
SNA eWay Intelligent
Adapter User’s Guide

Release 5.0.0
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

SeeBeyond, eGate, and eWay are the registered trademarks of SeeBeyond Technology Corporation in the United States and select
foreign countries; the SeeBeyond logo, e*Insight, and e*Xchange are trademarks of SeeBeyond Technology Corporation. The absence
of a trademark from this list does not constitute a waiver of SeeBeyond Technology Corporation's intellectual property rights
concerning that trademark. This document may contain references to other company, brand, and product names. These company,
brand, and product names are used herein for identification purposes only and may be the trademarks of their respective owners.

© 2005 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20050121155955.
SNA eWay Intelligent Adapter User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents
Contents

Chapter 1

Introduction 7
About SNA 7

Supported Logical Unit Types 10
SNA LU6.2 10

About the SNA eWay 11

What’s New in This Release 12
Collaborations 12
Persistence 12
Conversation State 12
Protocol State 13

About This Document 13
What’s in This Document 13
Scope 13
Intended Audience 14
Document Conventions 14

Related Documents 14

SeeBeyond Web Site 15

SeeBeyond Documentation Feedback 15

Chapter 2

Installing the eWay 16
Supported Operating Systems 16

System Requirements 16

Supported External Applications 17

Installing the eWay Product Files 17

After Installing the eWay 19
SNA eWay Intelligent Adapter User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents
Chapter 3

Configuring the eWay 20
Inbound Connectivity Map Properties 20

Inbound Schedules 21
Listner Schedule 21
Service Schedule 22

Connection Establishment 24
Max Connection Retry 24
Retry Connection Interval 24

Inbound Connection Manager 24
Connection Pool Size 24
Scope of Connection 25

SNA Settings 25
Custom Handshake Class Name 25
Deallocation Type 25
Initialize Conversation 26
Packet Size 26
Synchronization Level 26
Timeout 26

General Settings 26
Scope of State 26

Outbound Connectivity Map Properties 27
Connection Establishment 27

Always Create New Connection 27
Auto Disconnect Connection 28
Auto Reconnect Upon Matching Failure 28
Max Connection Retry 28
Retry Connection Interval 28

SNA Settings 29
Custom Handshake Class Name 29
Deallocation Type 29
Initialize Conversation 29
Packet Size 29
Synchronization Level 30
Timeout 30

General Settings 30
Scope of State 30

Inbound Environment Properties 30
SNA Settings 31

Host Name 31
Local LU Name 31
Local TP Name 31
Symbolic Destination Name 32

General Settings 32
Persistent Storage Location 32

Outbound Environment Properties 32
SNA Settings 33

Host Name 33
Local LU Name 33
SNA eWay Intelligent Adapter User’s Guide 4 SeeBeyond Proprietary and Confidential

Contents
Local TP Name 33
Symbolic Destination Name 33

General Settings 33
Persistent Storage Location 33

Object Type Definitions (OTDs) 34

Chapter 4

SNA Java Collaborations 35
Creating Default Java Collaborations 35

Analyzing the Default Java Collaboration 36

Creating Custom Collaborations 39
Inbound SNA Conversations 39

Conversation Sent to a Text File (CPIC) 40
Conversation Sent to a Text File (Helper) 42

Outbound SNA Conversations 45
Conversation Originates from a Text File (CPIC) 45
Conversation Originates from a Text File (Helper) 48

Inbound and Outbound SNA Conversations 50

Best Practices 50
Checking Conversation State 51
Using CPIC Calls 53

Chapter 5

Implementing SNA eWay Projects 54
About the Sample Projects 54

Sample Project Contents 54
Sample Project Zip Files 55

Locating the Sample Projects 55

Importing Projects 55

Running SNA eWay Projects 57
Creating the Environment Profile 57
Configuring the Logical Host 58

SPARC64 logical host deployment 59
Deploying the Project 60
Running the Sample Project 61

Windows 2000/XP/Windows Server 2003 61
IBM AIX 5.1L and 5.2 (32-bit) 62
IBM AIX 5.1L and 5.2 (64-bit) 62
Sparc (32-bit) 62
Sparc (64-bit) 63

Building SNA Business Logic with eGate 63
Building Collaborations 63
Adding Connectivity Maps 66
Building Inbound Connectivity Maps 66
SNA eWay Intelligent Adapter User’s Guide 5 SeeBeyond Proprietary and Confidential

Contents
Building Outbound Connectivity Maps 67
SNA Collaborations 68

Chapter 6

SNA eWay Javadocs 69

Index 1
SNA eWay Intelligent Adapter User’s Guide 6 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This chapter introduces you to the SNA eWay Intelligent Adapter User’s Guide, its general
purpose and scope, and its organization. It also provides sources of related
documentation and information.

What’s In This Chapter:

“About SNA” on page 7

“About the SNA eWay” on page 11

“What’s New in This Release” on page 12

“About This Document” on page 13

“Related Documents” on page 14

“SeeBeyond Web Site” on page 15

SeeBeyond Documentation Feedback on page 15

1.1 About SNA
SNA (System Network Architecture) is a data communications architecture developed
by IBM to specify common conventions for communication between various IBM
hardware and software products. It is specifically designed to address issues of
reliability and flexibility of sharing data between components and their peripherals.
Many vendors other than IBM also support SNA, allowing their products to interact
with SNA networks.

An addressable unit on an SNA network is called a node, and is made up of four
functional components forming a hierarchy as shown in Figure 1.

Figure 1 SNA Node Architecture

SNA Node

End User Logical Unit
(LU)

Physical Unit
(PU) Data Link SNA

Network
SNA eWay Intelligent Adapter User’s Guide 7 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.1
Introduction About SNA
To establish a communications session, SNA uses Logical Units (LUs) as entry points
into the network. There are several types of LUs, currently type 0 through type 6.2.
Most of the LU types are specific to IBM operating environments, but type 6 is intended
for use in a distributed data processing environment.

Generally, an LU can communicate only with another LU of the same type, but specific
exceptions to this rule exist with type 6.2. LU6.2 is the least-restrictive of the various LU
types, and also supports multiple concurrent sessions. As a result, it is the LU most
widely supported by other system vendors.

Like the OSI model, SNA functions are divided into seven hierarchical layers, but the
layers are not identical. Their relationships to each other, and to the SNA node
functionality, are shown in Figure 2. The Transport Network handles the lower three
layers, while the Network Accessible Units (NAU) implement the upper four layers by
using the services of the Transport Network to establish communication between
nodes.

Figure 2 SNA Functional Layers

SNA defines formats and protocols between these layers that allow equivalent layers in
different nodes to communicate with each other. Also, each layer provides services to
the layer above, and requests services from the layer below. As an example, the
communication path between two Transmission Control layers would appear as shown
in Figure 3.

User Process

Logical Unit

Physical Unit

Data Link

SNA Functions

Transaction Services

Presentation Services

Data Flow Control

Transmission Control

Path Control

Data Link Control

Physical Control

SNA Layers

Application

Presentation

Session

Transport

Network

Data Link

Physical

OSI Layers
SNA eWay Intelligent Adapter User’s Guide 8 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.1
Introduction About SNA
Figure 3 Equivalent-Layer Communications Path

SNA uses a standard method for the exchange of data within a network. This standard
method defines how to establish a route between components, how to send and receive
data reliably, how to recover from errors, and how to prevent flow problems.

Originally designed for networks in which a mainframe computer controls the
communications relationships, SNA has since evolved to incorporate protocols and
implementations to allow two user processes to communicate with each other directly.
These two different networking models, or roles, are referred to as hierarchical and
peer-oriented, respectively. The peer-oriented model is designed to allow distributed
control of the communications process independent of the mainframe.

The peer-to-peer connection between two user processes is known as a conversation,
while the peer-to-peer connection between two LUs is known as a session. A session is

Transaction Services

Presentation Services

Data Flow Control

Transmission Control

Path Control

Data Link Control

Physical Control

SNA Node A

Transaction Services

Presentation Services

Data Flow Control

Transmission Control

Path Control

Data Link Control

Physical Control

SNA Node B
SNA eWay Intelligent Adapter User’s Guide 9 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.1
Introduction About SNA
generally a long-term connection between two LUs, while a conversation is generally of
shorter duration.

Figure 4 Sessions and Conversations

What is shown in Figure 2 and Figure 4 as a User Process is also known as a Transaction
Program (TP). Also, the interface between a User Process and an LU is known as
Presentation Services.

1.1.1 Supported Logical Unit Types

SNA LU6.2

LU 6.2, also known as APPC (Advanced Program-to-Program Communication), is used
for Transaction Programs communicating with each other in a distributed data
processing environment. In a CPIC (Common Programming Interface for
Communications) implementation, CPIC provides the API that contains the
commands, known as verbs, that are used by LU 6.2 to establish communication
sessions.

Two types of Presentation Service interfaces are possible with LU6.2: mapped
conversations and unmapped, or basic, conversations. Table 1 summarizes the set of
LU6.2 commands for basic conversations. Equivalent commands for mapped
conversations have the prefix <MC_> added to the command name. Note that “control
operator verbs” are not listed.

User Process

Logical Unit

Physical Unit

Data Link

SNA Node X

User Process

Logical Unit

Physical Unit

Data Link

SNA Node Y

Conversation

Session
SNA eWay Intelligent Adapter User’s Guide 10 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction About the SNA eWay
1.2 About the SNA eWay
The SNA eWay enables the SeeBeyond eGate Integrator system to access an SNA
network environment to drive entire transactions, including conversational
transactions.

The SNA eWay is an interface that makes calls to an SNA Server. The SNA Server acts
as a high-speed gateway between distributed SNA Clients and the SNA network
having a mainframe host system (see Figure 5).

In a typical data exchange using the SNA eWay, the eWay invokes the LU6.2 protocol--
through the invocation of CPI-C calls--to enable the SNA client to send requests to the
SNA server. For outbound eWays, the eWay can be triggered by any incoming message.
For inbound eWays, the eWay is triggered by established conversation activity.

Table 1 LU6.2 Commands

Name Description

ALLOCATE Allocates a conversation with another program.

CONFIRM Sends a confirmation request to the remote process
and waits for a reply.

CONFIRMED Sends a confirmation reply to the remote process.

DEALLOCATE De-allocates a conversation.

FLUSH Forces the transmission of the local SEND buffer to
the other LU.

GET_ATTRIBUTES Obtains information about a conversation.

PREPARE_TO_RECEIVE Changes the conversation state from SEND to
RECEIVE.

RECEIVE_AND_WAIT Waits for information (either data or confirmation
request) to be received from the partner process.

RECEIVE_IMMEDIATE Receives any information that is available in the local
LU’s buffer, but does not wait for information to
arrive.

REQUEST_TO_SEND Notifies the partner process that the local process
wants to send data. When a “send” indication is
received from the partner process, the conversation
state changes.

SEND_DATA Sends one data record to the partner process.

SEND_ERROR Informs the partner process that the local process
has detected an application error.
SNA eWay Intelligent Adapter User’s Guide 11 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction What’s New in This Release
Figure 5 SNA Data Exchange

1.3 What’s New in This Release
“Collaborations” on page 12

“Persistence” on page 12

“Protocol State” on page 13

1.3.1 Collaborations
The SNA eWay exposes a common set of java methods equivalent to CPI-C v1.1 calls
for all supported platforms. The eWay also provides a set of helper methods that group
various CPI-C calls into one Java method so that a higher level function is achieved.
These helper methods map directly to the methods that are present in version 4.5.x of
the SNA eWay.

1.3.2 Persistence
Similar in nature to other transaction protocol eWays, the SNA eWay provides a
persistence service that allows users to safely write any state information as a string to
disk. The file names used are unique so as to enable multiple eWays to be run
concurrently.

1.3.3 Conversation State
This attribute is set by the RA to the last known conversation state of the active
conversation. Users must retrieve conversation state with a get method. There is no set
method.

IDC

SNA
Protocol

Client
Mainframe

SNA
Protocol
Server

SNA Network

TP 1 TP 2

LAN
SNA eWay Intelligent Adapter User’s Guide 12 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction About This Document
1.3.4 Protocol State
This attribute is set by the user and the RA upon conversation initiation or reset. It is a
string that can be set or retrieved with the appropriate get or set method. The value of
this variable persists between collaboration invocations; however, if a conversation is
reset, lost or initiated, the protocol state is set to the initial value of the empty string.

