
UN/EDIFACT OTD Library
User’s Guide

Release 5.0
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

SeeBeyond, e*Gate, e*Way, and e*Xchange are the registered trademarks of SeeBeyond Technology Corporation in the United States
and/or select foreign countries. The SeeBeyond logo, SeeBeyond Integrated Composite Application Network Suite, eGate, eWay,
eInsight, eVision, eXchange, eView, eIndex, eTL, ePortal, eBAM, and e*Insight are trademarks of SeeBeyond Technology
Corporation. The absence of a trademark from this list does not constitute a waiver of SeeBeyond Technology Corporation's
intellectual property rights concerning that trademark. This document may contain references to other company, brand, and product
names. These company, brand, and product names are used herein for identification purposes only and may be the trademarks of
their respective owners.

© 2004 SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20040603180353.

UN/EDIFACT OTD Library User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents
Contents

List of Figures 6

List of Tables 7

Chapter 1

Introduction 8
Overview 8

Intended Reader 8

Compatible Systems 8

Document Organization 9

Writing Conventions 9
Additional Conventions 9

Supporting Documents 10

SeeBeyond Web Site 10

UN/ECE Web Site 10

Chapter 2

Overview of UN/EDIFACT 11
UN/EDIFACT Components 11

Message Structure 12
Messages 13
Segment Table 18
Loops 19
Envelopes 20

UNA segment 20
Control messages 20

Delimiters 21
OTD Libraries 21
UN/EDIFACT Versus X12 22
Security 22

Examples of EDI Usage 22
Overview of EDI Payments Processing 22
UN/EDIFACT OTD Library User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents
Exchange of remittance information 23
Routing of remittance information 23
Exchange of payment orders 23
Functions a payment must perform 24
Formats for transporting a payment 24
Issuance of a payment order 24

Payment-Related EDI Transactions 25
X12 25
UN/EDIFACT 25

Understanding Enveloping Scenarios 26
Point-to-point scenario 28
End-to-end scenario 28

Payment Acknowledgments 29

Key Parts of EDI Processing Logic 30
Structures 30
Validations, Translations, Enveloping, Acknowledgments 30

Chapter 3

Installation 31
System Requirements 31

Installation Procedure 32
Uploading to the Repository 32
Refreshing Enterprise Designer 33

UN/EDIFACT Library Templates 34
UN/EDIFACT OTDs 34
Transaction Template Names 34

eGate Project Explorer Display of UN/EDIFACT OTDs 35

Chapter 4

UN/EDIFACT OTD Library 36
UN/EDIFACT Files and Directories 36

UN/EDIFACT Batch, Interactive, and Envelope File Names 36
Existing v3 Envelope Names 36
Existing v4 Envelope Names 38

Chapter 5

Working With the EDIFACT OTDs 42
Importing .jar Files 42

Viewing an EDIFACT OTD in the OTD Editor 43

Setting the Delimiters 46

Methods for Getting and Setting 46
UN/EDIFACT OTD Library User’s Guide 4 SeeBeyond Proprietary and Confidential

Contents
Bean Nodes for Getting and Setting Data 47
Bean Nodes for Getting Errors and Results 47

Using Validation in the Java Collaboration Editor 48
Creating a Collaboration Rule to Validate an OTD 48

Alternative Formats: ANSI and XML 49
XML Format for EDIFACT 49

Possible Differences in Output When Using Pass-Through 52

Limitations of EDIFACT OTDs 52
Memory Requirements 52
Delayed Unmarshaling 53
Errors and Exceptions 53
Special Methods for Error Classes 54

Chapter 6

Java Methods for EDIFACT OTDs 55
Using the OTD Editor to View and Test an OTD 55

To open an OTD 55
To test OTDs against sample data using the OTD Editor 56

Delimiters 56
Using the Collaboration Rules Editor to Validate an OTD 57

Methods 57
Java Methods to Set or Get Delimiters 57

setDefaultEdifactDelimiters 58
getSegmentTerminator 58
setSegmentTerminator 59
getElementSeparator 60
setElementSeparator 60
getSubelementSeparator 61
setSubelementSeparator 61
getRepetitionSeparator 62
setRepetitionSeparator 63
validate 63

Index 65
UN/EDIFACT OTD Library User’s Guide 5 SeeBeyond Proprietary and Confidential

List of Figures

UN/EDIFACT OTD Library User’s Guide 6 SeeBeyond Proprietary and Confidential

List of Figures

Figure 1 Example Payment Scenario 27

Figure 2 Update Center Wizard: Select Modules to Install 33

Figure 3 Some of the Transaction Set Structures for EDIFACT Version D00A 34

Figure 4 v3 Envelope Segments 37

Figure 5 v4 Batch Envelope Segments 39

Figure 6 v4 Interactive Envelope Segments 39

Figure 7 Importing sefimpl.jar 43

Figure 8 X12 270 Transaction in the OTD Editor 45

Figure 9 Accessing a Method in an X12 OTD 48

Figure 10 Accessing the performValidation Method from the Root Node 49

Figure 11 XML EDIFACT DTD 50

Figure 12 EDIFACT 997 Functional Acknowledgment—XML 51

Figure 13 EDIFACT 997 Functional Acknowledgment—ANSI Format 51

Figure 14 Setting the Maximum Heap Size 52

Figure 15 Example of an .xsc File in the OTD Editor 56

List of Tables

UN/EDIFACT OTD Library User’s Guide 7 SeeBeyond Proprietary and Confidential

List of Tables

Table 1 Writing Conventions 9

Table 2 Batch Messages Defined in Version D00A 13

Table 3 Comparison BetweenX12 and UN/EDIFACT Envelopes 20

Table 4 Comparison of X12 to UN/EDIFACT: Payment Order/Remittance Advice 26

Table 5 Other Related Transactions 26

Table 6 Sample X12 and UN/EDIFACT Headers 27

Table 7 Types of UN/EDIFACT and X12 Acknowledgments 29

Table 8 Key Terms of EDI Processing 30

Table 9 UN/EDIFACT Versions Supported 31

Table 10 OTD Library Hierarchy in Project Explorer 35

Table 11 v3 Control Message 37

Table 12 v3 Batch Segments 37

Table 13 v4 Control Message 40

Table 14 v4 Segments 40

Chapter 1

Introduction

This chapter introduces you to the UN/EDIFACT OTD Library User’s Guide.

1.1 Overview
Each of the eGate Object Type Definition (OTD) libraries contains sets of pre-built
structures for industry-standard formats. The UN/EDIFACT OTD Library is one of the
producst within the SeeBeyond Technology CorporationTM (SeeBeyondTM) ICAN Suite.
The OTD library contains message definitions for EDIFACT messages. This document
gives a brief overview of both EDIFACT and the EDIFACT message structures that are
provided, and provides information on installing and using the OTD library.

1.2 Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the SeeBeyond ICAN Suite (such as eGate Integrator and
eXchange Integrator), to have familiarity with Windows operations and administration,
and to be thoroughly familiar with Microsoft Windows graphical user interfaces.

1.3 Compatible Systems
The UN/EDIFACT OTD Library is available on the following platforms:

Microsoft Windows 2000, Windows XP, and Windows 2003
Sun Solaris 8 and Solaris 9
IBM AIX 5L Version 5.1 and AIX 5L Version 5.2
HP-UX 11.0 and HP-UX 11i (PA-RISC)
HP Tru64 UNIX Version 5.1A
Red Hat Linux 8 (Intel Version) and Linux Advanced Server 2.1 (Intel version)
UN/EDIFACT OTD Library User’s Guide 8 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction Document Organization
1.4 Document Organization
This document is organized topically as follows:

Chapter 1 ”Introduction” gives a general preview of this document, its purpose,
scope, and organization.

Chapter 2 ”Overview of UN/EDIFACT” provides an overview of UN/EDIFACT,
including examples of a batch message and a segment table, along with additional
information about their components, structure, and validation rules.

Chapter 3 ”Installation” explains how to install
UN/EDIFACT files and where to find them after installation.

Chapter 4 ”UN/EDIFACT OTD Library” lists sample file and directory names in
the UN/EDIFACT OTD Library.

Chapter 5 ”Working With the EDIFACT OTDs” provides instructions and
examples on how to load, view, and test EDIFACT OTDs.

Chapter 6 ”Java Methods for EDIFACT OTDs” lists and explains the bean nodes
and Java methods that can be used to extend the functionality of the OTDs in the
library.

1.5 Writing Conventions
The following writing conventions are observed throughout this document.

Additional Conventions

Windows Systems

For the purposes of this guide, references to “Windows” will apply to Microsoft
Windows Server 2003, Windows XP, and Windows 2000.

Table 1 Writing Conventions

Text Convention Example

Names of buttons, files,
menus and menu items,
icons, parameters, variables,
methods, and objects

Bold text Select the logicalhost.exe file.
On the File menu, click Exit.
Enter the timeout value.
Use the getClassName() method.

Command-line arguments,
code samples

Fixed font. Variables are
shown in bold italic.

bootstrap -f -p password

Hypertext links Blue text For more information, see “Writing
Conventions” on page 9.
http://www.seebeyond.com
UN/EDIFACT OTD Library User’s Guide 9 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.6
Introduction Supporting Documents
Path Name Separator

This guide uses the backslash (“\“) as the separator within path names. If you are
working on a UNIX system, please make the appropriate substitutions.

1.6 Supporting Documents
The following SeeBeyond documents provide additional information about eGate and
the ICAN system:

You can also refer to the appropriate Microsoft Windows or UNIX documents, if
necessary.

1.7 SeeBeyond Web Site
The SeeBeyond Web site is your best source for up-to-the-minute product news and
technical support information. The site’s URL is:

http://www.seebeyond.com

1.8 UN/ECE Web Site
UN/ECE, the United Nations Economic Commission of Europe, is one of the five
regional commissions of the United Nations. The UN/ECE Web site contains technical
information concerning rules, standards, recent UN/EDIFACT directories, syntax, and
so forth. The site’s URL is:

http://www.unece.org/trade/untdid/welcome.htm

SeeBeyond ICAN Suite Installation Guide

SeeBeyond ICAN Suite Primer

SeeBeyond ICAN Suite Deployment Guide

eGate Integrator User’s Guide

eGate Integrator Tutorial

eGate Integrator System Administration Guide

eXchange Integrator User’s Guide

HIPAA OTD Library User’s Guide

X12 OTD Library User’s Guide
UN/EDIFACT OTD Library User’s Guide 10 SeeBeyond Proprietary and Confidential

http://www.seebeyond.com
http://www.unece.org/trade/untdid/welcome.htm

Chapter 2

Overview of UN/EDIFACT

This chapter presents an overview of UN/EDIFACT, including examples of a batch
message and a segment table, along with additional information about their
components, structure, and validation rules.

2.1 UN/EDIFACT Components
UN/EDIFACT stands for United Nations/Electronic Data Interchange for
Administration, Commerce and Transport. It is a standard, developed for the electronic
exchange of machine-readable information between businesses.

The UN/EDIFACT Working Group (EWG) develops, maintains, interprets, and
promotes the proper use of the UN/EDIFACT standard. UN/EDIFACT is broadly used
in Europe and other parts of the world.

UN/EDIFACT messages are structured according to very strict rules. Messages are in
ASCII format. The standard defines all these message elements, their sequence, and
also their grouping.

The UN/EDIFACT OTD Library allows eGate and eXchange customers to easily
visualize the structures within a graphical user interface and to build up business rules
(Collaborations) through drag and drop technology.

OTDs

OTDs define the structure and syntax of message formats that are used to identify,
validate, and translate message data content. OTDs also contain .jar files, which
function much like .zip files inasmuch as they compress and store Java .class files.
The .class files support message, parsing, and validation. Java also uses a Standard
Exchange Format (SEF) file, which allows users to add extra validation scripts.

