
HIPAA OTD Library User’s
Guide

Release 5.0
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

SeeBeyond, e*Gate, e*Way, and e*Xchange are the registered trademarks of SeeBeyond Technology Corporation in the United States
and/or select foreign countries. The SeeBeyond logo, SeeBeyond Integrated Composite Application Network Suite, eGate, eWay,
eInsight, eVision, eXchange, eView, eIndex, eTL, ePortal, eBAM, and e*Insight are trademarks of SeeBeyond Technology Corporation.
The absence of a trademark from this list does not constitute a waiver of SeeBeyond Technology Corporation’s intellectual property
rights concerning that trademark. This document may contain references to other company, brand, and product names. These
company, brand, and product names are used herein for identification purposes only and may be the trademarks of their respective
owners.

© 2004 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20040604052556.
HIPAA OTD Library User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents
Contents

List of Tables 6

List of Figures 7

Chapter 1

Introduction 8
Overview 8

Intended Reader 8

Supported Operating Systems 9

Writing Conventions 10
Additional Conventions 10

Supporting Documents 10

SeeBeyond Web Site 10

Chapter 2

HIPAA Overview 11
Introduction to HIPAA 11

What Is HIPAA? 11
Trading Partner Agreements 13
Sample Scenario 13
Batch and Real-Time Transactions 14

Batch 14
Real Time 14

Data Overview 14
Acknowledgment 15

Additional Information 15

Chapter 3

HIPAA OTD Library Installation 16
HIPAA OTD Libaries 16
HIPAA OTD Library User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents
Installation Procedure 17
Uploading files to the Repository 17
Refreshing Enterprise Designer 18

HIPAA Library OTDs 19
Understanding HIPAA OTD Names 19
2000_Addenda OTDs 20
2000_Standard OTDs 21

After Installation 22
Increasing the ICAN Enterprise Designer Heap Size 22

Chapter 4

Working with HIPAA OTDs 24
Viewing a HIPAA OTD with the OTD Editor 24

Setting the Delimiters 26

Methods for Getting and Setting 27

Using Validation in the Java Collaboration Editor 28
Creating a Collaboration Rule to Validate a HIPAA OTD 28
Bean Nodes for Getting Errors and Results 29

HIPAA OTD Components Naming Conventions 30
Envelope and Transaction Names 30
Segment Loop Names 30
Segment Names 30
Composite names 31
Element names 31

Extending OTDs 31

Alternative Formats: ANSI and XML 31
XML Format for HIPAA X12 32

Possible Differences in Output When Using Pass-Through 34

Chapter 5

Bean Nodes and Java Methods 35
Bean Nodes 35

Delimiter Related Bean Nodes 35
inputSource Related Bean Nodes 35
Validation and Error Processing Related Bean Nodes 36

Java Methods 37
check 37
isUnmarshalComplete 37
marshalToBytes 38
marshalToString 38
performValidation 38
reset 39
setDefaultX12Delimiters 39
HIPAA OTD Library User’s Guide 4 SeeBeyond Proprietary and Confidential

Contents
unmarshalFromBytes 40
unmarshalFromString 40
getSegmentTerminator 41
setSegmentTerminator 41
getElementSeparator 42
setElementSeparator 42
getSubelementSeparator 43
setSubelementSeparator 44
getRepetitionSeparator 44
setRepetitionSeparator 45
getUnmarshalErrors 46
getMsgValidationResult 46
getAllErrors 47
getICValidationResult 48
getFGValidationResult 49
getTSValidationResult 49

Appendix A

ASC X12 Overview 51
Introduction to X12 51

What Is ASC X12? 51
What Is a Message Structure? 52

Components of an X12 Envelope 52
Data Elements 53
Segments 53
Loops 53
Delimiters 53

Structure of an X12 Envelope 54
Transaction Set (ST/SE) 57
Functional Group (GS/GE) 57
Interchange Envelope (ISA/IEA) 58
Control Numbers 59

ISA13 (Interchange Control Number) 60
GS06 (Functional Group Control Number) 60
ST02 (Transaction Set Control Number) 60

Acknowledgment Types 60
TA1, Interchange Acknowledgment 60
997, Functional Acknowledgment 60
Application Acknowledgments 61

Key Parts of EDI Processing Logic 61
Structures 62
Trading Partner Agreements 62

Additional Information 62

Index 63
HIPAA OTD Library User’s Guide 5 SeeBeyond Proprietary and Confidential

List of Tables

HIPAA OTD Library User’s Guide 6 SeeBeyond Proprietary and Confidential

List of Tables

Table 1 Writing Conventions 10

Table 2 HIPAA X12 Transactions 12

Table 3 NCPDP-HIPAA Transaction Codes 12

Table 4 2000_Addenda OTDs 20

Table 5 2000_Standard OTDs 21

Table 6 Default Delimiters in X12 OTD Library 54

Table 7 Key Parts of EDI Processing 61

List of Figures

HIPAA OTD Library User’s Guide 7 SeeBeyond Proprietary and Confidential

List of Figures

Figure 1 Sample HIPAA Transaction Exchange 14

Figure 2 Update Center Wizard: Select Modules to Install 18

Figure 3 Options Setup window 23

Figure 4 2000_Addenda OTDs 25

Figure 5 The OTD Editor - Expanded Node 26

Figure 6 Accessing a Method in an X12 OTD 28

Figure 7 Accessing the performValidation Method from the Root Node 29

Figure 8 XML X12 DTD 32

Figure 9 X12 997 Functional Acknowledgment—XML 33

Figure 10 X12 997 Functional Acknowledgment—ANSI Format 33

Figure 11 X12 Envelope Schematic 55

Figure 12 X12 997 Segment Table 55

Figure 13 X12 997 (Functional Acknowledgment) Viewed in OTD Editor 56

Figure 14 Example of a Transaction Set Header (ST) 57

Figure 15 Example of a Transaction Set Trailer (SE) 57

Figure 16 Example of a Functional Group Header (GS) 58

Figure 17 Example of a Functional Group Trailer (GE) 58

Figure 18 Example of an Interchange Header (ISA) 59

Figure 19 Example of an Interchange Trailer (IEA) 59

Chapter 1

Introduction

This chapter provides an introduction to the HIPAA OTD Library User’s Guide.

The Health Insurance Portability and Accountability Act of 1996 (HIPAA) is a law that,
among other things, mandates certain standards specifically for the health care
industry. For transactions related to health care, HIPAA uses a customization of X12.
For pharmaceutical transactions, the HIPAA standard uses NCPDP (National Council
for Prescription Drug Programs) transactions.

This book includes an overview of HIPAA, and then specific information relating to the
installation and contents of SeeBeyond’s HIPAA OTD Library.

A general overview of X12 is also included in Appendix A.

1.1 Overview
Each of the eGate™ Object Type Definitions (OTD) libraries contains sets of pre-built
structures for industry-standard formats.

The HIPAA OTD library is a feature of the SeeBeyond™ eBusiness Integration Suite,
and contains message definitions for HIPAA messages. This document gives a brief
overview of HIPAA and the HIPAA message structures provided with the eGate
Integrator, and provides information on installing and using the HIPAA OTD libraries.

1.2 Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the SeeBeyond ICAN Suite (such as eGate Integrator and
eXchange Integrator), to have familiarity with Windows operations and administration,
and to be thoroughly familiar with Microsoft Windows graphical user interfaces.
HIPAA OTD Library User’s Guide 8 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction Supported Operating Systems
1.3 Supported Operating Systems
The eGate HIPAA OTD Library is available on the following platforms:

Microsoft Windows 2000, Windows XP, and Windows 2003
Sun Solaris 8 and Solaris 9
IBM AIX 5L Version 5.1 and AIX 5L Version 5.2
HP-UX 11.0 and HP-UX 11i (PA-RISC)
HP Tru64 UNIX Version 5.1A
Red Hat Linux 8 (Intel Version) and Linux Advanced Server 2.1 (Intel version)

Note: UNIX Systems—This guide uses the backslash (“\”) as the separator within path
names. If you are working on a UNIX system, make the appropriate substitutions.
HIPAA OTD Library User’s Guide 9 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction Writing Conventions
1.4 Writing Conventions
The following writing conventions are observed throughout this document.

Additional Conventions

Windows Systems

For the purposes of this guide, references to “Windows” will apply to Microsoft
Windows Server 2003, Windows XP, and Windows 2000.

Path Name Separator

This guide uses the backslash (“\“) as the separator within path names. If you are
working on a UNIX or HP NonStop system, please make the appropriate substitutions.

1.5 Supporting Documents
The following SeeBeyond documents provide additional information that might prove
useful to you.

1.6 SeeBeyond Web Site
The SeeBeyond Web site is your best source for up-to-the-minute product news and
technical support information. The site’s URL is:

http://www.seebeyond.com

Table 1 Writing Conventions

Text Convention Example

Names of buttons, files,
menus and menu items,
icons, parameters, variables,
methods, and objects

Bold text Click OK to save and close.
Select the logicalhost.exe file.
On the File menu, click Exit.
Enter the timeout value.
Use the getClassName() method.

Command-line arguments,
code samples

Fixed font. Variables are
shown in bold italic.

bootstrap -f -p password

Hypertext links Blue text For more information, see “Writing
Conventions” on page 10.
http://www.seebeyond.com

X12 OTD Library User’s Guide

eGate Integrator Installation Guide

UN/EDIFACT OTD Library User’s Guide
HIPAA OTD Library User’s Guide 10 SeeBeyond Proprietary and Confidential

http://www.seebeyond.com

Chapter 2

HIPAA Overview

This chapter provides the following information:

An overview of HIPAA, including general information

A list of the specific transactions that comprise the HIPAA standard

The structure of HIPAA envelopes, data elements, and syntax.

2.1 Introduction to HIPAA
The following sections provide an introduction to HIPAA and the message structures
that are included in the HIPAA OTD Library.

2.1.1. What Is HIPAA?
HIPAA is an acronym for the Health Insurance Portability and Accountability Act of
1996. This Act is designed to protect patients. Among other things, it makes
specifications affecting standards of treatment and privacy rights. It provides a number
of standardized transactions that can be used for such things as a healthcare eligibility
inquiry or a healthcare claim. HIPAA legislates that all of the healthcare industry will
be on the same implementation timetable. All institutions performing electronic
healthcare insurance transactions must implement these standardized transactions by
October 2002 unless they have obtained an extension to October 2003.

More transactions will be added for later implementation.

HIPAA legislation mandates, among other items:

Standards for maintaining patient confidentiality and helping to ensure privacy by
mandating security options.

Use of a national payer ID.

Use of a national provider ID.

HIPAA regulations affect many organizations dealing with the medical industry, such
as:

Automated clearing houses (ACHs)

Transaction processors

Value-added networks (VANs)
HIPAA OTD Library User’s Guide 11 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.1
HIPAA Overview Introduction to HIPAA
Payers

Health insurance providers

Provider management organizations

For transactions relating to such things as health care claims, the HIPAA standard uses
a range of customized X12 transactions.