1.4 About This Document
What’s in This Document on page 13

Scope on page 13

Intended Audience on page 14

Document Conventions on page 14

1.4.1 What’s in This Document
This document is organized topically as follows:

Chapter 1 “Introduction” gives a general preview of this document, its purpose,
scope, and organization.

Chapter 2 “Installing the eWay” gives you an overview of the installation process.

Chapter 3 “Configuring the eWay” describes the eWay properties and
configurations settings available in the Connectivity Map and the Environment
Properties.

Chapter 4 “SNA Java Collaborations” decribes how to create basic and custom
Java collaborations.

Chapter 5 “Implementing SNA eWay Projects” explains how to import and run
the supplied sample projects.

1.4.2 Scope
This user’s guide describes the procedures necessary to install the
SeeBeyond® Technology Corporation (SeeBeyond) SNA Intelligent Adapter eWay. In
addition to the eWay’s installation, the eWay’s properties, collaborations, and samples
are described in detail so that you may reference this book while creating your ICAN
projects. Several ICAN projects, which use the SNALU62 eWay, are also provided and
explained to enable you to quickly deploy your customized ICAN projects that use the
SNA eWay Intelligent Adapter.
SNA eWay Intelligent Adapter User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.5
Introduction Related Documents
1.4.3 Intended Audience

The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the SeeBeyond™ eGate™ Integrator system, and have a
working knowledge of:

Windows NT/2000 and/or UNIX operations and administration

Windows-style GUI operations

SNA Server, LU6.2, and CPIC APIs

Developers that choose to create projects with the exposed CPI-C Java methods
provided by this eWay should be expert CPI-C programmers that possess extensive
knowledge and understanding of CPI-C. To use either the exposed CPI-C Java methods
or the helper Java methods to create your eWay collaborations, you should have a
working knowledge and understanding of SNA LU6.2.

1.4.4 Document Conventions
The following conventions are observed throughout this document.

1.5 Related Documents
Many of the procedures included in this User’s Guide are described in greater detail in
the eGate Integrator User’s Guide.

Table 2 Document Conventions

Text Convention Example

Names of buttons, files,
icons, parameters, variables,
methods, menus, and objects

Bold text Click OK to save and close.
From the File menu, select Exit.
Select the logicalhost.exe file.
Enter the timeout value.
Use the getClassName() method.
Configure the Inbound File eWay.

Command line arguments,
code samples

Fixed font. Variables are
shown in bold italic.

bootstrap -p password

Hypertext links Blue text See “Document Conventions” on
page 14

Hypertext links for Web
addresses (URLs) or email
addresses

Blue underlined text http://www.seebeyond.com
docfeedback@seebeyond.com
SNA eWay Intelligent Adapter User’s Guide 14 SeeBeyond Proprietary and Confidential

http://www.seebeyond.com
mailto:docfeedback@seebeyond.com

Chapter 1 Section 1.6
Introduction SeeBeyond Web Site
1.6 SeeBeyond Web Site
The SeeBeyond Web site is your best source for up-to-the-minute product news and
technical support information. The site’s URL is:

http://www.seebeyond.com

1.7 SeeBeyond Documentation Feedback
We appreciate your feedback. Please send any comments or suggestions regarding this
document to:

docfeedback@seebeyond.com
SNA eWay Intelligent Adapter User’s Guide 15 SeeBeyond Proprietary and Confidential

http://www.seebeyond.com
mailto:docfeedback@seebeyond.com

Chapter 2

Installing the eWay

This chapter describes the requirements and procedures for installing the SNA eWay.

What’s In This Chapter:

“Supported Operating Systems” on page 16

“System Requirements” on page 16

“Supported External Applications” on page 17

“Installing the eWay Product Files” on page 17

“After Installing the eWay” on page 19

2.1 Supported Operating Systems
The SNA eWay is available on the following operating systems:

Windows 2000, Windows XP, Windows Server 2003

IBM AIX 5.1L and 5.2

Sun Solaris 8 and 9

Korean Windows 2000, Windows XP, Windows Server 2003

Korean IBM AIX 5.1L and 5.2

Korean Sun Solaris 8 and 9

2.2 System Requirements
The system requirements for the SNA eWay are the same as for eGate Integrator. For
information, refer to the SeeBeyond ICAN Suite Installation Guide. Additional
requirements that must be fullfilled before deploying an SNA eWay project are as
follows:

eGate Integrator, version 5.0.4 or higher

File eWay (to support sample projects)

Logical Host
SNA eWay Intelligent Adapter User’s Guide 16 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Installing the eWay Supported External Applications
SNA network connection

2.3 Supported External Applications
The SNA eWay supports the following external systems:

Win32 MS Host Integration Server

AIX 32bit IBM eNetwork Communications Server v6.x or newer

AIX 64bit IBM eNetwork Communications Server

Solaris 64 bit SNAP/IX

Alebra Brixton R4.1.3.6 or R5

Note: Sunlink 9.x is not supported. Solaris platforms will need to be upgraded with the
appropriate Alebra Brixton or SNAP/IX drivers.

2.4 Installing the eWay Product Files
During the eGate Integrator installation process, the Enterprise Manager, a web-based
application, is used to select and upload products as .sar files from the eGate
installation CD-ROM to the Repository.

The installation process includes installing the following components:

Uploading products to the Repository

Downloading components

Viewing product information home pages

Follow the instructions for installing the eGate Integrator in the SeeBeyond ICAN Suite
Installation Guide, and include the following steps:

1 During the procedures for uploading files to the eGate Repository using the
Enterprise Manager, after uploading the eGate.sar file, select and upload the
following below as described in the SeeBeyond ICAN Suite Installation Guide:

SNAeWay.sar (to install the SNA eWay)

FileeWay.sar (to install the File eWay, used in the sample Projects)

SNAeWayDocs.sar (to install the user guide and the sample Projects)

2 From the Enterprise Manager, click the DOCUMENTATION tab.

3 Click SNA eWay.

4 In the right-hand pane, click Download Sample, and select a location for the .zip
file to be saved.
SNA eWay Intelligent Adapter User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
Installing the eWay Installing the eWay Product Files
For information about importing and using the sample, refer to “Locating,
Importing, and Using the Sample Projects” on page 46.

5 Click on the Enterprise Manager’s DOWNLOADS tab. The Component list, as
displayed in Figure 6 on page 18, includes 7 SNALU eWay components:

SNALU62 eWay - Runtime win32 bridge DLL (stc_jnisna.dll): bridge shared
libraries for Windows platforms.

SNALU62 eWay - Runtime aix32 bridge so, SNALU62 eWay - Runtime aix64
bridge so, SNALU62 eWay - Runtime sparc32 SNAP-IX bridge so, SNALU62
eWay - Runtime sparc64 SNAP-IX bridge so, SNALU62 eWay - Runtime
sparc32 Brixton bridge so(libstc_jnisna.so): bridge shared libraries for Unix
platforms. Must be copied to the Integration Server Library path

SNALU62 eWay - Runtime JNI (snalu62jni.jar): must be copied to the
Integration Server classpath.

Figure 6 Enterprise Manager - DOWNLOADS

6 Download the JNI bridge file for your operating system.

For win32 JNI bridge files:

A Save the file to a directory that is declared in the system PATH statement (eg.
C:\WINNT\System32).

For Unix bridge files:

B Save the appropriate bridge file to the local system.

C FTP the bridge file to your Unix directory.
SNA eWay Intelligent Adapter User’s Guide 18 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Installing the eWay After Installing the eWay
The target directory for AIX systems must be declared in LIBPATH.

The target directory for Solaris must be declared in LD_LIBRARY_PATH.

7 Continue installing eGate Integrator according to the eGate Integrator Installation
Guide.

2.5 After Installing the eWay
Once you have installed the SNA eWay, you must then incorporate it into an eGate
Project and Environment in Enterprise Designer. The next chapters description how
you add the eWay to an eGate Project and an eGate Environment.
SNA eWay Intelligent Adapter User’s Guide 19 SeeBeyond Proprietary and Confidential

Chapter 3

Configuring the eWay

This chapter explains how to configure the SNA eWay and environment properties.

What’s In This Chapter:

“Inbound Connectivity Map Properties” on page 20

“Outbound Connectivity Map Properties” on page 27

“Inbound Environment Properties” on page 30

“Outbound Environment Properties” on page 32

“Object Type Definitions (OTDs)” on page 34

3.1 Inbound Connectivity Map Properties
This section describes in detail the inbound SNA eWay properties that are configured
via the Connectivity Map:

“Inbound Schedules” on page 21

“Connection Establishment” on page 24

“Inbound Connection Manager” on page 24

“SNA Settings” on page 25

“General Settings” on page 26
SNA eWay Intelligent Adapter User’s Guide 20 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuring the eWay Inbound Connectivity Map Properties
Figure 7 Inbound connectivity map properties

3.1.1 Inbound Schedules
This section describes the properties required to configure server inbound
communication:

“Listner Schedule” on page 21

“Service Schedule” on page 22

Listner Schedule

Listner Schedule properties specifies the schedule upon which the server waits for the
new client connection establishment request. This schdeule is for the listener/monitor.
The listner schedule contains the following configuration properties:

“At Fixed Rate” on page 21

“Delay” on page 22

“Period” on page 22

“Scheduler” on page 22

At Fixed Rate

It is used for "Repeated" schedule type by the "Timer Service" scheduler. A true value
means "Fixed-Rate"; a false value means "Fixed-Delay". In fixed-rate execution, each
execution is scheduled relative to the scheduled execution time of the initial execution.
If an execution is delayed for any reason (such as garbage collection or other
background activity), two or more executions will occur in rapid succession to "catch
SNA eWay Intelligent Adapter User’s Guide 21 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuring the eWay Inbound Connectivity Map Properties
up.". In the long run, the frequency of execution will be exactly the reciprocal of the
specified period (assuming the system clock underlying Object.wait(long) is accurate).
In fixed-delay execution, each execution is scheduled relative to the actual execution
time of the previous execution. If an execution is delayed for any reason (such as
garbage collection or other background activity), subsequent executions will be delayed
as well. In the long run, the frequency of execution will generally be slightly lower than
the reciprocal of the specified period (assuming the system clock underlying
Object.wait(long) is accurate).

True

False (Default)

Delay

Delay in milliseconds before task is to be executed. For details, please refer to the
javadoc for java.util.Timer.

Integer Value

Default: 0

Period

It is used for "Repeated" schedule type. It specifies the regular interval in milliseconds
between successive task executions. It should be a positive integer.

Integer Value

Default: 100

Scheduler

Specifies the scheduler type for this inbound communication. "Timer Service" - the task
will be scheduled through the J2EE Timer Service; "Work Manager" - the work will be
scheduled through the J2EE (JCA) Work Manager. If your container doesn't support
JCA Work Management (prior to JCA1.5), you should choose "Timer Service".

Timer Service - the task will be scheduled through the J2EE Timer Service

Work Manager (Default) - the work will be scheduled through the J2EE Work
Manager

Service Schedule

This section specifies the schedule upon which the server executes the business task
(collaboration or business process) over the existing connection. This schedule is for the
actual business rule that is defined by user. The service schedule contains the following
configuration properties:

“At Fixed Rate” on page 23

“Delay” on page 23

“Period” on page 23

“Schedule Type” on page 23

“Scheduler” on page 23
SNA eWay Intelligent Adapter User’s Guide 22 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuring the eWay Inbound Connectivity Map Properties
At Fixed Rate

It is used for "Repeated" schedule type by the "Timer Service" scheduler. A true value
means "Fixed-Rate"; a false value means "Fixed-Delay". In fixed-rate execution, each
execution is scheduled relative to the scheduled execution time of the initial execution.
If an execution is delayed for any reason (such as garbage collection or other
background activity), two or more executions will occur in rapid succession to "catch
up.". In the long run, the frequency of execution will be exactly the reciprocal of the
specified period (assuming the system clock underlying Object.wait(long) is accurate).
In fixed-delay execution, each execution is scheduled relative to the actual execution
time of the previous execution. If an execution is delayed for any reason (such as
garbage collection or other background activity), subsequent executions will be delayed
as well. In the long run, the frequency of execution will generally be slightly lower than
the reciprocal of the specified period (assuming the system clock underlying
Object.wait(long) is accurate).