UN/EDIFACT messages

UN/EDIFACT publishes the messages for each version separately from the envelopes
(header and trailer segments) that are used with those messages.

The messages are published on the Web at:

http://www.gefeg.com/en/standard/edifact/index.htm

The envelopes are published on the Web at:

http://www.gefeg.com/jswg/
UN/EDIFACT OTD Library User’s Guide 11 SeeBeyond Proprietary and Confidential

http://www.gefeg.com/en/standard/edifact/index.htm
http://www.gefeg.com/jswg/

Chapter 2 Section 2.1
Overview of UN/EDIFACT UN/EDIFACT Components
A new version of UN/EDIFACT messages is released twice a year, containing most of
the messages in the previous version, plus any new messages that have been approved
by the standards organization. The envelopes are updated with a new version
infrequently.

UN/EDIFACT messages

Java uses a secondary UN/EDIFACT format that is different from the standard UN/
EDIFACT format. The secondary format uses a SEF file, which has structure, as well as
methods and functions that can act upon the message.

2.1.1 Message Structure
The term message structure (also called a transaction set structure) refers to the way in
which data elements are organized and related to each other for a particular EDI
transaction.

In eGate, a message structure is called an Object Type Definition (OTD). Each message
structure (OTD) consists of the following:

Physical hierarchy

The predefined way in which envelopes, segments, and data elements are
organized to describe a particular UN/EDIFACT EDI transaction.

Delimiters

The specific predefined characters that are used to mark the beginning and end of
envelopes, segments, and data elements.

Properties

The characteristics of a data element, such as the length of each element, default
values, and indicators that specify attributes of a data element—for example,
whether it is required, optional, or repeating.

The transaction set structure of an invoice that is sent from one trading partner to
another defines the header, trailer, segments, and data elements required by invoice
transactions. The EDIFACT OTD Library for a specific version includes transaction set
structures for each of the transactions available in that version. You can use these
structures as provided, or customize them to suit your business needs.

eGate Integrator uses Object Type Definitions based on EDIFACT message structures to
verify that the data in the messages coming in or going out is in the correct format.
There is a message structure for eachUN/EDIFACT transaction.

The list of transactions provided is different for each version of UN/EDIFACT.
UN/EDIFACT OTD Library User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.1
Overview of UN/EDIFACT UN/EDIFACT Components
2.1.2 Messages
As an example, Table 2 below lists the batch messages, along with their function, that
are defined in version D00A:

Table 2 Batch Messages Defined in Version D00A

Name Function

APERAK Application error and acknowledgement message

AUTHOR Authorization message

BALANC Balance message

BANSTA Banking status message

BAPLIE Bayplan/stowage plan occupied and empty locations
message

BAPLTE Bayplan/stowage plan total numbers message

BERMAN Berth management message

BMISRM Bulk marine inspection summary report message

BOPBNK Bank transactions and portfolio transactions report message

BOPCUS Balance of payment customer transaction report message

BOPDIR Direct balance of payment declaration message

BOPINF Balance of payment information from customer message

BUSCRD Business credit report message

CALINF Vessel call information message

CASINT Request for legal administration action in civil proceedings
message

CASRES Legal administration response in civil proceedings message

CHACCO Chart of accounts message

CLASET Classification information set message

CNTCND Contractual conditions message

COACSU Commercial account summary message

COARRI Container discharge/loading report message

CODECO Container gate-in/gate-out report message

CODENO Permit expiration/clearance ready notice message 5

COEDOR Container stock report message

COHAOR Container special handling order message

COLREQ Request for a documentary collection message

COMDIS Commercial dispute message

CONAPW Advice on pending works message

CONDPV Direct payment valuation message

CONDRA Drawing administration message
UN/EDIFACT OTD Library User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.1
Overview of UN/EDIFACT UN/EDIFACT Components
CONDRO Drawing organization message

CONEST Establishment of contract message

CONITT Invitation to tender message

CONPVA Payment valuation message

CONQVA Quantity valuation message

CONRPW Response of pending works message

CONTEN Tender message

CONWQD Work item quantity determination message

COPAYM Contributions for payment

COPARN Container announcement message

COPINO Container pre-notification message

COPRAR Container discharge/loading order message

COREOR Container release order message

COSTCO Container stuffing/stripping confirmation message

COSTOR Container stuffing/stripping order message

CREADV Credit advice message

CREEXT Extended credit advice message

CREMUL Multiple credit advice message

CUSCAR Customs cargo report message

CUSDEC Customs declaration message

CUSEXP Customs express consignment declaration message

CUSPED Periodic customs declaration message

CUSREP Customs conveyance report message

CUSRES Customs response message

DEBADV Debit advice message

DEBMUL Multiple debit advice message

DEBREC Debts recovery message

DELFOR Delivery schedule message

DELJIT Delivery just in time message

DESADV Despatch advice message

DESTIM Equipment damage and repair estimate message

DGRECA Dangerous goods recapitulation message

DIRDEB Direct debit message

DIRDEF Directory definition message

DMRDEF Data maintenance status report/query message

Table 2 Batch Messages Defined in Version D00A (Continued)

Name Function
UN/EDIFACT OTD Library User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.1
Overview of UN/EDIFACT UN/EDIFACT Components
DMSTAT Data maintenance status report/query message

DOCADV Documentary credit advice message

DOCAMA Advice of an amendment of a documentary credit message

DOCAMI Documentary credit amendment information message

DOCAMR Request for an amendment of a documentary credit
message

DOCAPP Documentary credit application message

DOCARE Response to an amendment of a documentary credit
message

DOCINF Documentary credit issuance information message

ENTREC Accounting entries message

FINCAN Financial cancellation message

FINPAY Multiple interbank funds transfer message

FINSTA Financial statement of an account message

GENRAL General purpose message

GESMES Generic statistical message

HANMOV Cargo/goods handling and movement message

IFCSUM Forwarding and consolidation summary message

IFTCCA Forwarding and transport shipment charge calculation
message

IFTDGN Dangerous goods notification message

IFTFCC International transport freight costs and other charges
message

IFTIAG Dangerous cargo list message

IFTMAN Arrival notice message

IFTMBC Booking confirmation message

IFTMBF Firm booking message

IFTMBP Provisional booking message

IFTMCA Consignment advice message

IFTMCS Instruction contract status message

IFTMIN Instruction message

IFTRIN Forwarding and transport rate information message

IFTSAI Forwarding and transport schedule and availability
information message

IFTSTA International multimodal status report message

IFTSTQ International multimodal status request message

IMPDEF EDI implementation guide definition message

Table 2 Batch Messages Defined in Version D00A (Continued)

Name Function
UN/EDIFACT OTD Library User’s Guide 15 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.1
Overview of UN/EDIFACT UN/EDIFACT Components
INFENT Enterprise accounting information message

INSDES Instruction to despatch message

INSPRE Insurance premium message

INSREQ Inspection request message

INSRPT Inspection report message

INVOIC Invoice message

INVRPT Inventory report message

IPPOAD Insurance policy administration message

IPPOMO Motor insurance policy message

ITRRPT In transit report detail message

JAPRES Job application result message

JINFDE Job information demand message

JOBAPP Job application proposal message

JOBCON Job order confirmation message

JOBMOD Job order modification message

JOBOFF Job order message

JUPREQ Justified payment request message

LEDGER Ledger message

LREACT Life reinsurance activity message

LRECLM Life reinsurance claims message

MEDPID Person identification message

MEDPRE Medical prescription message

MEDREQ Medical service request message

MEDRPT Medical service report message

MEDRUC Medical resource usage and cost message

MEQPOS Means of transport and equipment position message

MOVINS Stowage instruction message

MSCONS Metered services consumption report message

ORDCHG Purchase order change request message

ORDERS Purchase order message

ORDRSP Purchase order response message

OSTENQ Order status enquiry message

OSTRPT Order status report message

PARTIN Party information message

PAXLST Passenger list message

Table 2 Batch Messages Defined in Version D00A (Continued)

Name Function
UN/EDIFACT OTD Library User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.1
Overview of UN/EDIFACT UN/EDIFACT Components
PAYDUC Payroll deductions advice message

PAYEXT Extended payment order message

PAYMUL Multiple payment order message

PAYORD Payment order message

PRICAT Price/sales catalogue message

PRIHIS Pricing history message

PROCST Project cost reporting message

PRODAT Product data message

PRODEX Product exchange reconciliation message

PROINQ Product inquiry message

PROSRV Product service message

PROTAP Project tasks planning message

PRPAID Insurance premium payment message

QALITY Quality data message

QUOTES Quote message

RDRMES Raw data reporting message

REBORD Reinsurance bordereau message

RECADV Receiving advice message

RECALC Reinsurance calculation message

RECECO Credit risk cover message

RECLAM Reinsurance claims message

RECORD Reinsurance core data message

REGENT Registration of enterprise message

RELIST Reinsured objects list message

REMADV Remittance advice message

REPREM Reinsurance premium message

REQDOC Request for document message

REQOTE Request for quote message

RESETT Reinsurance settlement message

RESMSG Reservation message

RETACC Reinsurance technical account message

RETANN Announcement for returns message

RETINS Instruction for returns message

RPCALL Repair call message

SAFHAZ Safety and hazard data message

Table 2 Batch Messages Defined in Version D00A (Continued)

Name Function
UN/EDIFACT OTD Library User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.1
Overview of UN/EDIFACT UN/EDIFACT Components
2.1.3 Segment Table
A key section for each document appears at the end of each message. Here you can find
a segment table displaying the message structure which shows the order of segments
and the manner in which they repeat. See the example of an APERAK transaction
below.

Note: For information on specific messages, see the United Nations Web site and view the
message type by code. The URL is:

http://www.unece.org/trade/untdid/

SANCRT International movement of goods governmental regulatory
message

SLSFCT Sales forecast message

SLSRPT Sales data report message

SOCADE Social administration message

SSIMOD Modification of identity details message

SSRECH Worker's insurance history message

SSREGW Notification of registration of a worker message 1

STATAC Statement of account message

STLRPT Settlement transaction reporting message

SUPCOT Superannuation contributions advice message

SUPMAN Superannuation maintenance message

SUPRES Supplier response message

TANSTA Tank status report message

TAXCON Tax control message

TPFREP Terminal performance message

VATDEC Value added tax message

VESDEP Vessel departure message

WASDIS Waste disposal information message

WKGRDC Work grant decision message

WKGRRE Work grant request message

Table 2 Batch Messages Defined in Version D00A (Continued)

Name Function
UN/EDIFACT OTD Library User’s Guide 18 SeeBeyond Proprietary and Confidential

http://www.unece.org/trade/untdid/

Chapter 2 Section 2.1
Overview of UN/EDIFACT UN/EDIFACT Components
4.3.1 Segment table

Pos Tag Name S R

0010 UNH Message header M 1
0020 BGM Beginning of message M 1
0030 DTM Date/time/period C 9
0040 FTX Free text C 9
0050 CNT Control total C 9

0060 ÄÄÄÄÄ Segment group 1 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ C 99ÄÄÄÄÄÄÄÄÄÄ¿
0070 DOC Document/message details M 1 ³
0080 DTM Date/time/period C 99ÄÄÄÄÄÄÄÄÄÄÙ

0090 ÄÄÄÄÄ Segment group 2 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ C 9ÄÄÄÄÄÄÄÄÄÄÄ¿
0100 RFF Reference M 1 ³
0110 DTM Date/time/period C 9ÄÄÄÄÄÄÄÄÄÄÄÙ

0120 ÄÄÄÄÄ Segment group 3 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ C 9ÄÄÄÄÄÄÄÄÄÄÄ¿
0130 NAD Name and address M 1 ³
0140 CTA Contact information C 9 ³
0150 COM Communication contact C 9ÄÄÄÄÄÄÄÄÄÄÄÙ

0160 ÄÄÄÄÄ Segment group 4 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ C 99999ÄÄÄÄÄÄÄ¿
0170 ERC Application error information M 1 ³
0180 FTX Free text C 1 ³

³
0190 ÄÄÄÄÄ Segment group 5 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ C 9ÄÄÄÄÄÄÄÄÄÄ¿³
0200 RFF Reference M 1 ³³
0210 FTX Free text C 9ÄÄÄÄÄÄÄÄÄÄÁÙ
0220 UNT Message trailer M 1

The “S” column indicates whether the loop or segment is “M” (mandatory) or
“C” (conditional).