For transactions relating to prescriptions, HIPAA uses NCPDP (National Council for
Prescription Drug Programs) transactions.

The HIPAA X12 standard, being based on X12, includes loops, segments, and data
elements. In addition, it mandates consistent use of these elements across all HIPAA
implementation guides.

The X12 portion of the HIPAA OTD Library provides Object Type Definitions for all
nine standard X12 transactions that have been adopted by HIPAA, as listed in Table 2.

These transactions are based on the October 1997 X12 standard; that is, Version 4,
Release 1, Sub-release 0 (004010).

The NCPDP portion of the HIPAA OTD Library provides request and response
transactions for all the HIPAA-approved NCPDP transaction codes, as listed in Table 3.

Table 2 HIPAA X12 Transactions

Number Name

270 Eligibility Coverage or Benefit Inquiry

271 Eligibility Coverage or Benefit Information

276 Health Care Claim Status Request

277 Health Care Claim Status Notification

278 Two versions: Health Care Services Review Information and Request for
Review/Response to Request

820 Payment Order Remittance Advice

834 Benefit Enrollment and Maintenance

835 Health Care Claim Payment Advice

837 Health Care Claim (three versions: Professional, Dental, and Institutional)

Table 3 NCPDP-HIPAA Transaction Codes

Code Transaction Name

E1 Eligibility Verification

B1 Billing

B2 Reversal

B3 Rebill

P1 Prior Authorization Request and Billing

P2 Prior Authorization Reversal

P3 Prior Authorization Inquiry
HIPAA OTD Library User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.1
HIPAA Overview Introduction to HIPAA
Note: While the HIPAA OTD Library includes both X12 and NCPDP OTDs, this
document primarily discusses the HIPAA X12 OTDs. For more information about
the NCPDP-HIPAA OTD Library, see the NCPDP OTD Library User’s Guide.

2.1.2. Trading Partner Agreements
Although the regulations mandated by HIPAA are very strict and specific, it is still
important to have trading partner agreements for individual trading relationships.

Following the HIPAA standard ensures that transactions comply with the regulations
mandated by the government. HIPAA requirements are completely described in the
HIPAA implementation guide for each transaction, and must not be modified by a
trading partner.

However, there is room for negotiation in terms of the specific processing of the
transactions in each trading partner’s individual system. It is normal for trading
partners to have individual agreements that supplement the standard guides. The
specific processing of the transactions in each trading partner’s individual system
might vary between sites. Because of this, additional documentation that provides
information about the differences is helpful to the site’s trading partners and simplifies
implementation. For example, while a certain code might be valid in an
implementation guide, a specific trading partner might not use that code in
transactions. It would be important to include that information in a trading partner
agreement.

2.1.3. Sample Scenario
An example of a HIPAA X12 transaction exchange between a health care provider and a
payer is shown in Figure 1.

P4 Prior Authorization Request Only

N1 Information Reporting

N2 Information Reporting Reversal

N3 Information Reporting Rebill

C1 Controlled Substance Reporting

C2 Controlled Substance Reporting Reversal

C3 Controlled Substance Reporting Rebill

Table 3 NCPDP-HIPAA Transaction Codes (Continued)

Code Transaction Name
HIPAA OTD Library User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.1
HIPAA Overview Introduction to HIPAA
Figure 1 Sample HIPAA Transaction Exchange

2.1.4. Batch and Real-Time Transactions
The HIPAA standard supports the sending and receiving of messages in both batch and
real-time (interactive) modes.

Batch

In batch mode, transactions are grouped together and multiple transactions are sent in
a single message. The batch can either go directly to the receiver or via a clearing house.
The connection does not remain open while the receiver processes the messages. If
there is an expected response transaction (for example, a 271 in response to a 270) the
receiver creates the response transaction offline and then sends it.

Real Time

If a transaction is processed in real time, it is sent individually. Transactions that require
an immediate response are normally sent in real time. In real-time mode, the sender
sends the request transaction, either directly or through a clearing house, and the
connection is kept open while the receiver processes the transaction and returns a
response transaction. Response times are typically no more than one minute, and often
less.

In real-time mode, the receiver must send a response; either the expected response
transaction, such as a 271 in response to a 270, or a standard acknowledgment such as
the 997.

2.1.5. Data Overview
HIPAA X12 transactions all use the standard components of the X12 standard, covered
in Appendix A, “ASC X12 Overview” on page 51.

Specifically, the transactions use the following elements:

Segments

Data elements

Looping structures

Healthcare
Provider Payer

Claim Payment/Advice (835 or other)

Health Care Claim Status Request (276)

Health Care Claim Status Response (277)

Claim (837 or other format)

Functional Acknowledgment (997 or other format)

Functional Acknowledgment (997 or other format)
HIPAA OTD Library User’s Guide 14 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
HIPAA Overview Additional Information
2.1.6. Acknowledgment
The HIPAA X12 transactions either have specific response transactions or use the
standard 997 Functional Acknowledgment.

The 997 Functional Acknowledgment is used by the following transactions:

837 (sent by the payer to acknowledge claim receipt)

277 (sent by the provider to acknowledge receipt of a Health Care Payer Unsolicited
Claim Status request)

277 (sent by the provider to acknowledge receipt of a Health Care Claim Request for
Additional Information)

835 (sent by the provider to acknowledge receipt of a Health Care Claim Payment/
Advice notification)

2.2 Additional Information
For more information on HIPAA, visit the following Web sites:

http://www.cms.hhs.gov

http://www.hipaa-dsmo.org

http://www.wedi.org/

http://www.claredi.com/

http://aspe.os.dhhs.gov/admnsimp/

For more information on NCPDP, visit the official NCPDP Web site at this address:

http://www.ncpdp.org/

Note: This information is correct at the time of going to press; however, SeeBeyond has no
control over these sites. If you find the links are no longer correct, use a search
engine to search for HIPAA.
HIPAA OTD Library User’s Guide 15 SeeBeyond Proprietary and Confidential

http://www.hipaa-dsmo.org
http://aspe.os.dhhs.gov/admnsimp/
http://www.wedi.org/
http://www.claredi.com/
http://www.ncpdp.org/
http://www.cms.hhs.gov

Chapter 3

HIPAA OTD Library Installation

This chapter provides information on installing the HIPAA OTD library, and shows the
resulting Project Explorer Tree for the OTDs. It includes general installation information
and step-by-step installation instructions.

Use of the HIPAA OTD Library requires installation of at least one of the available .sar
files found on the installation CD ROM.

Licensed files that are available for installation include:

HIPAA_2000_Standard_OTD_Lib.sar

HIPAA_2000_Addenda_OTD_Lib.sar

3.1 HIPAA OTD Libaries
Installation of the complete HIPAA OTD Library creates two subdirectories under the
SeeBeyond > OTD Library > HIPAA hierarchy. Each subdirectory contains twenty
four OTDs and include the following X12 transactions.

2000_Standard – includes HIPAA X12 transactions for the May 1999 and May 2000
standard, and NCPDP transactions.

2000_Addenda – includes HIPAA X12 transactions that are February 2003
amendments to the May 2003 standard (the 00401010A1 Addenda)

Some additional points to note about the HIPAA transactions:

The OTDs only accept messages with all the envelope segment information.

Messages can be batched; however, all the messages in one functional group must
be of the same message type.

Apart from their use by eXchange, OTDs can also be used independently for eGate
collaborations not associated with eXchange.
HIPAA OTD Library User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
HIPAA OTD Library Installation Installation Procedure
3.2 Installation Procedure
The steps for installing the HIPAA OTD Library are the same as for other products in
the ICAN Suite. You can find general product installation instructions in the ICAN Suite
Installation Guide, which is available on the product installation CD-ROM and can also
be accessed via Enterprise Manager (Documentation tab).

3.2.1. Uploading files to the Repository
Before you begin

A Repository server must be running on the machine where you will be uploading
the product files.

You must have already uploaded eGate.sar (for either eGate 5.0.4 or eGate 5.0.3
with appropriate ESRs), and you must have already uploaded a license.sar file that
includes a license for the X12 OTD library product.

To upload product files to the Repository

1 On a Windows machine, start a Web browser and point it at the machine and port
where the Repository server is running:

http://<hostname>:<port>

where
<hostname> is the name of the machine running the Repository server.
<port> is the starting port number assigned when the Repository was installed.

For example, the URL you enter might look like either of the following:
http://localhost:12001
http://serv1234.company.com:19876

2 In the Enterprise Manager SeeBeyond Customer Login page, enter your username
and password.

3 When Enterprise Manager responds, click the ADMIN tab.

4 In the ADMIN page, click Browse.

5 In the Choose file dialog, click ProductsManifest.xml, and then click Open.

6 In the ADMIN page, click Submit.

The lower half of the ADMIN page lists the product files you are licensed to upload.

7 In the Products column, find the HIPAA_2000_Stardard_OTD_Lib product, and
then click the Browse button for it.

8 In the Choose file dialog, click the corresponding
HIPAA_2000_Standard_OTD_Lib.sar file, and then click Open.

9 Repeat the previous two steps for the HIPAA_2000_Addenda_OTD_Lib product.

Note: SMEWebServices.sar is required for such features as encryption/decryption,
signature verification, certificate authentication, and nonrepudiation.

10 In the ADMIN page, click Upload Now.
HIPAA OTD Library User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
HIPAA OTD Library Installation Installation Procedure
3.2.2. Refreshing Enterprise Designer
Before you begin

You must have already downloaded and installed Enterprise Designer, and a
Repository server must be running on the machine where you uploaded the
HIPAA OTD Library product files.

To refresh an existing installation of Enterprise Designer

1 Start Enterprise Designer.

2 On the Tools menu, click Update Center.

The Update Center shows a list of components ready for updating. See Figure 2.

Figure 2 Update Center Wizard: Select Modules to Install

3 Click Add All (the button with a doubled chevron pointing to the right).

All modules move from the Available/New pane to the Include in Install pane.

4 Click Next and, in the next window, click Accept to accept the license agreement.

5 When the progress bars indicate the download has ended, click Next. Review the
certificates and installed modules, and then click Finish. When prompted to restart
Enterprise Designer, click OK.

When Enterprise Designer restarts, the installation of the HIPAA OTD Library is
complete.

If you need help on details of product installation, see the SeeBeyond ICAN Suite
Installation Guide.
HIPAA OTD Library User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
HIPAA OTD Library Installation HIPAA Library OTDs
3.3 HIPAA Library OTDs
This section explains and provides a cross-reference for OTD files found in the HIPAA
OTD Library.

The files include Object Type Definitions for the May 2000 and May 1999 HIPAA
standards and for NCPDP Batch and Telecom transactions. May 1999 files are included
for backwards compatibility only and do not include the more comprehensive
validations of the May 2000 files.

Transactions modified according to rules published in the Federal Register on February
20, 2003 are installed to the same location as the May 2000 files.

3.3.1. Understanding HIPAA OTD Names

The names for the HIPAA OTDs are designed to assist you in quickly locating the file
you want. The name for each transaction OTD is composed of the same set of elements
in the same sequence.