True

False (Default)

Delay

Delay in milliseconds before task is to be executed. For details, please refer to the
javadoc for java.util.Timer.

Integer Value

Default: 0

Period

It is used for "Repeated" schedule type. It specifies the regular interval in milliseconds
between successive task executions. It should be a positive integer.

Integer Value

Default: 100

Schedule Type

Schedule Type. It is used to define the type of schedule. "OneTime" - The task will be
scheduled for one-time execution; "Repeated" - The task will be scheduled for repeated
execution at regular intervals (which is defined by parameter "Period" in this section).

One Time - The task will be scheduled for one-time execution

Repeated (Default) - The task will be scheduled for repeated execution at regular
intervals (which is defined by parameter "Period" in this section)

Scheduler

Specifies the scheduler type for this inbound communication. "Timer Service" - the task
will be scheduled through the J2EE Timer Service; "Work Manager" - the work will be
scheduled through the J2EE (JCA) Work Manager. If your container doesn't support
JCA Work Management (prior to JCA1.5), you should choose "Timer Service".

Timer Service - the task will be scheduled through the J2EE Timer Service

Work Manager (Default) - the work will be scheduled through the J2EE Work
Manager
SNA eWay Intelligent Adapter User’s Guide 23 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuring the eWay Inbound Connectivity Map Properties
3.1.2 Connection Establishment
Defines some configuration parameters used for controlling the connection
establishment. This section describes the properties required to establish connections to
SNA end-points:

“Max Connection Retry” on page 24

“Retry Connection Interval” on page 24

Max Connection Retry

The maximum number of times the eWay will attempt to connect to the specified
external SNA LU62 destination before giving up.

Integer Value

Default: 3

Retry Connection Interval

The number of milliseconds to wait between attempts to connect to the specified
external SNA LU62 destination.

Integer Value

Default: 30000

3.1.3 Inbound Connection Manager
Defines some configuration parameters used for inbound connection management, for
example, the connection pool and the life cycle of the inbound connection. This section
describes the properties required to accept inbound connections:

“Connection Pool Size” on page 24

“Scope of Connection” on page 25

Connection Pool Size

It defines the maximum number of the concurrent connections for the particular
listener/monitor that is listening/monitoring over the specified SNA LU62 destination.
It represents the capability/availability of this server service. Each connect-request
from a client gains one concurrent connection.This parameter also represents the
maximum number of clients that can concurrently connect to this server service and get
served by the particular listener/monitor at the same time. 0 means no limit.

Integer Value

Default: 6
SNA eWay Intelligent Adapter User’s Guide 24 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuring the eWay Inbound Connectivity Map Properties
Scope of Connection

Scope Of Connection. It is used to define the scope of the accepted connection used by
the eWay. "Resource Adapter Level" - Resource adapter will close the connection upon
termination request, so that the connection may keep alive across multiple times's
executions of the collaboration; "Collaboration Level" - The connection will be closed
once the execution of the collaboration is done, so that the connection has the same life
cycle as the collaboration.

Collaboration Level - The connection will be closed once the execution of the
collaboration is done, so the connection has the same life cycle as the collaboration

Resource Adaptor Level (Default) - Resource adapter will close the connection
upon closure request (via ClosureCommandMessage), so the connection may keep
alive across multiple times's executions of the collaboration

3.1.4 SNA Settings
General SNA Settings. It represents general SNA configuration information. The
following general configuration settings are described in this sections:

“Custom Handshake Class Name” on page 25

“Deallocation Type” on page 25

“Initialize Conversation” on page 26

“Packet Size” on page 26

“Synchronization Level” on page 26

“Timeout” on page 26

Custom Handshake Class Name

Custom Handshake Class Name. It will be used only when the users want to define
their own SNA conversation handshake logic; otherwise, leave it blank. Once it is
specified, it should be a fully qualified class name like 'com.abc.MyClass'. This class
must implement interface com.stc.connector.snalu62.api.SNACustomerHandshake. See
documentation for details.

Deallocation Type

Set this value to the type of deallocation required at the end of the conversation, when a
shutdown is issued. Please refer to your SNA documentation for more information.

0 - CM_DEALLOCATE_SYNC_LEVEL (Default)

1 - CM_DEALLOCATE_FLUSH

2 - CM_DEALLOCATE_CONFIRM

3 - CM_DEALLOCATE_ABEND
SNA eWay Intelligent Adapter User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.1
Configuring the eWay Inbound Connectivity Map Properties
Initialize Conversation

Specifies how the eWay will establish the SNA conversation. "true" - The eWay will
initialize SNA conversations as an invoking TP; "false" - The eWay will accept SNA
conversations as an invokable TP.Unless your use case requires this parameter to be
modified, it is recommended that you keep the default setting, which is "false".

True

False (Default)

Packet Size

The number of bytes per packet of data. This number also determines the size of the
buffers. It should be a positive integer.

Integer Value

Default: 1024

Synchronization Level

Set the synchronization level parameter (CM_SYNC_LEVEL). Please refer to your SNA
manual for more information.

0 - None (Default)

1 - Confirm

Timeout

Used when making requests to the server, this is the number of milliseconds to wait for
a response.

Integer Value

Default: 1000

3.1.5 General Settings
General Settings represent general control information for the eWay.

Scope of State

Scope Of State. It is used to define the scope of the State object, which is an OTD sub-
node. The valid options for this parameter are:

Resource Adapter Level - the State has the same life cycle as the resource adapter;

Connection Level (Default) - the State has the same life cycle as the connection;

OTD Level - the State has the same life cycle as the OTD object. This scope
represents the life cycle of the State.
SNA eWay Intelligent Adapter User’s Guide 26 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Configuring the eWay Outbound Connectivity Map Properties
3.2 Outbound Connectivity Map Properties
This section describes in detail the outbound SNA eWay properties that are configured
via the Connectivity Map:

“Connection Establishment” on page 27

“SNA Settings” on page 29

“General Settings” on page 30

Figure 8 Outbound connectivity map properties

3.2.1 Connection Establishment
Defines some configuration parameters used for controlling the connection
establishment. This section describes in detail the configuration parameters that control
connections:

“Always Create New Connection” on page 27

“Auto Disconnect Connection” on page 28

“Auto Reconnect Upon Matching Failure” on page 28

“Max Connection Retry” on page 28

“Retry Connection Interval” on page 28

Always Create New Connection

This flag indicates whether to ALWAYS try to create a new connection for a connection
establishment request. If it is false, an attempt to match an existing connection
SNA eWay Intelligent Adapter User’s Guide 27 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Configuring the eWay Outbound Connectivity Map Properties
(managed by container) is made; if it is true, a new connection is always created
without trying to match an existing connection.

True - always try to create a new connection without trying to match connection.

False (Default)- try to match an existing connection (managed by container).

Auto Disconnect Connection

This flag indicates whether the eWay disconnects the connection automatically after the
work upon the connection finishes. If it is false, the connection will be left for reuse; if it
is true, the connection will be disconnected and it won't be re-used.

True - the connection will be disconnected and it won't be re-used.

False (Default)- the connection will be left for reuse.

Auto Reconnect Upon Matching Failure

Specifies whether or not to make an attempt to re-connect automatically--after getting a
matched connection from a container. This this connection is not valid due to different
reasons. For example, the external side of the connection was closed/reset upon the
external application's logic. A value of 'true' means that we will discard the invalid
matched connection and try to re-establish a new connection automatically. A value of
'false' means that we won't try to re-establish a new connection automatically. Instead,
we will simply leave/defer the control to users' business rules, which should detect this
kind of failure and perform the desired operations.

True (Default)- discards the invalid matched connection and tries to re-establish a
new connection automatically.

False - the eWay won’t try to re-establish a new connection automatically; instead,
connection control is deferred to users' business rules. User must detect this kind of
failure and develop the business logic to perform accordingly.

Max Connection Retry

The maximum number of times the eWay will attempt to connect to the specified
external SNA LU62 destination before giving up.

Integer Value

Default: 3

Retry Connection Interval

The number of milli-seconds to wait between attempts to connect to the specified
external SNA LU62 destination.

Integer Value

Default: 30000
SNA eWay Intelligent Adapter User’s Guide 28 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Configuring the eWay Outbound Connectivity Map Properties
3.2.2 SNA Settings
General SNA Settings. It represents general SNA configuration information. For more
details, you may need to refer to your SNA documentation, the eWay documentation
and the javadocs. This section describes in detail the general SNA configuration
parameters:

“Custom Handshake Class Name” on page 29

“Deallocation Type” on page 29

“Initialize Conversation” on page 29

“Packet Size” on page 29

“Synchronization Level” on page 30

“Timeout” on page 30

Custom Handshake Class Name

Custom Handshake Class Name. It will be used only when the users want to define
their own SNA conversation handshake logic; otherwise, leave it blank. Once it is
specified, it should be a fully qualified class name like 'com.abc.MyClass'. This class
must implement interface com.stc.connector.snalu62.api.SNACustomerHandshake. See
documentation for details.

Deallocation Type

Set this value to the type of deallocation required at the end of the conversation, when a
shutdown is issued. Please refer to your SNA documentation for more information.

0 - CM_DEALLOCATE_SYNC_LEVEL (Default)

1 - CM_DEALLOCATE_FLUSH

2 - CM_DEALLOCATE_CONFIRM

3 - CM_DEALLOCATE_ABEND

Initialize Conversation

Specifies how the eWay will establish the SNA conversation. "true" - The eWay will
initialize SNA conversations as an invoking TP; "false" - The eWay will accept SNA
conversations as an invokable TP.Unless your use case requires this parameter to be
modified, it is recommended that you keep the default setting, which is "true".

True (Default)

False

Packet Size

The number of bytes per packet of data. This number also determines the size of the
buffers. It should be a positive integer.
SNA eWay Intelligent Adapter User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Configuring the eWay Inbound Environment Properties
Integer Value

Default: 1024

Synchronization Level

Set the synchronization level parameter (CM_SYNC_LEVEL). Please refer to your SNA
manual for more information.

0 - None (Default)

1 - Confirm

Timeout

Used when making requests to the server, this is the number of milliseconds to wait for
a response.

Integer Value

Default: 1000

3.2.3 General Settings
General Settings represent general control information for the eWay.

Scope of State

Scope Of State. It is used to define the scope of the State object, which is an OTD sub-
node. The valid options for this parameter are:

Resource Adapter Level - the State has the same life cycle as the resource adapter;

Connection Level (Default) - the State has the same life cycle as the connection;

OTD Level - the State has the same life cycle as the OTD object. This scope
represents the life cycle of the State.

3.3 Inbound Environment Properties
This section describes in detail the inbound SNA environment properties that are
configured via the Environment Explorer:

“SNA Settings” on page 31

“General Settings” on page 32
SNA eWay Intelligent Adapter User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Configuring the eWay Inbound Environment Properties
Figure 9 Inbound SNA environment properties

3.3.1 SNA Settings
General SNA Settings. It represents general SNA configuration information. For more
details, you may need to refer to your SNA documentation, the eWay documentation
and the javadocs. The following general SNA configuration parameters are configured
from within the SNA environment properties:

“Host Name” on page 31

“Local LU Name” on page 31

“Local TP Name” on page 31

“Symbolic Destination Name” on page 32

Host Name

The Host Name where the lu68 Server runs, only needed for Brixton LU62 server.

Default: localhost

Local LU Name

The local LU name defined to the SunLink LU6.2 server. This parameter is required for
Sunlink P2P LU6.2 9.1 and is ignored on other platforms. This name is case-sensitive.
Please refer to your SNA documentation for more information.

Local TP Name

The local Transaction Program, TP, name that is running on the local Logical Unit (LU).
It is case-sensitive. Please refer to your SNA documentation for more information.
SNA eWay Intelligent Adapter User’s Guide 31 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Configuring the eWay Outbound Environment Properties
Symbolic Destination Name

The symbolic destination name associated with a side information entry loaded from
the configuration file. This name is case-sensitive. Please refer to your SNA
documentation for more information.