The “R” column indicates the maximum number of repetitions of the segment or loop.

The “Ä“(A-umlaut) can be interpreted as a horizontal line; it indicates the first and last
segments in a loop.

The “¿,” “ ³,” and “Ù” characters at the end of some lines indicate the first, continuing,
and last segments of a loop respectively. Where there are more than one “ ³” at the end
of a line, there are nested loops.

2.1.4 Loops
A loop consists of two or more data segments that contain a block of information (for
example: company name, street address, mailing address, city, state, and zip code) that
can repeat multiple times.

Locate the fields by specifying:

Transaction set (for example, APERAK)

Loop (for example, segment group 1)

Which occurrence of the loop
UN/EDIFACT OTD Library User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.1
Overview of UN/EDIFACT UN/EDIFACT Components
Segment (for example, DOC)

Field number (for example, DOC00)

Which occurrence of the segment (if repeating)

2.1.5 Envelopes
UN/EDIFACT publishes the envelope segments in the separate syntax document with
independent version numbers. For example, either syntax version 3 or syntax version 4
can be used with any version of the messages. v3 and v4 are two separate interchange
envelope syntax versions, and do not dictate the message modes (batch and
interactive). v3 is outdated and only handles batch messages, whereas v4 can handle
batch or interactive messages.

Note: Interactive messages first appeared in the D96B message directory release.

UNA segment

All UN/EDIFACT message templates have a UNA segment, but these segments are
optional and seldom used. The UNA segment can be found in the segment template in
the ‘template’ subdirectory in case it is needed. It is used to send unusual delimiter
characters.

The string has a mandatory fixed length of 9 characters. The first three are “UNA,”
immediately followed by the 6 characters as defined in ISO 9735.

The UNA segment template is a fixed length with segment ID = UNA, followed by 6
one-byte fields labelled “delimiter<n>.”

Control messages

Control messages (versus business messages) are also published separately with the
syntax document. There is a CONTRL message for both v3 and v4 batch envelopes
only.

Each version of the UN/EDIFACT OTD Library includes both a v3 CONTRL and a
v4 CONTRL message. The user can select which one to use.

Table 3 Comparison BetweenX12 and UN/EDIFACT Envelopes

X12 ENVELOPE
UN/EDIFACT

Batch Messages
UN/EDIFACT

Interactive Messages

start end start end start end

ISA IEA Interchange Envelope UNA/UNB UNZ UNA/UIB UIZ

GS GE Functional Group Envelope UNG UNE N/A N/A

ST SE Message Envelope UNH UNT UIH UIT
UN/EDIFACT OTD Library User’s Guide 20 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.1
Overview of UN/EDIFACT UN/EDIFACT Components
2.1.6 Delimiters
Delimiters are set dynamically.

2.1.7 OTD Libraries
The UN/EDIFACT OTD Library contains a separate sub-directory for each version of
UN/EDIFACT, and within each version directory, all the segment templates are kept in
a sub-directory. Because of this, the user only has to select from the messages, and not
from the segments.

To search for Java files in directories

<egate>/server/registry/repository/default/etd/templates/edifact/edifact_dnnn/v3

or

<egate>/server/registry/repository/default/etd/templates/edifact/edifact_dnnn/v4

If you need to make changes to a Java OTD, modify the SEF file, which is a text file, and
regenerate.

To modify a SEF file

1 With the Java OTD Editor open, select File > New.

2 From the New Object Type Definition window choose the SEFWizard and click
OK.

3 Step through the SEFWizard until the SEF Wizard - Step 1 dialog box appears.

A Select a SEF file, by either using the Browse button to locate an existing file or
entering a new name in the SEF File Name box.

B In the Optional Set Description File Name box, use the Browse button to locate
an existing description file or enter a new name in the box.

C In the Optional SEC Description File Name box, use the Browse button to
locate an existing SEC file or enter a new name in the box.

D In the Package Name box, enter a package name for this SEF file; for example:
custominPackage.

E To make SEF files more compact, they do not have descriptions. If you need
information added to the node names, use the Use Descriptive Node Names
radio buttons to add a description to the node names. The default is Yes.

F When satisfied with the information you have entered on this dialog box, click
Next.

4 When the SEF Wizard - Step 2 dialog box appears, review the wizard’s summary. If
the information is correct, click Finish to generate an Object Type Definition and its
associated Java classes.

Note: If the information is not correct, click Back to change your selections.
UN/EDIFACT OTD Library User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Overview of UN/EDIFACT Examples of EDI Usage
2.1.8 UN/EDIFACT Versus X12
Since the 1960s, more and more industries use EDI. Although some have invented their
own sets of standardized data formats, the following sets are the accepted standards:

ASC X12 is used within the United States

UN/EDIFACT is used across international industries

2.1.9 Security
EDI-INT is an international standard for secure EDI transmissions, both UN/EDIFACT
and X12. It is emerging as a widespread EDI security standard. It has the following
features:

Uses HTTP and PKI

MIME and public key cryptography

Many options

Note: This is only related to the data transmission and not to the parsing of the
UN/EDIFACT message itself.

For additional information:

http://www.ietf.cnri.reston.va.us/ids.by.wg/ediint.html

2.2 Examples of EDI Usage
This section provides an overview of EDI payment processing, followed by a
description of the types of EDI transactions, then examples of credit transfer scenarios.

Note: This is just an example of how UN/EDIFACT and payments processing is used. Not
everything said here applies to all UN/EDIFACT messages.

2.2.1 Overview of EDI Payments Processing
EDI payments processing is a combination of collections and disbursements, with the
processing taking the form of debits and credits. It can also include a related bank
balance, as well as transaction and account analysis reporting mechanisms.

Most of the other EDI trading partner communications are handled either directly
between the parties or indirectly through their respective value-added networks
(VANs).

Making an electronic payment requires a financial intermediary, usually the bank or
banks that hold deposit accounts of the two parties.
UN/EDIFACT OTD Library User’s Guide 22 SeeBeyond Proprietary and Confidential

http://www.ietf.cnri.reston.va.us/ids.by.wg/ediint.html

Chapter 2 Section 2.2
Overview of UN/EDIFACT Examples of EDI Usage
Exchange of remittance information

EDI involves the exchange of remittance information along with the order to pay. In the
United States this can become complex as two standards are involved in the
transaction. Think of the remittance information as an electronic check stub, which can
follow one of the following paths to complete the transaction:

Directly between trading partners or through their respective EDI VAN mailboxes

Through the banking system, with the beneficiary receiving notice from his bank

By the originator to the originator’s bank as an order to pay, which in turn reports to
the beneficiary

Routing of remittance information

The trading partners and the capabilities of their respective banks determine the
routing of the electronic check stub, and whether the payment is a debit authorized by
the payor and originated by the beneficiary or a credit transfer originated by the payor.

Other opportunities to exchange information between a bank and its customer include:

Daily reports of balances and transactions

Reports of lockbox and electronic funds transfer (EFT) remittances received by the
bank

Authorizations issued to the bank to honor debit transfers

Monthly customer account analysis statements

Account reconcilement statements

Statements of the demand deposit account

Exchange of payment orders

A subset of EDI, the electronic payment mechanism activates the exchange of payment
orders; value transfers from one account to another, including the related remittance
information in standardized machine-processable formats. The electronic payment can
be either:

Credit transfer, initiated by the payor

or

Debit transfer, initiated by the payee as authorized by the payor

Regardless of how the credit transfer was initiated, the payor sends a payment order to
its bank in one of two forms:

X12 Payment Order/Remittance Advice (transaction set 820)

UN/EDIFACT PAYEXT message

The bank then adds data in a format prescribed in the United States by the National
Automated Clearing House Association (NACHA) and originates the payment through
the Automated Clearing House (ACH) system.
UN/EDIFACT OTD Library User’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Overview of UN/EDIFACT Examples of EDI Usage
Functions a payment must perform

A corporate-to-corporate payment must perform two functions:

Transfer value

Move remittance data from the payor to the payee

When a credit transfer occurs, the mandatory functions raise the issue of how the funds
and remittance information will travel, which is either:

Together through the banking system

or

Separated and traveling by different routes

Formats for transporting a payment

The X12 820 and the UN/EDIFACT PAYEXT are data formats for transporting a
payment order from the originator to its bank. This payment order is either an:

Instruction to the originator’s bank to originate a credit transfer

or

Instruction to its trading partner to originate a debit transfer against the payor’s
bank account

Once this decision has been made, the 820 or PAYEXT transports the remittance
information to the beneficiary. As stated above, this transfer can either be through the
banking system or via a route that is separate from the transport of funds.

Note: Whenever the 820 or PAYEXT remittance information is not transferred with the
funds, the 820 or PAYEXT (information only) can be transmitted directly from the
originator to the beneficiary. It can also be transmitted through an intermediary,
such as a VAN.

Issuance of a payment order

Before funds can be applied against an open accounts receivable, the beneficiary must
reconcile the two streams—the payment advice from the receiving bank and the
remittance information received through a separate channel—which were separated
during the transfer. If this reconciliation does not take place and if the amount of funds
received differs from the amount indicated in the remittance advice, the beneficiary’s
accounts receivable ledger will suffer from a multitude of problems.

The value transfer begins when the originator issues a payment order to the
originator’s bank. If a credit transfer is specified, the originator’s bank charges the
originator’s bank account and pays the set sum to the beneficiary’s bank for credit to
the account of the beneficiary.
UN/EDIFACT OTD Library User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Overview of UN/EDIFACT Examples of EDI Usage
The originator becomes the same party as the beneficiary when the payment order
specifies a debit transfer. When this happens, the beneficiary’s bank originates the
value transfer, the payor’s account is debited (charged) for a set amount, which is
credited to the originator’s (beneficiary’s) bank account. Either prior to or concurrent
with a presentment of a debit transfer, the payor must issue approval to its bank to
honor the debit transfer. This debit authorization or approval can take one of the
following forms:

Individual item approval

Blanket approval of all incoming debits with an upper-dollar limit

Blanket approval for a particular trading partner to originate any debit

Some combination of the above

2.2.2 Payment-Related EDI Transactions
X12 and UN/EDIFACT route the Payment Order/Remittance Advice from the
originator to the beneficiary in a different manner. X12 uses an end-to-end method
whereas UN/EDIFACT uses a point-to-point method.

X12

X12 uses an end-to-end method to route the 820 Payment Order/Remittance Advice
from the originator company through the banks to the beneficiary. The 820 is wrapped
in an ACH banking transaction for the actual funds transfer between the banks. For an
X12-UN/EDIFACT Payment Order/Remittance Advice comparison, see Table 4 on
page 26. Table 5 on page 26 lists other related X12 and UN/EDIFACT transactions.