Because Addenda have been created for each of the X12 Implementation Guides
adopted for use under HIPAA and published in May, 2000, naming conventions
differentiate between the original file set of May, 2000 and the Addenda published in
February, 2003.

The federal Health and Human Services web site (www.cms.hhs.gov) describes the
changes of 2003 as follows: “This final rule modifies a number or the electronic
transactions and code sets adopted as national standards under HIPAA, and eliminates
the NDC code set as the standard for all providers except retail pharmacies.”

The names are constructed as follows:

x12_

Identifies the name of the standard used, followed by underscore

004010X092_

Identifies the HIPAA reference number for the transaction—which includes the X12
version—followed by an underscore in the original set or “A1” and then an
underscore in the February 2003 Addenda set. The “92” represents a two-digit
number unique to each transaction type. It can also be 91, 93, 94, 95, 96, 97, or 98).

00_

Identifies the year (00_ for 2000 files and Addenda files).

hipaa_xxx_

Identifies the HIPAA OTD, followed by the transaction ID, and then an underscore.
For 278 and 837 transactions, the format is “hipaaA1_278,” where “A1” represents a
transaction sub-type and “278” or “837” is the transaction type).

Transactions of type 837 (health care claims) are differentiated by Qn appended to
the “hipaa” string, where n is a value of 1, 2, or 3, as follows:

Q1: type 837p (professional)
HIPAA OTD Library User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
HIPAA OTD Library Installation HIPAA Library OTDs
Q2: type 837d (dental)

Q3: type 837i (institutional)

For more information about ASC X12 and its subcommittees, see www.x12.org

Note: “A1” following the string “hipaa” has a different meaning than “A1” following the
ten-digit HIPAA reference number. In the first case, A1 identifies a transaction sub-
type. In the second case, “A1” identifies an Addendum file, one of several Addenda
to the May 2000 standard.

Abbreviation

Identifies the transaction name; for example, HealCareClaiPaym for Health Care
Claim Payment

3.3.2. 2000_Addenda OTDs
The following OTDs are found within the 2000_Addenda subdirectory.

Table 4 2000_Addenda OTDs

OTD Name

x12_004010X061A1_00_hipaa_820_PaymOrdeAdvi

x12_004010X061A1_00_hipaa_820_PaymOrdeAdvi_Full

x12_004010X091A1_00_hipaa_835_HealCareClaiPaym

x12_004010X091A1_00_hipaa_835_HealCareClaiPaym_Full

x12_004010X092A1_00_hipaa_270_EligCoveOrBeneInqu

x12_004010X092A1_00_hipaa_270_EligCoveOrBeneInqu_Full

x12_004010X092A1_00_hipaa_271_EligCoveOrBeneInfo

x12_004010X092A1_00_hipaa_271_EligCoveOrBeneInfo_Full

x12_004010X093A1_00_hipaa_276_HealCareClaiStatRequ

x12_004010X093A1_00_hipaa_276_HealCareClaiStatRequ_Full

x12_004010X093A1_00_hipaa_277_HealCareClaiStatNoti

x12_004010X093A1_00_hipaa_277_HealCareClaiStatNoti_Full

x12_004010X094A1_00_hipaaA1_278_HealCareServReviInfo

x12_004010X094A1_00_hipaaA1_278_HealCareServReviInfo_Full

x12_004010X094A1_00_hipaaA3_278_HealCareServReviInfo

x12_004010X094A1_00_hipaaA3_278_HealCareServReviInfo_Full

x12_004010X095A1_00_hipaa_834_BeneEnroAndMain
HIPAA OTD Library User’s Guide 20 SeeBeyond Proprietary and Confidential

http://www.x12.org

Chapter 3 Section 3.3
HIPAA OTD Library Installation HIPAA Library OTDs
3.3.3. 2000_Standard OTDs
The following OTDs are found within the 2000_Standard subdirectory.

x12_004010X095A1_00_hipaa_834_BeneEnroAndMain_Full

x12_004010X096A1_00_hipaa_q3_837_HealCareClai

x12_004010X096A1_00_hipaa_q3_837_HealCareClai_Full

x12_004010X097A1_00_hipaa_q2_837_HealCareClai

x12_004010X097A1_00_hipaa_q2_837_HealCareClai_Full

x12_004010X098A1_00_hipaa_q1_837_HealCareClai

x12_004010X098A1_00_hipaa_q1_837_HealCareClai_Full

Table 5 2000_Standard OTDs

OTD Name

x12_004010X061_00_hipaa_820_PaymOrdeAdvi

x12_004010X061_00_hipaa_820_PaymOrdeAdvi_Full

x12_004010X091_00_hipaa_835_HealCareClaiPaym

x12_004010X091_00_hipaa_835_HealCareClaiPaym_Full

x12_004010X092_00_hipaa_270_EligCoveOrBeneInqu

x12_004010X092_00_hipaa_270_EligCoveOrBeneInqu_Full

x12_004010X092_00_hipaa_271_EligCoveOrBeneInfo

x12_004010X092_00_hipaa_271_EligCoveOrBeneInfo_Full

x12_004010X093_00_hipaa_276_HealCareClaiStatRequ

x12_004010X093_00_hipaa_276_HealCareClaiStatRequ_Full

x12_004010X093_00_hipaa_277_HealCareClaiStatNoti

x12_004010X093_00_hipaa_277_HealCareClaiStatNoti_Full

x12_004010X094_00_hipaaA1_278_HealCareServReviInfo

x12_004010X094_00_hipaaA1_278_HealCareServReviInfo_Full

x12_004010X094_00_hipaaA3_278_HealCareServReviInfo

x12_004010X094_00_hipaaA3_278_HealCareServReviInfo_Full

x12_004010X095_00_hipaa_834_BeneEnroAndMain

Table 4 2000_Addenda OTDs

OTD Name
HIPAA OTD Library User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
HIPAA OTD Library Installation After Installation
3.4 After Installation
The HIPAA Library must be installed and incorporated into a Project before it can
perform its intended functions. See the eGate Integrator User’s Guide for more
information on incorporating the OTDs into an eGate Project.

3.4.1. Increasing the ICAN Enterprise Designer Heap Size
Due to the size of the HIPAA OTD Libraries, the Enterprise Designer Heap Size may
need to be increased prior to using eGate. A Heap Size that is not increased may result
in an OutOfMemoryError message. To increase the heap size in Enterprise Designer,
you must:

1 From the Enterprise Designer Menu bar, click Tools and select Options. The
Options Setup dialog box appears.

2 Increase the configured heap size for the Enterprise Designer, OTDTester, and JCE
Tester to 512 MB as displayed below.

x12_004010X095_00_hipaa_834_BeneEnroAndMain_Full

x12_004010X096_00_hipaa_q3_837_HealCareClai

x12_004010X096_00_hipaa_q3_837_HealCareClai_Full

x12_004010X097_00_hipaa_q2_837_HealCareClai

x12_004010X097_00_hipaa_q2_837_HealCareClai_Full

x12_004010X098_00_hipaa_q1_837_HealCareClai

x12_004010X098_00_hipaa_q1_837_HealCareClai_Full

Table 5 2000_Standard OTDs

OTD Name
HIPAA OTD Library User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
HIPAA OTD Library Installation After Installation
Figure 3 Options Setup window

3 Click OK to close the Options Setup window, then close and restart Enterprise
Designer to allow your changes to take effect.

If an OutOfMemoryError message occurs while trying to open Enterprise Designer, the
heap size settings may be changed prior to starting the program. In this case, change
the settings in the heapSize.bat file, located in <ICAN_Home>\edesigner\bin (where
<ICAN_Home> is the ICAN install directory). Open heapSize.bat with a text editor and
change the heap size settings from 128 to 512. Save the file and restart Enterprise
Designer.
HIPAA OTD Library User’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 4

Working with HIPAA OTDs

This chapter provides information on additional features built into the HIPAA OTDs,
and includes instructions on working with and testing the OTDs. This chapter also
provides information on using the custom Java methods provided within the OTDs,
and other general information about using the HIPAA OTD Library.

To test that your data is being mapped correctly by the OTD and that the data is valid
based on definitions and business rules, you can run validation within the Java
Collaboration Editor.

Chapter Topics

Viewing a HIPAA OTD with the OTD Editor on page 24

Setting the Delimiters on page 26

Methods for Getting and Setting on page 27

Using Validation in the Java Collaboration Editor on page 28

HIPAA OTD Components Naming Conventions on page 30

Extending OTDs on page 31

Alternative Formats: ANSI and XML on page 31

Possible Differences in Output When Using Pass-Through on page 34

4.1 Viewing a HIPAA OTD with the OTD Editor
The installed HIPAA OTD Library is accessible from the SeeBeyond Enterprise
Designer. To open a HIPAA OTD using the OTD Editor, you must:

1 Expand the OTD Library node from Enterprise Explorer’s Project Explorer tree, and
select the subdirectory you want to view. For this example, the 2000_Addenda
subdirectory is opened.
HIPAA OTD Library User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
Working with HIPAA OTDs Viewing a HIPAA OTD with the OTD Editor
Figure 4 2000_Addenda OTDs

2 Double-click one of the listed OTDs. The OTD Editor appears displaying the
selected OTD. You can expand or contract a node by double-clicking a node name
or by single-clicking the icon handle next to the node name, as seen in Figure 5
below.
HIPAA OTD Library User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Working with HIPAA OTDs Setting the Delimiters
Figure 5 The OTD Editor - Expanded Node

3 OTD properties are viewed and edited from the Properties pane in the upper right
section of the OTD Editor. Properties for each node appears in this pane when
selected.

4.2 Setting the Delimiters
HIPAA OTDs must include some way for delimiters to be defined so that they can be
mapped successfully from one OTD to another. The X12 delimiters are as follows:

Data Element Separator (default is an asterisk)

Subelement Separator/Component Element Separator (default is a colon)

Repetition Separator (version 4020 and later) (default is a plus sign)

Segment Terminator (default is a tilde)

Two delimiters—Repetition Separator and Subelement Separator—are explicitly
specified in the interchange header segment (ISA). The other two delimiters are
implicitly defined within the structure of the ISA, by their first usage. For example,
after the fourth character defines the Data Element Separator, the same character is
used subsequently to delimit all data elements; and after the 107th character defines the
Segment Terminator, the same character is used subsequently to delimit all segments.
HIPAA OTD Library User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Working with HIPAA OTDs Methods for Getting and Setting
Because the OTD automatically detects delimiters while unmarshaling, you need not
(and should not) specify delimiters for an incoming message; any delimiters that are set
before unmarshaling are ignored, and the unmarshal() function picks up the delimiter
being used in the ISA segment of the incoming message.

You can specify delimiters in two ways:

You can set the Subelement Separator and Repetition Separator from the
corresponding elements within the ISA segment.

