5. Query Builder
	2.3.6. Query Manager
	2.3.7. Update Manager
	2.3.8. Object Persistence Service (OPS)
	2.3.9. Database
	2.3.10. Enterprise Data Manager

	Understanding Operational Processes
	3.1 Learning About Message Processing
	3.1.1. Inbound Message Processing
	3.1.2. Outbound Message Processing
	3.1.3. Inbound Message Processing Logic
	3.1.4. About Outbound Messages

	The Database Structure
	4.1 Overview of the eIndex Database
	4.2 eIndex Database Description
	4.2.1. Database Table Overview
	4.2.2. Database Table Details
	SBYN_<OBJECT_NAME>
	SBYN_<OBJECT_NAME>SBR
	SBYN_<CHILD_OBJECT> and SBYN_<CHILD_OBJECT>SBR
	SBYN_APPL
	SBYN_ASSUMEDMATCH
	SBYN_AUDIT
	SBYN_COMMON_DETAIL
	SBYN_COMMON_HEADER
	SBYN_ENTERPRISE
	SBYN_MERGE
	SBYN_OVERWRITE
	SBYN_POTENTIALDUPLICATES
	SBYN_SEQ_TABLE
	SBYN_SYSTEMOBJECT
	SBYN_SYSTEMS
	SBYN_SYSTEMSBR
	SBYN_TRANSACTION
	SBYN_USER_CODE

	4.3 Sample Database Model

	Working with the Java API
	5.1 Overview
	5.1.1. Java Class Types
	Static Classes
	Dynamic Object Classes
	Dynamic OTD Methods
	Dynamic eInsight Integration Methods

	5.2 Dynamic Object Classes
	5.2.1. The Parent Object Class
	<ObjectName>Object
	add<Child>
	addSecondaryObject
	copy
	dropSecondaryObject
	get<ObjectName>Id
	get<Field>
	get<Child>
	getChildTags
	getMetaData
	getSecondaryObject
	getStatus
	set<ObjectName>Id
	set<Field>
	setStatus
	structCopy

	5.2.2. Child Object Classes
	<Child>Object
	copy
	get<Child>Id
	get<Field>
	getMetaData
	getParentTag
	set<Child>Id
	set<Field>
	structCopy

	5.3 Dynamic OTD Methods
	activateEnterpriseRecord
	addSystemRecord
	deactivateEnterpriseRecord
	deactivateSystemRecord
	executeMatch
	getEnterpriseRecordByEUID
	getEnterpriseRecordByLID
	getEUID
	getLIDs
	getLIDsByStatus
	getSBR
	getSystemRecord
	getSystemRecordsByEUID
	getSystemRecordsByEUIDStatus
	lookupLIDs
	mergeEnterpriseRecord
	mergeSystemRecord
	searchBlock
	searchExact
	searchPhonetic
	updateEnterpriseRecord
	updateSystemRecord

	5.4 Dynamic eInsight Integration Methods

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	K
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