UN/EDIFACT

UN/EDIFACT uses different messages for each of these point-to-point transmissions,
and separates the banking (Payment Order) function from the financial (Remittance
Advice) function. This, in effect, creates the following distinct functions:

The originator company uses the Payment Order to notify its bank that a funds
transfer should take place (PAYEXT, PAYMUL).

The originator company uses the Remittance Advice to notify the beneficiary of the
payment (REMADV from originator, CREADV/DEBADV to beneficiary).

The EFT actually moves the monetary value from one bank to another bank (ACH
in the United States; SWIFT or CHIPS in Europe). For an X12 or UN/EDIFACT
UN/EDIFACT OTD Library User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Overview of UN/EDIFACT Examples of EDI Usage
Payment Order/Remittance Advice comparison, see Table 4. Table 5 lists other
related X12 and UN/EDIFACT transactions.

2.2.3 Understanding Enveloping Scenarios
We will use two credit transfer scenarios to give you a better understanding of the
addressing issue:

Point-to-point

End-to-end

These scenarios involve two corporate trading partners and their respective banks:

Company 1

Company 2

Bank 1

Bank 2

Company 1 (the originator) issues a Payment Order (credit transfer) through Bank 1,
which in turn routes the payment through the ACH to Bank 2 (the beneficiary’s bank).
Bank 2 then credits the account and passes the remittance details to its customer,
Company 2 (the beneficiary).

Table 4 Comparison of X12 to UN/EDIFACT: Payment Order/Remittance Advice

Step X12 Description of Action UN/EDIFACT Step

1 820 Payment Order from originator to its
bank

PAYEXT,
PAYMUL

1

1 820 Remittance Advice from originator
to be passed on to beneficiary

REMADV 2

2 820 Remittance advice to beneficiary CREADV,
DEBADV

2

3 ACH containing
820

EFT between banks SWIFT,
CHIPS in
Europe; ACH
in the U.S.

3

Table 5 Other Related Transactions

X12 Transaction UN/EDIFACT

828 Debit Authorization AUTHOR

829 Payment Cancellation Request FINCAN

831 Application Control Totals (none)
UN/EDIFACT OTD Library User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Overview of UN/EDIFACT Examples of EDI Usage
Figure 1 Example Payment Scenario

Although trading partners prefer to consider this payment mechanism as an end-to-
end operation, the banking system’s mechanism is actually a series of point-to-point
transactions, mainly:

From the originator to the originator’s bank

From the originator’s bank to the beneficiary’s bank

From the beneficiary’s bank to the beneficiary

In the 820 or PAYEXT, the identity of the originator, the originator’s bank, the
beneficiary’s bank, and the beneficiary are established in the header of the transaction
set (message) itself. Table 6, below, shows X12 and UN/EDIFACT headers.

Table 6 Sample X12 and UN/EDIFACT Headers

X12
start end

Envelope
UN/EDIFACT

start end

ISA IEA Interchange Envelope UNA/
UNB

UNZ

GS GE Functional Group Envelope UNG UNE

ST SE Message Envelope UNH UNT

Company 2
(beneficiary)

Company 1
(the originator)

Bank 2 credits account and passes
remittance details to Company 2

Company 1 issues a
Payment Order to Bank 1

Bank 2
(beneficiary's bank)

Ba
nk

 1
 ro

ut
es

pa
ym

en
t t

o
Ba

nk
 2

Bank 1
(originator's bank)
UN/EDIFACT OTD Library User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Overview of UN/EDIFACT Examples of EDI Usage
Point-to-point scenario

In a sample point-to-point scenario, the steps are as follows:

1 Company 1 sends a payment file to Bank 1 using an X12 ISA (or UN/EDIFACT
UNB) interchange header in which:

Sender ID = Company 1

Receiver ID = Bank 1

2 Bank 1 replaces Company 1’s ISA (UNB) with its own ISA as follows:

Sender ID = Bank 1

Receiver ID = Bank 2

3 Bank 2 receives the payment file, and creates a new ISA to send the contents to
Company 2 that shows:

Sender ID = Bank B

Receiver ID = Company B

Because the interchange control header (ISA or UNB) changes at each point, it is
important that the functional group header (X12 GS or UN/EDIFACT UNG) is not
changed.

Note: The UN/EDIFACT functional group header (UNG) is optional.

Maintaining the functional group guarantees that the payment file retains the
Company 2 information. As some originators do not care what happens to the original
ISA, it is imperative that each bank in the chain ensure that the X12 GS contains 820s (or
PAYEXTs) that are destined for only one Company 2. This rule makes it so that the
banks only have to look at the ISA for addressing information, and the receiving
company can respond with a Functional Acknowledgment (X12 997 or UN/EDIFACT
CONTL) to the originator.

End-to-end scenario

In a sample end-to-end scenario, the steps are:

1 Company 1 sends a payment file to Bank 1 using an ISA in which:

Sender ID = Company 1

Receiver ID = Company 2

2 Bank 1 does not disturb the ISA, which continues to show:

Sender ID = Company 1

Receiver ID = Company 2

3 Bank 2 does not disturb the ISA, which continues to show:

Sender ID = Company 1

Receiver ID = Company 2
UN/EDIFACT OTD Library User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Overview of UN/EDIFACT Examples of EDI Usage
Note: Banks usually recommend end-to-end scenarios.

In this scenario, both the originator and the beneficiary’s bank are prohibited from
altering the ISA/IEA interchange envelope information. This makes it mandatory for
the originating company to create an ISA envelope, and a separate transmission, for
each destination end point. Unfortunately, this could potentially mean hundreds of
such end points in each accounts payable cycle.

X12 recommends using the point-to-point addressing in the interchange header and
end-to-end addressing in the functional group header.

SeeBeyond’s EDI enveloping features in the eXchange product automatically remove
both the interchange and functional group envelopes and re-create the point-to-point
envelopes. Special handling is required to override this default.

2.2.4 Payment Acknowledgments
The acknowledgment of the receipt of a payment order is an important issue. Most
corporate originators want to receive at least a Functional Acknowledgment (CONTRL
or 997) from the beneficiary of the payment. The CONTRL is created using the data
about the identity and address of the originator found in the ISA and/or GS segments.

Note: In UN/EDIFACT, CONTRL is a point-to-point acknowledgment.

For examples of UN/EDIFACT and X12 acknowledgments, see Table 7.

Table 7 Types of UN/EDIFACT and X12 Acknowledgments

UN/EDIFACT Envelope X12

CONTRL System Level Acknowledgment (receipt) TA1

CONTRL Function Acknowledgment (point-to-point) 997

Application Advice (end-to-end) 824
UN/EDIFACT OTD Library User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Overview of UN/EDIFACT Key Parts of EDI Processing Logic
2.3 Key Parts of EDI Processing Logic
The five key parts of EDI processing logic are listed in Table 8.

The UN/EDIFACT OTD Library supplies UN/EDIFACT structures, that is, the first
row in the above table. Other parts of the SeeBeyond product suite support the other
functions.

2.3.1. Structures
The UN/EDIFACT OTD Library includes pre-built OTDs for all supported EDIFACT
versions. These OTDs can be viewed in the OTDEditor, but cannot be modified.

Customization

To customize the OTD structure—for example, to add a segment or loop—you must
first generate a SEF file (typically using a third-party tool, such as the EDISIM tool from
Foresight Corporation). You then use the SEFWizard to generate the OTD.

2.3.2. Validations, Translations, Enveloping, Acknowledgments
Within each OTD are Java methods and Java bean nodes for handling validation; and
the marshal and unmarshal methods of the two envelope OTDs handle enveloping and
de-enveloping. No pre-built translations are supplied with the OTD libraries; these can
be built in an eGate GUI called the Java Collaboration Editor (JCE).

Note: In eGate, X12 translations are called collaborations.

EDIFACT OTDs have validations and translations, but a validation does not generate
an acknowledgment transaction. Instead, it generates a string.

Table 8 Key Terms of EDI Processing

Term Description
Language
Analogy

eGate Component

structures format, segments, loops syntax rules OTD elements and fields

validations data contents “edit” rules semantic rules validation methods

translations (also
called mappings)

reformatting or
conversion

translation collaborations

enveloping header and trailer
segments

envelope for a
written letter

the special “envelope” OTDs:
FunctionalGroupEnv and
InterchangeEnv

acks acknowledgments return receipt specific acknowledgment
elements in the OTD
UN/EDIFACT OTD Library User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 3

Installation

This chapter provides information on the installation procedure for the SeeBeyond
UN/EDIFACT OTD Library and shows the resulting Project Explorer structure for the
OTDs. It includes general installation information and installation instructions.

At this release, the UN/EDIFACT OTD Library includes templates for the versions
shown in Table 9.

Some additional points to note:

Each product .sar file (UN_EDIFACT_OTD_Lib_v?_D##?.sar) requires from 10 MB
to 20 MB disk space; thus, the combined disk space required to load all thirty .sar
files (that is, v3 and v4 of D.93A through D.01B) is approximately 420 MB.

3.1 System Requirements
The UN/EDIFACT OTD Library is available on the following operating systems:

Microsoft Windows 2000, Windows XP, and Windows 2003

Sun Solaris 8 and Solaris 9

IBM AIX 5L Versions 5.1 and 5.2

HP-UX 11.0, 11i (PA-RISC), and 11i V2.0 (11.23)

HP Tru64 UNIX Version 5.1A

Red Hat Linux 8 (Intel x86 version) and Advanced Server 2.1 (Intel x86 version)

Table 9 UN/EDIFACT Versions Supported

D.93A
D.95A
D.95B
D.96A
D.96B

D.97A
D.97B
D.98A
D.98B
D.99A
D.99B

D.00A
D.00B
D.01A
D.01B
UN/EDIFACT OTD Library User’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Installation Installation Procedure
3.2 Installation Procedure
The steps for installing the UN/EDIFACT OTD Library are the same as for other
products in the ICAN Suite. You can find general product installation instructions in
the ICAN Suite Installation Guide, which is available on the product media and can also
be accessed via Enterprise Manager (Documentation tab).

Whenever a UN/EDIFACT OTD Library is installed, the Project Explorer tree adds a
new project under the SeeBeyond > OTD Library > EDIFACT hierarchy. Each version
of UN/EDIFACT, such as D.01B or D.99A, has a separate folder.

3.2.1. Uploading to the Repository
Before you begin

A Repository server must be running on the machine where you will be uploading
the product files.

You must have already uploaded eGate.sar, and you must have already uploaded a
license.sar file that includes a license for the UN/EDIFACT OTD library product.

To upload product files to the Repository

1 On a Windows machine, start a Web browser and point it at the machine and port
where the Repository server is running:

http://<hostname>:<port>

where
<hostname> is the name of the machine running the Repository server.
<port> is the starting port number assigned when the Repository was installed.

For example, the URL you enter might look like either of the following:
http://localhost:12001
http://serv1234.company.com:19876

2 In the Enterprise Manager SeeBeyond Customer Login page, enter your username
and password.

3 When Enterprise Manager responds, click the ADMIN tab.

4 In the ADMIN page, click Browse.

5 In the Choose file dialog, click ProductsManifest.xml, and then click Open.

6 In the ADMIN page, click Submit.

The lower half of the ADMIN page lists the product files you are licensed to upload.

7 In the Products column, find the UN EDIFACT OTD Library v# D##? product, and
then click the Browse button for it.

8 In the Choose file dialog, click the corresponding UN_EDIFACT_OTD_Lib[...].sar
file, and then click Open.

9 Repeat the previous two steps for other .sar files you want to upload, such as other
OTD libraries, eXchange, or SME Web Services.