You can set the delimiters in the Java Collaboration Editor using bean nodes that are
provided in the OTDs. Specific information on using bean nodes to get and set these
delimiter values is provided in Chapter 5:

elementSeparator (see getElementSeparator on page 58)

subelementSeparator (see getSubelementSeparator on page 62)

repetitionSeparator (see getRepetitionSeparator on page 60)

segmentTerminator (see getSegmentTerminator on page 61)

If the input data is already in X12 format, you can use the “get” methods to get the
delimiters from the input data. If the Collaboration is putting the data into X12 format,
you can use the “set” methods to set the delimiters in the output OTD. See “Methods
for Getting and Setting” on page 27.

4.3 Methods for Getting and Setting
Bean nodes automatically have get and set methods associated with them; in other
words, a bean node named theBeanNode has a method getTheBeanNode() to read the
current value and another method setTheBeanNode() to write a value. Therefore, do not
assume that a node is read/write merely because it has a setNode() method.

The following bean nodes are available under the root node and at the xxx_Outer,
xxx_Inner, and xxx (transaction set) levels:

elementSeparator(char)— to get or set the element separator.

inputSource(byte[])— to get the byte array of original input data source.

repetitionSeparator(char)— to get or set the repetition separator.

segmentCount(int)— to get the segment count at the current level. This node is also
available for segment loops.

segmentTerminator(char)— to get or set the segment terminator.

subelementSeparator(char)— to get or set the subelement separator.

xmlOutput(boolean)—to set whether the output should be in XML format.

The following bean node is available from the Loop elements:

segmentCount(int)— to get the segment count at the current level. This node is also
available under the root node and at the xxx_Outer, xxx_Inner, and xxx (transaction
set) levels.
HIPAA OTD Library User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Working with HIPAA OTDs Using Validation in the Java Collaboration Editor
Note: Additional information on methods included in the HIPAA OTD Library are found
in Bean Nodes and Java Methods on page 35.

4.4 Using Validation in the Java Collaboration Editor
Each of the OTDs in the HIPAA OTD library includes a Java method for the purpose of
validating your data:

performValidation()

Information on using this method from within Java Collaboration Editor (JCE) GUI is
provided below. Technical information on the Java methods is provided in “Java
Methods for X12 OTDs” on page 52.

4.4.1. Creating a Collaboration Rule to Validate a HIPAA OTD
The elements that are part of an OTD can be dragged and dropped when two or more
OTDs are opened in the Java Collaboration Editor; see the eGate Integrator User’s Guide
for more information. A field on the input (left) side pane can be dragged to a field in
the output (right) pane. This action, when highlighted in the Business Rules pane,
displays the rule in the Rule Properties pane.

To access the method, right-click the node and, on the context popup menu, click
Select a method to call. See Figure 6.

Figure 6 Accessing a Method in an X12 OTD

The methods available depend on the node you select. In particular, if you right-click
the root node of the OTD, one of the methods available to you is performValidation();
see Figure 7.
HIPAA OTD Library User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Working with HIPAA OTDs Using Validation in the Java Collaboration Editor
Figure 7 Accessing the performValidation Method from the Root Node

The performValidation() method can be used to validate a HIPAA message at run time.
If the OTD content is found to be invalid, the appropriate error bean nodes are
populated (see “Bean Nodes for Reporting Errors and Exceptions” on page 53).
Therefore, the complete set of bean nodes for reporting errors and exceptions can
only be accessed after the call to performValidation().

Note: Although validation is a useful tool to ensure that data conforms to the definitions
and business rules, be aware that it significantly impacts performance.

4.4.2. Bean Nodes for Getting Errors and Results
The following bean nodes are available under the root node and at the xxx_Outer,
xxx_Inner, and xxx (transaction set) levels.

allErrors(String[])— to get errors during unmarshaling from the input data and
validation results on message and envelopes, in the format of a String array that
combines (without duplication) the results from ICValidationResult(),
FGValidationResult(), TSValidationResult(), and msgValidationResult().

ICValidationResult(com.stc.otd.runtime.check.sef.ICError[])— to get the
interchange envelope validation result, in the format of an array of
com.stc.otd.runtime.check.sef.ICError objects.

FGValidationResult(com.stc.otd.runtime.check.sef.FGError[])— to get the
functional group envelope validation result in the format of an array of
com.stc.otd.runtime.check.sef.FGError objects.

TSValidationResult(com.stc.otd.runtime.check.sef.TSError[])— to get the
transaction set envelope validation result in the format of an array of
com.stc.otd.runtime.check.sef.TSError objects.

maxDataError(int)— to get or set the maximum number of validation errors to be
reported, where -1 means “no limit.”

msgValidationResult(com.stc.otd.runtime.check.sef.DataError[])— to get
validation errors, in the format of com.stc.otd.runtime.check.sef.DataError objects.

unmarshalErrors(com.stc.otd.runtime.check.sef.DataError[])— to get errors that
occurred during unmarshaling from the input data, in the format of
HIPAA OTD Library User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.5
Working with HIPAA OTDs HIPAA OTD Components Naming Conventions
com.stc.otd.runtime.check.sef.DataError objects. The presence of any objects in this
array implies that isUnmarshalComplete() is false.

Note: Additional information on methods included in the HIPAA OTD Library are found
in Bean Nodes and Java Methods on page 35.

4.5 HIPAA OTD Components Naming Conventions
Each HIPAA OTD contains envelope, transaction, segment loop, segment, and element
names. In addition, there may be mask names and composite names. The components
in an OTD correspond to the components in the X12 transaction type represented by the
OTD. The component names are very similar to the names listed in the X12
implementation guides, with some abbreviations and additional SEF ordinal number
information to help you determine which instance of a repeating component is
referenced.

Envelope and Transaction Names

Each OTD contains two envelope names and a transaction name. The transaction name
always begins with X12, followed by version information, the transaction type ID, and
a short description. For example, a standard OTD transaction name is
X12_004010X096_00_hipaaQ3_837_HealCareClai. This means it is an X12 transaction,
based on the May 2000 standards, and it is a HIPAA 837 Professional Health Care
Claim.

The transaction name for an Addenda OTD is similar to the standard OTD transaction
name, except the version number always ends with “A1”. For example, an addenda
OTD transaction name is X12_004010X096A1_00_hipaaQ3_837_HealCareClai.

The Interchange Group level is indicated by appending “Outer” to the transaction
name; for example, X12_004010X096_00_hipaaQ3_837_HealCareClaiOuter.

The Functional Group level is indicated by appending “Inner” to the transaction name;
for example, X12_004010X096_00_hipaaQ3_837_HealCareClaiInner.

Segment Loop Names

Segment loop names are similar to the standard names in the X12 implementation
guides, with some qualifiers. Each segment loop name begins with “Loop”, followed by
the name of the segment loop, the segment loop ordinal number based on SEF
specifications, and a short description of the loop (that is, the first four characters of the
loop). An example of a segment name would be Loop2010AB_16_2010, indicating loop
2010AB with an SEF ordinal number of 16.

Segment Names

In the HIPAA X12 OTDs, each segment name begins with the segment ID, followed by
a mask number if applicable, the segment ordinal number based on SEF specifications,
HIPAA OTD Library User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
Working with HIPAA OTDs Extending OTDs
and a short description of the loop. For example, N3_24_AddrInfo indicates the
address information segment, N3, with an SEF ordinal number of 24. Mask numbers
are prefaced by “msk”. SBR_msk2_21_SubsInfo is an example of a segment name with
a mask number.

Segments in Interchange or Functional Group envelopes use a different formatting for
the naming convention. These names begin with “GS” followed by a short description;
for example, GS_FuncGrouHead indicates the Functional Group Header segment.

Composite names

Composite names within the HIPAA OTDs begin with the composite ID, which is
followed by the composite ordinal in the segment and a short description. For example,
C003_3_CompMediProcIden indicates composite C003, Composite Medical Procedure
Identifier, with an ordinal number of 3. Like segments, composite names can include a
mask number, which appears just after the composite ID; for example,
C022_msk1_1_HealCareCodeInfo.

Element names

Element names within the HIPAA OTDs are indicated by the letter “E” at the beginning
of the name. This is followed by the element ID, the element ordinal number in the
segment, and a short description. For example, E1138_1_PayeRespSequNumbCode
represents element 1138, Payer Responsibility Sequence Number Code, which is the
first element in the segment.

4.6 Extending OTDs
Currently SeeBeyond does not support the editing of pre-built OTDs.

4.7 Alternative Formats: ANSI and XML
All the HIPAA OTDs accept either standard ANSI X12 format or XML format as input,
by default; and, by default, output from a collaboration that uses messages from an X12
OTD is in ASC X12 format. However, there is a Java method available for setting the
output to XML:

setXMLOutput (boolean isXML)

If you want to set the collaboration to output XML format, use setXmlOutput(true); in
other words, set the xmlOutput bean node to the value true.
HIPAA OTD Library User’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.7
Working with HIPAA OTDs Alternative Formats: ANSI and XML
HIPAA OTD Library User’s Guide 32 SeeBeyond Proprietary and Confidential

4.7.1. XML Format for HIPAA X12
Since there is no established XML standard for X12 as yet, the SeeBeyond HIPAA X12
OTD Library uses Open Business Objects for EDI (OBOE) as the XML format for X12.

The XML X12 DTD is shown in Figure 8.

Figure 8 XML X12 DTD

<!ELEMENT envelope (segment, segment?, functionalgroup+, segment)>
<!ATTLIST envelope format CDATA #IMPLIED>

<!ELEMENT functionalgroup (segment, transactionset+, segment)>

<!ELEMENT transactionset (table+)>
<!ATTLIST transactionset code CDATA #REQUIRED>
<!ATTLIST transactionset name CDATA #IMPLIED>

<!ELEMENT table (segment)+>
<!ATTLIST table section CDATA #IMPLIED>

<!ELEMENT segment ((element | composite)+, segment*)>
<!ATTLIST segment code CDATA #REQUIRED>
<!ATTLIST segment name CDATA #IMPLIED>

<!ELEMENT composite (element)+>
<!ATTLIST composite code CDATA #REQUIRED>
<!ATTLIST composite name CDATA #IMPLIED>

<!ELEMENT element (value)>
<!ATTLIST element code CDATA #REQUIRED>
<!ATTLIST element name CDATA #IMPLIED>

<!ELEMENT value (#PCDATA)>
<!ATTLIST value description CDATA #IMPLIED>

Chapter 4 Section 4.7
Working with HIPAA OTDs Alternative Formats: ANSI and XML
Figure 9 shows an X12 997 Functional Acknowledgment, in XML format.

Figure 9 X12 997 Functional Acknowledgment—XML

An example of the same transaction, an X12 997 Functional Acknowledgment, using
standard ANSI format, is shown in Figure 10.

Figure 10 X12 997 Functional Acknowledgment—ANSI Format
HIPAA OTD Library User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.8
Working with HIPAA OTDs Possible Differences in Output When Using Pass-Through
4.8 Possible Differences in Output When Using Pass-
Through

If you are using pass-through, the output file contains essentially the same data as the
input file.

Certain differences in output, based on variations in acceptable interpretation of the
information, are acceptable, provided that the data conforms to the formats specified
for the elements. For example:

If the input file includes a six-digit date, the output file might represent this as an
eight-digit value. For example, 010420 in the input file might be represented as
20010420 in the output file.