3.3.2 General Settings
General Settings represent general control information for the logical host environment.

Persistent Storage Location

Specifies the Persistent Storage Location (a local folder name). The folder name that
contains the file used to store the persistent data. The base file name will be generated
according to project/deployment/collaboration information.

Default: C:/temp/snalu62inbound/persist

3.4 Outbound Environment Properties
This section describes in detail the inbound SNA environment properties that are
configured via the Environment Explorer:

“SNA Settings” on page 33

“General Settings” on page 33

Figure 10 Outbound SNA environment properties
SNA eWay Intelligent Adapter User’s Guide 32 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Configuring the eWay Outbound Environment Properties
3.4.1 SNA Settings
General SNA Settings represent SNA configuration parameters required to
communicate with entities via SNA. The following general SNA configuration
parameters are configured from within the SNA environment properties:

“Host Name” on page 33

“Local LU Name” on page 33

“Local TP Name” on page 33

“Symbolic Destination Name” on page 33

Host Name

The Host Name where the lu68 Server runs, only needed for Brixton LU62 server.

Default: localhost

Local LU Name

The local LU name defined to the SunLink LU6.2 server. This parameter is required for
Sunlink P2P LU6.2 9.1 and is ignored on other platforms. This name is case-sensitive.
Please refer to your SNA documentation for more information.

Local TP Name

The local Transaction Program, TP, name that is running on the local Logical Unit (LU).
It is case-sensitive. Please refer to your SNA documentation for more information.

Symbolic Destination Name

The symbolic destination name associated with a side information entry loaded from
the configuration file. This name is case-sensitive. Please refer to your SNA
documentation for more information.

3.4.2 General Settings
General Settings represent general control information for the logical host environment.

Persistent Storage Location

Specifies the Persistent Storage Location (a local folder name). The folder name that
contains the file used to store the persistent data. The base file name will be generated
according to project/deployment/collaboration information.

Default: C:/temp/snalu62outbound/persist
SNA eWay Intelligent Adapter User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.5
Configuring the eWay Object Type Definitions (OTDs)
3.5 Object Type Definitions (OTDs)
Unlike most other eWays, the SNA eWay does not consist of an OTD wizard. OTD
wizards typically facilitate the creation of a collaborations that are used with eWay
projects. When an OTD wizard is available, a skeleton collaboration is created to
provide minimal funtionality that you must modify to suit your application’s needs.
Without the OTD wizard, as in the case of the SNA eWay, you must create your
collaborations completely from scratch.

To associate the standard SNA eWay OTD to a new Java collaboration:

1 From the Project Explorer, right-click the targeted project.

2 Select New > Collaboration Definition (Java)...

3 Complete steps 1 and 2 of the Collaboration Definition Wizard (Java).

4 Select the OTD to use in the new collaboration by traversing the Look In drop-
down box: SeeBeyond.eWays.SNALU62.

5 Highlight the desired OTD name and click the Add button.

6 Optionally, modify the instance name of the OTD that will be used in the
collaboration.

7 Click the Finish button.

The new collaboration that impliments the SNA eWay OTD is created. For details about
the SNA eWay methods that may be used with collaborations for the, refer to “SNA
eWay Javadocs” on page 69.
SNA eWay Intelligent Adapter User’s Guide 34 SeeBeyond Proprietary and Confidential

Chapter 4

SNA Java Collaborations

This chapter provides an overview of the default SNA collaboration that is created with
new Java collaborations that are associated with the standard SNA OTD. This chapter
also discusses how to create custom collaborations that can be used with the project
samples and recommended practices for developing new collaborations.

What’s in This Chapter

Creating Default Java Collaborations on page 35

Creating Custom Collaborations on page 39

Best Practices on page 50

4.1 Creating Default Java Collaborations
In order for your project to use the functionality available in the SNA eWay, you must
have a collaboration that implements the SNA OTD. This section describes how to
create a default SNA Java collaboration using the Collaboration Definition Wizard
(Java).

To create a default Java collaboration

1 In the Project Explorer tab of the Enterprise Designer, right-click the project, select
New > Collaboration Definition (Java).

2 Complete steps 1 and 2 of the Collaboration Definition Wizard (Java). For details
about this wizard, refer to the eGate Integrator User’s Guide.

3 Select the SNA OTD to use in the new collaboration by traversing the Look In drop-
down box: SeeBeyond.eWays.SNA.

4 Highlight the desired OTD name and click the Add button.

5 Optionally, modify the instance name of the OTD that will be used in the
collaboration.

6 Click the Finish button.

A new collaboration associated with the SNA OTD is placed into your targeted project.

7 In the Collaboration Editor window, create the source code and the data mappings
for the collaboration. For details about the Collaboration Editor, refer to the eGate
Integrator User’s Guide. For information about SNA methods, refer to “SNA eWay
Javadocs” on page 69.
SNA eWay Intelligent Adapter User’s Guide 35 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
SNA Java Collaborations Creating Default Java Collaborations
The figure below shows an example of data mapping for an inbound SNA
collaboration. To explore the business logic design for an actual project, import the SNA
sample projects as described in “Importing Projects” on page 55.

Figure 11 Inbound collaboration (SNAIn_CPIC)

4.1.1 Analyzing the Default Java Collaboration
Newly created Java collaborations that implement the SNA OTD consist of skeleton
SNA functionality required to use the collaboration with your project. The
collaboration code generated upon SNA Java collaboration creation is provided in
Figure 12.
SNA eWay Intelligent Adapter User’s Guide 36 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
SNA Java Collaborations Creating Default Java Collaborations
The first line of code declares the package to which the collaboration belongs. The
default package name is always the concatenation of the Project Explorer tree structure
for a particular repository. For this example the tree structure is shown in figure 22. The
collaboration belongs to the TechDoc.SNA.tdSNA project. Therefore, when the
collaboration wizard creates the new collaboration, the package name is:
TechDocSNAtdSNA.

Figure 13 Example project tree structure.

After the package name is declared, the collaboration object itself is defined. In order
for the class object to be available to other collaborations and more complex projects,
the collaboration class is defined as a public class. The name of the collaboration
object class was specified on the first page of the Collaboration Definition Wizard
(Java). This example used the default name provided by the wizard. If you find it
necessary to alter the name of the collaboration object defined in the code, you must
perform two steps. Firstly, you must rename the object specified by the public class

Figure 12 Default collaboration code listing (complete)

package TechDocSNAtdSNA;
public class Collaboration_1
{

public void receive(
com.stc.connector.snalu62.inbound.SNAInboundApplication input,
com.stc.connector.snalu62.outbound.SNAOutboundApplication SNALU62eWay_1

)
throws Throwable

{
//code goes here.

}

public com.stc.codegen.logger.Logger logger;
public com.stc.codegen.alerter.Alerter alerter;
public com.stc.codegen.util.CollaborationContext collabContext;

}

SNA eWay Intelligent Adapter User’s Guide 37 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.1
SNA Java Collaborations Creating Default Java Collaborations
declaration. Secondly, you must rename the collaboration file listed in the project tree
structure to match the name of the defined object. Since this example uses
Collaboration_1 as the name of the collaboration in the Project Explorer, the defined
collaboration object becomes: public class Collaboration_1

After the collaboration object and package name declarations, the web service
operation--specified in the Collaboration Definition Wizard (see Figure 14)--that the
collaboration will perform is specified.

Figure 14 Web Service Operation declaration

Since this example only uses the receive web service operation, only the receive
constructor is generated. In order for this collaboration to be available to other
collaborations and projects, it too must be declared as a public method.

The receive method does not return any data to the collaboration and, as such, is
assigned a void data type. The receive method provides two interfaces that may be
used in your collaboration. The SNAInboundApplication interface is used to handle
all incoming conversations. The SNAOutboundApplication interface is used to handle
outbound conversations. If this collaboration were configured to communicate with
other eWays, you would declare those interfaces here also. For example, if you also
needed the collaboration to send data to a file, you could use the File eWay and declare
it as follows:

public void receive(
com.stc.connector.snalu62.inbound.SNAInboundApplication input,
com.stc.connector.snalu62.outbound.SNAOutboundApplication SNALU62eWay_1

)
throws Throwable {}
SNA eWay Intelligent Adapter User’s Guide 38 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
SNA Java Collaborations Creating Custom Collaborations
Minimal error handling for the collaboration is provided by the Throwable {} class.
It is recommended that you implement a more robust exception handling mechanism
for your project to assist with any potential issues that may arise

Additional eWay development utilities are also provided in your generated
collaboration. You should consult the eGate Integrator User’s Guide for details about
these declared methods.

4.2 Creating Custom Collaborations
This section describes how to create the collaborations provided in the sample projects.
Each of the 4 collaborations provide different techniques for using the eWay to perform
varying ranges of SNA conversation tasks that you may need to execute. The
collaborations are not meant to demonstrate the only way to perform desired
operations; rather, they should provide insight into how you may use the SNA eWay to
develop your applications.

The Java collaborations you create can be grouped into one of three categories, each of
which is discussed in this chapter.

About the Collaborations

Inbound SNA Conversations on page 39

Outbound SNA Conversations on page 45

Inbound and Outbound SNA Conversations on page 50

4.2.1 Inbound SNA Conversations
Inbound SNA conversations accept incoming conversation requests from remote
transaction programs that initialize conversations. This section describes how to create

public void receive(
com.stc.connector.snalu62.inbound.SNAInboundApplication input,
com.stc.connector.snalu62.outbound.SNAOutboundApplication SNALU62eWay_1
com.stc.connector.appconn.file.FileApplication FileClient_1

)
throws Throwable {}

public com.stc.codegen.logger.Logger logger;
public com.stc.codegen.alerter.Alerter alerter;
public com.stc.codegen.util.CollaborationContext collabContext;
SNA eWay Intelligent Adapter User’s Guide 39 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
SNA Java Collaborations Creating Custom Collaborations
collaborations that accept conversations and output the conversation to a file to be
stored on the local system. An explanation of how to create the collaboration with both
the CPIC methods and the Helper methods is provided.

Conversation Sent to a Text File (CPIC) on page 40

Conversation Sent to a Text File (Helper) on page 42

Conversation Sent to a Text File (CPIC)

This collaboration demonstrates how to use the eWay, in conjunction with the CPIC
Java methods, to accept an incoming SNA conversation and output the conversation to
a file on the local system.

The first six lines of code in this collaboration are created by the default collaboration
wizard. As such, these line of code will not discuss these here. However, keep in mind
that if you are creating a new Java collaboration, your package name and class name
may differ. The next three lines of code tell the collaboration from where the data
should be retrieved and to where the data should be sent.

Figure 15 SNAIn_CPIC collaboration code

package SNAIn1;
public class Collaboration_1
{
 public com.stc.codegen.logger.Logger logger;
 public com.stc.codegen.alerter.Alerter alerter;
 public com.stc.codegen.util.CollaborationContext collabContext;

 public void receive(
 com.stc.connector.snalu62.inbound.SNAInboundApplication input,
 com.stc.connector.appconn.file.FileApplication FileClient_1
)
 throws Throwable
 {
 // @map:logger.info("SNAIn1: Started.")
 logger.info("SNAIn1: Started.");
 // @map:CPICCalls.cmrcv
 input.getCPICCalls().cmrcv();
 // @map:byte[] recv;
 byte[] recv;
 // @map:
 if (null == input.getDataIn()) {
 // @map:Copy Bytes to recv
 recv = "No data is received.".getBytes();
 } else {
 // @map:Copy DataIn to recv
 recv = input.getDataIn();
 }
 // @map:Copy recv to ByteArray
 FileClient_1.setByteArray(recv);
 // @map:FileClient_1.writeBytes
 FileClient_1.writeBytes();
 // @map:logger.info("SNAIn1: Ended.")
 logger.info("SNAIn1: Ended.");
 }

}

SNA eWay Intelligent Adapter User’s Guide 40 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
SNA Java Collaborations Creating Custom Collaborations
Since the goal of this collaboration is to handle incoming conversations, you need to
create an instance of the SNAInboundApplication interface in order to read
incoming conversation traffic. In order for the collaboration to know to where the data
should be sent, you must create an instance of the FileApplication interface that
belongs to the File eWay. This will allow you to output incoming conversation traffic to
a file on the local system. Error handling is handled by the Throwable class.