10 In the ADMIN page, click the button.
UN/EDIFACT OTD Library User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Installation Installation Procedure
3.2.2. Refreshing Enterprise Designer
Before you begin

You must have already downloaded and installed Enterprise Designer, and a
Repository server must be running on the machine where you uploaded the
OTD Library product files.

To refresh an existing installation of Enterprise Designer

1 Start Enterprise Designer.

2 On the Tools menu, click Update Center.

The Update Center shows a list of components ready for updating. See Figure 2.

Figure 2 Update Center Wizard: Select Modules to Install

3 Click Add All (the button with a doubled chevron pointing to the right).

All modules move from the Available/New pane to the Include in Install pane.

4 Click Next and, in the next window, click Accept to accept the license agreement.

5 When the progress bars indicate the download has ended, click Next. Review the
certificates and installed modules, and then click Finish. When prompted to restart
Enterprise Designer, click OK.

When Enterprise Designer restarts, the installation of the UN/EDIFACT OTD
Library is complete, and you can use all library templates that you installed.
UN/EDIFACT OTD Library User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Installation UN/EDIFACT Library Templates
If you need help on details of product installation, see the SeeBeyond ICAN Suite
Installation Guide.

3.3 UN/EDIFACT Library Templates

3.3.1. UN/EDIFACT OTDs
Since there is an OTD for each EDIFACT transaction, installation of each version of
EDIFACT includes a large number of OTDs. Figure 3 shows some of the OTDs installed
for a specific version of EDIFACT (in this case, version D01B); compare with Table 2 on
page 13.

Figure 3 Some of the Transaction Set Structures for EDIFACT Version D00A

3.3.2. Transaction Template Names

The names for the EDIFACT templates are designed to assist you in quickly locating the
file you want. The name for each transaction template is composed of the same set of
elements in the same sequence. The names are constructed as follows:

eDF_ abbreviated name of standard, followed by underscore

v3_
v4_

syntax version, followed by underscore

D00A messaging version, followed by underscore

APERAK_ six-character abbreviation for transaction name, followed
by underscore

full transaction name

_Full
UN/EDIFACT OTD Library User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Installation UN/EDIFACT Library Templates
Examples:

The name for an APERAK (Application error and acknowledgment message) in
messaging version D00A, syntax version 4 is
eDF_v4_D00A_APERAK_ApplErroAndAcknMess_Full

The name for an OSTENQ (Order status enquiry message) in messaging version
D01B, syntax version 3 is eDF_v3_D01B_OSTENQ_ORdeStatEnquMess_Full

eGate Project Explorer Display of UN/EDIFACT OTDs

The UN/EDIFACT OTD Library is organized into a hierarchy as follows: In eGate
Project Explorer, under the main SeeBeyond folder, the OTD Library folder holds all
OTD Libraries you have installed, each in its own folder. Within the EDIFACT folder
are two folders, v3 and v4, corresponding to the two supported syntax versions. Both of
these syntax-version folders has a folder for each library you have installed, such as
D95A, D95B, D96A, ..., D01B. Each D##? folder contains nearly 200 OTDs,
corresponding to the nearly 200 transactions that have been defined.

The Project Explorer hierarchy is shown in Table 10.

Additional information

For complete information on the purpose and function of each transaction, see the
United Nations’ World Wide Web site that deals with the UN/EDIFACT standards.
The URL for this Internet site is:

http://www.unece.org/trade/untdid/welcome.htm

Note: These URL directions reflect the United Nations Web site setup at this publication.
If the site has changed setup and/or URL, see the current United Nations home page
for directions.

Table 10 OTD Library Hierarchy in Project Explorer

Folder Directory Contents

SeeBeyond Components built and supplied by SeeBeyond

OTD Library Folders for each OTD library you have installed

EDIFACT Folders specific to the EDIFACT OTD Library.

v3 Folders specific to EDIFACT syntax version v3

D... OTDs for version D...

v4 Folders specific to EDIFACT syntax version v4

D95A OTDs for version D95A

D... OTDs for version D...

D01B OTDs for version D01B
UN/EDIFACT OTD Library User’s Guide 35 SeeBeyond Proprietary and Confidential

http://www.unece.org/trade/untdid/welcome.htm

Chapter 4

UN/EDIFACT OTD Library

This chapter lists sample file and directory names in the UN/EDIFACT OTD Library; it
also describes how to test data in specific files.

4.1 UN/EDIFACT Files and Directories
This section introduces the different types of UN/EDIFACT data elements, the
files that hold the elements, and the directories that contain the files in SeeBeyond’s
UN/EDIFACT OTD Library. It also provides links to the tables in this chapter that list
the data elements and files alphabetically and gives a breakdown of the files in each
directory.

4.1.1 UN/EDIFACT Batch, Interactive, and Envelope File Names
UN/EDIFACT message names all have six alphabetic characters, while UN/EDIFACT
segment names are all three characters long.

UN/EDIFACT data has:

Six-letter message names

Three-letter segment names

The messages and segments must be combined with the v3 and v4 envelopes in order
for an electronic computer-to-computer transmission of data to take place. Each of these
data elements, along with their function, is listed alphabetically in the tables in this
section.

4.1.2 Existing v3 Envelope Names
A v3 envelope only contains batch envelope segments. The v3 envelope file names do
not change very often. See the following tables for a listing of the v3 envelope names
and their functions:

Figure 4 on page 37

Table 11 on page 37

Table 12 on page 37
UN/EDIFACT OTD Library User’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
UN/EDIFACT OTD Library UN/EDIFACT Files and Directories
Note: These envelopes can be used with any version of the UN/EDIFACT OTD
messages.

The v3 header and trailer envelope segments have set locations within the EDI
structure, and must appear in the order as shown below. The lines on the left side of the
diagram show how headers and footers work in pairs (see Figure 4).

Figure 4 v3 Envelope Segments

Name Tag Status

Service String Advice UNA Conditional

Interchange Header UNB Mandatory

Group Header UNG Conditional

Message Header UNH Mandatory

Message Body Segments

Message Trailer UNT Mandatory

Group Trailer UNE Conditional

Interchange Trailer UNZ Mandatory

Table 11 v3 Control Message

v3 Control Message Name v3 Control Message Function

CONTRL Syntactically acknowledges or rejects, with error indication,
a received interchange, functional group, or message.

Table 12 v3 Batch Segments

v3 Segment Name v3 Segment Function

UCD Data Element Error Indication

UCF Functional Group Response

UCI Interchange Response

UCM Message Response

UCS Segment Error Indication

UNA Delimiter List

UNB Interchange Header

UNE Functional Group Trailer

UNG Functional Group Header

UNH Message Header

UNS Section Control
UN/EDIFACT OTD Library User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
UN/EDIFACT OTD Library UN/EDIFACT Files and Directories
Note: UNA is optional and seldom used.

4.1.3 Existing v4 Envelope Names
A v4 envelope can have either batch or interactive envelope segments. For an interactive
envelope to be used, one or more dialogues must occur either concurrently or sequentially
between two or more parties. A dialogue consists of a pair of interleaved UN/EDIFACT
interchanges:

Initiator interchange

Responder interchange

The v4 envelope file names do not change very often. See the following tables for a
listing of the v4 batch and interactive envelope names and their functions:

Figure 5 on page 39

Figure 6 on page 39

Table 13 on page 40

Table 14 on page 40

Note: These envelopes can be used with any version of the UN/EDIFACT OTD
messages.

The v4 batch header and trailer envelope segments have set locations within the EDI
structure, and must appear in the order as shown below. The lines on the left side of the
diagram show how headers and footers work in pairs (see Figure 5).

UNT Message Trailer

UNZ Interchange Trailer

Table 12 v3 Batch Segments (Continued)

v3 Segment Name v3 Segment Function
UN/EDIFACT OTD Library User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
UN/EDIFACT OTD Library UN/EDIFACT Files and Directories
Figure 5 v4 Batch Envelope Segments

Note: The v4 batch envelope segments are the same as the v3 batch envelope segments.

The v4 interactive header and trailer envelope segments have set locations within the
EDI structure, and must appear in the order as shown below. The lines on the left side
of the diagram show how headers and footers work in pairs (see Figure 6).

Figure 6 v4 Interactive Envelope Segments

Name Tag Status

Service String Advice UNA Conditional

Interchange Header UNB Mandatory

Group Header UNG Conditional

Message Header UNH Mandatory

Message Body Segments

Message Trailer UNT Mandatory

Group Trailer UNE Conditional

Interchange Trailer UNZ Mandatory

Name Tag Status

Service String Advice UNA Conditional

Interactive Interchange Header UIB Mandatory

Interactive Message Header UIH Mandatory

Message Body Segments

Interactive Message Trailer UIT Mandatory

Interactive Interchange Trailer UIZ Mandatory
UN/EDIFACT OTD Library User’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
UN/EDIFACT OTD Library UN/EDIFACT Files and Directories
Table 13 v4 Control Message

v4 Control Message Name v4 Control Message Function

AUTACK Authentication function. Authenticates sent, or provides
secure acknowledgment of received interchanges, groups,
messages, or packages. It is sent by either the originator of at
least one UN/EDIFACT structure or by a party authorized by
the originator to act in its behalf.

Acknowledgment function. An acknowledgment message
sent by either the recipient of one or more secure UN/
EDIFACT structures or by a party authorized by the recipient
to act in its behalf.

Note that the acknowledgment function applies only to
UN/EDIFACT structures that have been secured.

CONTRL
(for batch EDI)

Syntactically acknowledges or rejects, with error indication,
a received interchange, functional group, message, or pack-
age.

A maximum of two CONTRL messages, the first of which is
optional, can be sent in response to a received interchange:

After an interchange, the first message provides an
indication of the receipt.
After the syntax check of the subject interchange, the
second message reports the action taken.

KEYMAN Provides certificate management and a security key. There
are two types of keys:

A secret key that is used with symmetric algorithms.
A public or private key used with asymmetric algorithms.

Table 14 v4 Segments

v4 Segment Name v4 Segment Function

UCD Data Element Error Indication

UCF Group Response

UCI Interchange Response

UCM Message / Package Response

UCS Segment Error Indication

UGH Anti-Collision Segment Group Header

UGT Anti-Collision Segment Group Trailer

UIB Interactive Interchange Header

UIH Interactive Message Header

UIR Interactive Status

UIT Interactive Message Trailer
UN/EDIFACT OTD Library User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
UN/EDIFACT OTD Library UN/EDIFACT Files and Directories
Note: UNA is optional and seldom used.

UIZ Interactive Interchange Trailer

UNA Delimiter List

UNB Interchange Header

UNE Group Trailer

UNG Group Header

UNH Message Header

UNO Object Header

UNP Object Trailer

UNS Section Control

UNT Message Trailer

UNZ Interchange Trailer

USA Security Algorithm

USB Secured Data Identification

USC Certificate

USD Data Encryption Header

USE Security Message Relation

USF Key Management Function

USH Security Header

USL Security List Status

USR Security Result

UST Security Trailer

USU Data Encryption Trailer

USX Security References

USY Security On References

Table 14 v4 Segments (Continued)

v4 Segment Name v4 Segment Function
UN/EDIFACT OTD Library User’s Guide 41 SeeBeyond Proprietary and Confidential

Chapter 5

Working With the EDIFACT OTDs

This chapter provides information on additional features built into the EDIFACT OTDs,
and instructions on working with the OTDs and on testing them.

See “Viewing an EDIFACT OTD in the OTD Editor“ on page 43.

It also provides information on using the Java methods provided within the OTDs, and
other general information about using the UN/EDIFACT OTD Library.

See “Setting the Delimiters“ on page 46 and “Methods for Getting and
Setting“ on page 46. (Further details are provided in Chapter 5 “Java Methods
for X12 OTDs” on page 52.)