The number of trailing zeros after a decimal point might vary. For example, an
input value of 10.000 might be represented as 10 in the output file.

The reason these changes occur is that, during pass-through, certain data fields are
parsed and stored as Java objects other than strings; for example, Date or Double.

The actual value of all the information must remain the same.
HIPAA OTD Library User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 5

Bean Nodes and Java Methods

The HIPAA OTD Library contains bean nodes and Java methods that are used to extend
the functionality of the OTDs. This chapter describes these methods, and includes
descriptions of the output generated by the validation and error message output
methods.

5.1 Bean Nodes
All bean nodes have get methods associated with them; in other words, a bean node
named theBeanNode has a method getTheBeanNode() to read the current value.

In addition to the get methods that all bean nodes have, read/write bean nodes have set
methods; that is, the method setTheBeanNode() writes a value.

These methods can be used together or separately. For example, they can allow you to
get the X12 delimiters from the input OTD and set them appropriately for the output
OTD; or they can also allow you to set the delimiters to the default values.

Bean nodes included in the HIPAA OTD Library can be grouped under the following
categories:

Delimiter related

inputSource

Validation and error reporting

5.1.1. Delimiter Related Bean Nodes
Delimiter related bean nodes found in the HIPAA OTD Library include:

segmentTerminator (See getSegmentTerminator on page 41)

ElementSeparator (See getElementSeparator on page 42)

subelementSeparator (See getSubelementSeparator on page 43

repetitionSeparator (See getRepetitionSeparator on page 44)

5.1.2. inputSource Related Bean Nodes
inputSource related bean nodes found in the HIPAA OTD Library include:
HIPAA OTD Library User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.1
Bean Nodes and Java Methods Bean Nodes
xmlOutput—This bean node is of data type boolean. The value determines
whether the marshal() method generates XML output. The default value is false,
which causes the marshal() method to generate delimited output. Setting the value
to true invokes two marshal methods—marshalToBytes() and marshalToString()—
that output data in XML format.

SegmentCount—This bean node is of data type int. It gives the number of
segments at the current node. It is available at the following levels:

xxx_Outer (from ISA to IEA segments)

xxx_Inner (from GS to GE segments)

xxx_<transactionset> (from ST to SE segments)

5.1.3. Validation and Error Processing Related Bean Nodes
Validation and error processing related bean nodes found in the HIPAA OTD Library
include:

msgValidationResult—Data type com.stc.otd.runtime.check.sef.DataError[].This
array stores all exceptions that occur during the validation of the message (in other
words, the segments between, but not including, the ST and SE segments).

unmarshalErrors—Data type com.stc.otd.runtime.check.sef.DataError[]. This
array stores all exceptions that occur when the unmarshal() method is invoked and
while accessing elements of a segment for the first time. If this array has any objects
in it before a call to performValidation has been made, their presence is equivalent
to isUnmarshalComplete() returning false.

ICValidationResult—Data type com.stc.otd.runtime.check.sef.ICError[].This
array stores all exceptions that occur during the validation of the Interchange
envelope.

FGValidationResult—Data type com.stc.otd.runtime.check.sef.FGError[].This
array stores all exceptions that occur during validation of the Function Group
envelope (in other words, the GS and GE segments).

TSValidationResult—Data type com.stc.otd.runtime.check.sef.TSError[].This
array stores all exceptions that occur during validation of the Transaction set
(in other words, the ST and SE segments).

allErrors—This bean node is of data type java.lang.String[]. It holds a string
version of every exception stored in the other bean nodes listed below:
unmarshalErrors, ICValidationResult, FGValidationResult, TSValidationResult, and
msgValidationResult.

maxDataError—Determines the maximum number of message validation errors to
be reported into the msgValidationResult bean node. If set to -1 (default), then there
is no limit to the number of errors to be reported in the msgValidationResult bean
node.
HIPAA OTD Library User’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Bean Nodes and Java Methods Java Methods
5.2 Java Methods
In addition to the bean nodes described in the previous section, and whose methods are
explained below, the top node of any x12_0040??_[...] OTD in the HIPAA OTD Library
also includes the following Java methods:

check on page 37

isUnmarshalComplete on page 37

marshalToBytes on page 38

marshalToString on page 38

performValidation on page 38

reset on page 39

setDefaultX12Delimiters on page 39

unmarshalFromBytes on page 40

unmarshalFromString on page 40

check

Description

Performs validation on the OTD unmarshaled from inbound data, and returns message
validation result into a String array.

Parameters

None.

Throws

None.

Returns

String[] (the message validation result)

isUnmarshalComplete

Description

Flag for whether or not the unmarshaling (parsing) has completed successfully.

Parameters

None.

Throws

None.
HIPAA OTD Library User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Bean Nodes and Java Methods Java Methods
Returns

boolean (whether or not the initial explicit call to unmarshal completed successfully).
For caveats and limitations, see “Delayed Unmarshaling” on page 50 and “Errors and
Exceptions” on page 50

marshalToBytes

Description

Marshals (serializes, renders) the internal data tree into a byte array.

Parameters

in - byte[] (the input, as a byte array)

Throws

java.io.IOException (for output problems)

com.stc.otd.runtime.MarshalException (for an inconsistent internal tree)

Returns

byte[] (serialized byte array)

marshalToString

Description

Marshals (serializes, renders) the internal data tree into a String.

Parameters

None.

Throws

java.io.IOException (for input problems)

com.stc.otd.runtime.MarshalException (for an inconsistent internal tree)

Returns

java.lang.String (the serialized String)

performValidation

Description

Validates the OTD content immediately after unmarshaling.

Syntax

public void performValidation()

Parameters

None.
HIPAA OTD Library User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Bean Nodes and Java Methods Java Methods
Constants

None.

Returns

None. If the OTD content is found to be invalid, the appropriate error bean nodes are
populated.

Throws

None.

Examples

x12_4010.x12_4010_850_PurcOrde_Outer myOTD=new x12_4010.x12_4010_850_
PurcOrde_Outer();
......
......
myOTD.performValidation();

Notes

For an example of using performValidation() in a collaboration, see Creating a
Collaboration Rule to Validate an X12 OTD on page 45.

reset

Description

Clears out any data and resources held by this OTD instance.

Parameters

None.

Throws

None.

Returns

None.

setDefaultX12Delimiters

Description

Sets the default X12 delimiters, such as:

Syntax

public void setDefaultX12Delimiters()

~ segment terminator

* element separator

: subelement separator

+ repetition separator
HIPAA OTD Library User’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Bean Nodes and Java Methods Java Methods
Parameters

None.

Constants

None.

Returns

void (none).

Throws

None.

Example

x12_4010.x12_4010_850_PurcOrde_Outer myOTD=new x12_4010.x12_4010_850_
PurcOrde_Outer();
......
......

myOTD.setDefaultX12Delimiters();

unmarshalFromBytes

Description

Unmarshals (deserializes, parses) the given input byte array into an internal data tree.

Parameters

in - byte[] (the input, as a byte array)

Throws

java.io.IOException (for input problems)

com.stc.otd.runtime.UnmarshalException (for an inconsistent internal tree)

Returns

None.

unmarshalFromString

Description

Unmarshals (deserializes, parses) the given input string into an internal data tree.

Parameters

in - java.lang.String (the input, as a String)

Throws

java.io.IOException (for input problems)

com.stc.otd.runtime.UnmarshalException (for an inconsistent internal tree; typically
occurs if the OTD cannot recognize the incoming message as X12)
HIPAA OTD Library User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Bean Nodes and Java Methods Java Methods
Returns

None.

getSegmentTerminator

Description

Gets the segmentTerminator character.

Syntax

public char getSegmentTerminator()

Parameters

None.

Constants

None.

Returns

char
Returns the segment terminator character.

Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

......

......
char segTerm=input.getSegmentTerminator();

setSegmentTerminator

Description

Sets the segmentTerminator character.

Syntax

public void setSegmentTerminator(char c)

Parameters

Constants

None.

Name Type Description

c char The character to be set as the
segment terminator.
HIPAA OTD Library User’s Guide 41 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Bean Nodes and Java Methods Java Methods
Returns

void (none).

Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

......

......
char c='~';
input.setSegmentTerminator(c);

getElementSeparator

Description

Gets the elementSeparator character.

Syntax

public char getElementSeparator()

Parameters

None.

Constants

None.

Returns

char
Returns the element separator character.

Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

......

......
char elmSep=input.getElementSeparator();

setElementSeparator

Description

Sets the elementSeparator character.
HIPAA OTD Library User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Bean Nodes and Java Methods Java Methods
Syntax

public void setElementSeparator(char c);

Parameters

Constants

None.

Returns

void (none).

Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

......

......
char c='+';
input.setElementSeparator(c);

getSubelementSeparator

Description

Gets the subelementSeparator character.

Syntax

public char getSubelementSeparator()

Parameters

None.

Constants

None.

Returns

char
Returns the subelement separator character.

Throws

None.

Name Type Description

c char The character to be set as the
element separator.
HIPAA OTD Library User’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Bean Nodes and Java Methods Java Methods
Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

......

......
char subeleSep=input.getSubelementSeparator();

setSubelementSeparator

Description

Sets the subelementSeparator character.

Syntax

public void setSubelementSeparator(char c)

Parameters

Constants

None.

Returns

void (none).

Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

......

......
char c=':';
input.setSubelementSeparator(c);

getRepetitionSeparator

Description

Gets the repetitionSeparator character.

Syntax

public char getRepetitionSeparator()

Parameters

None.

Name Type Description

c char The character to be set as the
subelement separator.
HIPAA OTD Library User’s Guide 44 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Bean Nodes and Java Methods Java Methods
Constants

None.

Returns

char
Returns the repetition separator character.

Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

......

......
char repSep=input.getRepetitionSeparator();

setRepetitionSeparator

Description

Sets the repetitionSeparator character.

Syntax

public void setRepetitionSeparator(char c)

Parameters

Constants

None.

Returns

void (none).

Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

......

......
char c='*';
input.setRepetitionSeparator(c);

Name Type Description

c char The character to be set as the
repetition separator.
HIPAA OTD Library User’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Bean Nodes and Java Methods Java Methods
getUnmarshalErrors

Description

Retrieves an array of unmarshal error objects of the type “DataError”. Call this after
isUnmarshalComplete returns false, which indicates that unmarshalling was not
finished due to errors. As an alternative, you can call getMsgValidationResult or
getAllErrors.

Note: When getMsgValidationResult or getAllErrors is called without first calling
performValidation, they return an array of unmarshalling errors.

Syntax

public com.stc.hipaa.DataError[] getUnmarshalErrors()

Parameters

None.

Constants

None.

Returns

com.stc.hipaa.DataError[]
An array of errors found during the validation process.

Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

com.stc.hipaa.X12ValidationResult output=new
com.stc.hipaa.X12ValidationResult();
.....
if (input().isUnmarshalComplete())
.....
else

output().addDataErrors(input().getUnmarshalErrors());

getMsgValidationResult

Description

Returns an array of errors found during unmarshalling from the input data and any
errors found during validation (performValidation).