One of the first things you should do before processing any conversation traffic is turn
on the logging feature. Here, the logger is instantiated with a specific phrase to include
in the log file. Now that limited debugging for the collaboration is available, the next
step is to tell the collaboration to listen to the incoming traffic. Listening to the
conversation traffic is performed by using the CPIC cmrcv() method of the exposed
Java CPIC calls. Since the SNA CPIC calls belong to getCPICCalls(), listening to the
input from the looks like this: input.getCPICCalls().cmrcv(). In order to process
the incoming traffic, a byte array, recv, is created.

Depending on the incoming conversation traffic, a logic loop is setup to tell the
collaboration what to do with the incoming byte data. If no data is received (if (null
== input.getDataIn())), an output message is displayed, recv = "No data is
received.".getBytes(), before continuing to listen for any change in the data
stream. When an incoming data array is finally detected, the loop captures the data,
recv = input.getDataIn(), and sends it to the FileApplication interface for
further processing.

 public void receive(
 com.stc.connector.snalu62.inbound.SNAInboundApplication input,
 com.stc.connector.appconn.file.FileApplication FileClient_1
)

throws Throwable
 {

// @map:logger.info("SNAIn1: Started.")
 logger.info("SNAIn1: Started.");
 // @map:CPICCalls.cmrcv
 input.getCPICCalls().cmrcv();
 // @map:byte[] recv;
 byte[] recv;

 // @map:
 if (null == input.getDataIn()) {
 // @map:Copy Bytes to recv
 recv = "No data is received.".getBytes();
 } else {
 // @map:Copy DataIn to recv
 recv = input.getDataIn();
 }
SNA eWay Intelligent Adapter User’s Guide 41 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
SNA Java Collaborations Creating Custom Collaborations
Since the goal is to output the collected data array to a file, the File eWay takes the input
data, as a byte array (FileClient_1.setByteArray(recv)), and writes the data
(FileClient_1.writeBytes()) to the file specified by the eWay properties. After the
data array from the incoming conversation is collected and output to a file, a final log
message is displayed, logger.info("SNAIn1: Ended.")

If you are using the business rule designer to create your collaboration, see Figure 16 for
the business rules associated with this collaboration.

Figure 16 Inbound collaboration (CPIC) business rules

Conversation Sent to a Text File (Helper)

This collaboration demonstrates how to use the eWay to accept an incoming SNA
conversation and send the conversation to a text file located on the local system. To
begin with, you should create a new Java collaboration with the Collaboration
Definition Wizard. Use the wizard to specify the SNA receive web service operation
and 2 external FileClient applications.

 // @map:Copy recv to ByteArray
 FileClient_1.setByteArray(recv);
 // @map:FileClient_1.writeBytes
 FileClient_1.writeBytes();
 // @map:logger.info("SNAIn1: Ended.")
 logger.info("SNAIn1: Ended.");
SNA eWay Intelligent Adapter User’s Guide 42 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
SNA Java Collaborations Creating Custom Collaborations
The first six lines of code in this collaboration are created by the default collaboration
wizard. As such, these lines of code will not discuss these here. However, keep in mind
that if you are creating a new Java collaboration, your package name and class name
may differ. The next three lines of code tell the collaboration from where to get the data
and to where the data should be sent.

Since the goal of this collaboration is to handle incoming conversations, you need to
create an instance of the SNAInboundApplication interface in order to read
incoming conversation traffic. In order for the collaboration to know to where the data
should be sent, you must create an instance of the FileApplication interface that
belongs to the File eWay. This will allow you to output incoming conversation traffic to
a file on the local system. Error handling is handled by the Throwable class.

Figure 17 SNAIn_helper collaboration code

package SNAIn1;
public class Collaboration_1
{
 public com.stc.codegen.logger.Logger logger;
 public com.stc.codegen.alerter.Alerter alerter;
 public com.stc.codegen.util.CollaborationContext collabContext;

 public void receive(
 com.stc.connector.snalu62.inbound.SNAInboundApplication input,
 com.stc.connector.appconn.file.FileApplication FileClient_1)
 throws Throwable
 {
 // @map:logger.info("SNAIn1: Started.")
 logger.info("SNAIn1: Started.");
 input.recv();
 byte[] recv;
 // @map:
 if (null == input.getDataIn()) {
 // @map:Copy Bytes to recv
 recv = "No data is received.".getBytes();
 } else {
 // @map:Copy DataIn to recv
 recv = input.getDataIn();
 }
 // @map:Copy recv to ByteArray
 FileClient_1.setByteArray(recv);
 // @map:FileClient_1.writeBytes
 FileClient_1.writeBytes();
 // @map:logger.info("SNAIn1: Ended.")
 logger.info("SNAIn1: Ended.");
 }
}

 public void receive(
 com.stc.connector.snalu62.inbound.SNAInboundApplication input,
 com.stc.connector.appconn.file.FileApplication FileClient_1
)

throws Throwable
 {
SNA eWay Intelligent Adapter User’s Guide 43 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
SNA Java Collaborations Creating Custom Collaborations
One of the first things you should do before processing any conversation traffic is turn
on the logging feature. Here, the logger is instantiated with a specific phrase to include
in the log file. Now that limited debugging for the collaboration is available, the next
step is to tell the collaboration to listen to the incoming traffic. Listening to the
conversation traffic is performed by using the Helper recv() method (refer to “SNA
eWay Javadocs” on page 69). In order to process the incoming traffic, a byte array,
recv, is created.

Depending on the incoming conversation traffic, a logic loop is setup to tell the
collaboration what to do with the incoming byte data. If no data is received (if (null
== input.getDataIn())), an output message is displayed, recv = "No data is
received.".getBytes(), before continuing to listen for any change in the data
stream. When an incoming data array is finally detected, the loop captures the data,
recv = input.getDataIn(), and sends it to the FileApplication interface for
further processing.

Since the goal is to output the collected data array to a file, the File eWay takes the input
data, as a byte array (FileClient_1.setByteArray(recv)), and writes the data
(FileClient_1.writeBytes()) to the file specified by the eWay properties. After the
data array from the incoming conversation is collected and output to a file, a final log
message is displayed, logger.info("SNAIn1: Ended.")

If you are using the business rule designer to create your collaboration, see Figure 18 for
the business rules associated with this collaboration.

// @map:logger.info("SNAIn1: Started.")
 logger.info("SNAIn1: Started.");

input.recv();
 // @map:byte[] recv;
 byte[] recv;

 // @map:
 if (null == input.getDataIn()) {
 // @map:Copy Bytes to recv
 recv = "No data is received.".getBytes();
 } else {
 // @map:Copy DataIn to recv
 recv = input.getDataIn();
 }

 // @map:Copy recv to ByteArray
 FileClient_1.setByteArray(recv);
 // @map:FileClient_1.writeBytes
 FileClient_1.writeBytes();
 // @map:logger.info("SNAIn1: Ended.")
 logger.info("SNAIn1: Ended.");
SNA eWay Intelligent Adapter User’s Guide 44 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
SNA Java Collaborations Creating Custom Collaborations
Figure 18 Inbound collaboration (Helper) business rules

4.2.2 Outbound SNA Conversations
Outbound SNA conversations initialize conversations and relay (send) data to
transaction programs that accept the initialize conversation request. This section
describes how to create collaborations that route conversation data to an SNA point.
The conversation data (from this collaboration) sent originates in a text file located on
the local system. An explanation of how to create the collaboration with both the CPIC
methods and the Helper methods is provided.

Conversation Originates from a Text File (CPIC) on page 45

Conversation Originates from a Text File (Helper) on page 48

Conversation Originates from a Text File (CPIC)

This collaboration demonstrates how to use the eWay, in conjunction with the CPIC
Java methods, to read a text message stored in a text file and send that message as a
conversation.
SNA eWay Intelligent Adapter User’s Guide 45 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
SNA Java Collaborations Creating Custom Collaborations
The first six lines of code in this collaboration are created by the default collaboration
wizard. As such, these lines of code will not discuss these here. However, keep in mind
that if you are creating a new Java collaboration, your package name and class name
may differ. The next three lines of code tell the collaboration from where the data
should be retrieved and to where the data should be sent.

Since the goal of this collaboration is to retrieve data from a file and send the data, you
need to create an instance of the SNAOutboundApplication interface in order to deliver
conversation traffic. In order for the collaboration to know from where to retrieve the
data that is to be sent via the SNAOutboundApplication interface, you must create an
instance of the FileApplication interface that belongs to the File eWay. This will
allow you to read the data file on the local system. Error handling is handled by the
Throwable class.

Figure 19 SNAOut_CPIC collaboration code

package SNAOut1;
public class Collaboration_1
{
 public com.stc.codegen.logger.Logger logger;
 public com.stc.codegen.alerter.Alerter alerter;
 public com.stc.codegen.util.CollaborationContext collabContext;

 public void receive(
 com.stc.connector.appconn.file.FileTextMessage input,
 com.stc.connector.snalu62.outbound.SNAOutboundApplication SNALU62eWay_1,
 com.stc.connector.appconn.file.FileApplication FileClient_1
)
 throws Throwable
 {
 // @map:logger.info("SNAOut1: Started.")
 logger.info("SNAOut1: Started.");
 // @map:Copy ByteArray to DataOut
 SNALU62eWay_1.setDataOut(input.getByteArray());
 // @map:CPICCalls.cmsend
 SNALU62eWay_1.getCPICCalls().cmsend();
 // @map:CPICCalls.cmflus
 SNALU62eWay_1.getCPICCalls().cmflus();
 // @map:logger.info("SNAOut1: Ended.")
 logger.info("SNAOut1: Ended.");
 }
}

public void receive(
com.stc.connector.appconn.file.FileTextMessage input,
com.stc.connector.snalu62.outbound.SNAOutboundApplication SNALU62eWay_1,
com.stc.connector.appconn.file.FileApplication FileClient_1

)
throws Throwable

 {
SNA eWay Intelligent Adapter User’s Guide 46 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
SNA Java Collaborations Creating Custom Collaborations
One of the first things you should do before processing any conversation traffic is turn
on the logging feature. Here, the logger is instantiated with a specific phrase to include
in the log file. Now that limited debugging for the collaboration is available, the next
step is to tell the collaboration from where to retrieve the data that will be transmitted.
Using the getByteArray method available for the File eWay, the data can be read with
this: input.getByteArray().

A moderately simple construct of the SNAOutboundApplication interface can use this
getByteArray method to load the data into the send buffer before it is transmitted. In
order to load the data to the outbound buffer, you can use something similar to this:
SNALU62eWay_1.setDataOut(input.getByteArray()). This sets the content of the
outgoing payload buffer to the data found in the file.

After the payload buffer is filled with the contents of the conversation message to be
delivered, you can then send the message. Sending a message to can be performed by
using the CPIC cmsend() method of the exposed Java CPIC calls. Since the SNA CPIC
calls belong to getCPICCalls(), listening to the input looks like this:
input.getCPICCalls().cmsend(). After you initiate the send message activity, you
must to flush the contents of the payload buffer to ensure that all the data was sent and
to clean the buffer so that it can be used again, if the need arises. To flush the payload
buffer, you can use: SNALU62eWay_1.getCPICCalls().cmflus().

After the conversation traffic has been sent, a final log message is displayed,
logger.info("SNAIn1: Ended.").

If you are using the business rule designer to create your collaboration, see Figure 20 for
the business rules associated with this collaboration.

// @map:logger.info("SNAOut1: Started.")
logger.info("SNAOut1: Started.");

 // @map:Copy ByteArray to DataOut
 SNALU62eWay_1.setDataOut(input.getByteArray());

// @map:CPICCalls.cmsend
 SNALU62eWay_1.getCPICCalls().cmsend();
 // @map:CPICCalls.cmflus
 SNALU62eWay_1.getCPICCalls().cmflus();

 // @map:logger.info("SNAIn1: Ended.")
 logger.info("SNAIn1: Ended.");
SNA eWay Intelligent Adapter User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
SNA Java Collaborations Creating Custom Collaborations
Figure 20 Outbound collaboration (CPIC) business rules

Conversation Originates from a Text File (Helper)

This collaboration demonstrates how to use the eWay to read a message from a local file
and send that message data. To begin with, you should create a new Java collaboration
with the Collaboration Definition Wizard. Use the wizard to specify the SNA
receive web service operation and 2 external FileClient applications.