To test that your data is being mapped correctly by the OTD, and that the data is valid
based on definitions and business rules, you can run performValidation() within the
Java Collaboration Editor.

See “Using Validation in the Java Collaboration Editor“ on page 48.

Information on limitations you should know about the X12 OTD Library is provided in
“Limitations of EDIFACT OTDs“ on page 52.

5.1 Importing .jar Files
If your project contains one or more Java collaborations that access bean nodes for
reporting errors and exceptions of EDIFACT OTDs (see “Bean Nodes for Reporting
Errors and Exceptions“ on page 53), then you must import a .jar file as described
below.

Before you begin

You must have completed all the other installation steps.

A Repository server must be running on the machine where you uploaded the
EDIFACT OTD Library product files.

You must have already created a project.

To import com.stc.otd.sefimpl.jar

1 Start Enterprise Designer and, if necessary, create a project.

2 Right-click the project and, on the popup context menu, point at New and click File.
X12 OTD Library User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Working With the EDIFACT OTDs Viewing an EDIFACT OTD in the OTD Editor
3 Navigate to the folder <ican50>\edesigner\usrdir\modules\ext\sefwizard\, select
com.stc.otd.sefimpl.jar, and click Import. See Figure 7.

Figure 7 Importing sefimpl.jar

4 Later, in the Java Collaboration Editor, you will use the Import JAR file button
on the tool palette to add sefimpl.jar to a collaboration that uses the X12 OTD.

5.2 Viewing an EDIFACT OTD in the OTD Editor
To view an EDIFACT OTD (or any other OTD), simply double-click the name in the
Project Explorer tree. The OTD Editor automatically opens to display it. Within the
OTD Editor, you can expand or contract a parent node by single-clicking the icon to its
left, or by double-clicking the node name. For some of the items, help is available by
hovering your cursor over the item.

For elements other than bean nodes, the following naming conventions apply:

Each element name begins with E
Each segment loop name begins with Loop

An example of an X12 270 transaction in the OTD Editor is shown in Table 8 on page 45.
The OTD shown in Figure 8 is x12_4010_270_EligCoveOrBeneInqu_Full. Some of its
parent nodes are fully expanded, some partly so, and some full collapsed. In this
example, the root node is X12_4010_270_EligCoveOrBeneInqu_Outer. This pattern
holds for all the X12 OTDs: the root node name is the same as the OTD name, but with
the first letter in upper case (X instead of x) and the string _Outer replacing the string
X12 OTD Library User’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Working With the EDIFACT OTDs Viewing an EDIFACT OTD in the OTD Editor
_Full. Under this root node, the first node is the ISA header node, and then comes the
node X12_4010_270_EligCoveOrBeneInqu_Inner, which references the enveloping
information.
X12 OTD Library User’s Guide 44 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Working With the EDIFACT OTDs Viewing an EDIFACT OTD in the OTD Editor
Figure 8 X12 270 Transaction in the OTD Editor
X12 OTD Library User’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Working With the EDIFACT OTDs Setting the Delimiters
5.3 Setting the Delimiters
The OTDs must include some way for delimiters to be defined so that they can be
mapped successfully from one OTD to another. The X12 delimiters are as follows:

Data Element Separator (default is an asterisk)

Subelement Separator/Component Element Separator (default is a colon)

Repetition Separator (version 4020 and later) (default is a plus sign)

Segment Terminator (default is a tilde)

Two delimiters—Repetition Separator and Subelement Separator—are explicitly
specified in the interchange header segment (ISA). The other two delimiters are
implicitly defined within the structure of the ISA, by their first usage. For example,
after the fourth character defines the Data Element Separator, the same character is
used subsequently to delimit all data elements; and after the 107th character defines the
Segment Terminator, the same character is used subsequently to delimit all segments.

Because the OTD automatically detects delimiters while unmarshaling, you need not
(and should not) specify delimiters for an incoming message; any delimiters that are set
before unmarshaling are ignored, and the unmarshal() function picks up the delimiter
being used in the ISA segment of the incoming message.

You can specify delimiters in two ways:

You can set the Subelement Separator and Repetition Separator from the
corresponding elements within the ISA segment.

You can set the delimiters in the Java Collaboration Editor using bean nodes that are
provided in the OTDs. Specific information on using bean nodes to get and set these
delimiter values is provided in Chapter 5:

elementSeparator (see getElementSeparator on page 58)

subelementSeparator (see getSubelementSeparator on page 62)

repetitionSeparator (see getRepetitionSeparator on page 60)

segmentTerminator (see getSegmentTerminator on page 61)

If the input data is already in X12 format, you can use the “get” methods to get the
delimiters from the input data. If the collaboration is putting the data into X12 format,
you can use the “set” methods to set the delimiters in the output OTD. See “Methods
for Getting and Setting“ on page 46.

5.4 Methods for Getting and Setting
Bean nodes automatically have get and set methods associated with them; in other
words, a bean node named theBeanNode has a method getTheBeanNode() to read the
current value and another method setTheBeanNode() to write a value. Therefore, do
not assume that a node is read/write merely because it has a setNode() method.
X12 OTD Library User’s Guide 46 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
Working With the EDIFACT OTDs Methods for Getting and Setting
5.4.1. Bean Nodes for Getting and Setting Data
The following bean nodes are available under the root node and at the xxx_Outer,
xxx_Inner, and xxx (transaction set) levels:

elementSeparator(char)— to get or set the element separator.

inputSource(byte[])— to get the byte array of original input data source.

repetitionSeparator(char)— to get or set the repetition separator.

segmentCount(int)— to get the segment count at the current level. This node is
also available for segment loops.

segmentTerminator(char)— to get or set the segment terminator.

subelementSeparator(char)— to get or set the subelement separator.

xmlOutput(boolean)—to set whether the output should be in XML format.

The following bean node is available from the Loop elements:

segmentCount(int)— to get the segment count at the current level. This node is
also available under the root node and at the xxx_Outer, xxx_Inner, and xxx
(transaction set) levels.

5.4.2. Bean Nodes for Getting Errors and Results
The following bean nodes are available under the root node and at the xxx_Outer,
xxx_Inner, and xxx (transaction set) levels.

allErrors(String[])— to get errors during unmarshaling from the input data and
validation results on message and envelopes, in the format of a String array that
combines (without duplication) the results from ICValidationResult(),
FGValidationResult(), TSValidationResult(), and msgValidationResult().

ICValidationResult(com.stc.otd.runtime.check.sef.ICError[])— to get the
interchange envelope validation result, in the format of an array of
com.stc.otd.runtime.check.sef.ICError objects.

FGValidationResult(com.stc.otd.runtime.check.sef.FGError[])— to get the
functional group envelope validation result in the format of an array of
com.stc.otd.runtime.check.sef.FGError objects.

TSValidationResult(com.stc.otd.runtime.check.sef.TSError[])— to get the
transaction set envelope validation result in the format of an array of
com.stc.otd.runtime.check.sef.TSError objects.

maxDataError(int)— to get or set the maximum number of validation errors to be
reported, where -1 means “no limit.”

msgValidationResult(com.stc.otd.runtime.check.sef.DataError[])— to get
validation errors, in the format of com.stc.otd.runtime.check.sef.DataError objects.

unmarshalErrors(com.stc.otd.runtime.check.sef.DataError[])— to get errors that
occurred during unmarshaling from the input data, in the format of
X12 OTD Library User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Working With the EDIFACT OTDs Using Validation in the Java Collaboration Editor
com.stc.otd.runtime.check.sef.DataError objects. The presence of any objects in this
array implies that isUnmarshalComplete() is false.

5.5 Using Validation in the Java Collaboration Editor
Each of the OTDs in the X12 OTD library includes a Java method for the purpose of
validating your data:

performValidation()

Information on using this method from within Java Collaboration Editor (JCE) GUI is
provided below. Technical information on the Java methods is provided in “Java
Methods for X12 OTDs“ on page 52.

5.5.1. Creating a Collaboration Rule to Validate an OTD
The elements that are part of an OTD can be dragged and dropped when two or more
OTDs are opened in the Java Collaboration Editor; see the eGate Integrator User’s Guide
for more information. A field on the input (left) side pane can be dragged to a field in
the output (right) pane. This action, when highlighted in the Business Rules pane,
displays the rule in the Rule Properties pane.

To access the method, right-click the node and, on the context popup menu, click
Select a method to call. See Figure 9.

Figure 9 Accessing a Method in an X12 OTD

The methods available depend on the node you select. In particular, if you right-click
the root node of the OTD, one of the methods available to you is performValidation();
see Figure 10.
X12 OTD Library User’s Guide 48 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
Working With the EDIFACT OTDs Alternative Formats: ANSI and XML
Figure 10 Accessing the performValidation Method from the Root Node

The performValidation() method can be used to validate an EDIFACT message at run
time. If the OTD content is found to be invalid, the appropriate error bean nodes are
populated (see “Bean Nodes for Reporting Errors and Exceptions“ on page 53).
Therefore, the complete set of bean nodes for reporting errors and exceptions can
only be accessed after the call to performValidation().

Note: Although validation is a useful tool to ensure that data conforms to the definitions
and business rules, be aware that it significantly impacts performance.

5.6 Alternative Formats: ANSI and XML
All the EDIFACT OTDs accept either standard ANSI X12 format or XML format as
input, by default; and, by default, output from a collaboration that uses messages from
an EDIFACT OTD is in UN/EDIFACT format. However, there is a Java method
available for setting the output to XML:

setXMLOutput (boolean isXML)

If you want to set the collaboration to output XML format, use setXmlOutput(true); in
other words, set the xmlOutput bean node to the value true.

5.6.1. XML Format for EDIFACT
Since there is no de facto XML standard for EDIFACT as yet, the SeeBeyond EDIFACT
OTD Library uses Open Business Objects for EDI (OBOE) as the XML format for
EDIFACT.

The XML EDIFACT DTD is shown in Figure 11.
X12 OTD Library User’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
Working With the EDIFACT OTDs Alternative Formats: ANSI and XML
X12 OTD Library User’s Guide 50 SeeBeyond Proprietary and Confidential

Figure 11 XML EDIFACT DTD

<!ELEMENT envelope (segment, segment?, functionalgroup+, segment)>
<!ATTLIST envelope format CDATA #IMPLIED>

<!ELEMENT functionalgroup (segment, transactionset+, segment)>

<!ELEMENT transactionset (table+)>
<!ATTLIST transactionset code CDATA #REQUIRED>
<!ATTLIST transactionset name CDATA #IMPLIED>

<!ELEMENT table (segment)+>
<!ATTLIST table section CDATA #IMPLIED>

<!ELEMENT segment ((element | composite)+, segment*)>
<!ATTLIST segment code CDATA #REQUIRED>
<!ATTLIST segment name CDATA #IMPLIED>

<!ELEMENT composite (element)+>
<!ATTLIST composite code CDATA #REQUIRED>
<!ATTLIST composite name CDATA #IMPLIED>

<!ELEMENT element (value)>
<!ATTLIST element code CDATA #REQUIRED>
<!ATTLIST element name CDATA #IMPLIED>

<!ELEMENT value (#PCDATA)>
<!ATTLIST value description CDATA #IMPLIED>

Chapter 5 Section 5.6
Working With the EDIFACT OTDs Alternative Formats: ANSI and XML
Figure 12 shows an EDIFACT 997 Functional Acknowledgment, in XML format.

Figure 12 EDIFACT 997 Functional Acknowledgment—XML

An example of the same transaction, an EDIFACT 997 Functional Acknowledgment,
using standard ANSI format, is shown in Figure 13.