Syntax

public com.stc.hipaa.DataError[] getMsgValidationResult()

Parameters

None.
HIPAA OTD Library User’s Guide 46 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Bean Nodes and Java Methods Java Methods
Constants

None.

Returns

com.stc.hipaa.DataError[]
An array of errors found in the input data during unmarshalling and the validation
process.

Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

com.stc.hipaa.X12ValidationResult output=new
com.stc.hipaa.X12ValidationResult();
.....
.....
if (input().isUnmarshalComplete()) {

input().performValidation();
output().addDataErrors(input().getMsgValidationResult());

getAllErrors

Description

Outputs an array of string representations of all errors that occurred during
unmarshalling from the input data and the validation results for both the message and
envelopes.

Note: To view a sample error message that getAllErrors would output, see “Validation
Error Reporting” in Chapter 4 of the HIPAA Implementation Guide. This section
provides information about each element in the error code.

Syntax

public java.lang.String[] getAllErrors()

Parameters

None.

Constants

None.

Returns

String[]
A string array of error messages describing any errors in the input data. If there are
no errors, the array size is zero (0).

Throws

None.
HIPAA OTD Library User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Bean Nodes and Java Methods Java Methods
Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

com.stc.hipaa.X12ValidationResult output=new
com.stc.hipaa.X12ValidationResult();
.....
.....
if (input().isUnmarshalComplete()) {

input().performValidation();
output().addDataErrors(input().getAllErrors());

getICValidationResult

Description

Outputs results from performValidation, but only outputs results of the interchange
(IC) envelope validation.

Note: Only certain IC validations are performed. For more information about IC
validations, see “getICValidationResult” on page 48.

Syntax

public com.stc.hipaa.ICError[] getICValidationResult()

Parameters

None.

Constants

None.

Returns

com.stc.hipaa.ICError[]
An array of interchange envelope errors found during the validation process.

Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

com.stc.hipaa.X12ValidationResult output=new
com.stc.hipaa.X12ValidationResult();
.....
.....
if (input().isUnmarshalComplete())

input().performValidation();
output().addDataErrors(input().getICValidationResult());
HIPAA OTD Library User’s Guide 48 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Bean Nodes and Java Methods Java Methods
getFGValidationResult

Description

Outputs the results of performValidation, but only outputs results of the functional
group (FG) envelope validation.

Note: Only certain FG validations are performed. For more information about FG
validations, see “getICValidationResult” on page 48.

Syntax

public com.stc.hipaa.FGError[] getFGValidationResult()

Parameters

None.

Constants

None.

Returns

com.stc.hipaa.FGError[]
An array of the functional group envelope errors found during the validation
process.

Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

com.stc.hipaa.X12ValidationResult output=new
com.stc.hipaa.X12ValidationResult();
.....
.....
if (input().isUnmarshalComplete())

input().performValidation();
output().addDataErrors(input().getFGValidationResult());

getTSValidationResult

Description

Outputs the result of performValidation, but only outputs results of the transaction/
message (TS) envelope validation.

Note: Only certain TS validations are performed. For more information about TS
validations, see “getICValidationResult” on page 48.

Syntax

public com.stc.hipaa.TSError[] getTSValidationResult()
HIPAA OTD Library User’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Bean Nodes and Java Methods Java Methods
Parameters

None.

Constants

None.

Returns

com.stc.hipaa.TSError[]
An array of transaction/message envelope errors found during the validation
process.

Throws

None.

Examples

com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_HealCareClaiOuter
input=new com.stc.hipaa837_Q120.X12_004010X098_00_hipaaQ1_837_Heal
CareClaiOuter();

com.stc.hipaa.X12ValidationResult output=new
com.stc.hipaa.X12ValidationResult();
.....
.....
if (input().isUnmarshalComplete())

input().performValidation();
output().addDataErrors(input().getTSValidationResult());
HIPAA OTD Library User’s Guide 50 SeeBeyond Proprietary and Confidential

Appendix A

ASC X12 Overview

This appendix provides an overview of the X12 standard, including:

An overview of X12, including the structure of an X12 envelope, data elements, and
syntax.

An explanation of how to use the generic message structures provided as an add-on
to the eGate to help you quickly create the structures you need for various X12
transactions.

For specific information on HIPAA, refer to Chapter 2, “HIPAA Overview” on page 11.

A.1 Introduction to X12
The following sections provide an introduction to X12.

A.1.1. What Is ASC X12?
ASC X12 is an EDI (electronic data interchange) standard, developed for the electronic
exchange of machine-readable information between businesses.

The Accredited Standards Committee (ASC) X12 was chartered by the American
National Standards Institute (ANSI) in 1979 to develop uniform standards for
interindustry electronic interchange of business transactions—electronic data
interchange (EDI). The result was the X12 standard.

The ASC X12 body develops, maintains, interprets, and promotes the proper use of the
ASC X12 standard. Data Interchange Standards Association (DISA) publishes the ASC
X12 standard and the UN/EDIFACT standard. The ASC X12 body comes together three
times a year to develop and maintain EDI standards. Its main objective is to develop
standards to facilitate electronic interchange relating to business transactions such as
order placement and processing, shipping and receiving information, invoicing, and
payment information.

The ASC X12 EDI standard is used for EDI within the United States. UN/EDIFACT is
broadly used in Europe and other parts of the world.

X12 was originally intended to handle large batches of transactions. However, it has
been extended to encompass real-time processing (transactions sent individually as
they are ready to send, rather than held for batching) for some healthcare transactions
to accommodate the healthcare industry.
HIPAA OTD Library User’s Guide 51 SeeBeyond Proprietary and Confidential

Appendix A Section A.2
ASC X12 Overview Components of an X12 Envelope
A.1.2. What Is a Message Structure?
The term message structure (also called a transaction set structure) refers to the way in
which data elements are organized and related to each other for a particular EDI
transaction.

In eGate, a message structure is called an Object Type Definition (OTD). Each message
structure (OTD) consists of the following:

Physical hierarchy

The predefined way in which envelopes, segments, and data elements are
organized to describe a particular X12 EDI transaction.

Delimiters

The specific predefined characters that are used to mark the beginning and end of
envelopes, segments, and data elements.

Properties

The characteristics of a data element, such as the length of each element, default
values, and indicators that specify attributes of a data element—for example,
whether it is required, optional, or repeating.

The transaction set structure of a claim that is sent from a payer to a provider defines
the header, trailer, segments, and data elements required by claim transactions.
Installation of HIPAA OTDs for a specific version includes transaction set structures for
each of the transactions available in that version.

The HIPAA OTD Library provides eGate Object Type Definitions, which are based on
the X12 message structures, to verify that the data in the messages coming in or going
out is in the correct format. There is a message structure for each transaction.

The list of transactions provided is different for each version of X12, and for each
customized implementation. This book addresses the transactions covered by the May
1999 and May 2000 implementations of the HIPAA standard.

A.2 Components of an X12 Envelope
X12 messages are all ASCII text, with the exception of the BIN segment which is binary.

Each X12 message is made up of a combination of the following elements:

Data elements

Segments

Loops

Elements are separated by delimiters.

More information on each of these is provided below.
HIPAA OTD Library User’s Guide 52 SeeBeyond Proprietary and Confidential

Appendix A Section A.2
ASC X12 Overview Components of an X12 Envelope
A.2.1. Data Elements
The data element is the smallest named unit of information in the ASC X12 standard.
Data elements can be broken down into two types. The distinction between the two is
strictly a matter of how they are used. The two types are:

Simple

If a data element occurs in a segment outside the defined boundaries of a composite
data structure it is called a simple data element.

Composite

If a data element occurs as an ordinally positioned member of a composite data
structure it is called a composite data element.

Each data element has a unique reference number; it also has a name, description, data
type, and minimum and maximum length.

A.2.2. Segments
A segment is a logical grouping of data elements. In X12, the same segment can be used
for different purposes. This means that a field’s meaning can change based on the
segment. For example:

The NM1 segment is for any name (patient, provider, organization, doctor)

The DTP segment is for any date (date of birth, discharge date, coverage period)

For more information on the X12 enveloping segments, refer to “Structure of an X12
Envelope” on page 54.

A.2.3. Loops
Loops are sets of repeating ordered segments. In X12 you can locate elements by
specifying:

The transaction set (for example, 270)

The loop (for example, “loop 1000” or “info. receiver loop”)

The occurrence of the loop

The segment (for example, BGN)

The field number (for example, 01)

The occurrence of the segment (if it is a repeating segment)

A.2.4. Delimiters
In an X12 message, the various delimiters act as syntax, dividing up the different
elements of a message. The delimiters used in the message are defined in the
interchange control header, the outermost layer enveloping the message. For this
reason, there is flexibility in the delimiters that are used.
HIPAA OTD Library User’s Guide 53 SeeBeyond Proprietary and Confidential

Appendix A Section A.3
ASC X12 Overview Structure of an X12 Envelope
No suggested delimiters are recommended as part of the X12 standards, but the
industry-specific implementation guides do have recommended delimiters.

The default delimiters used by the SeeBeyond HIPAA OTD Library are the same as
those recommended by the industry-specific implementation guides. These delimiters
are shown in Table 6.

Note: It is important to note that errors could result if the transmitted data itself includes
any of the characters that have been defined as delimiters. Specifically, the existence
of asterisks within transmitted application data is a known issue in X12, and can
cause problems with translation.

A.3 Structure of an X12 Envelope
The rules applying to the structure of an X12 envelope are very strict to ensure the
integrity of the data and the efficiency of the information exchange.

The actual X12 message structure has three main levels. From the highest to the lowest
they are:

Interchange Envelope

Functional Group

Transaction Set

A schematic of X12 envelopes is shown in Figure 11. Each of these levels is explained in
more detail in the following sections.

Table 6 Default Delimiters in X12 OTD Library

Type of Delimiter Default Value

Segment terminator ~ (tilde)

Data element separator * (asterisk)

Subelement (component) separator : (colon)
HIPAA OTD Library User’s Guide 54 SeeBeyond Proprietary and Confidential

Appendix A Section A.3
ASC X12 Overview Structure of an X12 Envelope
Figure 11 X12 Envelope Schematic

Note: The above schematic is from Appendix B of an ASC X12 implementation guide.

Figure 12 shows the standard segment table for an X12 997 (Functional
Acknowledgment) as it appears in the X12 standard and in most industry-specific
implementation guides.

Figure 12 X12 997 Segment Table
HIPAA OTD Library User’s Guide 55 SeeBeyond Proprietary and Confidential

Appendix A Section A.3
ASC X12 Overview Structure of an X12 Envelope
Figure 13 shows the same transaction as viewed in the OTD Editor.

Figure 13 X12 997 (Functional Acknowledgment) Viewed in OTD Editor
HIPAA OTD Library User’s Guide 56 SeeBeyond Proprietary and Confidential

Appendix A Section A.3
ASC X12 Overview Structure of an X12 Envelope
A.3.1. Transaction Set (ST/SE)
Each transaction set (also called a transaction) contains three things:

A transaction set header

A transaction set trailer

A single message, enveloped within the header and footer

The transaction has a three-digit code, a text title, and a two-letter code; for example,
997, Functional Acknowledgment (FA).