The first six lines of code in this collaboration are created by the default collaboration
wizard. As such, these lines of code will not discuss these here. However, keep in mind

Figure 21 SNAOut_helper collaboration code

package SNAOut1;
public class Collaboration_1
{
 public com.stc.codegen.logger.Logger logger;
 public com.stc.codegen.alerter.Alerter alerter;
 public com.stc.codegen.util.CollaborationContext collabContext;

 public void receive(
 com.stc.connector.appconn.file.FileTextMessage input,
 com.stc.connector.snalu62.outbound.SNAOutboundApplication SNALU62eWay_1,
 com.stc.connector.appconn.file.FileApplication FileClient_1)
 throws Throwable
 {
 // @map:logger.info("SNAOut1: Started.")
 logger.info("SNAOut1: Started.");
 // @map:Copy ByteArray to DataOut
 SNALU62eWay_1.setDataOut(input.getByteArray());
 SNALU62eWay_1.send();
 logger.info("SNAOut1: Ended.");
 }
}

SNA eWay Intelligent Adapter User’s Guide 48 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
SNA Java Collaborations Creating Custom Collaborations
that if you are creating a new Java collaboration, your package name and class name
may differ. The next three lines of code tell the collaboration from where the data
should be retrieved and to where the data should be sent.

Since the goal of this collaboration is to retrieve data from a file and send the data, you
need to create an instance of the SNAOutboundApplication interface in order to deliver
conversation traffic. In order for the collaboration to know from where to retrieve the
data that is to be sent via the SNAOutboundApplication interface, you must create an
instance of the FileApplication interface that belongs to the File eWay. This will
allow you to read the data file on the local system. Error handling is handled by the
Throwable class.

One of the first things you should do before processing any conversation traffic is turn
on the logging feature. Here, the logger is instantiated with a specific phrase to include
in the log file. Now that limited debugging for the collaboration is available, the next
step is to tell the collaboration to where the data that will be transmitted should be sent.
Using the getByteArray method available for the File eWay, the data can be read with
this: input.getByteArray().

A moderately simple construct of the SNAOutboundApplication interface can use this
getByteArray method to load the data into the send buffer before being transmitted.
In order to load the data to the outbound buffer, you can use something similar to this:
SNALU62eWay_1.setDataOut(input.getByteArray()). This sets the content of the
outgoing payload buffer to the data found in the file.

After the payload buffer is filled with the contents of the conversation message to be
delivered, you can then send the message. Sending a message can be performed by
using the Helper send() method of the exposed Java methods (refer to “SNA eWay
Javadocs” on page 69). The send() method sends the outgoing payload (buffer)
represented in the OTD as node DataOut into the local LU’s send buffer for
transmission to the partner TP with confirmation flag. When the flag is true, a CPIC
cmcfm will be called after the data is sent. For the general logic flow of this helper

public void receive(
com.stc.connector.appconn.file.FileTextMessage input,
com.stc.connector.snalu62.outbound.SNAOutboundApplication SNALU62eWay_1,
com.stc.connector.appconn.file.FileApplication FileClient_1

)
throws Throwable

 {

// @map:logger.info("SNAOut1: Started.")
logger.info("SNAOut1: Started.");

 // @map:Copy ByteArray to DataOut
 SNALU62eWay_1.setDataOut(input.getByteArray());

SNALU62eWay_1.send();
SNA eWay Intelligent Adapter User’s Guide 49 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
SNA Java Collaborations Best Practices
function, you may need to refer to the native interface
com.stc.connector.snalu62.jni.SNAInterface#send(boolean).

After the conversation traffic has been sent, a final log message is displayed,
logger.info("SNAIn1: Ended.").

If you are using the business rule designer to create your collaboration, see Figure 22 for
the business rules associated with this collaboration.

Figure 22 Outbound collaboration (Helper) business rules

4.2.3 Inbound and Outbound SNA Conversations
A collaboration that both accepts and transmits conversation initialization requests is
achieved by creating a default SNA collaboration--see Creating Default Java
Collaborations on page 35 for details. After the default collaboration is generated, you
can then modify the collaboration to suit your application’s needs.

4.3 Best Practices
Best practices are not intended to teach how to program SNA; it is assumed that you
already know how to program SNA. This section attempts to provide guidelines that

 // @map:logger.info("SNAIn1: Ended.")
 logger.info("SNAIn1: Ended.");
SNA eWay Intelligent Adapter User’s Guide 50 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
SNA Java Collaborations Best Practices
you should follow when using the SNA eWay to create SNA Java collaborations and
interfaces.

An SNA conversation is the connection between the two transaction programs (TP).
When a TP want to communicate with another TP, it must first contact each of the other
potential TPs and determine their state. Each transaction program in the conversation
should be aware of the other TP and work together. If one side is expecting the other
side to do perform certain operations, and vise versa, you should ensure that the
behaviors are present, accurate, and accounted for; as, any change on one side of the
conversation may affect the other side.

4.3.1 Checking Conversation State
When writing collaborations, it is a good programming procedure to check the pre-
condition and post-condition for any outstanding function call or major logic check-
point. Depending on the returned logic or function state, you can then determine the
next course of action. For example, after you call an SNA receive function, you should
check the lastReturnCode, exposed as an OTD node, as demonstrated in Figure 23.

Figure 23 Inbound conversation collaboration

In the above example, a CPIC call, input.getCPICCalls().cmrcv(), is used to
accept an initiate conversation request. A getLastReturnCode is immediately called
on the inbound conversation to obtain the return code from the last SNA conversation-
related function call. The logic, as implemented here, checks to see if the returned code
from the cmrcv() call matches the return code value of getCM_OK. If the returned
codes match, the data from the conversation is captured and output to the target file as
specified in the remainder of the collaboration code. If the return code obtained by the
input.getLastReturnCode() call does not match, an exception is thrown and logged.

Similar in construct to the previous example, this next inbound conversation code
segment, Figure 24, uses the Confirmed (cmcfmd) CPIC call to send a confirmation
reply to the remote program confirmation request. The local and remote programs can
use the Confirmed and Confirm calls to synchronize their processing.

public void receive(
com.stc.connector.snalu62.inbound.SNAInboundApplication
input, com.stc.connector.appconn.file.FileApplication FileClient_1)

 throws Throwable
{
// it works along with project SNAOut1_Confirm which sends data and
// requests confirmation.
// main logic: receive data over SNA, write it into file, then confirm it.

logger.info("SNAIn1_Confirm: Started.");
// you can do whatever other logic before/after this CPIC call according
// to your own actual case
input.getCPICCalls().cmrcv();
if (input.getLastReturnCode() !=

 input.getConstants().getReturnCodes().getCM_OK()) {
logger.error("SNAIn1_Confirm: cmrcv: Failed.");
throw new Exception("SNAIn1_Confirm: cmrcv: Failed.");
// or do your own error handling

}
//Conversation processing goes here
SNA eWay Intelligent Adapter User’s Guide 51 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
SNA Java Collaborations Best Practices
Figure 24 Inbound conversation confirmation

To maintain the cohesion between the inbound conversation collaboration and the
outbound conversation collaboration, the outbound conversation code, Figure 25, will
request a confirmation of the conversation state before proceeding. Without the
outbound conversation collaboration requesting the confirmation from the inbound
conversation collaboration, it is possible that unexpected results could occur since the
confirmation codes are being sent to the requestor, even though the requestor didn’t ask
for confirmation.

Figure 25 Outbound conversation confirmation

As you can see, the Confirm (cmcfm) call is used by the outbound conversation
collaboration to send a confirmation request to the inbound conversation collaboration
and then wait for a reply. The inbound conversation collaboration replies with a
Confirmed (CMCFMD) call (see Figure 24). The inbound and outbound conversation
collaborations use the Confirm and Confirmed calls to synchronize their processing of
data.

If your design requires further conversation synchronization, you can check the
lastStatus (exposed as an OTD node) and/or check the lastConversationState
(exposed as an OTD node); in addition to, other confirmation status check calls (see
“SNA eWay Javadocs” on page 69 for additional information). Once the state is
determined, your program flow can be modified based on these expected or
unexpected conversation states. If you are not receiving expected returned values, you
will know that something is wrong and can process the conversation accordingly.

Depending on which type of Java calls you use in your collaboration code, you will
need to select the proper calls that are related. A (non-exclusive) list of commly used
related confirmation methods is provided below:

cpic cmcfm()

cpic cmcfmd()

// you can do whatever other logic before/after this CPIC call according
to your design
input.getCPICCalls().cmcfmd();
if (input.getLastReturnCode() !=

input.getConstants().getReturnCodes().getCM_OK()) {
logger.error("SNAIn1_Confirm: cmcfmd: Failed.");
throw new Exception("SNAIn1_Confirm: cmcfmd: Failed.");
// or do your own error handling

}
//Conversation processing goes here

SNALU62eWay_1.getCPICCalls().cmcfm();
if (SNALU62eWay_1.getLastReturnCode() !=

SNALU62eWay_1.getConstants().getReturnCodes().getCM_OK()) {
logger.error("SNAOut1_Confirm: cmcfm: Failed.");
throw new Exception("SNAOut1_Confirm: cmcfm: Failed.");
// or do your own error handling

}
//Conversation processing goes here
SNA eWay Intelligent Adapter User’s Guide 52 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
SNA Java Collaborations Best Practices
helper confirm()

helper confirmed()

helper send() or send(true)

helper recv() or recv(true)

4.3.2 Using CPIC Calls
For the users that want to use CPIC calls (cmxxxx) directly, the eWay and integration
server manage conversation initiation and termination. Normally, it is not necessary to
explicitly call the CPIC calls (e.g. cmaccp, cminit, cmdeal, etc.) that manage
conversation initiation and termination. Unless your design requires you to manage the
conversation on your own logic, of course risk also, you need not implement CPIC calls
for conversation handshakes.

The collaborations discussed in this chapter and the collaborations provided with the
sample projects (“Implementing SNA eWay Projects” on page 54) demonstrate several
examples of common practices as applied to the SNA eWay.
SNA eWay Intelligent Adapter User’s Guide 53 SeeBeyond Proprietary and Confidential

Chapter 5

Implementing SNA eWay Projects

This chapter provides an introduction to how the SNA eWay components are created
and implemented in an eGate project. It is assumed that the reader understands the
basics of creating a project using the SeeBeyond Enterprise Designer. For more
information on creating an eGate project see the eGate Integrator Tutorial and the eGate
Integrator User’s Guide.

What’s in This Chapter

About the Sample Projects on page 54

Locating the Sample Projects on page 55

Importing Projects on page 55

Running SNA eWay Projects on page 57

Building SNA Business Logic with eGate on page 63

5.1 About the Sample Projects
The SNA eWay includes the following sample projects that you can import. This
enables you to see how ICAN projects can work with SNA applications.

SNAIn_CPIC for use with eGate

SNAOut_CPIC for use with eGate

SNAIn_helper for use with eGate

SNAOut_helper for use with eGate

SNA1In and SNAOut1 projects demonstrate the use of the SNA eWay using CPIC
functions. SNAIn1_helper and SNAOut1_helper demonstrate how to use the SNA
eWay with the windows helper functions.

Learn more about the sample projects:

“Sample Project Contents” on page 54

“Sample Project Zip Files” on page 55

5.1.1 Sample Project Contents
Each project contains the following:
SNA eWay Intelligent Adapter User’s Guide 54 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Implementing SNA eWay Projects Locating the Sample Projects
Input data

Connectivity Maps

Collaborations Definitions

Inbound or outbound SNA eWays

The sample projects provide a project that allows you to browse its configurations to
learn how inbound and outbound SNA projects are designed. The projects do not
include ICAN Environments and deployment profiles necessary to deploy the sample
projects. To learn how to complete the projects for deployment, refer to “Running SNA
eWay Projects” on page 57.