Figure 13 EDIFACT 997 Functional Acknowledgment—ANSI Format
X12 OTD Library User’s Guide 51 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Working With the EDIFACT OTDs Possible Differences in Output When Using Pass-Through
5.7 Possible Differences in Output When Using Pass-
Through

If you are using pass-through, the output file contains essentially the same data as the
input file.

Certain differences in output, based on variations in acceptable interpretation of the
information, are acceptable, provided that the data conforms to the formats specified
for the elements. For example:

If the input file includes a six-digit date, the output file might represent this as an
eight-digit value. For example, 040715 in the input file might be represented as
20040705 in the output file.

The number of trailing zeros after a decimal point might vary. For example, an
input value of 10.000 might be represented as 10 in the output file.

The reason these changes occur is that, during pass-through, certain data fields are
parsed and stored as Java objects other than strings; for example, Date or Double.

The actual value of all the information must remain the same.

5.8 Limitations of EDIFACT OTDs

5.8.1. Memory Requirements
When using an EDIFACT OTD, set the maximum heap size to more than 128MB for
Enterprise Designer and the OTD tester; a value of 256MB is recommended. If settings
are 128MB or less, and multiple messages are processed simultaneously (such as during
FTP batch upload of messages), a NullPointerException can occur.

To set the heap size in Enterprise Designer: On the Tools menu, click Options.

Figure 14 Setting the Maximum Heap Size
X12 OTD Library User’s Guide 52 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.8
Working With the EDIFACT OTDs Limitations of EDIFACT OTDs
5.8.2. Delayed Unmarshaling
For performance reasons, the unmarshal() method does not unmarshal the entire
message. Instead, it does the following:

Unmarshals the incoming message at the segment level. In other words, the OTD
checks for all relevant segments and reports any missing or extra segments.

Reports trailing delimiter for elements and composites.

Elements within a segment are not unmarshaled until an element in that segment is
accessed in the collaboration using a getXxx() method.

5.8.3. Errors and Exceptions
For all EDIFACT OTDs, including the two envelope OTDs, if the incoming message
cannot be parsed (for example, if the OTD cannot find the ISA segment), then the
unmarshal() method throws a com.stc.otd.runtime.UnmarshalException.

You can also use the isUnmarshalComplete() method to learn whether unmarshal()
executed without reporting any errors. Successful completion does not guarantee that
the OTD instance is free of unmarshal exceptions within segments, however, since
elements are not unmarshaled until the first getElementXxxx() method of a segment is
encountered (see “Delayed Unmarshaling“ on page 53). Encountering this triggers an
automatic background unmarshal of the entire segment, and any problems with the
segment will be appended in allErrors, unmarshalErrors, and msgValidationResult.
Note that the value returned by isUnmarshalComplete() is not influenced by the
outcome of the automatic background unmarshal; instead, its value reflects what was
set by the explicit invocation of the unmarshal() method.

It is an error to use the setXxx method if bean node Xxx is read-only. The system may
throw compile exceptions if this is attempted.

If trailing element separators are found inside a segment

In the initial unmarshaling process, the OTD tries to parse the message based on the
segment sequence defined in the input metadata (SEF) file. At the same time, however,
it also checks for the presence of one or more trailing element separators inside the
segment. If found, error arrays such as for unmarshalErrors are populated accordingly.
Trailing element separators do not affect data parsing. Immediately after unmarshal() is
invoked, therefore, if isUnmarshalComplete() returns true, then the error arrays for
unmarshalErrors either contain no entries or else contain only errors of trailing element
separators; if it returns false, the error arrays contain errors other than those of trailing
element separators.

See “Bean Nodes for Reporting Errors and Exceptions“ on page 53.
X12 OTD Library User’s Guide 53 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.8
Working With the EDIFACT OTDs Limitations of EDIFACT OTDs
5.8.4. Special Methods for Error Classes
The toString() and marshal() methods of the following error classes cannot be
implemented via the GUI, and have to be hand-coded:

com.stc.otd.runtime.check.sef.DataError

com.stc.otd.runtime.check.sef.TSError

com.stc.otd.runtime.check.sef.FGError

com.stc.otd.runtime.check.sef.ICError

Also see “Bean Nodes for Reporting Errors and Exceptions“ on page 53.
X12 OTD Library User’s Guide 54 SeeBeyond Proprietary and Confidential

Chapter 6

Java Methods for EDIFACT OTDs

This chapter lists and explains the bean nodes and Java methods that are used to extend
the functionality of the OTDs in the UN/EDIFACT OTD Library.

Note: For detailed information about the OTD Editor and the Java Collaboration Editor,
see the eGate Integrator User’s Guide.

6.1 Using the OTD Editor to View and Test an OTD
The OTD Editor allows you to load, view, and test any OTD. You cannot edit UN/
EDIFACT OTDs; however, you can view the OTD structure and validate it against
sample data using the OTD Tester.

In an UN/EDIFACT OTD, all elements begin with an “E.” For example:

E0001_1_SyntIden (the first element of the composite “S001”)

Note: If an item in an OTD starts with a “Loop”, it is a segment loop (for example:
LoopRFF_5_Refe).

To open an OTD

1 In the OTD Editor, choose File and then click Open.

2 Navigate to the appropriate directory.
For example: etd\templates\edifact\edifact_d01a\v3

3 Select an .xsc file and click Open. See Figure 15.

Note: The root name of the node carries “Outer” on the end of it, the same value as was
used in the command-line utility.
UN/EDIFACT OTD Library User’s Guide 55 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Java Methods for EDIFACT OTDs Using the OTD Editor to View and Test an OTD
Figure 15 Example of an .xsc File in the OTD Editor

To test OTDs against sample data using the OTD Editor

For information on how to test OTDs, see the eGate Integrator User’s Guide.

6.1.1 Delimiters
UN/EDIFACT uses six delimiters. These delimiters, which the user can get and set
using Java methods, are:

Component data element separator

Data element separator

Decimal notation

Release indicator

Reserved for future use

Segment terminator
UN/EDIFACT OTD Library User’s Guide 56 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Methods for EDIFACT OTDs Methods
To see an example of these elements, see the example shown in Figure 15. For example:
setDefaultEdifactDelimiters.

6.1.2 Using the Collaboration Rules Editor to Validate an OTD
The elements that are part of an OTD can be dragged and dropped when two or more
OTDs are opened in the Collaboration Rules Editor (see the eGate Integrator User’s Guide
for more information). A field in the Source pane can be dragged to a field in the
Destination Events pane. This action, when highlighted in the Business Rules pane,
displays the rule in the Rule Properties pane.

The “validate” method nodes in an .xsc file can be used to validate an UN/EDIFACT
message at run time. The methods return a string containing description(s) about any
invalid data elements, segments, segment loops, envelopes, et cetera. Although
validation should be used to ensure that data is good, be aware that validation
significantly impacts performance.

6.2 Methods
The templates in the UN/EDIFACT OTD Library contain the Java methods that allow
you to set and get the delimiters, which in turn extend the functionality of the EDIFACT
OTD Library.

6.2.1 Java Methods to Set or Get Delimiters
Each %%% (such as com.stc.edifact_v3_d95B.EDF_...Outer, which could represent
com.stc.edifact_v3_d95B.EDF_D01A_BAPLTE_BaypPlanTotalNumbMessOuter)
serves as the class for the following methods. Use these methods to set or get the
default delimiters for each UN/EDIFACT OTD Template Library.

The com.stc.edifact_v3_d95B.EDF_...Outer class extends com.stc.jcsre.EDFOTDImpl
and implements com.stc.jcsre.OTD.

The com.stc.edifact_v3_d95B.EDF_...Outer methods are:

setDefaultEdifactDelimiters on page 58

getSegmentTerminator on page 58

setSegmentTerminator on page 59

getElementSeparator on page 60

setElementSeparator on page 60

getSubelementSeparator on page 61

setSubelementSeparator on page 61

getRepetitionSeparator on page 62

setRepetitionSeparator on page 63
UN/EDIFACT OTD Library User’s Guide 57 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Methods for EDIFACT OTDs Methods
The UN/EDIFACT OTD Library also includes the following custom method for testing
the validation Collaboration:

validate on page 63

setDefaultEdifactDelimiters

Description

Sets the current delimiters to the default UN/EDIFACT delimiters:

segmentTerminator = '

elementSeparator = +

subelementSeparator = :

repetitionSeparator = *

Syntax

public void setDefaultEdifactDelimiters()

Parameters

None

setDefaultEdifactDelimiters Constants

None

Returns

Void

Throws

None

Example

com.stc.edifact_v3_d95B.EDF_..._...Outer myOTD=new com.stc.edifact_v3_d95B.
EDF_..._Outer();
......
......
myOTD.setDefaultEdifactDelimiters();

getSegmentTerminator

Description

Gets the segmentTerminator character.

Syntax

public char getSegmentTerminator()

Parameters

None
UN/EDIFACT OTD Library User’s Guide 58 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Methods for EDIFACT OTDs Methods
getSegmentTerminator Constants

None

Returns

char
Returns the segment terminator character.

Throws

None

Example

com.stc.edifact_v3_d95B.EDF_..._...Outer myOTD=new com.stc.edifact_v3_d95B.
EDF_..._Outer();
......
......
char segTerm=myOTD.getSegmentTerminator();

setSegmentTerminator

Description

Sets the segmentTerminator character.

Syntax

public void setSegmentTerminator(char c)

Parameters

setSegmentTerminator Constants

None

Returns

Void

Throws

None

Example

com.stc.edifact_v3_d95B.EDF_..._...Outer myOTD=new com.stc.edifact_v3_d95B.
EDF_..._Outer();
......
......
char c='~';
myOTD.setSegmentTerminator(c);

Name Type Description

c char The segmentTerminator character
to be set.
UN/EDIFACT OTD Library User’s Guide 59 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Methods for EDIFACT OTDs Methods
getElementSeparator

Description

Gets the elementSeparator character.

Syntax

public char getElementSeparator()

Parameters

None

getElementSeparator Constants

None

Returns

char
Returns the element separator character.

Throws

None

Example

com.stc.edifact_v3_d95B.EDF_..._...Outer myOTD=new com.stc.edifact_v3_d95B.
EDF_..._Outer();
......
......
char elmSep=myOTD.getElementSeparator();

setElementSeparator

Description

Sets the elementSeparator character.

Syntax

public void setElementSeparator(char c);

Parameters

setElementSeparator Constants

None

Returns

Void

Name Type Description

c char The elementSeparator character to
be set.
UN/EDIFACT OTD Library User’s Guide 60 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Methods for EDIFACT OTDs Methods
Throws

None

Examples

com.stc.edifact_v3_d95B.EDF_..._...Outer myOTD=new com.stc.edifact_v3_d95B.
EDF_..._Outer();
......
......
char c='+';
myOTD.setElementSeparator(c);

getSubelementSeparator

Description

Gets the subelementSeparator character.

Syntax

public char getSubelementSeparator()

Parameters

None

getSubelementSeparator Constants

None

Returns

char
Returns the getSubelement character.

Throws

None

Example

com.stc.edifact_v3_d95B.EDF_..._...Outer myOTD=new com.stc.edifact_v3_d95B.
EDF_..._Outer();
......
......
char subeleSep=myOTD.getSubelementSeparator();

setSubelementSeparator

Description

Sets the SubelementSeparator character.

Syntax

public void setSubelementSeparator(char c)
UN/EDIFACT OTD Library User’s Guide 61 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Methods for EDIFACT OTDs Methods
Parameters

setSubelementSeparator Constants

None

Returns

Void

Throws

None

Example

com.stc.edifact_v3_d95B.EDF_..._...Outer myOTD=new com.stc.edifact_v3_d95B.
EDF_..._Outer();
......
......
char c=':';
myOTD.setSubelementSeparator(c);

getRepetitionSeparator

Description

Gets the RepetitionSeparator character.