The transaction consists of logically related pieces of information, grouped into units
called segments. For example, one segment used in the transaction set might convey the
address: city, state, ZIP code, and other geographical information. A transaction set can
contain multiple segments. For example, the address segment could be used repeatedly
to convey multiple sets of address information.

The X12 standard defines the sequence of segments in the transaction set and also the
sequence of elements within each segment. The relationship between segments and
elements could be compared to the relationship between records and fields in a
database environment.

Figure 14 Example of a Transaction Set Header (ST)

Figure 15 Example of a Transaction Set Trailer (SE)

A.3.2. Functional Group (GS/GE)
A functional group is comprised of one or more transaction sets, all of the same type,
that can be batched together in one transmission. The functional group is defined by the
header and trailer; the Functional Group Header (GS) appears at the beginning, and the
Functional Group Trailer (GE) appears at the end. Many transaction sets can be
included in the functional group, but all transactions must be of the same type.

Within the functional group, each transaction set is assigned a functional identifier
code, which is the first data element of the header segment. The transaction sets that
comprise a specific functional group are identified by this functional ID code.

ST*270*0159~

Transaction Set
Identifier Code

Transaction Set Control
Number

SE*41*0159~

Number of
Included Segments

Transaction Set Control
Number
HIPAA OTD Library User’s Guide 57 SeeBeyond Proprietary and Confidential

Appendix A Section A.3
ASC X12 Overview Structure of an X12 Envelope
The functional group header (GS) segment contains the following information:

Functional ID code (the two-letter transaction code; for example, PO for an 850
Purchase Order, HS for a 270 Eligibility, Coverage, or Benefit Inquiry) to indicate the
type of transaction in the functional group

Identification of sender and receiver

Control information (the functional group control numbers in the header and trailer
segments must be identical)

Date and time

The functional group trailer (GE) segment contains the following information:

Number of transaction sets included

Group control number (originated and maintained by the sender)

Figure 16 Example of a Functional Group Header (GS)

Figure 17 Example of a Functional Group Trailer (GE)

A.3.3. Interchange Envelope (ISA/IEA)
The interchange envelope is the wrapper for all the data to be sent in one batch. It can
contain multiple functional groups. This means that transactions of different types can
be included in the interchange envelope, with each type of transaction stored in a
separate functional group.

The interchange envelope is defined by the header and trailer; the Interchange Control
Header (ISA) appears at the beginning, and the Interchange Control Trailer (IEA)
appears at the end.

As well as enveloping one or more functional groups, the interchange header and
trailer segments include the following information:

Data element separators and data segment terminator

GS*HS*6264712000*6264716000*20000515*1457*126*X*004010X092~

Functional ID code

Group control number

Sender’s ID code

Receiver’s ID code

Date Time Version/Release/
Identifier Code

Responsible Agency Code

GE*1*126~

Number of
transaction sets

Group control
number
HIPAA OTD Library User’s Guide 58 SeeBeyond Proprietary and Confidential

Appendix A Section A.3
ASC X12 Overview Structure of an X12 Envelope
Identification of sender and receiver

Control information (used to verify that the message was correctly received)

Authorization and security information, if applicable

The sequence of information that is transmitted is as follows:

Interchange header

Optional interchange-related control segments

Actual message information, grouped by transaction type into functional groups

Interchange trailer

Figure 18 Example of an Interchange Header (ISA)

Interchange Header Segments from Figure 18:

Figure 19 Example of an Interchange Trailer (IEA)

A.3.4. Control Numbers
The X12 standard includes a control number for each enveloping layer:

ISA13—Interchange Control Number

GS06—Functional Group Control Number

ST02—Transaction Set Control Number

1 Authorization Information Qualifier
2 Security Information Qualifier
3 Interchange ID Qualifier
4 Interchange Sender ID
5 Interchange ID Qualifier
6 Interchange Receiver ID
7 Date

8 Time
9 Repetition Separator
10Interchange Control Version Number
11Interchange Control Number
12Acknowledgment Requested
13Usage Indicator

ISA*00* *00* *01*6264712000 *01*6264716000

*000515*1457*U*00401*000000028*0*T*:~

10 11987 12 13

1 2 3 4 5 6

IEA*1*000000028~

Number of included
functional groups

Interchange
control number
HIPAA OTD Library User’s Guide 59 SeeBeyond Proprietary and Confidential

Appendix A Section A.4
ASC X12 Overview Acknowledgment Types
The control numbers act as identifiers, useful in message identification and tracking.

ISA13 (Interchange Control Number)

The ISA13 is assigned by the message sender. It must be unique for each interchange.

GS06 (Functional Group Control Number)

The GS06 is assigned by the sender. It must be unique within the Functional Group
assigned by the originator for a transaction set.

Note: The Functional Group control number GS06 in the header must be identical to the
same data element in the associated Functional Group trailer, GE02.

ST02 (Transaction Set Control Number)

The ST02 is assigned by the sender, and is stored in the transaction set header. It must
be unique within the Functional Group.

Note: The control number in ST02 must be identical with the SE02 element in the
transaction set trailer, and must be unique within a Functional Group (GS-GE).

A.4 Acknowledgment Types
X12 includes two types of acknowledgment, the TA1 Interchange Acknowledgment
and the 997 Functional Acknowledgment.

A.4.1. TA1, Interchange Acknowledgment
The TA1 acknowledgment verifies the interchange envelopes only. The TA1 is a single
segment and is unique in the sense that this single segment is transmitted without the
GS/GE envelope structures. A TA1 acknowledgment can be included in an interchange
with other functional groups and transactions.

A.4.2. 997, Functional Acknowledgment
The 997 includes much more information than the TA1. The 997 was designed to allow
trading partners to establish a comprehensive control function as part of the business
exchange process.

There is a one-to-one correspondence between a 997 and a functional group. Segments
within the 997 identify whether the functional group was accepted or rejected. Data
elements that are incorrect can also be identified.

Many EDI implementations have incorporated the acknowledgment process into all of
their electronic communications. Typically, the 997 is used as a functional
acknowledgment to a functional group that was transmitted previously.
HIPAA OTD Library User’s Guide 60 SeeBeyond Proprietary and Confidential

Appendix A Section A.5
ASC X12 Overview Key Parts of EDI Processing Logic
The 997 is the acknowledgment transaction recommended by ASC X12.

The acknowledgment of the receipt of a payment order is an important issue. Most
corporate originators want to receive at least a Functional Acknowledgment (997) from
the beneficiary of the payment. The 997 is created using the data about the identity and
address of the originator found in the ISA and/or GS segments.

Some users argue that the 997 should be used only as a point-to-point acknowledgment
and that another transaction set, such as the Application Advice (824) should be used as
the end-to-end acknowledgment.

A.4.3. Application Acknowledgments
Application acknowledgments are responses sent from the destination system back to
the originating system, acknowledging that the transaction has been successfully or
unsuccessfully completed. The application advice (824) is a generic application
acknowledgment that can be used in response to any X12 transaction. However, it has
to be set up as a response transaction; only TA1 and 997 transactions are sent out
automatically.

Other types of responses from the destination system to the originating system, which
may also be considered application acknowledgments, are responses to query
transactions—for example, the Eligibility Response (271) which is a response to the
Eligibility Inquiry (270). Other types of responses from the destination system to the
originating system, which may also be considered application acknowledgments, are
responses to query transactions—for example, the Eligibility Response (271) which is a
response to the Eligibility Inquiry (270).

A.5 Key Parts of EDI Processing Logic
The five key parts of EDI processing logic are listed in Table 7.

Table 7 Key Parts of EDI Processing

Term Description
Language
Analogy

eGate Component

structures format, segments, loops syntax rules OTD elements and fields

validations data contents “edit” rules semantic rules validation methods

translations (also
called mappings)

reformatting or
conversion

translation collaborations

enveloping header and trailer
segments

envelope for a
written letter

the special “envelope” OTDs:
FunctionalGroupEnv and
InterchangeEnv

acks acknowledgments return receipt specific acknowledgment
elements in the OTD
HIPAA OTD Library User’s Guide 61 SeeBeyond Proprietary and Confidential

Appendix A Section A.6
ASC X12 Overview Additional Information
eGate uses the structures, validations, translations, enveloping, and acknowledgments
listed below to support HIPAA.

A.5.1. Structures
The Object Type Definition library for HIPAA includes pre-built OTDs for all supported
HIPAA versions.

A.5.2. Trading Partner Agreements
There are three levels of information that guide the final format of a specific transaction.
These three levels are:

The ASC X12 standard

ASC X12 publishes a standard structure for each X12 transaction.

Industry-specific Implementation Guides

Specific industries publish Implementation Guides customized for that industry.
Normally, these are provided as recommendations only. However, in certain cases,
it is extremely important to follow these guidelines. Specifically, since HIPAA
regulations are law, it is important to follow the guidelines for these transactions
closely.

Trading Partner Agreements

It is normal for trading partners to have individual agreements that supplement the
standard guides. The specific processing of the transactions in each trading
partner’s individual system might vary between sites. Because of this, additional
documentation that provides information about the differences is helpful to the
site’s trading partners and simplifies implementation. For example, while a certain
code might be valid in an implementation guide, a specific trading partner might
not use that code in transactions. It would be important to include that information
in a trading partner agreement.

A.6 Additional Information
For more information on the X12 standard, visit the following Web sites:

http://www.disa.org and specifically http://www.x12.org/x12org/index.cfm

X12 implementation guides can be obtained from Washington Publishing Company:

http://www.wpc-edi.com; specifically, http://www.wpc-edi.com/tg4/tg4home.asp

Note: This information is correct at the time of going to press; however, SeeBeyond has no
control over these sites. If you find the links are no longer correct, use a search
engine to search for X12.
HIPAA OTD Library User’s Guide 62 SeeBeyond Proprietary and Confidential

http://www.disa.org
http://www.x12.org/x12org/index.cfm
http://www.wpc-edi.com
http://www.wpc-edi.com/tg4/tg4home.asp

Index
Index

A
acknowledgments 60

as part of EDI logic 61
functional acknowledgment (997) 60
interchange acknowledgment (TA1) 60
receipt of payment order 61

ASC 51

B
batch transactions 14
bean nodes 27

allErrors 29
elementSeparator 27
FGValidationResult 29
ICValidationResult 29
inputSource 27
maxDataError 29
msgValidationResult 29
repetitionSeparator 27
segmentCount 27
segmentTerminator 27
subelementSeparator 27
TSValidationResult 29
unmarshalErrors 29
xmlOutput 27

C
certificate authentication 17
check 37
compatible systems

UNIX 9
Component Element Separator 26
control numbers 59

functional group control number (GS06) 60
interchange control number (ISA13) 60
transaction set control number (ST02) 60

conventions
path name separator 10
Windows 10

D
Data Element Separator 26
data element separator 54
data elements 53
delimiters 26, 53

Component Element Separator 26
Data Element Separator 26
data element separator 54
Repetition Separator 26
Segment Terminator 26
segment terminator 54
subelement (component) separator 54
Subelement Separator 26

document
conventions 10

document overview 8

E
elementSeparator 27
encryption/decryption 17
enveloping

as part of EDI logic 61
error arrays

and unmarshalErrors() 29
Exceptions

IOException 38, 40
MarshalException 38
UnmarshalException 40

F
files and folders 19
functional acknowledgments (997) 60
functional group 57
functional group control number (GS06) 60

G
getAllErrors 29, 47
getElementSeparator 27, 42
getFGValidationResult 29, 49
getICValidationResult 29, 48
getInputSource 27
getMaxDataError 29
getMsgValidationResult 29, 46
getRepetitionSeparator 27, 44
getSegmentCount 27
getSegmentTerminator 27, 41
getSubelementSeparator 27
getTSValidationResult 29, 49
getUnmarshalErrors 29, 46
GS06 (functional group control number) 60
HIPAA OTD Library User’s Guide 63 SeeBeyond Proprietary and Confidential

Index
H
HIPAA

additional information (Web sites) 15
files and folders 19
OTD names 19
trading partner agreements 13

HIPAA template installation 17–??