5.1.2 Sample Project Zip Files
The SNA eWay sample projects are provided as a zip file, SNA_eWay_Sample.zip,
which contains the following files:

SNAIn_CPIC.zip for the SNA project (eGate)

SNAOut_CPIC.zip for the SNA project (eGate)

SNAIn_helper.zip for the SNA project (eGate)

SNAOut_helper.zip for the SNA project (eGate)

SNAOut1_input1.txt (input file)

5.2 Locating the Sample Projects
The SNA eWay sample projects are included in the SNAeWayDocs.sar file. This file is
uploaded separately from the SNA eWay sar file during installation. For information,
refer to “Installing the eWay” on page 16.

Once you have uploaded the SNAeWayDocs.sar to the repository and you have
downloaded the sample projects (SNA_eWay_Sample.zip) via the
DOCUMENTATION tab in the Enterprise Manager, the samples resides in the folder
you specified during the download.

5.3 Importing Projects
You can import the SNA projects as described below. To find out where the sample
projects reside, refer to “Locating the Sample Projects” on page 55.

To import the sample projects

1 Unzip the SNA_eWay_Sample.zip file. This creates the following zip files:

SNAIn_CPIC.zip (for the eGate project)

SNAOut_CPIC.zip(for the eGate project)
SNA eWay Intelligent Adapter User’s Guide 55 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Implementing SNA eWay Projects Importing Projects
SNAIn_helper.zip (for the eGate project)

SNAOut_helper.zip (for the eGate project)

SNAOut1_input1.txt (input file)

2 In the Project Explorer tab of the Enterprise Designer, right-click the repository and
click Import. The Import Manager dialog box appears.

3 Click Browse and navigate to the folder where you unzipped the sample zip file.

4 Click the desired sample file. The Import Manager dialog box appears similar to the
following:

Figure 26 Import Manager Dialog Box

5 Click Import. A dialog box confirms that the project import was successful.

6 Click OK and click Close.

You can now explore the connectivity maps, the OTDs, and the business logic for the
collaborations or business processes.
SNA eWay Intelligent Adapter User’s Guide 56 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
Implementing SNA eWay Projects Running SNA eWay Projects
5.4 Running SNA eWay Projects
The sample projects do not include the eGate environments, deployment profiles, and
the physical configurations for the eWays needed to deploy the projects. To deploy SNA
projects, perform the following after importing or creating new projects:

1 Configure the eWay properties– see “Building SNA Business Logic with eGate”
on page 63.

2 Create the environment profile - see “Creating the Environment Profile” on
page 57.

3 Configure the eWay environment properties - see “Inbound Environment
Properties” on page 30 or “Outbound Environment Properties” on page 32.

4 Configure the logical host - see “Configuring the Logical Host” on page 58.

5 Deploy the project - see “Deploying the Project” on page 60.

6 Run the project - see “Running the Sample Project” on page 61

5.4.1 Creating the Environment Profile
The procedure below describes how you create an eGate Environment for the SNA
sample projects. For detailed information about creating Environments, refer to the
eGate Integrator User’s Guide.

1 In the Environment Explorer tab of the Enterprise Designer, right-click the
repository and click New Environment.

2 Right-click the environment and click New File External System to add a File eWay.
The list below shows which external systems to add for which project collaboration:

SNAIn_CPIC: one outbound File eWay

SNAOut_CPIC: one inbound File eWay and one outbound File eWay

SNAIn_helper: one outbound File eWay

SNAOut_helper: one inbound File eWay and one outbound File eWay

3 Right-click the environment and click New SNALU62 External System to add an
SNA eWay. The list below shows which systems to add for which project
collaboration:

SNAIn_CPIC: one inbound SNA eWay

SNAOut_CPIC: one outbound SNA eWay

SNAIn_helper: one inbound SNA eWay

SNAOut_helper: one outbound SNA eWay

Figure 27 shows the completed environment profile--should you choose to host all the
projects in the same environment profile. If you choose to deploy each project to a
separate environment profile, your environment profile may not have all of the external
systems as displayed in Figure 27. Only the external systems, as specified in steps 2 and
3 for a particular project, will be present.
SNA eWay Intelligent Adapter User’s Guide 57 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
Implementing SNA eWay Projects Running SNA eWay Projects
Figure 27 eGate environment for sample projects

5.4.2 Configuring the Logical Host
Before you can execute any projects created with the SNA eWay, you must add the SNA
eWay Runtime JNI to the logical host.

1 If the logical host is not already installed, download and install [but do not
bootstrap) the logical host as described in the ICAN Suite Installation Guide. Do not

2 From the Environment Explorer, right-click the targeted environment and click
New Logical Host.

3 Launch the Enterprise Manager.

4 From the Enterprise Manager, click the DOWNLOADS tab.

5 Download and save the eWay Runtime JNI file to the local system.

6 Return to the Enterprise Designer’s Environment Explorer.

7 Right-click the targeted logical host name for your SNA eWay project and select:
Upload File...

8 Select the path and file name for the Runtime JNI file. The Upload Third Party Files
window appears.
SNA eWay Intelligent Adapter User’s Guide 58 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
Implementing SNA eWay Projects Running SNA eWay Projects
9 Confirm that the file to be uploaded is the Runtime JNI file for SNA and click OK to
continue.

10 Right-click the logical host and click New SeeBeyond Integration Server.

SPARC64 logical host deployment

The SNA eWay is shipped with the Sparc64 logical host. The JVM for the Sparc64
logical host can be started in either 32-bit or 64-bit mode. By default, the JVM is started
in 32-bit mode. To properly deploy the logical host for Sparc 64, you must ensure that
the JVM bit mode matches the bit size of the JNI bridge shared library for the
appropriate Brixton or SNAP-IX library that you installed in Chapter 2, “Installing the
eWay Product Files” on page 17.

If planning to host large EJB applications, the big EJB applications run more efficiently
on Solaris 9 with the JVM configured for 64-bit execution. To modify the logical host so
that the JVM starts in 64-bit mode, instead of the default 32-bit mode, you must first
perform all the procedures as specified in “Configuring the Logical Host” on page 58,
before continuing with the steps described below.

To set the JVM to start in 64-bit mode:

1 Open the Enterprise Designer and navigate to the Environment Explorer.

2 Locate the logical host for the integration server whose JVM you want to start in 64-
bit mode.

3 Right-click the integration server and click Properties.

4 Set the JVM Args attribute to -d64. See Figure 28 for details.
SNA eWay Intelligent Adapter User’s Guide 59 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
Implementing SNA eWay Projects Running SNA eWay Projects
Figure 28 Configuring JVM for 64-bit mode

5 Click OK to save the integration server settings.

5.4.3 Deploying the Project
Once you have created the environment and added its components, you can create the
deployment profiles. The procedure below describes how to create deployment profiles
for the inbound and outbound collaborations.

To create Deployment Profiles for sample projects

1 In the Project Explorer tab of the Enterprise Designer, right-click the project and
click New Deployment Profile.

2 Enter a name for the inbound deployment profile, and select the environment you
created for the sample.

3 Double-click the inbound deployment profile. Drag the project components to the
environment component as shown in Figure 29.
SNA eWay Intelligent Adapter User’s Guide 60 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
Implementing SNA eWay Projects Running SNA eWay Projects
Figure 29 Deployment profile

4 Click Activate to enable the deployment profile.

5.4.4 Running the Sample Project
Before you run SNA eWay projects, you should ensure all other project preparation
procedures have been completed. Refer to “Running SNA eWay Projects” on page 57
for a complete list of tasks required to run SNA eWay projects. Additionally, specific
logical host bootstrap procedures must be adhered to for this eWay. Modifications to
the bootstrap procedures are described below and should be implemented according to
the logical host platform:

Windows 2000/XP/Windows Server 2003 on page 61

IBM AIX 5.1L and 5.2 (32-bit) on page 62

IBM AIX 5.1L and 5.2 (64-bit) on page 62

Sparc (32-bit) on page 62

Sparc (64-bit) on page 63

Refer to the ICAN Suite Installation Guide for general instructions about bootstrapping
the logical host.

Windows 2000/XP/Windows Server 2003

1 Ensure the stc_jnisna.dll resides in a directory specified in the system PATH
statement. Refer to “Installing the eWay Product Files” on page 17 for instructions
on how to download and configure the stc_jnisna.dll file.

2 Run the bootstrap.bat file.
SNA eWay Intelligent Adapter User’s Guide 61 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
Implementing SNA eWay Projects Running SNA eWay Projects
IBM AIX 5.1L and 5.2 (32-bit)

1 Ensure the libstc_jnisna.so resides in a directory specified in the system LIBPATH
statement. Refer to “Installing the eWay Product Files” on page 17 for instructions
on how to download and configure the libstc_jnisna.so file.

2 Add the IBM Communication Server directory path (e.g., /usr/lib/sna) to the
system LIBPATH.

3 From a command prompt, execute the following:

EXPORT OBJECT_MODE=32

EXPORT LIBPATH

4 Execute the bootstrap.sh file with the -32bit parameter (plus other required
parameters).

IBM AIX 5.1L and 5.2 (64-bit)

1 Ensure the libstc_jnisna.so resides in a directory specified in the system LIBPATH
statement. Refer to “Installing the eWay Product Files” on page 17 for instructions
on how to download and configure the libstc_jnisna.so file.

2 Add the /usr/sna/lib directory to the system LIBPATH.

3 From a command prompt, execute the following:

EXPORT OBJECT_MODE=64

EXPORT LIBPATH

4 Execute the bootstrap.sh file.

Sparc (32-bit)

For Sparc 32-bit platforms, the SNA eWay supports two third-party SNA servers:
SNAP-IX, and Brixton. Both the SNAP-IX and Brixton libraries can be executed in either
32-bit or 64-bit modes. Refer to “Installing the eWay Product Files” on page 17 for
instructions on how to download and configure the libstc_jnisna.so file.

1 Ensure the runtime bridge library, libstc_jnisna.so, for either the SNA eWay -
Runtime sparc32 SNAP-IX bridge so or the SNA eWay - Runtime sparc32 Brixton
bridge so reside in a directory that is specified in the LD_LIBRARY_PATH
environment variable.

2 Ensure that the Brixton or SNAP-IX 32-bit library directory is specified in the
LD_LIBRARY_PATH environment variable.

3 Ensure the JVM for the integration server specified in your logical host is set to 32-
bits. Refer to “Configuring the Logical Host” on page 58 to configure the logical
host.

4 Execute the bootstrap.sh file.
SNA eWay Intelligent Adapter User’s Guide 62 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Implementing SNA eWay Projects Building SNA Business Logic with eGate
Sparc (64-bit)

For bigger EJB applications hosted on Solaris 9, the 64-bit JVM has better performance.
If you run the SeeBeyond Integration Server JVM in 64-bit mode, you must also use the
64-bit JNI bridge shared library and the corresponding SNAP-IX or Brixton 64-bit
library.

1 Ensure the runtime bridge library, libstc_jnisna.so, for either the SNA eWay -
Runtime sparc64 SNAP-IX bridge so or the SNA eWay - Runtime sparc64 Brixton
bridge so reside in a directory that is specified in the LD_LIBRARY_PATH
environment variable.

2 Ensure that the Brixton or SNAP-IX 64-bit library directory is specified in the
LD_LIBRARY_PATH environment variable.

3 Ensure the JVM for the integration server specified in your logical host is set to 64-
bits. Refer to “Configuring the Logical Host” on page 58 to configure the logical
host.

4 Execute the bootstrap.sh file.

5.5 Building SNA Business Logic with eGate
This section describes how to build the SNA collaborations:

Building Collaborations on page 63

Adding Connectivity Maps on page 66

Building Inbound Connectivity Maps on page 66

Building Outbound Connectivity Maps on page 67

To see an example of SNA collaborations and connectivity maps, import the SNA
sample projects as described in “Implementing SNA eWay Projects” on page 54.

5.5.1 Building Collaborations
After you have built the OTDs as described in “Configuring the eWay” on page 20,
you are ready to build Collaboration Definitions.

To build Collaborations

1 In the Project Explorer tab of the Enterprise Designer, right-click the project, select
New > Collaboration Definition (Java).

2 Complete steps 1 and 2 of the Collaboration Definition Wizard (Java). For details
about this wizard, refer to the eGate Integrator User’s Guide.