Syntax

public char getRepetitionSeparator()

Parameters

None

getRepetitionSeparator Constants

None

Returns

char
Returns the getRepetitionSeparator character.

Throws

None

Examples

com.stc.edifact_v3_d95B.EDF_..._...Outer myOTD=new com.stc.edifact_v3_d95B.
EDF_..._Outer();
......
......
char repSep=myOTD.getRepetitionSeparator();

Name Type Description

c char The SubelementSeparator
character to be set.
UN/EDIFACT OTD Library User’s Guide 62 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Methods for EDIFACT OTDs Methods
setRepetitionSeparator

Description

Sets the RepetitionSeparator character.

Syntax

public void setRepetitionSeparator(char c)

Parameters

setRepetitionSeparator Constants

None

Returns

Void

Throws

None

Example

com.stc.edifact_v3_d95B.EDF_..._...Outer myOTD=new com.stc.edifact_v3_d95B.
EDF_..._Outer();
......
......
char c='*';
myOTD.setRepetitionSeparator(c);

validate

Description

Invoking validate with no parameters validates the OTD content in memory.

Invoking validate with a single parameter, which must be of type boolean, validates
the OTD content, either immediately after unmarshaling or in memory. When the value
of the parameter is false, this method works exactly as validate with no parameters.
When the value of the parameter is true, this method can be used to validate length
information in the input data file.

Syntax (no parameters)

public java.lang.String validate()

Syntax (one parameter)

public String validate(boolean original)

Name Type Description

c char The RepetitionSeparator character
to be set.
UN/EDIFACT OTD Library User’s Guide 63 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Java Methods for EDIFACT OTDs Methods
Parameters

validate Constants

None.

Returns

java.lang.String
A description of the errors found in the data. If there are no errors, the string is null.

Throws

None.

Examples

com.stc.edifact_v3_d95B.EDF_..._...Outer myOTD=new com.stc.edifact_v3_d95B.
EDF_..._Outer();
......
......
string msg=myOTD.validate();

com.stc.edifact_v3_d95B.EDF_..._...Outer myOTD=new com.stc.edifact_v3_d95B.
EDF_..._Outer();
......
......
string msg=myOTD.validate(true);

Name Type Description

original boolean If true, validates the OTD content
right after unmarshaling. If false,
validates the OTD in memory.
UN/EDIFACT OTD Library User’s Guide 64 SeeBeyond Proprietary and Confidential

Index
Index

A
acknowledgments

as part of EDI logic 30
payment 29

B
batch messages

defined in Version D00A 13
bean nodes 46

allErrors 47
elementSeparator 46, 47
FGValidationResult 47
ICValidationResult 47
inputSource 47
maxDataError 47
msgValidationResult 47
repetitionSeparator 46, 47
segmentCount 47
segmentTerminator 46, 47
subelementSeparator 46, 47
TSValidationResult 47
unmarshalErrors 47
xmlOutput 47

C
com.stc.otd.sefimpl.jar

(illustrated) 43
importing 43

compatible systems 8
Component Element Separator 46
components

of UN/EDIFACT 11
control messages 20

v4 40
conventions

path name separator 10
Windows 9

D
Data Element Separator 46
DataError 54

delimiters 12, 46, 56
Component Element Separator 46
Data Element Separator 46
Repetition Separator 46
Segment Terminator 46
Subelement Separator 46

document
conventions 9
organization 9

E
EDI

payment processing
exchange of payment orders 23
exchange of remittance information 23
formats for transporting a payment 24
functions a payment must perform 24
issuance of payment order 24
overview 22
routing of remittance information 23

processing
key terms 30

EDISIM 30
element separators

trailing 53
elementSeparator 46
end-to-end scenario 28
envelopes 20
enveloping

as part of EDI logic 30
enveloping scenarios

end-to-end 28
point-to-point 28
understanding 26

error arrays
and unmarshalErrors() 47, 53

error classes
hand-coding 54

Event Type Definition
message structure in EDI 12

F
FGError 54
files

SEF 12
Foresight Corporation 30

G
getAllErrors 47
getElementSeparator 47
UN/EDIFACT OTD Library User’s Guide 65 SeeBeyond Proprietary and Confidential

Index
getFGValidationResult 47
getICValidationResult 47
getInputSource 47
getMaxDataError 47
getMsgValidationResult 47
getRepetitionSeparator 47
getSegmentCount 47
getSegmentTerminator 47
getSubelementSeparator 47
getTSValidationResult 47
getUnmarshalErrors 47

H
hierarchy in Project Explorer

UN/EDIFACT OTDs 35

I
ICError 54
implementation 30
installation 32–34
isUnmarshalComplete 53

J
Java methods 57

getAllErrors 47
getElementSeparator 47
getFGValidationResult 47
getICValidationResult 47
getInputSource 47
getMsgValidationResult 47
getRepetitionSeparator 47
getSegmentCount 47
getSegmentTerminator 47
getSubelementSeparator 47
getTSValidationResult 47
getUnmarshalErrors 47
isUnmarshalComplete 53
marshal 54
performValidation 48
setElementSeparator 47
setInputSource 47
setMaxDataError 47
setRepetitionSeparator 47
setSegmentCount 47
setSegmentTerminator 47
setSubelementSeparator 47
setXmlOutput 47
toString 54
unmarshal 53

K
key terms

EDI processing 30

L
library templates 34
loops 19

M
marshal

limitations of 54
message names

size 36
message structure

defined 12
OTD in eGate 12

methods 57
for getting values 46
for setting values 46

O
OTD names 34
OTDs, working with 42–54

P
payment acknowledgment 29
Payment Order

comparison between X12 and UN/EDIFACT 26
performValidation 48
point-to-point scenario 28

R
reader 8
Remittance Advice

comparison between X12 and UN/EDIFACT 26
Repetition Separator 46
repetitionSeparator 46
runtime exceptions

UnmarshalException 53

S
SEF file 30
sefimpl.jar

(illustrated) 43
adding to Collaboration 43
importing 42

SEFWizard 30
UN/EDIFACT OTD Library User’s Guide 66 SeeBeyond Proprietary and Confidential

Index
segment names
size 36

segment table
example of 18

Segment Terminator 46
segmentTerminator 46
setElementSeparator 47
setInputSource 47
setMaxDataError 47
setRepetitionSeparator 47
setSegmentCount 47
setSegmentTerminator 47
setSubelementSeparator 47
setXmlOutput 47, 49
structures 30

as part of EDI logic 30
Subelement Separator 46
subelementSeparator 46
supporting documents 10
system requirements 31

T
template installation 32–34
toString

limitations of 54
toStringl

limitations of 54
trailing element separators 53
transaction set structures 34
translations

as part of EDI logic 30
TSError 54

U
UN/EDIFACT

compared with X12 22
Payment Order/Remittance Advice 26

components of 11
envelopes

compared to X12 20
overview 11
point-to-point example 25
types of acknowledgments

compared to X12 29
United Nations URL

for additional information 18
UN/EDIFACT ETD Library 21

directories
overview of 36

files
overview of 36

UN/EDIFACT OTD Library

hierarchy in Project Explorer 35
UN/EDIFACT OTDs

hierarchy in Project Explorer 35
UNA segment 20
United Nations

URL for additional information 18
unmarshal

limitations of 53
unmarshalErrors() 47
UnmarshalException 53
unmarshaling

background 53
delayed 53
initial and extended 53

V
v3

batch control messages 37
batch segments 37
required for every EDIFACT message 36

v4
control messages 40
required for every EDIFACT message 36
segments 40

validations
as part of EDI logic 30

Version D00A 13

W
working with OTDs 42–54
writing conventions 9

X
X12

compared with UN/EDIFACT 22
EDIFACT comparison

of Payment Order/Remittance Advice 26
end-to-end example 25
envelopes

compared to UN/EDIFACT 20
OTD names 34
types of acknowledgments

compared to UN/EDIFACT 29
X12 library templates 34
X12 template installation 32–34
UN/EDIFACT OTD Library User’s Guide 67 SeeBeyond Proprietary and Confidential

	UN/EDIFACT OTD Library User’s Guide
	Contents
	List of Figures
	List of Tables
	Introduction
	1.1 Overview
	1.2 Intended Reader
	1.3 Compatible Systems
	1.4 Document Organization
	1.5 Writing Conventions
	Additional Conventions

	1.6 Supporting Documents
	1.7 SeeBeyond Web Site
	1.8 UN/ECE Web Site

	Overview of UN/EDIFACT
	2.1 UN/EDIFACT Components
	2.1.1 Message Structure
	2.1.2 Messages
	2.1.3 Segment Table
	2.1.4 Loops
	2.1.5 Envelopes
	UNA segment
	Control messages

	2.1.6 Delimiters
	2.1.7 OTD Libraries
	2.1.8 UN/EDIFACT Versus X12
	2.1.9 Security

	2.2 Examples of EDI Usage
	2.2.1 Overview of EDI Payments Processing
	Exchange of remittance information
	Routing of remittance information
	Exchange of payment orders
	Functions a payment must perform
	Formats for transporting a payment
	Issuance of a payment order

	2.2.2 Payment-Related EDI Transactions
	X12
	UN/EDIFACT

	2.2.3 Understanding Enveloping Scenarios
	Point-to-point scenario
	End-to-end scenario

	2.2.4 Payment Acknowledgments

	2.3 Key Parts of EDI Processing Logic
	2.3.1. Structures
	2.3.2. Validations, Translations, Enveloping, Acknowledgments

	Installation
	3.1 System Requirements
	3.2 Installation Procedure
	3.2.1. Uploading to the Repository
	3.2.2. Refreshing Enterprise Designer

	3.3 UN/EDIFACT Library Templates
	3.3.1. UN/EDIFACT OTDs
	3.3.2. Transaction Template Names
	eGate Project Explorer Display of UN/EDIFACT OTDs

	UN/EDIFACT OTD Library
	4.1 UN/EDIFACT Files and Directories
	4.1.1 UN/EDIFACT Batch, Interactive, and Envelope File Names
	4.1.2 Existing v3 Envelope Names
	4.1.3 Existing v4 Envelope Names

	Working With the EDIFACT OTDs
	5.1 Importing .jar Files
	5.2 Viewing an EDIFACT OTD in the OTD Editor
	5.3 Setting the Delimiters
	5.4 Methods for Getting and Setting
	5.4.1. Bean Nodes for Getting and Setting Data
	5.4.2. Bean Nodes for Getting Errors and Results

	5.5 Using Validation in the Java Collaboration Editor
	5.5.1. Creating a Collaboration Rule to Validate an OTD

	5.6 Alternative Formats: ANSI and XML
	5.6.1. XML Format for EDIFACT

	5.7 Possible Differences in Output When Using Pass- Through
	5.8 Limitations of EDIFACT OTDs
	5.8.1. Memory Requirements
	5.8.2. Delayed Unmarshaling
	5.8.3. Errors and Exceptions
	5.8.4. Special Methods for Error Classes

	Java Methods for EDIFACT OTDs
	6.1 Using the OTD Editor to View and Test an OTD
	To open an OTD
	To test OTDs against sample data using the OTD Editor
	6.1.1 Delimiters
	6.1.2 Using the Collaboration Rules Editor to Validate an OTD

	6.2 Methods
	6.2.1 Java Methods to Set or Get Delimiters
	setDefaultEdifactDelimiters
	getSegmentTerminator
	setSegmentTerminator
	getElementSeparator
	setElementSeparator
	getSubelementSeparator
	setSubelementSeparator
	getRepetitionSeparator
	setRepetitionSeparator
	validate

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	X