I
implementation 61
installation 17–18
installation procedure 17
interchange acknowledgment (TA1) 60
interchange control number (ISA13) 60
interchange envelope 58
ISA13 (interchange control number) 60
isUnmarshalComplete 37

J
Java methods

check 37
getAllErrors 29, 47
getElementSeparator 27, 42
getFGValidationResult 29, 49
getICValidationResult 29, 48
getInputSource 27
getMsgValidationResult 29, 46
getRepetitionSeparator 27, 44
getSegmentCount 27
getSegmentTerminator 27, 41
getSubelementSeparator 27
getTSValidationResult 29, 49
getUnmarshalErrors 29, 46
isUnmarshalComplete 37
marshalToBytes 38
marshalToString 38
performValidation 28, 38
reset 39
setDefaultX12Delimiters 39
setElementSeparator 27
setInputSource 27
setMaxDataError 29
setRepetitionSeparator 27, 45
setSegmentCount 27
setSegmentTerminator 27, 41
setSubelementSeparator 27
setXmlOutput 27
unmarshalFromBytes 40
unmarshalFromString 40

Java methods, listing 37
Java OTD

customizing 31

L
loops 53

M
marshalToBytes 38
marshalToString 38
Methods

performValidation() 29
methods

for getting values 27
for setting values 27

N
NCPDP-HIPAA 12
nonrepudiation 17

O
Operating Systems

Supported 9
OTD names 19
output differences, using pass-through 34
overview 8

of document 8
of HIPAA 11
of X12 ??–62

P
performValidation 28, 38

R
real-time transactions 14
Repetition Separator 26
repetitionSeparator 27
reset 39
response transactions 61

S
Segment Terminator 26
segment terminator 54
segments 53
segmentTerminator 27
setDefaultX12Delimiters 39
setElementSeparator 27
setInputSource 27
HIPAA OTD Library User’s Guide 64 SeeBeyond Proprietary and Confidential

Index
setMaxDataError 29
setRepetitionSeparator 27, 45
setSegmentCount 27
setSegmentTerminator 27, 41
setSubelementSeparator 27
setXmlOutput 27
signature verification 17
ST02 (transaction set control number) 60
structure of an X12 envelope 54
structures 62

as part of EDI logic 61
subelement (component) separator 54
Subelement Separator 26
subelementSeparator 27
supporting documents 10
syntax

control numbers 59
delimiters 53

System Requirements 10

T
TA1 (interchange acknowledgment) 60
template installation 17–18
trading partner agreements 62
transaction

batch mode 14
Transaction Codes 12
transaction set 57
transaction set control number (ST02) 60
transactions

real-time mode 14
translations

as part of EDI logic 61

U
unmarshalErrors() 29
unmarshalFromBytes 40
unmarshalFromString 40

V
validations

as part of EDI logic 61

W
what is a message structure? 52
writing conventions 10

X
X12

acknowledgment types 60
additional information (Web sites) 62
data elements 53
envelope structure 54
functional group 57
interchange envelope 58
loops 53
segments 53
transaction set 57
what is it? 51

X12 overview ??–62
X12 template installation ??–18
HIPAA OTD Library User’s Guide 65 SeeBeyond Proprietary and Confidential

	HIPAA OTD Library User’s Guide
	Contents
	List of Tables
	List of Figures
	Introduction
	1.1 Overview
	1.2 Intended Reader
	1.3 Supported Operating Systems
	1.4 Writing Conventions
	Additional Conventions

	1.5 Supporting Documents
	1.6 SeeBeyond Web Site

	HIPAA Overview
	2.1 Introduction to HIPAA
	2.1.1. What Is HIPAA?
	2.1.2. Trading Partner Agreements
	2.1.3. Sample Scenario
	2.1.4. Batch and Real-Time Transactions
	Batch
	Real Time

	2.1.5. Data Overview
	2.1.6. Acknowledgment

	2.2 Additional Information

	HIPAA OTD Library Installation
	3.1 HIPAA OTD Libaries
	3.2 Installation Procedure
	3.2.1. Uploading files to the Repository
	3.2.2. Refreshing Enterprise Designer

	3.3 HIPAA Library OTDs
	3.3.1. Understanding HIPAA OTD Names
	3.3.2. 2000_Addenda OTDs
	3.3.3. 2000_Standard OTDs

	3.4 After Installation
	3.4.1. Increasing the ICAN Enterprise Designer Heap Size

	Working with HIPAA OTDs
	4.1 Viewing a HIPAA OTD with the OTD Editor
	4.2 Setting the Delimiters
	4.3 Methods for Getting and Setting
	4.4 Using Validation in the Java Collaboration Editor
	4.4.1. Creating a Collaboration Rule to Validate a HIPAA OTD
	4.4.2. Bean Nodes for Getting Errors and Results

	4.5 HIPAA OTD Components Naming Conventions
	Envelope and Transaction Names
	Segment Loop Names
	Segment Names
	Composite names
	Element names

	4.6 Extending OTDs
	4.7 Alternative Formats: ANSI and XML
	4.7.1. XML Format for HIPAA X12

	4.8 Possible Differences in Output When Using Pass- Through

	Bean Nodes and Java Methods
	5.1 Bean Nodes
	5.1.1. Delimiter Related Bean Nodes
	5.1.2. inputSource Related Bean Nodes
	5.1.3. Validation and Error Processing Related Bean Nodes

	5.2 Java Methods
	check
	isUnmarshalComplete
	marshalToBytes
	marshalToString
	performValidation
	reset
	setDefaultX12Delimiters
	unmarshalFromBytes
	unmarshalFromString
	getSegmentTerminator
	setSegmentTerminator
	getElementSeparator
	setElementSeparator
	getSubelementSeparator
	setSubelementSeparator
	getRepetitionSeparator
	setRepetitionSeparator
	getUnmarshalErrors
	getMsgValidationResult
	getAllErrors
	getICValidationResult
	getFGValidationResult
	getTSValidationResult

	ASC X12 Overview
	A.1 Introduction to X12
	A.1.1. What Is ASC X12?
	A.1.2. What Is a Message Structure?

	A.2 Components of an X12 Envelope
	A.2.1. Data Elements
	A.2.2. Segments
	A.2.3. Loops
	A.2.4. Delimiters

	A.3 Structure of an X12 Envelope
	A.3.1. Transaction Set (ST/SE)
	A.3.2. Functional Group (GS/GE)
	A.3.3. Interchange Envelope (ISA/IEA)
	A.3.4. Control Numbers
	ISA13 (Interchange Control Number)
	GS06 (Functional Group Control Number)
	ST02 (Transaction Set Control Number)

	A.4 Acknowledgment Types
	A.4.1. TA1, Interchange Acknowledgment
	A.4.2. 997, Functional Acknowledgment
	A.4.3. Application Acknowledgments

	A.5 Key Parts of EDI Processing Logic
	A.5.1. Structures
	A.5.2. Trading Partner Agreements

	A.6 Additional Information

	Index
	A
	acknowledgments 60
	ASC 51

	B
	batch transactions 14
	bean nodes 27

	C
	certificate authentication 17
	check 37
	compatible systems
	Component Element Separator 26
	control numbers 59
	conventions

	D
	Data Element Separator 26
	data element separator 54
	data elements 53
	delimiters 26, 53
	document
	document overview 8

	E
	elementSeparator 27
	encryption/decryption 17
	enveloping
	error arrays
	Exceptions

	F
	files and folders 19
	functional acknowledgments (997) 60
	functional group 57
	functional group control number (GS06) 60

	G
	getAllErrors 29, 47
	getElementSeparator 27, 42
	getFGValidationResult 29, 49
	getICValidationResult 29, 48
	getInputSource 27
	getMaxDataError 29
	getMsgValidationResult 29, 46
	getRepetitionSeparator 27, 44
	getSegmentCount 27
	getSegmentTerminator 27, 41
	getSubelementSeparator 27
	getTSValidationResult 29, 49
	getUnmarshalErrors 29, 46
	GS06 (functional group control number) 60

	H
	HIPAA
	HIPAA template installation 17-??

	I
	implementation 61
	installation 17-18
	installation procedure 17
	interchange acknowledgment (TA1) 60
	interchange control number (ISA13) 60
	interchange envelope 58
	ISA13 (interchange control number) 60
	isUnmarshalComplete 37

	J
	Java methods
	Java methods, listing 37
	Java OTD

	L
	loops 53

	M
	marshalToBytes 38
	marshalToString 38
	Methods
	methods

	N
	NCPDP-HIPAA 12
	nonrepudiation 17

	O
	Operating Systems
	OTD names 19
	output differences, using pass-through 34
	overview 8

	P
	performValidation 28, 38

	R
	real-time transactions 14
	Repetition Separator 26
	repetitionSeparator 27
	reset 39
	response transactions 61

	S
	Segment Terminator 26
	segment terminator 54
	segments 53
	segmentTerminator 27
	setDefaultX12Delimiters 39
	setElementSeparator 27
	setInputSource 27
	setMaxDataError 29
	setRepetitionSeparator 27, 45
	setSegmentCount 27
	setSegmentTerminator 27, 41
	setSubelementSeparator 27
	setXmlOutput 27
	signature verification 17
	ST02 (transaction set control number) 60
	structure of an X12 envelope 54
	structures 62
	subelement (component) separator 54
	Subelement Separator 26
	subelementSeparator 27
	supporting documents 10
	syntax
	System Requirements 10

	T
	TA1 (interchange acknowledgment) 60
	template installation 17-18
	trading partner agreements 62
	transaction
	Transaction Codes 12
	transaction set 57
	transaction set control number (ST02) 60
	transactions
	translations

	U
	unmarshalErrors() 29
	unmarshalFromBytes 40
	unmarshalFromString 40

	V
	validations

	W
	what is a message structure? 52
	writing conventions 10

	X
	X12
	X12 overview ??-62
	X12 template installation ??-18