3 Select the SNA OTD to use in the new collaboration by traversing the Look In drop-
down box: SeeBeyond.eWays.SNA.

4 Highlight the desired OTD name and click the Add button.
SNA eWay Intelligent Adapter User’s Guide 63 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Implementing SNA eWay Projects Building SNA Business Logic with eGate
5 Optionally, modify the instance name of the OTD that will be used in the
collaboration.

6 Click the Finish button.

A new collaboration associated with the SNA OTD is placed into your targeted project.

7 In the Collaboration Editor window, create the source code and the data mappings
for the collaboration. For details about the Collaboration Editor, refer to the eGate
Integrator User’s Guide. For information about SNA methods, refer to “SNA eWay
Javadocs” on page 69.

The figure below shows an example of data mapping for an inbound SNA
collaboration. To explore the business logic design for an actual project, import the SNA
sample projects as described in “Importing Projects” on page 55.

Figure 30 Inbound collaboration (SNAIn_CPIC)
SNA eWay Intelligent Adapter User’s Guide 64 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Implementing SNA eWay Projects Building SNA Business Logic with eGate
Figure 31 Inbound collaboration (SNAIn_helper)

Figure 32 Outbound collaboration (SNAOut_CPIC)
SNA eWay Intelligent Adapter User’s Guide 65 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Implementing SNA eWay Projects Building SNA Business Logic with eGate
Figure 33 Outbound collaboration (SNAOut_helper)

5.5.2 Adding Connectivity Maps
To add Connectivity Maps

In the Project Explorer tab of the Enterprise Designer, right-click the project for
which you intend to create a connectivity map, click New > Connectivity Map.

5.5.3 Building Inbound Connectivity Maps
To build inbound SNA Connectivity Maps

1 From the connectivity map, click the External Applications icon then select
SNALU62 External Application.

2 Add other components such as other eWays and collaborations to the connectivity
map.

3 Drag the inbound collaboration from the Project Explorer tab into the collaboration
icon in the connectivity map.

4 Link and configure the SNA eWays. Refer to “Configuring the eWay” on page 20
for eWay configuration details.

5 Link and configure all components. For details, refer to the eGate Integrator User’s
Guide.
SNA eWay Intelligent Adapter User’s Guide 66 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Implementing SNA eWay Projects Building SNA Business Logic with eGate
The figure below shows an example of an inbound SNA connectivity map. To explore
the connectivity map for an actual project, import the SNA sample project as described
in “Importing Projects” on page 55.

Figure 34 Inbound SNA connectivity map

5.5.4 Building Outbound Connectivity Maps
To build outbound SNA connectivity maps

1 From the connectivity map, click the External Applications icon then select
SNALU62 External Application.

2 Add other components such as other eWays and collaborations to the connectivity
map.

3 Drag the outbound collaboration from the Project Explorer tab into the
collaboration icon in the connectivity map.

4 Link and configure all components. For details, refer to the eGate Integrator User’s
Guide.

The figure below shows an example of an outbound SNA connectivity map. To explore
the connectivity map for an actual project, import the SNA sample project as described
in “Importing Projects” on page 55.
SNA eWay Intelligent Adapter User’s Guide 67 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Implementing SNA eWay Projects Building SNA Business Logic with eGate
Figure 35 Outbound SNA connectivity map

5.5.5 SNA Collaborations
Newly created Java collaborations that implement the SNA OTD consist of skeleton
SNA functionality required to use the collaboration with your project. The
collaboration code generated upon SNA Java collaboration creation is provided in
Figure 36.

Figure 36 Default Collaboration Code

package TechDocSNAtdSNA;
public class Collaboration_1
{

public void receive(
com.stc.connector.snalu62.inbound.SNAInboundApplication input,
com.stc.connector.snalu62.outbound.SNAOutboundApplication SNALU62eWay_1

)
throws Throwable
{}

 public com.stc.codegen.logger.Logger logger;
 public com.stc.codegen.alerter.Alerter alerter;
 public com.stc.codegen.util.CollaborationContext collabContext;

}

SNA eWay Intelligent Adapter User’s Guide 68 SeeBeyond Proprietary and Confidential

SNA eWay Intelligent Adapter User’s Guide 69 SeeBeyond Proprietary and Confidential

Chapter 6

SNA eWay Javadocs

For a complete list of the Java methods available for use with SNALU62 eWay Object
Type Definitions, refer to the Javadoc. You can download the Javadoc while you are
installing the eWay. For complete instructions, see the SeeBeyond ICAN Suite Installation
Guide.

Index
Index

Numerics
32-bit 62
64-bit 62, 63

JVM 59

A
Always Create New Connection 27
At Fixed Rate 21, 23
Auto Disconnect Connection 28
Auto Reconnect Upon Matching Failure 28

B
Best Practices 50
bootstrap 61
building

Collaborations 63

C
collaborations

default 35
Collaborations, building 63
Connection Establishment 24, 27

Always Create New Connection 27
Auto Disconnect Connection 28
Auto Reconnect Upon Matching Failure 28
Max Connection Retry 24, 28
Retry Connection Interval 24, 28

Connection Level 26, 30
Connection Pool Size 24
Connectivity Map

inbound 20
outbound 27

Connectivity Maps
adding, eGate 66
inbound, eGate 66
outbound, eGate 67

conventions, document 14
Conversation State 12, 51
CPIC 53
Custom Handshake Class Name 25, 29

D
Deallocation Type 25, 29
default collaborations 35
Delay 22, 23
deploying Projects 61
Deployment Profiles, creating 60
document conventions 14
documentation, installing 17

E
Environment Properties

inbound
SNA Settings 31

outbound 32
SNA Settings 33

Environments
creating 57

F
finding sample Projects 55

G
General Settings 26, 30, 32

H
Host Name 31, 33

I
IBM AIX 62
importing sample Projects 55
inbound

Connectivity Maps, eGate 66
Environment Properties

SNA Settings 31
Inbound Connection Manager 24

Connection Pool Size 24
Scope of Connection 25

inbound connectivity map 20
inbound eway properties 21, 22, 23, 24, 25, 26
InBound Schedules

Listner Schedule 21
Inbound Schedules 21
Initial Conversation 26, 29
installation

SNALU62eWay.sar 17
installing

documentation 17
sample Projects 17
SNA eWay Intelligent Adapter User’s Guide 1 SeeBeyond Proprietary and Confidential

Index
J
Javadoc 69
Javadoc, obtaining 69
JNI

upload JAR file 58
JVM

64-bit 59

L
Listner Schedule 21

At Fixed Rate 21
Delay 22
Period 22
Scheduler 22

Local LU Name 31, 33
Local TP Name

SNA Settings
Local TP Name 31, 33

Logical Host
configure 58

logical host 61
JVM 59

M
Max Connection Retry 24, 28

O
Object Type Definition 34
organization of information, document 13
OTD 34
OTD Level 26, 30
outbound

connectivity map 27
Connectivity Maps (eGate) 67
Environment Properties 32

SNA Settings 33
outbound eway properties 27, 28, 29, 30
overview

sample Projects 54

P
Packet Size 26, 29
Period 22, 23
Persistent Storage Location 32, 33

R
Resource Adapter Level 26, 30
Retry Connection Interval 24, 28

S
sample Projects

deploying 61
Deployment Profiles 60
Environments 57
finding 55
importing 55
installing 17
overview 54

SAR File
SNALU62eWay.sar 17

Schedule Type 23
Scheduler 22, 23
Scope of Connection 25
Scope of State 26, 30
Service Schedule 22

At Fixed Rate 23
Delay 23
Period 23
Schedule Type 23
Scheduler 23

SNA Settings 25, 29
Deallocation Type 25, 29
Environment Properties 31, 33
Initial Conversation 26, 29
Local LU Name 31, 33
Packet Size 26, 29
Symbolic Destination Name 32, 33
Synchronization Level 26, 30
Timeout 26, 30

SNA_eWay_Sample.zip 55
Sparc 62, 63
SPARC64

JVM 59
Symbolic Destination Name 32, 33
Synchronization Level 26, 30

T
Timeout 26, 30

W
Windows 61
SNA eWay Intelligent Adapter User’s Guide 2 SeeBeyond Proprietary and Confidential

	SNA eWay Intelligent Adapter User’s Guide
	Contents
	Introduction
	What’s In This Chapter:
	1.1 About SNA
	1.1.1 Supported Logical Unit Types
	SNA LU6.2

	1.2 About the SNA eWay
	1.3 What’s New in This Release
	1.3.1 Collaborations
	1.3.2 Persistence
	1.3.3 Conversation State
	1.3.4 Protocol State

	1.4 About This Document
	1.4.1 What’s in This Document
	1.4.2 Scope
	1.4.3 Intended Audience
	1.4.4 Document Conventions

	1.5 Related Documents
	1.6 SeeBeyond Web Site
	1.7 SeeBeyond Documentation Feedback

	Installing the eWay
	What’s In This Chapter:
	2.1 Supported Operating Systems
	2.2 System Requirements
	2.3 Supported External Applications
	2.4 Installing the eWay Product Files
	2.5 After Installing the eWay

	Configuring the eWay
	What’s In This Chapter:
	3.1 Inbound Connectivity Map Properties
	3.1.1 Inbound Schedules
	Listner Schedule
	Service Schedule

	3.1.2 Connection Establishment
	Max Connection Retry
	Retry Connection Interval

	3.1.3 Inbound Connection Manager
	Connection Pool Size
	Scope of Connection

	3.1.4 SNA Settings
	Custom Handshake Class Name
	Deallocation Type
	Initialize Conversation
	Packet Size
	Synchronization Level
	Timeout

	3.1.5 General Settings
	Scope of State

	3.2 Outbound Connectivity Map Properties
	3.2.1 Connection Establishment
	Always Create New Connection
	Auto Disconnect Connection
	Auto Reconnect Upon Matching Failure
	Max Connection Retry
	Retry Connection Interval

	3.2.2 SNA Settings
	Custom Handshake Class Name
	Deallocation Type
	Initialize Conversation
	Packet Size
	Synchronization Level
	Timeout

	3.2.3 General Settings
	Scope of State

	3.3 Inbound Environment Properties
	3.3.1 SNA Settings
	Host Name
	Local LU Name
	Local TP Name
	Symbolic Destination Name

	3.3.2 General Settings
	Persistent Storage Location

	3.4 Outbound Environment Properties
	3.4.1 SNA Settings
	Host Name
	Local LU Name
	Local TP Name
	Symbolic Destination Name

	3.4.2 General Settings
	Persistent Storage Location

	3.5 Object Type Definitions (OTDs)

	SNA Java Collaborations
	4.1 Creating Default Java Collaborations
	4.1.1 Analyzing the Default Java Collaboration

	4.2 Creating Custom Collaborations
	4.2.1 Inbound SNA Conversations
	Conversation Sent to a Text File (CPIC)
	Conversation Sent to a Text File (Helper)

	4.2.2 Outbound SNA Conversations
	Conversation Originates from a Text File (CPIC)
	Conversation Originates from a Text File (Helper)

	4.2.3 Inbound and Outbound SNA Conversations

	4.3 Best Practices
	4.3.1 Checking Conversation State
	4.3.2 Using CPIC Calls

	Implementing SNA eWay Projects
	5.1 About the Sample Projects
	5.1.1 Sample Project Contents
	5.1.2 Sample Project Zip Files

	5.2 Locating the Sample Projects
	5.3 Importing Projects
	5.4 Running SNA eWay Projects
	5.4.1 Creating the Environment Profile
	5.4.2 Configuring the Logical Host
	SPARC64 logical host deployment

	5.4.3 Deploying the Project
	5.4.4 Running the Sample Project
	Windows 2000/XP/Windows Server 2003
	IBM AIX 5.1L and 5.2 (32-bit)
	IBM AIX 5.1L and 5.2 (64-bit)
	Sparc (32-bit)
	Sparc (64-bit)

	5.5 Building SNA Business Logic with eGate
	5.5.1 Building Collaborations
	5.5.2 Adding Connectivity Maps
	5.5.3 Building Inbound Connectivity Maps
	5.5.4 Building Outbound Connectivity Maps
	5.5.5 SNA Collaborations

	SNA eWay Javadocs
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	O
	P
	R
	S
	T
	W

